Science.gov

Sample records for robust scientific workflows

  1. Structured Composition of Dataflow and Control-Flow for Reusable and Robust Scientific Workflows

    SciTech Connect

    Bowers, S; Ludaescher, B; Ngu, A; Critchlow, T

    2005-09-07

    Data-centric scientific workflows are often modeled as dataflow process networks. The simplicity of the dataflow framework facilitates workflow design, analysis, and optimization. However, some workflow tasks are particularly ''control-flow intensive'', e.g., procedures to make workflows more fault-tolerant and adaptive in an unreliable, distributed computing environment. Modeling complex control-flow directly within a dataflow framework often leads to overly complicated workflows that are hard to comprehend, reuse, schedule, and maintain. In this paper, we develop a framework that allows a structured embedding of control-flow intensive subtasks within dataflow process networks. In this way, we can seamlessly handle complex control-flows without sacrificing the benefits of dataflow. We build upon a flexible actor-oriented modeling and design approach and extend it with (actor) frames and (workflow) templates. A frame is a placeholder for an (existing or planned) collection of components with similar function and signature. A template partially specifies the behavior of a subworkflow by leaving ''holes'' (i.e., frames) in the subworkflow definition. Taken together, these abstraction mechanisms facilitate the separation and structured re-combination of control-flow and dataflow in scientific workflow applications. We illustrate our approach with a real-world scientific workflow from the astrophysics domain. This data-intensive workflow requires remote execution and file transfer in a semi-reliable environment. For such work-flows, we propose a 3-layered architecture: The top-level, typically a dataflow process network, includes Generic Data Transfer (GDT) frames and Generic remote eXecution (GX) frames. At the second level, the user can specialize the behavior of these generic components by embedding a suitable template (here: transducer templates for control-flow intensive tasks). At the third level, frames inside the transducer template are specialized by embedding

  2. Scientific workflows for bibliometrics.

    PubMed

    Guler, Arzu Tugce; Waaijer, Cathelijn J F; Palmblad, Magnus

    Scientific workflows organize the assembly of specialized software into an overall data flow and are particularly well suited for multi-step analyses using different types of software tools. They are also favorable in terms of reusability, as previously designed workflows could be made publicly available through the myExperiment community and then used in other workflows. We here illustrate how scientific workflows and the Taverna workbench in particular can be used in bibliometrics. We discuss the specific capabilities of Taverna that makes this software a powerful tool in this field, such as automated data import via Web services, data extraction from XML by XPaths, and statistical analysis and visualization with R. The support of the latter is particularly relevant, as it allows integration of a number of recently developed R packages specifically for bibliometrics. Examples are used to illustrate the possibilities of Taverna in the fields of bibliometrics and scientometrics.

  3. Scientific Workflow Management in Proteomics

    PubMed Central

    de Bruin, Jeroen S.; Deelder, André M.; Palmblad, Magnus

    2012-01-01

    Data processing in proteomics can be a challenging endeavor, requiring extensive knowledge of many different software packages, all with different algorithms, data format requirements, and user interfaces. In this article we describe the integration of a number of existing programs and tools in Taverna Workbench, a scientific workflow manager currently being developed in the bioinformatics community. We demonstrate how a workflow manager provides a single, visually clear and intuitive interface to complex data analysis tasks in proteomics, from raw mass spectrometry data to protein identifications and beyond. PMID:22411703

  4. Scientific Process Automation and Workflow Management

    SciTech Connect

    Ludaescher, Bertram T.; Altintas, Ilkay; Bowers, Shawn; Cummings, J.; Critchlow, Terence J.; Deelman, Ewa; De Roure, D.; Freire, Juliana; Goble, Carole; Jones, Matt; Klasky, S.; McPhillips, Timothy; Podhorszki, Norbert; Silva, C.; Taylor, I.; Vouk, M.

    2010-01-01

    We introduce and describe scientific workflows, i.e., executable descriptions of automatable scientific processes such as computational science simulations and data analyses. Scientific workflows are often expressed in terms of tasks and their (data ow) dependencies. This chapter first provides an overview of the characteristic features of scientific workflows and outlines their life cycle. A detailed case study highlights workflow challenges and solutions in simulation management. We then provide a brief overview of how some concrete systems support the various phases of the workflow life cycle, i.e., design, resource management, execution, and provenance management. We conclude with a discussion on community-based workflow sharing.

  5. Context-Aware Scientific Workflow Systems using KEPLER

    SciTech Connect

    Ngu, Anne H.; Jamnagarwala, Arwa; Chin, George; Sivaramakrishnan, Chandrika; Critchlow, Terence J.

    2010-04-01

    Data-intensive scientific workflows are often modeled using a dataflow-oriented model. The simplicity of a dataflow model facilitates intuitive workflow design, analysis, and optimization. However, some amount of control-flow modeling is often necessary for engineering fault-tolerant, robust, and adaptive workflows. Modeling the control-flow using inherent dataflow constructs will quickly end up with a workflow that is hard to comprehend, reuse, and maintain. In this paper, we propose a context-aware architecture for scientific workflows. By incorporating contexts within a data-flow oriented scientific workflow system, we enable the development of context-aware scientific workflows without the need to use numerous low-level control-flow actors. This results in a workflow that is aware of its environment during execution with minimal user input and responds intelligently based on such awareness at runtime. A further advantage of our approach is that the defined contexts can be reused and shared across other workflows. We demonstrate our approach with two prototype implementation of context-aware actors in KEPLER.

  6. Working with Workflows: Highlights from 5 years Building Scientific Workflows

    SciTech Connect

    Critchlow, Terence J.; Altintas, Ilkay; Chin, George; Crawl, Daniel; Iyer, H.; Khan, Ayla; Klasky, S.; Koehler, Sven; Ludaescher, Bertram T.; Mouallem, Pierre; Nagappan, Mie; Podhorszki, Norbert; Shoshani, Arie; Silva, C.; Tchoua, Roselynne; Vouk, M.

    2011-07-30

    In 2006, the SciDAC Scientific Data Management (SDM) Center proposed to continue its work deploying leading edge data management and analysis capabilities to scientific applications. One of three thrust areas within the proposed center was focused on Scientific Process Automation (SPA) using workflow technology. As a founding member of the Kepler consortium [LAB+09], the SDM Center team was well positioned to begin deploying workflows immediately. We were also keenly aware of some of the deficiencies in Kepler when applied to high performance computing workflows, which allowed us to focus our research and development efforts on critical new capabilities which were ultimately integrated into the Kepler open source distribution, benefiting the entire community. Significant work was required to ensure Kepler was capable of supporting large-scale production runs for SciDAC applications. Our work on generic actors and templates have improved the portability of workflows across machines and provided a higher level of abstraction for workflow developers. Fault tolerance and provenance tracking were obvious areas for improvement within Kepler given the longevity and complexity of our target workflows. To monitor workflow execution, we developed and deployed a web-based dashboard. We then generalized this interface and released it so it could be deployed at other locations. Outreach has always been a primary focus of our work and we had many successful deployments across a number of scientific domains while continually publishing and presenting our work. This short paper describes our most significant accomplishments over the past 5 years. Additional information about the SDM Center can be found in the companion paper: The Scientific Data Management Center: Available Technologies and Highlights.

  7. Automation of Network-Based Scientific Workflows

    SciTech Connect

    Altintas, I.; Barreto, R.; Blondin, J. M.; Cheng, Z.; Critchlow, T.; Khan, A.; Klasky, Scott A; Ligon, J.; Ludaescher, B.; Mouallem, P. A.; Parker, S.; Podhorszki, Norbert; Shoshani, A.; Silva, C.; Vouk, M. A.

    2007-01-01

    Comprehensive, end-to-end, data and workflow management solutions are needed to handle the increasing complexity of processes and data volumes associated with modern distributed scientific problem solving, such as ultra-scale simulations and high-throughput experiments. The key to the solution is an integrated network-based framework that is functional, dependable, fault-tolerant, and supports data and process provenance. Such a framework needs to make development and use of application workflows dramatically easier so that scientists' efforts can shift away from data management and utility software development to scientific research and discovery An integrated view of these activities is provided by the notion of scientific workflows - a series of structured activities and computations that arise in scientific problem-solving. An information technology framework that supports scientific workflows is the Ptolemy II based environment called Kepler. This paper discusses the issues associated with practical automation of scientific processes and workflows and illustrates this with workflows developed using the Kepler framework and tools.

  8. Kepler Scientific Workflow Design and Execution with Contexts

    SciTech Connect

    Ngu, Anne Hee Hiong; Jamnagarwala, Arwa; Chin, George; Sivaramakrishnan, Chandrika; Critchlow, Terence J.

    2011-09-01

    A context-aware scientific workflow is a typical scientific workflow that is enhanced with context binding and awareness mechanisms. Context facilitates further configuration of the scientific workflow at runtime such that it is tuned to its environment during execution and responds intelligently based on such awareness without customized coding of the workflow. In this paper, we present a context annotation framework, which supports rapid development of context-aware scientific workflows. Context annotation enables a diverse type of actor in Kepler that may bind with different sensed environmental information as part of the actor’s regular data. Context-aware actors simplify the construction of scientific workflows that require intricate knowledge in initializing and configuring a large number of parameters to cover all different execution conditions. This paper presents the motivation, system design, implementation, and usage of context annotation in relation to the Kepler scientific workflow system.

  9. Scientific Workflows Composition and Deployment on SOA Frameworks

    SciTech Connect

    Liu, Yan; Gorton, Ian; Wynne, Adam S.; Kulkarni, Anand V.

    2011-12-12

    Scientific workflows normally consist of multiple applications acquiring and transforming data, running data intensive analyses and visualizing the results for scientific discovery. To compose and deploy such scientific workflows, an SOA platform can provide integration of third-party components, services, and tools. In this paper, we present our application of Service-Oriented Architecture (SOA) to compose and deploy systems biology workflows. In developing this application, our solution uses MeDICi a middleware framework built on SOA platforms as an integration layer. We discuss our experience and lessons learnt about this solution that are generally applicable to scientific workflows in other domains.

  10. Comparison of Resource Platform Selection Approaches for Scientific Workflows

    SciTech Connect

    Simmhan, Yogesh; Ramakrishnan, Lavanya

    2010-03-05

    Cloud computing is increasingly considered as an additional computational resource platform for scientific workflows. The cloud offers opportunity to scale-out applications from desktops and local cluster resources. At the same time, it can eliminate the challenges of restricted software environments and queue delays in shared high performance computing environments. Choosing from these diverse resource platforms for a workflow execution poses a challenge for many scientists. Scientists are often faced with deciding resource platform selection trade-offs with limited information on the actual workflows. While many workflow planning methods have explored task scheduling onto different resources, these methods often require fine-scale characterization of the workflow that is onerous for a scientist. In this position paper, we describe our early exploratory work into using blackbox characteristics to do a cost-benefit analysis across of using cloud platforms. We use only very limited high-level information on the workflow length, width, and data sizes. The length and width are indicative of the workflow duration and parallelism. The data size characterizes the IO requirements. We compare the effectiveness of this approach to other resource selection models using two exemplar scientific workflows scheduled on desktops, local clusters, HPC centers, and clouds. Early results suggest that the blackbox model often makes the same resource selections as a more fine-grained whitebox model. We believe the simplicity of the blackbox model can help inform a scientist on the applicability of cloud computing resources even before porting an existing workflow.

  11. Distilling structure in Taverna scientific workflows: a refactoring approach

    PubMed Central

    2014-01-01

    Background Scientific workflows management systems are increasingly used to specify and manage bioinformatics experiments. Their programming model appeals to bioinformaticians, who can use them to easily specify complex data processing pipelines. Such a model is underpinned by a graph structure, where nodes represent bioinformatics tasks and links represent the dataflow. The complexity of such graph structures is increasing over time, with possible impacts on scientific workflows reuse. In this work, we propose effective methods for workflow design, with a focus on the Taverna model. We argue that one of the contributing factors for the difficulties in reuse is the presence of "anti-patterns", a term broadly used in program design, to indicate the use of idiomatic forms that lead to over-complicated design. The main contribution of this work is a method for automatically detecting such anti-patterns, and replacing them with different patterns which result in a reduction in the workflow's overall structural complexity. Rewriting workflows in this way will be beneficial both in terms of user experience (easier design and maintenance), and in terms of operational efficiency (easier to manage, and sometimes to exploit the latent parallelism amongst the tasks). Results We have conducted a thorough study of the workflows structures available in Taverna, with the aim of finding out workflow fragments whose structure could be made simpler without altering the workflow semantics. We provide four contributions. Firstly, we identify a set of anti-patterns that contribute to the structural workflow complexity. Secondly, we design a series of refactoring transformations to replace each anti-pattern by a new semantically-equivalent pattern with less redundancy and simplified structure. Thirdly, we introduce a distilling algorithm that takes in a workflow and produces a distilled semantically-equivalent workflow. Lastly, we provide an implementation of our refactoring approach

  12. A Multi-Dimensional Classification Model for Scientific Workflow Characteristics

    SciTech Connect

    Ramakrishnan, Lavanya; Plale, Beth

    2010-04-05

    Workflows have been used to model repeatable tasks or operations in manufacturing, business process, and software. In recent years, workflows are increasingly used for orchestration of science discovery tasks that use distributed resources and web services environments through resource models such as grid and cloud computing. Workflows have disparate re uirements and constraints that affects how they might be managed in distributed environments. In this paper, we present a multi-dimensional classification model illustrated by workflow examples obtained through a survey of scientists from different domains including bioinformatics and biomedical, weather and ocean modeling, astronomy detailing their data and computational requirements. The survey results and classification model contribute to the high level understandingof scientific workflows.

  13. Kepler + MeDICi - Service-Oriented Scientific Workflow Applications

    SciTech Connect

    Chase, Jared M.; Gorton, Ian; Sivaramakrishnan, Chandrika; Almquist, Justin P.; Wynne, Adam S.; Chin, George; Critchlow, Terence J.

    2009-07-30

    Scientific applications are often structured as workflows that execute a series of interdependent, distributed software modules to analyze large data sets. The order of execution of the tasks in a workflow is commonly controlled by complex scripts, which over time become difficult to maintain and evolve. In this paper, we describe how we have integrated the Kepler scientific workflow platform with the MeDICi Integration Framework, which has been specifically designed to provide a standards-based, lightweight and flexible integration platform. The MeDICi technology provides a scalable, component-based architecture that efficiently handles integration with heterogeneous, distributed software systems. This paper describes the MeDICi Integration Framework and the mechanisms we used to integrate MeDICi components with Kepler workflow actors. We illustrate this solution with a workflow application for an atmospheric sciences application. The resulting solution promotes a strong separation of concerns, simplifying the Kepler workflow description and promoting the creation of a reusable collection of components available for other workflow applications in this domain.

  14. Enabling On-Demand Scientific Workflows on a Federated Cloud

    SciTech Connect

    Garzoglio, Gabriele

    2014-11-05

    The Fermilab Grid and Cloud Computing Department and the KISTI Global Science experimental Data hub Center are working on a multi-year Collaborative Research and Development Agreement.With the knowledge developed in the first year on how to provision and manage a federation of virtual machines through Cloud management systems. In this second year, we expanded the work on provisioning and federation, increasing both scale and diversity of solutions, and we started to build on-demand services on the established fabric, introducing the paradigm of Platform as a Service to assist with the execution of scientific workflows. We have enabled scientific workflows of stakeholders to run on multiple cloud resources at the scale of 1,000 concurrent machines. The demonstrations have been in the areas of (a) Virtual Infrastructure Automation and Provisioning, (b) Interoperability and Federation of Cloud Resources, and (c) On-demand Services for ScientificWorkflows.

  15. A scientific workflow framework for (13)C metabolic flux analysis.

    PubMed

    Dalman, Tolga; Wiechert, Wolfgang; Nöh, Katharina

    2016-08-20

    Metabolic flux analysis (MFA) with (13)C labeling data is a high-precision technique to quantify intracellular reaction rates (fluxes). One of the major challenges of (13)C MFA is the interactivity of the computational workflow according to which the fluxes are determined from the input data (metabolic network model, labeling data, and physiological rates). Here, the workflow assembly is inevitably determined by the scientist who has to consider interacting biological, experimental, and computational aspects. Decision-making is context dependent and requires expertise, rendering an automated evaluation process hardly possible. Here, we present a scientific workflow framework (SWF) for creating, executing, and controlling on demand (13)C MFA workflows. (13)C MFA-specific tools and libraries, such as the high-performance simulation toolbox 13CFLUX2, are wrapped as web services and thereby integrated into a service-oriented architecture. Besides workflow steering, the SWF features transparent provenance collection and enables full flexibility for ad hoc scripting solutions. To handle compute-intensive tasks, cloud computing is supported. We demonstrate how the challenges posed by (13)C MFA workflows can be solved with our approach on the basis of two proof-of-concept use cases.

  16. Scientific Workflows + Provenance = Better (Meta-)Data Management

    NASA Astrophysics Data System (ADS)

    Ludaescher, B.; Cuevas-Vicenttín, V.; Missier, P.; Dey, S.; Kianmajd, P.; Wei, Y.; Koop, D.; Chirigati, F.; Altintas, I.; Belhajjame, K.; Bowers, S.

    2013-12-01

    The origin and processing history of an artifact is known as its provenance. Data provenance is an important form of metadata that explains how a particular data product came about, e.g., how and when it was derived in a computational process, which parameter settings and input data were used, etc. Provenance information provides transparency and helps to explain and interpret data products. Other common uses and applications of provenance include quality control, data curation, result debugging, and more generally, 'reproducible science'. Scientific workflow systems (e.g. Kepler, Taverna, VisTrails, and others) provide controlled environments for developing computational pipelines with built-in provenance support. Workflow results can then be explained in terms of workflow steps, parameter settings, input data, etc. using provenance that is automatically captured by the system. Scientific workflows themselves provide a user-friendly abstraction of the computational process and are thus a form of ('prospective') provenance in their own right. The full potential of provenance information is realized when combining workflow-level information (prospective provenance) with trace-level information (retrospective provenance). To this end, the DataONE Provenance Working Group (ProvWG) has developed an extension of the W3C PROV standard, called D-PROV. Whereas PROV provides a 'least common denominator' for exchanging and integrating provenance information, D-PROV adds new 'observables' that described workflow-level information (e.g., the functional steps in a pipeline), as well as workflow-specific trace-level information ( timestamps for each workflow step executed, the inputs and outputs used, etc.) Using examples, we will demonstrate how the combination of prospective and retrospective provenance provides added value in managing scientific data. The DataONE ProvWG is also developing tools based on D-PROV that allow scientists to get more mileage from provenance metadata

  17. Enabling scientific workflows in virtual reality

    USGS Publications Warehouse

    Kreylos, O.; Bawden, G.; Bernardin, T.; Billen, M.I.; Cowgill, E.S.; Gold, R.D.; Hamann, B.; Jadamec, M.; Kellogg, L.H.; Staadt, O.G.; Sumner, D.Y.

    2006-01-01

    To advance research and improve the scientific return on data collection and interpretation efforts in the geosciences, we have developed methods of interactive visualization, with a special focus on immersive virtual reality (VR) environments. Earth sciences employ a strongly visual approach to the measurement and analysis of geologic data due to the spatial and temporal scales over which such data ranges, As observations and simulations increase in size and complexity, the Earth sciences are challenged to manage and interpret increasing amounts of data. Reaping the full intellectual benefits of immersive VR requires us to tailor exploratory approaches to scientific problems. These applications build on the visualization method's strengths, using both 3D perception and interaction with data and models, to take advantage of the skills and training of the geological scientists exploring their data in the VR environment. This interactive approach has enabled us to develop a suite of tools that are adaptable to a range of problems in the geosciences and beyond. Copyright ?? 2008 by the Association for Computing Machinery, Inc.

  18. The Symbiotic Relationship between Scientific Workflow and Provenance (Invited)

    NASA Astrophysics Data System (ADS)

    Stephan, E.

    2010-12-01

    The purpose of this presentation is to describe the symbiotic nature of scientific workflows and provenance. We will also discuss the current trends and real world challenges facing these two distinct research areas. Although motivated differently, the needs of the international science communities are the glue that binds this relationship together. Understanding and articulating the science drivers to these communities is paramount as these technologies evolve and mature. Originally conceived for managing business processes, workflows are now becoming invaluable assets in both computational and experimental sciences. These reconfigurable, automated systems provide essential technology to perform complex analyses by coupling together geographically distributed disparate data sources and applications. As a result, workflows are capable of higher throughput in a shorter amount of time than performing the steps manually. Today many different workflow products exist; these could include Kepler and Taverna or similar products like MeDICI, developed at PNNL, that are standardized on the Business Process Execution Language (BPEL). Provenance, originating from the French term Provenir “to come from”, is used to describe the curation process of artwork as art is passed from owner to owner. The concept of provenance was adopted by digital libraries as a means to track the lineage of documents while standards such as the DublinCore began to emerge. In recent years the systems science community has increasingly expressed the need to expand the concept of provenance to formally articulate the history of scientific data. Communities such as the International Provenance and Annotation Workshop (IPAW) have formalized a provenance data model. The Open Provenance Model, and the W3C is hosting a provenance incubator group featuring the Proof Markup Language. Although both workflows and provenance have risen from different communities and operate independently, their mutual

  19. Building Scientific Workflows for the Geosciences with Open Community Software

    NASA Astrophysics Data System (ADS)

    Pierce, M. E.; Marru, S.; Weerawarana, S. M.

    2012-12-01

    We describe the design and development of the Apache Airavata scientific workflow software and its application to problems in geosciences. Airavata is based on Service Oriented Architecture principles and is developed as general purpose software for managing large-scale science applications on supercomputing resources such as the NSF's XSEDE. Based on the NSF-funded EarthCube Workflow Working Group activities, we discuss the application of this software relative to specific requirements (such as data stream data processing, event triggering, dealing with large data sets, and advanced distributed execution patterns involved in data mining). We also consider the role of governance in EarthCube software development and present the development of Airavata software through the Apache Software Foundation's community development model. We discuss the potential impacts on software accountability and sustainability using this model.

  20. Web-Accessible Scientific Workflow System for Performance Monitoring

    SciTech Connect

    Roelof Versteeg; Roelof Versteeg; Trevor Rowe

    2006-03-01

    We describe the design and implementation of a web accessible scientific workflow system for environmental monitoring. This workflow environment integrates distributed, automated data acquisition with server side data management and information visualization through flexible browser based data access tools. Component technologies include a rich browser-based client (using dynamic Javascript and HTML/CSS) for data selection, a back-end server which uses PHP for data processing, user management, and result delivery, and third party applications which are invoked by the back-end using webservices. This environment allows for reproducible, transparent result generation by a diverse user base. It has been implemented for several monitoring systems with different degrees of complexity.

  1. Scientific Workflows and the Sensor Web for Virtual Environmental Observatories

    NASA Astrophysics Data System (ADS)

    Simonis, I.; Vahed, A.

    2008-12-01

    interfaces. All data sets and sensor communication follow well-defined abstract models and corresponding encodings, mostly developed by the OGC Sensor Web Enablement initiative. Scientific progress is currently accelerated by an emerging new concept called scientific workflows, which organize and manage complex distributed computations. A scientific workflow represents and records the highly complex processes that a domain scientist typically would follow in exploration, discovery and ultimately, transformation of raw data to publishable results. The challenge is now to integrate the benefits of scientific workflows with those provided by the Sensor Web in order to leverage all resources for scientific exploration, problem solving, and knowledge generation. Scientific workflows for the Sensor Web represent the next evolutionary step towards efficient, powerful, and flexible earth observation frameworks and platforms. Those platforms support the entire process from capturing data, sharing and integrating, to requesting additional observations. Multiple sites and organizations will participate on single platforms and scientists from different countries and organizations interact and contribute to large-scale research projects. Simultaneously, the data- and information overload becomes manageable, as multiple layers of abstraction will free scientists to deal with underlying data-, processing or storage peculiarities. The vision are automated investigation and discovery mechanisms that allow scientists to pose queries to the system, which in turn would identify potentially related resources, schedules processing tasks and assembles all parts in workflows that may satisfy the query.

  2. An Adaptable Seismic Data Format for Modern Scientific Workflows

    NASA Astrophysics Data System (ADS)

    Smith, J. A.; Bozdag, E.; Krischer, L.; Lefebvre, M.; Lei, W.; Podhorszki, N.; Tromp, J.

    2013-12-01

    Data storage, exchange, and access play a critical role in modern seismology. Current seismic data formats, such as SEED, SAC, and SEG-Y, were designed with specific applications in mind and are frequently a major bottleneck in implementing efficient workflows. We propose a new modern parallel format that can be adapted for a variety of seismic workflows. The Adaptable Seismic Data Format (ASDF) features high-performance parallel read and write support and the ability to store an arbitrary number of traces of varying sizes. Provenance information is stored inside the file so that users know the origin of the data as well as the precise operations that have been applied to the waveforms. The design of the new format is based on several real-world use cases, including earthquake seismology and seismic interferometry. The metadata is based on the proven XML schemas StationXML and QuakeML. Existing time-series analysis tool-kits are easily interfaced with this new format so that seismologists can use robust, previously developed software packages, such as ObsPy and the SAC library. ADIOS, netCDF4, and HDF5 can be used as the underlying container format. At Princeton University, we have chosen to use ADIOS as the container format because it has shown superior scalability for certain applications, such as dealing with big data on HPC systems. In the context of high-performance computing, we have implemented ASDF into the global adjoint tomography workflow on Oak Ridge National Laboratory's supercomputer Titan.

  3. Facilitating Stewardship of scientific data through standards based workflows

    NASA Astrophysics Data System (ADS)

    Bastrakova, I.; Kemp, C.; Potter, A. K.

    2013-12-01

    scientific data acquisition and analysis requirements and effective interoperable data management and delivery. This includes participating in national and international dialogue on development of standards, embedding data management activities in business processes, and developing scientific staff as effective data stewards. Similar approach is applied to the geophysical data. By ensuring the geophysical datasets at GA strictly follow metadata and industry standards we are able to implement a provenance based workflow where the data is easily discoverable, geophysical processing can be applied to it and results can be stored. The provenance based workflow enables metadata records for the results to be produced automatically from the input dataset metadata.

  4. On the Support of Scientific Workflows over Pub/Sub Brokers

    PubMed Central

    Morales, Augusto; Robles, Tomas; Alcarria, Ramon; Cedeño, Edwin

    2013-01-01

    The execution of scientific workflows is gaining importance as more computing resources are available in the form of grid environments. The Publish/Subscribe paradigm offers well-proven solutions for sustaining distributed scenarios while maintaining the high level of task decoupling required by scientific workflows. In this paper, we propose a new model for supporting scientific workflows that improves the dissemination of control events. The proposed solution is based on the mapping of workflow tasks to the underlying Pub/Sub event layer, and the definition of interfaces and procedures for execution on brokers. In this paper we also analyze the strengths and weaknesses of current solutions that are based on existing message exchange models for scientific workflows. Finally, we explain how our model improves the information dissemination, event filtering, task decoupling and the monitoring of scientific workflows. PMID:23966191

  5. Looking beneath the Edges and Nodes: Ranking and Mining Scientific Workflows

    ERIC Educational Resources Information Center

    Dong, Xiao

    2010-01-01

    Workflow technology has emerged as an eminent way to support scientific computing nowadays. Supported by mature technological infrastructures such as web services and high performance computing infrastructure, workflow technology has been well adopted by scientific community as it offers an effective framework to prototype, modify and manage…

  6. Data Intensive Scientific Workflows on a Federated Cloud: CRADA Final Report

    SciTech Connect

    Garzoglio, Gabriele

    2015-10-31

    The Fermilab Scientific Computing Division and the KISTI Global Science Experimental Data Hub Center have built a prototypical large-scale infrastructure to handle scientific workflows of stakeholders to run on multiple cloud resources. The demonstrations have been in the areas of (a) Data-Intensive Scientific Workflows on Federated Clouds, (b) Interoperability and Federation of Cloud Resources, and (c) Virtual Infrastructure Automation to enable On-Demand Services.

  7. Scheduling Multilevel Deadline-Constrained Scientific Workflows on Clouds Based on Cost Optimization

    DOE PAGES

    Malawski, Maciej; Figiela, Kamil; Bubak, Marian; ...

    2015-01-01

    This paper presents a cost optimization model for scheduling scientific workflows on IaaS clouds such as Amazon EC2 or RackSpace. We assume multiple IaaS clouds with heterogeneous virtual machine instances, with limited number of instances per cloud and hourly billing. Input and output data are stored on a cloud object store such as Amazon S3. Applications are scientific workflows modeled as DAGs as in the Pegasus Workflow Management System. We assume that tasks in the workflows are grouped into levels of identical tasks. Our model is specified using mathematical programming languages (AMPL and CMPL) and allows us to minimize themore » cost of workflow execution under deadline constraints. We present results obtained using our model and the benchmark workflows representing real scientific applications in a variety of domains. The data used for evaluation come from the synthetic workflows and from general purpose cloud benchmarks, as well as from the data measured in our own experiments with Montage, an astronomical application, executed on Amazon EC2 cloud. We indicate how this model can be used for scenarios that require resource planning for scientific workflows and their ensembles.« less

  8. Towards a scientific workflow methodology for primary care database studies.

    PubMed

    Curcin, Vasa; Bottle, Alex; Molokhia, Mariam; Millett, Christopher; Majeed, Azeem

    2010-08-01

    We describe the challenges of conducting studies based on mining large-scale primary care databases, namely data integration, data set definition, result reproducibility and reusability. These correspond to higher-level informatics challenges of automation, provenance capture and component integration. We provide a high-level view of the informatics infrastructure that addresses these challenges through a generic workflow-based e-Science middleware, and describe our experiences using the system to investigate differences in the health status of patients with diabetes before and after the national introduction of the UK GP contract in 2004.

  9. Services + Components = Data Intensive Scientific Workflow Applications with MeDICi

    SciTech Connect

    Gorton, Ian; Chase, Jared M.; Wynne, Adam S.; Almquist, Justin P.; Chappell, Alan R.

    2009-06-01

    Scientific applications are often structured as workflows that execute a series of distributed software modules to analyze large data sets. Such workflows are typically constructed using general-purpose scripting languages to coordinate the execution of the various modules and to exchange data sets between them. While such scripts provide a cost-effective approach for simple workflows, as the workflow structure becomes complex and evolves, the scripts quickly become complex and difficult to modify. This makes them a major barrier to easily and quickly deploying new algorithms and exploiting new, scalable hardware platforms. In this paper, we describe the MeDICi Workflow technology that is specifically designed to reduce the complexity of workflow application development, and to efficiently handle data intensive workflow applications. MeDICi integrates standard component-based and service-based technologies, and employs an efficient integration mechanism to ensure large data sets can be efficiently processed. We illustrate the use of MeDICi with a climate data processing example that we have built, and describe some of the new features

  10. An Integrated Framework for Parameter-based Optimization of Scientific Workflows

    PubMed Central

    Kumar, Vijay S.; Sadayappan, P.; Mehta, Gaurang; Vahi, Karan; Deelman, Ewa; Ratnakar, Varun; Kim, Jihie; Gil, Yolanda; Hall, Mary; Kurc, Tahsin; Saltz, Joel

    2011-01-01

    Data analysis processes in scientific applications can be expressed as coarse-grain workflows of complex data processing operations with data flow dependencies between them. Performance optimization of these workflows can be viewed as a search for a set of optimal values in a multi-dimensional parameter space. While some performance parameters such as grouping of workflow components and their mapping to machines do not a ect the accuracy of the output, others may dictate trading the output quality of individual components (and of the whole workflow) for performance. This paper describes an integrated framework which is capable of supporting performance optimizations along multiple dimensions of the parameter space. Using two real-world applications in the spatial data analysis domain, we present an experimental evaluation of the proposed framework. PMID:22068617

  11. Parameterized Specification, Configuration and Execution of Data-Intensive Scientific Workflows

    PubMed Central

    Kumar, Vijay S.; Kurc, Tahsin; Ratnakar, Varun; Kim, Jihie; Mehta, Gaurang; Vahi, Karan; Nelson, Yoonju Lee; Sadayappan, P.; Deelman, Ewa; Gil, Yolanda; Hall, Mary; Saltz, Joel

    2012-01-01

    Data analysis processes in scientific applications can be expressed as coarse-grain workflows of complex data processing operations with data flow dependencies between them. Performance optimization of these workflows can be viewed as a search for a set of optimal values in a multidimensional parameter space consisting of input performance parameters to the applications that are known to affect their execution times. While some performance parameters such as grouping of workflow components and their mapping to machines do not affect the accuracy of the analysis, others may dictate trading the output quality of individual components (and of the whole workflow) for performance. This paper describes an integrated framework which is capable of supporting performance optimizations along multiple such parameters. Using two real-world applications in the spatial, multidimensional data analysis domain, we present an experimental evaluation of the proposed framework. PMID:22623878

  12. The Live Access Server Scientific Product Generation Through Workflow Orchestration

    NASA Astrophysics Data System (ADS)

    Hankin, S.; Calahan, J.; Li, J.; Manke, A.; O'Brien, K.; Schweitzer, R.

    2006-12-01

    The Live Access Server (LAS) is a well-established Web-application for display and analysis of geo-science data sets. The software, which can be downloaded and installed by anyone, gives data providers an easy way to establish services for their on-line data holdings, so their users can make plots; create and download data sub-sets; compare (difference) fields; and perform simple analyses. Now at version 7.0, LAS has been in operation since 1994. The current "Armstrong" release of LAS V7 consists of three components in a tiered architecture: user interface, workflow orchestration and Web Services. The LAS user interface (UI) communicates with the LAS Product Server via an XML protocol embedded in an HTTP "get" URL. Libraries (APIs) have been developed in Java, JavaScript and perl that can readily generate this URL. As a result of this flexibility it is common to find LAS user interfaces of radically different character, tailored to the nature of specific datasets or the mindset of specific users. When a request is received by the LAS Product Server (LPS -- the workflow orchestration component), business logic converts this request into a series of Web Service requests invoked via SOAP. These "back- end" Web services perform data access and generate products (visualizations, data subsets, analyses, etc.). LPS then packages these outputs into final products (typically HTML pages) via Jakarta Velocity templates for delivery to the end user. "Fine grained" data access is performed by back-end services that may utilize JDBC for data base access; the OPeNDAP "DAPPER" protocol; or (in principle) the OGC WFS protocol. Back-end visualization services are commonly legacy science applications wrapped in Java or Python (or perl) classes and deployed as Web Services accessible via SOAP. Ferret is the default visualization application used by LAS, though other applications such as Matlab, CDAT, and GrADS can also be used. Other back-end services may include generation of Google

  13. Exploring Two Approaches for an End-to-End Scientific Analysis Workflow

    DOE PAGES

    Dodelson, Scott; Kent, Steve; Kowalkowski, Jim; ...

    2015-12-23

    The advance of the scientific discovery process is accomplished by the integration of independently-developed programs run on disparate computing facilities into coherent workflows usable by scientists who are not experts in computing. For such advancement, we need a system which scientists can use to formulate analysis workflows, to integrate new components to these workflows, and to execute different components on resources that are best suited to run those components. In addition, we need to monitor the status of the workflow as components get scheduled and executed, and to access the intermediate and final output for visual exploration and analysis. Finally,more » it is important for scientists to be able to share their workflows with collaborators. Moreover we have explored two approaches for such an analysis framework for the Large Synoptic Survey Telescope (LSST) Dark Energy Science Collaboration (DESC), the first one is based on the use and extension of Galaxy, a web-based portal for biomedical research, and the second one is based on a programming language, Python. In our paper, we present a brief description of the two approaches, describe the kinds of extensions to the Galaxy system we have found necessary in order to support the wide variety of scientific analysis in the cosmology community, and discuss how similar efforts might be of benefit to the HEP community.« less

  14. Exploring Two Approaches for an End-to-End Scientific Analysis Workflow

    SciTech Connect

    Dodelson, Scott; Kent, Steve; Kowalkowski, Jim; Paterno, Marc; Sehrish, Saba

    2015-12-23

    The advance of the scientific discovery process is accomplished by the integration of independently-developed programs run on disparate computing facilities into coherent workflows usable by scientists who are not experts in computing. For such advancement, we need a system which scientists can use to formulate analysis workflows, to integrate new components to these workflows, and to execute different components on resources that are best suited to run those components. In addition, we need to monitor the status of the workflow as components get scheduled and executed, and to access the intermediate and final output for visual exploration and analysis. Finally, it is important for scientists to be able to share their workflows with collaborators. Moreover we have explored two approaches for such an analysis framework for the Large Synoptic Survey Telescope (LSST) Dark Energy Science Collaboration (DESC), the first one is based on the use and extension of Galaxy, a web-based portal for biomedical research, and the second one is based on a programming language, Python. In our paper, we present a brief description of the two approaches, describe the kinds of extensions to the Galaxy system we have found necessary in order to support the wide variety of scientific analysis in the cosmology community, and discuss how similar efforts might be of benefit to the HEP community.

  15. Exploring Two Approaches for an End-to-End Scientific Analysis Workflow

    NASA Astrophysics Data System (ADS)

    Dodelson, Scott; Kent, Steve; Kowalkowski, Jim; Paterno, Marc; Sehrish, Saba

    2015-12-01

    The scientific discovery process can be advanced by the integration of independently-developed programs run on disparate computing facilities into coherent workflows usable by scientists who are not experts in computing. For such advancement, we need a system which scientists can use to formulate analysis workflows, to integrate new components to these workflows, and to execute different components on resources that are best suited to run those components. In addition, we need to monitor the status of the workflow as components get scheduled and executed, and to access the intermediate and final output for visual exploration and analysis. Finally, it is important for scientists to be able to share their workflows with collaborators. We have explored two approaches for such an analysis framework for the Large Synoptic Survey Telescope (LSST) Dark Energy Science Collaboration (DESC); the first one is based on the use and extension of Galaxy, a web-based portal for biomedical research, and the second one is based on a programming language, Python. In this paper, we present a brief description of the two approaches, describe the kinds of extensions to the Galaxy system we have found necessary in order to support the wide variety of scientific analysis in the cosmology community, and discuss how similar efforts might be of benefit to the HEP community.

  16. A Comparison of Using Taverna and BPEL in Building Scientific Workflows: the case of caGrid.

    PubMed

    Tan, Wei; Missier, Paolo; Foster, Ian; Madduri, Ravi; Goble, Carole

    2010-06-25

    With the emergence of "service oriented science," the need arises to orchestrate multiple services to facilitate scientific investigation-that is, to create "science workflows." We present here our findings in providing a workflow solution for the caGrid service-based grid infrastructure. We choose BPEL and Taverna as candidates, and compare their usability in the lifecycle of a scientific workflow, including workflow composition, execution, and result analysis. Our experience shows that BPEL as an imperative language offers a comprehensive set of modeling primitives for workflows of all flavors; while Taverna offers a dataflow model and a more compact set of primitives that facilitates dataflow modeling and pipelined execution. We hope that this comparison study not only helps researchers select a language or tool that meets their specific needs, but also offers some insight on how a workflow language and tool can fulfill the requirement of the scientific community.

  17. A Comparison of Using Taverna and BPEL in Building Scientific Workflows: the case of caGrid

    PubMed Central

    Tan, Wei; Missier, Paolo; Foster, Ian; Madduri, Ravi; Goble, Carole

    2009-01-01

    With the emergence of “service oriented science,” the need arises to orchestrate multiple services to facilitate scientific investigation—that is, to create “science workflows.” We present here our findings in providing a workflow solution for the caGrid service-based grid infrastructure. We choose BPEL and Taverna as candidates, and compare their usability in the lifecycle of a scientific workflow, including workflow composition, execution, and result analysis. Our experience shows that BPEL as an imperative language offers a comprehensive set of modeling primitives for workflows of all flavors; while Taverna offers a dataflow model and a more compact set of primitives that facilitates dataflow modeling and pipelined execution. We hope that this comparison study not only helps researchers select a language or tool that meets their specific needs, but also offers some insight on how a workflow language and tool can fulfill the requirement of the scientific community. PMID:20625534

  18. Integrating visualization and interaction research to improve scientific workflows.

    PubMed

    Keefe, Daniel F

    2010-01-01

    Scientific-visualization research is, nearly by necessity, interdisciplinary. In addition to their collaborators in application domains (for example, cell biology), researchers regularly build on close ties with disciplines related to visualization, such as graphics, human-computer interaction, and cognitive science. One of these ties is the connection between visualization and interaction research. This isn't a new direction for scientific visualization (see the "Early Connections" sidebar). However, momentum recently seems to be increasing toward integrating visualization research (for example, effective visual presentation of data) with interaction research (for example, innovative interactive techniques that facilitate manipulating and exploring data). We see evidence of this trend in several places, including the visualization literature and conferences.

  19. Enhancing the Scientific Data Delivery, Workflow and Consumption

    NASA Astrophysics Data System (ADS)

    Shrestha, S. R.; Rosencrans, M.; Collow, T. W.; Ali, K.; Zimble, D. A.; Rose, B.

    2015-12-01

    To improve scientific data and products access, usability and interoperability, NOAA offices, like the Climate Prediction Center (CPC), exploring various geospatial solutions to serve their users. As NOAA scientists develop new solutions that drive the research and implementation to improve services, it is imperative that those research outcomes (data and products) can be consumed by customers and easily integrated into customer decision processes. As such, progress is being made to leverage an interoperable data platform wherein systems can integrate with each other to support the synthesis of Climate and Weather data. In this talk, we will share an ongoing use case at CPC, demonstrating how Esri technology is being implemented to improve scientific data access, manipulation, analysis, visualization and use.

  20. Integration and Commissioning of a Prototype Federated Cloud for Scientific Workflows

    SciTech Connect

    Garzoglio, Gabriele

    2013-01-01

    The Fermilab Grid and Cloud Computing Department and the KISTI Global Science experimental Data hub Center propose a joint project. The goals are to enable scientific workflows of stakeholders to run on multiple cloud resources by use of (a) Virtual Infrastructure Automation and Provisioning, (b) Interoperability and Federat ion of Cloud Resources , and (c) High-Throughput Fabric Virtualization. This is a matching fund project in which Fermilab and KISTI will contribute equal resources .

  1. Chang'E-3 data pre-processing system based on scientific workflow

    NASA Astrophysics Data System (ADS)

    tan, xu; liu, jianjun; wang, yuanyuan; yan, wei; zhang, xiaoxia; li, chunlai

    2016-04-01

    The Chang'E-3(CE3) mission have obtained a huge amount of lunar scientific data. Data pre-processing is an important segment of CE3 ground research and application system. With a dramatic increase in the demand of data research and application, Chang'E-3 data pre-processing system(CEDPS) based on scientific workflow is proposed for the purpose of making scientists more flexible and productive by automating data-driven. The system should allow the planning, conduct and control of the data processing procedure with the following possibilities: • describe a data processing task, include:1)define input data/output data, 2)define the data relationship, 3)define the sequence of tasks,4)define the communication between tasks,5)define mathematical formula, 6)define the relationship between task and data. • automatic processing of tasks. Accordingly, Describing a task is the key point whether the system is flexible. We design a workflow designer which is a visual environment for capturing processes as workflows, the three-level model for the workflow designer is discussed:1) The data relationship is established through product tree.2)The process model is constructed based on directed acyclic graph(DAG). Especially, a set of process workflow constructs, including Sequence, Loop, Merge, Fork are compositional one with another.3)To reduce the modeling complexity of the mathematical formulas using DAG, semantic modeling based on MathML is approached. On top of that, we will present how processed the CE3 data with CEDPS.

  2. Kepler WebView: A Lightweight, Portable Framework for Constructing Real-time Web Interfaces of Scientific Workflows

    PubMed Central

    Crawl, Daniel; Singh, Alok; Altintas, Ilkay

    2017-01-01

    Modern web technologies facilitate the creation of high-quality data visualizations, and rich, interactive components across a wide variety of devices. Scientific workflow systems can greatly benefit from these technologies by giving scientists a better understanding of their data or model leading to new insights. While several projects have enabled web access to scientific workflow systems, they are primarily organized as a large portal server encapsulating the workflow engine. In this vision paper, we propose the design for Kepler WebView, a lightweight framework that integrates web technologies with the Kepler Scientific Workflow System. By embedding a web server in the Kepler process, Kepler WebView enables a wide variety of usage scenarios that would be difficult or impossible using the portal model. PMID:28232853

  3. Kepler WebView: A Lightweight, Portable Framework for Constructing Real-time Web Interfaces of Scientific Workflows.

    PubMed

    Crawl, Daniel; Singh, Alok; Altintas, Ilkay

    2016-01-01

    Modern web technologies facilitate the creation of high-quality data visualizations, and rich, interactive components across a wide variety of devices. Scientific workflow systems can greatly benefit from these technologies by giving scientists a better understanding of their data or model leading to new insights. While several projects have enabled web access to scientific workflow systems, they are primarily organized as a large portal server encapsulating the workflow engine. In this vision paper, we propose the design for Kepler WebView, a lightweight framework that integrates web technologies with the Kepler Scientific Workflow System. By embedding a web server in the Kepler process, Kepler WebView enables a wide variety of usage scenarios that would be difficult or impossible using the portal model.

  4. A Scientific Workflow Platform for Generic and Scalable Object Recognition on Medical Images

    NASA Astrophysics Data System (ADS)

    Möller, Manuel; Tuot, Christopher; Sintek, Michael

    In the research project THESEUS MEDICO we aim at a system combining medical image information with semantic background knowledge from ontologies to give clinicians fully cross-modal access to biomedical image repositories. Therefore joint efforts have to be made in more than one dimension: Object detection processes have to be specified in which an abstraction is performed starting from low-level image features across landmark detection utilizing abstract domain knowledge up to high-level object recognition. We propose a system based on a client-server extension of the scientific workflow platform Kepler that assists the collaboration of medical experts and computer scientists during development and parameter learning.

  5. An open source workflow for 3D printouts of scientific data volumes

    NASA Astrophysics Data System (ADS)

    Loewe, P.; Klump, J. F.; Wickert, J.; Ludwig, M.; Frigeri, A.

    2013-12-01

    As the amount of scientific data continues to grow, researchers need new tools to help them visualize complex data. Immersive data-visualisations are helpful, yet fail to provide tactile feedback and sensory feedback on spatial orientation, as provided from tangible objects. The gap in sensory feedback from virtual objects leads to the development of tangible representations of geospatial information to solve real world problems. Examples are animated globes [1], interactive environments like tangible GIS [2], and on demand 3D prints. The production of a tangible representation of a scientific data set is one step in a line of scientific thinking, leading from the physical world into scientific reasoning and back: The process starts with a physical observation, or from a data stream generated by an environmental sensor. This data stream is turned into a geo-referenced data set. This data is turned into a volume representation which is converted into command sequences for the printing device, leading to the creation of a 3D printout. As a last, but crucial step, this new object has to be documented and linked to the associated metadata, and curated in long term repositories to preserve its scientific meaning and context. The workflow to produce tangible 3D data-prints from science data at the German Research Centre for Geosciences (GFZ) was implemented as a software based on the Free and Open Source Geoinformatics tools GRASS GIS and Paraview. The workflow was successfully validated in various application scenarios at GFZ using a RapMan printer to create 3D specimens of elevation models, geological underground models, ice penetrating radar soundings for planetology, and space time stacks for Tsunami model quality assessment. While these first pilot applications have demonstrated the feasibility of the overall approach [3], current research focuses on the provision of the workflow as Software as a Service (SAAS), thematic generalisation of information content and

  6. What Not To Do: Anti-patterns for Developing Scientific Workflow Software Components

    NASA Astrophysics Data System (ADS)

    Futrelle, J.; Maffei, A. R.; Sosik, H. M.; Gallager, S. M.; York, A.

    2013-12-01

    Scientific workflows promise to enable efficient scaling-up of researcher code to handle large datasets and workloads, as well as documentation of scientific processing via standardized provenance records, etc. Workflow systems and related frameworks for coordinating the execution of otherwise separate components are limited, however, in their ability to overcome software engineering design problems commonly encountered in pre-existing components, such as scripts developed externally by scientists in their laboratories. In practice, this often means that components must be rewritten or replaced in a time-consuming, expensive process. In the course of an extensive workflow development project involving large-scale oceanographic image processing, we have begun to identify and codify 'anti-patterns'--problematic design characteristics of software--that make components fit poorly into complex automated workflows. We have gone on to develop and document low-effort solutions and best practices that efficiently address the anti-patterns we have identified. The issues, solutions, and best practices can be used to evaluate and improve existing code, as well as guiding the development of new components. For example, we have identified a common anti-pattern we call 'batch-itis' in which a script fails and then cannot perform more work, even if that work is not precluded by the failure. The solution we have identified--removing unnecessary looping over independent units of work--is often easier to code than the anti-pattern, as it eliminates the need for complex control flow logic in the component. Other anti-patterns we have identified are similarly easy to identify and often easy to fix. We have drawn upon experience working with three science teams at Woods Hole Oceanographic Institution, each of which has designed novel imaging instruments and associated image analysis code. By developing use cases and prototypes within these teams, we have undertaken formal evaluations of

  7. A Six‐Stage Workflow for Robust Application of Systems Pharmacology

    PubMed Central

    Gadkar, K; Kirouac, DC; Mager, DE; van der Graaf, PH

    2016-01-01

    Quantitative and systems pharmacology (QSP) is increasingly being applied in pharmaceutical research and development. One factor critical to the ultimate success of QSP is the establishment of commonly accepted language, technical criteria, and workflows. We propose an integrated workflow that bridges conceptual objectives with underlying technical detail to support the execution, communication, and evaluation of QSP projects. PMID:27299936

  8. Cloud Bursting with GlideinWMS: Means to satisfy ever increasing computing needs for Scientific Workflows

    SciTech Connect

    Mhashilkar, Parag; Tiradani, Anthony; Holzman, Burt; Larson, Krista; Sfiligoi, Igor; Rynge, Mats

    2014-01-01

    Scientific communities have been in the forefront of adopting new technologies and methodologies in the computing. Scientific computing has influenced how science is done today, achieving breakthroughs that were impossible to achieve several decades ago. For the past decade several such communities in the Open Science Grid (OSG) and the European Grid Infrastructure (EGI) have been using GlideinWMS to run complex application workflows to effectively share computational resources over the grid. GlideinWMS is a pilot-based workload management system (WMS) that creates on demand, a dynamically sized overlay HTCondor batch system on grid resources. At present, the computational resources shared over the grid are just adequate to sustain the computing needs. We envision that the complexity of the science driven by 'Big Data' will further push the need for computational resources. To fulfill their increasing demands and/or to run specialized workflows, some of the big communities like CMS are investigating the use of cloud computing as Infrastructure-As-A-Service (IAAS) with GlideinWMS as a potential alternative to fill the void. Similarly, communities with no previous access to computing resources can use GlideinWMS to setup up a batch system on the cloud infrastructure. To enable this, the architecture of GlideinWMS has been extended to enable support for interfacing GlideinWMS with different Scientific and commercial cloud providers like HLT, FutureGrid, FermiCloud and Amazon EC2. In this paper, we describe a solution for cloud bursting with GlideinWMS. The paper describes the approach, architectural changes and lessons learned while enabling support for cloud infrastructures in GlideinWMS.

  9. Cloud Bursting with GlideinWMS: Means to satisfy ever increasing computing needs for Scientific Workflows

    NASA Astrophysics Data System (ADS)

    Mhashilkar, Parag; Tiradani, Anthony; Holzman, Burt; Larson, Krista; Sfiligoi, Igor; Rynge, Mats

    2014-06-01

    Scientific communities have been in the forefront of adopting new technologies and methodologies in the computing. Scientific computing has influenced how science is done today, achieving breakthroughs that were impossible to achieve several decades ago. For the past decade several such communities in the Open Science Grid (OSG) and the European Grid Infrastructure (EGI) have been using GlideinWMS to run complex application workflows to effectively share computational resources over the grid. GlideinWMS is a pilot-based workload management system (WMS) that creates on demand, a dynamically sized overlay HTCondor batch system on grid resources. At present, the computational resources shared over the grid are just adequate to sustain the computing needs. We envision that the complexity of the science driven by "Big Data" will further push the need for computational resources. To fulfill their increasing demands and/or to run specialized workflows, some of the big communities like CMS are investigating the use of cloud computing as Infrastructure-As-A-Service (IAAS) with GlideinWMS as a potential alternative to fill the void. Similarly, communities with no previous access to computing resources can use GlideinWMS to setup up a batch system on the cloud infrastructure. To enable this, the architecture of GlideinWMS has been extended to enable support for interfacing GlideinWMS with different Scientific and commercial cloud providers like HLT, FutureGrid, FermiCloud and Amazon EC2. In this paper, we describe a solution for cloud bursting with GlideinWMS. The paper describes the approach, architectural changes and lessons learned while enabling support for cloud infrastructures in GlideinWMS.

  10. Nationwide Buildings Energy Research enabled through an integrated Data Intensive Scientific Workflow and Advanced Analysis Environment

    SciTech Connect

    Kleese van Dam, Kerstin; Lansing, Carina S.; Elsethagen, Todd O.; Hathaway, John E.; Guillen, Zoe C.; Dirks, James A.; Skorski, Daniel C.; Stephan, Eric G.; Gorrissen, Willy J.; Gorton, Ian; Liu, Yan

    2014-01-28

    Modern workflow systems enable scientists to run ensemble simulations at unprecedented scales and levels of complexity, allowing them to study system sizes previously impossible to achieve, due to the inherent resource requirements needed for the modeling work. However as a result of these new capabilities the science teams suddenly also face unprecedented data volumes that they are unable to analyze with their existing tools and methodologies in a timely fashion. In this paper we will describe the ongoing development work to create an integrated data intensive scientific workflow and analysis environment that offers researchers the ability to easily create and execute complex simulation studies and provides them with different scalable methods to analyze the resulting data volumes. The integration of simulation and analysis environments is hereby not only a question of ease of use, but supports fundamental functions in the correlated analysis of simulation input, execution details and derived results for multi-variant, complex studies. To this end the team extended and integrated the existing capabilities of the Velo data management and analysis infrastructure, the MeDICi data intensive workflow system and RHIPE the R for Hadoop version of the well-known statistics package, as well as developing a new visual analytics interface for the result exploitation by multi-domain users. The capabilities of the new environment are demonstrated on a use case that focusses on the Pacific Northwest National Laboratory (PNNL) building energy team, showing how they were able to take their previously local scale simulations to a nationwide level by utilizing data intensive computing techniques not only for their modeling work, but also for the subsequent analysis of their modeling results. As part of the PNNL research initiative PRIMA (Platform for Regional Integrated Modeling and Analysis) the team performed an initial 3 year study of building energy demands for the US Eastern

  11. A web accessible scientific workflow system for vadoze zone performance monitoring: design and implementation examples

    NASA Astrophysics Data System (ADS)

    Mattson, E.; Versteeg, R.; Ankeny, M.; Stormberg, G.

    2005-12-01

    Long term performance monitoring has been identified by DOE, DOD and EPA as one of the most challenging and costly elements of contaminated site remedial efforts. Such monitoring should provide timely and actionable information relevant to a multitude of stakeholder needs. This information should be obtained in a manner which is auditable, cost effective and transparent. Over the last several years INL staff has designed and implemented a web accessible scientific workflow system for environmental monitoring. This workflow environment integrates distributed, automated data acquisition from diverse sensors (geophysical, geochemical and hydrological) with server side data management and information visualization through flexible browser based data access tools. Component technologies include a rich browser-based client (using dynamic javascript and html/css) for data selection, a back-end server which uses PHP for data processing, user management, and result delivery, and third party applications which are invoked by the back-end using webservices. This system has been implemented and is operational for several sites, including the Ruby Gulch Waste Rock Repository (a capped mine waste rock dump on the Gilt Edge Mine Superfund Site), the INL Vadoze Zone Research Park and an alternative cover landfill. Implementations for other vadoze zone sites are currently in progress. These systems allow for autonomous performance monitoring through automated data analysis and report generation. This performance monitoring has allowed users to obtain insights into system dynamics, regulatory compliance and residence times of water. Our system uses modular components for data selection and graphing and WSDL compliant webservices for external functions such as statistical analyses and model invocations. Thus, implementing this system for novel sites and extending functionality (e.g. adding novel models) is relatively straightforward. As system access requires a standard webbrowser

  12. The TimeStudio Project: An open source scientific workflow system for the behavioral and brain sciences.

    PubMed

    Nyström, Pär; Falck-Ytter, Terje; Gredebäck, Gustaf

    2016-06-01

    This article describes a new open source scientific workflow system, the TimeStudio Project, dedicated to the behavioral and brain sciences. The program is written in MATLAB and features a graphical user interface for the dynamic pipelining of computer algorithms developed as TimeStudio plugins. TimeStudio includes both a set of general plugins (for reading data files, modifying data structures, visualizing data structures, etc.) and a set of plugins specifically developed for the analysis of event-related eyetracking data as a proof of concept. It is possible to create custom plugins to integrate new or existing MATLAB code anywhere in a workflow, making TimeStudio a flexible workbench for organizing and performing a wide range of analyses. The system also features an integrated sharing and archiving tool for TimeStudio workflows, which can be used to share workflows both during the data analysis phase and after scientific publication. TimeStudio thus facilitates the reproduction and replication of scientific studies, increases the transparency of analyses, and reduces individual researchers' analysis workload. The project website ( http://timestudioproject.com ) contains the latest releases of TimeStudio, together with documentation and user forums.

  13. A Practitioner Friendly and Scientifically Robust Training Evaluation Approach

    ERIC Educational Resources Information Center

    Griffin, Richard

    2012-01-01

    Purpose: This article seeks to review the current state of workplace learning evaluation, to set out the rationale for evaluation along with the barriers that practitioners face when seeking to assess the effectiveness of training and development. Finally, it aims to propose a scientifically robust and practitioner friendly approach to evaluation.…

  14. A framework for integration of scientific applications into the OpenTopography workflow

    NASA Astrophysics Data System (ADS)

    Nandigam, V.; Crosby, C.; Baru, C.

    2012-12-01

    The NSF-funded OpenTopography facility provides online access to Earth science-oriented high-resolution LIDAR topography data, online processing tools, and derivative products. The underlying cyberinfrastructure employs a multi-tier service oriented architecture that is comprised of an infrastructure tier, a processing services tier, and an application tier. The infrastructure tier consists of storage, compute resources as well as supporting databases. The services tier consists of the set of processing routines each deployed as a Web service. The applications tier provides client interfaces to the system. (e.g. Portal). We propose a "pluggable" infrastructure design that will allow new scientific algorithms and processing routines developed and maintained by the community to be integrated into the OpenTopography system so that the wider earth science community can benefit from its availability. All core components in OpenTopography are available as Web services using a customized open-source Opal toolkit. The Opal toolkit provides mechanisms to manage and track job submissions, with the help of a back-end database. It allows monitoring of job and system status by providing charting tools. All core components in OpenTopography have been developed, maintained and wrapped as Web services using Opal by OpenTopography developers. However, as the scientific community develops new processing and analysis approaches this integration approach is not scalable efficiently. Most of the new scientific applications will have their own active development teams performing regular updates, maintenance and other improvements. It would be optimal to have the application co-located where its developers can continue to actively work on it while still making it accessible within the OpenTopography workflow for processing capabilities. We will utilize a software framework for remote integration of these scientific applications into the OpenTopography system. This will be accomplished by

  15. ScyFlow: An Environment for the Visual Specification and Execution of Scientific Workflows

    NASA Technical Reports Server (NTRS)

    McCann, Karen M.; Yarrow, Maurice; DeVivo, Adrian; Mehrotra, Piyush

    2004-01-01

    With the advent of grid technologies, scientists and engineers are building more and more complex applications to utilize distributed grid resources. The core grid services provide a path for accessing and utilizing these resources in a secure and seamless fashion. However what the scientists need is an environment that will allow them to specify their application runs at a high organizational level, and then support efficient execution across any given set or sets of resources. We have been designing and implementing ScyFlow, a dual-interface architecture (both GUT and APT) that addresses this problem. The scientist/user specifies the application tasks along with the necessary control and data flow, and monitors and manages the execution of the resulting workflow across the distributed resources. In this paper, we utilize two scenarios to provide the details of the two modules of the project, the visual editor and the runtime workflow engine.

  16. An open source approach to enable the reproducibility of scientific workflows in the ocean sciences

    NASA Astrophysics Data System (ADS)

    Di Stefano, M.; Fox, P. A.; West, P.; Hare, J. A.; Maffei, A. R.

    2013-12-01

    Every scientist should be able to rerun data analyses conducted by his or her team and regenerate the figures in a paper. However, all too often the correct version of a script goes missing, or the original raw data is filtered by hand and the filtering process is undocumented, or there is lack of collaboration and communication among scientists working in a team. Here we present 3 different use cases in ocean sciences in which end-to-end workflows are tracked. The main tool that is deployed to address these use cases is based on a web application (IPython Notebook) that provides the ability to work on very diverse and heterogeneous data and information sources, providing an effective way to share the and track changes to source code used to generate data products and associated metadata, as well as to track the overall workflow provenance to allow versioned reproducibility of a data product. Use cases selected for this work are: 1) A partial reproduction of the Ecosystem Status Report (ESR) for the Northeast U.S. Continental Shelf Large Marine Ecosystem. Our goal with this use case is to enable not just the traceability but also the reproducibility of this biannual report, keeping track of all the processes behind the generation and validation of time-series and spatial data and information products. An end-to-end workflow with code versioning is developed so that indicators in the report may be traced back to the source datasets. 2) Realtime generation of web pages to be able to visualize one of the environmental indicators from the Ecosystem Advisory for the Northeast Shelf Large Marine Ecosystem web site. 3) Data and visualization integration for ocean climate forecasting. In this use case, we focus on a workflow to describe how to provide access to online data sources in the NetCDF format and other model data, and make use of multicore processing to generate video animation from time series of gridded data. For each use case we show how complete workflows

  17. Facilitating Scientific Research through Workflows and Provenance on the DataONE Cyberinfrastructure (Invited)

    NASA Astrophysics Data System (ADS)

    Ludaescher, B.; Cuevas-Vicenttín, V.; Missier, P.; Dey, S.; Kianmajd, P.; Wei, Y.; Koop, D.; Chirigati, F.; Altintas, I.; Belhajjame, K.; Bowers, S.

    2013-12-01

    Provenance data has numerous applications in science. Two key ones are 1) replication: facilitate the repeatable derivation of results and 2) discovery: enable the location of data based on processing history and derivation relationships. The following scenario illustrates a typical use of provenance data. Alice, a climate scientist, has developed a VisTrails workflow to prepare Gross Primary Productivity (GPP) data. After verifying that the workflow generates data in the desired form, she uses the ReproZip tool to create a reproducible package that will enable other scientists to re-run the workflow without having to install and configure the particular libraries she is using. In addition, she exports the provenance information of the workflow execution and customizes it through a tool such as the ProvExplorer, in order to eliminate the information she regards as superfluous. She then creates and shares a DataONE data package containing the data she prepared, the ReproZip package, the customized provenance, and additional science/system metadata. Both the customized provenance and metadata are indexed by the DataONE Cyberinfrastructure (CI) for discovery purposes. Bob, another climate scientist, is looking for a benchmark GPP data to validate the Terrestrial Biosphere Model (TBM) he has developed. Searching the DataONE repository he finds Alice's data package. He retrieves its ReproZip package, customizes it (e.g. changing the spatial resolution), and re-runs it to generate the benchmark data in the form he desires. The newly generated data is then used as input for his own model evaluation workflow. His workflow generates residual maps and a Taylor diagram that enable him to evaluate the similarity between the results of his model and the benchmark data. At this point, Bob can also make use of the tools Alice used to publish his results as another discoverable and reproducible data package. In order to support these capabilities, we propose to extend the Data

  18. Data Provenance Hybridization Supporting Extreme-Scale Scientific WorkflowApplications

    SciTech Connect

    Elsethagen, Todd O.; Stephan, Eric G.; Raju, Bibi; Schram, Malachi; Macduff, Matt C.; Kerbyson, Darren J.; Kleese-Van Dam, Kerstin; Singh, Alok; Altintas, Ilkay

    2016-11-21

    As high performance computing (HPC) infrastructures continue to grow in capability and complexity, so do the applications that they serve. HPC and distributed-area computing (DAC) (e.g. grid and cloud) users are looking increasingly toward workflow solutions to orchestrate their complex application coupling, pre- and post-processing needs To gain insight and a more quantitative understanding of a workflow’s performance our method includes not only the capture of traditional provenance information, but also the capture and integration of system environment metrics helping to give context and explanation for a workflow’s execution. In this paper, we describe IPPD’s provenance management solution (ProvEn) and its hybrid data store combining both of these data provenance perspectives.

  19. A Classroom-Based Distributed Workflow Initiative for the Early Involvement of Undergraduate Students in Scientific Research

    NASA Astrophysics Data System (ADS)

    Friedrich, Jon M.

    2013-05-01

    Engaging freshman and sophomore students in meaningful scientific research is challenging because of their developing skill set and their necessary time commitments to regular classwork. A project called the Chondrule Analysis Project was initiated to engage first- and second-year students in an initial research experience and also accomplish several scientific objectives. Students take part in a classroom-based, distributed workflow project that aims to produce high-quality data on the physical dimensions of chondrules, mm-sized spherules contained in primitive meteorites called chondrites. Such data are needed to test astrophysical models for processes acting in the early solar system. Student investigators process X-ray microtomography data with resources contained on portable USB flash drives distributed to them. Students are exposed to data collection, data quality evaluation, interpretation, and presentation of their results. Herein, an introduction to the scientific objectives is given along with an evolutionary history of the project. A description of the current implementation of the course is presented, and future directions are discussed. Anonymous student evaluations of the course are used to demonstrate the educational and engaging nature of the project. Finally, we reflect on the possible benefits of such a project for first- and second-year students within STEM disciplines.

  20. Construction of antimicrobial peptide-drug combination networks from scientific literature based on a semi-automated curation workflow.

    PubMed

    Jorge, Paula; Pérez-Pérez, Martín; Pérez Rodríguez, Gael; Fdez-Riverola, Florentino; Pereira, Maria Olívia; Lourenço, Anália

    2016-01-01

    Considerable research efforts are being invested in the development of novel antimicrobial therapies effective against the growing number of multi-drug resistant pathogens. Notably, the combination of different agents is increasingly explored as means to exploit and improve individual agent actions while minimizing microorganism resistance. Although there are several databases on antimicrobial agents, scientific literature is the primary source of information on experimental antimicrobial combination testing. This work presents a semi-automated database curation workflow that supports the mining of scientific literature and enables the reconstruction of recently documented antimicrobial combinations. Currently, the database contains data on antimicrobial combinations that have been experimentally tested against Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Listeria monocytogenes and Candida albicans, which are prominent pathogenic organisms and are well-known for their wide and growing resistance to conventional antimicrobials. Researchers are able to explore the experimental results for a single organism or across organisms. Likewise, researchers may look into indirect network associations and identify new potential combinations to be tested. The database is available without charges.Database URL: http://sing.ei.uvigo.es/antimicrobialCombination/.

