Robustness enhancement of neurocontroller and state estimator
NASA Technical Reports Server (NTRS)
Troudet, Terry
1993-01-01
The feasibility of enhancing neurocontrol robustness, through training of the neurocontroller and state estimator in the presence of system uncertainties, is investigated on the example of a multivariable aircraft control problem. The performance and robustness of the newly trained neurocontroller are compared to those for an existing neurocontrol design scheme. The newly designed dynamic neurocontroller exhibits a better trade-off between phase and gain stability margins, and it is significantly more robust to degradations of the plant dynamics.
A Robust Adaptive Unscented Kalman Filter for Nonlinear Estimation with Uncertain Noise Covariance.
Zheng, Binqi; Fu, Pengcheng; Li, Baoqing; Yuan, Xiaobing
2018-03-07
The Unscented Kalman filter (UKF) may suffer from performance degradation and even divergence while mismatch between the noise distribution assumed as a priori by users and the actual ones in a real nonlinear system. To resolve this problem, this paper proposes a robust adaptive UKF (RAUKF) to improve the accuracy and robustness of state estimation with uncertain noise covariance. More specifically, at each timestep, a standard UKF will be implemented first to obtain the state estimations using the new acquired measurement data. Then an online fault-detection mechanism is adopted to judge if it is necessary to update current noise covariance. If necessary, innovation-based method and residual-based method are used to calculate the estimations of current noise covariance of process and measurement, respectively. By utilizing a weighting factor, the filter will combine the last noise covariance matrices with the estimations as the new noise covariance matrices. Finally, the state estimations will be corrected according to the new noise covariance matrices and previous state estimations. Compared with the standard UKF and other adaptive UKF algorithms, RAUKF converges faster to the actual noise covariance and thus achieves a better performance in terms of robustness, accuracy, and computation for nonlinear estimation with uncertain noise covariance, which is demonstrated by the simulation results.
A Robust Adaptive Unscented Kalman Filter for Nonlinear Estimation with Uncertain Noise Covariance
Zheng, Binqi; Yuan, Xiaobing
2018-01-01
The Unscented Kalman filter (UKF) may suffer from performance degradation and even divergence while mismatch between the noise distribution assumed as a priori by users and the actual ones in a real nonlinear system. To resolve this problem, this paper proposes a robust adaptive UKF (RAUKF) to improve the accuracy and robustness of state estimation with uncertain noise covariance. More specifically, at each timestep, a standard UKF will be implemented first to obtain the state estimations using the new acquired measurement data. Then an online fault-detection mechanism is adopted to judge if it is necessary to update current noise covariance. If necessary, innovation-based method and residual-based method are used to calculate the estimations of current noise covariance of process and measurement, respectively. By utilizing a weighting factor, the filter will combine the last noise covariance matrices with the estimations as the new noise covariance matrices. Finally, the state estimations will be corrected according to the new noise covariance matrices and previous state estimations. Compared with the standard UKF and other adaptive UKF algorithms, RAUKF converges faster to the actual noise covariance and thus achieves a better performance in terms of robustness, accuracy, and computation for nonlinear estimation with uncertain noise covariance, which is demonstrated by the simulation results. PMID:29518960
Method for hyperspectral imagery exploitation and pixel spectral unmixing
NASA Technical Reports Server (NTRS)
Lin, Ching-Fang (Inventor)
2003-01-01
An efficiently hybrid approach to exploit hyperspectral imagery and unmix spectral pixels. This hybrid approach uses a genetic algorithm to solve the abundance vector for the first pixel of a hyperspectral image cube. This abundance vector is used as initial state in a robust filter to derive the abundance estimate for the next pixel. By using Kalman filter, the abundance estimate for a pixel can be obtained in one iteration procedure which is much fast than genetic algorithm. The output of the robust filter is fed to genetic algorithm again to derive accurate abundance estimate for the current pixel. The using of robust filter solution as starting point of the genetic algorithm speeds up the evolution of the genetic algorithm. After obtaining the accurate abundance estimate, the procedure goes to next pixel, and uses the output of genetic algorithm as the previous state estimate to derive abundance estimate for this pixel using robust filter. And again use the genetic algorithm to derive accurate abundance estimate efficiently based on the robust filter solution. This iteration continues until pixels in a hyperspectral image cube end.
A Multi-Sensor Fusion MAV State Estimation from Long-Range Stereo, IMU, GPS and Barometric Sensors.
Song, Yu; Nuske, Stephen; Scherer, Sebastian
2016-12-22
State estimation is the most critical capability for MAV (Micro-Aerial Vehicle) localization, autonomous obstacle avoidance, robust flight control and 3D environmental mapping. There are three main challenges for MAV state estimation: (1) it can deal with aggressive 6 DOF (Degree Of Freedom) motion; (2) it should be robust to intermittent GPS (Global Positioning System) (even GPS-denied) situations; (3) it should work well both for low- and high-altitude flight. In this paper, we present a state estimation technique by fusing long-range stereo visual odometry, GPS, barometric and IMU (Inertial Measurement Unit) measurements. The new estimation system has two main parts, a stochastic cloning EKF (Extended Kalman Filter) estimator that loosely fuses both absolute state measurements (GPS, barometer) and the relative state measurements (IMU, visual odometry), and is derived and discussed in detail. A long-range stereo visual odometry is proposed for high-altitude MAV odometry calculation by using both multi-view stereo triangulation and a multi-view stereo inverse depth filter. The odometry takes the EKF information (IMU integral) for robust camera pose tracking and image feature matching, and the stereo odometry output serves as the relative measurements for the update of the state estimation. Experimental results on a benchmark dataset and our real flight dataset show the effectiveness of the proposed state estimation system, especially for the aggressive, intermittent GPS and high-altitude MAV flight.
NASA Astrophysics Data System (ADS)
Vadivel, P.; Sakthivel, R.; Mathiyalagan, K.; Arunkumar, A.
2013-09-01
This paper addresses the issue of robust state estimation for a class of fuzzy bidirectional associative memory (BAM) neural networks with time-varying delays and parameter uncertainties. By constructing the Lyapunov-Krasovskii functional, which contains the triple-integral term and using the free-weighting matrix technique, a set of sufficient conditions are derived in terms of linear matrix inequalities (LMIs) to estimate the neuron states through available output measurements such that the dynamics of the estimation error system is robustly asymptotically stable. In particular, we consider a generalized activation function in which the traditional assumptions on the boundedness, monotony and differentiability of the activation functions are removed. More precisely, the design of the state estimator for such BAM neural networks can be obtained by solving some LMIs, which are dependent on the size of the time derivative of the time-varying delays. Finally, a numerical example with simulation result is given to illustrate the obtained theoretical results.
A Multi-Sensor Fusion MAV State Estimation from Long-Range Stereo, IMU, GPS and Barometric Sensors
Song, Yu; Nuske, Stephen; Scherer, Sebastian
2016-01-01
State estimation is the most critical capability for MAV (Micro-Aerial Vehicle) localization, autonomous obstacle avoidance, robust flight control and 3D environmental mapping. There are three main challenges for MAV state estimation: (1) it can deal with aggressive 6 DOF (Degree Of Freedom) motion; (2) it should be robust to intermittent GPS (Global Positioning System) (even GPS-denied) situations; (3) it should work well both for low- and high-altitude flight. In this paper, we present a state estimation technique by fusing long-range stereo visual odometry, GPS, barometric and IMU (Inertial Measurement Unit) measurements. The new estimation system has two main parts, a stochastic cloning EKF (Extended Kalman Filter) estimator that loosely fuses both absolute state measurements (GPS, barometer) and the relative state measurements (IMU, visual odometry), and is derived and discussed in detail. A long-range stereo visual odometry is proposed for high-altitude MAV odometry calculation by using both multi-view stereo triangulation and a multi-view stereo inverse depth filter. The odometry takes the EKF information (IMU integral) for robust camera pose tracking and image feature matching, and the stereo odometry output serves as the relative measurements for the update of the state estimation. Experimental results on a benchmark dataset and our real flight dataset show the effectiveness of the proposed state estimation system, especially for the aggressive, intermittent GPS and high-altitude MAV flight. PMID:28025524
NASA Astrophysics Data System (ADS)
Liu, Hongjian; Wang, Zidong; Shen, Bo; Alsaadi, Fuad E.