  1. Construction of antimicrobial peptide-drug combination networks from scientific literature based on a semi-automated curation workflow

    PubMed Central

    Jorge, Paula; Pérez-Pérez, Martín; Pérez Rodríguez, Gael; Fdez-Riverola, Florentino; Pereira, Maria Olívia; Lourenço, Anália

    2016-01-01

    Considerable research efforts are being invested in the development of novel antimicrobial therapies effective against the growing number of multi-drug resistant pathogens. Notably, the combination of different agents is increasingly explored as means to exploit and improve individual agent actions while minimizing microorganism resistance. Although there are several databases on antimicrobial agents, scientific literature is the primary source of information on experimental antimicrobial combination testing. This work presents a semi-automated database curation workflow that supports the mining of scientific literature and enables the reconstruction of recently documented antimicrobial combinations. Currently, the database contains data on antimicrobial combinations that have been experimentally tested against Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Listeria monocytogenes and Candida albicans, which are prominent pathogenic organisms and are well-known for their wide and growing resistance to conventional antimicrobials. Researchers are able to explore the experimental results for a single organism or across organisms. Likewise, researchers may look into indirect network associations and identify new potential combinations to be tested. The database is available without charges. Database URL: http://sing.ei.uvigo.es/antimicrobialCombination/ PMID:28025336

  2. The application of cloud computing to scientific workflows: a study of cost and performance.

    PubMed

    Berriman, G Bruce; Deelman, Ewa; Juve, Gideon; Rynge, Mats; Vöckler, Jens-S

    2013-01-28

    The current model of transferring data from data centres to desktops for analysis will soon be rendered impractical by the accelerating growth in the volume of science datasets. Processing will instead often take place on high-performance servers co-located with data. Evaluations of how new technologies such as cloud computing would support such a new distributed computing model are urgently needed. Cloud computing is a new way of purchasing computing and storage resources on demand through virtualization technologies. We report here the results of investigations of the applicability of commercial cloud computing to scientific computing, with an emphasis on astronomy, including investigations of what types of applications can be run cheaply and efficiently on the cloud, and an example of an application well suited to the cloud: processing a large dataset to create a new science product.

  3. A web accessible scientific workflow system for transparent and reproducible generation of information on subsurface processes from autonomously sensed data

    NASA Astrophysics Data System (ADS)

    Versteeg, R.; Richardson, A.; Thomas, S.; Lu, B.; Neto, J.; Wheeler, M.; Rowe, T.; Parashar, M.; Ankeny, M.

    2005-12-01

    Information on subsurface processes is required for a broad range of applications, including site remediation, groundwater management, fossil fuel production and CO2 sequestration. Data on these processes is obtained from diverse sensor networks, includes physical, hydrological and chemical sensors and semi permanent geophysical sensors (mainly seismic and resistivity). Currently, processing is done by specialists through the use of commercial and research software packages such as numerical inverse and forward models, statistical data analysis software and visualization and data presentation packages. Information is presented to stakeholders as tables, images and reports. Processing steps, data and assumptions used for information generation are mostly opaque to endusers. As data migrates between applications the steps taken in each application (e.g. in data reduction)are often only partly documented, resulting in irreproducible results. In this approach, interactive tuning of data processing in a systematic way (e.g. changing model parameters, visualization parameters or data used) or using data processing as a discovery tool is de facto impossible. We implemented a web accessible scientific workflow system for subsurface performance monitoring. This system integrates distributed, automated data acquisition from autonomous sensor networks with server side data management and information visualization through flexible browser based data access tools. Webservices are used for communication with the sensor networks and interaction with applications. This system was originally developed for a monitoring network at the Gilt Edge Mine Superfund site, but has now been implemented for a range of different sensor networks of different complexity. The workflow framework allows for rapid and easy integration in a modular, transparent and reproducible manner of a multitude of existing applications for data analysis and processes. By embedding applications in webservice

  4. Scientific workflow and support for high resolution global climate modeling at the Oak Ridge Leadership Computing Facility

    NASA Astrophysics Data System (ADS)

    Anantharaj, V.; Mayer, B.; Wang, F.; Hack, J.; McKenna, D.; Hartman-Baker, R.

    2012-04-01

    The Oak Ridge Leadership Computing Facility (OLCF) facilitates the execution of computational experiments that require tens of millions of CPU hours (typically using thousands of processors simultaneously) while generating hundreds of terabytes of data. A set of ultra high resolution climate experiments in progress, using the Community Earth System Model (CESM), will produce over 35,000 files, ranging in sizes from 21 MB to 110 GB each. The execution of the experiments will require nearly 70 Million CPU hours on the Jaguar and Titan supercomputers at OLCF. The total volume of the output from these climate modeling experiments will be in excess of 300 TB. This model output must then be archived, analyzed, distributed to the project partners in a timely manner, and also made available more broadly. Meeting this challenge would require efficient movement of the data, staging the simulation output to a large and fast file system that provides high volume access to other computational systems used to analyze the data and synthesize results. This file system also needs to be accessible via high speed networks to an archival system that can provide long term reliable storage. Ideally this archival system is itself directly available to other systems that can be used to host services making the data and analysis available to the participants in the distributed research project and to the broader climate community. The various resources available at the OLCF now support this workflow. The available systems include the new Jaguar Cray XK6 2.63 petaflops (estimated) supercomputer, the 10 PB Spider center-wide parallel file system, the Lens/EVEREST analysis and visualization system, the HPSS archival storage system, the Earth System Grid (ESG), and the ORNL Climate Data Server (CDS). The ESG features federated services, search & discovery, extensive data handling capabilities, deep storage access, and Live Access Server (LAS) integration. The scientific workflow enabled on

  5. Agile parallel bioinformatics workflow management using Pwrake

    PubMed Central

    2011-01-01

    Background In bioinformatics projects, scientific workflow systems are widely used to manage computational procedures. Full-featured workflow systems have been proposed to fulfil the demand for workflow management. However, such systems tend to be over-weighted for actual bioinformatics practices. We realize that quick deployment of cutting-edge software implementing advanced algorithms and data formats, and continuous adaptation to changes in computational resources and the environment are often prioritized in scientific workflow management. These features have a greater affinity with the agile software development method through iterative development phases after trial and error. Here, we show the application of a scientific workflow system Pwrake to bioinformatics workflows. Pwrake is a parallel workflow extension of Ruby's standard build tool Rake, the flexibility of which has been demonstrated in the astronomy domain. Therefore, we hypothesize that Pwrake also has advantages in actual bioinformatics workflows. Findings We implemented the Pwrake workflows to process next generation sequencing data using the Genomic Analysis Toolkit (GATK) and Dindel. GATK and Dindel workflows are typical examples of sequential and parallel workflows, respectively. We found that in practice, actual scientific workflow development iterates over two phases, the workflow definition phase and the parameter adjustment phase. We introduced separate workflow definitions to help focus on each of the two developmental phases, as well as helper methods to simplify the descriptions. This approach increased iterative development efficiency. Moreover, we implemented combined workflows to demonstrate modularity of the GATK and Dindel workflows. Conclusions Pwrake enables agile management of scientific workflows in the bioinformatics domain. The internal domain specific language design built on Ruby gives the flexibility of rakefiles for writing scientific workflows. Furthermore, readability

  6. A Scientific Workflow Used as a Computational Tool to Assess the Response of the Californian San Joaquin River to Flow Restoration Efforts

    NASA Astrophysics Data System (ADS)

    Villamizar, S. R.; Gil, Y.; Szekely, P.; Ratnakar, V.; Gupta, S.; Muslea, M.; Silva, F.; Harmon, T.

    2011-12-01

    The San Joaquin River (SJR) restoration effort began in October 2009 with the onset of federally mandated continuous flow. A key objective of the effort is to restore and maintain fish populations in the main stem of the San Joaquin River, from below the Friant Dam to the confluence of the Merced River. In addition to the renewed flows, the restoration effort has brought about several upgraded and new water quality monitoring stations equipped with dissolved oxygen (DO) and temperature sensors. As the SJR response to the restoration efforts will be dictated by a complex combination of hydrodynamic and biogeochemical processes, we propose monitoring whole-stream metabolism as an integrative ecological indicator. Here, we develop and test a near-real time scientific workflow to facilitate the observation of the spatio-temporal distribution of whole-stream metabolism estimates using available monitoring station flow and water quality data. The scientific objective is to identify correlations between whole-stream metabolism estimates and the seasonally variable flow and flow disturbances (e.g., flood-control releases), which are the primary driver of stream ecosystems. To accomplish this requires overcoming technical challenges in terms of both data collection and data analysis because (1) the information required for this multi-site, long-term study, originates from different sources with the implication of different associated properties (data integrity, sampling intervals, units), and (2) the variability of the interim flows requires adaptive model selection within the framework of the metabolism calculations. These challenges are addressed by using a scientific workflow in which semantic metadata is generated as the data is prepared and then subsequently used to select and configure models, effectively customizing them to the current data. Data preparation involves the extraction, cleaning, normalization and integration of the data coming from sensors and third

  7. Workflow for the integration of a realistic 3D geomodel in process simulations using different cell types and advanced scientific visualization: Variations on a synthetic salt diapir

    NASA Astrophysics Data System (ADS)

    Görz, Ines; Herbst, Martin; Börner, Jana H.; Zehner, Björn

    2017-03-01

    The purpose of this study is to use one complex geological 3D model for numerical simulations of various physical processes in process-specific simulation software. To do this, the 3D model has to be discretized according to different cell types, depending on the requirements of the simulation method. We used a salt structure with a diapir and its deformed host rock to produce two 3D models describing the boundary surfaces of the structure: one very simplified model consisting of cuboid surfaces and a realistic model consisting of irregular boundary surfaces. We provide a workflow for how to generate hexahedral, tetrahedral and spherical volume representations of these two geometries. We utilized the volume representations to simulate temperature, displacement and transient electromagnetic fields. We can show that the simulation results closely reflect the input geometry and that it is worth the effort to produce geometric models that are as realistic as possible. Additionally, we provide a workflow for simultaneous visualization and analysis of the simulation results. Scientific visualization is an important tool for deriving knowledge from complex investigations.

  8. The pipeline system for Octave and Matlab (PSOM): a lightweight scripting framework and execution engine for scientific workflows.

    PubMed

    Bellec, Pierre; Lavoie-Courchesne, Sébastien; Dickinson, Phil; Lerch, Jason P; Zijdenbos, Alex P; Evans, Alan C

    2012-01-01

    The analysis of neuroimaging databases typically involves a large number of inter-connected steps called a pipeline. The pipeline system for Octave and Matlab (PSOM) is a flexible framework for the implementation of pipelines in the form of Octave or Matlab scripts. PSOM does not introduce new language constructs to specify the steps and structure of the workflow. All steps of analysis are instead described by a regular Matlab data structure, documenting their associated command and options, as well as their input, output, and cleaned-up files. The PSOM execution engine provides a number of automated services: (1) it executes jobs in parallel on a local computing facility as long as the dependencies between jobs allow for it and sufficient resources are available; (2) it generates a comprehensive record of the pipeline stages and the history of execution, which is detailed enough to fully reproduce the analysis; (3) if an analysis is started multiple times, it executes only the parts of the pipeline that need to be reprocessed. PSOM is distributed under an open-source MIT license and can be used without restriction for academic or commercial projects. The package has no external dependencies besides Matlab or Octave, is straightforward to install and supports of variety of operating systems (Linux, Windows, Mac). We ran several benchmark experiments on a public database including 200 subjects, using a pipeline for the preprocessing of functional magnetic resonance images (fMRI). The benchmark results showed that PSOM is a powerful solution for the analysis of large databases using local or distributed computing resources.

  9. The pipeline system for Octave and Matlab (PSOM): a lightweight scripting framework and execution engine for scientific workflows

    PubMed Central

    Bellec, Pierre; Lavoie-Courchesne, Sébastien; Dickinson, Phil; Lerch, Jason P.; Zijdenbos, Alex P.; Evans, Alan C.

    2012-01-01

    The analysis of neuroimaging databases typically involves a large number of inter-connected steps called a pipeline. The pipeline system for Octave and Matlab (PSOM) is a flexible framework for the implementation of pipelines in the form of Octave or Matlab scripts. PSOM does not introduce new language constructs to specify the steps and structure of the workflow. All steps of analysis are instead described by a regular Matlab data structure, documenting their associated command and options, as well as their input, output, and cleaned-up files. The PSOM execution engine provides a number of automated services: (1) it executes jobs in parallel on a local computing facility as long as the dependencies between jobs allow for it and sufficient resources are available; (2) it generates a comprehensive record of the pipeline stages and the history of execution, which is detailed enough to fully reproduce the analysis; (3) if an analysis is started multiple times, it executes only the parts of the pipeline that need to be reprocessed. PSOM is distributed under an open-source MIT license and can be used without restriction for academic or commercial projects. The package has no external dependencies besides Matlab or Octave, is straightforward to install and supports of variety of operating systems (Linux, Windows, Mac). We ran several benchmark experiments on a public database including 200 subjects, using a pipeline for the preprocessing of functional magnetic resonance images (fMRI). The benchmark results showed that PSOM is a powerful solution for the analysis of large databases using local or distributed computing resources. PMID:22493575

  10. A Classroom-Based Distributed Workflow Initiative for the Early Involvement of Undergraduate Students in Scientific Research

    ERIC Educational Resources Information Center

    Friedrich, Jon M.

    2014-01-01

    Engaging freshman and sophomore students in meaningful scientific research is challenging because of their developing skill set and their necessary time commitments to regular classwork. A project called the Chondrule Analysis Project was initiated to engage first- and second-year students in an initial research experience and also accomplish…

  11. Scientist-Centered Workflow Abstractions via Generic Actors, Workflow Templates, and Context-Awareness for Groundwater Modeling and Analysis

    SciTech Connect

    Chin, George; Sivaramakrishnan, Chandrika; Critchlow, Terence J.; Schuchardt, Karen L.; Ngu, Anne Hee Hiong

    2011-07-04

    A drawback of existing scientific workflow systems is the lack of support to domain scientists in designing and executing their own scientific workflows. Many domain scientists avoid developing and using workflows because the basic objects of workflows are too low-level and high-level tools and mechanisms to aid in workflow construction and use are largely unavailable. In our research, we are prototyping higher-level abstractions and tools to better support scientists in their workflow activities. Specifically, we are developing generic actors that provide abstract interfaces to specific functionality, workflow templates that encapsulate workflow and data patterns that can be reused and adapted by scientists, and context-awareness mechanisms to gather contextual information from the workflow environment on behalf of the scientist. To evaluate these scientist-centered abstractions on real problems, we apply them to construct and execute scientific workflows in the specific domain area of groundwater modeling and analysis.

  12. Robustness

    NASA Technical Reports Server (NTRS)

    Ryan, R.

    1993-01-01

    Robustness is a buzz word common to all newly proposed space systems design as well as many new commercial products. The image that one conjures up when the word appears is a 'Paul Bunyon' (lumberjack design), strong and hearty; healthy with margins in all aspects of the design. In actuality, robustness is much broader in scope than margins, including such factors as simplicity, redundancy, desensitization to parameter variations, control of parameter variations (environments flucation), and operational approaches. These must be traded with concepts, materials, and fabrication approaches against the criteria of performance, cost, and reliability. This includes manufacturing, assembly, processing, checkout, and operations. The design engineer or project chief is faced with finding ways and means to inculcate robustness into an operational design. First, however, be sure he understands the definition and goals of robustness. This paper will deal with these issues as well as the need for the requirement for robustness.

  13. Creating Bioinformatic Workflows within the BioExtract Server

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Computational workflows in bioinformatics are becoming increasingly important in the achievement of scientific advances. These workflows generally require access to multiple, distributed data sources and analytic tools. The requisite data sources may include large public data repositories, community...

  14. Semantic Workflows and Provenance

    NASA Astrophysics Data System (ADS)

    Gil, Y.

    2011-12-01

    While sharing and disseminating data is widely practiced across scientific communities, we have yet to recognize the importance of sharing and disseminating the analytic processes that leads to published data. Data retrieved from shared repositories and archives is often hard to interpret because we lack documentation about those processes: what models were used, what assumptions were made, what calibrations were carried out, etc. This process documentation is also key to aggregate data in a meaningful way, whether aggregating shared third party data or aggregating shared data with local sensor data collected by individual investigators. We suggest that augmenting published data with process documentation would greatly enhance our ability to find, reuse, interpret, and aggregate data and therefore have a significant impact in the utility of data repositories and archives. We will show that semantic workflows and provenance provide key technologies for capturing process documentation. Semantic workflows describe the kinds of data transformation and analysis steps used to create new data products, and can include useful constraints about why specific models were selected or parameters chosen. Provenance records can be used to publish workflow descriptions in standard formats that can be reused to enable verification and reproducibility of data products.

  15. Implementing bioinformatic workflows within the bioextract server

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Computational workflows in bioinformatics are becoming increasingly important in the achievement of scientific advances. These workflows typically require the integrated use of multiple, distributed data sources and analytic tools. The BioExtract Server (http://bioextract.org) is a distributed servi...

  16. VO-compliant workflows and science gateways

    NASA Astrophysics Data System (ADS)

    Castelli, G.; Taffoni, G.; Sciacca, E.; Becciani, U.; Costa, A.; Krokos, M.; Pasian, F.; Vuerli, C.

    2015-06-01

    Workflow and science gateway technologies have been adopted by scientific communities as a valuable tool to carry out complex experiments. They offer the possibility to perform computations for data analysis and simulations, whereas hiding details of the complex infrastructures underneath. There are many workflow management systems covering a large variety of generic services coordinating execution of workflows. In this paper we describe our experiences in creating workflows oriented science gateways based on gUSE/WS-PGRADE technology and in particular we discuss the efforts devoted to develop a VO-compliant web environment.

  17. A framework for streamlining research workflow in neuroscience and psychology

    PubMed Central

    Kubilius, Jonas

    2014-01-01

    Successful accumulation of knowledge is critically dependent on the ability to verify and replicate every part of scientific conduct. However, such principles are difficult to enact when researchers continue to resort on ad-hoc workflows and with poorly maintained code base. In this paper I examine the needs of neuroscience and psychology community, and introduce psychopy_ext, a unifying framework that seamlessly integrates popular experiment building, analysis and manuscript preparation tools by choosing reasonable defaults and implementing relatively rigid patterns of workflow. This structure allows for automation of multiple tasks, such as generated user interfaces, unit testing, control analyses of stimuli, single-command access to descriptive statistics, and publication quality plotting. Taken together, psychopy_ext opens an exciting possibility for a faster, more robust code development and collaboration for researchers. PMID:24478691

  18. A framework for streamlining research workflow in neuroscience and psychology.

    PubMed

    Kubilius, Jonas

    2013-01-01

    Successful accumulation of knowledge is critically dependent on the ability to verify and replicate every part of scientific conduct. However, such principles are difficult to enact when researchers continue to resort on ad-hoc workflows and with poorly maintained code base. In this paper I examine the needs of neuroscience and psychology community, and introduce psychopy_ext, a unifying framework that seamlessly integrates popular experiment building, analysis and manuscript preparation tools by choosing reasonable defaults and implementing relatively rigid patterns of workflow. This structure allows for automation of multiple tasks, such as generated user interfaces, unit testing, control analyses of stimuli, single-command access to descriptive statistics, and publication quality plotting. Taken together, psychopy_ext opens an exciting possibility for a faster, more robust code development and collaboration for researchers.

  19. SHIWA Services for Workflow Creation and Sharing in Hydrometeorolog

    NASA Astrophysics Data System (ADS)

    Terstyanszky, Gabor; Kiss, Tamas; Kacsuk, Peter; Sipos, Gergely

    2014-05-01

    Researchers want to run scientific experiments on Distributed Computing Infrastructures (DCI) to access large pools of resources and services. To run these experiments requires specific expertise that they may not have. Workflows can hide resources and services as a virtualisation layer providing a user interface that researchers can use. There are many scientific workflow systems but they are not interoperable. To learn a workflow system and create workflows may require significant efforts. Considering these efforts it is not reasonable to expect that researchers will learn new workflow systems if they want to run workflows developed in other workflow systems. To overcome it requires creating workflow interoperability solutions to allow workflow sharing. The FP7 'Sharing Interoperable Workflow for Large-Scale Scientific Simulation on Available DCIs' (SHIWA) project developed the Coarse-Grained Interoperability concept (CGI). It enables recycling and sharing workflows of different workflow systems and executing them on different DCIs. SHIWA developed the SHIWA Simulation Platform (SSP) to implement the CGI concept integrating three major components: the SHIWA Science Gateway, the workflow engines supported by the CGI concept and DCI resources where workflows are executed. The science gateway contains a portal, a submission service, a workflow repository and a proxy server to support the whole workflow life-cycle. The SHIWA Portal allows workflow creation, configuration, execution and monitoring through a Graphical User Interface using the WS-PGRADE workflow system as the host workflow system. The SHIWA Repository stores the formal description of workflows and workflow engines plus executables and data needed to execute them. It offers a wide-range of browse and search operations. To support non-native workflow execution the SHIWA Submission Service imports the workflow and workflow engine from the SHIWA Repository. This service either invokes locally or remotely

  20. Lattice QCD workflows

    SciTech Connect

    Piccoli, Luciano; Kowalkowski, James B.; Simone, James N.; Sun, Xian-He; Jin, Hui; Holmgren, Donald J.; Seenu, Nirmal; Singh, Amitoj G.; /Fermilab

    2008-12-01

    This paper discusses the application of existing workflow management systems to a real world science application (LQCD). Typical workflows and execution environment used in production are described. Requirements for the LQCD production system are discussed. The workflow management systems Askalon and Swift were tested by implementing the LQCD workflows and evaluated against the requirements. We report our findings and future work.

  1. RABIX: AN OPEN-SOURCE WORKFLOW EXECUTOR SUPPORTING RECOMPUTABILITY AND INTEROPERABILITY OF WORKFLOW DESCRIPTIONS

    PubMed Central

    Ivkovic, Sinisa; Simonovic, Janko; Tijanic, Nebojsa; Davis-Dusenbery, Brandi; Kural, Deniz

    2016-01-01

    As biomedical data has become increasingly easy to generate in large quantities, the methods used to analyze it have proliferated rapidly. Reproducible and reusable methods are required to learn from large volumes of data reliably. To address this issue, numerous groups have developed workflow specifications or execution engines, which provide a framework with which to perform a sequence of analyses. One such specification is the Common Workflow Language, an emerging standard which provides a robust and flexible framework for describing data analysis tools and workflows. In addition, reproducibility can be furthered by executors or workflow engines which interpret the specification and enable additional features, such as error logging, file organization, optimizations1 to computation and job scheduling, and allow for easy computing on large volumes of data. To this end, we have developed the Rabix Executor a , an open-source workflow engine for the purposes of improving reproducibility through reusability and interoperability of workflow descriptions. PMID:27896971

  2. RABIX: AN OPEN-SOURCE WORKFLOW EXECUTOR SUPPORTING RECOMPUTABILITY AND INTEROPERABILITY OF WORKFLOW DESCRIPTIONS.

    PubMed

    Kaushik, Gaurav; Ivkovic, Sinisa; Simonovic, Janko; Tijanic, Nebojsa; Davis-Dusenbery, Brandi; Kural, Deniz

    2016-01-01

    As biomedical data has become increasingly easy to generate in large quantities, the methods used to analyze it have proliferated rapidly. Reproducible and reusable methods are required to learn from large volumes of data reliably. To address this issue, numerous groups have developed workflow specifications or execution engines, which provide a framework with which to perform a sequence of analyses. One such specification is the Common Workflow Language, an emerging standard which provides a robust and flexible framework for describing data analysis tools and workflows. In addition, reproducibility can be furthered by executors or workflow engines which interpret the specification and enable additional features, such as error logging, file organization, optim1izations to computation and job scheduling, and allow for easy computing on large volumes of data. To this end, we have developed the Rabix Executor, an open-source workflow engine for the purposes of improving reproducibility through reusability and interoperability of workflow descriptions.

  3. Workflow automation architecture standard

    SciTech Connect

    Moshofsky, R.P.; Rohen, W.T.

    1994-11-14

    This document presents an architectural standard for application of workflow automation technology. The standard includes a functional architecture, process for developing an automated workflow system for a work group, functional and collateral specifications for workflow automation, and results of a proof of concept prototype.

  4. Metaworkflows and Workflow Interoperability for Heliophysics

    NASA Astrophysics Data System (ADS)

    Pierantoni, Gabriele; Carley, Eoin P.

    2014-06-01

    Heliophysics is a relatively new branch of physics that investigates the relationship between the Sun and the other bodies of the solar system. To investigate such relationships, heliophysicists can rely on various tools developed by the community. Some of these tools are on-line catalogues that list events (such as Coronal Mass Ejections, CMEs) and their characteristics as they were observed on the surface of the Sun or on the other bodies of the Solar System. Other tools offer on-line data analysis and access to images and data catalogues. During their research, heliophysicists often perform investigations that need to coordinate several of these services and to repeat these complex operations until the phenomena under investigation are fully analyzed. Heliophysicists combine the results of these services; this service orchestration is best suited for workflows. This approach has been investigated in the HELIO project. The HELIO project developed an infrastructure for a Virtual Observatory for Heliophysics and implemented service orchestration using TAVERNA workflows. HELIO developed a set of workflows that proved to be useful but lacked flexibility and re-usability. The TAVERNA workflows also needed to be executed directly in TAVERNA workbench, and this forced all users to learn how to use the workbench. Within the SCI-BUS and ER-FLOW projects, we have started an effort to re-think and re-design the heliophysics workflows with the aim of fostering re-usability and ease of use. We base our approach on two key concepts, that of meta-workflows and that of workflow interoperability. We have divided the produced workflows in three different layers. The first layer is Basic Workflows, developed both in the TAVERNA and WS-PGRADE languages. They are building blocks that users compose to address their scientific challenges. They implement well-defined Use Cases that usually involve only one service. The second layer is Science Workflows usually developed in TAVERNA. They

  5. Scientific Data Management (SDM) Center for Enabling Technologies. Final Report, 2007-2012

    SciTech Connect

    Ludascher, Bertram; Altintas, Ilkay

    2013-09-06

    Our contributions to advancing the State of the Art in scientific workflows have focused on the following areas: Workflow development; Generic workflow components and templates; Provenance collection and analysis; and, Workflow reliability and fault tolerance.

  6. Dynamic reusable workflows for ocean science

    USGS Publications Warehouse

    Signell, Richard; Fernandez, Filipe; Wilcox, Kyle

    2016-01-01

    Digital catalogs of ocean data have been available for decades, but advances in standardized services and software for catalog search and data access make it now possible to create catalog-driven workflows that automate — end-to-end — data search, analysis and visualization of data from multiple distributed sources. Further, these workflows may be shared, reused and adapted with ease. Here we describe a workflow developed within the US Integrated Ocean Observing System (IOOS) which automates the skill-assessment of water temperature forecasts from multiple ocean forecast models, allowing improved forecast products to be delivered for an open water swim event. A series of Jupyter Notebooks are used to capture and document the end-to-end workflow using a collection of Python tools that facilitate working with standardized catalog and data services. The workflow first searches a catalog of metadata using the Open Geospatial Consortium (OGC) Catalog Service for the Web (CSW), then accesses data service endpoints found in the metadata records using the OGC Sensor Observation Service (SOS) for in situ sensor data and OPeNDAP services for remotely-sensed and model data. Skill metrics are computed and time series comparisons of forecast model and observed data are displayed interactively, leveraging the capabilities of modern web browsers. The resulting workflow not only solves a challenging specific problem, but highlights the benefits of dynamic, reusable workflows in general. These workflows adapt as new data enters the data system, facilitate reproducible science, provide templates from which new scientific workflows can be developed, and encourage data providers to use standardized services. As applied to the ocean swim event, the workflow exposed problems with two of the ocean forecast products which led to improved regional forecasts once errors were corrected. While the example is specific, the approach is general, and we hope to see increased use of dynamic

  7. Flexible workflow sharing and execution services for e-scientists

    NASA Astrophysics Data System (ADS)

    Kacsuk, Péter; Terstyanszky, Gábor; Kiss, Tamas; Sipos, Gergely

    2013-04-01

    The sequence of computational and data manipulation steps required to perform a specific scientific analysis is called a workflow. Workflows that orchestrate data and/or compute intensive applications on Distributed Computing Infrastructures (DCIs) recently became standard tools in e-science. At the same time the broad and fragmented landscape of workflows and DCIs slows down the uptake of workflow-based work. The development, sharing, integration and execution of workflows is still a challenge for many scientists. The FP7 "Sharing Interoperable Workflow for Large-Scale Scientific Simulation on Available DCIs" (SHIWA) project significantly improved the situation, with a simulation platform that connects different workflow systems, different workflow languages, different DCIs and workflows into a single, interoperable unit. The SHIWA Simulation Platform is a service package, already used by various scientific communities, and used as a tool by the recently started ER-flow FP7 project to expand the use of workflows among European scientists. The presentation will introduce the SHIWA Simulation Platform and the services that ER-flow provides based on the platform to space and earth science researchers. The SHIWA Simulation Platform includes: 1. SHIWA Repository: A database where workflows and meta-data about workflows can be stored. The database is a central repository to discover and share workflows within and among communities . 2. SHIWA Portal: A web portal that is integrated with the SHIWA Repository and includes a workflow executor engine that can orchestrate various types of workflows on various grid and cloud platforms. 3. SHIWA Desktop: A desktop environment that provides similar access capabilities than the SHIWA Portal, however it runs on the users' desktops/laptops instead of a portal server. 4. Workflow engines: the ASKALON, Galaxy, GWES, Kepler, LONI Pipeline, MOTEUR, Pegasus, P-GRADE, ProActive, Triana, Taverna and WS-PGRADE workflow engines are already

  8. Developing a Workflow to Identify Inconsistencies in Volunteered Geographic Information: A Phenological Case Study.

    PubMed

    Mehdipoor, Hamed; Zurita-Milla, Raul; Rosemartin, Alyssa; Gerst, Katharine L; Weltzin, Jake F

    2015-01-01

    assessment for volunteered geographic information. Initiatives that leverage volunteered geographic information can adapt this workflow to improve the quality of their datasets and the robustness of their scientific analyses.

  9. Developing a Workflow to Identify Inconsistencies in Volunteered Geographic Information: A Phenological Case Study

    PubMed Central

    Rosemartin, Alyssa; Gerst, Katharine L.; Weltzin, Jake F.

    2015-01-01

    assessment for volunteered geographic information. Initiatives that leverage volunteered geographic information can adapt this workflow to improve the quality of their datasets and the robustness of their scientific analyses. PMID:26485157

  10. Developing a workflow to identify inconsistencies in volunteered geographic information: a phenological case study

    USGS Publications Warehouse

    Mehdipoor, Hamed; Zurita-Milla, Raul; Rosemartin, Alyssa; Gerst, Katharine L.; Weltzin, Jake F.

    2015-01-01

    assessment for volunteered geographic information. Initiatives that leverage volunteered geographic information can adapt this workflow to improve the quality of their datasets and the robustness of their scientific analyses.

  11. BReW: Blackbox Resource Selection for e-Science Workflows

    SciTech Connect

    Simmhan, Yogesh; Soroush, Emad; Van Ingen, Catharine; Agarwal, Deb; Ramakrishnan, Lavanya

    2010-10-04

    Workflows are commonly used to model data intensive scientific analysis. As computational resource needs increase for eScience, emerging platforms like clouds present additional resource choices for scientists and policy makers. We introduce BReW, a tool enables users to make rapid, highlevel platform selection for their workflows using limited workflow knowledge. This helps make informed decisions on whether to port a workflow to a new platform. Our analysis of synthetic and real eScience workflows shows that using just total runtime length, maximum task fanout, and total data used and produced by the workflow, BReW can provide platform predictions comparable to whitebox models with detailed workflow knowledge.

  12. Enabling Structured Exploration of Workflow Performance Variability in Extreme-Scale Environments

    SciTech Connect

    Kleese van Dam, Kerstin; Stephan, Eric G.; Raju, Bibi; Altintas, Ilkay; Elsethagen, Todd O.; Krishnamoorthy, Sriram

    2015-11-15

    Workflows are taking an Workflows are taking an increasingly important role in orchestrating complex scientific processes in extreme scale and highly heterogeneous environments. However, to date we cannot reliably predict, understand, and optimize workflow performance. Sources of performance variability and in particular the interdependencies of workflow design, execution environment and system architecture are not well understood. While there is a rich portfolio of tools for performance analysis, modeling and prediction for single applications in homogenous computing environments, these are not applicable to workflows, due to the number and heterogeneity of the involved workflow and system components and their strong interdependencies. In this paper, we investigate workflow performance goals and identify factors that could have a relevant impact. Based on our analysis, we propose a new workflow performance provenance ontology, the Open Provenance Model-based WorkFlow Performance Provenance, or OPM-WFPP, that will enable the empirical study of workflow performance characteristics and variability including complex source attribution.

  13. Benchmarking ETL Workflows

    NASA Astrophysics Data System (ADS)

    Simitsis, Alkis; Vassiliadis, Panos; Dayal, Umeshwar; Karagiannis, Anastasios; Tziovara, Vasiliki

    Extraction-Transform-Load (ETL) processes comprise complex data workflows, which are responsible for the maintenance of a Data Warehouse. A plethora of ETL tools is currently available constituting a multi-million dollar market. Each ETL tool uses its own technique for the design and implementation of an ETL workflow, making the task of assessing ETL tools extremely difficult. In this paper, we identify common characteristics of ETL workflows in an effort of proposing a unified evaluation method for ETL. We also identify the main points of interest in designing, implementing, and maintaining ETL workflows. Finally, we propose a principled organization of test suites based on the TPC-H schema for the problem of experimenting with ETL workflows.

  14. Towards Composing Data Aware Systems Biology Workflows on Cloud Platforms: A MeDICi-based Approach

    SciTech Connect

    Gorton, Ian; Liu, Yan; Yin, Jian; Kulkarni, Anand V.; Wynne, Adam S.

    2011-09-08

    Cloud computing is being increasingly adopted for deploying systems biology scientific workflows. Scientists developing these workflows use a wide variety of fragmented and competing data sets and computational tools of all scales to support their research. To this end, the synergy of client side workflow tools with cloud platforms is a promising approach to share and reuse data and workflows. In such systems, the location of data and computation is essential consideration in terms of quality of service for composing a scientific workflow across remote cloud platforms. In this paper, we describe a cloud-based workflow for genome annotation processing that is underpinned by MeDICi - a middleware designed for data intensive scientific applications. The workflow implementation incorporates an execution layer for exploiting data locality that routes the workflow requests to the processing steps that are colocated with the data. We demonstrate our approach by composing two workflowswith the MeDICi pipelines.

  15. Deployment of precise and robust sensors on board ISS-for scientific experiments and for operation of the station.

    PubMed

    Stenzel, Christian

    2016-09-01

    The International Space Station (ISS) is the largest technical vehicle ever built by mankind. It provides a living area for six astronauts and also represents a laboratory in which scientific experiments are conducted in an extraordinary environment. The deployed sensor technology contributes significantly to the operational and scientific success of the station. The sensors on board the ISS can be thereby classified into two categories which differ significantly in their key features: (1) sensors related to crew and station health, and (2) sensors to provide specific measurements in research facilities. The operation of the station requires robust, long-term stable and reliable sensors, since they assure the survival of the astronauts and the intactness of the station. Recently, a wireless sensor network for measuring environmental parameters like temperature, pressure, and humidity was established and its function could be successfully verified over several months. Such a network enhances the operational reliability and stability for monitoring these critical parameters compared to single sensors. The sensors which are implemented into the research facilities have to fulfil other objectives. The high performance of the scientific experiments that are conducted in different research facilities on-board demands the perfect embedding of the sensor in the respective instrumental setup which forms the complete measurement chain. It is shown that the performance of the single sensor alone does not determine the success of the measurement task; moreover, the synergy between different sensors and actuators as well as appropriate sample taking, followed by an appropriate sample preparation play an essential role. The application in a space environment adds additional challenges to the sensor technology, for example the necessity for miniaturisation, automation, reliability, and long-term operation. An alternative is the repetitive calibration of the sensors. This approach

  16. Resilient workflows for computational mechanics platforms

    NASA Astrophysics Data System (ADS)

    Nguyên, Toàn; Trifan, Laurentiu; Désidéri, Jean-Antoine

    2010-06-01

    Workflow management systems have recently been the focus of much interest and many research and deployment for scientific applications worldwide [26, 27]. Their ability to abstract the applications by wrapping application codes have also stressed the usefulness of such systems for multidiscipline applications [23, 24]. When complex applications need to provide seamless interfaces hiding the technicalities of the computing infrastructures, their high-level modeling, monitoring and execution functionalities help giving production teams seamless and effective facilities [25, 31, 33]. Software integration infrastructures based on programming paradigms such as Python, Mathlab and Scilab have also provided evidence of the usefulness of such approaches for the tight coupling of multidisciplne application codes [22, 24]. Also high-performance computing based on multi-core multi-cluster infrastructures open new opportunities for more accurate, more extensive and effective robust multi-discipline simulations for the decades to come [28]. This supports the goal of full flight dynamics simulation for 3D aircraft models within the next decade, opening the way to virtual flight-tests and certification of aircraft in the future [23, 24, 29].

  17. Digital work-flow

    PubMed Central

    MARSANGO, V.; BOLLERO, R.; D’OVIDIO, N.; MIRANDA, M.; BOLLERO, P.; BARLATTANI, A.

    2014-01-01

    SUMMARY Objective. The project presents a clinical case in which the digital work-flow procedure was applied for a prosthetic rehabilitation in natural teeth and implants. Materials. Digital work-flow uses patient’s photo for the aesthetic’s planning, digital smile technology for the simulation of the final restoration and real time scanning to register the two arches. Than the scanning are sent to the laboratory that proceed with CAD-CAM production. Results. Digital work-flow offers the opportunities to easily speak with laboratory and patients, gives better clinical results and demonstrated to be a less invasiveness method for the patient. Conclusion. Intra-oral scanner, digital smile design, preview using digital wax-up, CAD-CAM production, are new predictable opportunities for prosthetic team. This work-flow, compared with traditional methods, is faster, more precise and predictable. PMID:25694797

  18. Time Analysis for Probabilistic Workflows

    SciTech Connect

    Czejdo, Bogdan; Ferragut, Erik M

    2012-01-01

    There are many theoretical and practical results in the area of workflow modeling, especially when the more formal workflows are used. In this paper we focus on probabilistic workflows. We show algorithms for time computations in probabilistic workflows. With time of activities more precisely modeled, we can achieve improvement in the work cooperation and analyses of cooperation including simulation and visualization.

  19. CaGrid Workflow Toolkit: A taverna based workflow tool for cancer grid

    PubMed Central

    2010-01-01

    Background In biological and medical domain, the use of web services made the data and computation functionality accessible in a unified manner, which helped automate the data pipeline that was previously performed manually. Workflow technology is widely used in the orchestration of multiple services to facilitate in-silico research. Cancer Biomedical Informatics Grid (caBIG) is an information network enabling the sharing of cancer research related resources and caGrid is its underlying service-based computation infrastructure. CaBIG requires that services are composed and orchestrated in a given sequence to realize data pipelines, which are often called scientific workflows. Results CaGrid selected Taverna as its workflow execution system of choice due to its integration with web service technology and support for a wide range of web services, plug-in architecture to cater for easy integration of third party extensions, etc. The caGrid Workflow Toolkit (or the toolkit for short), an extension to the Taverna workflow system, is designed and implemented to ease building and running caGrid workflows. It provides users with support for various phases in using workflows: service discovery, composition and orchestration, data access, and secure service invocation, which have been identified by the caGrid community as challenging in a multi-institutional and cross-discipline domain. Conclusions By extending the Taverna Workbench, caGrid Workflow Toolkit provided a comprehensive solution to compose and coordinate services in caGrid, which would otherwise remain isolated and disconnected from each other. Using it users can access more than 140 services and are offered with a rich set of features including discovery of data and analytical services, query and transfer of data, security protections for service invocations, state management in service interactions, and sharing of workflows, experiences and best practices. The proposed solution is general enough to be

  20. Workflow management systems in radiology

    NASA Astrophysics Data System (ADS)

    Wendler, Thomas; Meetz, Kirsten; Schmidt, Joachim

    1998-07-01

    In a situation of shrinking health care budgets, increasing cost pressure and growing demands to increase the efficiency and the quality of medical services, health care enterprises are forced to optimize or complete re-design their processes. Although information technology is agreed to potentially contribute to cost reduction and efficiency improvement, the real success factors are the re-definition and automation of processes: Business Process Re-engineering and Workflow Management. In this paper we discuss architectures for the use of workflow management systems in radiology. We propose to move forward from information systems in radiology (RIS, PACS) to Radiology Management Systems, in which workflow functionality (process definitions and process automation) is implemented through autonomous workflow management systems (WfMS). In a workflow oriented architecture, an autonomous workflow enactment service communicates with workflow client applications via standardized interfaces. In this paper, we discuss the need for and the benefits of such an approach. The separation of workflow management system and application systems is emphasized, and the consequences that arise for the architecture of workflow oriented information systems. This includes an appropriate workflow terminology, and the definition of standard interfaces for workflow aware application systems. Workflow studies in various institutions have shown that most of the processes in radiology are well structured and suited for a workflow management approach. Numerous commercially available Workflow Management Systems (WfMS) were investigated, and some of them, which are process- oriented and application independent, appear suitable for use in radiology.

  1. GO2OGS 1.0: a versatile workflow to integrate complex geological information with fault data into numerical simulation models

    NASA Astrophysics Data System (ADS)

    Fischer, T.; Naumov, D.; Sattler, S.; Kolditz, O.; Walther, M.

    2015-11-01

    We offer a versatile workflow to convert geological models built with the ParadigmTM GOCAD© (Geological Object Computer Aided Design) software into the open-source VTU (Visualization Toolkit unstructured grid) format for usage in numerical simulation models. Tackling relevant scientific questions or engineering tasks often involves multidisciplinary approaches. Conversion workflows are needed as a way of communication between the diverse tools of the various disciplines. Our approach offers an open-source, platform-independent, robust, and comprehensible method that is potentially useful for a multitude of environmental studies. With two application examples in the Thuringian Syncline, we show how a heterogeneous geological GOCAD model including multiple layers and faults can be used for numerical groundwater flow modeling, in our case employing the OpenGeoSys open-source numerical toolbox for groundwater flow simulations. The presented workflow offers the chance to incorporate increasingly detailed data, utilizing the growing availability of computational power to simulate numerical models.

  2. Automated data reduction workflows for astronomy. The ESO Reflex environment

    NASA Astrophysics Data System (ADS)

    Freudling, W.; Romaniello, M.; Bramich, D. M.; Ballester, P.; Forchi, V.; García-Dabló, C. E.; Moehler, S.; Neeser, M. J.

    2013-11-01

    Context. Data from complex modern astronomical instruments often consist of a large number of different science and calibration files, and their reduction requires a variety of software tools. The execution chain of the tools represents a complex workflow that needs to be tuned and supervised, often by individual researchers that are not necessarily experts for any specific instrument. Aims: The efficiency of data reduction can be improved by using automatic workflows to organise data and execute a sequence of data reduction steps. To realize such efficiency gains, we designed a system that allows intuitive representation, execution and modification of the data reduction workflow, and has facilities for inspection and interaction with the data. Methods: The European Southern Observatory (ESO) has developed Reflex, an environment to automate data reduction workflows. Reflex is implemented as a package of customized components for the Kepler workflow engine. Kepler provides the graphical user interface to create an executable flowchart-like representation of the data reduction process. Key features of Reflex are a rule-based data organiser, infrastructure to re-use results, thorough book-keeping, data progeny tracking, interactive user interfaces, and a novel concept to exploit information created during data organisation for the workflow execution. Results: Automated workflows can greatly increase the efficiency of astronomical data reduction. In Reflex, workflows can be run non-interactively as a first step. Subsequent optimization can then be carried out while transparently re-using all unchanged intermediate products. We found that such workflows enable the reduction of complex data by non-expert users and minimizes mistakes due to book-keeping errors. Conclusions: Reflex includes novel concepts to increase the efficiency of astronomical data processing. While Reflex is a specific implementation of astronomical scientific workflows within the Kepler workflow

  3. A Drupal-Based Collaborative Framework for Science Workflows

    NASA Astrophysics Data System (ADS)

    Pinheiro da Silva, P.; Gandara, A.

    2010-12-01

    Cyber-infrastructure is built from utilizing technical infrastructure to support organizational practices and social norms to provide support for scientific teams working together or dependent on each other to conduct scientific research. Such cyber-infrastructure enables the sharing of information and data so that scientists can leverage knowledge and expertise through automation. Scientific workflow systems have been used to build automated scientific systems used by scientists to conduct scientific research and, as a result, create artifacts in support of scientific discoveries. These complex systems are often developed by teams of scientists who are located in different places, e.g., scientists working in distinct buildings, and sometimes in different time zones, e.g., scientist working in distinct national laboratories. The sharing of these specifications is currently supported by the use of version control systems such as CVS or Subversion. Discussions about the design, improvement, and testing of these specifications, however, often happen elsewhere, e.g., through the exchange of email messages and IM chatting. Carrying on a discussion about these specifications is challenging because comments and specifications are not necessarily connected. For instance, the person reading a comment about a given workflow specification may not be able to see the workflow and even if the person can see the workflow, the person may not specifically know to which part of the workflow a given comments applies to. In this paper, we discuss the design, implementation and use of CI-Server, a Drupal-based infrastructure, to support the collaboration of both local and distributed teams of scientists using scientific workflows. CI-Server has three primary goals: to enable information sharing by providing tools that scientists can use within their scientific research to process data, publish and share artifacts; to build community by providing tools that support discussions between

  4. Insightful Workflow For Grid Computing

    SciTech Connect

    Dr. Charles Earl

    2008-10-09

    We developed a workflow adaptation and scheduling system for Grid workflow. The system currently interfaces with and uses the Karajan workflow system. We developed machine learning agents that provide the planner/scheduler with information needed to make decisions about when and how to replan. The Kubrick restructures workflow at runtime, making it unique among workflow scheduling systems. The existing Kubrick system provides a platform on which to integrate additional quality of service constraints and in which to explore the use of an ensemble of scheduling and planning algorithms. This will be the principle thrust of our Phase II work.

  5. Make Your Workflows Smarter

    NASA Technical Reports Server (NTRS)

    Jones, Corey; Kapatos, Dennis; Skradski, Cory

    2012-01-01

    Do you have workflows with many manual tasks that slow down your business? Or, do you scale back workflows because there are simply too many manual tasks? Basic workflow robots can automate some common tasks, but not everything. This presentation will show how advanced robots called "expression robots" can be set up to perform everything from simple tasks such as: moving, creating folders, renaming, changing or creating an attribute, and revising, to more complex tasks like: creating a pdf, or even launching a session of Creo Parametric and performing a specific modeling task. Expression robots are able to utilize the Java API and Info*Engine to do almost anything you can imagine! Best of all, these tools are supported by PTC and will work with later releases of Windchill. Limited knowledge of Java, Info*Engine, and XML are required. The attendee will learn what task expression robots are capable of performing. The attendee will learn what is involved in setting up an expression robot. The attendee will gain a basic understanding of simple Info*Engine tasks

  6. Provenance-Powered Automatic Workflow Generation and Composition

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Lee, S.; Pan, L.; Lee, T. J.

    2015-12-01

    In recent years, scientists have learned how to codify tools into reusable software modules that can be chained into multi-step executable workflows. Existing scientific workflow tools, created by computer scientists, require domain scientists to meticulously design their multi-step experiments before analyzing data. However, this is oftentimes contradictory to a domain scientist's daily routine of conducting research and exploration. We hope to resolve this dispute. Imagine this: An Earth scientist starts her day applying NASA Jet Propulsion Laboratory (JPL) published climate data processing algorithms over ARGO deep ocean temperature and AMSRE sea surface temperature datasets. Throughout the day, she tunes the algorithm parameters to study various aspects of the data. Suddenly, she notices some interesting results. She then turns to a computer scientist and asks, "can you reproduce my results?" By tracking and reverse engineering her activities, the computer scientist creates a workflow. The Earth scientist can now rerun the workflow to validate her findings, modify the workflow to discover further variations, or publish the workflow to share the knowledge. In this way, we aim to revolutionize computer-supported Earth science. We have developed a prototyping system to realize the aforementioned vision, in the context of service-oriented science. We have studied how Earth scientists conduct service-oriented data analytics research in their daily work, developed a provenance model to record their activities, and developed a technology to automatically generate workflow starting from user behavior and adaptability and reuse of these workflows for replicating/improving scientific studies. A data-centric repository infrastructure is established to catch richer provenance to further facilitate collaboration in the science community. We have also established a Petri nets-based verification instrument for provenance-based automatic workflow generation and recommendation.

  7. Using Kepler for Tool Integration in Microarray Analysis Workflows.

    PubMed

    Gan, Zhuohui; Stowe, Jennifer C; Altintas, Ilkay; McCulloch, Andrew D; Zambon, Alexander C

    Increasing numbers of genomic technologies are leading to massive amounts of genomic data, all of which requires complex analysis. More and more bioinformatics analysis tools are being developed by scientist to simplify these analyses. However, different pipelines have been developed using different software environments. This makes integrations of these diverse bioinformatics tools difficult. Kepler provides an open source environment to integrate these disparate packages. Using Kepler, we integrated several external tools including Bioconductor packages, AltAnalyze, a python-based open source tool, and R-based comparison tool to build an automated workflow to meta-analyze both online and local microarray data. The automated workflow connects the integrated tools seamlessly, delivers data flow between the tools smoothly, and hence improves efficiency and accuracy of complex data analyses. Our workflow exemplifies the usage of Kepler as a scientific workflow platform for bioinformatics pipelines.

  8. Phase Segmentation Methods for an Automatic Surgical Workflow Analysis

    PubMed Central

    Sakurai, Ryuhei; Yamazoe, Hirotake

    2017-01-01

    In this paper, we present robust methods for automatically segmenting phases in a specified surgical workflow by using latent Dirichlet allocation (LDA) and hidden Markov model (HMM) approaches. More specifically, our goal is to output an appropriate phase label for each given time point of a surgical workflow in an operating room. The fundamental idea behind our work lies in constructing an HMM based on observed values obtained via an LDA topic model covering optical flow motion features of general working contexts, including medical staff, equipment, and materials. We have an awareness of such working contexts by using multiple synchronized cameras to capture the surgical workflow. Further, we validate the robustness of our methods by conducting experiments involving up to 12 phases of surgical workflows with the average length of each surgical workflow being 12.8 minutes. The maximum average accuracy achieved after applying leave-one-out cross-validation was 84.4%, which we found to be a very promising result.

  9. The evolution of peer review as a basis for scientific publication: directional selection towards a robust discipline?

    PubMed

    Ferreira, Catarina; Bastille-Rousseau, Guillaume; Bennett, Amanda M; Ellington, E Hance; Terwissen, Christine; Austin, Cayla; Borlestean, Adrian; Boudreau, Melanie R; Chan, Kevin; Forsythe, Adrian; Hossie, Thomas J; Landolt, Kristen; Longhi, Jessica; Otis, Josée-Anne; Peers, Michael J L; Rae, Jason; Seguin, Jacob; Watt, Cristen; Wehtje, Morgan; Murray, Dennis L

    2016-08-01

    Peer review is pivotal to science and academia, as it represents a widely accepted strategy for ensuring quality control in scientific research. Yet, the peer-review system is poorly adapted to recent changes in the discipline and current societal needs. We provide historical context for the cultural lag that governs peer review that has eventually led to the system's current structural weaknesses (voluntary review, unstandardized review criteria, decentralized process). We argue that some current attempts to upgrade or otherwise modify the peer-review system are merely sticking-plaster solutions to these fundamental flaws, and therefore are unlikely to resolve them in the long term. We claim that for peer review to be relevant, effective, and contemporary with today's publishing demands across scientific disciplines, its main components need to be redesigned. We propose directional changes that are likely to improve the quality, rigour, and timeliness of peer review, and thereby ensure that this critical process serves the community it was created for.

  10. LQCD workflow execution framework: Models, provenance and fault-tolerance

    NASA Astrophysics Data System (ADS)

    Piccoli, Luciano; Dubey, Abhishek; Simone, James N.; Kowalkowlski, James B.

    2010-04-01

    Large computing clusters used for scientific processing suffer from systemic failures when operated over long continuous periods for executing workflows. Diagnosing job problems and faults leading to eventual failures in this complex environment is difficult, specifically when the success of an entire workflow might be affected by a single job failure. In this paper, we introduce a model-based, hierarchical, reliable execution framework that encompass workflow specification, data provenance, execution tracking and online monitoring of each workflow task, also referred to as participants. The sequence of participants is described in an abstract parameterized view, which is translated into a concrete data dependency based sequence of participants with defined arguments. As participants belonging to a workflow are mapped onto machines and executed, periodic and on-demand monitoring of vital health parameters on allocated nodes is enabled according to pre-specified rules. These rules specify conditions that must be true pre-execution, during execution and post-execution. Monitoring information for each participant is propagated upwards through the reflex and healing architecture, which consists of a hierarchical network of decentralized fault management entities, called reflex engines. They are instantiated as state machines or timed automatons that change state and initiate reflexive mitigation action(s) upon occurrence of certain faults. We describe how this cluster reliability framework is combined with the workflow execution framework using formal rules and actions specified within a structure of first order predicate logic that enables a dynamic management design that reduces manual administrative workload, and increases cluster-productivity.

  11. Essential Grid Workflow Monitoring Elements

    SciTech Connect

    Gunter, Daniel K.; Jackson, Keith R.; Konerding, David E.; Lee,Jason R.; Tierney, Brian L.

    2005-07-01

    Troubleshooting Grid workflows is difficult. A typicalworkflow involves a large number of components networks, middleware,hosts, etc. that can fail. Even when monitoring data from all thesecomponents is accessible, it is hard to tell whether failures andanomalies in these components are related toa given workflow. For theGrid to be truly usable, much of this uncertainty must be elim- inated.We propose two new Grid monitoring elements, Grid workflow identifiersand consistent component lifecycle events, that will make Gridtroubleshooting easier, and thus make Grids more usable, by simplifyingthe correlation of Grid monitoring data with a particular Gridworkflow.

  12. On Nondeterministic Workflow Executions

    NASA Astrophysics Data System (ADS)

    Potapova, Alexandra; Su, Jianwen

    The ability to compose existing services to form new functionality is one of the most promising ideas enabled by SOA and the framework of (web) services. A composition or a workflow often involves services distributed over a network and possibly many organizations and administrative domains. Nondeterminism could occur in a composition in at least two ways. The first form is the result of modeling abstraction that hides the detail information and thus makes the "computation" appear non-deterministic. The second form is closely related to "operational optimization", e.g., one may try to invoke more than multiple services for a task, whichever completes first will produce the result and preempts all other services. In this paper, we focus on the latter and measure the complexity of service execution as the amount of needed resources and controlling mechanism for executing nondeterministic service compositions. We formalize the model and complexity problem and develop technical results for this problem in the general setting as well as special cases.

  13. Standards for business analytics and departmental workflow.

    PubMed

    Erickson, Bradley J; Meenan, Christopher; Langer, Steve

    2013-02-01

    Efficient workflow is essential for a successful business. However, there is relatively little literature on analytical tools and standards for defining workflow and measuring workflow efficiency. Here, we describe an effort to define a workflow lexicon for medical imaging departments, including the rationale, the process, and the resulting lexicon.

  14. Domain-Specific Languages For Developing and Deploying Signature Discovery Workflows

    SciTech Connect

    Jacob, Ferosh; Wynne, Adam S.; Liu, Yan; Gray, Jeff

    2013-12-02

    Domain-agnostic Signature Discovery entails scientific investigation across multiple domains through the re-use of existing algorithms into workflows. The existing algorithms may be written in any programming language for various hardware architectures (e.g., desktops, commodity clusters, and specialized parallel hardware platforms). This raises an engineering issue in generating Web services for heterogeneous algorithms so that they can be composed into a scientific workflow environment (e.g., Taverna). In this paper, we present our software tool that defines two simple Domain-Specific Languages (DSLs) to automate these processes: SDL and WDL. Our Service Description Language (SDL) describes key elements of a signature discovery algorithm and generates the service code. The Workflow Description Language (WDL) describes the pipeline of services and generates deployable artifacts for the Taverna workflow management system. We demonstrate our tool with a landscape classification example that is represented by BLAST workflows composed of services that wrap original scripts.

  15. Managing and Communicating Operational Workflow

    PubMed Central

    Weinberg, Stuart T.; Danciu, Ioana; Unertl, Kim M.

    2016-01-01

    Summary Background Healthcare team members in emergency department contexts have used electronic whiteboard solutions to help manage operational workflow for many years. Ambulatory clinic settings have highly complex operational workflow, but are still limited in electronic assistance to communicate and coordinate work activities. Objective To describe and discuss the design, implementation, use, and ongoing evolution of a coordination and collaboration tool supporting ambulatory clinic operational workflow at Vanderbilt University Medical Center (VUMC). Methods The outpatient whiteboard tool was initially designed to support healthcare work related to an electronic chemotherapy order-entry application. After a highly successful initial implementation in an oncology context, a high demand emerged across the organization for the outpatient whiteboard implementation. Over the past 10 years, developers have followed an iterative user-centered design process to evolve the tool. Results The electronic outpatient whiteboard system supports 194 separate whiteboards and is accessed by over 2800 distinct users on a typical day. Clinics can configure their whiteboards to support unique workflow elements. Since initial release, features such as immunization clinical decision support have been integrated into the system, based on requests from end users. Conclusions The success of the electronic outpatient whiteboard demonstrates the usefulness of an operational workflow tool within the ambulatory clinic setting. Operational workflow tools can play a significant role in supporting coordination, collaboration, and teamwork in ambulatory healthcare settings. PMID:27081407

  16. Time-Bound Analytic Tasks on Large Data Sets Through Dynamic Configuration of Workflows

    DTIC Science & Technology

    2013-11-01

    Distributed and Data Intensive Scientific Applications .” Proceedings of the 28th International Conference on Software Engineering (ICSE06), pp. 721-730...Execution of Data - Intensive Scientific Workflows.” Cluster Computing Journal, 13(3), 2010. [18] Langford, J. Vowpal Wabbit. https://github.com/JohnLangford...transformation, and ultimately to data distribution [Woollard et al 2008]. Experts can create workflows that represent complex multi-step analytic

  17. EPiK-a Workflow for Electron Tomography in Kepler*

    PubMed Central

    Wang, Jianwu; Crawl, Daniel; Phan, Sébastien; Lawrence, Albert; Ellisman, Mark

    2015-01-01

    Scientific workflows integrate data and computing interfaces as configurable, semi-automatic graphs to solve a scientific problem. Kepler is such a software system for designing, executing, reusing, evolving, archiving and sharing scientific workflows. Electron tomography (ET) enables high-resolution views of complex cellular structures, such as cytoskeletons, organelles, viruses and chromosomes. Imaging investigations produce large datasets. For instance, in Electron Tomography, the size of a 16 fold image tilt series is about 65 Gigabytes with each projection image including 4096 by 4096 pixels. When we use serial sections or montage technique for large field ET, the dataset will be even larger. For higher resolution images with multiple tilt series, the data size may be in terabyte range. Demands of mass data processing and complex algorithms require the integration of diverse codes into flexible software structures. This paper describes a workflow for Electron Tomography Programs in Kepler (EPiK). This EPiK workflow embeds the tracking process of IMOD, and realizes the main algorithms including filtered backprojection (FBP) from TxBR and iterative reconstruction methods. We have tested the three dimensional (3D) reconstruction process using EPiK on ET data. EPiK can be a potential toolkit for biology researchers with the advantage of logical viewing, easy handling, convenient sharing and future extensibility. PMID:25621086

  18. EPiK-a Workflow for Electron Tomography in Kepler.

    PubMed

    Chen, Ruijuan; Wan, Xiaohua; Altintas, Ilkay; Wang, Jianwu; Crawl, Daniel; Phan, Sébastien; Lawrence, Albert; Ellisman, Mark

    Scientific workflows integrate data and computing interfaces as configurable, semi-automatic graphs to solve a scientific problem. Kepler is such a software system for designing, executing, reusing, evolving, archiving and sharing scientific workflows. Electron tomography (ET) enables high-resolution views of complex cellular structures, such as cytoskeletons, organelles, viruses and chromosomes. Imaging investigations produce large datasets. For instance, in Electron Tomography, the size of a 16 fold image tilt series is about 65 Gigabytes with each projection image including 4096 by 4096 pixels. When we use serial sections or montage technique for large field ET, the dataset will be even larger. For higher resolution images with multiple tilt series, the data size may be in terabyte range. Demands of mass data processing and complex algorithms require the integration of diverse codes into flexible software structures. This paper describes a workflow for Electron Tomography Programs in Kepler (EPiK). This EPiK workflow embeds the tracking process of IMOD, and realizes the main algorithms including filtered backprojection (FBP) from TxBR and iterative reconstruction methods. We have tested the three dimensional (3D) reconstruction process using EPiK on ET data. EPiK can be a potential toolkit for biology researchers with the advantage of logical viewing, easy handling, convenient sharing and future extensibility.

  19. Drug discovery FAQs: workflows for answering multidomain drug discovery questions.

    PubMed

    Chichester, Christine; Digles, Daniela; Siebes, Ronald; Loizou, Antonis; Groth, Paul; Harland, Lee

    2015-04-01

    Modern data-driven drug discovery requires integrated resources to support decision-making and enable new discoveries. The Open PHACTS Discovery Platform (http://dev.openphacts.org) was built to address this requirement by focusing on drug discovery questions that are of high priority to the pharmaceutical industry. Although complex, most of these frequently asked questions (FAQs) revolve around the combination of data concerning compounds, targets, pathways and diseases. Computational drug discovery using workflow tools and the integrated resources of Open PHACTS can deliver answers to most of these questions. Here, we report on a selection of workflows used for solving these use cases and discuss some of the research challenges. The workflows are accessible online from myExperiment (http://www.myexperiment.org) and are available for reuse by the scientific community.

  20. It's All About the Data: Workflow Systems and Weather

    NASA Astrophysics Data System (ADS)

    Plale, B.

    2009-05-01

    Digital data is fueling new advances in the computational sciences, particularly geospatial research as environmental sensing grows more practical through reduced technology costs, broader network coverage, and better instruments. e-Science research (i.e., cyberinfrastructure research) has responded to data intensive computing with tools, systems, and frameworks that support computationally oriented activities such as modeling, analysis, and data mining. Workflow systems support execution of sequences of tasks on behalf of a scientist. These systems, such as Taverna, Apache ODE, and Kepler, when built as part of a larger cyberinfrastructure framework, give the scientist tools to construct task graphs of execution sequences, often through a visual interface for connecting task boxes together with arcs representing control flow or data flow. Unlike business processing workflows, scientific workflows expose a high degree of detail and control during configuration and execution. Data-driven science imposes unique needs on workflow frameworks. Our research is focused on two issues. The first is the support for workflow-driven analysis over all kinds of data sets, including real time streaming data and locally owned and hosted data. The second is the essential role metadata/provenance collection plays in data driven science, for discovery, determining quality, for science reproducibility, and for long-term preservation. The research has been conducted over the last 6 years in the context of cyberinfrastructure for mesoscale weather research carried out as part of the Linked Environments for Atmospheric Discovery (LEAD) project. LEAD has pioneered new approaches for integrating complex weather data, assimilation, modeling, mining, and cyberinfrastructure systems. Workflow systems have the potential to generate huge volumes of data. Without some form of automated metadata capture, either metadata description becomes largely a manual task that is difficult if not impossible

  1. Scalable Analysis of Distributed Workflow Traces

    SciTech Connect

    Gunter, Daniel K.; Tierney, Brian L.; Bailey, Stephen J.

    2005-06-01

    Bacterial response to nitric oxide (NO) is of major importance since NO is an obligatory intermediate of the nitrogen cycle. Transcriptional regulation of the dissimilatory nitric oxides metabolism in bacteria is Large-scale workflows are becoming increasingly important in both the scientific research and business domains. Science and commerce have both experienced an explosion in the sheer amount of data that must be analyzed. An important tool for analyzing these huge datasets is a compute cluster of hundreds or thousands of machines. However, debugging and tuning clusters requires specialized tools. Current cluster performance tools are more oriented towards tightly coupled parallel applications. We describe how the NetLogger Toolkit methodology is more appropriate for this class of cluster computing, and describe our new automatic work flow anomaly detection component. We also describe how this methodology is being used in the Nearby Supernova Factory (SN factory) project at Lawrence Berkeley National Laboratory.

  2. Introducing students to digital geological mapping: A workflow based on cheap hardware and free software

    NASA Astrophysics Data System (ADS)

    Vrabec, Marko; Dolžan, Erazem

    2016-04-01

    The undergraduate field course in Geological Mapping at the University of Ljubljana involves 20-40 students per year, which precludes the use of specialized rugged digital field equipment as the costs would be way beyond the capabilities of the Department. A different mapping area is selected each year with the aim to provide typical conditions that a professional geologist might encounter when doing fieldwork in Slovenia, which includes rugged relief, dense tree cover, and moderately-well- to poorly-exposed bedrock due to vegetation and urbanization. It is therefore mandatory that the digital tools and workflows are combined with classical methods of fieldwork, since, for example, full-time precise GNSS positioning is not viable under such circumstances. Additionally, due to the prevailing combination of complex geological structure with generally poor exposure, students cannot be expected to produce line (vector) maps of geological contacts on the go, so there is no need for such functionality in hardware and software that we use in the field. Our workflow therefore still relies on paper base maps, but is strongly complemented with digital tools to provide robust positioning, track recording, and acquisition of various point-based data. Primary field hardware are students' Android-based smartphones and optionally tablets. For our purposes, the built-in GNSS chips provide adequate positioning precision most of the time, particularly if they are GLONASS-capable. We use Oruxmaps, a powerful free offline map viewer for the Android platform, which facilitates the use of custom-made geopositioned maps. For digital base maps, which we prepare in free Windows QGIS software, we use scanned topographic maps provided by the National Geodetic Authority, but also other maps such as aerial imagery, processed Digital Elevation Models, scans of existing geological maps, etc. Point data, like important outcrop locations or structural measurements, are entered into Oruxmaps as

  3. The Equivalency between Logic Petri Workflow Nets and Workflow Nets

    PubMed Central

    Wang, Jing; Yu, ShuXia; Du, YuYue

    2015-01-01

    Logic Petri nets (LPNs) can describe and analyze batch processing functions and passing value indeterminacy in cooperative systems. Logic Petri workflow nets (LPWNs) are proposed based on LPNs in this paper. Process mining is regarded as an important bridge between modeling and analysis of data mining and business process. Workflow nets (WF-nets) are the extension to Petri nets (PNs), and have successfully been used to process mining. Some shortcomings cannot be avoided in process mining, such as duplicate tasks, invisible tasks, and the noise of logs. The online shop in electronic commerce in this paper is modeled to prove the equivalence between LPWNs and WF-nets, and advantages of LPWNs are presented. PMID:25821845

  4. The equivalency between logic Petri workflow nets and workflow nets.

    PubMed

    Wang, Jing; Yu, ShuXia; Du, YuYue

    2015-01-01

    Logic Petri nets (LPNs) can describe and analyze batch processing functions and passing value indeterminacy in cooperative systems. Logic Petri workflow nets (LPWNs) are proposed based on LPNs in this paper. Process mining is regarded as an important bridge between modeling and analysis of data mining and business process. Workflow nets (WF-nets) are the extension to Petri nets (PNs), and have successfully been used to process mining. Some shortcomings cannot be avoided in process mining, such as duplicate tasks, invisible tasks, and the noise of logs. The online shop in electronic commerce in this paper is modeled to prove the equivalence between LPWNs and WF-nets, and advantages of LPWNs are presented.

  5. Workflow-based approaches to neuroimaging analysis.

    PubMed

    Fissell, Kate

    2007-01-01

    Analysis of functional and structural magnetic resonance imaging (MRI) brain images requires a complex sequence of data processing steps to proceed from raw image data to the final statistical tests. Neuroimaging researchers have begun to apply workflow-based computing techniques to automate data analysis tasks. This chapter discusses eight major components of workflow management systems (WFMSs): the workflow description language, editor, task modules, data access, verification, client, engine, and provenance, and their implementation in the Fiswidgets neuroimaging workflow system. Neuroinformatics challenges involved in applying workflow techniques in the domain of neuroimaging are discussed.