2016-07-01
This paper deals with the robust H∞ state estimation problem for a class of memristive recurrent neural networks with stochastic time-delays. The stochastic time-delays under consideration are governed by a Bernoulli-distributed stochastic sequence. The purpose of the addressed problem is to design the robust state estimator such that the dynamics of the estimation error is exponentially stable in the mean square, and the prescribed ? performance constraint is met. By utilizing the difference inclusion theory and choosing a proper Lyapunov-Krasovskii functional, the existence condition of the desired estimator is derived. Based on it, the explicit expression of the estimator gain is given in terms of the solution to a linear matrix inequality. Finally, a numerical example is employed to demonstrate the effectiveness and applicability of the proposed estimation approach.
NASA Astrophysics Data System (ADS)
Tamhane, Bhagyashri; Kurode, Shailaja
2018-05-01
In this paper, simultaneous state and disturbance estimation of a drive system composed of motor connected to a load is proposed. Such a system is represented by a two mass model realising in a fourth-order plant. Backlash is introduced as the nonlinear disturbance in gears which is proposed to be estimated and in turn compensated. For this motion control system, a two-stage higher order sliding-mode observer is proposed for state and backlash estimation. The novelty lies in the fact that for this fourth-order system, output is considered from the motor end only, i.e. its angular displacement. The unmeasured states consisting of output derivative, load-side angular displacement and its derivative along with backlash are estimated in finite time. This disturbance due to backlash is unmatched in nature. The estimated states and disturbance are used to devise a robust sliding-mode control. This proposed scheme is validated in simulation and experimentation.
Zhao, Junbo; Wang, Shaobu; Mili, Lamine; ...
2018-01-08
Here, this paper develops a robust power system state estimation framework with the consideration of measurement correlations and imperfect synchronization. In the framework, correlations of SCADA and Phasor Measurements (PMUs) are calculated separately through unscented transformation and a Vector Auto-Regression (VAR) model. In particular, PMU measurements during the waiting period of two SCADA measurement scans are buffered to develop the VAR model with robustly estimated parameters using projection statistics approach. The latter takes into account the temporal and spatial correlations of PMU measurements and provides redundant measurements to suppress bad data and mitigate imperfect synchronization. In case where the SCADAmore » and PMU measurements are not time synchronized, either the forecasted PMU measurements or the prior SCADA measurements from the last estimation run are leveraged to restore system observability. Then, a robust generalized maximum-likelihood (GM)-estimator is extended to integrate measurement error correlations and to handle the outliers in the SCADA and PMU measurements. Simulation results that stem from a comprehensive comparison with other alternatives under various conditions demonstrate the benefits of the proposed framework.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Junbo; Wang, Shaobu; Mili, Lamine
Here, this paper develops a robust power system state estimation framework with the consideration of measurement correlations and imperfect synchronization. In the framework, correlations of SCADA and Phasor Measurements (PMUs) are calculated separately through unscented transformation and a Vector Auto-Regression (VAR) model. In particular, PMU measurements during the waiting period of two SCADA measurement scans are buffered to develop the VAR model with robustly estimated parameters using projection statistics approach. The latter takes into account the temporal and spatial correlations of PMU measurements and provides redundant measurements to suppress bad data and mitigate imperfect synchronization. In case where the SCADAmore » and PMU measurements are not time synchronized, either the forecasted PMU measurements or the prior SCADA measurements from the last estimation run are leveraged to restore system observability. Then, a robust generalized maximum-likelihood (GM)-estimator is extended to integrate measurement error correlations and to handle the outliers in the SCADA and PMU measurements. Simulation results that stem from a comprehensive comparison with other alternatives under various conditions demonstrate the benefits of the proposed framework.« less