  6. Talkoot Portals: Discover, Tag, Share, and Reuse Collaborative Science Workflows

    NASA Astrophysics Data System (ADS)

    Wilson, B. D.; Ramachandran, R.; Lynnes, C.

    2009-05-01

    A small but growing number of scientists are beginning to harness Web 2.0 technologies, such as wikis, blogs, and social tagging, as a transformative way of doing science. These technologies provide researchers easy mechanisms to critique, suggest and share ideas, data and algorithms. At the same time, large suites of algorithms for science analysis are being made available as remotely-invokable Web Services, which can be chained together to create analysis workflows. This provides the research community an unprecedented opportunity to collaborate by sharing their workflows with one another, reproducing and analyzing research results, and leveraging colleagues' expertise to expedite the process of scientific discovery. However, wikis and similar technologies are limited to text, static images and hyperlinks, providing little support for collaborative data analysis. A team of information technology and Earth science researchers from multiple institutions have come together to improve community collaboration in science analysis by developing a customizable "software appliance" to build collaborative portals for Earth Science services and analysis workflows. The critical requirement is that researchers (not just information technologists) be able to build collaborative sites around service workflows within a few hours. We envision online communities coming together, much like Finnish "talkoot" (a barn raising), to build a shared research space. Talkoot extends a freely available, open source content management framework with a series of modules specific to Earth Science for registering, creating, managing, discovering, tagging and sharing Earth Science web services and workflows for science data processing, analysis and visualization. Users will be able to author a "science story" in shareable web notebooks, including plots or animations, backed up by an executable workflow that directly reproduces the science analysis. New services and workflows of interest will be

  7. AstroTaverna-Building workflows with Virtual Observatory services

    NASA Astrophysics Data System (ADS)

    Ruiz, J. E.; Garrido, J.; Santander-Vela, J. D.; Sánchez-Expósito, S.; Verdes-Montenegro, L.

    2014-11-01

    Despite the long tradition of publishing digital datasets in Astronomy, and the existence of a rich network of services providing astronomical datasets in standardized interoperable formats through the Virtual Observatory (VO), there has been little use of scientific workflow technologies in this field. In this paper we present AstroTaverna, a plugin that we have developed for the Taverna Workbench scientific workflow management system. It integrates existing VO web services as first-class building blocks in Taverna workflows, allowing the digital capture of otherwise lost procedural steps manually performed in e.g. GUI tools, providing reproducibility and re-use. It improves the readability of digital VO recipes with a comprehensive view of the entire automated execution process, complementing the scarce narratives produced in the classic documentation practices, transforming them into living tutorials for an efficient use of the VO infrastructure. The plugin also adds astronomical data manipulation and transformation tools based on the STIL Tool Set and the integration of Aladin VO software, as well as interactive connectivity with SAMP-compliant astronomy tools.

  8. Designing a road map for geoscience workflows

    NASA Astrophysics Data System (ADS)

    Duffy, Christopher; Gil, Yolanda; Deelman, Ewa; Marru, Suresh; Pierce, Marlon; Demir, Ibrahim; Wiener, Gerry

    2012-06-01

    Advances in geoscience research and discovery are fundamentally tied to data and computation, but formal strategies for managing the diversity of models and data resources in the Earth sciences have not yet been resolved or fully appreciated. The U.S. National Science Foundation (NSF) EarthCube initiative (http://earthcube.ning.com), which aims to support community-guided cyberinfrastructure to integrate data and information across the geosciences, recently funded four community development activities: Geoscience Workflows; Semantics and Ontologies; Data Discovery, Mining, and Integration; and Governance. The Geoscience Workflows working group, with broad participation from the geosciences, cyberinfrastructure, and other relevant communities, is formulating a workflows road map (http://sites.google.com/site/earthcubeworkflow/). The Geoscience Workflows team coordinates with each of the other community development groups given their direct relevance to workflows. Semantics and ontologies are mechanisms for describing workflows and the data they process.

  9. PANORAMA: An approach to performance modeling and diagnosis of extreme-scale workflows

    SciTech Connect

    Deelman, Ewa; Carothers, Christopher; Mandal, Anirban; Tierney, Brian; Vetter, Jeffrey S.; Baldin, Ilya; Castillo, Claris; Juve, Gideon; Krol, Dariusz; Lynch, Vickie; Mayer, Ben; Meredith, Jeremy; Proffen, Thomas; Ruth, Paul; Ferreira da Silva, Rafael

    2015-07-14

    Here we report that computational science is well established as the third pillar of scientific discovery and is on par with experimentation and theory. However, as we move closer toward the ability to execute exascale calculations and process the ensuing extreme-scale amounts of data produced by both experiments and computations alike, the complexity of managing the compute and data analysis tasks has grown beyond the capabilities of domain scientists. Therefore, workflow management systems are absolutely necessary to ensure current and future scientific discoveries. A key research question for these workflow management systems concerns the performance optimization of complex calculation and data analysis tasks. The central contribution of this article is a description of the PANORAMA approach for modeling and diagnosing the run-time performance of complex scientific workflows. This approach integrates extreme-scale systems testbed experimentation, structured analytical modeling, and parallel systems simulation into a comprehensive workflow framework called Pegasus for understanding and improving the overall performance of complex scientific workflows.

  10. PANORAMA: An approach to performance modeling and diagnosis of extreme-scale workflows

    DOE PAGES

    Deelman, Ewa; Carothers, Christopher; Mandal, Anirban; ...

    2015-07-14

    Here we report that computational science is well established as the third pillar of scientific discovery and is on par with experimentation and theory. However, as we move closer toward the ability to execute exascale calculations and process the ensuing extreme-scale amounts of data produced by both experiments and computations alike, the complexity of managing the compute and data analysis tasks has grown beyond the capabilities of domain scientists. Therefore, workflow management systems are absolutely necessary to ensure current and future scientific discoveries. A key research question for these workflow management systems concerns the performance optimization of complex calculation andmore » data analysis tasks. The central contribution of this article is a description of the PANORAMA approach for modeling and diagnosing the run-time performance of complex scientific workflows. This approach integrates extreme-scale systems testbed experimentation, structured analytical modeling, and parallel systems simulation into a comprehensive workflow framework called Pegasus for understanding and improving the overall performance of complex scientific workflows.« less

  11. Combining ontologies and workflows to design formal protocols for biological laboratories

    PubMed Central

    2010-01-01

    Background Laboratory protocols in life sciences tend to be written in natural language, with negative consequences on repeatability, distribution and automation of scientific experiments. Formalization of knowledge is becoming popular in science. In the case of laboratory protocols two levels of formalization are needed: one for the entities and individuals operations involved in protocols and another one for the procedures, which can be manually or automatically executed. This study aims to combine ontologies and workflows for protocol formalization. Results A laboratory domain specific ontology and the COW (Combining Ontologies with Workflows) software tool were developed to formalize workflows built on ontologies. A method was specifically set up to support the design of structured protocols for biological laboratory experiments. The workflows were enhanced with ontological concepts taken from the developed domain specific ontology. The experimental protocols represented as workflows are saved in two linked files using two standard interchange languages (i.e. XPDL for workflows and OWL for ontologies). A distribution package of COW including installation procedure, ontology and workflow examples, is freely available from http://www.bmr-genomics.it/farm/cow. Conclusions Using COW, a laboratory protocol may be directly defined by wet-lab scientists without writing code, which will keep the resulting protocol's specifications clear and easy to read and maintain. PMID:20416048

  12. Construction of biological networks from unstructured information based on a semi-automated curation workflow.

    PubMed

    Szostak, Justyna; Ansari, Sam; Madan, Sumit; Fluck, Juliane; Talikka, Marja; Iskandar, Anita; De Leon, Hector; Hofmann-Apitius, Martin; Peitsch, Manuel C; Hoeng, Julia

    2015-06-17

    Capture and representation of scientific knowledge in a structured format are essential to improve the understanding of biological mechanisms involved in complex diseases. Biological knowledge and knowledge about standardized terminologies are difficult to capture from literature in a usable form. A semi-automated knowledge extraction workflow is presented that was developed to allow users to extract causal and correlative relationships from scientific literature and to transcribe them into the computable and human readable Biological Expression Language (BEL). The workflow combines state-of-the-art linguistic tools for recognition of various entities and extraction of knowledge from literature sources. Unlike most other approaches, the workflow outputs the results to a curation interface for manual curation and converts them into BEL documents that can be compiled to form biological networks. We developed a new semi-automated knowledge extraction workflow that was designed to capture and organize scientific knowledge and reduce the required curation skills and effort for this task. The workflow was used to build a network that represents the cellular and molecular mechanisms implicated in atherosclerotic plaque destabilization in an apolipoprotein-E-deficient (ApoE(-/-)) mouse model. The network was generated using knowledge extracted from the primary literature. The resultant atherosclerotic plaque destabilization network contains 304 nodes and 743 edges supported by 33 PubMed referenced articles. A comparison between the semi-automated and conventional curation processes showed similar results, but significantly reduced curation effort for the semi-automated process. Creating structured knowledge from unstructured text is an important step for the mechanistic interpretation and reusability of knowledge. Our new semi-automated knowledge extraction workflow reduced the curation skills and effort required to capture and organize scientific knowledge. The

  13. Data Processing Workflows to Support Reproducible Data-driven Research in Hydrology

    NASA Astrophysics Data System (ADS)

    Goodall, J. L.; Essawy, B.; Xu, H.; Rajasekar, A.; Moore, R. W.

    2015-12-01

    Geoscience analyses often require the use of existing data sets that are large, heterogeneous, and maintained by different organizations. A particular challenge in creating reproducible analyses using these data sets is automating the workflows required to transform raw datasets into model specific input files and finally into publication ready visualizations. Data grids, such as the Integrated Rule-Oriented Data System (iRODS), are architectures that allow scientists to access and share large data sets that are geographically distributed on the Internet, but appear to the scientist as a single file management system. The DataNet Federation Consortium (DFC) project is built on iRODS and aims to demonstrate data and computational interoperability across scientific communities. This paper leverages iRODS and the DFC to demonstrate how hydrological modeling workflows can be encapsulated as workflows using the iRODS concept of Workflow Structured Objects (WSO). An example use case is presented for automating hydrologic model post-processing routines that demonstrates how WSOs can be created and used within the DFC to automate the creation of data visualizations from large model output collections. By co-locating the workflow used to create the visualization with the data collection, the use case demonstrates how data grid technology aids in reuse, reproducibility, and sharing of workflows within scientific communities.

  14. Workflow simulation and its system development

    NASA Astrophysics Data System (ADS)

    Li, Renwang; Zhu, Zefei; Wang, Xianmei; Liu, Lei; Jiang, Xuefeng

    2005-12-01

    Workflow technique is a research hotspot in the field of advanced manufacturing technology. However, up to now workflow simulation still lacks necessary evaluation of rationality and validity. Therefore, a principle of workflow simulation was set forth; a kind of workflow simulation mechanism is proposed. It is divided into presentation layer, business logic layer and database layer. Then, taking process of handling business orders as example, and taking time, quality, cost and service as key factors, a feasible method was developed. Its simulation results of 30 days were listed and analyzed. At last, an amended process of handling business orders is brought forward.

  15. Facilitating hydrological data analysis workflows in R: the RHydro package

    NASA Astrophysics Data System (ADS)

    Buytaert, Wouter; Moulds, Simon; Skoien, Jon; Pebesma, Edzer; Reusser, Dominik

    2015-04-01

    The advent of new technologies such as web-services and big data analytics holds great promise for hydrological data analysis and simulation. Driven by the need for better water management tools, it allows for the construction of much more complex workflows, that integrate more and potentially more heterogeneous data sources with longer tool chains of algorithms and models. With the scientific challenge of designing the most adequate processing workflow comes the technical challenge of implementing the workflow with a minimal risk for errors. A wide variety of new workbench technologies and other data handling systems are being developed. At the same time, the functionality of available data processing languages such as R and Python is increasing at an accelerating pace. Because of the large diversity of scientific questions and simulation needs in hydrology, it is unlikely that one single optimal method for constructing hydrological data analysis workflows will emerge. Nevertheless, languages such as R and Python are quickly gaining popularity because they combine a wide array of functionality with high flexibility and versatility. The object-oriented nature of high-level data processing languages makes them particularly suited for the handling of complex and potentially large datasets. In this paper, we explore how handling and processing of hydrological data in R can be facilitated further by designing and implementing a set of relevant classes and methods in the experimental R package RHydro. We build upon existing efforts such as the sp and raster packages for spatial data and the spacetime package for spatiotemporal data to define classes for hydrological data (HydroST). In order to handle simulation data from hydrological models conveniently, a HM class is defined. Relevant methods are implemented to allow for an optimal integration of the HM class with existing model fitting and simulation functionality in R. Lastly, we discuss some of the design challenges

  16. Big data analytics workflow management for eScience

    NASA Astrophysics Data System (ADS)

    Fiore, Sandro; D'Anca, Alessandro; Palazzo, Cosimo; Elia, Donatello; Mariello, Andrea; Nassisi, Paola; Aloisio, Giovanni

    2015-04-01

    In many domains such as climate and astrophysics, scientific data is often n-dimensional and requires tools that support specialized data types and primitives if it is to be properly stored, accessed, analysed and visualized. Currently, scientific data analytics relies on domain-specific software and libraries providing a huge set of operators and functionalities. However, most of these software fail at large scale since they: (i) are desktop based, rely on local computing capabilities and need the data locally; (ii) cannot benefit from available multicore/parallel machines since they are based on sequential codes; (iii) do not provide declarative languages to express scientific data analysis tasks, and (iv) do not provide newer or more scalable storage models to better support the data multidimensionality. Additionally, most of them: (v) are domain-specific, which also means they support a limited set of data formats, and (vi) do not provide a workflow support, to enable the construction, execution and monitoring of more complex "experiments". The Ophidia project aims at facing most of the challenges highlighted above by providing a big data analytics framework for eScience. Ophidia provides several parallel operators to manipulate large datasets. Some relevant examples include: (i) data sub-setting (slicing and dicing), (ii) data aggregation, (iii) array-based primitives (the same operator applies to all the implemented UDF extensions), (iv) data cube duplication, (v) data cube pivoting, (vi) NetCDF-import and export. Metadata operators are available too. Additionally, the Ophidia framework provides array-based primitives to perform data sub-setting, data aggregation (i.e. max, min, avg), array concatenation, algebraic expressions and predicate evaluation on large arrays of scientific data. Bit-oriented plugins have also been implemented to manage binary data cubes. Defining processing chains and workflows with tens, hundreds of data analytics operators is the

  17. Pegasus Workflow Management System: Helping Applications From Earth and Space

    NASA Astrophysics Data System (ADS)

    Mehta, G.; Deelman, E.; Vahi, K.; Silva, F.

    2010-12-01

    Pegasus WMS is a Workflow Management System that can manage large-scale scientific workflows across Grid, local and Cloud resources simultaneously. Pegasus WMS provides a means for representing the workflow of an application in an abstract XML form, agnostic of the resources available to run it and the location of data and executables. It then compiles these workflows into concrete plans by querying catalogs and farming computations across local and distributed computing resources, as well as emerging commercial and community cloud environments in an easy and reliable manner. Pegasus WMS optimizes the execution as well as data movement by leveraging existing Grid and cloud technologies via a flexible pluggable interface and provides advanced features like reusing existing data, automatic cleanup of generated data, and recursive workflows with deferred planning. It also captures all the provenance of the workflow from the planning stage to the execution of the generated data, helping scientists to accurately measure performance metrics of their workflow as well as data reproducibility issues. Pegasus WMS was initially developed as part of the GriPhyN project to support large-scale high-energy physics and astrophysics experiments. Direct funding from the NSF enabled support for a wide variety of applications from diverse domains including earthquake simulation, bacterial RNA studies, helioseismology and ocean modeling. Earthquake Simulation: Pegasus WMS was recently used in a large scale production run in 2009 by the Southern California Earthquake Centre to run 192 million loosely coupled tasks and about 2000 tightly coupled MPI style tasks on National Cyber infrastructure for generating a probabilistic seismic hazard map of the Southern California region. SCEC ran 223 workflows over a period of eight weeks, using on average 4,420 cores, with a peak of 14,540 cores. A total of 192 million files were produced totaling about 165TB out of which 11TB of data was saved

  18. The medical simulation markup language - simplifying the biomechanical modeling workflow.

    PubMed

    Suwelack, Stefan; Stoll, Markus; Schalck, Sebastian; Schoch, Nicolai; Dillmann, Rüdiger; Bendl, Rolf; Heuveline, Vincent; Speidel, Stefanie

    2014-01-01

    Modeling and simulation of the human body by means of continuum mechanics has become an important tool in diagnostics, computer-assisted interventions and training. This modeling approach seeks to construct patient-specific biomechanical models from tomographic data. Usually many different tools such as segmentation and meshing algorithms are involved in this workflow. In this paper we present a generalized and flexible description for biomechanical models. The unique feature of the new modeling language is that it not only describes the final biomechanical simulation, but also the workflow how the biomechanical model is constructed from tomographic data. In this way, the MSML can act as a middleware between all tools used in the modeling pipeline. The MSML thus greatly facilitates the prototyping of medical simulation workflows for clinical and research purposes. In this paper, we not only detail the XML-based modeling scheme, but also present a concrete implementation. Different examples highlight the flexibility, robustness and ease-of-use of the approach.

  19. Workflow Modeling Using Stochastic Activity Networks

    NASA Astrophysics Data System (ADS)

    Javadi Mottaghi, Fatemeh; Abdollahi Azgomi, Mohammad

    The essence of workflow systems is workflow patterns. The aim is to use an existing powerful formal modeling language with workflow systems. Stochastic activity networks (SANs) are a powerful extension of Petri nets. Having the SAN model of a system, one can verify the functional aspects and evaluate the operational measures, both on a same model. SANs have already been used in a wide range of applications. As a new application area, we have used SANs for modeling workflow systems. The results show that the most important workflow patterns can be modeled in SANs. In addition, the resulting SAN models of workflow systems can be used for model checking and/or performance evaluation purposes using the existing tools. In this paper, we will present the results of this work. For this purpose, we will present the SAN submodels corresponding to the most important workflow patterns. Then, the proposed SAN submodels are used in a case study for workflow modeling, which will also be presented in this paper. Finally, we will present the results of the evaluation of the model using the Möbius modeling tool.

  20. Validation of the Applied Biosystems RapidFinder Shiga Toxin-Producing E. coli (STEC) Detection Workflow.

    PubMed

    Cloke, Jonathan; Matheny, Sharon; Swimley, Michelle; Tebbs, Robert; Burrell, Angelia; Flannery, Jonathan; Bastin, Benjamin; Bird, Patrick; Benzinger, M Joseph; Crowley, Erin; Agin, James; Goins, David; Salfinger, Yvonne; Brodsky, Michael; Fernandez, Maria Cristina

    2016-11-01

    The Applied Biosystems™ RapidFinder™ STEC Detection Workflow (Thermo Fisher Scientific) is a complete protocol for the rapid qualitative detection of Escherichia coli (E. coli) O157:H7 and the "Big 6" non-O157 Shiga-like toxin-producing E. coli (STEC) serotypes (defined as serogroups: O26, O45, O103, O111, O121, and O145). The RapidFinder STEC Detection Workflow makes use of either the automated preparation of PCR-ready DNA using the Applied Biosystems PrepSEQ™ Nucleic Acid Extraction Kit in conjunction with the Applied Biosystems MagMAX™ Express 96-well magnetic particle processor or the Applied Biosystems PrepSEQ Rapid Spin kit for manual preparation of PCR-ready DNA. Two separate assays comprise the RapidFinder STEC Detection Workflow, the Applied Biosystems RapidFinder STEC Screening Assay and the Applied Biosystems RapidFinder STEC Confirmation Assay. The RapidFinder STEC Screening Assay includes primers and probes to detect the presence of stx1 (Shiga toxin 1), stx2 (Shiga toxin 2), eae (intimin), and E. coli O157 gene targets. The RapidFinder STEC Confirmation Assay includes primers and probes for the "Big 6" non-O157 STEC and E. coli O157:H7. The use of these two assays in tandem allows a user to detect accurately the presence of the "Big 6" STECs and E. coli O157:H7. The performance of the RapidFinder STEC Detection Workflow was evaluated in a method comparison study, in inclusivity and exclusivity studies, and in a robustness evaluation. The assays were compared to the U.S. Department of Agriculture (USDA), Food Safety and Inspection Service (FSIS) Microbiology Laboratory Guidebook (MLG) 5.09: Detection, Isolation and Identification of Escherichia coli O157:H7 from Meat Products and Carcass and Environmental Sponges for raw ground beef (73% lean) and USDA/FSIS-MLG 5B.05: Detection, Isolation and Identification of Escherichia coli non-O157:H7 from Meat Products and Carcass and Environmental Sponges for raw beef trim. No statistically significant

  1. a Standardized Approach to Topographic Data Processing and Workflow Management

    NASA Astrophysics Data System (ADS)

    Wheaton, J. M.; Bailey, P.; Glenn, N. F.; Hensleigh, J.; Hudak, A. T.; Shrestha, R.; Spaete, L.

    2013-12-01

    An ever-increasing list of options exist for collecting high resolution topographic data, including airborne LIDAR, terrestrial laser scanners, bathymetric SONAR and structure-from-motion. An equally rich, arguably overwhelming, variety of tools exists with which to organize, quality control, filter, analyze and summarize these data. However, scientists are often left to cobble together their analysis as a series of ad hoc steps, often using custom scripts and one-time processes that are poorly documented and rarely shared with the community. Even when literature-cited software tools are used, the input and output parameters differ from tool to tool. These parameters are rarely archived and the steps performed lost, making the analysis virtually impossible to replicate precisely. What is missing is a coherent, robust, framework for combining reliable, well-documented topographic data-processing steps into a workflow that can be repeated and even shared with others. We have taken several popular topographic data processing tools - including point cloud filtering and decimation as well as DEM differencing - and defined a common protocol for passing inputs and outputs between them. This presentation describes a free, public online portal that enables scientists to create custom workflows for processing topographic data using a number of popular topographic processing tools. Users provide the inputs required for each tool and in what sequence they want to combine them. This information is then stored for future reuse (and optionally sharing with others) before the user then downloads a single package that contains all the input and output specifications together with the software tools themselves. The user then launches the included batch file that executes the workflow on their local computer against their topographic data. This ZCloudTools architecture helps standardize, automate and archive topographic data processing. It also represents a forum for discovering and

  2. A Formal Framework for Workflow Analysis

    NASA Astrophysics Data System (ADS)

    Cravo, Glória

    2010-09-01

    In this paper we provide a new formal framework to model and analyse workflows. A workflow is the formal definition of a business process that consists in the execution of tasks in order to achieve a certain objective. In our work we describe a workflow as a graph whose vertices represent tasks and the arcs are associated to workflow transitions. Each task has associated an input/output logic operator. This logic operator can be the logical AND (•), the OR (⊗), or the XOR -exclusive-or—(⊕). Moreover, we introduce algebraic concepts in order to completely describe completely the structure of workflows. We also introduce the concept of logical termination. Finally, we provide a necessary and sufficient condition for this property to hold.

  3. A Community-Driven Workflow Recommendations and Reuse Infrastructure

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Votava, P.; Lee, T. J.; Lee, C.; Xiao, S.; Nemani, R. R.; Foster, I.

    2013-12-01

    Aiming to connect the Earth science community to accelerate the rate of discovery, NASA Earth Exchange (NEX) has established an online repository and platform, so that researchers can publish and share their tools and models with colleagues. In recent years, workflow has become a popular technique at NEX for Earth scientists to define executable multi-step procedures for data processing and analysis. The ability to discover and reuse knowledge (sharable workflows or workflow) is critical to the future advancement of science. However, as reported in our earlier study, the reusability of scientific artifacts at current time is very low. Scientists often do not feel confident in using other researchers' tools and utilities. One major reason is that researchers are often unaware of the existence of others' data preprocessing processes. Meanwhile, researchers often do not have time to fully document the processes and expose them to others in a standard way. These issues cannot be overcome by the existing workflow search technologies used in NEX and other data projects. Therefore, this project aims to develop a proactive recommendation technology based on collective NEX user behaviors. In this way, we aim to promote and encourage process and workflow reuse within NEX. Particularly, we focus on leveraging peer scientists' best practices to support the recommendation of artifacts developed by others. Our underlying theoretical foundation is rooted in the social cognitive theory, which declares people learn by watching what others do. Our fundamental hypothesis is that sharable artifacts have network properties, much like humans in social networks. More generally, reusable artifacts form various types of social relationships (ties), and may be viewed as forming what organizational sociologists who use network analysis to study human interactions call a 'knowledge network.' In particular, we will tackle two research questions: R1: What hidden knowledge may be extracted from

  4. A workflow learning model to improve geovisual analytics utility

    PubMed Central

    Roth, Robert E; MacEachren, Alan M; McCabe, Craig A

    2011-01-01

    concept of scientific workflows. Second, we implemented an interface in the G-EX Portal Learn Module to demonstrate the workflow learning model. The workflow interface allows users to drag learning artifacts uploaded to the G-EX Portal onto a central whiteboard and then annotate the workflow using text and drawing tools. Once completed, users can visit the assembled workflow to get an idea of the kind, number, and scale of analysis steps, view individual learning artifacts associated with each node in the workflow, and ask questions about the overall workflow or individual learning artifacts through the associated forums. An example learning workflow in the domain of epidemiology is provided to demonstrate the effectiveness of the approach. Results/Conclusions In the context of geovisual analytics, GIScientists are not only responsible for developing software to facilitate visually-mediated reasoning about large and complex spatiotemporal information, but also for ensuring that this software works. The workflow learning model discussed in this paper and demonstrated in the G-EX Portal Learn Module is one approach to improving the utility of geovisual analytics software. While development of the G-EX Portal Learn Module is ongoing, we expect to release the G-EX Portal Learn Module by Summer 2009. PMID:21983545

  5. Implementation Recommendations for MOSAIC: A Workflow Architecture for Analytic Enrichment. Analysis and Recommendations for the Implementation of a Cohesive Method for Orchestrating Analytics in a Distributed Model

    DTIC Science & Technology

    2011-02-01

    18 LONI or Ptolemy /Kepler (Scientific Workflow Projects) as Executive ............................... 19...55 D.3: Ptolemy GUI Example Workflow .................................................................................... 56...architectural technologies considered that can fill this role examined here are UIMA, OpenPipeline, Mule, and Ptolemy , the applicability and

  6. Scientific Data Management (SDM) Center for Enabling Technologies. 2007-2012

    SciTech Connect

    Ludascher, Bertram; Altintas, Ilkay

    2013-09-06

    Over the past five years, our activities have both established Kepler as a viable scientific workflow environment and demonstrated its value across multiple science applications. We have published numerous peer-reviewed papers on the technologies highlighted in this short paper and have given Kepler tutorials at SC06,SC07,SC08,and SciDAC 2007. Our outreach activities have allowed scientists to learn best practices and better utilize Kepler to address their individual workflow problems. Our contributions to advancing the state-of-the-art in scientific workflows have focused on the following areas. Progress in each of these areas is described in subsequent sections. Workflow development. The development of a deeper understanding of scientific workflows "in the wild" and of the requirements for support tools that allow easy construction of complex scientific workflows; Generic workflow components and templates. The development of generic actors (i.e.workflow components and processes) which can be broadly applied to scientific problems; Provenance collection and analysis. The design of a flexible provenance collection and analysis infrastructure within the workflow environment; and, Workflow reliability and fault tolerance. The improvement of the reliability and fault-tolerance of workflow environments.

  7. An iterative expanding and shrinking process for processor allocation in mixed-parallel workflow scheduling.

    PubMed

    Huang, Kuo-Chan; Wu, Wei-Ya; Wang, Feng-Jian; Liu, Hsiao-Ching; Hung, Chun-Hao

    2016-01-01

    Parallel computation has been widely applied in a variety of large-scale scientific and engineering applications. Many studies indicate that exploiting both task and data parallelisms, i.e. mixed-parallel workflows, to solve large computational problems can get better efficacy compared with either pure task parallelism or pure data parallelism. Scheduling traditional workflows of pure task parallelism on parallel systems has long been known to be an NP-complete problem. Mixed-parallel workflow scheduling has to deal with an additional challenging issue of processor allocation. In this paper, we explore the processor allocation issue in scheduling mixed-parallel workflows of moldable tasks, called M-task, and propose an Iterative Allocation Expanding and Shrinking (IAES) approach. Compared to previous approaches, our IAES has two distinguishing features. The first is allocating more processors to the tasks on allocated critical paths for effectively reducing the makespan of workflow execution. The second is allowing the processor allocation of an M-task to shrink during the iterative procedure, resulting in a more flexible and effective process for finding better allocation. The proposed IAES approach has been evaluated with a series of simulation experiments and compared to several well-known previous methods, including CPR, CPA, MCPA, and MCPA2. The experimental results indicate that our IAES approach outperforms those previous methods significantly in most situations, especially when nodes of the same layer in a workflow might have unequal workloads.

  8. Taverna Workflows in the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Benson, K.; Cecconi, B.

    2015-12-01

    Taverna workflows used in the Virtual ObservatoryPlanetary and Solar applications developed over the last decade generate dataat a previously unimaginable scale. One of these programmes which builds on the strengths of IDIS of Europlanet FP7, is the Virtual European Solar and Planetary Access (VESPA). With VESPA more data will be distributed and the connectivity of tools and infrastructure willimprove. VESPA enables growth of the user and provider community. However the challenge of connectivity persist throughout applications data services. VESPA calls are formed in part by tools and interactions services. One such tool and interaction service is the Taverna workflow management system. Workflows allow to address the challenges of data interconnectivity by establishing pipeline to services offered by other data streaming services. Workflows offer the capability to cross domains and overome interoperability issues. Furthermore, Taverna offers sharing of workflows; academic community 'myExperiment', a social site for scientists, supports search and opens access to pre existing workflows. This presentation focuses on cross domain workflows including use of the infrastructure setup with Helio, EUROPLANET and VAMDC projects. Hands on demonstration and an opportunity to join the community discussion will make the presentation more interactive

  9. Structuring Clinical Workflows for Diabetes Care

    PubMed Central

    Lasierra, N.; Oberbichler, S.; Toma, I.; Fensel, A.; Hoerbst, A.

    2014-01-01

    Summary Background Electronic health records (EHRs) play an important role in the treatment of chronic diseases such as diabetes mellitus. Although the interoperability and selected functionality of EHRs are already addressed by a number of standards and best practices, such as IHE or HL7, the majority of these systems are still monolithic from a user-functionality perspective. The purpose of the OntoHealth project is to foster a functionally flexible, standards-based use of EHRs to support clinical routine task execution by means of workflow patterns and to shift the present EHR usage to a more comprehensive integration concerning complete clinical workflows. Objectives The goal of this paper is, first, to introduce the basic architecture of the proposed OntoHealth project and, second, to present selected functional needs and a functional categorization regarding workflow-based interactions with EHRs in the domain of diabetes. Methods A systematic literature review regarding attributes of workflows in the domain of diabetes was conducted. Eligible references were gathered and analyzed using a qualitative content analysis. Subsequently, a functional workflow categorization was derived from diabetes-specific raw data together with existing general workflow patterns. Results This paper presents the design of the architecture as well as a categorization model which makes it possible to describe the components or building blocks within clinical workflows. The results of our study lead us to identify basic building blocks, named as actions, decisions, and data elements, which allow the composition of clinical workflows within five identified contexts. Conclusions The categorization model allows for a description of the components or building blocks of clinical workflows from a functional view. PMID:25024765

  10. Nanocuration workflows: Establishing best practices for identifying, inputting, and sharing data to inform decisions on nanomaterials

    PubMed Central

    Powers, Christina M; Mills, Karmann A; Morris, Stephanie A; Klaessig, Fred; Gaheen, Sharon; Lewinski, Nastassja

    2015-01-01

    Summary There is a critical opportunity in the field of nanoscience to compare and integrate information across diverse fields of study through informatics (i.e., nanoinformatics). This paper is one in a series of articles on the data curation process in nanoinformatics (nanocuration). Other articles in this series discuss key aspects of nanocuration (temporal metadata, data completeness, database integration), while the focus of this article is on the nanocuration workflow, or the process of identifying, inputting, and reviewing nanomaterial data in a data repository. In particular, the article discusses: 1) the rationale and importance of a defined workflow in nanocuration, 2) the influence of organizational goals or purpose on the workflow, 3) established workflow practices in other fields, 4) current workflow practices in nanocuration, 5) key challenges for workflows in emerging fields like nanomaterials, 6) examples to make these challenges more tangible, and 7) recommendations to address the identified challenges. Throughout the article, there is an emphasis on illustrating key concepts and current practices in the field. Data on current practices in the field are from a group of stakeholders active in nanocuration. In general, the development of workflows for nanocuration is nascent, with few individuals formally trained in data curation or utilizing available nanocuration resources (e.g., ISA-TAB-Nano). Additional emphasis on the potential benefits of cultivating nanomaterial data via nanocuration processes (e.g., capability to analyze data from across research groups) and providing nanocuration resources (e.g., training) will likely prove crucial for the wider application of nanocuration workflows in the scientific community. PMID:26425437

  11. VisIVO: A Web-Based, Workflow-Enabled Gateway for Astrophysical Visualization

    NASA Astrophysics Data System (ADS)

    Costa, A.; Bandieramonte, M.; Becciani, U.; Krokos, M.; Massimino, P.; Petta, C.; Pistagna, C.; Riggi, S.; Sciacca, E.; Vitello, F.

    2013-10-01

    We present a web-based and workflow-enabled framework called VisIVO Gateway that allows integration of large-scale multidimensional datasets together with applications for visualization and exploration on Distributed Computing Infrastructures (DCIs). Our framework is implemented through a workflow-enabled portal wrapped around WS-PGRADE which is the grid User Support Environment (gUSE) portal. We provide customized interfaces for creating, invoking, monitoring and also modifying scientific workflows. All technical complexities, e.g. related to visualization algorithms and DCI configurations, are conveniently hidden from view. A number of workflows are enabled by default, e.g. implementing local or remote uploading and creation of scientific movies. Scientific movies are useful not only to scientists for presenting their research results, but also to museums and science centers for engaging visitors with complex scientific concepts. Our gateway can be accessed via standard www interfaces but also through a newly developed iOS mobile application offering novel ways for sharing analysis and exploration experiences with large-scale datasets in collaborative environments.

  12. Security aspects in teleradiology workflow

    NASA Astrophysics Data System (ADS)

    Soegner, Peter I.; Helweg, Gernot; Holzer, Heimo; zur Nedden, Dieter

    2000-05-01

    The medicolegal necessity of privacy, security and confidentiality was the aim of the attempt to develop a secure teleradiology workflow between the telepartners -- radiologist and the referring physician. To avoid the lack of dataprotection and datasecurity we introduced biometric fingerprint scanners in combination with smart cards to identify the teleradiology partners and communicated over an encrypted TCP/IP satellite link between Innsbruck and Reutte. We used an asymmetric kryptography method to guarantee authentification, integrity of the data-packages and confidentiality of the medical data. It was necessary to use a biometric feature to avoid a case of mistaken identity of persons, who wanted access to the system. Only an invariable electronical identification allowed a legal liability to the final report and only a secure dataconnection allowed the exchange of sensible medical data between different partners of Health Care Networks. In our study we selected the user friendly combination of a smart card and a biometric fingerprint technique, called SkymedTM Double Guard Secure Keyboard (Agfa-Gevaert) to confirm identities and log into the imaging workstations and the electronic patient record. We examined the interoperability of the used software with the existing platforms. Only the WIN-XX operating systems could be protected at the time of our study.

  13. Workflow Optimization in Vertebrobasilar Occlusion

    SciTech Connect

    Kamper, Lars Meyn, Hannes; Nordmeyer, Simone; Kempkes, Udo; Piroth, Werner

    2012-06-15

    Objective: In vertebrobasilar occlusion, rapid recanalization is the only substantial means to improve the prognosis. We introduced a standard operating procedure (SOP) for interventional therapy to analyze the effects on interdisciplinary time management. Methods: Intrahospital time periods between hospital admission and neuroradiological intervention were retrospectively analyzed, together with the patients' outcome, before (n = 18) and after (n = 20) implementation of the SOP. Results: After implementation of the SOP, we observed statistically significant improvement of postinterventional patient neurological status (p = 0.017). In addition, we found a decrease of 5:33 h for the mean time period from hospital admission until neuroradiological intervention. The recanalization rate increased from 72.2% to 80% after implementation of the SOP. Conclusion: Our results underscore the relevance of SOP implementation and analysis of time management for clinical workflow optimization. Both may trigger awareness for the need of efficient interdisciplinary time management. This could be an explanation for the decreased time periods and improved postinterventional patient status after SOP implementation.

  14. Integrative workflows for metagenomic analysis

    PubMed Central

    Ladoukakis, Efthymios; Kolisis, Fragiskos N.; Chatziioannou, Aristotelis A.

    2014-01-01

    The rapid evolution of all sequencing technologies, described by the term Next Generation Sequencing (NGS), have revolutionized metagenomic analysis. They constitute a combination of high-throughput analytical protocols, coupled to delicate measuring techniques, in order to potentially discover, properly assemble and map allelic sequences to the correct genomes, achieving particularly high yields for only a fraction of the cost of traditional processes (i.e., Sanger). From a bioinformatic perspective, this boils down to many GB of data being generated from each single sequencing experiment, rendering the management or even the storage, critical bottlenecks with respect to the overall analytical endeavor. The enormous complexity is even more aggravated by the versatility of the processing steps available, represented by the numerous bioinformatic tools that are essential, for each analytical task, in order to fully unveil the genetic content of a metagenomic dataset. These disparate tasks range from simple, nonetheless non-trivial, quality control of raw data to exceptionally complex protein annotation procedures, requesting a high level of expertise for their proper application or the neat implementation of the whole workflow. Furthermore, a bioinformatic analysis of such scale, requires grand computational resources, imposing as the sole realistic solution, the utilization of cloud computing infrastructures. In this review article we discuss different, integrative, bioinformatic solutions available, which address the aforementioned issues, by performing a critical assessment of the available automated pipelines for data management, quality control, and annotation of metagenomic data, embracing various, major sequencing technologies and applications. PMID:25478562

  15. Integrating Automated Workflows, Human Intelligence and Collaboration

    PubMed Central

    Mirel, Barbara; Eichinger, Felix; Nair, Viji; Kretzler, Matthias

    2009-01-01

    Many methods and tools have evolved for microarray analysis such as single probe evaluation, promoter module modeling and pathway analysis. Little is known, however, about optimizing this flow of analysis for the flexible reasoning biomedical researchers need for hypothesizing about disease mechanisms. In developing and implementing a workflow, we found that workflows are not complete or valuable unless automation is well-integrated with human intelligence. We present our workflow for the translational problem of classifying new sub-types of renal diseases. Using our workflow as an example, we explain opportunities and limitations in achieving this necessary integration and propose approaches to guide such integration for the next great frontier-facilitating exploratory analysis of candidate genes. PMID:21347175

  16. AutoDrug: fully automated macromolecular crystallography workflows for fragment-based drug discovery

    PubMed Central

    Tsai, Yingssu; McPhillips, Scott E.; González, Ana; McPhillips, Timothy M.; Zinn, Daniel; Cohen, Aina E.; Feese, Michael D.; Bushnell, David; Tiefenbrunn, Theresa; Stout, C. David; Ludaescher, Bertram; Hedman, Britt; Hodgson, Keith O.; Soltis, S. Michael

    2013-01-01

    AutoDrug is software based upon the scientific workflow paradigm that integrates the Stanford Synchrotron Radiation Lightsource macromolecular crystallography beamlines and third-party processing software to automate the crystallo­graphy steps of the fragment-based drug-discovery process. AutoDrug screens a cassette of fragment-soaked crystals, selects crystals for data collection based on screening results and user-specified criteria and determines optimal data-collection strategies. It then collects and processes diffraction data, performs molecular replacement using provided models and detects electron density that is likely to arise from bound fragments. All processes are fully automated, i.e. are performed without user interaction or supervision. Samples can be screened in groups corresponding to particular proteins, crystal forms and/or soaking conditions. A single AutoDrug run is only limited by the capacity of the sample-storage dewar at the beamline: currently 288 samples. AutoDrug was developed in conjunction with RestFlow, a new scientific workflow-automation framework. RestFlow simplifies the design of AutoDrug by managing the flow of data and the organization of results and by orchestrating the execution of computational pipeline steps. It also simplifies the execution and interaction of third-party programs and the beamline-control system. Modeling AutoDrug as a scientific workflow enables multiple variants that meet the requirements of different user groups to be developed and supported. A workflow tailored to mimic the crystallography stages comprising the drug-discovery pipeline of CoCrystal Discovery Inc. has been deployed and successfully demonstrated. This workflow was run once on the same 96 samples that the group had examined manually and the workflow cycled successfully through all of the samples, collected data from the same samples that were selected manually and located the same peaks of unmodeled density in the resulting difference

  17. Integrated workflows for spiking neuronal network simulations.

    PubMed

    Antolík, Ján; Davison, Andrew P

    2013-01-01

    The increasing availability of computational resources is enabling more detailed, realistic modeling in computational neuroscience, resulting in a shift toward more heterogeneous models of neuronal circuits, and employment of complex experimental protocols. This poses a challenge for existing tool chains, as the set of tools involved in a typical modeler's workflow is expanding concomitantly, with growing complexity in the metadata flowing between them. For many parts of the workflow, a range of tools is available; however, numerous areas lack dedicated tools, while integration of existing tools is limited. This forces modelers to either handle the workflow manually, leading to errors, or to write substantial amounts of code to automate parts of the workflow, in both cases reducing their productivity. To address these issues, we have developed Mozaik: a workflow system for spiking neuronal network simulations written in Python. Mozaik integrates model, experiment and stimulation specification, simulation execution, data storage, data analysis and visualization into a single automated workflow, ensuring that all relevant metadata are available to all workflow components. It is based on several existing tools, including PyNN, Neo, and Matplotlib. It offers a declarative way to specify models and recording configurations using hierarchically organized configuration files. Mozaik automatically records all data together with all relevant metadata about the experimental context, allowing automation of the analysis and visualization stages. Mozaik has a modular architecture, and the existing modules are designed to be extensible with minimal programming effort. Mozaik increases the productivity of running virtual experiments on highly structured neuronal networks by automating the entire experimental cycle, while increasing the reliability of modeling studies by relieving the user from manual handling of the flow of metadata between the individual workflow stages.

  18. How Workflow Documentation Facilitates Curation Planning

    NASA Astrophysics Data System (ADS)

    Wickett, K.; Thomer, A. K.; Baker, K. S.; DiLauro, T.; Asangba, A. E.

    2013-12-01

    The description of the specific processes and artifacts that led to the creation of a data product provide a detailed picture of data provenance in the form of a workflow. The Site-Based Data Curation project, hosted by the Center for Informatics Research in Science and Scholarship at the University of Illinois, has been investigating how workflows can be used in developing curation processes and policies that move curation "upstream" in the research process. The team has documented an individual workflow for geobiology data collected during a single field trip to Yellowstone National Park. This specific workflow suggests a generalized three-part process for field data collection that comprises three distinct elements: a Planning Stage, a Fieldwork Stage, and a Processing and Analysis Stage. Beyond supplying an account of data provenance, the workflow has allowed the team to identify 1) points of intervention for curation processes and 2) data products that are likely candidates for sharing or deposit. Although these objects may be viewed by individual researchers as 'intermediate' data products, discussions with geobiology researchers have suggested that with appropriate packaging and description they may serve as valuable observational data for other researchers. Curation interventions may include the introduction of regularized data formats during the planning process, data description procedures, the identification and use of established controlled vocabularies, and data quality and validation procedures. We propose a poster that shows the individual workflow and our generalization into a three-stage process. We plan to discuss with attendees how well the three-stage view applies to other types of field-based research, likely points of intervention, and what kinds of interventions are appropriate and feasible in the example workflow.

  19. Multilevel Workflow System in the ATLAS Experiment

    NASA Astrophysics Data System (ADS)

    Borodin, M.; De, K.; Garcia Navarro, J.; Golubkov, D.; Klimentov, A.; Maeno, T.; Vaniachine, A.; ATLAS Collaboration

    2015-05-01

    The ATLAS experiment is scaling up Big Data processing for the next LHC run using a multilevel workflow system comprised of many layers. In Big Data processing ATLAS deals with datasets, not individual files. Similarly a task (comprised of many jobs) has become a unit of the ATLAS workflow in distributed computing, with about 0.8M tasks processed per year. In order to manage the diversity of LHC physics (exceeding 35K physics samples per year), the individual data processing tasks are organized into workflows. For example, the Monte Carlo workflow is composed of many steps: generate or configure hard-processes, hadronize signal and minimum-bias (pileup) events, simulate energy deposition in the ATLAS detector, digitize electronics response, simulate triggers, reconstruct data, convert the reconstructed data into ROOT ntuples for physics analysis, etc. Outputs are merged and/or filtered as necessary to optimize the chain. The bi-level workflow manager - ProdSys2 - generates actual workflow tasks and their jobs are executed across more than a hundred distributed computing sites by PanDA - the ATLAS job-level workload management system. On the outer level, the Database Engine for Tasks (DEfT) empowers production managers with templated workflow definitions. On the next level, the Job Execution and Definition Interface (JEDI) is integrated with PanDA to provide dynamic job definition tailored to the sites capabilities. We report on scaling up the production system to accommodate a growing number of requirements from main ATLAS areas: Trigger, Physics and Data Preparation.

  20. Progress in digital color workflow understanding in the International Color Consortium (ICC) Workflow WG

    NASA Astrophysics Data System (ADS)

    McCarthy, Ann

    2006-01-01

    The ICC Workflow WG serves as the bridge between ICC color management technologies and use of those technologies in real world color production applications. ICC color management is applicable to and is used in a wide range of color systems, from highly specialized digital cinema color special effects to high volume publications printing to home photography. The ICC Workflow WG works to align ICC technologies so that the color management needs of these diverse use case systems are addressed in an open, platform independent manner. This report provides a high level summary of the ICC Workflow WG objectives and work to date, focusing on the ways in which workflow can impact image quality and color systems performance. The 'ICC Workflow Primitives' and 'ICC Workflow Patterns and Dimensions' workflow models are covered in some detail. Consider the questions, "How much of dissatisfaction with color management today is the result of 'the wrong color transformation at the wrong time' and 'I can't get to the right conversion at the right point in my work process'?" Put another way, consider how image quality through a workflow can be negatively affected when the coordination and control level of the color management system is not sufficient.

  1. Editing and publishing of a medical journal. Success of an unconventional workflow.

    PubMed

    Antony, Sajjeev X; Al-Hussaini, Ala'Aldin

    2004-01-01

    Regional journals often face constraints that threaten their growth, calling for novel coping strategies. This paper outlines the problems and challenges in editing and publishing the SQU Journal for Scientific Research: Medical Sciences, the only peer-reviewed medical journal in the Sultanate of Oman. These included the absence of secretarial support and the consequent need to reduce paperwork, the fact that most papers required substantial editing even after peer review, and the lack of a single workflow for creating documents for the press and the Internet. These challenges were successfully met by creating an unconventional all-electronic workflow that catered to both the print and the online versions. The paper describes this workflow and offers suggestions for journals wishing to streamline theirs.

  2. A novel spectral library workflow to enhance protein identifications.

    PubMed

    Li, Haomin; Zong, Nobel C; Liang, Xiangbo; Kim, Allen K; Choi, Jeong Ho; Deng, Ning; Zelaya, Ivette; Lam, Maggie; Duan, Huilong; Ping, Peipei

    2013-04-09

    The innovations in mass spectrometry-based investigations in proteome biology enable systematic characterization of molecular details in pathophysiological phenotypes. However, the process of delineating large-scale raw proteomic datasets into a biological context requires high-throughput data acquisition and processing. A spectral library search engine makes use of previously annotated experimental spectra as references for subsequent spectral analyses. This workflow delivers many advantages, including elevated analytical efficiency and specificity as well as reduced demands in computational capacity. In this study, we created a spectral matching engine to address challenges commonly associated with a library search workflow. Particularly, an improved sliding dot product algorithm, that is robust to systematic drifts of mass measurement in spectra, is introduced. Furthermore, a noise management protocol distinguishes spectra correlation attributed from noise and peptide fragments. It enables elevated separation between target spectral matches and false matches, thereby suppressing the possibility of propagating inaccurate peptide annotations from library spectra to query spectra. Moreover, preservation of original spectra also accommodates user contributions to further enhance the quality of the library. Collectively, this search engine supports reproducible data analyses using curated references, thereby broadening the accessibility of proteomics resources to biomedical investigators. This article is part of a Special Issue entitled: From protein structures to clinical applications.

  3. A Novel Spectral Library Workflow to Enhance Protein Identifications

    PubMed Central

    Li, Haomin; Zong, Nobel C.; Liang, Xiangbo; Kim, Allen; Choi, Jeong Ho; Deng, Ning; Zelaya, Ivette; Lam, Maggie; Duan, Huilong; Ping, Peipei

    2013-01-01

    The innovations in mass spectrometry-based investigations in proteome biology enable systematic characterization of molecular details in pathophysiological phenotypes. However, the process of delineating large-scale raw proteomic datasets into a biological context requires high-throughput data acquisition and processing. A spectral library search engine makes use of previously annotated experimental spectra as references for subsequent spectral analyses. This workflow delivers many advantages, including elevated analytical efficiency and specificity as well as reduced demands in computational capacity. In this study, we created a spectral matching engine to address challenges commonly associated with a library search workflow. Particularly, an improved sliding dot product algorithm, that is robust to systematic drifts of mass measurement in spectra, is introduced. Furthermore, a noise management protocol distinguishes spectra correlation attributed from noise and peptide fragments. It enables elevated separation between target spectral matches and false matches, thereby suppressing the possibility of propagating inaccurate peptide annotations from library spectra to query spectra. Moreover, preservation of original spectra also accommodates user contributions to further enhance the quality of the library. Collectively, this search engine supports reproducible data analyses using curated references, thereby broadening the accessibility of proteomics resources to biomedical investigators. PMID:23391412

  4. Integrating configuration workflows with project management system

    NASA Astrophysics Data System (ADS)

    Nilsen, Dimitri; Weber, Pavel

    2014-06-01

    The complexity of the heterogeneous computing resources, services and recurring infrastructure changes at the GridKa WLCG Tier-1 computing center require a structured approach to configuration management and optimization of interplay between functional components of the whole system. A set of tools deployed at GridKa, including Puppet, Redmine, Foreman, SVN and Icinga, provides the administrative environment giving the possibility to define and develop configuration workflows, reduce the administrative effort and improve sustainable operation of the whole computing center. In this presentation we discuss the developed configuration scenarios implemented at GridKa, which we use for host installation, service deployment, change management procedures, service retirement etc. The integration of Puppet with a project management tool like Redmine provides us with the opportunity to track problem issues, organize tasks and automate these workflows. The interaction between Puppet and Redmine results in automatic updates of the issues related to the executed workflow performed by different system components. The extensive configuration workflows require collaboration and interaction between different departments like network, security, production etc. at GridKa. Redmine plugins developed at GridKa and integrated in its administrative environment provide an effective way of collaboration within the GridKa team. We present the structural overview of the software components, their connections, communication protocols and show a few working examples of the workflows and their automation.

  5. Impact of digital radiography on clinical workflow.

    PubMed

    May, G A; Deer, D D; Dackiewicz, D

    2000-05-01

    It is commonly accepted that digital radiography (DR) improves workflow and patient throughput compared with traditional film radiography or computed radiography (CR). DR eliminates the film development step and the time to acquire the image from a CR reader. In addition, the wide dynamic range of DR is such that the technologist can perform the quality-control (QC) step directly at the modality in a few seconds, rather than having to transport the newly acquired image to a centralized QC station for review. Furthermore, additional workflow efficiencies can be achieved with DR by employing tight radiology information system (RIS) integration. In the DR imaging environment, this provides for patient demographic information to be automatically downloaded from the RIS to populate the DR Digital Imaging and Communications in Medicine (DICOM) image header. To learn more about this workflow efficiency improvement, we performed a comparative study of workflow steps under three different conditions: traditional film/screen x-ray, DR without RIS integration (ie, manual entry of patient demographics), and DR with RIS integration. This study was performed at the Cleveland Clinic Foundation (Cleveland, OH) using a newly acquired amorphous silicon flat-panel DR system from Canon Medical Systems (Irvine, CA). Our data show that DR without RIS results in substantial workflow savings over traditional film/screen practice. There is an additional 30% reduction in total examination time using DR with RIS integration.

  6. Integrating text mining into the MGI biocuration workflow.

    PubMed

    Dowell, K G; McAndrews-Hill, M S; Hill, D P; Drabkin, H J; Blake, J A

    2009-01-01

    A major challenge for functional and comparative genomics resource development is the extraction of data from the biomedical literature. Although text mining for biological data is an active research field, few applications have been integrated into production literature curation systems such as those of the model organism databases (MODs). Not only are most available biological natural language (bioNLP) and information retrieval and extraction solutions difficult to adapt to existing MOD curation workflows, but many also have high error rates or are unable to process documents available in those formats preferred by scientific journals.In September 2008, Mouse Genome Informatics (MGI) at The Jackson Laboratory initiated a search for dictionary-based text mining tools that we could integrate into our biocuration workflow. MGI has rigorous document triage and annotation procedures designed to identify appropriate articles about mouse genetics and genome biology. We currently screen approximately 1000 journal articles a month for Gene Ontology terms, gene mapping, gene expression, phenotype data and other key biological information. Although we do not foresee that curation tasks will ever be fully automated, we are eager to implement named entity recognition (NER) tools for gene tagging that can help streamline our curation workflow and simplify gene indexing tasks within the MGI system. Gene indexing is an MGI-specific curation function that involves identifying which mouse genes are being studied in an article, then associating the appropriate gene symbols with the article reference number in the MGI database.Here, we discuss our search process, performance metrics and success criteria, and how we identified a short list of potential text mining tools for further evaluation. We provide an overview of our pilot projects with NCBO's Open Biomedical Annotator and Fraunhofer SCAI's ProMiner. In doing so, we prove the potential for the further incorporation of semi

  7. Building interoperable health information systems using agent and workflow technologies.

    PubMed

    Koufi, Vassiliki; Malamateniou, Flora; Vassilacopoulos, George

    2009-01-01

    Healthcare is an increasingly collaborative enterprise involving many individuals and organizations that coordinate their efforts toward promoting quality and efficient delivery of healthcare through the use of interoperable healthcare information systems. This paper presents a mediator-based approach for achieving data and service interoperability among disparate and geographically dispersed healthcare information systems. The proposed system architecture enables decoupling of the client applications and the server-side implementations while it ensures security in all transactions. It is a distributed system architecture based on the agent-oriented paradigm for communication and life cycle management while interactions are described according to the workflow metaphor. Thus robustness, high flexibility and fault tolerance are provided in an environment as dynamic and heterogeneous as healthcare.

  8. Optimizing CyberShake Seismic Hazard Workflows for Large HPC Resources

    NASA Astrophysics Data System (ADS)

    Callaghan, S.; Maechling, P. J.; Juve, G.; Vahi, K.; Deelman, E.; Jordan, T. H.

    2014-12-01

    The CyberShake computational platform is a well-integrated collection of scientific software and middleware that calculates 3D simulation-based probabilistic seismic hazard curves and hazard maps for the Los Angeles region. Currently each CyberShake model comprises about 235 million synthetic seismograms from about 415,000 rupture variations computed at 286 sites. CyberShake integrates large-scale parallel and high-throughput serial seismological research codes into a processing framework in which early stages produce files used as inputs by later stages. Scientific workflow tools are used to manage the jobs, data, and metadata. The Southern California Earthquake Center (SCEC) developed the CyberShake platform using USC High Performance Computing and Communications systems and open-science NSF resources.CyberShake calculations were migrated to the NSF Track 1 system NCSA Blue Waters when it became operational in 2013, via an interdisciplinary team approach including domain scientists, computer scientists, and middleware developers. Due to the excellent performance of Blue Waters and CyberShake software optimizations, we reduced the makespan (a measure of wallclock time-to-solution) of a CyberShake study from 1467 to 342 hours. We will describe the technical enhancements behind this improvement, including judicious introduction of new GPU software, improved scientific software components, increased workflow-based automation, and Blue Waters-specific workflow optimizations.Our CyberShake performance improvements highlight the benefits of scientific workflow tools. The CyberShake workflow software stack includes the Pegasus Workflow Management System (Pegasus-WMS, which includes Condor DAGMan), HTCondor, and Globus GRAM, with Pegasus-mpi-cluster managing the high-throughput tasks on the HPC resources. The workflow tools handle data management, automatically transferring about 13 TB back to SCEC storage.We will present performance metrics from the most recent Cyber

  9. A Semi-Automated Workflow Solution for Data Set Publication

    SciTech Connect

    Vannan, Suresh; Beaty, Tammy W.; Cook, Robert B.; Wright, Daine M.; Devarakonda, Ranjeet; Wei, Yaxing; Hook, Les A.; McMurry, Benjamin F.

    2016-03-08

    In order to address the need for published data, considerable effort has gone into formalizing the process of data publication. From funding agencies to publishers, data publication has rapidly become a requirement. Digital Object Identifiers (DOI) and data citations have enhanced the integration and availability of data. The challenge facing data publishers now is to deal with the increased number of publishable data products and most importantly the difficulties of publishing diverse data products into an online archive. The Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC), a NASA-funded data center, faces these challenges as it deals with data products created by individual investigators. This paper summarizes the challenges of curating data and provides a summary of a workflow solution that ORNL DAAC researcher and technical staffs have created to deal with publication of the diverse data products. Finally, the workflow solution presented here is generic and can be applied to data from any scientific domain and data located at any data center.

  10. A Semi-Automated Workflow Solution for Data Set Publication

    DOE PAGES

    Vannan, Suresh; Beaty, Tammy W.; Cook, Robert B.; ...

    2016-03-08

    In order to address the need for published data, considerable effort has gone into formalizing the process of data publication. From funding agencies to publishers, data publication has rapidly become a requirement. Digital Object Identifiers (DOI) and data citations have enhanced the integration and availability of data. The challenge facing data publishers now is to deal with the increased number of publishable data products and most importantly the difficulties of publishing diverse data products into an online archive. The Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC), a NASA-funded data center, faces these challenges as it deals withmore » data products created by individual investigators. This paper summarizes the challenges of curating data and provides a summary of a workflow solution that ORNL DAAC researcher and technical staffs have created to deal with publication of the diverse data products. Finally, the workflow solution presented here is generic and can be applied to data from any scientific domain and data located at any data center.« less

  11. Cognitive Learning, Monitoring and Assistance of Industrial Workflows Using Egocentric Sensor Networks.

    PubMed

    Bleser, Gabriele; Damen, Dima; Behera, Ardhendu; Hendeby, Gustaf; Mura, Katharina; Miezal, Markus; Gee, Andrew; Petersen, Nils; Maçães, Gustavo; Domingues, Hugo; Gorecky, Dominic; Almeida, Luis; Mayol-Cuevas, Walterio; Calway, Andrew; Cohn, Anthony G; Hogg, David C; Stricker, Didier

    2015-01-01

    Today, the workflows that are involved in industrial assembly and production activities are becoming increasingly complex. To efficiently and safely perform these workflows is demanding on the workers, in particular when it comes to infrequent or repetitive tasks. This burden on the workers can be eased by introducing smart assistance systems. This article presents a scalable concept and an integrated system demonstrator designed for this purpose. The basic idea is to learn workflows from observing multiple expert operators and then transfer the learnt workflow models to novice users. Being entirely learning-based, the proposed system can be applied to various tasks and domains. The above idea has been realized in a prototype, which combines components pushing the state of the art of hardware and software designed with interoperability in mind. The emphasis of this article is on the algorithms developed for the prototype: 1) fusion of inertial and visual sensor information from an on-body sensor network (BSN) to robustly track the user's pose in magnetically polluted environments; 2) learning-based computer vision algorithms to map the workspace, localize the sensor with respect to the workspace and capture objects, even as they are carried; 3) domain-independent and robust workflow recovery and monitoring algorithms based on spatiotemporal pairwise relations deduced from object and user movement with respect to the scene; and 4) context-sensitive augmented reality (AR) user feedback using a head-mounted display (HMD). A distinguishing key feature of the developed algorithms is that they all operate solely on data from the on-body sensor network and that no external instrumentation is needed. The feasibility of the chosen approach for the complete action-perception-feedback loop is demonstrated on three increasingly complex datasets representing manual industrial tasks. These limited size datasets indicate and highlight the potential of the chosen technology as a

  12. Cognitive Learning, Monitoring and Assistance of Industrial Workflows Using Egocentric Sensor Networks

    PubMed Central

    Bleser, Gabriele; Damen, Dima; Behera, Ardhendu; Hendeby, Gustaf; Mura, Katharina; Miezal, Markus; Gee, Andrew; Petersen, Nils; Maçães, Gustavo; Domingues, Hugo; Gorecky, Dominic; Almeida, Luis; Mayol-Cuevas, Walterio; Calway, Andrew; Cohn, Anthony G.; Hogg, David C.; Stricker, Didier

    2015-01-01

    Today, the workflows that are involved in industrial assembly and production activities are becoming increasingly complex. To efficiently and safely perform these workflows is demanding on the workers, in particular when it comes to infrequent or repetitive tasks. This burden on the workers can be eased by introducing smart assistance systems. This article presents a scalable concept and an integrated system demonstrator designed for this purpose. The basic idea is to learn workflows from observing multiple expert operators and then transfer the learnt workflow models to novice users. Being entirely learning-based, the proposed system can be applied to various tasks and domains. The above idea has been realized in a prototype, which combines components pushing the state of the art of hardware and software designed with interoperability in mind. The emphasis of this article is on the algorithms developed for the prototype: 1) fusion of inertial and visual sensor information from an on-body sensor network (BSN) to robustly track the user’s pose in magnetically polluted environments; 2) learning-based computer vision algorithms to map the workspace, localize the sensor with respect to the workspace and capture objects, even as they are carried; 3) domain-independent and robust workflow recovery and monitoring algorithms based on spatiotemporal pairwise relations deduced from object and user movement with respect to the scene; and 4) context-sensitive augmented reality (AR) user feedback using a head-mounted display (HMD). A distinguishing key feature of the developed algorithms is that they all operate solely on data from the on-body sensor network and that no external instrumentation is needed. The feasibility of the chosen approach for the complete action-perception-feedback loop is demonstrated on three increasingly complex datasets representing manual industrial tasks. These limited size datasets indicate and highlight the potential of the chosen technology as a

  13. Reproducibility of computational workflows is automated using continuous analysis.

    PubMed

    Beaulieu-Jones, Brett K; Greene, Casey S

    2017-03-13

    Replication, validation and extension of experiments are crucial for scientific progress. Computational experiments are scriptable and should be easy to reproduce. However, computational analyses are designed and run in a specific computing environment, which may be difficult or impossible to match using written instructions. We report the development of continuous analysis, a workflow that enables reproducible computational analyses. Continuous analysis combines Docker, a container technology akin to virtual machines, with continuous integration, a software development technique, to automatically rerun a computational analysis whenever updates or improvements are made to source code or data. This enables researchers to reproduce results without contacting the study authors. Continuous analysis allows reviewers, editors or readers to verify reproducibility without manually downloading and rerunning code and can provide an audit trail for analyses of data that cannot be shared.

  14. Building Digital Audio Preservation Infrastructure and Workflows

    ERIC Educational Resources Information Center

    Young, Anjanette; Olivieri, Blynne; Eckler, Karl; Gerontakos, Theodore

    2010-01-01

    In 2009 the University of Washington (UW) Libraries special collections received funding for the digital preservation of its audio indigenous language holdings. The university libraries, where the authors work in various capacities, had begun digitizing image and text collections in 1997. Because of this, at the onset of the project, workflows (a…

  15. Text mining for the biocuration workflow.

    PubMed

    Hirschman, Lynette; Burns, Gully A P C; Krallinger, Martin; Arighi, Cecilia; Cohen, K Bretonnel; Valencia, Alfonso; Wu, Cathy H; Chatr-Aryamontri, Andrew; Dowell, Karen G; Huala, Eva; Lourenço, Anália; Nash, Robert; Veuthey, Anne-Lise; Wiegers, Thomas; Winter, Andrew G

    2012-01-01

    Molecular biology has become heavily dependent on biological knowledge encoded in expert curated biological databases. As the volume of biological literature increases, biocurators need help in keeping up with the literature; (semi-) automated aids for biocuration would seem to be an ideal application for natural language processing and text mining. However, to date, there have been few documented successes for improving biocuration throughput using text mining. Our initial investigations took place for the workshop on 'Text Mining for the BioCuration Workflow' at the third International Biocuration Conference (Berlin, 2009). We interviewed biocurators to obtain workflows from eight biological databases. This initial study revealed high-level commonalities, including (i) selection of documents for curation; (ii) indexing of documents with biologically relevant entities (e.g. genes); and (iii) detailed curation of specific relations (e.g. interactions); however, the detailed workflows also showed many variabilities. Following the workshop, we conducted a survey of biocurators. The survey identified biocurator priorities, including the handling of full text indexed with biological entities and support for the identification and prioritization of documents for curation. It also indicated that two-thirds of the biocuration teams had experimented with text mining and almost half were using text mining at that time. Analysis of our interviews and survey provide a set of requirements for the integration of text mining into the biocuration workflow. These can guide the identification of common needs across curated databases and encourage joint experimentation involving biocurators, text mining developers and the larger biomedical research community.

  16. Scalable Knowledge Discovery Through Grid Workflows

    DTIC Science & Technology

    2009-04-01

    22-26, 2007. 94 16. Gil, Yolanda, Ewa Deelman, Mark Ellisman, Thomas Fahringer, Geoffrey Fox, Dennis Gannon, Carole Goble , Miron Livny, Luc Moreau...P., Goble , C.A.: Workflow discovery: the problem, a case study from e-science and a graph-based solution. In: ICWS, IEEE Computer Society (2006) 312

  17. Conventions and workflows for using Situs

    SciTech Connect

    Wriggers, Willy

    2012-04-01

    Recent developments of the Situs software suite for multi-scale modeling are reviewed. Typical workflows and conventions encountered during processing of biophysical data from electron microscopy, tomography or small-angle X-ray scattering are described. Situs is a modular program package for the multi-scale modeling of atomic resolution structures and low-resolution biophysical data from electron microscopy, tomography or small-angle X-ray scattering. This article provides an overview of recent developments in the Situs package, with an emphasis on workflows and conventions that are important for practical applications. The modular design of the programs facilitates scripting in the bash shell that allows specific programs to be combined in creative ways that go beyond the original intent of the developers. Several scripting-enabled functionalities, such as flexible transformations of data type, the use of symmetry constraints or the creation of two-dimensional projection images, are described. The processing of low-resolution biophysical maps in such workflows follows not only first principles but often relies on implicit conventions. Situs conventions related to map formats, resolution, correlation functions and feature detection are reviewed and summarized. The compatibility of the Situs workflow with CCP4 conventions and programs is discussed.

  18. Workflow Automation: A Collective Case Study

    ERIC Educational Resources Information Center

    Harlan, Jennifer

    2013-01-01

    Knowledge management has proven to be a sustainable competitive advantage for many organizations. Knowledge management systems are abundant, with multiple functionalities. The literature reinforces the use of workflow automation with knowledge management systems to benefit organizations; however, it was not known if process automation yielded…

  19. KDE Bioscience: platform for bioinformatics analysis workflows.

    PubMed

    Lu, Qiang; Hao, Pei; Curcin, Vasa; He, Weizhong; Li, Yuan-Yuan; Luo, Qing-Ming; Guo, Yi-Ke; Li, Yi-Xue

    2006-08-01

    Bioinformatics is a dynamic research area in which a large number of algorithms and programs have been developed rapidly and independently without much consideration so far of the need for standardization. The lack of such common standards combined with unfriendly interfaces make it difficult for biologists to learn how to use these tools and to translate the data formats from one to another. Consequently, the construction of an integrative bioinformatics platform to facilitate biologists' research is an urgent and challenging task. KDE Bioscience is a java-based software platform that collects a variety of bioinformatics tools and provides a workflow mechanism to integrate them. Nucleotide and protein sequences from local flat files, web sites, and relational databases can be entered, annotated, and aligned. Several home-made or 3rd-party viewers are built-in to provide visualization of annotations or alignments. KDE Bioscience can also be deployed in client-server mode where simultaneous execution of the same workflow is supported for multiple users. Moreover, workflows can be published as web pages that can be executed from a web browser. The power of KDE Bioscience comes from the integrated algorithms and data sources. With its generic workflow mechanism other novel calculations and simulations can be integrated to augment the current sequence analysis functions. Because of this flexible and extensible architecture, KDE Bioscience makes an ideal integrated informatics environment for future bioinformatics or systems biology research.

  20. A Workflow to Investigate Exposure and Pharmacokinetic ...

    EPA Pesticide Factsheets

    Background: Adverse outcome pathways (AOPs) link adverse effects in individuals or populations to a molecular initiating event (MIE) that can be quantified using in vitro methods. Practical application of AOPs in chemical-specific risk assessment requires incorporation of knowledge on exposure, along with absorption, distribution, metabolism, and excretion (ADME) properties of chemicals.Objectives: We developed a conceptual workflow to examine exposure and ADME properties in relation to an MIE. The utility of this workflow was evaluated using a previously established AOP, acetylcholinesterase (AChE) inhibition.Methods: Thirty chemicals found to inhibit human AChE in the ToxCast™ assay were examined with respect to their exposure, absorption potential, and ability to cross the blood–brain barrier (BBB). Structures of active chemicals were compared against structures of 1,029 inactive chemicals to detect possible parent compounds that might have active metabolites.Results: Application of the workflow screened 10 “low-priority” chemicals of 30 active chemicals. Fifty-two of the 1,029 inactive chemicals exhibited a similarity threshold of ≥ 75% with their nearest active neighbors. Of these 52 compounds, 30 were excluded due to poor absorption or distribution. The remaining 22 compounds may inhibit AChE in vivo either directly or as a result of metabolic activation.Conclusions: The incorporation of exposure and ADME properties into the conceptual workflow e

  1. AutoDrug: fully automated macromolecular crystallography workflows for fragment-based drug discovery

    SciTech Connect

    Tsai, Yingssu; McPhillips, Scott E.; González, Ana; McPhillips, Timothy M.; Zinn, Daniel; Cohen, Aina E.; Feese, Michael D.; Bushnell, David; Tiefenbrunn, Theresa; Stout, C. David; Ludaescher, Bertram; Hedman, Britt; Hodgson, Keith O.; Soltis, S. Michael

    2013-05-01

    New software has been developed for automating the experimental and data-processing stages of fragment-based drug discovery at a macromolecular crystallography beamline. A new workflow-automation framework orchestrates beamline-control and data-analysis software while organizing results from multiple samples. AutoDrug is software based upon the scientific workflow paradigm that integrates the Stanford Synchrotron Radiation Lightsource macromolecular crystallography beamlines and third-party processing software to automate the crystallography steps of the fragment-based drug-discovery process. AutoDrug screens a cassette of fragment-soaked crystals, selects crystals for data collection based on screening results and user-specified criteria and determines optimal data-collection strategies. It then collects and processes diffraction data, performs molecular replacement using provided models and detects electron density that is likely to arise from bound fragments. All processes are fully automated, i.e. are performed without user interaction or supervision. Samples can be screened in groups corresponding to particular proteins, crystal forms and/or soaking conditions. A single AutoDrug run is only limited by the capacity of the sample-storage dewar at the beamline: currently 288 samples. AutoDrug was developed in conjunction with RestFlow, a new scientific workflow-automation framework. RestFlow simplifies the design of AutoDrug by managing the flow of data and the organization of results and by orchestrating the execution of computational pipeline steps. It also simplifies the execution and interaction of third-party programs and the beamline-control system. Modeling AutoDrug as a scientific workflow enables multiple variants that meet the requirements of different user groups to be developed and supported. A workflow tailored to mimic the crystallography stages comprising the drug-discovery pipeline of CoCrystal Discovery Inc. has been deployed and successfully

  2. SegMine workflows for semantic microarray data analysis in Orange4WS

    PubMed Central

    2011-01-01

    Background In experimental data analysis, bioinformatics researchers increasingly rely on tools that enable the composition and reuse of scientific workflows. The utility of current bioinformatics workflow environments can be significantly increased by offering advanced data mining services as workflow components. Such services can support, for instance, knowledge discovery from diverse distributed data and knowledge sources (such as GO, KEGG, PubMed, and experimental databases). Specifically, cutting-edge data analysis approaches, such as semantic data mining, link discovery, and visualization, have not yet been made available to researchers investigating complex biological datasets. Results We present a new methodology, SegMine, for semantic analysis of microarray data by exploiting general biological knowledge, and a new workflow environment, Orange4WS, with integrated support for web services in which the SegMine methodology is implemented. The SegMine methodology consists of two main steps. First, the semantic subgroup discovery algorithm is used to construct elaborate rules that identify enriched gene sets. Then, a link discovery service is used for the creation and visualization of new biological hypotheses. The utility of SegMine, implemented as a set of workflows in Orange4WS, is demonstrated in two microarray data analysis applications. In the analysis of senescence in human stem cells, the use of SegMine resulted in three novel research hypotheses that could improve understanding of the underlying mechanisms of senescence and identification of candidate marker genes. Conclusions Compared to the available data analysis systems, SegMine offers improved hypothesis generation and data interpretation for bioinformatics in an easy-to-use integrated workflow environment. PMID:22029475

  3. Agent-Based Workflow Systems in Electronic Distance Education.

    ERIC Educational Resources Information Center

    Dlodlo, Nomusa; Dlodlo, Joseph B.; Masiye, Bighton S.

    Current workflow systems largely assume a closed network where all the software is available on a homogenous platform and all participants are locally linked together at the same time. The field of Electronic Distance Education (EDE) on the other hand, requires the next-generation workflow that will integrate workflows from a distributed…

  4. Grid workflow validation using ontology-based tacit knowledge: A case study for quantitative remote sensing applications

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Liu, Longli; Xue, Yong; Dong, Jing; Hu, Yingcui; Hill, Richard; Guang, Jie; Li, Chi

    2017-01-01

    Workflow for remote sensing quantitative retrieval is the ;bridge; between Grid services and Grid-enabled application of remote sensing quantitative retrieval. Workflow averts low-level implementation details of the Grid and hence enables users to focus on higher levels of application. The workflow for remote sensing quantitative retrieval plays an important role in remote sensing Grid and Cloud computing services, which can support the modelling, construction and implementation of large-scale complicated applications of remote sensing science. The validation of workflow is important in order to support the large-scale sophisticated scientific computation processes with enhanced performance and to minimize potential waste of time and resources. To research the semantic correctness of user-defined workflows, in this paper, we propose a workflow validation method based on tacit knowledge research in the remote sensing domain. We first discuss the remote sensing model and metadata. Through detailed analysis, we then discuss the method of extracting the domain tacit knowledge and expressing the knowledge with ontology. Additionally, we construct the domain ontology with Protégé. Through our experimental study, we verify the validity of this method in two ways, namely data source consistency error validation and parameters matching error validation.

  5. Scientific rigor through videogames.

    PubMed

    Treuille, Adrien; Das, Rhiju

    2014-11-01

    Hypothesis-driven experimentation - the scientific method - can be subverted by fraud, irreproducibility, and lack of rigorous predictive tests. A robust solution to these problems may be the 'massive open laboratory' model, recently embodied in the internet-scale videogame EteRNA. Deploying similar platforms throughout biology could enforce the scientific method more broadly.

  6. Inferring Clinical Workflow Efficiency via Electronic Medical Record Utilization.

    PubMed

    Chen, You; Xie, Wei; Gunter, Carl A; Liebovitz, David; Mehrotra, Sanjay; Zhang, He; Malin, Bradley

    Complexity in clinical workflows can lead to inefficiency in making diagnoses, ineffectiveness of treatment plans and uninformed management of healthcare organizations (HCOs). Traditional strategies to manage workflow complexity are based on measuring the gaps between workflows defined by HCO administrators and the actual processes followed by staff in the clinic. However, existing methods tend to neglect the influences of EMR systems on the utilization of workflows, which could be leveraged to optimize workflows facilitated through the EMR. In this paper, we introduce a framework to infer clinical workflows through the utilization of an EMR and show how such workflows roughly partition into four types according to their efficiency. Our framework infers workflows at several levels of granularity through data mining technologies. We study four months of EMR event logs from a large medical center, including 16,569 inpatient stays, and illustrate that over approximately 95% of workflows are efficient and that 80% of patients are on such workflows. At the same time, we show that the remaining 5% of workflows may be inefficient due to a variety of factors, such as complex patients.

  7. Inferring Clinical Workflow Efficiency via Electronic Medical Record Utilization

    PubMed Central

    Chen, You; Xie, Wei; Gunter, Carl A; Liebovitz, David; Mehrotra, Sanjay; Zhang, He; Malin, Bradley

    2015-01-01

    Complexity in clinical workflows can lead to inefficiency in making diagnoses, ineffectiveness of treatment plans and uninformed management of healthcare organizations (HCOs). Traditional strategies to manage workflow complexity are based on measuring the gaps between workflows defined by HCO administrators and the actual processes followed by staff in the clinic. However, existing methods tend to neglect the influences of EMR systems on the utilization of workflows, which could be leveraged to optimize workflows facilitated through the EMR. In this paper, we introduce a framework to infer clinical workflows through the utilization of an EMR and show how such workflows roughly partition into four types according to their efficiency. Our framework infers workflows at several levels of granularity through data mining technologies. We study four months of EMR event logs from a large medical center, including 16,569 inpatient stays, and illustrate that over approximately 95% of workflows are efficient and that 80% of patients are on such workflows. At the same time, we show that the remaining 5% of workflows may be inefficient due to a variety of factors, such as complex patients. PMID:26958173

  8. Talkoot Portals: Discover, Tag, Share, and Reuse Collaborative Science Workflows (Invited)

    NASA Astrophysics Data System (ADS)

    Wilson, B. D.; Ramachandran, R.; Lynnes, C.

    2009-12-01

    A small but growing number of scientists are beginning to harness Web 2.0 technologies, such as wikis, blogs, and social tagging, as a transformative way of doing science. These technologies provide researchers easy mechanisms to critique, suggest and share ideas, data and algorithms. At the same time, large suites of algorithms for science analysis are being made available as remotely-invokable Web Services, which can be chained together to create analysis workflows. This provides the research community an unprecedented opportunity to collaborate by sharing their workflows with one another, reproducing and analyzing research results, and leveraging colleagues’ expertise to expedite the process of scientific discovery. However, wikis and similar technologies are limited to text, static images and hyperlinks, providing little support for collaborative data analysis. A team of information technology and Earth science researchers from multiple institutions have come together to improve community collaboration in science analysis by developing a customizable “software appliance” to build collaborative portals for Earth Science services and analysis workflows. The critical requirement is that researchers (not just information technologists) be able to build collaborative sites around service workflows within a few hours. We envision online communities coming together, much like Finnish “talkoot” (a barn raising), to build a shared research space. Talkoot extends a freely available, open source content management framework with a series of modules specific to Earth Science for registering, creating, managing, discovering, tagging and sharing Earth Science web services and workflows for science data processing, analysis and visualization. Users will be able to author a “science story” in shareable web notebooks, including plots or animations, backed up by an executable workflow that directly reproduces the science analysis. New services and workflows of

  9. geoKepler Workflow Module for Computationally Scalable and Reproducible Geoprocessing and Modeling

    NASA Astrophysics Data System (ADS)

    Cowart, C.; Block, J.; Crawl, D.; Graham, J.; Gupta, A.; Nguyen, M.; de Callafon, R.; Smarr, L.; Altintas, I.

    2015-12-01

    The NSF-funded WIFIRE project has developed an open-source, online geospatial workflow platform for unifying geoprocessing tools and models for for fire and other geospatially dependent modeling applications. It is a product of WIFIRE's objective to build an end-to-end cyberinfrastructure for real-time and data-driven simulation, prediction and visualization of wildfire behavior. geoKepler includes a set of reusable GIS components, or actors, for the Kepler Scientific Workflow System (https://kepler-project.org). Actors exist for reading and writing GIS data in formats such as Shapefile, GeoJSON, KML, and using OGC web services such as WFS. The actors also allow for calling geoprocessing tools in other packages such as GDAL and GRASS. Kepler integrates functions from multiple platforms and file formats into one framework, thus enabling optimal GIS interoperability, model coupling, and scalability. Products of the GIS actors can be fed directly to models such as FARSITE and WRF. Kepler's ability to schedule and scale processes using Hadoop and Spark also makes geoprocessing ultimately extensible and computationally scalable. The reusable workflows in geoKepler can be made to run automatically when alerted by real-time environmental conditions. Here, we show breakthroughs in the speed of creating complex data for hazard assessments with this platform. We also demonstrate geoKepler workflows that use Data Assimilation to ingest real-time weather data into wildfire simulations, and for data mining techniques to gain insight into environmental conditions affecting fire behavior. Existing machine learning tools and libraries such as R and MLlib are being leveraged for this purpose in Kepler, as well as Kepler's Distributed Data Parallel (DDP) capability to provide a framework for scalable processing. geoKepler workflows can be executed via an iPython notebook as a part of a Jupyter hub at UC San Diego for sharing and reporting of the scientific analysis and results from

  10. Clinic Workflow Simulations using Secondary EHR Data

    PubMed Central

    Hribar, Michelle R.; Biermann, David; Read-Brown, Sarah; Reznick, Leah; Lombardi, Lorinna; Parikh, Mansi; Chamberlain, Winston; Yackel, Thomas R.; Chiang, Michael F.

    2016-01-01

    Clinicians today face increased patient loads, decreased reimbursements and potential negative productivity impacts of using electronic health records (EHR), but have little guidance on how to improve clinic efficiency. Discrete event simulation models are powerful tools for evaluating clinical workflow and improving efficiency, particularly when they are built from secondary EHR timing data. The purpose of this study is to demonstrate that these simulation models can be used for resource allocation decision making as well as for evaluating novel scheduling strategies in outpatient ophthalmology clinics. Key findings from this study are that: 1) secondary use of EHR timestamp data in simulation models represents clinic workflow, 2) simulations provide insight into the best allocation of resources in a clinic, 3) simulations provide critical information for schedule creation and decision making by clinic managers, and 4) simulation models built from EHR data are potentially generalizable. PMID:28269861

  11. NeuroManager: a workflow analysis based simulation management engine for computational neuroscience

    PubMed Central

    Stockton, David B.; Santamaria, Fidel

    2015-01-01

    We developed NeuroManager, an object-oriented simulation management software engine for computational neuroscience. NeuroManager automates the workflow of simulation job submissions when using heterogeneous computational resources, simulators, and simulation tasks. The object-oriented approach (1) provides flexibility to adapt to a variety of neuroscience simulators, (2) simplifies the use of heterogeneous computational resources, from desktops to super computer clusters, and (3) improves tracking of simulator/simulation evolution. We implemented NeuroManager in MATLAB, a widely used engineering and scientific language, for its signal and image processing tools, prevalence in electrophysiology analysis, and increasing use in college Biology education. To design and develop NeuroManager we analyzed the workflow of simulation submission for a variety of simulators, operating systems, and computational resources, including the handling of input parameters, data, models, results, and analyses. This resulted in 22 stages of simulation submission workflow. The software incorporates progress notification, automatic organization, labeling, and time-stamping of data and results, and integrated access to MATLAB's analysis and visualization tools. NeuroManager provides users with the tools to automate daily tasks, and assists principal investigators in tracking and recreating the evolution of research projects performed by multiple people. Overall, NeuroManager provides the infrastructure needed to improve workflow, manage multiple simultaneous simulations, and maintain provenance of the potentially large amounts of data produced during the course of a research project. PMID:26528175

  12. NeuroManager: a workflow analysis based simulation management engine for computational neuroscience.

    PubMed

    Stockton, David B; Santamaria, Fidel

    2015-01-01

    We developed NeuroManager, an object-oriented simulation management software engine for computational neuroscience. NeuroManager automates the workflow of simulation job submissions when using heterogeneous computational resources, simulators, and simulation tasks. The object-oriented approach (1) provides flexibility to adapt to a variety of neuroscience simulators, (2) simplifies the use of heterogeneous computational resources, from desktops to super computer clusters, and (3) improves tracking of simulator/simulation evolution. We implemented NeuroManager in MATLAB, a widely used engineering and scientific language, for its signal and image processing tools, prevalence in electrophysiology analysis, and increasing use in college Biology education. To design and develop NeuroManager we analyzed the workflow of simulation submission for a variety of simulators, operating systems, and computational resources, including the handling of input parameters, data, models, results, and analyses. This resulted in 22 stages of simulation submission workflow. The software incorporates progress notification, automatic organization, labeling, and time-stamping of data and results, and integrated access to MATLAB's analysis and visualization tools. NeuroManager provides users with the tools to automate daily tasks, and assists principal investigators in tracking and recreating the evolution of research projects performed by multiple people. Overall, NeuroManager provides the infrastructure needed to improve workflow, manage multiple simultaneous simulations, and maintain provenance of the potentially large amounts of data produced during the course of a research project.

  13. Quantifying nursing workflow in medication administration.

    PubMed

    Keohane, Carol A; Bane, Anne D; Featherstone, Erica; Hayes, Judy; Woolf, Seth; Hurley, Ann; Bates, David W; Gandhi, Tejal K; Poon, Eric G

    2008-01-01

    New medication administration systems are showing promise in improving patient safety at the point of care, but adoption of these systems requires significant changes in nursing workflow. To prepare for these changes, the authors report on a time-motion study that measured the proportion of time that nurses spend on various patient care activities, focusing on medication administration-related activities. Implications of their findings are discussed.

  14. Computing Workflows for Biologists: A Roadmap

    PubMed Central

    Shade, Ashley; Teal, Tracy K.

    2015-01-01

    Extremely large datasets have become routine in biology. However, performing a computational analysis of a large dataset can be overwhelming, especially for novices. Here, we present a step-by-step guide to computing workflows with the biologist end-user in mind. Starting from a foundation of sound data management practices, we make specific recommendations on how to approach and perform computational analyses of large datasets, with a view to enabling sound, reproducible biological research. PMID:26600012

  15. IDD Archival Hardware Architecture and Workflow

    SciTech Connect

    Mendonsa, D; Nekoogar, F; Martz, H

    2008-10-09

    This document describes the functionality of every component in the DHS/IDD archival and storage hardware system shown in Fig. 1. The document describes steps by step process of image data being received at LLNL then being processed and made available to authorized personnel and collaborators. Throughout this document references will be made to one of two figures, Fig. 1 describing the elements of the architecture and the Fig. 2 describing the workflow and how the project utilizes the available hardware.

  16. From chart tracking to workflow management.

    PubMed Central

    Srinivasan, P.; Vignes, G.; Venable, C.; Hazelwood, A.; Cade, T.

    1994-01-01

    The current interest in system-wide integration appears to be based on the assumption that an organization, by digitizing information and accepting a common standard for the exchange of such information, will improve the accessibility of this information and automatically experience benefits resulting from its more productive use. We do not dispute this reasoning, but assert that an organization's capacity for effective change is proportional to the understanding of the current structure among its personnel. Our workflow manager is based on the use of a Parameterized Petri Net (PPN) model which can be configured to represent an arbitrarily detailed picture of an organization. The PPN model can be animated to observe the model organization in action, and the results of the animation analyzed. This simulation is a dynamic ongoing process which changes with the system and allows members of the organization to pose "what if" questions as a means of exploring opportunities for change. We present, the "workflow management system" as the natural successor to the tracking program, incorporating modeling, scheduling, reactive planning, performance evaluation, and simulation. This workflow management system is more than adequate for meeting the needs of a paper chart tracking system, and, as the patient record is computerized, will serve as a planning and evaluation tool in converting the paper-based health information system into a computer-based system. PMID:7950051

  17. Schedule-Aware Workflow Management Systems

    NASA Astrophysics Data System (ADS)

    Mans, Ronny S.; Russell, Nick C.; van der Aalst, Wil M. P.; Moleman, Arnold J.; Bakker, Piet J. M.

    Contemporary workflow management systems offer work-items to users through specific work-lists. Users select the work-items they will perform without having a specific schedule in mind. However, in many environments work needs to be scheduled and performed at particular times. For example, in hospitals many work-items are linked to appointments, e.g., a doctor cannot perform surgery without reserving an operating theater and making sure that the patient is present. One of the problems when applying workflow technology in such domains is the lack of calendar-based scheduling support. In this paper, we present an approach that supports the seamless integration of unscheduled (flow) and scheduled (schedule) tasks. Using CPN Tools we have developed a specification and simulation model for schedule-aware workflow management systems. Based on this a system has been realized that uses YAWL, Microsoft Exchange Server 2007, Outlook, and a dedicated scheduling service. The approach is illustrated using a real-life case study at the AMC hospital in the Netherlands. In addition, we elaborate on the experiences obtained when developing and implementing a system of this scale using formal techniques.

  18. Conventions and workflows for using Situs

    PubMed Central

    Wriggers, Willy

    2012-01-01

    Situs is a modular program package for the multi-scale modeling of atomic resolution structures and low-resolution biophysical data from electron microscopy, tomography or small-angle X-ray scattering. This article provides an overview of recent developments in the Situs package, with an emphasis on workflows and conventions that are important for practical applications. The modular design of the programs facilitates scripting in the bash shell that allows specific programs to be combined in creative ways that go beyond the original intent of the developers. Several scripting-enabled functionalities, such as flexible transformations of data type, the use of symmetry constraints or the creation of two-dimensional projection images, are described. The processing of low-resolution biophysical maps in such workflows follows not only first principles but often relies on implicit conventions. Situs conventions related to map formats, resolution, correlation functions and feature detection are reviewed and summarized. The compatibility of the Situs workflow with CCP4 conventions and programs is discussed. PMID:22505255

  19. An efficient field and laboratory workflow for plant phylotranscriptomic projects1

    PubMed Central

    Yang, Ya; Moore, Michael J.; Brockington, Samuel F.; Timoneda, Alfonso; Feng, Tao; Marx, Hannah E.; Walker, Joseph F.; Smith, Stephen A.

    2017-01-01

    Premise of the study: We describe a field and laboratory workflow developed for plant phylotranscriptomic projects that involves cryogenic tissue collection in the field, RNA extraction and quality control, and library preparation. We also make recommendations for sample curation. Methods and Results: A total of 216 frozen tissue samples of Caryophyllales and other angiosperm taxa were collected from the field or botanical gardens. RNA was extracted, stranded mRNA libraries were prepared, and libraries were sequenced on Illumina HiSeq platforms. These included difficult mucilaginous tissues such as those of Cactaceae and Droseraceae. Conclusions: Our workflow is not only cost effective (ca. $270 per sample, as of August 2016, from tissue to reads) and time efficient (less than 50 h for 10–12 samples including all laboratory work and sample curation), but also has proven robust for extraction of difficult samples such as tissues containing high levels of secondary compounds. PMID:28337391

  20. Workflow-Oriented Cyberinfrastructure for Sensor Data Analytics

    NASA Astrophysics Data System (ADS)

    Orcutt, J. A.; Rajasekar, A.; Moore, R. W.; Vernon, F.

    2015-12-01

    Sensor streams comprise an increasingly large part of Earth Science data. Analytics based on sensor data require an easy way to perform operations such as acquisition, conversion to physical units, metadata linking, sensor fusion, analysis and visualization on distributed sensor streams. Furthermore, embedding real-time sensor data into scientific workflows is of growing interest. We have implemented a scalable networked architecture that can be used to dynamically access packets of data in a stream from multiple sensors, and perform synthesis and analysis across a distributed network. Our system is based on the integrated Rule Oriented Data System (irods.org), which accesses sensor data from the Antelope Real Time Data System (brtt.com), and provides virtualized access to collections of data streams. We integrate real-time data streaming from different sources, collected for different purposes, on different time and spatial scales, and sensed by different methods. iRODS, noted for its policy-oriented data management, brings to sensor processing features and facilities such as single sign-on, third party access control lists ( ACLs), location transparency, logical resource naming, and server-side modeling capabilities while reducing the burden on sensor network operators. Rich integrated metadata support also makes it straightforward to discover data streams of interest and maintain data provenance. The workflow support in iRODS readily integrates sensor processing into any analytical pipeline. The system is developed as part of the NSF-funded Datanet Federation Consortium (datafed.org). APIs for selecting, opening, reaping and closing sensor streams are provided, along with other helper functions to associate metadata and convert sensor packets into NetCDF and JSON formats. Near real-time sensor data including seismic sensors, environmental sensors, LIDAR and video streams are available through this interface. A system for archiving sensor data and metadata in Net

  1. Tavaxy: Integrating Taverna and Galaxy workflows with cloud computing support

    PubMed Central

    2012-01-01

    Background Over the past decade the workflow system paradigm has evolved as an efficient and user-friendly approach for developing complex bioinformatics applications. Two popular workflow systems that have gained acceptance by the bioinformatics community are Taverna and Galaxy. Each system has a large user-base and supports an ever-growing repository of application workflows. However, workflows developed for one system cannot be imported and executed easily on the other. The lack of interoperability is due to differences in the models of computation, workflow languages, and architectures of both systems. This lack of interoperability limits sharing of workflows between the user communities and leads to duplication of development efforts. Results In this paper, we present Tavaxy, a stand-alone system for creating and executing workflows based on using an extensible set of re-usable workflow patterns. Tavaxy offers a set of new features that simplify and enhance the development of sequence analysis applications: It allows the integration of existing Taverna and Galaxy workflows in a single environment, and supports the use of cloud computing capabilities. The integration of existing Taverna and Galaxy workflows is supported seamlessly at both run-time and design-time levels, based on the concepts of hierarchical workflows and workflow patterns. The use of cloud computing in Tavaxy is flexible, where the users can either instantiate the whole system on the cloud, or delegate the execution of certain sub-workflows to the cloud infrastructure. Conclusions Tavaxy reduces the workflow development cycle by introducing the use of workflow patterns to simplify workflow creation. It enables the re-use and integration of existing (sub-) workflows from Taverna and Galaxy, and allows the creation of hybrid workflows. Its additional features exploit recent advances in high performance cloud computing to cope with the increasing data size and complexity of analysis. The system

  2. Engineering robust intelligent robots

    NASA Astrophysics Data System (ADS)

    Hall, E. L.; Ali, S. M. Alhaj; Ghaffari, M.; Liao, X.; Cao, M.

    2010-01-01

    The purpose of this paper is to discuss the challenge of engineering robust intelligent robots. Robust intelligent robots may be considered as ones that not only work in one environment but rather in all types of situations and conditions. Our past work has described sensors for intelligent robots that permit adaptation to changes in the environment. We have also described the combination of these sensors with a "creative controller" that permits adaptive critic, neural network learning, and a dynamic database that permits task selection and criteria adjustment. However, the emphasis of this paper is on engineering solutions which are designed for robust operations and worst case situations such as day night cameras or rain and snow solutions. This ideal model may be compared to various approaches that have been implemented on "production vehicles and equipment" using Ethernet, CAN Bus and JAUS architectures and to modern, embedded, mobile computing architectures. Many prototype intelligent robots have been developed and demonstrated in terms of scientific feasibility but few have reached the stage of a robust engineering solution. Continual innovation and improvement are still required. The significance of this comparison is that it provides some insights that may be useful in designing future robots for various manufacturing, medical, and defense applications where robust and reliable performance is essential.

  3. Tiered approach into practice: scientific validation for chromatography-based assays in early development - a recommendation from the European Bioanalysis Forum.

    PubMed

    Timmerman, Philip; White, Stephen; Dougall, Stuart Mc; Kall, Morten A; Smeraglia, John; Fjording, Marianne Scheel; Knutsson, Magnus

    2015-09-10

    The principles of tiered approach have been part of the bioanalytical toolbox for some years. Nevertheless, an in spite of many valuable discussions in industry, they remain difficult to apply in a harmonized way for a broad array of studies in early drug development where these alternative approaches to regulated validation would make sense. The European Bioanalysis Forum has identified the need to proposes some practical workflows for five categories of studies for chromatography based assays where scientific validation will allow additional freedom while safeguarding scientific rigor and robust documentation: quantification of metabolites in plasma in relation to ICH M3(R2), urine analysis, tissue homogenate analysis, and preclinical and clinical studies in early stages of drug development. The recommendation would introduce a common language and harmonized best practice for these study categories and can help to refocus towards optimized scientific and resource investments for bioanalysis in early drug development.

  4. Toward Exascale Seismic Imaging: Taming Workflow and I/O Issues

    NASA Astrophysics Data System (ADS)

    Lefebvre, M. P.; Bozdag, E.; Lei, W.; Rusmanugroho, H.; Smith, J. A.; Tromp, J.; Yuan, Y.

    2013-12-01

    Providing a better understanding of the physics and chemistry of Earth's interior through numerical simulations has always required tremendous computational resources. Post-petascale supercomputers are now available to solve complex scientific problems that were thought unreachable a few decades ago. They also bring a cohort of concerns on how to obtain optimum performance. Several issues are currently being investigated by the HPC community. To name a few, we can list energy consumption, fault resilience, scalability of the current parallel paradigms, large workflow management, I/O performance and feature extraction with large datasets. For this presentation, we focus on the last three issues. In the context of seismic imaging, in particular for simulations based on adjoint methods, workflows are well defined. They consist of a few collective steps (e.g., mesh generation or model updates) and of a large number of independent steps (e.g., forward and adjoint simulations of each seismic event, pre- and postprocessing of seismic traces). The greater goal is to reduce the time to solution, that is, obtaining a more precise representation of the subsurface as fast as possible. This brings us to consider both the workflow in its entirety and the parts composing it. The usual approach is to speedup the purely computational parts by code tuning in order to reach higher FLOPS and better memory usage. This still remains an important concern, but larger scale experiments show that the imaging workflow suffers from a severe I/O bottleneck. This limitation occurs both for purely computational data and seismic time series. The latter are dealt with by the introduction of a new Adaptable Seismic Data Format (ASDF). In both cases, a parallel I/O library, ORNL's ADIOS, is used to drastically lessen the weight of disk access. Moreover, parallel visualization tools, such as VisIt, are able to take advantage of the metadata included in our ADIOS outputs to extract features and

  5. JMS: An Open Source Workflow Management System and Web-Based Cluster Front-End for High Performance Computing.

    PubMed

    Brown, David K; Penkler, David L; Musyoka, Thommas M; Bishop, Özlem Tastan

    2015-01-01

    Complex computational pipelines are becoming a staple of modern scientific research. Often these pipelines are resource intensive and require days of computing time. In such cases, it makes sense to run them over high performance computing (HPC) clusters where they can take advantage of the aggregated resources of many powerful computers. In addition to this, researchers often want to integrate their workflows into their own web servers. In these cases, software is needed to manage the submission of jobs from the web interface to the cluster and then return the results once the job has finished executing. We have developed the Job Management System (JMS), a workflow management system and web interface for high performance computing (HPC). JMS provides users with a user-friendly web interface for creating complex workflows with multiple stages. It integrates this workflow functionality with the resource manager, a tool that is used to control and manage batch jobs on HPC clusters. As such, JMS combines workflow management functionality with cluster administration functionality. In addition, JMS provides developer tools including a code editor and the ability to version tools and scripts. JMS can be used by researchers from any field to build and run complex computational pipelines and provides functionality to include these pipelines in external interfaces. JMS is currently being used to house a number of bioinformatics pipelines at the Research Unit in Bioinformatics (RUBi) at Rhodes University. JMS is an open-source project and is freely available at https://github.com/RUBi-ZA/JMS.

  6. JMS: An Open Source Workflow Management System and Web-Based Cluster Front-End for High Performance Computing

    PubMed Central

    Brown, David K.; Penkler, David L.; Musyoka, Thommas M.; Bishop, Özlem Tastan

    2015-01-01

    Complex computational pipelines are becoming a staple of modern scientific research. Often these pipelines are resource intensive and require days of computing time. In such cases, it makes sense to run them over high performance computing (HPC) clusters where they can take advantage of the aggregated resources of many powerful computers. In addition to this, researchers often want to integrate their workflows into their own web servers. In these cases, software is needed to manage the submission of jobs from the web interface to the cluster and then return the results once the job has finished executing. We have developed the Job Management System (JMS), a workflow management system and web interface for high performance computing (HPC). JMS provides users with a user-friendly web interface for creating complex workflows with multiple stages. It integrates this workflow functionality with the resource manager, a tool that is used to control and manage batch jobs on HPC clusters. As such, JMS combines workflow management functionality with cluster administration functionality. In addition, JMS provides developer tools including a code editor and the ability to version tools and scripts. JMS can be used by researchers from any field to build and run complex computational pipelines and provides functionality to include these pipelines in external interfaces. JMS is currently being used to house a number of bioinformatics pipelines at the Research Unit in Bioinformatics (RUBi) at Rhodes University. JMS is an open-source project and is freely available at https://github.com/RUBi-ZA/JMS. PMID:26280450

  7. Automated workflow for large-scale selected reaction monitoring experiments.

    PubMed

    Malmström, Lars; Malmström, Johan; Selevsek, Nathalie; Rosenberger, George; Aebersold, Ruedi

    2012-03-02

    Targeted proteomics allows researchers to study proteins of interest without being drowned in data from other, less interesting proteins or from redundant or uninformative peptides. While the technique is mostly used for smaller, focused studies, there are several reasons to conduct larger targeted experiments. Automated, highly robust software becomes more important in such experiments. In addition, larger experiments are carried out over longer periods of time, requiring strategies to handle the sometimes large shift in retention time often observed. We present a complete proof-of-principle software stack that automates most aspects of selected reaction monitoring workflows, a targeted proteomics technology. The software allows experiments to be easily designed and carried out. The steps automated are the generation of assays, generation of mass spectrometry driver files and methods files, and the import and analysis of the data. All data are normalized to a common retention time scale, the data are then scored using a novel score model, and the error is subsequently estimated. We also show that selected reaction monitoring can be used for label-free quantification. All data generated are stored in a relational database, and the growing resource further facilitates the design of new experiments. We apply the technology to a large-scale experiment studying how Streptococcus pyogenes remodels its proteome under stimulation of human plasma.

  8. Workflow management for a cosmology collaboratory

    SciTech Connect

    Loken, Stewart C.; McParland, Charles

    2001-07-20

    The Nearby Supernova Factory Project will provide a unique opportunity to bring together simulation and observation to address crucial problems in particle and nuclear physics. Its goal is to significantly enhance our understanding of the nuclear processes in supernovae and to improve our ability to use both Type Ia and Type II supernovae as reference light sources (standard candles) in precision measurements of cosmological parameters. Over the past several years, astronomers and astrophysicists have been conducting in-depth sky searches with the goal of identifying supernovae in their earliest evolutionary stages and, during the 4 to 8 weeks of their most ''explosive'' activity, measure their changing magnitude and spectra. The search program currently under development at LBNL is an earth-based observation program utilizing observational instruments at Haleakala and Mauna Kea, Hawaii and Mt. Palomar, California. This new program provides a demanding testbed for the integration of computational, data management and collaboratory technologies. A critical element of this effort is the use of emerging workflow management tools to permit collaborating scientists to manage data processing and storage and to integrate advanced supernova simulation into the real-time control of the experiments. This paper describes the workflow management framework for the project, discusses security and resource allocation requirements and reviews emerging tools to support this important aspect of collaborative work.

  9. Workflow-Based Software Development Environment

    NASA Technical Reports Server (NTRS)

    Izygon, Michel E.

    2013-01-01

    The Software Developer's Assistant (SDA) helps software teams more efficiently and accurately conduct or execute software processes associated with NASA mission-critical software. SDA is a process enactment platform that guides software teams through project-specific standards, processes, and procedures. Software projects are decomposed into all of their required process steps or tasks, and each task is assigned to project personnel. SDA orchestrates the performance of work required to complete all process tasks in the correct sequence. The software then notifies team members when they may begin work on their assigned tasks and provides the tools, instructions, reference materials, and supportive artifacts that allow users to compliantly perform the work. A combination of technology components captures and enacts any software process use to support the software lifecycle. It creates an adaptive workflow environment that can be modified as needed. SDA achieves software process automation through a Business Process Management (BPM) approach to managing the software lifecycle for mission-critical projects. It contains five main parts: TieFlow (workflow engine), Business Rules (rules to alter process flow), Common Repository (storage for project artifacts, versions, history, schedules, etc.), SOA (interface to allow internal, GFE, or COTS tools integration), and the Web Portal Interface (collaborative web environment

  10. Modeling Complex Workflow in Molecular Diagnostics

    PubMed Central

    Gomah, Mohamed E.; Turley, James P.; Lu, Huimin; Jones, Dan

    2010-01-01

    One of the hurdles to achieving personalized medicine has been implementing the laboratory processes for performing and reporting complex molecular tests. The rapidly changing test rosters and complex analysis platforms in molecular diagnostics have meant that many clinical laboratories still use labor-intensive manual processing and testing without the level of automation seen in high-volume chemistry and hematology testing. We provide here a discussion of design requirements and the results of implementation of a suite of lab management tools that incorporate the many elements required for use of molecular diagnostics in personalized medicine, particularly in cancer. These applications provide the functionality required for sample accessioning and tracking, material generation, and testing that are particular to the evolving needs of individualized molecular diagnostics. On implementation, the applications described here resulted in improvements in the turn-around time for reporting of more complex molecular test sets, and significant changes in the workflow. Therefore, careful mapping of workflow can permit design of software applications that simplify even the complex demands of specialized molecular testing. By incorporating design features for order review, software tools can permit a more personalized approach to sample handling and test selection without compromising efficiency. PMID:20007844

  11. Delta: Data Reduction for Integrated Application Workflows.

    SciTech Connect

    Lofstead, Gerald Fredrick; Jean-Baptiste, Gregory; Oldfield, Ron A.

    2015-06-01

    Integrated Application Workflows (IAWs) run multiple simulation workflow components con- currently on an HPC resource connecting these components using compute area resources and compensating for any performance or data processing rate mismatches. These IAWs require high frequency and high volume data transfers between compute nodes and staging area nodes during the lifetime of a large parallel computation. The available network band- width between the two areas may not be enough to efficiently support the data movement. As the processing power available to compute resources increases, the requirements for this data transfer will become more difficult to satisfy and perhaps will not be satisfiable at all since network capabilities are not expanding at a comparable rate. Furthermore, energy consumption in HPC environments is expected to grow by an order of magnitude as exas- cale systems become a reality. The energy cost of moving large amounts of data frequently will contribute to this issue. It is necessary to reduce the volume of data without reducing the quality of data when it is being processed and analyzed. Delta resolves the issue by addressing the lifetime data transfer operations. Delta removes subsequent identical copies of already transmitted data during transfers and restores those copies once the data has reached the destination. Delta is able to identify duplicated information and determine the most space efficient way to represent it. Initial tests show about 50% reduction in data movement while maintaining the same data quality and transmission frequency.

  12. The Prosthetic Workflow in the Digital Era

    PubMed Central

    De Franco, Michele; Bosetti, Giovanni

    2016-01-01

    The purpose of this retrospective study was to clinically evaluate the benefits of adopting a full digital workflow for the implementation of fixed prosthetic restorations on natural teeth. To evaluate the effectiveness of these protocols, treatment plans were drawn up for 15 patients requiring rehabilitation of one or more natural teeth. All the dental impressions were taken using a Planmeca PlanScan® (Planmeca OY, Helsinki, Finland) intraoral scanner, which provided digital casts on which the restorations were digitally designed using Exocad® (Exocad GmbH, Germany, 2010) software and fabricated by CAM processing on 5-axis milling machines. A total of 28 single crowns were made from monolithic zirconia, 12 vestibular veneers from lithium disilicate, and 4 three-quarter vestibular veneers with palatal extension. While the restorations were applied, the authors could clinically appreciate the excellent match between the digitally produced prosthetic design and the cemented prostheses, which never required any occlusal or proximal adjustment. Out of all the restorations applied, only one exhibited premature failure and was replaced with no other complications or need for further scanning. From the clinical experience gained using a full digital workflow, the authors can confirm that these work processes enable the fabrication of clinically reliable restorations, with all the benefits that digital methods bring to the dentist, the dental laboratory, and the patient. PMID:27829834

  13. Wireless technology improves nursing workflow and communications.

    PubMed

    Breslin, Susan; Greskovich, William; Turisco, Fran

    2004-01-01

    Inpatient healthcare delivery involves complex processes that require interdisciplinary teamwork and frequent communication among physicians, nurses, unit secretaries, and ancillary staff. Often, these interactions are not at a nursing unit, or near a phone. In an effort to address the inefficiencies of these workflow processes and communications, St. Agnes HealthCare, Baltimore, MD, installed a new hands-free communications system that uses a wireless network, voice recognition, and a small wearable badge. Developed by Vocera, the communications system permits one-button access to others on the system or connects to outside phones through PBX integration. While many agree that today's technology has the potential to positively impact nursing care delivery, St. Agnes HealthCare and Vocera, with assistance from First Consulting Group, decided to conduct a comprehensive benefits study in December 2003 to quantify the impact of this communications system on workflow and communications. The results identified a number of significant findings that demonstrate its value from a quantitative and qualitative standpoint. The following article describes this study and its findings.

  14. Biowep: a workflow enactment portal for bioinformatics applications

    PubMed Central

    Romano, Paolo; Bartocci, Ezio; Bertolini, Guglielmo; De Paoli, Flavio; Marra, Domenico; Mauri, Giancarlo; Merelli, Emanuela; Milanesi, Luciano

    2007-01-01

    Background The huge amount of biological information, its distribution over the Internet and the heterogeneity of available software tools makes the adoption of new data integration and analysis network tools a necessity in bioinformatics. ICT standards and tools, like Web Services and Workflow Management Systems (WMS), can support the creation and deployment of such systems. Many Web Services are already available and some WMS have been proposed. They assume that researchers know which bioinformatics resources can be reached through a programmatic interface and that they are skilled in programming and building workflows. Therefore, they are not viable to the majority of unskilled researchers. A portal enabling these to take profit from new technologies is still missing. Results We designed biowep, a web based client application that allows for the selection and execution of a set of predefined workflows. The system is available on-line. Biowep architecture includes a Workflow Manager, a User Interface and a Workflow Executor. The task of the Workflow Manager is the creation and annotation of workflows. These can be created by using either the Taverna Workbench or BioWMS. Enactment of workflows is carried out by FreeFluo for Taverna workflows and by BioAgent/Hermes, a mobile agent-based middleware, for BioWMS ones. Main workflows' processing steps are annotated on the basis of their input and output, elaboration type and application domain by using a classification of bioinformatics data and tasks. The interface supports users authentication and profiling. Workflows can be selected on the basis of users' profiles and can be searched through their annotations. Results can be saved. Conclusion We developed a web system that support the selection and execution of predefined workflows, thus simplifying access for all researchers. The implementation of Web Services allowing specialized software to interact with an exhaustive set of biomedical databases and analysis

  15. The View from a Few Hundred Feet : A New Transparent and Integrated Workflow for UAV-collected Data

    NASA Astrophysics Data System (ADS)

    Peterson, F. S.; Barbieri, L.; Wyngaard, J.

    2015-12-01

    Unmanned Aerial Vehicles (UAVs) allow scientists and civilians to monitor earth and atmospheric conditions in remote locations. To keep up with the rapid evolution of UAV technology, data workflows must also be flexible, integrated, and introspective. Here, we present our data workflow for a project to assess the feasibility of detecting threshold levels of methane, carbon-dioxide, and other aerosols by mounting consumer-grade gas analysis sensors on UAV's. Particularly, we highlight our use of Project Jupyter, a set of open-source software tools and documentation designed for developing "collaborative narratives" around scientific workflows. By embracing the GitHub-backed, multi-language systems available in Project Jupyter, we enable interaction and exploratory computation while simultaneously embracing distributed version control. Additionally, the transparency of this method builds trust with civilians and decision-makers and leverages collaboration and communication to resolve problems. The goal of this presentation is to provide a generic data workflow for scientific inquiries involving UAVs and to invite the participation of the AGU community in its improvement and curation.

  16. Modelling and analysis of workflow for lean supply chains

    NASA Astrophysics Data System (ADS)

    Ma, Jinping; Wang, Kanliang; Xu, Lida

    2011-11-01

    Cross-organisational workflow systems are a component of enterprise information systems which support collaborative business process among organisations in supply chain. Currently, the majority of workflow systems is developed in perspectives of information modelling without considering actual requirements of supply chain management. In this article, we focus on the modelling and analysis of the cross-organisational workflow systems in the context of lean supply chain (LSC) using Petri nets. First, the article describes the assumed conditions of cross-organisation workflow net according to the idea of LSC and then discusses the standardisation of collaborating business process between organisations in the context of LSC. Second, the concept of labelled time Petri nets (LTPNs) is defined through combining labelled Petri nets with time Petri nets, and the concept of labelled time workflow nets (LTWNs) is also defined based on LTPNs. Cross-organisational labelled time workflow nets (CLTWNs) is then defined based on LTWNs. Third, the article proposes the notion of OR-silent CLTWNS and a verifying approach to the soundness of LTWNs and CLTWNs. Finally, this article illustrates how to use the proposed method by a simple example. The purpose of this research is to establish a formal method of modelling and analysis of workflow systems for LSC. This study initiates a new perspective of research on cross-organisational workflow management and promotes operation management of LSC in real world settings.

  17. Automated Finite State Workflow for Distributed Data Production

    NASA Astrophysics Data System (ADS)

    Hajdu, L.; Didenko, L.; Lauret, J.; Amol, J.; Betts, W.; Jang, H. J.; Noh, S. Y.

    2016-10-01

    In statistically hungry science domains, data deluges can be both a blessing and a curse. They allow the narrowing of statistical errors from known measurements, and open the door to new scientific opportunities as research programs mature. They are also a testament to the efficiency of experimental operations. However, growing data samples may need to be processed with little or no opportunity for huge increases in computing capacity. A standard strategy has thus been to share resources across multiple experiments at a given facility. Another has been to use middleware that “glues” resources across the world so they are able to locally run the experimental software stack (either natively or virtually). We describe a framework STAR has successfully used to reconstruct a ~400 TB dataset consisting of over 100,000 jobs submitted to a remote site in Korea from STAR's Tier 0 facility at the Brookhaven National Laboratory. The framework automates the full workflow, taking raw data files from tape and writing Physics-ready output back to tape without operator or remote site intervention. Through hardening we have demonstrated 97(±2)% efficiency, over a period of 7 months of operation. The high efficiency is attributed to finite state checking with retries to encourage resilience in the system over capricious and fallible infrastructure.

  18. Accelerating Science Impact through Big Data Workflow Management and Supercomputing

    NASA Astrophysics Data System (ADS)

    De, K.; Klimentov, A.; Maeno, T.; Mashinistov, R.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Ryabinkin, E.; Wenaus, T.

    2016-02-01

    The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. ATLAS, one of the largest collaborations ever assembled in the the history of science, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. To manage the workflow for all data processing on hundreds of data centers the PanDA (Production and Distributed Analysis)Workload Management System is used. An ambitious program to expand PanDA to all available computing resources, including opportunistic use of commercial and academic clouds and Leadership Computing Facilities (LCF), is realizing within BigPanDA and megaPanDA projects. These projects are now exploring how PanDA might be used for managing computing jobs that run on supercomputers including OLCF's Titan and NRC-KI HPC2. The main idea is to reuse, as much as possible, existing components of the PanDA system that are already deployed on the LHC Grid for analysis of physics data. The next generation of PanDA will allow many data-intensive sciences employing a variety of computing platforms to benefit from ATLAS experience and proven tools in highly scalable processing.

  19. Enabling Efficient Climate Science Workflows in High Performance Computing Environments

    NASA Astrophysics Data System (ADS)

    Krishnan, H.; Byna, S.; Wehner, M. F.; Gu, J.; O'Brien, T. A.; Loring, B.; Stone, D. A.; Collins, W.; Prabhat, M.; Liu, Y.; Johnson, J. N.; Paciorek, C. J.

    2015-12-01

    A typical climate science workflow often involves a combination of acquisition of data, modeling, simulation, analysis, visualization, publishing, and storage of results. Each of these tasks provide a myriad of challenges when running on a high performance computing environment such as Hopper or Edison at NERSC. Hurdles such as data transfer and management, job scheduling, parallel analysis routines, and publication require a lot of forethought and planning to ensure that proper quality control mechanisms are in place. These steps require effectively utilizing a combination of well tested and newly developed functionality to move data, perform analysis, apply statistical routines, and finally, serve results and tools to the greater scientific community. As part of the CAlibrated and Systematic Characterization, Attribution and Detection of Extremes (CASCADE) project we highlight a stack of tools our team utilizes and has developed to ensure that large scale simulation and analysis work are commonplace and provide operations that assist in everything from generation/procurement of data (HTAR/Globus) to automating publication of results to portals like the Earth Systems Grid Federation (ESGF), all while executing everything in between in a scalable environment in a task parallel way (MPI). We highlight the use and benefit of these tools by showing several climate science analysis use cases they have been applied to.

  20. Genomic variant annotation workflow for clinical applications

    PubMed Central

    Thurnherr, Thomas; Singer, Franziska; Stekhoven, Daniel J.; Beerenwinkel, Niko

    2016-01-01

    Annotation and interpretation of DNA aberrations identified through next-generation sequencing is becoming an increasingly important task. Even more so in the context of data analysis pipelines for medical applications, where genomic aberrations are associated with phenotypic and clinical features. Here we describe a workflow to identify potential gene targets in aberrated genes or pathways and their corresponding drugs. To this end, we provide the R/Bioconductor package rDGIdb, an R wrapper to query the drug-gene interaction database (DGIdb). DGIdb accumulates drug-gene interaction data from 15 different resources and allows filtering on different levels. The rDGIdb package makes these resources and tools available to R users. Moreover, rDGIdb queries can be automated through incorporation of the rDGIdb package into NGS sequencing pipelines. PMID:27990260

  1. Swabs to genomes: a comprehensive workflow

    PubMed Central

    Jospin, Guillaume; Darling, Aaron E.; Coil, David A.

    2015-01-01

    The sequencing, assembly, and basic analysis of microbial genomes, once a painstaking and expensive undertaking, has become much easier for research labs with access to standard molecular biology and computational tools. However, there are a confusing variety of options available for DNA library preparation and sequencing, and inexperience with bioinformatics can pose a significant barrier to entry for many who may be interested in microbial genomics. The objective of the present study was to design, test, troubleshoot, and publish a simple, comprehensive workflow from the collection of an environmental sample (a swab) to a published microbial genome; empowering even a lab or classroom with limited resources and bioinformatics experience to perform it. PMID:26020012

  2. Software workflow for the automatic tagging of medieval manuscript images (SWATI)

    NASA Astrophysics Data System (ADS)

    Chandna, Swati; Tonne, Danah; Jejkal, Thomas; Stotzka, Rainer; Krause, Celia; Vanscheidt, Philipp; Busch, Hannah; Prabhune, Ajinkya

    2015-01-01

    Digital methods, tools and algorithms are gaining in importance for the analysis of digitized manuscript collections in the arts and humanities. One example is the BMBF-funded research project "eCodicology" which aims to design, evaluate and optimize algorithms for the automatic identification of macro- and micro-structural layout features of medieval manuscripts. The main goal of this research project is to provide better insights into high-dimensional datasets of medieval manuscripts for humanities scholars. The heterogeneous nature and size of the humanities data and the need to create a database of automatically extracted reproducible features for better statistical and visual analysis are the main challenges in designing a workflow for the arts and humanities. This paper presents a concept of a workflow for the automatic tagging of medieval manuscripts. As a starting point, the workflow uses medieval manuscripts digitized within the scope of the project Virtual Scriptorium St. Matthias". Firstly, these digitized manuscripts are ingested into a data repository. Secondly, specific algorithms are adapted or designed for the identification of macro- and micro-structural layout elements like page size, writing space, number of lines etc. And lastly, a statistical analysis and scientific evaluation of the manuscripts groups are performed. The workflow is designed generically to process large amounts of data automatically with any desired algorithm for feature extraction. As a result, a database of objectified and reproducible features is created which helps to analyze and visualize hidden relationships of around 170,000 pages. The workflow shows the potential of automatic image analysis by enabling the processing of a single page in less than a minute. Furthermore, the accuracy tests of the workflow on a small set of manuscripts with respect to features like page size and text areas show that automatic and manual analysis are comparable. The usage of a computer

  3. SYRMEP Tomo Project: a graphical user interface for customizing CT reconstruction workflows.

    PubMed

    Brun, Francesco; Massimi, Lorenzo; Fratini, Michela; Dreossi, Diego; Billé, Fulvio; Accardo, Agostino; Pugliese, Roberto; Cedola, Alessia

    2017-01-01

    When considering the acquisition of experimental synchrotron radiation (SR) X-ray CT data, the reconstruction workflow cannot be limited to the essential computational steps of flat fielding and filtered back projection (FBP). More refined image processing is often required, usually to compensate artifacts and enhance the quality of the reconstructed images. In principle, it would be desirable to optimize the reconstruction workflow at the facility during the experiment (beamtime). However, several practical factors affect the image reconstruction part of the experiment and users are likely to conclude the beamtime with sub-optimal reconstructed images. Through an example of application, this article presents SYRMEP Tomo Project (STP), an open-source software tool conceived to let users design custom CT reconstruction workflows. STP has been designed for post-beamtime (off-line use) and for a new reconstruction of past archived data at user's home institution where simple computing resources are available. Releases of the software can be downloaded at the Elettra Scientific Computing group GitHub repository https://github.com/ElettraSciComp/STP-Gui.

  4. Traversing the many paths of workflow research: developing a conceptual framework of workflow terminology through a systematic literature review

    PubMed Central

    Novak, Laurie L; Johnson, Kevin B; Lorenzi, Nancy M

    2010-01-01

    The objective of this review was to describe methods used to study and model workflow. The authors included studies set in a variety of industries using qualitative, quantitative and mixed methods. Of the 6221 matching abstracts, 127 articles were included in the final corpus. The authors collected data from each article on researcher perspective, study type, methods type, specific methods, approaches to evaluating quality of results, definition of workflow and dependent variables. Ethnographic observation and interviews were the most frequently used methods. Long study durations revealed the large time commitment required for descriptive workflow research. The most frequently discussed technique for evaluating quality of study results was triangulation. The definition of the term “workflow” and choice of methods for studying workflow varied widely across research areas and researcher perspectives. The authors developed a conceptual framework of workflow-related terminology for use in future research and present this model for use by other researchers. PMID:20442143

  5. Next-Generation Sequencing Workflow for NSCLC Critical Samples Using a Targeted Sequencing Approach by Ion Torrent PGM™ Platform

    PubMed Central

    Vanni, Irene; Coco, Simona; Truini, Anna; Rusmini, Marta; Dal Bello, Maria Giovanna; Alama, Angela; Banelli, Barbara; Mora, Marco; Rijavec, Erika; Barletta, Giulia; Genova, Carlo; Biello, Federica; Maggioni, Claudia; Grossi, Francesco

    2015-01-01

    Next-generation sequencing (NGS) is a cost-effective technology capable of screening several genes simultaneously; however, its application in a clinical context requires an established workflow to acquire reliable sequencing results. Here, we report an optimized NGS workflow analyzing 22 lung cancer-related genes to sequence critical samples such as DNA from formalin-fixed paraffin-embedded (FFPE) blocks and circulating free DNA (cfDNA). Snap frozen and matched FFPE gDNA from 12 non-small cell lung cancer (NSCLC) patients, whose gDNA fragmentation status was previously evaluated using a multiplex PCR-based quality control, were successfully sequenced with Ion Torrent PGM™. The robust bioinformatic pipeline allowed us to correctly call both Single Nucleotide Variants (SNVs) and indels with a detection limit of 5%, achieving 100% specificity and 96% sensitivity. This workflow was also validated in 13 FFPE NSCLC biopsies. Furthermore, a specific protocol for low input gDNA capable of producing good sequencing data with high coverage, high uniformity, and a low error rate was also optimized. In conclusion, we demonstrate the feasibility of obtaining gDNA from FFPE samples suitable for NGS by performing appropriate quality controls. The optimized workflow, capable of screening low input gDNA, highlights NGS as a potential tool in the detection, disease monitoring, and treatment of NSCLC. PMID:26633390

  6. Workflow Lexicons in Healthcare: Validation of the SWIM Lexicon.

    PubMed

    Meenan, Chris; Erickson, Bradley; Knight, Nancy; Fossett, Jewel; Olsen, Elizabeth; Mohod, Prerna; Chen, Joseph; Langer, Steve G

    2017-01-03

    For clinical departments seeking to successfully navigate the challenges of modern health reform, obtaining access to operational and clinical data to establish and sustain goals for improving quality is essential. More broadly, health delivery organizations are also seeking to understand performance across multiple facilities and often across multiple electronic medical record (EMR) systems. Interpreting operational data across multiple vendor systems can be challenging, as various manufacturers may describe different departmental workflow steps in different ways and sometimes even within a single vendor's installed customer base. In 2012, The Society for Imaging Informatics in Medicine (SIIM) recognized the need for better quality and performance data standards and formed SIIM's Workflow Initiative for Medicine (SWIM), an initiative designed to consistently describe workflow steps in radiology departments as well as defining operational quality metrics. The SWIM lexicon was published as a working model to describe operational workflow steps and quality measures. We measured the prevalence of the SWIM lexicon workflow steps in both academic and community radiology environments using real-world patient observations and correlated that information with automatically captured workflow steps from our clinical information systems. Our goal was to measure frequency of occurrence of workflow steps identified by the SWIM lexicon in a real-world clinical setting, as well as to correlate how accurately departmental information systems captured patient flow through our health facility.

  7. The BioDICE Taverna plugin for clustering and visualization of biological data: a workflow for molecular compounds exploration

    PubMed Central

    2014-01-01

    Background In many experimental pipelines, clustering of multidimensional biological datasets is used to detect hidden structures in unlabelled input data. Taverna is a popular workflow management system that is used to design and execute scientific workflows and aid in silico experimentation. The availability of fast unsupervised methods for clustering and visualization in the Taverna platform is important to support a data-driven scientific discovery in complex and explorative bioinformatics applications. Results This work presents a Taverna plugin, the Biological Data Interactive Clustering Explorer (BioDICE), that performs clustering of high-dimensional biological data and provides a nonlinear, topology preserving projection for the visualization of the input data and their similarities. The core algorithm in the BioDICE plugin is Fast Learning Self Organizing Map (FLSOM), which is an improved variant of the Self Organizing Map (SOM) algorithm. The plugin generates an interactive 2D map that allows the visual exploration of multidimensional data and the identification of groups of similar objects. The effectiveness of the plugin is demonstrated on a case study related to chemical compounds. Conclusions The number and variety of available tools and its extensibility have made Taverna a popular choice for the development of scientific data workflows. This work presents a novel plugin, BioDICE, which adds a data-driven knowledge discovery component to Taverna. BioDICE provides an effective and powerful clustering tool, which can be adopted for the explorative analysis of biological datasets.

  8. Resource Tracking and Workflow System - part of the CORE system

    SciTech Connect

    2009-10-02

    Resource management and workflow capability applied to engineering design situational awareness, providing the ability to make assignments and track progress through the construction and maintenance life cycle of an engineered structure.

  9. Optimization of tomographic reconstruction workflows on geographically distributed resources

    DOE PAGES

    Bicer, Tekin; Gursoy, Doga; Kettimuthu, Rajkumar; ...

    2016-01-01

    New technological advancements in synchrotron light sources enable data acquisitions at unprecedented levels. This emergent trend affects not only the size of the generated data but also the need for larger computational resources. Although beamline scientists and users have access to local computational resources, these are typically limited and can result in extended execution times. Applications that are based on iterative processing as in tomographic reconstruction methods require high-performance compute clusters for timely analysis of data. Here, time-sensitive analysis and processing of Advanced Photon Source data on geographically distributed resources are focused on. Two main challenges are considered: (i) modelingmore » of the performance of tomographic reconstruction workflows and (ii) transparent execution of these workflows on distributed resources. For the former, three main stages are considered: (i) data transfer between storage and computational resources, (i) wait/queue time of reconstruction jobs at compute resources, and (iii) computation of reconstruction tasks. These performance models allow evaluation and estimation of the execution time of any given iterative tomographic reconstruction workflow that runs on geographically distributed resources. For the latter challenge, a workflow management system is built, which can automate the execution of workflows and minimize the user interaction with the underlying infrastructure. The system utilizes Globus to perform secure and efficient data transfer operations. The proposed models and the workflow management system are evaluated by using three high-performance computing and two storage resources, all of which are geographically distributed. Workflows were created with different computational requirements using two compute-intensive tomographic reconstruction algorithms. Experimental evaluation shows that the proposed models and system can be used for selecting the optimum resources, which in

  10. Worklist handling in workflow-enabled radiological application systems

    NASA Astrophysics Data System (ADS)

    Wendler, Thomas; Meetz, Kirsten; Schmidt, Joachim; von Berg, Jens

    2000-05-01

    For the next generation integrated information systems for health care applications, more emphasis has to be put on systems which, by design, support the reduction of cost, the increase inefficiency and the improvement of the quality of services. A substantial contribution to this will be the modeling. optimization, automation and enactment of processes in health care institutions. One of the perceived key success factors for the system integration of processes will be the application of workflow management, with workflow management systems as key technology components. In this paper we address workflow management in radiology. We focus on an important aspect of workflow management, the generation and handling of worklists, which provide workflow participants automatically with work items that reflect tasks to be performed. The display of worklists and the functions associated with work items are the visible part for the end-users of an information system using a workflow management approach. Appropriate worklist design and implementation will influence user friendliness of a system and will largely influence work efficiency. Technically, in current imaging department information system environments (modality-PACS-RIS installations), a data-driven approach has been taken: Worklist -- if present at all -- are generated from filtered views on application data bases. In a future workflow-based approach, worklists will be generated by autonomous workflow services based on explicit process models and organizational models. This process-oriented approach will provide us with an integral view of entire health care processes or sub- processes. The paper describes the basic mechanisms of this approach and summarizes its benefits.

  11. A scheduling framework applied to digital publishing workflows

    NASA Astrophysics Data System (ADS)

    Lozano, Wilson; Rivera, Wilson

    2006-02-01

    This paper presents the advances in developing a dynamic scheduling technique suitable for automating digital publishing workflows. Traditionally scheduling in digital publishing has been limited to timing criteria. The proposed scheduling strategy takes into account contingency and priority fluctuations. The new scheduling algorithm, referred to as QB-MUF, gives high priority to jobs with low probability of failing according to artifact recognition and workflow modeling critera. The experimental results show the suitability and efficiency of the scheduling strategy.

  12. Optimization of tomographic reconstruction workflows on geographically distributed resources

    PubMed Central

    Bicer, Tekin; Gürsoy, Doǧa; Kettimuthu, Rajkumar; De Carlo, Francesco; Foster, Ian T.

    2016-01-01

    New technological advancements in synchrotron light sources enable data acquisitions at unprecedented levels. This emergent trend affects not only the size of the generated data but also the need for larger computational resources. Although beamline scientists and users have access to local computational resources, these are typically limited and can result in extended execution times. Applications that are based on iterative processing as in tomographic reconstruction methods require high-performance compute clusters for timely analysis of data. Here, time-sensitive analysis and processing of Advanced Photon Source data on geographically distributed resources are focused on. Two main challenges are considered: (i) modeling of the performance of tomographic reconstruction workflows and (ii) transparent execution of these workflows on distributed resources. For the former, three main stages are considered: (i) data transfer between storage and computational resources, (i) wait/queue time of reconstruction jobs at compute resources, and (iii) computation of reconstruction tasks. These performance models allow evaluation and estimation of the execution time of any given iterative tomographic reconstruction workflow that runs on geographically distributed resources. For the latter challenge, a workflow management system is built, which can automate the execution of workflows and minimize the user interaction with the underlying infrastructure. The system utilizes Globus to perform secure and efficient data transfer operations. The proposed models and the workflow management system are evaluated by using three high-performance computing and two storage resources, all of which are geographically distributed. Workflows were created with different computational requirements using two compute-intensive tomographic reconstruction algorithms. Experimental evaluation shows that the proposed models and system can be used for selecting the optimum resources, which in turn can

  13. Taverna: a tool for building and running workflows of services

    PubMed Central

    Hull, Duncan; Wolstencroft, Katy; Stevens, Robert; Goble, Carole; Pocock, Mathew R.; Li, Peter; Oinn, Tom

    2006-01-01

    Taverna is an application that eases the use and integration of the growing number of molecular biology tools and databases available on the web, especially web services. It allows bioinformaticians to construct workflows or pipelines of services to perform a range of different analyses, such as sequence analysis and genome annotation. These high-level workflows can integrate many different resources into a single analysis. Taverna is available freely under the terms of the GNU Lesser General Public License (LGPL) from . PMID:16845108

  14. Web API for biology with a workflow navigation system.

    PubMed

    Kwon, Yeondae; Shigemoto, Yasumasa; Kuwana, Yoshikazu; Sugawara, Hideaki

    2009-07-01

    DNA Data Bank of Japan (DDBJ) provides Web-based systems for biological analysis, called Web APIs for biology (WABI). So far, we have developed over 20 SOAP services and several workflows that consist of a series of method invocations. In this article, we present newly developed services of WABI, that is, REST-based Web services, additional workflows and a workflow navigation system. Each Web service and workflow can be used as a complete service or a building block for programmers to construct more complex information processing systems. The workflow navigation system aims to help non-programming biologists perform analysis tasks by providing next applicable services on Web browsers according to the output of a previously selected service. With this function, users can apply multiple services consecutively only by following links without any programming or manual copy-and-paste operations on Web browsers. The listed services are determined automatically by the system referring to the dictionaries of service categories, the input/output types of services and HTML tags. WABI and the workflow navigation system are freely accessible at http://www.xml.nig.ac.jp/index.html and http://cyclamen.ddbj.nig.ac.jp/, respectively.

  15. CyberShake: Running Seismic Hazard Workflows on Distributed HPC Resources

    NASA Astrophysics Data System (ADS)

    Callaghan, S.; Maechling, P. J.; Graves, R. W.; Gill, D.; Olsen, K. B.; Milner, K. R.; Yu, J.; Jordan, T. H.

    2013-12-01

    As part of its program of earthquake system science research, the Southern California Earthquake Center (SCEC) has developed a simulation platform, CyberShake, to perform physics-based probabilistic seismic hazard analysis (PSHA) using 3D deterministic wave propagation simulations. CyberShake performs PSHA by simulating a tensor-valued wavefield of Strain Green Tensors, and then using seismic reciprocity to calculate synthetic seismograms for about 415,000 events per site of interest. These seismograms are processed to compute ground motion intensity measures, which are then combined with probabilities from an earthquake rupture forecast to produce a site-specific hazard curve. Seismic hazard curves for hundreds of sites in a region can be used to calculate a seismic hazard map, representing the seismic hazard for a region. We present a recently completed PHSA study in which we calculated four CyberShake seismic hazard maps for the Southern California area to compare how CyberShake hazard results are affected by different SGT computational codes (AWP-ODC and AWP-RWG) and different community velocity models (Community Velocity Model - SCEC (CVM-S4) v11.11 and Community Velocity Model - Harvard (CVM-H) v11.9). We present our approach to running workflow applications on distributed HPC resources, including systems without support for remote job submission. We show how our approach extends the benefits of scientific workflows, such as job and data management, to large-scale applications on Track 1 and Leadership class open-science HPC resources. We used our distributed workflow approach to perform CyberShake Study 13.4 on two new NSF open-science HPC computing resources, Blue Waters and Stampede, executing over 470 million tasks to calculate physics-based hazard curves for 286 locations in the Southern California region. For each location, we calculated seismic hazard curves with two different community velocity models and two different SGT codes, resulting in over

  16. Reproducible Large-Scale Neuroimaging Studies with the OpenMOLE Workflow Management System.

    PubMed

    Passerat-Palmbach, Jonathan; Reuillon, Romain; Leclaire, Mathieu; Makropoulos, Antonios; Robinson, Emma C; Parisot, Sarah; Rueckert, Daniel

    2017-01-01

    OpenMOLE is a scientific workflow engine with a strong emphasis on workload distribution. Workflows are designed using a high level Domain Specific Language (DSL) built on top of Scala. It exposes natural parallelism constructs to easily delegate the workload resulting from a workflow to a wide range of distributed computing environments. OpenMOLE hides the complexity of designing complex experiments thanks to its DSL. Users can embed their own applications and scale their pipelines from a small prototype running on their desktop computer to a large-scale study harnessing distributed computing infrastructures, simply by changing a single line in the pipeline definition. The construction of the pipeline itself is decoupled from the execution context. The high-level DSL abstracts the underlying execution environment, contrary to classic shell-script based pipelines. These two aspects allow pipelines to be shared and studies to be replicated across different computing environments. Workflows can be run as traditional batch pipelines or coupled with OpenMOLE's advanced exploration methods in order to study the behavior of an application, or perform automatic parameter tuning. In this work, we briefly present the strong assets of OpenMOLE and detail recent improvements targeting re-executability of workflows across various Linux platforms. We have tightly coupled OpenMOLE with CARE, a standalone containerization solution that allows re-executing on a Linux host any application that has been packaged on another Linux host previously. The solution is evaluated against a Python-based pipeline involving packages such as scikit-learn as well as binary dependencies. All were packaged and re-executed successfully on various HPC environments, with identical numerical results (here prediction scores) obtained on each environment. Our results show that the pair formed by OpenMOLE and CARE is a reliable solution to generate reproducible results and re-executable pipelines. A

  17. Reproducible Large-Scale Neuroimaging Studies with the OpenMOLE Workflow Management System

    PubMed Central

    Passerat-Palmbach, Jonathan; Reuillon, Romain; Leclaire, Mathieu; Makropoulos, Antonios; Robinson, Emma C.; Parisot, Sarah; Rueckert, Daniel

    2017-01-01

    OpenMOLE is a scientific workflow engine with a strong emphasis on workload distribution. Workflows are designed using a high level Domain Specific Language (DSL) built on top of Scala. It exposes natural parallelism constructs to easily delegate the workload resulting from a workflow to a wide range of distributed computing environments. OpenMOLE hides the complexity of designing complex experiments thanks to its DSL. Users can embed their own applications and scale their pipelines from a small prototype running on their desktop computer to a large-scale study harnessing distributed computing infrastructures, simply by changing a single line in the pipeline definition. The construction of the pipeline itself is decoupled from the execution context. The high-level DSL abstracts the underlying execution environment, contrary to classic shell-script based pipelines. These two aspects allow pipelines to be shared and studies to be replicated across different computing environments. Workflows can be run as traditional batch pipelines or coupled with OpenMOLE's advanced exploration methods in order to study the behavior of an application, or perform automatic parameter tuning. In this work, we briefly present the strong assets of OpenMOLE and detail recent improvements targeting re-executability of workflows across various Linux platforms. We have tightly coupled OpenMOLE with CARE, a standalone containerization solution that allows re-executing on a Linux host any application that has been packaged on another Linux host previously. The solution is evaluated against a Python-based pipeline involving packages such as scikit-learn as well as binary dependencies. All were packaged and re-executed successfully on various HPC environments, with identical numerical results (here prediction scores) obtained on each environment. Our results show that the pair formed by OpenMOLE and CARE is a reliable solution to generate reproducible results and re-executable pipelines. A

  18. Implementation of Cyberinfrastructure and Data Management Workflow for a Large-Scale Sensor Network

    NASA Astrophysics Data System (ADS)

    Jones, A. S.; Horsburgh, J. S.

    2014-12-01

    Monitoring with in situ environmental sensors and other forms of field-based observation presents many challenges for data management, particularly for large-scale networks consisting of multiple sites, sensors, and personnel. The availability and utility of these data in addressing scientific questions relies on effective cyberinfrastructure that facilitates transformation of raw sensor data into functional data products. It also depends on the ability of researchers to share and access the data in useable formats. In addition to addressing the challenges presented by the quantity of data, monitoring networks need practices to ensure high data quality, including procedures and tools for post processing. Data quality is further enhanced if practitioners are able to track equipment, deployments, calibrations, and other events related to site maintenance and associate these details with observational data. In this presentation we will describe the overall workflow that we have developed for research groups and sites conducting long term monitoring using in situ sensors. Features of the workflow include: software tools to automate the transfer of data from field sites to databases, a Python-based program for data quality control post-processing, a web-based application for online discovery and visualization of data, and a data model and web interface for managing physical infrastructure. By automating the data management workflow, the time from collection to analysis is reduced and sharing and publication is facilitated. The incorporation of metadata standards and descriptions and the use of open-source tools enhances the sustainability and reusability of the data. We will describe the workflow and tools that we have developed in the context of the iUTAH (innovative Urban Transitions and Aridregion Hydrosustainability) monitoring network. The iUTAH network consists of aquatic and climate sensors deployed in three watersheds to monitor Gradients Along Mountain to Urban

  19. An Approach to Evaluate Scientist Support in Abstract Workflows and Provenance Traces

    SciTech Connect

    Salayandia, Leonardo; Gates, Ann Q.; Pinheiro da Silva, Paulo

    2012-11-02

    Abstract workflows are useful to bridge the gap between scientists and technologists towards using computer systems to carry out scientific processes. Provenance traces provide evidence required to validate results and support their reuse. Assuming both technologies are based on formal semantics, a knowledge-based system that consistently merges both technologies is useful for scientists that produce data to document their data collecting and transformation processes; it is also useful for scientists that reuse data to assess scientific processes and resulting datasets produced by others. While evaluation of each technology is necessary for a given application, this work discusses their combined evaluation. The claim is that both technologies should complement each other and align consistently to a scientist’s perspective in order to be effective for science. Evaluation criteria are proposed based on lessons learned and exemplified for discussion.

  20. The Taverna workflow suite: designing and executing workflows of Web Services on the desktop, web or in the cloud.

    PubMed

    Wolstencroft, Katherine; Haines, Robert; Fellows, Donal; Williams, Alan; Withers, David; Owen, Stuart; Soiland-Reyes, Stian; Dunlop, Ian; Nenadic, Aleksandra; Fisher, Paul; Bhagat, Jiten; Belhajjame, Khalid; Bacall, Finn; Hardisty, Alex; Nieva de la Hidalga, Abraham; Balcazar Vargas, Maria P; Sufi, Shoaib; Goble, Carole

    2013-07-01

    The Taverna workflow tool suite (http://www.taverna.org.uk) is designed to combine distributed Web Services and/or local tools into complex analysis pipelines. These pipelines can be executed on local desktop machines or through larger infrastructure (such as supercomputers, Grids or cloud environments), using the Taverna Server. In bioinformatics, Taverna workflows are typically used in the areas of high-throughput omics analyses (for example, proteomics or transcriptomics), or for evidence gathering methods involving text mining or data mining. Through Taverna, scientists have access to several thousand different tools and resources that are freely available from a large range of life science institutions. Once constructed, the workflows are reusable, executable bioinformatics protocols that can be shared, reused and repurposed. A repository of public workflows is available at http://www.myexperiment.org. This article provides an update to the Taverna tool suite, highlighting new features and developments in the workbench and the Taverna Server.

  1. Scientific Data Management Center for Enabling Technologies

    SciTech Connect

    Vouk, Mladen A.

    2013-01-15

    Managing scientific data has been identified by the scientific community as one of the most important emerging needs because of the sheer volume and increasing complexity of data being collected. Effectively generating, managing, and analyzing this information requires a comprehensive, end-to-end approach to data management that encompasses all of the stages from the initial data acquisition to the final analysis of the data. Fortunately, the data management problems encountered by most scientific domains are common enough to be addressed through shared technology solutions. Based on community input, we have identified three significant requirements. First, more efficient access to storage systems is needed. In particular, parallel file system and I/O system improvements are needed to write and read large volumes of data without slowing a simulation, analysis, or visualization engine. These processes are complicated by the fact that scientific data are structured differently for specific application domains, and are stored in specialized file formats. Second, scientists require technologies to facilitate better understanding of their data, in particular the ability to effectively perform complex data analysis and searches over extremely large data sets. Specialized feature discovery and statistical analysis techniques are needed before the data can be understood or visualized. Furthermore, interactive analysis requires techniques for efficiently selecting subsets of the data. Finally, generating the data, collecting and storing the results, keeping track of data provenance, data post-processing, and analysis of results is a tedious, fragmented process. Tools for automation of this process in a robust, tractable, and recoverable fashion are required to enhance scientific exploration. The SDM center was established under the SciDAC program to address these issues. The SciDAC-1 Scientific Data Management (SDM) Center succeeded in bringing an initial set of advanced

  2. The CESM Workflow Re-Engineering Project

    NASA Astrophysics Data System (ADS)

    Strand, G.

    2015-12-01

    The Community Earth System Model (CESM) Workflow Re-Engineering Project is a collaborative project between the CESM Software Engineering Group (CSEG) and the NCAR Computation and Information Systems Lab (CISL) Application Scalability and Performance (ASAP) Group to revamp how CESM saves its output. The CMIP3 and particularly CMIP5 experiences in submitting CESM data to those intercomparison projects revealed that the output format of the CESM is not well-suited for the data requirements common to model intercomparison projects. CESM, for efficiency reasons, creates output files containing all fields for each model time sampling, but MIPs require individual files for each field comprising all model time samples. This transposition of model output can be very time-consuming; depending on the volume of data written by the specific simulation, the time to re-orient the data can be comparable to the time required for the simulation to complete. Previous strategies including using serial tools to perform this transposition, but they are now far too inefficient to deal with the many terabytes of output a single simulation can generate. A new set of Python tools, using data parallelism, have been written to enable this re-orientation, and have achieved markedly improved I/O performance. The perspective of a data manager/data producer in the use of these new tools is presented, and likely future work on their development and use will be shown. These tools are a critical part of the NCAR CESM submission to the upcoming CMIP6, with the intention that a much more timely and efficient submission of the expected petabytes of data will be accomplished in the given time frame.

  3. Robust automated knowledge capture.

    SciTech Connect

    Stevens-Adams, Susan Marie; Abbott, Robert G.; Forsythe, James Chris; Trumbo, Michael Christopher Stefan; Haass, Michael Joseph; Hendrickson, Stacey M. Langfitt

    2011-10-01

    This report summarizes research conducted through the Sandia National Laboratories Robust Automated Knowledge Capture Laboratory Directed Research and Development project. The objective of this project was to advance scientific understanding of the influence of individual cognitive attributes on decision making. The project has developed a quantitative model known as RumRunner that has proven effective in predicting the propensity of an individual to shift strategies on the basis of task and experience related parameters. Three separate studies are described which have validated the basic RumRunner model. This work provides a basis for better understanding human decision making in high consequent national security applications, and in particular, the individual characteristics that underlie adaptive thinking.

  4. Improving adherence to the Epic Beacon ambulatory workflow.

    PubMed

    Chackunkal, Ellen; Dhanapal Vogel, Vishnuprabha; Grycki, Meredith; Kostoff, Diana

    2016-03-16

    Computerized physician order entry has been shown to significantly improve chemotherapy safety by reducing the number of prescribing errors. Epic's Beacon Oncology Information System of computerized physician order entry and electronic medication administration was implemented in Henry Ford Health System's ambulatory oncology infusion centers on 9 November 2013. Since that time, compliance to the infusion workflow had not been assessed. The objective of this study was to optimize the current workflow and improve the compliance to this workflow in the ambulatory oncology setting. This study was a retrospective, quasi-experimental study which analyzed the composite workflow compliance rate of patient encounters from 9 to 23 November 2014. Based on this analysis, an intervention was identified and implemented in February 2015 to improve workflow compliance. The primary endpoint was to compare the composite compliance rate to the Beacon workflow before and after a pharmacy-initiated intervention. The intervention, which was education of infusion center staff, was initiated by ambulatory-based, oncology pharmacists and implemented by a multi-disciplinary team of pharmacists and nurses. The composite compliance rate was then reassessed for patient encounters from 2 to 13 March 2015 in order to analyze the effects of the determined intervention on compliance. The initial analysis in November 2014 revealed a composite compliance rate of 38%, and data analysis after the intervention revealed a statistically significant increase in the composite compliance rate to 83% (p < 0.001). This study supports a pharmacist-initiated educational intervention can improve compliance to an ambulatory, oncology infusion workflow.

  5. The myth of standardized workflow in primary care

    PubMed Central

    Beasley, John W; Karsh, Ben-Tzion; Stone, Jamie A; Smith, Paul D; Wetterneck, Tosha B

    2016-01-01

    Objective Primary care efficiency and quality are essential for the nation’s health. The demands on primary care physicians (PCPs) are increasing as healthcare becomes more complex. A more complete understanding of PCP workflow variation is needed to guide future healthcare redesigns. Methods This analysis evaluates workflow variation in terms of the sequence of tasks performed during patient visits. Two patient visits from 10 PCPs from 10 different United States Midwestern primary care clinics were analyzed to determine physician workflow. Tasks and the progressive sequence of those tasks were observed, documented, and coded by task category using a PCP task list. Variations in the sequence and prevalence of tasks at each stage of the primary care visit were assessed considering the physician, the patient, the visit’s progression, and the presence of an electronic health record (EHR) at the clinic. Results PCP workflow during patient visits varies significantly, even for an individual physician, with no single or even common workflow pattern being present. The prevalence of specific tasks shifts significantly as primary care visits progress to their conclusion but, notably, PCPs collect patient information throughout the visit. Discussion PCP workflows were unpredictable during face-to-face patient visits. Workflow emerges as the result of a “dance” between physician and patient as their separate agendas are addressed, a side effect of patient-centered practice. Conclusions Future healthcare redesigns should support a wide variety of task sequences to deliver high-quality primary care. The development of tools such as electronic health records must be based on the realities of primary care visits if they are to successfully support a PCP’s mental and physical work, resulting in effective, safe, and efficient primary care. PMID:26335987

  6. Integration of Earth System Models and Workflow Management under iRODS for the Northeast Regional Earth System Modeling Project

    NASA Astrophysics Data System (ADS)

    Lengyel, F.; Yang, P.; Rosenzweig, B.; Vorosmarty, C. J.

    2012-12-01

    The Northeast Regional Earth System Model (NE-RESM, NSF Award #1049181) integrates weather research and forecasting models, terrestrial and aquatic ecosystem models, a water balance/transport model, and mesoscale and energy systems input-out economic models developed by interdisciplinary research team from academia and government with expertise in physics, biogeochemistry, engineering, energy, economics, and policy. NE-RESM is intended to forecast the implications of planning decisions on the region's environment, ecosystem services, energy systems and economy through the 21st century. Integration of model components and the development of cyberinfrastructure for interacting with the system is facilitated with the integrated Rule Oriented Data System (iRODS), a distributed data grid that provides archival storage with metadata facilities and a rule-based workflow engine for automating and auditing scientific workflows.

  7. A workflow to preserve genome-quality tissue samples from plants in botanical gardens and arboreta1

    PubMed Central

    Gostel, Morgan R.; Kelloff, Carol; Wallick, Kyle; Funk, Vicki A.

    2016-01-01

    Premise of the study: Internationally, gardens hold diverse living collections that can be preserved for genomic research. Workflows have been developed for genomic tissue sampling in other taxa (e.g., vertebrates), but are inadequate for plants. We outline a workflow for tissue sampling intended for two audiences: botanists interested in genomics research and garden staff who plan to voucher living collections. Methods and Results: Standard herbarium methods are used to collect vouchers, label information and images are entered into a publicly accessible database, and leaf tissue is preserved in silica and liquid nitrogen. A five-step approach for genomic tissue sampling is presented for sampling from living collections according to current best practices. Conclusions: Collecting genome-quality samples from gardens is an economical and rapid way to make available for scientific research tissue from the diversity of plants on Earth. The Global Genome Initiative will facilitate and lead this endeavor through international partnerships. PMID:27672517

  8. HoloVir: A Workflow for Investigating the Diversity and Function of Viruses in Invertebrate Holobionts

    PubMed Central

    Laffy, Patrick W.; Wood-Charlson, Elisha M.; Turaev, Dmitrij; Weynberg, Karen D.; Botté, Emmanuelle S.; van Oppen, Madeleine J. H.; Webster, Nicole S.; Rattei, Thomas

    2016-01-01

    Abundant bioinformatics resources are available for the study of complex microbial metagenomes, however their utility in viral metagenomics is limited. HoloVir is a robust and flexible data analysis pipeline that provides an optimized and validated workflow for taxonomic and functional characterization of viral metagenomes derived from invertebrate holobionts. Simulated viral metagenomes comprising varying levels of viral diversity and abundance were used to determine the optimal assembly and gene prediction strategy, and multiple sequence assembly methods and gene prediction tools were tested in order to optimize our analysis workflow. HoloVir performs pairwise comparisons of single read and predicted gene datasets against the viral RefSeq database to assign taxonomy and additional comparison to phage-specific and cellular markers is undertaken to support the taxonomic assignments and identify potential cellular contamination. Broad functional classification of the predicted genes is provided by assignment of COG microbial functional category classifications using EggNOG and higher resolution functional analysis is achieved by searching for enrichment of specific Swiss-Prot keywords within the viral metagenome. Application of HoloVir to viral metagenomes from the coral Pocillopora damicornis and the sponge Rhopaloeides odorabile demonstrated that HoloVir provides a valuable tool to characterize holobiont viral communities across species, environments, or experiments. PMID:27375564

  9. Ontology-Driven Discovery of Scientific Computational Entities

    ERIC Educational Resources Information Center

    Brazier, Pearl W.

    2010-01-01

    Many geoscientists use modern computational resources, such as software applications, Web services, scientific workflows and datasets that are readily available on the Internet, to support their research and many common tasks. These resources are often shared via human contact and sometimes stored in data portals; however, they are not necessarily…

  10. Optimizing high performance computing workflow for protein functional annotation.

    PubMed

    Stanberry, Larissa; Rekepalli, Bhanu; Liu, Yuan; Giblock, Paul; Higdon, Roger; Montague, Elizabeth; Broomall, William; Kolker, Natali; Kolker, Eugene

    2014-09-10

    Functional annotation of newly sequenced genomes is one of the major challenges in modern biology. With modern sequencing technologies, the protein sequence universe is rapidly expanding. Newly sequenced bacterial genomes alone contain over 7.5 million proteins. The rate of data generation has far surpassed that of protein annotation. The volume of protein data makes manual curation infeasible, whereas a high compute cost limits the utility of existing automated approaches. In this work, we present an improved and optmized automated workflow to enable large-scale protein annotation. The workflow uses high performance computing architectures and a low complexity classification algorithm to assign proteins into existing clusters of orthologous groups of proteins. On the basis of the Position-Specific Iterative Basic Local Alignment Search Tool the algorithm ensures at least 80% specificity and sensitivity of the resulting classifications. The workflow utilizes highly scalable parallel applications for classification and sequence alignment. Using Extreme Science and Engineering Discovery Environment supercomputers, the workflow processed 1,200,000 newly sequenced bacterial proteins. With the rapid expansion of the protein sequence universe, the proposed workflow will enable scientists to annotate big genome data.

  11. Development of the workflow kine systems for support on KAIZEN.

    PubMed

    Mizuno, Yuki; Ito, Toshihiko; Yoshikawa, Toru; Yomogida, Satoshi; Morio, Koji; Sakai, Kazuhiro

    2012-01-01

    In this paper, we introduce the new workflow line system consisted of the location and image recording, which led to the acquisition of workflow information and the analysis display. From the results of workflow line investigation, we considered the anticipated effects and the problems on KAIZEN. Workflow line information included the location information and action contents information. These technologies suggest the viewpoints to help improvement, for example, exclusion of useless movement, the redesign of layout and the review of work procedure. Manufacturing factory, it was clear that there was much movement from the standard operation place and accumulation residence time. The following was shown as a result of this investigation, to be concrete, the efficient layout was suggested by this system. In the case of the hospital, similarly, it is pointed out that the workflow has the problem of layout and setup operations based on the effective movement pattern of the experts. This system could adapt to routine work, including as well as non-routine work. By the development of this system which can fit and adapt to industrial diversification, more effective "visual management" (visualization of work) is expected in the future.

  12. Low Latency Workflow Scheduling and an Application of Hyperspectral Brightness Temperatures

    NASA Astrophysics Data System (ADS)

    Nguyen, P. T.; Chapman, D. R.; Halem, M.

    2012-12-01

    New system analytics for Big Data computing holds the promise of major scientific breakthroughs and discoveries from the exploration and mining of the massive data sets becoming available to the science community. However, such data intensive scientific applications face severe challenges in accessing, managing and analyzing petabytes of data. While the Hadoop MapReduce environment has been successfully applied to data intensive problems arising in business, there are still many scientific problem domains where limitations in the functionality of MapReduce systems prevent its wide adoption by those communities. This is mainly because MapReduce does not readily support the unique science discipline needs such as special science data formats, graphic and computational data analysis tools, maintaining high degrees of computational accuracies, and interfacing with application's existing components across heterogeneous computing processors. We address some of these limitations by exploiting the MapReduce programming model for satellite data intensive scientific problems and address scalability, reliability, scheduling, and data management issues when dealing with climate data records and their complex observational challenges. In addition, we will present techniques to support the unique Earth science discipline needs such as dealing with special science data formats (HDF and NetCDF). We have developed a Hadoop task scheduling algorithm that improves latency by 2x for a scientific workflow including the gridding of the EOS AIRS hyperspectral Brightness Temperatures (BT). This workflow processing algorithm has been tested at the Multicore Computing Center private Hadoop based Intel Nehalem cluster, as well as in a virtual mode under the Open Source Eucalyptus cloud. The 55TB AIRS hyperspectral L1b Brightness Temperature record has been gridded at the resolution of 0.5x1.0 degrees, and we have computed a 0.9 annual anti-correlation to the El Nino Southern oscillation in

  13. Scientific Misconduct.

    PubMed

    Gross, Charles

    2016-01-01

    Scientific misconduct has been defined as fabrication, falsification, and plagiarism. Scientific misconduct has occurred throughout the history of science. The US government began to take systematic interest in such misconduct in the 1980s. Since then, a number of studies have examined how frequently individual scientists have observed scientific misconduct or were involved in it. Although the studies vary considerably in their methodology and in the nature and size of their samples, in most studies at least 10% of the scientists sampled reported having observed scientific misconduct. In addition to studies of the incidence of scientific misconduct, this review considers the recent increase in paper retractions, the role of social media in scientific ethics, several instructional examples of egregious scientific misconduct, and potential methods to reduce research misconduct.

  14. The workflow of single-cell expression profiling using quantitative real-time PCR

    PubMed Central

    Ståhlberg, Anders; Kubista, Mikael

    2014-01-01

    Biological material is heterogeneous and when exposed to stimuli the various cells present respond differently. Much of the complexity can be eliminated by disintegrating the sample, studying the cells one by one. Single-cell profiling reveals responses that go unnoticed when classical samples are studied. New cell types and cell subtypes may be found and relevant pathways and expression networks can be identified. The most powerful technique for single-cell expression profiling is currently quantitative reverse transcription real-time PCR (RT-qPCR). A robust RT-qPCR workflow for highly sensitive and specific measurements in high-throughput and a reasonable degree of multiplexing has been developed for targeting mRNAs, but also microRNAs, non-coding RNAs and most recently also proteins. We review the current state of the art of single-cell expression profiling and present also the improvements and developments expected in the next 5 years. PMID:24649819

  15. OWL: A Condor Based Workflow Management System for JWST

    NASA Astrophysics Data System (ADS)

    Pierfederici, F.; Swam, M.; Greene, G.; Kyprianou, M.; Gaffney, N.

    2012-09-01

    The Open Workflow Layer (OWL) is an open source Workflow Management System (WMS) developed at the Space Telescope Science Institute. OWL is being designed for the James Webb Space Telescope (JWST) science data processing using the Hubble Space Telescope (HST) as a test bed. It is however very general and could be applied to many other missions and data processing applications. OWL is a thin Python layer that provides advanced workflow management, GUIs and a data-centric view on top of Condor, a widely used open source batch scheduling system. As such, OWL can transparently take advantage of the many features offered by Condor without having to re-implement them from scratch.

  16. Assessment of the Nurse Medication Administration Workflow Process

    PubMed Central

    Snyder, Rita; Vidal, José M.; Sharif, Omor; Cai, Bo; Parsons, Bridgette; Bennett, Kevin

    2016-01-01

    This paper presents findings of an observational study of the Registered Nurse (RN) Medication Administration Process (MAP) conducted on two comparable medical units in a large urban tertiary care medical center in Columbia, South Carolina. A total of 305 individual MAP observations were recorded over a 6-week period with an average of 5 MAP observations per RN participant for both clinical units. A key MAP variation was identified in terms of unbundled versus bundled MAP performance. In the unbundled workflow, an RN engages in the MAP by performing only MAP tasks during a care episode. In the bundled workflow, an RN completes medication administration along with other patient care responsibilities during the care episode. Using a discrete-event simulation model, this paper addresses the difference between unbundled and bundled workflow and their effects on simulated redesign interventions.

  17. NOW: A Workflow Language for Orchestration in Nomadic Networks

    NASA Astrophysics Data System (ADS)

    Philips, Eline; van der Straeten, Ragnhild; Jonckers, Viviane

    Existing workflow languages for nomadic or mobile ad hoc networks do not offer adequate support for dealing with the volatile connections inherent to these environments. Services residing on mobile devices are exposed to (temporary) network failures, which should be considered the rule rather than the exception. This paper proposes a nomadic workflow language built on top of an ambient-oriented programming language which supports dynamic service discovery and communication primitives resilient to network failures. Our proposed language provides high level workflow abstractions for control flow and supports rich network and service failure detection and handling through compensating actions. Moreover, we introduce a powerful variable binding mechanism which enables dynamic data flow between services in a nomadic environment. By adding this extra layer of abstraction on top of an ambient-oriented programming language, the application programmer is offered a flexible way to develop applications for nomadic networks.

  18. Building an efficient curation workflow for the Arabidopsis literature corpus.

    PubMed

    Li, Donghui; Berardini, Tanya Z; Muller, Robert J; Huala, Eva

    2012-01-01

    TAIR (The Arabidopsis Information Resource) is the model organism database (MOD) for Arabidopsis thaliana, a model plant with a literature corpus of about 39 000 articles in PubMed, with over 4300 new articles added in 2011. We have developed a literature curation workflow incorporating both automated and manual elements to cope with this flood of new research articles. The current workflow can be divided into two phases: article selection and curation. Structured controlled vocabularies, such as the Gene Ontology and Plant Ontology are used to capture free text information in the literature as succinct ontology-based annotations suitable for the application of computational analysis methods. We also describe our curation platform and the use of text mining tools in our workflow. Database URL: www.arabidopsis.org

  19. Nexus: A modular workflow management system for quantum simulation codes

    NASA Astrophysics Data System (ADS)

    Krogel, Jaron T.

    2016-01-01

    The management of simulation workflows represents a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantum chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.

  20. Nexus: a modular workflow management system for quantum simulation codes

    SciTech Connect

    Krogel, Jaron T.

    2015-08-24

    The management of simulation workflows is a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantum chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.

  1. Nexus: a modular workflow management system for quantum simulation codes

    DOE PAGES

    Krogel, Jaron T.

    2015-08-24

    The management of simulation workflows is a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantummore » chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.« less

  2. Workflow for Genome-Wide Determination of Pre-mRNA Splicing Efficiency from Yeast RNA-seq Data

    PubMed Central

    Folk, Petr

    2016-01-01

    Pre-mRNA splicing represents an important regulatory layer of eukaryotic gene expression. In the simple budding yeast Saccharomyces cerevisiae, about one-third of all mRNA molecules undergo splicing, and splicing efficiency is tightly regulated, for example, during meiotic differentiation. S. cerevisiae features a streamlined, evolutionarily highly conserved splicing machinery and serves as a favourite model for studies of various aspects of splicing. RNA-seq represents a robust, versatile, and affordable technique for transcriptome interrogation, which can also be used to study splicing efficiency. However, convenient bioinformatics tools for the analysis of splicing efficiency from yeast RNA-seq data are lacking. We present a complete workflow for the calculation of genome-wide splicing efficiency in S. cerevisiae using strand-specific RNA-seq data. Our pipeline takes sequencing reads in the FASTQ format and provides splicing efficiency values for the 5′ and 3′ splice junctions of each intron. The pipeline is based on up-to-date open-source software tools and requires very limited input from the user. We provide all relevant scripts in a ready-to-use form. We demonstrate the functionality of the workflow using RNA-seq datasets from three spliceosome mutants. The workflow should prove useful for studies of yeast splicing mutants or of regulated splicing, for example, under specific growth conditions. PMID:28050562

  3. A Comprehensive Workflow of Mass Spectrometry-Based Untargeted Metabolomics in Cancer Metabolic Biomarker Discovery Using Human Plasma and Urine

    PubMed Central

    Zou, Wei; She, Jianwen; Tolstikov, Vladimir V.

    2013-01-01

    Current available biomarkers lack sensitivity and/or specificity for early detection of cancer. To address this challenge, a robust and complete workflow for metabolic profiling and data mining is described in details. Three independent and complementary analytical techniques for metabolic profiling are applied: hydrophilic interaction liquid chromatography (HILIC–LC), reversed-phase liquid chromatography (RP–LC), and gas chromatography (GC). All three techniques are coupled to a mass spectrometer (MS) in the full scan acquisition mode, and both unsupervised and supervised methods are used for data mining. The univariate and multivariate feature selection are used to determine subsets of potentially discriminative predictors. These predictors are further identified by obtaining accurate masses and isotopic ratios using selected ion monitoring (SIM) and data-dependent MS/MS and/or accurate mass MSn ion tree scans utilizing high resolution MS. A list combining all of the identified potential biomarkers generated from different platforms and algorithms is used for pathway analysis. Such a workflow combining comprehensive metabolic profiling and advanced data mining techniques may provide a powerful approach for metabolic pathway analysis and biomarker discovery in cancer research. Two case studies with previous published data are adapted and included in the context to elucidate the application of the workflow. PMID:24958150

  4. A comprehensive workflow of mass spectrometry-based untargeted metabolomics in cancer metabolic biomarker discovery using human plasma and urine.

    PubMed

    Zou, Wei; She, Jianwen; Tolstikov, Vladimir V

    2013-09-11

    Current available biomarkers lack sensitivity and/or specificity for early detection of cancer. To address this challenge, a robust and complete workflow for metabolic profiling and data mining is described in details. Three independent and complementary analytical techniques for metabolic profiling are applied: hydrophilic interaction liquid chromatography (HILIC-LC), reversed-phase liquid chromatography (RP-LC), and gas chromatography (GC). All three techniques are coupled to a mass spectrometer (MS) in the full scan acquisition mode, and both unsupervised and supervised methods are used for data mining. The univariate and multivariate feature selection are used to determine subsets of potentially discriminative predictors. These predictors are further identified by obtaining accurate masses and isotopic ratios using selected ion monitoring (SIM) and data-dependent MS/MS and/or accurate mass MSn ion tree scans utilizing high resolution MS. A list combining all of the identified potential biomarkers generated from different platforms and algorithms is used for pathway analysis. Such a workflow combining comprehensive metabolic profiling and advanced data mining techniques may provide a powerful approach for metabolic pathway analysis and biomarker discovery in cancer research. Two case studies with previous published data are adapted and included in the context to elucidate the application of the workflow.

  5. Data processing workflows from low-cost digital survey to various applications: three case studies of Chinese historic architecture

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Cao, Y. K.

    2015-08-01

    The paper focuses on the versatility of data processing workflows ranging from BIM-based survey to structural analysis and reverse modeling. In China nowadays, a large number of historic architecture are in need of restoration, reinforcement and renovation. But the architects are not prepared for the conversion from the booming AEC industry to architectural preservation. As surveyors working with architects in such projects, we have to develop efficient low-cost digital survey workflow robust to various types of architecture, and to process the captured data for architects. Although laser scanning yields high accuracy in architectural heritage documentation and the workflow is quite straightforward, the cost and portability hinder it from being used in projects where budget and efficiency are of prime concern. We integrate Structure from Motion techniques with UAV and total station in data acquisition. The captured data is processed for various purposes illustrated with three case studies: the first one is as-built BIM for a historic building based on registered point clouds according to Ground Control Points; The second one concerns structural analysis for a damaged bridge using Finite Element Analysis software; The last one relates to parametric automated feature extraction from captured point clouds for reverse modeling and fabrication.

  6. Workflow for Genome-Wide Determination of Pre-mRNA Splicing Efficiency from Yeast RNA-seq Data.

    PubMed

    Převorovský, Martin; Hálová, Martina; Abrhámová, Kateřina; Libus, Jiří; Folk, Petr

    2016-01-01

    Pre-mRNA splicing represents an important regulatory layer of eukaryotic gene expression. In the simple budding yeast Saccharomyces cerevisiae, about one-third of all mRNA molecules undergo splicing, and splicing efficiency is tightly regulated, for example, during meiotic differentiation. S. cerevisiae features a streamlined, evolutionarily highly conserved splicing machinery and serves as a favourite model for studies of various aspects of splicing. RNA-seq represents a robust, versatile, and affordable technique for transcriptome interrogation, which can also be used to study splicing efficiency. However, convenient bioinformatics tools for the analysis of splicing efficiency from yeast RNA-seq data are lacking. We present a complete workflow for the calculation of genome-wide splicing efficiency in S. cerevisiae using strand-specific RNA-seq data. Our pipeline takes sequencing reads in the FASTQ format and provides splicing efficiency values for the 5' and 3' splice junctions of each intron. The pipeline is based on up-to-date open-source software tools and requires very limited input from the user. We provide all relevant scripts in a ready-to-use form. We demonstrate the functionality of the workflow using RNA-seq datasets from three spliceosome mutants. The workflow should prove useful for studies of yeast splicing mutants or of regulated splicing, for example, under specific growth conditions.

  7. Flexible End2End Workflow Automation of Hit-Discovery Research.

    PubMed

    Holzmüller-Laue, Silke; Göde, Bernd; Thurow, Kerstin

    2014-08-01

    The article considers a new approach of more complex laboratory automation at the workflow layer. The authors purpose the automation of end2end workflows. The combination of all relevant subprocesses-whether automated or manually performed, independently, and in which organizational unit-results in end2end processes that include all result dependencies. The end2end approach focuses on not only the classical experiments in synthesis or screening, but also on auxiliary processes such as the production and storage of chemicals, cell culturing, and maintenance as well as preparatory activities and analyses of experiments. Furthermore, the connection of control flow and data flow in the same process model leads to reducing of effort of the data transfer between the involved systems, including the necessary data transformations. This end2end laboratory automation can be realized effectively with the modern methods of business process management (BPM). This approach is based on a new standardization of the process-modeling notation Business Process Model and Notation 2.0. In drug discovery, several scientific disciplines act together with manifold modern methods, technologies, and a wide range of automated instruments for the discovery and design of target-based drugs. The article discusses the novel BPM-based automation concept with an implemented example of a high-throughput screening of previously synthesized compound libraries.

  8. A data management and publication workflow for a large-scale, heterogeneous sensor network.

    PubMed

    Jones, Amber Spackman; Horsburgh, Jeffery S; Reeder, Stephanie L; Ramírez, Maurier; Caraballo, Juan

    2015-06-01

    It is common for hydrology researchers to collect data using in situ sensors at high frequencies, for extended durations, and with spatial distributions that produce data volumes requiring infrastructure for data storage, management, and sharing. The availability and utility of these data in addressing scientific questions related to water availability, water quality, and natural disasters relies on effective cyberinfrastructure that facilitates transformation of raw sensor data into usable data products. It also depends on the ability of researchers to share and access the data in useable formats. In this paper, we describe a data management and publication workflow and software tools for research groups and sites conducting long-term monitoring using in situ sensors. Functionality includes the ability to track monitoring equipment inventory and events related to field maintenance. Linking this information to the observational data is imperative in ensuring the quality of sensor-based data products. We present these tools in the context of a case study for the innovative Urban Transitions and Aridregion Hydrosustainability (iUTAH) sensor network. The iUTAH monitoring network includes sensors at aquatic and terrestrial sites for continuous monitoring of common meteorological variables, snow accumulation and melt, soil moisture, surface water flow, and surface water quality. We present the overall workflow we have developed for effectively transferring data from field monitoring sites to ultimate end-users and describe the software tools we have deployed for storing, managing, and sharing the sensor data. These tools are all open source and available for others to use.

  9. Automation of Bioinformatics Workflows using CloVR, a Cloud Virtual Resource

    PubMed Central

    Vangala, Mahesh

    2013-01-01

    Exponential growth of biological data, mainly due to revolutionary developments in NGS technologies in past couple of years, created a multitude of challenges in downstream data analysis using bioinformatics approaches. To handle such tsunami of data, bioinformatics analysis must be carried out in an automated and parallel fashion. A successful analysis often requires more than a few computational steps and bootstrapping these individual steps (scripts) into components and the components into pipelines certainly makes bioinformatics a reproducible and manageable segment of scientific research. CloVR (http://clovr.org) is one such flexible framework that facilitates the abstraction of bioinformatics workflows into executable pipelines. CloVR comes packaged with various built-in bioinformatics pipelines that can make use of multicore processing power when run on servers and/or cloud. CloVR is amenable to build custom pipelines based on individual laboratory requirements. CloVR is available as a single executable virtual image file that comes bundled with pre-installed and pre-configured bioinformatics tools and packages and thus circumvents the cumbersome installation difficulties. CloVR is highly portable and can be run on traditional desktop/laptop computers, central servers and cloud compute farms. In conclusion, CloVR provides built-in automated analysis pipelines for microbial genomics with a scope to develop and integrate custom-workflows that make use of parallel processing power when run on compute clusters, there by addressing the bioinformatics challenges with NGS data.

  10. Optimization of tomographic reconstruction workflows on geographically distributed resources

    SciTech Connect

    Bicer, Tekin; Gursoy, Doga; Kettimuthu, Rajkumar; De Carlo, Francesco; Foster, Ian T.

    2016-01-01

    New technological advancements in synchrotron light sources enable data acquisitions at unprecedented levels. This emergent trend affects not only the size of the generated data but also the need for larger computational resources. Although beamline scientists and users have access to local computational resources, these are typically limited and can result in extended execution times. Applications that are based on iterative processing as in tomographic reconstruction methods require high-performance compute clusters for timely analysis of data. Here, time-sensitive analysis and processing of Advanced Photon Source data on geographically distributed resources are focused on. Two main challenges are considered: (i) modeling of the performance of tomographic reconstruction workflows and (ii) transparent execution of these workflows on distributed resources. For the former, three main stages are considered: (i) data transfer between storage and computational resources, (i) wait/queue time of reconstruction jobs at compute resources, and (iii) computation of reconstruction tasks. These performance models allow evaluation and estimation of the execution time of any given iterative tomographic reconstruction workflow that runs on geographically distributed resources. For the latter challenge, a workflow management system is built, which can automate the execution of workflows and minimize the user interaction with the underlying infrastructure. The system utilizes Globus to perform secure and efficient data transfer operations. The proposed models and the workflow management system are evaluated by using three high-performance computing and two storage resources, all of which are geographically distributed. Workflows were created with different computational requirements using two compute-intensive tomographic reconstruction algorithms. Experimental evaluation shows that the proposed models and system can be used for selecting the optimum

  11. Flexible Early Warning Systems with Workflows and Decision Tables

    NASA Astrophysics Data System (ADS)

    Riedel, F.; Chaves, F.; Zeiner, H.

    2012-04-01

    An essential part of early warning systems and systems for crisis management are decision support systems that facilitate communication and collaboration. Often official policies specify how different organizations collaborate and what information is communicated to whom. For early warning systems it is crucial that information is exchanged dynamically in a timely manner and all participants get exactly the information they need to fulfil their role in the crisis management process. Information technology obviously lends itself to automate parts of the process. We have experienced however that in current operational systems the information logistics processes are hard-coded, even though they are subject to change. In addition, systems are tailored to the policies and requirements of a certain organization and changes can require major software refactoring. We seek to develop a system that can be deployed and adapted to multiple organizations with different dynamic runtime policies. A major requirement for such a system is that changes can be applied locally without affecting larger parts of the system. In addition to the flexibility regarding changes in policies and processes, the system needs to be able to evolve; when new information sources become available, it should be possible to integrate and use these in the decision process. In general, this kind of flexibility comes with a significant increase in complexity. This implies that only IT professionals can maintain a system that can be reconfigured and adapted; end-users are unable to utilise the provided flexibility. In the business world similar problems arise and previous work suggested using business process management systems (BPMS) or workflow management systems (WfMS) to guide and automate early warning processes or crisis management plans. However, the usability and flexibility of current WfMS are limited, because current notations and user interfaces are still not suitable for end-users, and workflows

  12. Workflow modeling in the graphic arts and printing industry

    NASA Astrophysics Data System (ADS)

    Tuijn, Chris

    2003-12-01

    The last few years, a lot of effort has been spent on the standardization of the workflow in the graphic arts and printing industry. The main reasons for this standardization are two-fold: first of all, the need to represent all aspects of products, processes and resources in a uniform, digital framework and, secondly, the need to have different systems communicate with each other without having to implement dedicated drivers or protocols. Since many years, a number of organizations in the IT sector have been quite busy developing models and languages on the topic of workflow modeling. In addition to the more formal methods (such as, e.g., extended finite state machines, Petri Nets, Markov Chains etc.) introduced a number of decades ago, more pragmatic methods have been proposed quite recently. We hereby think in particular of the activities of the Workflow Management Coalition that resulted in an XML based Process Definition Language. Although one might be tempted to use the already established standards in the graphic environment, one should be well aware of the complexity and uniqueness of the graphic arts workflow. In this paper, we will show that it is quite hard though not impossible to model the graphic arts workflow using the already established workflow systems. After a brief summary of the graphic arts workflow requirements, we will show why the traditional models are less suitable to use. It will turn out that one of the main reasons for the incompatibility is that the graphic arts workflow is primarily resource driven; this means that the activation of processes depends on the status of different incoming resources. The fact that processes can start running with a partial availability of the input resources is a further complication that asks for additional knowledge on process level. In the second part of this paper, we will discuss in more detail the different software components that are available in any graphic enterprise. In the last part, we will

  13. Linking Geobiology Fieldwork and Data Curation Through Workflow Documentation

    NASA Astrophysics Data System (ADS)

    Thomer, A.; Baker, K. S.; Jett, J. G.; Gordon, S.; Palmer, C. L.

    2014-12-01

    Describing the specific processes and artifacts that lead to the creation of data products provides a detailed picture of data provenance in the form of a high-level workflow. The resulting diagram identifies:1. "points of intervention" at which curation processes can be moved upstream, and 2. data products that may be important for sharing and preservation. The Site-Based Data Curation project, an Institute of Museum and Library Services-funded project hosted by the Center for Informatics Research in Science and Scholarship at the University of Illinois, previously inferred a geobiologist's planning, field and laboratory workflows through close study of the data products produced during a single field trip to Yellowstone National Park (Wickett et al, 2013). We have since built on this work by documenting post hoc curation processes, and integrating them with the existing workflow. By holistically considering both data collection and curation, we are able to identify concrete steps that scientists can take to begin curating data in the field. This field-to-repository workflow represents a first step toward a more comprehensive and nuanced model of the research data lifecycle. Using our initial three-phase workflow, we identify key data products to prioritize for curation, and the points at which data curation best practices integrate with research processes with minimal interruption. We then document the processes that make key data products sharable and ready for preservation. We append the resulting curatorial phases to the field data collection workflow: Data Staging, Data Standardizing and Data Packaging. These refinements demonstrate:1) the interdependence of research and curatorial phases;2) the links between specific research products, research phases and curatorial processes; 3) the interdependence of laboratory-specific standards and community-wide best practices. We propose a poster that shows the six-phase workflow described above. We plan to discuss

  14. A workflow for the 3D visualization of meteorological data

    NASA Astrophysics Data System (ADS)

    Helbig, Carolin; Rink, Karsten

    2014-05-01

    In the future, climate change will strongly influence our environment and living conditions. To predict possible changes, climate models that include basic and process conditions have been developed and big data sets are produced as a result of simulations. The combination of various variables of climate models with spatial data from different sources helps to identify correlations and to study key processes. For our case study we use results of the weather research and forecasting (WRF) model of two regions at different scales that include various landscapes in Northern Central Europe and Baden-Württemberg. We visualize these simulation results in combination with observation data and geographic data, such as river networks, to evaluate processes and analyze if the model represents the atmospheric system sufficiently. For this purpose, a continuous workflow that leads from the integration of heterogeneous raw data to visualization using open source software (e.g. OpenGeoSys Data Explorer, ParaView) is developed. These visualizations can be displayed on a desktop computer or in an interactive virtual reality environment. We established a concept that includes recommended 3D representations and a color scheme for the variables of the data based on existing guidelines and established traditions in the specific domain. To examine changes over time in observation and simulation data, we added the temporal dimension to the visualization. In a first step of the analysis, the visualizations are used to get an overview of the data and detect areas of interest such as regions of convection or wind turbulences. Then, subsets of data sets are extracted and the included variables can be examined in detail. An evaluation by experts from the domains of visualization and atmospheric sciences establish if they are self-explanatory and clearly arranged. These easy-to-understand visualizations of complex data sets are the basis for scientific communication. In addition, they have

  15. Refactoring Problem of Acyclic Extended Free-Choice Workflow Nets to Acyclic Well-Structured Workflow Nets

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Shingo

    A workflow net (WF-net for short) is a Petri net which represents a workflow. There are two important subclasses of WF-nets: extended free-choice (EFC for short) and well-structured (WS for short). It is known that most actual workflows can be modeled as EFC WF-nets; Acyclic WS is a subclass of acyclic EFC but has more analysis methods. An acyclic EFC WF-net may be transformed to an acyclic WS WF-net without changing the external behavior of the net. We name such a transformation Acyclic EFC WF-net refactoring. We give a formal definition of acyclic EFC WF-net refactoring problem. We also give a necessary condition and a sufficient condition for solving the problem. Those conditions can be checked in polynomial time. These result in the enhancement of the analysis power of acyclic EFC WF-nets.

  16. Assembling Large, Multi-Sensor Climate Datasets Using the SciFlo Grid Workflow System

    NASA Astrophysics Data System (ADS)

    Wilson, B. D.; Manipon, G.; Xing, Z.; Fetzer, E.

    2008-12-01

    NASA's Earth Observing System (EOS) is the world's most ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the A-Train platforms (AIRS, AMSR-E, MODIS, MISR, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over periods of years to decades. However, moving from predominantly single-instrument studies to a multi-sensor, measurement-based model for long-duration analysis of important climate variables presents serious challenges for large-scale data mining and data fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another instrument (MODIS), and to a model (ECMWF), stratify the comparisons using a classification of the cloud scenes from CloudSat, and repeat the entire analysis over years of AIRS data. To perform such an analysis, one must discover & access multiple datasets from remote sites, find the space/time matchups between instruments swaths and model grids, understand the quality flags and uncertainties for retrieved physical variables, and assemble merged datasets for further scientific and statistical analysis. To meet these large-scale challenges, we are utilizing a Grid computing and dataflow framework, named SciFlo, in which we are deploying a set of versatile and reusable operators for data query, access, subsetting, co-registration, mining, fusion, and advanced statistical analysis. SciFlo is a semantically-enabled ("smart") Grid Workflow system that ties together a peer-to-peer network of computers into an efficient engine for distributed computation. The SciFlo workflow engine enables scientists to do multi-instrument Earth Science by assembling remotely-invokable Web Services (SOAP or http GET URLs), native executables, command-line scripts, and Python codes into a distributed computing flow. A scientist visually authors the graph of operation in the VizFlow GUI, or uses a

  17. Assembling Large, Multi-Sensor Climate Datasets Using the SciFlo Grid Workflow System

    NASA Astrophysics Data System (ADS)

    Wilson, B.; Manipon, G.; Xing, Z.; Fetzer, E.

    2009-04-01

    NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the "A-Train" platforms (AIRS, AMSR-E, MODIS, MISR, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over periods of years to decades. However, moving from predominantly single-instrument studies to a multi-sensor, measurement-based model for long-duration analysis of important climate variables presents serious challenges for large-scale data mining and data fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another instrument (MODIS), and to a model (ECMWF), stratify the comparisons using a classification of the "cloud scenes" from CloudSat, and repeat the entire analysis over years of AIRS data. To perform such an analysis, one must discover & access multiple datasets from remote sites, find the space/time "matchups" between instruments swaths and model grids, understand the quality flags and uncertainties for retrieved physical variables, assemble merged datasets, and compute fused products for further scientific and statistical analysis. To meet these large-scale challenges, we are utilizing a Grid computing and dataflow framework, named SciFlo, in which we are deploying a set of versatile and reusable operators for data query, access, subsetting, co-registration, mining, fusion, and advanced statistical analysis. SciFlo is a semantically-enabled ("smart") Grid Workflow system that ties together a peer-to-peer network of computers into an efficient engine for distributed computation. The SciFlo workflow engine enables scientists to do multi-instrument Earth Science by assembling remotely-invokable Web Services (SOAP or http GET URLs), native executables, command-line scripts, and Python codes into a distributed computing flow. A scientist visually authors the graph of operation in the Viz

  18. Scientific Utopia: An agenda for improving scientific communication (Invited)

    NASA Astrophysics Data System (ADS)

    Nosek, B.

    2013-12-01

    The scientist's primary incentive is publication. In the present culture, open practices do not increase chances of publication, and they often require additional work. Practicing the abstract scientific values of openness and reproducibility thus requires behaviors in addition to those relevant for the primary, concrete rewards. When in conflict, concrete rewards are likely to dominate over abstract ones. As a consequence, the reward structure for scientists does not encourage openness and reproducibility. This can be changed by nudging incentives to align scientific practices with scientific values. Science will benefit by creating and connecting technologies that nudge incentives while supporting and improving the scientific workflow. For example, it should be as easy to search the research literature for my topic as it is to search the Internet to find hilarious videos of cats falling off of furniture. I will introduce the Center for Open Science (http://centerforopenscience.org/) and efforts to improve openness and reproducibility such as http://openscienceframework.org/. There will be no cats.

  19. Standardized workflows for increasing efficiency and productivity in discovery stage bioanalysis.

    PubMed

    Bateman, Kevin P; Cohen, Lucinda; Emary, Bart; Pucci, Vincenzo

    2013-07-01

    Merck consolidated discovery stage bioanalytical functions into the Department of Pharmacokinetics, Pharmacodynamics & Drug Metabolism in 2007. Since then procedures and equipment used to provide important quantitative data to project teams have been harmonized and in many cases standardized. This approach has enabled movement of work across the network of laboratories and has resulted in a lean, flexible and efficient organization. The overall goal was to reduce time and resources spent on routine activities while creating time to perform research in new areas and technologies to support future scientific needs. The current state of discovery bioanalysis at Merck is discussed, including hardware and software platforms, workflow procedures and performance metrics. Examples of improved processes will be discussed for compound tuning, LC method development, analytical acceptance criteria, automated sample preparation, sample analysis platforms, data processing and data reporting.

  20. Flight and Operational Medicine Clinic (FOMC) Workflow Analysis

    DTIC Science & Technology

    2014-03-14

    13 3.2.2 Fly Preventive Health Assessment (Fly PHA...vulnerability to illness, improving injury prevention , and improving return-to-duty after injury. The improved EHR and workflow allows for better case...Class (IFC) Fly Preventive Health Assessment (Fly - PHA) Aeromedical Waiver Profile 469 Duty Limiting Restrictions Occupational Health Medical

  1. Content and Workflow Management for Library Websites: Case Studies

    ERIC Educational Resources Information Center

    Yu, Holly, Ed.

    2005-01-01

    Using database-driven web pages or web content management (WCM) systems to manage increasingly diverse web content and to streamline workflows is a commonly practiced solution recognized in libraries today. However, limited library web content management models and funding constraints prevent many libraries from purchasing commercially available…

  2. Server-side workflow execution using data grid technology for reproducible analyses of data-intensive hydrologic systems

    NASA Astrophysics Data System (ADS)

    Essawy, Bakinam T.; Goodall, Jonathan L.; Xu, Hao; Rajasekar, Arcot; Myers, James D.; Kugler, Tracy A.; Billah, Mirza M.; Whitton, Mary C.; Moore, Reagan W.

    2016-04-01

    Many geoscience disciplines utilize complex computational models for advancing understanding and sustainable management of Earth systems. Executing such models and their associated data preprocessing and postprocessing routines can be challenging for a number of reasons including (1) accessing and preprocessing the large volume and variety of data required by the model, (2) postprocessing large data collections generated by the model, and (3) orchestrating data processing tools, each with unique software dependencies, into workflows that can be easily reproduced and reused. To address these challenges, the work reported in this paper leverages the Workflow Structured Object functionality of the Integrated Rule-Oriented Data System and demonstrates how it can be used to access distributed data, encapsulate hydrologic data processing as workflows, and federate with other community-driven cyberinfrastructure systems. The approach is demonstrated for a study investigating the impact of drought on populations in the Carolinas region of the United States. The analysis leverages computational modeling along with data from the Terra Populus project and data management and publication services provided by the Sustainable Environment-Actionable Data project. The work is part of a larger effort under the DataNet Federation Consortium project that aims to demonstrate data and computational interoperability across cyberinfrastructure developed independently by scientific communities.

  3. a Workflow-Oriented Approach to Propagation Models in Heliophysics

    NASA Astrophysics Data System (ADS)

    Pierantoni, Gabriele; Carley, Eoin P.; Byrne, Jason P.; Perez-Suarez, David; Gallagher, Peter T.

    2014-07-01

    The Sun is responsible for the eruption of billions of tons of plasma andthe generation of near light-speed particles that propagate throughout the solarsystem and beyond. If directed towards Earth, these events can be damaging toour tecnological infrastructure. Hence there is an effort to understand the causeof the eruptive events and how they propagate from Sun to Earth. However, thephysics governing their propagation is not well understood, so there is a need todevelop a theoretical description of their propagation, known as a PropagationModel, in order to predict when they may impact Earth. It is often difficultto define a single propagation model that correctly describes the physics ofsolar eruptive events, and even more difficult to implement models capable ofcatering for all these complexities and to validate them using real observational data. In this paper, we envisage that workflows offer both a theoretical andpractical framerwork for a novel approach to propagation models. We definea mathematical framework that aims at encompassing the different modalitieswith which workflows can be used, and provide a set of generic building blockswritten in the TAVERNA workflow language that users can use to build theirown propagation models. Finally we test both the theoretical model and thecomposite building blocks of the workflow with a real Science Use Case that wasdiscussed during the 4th CDAW (Coordinated Data Analysis Workshop) eventheld by the HELIO project. We show that generic workflow building blocks canbe used to construct a propagation model that succesfully describes the transitof solar eruptive events toward Earth and predict a correct Earth-impact time

  4. Emergency Medicine Resident Physicians’ Perceptions of Electronic Documentation and Workflow

    PubMed Central

    Neri, P.M.; Redden, L.; Poole, S.; Pozner, C.N.; Horsky, J.; Raja, A.S.; Poon, E.; Schiff, G.

    2015-01-01

    Summary Objective To understand emergency department (ED) physicians’ use of electronic documentation in order to identify usability and workflow considerations for the design of future ED information system (EDIS) physician documentation modules. Methods We invited emergency medicine resident physicians to participate in a mixed methods study using task analysis and qualitative interviews. Participants completed a simulated, standardized patient encounter in a medical simulation center while documenting in the test environment of a currently used EDIS. We recorded the time on task, type and sequence of tasks performed by the participants (including tasks performed in parallel). We then conducted semi-structured interviews with each participant. We analyzed these qualitative data using the constant comparative method to generate themes. Results Eight resident physicians participated. The simulation session averaged 17 minutes and participants spent 11 minutes on average on tasks that included electronic documentation. Participants performed tasks in parallel, such as history taking and electronic documentation. Five of the 8 participants performed a similar workflow sequence during the first part of the session while the remaining three used different workflows. Three themes characterize electronic documentation: (1) physicians report that location and timing of documentation varies based on patient acuity and workload, (2) physicians report a need for features that support improved efficiency; and (3) physicians like viewing available patient data but struggle with integration of the EDIS with other information sources. Conclusion We confirmed that physicians spend much of their time on documentation (65%) during an ED patient visit. Further, we found that resident physicians did not all use the same workflow and approach even when presented with an identical standardized patient scenario. Future EHR design should consider these varied workflows while trying to

  5. Relationship between E-Prescriptions and Community Pharmacy Workflow

    PubMed Central

    Odukoya, Olufunmilola K.; Chui, Michelle A.

    2013-01-01

    Objectives To understand how community pharmacists use electronic prescribing (e-prescribing) technology; and to describe the workflow challenges pharmacy personnel encounter as a result of using e-prescribing technology. Design Cross-sectional qualitative study. Setting Seven community pharmacies in Wisconsin from December 2010 to March 2011 Participants 16 pharmacists and 14 pharmacy technicians (in three chain and four independent pharmacies). Interventions Think-aloud protocol and pharmacy group interviews. Main outcome measures Pharmacy staff description of their use of e-prescribing technology and challenges encountered in their daily workflow related to this technology. Results Two contributing factors were perceived to influence e-prescribing workflow: issues stemming from prescribing or transmitting software, and issues from within the pharmacy. Pharmacies experienced both delays in receiving, and inaccurate e-prescriptions from physician offices. Receiving an overwhelming number of e-prescriptions with inaccurate or unclear information resulted in significant time delays for patients as pharmacists contacted physicians to clarify wrong information. In addition, pharmacy personnel reported that lack of formal training and the disconnect between the way pharmacists verify accuracy and conduct drug utilization review and the presentation of e-prescription information on the computer screen significantly influenced the speed of processing an e-prescription. Conclusion E-prescriptions processing can hinder pharmacy workflow. As the number of e-prescriptions transmitted to pharmacies increases due to legislative mandates; it is essential that the technology that supports e-prescriptions (both on the prescriber and pharmacy operating systems) be redesigned to facilitate pharmacy workflow processes and to prevent unintended consequences, such as increased medication errors, user frustration, and stress. PMID:23229979

  6. Semantic Document Library: A Virtual Research Environment for Documents, Data and Workflows Sharing

    NASA Astrophysics Data System (ADS)

    Kotwani, K.; Liu, Y.; Myers, J.; Futrelle, J.

    2008-12-01

    The Semantic Document Library (SDL) was driven by use cases from the environmental observatory communities and is designed to provide conventional document repository features of uploading, downloading, editing and versioning of documents as well as value adding features of tagging, querying, sharing, annotating, ranking, provenance, social networking and geo-spatial mapping services. It allows users to organize a catalogue of watershed observation data, model output, workflows, as well publications and documents related to the same watershed study through the tagging capability. Users can tag all relevant materials using the same watershed name and find all of them easily later using this tag. The underpinning semantic content repository can store materials from other cyberenvironments such as workflow or simulation tools and SDL provides an effective interface to query and organize materials from various sources. Advanced features of the SDL allow users to visualize the provenance of the materials such as the source and how the output data is derived. Other novel features include visualizing all geo-referenced materials on a geospatial map. SDL as a component of a cyberenvironment portal (the NCSA Cybercollaboratory) has goal of efficient management of information and relationships between published artifacts (Validated models, vetted data, workflows, annotations, best practices, reviews and papers) produced from raw research artifacts (data, notes, plans etc.) through agents (people, sensors etc.). Tremendous scientific potential of artifacts is achieved through mechanisms of sharing, reuse and collaboration - empowering scientists to spread their knowledge and protocols and to benefit from the knowledge of others. SDL successfully implements web 2.0 technologies and design patterns along with semantic content management approach that enables use of multiple ontologies and dynamic evolution (e.g. folksonomies) of terminology. Scientific documents involved with

  7. WARP (workflow for automated and rapid production): a framework for end-to-end automated digital print workflows

    NASA Astrophysics Data System (ADS)

    Joshi, Parag

    2006-02-01

    Publishing industry is experiencing a major paradigm shift with the advent of digital publishing technologies. A large number of components in the publishing and print production workflow are transformed in this shift. However, the process as a whole requires a great deal of human intervention for decision making and for resolving exceptions during job execution. Furthermore, a majority of the best-of-breed applications for publishing and print production are intrinsically designed and developed to be driven by humans. Thus, the human-intensive nature of the current prepress process accounts for a very significant amount of the overhead costs in fulfillment of jobs on press. It is a challenge to automate the functionality of applications built with the model of human driven exectution. Another challenge is to orchestrate various components in the publishing and print production pipeline such that they work in a seamless manner to enable the system to perform automatic detection of potential failures and take corrective actions in a proactive manner. Thus, there is a great need for a coherent and unifying workflow architecture that streamlines the process and automates it as a whole in order to create an end-to-end digital automated print production workflow that does not involve any human intervention. This paper describes an architecture and building blocks that lay the foundation for a plurality of automated print production workflows.

  8. A Quantitative Proteomic Workflow for Characterization of Frozen Clinical Biopsies: Laser Capture Microdissection Coupled with Label-Free Mass Spectrometry

    PubMed Central

    Shapiro, John P.; Biswas, Sabyasachi; Merchant, Anand S.; Satoskar, Anjali; Taslim, Cenny; Lin, Shili; Rovin, Brad H.; Sen, Chandan K.; Roy, Sashwati; Freitas, Michael A.

    2013-01-01

    This paper describes a simple, highly efficient and robust proteomic workflow for routine liquid-chromatography tandem mass spectrometry analysis of Laser Microdissection Pressure Catapulting (LMPC) isolates. Highly efficient protein recovery was achieved by optimization of a “one-pot” protein extraction and digestion allowing for reproducible proteomic analysis on as few as 500 LMPC isolated cells. The method was combined with label-free spectral count quantitation to characterize proteomic differences from 3,000–10,000 LMPC isolated cells. Significance analysis of spectral count data was accomplished using the edgeR tag-count R package combined with hierarchical cluster analysis. To illustrate the capability of this robust workflow, two examples are presented: 1) analysis of keratinocytes from human punch biopsies of normal skin and a chronic diabetic wound and 2) comparison of glomeruli from needle biopsies of patients with kidney disease. Differentially expressed proteins were validated by use of immunohistochemistry. These examples illustrate that tissue proteomics carried out on limited clinical material can obtain informative proteomic signatures for disease pathogenesis and demonstrate the suitability of this approach for biomarker discovery. PMID:23022584

  9. A quantitative proteomic workflow for characterization of frozen clinical biopsies: laser capture microdissection coupled with label-free mass spectrometry.

    PubMed

    Shapiro, John P; Biswas, Sabyasachi; Merchant, Anand S; Satoskar, Anjali; Taslim, Cenny; Lin, Shili; Rovin, Brad H; Sen, Chandan K; Roy, Sashwati; Freitas, Michael A

    2012-12-21

    This paper describes a simple, highly efficient and robust proteomic workflow for routine liquid-chromatography tandem mass spectrometry analysis of Laser Microdissection Pressure Catapulting (LMPC) isolates. Highly efficient protein recovery was achieved by optimization of a "one-pot" protein extraction and digestion allowing for reproducible proteomic analysis on as few as 500 LMPC isolated cells. The method was combined with label-free spectral count quantitation to characterize proteomic differences from 3000-10,000 LMPC isolated cells. Significance analysis of spectral count data was accomplished using the edgeR tag-count R package combined with hierarchical cluster analysis. To illustrate the capability of this robust workflow, two examples are presented: 1) analysis of keratinocytes from human punch biopsies of normal skin and a chronic diabetic wound and 2) comparison of glomeruli from needle biopsies of patients with kidney disease. Differentially expressed proteins were validated by use of immunohistochemistry. These examples illustrate that tissue proteomics carried out on limited clinical material can obtain informative proteomic signatures for disease pathogenesis and demonstrate the suitability of this approach for biomarker discovery.

  10. An automated and reproducible workflow for running and analyzing neural simulations using Lancet and IPython Notebook.

    PubMed

    Stevens, Jean-Luc R; Elver, Marco; Bednar, James A

    2013-01-01

    Lancet is a new, simulator-independent Python utility for succinctly specifying, launching, and collating results from large batches of interrelated computationally demanding program runs. This paper demonstrates how to combine Lancet with IPython Notebook to provide a flexible, lightweight, and agile workflow for fully reproducible scientific research. This informal and pragmatic approach uses IPython Notebook to capture the steps in a scientific computation as it is gradually automated and made ready for publication, without mandating the use of any separate application that can constrain scientific exploration and innovation. The resulting notebook concisely records each step involved in even very complex computational processes that led to a particular figure or numerical result, allowing the complete chain of events to be replicated automatically. Lancet was originally designed to help solve problems in computational neuroscience, such as analyzing the sensitivity of a complex simulation to various parameters, or collecting the results from multiple runs with different random starting points. However, because it is never possible to know in advance what tools might be required in future tasks, Lancet has been designed to be completely general, supporting any type of program as long as it can be launched as a process and can return output in the form of files. For instance, Lancet is also heavily used by one of the authors in a separate research group for launching batches of microprocessor simulations. This general design will allow Lancet to continue supporting a given research project even as the underlying approaches and tools change.

  11. Dynameomics: design of a computational lab workflow and scientific data repository for protein simulations.

    PubMed

    Simms, Andrew M; Toofanny, Rudesh D; Kehl, Catherine; Benson, Noah C; Daggett, Valerie

    2008-06-01

    Dynameomics is a project to investigate and catalog the native-state dynamics and thermal unfolding pathways of representatives of all protein folds using solvated molecular dynamics simulations, as described in the preceding paper. Here we introduce the design of the molecular dynamics data warehouse, a scalable, reliable repository that houses simulation data that vastly simplifies management and access. In the succeeding paper, we describe the development of a complementary multidimensional database. A single protein unfolding or native-state simulation can take weeks to months to complete, and produces gigabytes of coordinate and analysis data. Mining information from over 3000 completed simulations is complicated and time-consuming. Even the simplest queries involve writing intricate programs that must be built from low-level file system access primitives and include significant logic to correctly locate and parse data of interest. As a result, programs to answer questions that require data from hundreds of simulations are very difficult to write. Thus, organization and access to simulation data have been major obstacles to the discovery of new knowledge in the Dynameomics project. This repository is used internally and is the foundation of the Dynameomics portal site http://www.dynameomics.org. By organizing simulation data into a scalable, manageable and accessible form, we can begin to address substantial questions that move us closer to solving biomedical and bioengineering problems.

  12. PREDON Scientific Data Preservation 2014

    NASA Astrophysics Data System (ADS)

    Diaconu, C.; Kraml, S.; Surace, C.; Chateigner, D.; Libourel, T.; Laurent, A.; Lin, Y.; Schaming, M.; Benbernou, S.; Lebbah, M.; Boucon, D.; Cérin, C.; Azzag, H.; Mouron, P.; Nief, J.-Y.; Coutin, S.; Beckmann, V.

    Scientific data collected with modern sensors or dedicated detectors exceed very often the perimeter of the initial scientific design. These data are obtained more and more frequently with large material and human efforts. A large class of scientific experiments are in fact unique because of their large scale, with very small chances to be repeated and to superseded by new experiments in the same domain: for instance high energy physics and astrophysics experiments involve multi-annual developments and a simple duplication of efforts in order to reproduce old data is simply not affordable. Other scientific experiments are in fact unique by nature: earth science, medical sciences etc. since the collected data is "time-stamped" and thereby non-reproducible by new experiments or observations. In addition, scientific data collection increased dramatically in the recent years, participating to the so-called "data deluge" and inviting for common reflection in the context of "big data" investigations. The new knowledge obtained using these data should be preserved long term such that the access and the re-use are made possible and lead to an enhancement of the initial investment. Data observatories, based on open access policies and coupled with multi-disciplinary techniques for indexing and mining may lead to truly new paradigms in science. It is therefore of outmost importance to pursue a coherent and vigorous approach to preserve the scientific data at long term. The preservation remains nevertheless a challenge due to the complexity of the data structure, the fragility of the custom-made software environments as well as the lack of rigorous approaches in workflows and algorithms. To address this challenge, the PREDON project has been initiated in France in 2012 within the MASTODONS program: a Big Data scientific challenge, initiated and supported by the Interdisciplinary Mission of the National Centre for Scientific Research (CNRS). PREDON is a study group formed by

  13. SU-E-J-78: Adaptive Planning Workflow in a Pencil Beam Scanning Proton Therapy Center

    SciTech Connect

    Blakey, M; Price, S; Robison, B; Niek, S; Moe, S; Renegar, J; Mark, A; Spenser, W

    2015-06-15

    Purpose: The susceptibility of proton therapy to changes in patient setup and anatomy necessitates an adaptive planning process. With the right planning tools and clinical workflow, an adaptive plan can be created in a timely manner without adding significant workload to the treatment planning staff. Methods: In our center, a weekly QA CT is performed on most patients to assess setup, anatomy change, and tumor response. The QA CT is fused to the treatment planning CT, the contours are transferred via deformable registration, and the plan dose is recalculated on the QA CT. A physicist assesses the dose distribution, and an adaptive plan is requested based on tumor coverage or OAR dose changes. After the physician confirms or alters the deformed contours, a dosimetrist develops an adaptive plan using our TPS adaptation module. The plan is assessed for robustness and is then reviewed by the physician. Patient QA is performed within three days following the first adapted treatment. Results: Of the patients who received QA CTs, 19% required at least one adaptive plan (18.5% H&N, 18.5% brain, 11.1% breast, 14.8% chestwall, 14.8% lung, 18.5% pelvis and 3.8% abdomen). Of these patients, 14% went on a break, while the remainder was treated with the previous plan during the re-planning process. Adaptive plans were performed based on tumor shrinkage, anatomy change or positioning uncertainties for 37.9%, 44.8%, and 17.3% of the patients, respectively. On average, 3 full days are required between the QA CT and the first adapted plan treatment. Conclusion: Adaptive planning is a crucial component of proton therapy and should be applied to any site when the QA CT shows significant deviation from the plan. With an efficient workflow, an adaptive plan can be applied without delaying patient treatment or burdening the dosimetry and medical physics team.

  14. Replication and Robustness in Developmental Research

    ERIC Educational Resources Information Center

    Duncan, Greg J.; Engel, Mimi; Claessens, Amy; Dowsett, Chantelle J.

    2014-01-01

    Replications and robustness checks are key elements of the scientific method and a staple in many disciplines. However, leading journals in developmental psychology rarely include explicit replications of prior research conducted by different investigators, and few require authors to establish in their articles or online appendices that their key…

  15. Developing integrated workflows for the digitisation of herbarium specimens using a modular and scalable approach.

    PubMed

    Haston, Elspeth; Cubey, Robert; Pullan, Martin; Atkins, Hannah; Harris, David J

    2012-01-01

    Digitisation programmes in many institutes frequently involve disparate and irregular funding, diverse selection criteria and scope, with different members of staff managing and operating the processes. These factors have influenced the decision at the Royal Botanic Garden Edinburgh to develop an integrated workflow for the digitisation of herbarium specimens which is modular and scalable to enable a single overall workflow to be used for all digitisation projects. This integrated workflow is comprised of three principal elements: a specimen workflow, a data workflow and an image workflow.The specimen workflow is strongly linked to curatorial processes which will impact on the prioritisation, selection and preparation of the specimens. The importance of including a conservation element within the digitisation workflow is highlighted. The data workflow includes the concept of three main categories of collection data: label data, curatorial data and supplementary data. It is shown that each category of data has its own properties which influence the timing of data capture within the workflow. Development of software has been carried out for the rapid capture of curatorial data, and optical character recognition (OCR) software is being used to increase the efficiency of capturing label data and supplementary data. The large number and size of the images has necessitated the inclusion of automated systems within the image workflow.

  16. When Workflow Management Systems and Logging Systems Meet: Analyzing Large-Scale Execution Traces

    SciTech Connect

    Gunter, Daniel

    2008-07-31

    This poster shows the benefits of integrating a workflow management system with logging and log mining capabilities. By combing two existing, mature technologies: Pegasus-WMS and Netlogger, we are able to efficiently process execution logs of earthquake science workflows consisting of hundreds of thousands to one million tasks. In particular we show results of processing logs of CyberShake, a workflow application running on the TeraGrid. Client-side tools allow scientists to quickly gather statistics about a workflow run and find out which tasks executed, where they were executed, what was their runtime, etc. These statistics can be used to understand the performance characteristics of a workflow and help tune the execution parameters of the workflow management system. This poster shows the scalability of the system presenting results of uploading task execution records into the system and by showing results of querying the system for overall workflow performance information.

  17. Workflow Modelling and Analysis Based on the Construction of Task Models

    PubMed Central

    Cravo, Glória

    2015-01-01

    We describe the structure of a workflow as a graph whose vertices represent tasks and the arcs are associated to workflow transitions in this paper. To each task an input/output logic operator is associated. Furthermore, we associate a Boolean term to each transition present in the workflow. We still identify the structure of workflows and describe their dynamism through the construction of new task models. This construction is very simple and intuitive since it is based on the analysis of all tasks present on the workflow that allows us to describe the dynamism of the workflow very easily. So, our approach has the advantage of being very intuitive, which is an important highlight of our work. We also introduce the concept of logical termination of workflows and provide conditions under which this property is valid. Finally, we provide a counter-example which shows that a conjecture presented in a previous article is false. PMID:25705713

  18. Enabling Smart Workflows over Heterogeneous ID-Sensing Technologies

    PubMed Central

    Giner, Pau; Cetina, Carlos; Lacuesta, Raquel; Palacios, Guillermo

    2012-01-01

    Sensing technologies in mobile devices play a key role in reducing the gap between the physical and the digital world. The use of automatic identification capabilities can improve user participation in business processes where physical elements are involved (Smart Workflows). However, identifying all objects in the user surroundings does not automatically translate into meaningful services to the user. This work introduces Parkour, an architecture that allows the development of services that match the goals of each of the participants in a smart workflow. Parkour is based on a pluggable architecture that can be extended to provide support for new tasks and technologies. In order to facilitate the development of these plug-ins, tools that automate the development process are also provided. Several Parkour-based systems have been developed in order to validate the applicability of the proposal. PMID:23202193

  19. A computational workflow for designing silicon donor qubits

    SciTech Connect

    Humble, Travis S.; Ericson, M. Nance; Jakowski, Jacek; Huang, Jingsong; Britton, Charles; Curtis, Franklin G.; Dumitrescu, Eugene F.; Mohiyaddin, Fahd A.; Sumpter, Bobby G.

    2016-09-19

    Developing devices that can reliably and accurately demonstrate the principles of superposition and entanglement is an on-going challenge for the quantum computing community. Modeling and simulation offer attractive means of testing early device designs and establishing expectations for operational performance. However, the complex integrated material systems required by quantum device designs are not captured by any single existing computational modeling method. We examine the development and analysis of a multi-staged computational workflow that can be used to design and characterize silicon donor qubit systems with modeling and simulation. Our approach integrates quantum chemistry calculations with electrostatic field solvers to perform detailed simulations of a phosphorus dopant in silicon. We show how atomistic details can be synthesized into an operational model for the logical gates that define quantum computation in this particular technology. In conclusion, the resulting computational workflow realizes a design tool for silicon donor qubits that can help verify and validate current and near-term experimental devices.

  20. A computational workflow for designing silicon donor qubits

    NASA Astrophysics Data System (ADS)

    Humble, Travis S.; Ericson, M. Nance; Jakowski, Jacek; Huang, Jingsong; Britton, Charles; Curtis, Franklin G.; Dumitrescu, Eugene F.; Mohiyaddin, Fahd A.; Sumpter, Bobby G.

    2016-10-01

    Developing devices that can reliably and accurately demonstrate the principles of superposition and entanglement is an on-going challenge for the quantum computing community. Modeling and simulation offer attractive means of testing early device designs and establishing expectations for operational performance. However, the complex integrated material systems required by quantum device designs are not captured by any single existing computational modeling method. We examine the development and analysis of a multi-staged computational workflow that can be used to design and characterize silicon donor qubit systems with modeling and simulation. Our approach integrates quantum chemistry calculations with electrostatic field solvers to perform detailed simulations of a phosphorus dopant in silicon. We show how atomistic details can be synthesized into an operational model for the logical gates that define quantum computation in this particular technology. The resulting computational workflow realizes a design tool for silicon donor qubits that can help verify and validate current and near-term experimental devices.

  1. Patient recruitment workflow with and without a patient recruitment system.

    PubMed

    Trinczek, Benjamin; Schulte, Britta; Breil, Bernhard; Dugas, Martin

    2013-01-01

    In clinical trials (CTs), the process of patient recruitment (PR) is one of the main risk factors, as almost half of all trial delays are caused by problems in PR. To our knowledge, no publication in this field describes the process of PR. Therefore, weak spots and potential benefits cannot be identified. By interviewing six domain experts and modeling the workflow in a standardized way, we describe the actors, tasks and tools within PR. We compare the current workflow with Patient Recruitment System (PRS)-supported PR. The identification of eligible participants is the most complex part, but adding a PRS simplifies it by automating repetitive tasks and taking work off the Investigators' hands. This work contributes to a common understanding of the PR process.

  2. CONNJUR Workflow Builder: A software integration environment for spectral reconstruction

    PubMed Central

    Fenwick, Matthew; Weatherby, Gerard; Vyas, Jay; Sesanker, Colbert; Martyn, Timothy O.; Ellis, Heidi J.C.; Gryk, Michael R.

    2015-01-01

    CONNJUR Workflow Builder (WB) is an open-source software integration environment that leverages existing spectral reconstruction tools to create a synergistic, coherent platform for converting biomolecular NMR data from the time domain to the frequency domain. WB provides data integration of primary data and metadata using a relational database, and includes a library of pre-built workflows for processing time domain data. WB simplifies maximum entropy reconstruction, facilitating the processing of non-uniformly sampled time domain data. As will be shown in the paper, the unique features of WB provide it with novel abilities to enhance the quality, accuracy, and fidelity of the spectral reconstruction process. WB also provides features which promote collaboration, education, parameterization, and non-uniform data sets along with processing integrated with the Rowland NMR Toolkit (RNMRTK) and NMRPipe software packages. WB is available free of charge in perpetuity, dual-licensed under the MIT and GPL open source licenses. PMID:26066803

  3. Enabling smart workflows over heterogeneous ID-sensing technologies.

    PubMed

    Giner, Pau; Cetina, Carlos; Lacuesta, Raquel; Palacios, Guillermo

    2012-11-05

    Sensing technologies in mobile devices play a key role in reducing the gap between the physical and the digital world. The use of automatic identification capabilities can improve user participation in business processes where physical elements are involved(Smart Workflows). However, identifying all objects in the user surroundings does not automatically translate into meaningful services to the user. This work introduces Parkour,an architecture that allows the development of services that match the goals of each of the participants in a smart workflow. Parkour is based on a pluggable architecture that can be extended to provide support for new tasks and technologies. In order to facilitatethe development of these plug-ins, tools that automate the development process are also provided. Several Parkour-based systems have been developed in order to validate the applicability of the proposal.

  4. Evidence-Based Workflows for Thyroid and Parathyroid Surgery

    PubMed Central

    Meltzer, Charles; Budayr, Amer; Chavez, Annette; Dlott, Richard; Greif, William; Gurushanthaiah, Deepak; Klonecke, Andrew; Lando, Matthew; Leary, Joyce; Nayak, Sundeep; Niederkohr, Ryan; Park, Judith; Savitz, Alison; Schwartz, Henry

    2016-01-01

    A need exists to reduce care variations by standardizing the practice of thyroid and parathyroid surgery. During the course of a year, a task force developed algorithms representing decision points and workflows based on American Thyroid Association guidelines and three internal studies of surgical practices in the Northern and Southern California Regions of Kaiser Permanente conducted in collaboration with Health Information Technology Transformation & Analytics (HITTA). PMID:27479948

  5. Improved compliance by BPM-driven workflow automation.

    PubMed

    Holzmüller-Laue, Silke; Göde, Bernd; Fleischer, Heidi; Thurow, Kerstin

    2014-12-01

    Using methods and technologies of business process management (BPM) for the laboratory automation has important benefits (i.e., the agility of high-level automation processes, rapid interdisciplinary prototyping and implementation of laboratory tasks and procedures, and efficient real-time process documentation). A principal goal of the model-driven development is the improved transparency of processes and the alignment of process diagrams and technical code. First experiences of using the business process model and notation (BPMN) show that easy-to-read graphical process models can achieve and provide standardization of laboratory workflows. The model-based development allows one to change processes quickly and an easy adaption to changing requirements. The process models are able to host work procedures and their scheduling in compliance with predefined guidelines and policies. Finally, the process-controlled documentation of complex workflow results addresses modern laboratory needs of quality assurance. BPMN 2.0 as an automation language to control every kind of activity or subprocess is directed to complete workflows in end-to-end relationships. BPMN is applicable as a system-independent and cross-disciplinary graphical language to document all methods in laboratories (i.e., screening procedures or analytical processes). That means, with the BPM standard, a communication method of sharing process knowledge of laboratories is also available.

  6. Formalizing an integrative, multidisciplinary cancer therapy discovery workflow

    PubMed Central

    McGuire, Mary F.; Enderling, Heiko; Wallace, Dorothy I.; Batra, Jaspreet; Jordan, Marie; Kumar, Sushil; Panetta, John C.; Pasquier, Eddy

    2014-01-01

    Although many clinicians and researchers work to understand cancer, there has been limited success to effectively combine forces and collaborate over time, distance, data and budget constraints. Here we present a workflow template for multidisciplinary cancer therapy that was developed during the 2nd Annual Workshop on Cancer Systems Biology sponsored by Tufts University, Boston, MA in July 2012. The template was applied to the development of a metronomic therapy backbone for neuroblastoma. Three primary groups were identified: clinicians, biologists, and scientists (mathematicians, computer scientists, physicists and engineers). The workflow described their integrative interactions; parallel or sequential processes; data sources and computational tools at different stages as well as the iterative nature of therapeutic development from clinical observations to in vitro, in vivo, and clinical trials. We found that theoreticians in dialog with experimentalists could develop calibrated and parameterized predictive models that inform and formalize sets of testable hypotheses, thus speeding up discovery and validation while reducing laboratory resources and costs. The developed template outlines an interdisciplinary collaboration workflow designed to systematically investigate the mechanistic underpinnings of a new therapy and validate that therapy to advance development and clinical acceptance. PMID:23955390

  7. Integrating Process Mining and Cognitive Analysis to Study EHR Workflow

    PubMed Central

    Furniss, Stephanie K.; Burton, Matthew M.; Grando, Adela; Larson, David W.; Kaufman, David R.

    2016-01-01

    There are numerous methods to study workflow. However, few produce the kinds of in-depth analyses needed to understand EHR-mediated workflow. Here we investigated variations in clinicians’ EHR workflow by integrating quantitative analysis of patterns of users’ EHR-interactions with in-depth qualitative analysis of user performance. We characterized 6 clinicians’ patterns of information-gathering using a sequential process-mining approach. The analysis revealed 519 different screen transition patterns performed across 1569 patient cases. No one pattern was followed for more than 10% of patient cases, the 15 most frequent patterns accounted for over half ofpatient cases (53%), and 27% of cases exhibited unique patterns. By triangulating quantitative and qualitative analyses, we found that participants’ EHR-interactive behavior was associated with their routine processes, patient case complexity, and EHR default settings. The proposed approach has significant potential to inform resource allocation for observation and training. In-depth observations helped us to explain variation across users. PMID:28269854

  8. AnalyzeThis: An Analysis Workflow-Aware Storage System

    SciTech Connect

    Sim, Hyogi; Kim, Youngjae; Vazhkudai, Sudharshan S; Tiwari, Devesh; Anwar, Ali; Butt, Ali R; Ramakrishnan, Lavanya

    2015-01-01

    The need for novel data analysis is urgent in the face of a data deluge from modern applications. Traditional approaches to data analysis incur significant data movement costs, moving data back and forth between the storage system and the processor. Emerging Active Flash devices enable processing on the flash, where the data already resides. An array of such Active Flash devices allows us to revisit how analysis workflows interact with storage systems. By seamlessly blending together the flash storage and data analysis, we create an analysis workflow-aware storage system, AnalyzeThis. Our guiding principle is that analysis-awareness be deeply ingrained in each and every layer of the storage, elevating data analyses as first-class citizens, and transforming AnalyzeThis into a potent analytics-aware appliance. We implement the AnalyzeThis storage system atop an emulation platform of the Active Flash array. Our results indicate that AnalyzeThis is viable, expediting workflow execution and minimizing data movement.

  9. Automated quality control in a file-based broadcasting workflow

    NASA Astrophysics Data System (ADS)

    Zhang, Lina

    2014-04-01

    Benefit from the development of information and internet technologies, television broadcasting is transforming from inefficient tape-based production and distribution to integrated file-based workflows. However, no matter how many changes have took place, successful broadcasting still depends on the ability to deliver a consistent high quality signal to the audiences. After the transition from tape to file, traditional methods of manual quality control (QC) become inadequate, subjective, and inefficient. Based on China Central Television's full file-based workflow in the new site, this paper introduces an automated quality control test system for accurate detection of hidden troubles in media contents. It discusses the system framework and workflow control when the automated QC is added. It puts forward a QC criterion and brings forth a QC software followed this criterion. It also does some experiments on QC speed by adopting parallel processing and distributed computing. The performance of the test system shows that the adoption of automated QC can make the production effective and efficient, and help the station to achieve a competitive advantage in the media market.

  10. ATLAS Job Transforms: A Data Driven Workflow Engine

    NASA Astrophysics Data System (ADS)

    Stewart, G. A.; Breaden-Madden, W. B.; Maddocks, H. J.; Harenberg, T.; Sandhoff, M.; Sarrazin, B.

    2014-06-01

    The need to run complex workflows for a high energy physics experiment such as ATLAS has always been present. However, as computing resources have become even more constrained, compared to the wealth of data generated by the LHC, the need to use resources efficiently and manage complex workflows within a single grid job have increased. In ATLAS, a new Job Transform framework has been developed that we describe in this paper. This framework manages the multiple execution steps needed to 'transform' one data type into another (e.g., RAW data to ESD to AOD to final ntuple) and also provides a consistent interface for the ATLAS production system. The new framework uses a data driven workflow definition which is both easy to manage and powerful. After a transform is defined, jobs are expressed simply by specifying the input data and the desired output data. The transform infrastructure then executes only the necessary substeps to produce the final data products. The global execution cost of running the job is minimised and the transform can adapt to scenarios where data can be produced along different execution paths. Transforms for specific physics tasks which support up to 60 individual substeps have been successfully run. As the new transforms infrastructure has been deployed in production many features have been added to the framework which improve reliability, quality of error reporting and also provide support for multi-process jobs.

  11. a Workflow for UAV's Integration Into a Geodesign Platform

    NASA Astrophysics Data System (ADS)

    Anca, P.; Calugaru, A.; Alixandroae, I.; Nazarie, R.

    2016-06-01

    This paper presents a workflow for the development of various Geodesign scenarios. The subject is important in the context of identifying patterns and designing solutions for a Smart City with optimized public transportation, efficient buildings, efficient utilities, recreational facilities a.s.o.. The workflow describes the procedures starting with acquiring data in the field, data processing, orthophoto generation, DTM generation, integration into a GIS platform and analyzing for a better support for Geodesign. Esri's City Engine is used mostly for 3D modeling capabilities that enable the user to obtain 3D realistic models. The workflow uses as inputs information extracted from images acquired using UAVs technologies, namely eBee, existing 2D GIS geodatabases, and a set of CGA rules. The method that we used further, is called procedural modeling, and uses rules in order to extrude buildings, the street network, parcel zoning and side details, based on the initial attributes from the geodatabase. The resulted products are various scenarios for redesigning, for analyzing new exploitation sites. Finally, these scenarios can be published as interactive web scenes for internal, groups or pubic consultation. In this way, problems like the impact of new constructions being build, re-arranging green spaces or changing routes for public transportation, etc. are revealed through impact and visibility analysis or shadowing analysis and are brought to the citizen's attention. This leads to better decisions.

  12. Argo: enabling the development of bespoke workflows and services for disease annotation.

    PubMed

    Batista-Navarro, Riza; Carter, Jacob; Ananiadou, Sophia

    2016-01-01

    Argo (http://argo.nactem.ac.uk) is a generic text mining workbench that can cater to a variety of use cases, including the semi-automatic annotation of literature. It enables its technical users to build their own customised text mining solutions by providing a wide array of interoperable and configurable elementary components that can be seamlessly integrated into processing workflows. With Argo's graphical annotation interface, domain experts can then make use of the workflows' automatically generated output to curate information of interest.With the continuously rising need to understand the aetiology of diseases as well as the demand for their informed diagnosis and personalised treatment, the curation of disease-relevant information from medical and clinical documents has become an indispensable scientific activity. In the Fifth BioCreative Challenge Evaluation Workshop (BioCreative V), there was substantial interest in the mining of literature for disease-relevant information. Apart from a panel discussion focussed on disease annotations, the chemical-disease relations (CDR) track was also organised to foster the sharing and advancement of disease annotation tools and resources.This article presents the application of Argo's capabilities to the literature-based annotation of diseases. As part of our participation in BioCreative V's User Interactive Track (IAT), we demonstrated and evaluated Argo's suitability to the semi-automatic curation of chronic obstructive pulmonary disease (COPD) phenotypes. Furthermore, the workbench facilitated the development of some of the CDR track's top-performing web services for normalising disease mentions against the Medical Subject Headings (MeSH) database. In this work, we highlight Argo's support for developing various types of bespoke workflows ranging from ones which enabled us to easily incorporate information from various databases, to those which train and apply machine learning-based concept recognition models

  13. Argo: enabling the development of bespoke workflows and services for disease annotation

    PubMed Central

    Batista-Navarro, Riza; Carter, Jacob; Ananiadou, Sophia

    2016-01-01

    Argo (http://argo.nactem.ac.uk) is a generic text mining workbench that can cater to a variety of use cases, including the semi-automatic annotation of literature. It enables its technical users to build their own customised text mining solutions by providing a wide array of interoperable and configurable elementary components that can be seamlessly integrated into processing workflows. With Argo's graphical annotation interface, domain experts can then make use of the workflows' automatically generated output to curate information of interest. With the continuously rising need to understand the aetiology of diseases as well as the demand for their informed diagnosis and personalised treatment, the curation of disease-relevant information from medical and clinical documents has become an indispensable scientific activity. In the Fifth BioCreative Challenge Evaluation Workshop (BioCreative V), there was substantial interest in the mining of literature for disease-relevant information. Apart from a panel discussion focussed on disease annotations, the chemical-disease relations (CDR) track was also organised to foster the sharing and advancement of disease annotation tools and resources. This article presents the application of Argo’s capabilities to the literature-based annotation of diseases. As part of our participation in BioCreative V’s User Interactive Track (IAT), we demonstrated and evaluated Argo’s suitability to the semi-automatic curation of chronic obstructive pulmonary disease (COPD) phenotypes. Furthermore, the workbench facilitated the development of some of the CDR track’s top-performing web services for normalising disease mentions against the Medical Subject Headings (MeSH) database. In this work, we highlight Argo’s support for developing various types of bespoke workflows ranging from ones which enabled us to easily incorporate information from various databases, to those which train and apply machine learning-based concept recognition

  14. Scientific Satellites

    DTIC Science & Technology

    1967-01-01

    1919 paper (ref. 9), in which he suggested a Moon rocket. Rock- etry was on a par with extrasensory perception in those days. 38 SCIENTIFIC SA&TLLITES...this way, images of sky can be taken at different wavelengths. The perceptive reader will note that the two zodiacal-light ex- periments described

  15. Scientific Documentation.

    ERIC Educational Resources Information Center

    Pieper, Gail W.

    1980-01-01

    Describes how scientific documentation is taught in three 50-minute sessions in a technical writing course. Tells how session one distinguishes between in-text notes, footnotes, and reference entries; session two discusses the author-year system of citing references; and session three is concerned with the author-number system of reference…

  16. Concept and application of a computational vaccinology workflow

    PubMed Central

    2010-01-01

    Background The last years have seen a renaissance of the vaccine area, driven by clinical needs in infectious diseases but also chronic diseases such as cancer and autoimmune disorders. Equally important are technological improvements involving nano-scale delivery platforms as well as third generation adjuvants. In parallel immunoinformatics routines have reached essential maturity for supporting central aspects in vaccinology going beyond prediction of antigenic determinants. On this basis computational vaccinology has emerged as a discipline aimed at ab-initio rational vaccine design. Here we present a computational workflow for implementing computational vaccinology covering aspects from vaccine target identification to functional characterization and epitope selection supported by a Systems Biology assessment of central aspects in host-pathogen interaction. We exemplify the procedures for Epstein Barr Virus (EBV), a clinically relevant pathogen causing chronic infection and suspected of triggering malignancies and autoimmune disorders. Results We introduce pBone/pView as a computational workflow supporting design and execution of immunoinformatics workflow modules, additionally involving aspects of results visualization, knowledge sharing and re-use. Specific elements of the workflow involve identification of vaccine targets in the realm of a Systems Biology assessment of host-pathogen interaction for identifying functionally relevant targets, as well as various methodologies for delineating B- and T-cell epitopes with particular emphasis on broad coverage of viral isolates as well as MHC alleles. Applying the workflow on EBV specifically proposes sequences from the viral proteins LMP2, EBNA2 and BALF4 as vaccine targets holding specific B- and T-cell epitopes promising broad strain and allele coverage. Conclusion Based on advancements in the experimental assessment of genomes, transcriptomes and proteomes for both, pathogen and (human) host, the fundaments for

  17. Workflow in Clinical Trial Sites & Its Association with Near Miss Events for Data Quality: Ethnographic, Workflow & Systems Simulation

    PubMed Central

    Araujo de Carvalho, Elias Cesar; Batilana, Adelia Portero; Claudino, Wederson; Lima Reis, Luiz Fernando; Schmerling, Rafael A.; Shah, Jatin; Pietrobon, Ricardo

    2012-01-01

    Background With the exponential expansion of clinical trials conducted in (Brazil, Russia, India, and China) and VISTA (Vietnam, Indonesia, South Africa, Turkey, and Argentina) countries, corresponding gains in cost and enrolment efficiency quickly outpace the consonant metrics in traditional countries in North America and European Union. However, questions still remain regarding the quality of data being collected in these countries. We used ethnographic, mapping and computer simulation studies to identify/address areas of threat to near miss events for data quality in two cancer trial sites in Brazil. Methodology/Principal Findings Two sites in Sao Paolo and Rio Janeiro were evaluated using ethnographic observations of workflow during subject enrolment and data collection. Emerging themes related to threats to near miss events for data quality were derived from observations. They were then transformed into workflows using UML-AD and modeled using System Dynamics. 139 tasks were observed and mapped through the ethnographic study. The UML-AD detected four major activities in the workflow evaluation of potential research subjects prior to signature of informed consent, visit to obtain subject́s informed consent, regular data collection sessions following study protocol and closure of study protocol for a given project. Field observations pointed to three major emerging themes: (a) lack of standardized process for data registration at source document, (b) multiplicity of data repositories and (c) scarcity of decision support systems at the point of research intervention. Simulation with policy model demonstrates a reduction of the rework problem. Conclusions/Significance Patterns of threats to data quality at the two sites were similar to the threats reported in the literature for American sites. The clinical trial site managers need to reorganize staff workflow by using information technology more efficiently, establish new standard procedures and manage

  18. BEAM: A computational workflow system for managing and modeling material characterization data in HPC environments

    SciTech Connect

    Lingerfelt, Eric J; Endeve, Eirik; Ovchinnikov, Oleg S; Borreguero Calvo, Jose M; Park, Byung H; Archibald, Richard K; Symons, Christopher T; Kalinin, Sergei V; Messer, Bronson; Shankar, Mallikarjun; Jesse, Stephen

    2016-01-01

    Improvements in scientific instrumentation allow imaging at mesoscopic to atomic length scales, many spectroscopic modes, and now with the rise of multimodal acquisition systems and the associated processing capability the era of multidimensional, informationally dense data sets has arrived. Technical issues in these combinatorial scientific fields are exacerbated by computational challenges best summarized as a necessity for drastic improvement in the capability to transfer, store, and analyze large volumes of data. The Bellerophon Environment for Analysis of Materials (BEAM) platform provides material scientists the capability to directly leverage the integrated computational and analytical power of High Performance Computing (HPC) to perform scalable data analysis and simulation via an intuitive, cross-platform client user interface. This framework delivers authenticated, push-button execution of complex user workflows that deploy data analysis algorithms and computational simulations utilizing the converged compute-and-data infrastructure at Oak Ridge National Laboratory s (ORNL) Compute and Data Environment for Science (CADES) and HPC environments like Titan at the Oak Ridge Leadership Computing Facility (OLCF). In this work we address the underlying HPC needs for characterization in the material science community, elaborate how BEAM s design and infrastructure tackle those needs, and present a small sub-set of user cases where scientists utilized BEAM across a broad range of analytical techniques and analysis modes.

  19. iLAP: a workflow-driven software for experimental protocol development, data acquisition and analysis

    PubMed Central

    2009-01-01

    Background In recent years, the genome biology community has expended considerable effort to confront the challenges of managing heterogeneous data in a structured and organized way and developed laboratory information management systems (LIMS) for both raw and processed data. On the other hand, electronic notebooks were developed to record and manage scientific data, and facilitate data-sharing. Software which enables both, management of large datasets and digital recording of laboratory procedures would serve a real need in laboratories using medium and high-throughput techniques. Results We have developed iLAP (Laboratory data management, Analysis, and Protocol development), a workflow-driven information management system specifically designed to create and manage experimental protocols, and to analyze and share laboratory data. The system combines experimental protocol development, wizard-based data acquisition, and high-throughput data analysis into a single, integrated system. We demonstrate the power and the flexibility of the platform using a microscopy case study based on a combinatorial multiple fluorescence in situ hybridization (m-FISH) protocol and 3D-image reconstruction. iLAP is freely available under the open source license AGPL from http://genome.tugraz.at/iLAP/. Conclusion iLAP is a flexible and versatile information management system, which has the potential to close the gap between electronic notebooks and LIMS and can therefore be of great value for a broad scientific community. PMID:19941647

  20. Robust Adaptive Control

    NASA Technical Reports Server (NTRS)

    Narendra, K. S.; Annaswamy, A. M.

    1985-01-01

    Several concepts and results in robust adaptive control are are discussed and is organized in three parts. The first part surveys existing algorithms. Different formulations of the problem and theoretical solutions that have been suggested are reviewed here. The second part contains new results related to the role of persistent excitation in robust adaptive systems and the use of hybrid control to improve robustness. In the third part promising new areas for future research are suggested which combine different approaches currently known.

  1. Scientific Claims versus Scientific Knowledge.

    ERIC Educational Resources Information Center

    Ramsey, John

    1991-01-01

    Provides activities that help students to understand the importance of the scientific method. The activities include the science of fusion and cold fusion; a group activity that analyzes and interprets the events surrounding cold fusion; and an application research project concerning a current science issue. (ZWH)

  2. Scientific Misconduct

    NASA Astrophysics Data System (ADS)

    Moore, John W.

    2002-12-01

    These cases provide a good basis for discussions of scientific ethics, particularly with respect to the responsibilities of colleagues in collaborative projects. With increasing numbers of students working in cooperative or collaborative groups, there may be opportunities for more than just discussion—similar issues of responsibility apply to the members of such groups. Further, this is an area where, “no clear, widely accepted standards of behavior exist” (1). Thus there is an opportunity to point out to students that scientific ethics, like science itself, is incomplete and needs constant attention to issues that result from new paradigms such as collaborative research. Finally, each of us can resolve to pay more attention to the contributions we and our colleagues make to collaborative projects, applying to our own work no less critical an eye than we would cast on the work of those we don’t know at all.

  3. Geoscience data: Defining policies and workflow tools for long-term storage of continuously and temporarily collected data

    NASA Astrophysics Data System (ADS)

    Gebauer, P.; Kirchner, I.; Peters-Kottig, W.; Klump, J.; Bertelmann, R.; Rusch, B.; Ulbricht, D.; Wattenbach, M.

    2012-04-01

    The intention of the project EWIG (Developing workflow components for long-term archiving of research data in geosciences) is to support geoscientists in transferring their data in a standardized way for storage in digital long-term archives. In the pilot phase test data are provided by two participating research institutions, both producing large amounts of data. One of them - Institut für Meteorologie, Freie Universität Berlin - provides continuously meteorological data, these data are measured every minute at several stations throughout Berlin. The other - Deutsches GeoForschungsZentrum Potsdam - conducts geophysical field experiments and thus produces data temporarily. The digital long-term archive test system is provided by an infrastructure facility - Konrad-Zuse-Zentrum für Informationstechnik Berlin. Both use cases require definite ways for the digital preservation workflows. Policies for the workflow independent from the working area will be defined. At the beginning of the project the actual state of the art in science data preservation policies has to be identified, gaps should be detected and analyzed, so that missing workflow components can be designed. Contact to other institutions, having already policies for their data lifecycle, is necessary to get an overview of existing operating procedures and data management software tools. Assuring the usability of the archived data is necessary during all stages of the project. All information essential for interpreting the data has to be available in a simple way. Usability tests of the archive will be performed together with domain scientists as well as students (bachelor, master, graduate). Questions about the quality of data access, documentation, metadata, etc. should be answered. User feedback and the knowledge of the consortium will be used to compose a university lecture or seminar series on digital data curation, so that future generations of scientists become familiar with the handling of their

  4. Evaluation of User Interface and Workflow Design of a Bedside Nursing Clinical Decision Support System

    PubMed Central

    Yuan, Michael Juntao; Finley, George Mike; Mills, Christy; Johnson, Ron Kim

    2013-01-01

    Background Clinical decision support systems (CDSS) are important tools to improve health care outcomes and reduce preventable medical adverse events. However, the effectiveness and success of CDSS depend on their implementation context and usability in complex health care settings. As a result, usability design and validation, especially in real world clinical settings, are crucial aspects of successful CDSS implementations. Objective Our objective was to develop a novel CDSS to help frontline nurses better manage critical symptom changes in hospitalized patients, hence reducing preventable failure to rescue cases. A robust user interface and implementation strategy that fit into existing workflows was key for the success of the CDSS. Methods Guided by a formal usability evaluation framework, UFuRT (user, function, representation, and task analysis), we developed a high-level specification of the product that captures key usability requirements and is flexible to implement. We interviewed users of the proposed CDSS to identify requirements, listed functions, and operations the system must perform. We then designed visual and workflow representations of the product to perform the operations. The user interface and workflow design were evaluated via heuristic and end user performance evaluation. The heuristic evaluation was done after the first prototype, and its results were incorporated into the product before the end user evaluation was conducted. First, we recruited 4 evaluators with strong domain expertise to study the initial prototype. Heuristic violations were coded and rated for severity. Second, after development of the system, we assembled a panel of nurses, consisting of 3 licensed vocational nurses and 7 registered nurses, to evaluate the user interface and workflow via simulated use cases. We recorded whether each session was successfully completed and its completion time. Each nurse was asked to use the National Aeronautics and Space Administration

  5. Replication and robustness in developmental research.

    PubMed

    Duncan, Greg J; Engel, Mimi; Claessens, Amy; Dowsett, Chantelle J

    2014-11-01

    Replications and robustness checks are key elements of the scientific method and a staple in many disciplines. However, leading journals in developmental psychology rarely include explicit replications of prior research conducted by different investigators, and few require authors to establish in their articles or online appendices that their key results are robust across estimation methods, data sets, and demographic subgroups. This article makes the case for prioritizing both explicit replications and, especially, within-study robustness checks in developmental psychology. It provides evidence on variation in effect sizes in developmental studies and documents strikingly different replication and robustness-checking practices in a sample of journals in developmental psychology and a sister behavioral science-applied economics. Our goal is not to show that any one behavioral science has a monopoly on best practices, but rather to show how journals from a related discipline address vital concerns of replication and generalizability shared by all social and behavioral sciences. We provide recommendations for promoting graduate training in replication and robustness-checking methods and for editorial policies that encourage these practices. Although some of our recommendations may shift the form and substance of developmental research articles, we argue that they would generate considerable scientific benefits for the field. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  6. Observing health professionals' workflow patterns for diabetes care - First steps towards an ontology for EHR services.

    PubMed

    Schweitzer, M; Lasierra, N; Hoerbst, A

    2015-01-01

    Increasing the flexibility from a user-perspective and enabling a workflow based interaction, facilitates an easy user-friendly utilization of EHRs for healthcare professionals' daily work. To offer such versatile EHR-functionality, our approach is based on the execution of clinical workflows by means of a composition of semantic web-services. The backbone of such architecture is an ontology which enables to represent clinical workflows and facilitates the selection of suitable services. In this paper we present the methods and results after running observations of diabetes routine consultations which were conducted in order to identify those workflows and the relation among the included tasks. Mentioned workflows were first modeled by BPMN and then generalized. As a following step in our study, interviews will be conducted with clinical personnel to validate modeled workflows.

  7. Information Issues and Contexts that Impair Team Based Communication Workflow: A Palliative Sedation Case Study.

    PubMed

    Cornett, Alex; Kuziemsky, Craig

    2015-01-01

    Implementing team based workflows can be complex because of the scope of providers involved and the extent of information exchange and communication that needs to occur. While a workflow may represent the ideal structure of communication that needs to occur, information issues and contextual factors may impact how the workflow is implemented in practice. Understanding these issues will help us better design systems to support team based workflows. In this paper we use a case study of palliative sedation therapy (PST) to model a PST workflow and then use it to identify purposes of communication, information issues and contextual factors that impact them. We then suggest how our findings could inform health information technology (HIT) design to support team based communication workflows.

  8. Robust Critical Point Detection

    SciTech Connect

    Bhatia, Harsh

    2016-07-28

    Robust Critical Point Detection is a software to compute critical points in a 2D or 3D vector field robustly. The software was developed as a part of the author's work at the lab as a Phd student under Livermore Scholar Program (now called Livermore Graduate Scholar Program).

  9. Mechanisms for Robust Cognition

    ERIC Educational Resources Information Center

    Walsh, Matthew M.; Gluck, Kevin A.

    2015-01-01

    To function well in an unpredictable environment using unreliable components, a system must have a high degree of robustness. Robustness is fundamental to biological systems and is an objective in the design of engineered systems such as airplane engines and buildings. Cognitive systems, like biological and engineered systems, exist within…

  10. Performing statistical analyses on quantitative data in Taverna workflows: An example using R and maxdBrowse to identify differentially-expressed genes from microarray data

    PubMed Central

    Li, Peter; Castrillo, Juan I; Velarde, Giles; Wassink, Ingo; Soiland-Reyes, Stian; Owen, Stuart; Withers, David; Oinn, Tom; Pocock, Matthew R; Goble, Carole A; Oliver, Stephen G; Kell, Douglas B

    2008-01-01

    be used by data analysis experts as a generic tool for composing ad hoc analyses of quantitative data by combining the use of scripts written in the R programming language with tools exposed as services in workflows. When these workflows are shared with colleagues and the wider scientific community, they provide an approach for other scientists wanting to use tools such as R without having to learn the corresponding programming language to analyse their own data. PMID:18687127

  11. Jenkins-CI, an Open-Source Continuous Integration System, as a Scientific Data and Image-Processing Platform.

    PubMed

    Moutsatsos, Ioannis K; Hossain, Imtiaz; Agarinis, Claudia; Harbinski, Fred; Abraham, Yann; Dobler, Luc; Zhang, Xian; Wilson, Christopher J; Jenkins, Jeremy L; Holway, Nicholas; Tallarico, John; Parker, Christian N

    2017-03-01

    High-throughput screening generates large volumes of heterogeneous data that require a diverse set of computational tools for management, processing, and analysis. Building integrated, scalable, and robust computational workflows for such applications is challenging but highly valuable. Scientific data integration and pipelining facilitate standardized data processing, collaboration, and reuse of best practices. We describe how Jenkins-CI, an "off-the-shelf," open-source, continuous integration system, is used to build pipelines for processing images and associated data from high-content screening (HCS). Jenkins-CI provides numerous plugins for standard compute tasks, and its design allows the quick integration of external scientific applications. Using Jenkins-CI, we integrated CellProfiler, an open-source image-processing platform, with various HCS utilities and a high-performance Linux cluster. The platform is web-accessible, facilitates access and sharing of high-performance compute resources, and automates previously cumbersome data and image-processing tasks. Imaging pipelines developed using the desktop CellProfiler client can be managed and shared through a centralized Jenkins-CI repository. Pipelines and managed data are annotated to facilitate collaboration and reuse. Limitations with Jenkins-CI (primarily around the user interface) were addressed through the selection of helper plugins from the Jenkins-CI community.

  12. Jenkins-CI, an Open-Source Continuous Integration System, as a Scientific Data and Image-Processing Platform

    PubMed Central

    Moutsatsos, Ioannis K.; Hossain, Imtiaz; Agarinis, Claudia; Harbinski, Fred; Abraham, Yann; Dobler, Luc; Zhang, Xian; Wilson, Christopher J.; Jenkins, Jeremy L.; Holway, Nicholas; Tallarico, John; Parker, Christian N.

    2016-01-01

    High-throughput screening generates large volumes of heterogeneous data that require a diverse set of computational tools for management, processing, and analysis. Building integrated, scalable, and robust computational workflows for such applications is challenging but highly valuable. Scientific data integration and pipelining facilitate standardized data processing, collaboration, and reuse of best practices. We describe how Jenkins-CI, an “off-the-shelf,” open-source, continuous integration system, is used to build pipelines for processing images and associated data from high-content screening (HCS). Jenkins-CI provides numerous plugins for standard compute tasks, and its design allows the quick integration of external scientific applications. Using Jenkins-CI, we integrated CellProfiler, an open-source image-processing platform, with various HCS utilities and a high-performance Linux cluster. The platform is web-accessible, facilitates access and sharing of high-performance compute resources, and automates previously cumbersome data and image-processing tasks. Imaging pipelines developed using the desktop CellProfiler client can be managed and shared through a centralized Jenkins-CI repository. Pipelines and managed data are annotated to facilitate collaboration and reuse. Limitations with Jenkins-CI (primarily around the user interface) were addressed through the selection of helper plugins from the Jenkins-CI community. PMID:27899692

  13. Learning Clinical Workflows to Identify Subgroups of Heart Failure Patients

    PubMed Central

    Yan, Chao; Chen, You; Li, Bo; Liebovitz, David; Malin, Bradley

    2016-01-01

    Heart Failure (HF) is one of the most common indications for readmission to the hospital among elderly patients. This is due to the progressive nature of the disease, as well as its association with complex comorbidities (e.g., anemia, chronic kidney disease, chronic obstructive pulmonary disease, hyper- and hypothyroidism), which contribute to increased morbidity and mortality, as well as a reduced quality of life. Healthcare organizations (HCOs) have established diverse treatment plans for HF patients, but such routines are not always formalized and may, in fact, arise organically as a patient’s management evolves over time. This investigation was motivated by the hypothesis that patients associated with a certain subgroup of HF should follow a similar workflow that, once made explicit, could be leveraged by an HCO to more effectively allocate resources and manage HF patients. Thus, in this paper, we introduce a method to identify subgroups of HF through a similarity analysis of event sequences documented in the clinical setting. Specifically, we 1) structure event sequences for HF patients based on the patterns of electronic medical record (EMR) system utilization, 2) identify subgroups of HF patients by applying a k-means clustering algorithm on utilization patterns, 3) learn clinical workflows for each subgroup, and 4) label each subgroup with diagnosis and procedure codes that are distinguishing in the set of all subgroups. To demonstrate its potential, we applied our method to EMR event logs for 785 HF inpatient stays over a 4 month period at a large academic medical center. Our method identified 8 subgroups of HF, each of which was found to associate with a canonical workflow inferred through an inductive mining algorithm. Each subgroup was further confirmed to be affiliated with specific comorbidities, such as hyperthyroidism and hypothyroidism. PMID:28269922

  14. A practical data processing workflow for multi-OMICS projects.

    PubMed

    Kohl, Michael; Megger, Dominik A; Trippler, Martin; Meckel, Hagen; Ahrens, Maike; Bracht, Thilo; Weber, Frank; Hoffmann, Andreas-Claudius; Baba, Hideo A; Sitek, Barbara; Schlaak, Jörg F; Meyer, Helmut E; Stephan, Christian; Eisenacher, Martin

    2014-01-01

    Multi-OMICS approaches aim on the integration of quantitative data obtained for different biological molecules in order to understand their interrelation and the functioning of larger systems. This paper deals with several data integration and data processing issues that frequently occur within this context. To this end, the data processing workflow within the PROFILE project is presented, a multi-OMICS project that aims on identification of novel biomarkers and the development of new therapeutic targets for seven important liver diseases. Furthermore, a software called CrossPlatformCommander is sketched, which facilitates several steps of the proposed workflow in a semi-automatic manner. Application of the software is presented for the detection of novel biomarkers, their ranking and annotation with existing knowledge using the example of corresponding Transcriptomics and Proteomics data sets obtained from patients suffering from hepatocellular carcinoma. Additionally, a linear regression analysis of Transcriptomics vs. Proteomics data is presented and its performance assessed. It was shown, that for capturing profound relations between Transcriptomics and Proteomics data, a simple linear regression analysis is not sufficient and implementation and evaluation of alternative statistical approaches are needed. Additionally, the integration of multivariate variable selection and classification approaches is intended for further development of the software. Although this paper focuses only on the combination of data obtained from quantitative Proteomics and Transcriptomics experiments, several approaches and data integration steps are also applicable for other OMICS technologies. Keeping specific restrictions in mind the suggested workflow (or at least parts of it) may be used as a template for similar projects that make use of different high throughput techniques. This article is part of a Special Issue entitled: Computational Proteomics in the Post

  15. Accelerating Medical Research using the Swift Workflow System

    PubMed Central

    STEF-PRAUN, Tiberiu; CLIFFORD, Benjamin; FOSTER, Ian; HASSON, Uri; HATEGAN, Mihael; SMALL, Steven L.; WILDE, Michael; ZHAO, Yong

    2009-01-01

    Both medical research and clinical practice are starting to involve large quantities of data and to require large-scale computation, as a result of the digitization of many areas of medicine. For example, in brain research – the domain that we consider here – a single research study may require the repeated processing, using computationally demanding and complex applications, of thousands of files corresponding to hundreds of functional MRI studies. Execution efficiency demands the use of parallel or distributed computing, but few medical researchers have the time or expertise to write the necessary parallel programs. The Swift system addresses these concerns. A simple scripting language, SwiftScript, provides for the concise high-level specification of workflows that invoke various application programs on potentially large quantities of data. The Swift engine provides for the efficient execution of these workflows on sequential computers, parallel computers, and/or distributed grids that federate the computing resources of many sites. Last but not least, the Swift provenance catalog keeps track of all actions performed, addressing vital bookkeeping functions that so often cause difficulties in large computations. To illustrate the use of Swift for medical research, we describe its use for the analysis of functional MRI data as part of a research project examining the neurological mechanisms of recovery from aphasia after stroke. We show how SwiftScript is used to encode an application workflow, and present performance results that demonstrate our ability to achieve significant speedups on both a local parallel computing cluster and multiple parallel clusters at distributed sites. PMID:17476063

  16. Bioprocess development workflow: Transferable physiological knowledge instead of technological correlations.

    PubMed

    Reichelt, Wieland N; Haas, Florian; Sagmeister, Patrick; Herwig, Christoph

    2017-01-01

    Microbial bioprocesses need to be designed to be transferable from lab scale to production scale as well as between setups. Although substantial effort is invested to control technological parameters, usually the only true constant parameter is the actual producer of the product: the cell. Hence, instead of solely controlling technological process parameters, the focus should be increasingly laid on physiological parameters. This contribution aims at illustrating a workflow of data life cycle management with special focus on physiology. Information processing condenses the data into physiological variables, while information mining condenses the variables further into physiological descriptors. This basis facilitates data analysis for a physiological explanation for observed phenomena in productivity. Targeting transferability, we demonstrate this workflow using an industrially relevant Escherichia coli process for recombinant protein production and substantiate the following three points: (1) The postinduction phase is independent in terms of productivity and physiology from the preinduction variables specific growth rate and biomass at induction. (2) The specific substrate uptake rate during induction phase was found to significantly impact the maximum specific product titer. (3) The time point of maximum specific titer can be predicted by an easy accessible physiological variable: while the maximum specific titers were reached at different time points (19.8 ± 7.6 h), those maxima were reached all within a very narrow window of cumulatively consumed substrate dSn (3.1 ± 0.3 g/g). Concluding, this contribution provides a workflow on how to gain a physiological view on the process and illustrates potential benefits. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:261-270, 2017.

  17. Learning Clinical Workflows to Identify Subgroups of Heart Failure Patients.

    PubMed

    Yan, Chao; Chen, You; Li, Bo; Liebovitz, David; Malin, Bradley

    2016-01-01

    Heart Failure (HF) is one of the most common indications for readmission to the hospital among elderly patients. This is due to the progressive nature of the disease, as well as its association with complex comorbidities (e.g., anemia, chronic kidney disease, chronic obstructive pulmonary disease, hyper- and hypothyroidism), which contribute to increased morbidity and mortality, as well as a reduced quality of life. Healthcare organizations (HCOs) have established diverse treatment plans for HF patients, but such routines are not always formalized and may, in fact, arise organically as a patient's management evolves over time. This investigation was motivated by the hypothesis that patients associated with a certain subgroup of HF should follow a similar workflow that, once made explicit, could be leveraged by an HCO to more effectively allocate resources and manage HF patients. Thus, in this paper, we introduce a method to identify subgroups of HF through a similarity analysis of event sequences documented in the clinical setting. Specifically, we 1) structure event sequences for HF patients based on the patterns of electronic medical record (EMR) system utilization, 2) identify subgroups of HF patients by applying a k-means clustering algorithm on utilization patterns, 3) learn clinical workflows for each subgroup, and 4) label each subgroup with diagnosis and procedure codes that are distinguishing in the set of all subgroups. To demonstrate its potential, we applied our method to EMR event logs for 785 HF inpatient stays over a 4 month period at a large academic medical center. Our method identified 8 subgroups of HF, each of which was found to associate with a canonical workflow inferred through an inductive mining algorithm. Each subgroup was further confirmed to be affiliated with specific comorbidities, such as hyperthyroidism and hypothyroidism.

  18. Leveraging an existing data warehouse to annotate workflow models for operations research and optimization.

    PubMed

    Borlawsky, Tara; LaFountain, Jeanne; Petty, Lynda; Saltz, Joel H; Payne, Philip R O

    2008-11-06

    Workflow analysis is frequently performed in the context of operations research and process optimization. In order to develop a data-driven workflow model that can be employed to assess opportunities to improve the efficiency of perioperative care teams at The Ohio State University Medical Center (OSUMC), we have developed a method for integrating standard workflow modeling formalisms, such as UML activity diagrams with data-centric annotations derived from our existing data warehouse.

  19. A Framework for Modeling Workflow Execution by an Interdisciplinary Healthcare Team.

    PubMed

    Kezadri-Hamiaz, Mounira; Rosu, Daniela; Wilk, Szymon; Kuziemsky, Craig; Michalowski, Wojtek; Carrier, Marc

    2015-01-01

    The use of business workflow models in healthcare is limited because of insufficient capture of complexities associated with behavior of interdisciplinary healthcare teams that execute healthcare workflows. In this paper we present a novel framework that builds on the well-founded business workflow model formalism and related infrastructures and introduces a formal semantic layer that describes selected aspects of team dynamics and supports their real-time operationalization.

  20. Standardizing Clinical Trials Workflow Representation in UML for International Site Comparison

    PubMed Central

    de Carvalho, Elias Cesar Araujo; Jayanti, Madhav Kishore; Batilana, Adelia Portero; Kozan, Andreia M. O.; Rodrigues, Maria J.; Shah, Jatin; Loures, Marco R.; Patil, Sunita; Payne, Philip; Pietrobon, Ricardo

    2010-01-01

    Background With the globalization of clinical trials, a growing emphasis has been placed on the standardization of the workflow in order to ensure the reproducibility and reliability of the overall trial. Despite the importance of workflow evaluation, to our knowledge no previous studies have attempted to adapt existing modeling languages to standardize the representation of clinical trials. Unified Modeling Language (UML) is a computational language that can be used to model operational workflow, and a UML profile can be developed to standardize UML models within a given domain. This paper's objective is to develop a UML profile to extend the UML Activity Diagram schema into the clinical trials domain, defining a standard representation for clinical trial workflow diagrams in UML. Methods Two Brazilian clinical trial sites in rheumatology and oncology were examined to model their workflow and collect time-motion data. UML modeling was conducted in Eclipse, and a UML profile was developed to incorporate information used in discrete event simulation software. Results Ethnographic observation revealed bottlenecks in workflow: these included tasks requiring full commitment of CRCs, transferring notes from paper to computers, deviations from standard operating procedures, and conflicts between different IT systems. Time-motion analysis revealed that nurses' activities took up the most time in the workflow and contained a high frequency of shorter duration activities. Administrative assistants performed more activities near the beginning and end of the workflow. Overall, clinical trial tasks had a greater frequency than clinic routines or other general activities. Conclusions This paper describes a method for modeling clinical trial workflow in UML and standardizing these workflow diagrams through a UML profile. In the increasingly global environment of clinical trials, the standardization of workflow modeling is a necessary precursor to conducting a comparative

  1. Reference and PDF-manager software: complexities, support and workflow.

    PubMed

    Mead, Thomas L; Berryman, Donna R

    2010-10-01

    In the past, librarians taught reference management by training library users to use established software programs such as RefWorks or EndNote. In today's environment, there is a proliferation of Web-based programs that are being used by library clientele that offer a new twist on the well-known reference management programs. Basically, these new programs are PDF-manager software (e.g., Mendeley or Papers). Librarians are faced with new questions, issues, and concerns, given the new workflows and pathways that these PDF-manager programs present. This article takes a look at some of those.

  2. Design of efficient computational workflows for in silico drug repurposing.

    PubMed

    Vanhaelen, Quentin; Mamoshina, Polina; Aliper, Alexander M; Artemov, Artem; Lezhnina, Ksenia; Ozerov, Ivan; Labat, Ivan; Zhavoronkov, Alex

    2017-02-01

    Here, we provide a comprehensive overview of the current status of in silico repurposing methods by establishing links between current technological trends, data availability and characteristics of the algorithms used in these methods. Using the case of the computational repurposing of fasudil as an alternative autophagy enhancer, we suggest a generic modular organization of a repurposing workflow. We also review 3D structure-based, similarity-based, inference-based and machine learning (ML)-based methods. We summarize the advantages and disadvantages of these methods to emphasize three current technical challenges. We finish by discussing current directions of research, including possibilities offered by new methods, such as deep learning.

  3. SMITH: a LIMS for handling next-generation sequencing workflows

    PubMed Central

    2014-01-01

    workflows are available through an API provided by the workflow management system. The parameters and input data are passed to the workflow engine that performs de-multiplexing, quality control, alignments, etc. Conclusions SMITH standardizes, automates, and speeds up sequencing workflows. Annotation of data with key-value pairs facilitates meta-analysis. PMID:25471934

  4. CMS Data Processing Workflows during an Extended Cosmic Ray Run

    SciTech Connect

    Not Available

    2009-11-01

    The CMS Collaboration conducted a month-long data taking exercise, the Cosmic Run At Four Tesla, during October-November 2008, with the goal of commissioning the experiment for extended operation. With all installed detector systems participating, CMS recorded 270 million cosmic ray events with the solenoid at a magnetic field strength of 3.8 T. This paper describes the data flow from the detector through the various online and offline computing systems, as well as the workflows used for recording the data, for aligning and calibrating the detector, and for analysis of the data.

  5. Multimodal neuroimaging computing: the workflows, methods, and platforms.

    PubMed

    Liu, Sidong; Cai, Weidong; Liu, Siqi; Zhang, Fan; Fulham, Michael; Feng, Dagan; Pujol, Sonia; Kikinis, Ron

    The last two decades have witnessed the explosive growth in the development and use of noninvasive neuroimaging technologies that advance the research on human brain under normal and pathological conditions. Multimodal neuroimaging has become a major driver of current neuroimaging research due to the recognition of the clinical benefits of multimodal data, and the better access to hybrid devices. Multimodal neuroimaging computing is very challenging, and requires sophisticated computing to address the variations in spatiotemporal resolution and merge the biophysical/biochemical information. We review the current workflows and methods for multimodal neuroimaging computing, and also demonstrate how to conduct research using the established neuroimaging computing packages and platforms.

  6. Multimodal neuroimaging computing: the workflows, methods, and platforms.

    PubMed

    Liu, Sidong; Cai, Weidong; Liu, Siqi; Zhang, Fan; Fulham, Michael; Feng, Dagan; Pujol, Sonia; Kikinis, Ron

    2015-09-01

    The last two decades have witnessed the explosive growth in the development and use of noninvasive neuroimaging technologies that advance the research on human brain under normal and pathological conditions. Multimodal neuroimaging has become a major driver of current neuroimaging research due to the recognition of the clinical benefits of multimodal data, and the better access to hybrid devices. Multimodal neuroimaging computing is very challenging, and requires sophisticated computing to address the variations in spatiotemporal resolution and merge the biophysical/biochemical information. We review the current workflows and methods for multimodal neuroimaging computing, and also demonstrate how to conduct research using the established neuroimaging computing packages and platforms.

  7. Robust scientific evidence demonstrates benefits of artificial sweeteners

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Artificial sweeteners (AS) have not been found to have a negative impact on health in humans. They have been recommended as a safe alternative for individuals who are seeking to lose or maintain weight. However, unnecessary alarm has been raised regarding the potential health risks of AS. This is of...

  8. Sampling and Bayes’ Inference in Scientific Modeling and Robustness.

    DTIC Science & Technology

    1980-12-01

    Unidirectional checks. An example of the first would be a general inspection of residuals and the second a Durbin -Watson test for first order serial...M with Mo - X’X (Y, X)’IX’W . Ten with a| - -C where r is n xn with unities in super and sub-diagonals and zeros elsewhere, after some algebraic ...standard checking function of Durbin and Watson (1950). 4.5 A check for bad values Cmpetent investigators have over the centuries treated data as possibly

  9. An Auto-management Thesis Program WebMIS Based on Workflow

    NASA Astrophysics Data System (ADS)

    Chang, Li; Jie, Shi; Weibo, Zhong

    An auto-management WebMIS based on workflow for bachelor thesis program is given in this paper. A module used for workflow dispatching is designed and realized using MySQL and J2EE according to the work principle of workflow engine. The module can automatively dispatch the workflow according to the date of system, login information and the work status of the user. The WebMIS changes the management from handwork to computer-work which not only standardizes the thesis program but also keeps the data and documents clean and consistent.

  10. DNA barcode-based delineation of putative species: efficient start for taxonomic workflows

    PubMed Central

    Kekkonen, Mari; Hebert, Paul D N

    2014-01-01

    The analysis of DNA barcode sequences with varying techniques for cluster recognition provides an efficient approach for recognizing putative species (operational taxonomic units, OTUs). This approach accelerates and improves taxonomic workflows by exposing cryptic species and decreasing the risk of synonymy. This study tested the congruence of OTUs resulting from the application of three analytical methods (ABGD, BIN, GMYC) to sequence data for Australian hypertrophine moths. OTUs supported by all three approaches were viewed as robust, but 20% of the OTUs were only recognized by one or two of the methods. These OTUs were examined for three criteria to clarify their status. Monophyly and diagnostic nucleotides were both uninformative, but information on ranges was useful as sympatric sister OTUs were viewed as distinct, while allopatric OTUs were merged. This approach revealed 124 OTUs of Hypertrophinae, a more than twofold increase from the currently recognized 51 species. Because this analytical protocol is both fast and repeatable, it provides a valuable tool for establishing a basic understanding of species boundaries that can be validated with subsequent studies. PMID:24479435

  11. Robustness. [in space systems

    NASA Technical Reports Server (NTRS)

    Ryan, Robert

    1993-01-01

    The concept of rubustness includes design simplicity, component and path redundancy, desensitization to the parameter and environment variations, control of parameter variations, and punctual operations. These characteristics must be traded with functional concepts, materials, and fabrication approach against the criteria of performance, cost, and reliability. The paper describes the robustness design process, which includes the following seven major coherent steps: translation of vision into requirements, definition of the robustness characteristics desired, criteria formulation of required robustness, concept selection, detail design, manufacturing and verification, operations.

  12. Autonomic Management of Application Workflows on Hybrid Computing Infrastructure

    DOE PAGES

    Kim, Hyunjoo; el-Khamra, Yaakoub; Rodero, Ivan; ...

    2011-01-01

    In this paper, we present a programming and runtime framework that enables the autonomic management of complex application workflows on hybrid computing infrastructures. The framework is designed to address system and application heterogeneity and dynamics to ensure that application objectives and constraints are satisfied. The need for such autonomic system and application management is becoming critical as computing infrastructures become increasingly heterogeneous, integrating different classes of resources from high-end HPC systems to commodity clusters and clouds. For example, the framework presented in this paper can be used to provision the appropriate mix of resources based on application requirements and constraints.more » The framework also monitors the system/application state and adapts the application and/or resources to respond to changing requirements or environment. To demonstrate the operation of the framework and to evaluate its ability, we employ a workflow used to characterize an oil reservoir executing on a hybrid infrastructure composed of TeraGrid nodes and Amazon EC2 instances of various types. Specifically, we show how different applications objectives such as acceleration, conservation and resilience can be effectively achieved while satisfying deadline and budget constraints, using an appropriate mix of dynamically provisioned resources. Our evaluations also demonstrate that public clouds can be used to complement and reinforce the scheduling and usage of traditional high performance computing infrastructure.« less

  13. OzCare: a workflow automation system for care plans.

    PubMed Central

    Lee, W.; Kaiser, G. E.; Clayton, P. D.; Sherman, E. H.

    1996-01-01

    An automated environment for implementing and monitoring care plans and practice guidelines is very important to the reduction of hospital costs and optimization of medical care. The goal of our research effort is to design a general system architecture that facilitates the implementation of (potentially) numerous care plans. Our approach is unique in that we apply the principles and technologies of Oz a multi-user collaborative workflow system that has been used as a software engineering environment framework, to hospital care planning. We utilize not only the workflow modeling and execution facilities of Oz, but also its open-system architecture to interface it with the World Wide Web, the Medical Logic Module server, and other components of the clinical information system. Our initial proof-of-concept system, OzCare, is constructed on top of the existing Oz system. Through several experiments in which we used this system to implement some Columbia-Presbyterian Medical Center care plans, we demonstrated that our system is capable and flexible for care plan automation. PMID:8947732

  14. A computational workflow for designing silicon donor qubits

    DOE PAGES

    Humble, Travis S.; Ericson, M. Nance; Jakowski, Jacek; ...

    2016-09-19

    Developing devices that can reliably and accurately demonstrate the principles of superposition and entanglement is an on-going challenge for the quantum computing community. Modeling and simulation offer attractive means of testing early device designs and establishing expectations for operational performance. However, the complex integrated material systems required by quantum device designs are not captured by any single existing computational modeling method. We examine the development and analysis of a multi-staged computational workflow that can be used to design and characterize silicon donor qubit systems with modeling and simulation. Our approach integrates quantum chemistry calculations with electrostatic field solvers to performmore » detailed simulations of a phosphorus dopant in silicon. We show how atomistic details can be synthesized into an operational model for the logical gates that define quantum computation in this particular technology. In conclusion, the resulting computational workflow realizes a design tool for silicon donor qubits that can help verify and validate current and near-term experimental devices.« less

  15. Integration of implant planning workflows into the PACS infrastructure

    NASA Astrophysics Data System (ADS)

    Gessat, Michael; Strauß, Gero; Burgert, Oliver

    2008-03-01

    The integration of imaging devices, diagnostic workstations, and image servers into Picture Archiving and Communication Systems (PACS) has had an enormous effect on the efficiency of radiology workflows. The standardization of the information exchange between the devices with the DICOM standard has been an essential precondition for that development. For surgical procedures, no such infrastructure exists. With the increasingly important role computerized planning and assistance systems play in the surgical domain, an infrastructure that unifies the communication between devices becomes necessary. In recent publications, the need for a modularized system design has been established. A reference architecture for a Therapy Imaging and Model Management System (TIMMS) has been proposed. It was accepted by the DICOM Working Group 6 as the reference architecture for DICOM developments for surgery. In this paper we propose the inclusion of implant planning systems into the PACS infrastructure. We propose a generic information model for the patient specific selection and positioning of implants from a repository according to patient image data. The information models are based on clinical workflows from ENT, cardiac, and orthopedic surgery as well as technical requirements derived from different use cases and systems. We show an exemplary implementation of the model for application in ENT surgery: the selection and positioning of an ossicular implant in the middle ear. An implant repository is stored in the PACS. It makes use of an experimental implementation of the Surface Mesh Module that is currently being developed as extension to the DICOM standard.

  16. Automation and workflow considerations for embedding Digimarc Barcodes at scale

    NASA Astrophysics Data System (ADS)

    Rodriguez, Tony; Haaga, Don; Calhoon, Sean

    2015-03-01

    The Digimarc® Barcode is a digital watermark applied to packages and variable data labels that carries GS1 standard GTIN-14 data traditionally carried by a 1-D barcode. The Digimarc Barcode can be read with smartphones and imaging-based barcode readers commonly used in grocery and retail environments. Using smartphones, consumers can engage with products and retailers can materially increase the speed of check-out, increasing store margins and providing a better experience for shoppers. Internal testing has shown an average of 53% increase in scanning throughput, enabling 100's of millions of dollars in cost savings [1] for retailers when deployed at scale. To get to scale, the process of embedding a digital watermark must be automated and integrated within existing workflows. Creating the tools and processes to do so represents a new challenge for the watermarking community. This paper presents a description and an analysis of the workflow implemented by Digimarc to deploy the Digimarc Barcode at scale. An overview of the tools created and lessons learned during the introduction of technology to the market are provided.

  17. Accelerated partial breast irradiation utilizing brachytherapy: patient selection and workflow

    PubMed Central

    Wobb, Jessica; Manyam, Bindu; Khan, Atif; Vicini, Frank

    2016-01-01

    Accelerated partial breast irradiation (APBI) represents an evolving technique that is a standard of care option in appropriately selected woman following breast conserving surgery. While multiple techniques now exist to deliver APBI, interstitial brachytherapy represents the technique used in several randomized trials (National Institute of Oncology, GEC-ESTRO). More recently, many centers have adopted applicator-based brachytherapy to deliver APBI due to the technical complexities of interstitial brachytherapy. The purpose of this article is to review methods to evaluate and select patients for APBI, as well as to define potential workflow mechanisms that allow for the safe and effective delivery of APBI. Multiple consensus statements have been developed to guide clinicians on determining appropriate candidates for APBI. However, recent studies have demonstrated that these guidelines fail to stratify patients according to the risk of local recurrence, and updated guidelines are expected in the years to come. Critical elements of workflow to ensure safe and effective delivery of APBI include a multidisciplinary approach and evaluation, optimization of target coverage and adherence to normal tissue guideline constraints, and proper quality assurance methods. PMID:26985202

  18. A Model Checking Method of Soundness for Workflow Nets

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Munenori; Yamaguchi, Shingo; Tanaka, Minoru

    Workflow nets (WF-nets) are Petri nets which represent workflows. Soundness is a criterion of logical correctness defined for WF-nets. It is known that soundness verification is intractable. In this paper, we propose a method to verify soundness using a Linear Temporal Logic (LTL) model checking tool, SPIN. We give an LTL necessary and sufficient condition to verify soundness for WF-nets without livelock. Acyclic WF-nets have no livelock, but cyclic WF-nets may have livelock. We also give a necessary and sufficient condition to verify livelock. Meanwhile, we show that any LTL model checking tool cannot verify soundness for WF-nets with livelock. We give necessary conditions to verify soundness for them. Those conditions enable us to use SPIN even if a given WF-net has livelock. We also develop a tool to verify soundness based on our method. We show effectiveness of our method by comparing our tool with existing soundness verification tools on verification time for 200 cyclic ACWF-nets.

  19. An MRM-based workflow for absolute quantitation of lysine-acetylated metabolic enzymes in mouse liver.

    PubMed

    Xu, Leilei; Wang, Fang; Xu, Ying; Wang, Yi; Zhang, Cuiping; Qin, Xue; Yu, Hongxiu; Yang, Pengyuan

    2015-12-07

    As a key post-translational modification mechanism, protein acetylation plays critical roles in regulating and/or coordinating cell metabolism. Acetylation is a prevalent modification process in enzymes. Protein acetylation modification occurs in sub-stoichiometric amounts; therefore extracting biologically meaningful information from these acetylation sites requires an adaptable, sensitive, specific, and robust method for their quantification. In this work, we combine immunoassays and multiple reaction monitoring-mass spectrometry (MRM-MS) technology to develop an absolute quantification for acetylation modification. With this hybrid method, we quantified the acetylation level of metabolic enzymes, which could demonstrate the regulatory mechanisms of the studied enzymes. The development of this quantitative workflow is a pivotal step for advancing our knowledge and understanding of the regulatory effects of protein acetylation in physiology and pathophysiology.

  20. Using CyberShake Workflows to Manage Big Seismic Hazard Data on Large-Scale Open-Science HPC Resources

    NASA Astrophysics Data System (ADS)

    Callaghan, S.; Maechling, P. J.; Juve, G.; Vahi, K.; Deelman, E.; Jordan, T. H.

    2015-12-01

    The CyberShake computational platform, developed by the Southern California Earthquake Center (SCEC), is an integrated collection of scientific software and middleware that performs 3D physics-based probabilistic seismic hazard analysis (PSHA) for Southern California. CyberShake integrates large-scale and high-throughput research codes to produce probabilistic seismic hazard curves for individual locations of interest and hazard maps for an entire region. A recent CyberShake calculation produced about 500,000 two-component seismograms for each of 336 locations, resulting in over 300 million synthetic seismograms in a Los Angeles-area probabilistic seismic hazard model. CyberShake calculations require a series of scientific software programs. Early computational stages produce data used as inputs by later stages, so we describe CyberShake calculations using a workflow definition language. Scientific workflow tools automate and manage the input and output data and enable remote job execution on large-scale HPC systems. To satisfy the requests of broad impact users of CyberShake data, such as seismologists, utility companies, and building code engineers, we successfully completed CyberShake Study 15.4 in April and May 2015, calculating a 1 Hz urban seismic hazard map for Los Angeles. We distributed the calculation between the NSF Track 1 system NCSA Blue Waters, the DOE Leadership-class system OLCF Titan, and USC's Center for High Performance Computing. This study ran for over 5 weeks, burning about 1.1 million node-hours and producing over half a petabyte of data. The CyberShake Study 15.4 results doubled the maximum simulated seismic frequency from 0.5 Hz to 1.0 Hz as compared to previous studies, representing a factor of 16 increase in computational complexity. We will describe how our workflow tools supported splitting the calculation across multiple systems. We will explain how we modified CyberShake software components, including GPU implementations and

  1. Enabling big geoscience data analytics with a cloud-based, MapReduce-enabled and service-oriented workflow framework.

    PubMed

    Li, Zhenlong; Yang, Chaowei; Jin, Baoxuan; Yu, Manzhu; Liu, Kai; Sun, Min; Zhan, Matthew

    2015-01-01

    Geoscience observations and model simulations are generating vast amounts of multi-dimensional data. Effectively analyzing these data are essential for geoscience studies. However, the tasks are challenging for geoscientists because processing the massive amount of data is both computing and data intensive in that data analytics requires complex procedures and multiple tools. To tackle these challenges, a scientific workflow framework is proposed for big geoscience data analytics. In this framework techniques are proposed by leveraging cloud computing, MapReduce, and Service Oriented Architecture (SOA). Specifically, HBase is adopted for storing and managing big geoscience data across distributed computers. MapReduce-based algorithm framework is developed to support parallel processing of geoscience data. And service-oriented workflow architecture is built for supporting on-demand complex data analytics in the cloud environment. A proof-of-concept prototype tests the performance of the framework. Results show that this innovative framework significantly improves the efficiency of big geoscience data analytics by reducing the data processing time as well as simplifying data analytical procedures for geoscientists.

  2. Successful adaption of a forensic toxicological screening workflow employing nontargeted liquid chromatography-tandem mass spectrometry to water analysis.

    PubMed

    Steger, Julia; Arnhard, Kathrin; Haslacher, Sandra; Geiger, Klemens; Singer, Klaus; Schlapp, Michael; Pitterl, Florian; Oberacher, Herbert

    2016-04-01

    Forensic toxicology and environmental water analysis share the common interest and responsibility in ensuring comprehensive and reliable confirmation of drugs and pharmaceutical compounds in samples analyzed. Dealing with similar analytes, detection and identification techniques should be exchangeable between scientific disciplines. Herein, we demonstrate the successful adaption of a forensic toxicological screening workflow employing nontargeted LC/MS/MS under data-dependent acquisition control and subsequent database search to water analysis. The main modification involved processing of an increased sample volume with SPE (500 mL vs. 1-10 mL) to reach LODs in the low ng/L range. Tandem mass spectra acquired with a qTOF instrument were submitted to database search. The targeted data mining strategy was found to be sensitive and specific; automated search produced hardly any false results. To demonstrate the applicability of the adapted workflow to complex samples, 14 wastewater effluent samples collected on seven consecutive days at the local wastewater-treatment plant were analyzed. Of the 88,970 fragment ion mass spectra produced, 8.8% of spectra were successfully assigned to one of the 1040 reference compounds included in the database, and this enabled the identification of 51 compounds representing important illegal drugs, members of various pharmaceutical compound classes, and metabolites thereof.

  3. Enabling Big Geoscience Data Analytics with a Cloud-Based, MapReduce-Enabled and Service-Oriented Workflow Framework

    PubMed Central

    Li, Zhenlong; Yang, Chaowei; Jin, Baoxuan; Yu, Manzhu; Liu, Kai; Sun, Min; Zhan, Matthew

    2015-01-01

    Geoscience observations and model simulations are generating vast amounts of multi-dimensional data. Effectively analyzing these data are essential for geoscience studies. However, the tasks are challenging for geoscientists because processing the massive amount of data is both computing and data intensive in that data analytics requires complex procedures and multiple tools. To tackle these challenges, a scientific workflow framework is proposed for big geoscience data analytics. In this framework techniques are proposed by leveraging cloud computing, MapReduce, and Service Oriented Architecture (SOA). Specifically, HBase is adopted for storing and managing big geoscience data across distributed computers. MapReduce-based algorithm framework is developed to support parallel processing of geoscience data. And service-oriented workflow architecture is built for supporting on-demand complex data analytics in the cloud environment. A proof-of-concept prototype tests the performance of the framework. Results show that this innovative framework significantly improves the efficiency of big geoscience data analytics by reducing the data processing time as well as simplifying data analytical procedures for geoscientists. PMID:25742012

  4. An Extended Stochastic Petri Nets Modeling Method for Collaborative Workflow Process

    NASA Astrophysics Data System (ADS)

    Yi, Yang

    Workflow process modeling is important for BPR; some classic process modeling methods have many defects, such as weakness description ability, high modeling complex, and so on. In this paper, we explore an extended stochastic Petri Nets modeling method based on basic Petri Nets. This method can model concurrency collaborative workflow process under stochastic environment.

  5. A magnetic resonance imaging-based workflow for planning radiation therapy for prostate cancer.

    PubMed

    Greer, Peter B; Dowling, Jason A; Lambert, Jonathon A; Fripp, Jurgen; Parker, Joel; Denham, James W; Wratten, Chris; Capp, Anne; Salvado, Olivier

    2011-02-21

    Dose planning for prostate radiation therapy is performed using computed tomography (CT) scans that provide the electron density information needed for individual patients' radiation dose calculations. For visualising the prostate and determining the target volume for radiation treatment, magnetic resonance imaging (MRI) gives vastly superior soft-tissue contrast. However, currently, MRI scans cannot be used for dose planning, as they do not provide the electron density information. We aimed to develop an alternative and efficient MRI-only image-based workflow, enabling both organ delineation and dose planning to be performed using MRI, with "pseudo-CT scans" generated from MRI scans supplying the information for dose planning. The feasibility of implementing MRI-based prostate radiation therapy planning is being investigated through collaboration between the clinical and medical physics group at the Calvary Mater Newcastle Hospital/University of Newcastle and the biomedical imaging processing group at the CSIRO (Commonwealth Scientific and Industrial Research Organisation) Australian e-Health Research Centre. Results comparing Hounsfield units calculated from CT scans and from MRI-based pseudo-CT scans for 39 patients showed very similar average values for the prostate, bladder, bones and rectum, confirming that pseudo-CT scans can replace CT scans for accurate radiation dose calculations. MRI-based radiotherapy planning can also be used for tumours in other locations, such as head and neck, and breast cancers.

  6. AGILE/GRID Science Alert Monitoring System: The Workflow and the Crab Flare Case

    NASA Astrophysics Data System (ADS)

    Bulgarelli, A.; Trifoglio, M.; Gianotti, F.; Tavani, M.; Conforti, V.; Parmiggiani, N.

    2013-10-01

    During the first five years of the AGILE mission we have observed many gamma-ray transients of Galactic and extragalactic origin. A fast reaction to unexpected transient events is a crucial part of the AGILE monitoring program, because the follow-up of astrophysical transients is a key point for this space mission. We present the workflow and the software developed by the AGILE Team to perform the automatic analysis for the detection of gamma-ray transients. In addition, an App for iPhone will be released enabling the Team to access the monitoring system through mobile phones. In 2010 September the science alert monitoring system presented in this paper recorded a transient phenomena from the Crab Nebula, generating an automated alert sent via email and SMS two hours after the end of an AGILE satellite orbit, i.e. two hours after the Crab flare itself: for this discovery AGILE won the 2012 Bruno Rossi prize. The design of this alert system is maximized to reach the maximum speed, and in this, as in many other cases, AGILE has demonstrated that the reaction speed of the monitoring system is crucial for the scientific return of the mission.

  7. Design Principles as a Guide for Constraint Based and Dynamic Modeling: Towards an Integrative Workflow

    PubMed Central

    Sehr, Christiana; Kremling, Andreas; Marin-Sanguino, Alberto

    2015-01-01

    During the last 10 years, systems biology has matured from a fuzzy concept combining omics, mathematical modeling and computers into a scientific field on its own right. In spite of its incredible potential, the multilevel complexity of its objects of study makes it very difficult to establish a reliable connection between data and models. The great number of degrees of freedom often results in situations, where many different models can explain/fit all available datasets. This has resulted in a shift of paradigm from the initially dominant, maybe naive, idea of inferring the system out of a number of datasets to the application of different techniques that reduce the degrees of freedom before any data set is analyzed. There is a wide variety of techniques available, each of them can contribute a piece of the puzzle and include different kinds of experimental information. But the challenge that remains is their meaningful integration. Here we show some theoretical results that enable some of the main modeling approaches to be applied sequentially in a complementary manner, and how this workflow can benefit from evolutionary reasoning to keep the complexity of the problem in check. As a proof of concept, we show how the synergies between these modeling techniques can provide insight into some well studied problems: Ammonia assimilation in bacteria and an unbranched linear pathway with end-product inhibition. PMID:26501332

  8. Automated Web-Based Request Mechanism for Workflow Enhancement in an Academic Customer-Focused Biorepository.

    PubMed

    McDonald, Sandra A; Ryan, Benjamin J; Brink, Amy; Holtschlag, Victoria L

    2012-02-01

    Informatics systems, particularly those that provide capabilities for data storage, specimen tracking, retrieval, and order fulfillment, are critical to the success of biorepositories and other laboratories engaged in translational medical research. A crucial item-one easily overlooked-is an efficient way to receive and process investigator-initiated requests. A successful electronic ordering system should allow request processing in a maximally efficient manner, while also allowing streamlined tracking and mining of request data such as turnaround times and numerical categorizations (user groups, funding sources, protocols, and so on). Ideally, an electronic ordering system also facilitates the initial contact between the laboratory and customers, while still allowing for downstream communications and other steps toward scientific partnerships. We describe here the recently established Web-based ordering system for the biorepository at Washington University Medical Center, along with its benefits for workflow, tracking, and customer service. Because of the system's numerous value-added impacts, we think our experience can serve as a good model for other customer-focused biorepositories, especially those currently using manual or non-Web-based request systems. Our lessons learned also apply to the informatics developers who serve such biobanks.

  9. Implementation of Electronic Workflow Systems in Higher Education Institutions: Issues and Challenges

    NASA Astrophysics Data System (ADS)

    Cheung, K. S.

    To different extents, electronic workflow systems have been widely used in higher education institutions for administering the daily and routine operations. Whilst workflow automation is advocated for streamlining business processes, there are technical limitations as well as management constraints, especially on process review and re-engineering. During the process review, a big challenge is to make sure that the system would not only meet the business requirements but also improve the process flow. It is important for one to retain the legacy stature while coping with the changes in workflow, but taking into consideration of the needs to accommodate managerial constraints. This paper investigates the issues and challenges in implementing electronic workflow systems in higher education institutions. Different approaches to the process review, workflow design and re-design are discussed.

  10. Cluster Flow: A user-friendly bioinformatics workflow tool

    PubMed Central

    Ewels, Philip; Krueger, Felix; Käller, Max; Andrews, Simon

    2016-01-01

    Pipeline tools are becoming increasingly important within the field of bioinformatics. Using a pipeline manager to manage and run workflows comprised of multiple tools reduces workload and makes analysis results more reproducible. Existing tools require significant work to install and get running, typically needing pipeline scripts to be written from scratch before running any analysis. We present Cluster Flow, a simple and flexible bioinformatics pipeline tool designed to be quick and easy to install. Cluster Flow comes with 40 modules for common NGS processing steps, ready to work out of the box. Pipelines are assembled using these modules with a simple syntax that can be easily modified as required. Core helper functions automate many common NGS procedures, making running pipelines simple. Cluster Flow is available with an GNU GPLv3 license on GitHub. Documentation, examples and an online demo are available at http://clusterflow.io.

  11. Sensor-based architecture for medical imaging workflow analysis.

    PubMed

    Silva, Luís A Bastião; Campos, Samuel; Costa, Carlos; Oliveira, José Luis

    2014-08-01

    The growing use of computer systems in medical institutions has been generating a tremendous quantity of data. While these data have a critical role in assisting physicians in the clinical practice, the information that can be extracted goes far beyond this utilization. This article proposes a platform capable of assembling multiple data sources within a medical imaging laboratory, through a network of intelligent sensors. The proposed integration framework follows a SOA hybrid architecture based on an information sensor network, capable of collecting information from several sources in medical imaging laboratories. Currently, the system supports three types of sensors: DICOM repository meta-data, network workflows and examination reports. Each sensor is responsible for converting unstructured information from data sources into a common format that will then be semantically indexed in the framework engine. The platform was deployed in the Cardiology department of a central hospital, allowing identification of processes' characteristics and users' behaviours that were unknown before the utilization of this solution.

  12. Cluster Flow: A user-friendly bioinformatics workflow tool.

    PubMed

    Ewels, Philip; Krueger, Felix; Käller, Max; Andrews, Simon

    2016-01-01

    Pipeline tools are becoming increasingly important within the field of bioinformatics. Using a pipeline manager to manage and run workflows comprised of multiple tools reduces workload and makes analysis results more reproducible. Existing tools require significant work to install and get running, typically needing pipeline scripts to be written from scratch before running any analysis. We present Cluster Flow, a simple and flexible bioinformatics pipeline tool designed to be quick and easy to install. Cluster Flow comes with 40 modules for common NGS processing steps, ready to work out of the box. Pipelines are assembled using these modules with a simple syntax that can be easily modified as required. Core helper functions automate many common NGS procedures, making running pipelines simple. Cluster Flow is available with an GNU GPLv3 license on GitHub. Documentation, examples and an online demo are available at http://clusterflow.io.

  13. Cytoscape: the network visualization tool for GenomeSpace workflows

    PubMed Central

    Demchak, Barry; Hull, Tim; Reich, Michael; Liefeld, Ted; Smoot, Michael; Ideker, Trey; Mesirov, Jill P.

    2014-01-01

    Modern genomic analysis often requires workflows incorporating multiple best-of-breed tools. GenomeSpace is a web-based visual workbench that combines a selection of these tools with mechanisms that create data flows between them. One such tool is Cytoscape 3, a popular application that enables analysis and visualization of graph-oriented genomic networks. As Cytoscape runs on the desktop, and not in a web browser, integrating it into GenomeSpace required special care in creating a seamless user experience and enabling appropriate data flows. In this paper, we present the design and operation of the Cytoscape GenomeSpace app, which accomplishes this integration, thereby providing critical analysis and visualization functionality for GenomeSpace users. It has been downloaded over 850 times since the release of its first version in September, 2013. PMID:25165537

  14. Toward an Optimized Workflow for Middle-Down Proteomics

    PubMed Central

    2017-01-01

    Mass spectrometry (MS)-based proteomics workflows can crudely be classified into two distinct regimes, targeting either relatively small peptides (i.e., 0.7 kDa < Mw < 3.0 kDa) or small to medium sized intact proteins (i.e., 10 kDa < Mw < 30 kDa), respectively, termed bottom-up and top-down proteomics. Recently, a niche has started to be explored covering the analysis of middle-range peptides (i.e., 3.0 kDa < Mw < 10 kDa), aptly termed middle-down proteomics. Although middle-down proteomics can follow, in principle, a modular workflow similar to that of bottom-up proteomics, we hypothesized that each of these modules would benefit from targeted optimization to improve its overall performance in the analysis of middle-range sized peptides. Hence, to generate middle-range sized peptides from cellular lysates, we explored the use of the proteases Asp-N and Glu-C and a nonenzymatic acid induced cleavage. To increase the depth of the proteome, a strong cation exchange (SCX) separation, carefully tuned to improve the separation of longer peptides, combined with reversed phase-liquid chromatography (RP-LC) using columns packed with material possessing a larger pore size, was used. Finally, after evaluating the combination of potentially beneficial MS settings, we also assessed the peptide fragmentation techniques, including higher-energy collision dissociation (HCD), electron-transfer dissociation (ETD), and electron-transfer combined with higher-energy collision dissociation (EThcD), for characterization of middle-range sized peptides. These combined improvements clearly improve the detection and sequence coverage of middle-range peptides and should guide researchers to explore further how middle-down proteomics may lead to an improved proteome coverage, beneficial for, among other things, the enhanced analysis of (co-occurring) post-translational modifications. PMID:28233997

  15. Microbiome Helper: a Custom and Streamlined Workflow for Microbiome Research

    PubMed Central

    Comeau, André M.; Douglas, Gavin M.

    2017-01-01

    ABSTRACT Sequence-based approaches to study microbiomes, such as 16S rRNA gene sequencing and metagenomics, are uncovering associations between microbial taxa and a myriad of factors. A drawback of these approaches is that the necessary sequencing library preparation and bioinformatic analyses are complicated and continuously changing, which can be a barrier for researchers new to the field. We present three essential components to conducting a microbiome experiment from start to finish: first, a simplified and step-by-step custom gene sequencing protocol that requires limited lab equipment, is cost-effective, and has been thoroughly tested and utilized on various sample types; second, a series of scripts to integrate various commonly used bioinformatic tools that is available as a standalone installation or as a single downloadable virtual image; and third, a set of bioinformatic workflows and tutorials to provide step-by-step guidance and education for those new to the microbiome field. This resource will provide the foundations for those newly entering the microbiome field and will provide much-needed guidance and best practices to ensure that quality microbiome research is undertaken. All protocols, scripts, workflows, tutorials, and virtual images are freely available through the Microbiome Helper website (https://github.com/mlangill/microbiome_helper/wiki). IMPORTANCE As the microbiome field continues to grow, a multitude of researchers are learning how to conduct proper microbiome experiments. We outline here a streamlined and custom approach to processing samples from detailed sequencing library construction to step-by-step bioinformatic standard operating procedures. This allows for rapid and reliable microbiome analysis, allowing researchers to focus more on their experiment design and results. Our sequencing protocols, bioinformatic tutorials, and bundled software are freely available through Microbiome Helper. As the microbiome research field continues

  16. Where are the gaps in the data lifecycle? Developing policies and workflow tools for digital preservation of research data in the geosciences

    NASA Astrophysics Data System (ADS)

    Peters-Kottig, W.; Klump, J.; Kirchner, I.; Bertelmann, R.; Rusch, B.; Wattenbach, M.; Ulbricht, D.

    2011-12-01

    Ongoing work on digital preservation of research data has produced a vast output of models, workflows and software tools, often tailored to specific research environments or software architectures. The presented project (EWIG) is designed to support the transfer of research data from various research environments into digital long-term archives without focusing only on a specific architecture or path in the digital preservation workflow. We aim to identify and to fill existing (policy) gaps throughout the data lifecycle and to develop currently missing workflow components. The emphasis will be on long-term preservation of research data from the geosciences. In cooperation between an infrastructure facility (Zuse-Institute) and two different data producers from the field of geosciences, policies and software tools will be developed to facilitate long-term preservation of research data. Furthermore, during the entire project duration re-use of archived research data is to be tested by scientists, graduates and students in an iterative process. Based on the experience from the test procedures and results we intend to design a university lecture/seminar series, which contributes to raise awareness for data curation issues among students and graduates. The generation of model policies, best-practice documentations and a lecture concept is intended to further the re-use of archived research data by the scientific community.

  17. Big Data Architectures for Operationalized Seismic and Subsurface Monitoring and Decision Support Workflows

    NASA Astrophysics Data System (ADS)

    Irving, D. H.; Rasheed, M.; Hillman, C.; O'Doherty, N.

    2012-12-01

    Oilfield management is moving to a more operational footing with near-realtime seismic and sensor monitoring governing drilling, fluid injection and hydrocarbon extraction workflows within safety, productivity and profitability constraints. To date, the geoscientific analytical architectures employed are configured for large volumes of data, computational power or analytical latency and compromises in system design must be made to achieve all three aspects. These challenges are encapsulated by the phrase 'Big Data' which has been employed for over a decade in the IT industry to describe the challenges presented by data sets that are too large, volatile and diverse for existing computational architectures and paradigms. We present a data-centric architecture developed to support a geoscientific and geotechnical workflow whereby: ●scientific insight is continuously applied to fresh data ●insights and derived information are incorporated into engineering and operational decisions ●data governance and provenance are routine within a broader data management framework Strategic decision support systems in large infrastructure projects such as oilfields are typically relational data environments; data modelling is pervasive across analytical functions. However, subsurface data and models are typically non-relational (i.e. file-based) in the form of large volumes of seismic imaging data or rapid streams of sensor feeds and are analysed and interpreted using niche applications. The key architectural challenge is to move data and insight from a non-relational to a relational, or structured, data environment for faster and more integrated analytics. We describe how a blend of MapReduce and relational database technologies can be applied in geoscientific decision support, and the strengths and weaknesses of each in such an analytical ecosystem. In addition we discuss hybrid technologies that use aspects of both and translational technologies for moving data and analytics

  18. Provenance of things - describing geochemistry observation workflows using PROV-O

    NASA Astrophysics Data System (ADS)

    Cox, S. J. D.; Car, N. J.

    2015-12-01

    Geochemistry observations typically follow a complex preparation process after sample retrieval from the field. Description of these are required to allow readers and other data users to assess the reliability of the data produced, and to ensure reproducibility. While laboratory notebooks are used for private record-keeping, and laboratory information systems (LIMS) on a facility basis, this data is not generally published, and there are no standard formats for transfer. And while there is some standardization of workflows, this is often scoped to a lab, or an instrument. New procedures and workflows are being developed continually - in fact this is a key expectation in the development of the science. Thus formalization of the description of sample preparation and observations must be both rigorous and flexible. We have been exploring the use of the W3C Provenance model (PROV) to capture complete traces, including both the real world things and the data generated. PROV has a core data model that distinguishes between entities, agents and activities involved in producing a piece of data or thing in the world. While the design of PROV was primarily conditioned by stories concerning information resources, application is not restricted to the production of digital or information assets. PROV allowing a comprehensive trace of predecessor entities and transformations at any level of detail. In this paper we demonstrate the use of PROV for describing specimens managed for scientific observations. Two examples are considered: a geological sample which undergoes a typical preparation process for measurements of the concentration of a particular chemical substance, and the collection, taxonomic classification and eventual publication of an insect specimen. PROV enables the material that goes into the instrument to be linked back to the sample retrieved in the field. This complements the IGSN system, which focuses on registration of field sample identity to support the

  19. Incorporating Geoscience, Field Data Collection Workflows into Software Developed for Mobile Devices

    NASA Astrophysics Data System (ADS)

    Vieira, D. A.; Mookerjee, M.; Matsa, S.

    2014-12-01

    Modern geological sciences depend heavily on investigating the natural world in situ, i.e., within "the field," as well as managing data collections in the light of evolving advances in technology and cyberinfrastructure. To accelerate the rate of scientific discovery, we need to expedite data collection and management in such a way so as to not interfere with the typical geoscience, field workflow. To this end, we suggest replacing traditional analog methods of data collection, such as the standard field notebook and compass, with primary digital data collection applications. While some field data collecting apps exist for both the iOS and android operating systems, they do not communicate with each other in an organized data collection effort. We propose the development of a mobile app that coordinates the collection of GPS, photographic, and orientation data, along with field observations. Additionally, this application should be able to pair with other devices in order to incorporate other sensor data. In this way, the app can generate a single file that includes all field data elements and can be synced to the appropriate database with ease and efficiency. We present here a prototype application that attempts to illustrate how digital collection can be integrated into a "typical" geoscience, field workflow. The purpose of our app is to get field scientists to think about specific requirements for the development of a unified field data collection application. One fundamental step in the development of such an app is the community-based, decision-making process of adopting certain data/metadata standards and conventions. In August of 2014, on a four-day field trip to Yosemite National Park and Owens Valley, we engaged a group of field-based geologists and computer/cognitive scientists to start building a community consensus on these cyberinfrastructure-related issues. Discussing the unique problems of field data recording, conventions, storage, representation

  20. The standard-based open workflow system in GeoBrain (Invited)

    NASA Astrophysics Data System (ADS)

    Di, L.; Yu, G.; Zhao, P.; Deng, M.

    2013-12-01

    GeoBrain is an Earth science Web-service system developed and operated by the Center for Spatial Information Science and Systems, George Mason University. In GeoBrain, a standard-based open workflow system has been implemented to accommodate the automated processing of geospatial data through a set of complex geo-processing functions for advanced production generation. The GeoBrain models the complex geoprocessing at two levels, the conceptual and concrete. At the conceptual level, the workflows exist in the form of data and service types defined by ontologies. The workflows at conceptual level are called geo-processing models and cataloged in GeoBrain as virtual product types. A conceptual workflow is instantiated into a concrete, executable workflow when a user requests a product that matches a virtual product type. Both conceptual and concrete workflows are encoded in Business Process Execution Language (BPEL). A BPEL workflow engine, called BPELPower, has been implemented to execute the workflow for the product generation. A provenance capturing service has been implemented to generate the ISO 19115-compliant complete product provenance metadata before and after the workflow execution. The generation of provenance metadata before the workflow execution allows users to examine the usability of the final product before the lengthy and expensive execution takes place. The three modes of workflow executions defined in the ISO 19119, transparent, translucent, and opaque, are available in GeoBrain. A geoprocessing modeling portal has been developed to allow domain experts to develop geoprocessing models at the type level with the support of both data and service/processing ontologies. The geoprocessing models capture the knowledge of the domain experts and are become the operational offering of the products after a proper peer review of models is conducted. An automated workflow composition has been experimented successfully based on ontologies and artificial

  1. Robustness of spatial micronetworks

    NASA Astrophysics Data System (ADS)

    McAndrew, Thomas C.; Danforth, Christopher M.; Bagrow, James P.

    2015-04-01

    Power lines, roadways, pipelines, and other physical infrastructure are critical to modern society. These structures may be viewed as spatial networks where geographic distances play a role in the functionality and construction cost of links. Traditionally, studies of network robustness have primarily considered the connectedness of large, random networks. Yet for spatial infrastructure, physical distances must also play a role in network robustness. Understanding the robustness of small spatial networks is particularly important with the increasing interest in microgrids, i.e., small-area distributed power grids that are well suited to using renewable energy resources. We study the random failures of links in small networks where functionality depends on both spatial distance and topological connectedness. By introducing a percolation model where the failure of each link is proportional to its spatial length, we find that when failures depend on spatial distances, networks are more fragile than expected. Accounting for spatial effects in both construction and robustness is important for designing efficient microgrids and other network infrastructure.

  2. Robust Control Systems.

    DTIC Science & Technology

    1981-12-01

    106 A. 13 XSU ......................................... 108 A.14 DDTCON...................................... 108 A.15 DKFTR...operation is preserved. Although some papers (Refs 6 and 13 ) deal with robustness only in regard to parameter variations within the basic controlled...since these can ofter be neglected in actual implementation, a constant-gain time 13 ........................................ invariant solution with

  3. Robustness of spatial micronetworks.

    PubMed

    McAndrew, Thomas C; Danforth, Christopher M; Bagrow, James P

    2015-04-01

    Power lines, roadways, pipelines, and other physical infrastructure are critical to modern society. These structures may be viewed as spatial networks where geographic distances play a role in the functionality and construction cost of links. Traditionally, studies of network robustness have primarily considered the connectedness of large, random networks. Yet for spatial infrastructure, physical distances must also play a role in network robustness. Understanding the robustness of small spatial networks is particularly important with the increasing interest in microgrids, i.e., small-area distributed power grids that are well suited to using renewable energy resources. We study the random failures of links in small networks where functionality depends on both spatial distance and topological connectedness. By introducing a percolation model where the failure of each link is proportional to its spatial length, we find that when failures depend on spatial distances, networks are more fragile than expected. Accounting for spatial effects in both construction and robustness is important for designing efficient microgrids and other network infrastructure.

  4. myExperiment: a repository and social network for the sharing of bioinformatics workflows

    PubMed Central

    Goble, Carole A.; Bhagat, Jiten; Aleksejevs, Sergejs; Cruickshank, Don; Michaelides, Danius; Newman, David; Borkum, Mark; Bechhofer, Sean; Roos, Marco; Li, Peter; De Roure, David

    2010-01-01

    myExperiment (http://www.myexperiment.org) is an online research environment that supports the social sharing of bioinformatics workflows. These workflows are procedures consisting of a series of computational tasks using web services, which may be performed on data from its retrieval, integration and analysis, to the visualization of the results. As a public repository of workflows, myExperiment allows anybody to discover those that are relevant to their research, which can then be reused and repurposed to their specific requirements. Conversely, developers can submit their workflows to myExperiment and enable them to be shared in a secure manner. Since its release in 2007, myExperiment currently has over 3500 registered users and contains more than 1000 workflows. The social aspect to the sharing of these workflows is facilitated by registered users forming virtual communities bound together by a common interest or research project. Contributors of workflows can build their reputation within these communities by receiving feedback and credit from individuals who reuse their work. Further documentation about myExperiment including its REST web service is available from http://wiki.myexperiment.org. Feedback and requests for support can be sent to bugs@myexperiment.org. PMID:20501605

  5. myExperiment: a repository and social network for the sharing of bioinformatics workflows.

    PubMed

    Goble, Carole A; Bhagat, Jiten; Aleksejevs, Sergejs; Cruickshank, Don; Michaelides, Danius; Newman, David; Borkum, Mark; Bechhofer, Sean; Roos, Marco; Li, Peter; De Roure, David

    2010-07-01

    myExperiment (http://www.myexperiment.org) is an online research environment that supports the social sharing of bioinformatics workflows. These workflows are procedures consisting of a series of computational tasks using web services, which may be performed on data from its retrieval, integration and analysis, to the visualization of the results. As a public repository of workflows, myExperiment allows anybody to discover those that are relevant to their research, which can then be reused and repurposed to their specific requirements. Conversely, developers can submit their workflows to myExperiment and enable them to be shared in a secure manner. Since its release in 2007, myExperiment currently has over 3500 registered users and contains more than 1000 workflows. The social aspect to the sharing of these workflows is facilitated by registered users forming virtual communities bound together by a common interest or research project. Contributors of workflows can build their reputation within these communities by receiving feedback and credit from individuals who reuse their work. Further documentation about myExperiment including its REST web service is available from http://wiki.myexperiment.org. Feedback and requests for support can be sent to bugs@myexperiment.org.

  6. Workflow continuity--moving beyond business continuity in a multisite 24-7 healthcare organization.

    PubMed

    Kolowitz, Brian J; Lauro, Gonzalo Romero; Barkey, Charles; Black, Harry; Light, Karen; Deible, Christopher

    2012-12-01

    As hospitals move towards providing in-house 24 × 7 services, there is an increasing need for information systems to be available around the clock. This study investigates one organization's need for a workflow continuity solution that provides around the clock availability for information systems that do not provide highly available services. The organization investigated is a large multifacility healthcare organization that consists of 20 hospitals and more than 30 imaging centers. A case analysis approach was used to investigate the organization's efforts. The results show an overall reduction in downtimes where radiologists could not continue their normal workflow on the integrated Picture Archiving and Communications System (PACS) solution by 94 % from 2008 to 2011. The impact of unplanned downtimes was reduced by 72 % while the impact of planned downtimes was reduced by 99.66 % over the same period. Additionally more than 98 h of radiologist impact due to a PACS upgrade in 2008 was entirely eliminated in 2011 utilizing the system created by the workflow continuity approach. Workflow continuity differs from high availability and business continuity in its design process and available services. Workflow continuity only ensures that critical workflows are available when the production system is unavailable due to scheduled or unscheduled downtimes. Workflow continuity works in conjunction with business continuity and highly available system designs. The results of this investigation revealed that this approach can add significant value to organizations because impact on users is minimized if not eliminated entirely.

  7. An evolving computational platform for biological mass spectrometry: workflows, statistics and data mining with MASSyPup64.

    PubMed

    Winkler, Robert

    2015-01-01

    displayed a higher robustness and accuracy for classifying sample groups in targeted Metabolomics than cluster analyses. Random Forest models do not only provide predictive models, which can be deployed for new data sets, but also the variable importance. We demonstrate that the later is especially useful for tracking down significant signals and affected pathways in untargeted Metabolomics. Thus, Random Forest modeling supports the unbiased search for relevant biological features in Metabolomics. Our results clearly manifest the importance of Data Mining methods to disclose non-obvious information in biological mass spectrometry . The application of a Workflow Management System and the integration of all required programs and data in a consistent platform makes the presented data analyses strategies reproducible for non-expert users. The simple remastering process and the Open Source licenses of MASSyPup64 (http://www.bioprocess.org/massypup/) enable the continuous improvement of the system.

  8. An evolving computational platform for biological mass spectrometry: workflows, statistics and data mining with MASSyPup64

    PubMed Central

    2015-01-01

    displayed a higher robustness and accuracy for classifying sample groups in targeted Metabolomics than cluster analyses. Random Forest models do not only provide predictive models, which can be deployed for new data sets, but also the variable importance. We demonstrate that the later is especially useful for tracking down significant signals and affected pathways in untargeted Metabolomics. Thus, Random Forest modeling supports the unbiased search for relevant biological features in Metabolomics. Our results clearly manifest the importance of Data Mining methods to disclose non-obvious information in biological mass spectrometry . The application of a Workflow Management System and the integration of all required programs and data in a consistent platform makes the presented data analyses strategies reproducible for non-expert users. The simple remastering process and the Open Source licenses of MASSyPup64 (http://www.bioprocess.org/massypup/) enable the continuous improvement of the system. PMID:26618079

  9. Detecting Dissonance in Clinical and Research Workflow for Translational Psychiatric Registries

    PubMed Central

    Cofiel, Luciana; Bassi, Débora U.; Ray, Ryan Kumar; Pietrobon, Ricardo; Brentani, Helena

    2013-01-01

    Background The interplay between the workflow for clinical tasks and research data collection is often overlooked, ultimately making it ineffective. Questions/purposes To the best of our knowledge, no previous studies have developed standards that allow for the comparison of workflow models derived from clinical and research tasks toward the improvement of data collection processes Methods In this study we used the term dissonance for the occurrences where there was a discord between clinical and research workflows. We developed workflow models for a translational research study in psychiatry and the clinic where its data collection was carried out. After identifying points of dissonance between clinical and research models we derived a corresponding classification system that ultimately enabled us to re-engineer the data collection workflow. We considered (1) the number of patients approached for enrollment and (2) the number of patients enrolled in the study as indicators of efficiency in research workflow. We also recorded the number of dissonances before and after the workflow modification. Results We identified 22 episodes of dissonance across 6 dissonance categories: actor, communication, information, artifact, time, and space. We were able to eliminate 18 episodes of dissonance and increase the number of patients approached and enrolled in research study trough workflow modification. Conclusion The classification developed in this study is useful for guiding the identification of dissonances and reveal modifications required to align the workflow of data collection and the clinical setting. The methodology described in this study can be used by researchers to standardize data collection process. PMID:24073246

  10. High-volume workflow management in the ITN/FBI system

    NASA Astrophysics Data System (ADS)

    Paulson, Thomas L.

    1997-02-01

    The Identification Tasking and Networking (ITN) Federal Bureau of Investigation system will manage the processing of more than 70,000 submissions per day. The workflow manager controls the routing of each submission through a combination of automated and manual processing steps whose exact sequence is dynamically determined by the results at each step. For most submissions, one or more of the steps involve the visual comparison of fingerprint images. The ITN workflow manager is implemented within a scaleable client/server architecture. The paper describes the key aspects of the ITN workflow manager design which allow the high volume of daily processing to be successfully accomplished.

  11. Flexible Data-Aware Scheduling for Workflows over an In-Memory Object Store

    SciTech Connect

    Duro, Francisco Rodrigo; Garcia Blas, Javier; Isaila, Florin; Wozniak, Justin M.; Carretero, Jesus; Ross, Rob

    2016-01-01

    This paper explores novel techniques for improving the performance of many-task workflows based on the Swift scripting language. We propose novel programmer options for automated distributed data placement and task scheduling. These options trigger a data placement mechanism used for distributing intermediate workflow data over the servers of Hercules, a distributed key-value store that can be used to cache file system data. We demonstrate that these new mechanisms can significantly improve the aggregated throughput of many-task workflows with up to 86x, reduce the contention on the shared file system, exploit the data locality, and trade off locality and load balance.

  12. Using Workflow Diagrams to Address Hand Hygiene in Pediatric Long-Term Care Facilities.

    PubMed

    Carter, Eileen J; Cohen, Bevin; Murray, Meghan T; Saiman, Lisa; Larson, Elaine L

    2015-01-01

    Hand hygiene (HH) in pediatric long-term care settings has been found to be sub-optimal. Multidisciplinary teams at three pediatric long-term care facilities developed step-by-step workflow diagrams of commonly performed tasks highlighting HH opportunities. Diagrams were validated through observation of tasks and concurrent diagram assessment. Facility teams developed six workflow diagrams that underwent 22 validation observations. Four main themes emerged: 1) diagram specificity, 2) wording and layout, 3) timing of HH indications, and 4) environmental hygiene. The development of workflow diagrams is an opportunity to identify and address the complexity of HH in pediatric long-term care facilities.

  13. Workflow in the operating room: review of Arrowhead 2004 seminar on imaging and informatics (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Lemke, Heinz U.; Ratib, Osman M.; Horii, Steven C.

    2005-04-01

    This review paper is based on the 2004 UCLA Seminar on Imaging and Informatics (http://www.radnet.ucla.edu/Arrowhead2004/) which is a joint endeavour between the UCLA and the CARS organization, focussing on workflow analysis tools and the digital operating room. Eleven specific presentations of the Arrowhead Seminar have been summarized in this review referring to redesigning perioperative care for a high velocity OR, intraoperative ultrasound process and model, surgical workflow and surgical PACS, an integrated view , interactions in the surgical OR, workflow automation strategies and target applications, visualisation solutions for the operating room, navigating the fifth dimension, and design of digital operating rooms and interventional suites

  14. Health information technology: integration of clinical workflow into meaningful use of electronic health records.

    PubMed

    Bowens, Felicia M; Frye, Patricia A; Jones, Warren A

    2010-10-01

    This article examines the role that clinical workflow plays in successful implementation and meaningful use of electronic health record (EHR) technology in ambulatory care. The benefits and barriers of implementing EHRs in ambulatory care settings are discussed. The researchers conclude that widespread adoption and meaningful use of EHR technology rely on the successful integration of health information technology (HIT) into clinical workflow. Without successful integration of HIT into clinical workflow, clinicians in today's ambulatory care settings will continue to resist adoption and implementation of EHR technology.

  15. Manual Gene Ontology annotation workflow at the Mouse Genome Informatics Database.

    PubMed

    Drabkin, Harold J; Blake, Judith A

    2012-01-01

    The Mouse Genome Database, the Gene Expression Database and the Mouse Tumor Biology database are integrated components of the Mouse Genome Informatics (MGI) resource (http://www.informatics.jax.org). The MGI system presents both a consensus view and an experimental view of the knowledge concerning the genetics and genomics of the laboratory mouse. From genotype to phenotype, this information resource integrates information about genes, sequences, maps, expression analyses, alleles, strains and mutant phenotypes. Comparative mammalian data are also presented particularly in regards to the use of the mouse as a model for the investigation of molecular and genetic components of human diseases. These data are collected from literature curation as well as downloads of large datasets (SwissProt, LocusLink, etc.). MGI is one of the founding members of the Gene Ontology (GO) and uses the GO for functional annotation of genes. Here, we discuss the workflow associated with manual GO annotation at MGI, from literature collection to display of the annotations. Peer-reviewed literature is collected mostly from a set of journals available electronically. Selected articles are entered into a master bibliography and indexed to one of eight areas of interest such as 'GO' or 'homology' or 'phenotype'. Each article is then either indexed to a gene already contained in the database or funneled through a separate nomenclature database to add genes. The master bibliography and associated indexing provide information for various curator-reports such as 'papers selected for GO that refer to genes with NO GO annotation'. Once indexed, curators who have expertise in appropriate disciplines enter pertinent information. MGI makes use of several controlled vocabularies that ensure uniform data encoding, enable robust analysis and support the construction of complex queries. These vocabularies range from pick-lists to structured vocabularies such as the GO. All data associations are supported

  16. Managing Written Directives: A Software Solution to Streamline Workflow.

    PubMed

    Wagner, Robert H; Savir-Baruch, Bital; Gabriel, Medhat Sam; Halama, James; Bova, Davide

    2017-03-09

    A written directive (WD) is a requirement of the United States Nuclear Regulatory Commission (USNRC) regulations and is required for all uses of I-131 above 1.11 MBq (30 microcuries) and for patients receiving therapy with radiopharmaceuticals. These regulations have also been adopted and are required to be enforced by the agreement states. A paper trail method of WD management is inefficient and prone to error, loss, and duplication. As the options for therapy in Nuclear Medicine increase with the introduction of new radiopharmaceuticals, the time spent on the regulatory burden and paperwork has also increased. The management of regulatory requirements has a significant impact on physician and technologist time utilization and these pressures may increase the potential for inaccurate or incomplete WD data and subsequent regulatory violations. A software tool for the management of WDs using a HIPAA compliant database has been created. This WD software allows for the secure sharing of data among physicians, technologists and managers while saving time, reducing errors and eliminating the possibility of loss and duplication. Methods: Software development was performed using Microsoft Visual Basic® (Microsoft Corporation, Redmond, WA) which is part of the Microsoft Visual Studio® development environment for the Microsoft Windows® platform. The database repository for patient data is Microsoft Access® and stored locally on a HIPAA secure server or hard disk. Once a working version was developed, it was installed and used at our institution for the management of WDs. Updates and modifications were released regularly until no significant problems were found with the operation of the software. Results: The software has been in use at our institution for over two years and has reliably kept track of all directives during that time. All physicians and technologists use the software as part of their daily workflow and find it superior to paper directives. We are able to

  17. Eddy Covariance Method: Overview of General Guidelines and Conventional Workflow

    NASA Astrophysics Data System (ADS)

    Burba, G. G.; Anderson, D. J.; Amen, J. L.

    2007-12-01

    Atmospheric flux measurements are widely used to estimate water, heat, carbon dioxide and trace gas exchange between the ecosystem and the atmosphere. The Eddy Covariance method is one of the most direct, defensible ways to measure and calculate turbulent fluxes within the atmospheric boundary layer. However, the method is mathematically complex, and requires significant care to set up and process data. These reasons may be why the method is currently used predominantly by micrometeorologists. Modern instruments and software can potentially expand the use of this method beyond micrometeorology and prove valuable for plant physiology, hydrology, biology, ecology, entomology, and other non-micrometeorological areas of research. The main challenge of the method for a non-expert is the complexity of system design, implementation, and processing of the large volume of data. In the past several years, efforts of the flux networks (e.g., FluxNet, Ameriflux, CarboEurope, Fluxnet-Canada, Asiaflux, etc.) have led to noticeable progress in unification of the terminology and general standardization of processing steps. The methodology itself, however, is difficult to unify, because various experimental sites and different purposes of studies dictate different treatments, and site-, measurement- and purpose-specific approaches. Here we present an overview of theory and typical workflow of the Eddy Covariance method in a format specifically designed to (i) familiarize a non-expert with general principles, requirements, applications, and processing steps of the conventional Eddy Covariance technique, (ii) to assist in further understanding the method through more advanced references such as textbooks, network guidelines and journal papers, (iii) to help technicians, students and new researchers in the field deployment of the Eddy Covariance method, and (iv) to assist in its use beyond micrometeorology. The overview is based, to a large degree, on the frequently asked questions

  18. Comparing dependent robust correlations.

    PubMed

    Wilcox, Rand R

    2016-11-01

    Let r1 and r2 be two dependent estimates of Pearson's correlation. There is a substantial literature on testing H0  : ρ1  = ρ2 , the hypothesis that the population correlation coefficients are equal. However, it is well known that Pearson's correlation is not robust. Even a single outlier can have a substantial impact on Pearson's correlation, resulting in a misleading understanding about the strength of the association among the bulk of the points. A way of mitigating this concern is to use a correlation coefficient that guards against outliers, many of which have been proposed. But apparently there are no results on how to compare dependent robust correlation coefficients when there is heteroscedasicity. Extant results suggest that a basic percentile bootstrap will perform reasonably well. This paper reports simulation results indicating the extent to which this is true when using Spearman's rho, a Winsorized correlation or a skipped correlation.

  19. Development of a user customizable imaging informatics-based intelligent workflow engine system to enhance rehabilitation clinical trials

    NASA Astrophysics Data System (ADS)

    Wang, Ximing; Martinez, Clarisa; Wang, Jing; Liu, Ye; Liu, Brent

    2014-03-01

    Clinical trials usually have a demand to collect, track and analyze multimedia data according to the workflow. Currently, the clinical trial data management requirements are normally addressed with custom-built systems. Challenges occur in the workflow design within different trials. The traditional pre-defined custom-built system is usually limited to a specific clinical trial and normally requires time-consuming and resource-intensive software development. To provide a solution, we present a user customizable imaging informatics-based intelligent workflow engine system for managing stroke rehabilitation clinical trials with intelligent workflow. The intelligent workflow engine provides flexibility in building and tailoring the workflow in various stages of clinical trials. By providing a solution to tailor and automate the workflow, the system will save time and reduce errors for clinical trials. Although our system is designed for clinical trials for rehabilitation, it may be extended to other imaging based clinical trials as well.

  20. Robust verification analysis

    NASA Astrophysics Data System (ADS)

    Rider, William; Witkowski, Walt; Kamm, James R.; Wildey, Tim

    2016-02-01

    We introduce a new methodology for inferring the accuracy of computational simulations through the practice of solution verification. We demonstrate this methodology on examples from computational heat transfer, fluid dynamics and radiation transport. Our methodology is suited to both well- and ill-behaved sequences of simulations. Our approach to the analysis of these sequences of simulations incorporates expert judgment into the process directly via a flexible optimization framework, and the application of robust statistics. The expert judgment is systematically applied as constraints to the analysis, and together with the robust statistics guards against over-emphasis on anomalous analysis results. We have named our methodology Robust Verification. Our methodology is based on utilizing multiple constrained optimization problems to solve the verification model in a manner that varies the analysis' underlying assumptions. Constraints applied in the analysis can include expert judgment regarding convergence rates (bounds and expectations) as well as bounding values for physical quantities (e.g., positivity of energy or density). This approach then produces a number of error models, which are then analyzed through robust statistical techniques (median instead of mean statistics). This provides self-contained, data and expert informed error estimation including uncertainties for both the solution itself and order of convergence. Our method produces high quality results for the well-behaved cases relatively consistent with existing practice. The methodology can also produce reliable results for ill-behaved circumstances predicated on appropriate expert judgment. We demonstrate the method and compare the results with standard approaches used for both code and solution verification on well-behaved and ill-behaved simulations.

  1. Robust verification analysis

    SciTech Connect

    Rider, William; Witkowski, Walt; Kamm, James R.; Wildey, Tim

    2016-02-15

    We introduce a new methodology for inferring the accuracy of computational simulations through the practice of solution verification. We demonstrate this methodology on examples from computational heat transfer, fluid dynamics and radiation transport. Our methodology is suited to both well- and ill-behaved sequences of simulations. Our approach to the analysis of these sequences of simulations incorporates expert judgment into the process directly via a flexible optimization framework, and the application of robust statistics. The expert judgment is systematically applied as constraints to the analysis, and together with the robust statistics guards against over-emphasis on anomalous analysis results. We have named our methodology Robust Verification. Our methodology is based on utilizing multiple constrained optimization problems to solve the verification model in a manner that varies the analysis' underlying assumptions. Constraints applied in the analysis can include expert judgment regarding convergence rates (bounds and expectations) as well as bounding values for physical quantities (e.g., positivity of energy or density). This approach then produces a number of error models, which are then analyzed through robust statistical techniques (median instead of mean statistics). This provides self-contained, data and expert informed error estimation including uncertainties for both the solution itself and order of convergence. Our method produces high quality results for the well-behaved cases relatively consistent with existing practice. The methodology can also produce reliable results for ill-behaved circumstances predicated on appropriate expert judgment. We demonstrate the method and compare the results with standard approaches used for both code and solution verification on well-behaved and ill-behaved simulations.

  2. Robustness in bacterial chemotaxis

    NASA Astrophysics Data System (ADS)

    Alon, U.; Surette, M. G.; Barkai, N.; Leibler, S.

    1999-01-01

    Networks of interacting proteins orchestrate the responses of living cells to a variety of external stimuli, but how sensitive is the functioning of these protein networks to variations in theirbiochemical parameters? One possibility is that to achieve appropriate function, the reaction rate constants and enzyme concentrations need to be adjusted in a precise manner, and any deviation from these `fine-tuned' values ruins the network's performance. An alternative possibility is that key properties of biochemical networks are robust; that is, they are insensitive to the precise values of the biochemical parameters. Here we address this issue in experiments using chemotaxis of Escherichia coli, one of the best-characterized sensory systems,. We focus on how response and adaptation to attractant signals vary with systematic changes in the intracellular concentration of the components of the chemotaxis network. We find that some properties, such as steady-state behaviour and adaptation time, show strong variations in response to varying protein concentrations. In contrast, the precision of adaptation is robust and does not vary with the protein concentrations. This is consistent with a recently proposed molecular mechanism for exact adaptation, where robustness is a direct consequence of the network's architecture.

  3. Robustness of metabolic networks

    NASA Astrophysics Data System (ADS)

    Jeong, Hawoong

    2009-03-01

    We investigated the robustness of cellular metabolism by simulating the system-level computational models, and also performed the corresponding experiments to validate our predictions. We address the cellular robustness from the ``metabolite''-framework by using the novel concept of ``flux-sum,'' which is the sum of all incoming or outgoing fluxes (they are the same under the pseudo-steady state assumption). By estimating the changes of the flux-sum under various genetic and environmental perturbations, we were able to clearly decipher the metabolic robustness; the flux-sum around an essential metabolite does not change much under various perturbations. We also identified the list of the metabolites essential to cell survival, and then ``acclimator'' metabolites that can control the cell growth were discovered. Furthermore, this concept of ``metabolite essentiality'' should be useful in developing new metabolic engineering strategies for improved production of various bioproducts and designing new drugs that can fight against multi-antibiotic resistant superbacteria by knocking-down the enzyme activities around an essential metabolite. Finally, we combined a regulatory network with the metabolic network to investigate its effect on dynamic properties of cellular metabolism.

  4. Robustness of Interdependent Networks

    NASA Astrophysics Data System (ADS)

    Havlin, Shlomo

    2011-03-01

    In interdependent networks, when nodes in one network fail, they cause dependent nodes in other networks to also fail. This may happen recursively and can lead to a cascade of failures. In fact, a failure of a very small fraction of nodes in one network may lead to the complete fragmentation of a system of many interdependent networks. We will present a framework for understanding the robustness of interacting networks subject to such cascading failures and provide a basic analytic approach that may be useful in future studies. We present exact analytical solutions for the critical fraction of nodes that upon removal will lead to a failure cascade and to a complete fragmentation of two interdependent networks in a first order transition. Surprisingly, analyzing complex systems as a set of interdependent networks may alter a basic assumption that network theory has relied on: while for a single network a broader degree distribution of the network nodes results in the network being more robust to random failures, for interdependent networks, the broader the distribution is, the more vulnerable the networks become to random failure. We also show that reducing the coupling between the networks leads to a change from a first order percolation phase transition to a second order percolation transition at a critical point. These findings pose a significant challenge to the future design of robust networks that need to consider the unique properties of interdependent networks.

  5. Semiautomated Workflow for Clinically Streamlined Glioma Parametric Response Mapping

    PubMed Central

    Keith, Lauren; Ross, Brian D.; Galbán, Craig J.; Luker, Gary D.; Galbán, Stefanie; Zhao, Binsheng; Guo, Xiaotao; Chenevert, Thomas L.; Hoff, Benjamin A.

    2017-01-01

    Management of glioblastoma multiforme remains a challenging problem despite recent advances in targeted therapies. Timely assessment of therapeutic agents is hindered by the lack of standard quantitative imaging protocols for determining targeted response. Clinical response assessment for brain tumors is determined by volumetric changes assessed at 10 weeks post-treatment initiation. Further, current clinical criteria fail to use advanced quantitative imaging approaches, such as diffusion and perfusion magnetic resonance imaging. Development of the parametric response mapping (PRM) applied to diffusion-weighted magnetic resonance imaging has provided a sensitive and early biomarker of successful cytotoxic therapy in brain tumors while maintaining a spatial context within the tumor. Although PRM provides an earlier readout than volumetry and sometimes greater sensitivity compared with traditional whole-tumor diffusion statistics, it is not routinely used for patient management; an automated and standardized software for performing the analysis and for the generation of a clinical report document is required for this. We present a semiautomated and seamless workflow for image coregistration, segmentation, and PRM classification of glioblastoma multiforme diffusion-weighted magnetic resonance imaging scans. The software solution can be integrated using local hardware or performed remotely in the cloud while providing connectivity to existing picture archive and communication systems. This is an important step toward implementing PRM analysis of solid tumors in routine clinical practice. PMID:28286871

  6. AI and workflow automation: The prototype electronic purchase request system

    NASA Technical Reports Server (NTRS)

    Compton, Michael M.; Wolfe, Shawn R.

    1994-01-01

    Automating 'paper' workflow processes with electronic forms and email can dramatically improve the efficiency of those processes. However, applications that involve complex forms that are used for a variety of purposes or that require numerous and varied approvals often require additional software tools to ensure that (1) the electronic form is correctly and completely filled out, and (2) the form is routed to the proper individuals and organizations for approval. The prototype electronic purchase request (PEPR) system, which has been in pilot use at NASA Ames Research Center since December 1993, seamlessly links a commercial electronics forms package and a CLIPS-based knowledge system that first ensures that electronic forms are correct and complete, and then generates an 'electronic routing slip' that is used to route the form to the people who must sign it. The PEPR validation module is context-sensitive, and can apply different validation rules at each step in the approval process. The PEPR system is form-independent, and has been applied to several different types of forms. The system employs a version of CLIPS that has been extended to support AppleScript, a recently-released scripting language for the Macintosh. This 'scriptability' provides both a transparent, flexible interface between the two programs and a means by which a single copy of the knowledge base can be utilized by numerous remote users.

  7. Data and Communications in Basic Energy Sciences: Creating a Pathway for Scientific Discovery

    SciTech Connect

    Nugent, Peter E.; Simonson, J. Michael

    2011-10-24

    This report is based on the Department of Energy (DOE) Workshop on “Data and Communications in Basic Energy Sciences: Creating a Pathway for Scientific Discovery” that was held at the Bethesda Marriott in Maryland on October 24-25, 2011. The workshop brought together leading researchers from the Basic Energy Sciences (BES) facilities and Advanced Scientific Computing Research (ASCR). The workshop was co-sponsored by these two Offices to identify opportunities and needs for data analysis, ownership, storage, mining, provenance and data transfer at light sources, neutron sources, microscopy centers and other facilities. Their charge was to identify current and anticipated issues in the acquisition, analysis, communication and storage of experimental data that could impact the progress of scientific discovery, ascertain what knowledge, methods and tools are needed to mitigate present and projected shortcomings and to create the foundation for information exchanges and collaboration between ASCR and BES supported researchers and facilities. The workshop was organized in the context of the impending data tsunami that will be produced by DOE’s BES facilities. Current facilities, like SLAC National Accelerator Laboratory’s Linac Coherent Light Source, can produce up to 18 terabytes (TB) per day, while upgraded detectors at Lawrence Berkeley National Laboratory’s Advanced Light Source will generate ~10TB per hour. The expectation is that these rates will increase by over an order of magnitude in the coming decade. The urgency to develop new strategies and methods in order to stay ahead of this deluge and extract the most science from these facilities was recognized by all. The four focus areas addressed in this workshop were: Workflow Management - Experiment to Science: Identifying and managing the data path from experiment to publication. Theory and Algorithms: Recognizing the need for new tools for computation at scale, supporting large data sets and realistic

  8. Scientific approaches to science policy.

    PubMed

    Berg, Jeremy M

    2013-11-01

    The development of robust science policy depends on use of the best available data, rigorous analysis, and inclusion of a wide range of input. While director of the National Institute of General Medical Sciences (NIGMS), I took advantage of available data and emerging tools to analyze training time distribution by new NIGMS grantees, the distribution of the number of publications as a function of total annual National Institutes of Health support per investigator, and the predictive value of peer-review scores on subsequent scientific productivity. Rigorous data analysis should be used to develop new reforms and initiatives that will help build a more sustainable American biomedical research enterprise.

  9. Load-sensitive dynamic workflow re-orchestration and optimisation for faster patient healthcare.

    PubMed

    Meli, Christopher L; Khalil, Ibrahim; Tari, Zahir

    2014-01-01

    Hospital waiting times are considerably long, with no signs of reducing any-time soon. A number of factors including population growth, the ageing population and a lack of new infrastructure are expected to further exacerbate waiting times in the near future. In this work, we show how healthcare services can be modelled as queueing nodes, together with healthcare service workflows, such that these workflows can be optimised during execution in order to reduce patient waiting times. Services such as X-ray, computer tomography, and magnetic resonance imaging often form queues, thus, by taking into account the waiting times of each service, the workflow can be re-orchestrated and optimised. Experimental results indicate average waiting time reductions are achievable by optimising workflows using dynamic re-orchestration.

  10. Visual compression of workflow visualizations with automated detection of macro motifs.

    PubMed

    Maguire, Eamonn; Rocca-Serra, Philippe; Sansone, Susanna-Assunta; Davies, Jim; Chen, Min

    2013-12-01

    This paper is concerned with the creation of 'macros' in workflow visualization as a support tool to increase the efficiency of data curation tasks. We propose computation of candidate macros based on their usage in large collections of workflows in data repositories. We describe an efficient algorithm for extracting macro motifs from workflow graphs. We discovered that the state transition information, used to identify macro candidates, characterizes the structural pattern of the macro and can be harnessed as part of the visual design of the corresponding macro glyph. This facilitates partial automation and consistency in glyph design applicable to a large set of macro glyphs. We tested this approach against a repository of biological data holding some 9,670 workflows and found that the algorithmically generated candidate macros are in keeping with domain expert expectations.

  11. Workflow technology: the new frontier. How to overcome the barriers and join the future.

    PubMed

    Shefter, Susan M

    2006-01-01

    Hospitals are catching up to the business world in the introduction of technology systems that support professional practice and workflow. The field of case management is highly complex and interrelates with diverse groups in diverse locations. The last few years have seen the introduction of Workflow Technology Tools, which can improve the quality and efficiency of discharge planning by the case manager. Despite the availability of these wonderful new programs, many case managers are hesitant to adopt the new technology and workflow. For a myriad of reasons, a computer-based workflow system can seem like a brick wall. This article discusses, from a practitioner's point of view, how professionals can gain confidence and skill to get around the brick wall and join the future.

  12. A framework for service enterprise workflow simulation with multi-agents cooperation

    NASA Astrophysics Data System (ADS)

    Tan, Wenan; Xu, Wei; Yang, Fujun; Xu, Lida; Jiang, Chuanqun

    2013-11-01

    Process dynamic modelling for service business is the key technique for Service-Oriented information systems and service business management, and the workflow model of business processes is the core part of service systems. Service business workflow simulation is the prevalent approach to be used for analysis of service business process dynamically. Generic method for service business workflow simulation is based on the discrete event queuing theory, which is lack of flexibility and scalability. In this paper, we propose a service workflow-oriented framework for the process simulation of service businesses using multi-agent cooperation to address the above issues. Social rationality of agent is introduced into the proposed framework. Adopting rationality as one social factor for decision-making strategies, a flexible scheduling for activity instances has been implemented. A system prototype has been developed to validate the proposed simulation framework through a business case study.

  13. Digitization workflows for flat sheets and packets of plants, algae, and fungi1

    PubMed Central

    Nelson, Gil; Sweeney, Patrick; Wallace, Lisa E.; Rabeler, Richard K.; Allard, Dorothy; Brown, Herrick; Carter, J. Richard; Denslow, Michael W.; Ellwood, Elizabeth R.; Germain-Aubrey, Charlotte C.; Gilbert, Ed; Gillespie, Emily; Goertzen, Leslie R.; Legler, Ben; Marchant, D. Blaine; Marsico, Travis D.; Morris, Ashley B.; Murrell, Zack; Nazaire, Mare; Neefus, Chris; Oberreiter, Shanna; Paul, Deborah; Ruhfel, Brad R.; Sasek, Thomas; Shaw, Joey; Soltis, Pamela S.; Watson, Kimberly; Weeks, Andrea; Mast, Austin R.

    2015-01-01

    Effective workflows are essential components in the digitization of biodiversity specimen collections. To date, no comprehensive, community-vetted workflows have been published for digitizing flat sheets and packets of plants, algae, and fungi, even though latest estimates suggest that only 33% of herbarium specimens have been digitally transcribed, 54% of herbaria use a specimen database, and 24% are imaging specimens. In 2012, iDigBio, the U.S. National Science Foundation’s (NSF) coordinating center and national resource for the digitization of public, nonfederal U.S. collections, launched several working groups to address this deficiency. Here, we report the development of 14 workflow modules with 7–36 tasks each. These workflows represent the combined work of approximately 35 curators, directors, and collections managers representing more than 30 herbaria, including 15 NSF-supported plant-related Thematic Collections Networks and collaboratives. The workflows are provided for download as Portable Document Format (PDF) and Microsoft Word files. Customization of these workflows for specific institutional implementation is encouraged. PMID:26421256

  14. An end-to-end workflow for engineering of biological networks from high-level specifications.

    PubMed

    Beal, Jacob; Weiss, Ron; Densmore, Douglas; Adler, Aaron; Appleton, Evan; Babb, Jonathan; Bhatia, Swapnil; Davidsohn, Noah; Haddock, Traci; Loyall, Joseph; Schantz, Richard; Vasilev, Viktor; Yaman, Fusun

    2012-08-17

    We present a workflow for the design and production of biological networks from high-level program specifications. The workflow is based on a sequence of intermediate models that incrementally translate high-level specifications into DNA samples that implement them. We identify algorithms for translating between adjacent models and implement them as a set of software tools, organized into a four-stage toolchain: Specification, Compilation, Part Assignment, and Assembly. The specification stage begins with a Boolean logic computation specified in the Proto programming language. The compilation stage uses a library of network motifs and cellular platforms, also specified in Proto, to transform the program into an optimized Abstract Genetic Regulatory Network (AGRN) that implements the programmed behavior. The part assignment stage assigns DNA parts to the AGRN, drawing the parts from a database for the target cellular platform, to create a DNA sequence implementing the AGRN. Finally, the assembly stage computes an optimized assembly plan to create the DNA sequence from available part samples, yielding a protocol for producing a sample of engineered plasmids with robotics assistance. Our workflow is the first to automate the production of biological networks from a high-level program specification. Furthermore, the workflow's modular design allows the same program to be realized on different cellular platforms simply by swapping workflow configurations. We validated our workflow by specifying a small-molecule sensor-reporter program and verifying the resulting plasmids in both HEK 293 mammalian cells and in E. coli bacterial cells.

  15. Quantitative ethnographic study of physician workflow and interactions with electronic health record systems.

    PubMed

    Asan, Onur; Chiou, Erin; Montague, Enid

    2015-09-01

    This study explores the relationship between primary care physicians' interactions with health information technology and primary care workflow. Clinical encounters were recorded with high-resolution video cameras to capture physicians' workflow and interaction with two objects of interest, the electronic health record (EHR) system, and their patient. To analyze the data, a coding scheme was developed based on a validated list of primary care tasks to define the presence or absence of a task, the time spent on each task, and the sequence of tasks. Results revealed divergent workflows and significant differences between physicians' EHR use surrounding common workflow tasks: gathering information, documenting information, and recommend/discuss treatment options. These differences suggest impacts of EHR use on primary care workflow, and capture types of workflows that can be used to inform future studies with larger sample sizes for more effective designs of EHR systems in primary care clinics. Future research on this topic and design strategies for effective health information technology in primary care are discussed.

  16. Digitization workflows for flat sheets and packets of plants, algae, and fungi.

    PubMed

    Nelson, Gil; Sweeney, Patrick; Wallace, Lisa E; Rabeler, Richard K; Allard, Dorothy; Brown, Herrick; Carter, J Richard; Denslow, Michael W; Ellwood, Elizabeth R; Germain-Aubrey, Charlotte C; Gilbert, Ed; Gillespie, Emily; Goertzen, Leslie R; Legler, Ben; Marchant, D Blaine; Marsico, Travis D; Morris, Ashley B; Murrell, Zack; Nazaire, Mare; Neefus, Chris; Oberreiter, Shanna; Paul, Deborah; Ruhfel, Brad R; Sasek, Thomas; Shaw, Joey; Soltis, Pamela S; Watson, Kimberly; Weeks, Andrea; Mast, Austin R

    2015-09-01

    Effective workflows are essential components in the digitization of biodiversity specimen collections. To date, no comprehensive, community-vetted workflows have been published for digitizing flat sheets and packets of plants, algae, and fungi, even though latest estimates suggest that only 33% of herbarium specimens have been digitally transcribed, 54% of herbaria use a specimen database, and 24% are imaging specimens. In 2012, iDigBio, the U.S. National Science Foundation's (NSF) coordinating center and national resource for the digitization of public, nonfederal U.S. collections, launched several working groups to address this deficiency. Here, we report the development of 14 workflow modules with 7-36 tasks each. These workflows represent the combined work of approximately 35 curators, directors, and collections managers representing more than 30 herbaria, including 15 NSF-supported plant-related Thematic Collections Networks and collaboratives. The workflows are provided for download as Portable Document Format (PDF) and Microsoft Word files. Customization of these workflows for specific institutional implementation is encouraged.

  17. Quantitative ethnographic study of physician workflow and interactions with electronic health record systems

    PubMed Central

    Asan, Onur; Chiou, Erin; Montague, Enid

    2014-01-01

    This study explores the relationship between primary care physicians’ interactions with health information technology and primary care workflow. Clinical encounters were recorded with high-resolution video cameras to capture physicians’ workflow and interaction with two objects of interest, the electronic health record (EHR) system, and their patient. To analyze the data, a coding scheme was developed based on a validated list of primary care tasks to define the presence or absence of a task, the time spent on each task, and the sequence of tasks. Results revealed divergent workflows and significant differences between physicians’ EHR use surrounding common workflow tasks: gathering information, documenting information, and recommend/discuss treatment options. These differences suggest impacts of EHR use on primary care workflow, and capture types of workflows that can be used to inform future studies with larger sample sizes for more effective designs of EHR systems in primary care clinics. Future research on this topic and design strategies for effective health information technology in primary care are discussed. PMID:26279597

  18. The BEL information extraction workflow (BELIEF): evaluation in the BioCreative V BEL and IAT track

    PubMed Central

    Madan, Sumit; Hodapp, Sven; Senger, Philipp; Ansari, Sam; Szostak, Justyna; Hoeng, Julia; Peitsch, Manuel; Fluck, Juliane

    2016-01-01

    Network-based approaches have become extremely important in systems biology to achieve a better understanding of biological mechanisms. For network representation, the Biological Expression Language (BEL) is well designed to collate findings from the scientific literature into biological network models. To facilitate encoding and biocuration of such findings in BEL, a BEL Information Extraction Workflow (BELIEF) was developed. BELIEF provides a web-based curation interface, the BELIEF Dashboard, that incorporates text mining techniques to support the biocurator in the generation of BEL networks. The underlying UIMA-based text mining pipeline (BELIEF Pipeline) uses several named entity recognition processes and relationship extraction methods to detect concepts and BEL relationships in literature. The BELIEF Dashboard allows easy curation of the automatically generated BEL statements and their context annotations. Resulting BEL statements and their context annotations can be syntactically and semantically verified to ensure consistency in the BEL network. In summary, the workflow supports experts in different stages of systems biology network building. Based on the BioCreative V BEL track evaluation, we show that the BELIEF Pipeline automatically extracts relationships with an F-score of 36.4% and fully correct statements can be obtained with an F-score of 30.8%. Participation in the BioCreative V Interactive task (IAT) track with BELIEF revealed a systems usability scale (SUS) of 67. Considering the complexity of the task for new users—learning BEL, working with a completely new interface, and performing complex curation—a score so close to the overall SUS average highlights the usability of BELIEF. Database URL: BELIEF is available at http://www.scaiview.com/belief/ PMID:27694210

  19. Ontology for Transforming Geo-Spatial Data for Discovery and Integration of Scientific Data

    NASA Astrophysics Data System (ADS)

    Nguyen, L.; Chee, T.; Minnis, P.

    2013-12-01

    Discovery and access to geo-spatial scientific data across heterogeneous repositories and multi-discipline datasets can present challenges for scientist. We propose to build a workflow for transforming geo-spatial datasets into semantic environment by using relationships to describe the resource using OWL Web Ontology, RDF, and a proposed geo-spatial vocabulary. We will present methods for transforming traditional scientific dataset, use of a semantic repository, and querying using SPARQL to integrate and access datasets. This unique repository will enable discovery of scientific data by geospatial bound or other criteria.

  20. Robust Photon Locking

    SciTech Connect

    Bayer, T.; Wollenhaupt, M.; Sarpe-Tudoran, C.; Baumert, T.

    2009-01-16

    We experimentally demonstrate a strong-field coherent control mechanism that combines the advantages of photon locking (PL) and rapid adiabatic passage (RAP). Unlike earlier implementations of PL and RAP by pulse sequences or chirped pulses, we use shaped pulses generated by phase modulation of the spectrum of a femtosecond laser pulse with a generalized phase discontinuity. The novel control scenario is characterized by a high degree of robustness achieved via adiabatic preparation of a state of maximum coherence. Subsequent phase control allows for efficient switching among different target states. We investigate both properties by photoelectron spectroscopy on potassium atoms interacting with the intense shaped light field.

  1. Robust Kriged Kalman Filtering

    SciTech Connect

    Baingana, Brian; Dall'Anese, Emiliano; Mateos, Gonzalo; Giannakis, Georgios B.

    2015-11-11

    Although the kriged Kalman filter (KKF) has well-documented merits for prediction of spatial-temporal processes, its performance degrades in the presence of outliers due to anomalous events, or measurement equipment failures. This paper proposes a robust KKF model that explicitly accounts for presence of measurement outliers. Exploiting outlier sparsity, a novel l1-regularized estimator that jointly predicts the spatial-temporal process at unmonitored locations, while identifying measurement outliers is put forth. Numerical tests are conducted on a synthetic Internet protocol (IP) network, and real transformer load data. Test results corroborate the effectiveness of the novel estimator in joint spatial prediction and outlier identification.

  2. Complexity and robustness

    PubMed Central

    Carlson, J. M.; Doyle, John

    2002-01-01

    Highly optimized tolerance (HOT) was recently introduced as a conceptual framework to study fundamental aspects of complexity. HOT is motivated primarily by systems from biology and engineering and emphasizes, (i) highly structured, nongeneric, self-dissimilar internal configurations, and (ii) robust yet fragile external behavior. HOT claims these are the most important features of complexity and not accidents of evolution or artifices of engineering design but are inevitably intertwined and mutually reinforcing. In the spirit of this collection, our paper contrasts HOT with alternative perspectives on complexity, drawing on real-world examples and also model systems, particularly those from self-organized criticality. PMID:11875207

  3. Robustness of Cantor diffractals.

    PubMed

    Verma, Rupesh; Sharma, Manoj Kumar; Banerjee, Varsha; Senthilkumaran, Paramasivam

    2013-04-08

    Diffractals are electromagnetic waves diffracted by a fractal aperture. In an earlier paper, we reported an important property of Cantor diffractals, that of redundancy [R. Verma et. al., Opt. Express 20, 8250 (2012)]. In this paper, we report another important property, that of robustness. The question we address is: How much disorder in the Cantor grating can be accommodated by diffractals to continue to yield faithfully its fractal dimension and generator? This answer is of consequence in a number of physical problems involving fractal architecture.

  4. OSPRay - A CPU Ray Tracing Framework for Scientific Visualization.

    PubMed

    Wald, I; Johnson, G P; Amstutz, J; Brownlee, C; Knoll, A; Jeffers, J; Gunther, J; Navratil, P

    2017-01-01

    Scientific data is continually increasing in complexity, variety and size, making efficient visualization and specifically rendering an ongoing challenge. Traditional rasterization-based visualization approaches encounter performance and quality limitations, particularly in HPC environments without dedicated rendering hardware. In this paper, we present OSPRay, a turn-key CPU ray tracing framework oriented towards production-use scientific visualization which can utilize varying SIMD widths and multiple device backends found across diverse HPC resources. This framework provides a high-quality, efficient CPU-based solution for typical visualization workloads, which has already been integrated into several prevalent visualization packages. We show that this system delivers the performance, high-level API simplicity, and modular device support needed to provide a compelling new rendering framework for implementing efficient scientific visualization workflows.

  5. Text-mining-assisted biocuration workflows in Argo.

    PubMed

    Rak, Rafal; Batista-Navarro, Riza Theresa; Rowley, Andrew; Carter, Jacob; Ananiadou, Sophia

    2014-01-01

    Biocuration activities have been broadly categorized into the selection of relevant documents, the annotation of biological concepts of interest and identification of interactions between the concepts. Text mining has been shown to have a potential to significantly reduce the effort of biocurators in all the three activities, and various semi-automatic methodologies have been integrated into curation pipelines to support them. We investigate the suitability of Argo, a workbench for building text-mining solutions with the use of a rich graphical user interface, for the process of biocuration. Central to Argo are customizable workflows that users compose by arranging available elementary analytics to form task-specific processing units. A built-in manual annotation editor is the single most used biocuration tool of the workbench, as it allows users to create annotations directly in text, as well as modify or delete annotations created by automatic processing components. Apart from syntactic and semantic analytics, the ever-growing library of components includes several data readers and consumers that support well-established as well as emerging data interchange formats such as XMI, RDF and BioC, which facilitate the interoperability of Argo with other platforms or resources. To validate the suitability of Argo for curation activities, we participated in the BioCreative IV challenge whose purpose was to evaluate Web-based systems addressing user-defined biocuration tasks. Argo proved to have the edge over other systems in terms of flexibility of defining biocuration tasks. As expected, the versatility of the workbench inevitably lengthened the time the curators spent on learning the system before taking on the task, which may have affected the usability of Argo. The participation in the challenge gave us an opportunity to gather valuable feedback and identify areas of improvement, some of which have already been introduced. Database URL: http://argo.nactem.ac.uk.

  6. MediGuide-impact on catheter ablation techniques and workflow.

    PubMed

    Pillarisetti, Jayasree; Kanmanthareddy, Arun; Reddy, Yeruva Madhu; Lakkireddy, Dhanunjaya

    2014-09-01

    Since the introduction of percutaneous intervention in modern medical science, specifically cardiovascular medicine fluoroscopy has remained the gold standard for navigation inside the cardiac structures. As the complexity of the procedures continue to increase with advances in interventional electrophysiology, the procedural times and fluoroscopy times have proportionately increased and the risks of radiation exposure both to the patients as well as the operator continue to rise. 3D electroanatomic mapping systems have to some extent complemented fluoroscopic imaging in improving catheter navigation and forming a solid platform for exploring the electroanatomic details of the target substrate. The 3D mapping systems are still limited as they continue to be static representations of a dynamic heart without being completely integrated with fluoroscopy. The field needed a technological solution that could add a dynamic positioning system that can be successfully incorporated into fluoroscopic imaging as well as electroanatomic imaging modalities. MediGuide is one such innovative technology that exploits the geo-positioning system principles. It employs a transmitter mounted on the X-ray panel that emits an electromagnetic field within which sensor-equipped diagnostic and ablation catheters are tracked within prerecorded fluoroscopic images. MediGuide is also integrated with NavX mapping system and helps in developing better 3D images by field scaling-a process that reduces field distortions that occur from impedance mapping alone. In this review, we discuss about the principle of MediGuide technology, the catheter ablation techniques, and the workflow in the EP lab for different procedures.

  7. An integrated workflow for characterizing intact phosphoproteins from complex mixtures

    PubMed Central

    Wu, Si; Yang, Feng; Zhao, Rui; Tolić, Nikola; Robinson, Errol W.; Camp, David; Smith, Richard D.; Paša-Tolić, Ljiljana

    2014-01-01

    The phosphorylation of any site on a given protein can affect its activity, degradation rate, ability to dock with other proteins or bind divalent cations, and/or its localization. These effects can operate within the same protein; in fact, multisite phosphorylation is a key mechanism for achieving signal integration in cells. Hence, knowing the overall phosphorylation signature of a protein is essential for understanding the "state" of a cell. However, current technologies to monitor the phosphorylation status of proteins are inefficient at determining the relative stoichiometries of phosphorylation at multiple sites. Here we report a new capability for comprehensive liquid chromatography mass spectrometry (LC/MS) analysis of intact phosphoproteins. The technology platform built upon integrated bottom-up and top-down approach that is facilitated by intact protein reversed-phase (RP)LC concurrently coupled with Fourier transform ion cyclotron resonance (FTICR) MS and fraction collection. As the use of conventional RPLC systems for phosphopeptide identification has proven challenging due to the formation of metal ion complexes at various metal surfaces during LC/MS and ESI-MS analysis, we have developed a “metal-free” RPLC-ESI-MS platform for phosphoprotein characterization. This platform demonstrated a significant sensitivity enhancement for phosphorylated casein proteins enriched from a standard protein mixture and revealed the presence of over 20 casein isoforms arising from genetic variants with varying numbers of phosphorylation sites. The integrated workflow was also applied to an enriched yeast phosphoproteome to evaluate the feasibility of this strategy for characterizing complex biological systems, and revealed ~16% of the detected yeast proteins to have multiple phosphorylation isoforms. Intact protein LC/MS platform for characterization of combinatorial posttranslational modifications (PTMs), with special emphasis on multisite phosphorylation, holds

  8. Integrated exploration workflow in the south Middle Magdalena Valley (Colombia)

    NASA Astrophysics Data System (ADS)

    Moretti, Isabelle; Charry, German Rodriguez; Morales, Marcela Mayorga; Mondragon, Juan Carlos

    2010-03-01

    The HC exploration is presently active in the southern part of the Middle Magdalena Valley but only moderate size discoveries have been made up to date. The majority of these discoveries are at shallow depth in the Tertiary section. The structures located in the Valley are faulted anticlines charged by lateral migration from the Cretaceous source rocks that are assumed to be present and mature eastward below the main thrusts and the Guaduas Syncline. Upper Cretaceous reservoirs have also been positively tested. To reduce the risks linked to the exploration of deeper structures below the western thrusts of the Eastern Cordillera, an integrated study was carried out. It includes the acquisition of new seismic data, the integration of all surface and subsurface data within a 3D-geomodel, a quality control of the structural model by restoration and a modeling of the petroleum system (presence and maturity of the Cretaceous source rocks, potential migration pathways). The various steps of this workflow will be presented as well as the main conclusions in term of source rock, deformation phases and timing of the thrust emplacement versus oil maturation and migration. Our data suggest (or confirm) The good potential of the Umir Fm as a source rock. The early (Paleogene) deformation of the Bituima Trigo fault area. The maturity gap within the Cretaceous source rock between the hangingwall and footwall of the Bituima fault that proves an initial offset of Cretaceous burial in the range of 4.5 km between the Upper Cretaceous series westward and the Lower Cretaceous ones eastward of this fault zone. The post Miocene weak reactivation as dextral strike slip of Cretaceous faults such as the San Juan de Rio Seco fault that corresponds to change in the Cretaceous thickness and therefore in the depth of the thrust decollement.

  9. Robust omniphobic surfaces

    PubMed Central

    Tuteja, Anish; Choi, Wonjae; Mabry, Joseph M.; McKinley, Gareth H.; Cohen, Robert E.

    2008-01-01

    Superhydrophobic surfaces display water contact angles greater than 150° in conjunction with low contact angle hysteresis. Microscopic pockets of air trapped beneath the water droplets placed on these surfaces lead to a composite solid-liquid-air interface in thermodynamic equilibrium. Previous experimental and theoretical studies suggest that it may not be possible to form similar fully-equilibrated, composite interfaces with drops of liquids, such as alkanes or alcohols, that possess significantly lower surface tension than water (γlv = 72.1 mN/m). In this work we develop surfaces possessing re-entrant texture that can support strongly metastable composite solid-liquid-air interfaces, even with very low surface tension liquids such as pentane (γlv = 15.7 mN/m). Furthermore, we propose four design parameters that predict the measured contact angles for a liquid droplet on a textured surface, as well as the robustness of the composite interface, based on the properties of the solid surface and the contacting liquid. These design parameters allow us to produce two different families of re-entrant surfaces— randomly-deposited electrospun fiber mats and precisely fabricated microhoodoo surfaces—that can each support a robust composite interface with essentially any liquid. These omniphobic surfaces display contact angles greater than 150° and low contact angle hysteresis with both polar and nonpolar liquids possessing a wide range of surface tensions. PMID:19001270

  10. Genetic design automation: engineering fantasy or scientific renewal?

    PubMed

    Lux, Matthew W; Bramlett, Brian W; Ball, David A; Peccoud, Jean

    2012-02-01

    The aim of synthetic biology is to make genetic systems more amenable to engineering, which has naturally led to the development of computer-aided design (CAD) tools. Experimentalists still primarily rely on project-specific ad hoc workflows instead of domain-specific tools, which suggests that CAD tools are lagging behind the front line of the field. Here, we discuss the scientific hurdles that have limited the productivity gains anticipated from existing tools. We argue that the real value of efforts to develop CAD tools is the formalization of genetic design rules that determine the complex relationships between genotype and phenotype.

  11. Robust reflective pupil slicing technology

    NASA Astrophysics Data System (ADS)

    Meade, Jeffrey T.; Behr, Bradford B.; Cenko, Andrew T.; Hajian, Arsen R.

    2014-07-01

    Tornado Spectral Systems (TSS) has developed the High Throughput Virtual Slit (HTVSTM), robust all-reflective pupil slicing technology capable of replacing the slit in research-, commercial- and MIL-SPEC-grade spectrometer systems. In the simplest configuration, the HTVS allows optical designers to remove the lossy slit from pointsource spectrometers and widen the input slit of long-slit spectrometers, greatly increasing throughput without loss of spectral resolution or cross-dispersion information. The HTVS works by transferring etendue between image plane axes but operating in the pupil domain rather than at a focal plane. While useful for other technologies, this is especially relevant for spectroscopic applications by performing the same spectral narrowing as a slit without throwing away light on the slit aperture. HTVS can be implemented in all-reflective designs and only requires a small number of reflections for significant spectral resolution enhancement-HTVS systems can be efficiently implemented in most wavelength regions. The etendueshifting operation also provides smooth scaling with input spot/image size without requiring reconfiguration for different targets (such as different seeing disk diameters or different fiber core sizes). Like most slicing technologies, HTVS provides throughput increases of several times without resolution loss over equivalent slitbased designs. HTVS technology enables robust slit replacement in point-source spectrometer systems. By virtue of pupilspace operation this technology has several advantages over comparable image-space slicer technology, including the ability to adapt gracefully and linearly to changing source size and better vertical packing of the flux distribution. Additionally, this technology can be implemented with large slicing factors in both fast and slow beams and can easily scale from large, room-sized spectrometers through to small, telescope-mounted devices. Finally, this same technology is directly

  12. SU-F-BRD-05: Robustness of Dose Painting by Numbers in Proton Therapy

    SciTech Connect

    Montero, A Barragan; Sterpin, E; Lee, J

    2015-06-15

    Purpose: Proton range uncertainties may cause important dose perturbations within the target volume, especially when steep dose gradients are present as in dose painting. The aim of this study is to assess the robustness against setup and range errors for high heterogeneous dose prescriptions (i.e., dose painting by numbers), delivered by proton pencil beam scanning. Methods: An automatic workflow, based on MATLAB functions, was implemented through scripting in RayStation (RaySearch Laboratories). It performs a gradient-based segmentation of the dose painting volume from 18FDG-PET images (GTVPET), and calculates the dose prescription as a linear function of the FDG-uptake value on each voxel. The workflow was applied to two patients with head and neck cancer. Robustness against setup and range errors of the conventional PTV margin strategy (prescription dilated by 2.5 mm) versus CTV-based (minimax) robust optimization (2.5 mm setup, 3% range error) was assessed by comparing the prescription with the planned dose for a set of error scenarios. Results: In order to ensure dose coverage above 95% of the prescribed dose in more than 95% of the GTVPET voxels while compensating for the uncertainties, the plans with a PTV generated a high overdose. For the nominal case, up to 35% of the GTVPET received doses 5% beyond prescription. For the worst of the evaluated error scenarios, the volume with 5% overdose increased to 50%. In contrast, for CTV-based plans this 5% overdose was present only in a small fraction of the GTVPET, which ranged from 7% in the nominal case to 15% in the worst of the evaluated scenarios. Conclusion: The use of a PTV leads to non-robust dose distributions with excessive overdose in the painted volume. In contrast, robust optimization yields robust dose distributions with limited overdose. RaySearch Laboratories is sincerely acknowledged for providing us with RayStation treatment planning system and for the support provided.

  13. Evolving Robust Gene Regulatory Networks

    PubMed Central

    Noman, Nasimul; Monjo, Taku; Moscato, Pablo; Iba, Hitoshi

    2015-01-01

    Design and implementation of robust network modules is essential for construction of complex biological systems through hierarchical assembly of ‘parts’ and ‘devices’. The robustness of gene regulatory networks (GRNs) is ascribed chiefly to the underlying topology. The automatic designing capability of GRN topology that can exhibit robust behavior can dramatically change the current practice in synthetic biology. A recent study shows that Darwinian evolution can gradually develop higher topological robustness. Subsequently, this work presents an evolutionary algorithm that simulates natural evolution in silico, for identifying network topologies that are robust to perturbations. We present a Monte Carlo based method for quantifying topological robustness and designed a fitness approximation approach for efficient calculation of topological robustness which is computationally very intensive. The proposed framework was verified using two classic GRN behaviors: oscillation and bistability, although the framework is generalized for evolving other types of responses. The algorithm identified robust GRN architectures which were verified using different analysis and comparison. Analysis of the results also shed light on the relationship among robustness, cooperativity and complexity. This study also shows that nature has already evolved very robust architectures for its crucial systems; hence simulation of this natural process can be very valuable for designing robust biological systems. PMID:25616055

  14. Robustness in Digital Hardware

    NASA Astrophysics Data System (ADS)

    Woods, Roger; Lightbody, Gaye

    The growth in electronics has probably been the equivalent of the Industrial Revolution in the past century in terms of how much it has transformed our daily lives. There is a great dependency on technology whether it is in the devices that control travel (e.g., in aircraft or cars), our entertainment and communication systems, or our interaction with money, which has been empowered by the onset of Internet shopping and banking. Despite this reliance, there is still a danger that at some stage devices will fail within the equipment's lifetime. The purpose of this chapter is to look at the factors causing failure and address possible measures to improve robustness in digital hardware technology and specifically chip technology, giving a long-term forecast that will not reassure the reader!

  15. Robust Rocket Engine Concept

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.

    1995-01-01

    The potential for a revolutionary step in the durability of reusable rocket engines is made possible by the combination of several emerging technologies. The recent creation and analytical demonstration of life extending (or damage mitigating) control technology enables rapid rocket engine transients with minimum fatigue and creep damage. This technology has been further enhanced by the formulation of very simple but conservative continuum damage models. These new ideas when combined with recent advances in multidisciplinary optimization provide the potential for a large (revolutionary) step in reusable rocket engine durability. This concept has been named the robust rocket engine concept (RREC) and is the basic contribution of this paper. The concept also includes consideration of design innovations to minimize critical point damage.

  16. Assessing color reproduction tolerances in commercial print workflow

    NASA Astrophysics Data System (ADS)

    Beretta, Giordano B.; Hoarau, Eric; Kothari, Sunil; Lin, I.-Jong; Zeng, Jun

    2012-01-01

    Except for linear devices like CRTs, color transformations from colorimetric specifications to device coordinates are mostly obtained by measuring a set of samples, inverting the table, and looking up values in the table (including interpolation), and mapping the gamut from input to output device. The accuracy of a transformation is determined by reproducing a second set of samples and measuring the reproduction errors. Accuracy as the average predicted perceptual error is then used as a metric for quality. Accuracy and precision are important metrics in commercial print because a print service provider can charge a higher price for more accurate color, or can widen his tolerances when customers prefer cheap prints. The disadvantage of determining tolerances through averaging perceptual errors is that the colors in the sample sets are independent and this is not necessarily a good correlate of print quality as determined through psychophysics studies. Indeed, images consist of color palettes and the main quality factor is not color fidelity but color integrity. For example, if the divergence of the field of error vectors is zero, color constancy is likely to take over and humans will perceive the color reproduction as being of good quality, even if the average error is relatively large. However, if the errors are small but in random directions, the perceived image quality is poor because the relation among colors is altered. We propose a standard practice to determine tolerance based on the Farnsworth-Munsell 100-hue test (FM-100) for the second set and to evaluate the color transpositions-a metric for color integrity-instead of the color differences. The quality metric is then the FM-100 score. There are industry standards for the tolerances of color judges, and the same tolerances and classification can be use for print workflows or its components (e.g., presses, proofers, displays). We generalize this practice to arbitrary perceptually uniform scales tailored to

  17. A workflow for large-scale empirical identification of cell wall N-linked glycoproteins of tomato (Solanum lycopersicum) fruit by tandem mass spectrometry

    PubMed Central

    Thannhauser, Theodore W.; Shen, Miaoqing; Sherwood, Robert; Howe, Kevin; Fish, Tara; Yang, Yong; Chen, Wei; Zhang, Sheng

    2013-01-01

    Glycosylation is a common post-translational modification of plant proteins that impacts a large number of important biological processes. Nevertheless, the impacts of differential site occupancy and the nature of specific glycoforms are obscure. Historically, characterization of glycoproteins has been difficult due to the distinct physicochemical properties of the peptidyl and glycan moieties, the variable and dynamic nature of the glycosylation process, their heterogeneous nature, and the low relative abundance of each glycoform. In this study, we explore a new pipeline developed for large-scale empirical identification of N-linked glycoproteins of tomato fruit as part of our ongoing efforts to characterize the tomato secretome. The workflow presented involves a combination of lectin affinity, tryptic digestion, ion-pairing HILIC and precursor ion-driven data dependent MS/MS analysis with a script to facilitate the identification and characterization of occupied N-linked glycosylation sites. A total of 212 glycoproteins were identified in this study, in which 26 glycopeptides from 24 glycoproteins were successfully characterized in just one HILIC fraction. Further precursor ion discovery (PID)-based MS/MS and deglycosylation followed by high accuracy and resolution MS analysis were used to confirm the glycosylation sites and determine site occupancy rates. The workflow reported is robust and capable of producing large amounts of empirical data involving N-linked glycosylation sites and their associated glycoforms. PMID:23580464

  18. Potential of knowledge discovery using workflows implemented in the C3Grid

    NASA Astrophysics Data System (ADS)

    Engel, Thomas; Fink, Andreas; Ulbrich, Uwe; Schartner, Thomas; Dobler, Andreas; Fritzsch, Bernadette; Hiller, Wolfgang; Bräuer, Benny

    2013-04-01

    With the increasing number of climate simulations, reanalyses and observations, new infrastructures to search and analyse distributed data are necessary. In recent years, the Grid architecture became an important technology to fulfill these demands. For the German project "Collaborative Climate Community Data and Processing Grid" (C3Grid) computer scientists and meteorologists developed a system that offers its users a webinterface to search and download climate data and use implemented analysis tools (called workflows) to further investigate them. In this contribution, two workflows that are implemented in the C3Grid architecture are presented: the Cyclone Tracking (CT) and Stormtrack workflow. They shall serve as an example on how to perform numerous investigations on midlatitude winterstorms on a large amount of analysis and climate model data without having an insight into the data source, program code and a low-to-moderate understanding of the theortical background. CT is based on the work of Murray and Simmonds (1991) to identify and track local minima in the mean sea level pressure (MSLP) field of the selected dataset. Adjustable thresholds for the curvature of the isobars as well as the minimum lifetime of a cyclone allow the distinction of weak subtropical heat low systems and stronger midlatitude cyclones e.g. in the Northern Atlantic. The user gets the resulting track data including statistics about the track density, average central pressure, average central curvature, cyclogenesis and cyclolysis as well as pre-built visualizations of these results. Stormtrack calculates the 2.5-6 day bandpassfiltered standard deviation of the geopotential height on a selected pressure level. Although this workflow needs much less computational effort compared to CT it shows structures that are in good agreement with the track density of the CT workflow. To what extent changes in the mid-level tropospheric storm track are reflected in trough density and intensity

  19. SALTON SEA SCIENTIFIC DRILLING PROJECT: SCIENTIFIC PROGRAM.

    USGS Publications Warehouse

    Sass, J.H.; Elders, W.A.

    1986-01-01

    The Salton Sea Scientific Drilling Project, was spudded on 24 October 1985, and reached a total depth of 10,564 ft. (3. 2 km) on 17 March 1986. There followed a period of logging, a flow test, and downhole scientific measurements. The scientific goals were integrated smoothly with the engineering and economic objectives of the program and the ideal of 'science driving the drill' in continental scientific drilling projects was achieved in large measure. The principal scientific goals of the project were to study the physical and chemical processes involved in an active, magmatically driven hydrothermal system. To facilitate these studies, high priority was attached to four areas of sample and data collection, namely: (1) core and cuttings, (2) formation fluids, (3) geophysical logging, and (4) downhole physical measurements, particularly temperatures and pressures.

  20. Dynamics robustness of cascading systems.

    PubMed

    Young, Jonathan T; Hatakeyama, Tetsuhiro S; Kaneko, Kunihiko

    2017-03-01

    A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade's kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1) Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2) Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it will provide a

  1. Dynamics robustness of cascading systems

    PubMed Central

    Kaneko, Kunihiko

    2017-01-01

    A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade’s kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1) Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2) Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it will provide a

  2. Describing and Modeling Workflow and Information Flow in Chronic Disease Care

    PubMed Central

    Unertl, Kim M.; Weinger, Matthew B.; Johnson, Kevin B.; Lorenzi, Nancy M.

    2009-01-01

    Objectives The goal of the study was to develop an in-depth understanding of work practices, workflow, and information flow in chronic disease care, to facilitate development of context-appropriate informatics tools. Design The study was conducted over a 10-month period in three ambulatory clinics providing chronic disease care. The authors iteratively collected data using direct observation and semi-structured interviews. Measurements The authors observed all aspects of care in three different chronic disease clinics for over 150 hours, including 157 patient-provider interactions. Observation focused on interactions among people, processes, and technology. Observation data were analyzed through an open coding approach. The authors then developed models of workflow and information flow using Hierarchical Task Analysis and Soft Systems Methodology. The authors also conducted nine semi-structured interviews to confirm and refine the models. Results The study had three primary outcomes: models of workflow for each clinic, models of information flow for each clinic, and an in-depth description of work practices and the role of health information technology (HIT) in the clinics. The authors identified gaps between the existing HIT functionality and the needs of chronic disease providers. Conclusions In response to the analysis of workflow and information flow, the authors developed ten guidelines for design of HIT to support chronic disease care, including recommendations to pursue modular approaches to design that would support disease-specific needs. The study demonstrates the importance of evaluating workflow and information flow in HIT design and implementation. PMID:19717802

  3. Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses

    PubMed Central

    Liu, Bo; Madduri, Ravi K; Sotomayor, Borja; Chard, Kyle; Lacinski, Lukasz; Dave, Utpal J; Li, Jianqiang; Liu, Chunchen; Foster, Ian T

    2014-01-01

    Due to the upcoming data deluge of genome data, the need for storing and processing large-scale genome data, easy access to biomedical analyses tools, efficient data sharing and retrieval has presented significant challenges. The variability in data volume results in variable computing and storage requirements, therefore biomedical researchers are pursuing more reliable, dynamic and convenient methods for conducting sequencing analyses. This paper proposes a Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses, which enables reliable and highly scalable execution of sequencing analyses workflows in a fully automated manner. Our platform extends the existing Galaxy workflow system by adding data management capabilities for transferring large quantities of data efficiently and reliably (via Globus Transfer), domain-specific analyses tools preconfigured for immediate use by researchers (via user-specific tools integration), automatic deployment on Cloud for on-demand resource allocation and pay-as-you-go pricing (via Globus Provision), a Cloud provisioning tool for auto-scaling (via HTCondor scheduler), and the support for validating the correctness of workflows (via semantic verification tools). Two bioinformatics workflow use cases as well as performance evaluation are presented to validate the feasibility of the proposed approach. PMID:24462600

  4. Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses.

    PubMed

    Liu, Bo; Madduri, Ravi K; Sotomayor, Borja; Chard, Kyle; Lacinski, Lukasz; Dave, Utpal J; Li, Jianqiang; Liu, Chunchen; Foster, Ian T

    2014-06-01

    Due to the upcoming data deluge of genome data, the need for storing and processing large-scale genome data, easy access to biomedical analyses tools, efficient data sharing and retrieval has presented significant challenges. The variability in data volume results in variable computing and storage requirements, therefore biomedical researchers are pursuing more reliable, dynamic and convenient methods for conducting sequencing analyses. This paper proposes a Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses, which enables reliable and highly scalable execution of sequencing analyses workflows in a fully automated manner. Our platform extends the existing Galaxy workflow system by adding data management capabilities for transferring large quantities of data efficiently and reliably (via Globus Transfer), domain-specific analyses tools preconfigured for immediate use by researchers (via user-specific tools integration), automatic deployment on Cloud for on-demand resource allocation and pay-as-you-go pricing (via Globus Provision), a Cloud provisioning tool for auto-scaling (via HTCondor scheduler), and the support for validating the correctness of workflows (via semantic verification tools). Two bioinformatics workflow use cases as well as performance evaluation are presented to validate the feasibility of the proposed approach.

  5. Medication Management: The Macrocognitive Workflow of Older Adults With Heart Failure

    PubMed Central

    2016-01-01

    Background Older adults with chronic disease struggle to manage complex medication regimens. Health information technology has the potential to improve medication management, but only if it is based on a thorough understanding of the complexity of medication management workflow as it occurs in natural settings. Prior research reveals that patient work related to medication management is complex, cognitive, and collaborative. Macrocognitive processes are theorized as how people individually and collaboratively think in complex, adaptive, and messy nonlaboratory settings supported by artifacts. Objective The objective of this research was to describe and analyze the work of medication management by older adults with heart failure, using a macrocognitive workflow framework. Methods We interviewed and observed 61 older patients along with 30 informal caregivers about self-care practices including medication management. Descriptive qualitative content analysis methods were used to develop categories, subcategories, and themes about macrocognitive processes used in medication management workflow. Results We identified 5 high-level macrocognitive processes affecting medication management—sensemaking, planning, coordination, monitoring, and decision making—and 15 subprocesses. Data revealed workflow as occurring in a highly collaborative, fragile system of interacting people, artifacts, time, and space. Process breakdowns were common and patients had little support for macrocognitive workflow from current tools. Conclusions Macrocognitive processes affected medication management performance. Describing and analyzing this performance produced recommendations for technology supporting collaboration and sensemaking, decision making and problem detection, and planning and implementation. PMID:27733331

  6. Toward reliable biomarker signatures in the age of liquid biopsies - how to standardize the small RNA-Seq workflow

    PubMed Central

    Buschmann, Dominik; Haberberger, Anna; Kirchner, Benedikt; Spornraft, Melanie; Riedmaier, Irmgard; Schelling, Gustav; Pfaffl, Michael W.

    2016-01-01

    Small RNA-Seq has emerged as a powerful tool in transcriptomics, gene expression profiling and biomarker discovery. Sequencing cell-free nucleic acids, particularly microRNA (miRNA), from liquid biopsies additionally provides exciting possibilities for molecular diagnostics, and might help establish disease-specific biomarker signatures. The complexity of the small RNA-Seq workflow, however, bears challenges and biases that researchers need to be aware of in order to generate high-quality data. Rigorous standardization and extensive validation are required to guarantee reliability, reproducibility and comparability of research findings. Hypotheses based on flawed experimental conditions can be inconsistent and even misleading. Comparable to the well-established MIQE guidelines for qPCR experiments, this work aims at establishing guidelines for experimental design and pre-analytical sample processing, standardization of library preparation and sequencing reactions, as well as facilitating data analysis. We highlight bottlenecks in small RNA-Seq experiments, point out the importance of stringent quality control and validation, and provide a primer for differential expression analysis and biomarker discovery. Following our recommendations will encourage better sequencing practice, increase experimental transparency and lead to more reproducible small RNA-Seq results. This will ultimately enhance the validity of biomarker signatures, and allow reliable and robust clinical predictions. PMID:27317696

  7. A 'waterfall' transfer-based workflow for improved quality of tissue microarray construction and processing in breast cancer research.

    PubMed

    Oberländer, M; Alkemade, H; Bünger, S; Ernst, F; Thorns, C; Braunschweig, T; Habermann, J K

    2014-07-01

    A major focus in cancer research is the identification of biomarkers for early diagnosis, therapy prediction and prognosis. Hereby, validation of target proteins on clinical samples is of high importance. Tissue microarrays (TMAs) represent an essential advancement for high-throughput analysis by assembling large numbers of tissue cores with high efficacy and comparability. However, limitations along TMA construction and processing exist. In our presented study, we had to overcome several obstacles in the construction and processing of high-density breast cancer TMAs to ensure good quality sections for further research. Exemplarily, 406 breast tissue cores from formalin-fixed and paraffin embedded samples of 245 patients were placed onto three recipient paraffin blocks. Sectioning was performed using a rotary microtome with a "waterfall" automated transfer system. Sections were stained by immunohistochemistry and immunofluorescence for nine proteins. The number and quality of cores after sectioning and staining was counted manually for each marker. In total, 97.1 % of all cores were available after sectioning, while further 96 % of the remaining cores were evaluable after staining. Thereby, normal tissue cores were more often lost compared to tumor tissue cores. Our workflow provides a robust method for manufacturing high-density breast cancer TMAs for subsequent IHC or IF staining without significant sample loss.

  8. DeMix Workflow for Efficient Identification of Cofragmented Peptides in High Resolution Data-dependent Tandem Mass Spectrometry*

    PubMed Central

    Zhang, Bo; Pirmoradian, Mohammad; Chernobrovkin, Alexey; Zubarev, Roman A.

    2014-01-01

    Based on conventional data-dependent acquisition strategy of shotgun proteomics, we present a new workflow DeMix, which significantly increases the efficiency of peptide identification for in-depth shotgun analysis of complex proteomes. Capitalizing on the high resolution and mass accuracy of Orbitrap-based tandem mass spectrometry, we developed a simple deconvolution method of “cloning” chimeric tandem spectra for cofragmented peptides. Additional to a database search, a simple rescoring scheme utilizes mass accuracy and converts the unwanted cofragmenting events into a surprising advantage of multiplexing. With the combination of cloning and rescoring, we obtained on average nine peptide-spectrum matches per second on a Q-Exactive workbench, whereas the actual MS/MS acquisition rate was close to seven spectra per second. This efficiency boost to 1.24 identified peptides per MS/MS spectrum enabled analysis of over 5000 human proteins in single-dimensional LC-MS/MS shotgun experiments with an only two-hour gradient. These findings suggest a change in the dominant “one MS/MS spectrum - one peptide” paradigm for data acquisition and analysis in shotgun data-dependent proteomics. DeMix also demonstrated higher robustness than conventional approaches in terms of lower variation among the results of consecutive LC-MS/MS runs. PMID:25100859

  9. Scientific integrity in Brazil.

    PubMed

    Lins, Liliane; Carvalho, Fernando Martins

    2014-09-01

    This article focuses on scientific integrity and the identification of predisposing factors to scientific misconduct in Brazil. Brazilian scientific production has increased in the last ten years, but the quality of the articles has decreased. Pressure on researchers and students for increasing scientific production may contribute to scientific misconduct. Cases of misconduct in science have been recently denounced in the country. Brazil has important institutions for controlling ethical and safety aspects of human research, but there is a lack of specific offices to investigate suspected cases of misconduct and policies to deal with scientific dishonesty.

  10. Robust relativistic bit commitment

    NASA Astrophysics Data System (ADS)

    Chakraborty, Kaushik; Chailloux, André; Leverrier, Anthony

    2016-12-01

    Relativistic cryptography exploits the fact that no information can travel faster than the speed of light in order to obtain security guarantees that cannot be achieved from the laws of quantum mechanics alone. Recently, Lunghi et al. [Phys. Rev. Lett. 115, 030502 (2015), 10.1103/PhysRevLett.115.030502] presented a bit-commitment scheme where each party uses two agents that exchange classical information in a synchronized fashion, and that is both hiding and binding. A caveat is that the commitment time is intrinsically limited by the spatial configuration of the players, and increasing this time requires the agents to exchange messages during the whole duration of the protocol. While such a solution remains computationally attractive, its practicality is severely limited in realistic settings since all communication must remain perfectly synchronized at all times. In this work, we introduce a robust protocol for relativistic bit commitment that tolerates failures of the classical communication network. This is done by adding a third agent to both parties. Our scheme provides a quadratic improvement in terms of expected sustain time compared with the original protocol, while retaining the same level of security.

  11. Robust Nonlinear Neural Codes

    NASA Astrophysics Data System (ADS)

    Yang, Qianli; Pitkow, Xaq

    2015-03-01

    Most interesting natural sensory stimuli are encoded in the brain in a form that can only be decoded nonlinearly. But despite being a core function of the brain, nonlinear population codes are rarely studied and poorly understood. Interestingly, the few existing models of nonlinear codes are inconsistent with known architectural features of the brain. In particular, these codes have information content that scales with the size of the cortical population, even if that violates the data processing inequality by exceeding the amount of information entering the sensory system. Here we provide a valid theory of nonlinear population codes by generalizing recent work on information-limiting correlations in linear population codes. Although these generalized, nonlinear information-limiting correlations bound the performance of any decoder, they also make decoding more robust to suboptimal computation, allowing many suboptimal decoders to achieve nearly the same efficiency as an optimal decoder. Although these correlations are extremely difficult to measure directly, particularly for nonlinear codes, we provide a simple, practical test by which one can use choice-related activity in small populations of neurons to determine whether decoding is suboptimal or optimal and limited by correlated noise. We conclude by describing an example computation in the vestibular system where this theory applies. QY and XP was supported by a grant from the McNair foundation.

  12. Robust Weak Measurements

    NASA Astrophysics Data System (ADS)

    Tollaksen, Jeff; Aharonov, Yakir

    2006-03-01

    We introduce a new type of weak measurement which yields a quantum average of weak values that is robust, outside the range of eigenvalues, extends the valid regime for weak measurements, and for which the probability of obtaining the pre- and post-selected ensemble is not exponentially rare. This result extends the applicability of weak values, shifts the statistical interpretation previously attributed to weak values and suggests that the weak value is a property of every pre- and post-selected ensemble. We then apply this new weak measurement to Hardy's paradox. Usually the paradox is dismissed on grounds of counterfactuality, i.e., because the paradoxical effects appear only when one considers results of experiments which do not actually take place. We suggest a new set of measurements in connection with Hardy's scheme, and show that when they are actually performed, they yield strange and surprising outcomes. More generally, we claim that counterfactual paradoxes point to a deeper structure inherent to quantum mechanics characterized by weak values (Aharonov Y, Botero A, Popescu S, Reznik B, Tollaksen J, Physics Letters A, 301 (3-4): 130-138, 2002).

  13. Enabling a Scientific Cloud Marketplace: VGL (Invited)

    NASA Astrophysics Data System (ADS)

    Fraser, R.; Woodcock, R.; Wyborn, L. A.; Vote, J.; Rankine, T.; Cox, S. J.

    2013-12-01

    The Virtual Geophysics Laboratory (VGL) provides a flexible, web based environment where researchers can browse data and use a variety of scientific software packaged into tool kits that run in the Cloud. Both data and tool kits are published by multiple researchers and registered with the VGL infrastructure forming a data and application marketplace. The VGL provides the basic work flow of Discovery and Access to the disparate data sources and a Library for tool kits and scripting to drive the scientific codes. Computation is then performed on the Research or Commercial Clouds. Provenance information is collected throughout the work flow and can be published alongside the results allowing for experiment comparison and sharing with other researchers. VGL's "mix and match" approach to data, computational resources and scientific codes, enables a dynamic approach to scientific collaboration. VGL allows scientists to publish their specific contribution, be it data, code, compute or work flow, knowing the VGL framework will provide other components needed for a complete application. Other scientists can choose the pieces that suit them best to assemble an experiment. The coarse grain workflow of the VGL framework combined with the flexibility of the scripting library and computational toolkits allows for significant customisation and sharing amongst the community. The VGL utilises the cloud computational and storage resources from the Australian academic research cloud provided by the NeCTAR initiative and a large variety of data accessible from national and state agencies via the Spatial Information Services Stack (SISS - http://siss.auscope.org). VGL v1.2 screenshot - http://vgl.auscope.org

  14. Robust Control Feedback and Learning

    DTIC Science & Technology

    2002-11-30

    98-1-0026 5b. GRANT NUMBER Robust Control, Feedback and Learning F49620-98-1-0026 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Michael G...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Final Report: ROBUST CONTROL FEEDBACK AND LEARNING AFOSR Grant F49620-98-1-0026 October 1...Philadelphia, PA, 2000. [16] M. G. Safonov. Recent advances in robust control, feedback and learning . In S. 0. R. Moheimani, editor, Perspectives in Robust

  15. Robustness surfaces of complex networks

    NASA Astrophysics Data System (ADS)

    Manzano, Marc; Sahneh, Faryad; Scoglio, Caterina; Calle, Eusebi; Marzo, Jose Luis

    2014-09-01

    Despite the robustness of complex networks has been extensively studied in the last decade, there still lacks a unifying framework able to embrace all the proposed metrics. In the literature there are two open issues related to this gap: (a) how to dimension several metrics to allow their summation and (b) how to weight each of the metrics. In this work we propose a solution for the two aforementioned problems by defining the R*-value and introducing the concept of robustness surface (Ω). The rationale of our proposal is to make use of Principal Component Analysis (PCA). We firstly adjust to 1 the initial robustness of a network. Secondly, we find the most informative robustness metric under a specific failure scenario. Then, we repeat the process for several percentage of failures and different realizations of the failure process. Lastly, we join these values to form the robustness surface, which allows the visual assessment of network robustness variability. Results show that a network presents different robustness surfaces (i.e., dissimilar shapes) depending on the failure scenario and the set of metrics. In addition, the robustness surface allows the robustness of different networks to be compared.

  16. New strategies for medical data mining, part 3: automated workflow analysis and optimization.

    PubMed

    Reiner, Bruce

    2011-02-01

    The practice of evidence-based medicine calls for the creation of "best practice" guidelines, leading to improved clinical outcomes. One of the primary factors limiting evidence-based medicine in radiology today is the relative paucity of standardized databases. The creation of standardized medical imaging databases offer the potential to enhance radiologist workflow and diagnostic accuracy through objective data-driven analytics, which can be categorized in accordance with specific variables relating to the individual examination, patient, provider, and technology being used. In addition to this "global" database analysis, "individual" radiologist workflow can be analyzed through the integration of electronic auditing tools into the PACS. The combination of these individual and global analyses can ultimately identify best practice patterns, which can be adapted to the individual attributes of end users and ultimately used in the creation of automated evidence-based medicine workflow templates.

  17. An Integrated Workflow For Secondary Use of Patient Data for Clinical Research.

    PubMed

    Bouzillé, Guillaume; Sylvestre, Emmanuelle; Campillo-Gimenez, Boris; Renault, Eric; Ledieu, Thibault; Delamarre, Denis; Cuggia, Marc

    2015-01-01

    This work proposes an integrated workflow for secondary use of medical data to serve feasibility studies, and the prescreening and monitoring of research studies. All research issues are initially addressed by the Clinical Research Office through a research portal and subsequently redirected to relevant experts in the determined field of concentration. For secondary use of data, the workflow is then based on the clinical data warehouse of the hospital. A datamart with potentially eligible research candidates is constructed. Datamarts can either produce aggregated data, de-identified data, or identified data, according to the kind of study being treated. In conclusion, integrating the secondary use of data process into a general research workflow allows visibility of information technologies and improves the accessability of clinical data.

  18. The diagnostic-therapeutic process. Workflow analysis and risk management with IT tools.

    PubMed

    Iadanza, E; Gaudio, F; Marini, F

    2013-01-01

    The aim of this work is to study the impact of an Information Technology (IT) tool on clinical risk management and Adverse Drug Events prevention in patient care. In this study we propose the workflow analysis and the application of Failure Modes Effects and Criticality Analysis (FMECA) as potential tools to assess the effectiveness of a specific IT tool in mitigating clinical risk. The study is made up of two different parts: the first one shows the decomposition and representation of the workflow of hospital departments using standardized tools from Project Management. The next phase shows the application of FMECA to the workflow, in order to identify critical issues and evaluate the risk reduction obtained using a specific IT tool, compared to the use of current resources.

  19. SynTrack: DNA Assembly Workflow Management (SynTrack) v2.0.1

    SciTech Connect

    MENG, XIANWEI; SIMIRENKO, LISA

    2016-12-01

    SynTrack is a dynamic, workflow-driven data management system that tracks the DNA build process. - Management of the hierarchical relationships of the DNA fragments. - Monitoring of process tasks for the assembly of multiple DNA fragments into final constructs. - Creations of vendor order forms with selectable building blocks. Organizing plate layouts barcodes for vendor/pcr/fusion/chewback/bioassay/glycerol/master plate maps (default/condensed). - Creating or updating Pre-Assembly/Assembly process workflows with selected building blocks. - Generating Echo pooling instructions based on plate maps. - Tracking of building block orders, received and final assembled for delivering. - Bulk updating of colony or PCR amplification information, fusion PCR and chewback results. - Updating with QA/QC outcome with .csv & .xlsx template files. - Re-work assembly workflow enabled before and after sequencing validation. - Tracking of plate/well data changes and status updates and reporting of master plate status with QC outcomes.

  20. Differentiated protection services with failure probability guarantee for workflow-based applications

    NASA Astrophysics Data System (ADS)

    Zhong, Yaoquan; Guo, Wei; Jin, Yaohui; Sun, Weiqiang; Hu, Weisheng

    2010-12-01

    A cost-effective and service-differentiated provisioning strategy is very desirable to service providers so that they can offer users satisfactory services, while optimizing network resource allocation. Providing differentiated protection services to connections for surviving link failure has been extensively studied in recent years. However, the differentiated protection services for workflow-based applications, which consist of many interdependent tasks, have scarcely been studied. This paper investigates the problem of providing differentiated services for workflow-based applications in optical grid. In this paper, we develop three differentiated protection services provisioning strategies which can provide security level guarantee and network-resource optimization for workflow-based applications. The simulation demonstrates that these heuristic algorithms provide protection cost-effectively while satisfying the applications' failure probability requirements.

  1. Parametric Workflow (BIM) for the Repair Construction of Traditional Historic Architecture in Taiwan

    NASA Astrophysics Data System (ADS)

    Ma, Y.-P.; Hsu, C. C.; Lin, M.-C.; Tsai, Z.-W.; Chen, J.-Y.

    2015-08-01

    In Taiwan, numerous existing traditional buildings are constructed with wooden structures, brick structures, and stone structures. This paper will focus on the Taiwan traditional historic architecture and target the traditional wooden structure buildings as the design proposition and process the BIM workflow for modeling complex wooden combination geometry, integrating with more traditional 2D documents and for visualizing repair construction assumptions within the 3D model representation. The goal of this article is to explore the current problems to overcome in wooden historic building conservation, and introduce the BIM technology in the case of conserving, documenting, managing, and creating full engineering drawings and information for effectively support historic conservation. Although BIM is mostly oriented to current construction praxis, there have been some attempts to investigate its applicability in historic conservation projects. This article also illustrates the importance and advantages of using BIM workflow in repair construction process, when comparing with generic workflow.

  2. Wireless remote control clinical image workflow: utilizing a PDA for offsite distribution

    NASA Astrophysics Data System (ADS)

    Liu, Brent J.; Documet, Luis; Documet, Jorge; Huang, H. K.; Muldoon, Jean

    2004-04-01

    Last year we presented in RSNA an application to perform wireless remote control of PACS image distribution utilizing a handheld device such as a Personal Digital Assistant (PDA). This paper describes the clinical experiences including workflow scenarios of implementing the PDA application to route exams from the clinical PACS archive server to various locations for offsite distribution of clinical PACS exams. By utilizing this remote control application, radiologists can manage image workflow distribution with a single wireless handheld device without impacting their clinical workflow on diagnostic PACS workstations. A PDA application was designed and developed to perform DICOM Query and C-Move requests by a physician from a clinical PACS Archive to a CD-burning device for automatic burning of PACS data for the distribution to offsite. In addition, it was also used for convenient routing of historical PACS exams to the local web server, local workstations, and teleradiology systems. The application was evaluated by radiologists as well as other clinical staff who need to distribute PACS exams to offsite referring physician"s offices and offsite radiologists. An application for image workflow management utilizing wireless technology was implemented in a clinical environment and evaluated. A PDA application was successfully utilized to perform DICOM Query and C-Move requests from the clinical PACS archive to various offsite exam distribution devices. Clinical staff can utilize the PDA to manage image workflow and PACS exam distribution conveniently for offsite consultations by referring physicians and radiologists. This solution allows the radiologist to expand their effectiveness in health care delivery both within the radiology department as well as offisite by improving their clinical workflow.

  3. SU-E-T-419: Workflow and FMEA in a New Proton Therapy (PT) Facility

    SciTech Connect

    Cheng, C; Wessels, B; Hamilton, H; Difranco, T; Mansur, D

    2014-06-01

    Purpose: Workflow is an important component in the operational planning of a new proton facility. By integrating the concept of failure mode and effect analysis (FMEA) and traditional QA requirements, a workflow for a proton therapy treatment course is set up. This workflow serves as the blue print for the planning of computer hardware/software requirements and network flow. A slight modification of the workflow generates a process map(PM) for FMEA and the planning of QA program in PT. Methods: A flowchart is first developed outlining the sequence of processes involved in a PT treatment course. Each process consists of a number of sub-processes to encompass a broad scope of treatment and QA procedures. For each subprocess, the personnel involved, the equipment needed and the computer hardware/software as well as network requirements are defined by a team of clinical staff, administrators and IT personnel. Results: Eleven intermediate processes with a total of 70 sub-processes involved in a PT treatment course are identified. The number of sub-processes varies, ranging from 2-12. The sub-processes within each process are used for the operational planning. For example, in the CT-Sim process, there are 12 sub-processes: three involve data entry/retrieval from a record-and-verify system, two controlled by the CT computer, two require department/hospital network, and the other five are setup procedures. IT then decides the number of computers needed and the software and network requirement. By removing the traditional QA procedures from the workflow, a PM is generated for FMEA analysis to design a QA program for PT. Conclusion: Significant efforts are involved in the development of the workflow in a PT treatment course. Our hybrid model of combining FMEA and traditional QA program serves a duo purpose of efficient operational planning and designing of a QA program in PT.

  4. Modeling workflow to design machine translation applications for public health practice

    PubMed Central

    Turner, Anne M.; Brownstein, Megumu K.; Cole, Kate; Karasz, Hilary; Kirchhoff, Katrin

    2014-01-01

    Objective Provide a detailed understanding of the information workflow processes related to translating health promotion materials for limited English proficiency individuals in order to inform the design of context-driven machine translation (MT) tools for public health (PH). Materials and Methods We applied a cognitive work analysis framework to investigate the translation information workflow processes of two large health departments in Washington State. Researchers conducted interviews, performed a task analysis, and validated results with PH professionals to model translation workflow and identify functional requirements for a translation system for PH. Results The study resulted in a detailed description of work related to translation of PH materials, an information workflow diagram, and a description of attitudes towards MT technology. We identified a number of themes that hold design implications for incorporating MT in PH translation practice. A PH translation tool prototype was designed based on these findings. Discussion This study underscores the importance of understanding the work context and information workflow for which systems will be designed. Based on themes and translation information workflow processes, we identified key design guidelines for incorporating MT into PH translation work. Primary amongst these is that MT should be followed by human review for translations to be of high quality and for the technology to be adopted into practice. Counclusion The time and costs of creating multilingual health promotion materials are barriers to translation. PH personnel were interested in MT's potential to improve access to low-cost translated PH materials, but expressed concerns about ensuring quality. We outline design considerations and a potential machine translation tool to best fit MT systems into PH practice. PMID:25445922

  5. Museology and Scientific Culture.

    ERIC Educational Resources Information Center

    Saunier, Diane

    1988-01-01

    Discusses the period of transition and self examination of the museology of science. Defines the main issues and limits of the museum as a means of transmitting a scientific culture and scientific ways. (Author/RT)

  6. FIFRA Scientific Advisory Panel

    EPA Pesticide Factsheets

    Experts on the Federal Insecticide, Fungicide, and Rodenticide Act Scientific Advisory Panel provide independent scientific advice to the EPA on a wide range of health and safety issues related to pesticides.

  7. Robust Diffeomorphic Mapping via Geodesically Controlled Active Shapes

    PubMed Central

    Tward, Daniel J.; Ma, Jun; Miller, Michael I.; Younes, Laurent

    2013-01-01

    This paper presents recent advances in the use of diffeomorphic active shapes which incorporate the conservation laws of large deformation diffeomorphic metric mapping. The equations of evolution satisfying the conservation law are geodesics under the diffeomorphism metric and therefore termed geodesically controlled diffeomorphic active shapes (GDAS). Our principal application in this paper is on robust diffeomorphic mapping methods based on parameterized surface representations of subcortical template structures. Our parametrization of the GDAS evolution is via the initial momentum representation in the tangent space of the template surface. The dimension of this representation is constrained using principal component analysis generated from training samples. In this work, we seek to use template surfaces to generate segmentations of the hippocampus with three data attachment terms: surface matching, landmark matching, and inside-outside modeling from grayscale T1 MR imaging data. This is formulated as an energy minimization problem, where energy describes shape variability and data attachment accuracy, and we derive a variational solution. A gradient descent strategy is employed in the numerical optimization. For the landmark matching case, we demonstrate the robustness of this algorithm as applied to the workflow of a large neuroanatomical study by comparing to an existing diffeomorphic landmark matching algorithm. PMID:23690757

  8. Extensional scientific realism vs. intensional scientific realism.

    PubMed

    Park, Seungbae

    2016-10-01

    Extensional scientific realism is the view that each believable scientific theory is supported by the unique first-order evidence for it and that if we want to believe that it is true, we should rely on its unique first-order evidence. In contrast, intensional scientific realism is the view that all believable scientific theories have a common feature and that we should rely on it to determine whether a theory is believable or not. Fitzpatrick argues that extensional realism is immune, while intensional realism is not, to the pessimistic induction. I reply that if extensional realism overcomes the pessimistic induction at all, that is because it implicitly relies on the theoretical resource of intensional realism. I also argue that extensional realism, by nature, cannot embed a criterion for distinguishing between believable and unbelievable theories.

  9. Implementation of workflow engine technology to deliver basic clinical decision support functionality

    PubMed Central

    2011-01-01

    Background Workflow engine technology represents a new class of software with the ability to graphically model step-based knowledge. We present application of this novel technology to the domain of clinical decision support. Successful implementation of decision support within an electronic health record (EHR) remains an unsolved research challenge. Previous research efforts were mostly based on healthcare-specific representation standards and execution engines and did not reach wide adoption. We focus on two challenges in decision support systems: the ability to test decision logic on retrospective data prior prospective deployment and the challenge of user-friendly representation of clinical logic. Results We present our implementation of a workflow engine technology that addresses the two above-described challenges in delivering clinical decision support. Our system is based on a cross-industry standard of XML (extensible markup language) process definition language (XPDL). The core components of the system are a workflow editor for modeling clinical scenarios and a workflow engine for execution of those scenarios. We demonstrate, with an open-source and publicly available workflow suite, that clinical decision support logic can be executed on retrospective data. The same flowchart-based representation can also function in a prospective mode where the system can be integrated with an EHR system and respond to real-time clinical events. We limit the scope of our implementation to decision support content generation (which can be EHR system vendor independent). We do not focus on supporting complex decision support content delivery mechanisms due to lack of standardization of EHR systems in this area. We present results of our evaluation of the flowchart-based graphical notation as well as architectural evaluation of our implementation using an established evaluation framework for clinical decision support architecture. Conclusions We describe an implementation of

  10. BioPartsDB: a synthetic biology workflow web-application for education and research.

    PubMed

    Stracquadanio, Giovanni; Yang, Kun; Boeke, Jef D; Bader, Joel S

    2016-11-15

    Synthetic biology has become a widely used technology, and expanding applications in research, education and industry require progress tracking for team-based DNA synthesis projects. Although some vendors are beginning to supply multi-kilobase sequence-verified constructs, synthesis workflows starting with short oligos remain important for cost savings and pedagogical benefit. We developed BioPartsDB as an open source, extendable workflow management system for synthetic biology projects with entry points for oligos and larger DNA constructs and ending with sequence-verified clones.

  11. Fabrication of Zirconia-Reinforced Lithium Silicate Ceramic Restorations Using a Complete Digital Workflow

    PubMed Central

    Rinke, Sven; Rödiger, Matthias; Ziebolz, Dirk; Schmidt, Anne-Kathrin

    2015-01-01

    This case report describes the fabrication of monolithic all-ceramic restorations using zirconia-reinforced lithium silicate (ZLS) ceramics. The use of powder-free intraoral scanner, generative fabrication technology of the working model, and CAD/CAM of the restorations in the dental laboratory allows a completely digitized workflow. The newly introduced ZLS ceramics offer a unique combination of fracture strength (>420 MPa), excellent optical properties, and optimum polishing characteristics, thus making them an interesting material option for monolithic restorations in the digital workflow. PMID:26509088

  12. How to Take HRMS Process Management to the Next Level with Workflow Business Event System

    NASA Technical Reports Server (NTRS)

    Rajeshuni, Sarala; Yagubian, Aram; Kunamaneni, Krishna

    2006-01-01

    Oracle Workflow with the Business Event System offers a complete process management solution for enterprises to manage business processes cost-effectively. Using Workflow event messaging, event subscriptions, AQ Servlet and advanced queuing technologies, this presentation will demonstrate the step-by-step design and implementation of system solutions in order to integrate two dissimilar systems and establish communication remotely. As a case study, the presentation walks you through the process of propagating organization name changes in other applications that originated from the HRMS module without changing applications code. The solution can be applied to your particular business cases for streamlining or modifying business processes across Oracle and non-Oracle applications.

  13. WWW: The Scientific Method

    ERIC Educational Resources Information Center

    Blystone, Robert V.; Blodgett, Kevin

    2006-01-01

    The scientific method is the principal methodology by which biological knowledge is gained and disseminated. As fundamental as the scientific method may be, its historical development is poorly understood, its definition is variable, and its deployment is uneven. Scientific progress may occur without the strictures imposed by the formal…

  14. Robust Understanding of Statistical Variation

    ERIC Educational Resources Information Center

    Peters, Susan A.

    2011-01-01

    This paper presents a framework that captures the complexity of reasoning about variation in ways that are indicative of robust understanding and describes reasoning as a blend of design, data-centric, and modeling perspectives. Robust understanding is indicated by integrated reasoning about variation within each perspective and across…

  15. Robust, Optimal Subsonic Airfoil Shapes

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2014-01-01

    A method has been developed to create an airfoil robust enough to operate satisfactorily in different environments. This method determines a robust, optimal, subsonic airfoil shape, beginning with an arbitrary initial airfoil shape, and imposes the necessary constraints on the design. Also, this method is flexible and extendible to a larger class of requirements and changes in constraints imposed.

  16. Facial symmetry in robust anthropometrics.

    PubMed

    Kalina, Jan

    2012-05-01

    Image analysis methods commonly used in forensic anthropology do not have desirable robustness properties, which can be ensured by robust statistical methods. In this paper, the face localization in images is carried out by detecting symmetric areas in the images. Symmetry is measured between two neighboring rectangular areas in the images using a new robust correlation coefficient, which down-weights regions in the face violating the symmetry. Raw images of faces without usual preliminary transformations are considered. The robust correlation coefficient based on the least weighted squares regression yields very promising results also in the localization of such faces, which are not entirely symmetric. Standard methods of statistical machine learning are applied for comparison. The robust correlation analysis can be applicable to other problems of forensic anthropology.

  17. Three-dimensional computer-aided surgical workflow to aid in reconstruction: From diagnosis to surgical treatment.

    PubMed

    Sándor, George K; Bujtár, Péter; Wolf, Jan

    2014-01-01

    The development of three-dimensional computer-aided surgical workflow has simplified the planning of complex reconstruction cases. It can also be helpful in planning distraction osteogenesis cases. This article examines the evolving role of three-dimensional computer-aided surgical workflow in maxillofacial surgery.

  18. A Robust Biomarker

    NASA Technical Reports Server (NTRS)

    Westall, F.; Steele, A.; Toporski, J.; Walsh, M. M.; Allen, C. C.; Guidry, S.; McKay, D. S.; Gibson, E. K.; Chafetz, H. S.

    2000-01-01

    containing fossil biofilm, including the 3.5 b.y..-old carbonaceous cherts from South Africa and Australia. As a result of the unique compositional, structural and "mineralisable" properties of bacterial polymer and biofilms, we conclude that bacterial polymers and biofilms constitute a robust and reliable biomarker for life on Earth and could be a potential biomarker for extraterrestrial life.

  19. Towards a workflow driven design for mHealth devices within temporary eye clinics in low-income settings.

    PubMed

    Bolster, Nigel M; Bastawrous, Andrew; Giardini, Mario E

    2015-01-01

    Only a small minority of mobile healthcare technologies that have been successful in pilot studies have subsequently been integrated into healthcare systems. Understanding the reasons behind this discrepancy is crucial if such technologies are to be adopted. We believe that the mismatch is due to a breakdown in the relation between technical soundness of the original mobile health (mHealth) device design, and integration into healthcare provision workflows. Quantitative workflow modelling provides an opportunity to test this hypothesis. In this paper we present our current progress in developing a clinical workflow model for mobile eye assessment in low-income settings. We test the model for determining the appropriateness of design parameters of a mHealth device within this workflow, by assessing their impact on the entire clinical workflow performance.

  20. Asking for Permission: A Survey of Copyright Workflows for Institutional Repositories

    ERIC Educational Resources Information Center

    Hanlon, Ann; Ramirez, Marisa

    2011-01-01

    An online survey of institutional repository (IR) managers identified copyright clearance trends in staffing and workflows. The majority of respondents followed a mediated deposit model, and reported that library personnel, instead of authors, engaged in copyright clearance activities for IRs. The most common "information gaps" pertained to the…

  1. An optimization algorithm for multipath parallel allocation for service resource in the simulation task workflow.

    PubMed

    Wang, Zhiteng; Zhang, Hongjun; Zhang, Rui; Li, Yong; Zhang, Xuliang

    2014-01-01

    Service oriented modeling and simulation are hot issues in the field of modeling and simulation, and there is need to call service resources when simulation task workflow is running. How to optimize the service resource allocation to ensure that the task is complete effectively is an important issue in this area. In military modeling and simulation field, it is important to improve the probability of success and timeliness in simulation task workflow. Therefore, this paper proposes an optimization algorithm for multipath service resource parallel allocation, in which multipath service resource parallel allocation model is built and multiple chains coding scheme quantum optimization algorithm is used for optimization and solution. The multiple chains coding scheme quantum optimization algorithm is to extend parallel search space to improve search efficiency. Through the simulation experiment, this paper investigates the effect for the probability of success in simulation task workflow from different optimization algorithm, service allocation strategy, and path number, and the simulation result shows that the optimization algorithm for multipath service resource parallel allocation is an effective method to improve the probability of success and timeliness in simulation task workflow.