NASA Astrophysics Data System (ADS)
Ablay, Gunyaz
Using traditional control methods for controller design, parameter estimation and fault diagnosis may lead to poor results with nuclear systems in practice because of approximations and uncertainties in the system models used, possibly resulting in unexpected plant unavailability. This experience has led to an interest in development of robust control, estimation and fault diagnosis methods. One particularly robust approach is the sliding mode control methodology. Sliding mode approaches have been of great interest and importance in industry and engineering in the recent decades due to their potential for producing economic, safe and reliable designs. In order to utilize these advantages, sliding mode approaches are implemented for robust control, state estimation, secure communication and fault diagnosis in nuclear plant systems. In addition, a sliding mode output observer is developed for fault diagnosis in dynamical systems. To validate the effectiveness of the methodologies, several nuclear plant system models are considered for applications, including point reactor kinetics, xenon concentration dynamics, an uncertain pressurizer model, a U-tube steam generator model and a coupled nonlinear nuclear reactor model.
NASA Astrophysics Data System (ADS)
Aslan, Serdar; Taylan Cemgil, Ali; Akın, Ata
2016-08-01
Objective. In this paper, we aimed for the robust estimation of the parameters and states of the hemodynamic model by using blood oxygen level dependent signal. Approach. In the fMRI literature, there are only a few successful methods that are able to make a joint estimation of the states and parameters of the hemodynamic model. In this paper, we implemented a maximum likelihood based method called the particle smoother expectation maximization (PSEM) algorithm for the joint state and parameter estimation. Main results. Former sequential Monte Carlo methods were only reliable in the hemodynamic state estimates. They were claimed to outperform the local linearization (LL) filter and the extended Kalman filter (EKF). The PSEM algorithm is compared with the most successful method called square-root cubature Kalman smoother (SCKS) for both state and parameter estimation. SCKS was found to be better than the dynamic expectation maximization (DEM) algorithm, which was shown to be a better estimator than EKF, LL and particle filters. Significance. PSEM was more accurate than SCKS for both the state and the parameter estimation. Hence, PSEM seems to be the most accurate method for the system identification and state estimation for the hemodynamic model inversion literature. This paper do not compare its results with Tikhonov-regularized Newton—CKF (TNF-CKF), a recent robust method which works in filtering sense.
Robust Fault Detection for Aircraft Using Mixed Structured Singular Value Theory and Fuzzy Logic
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G.
2000-01-01
The purpose of fault detection is to identify when a fault or failure has occurred in a system such as an aircraft or expendable launch vehicle. The faults may occur in sensors, actuators, structural components, etc. One of the primary approaches to model-based fault detection relies on analytical redundancy. That is the output of a computer-based model (actually a state estimator) is compared with the sensor measurements of the actual system to determine when a fault has occurred. Unfortunately, the state estimator is based on an idealized mathematical description of the underlying plant that is never totally accurate. As a result of these modeling errors, false alarms can occur. This research uses mixed structured singular value theory, a relatively recent and powerful robustness analysis tool, to develop robust estimators and demonstrates the use of these estimators in fault detection. To allow qualitative human experience to be effectively incorporated into the detection process fuzzy logic is used to predict the seriousness of the fault that has occurred.
A Two-Stage Kalman Filter Approach for Robust and Real-Time Power System State Estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jinghe; Welch, Greg; Bishop, Gary
2014-04-01
As electricity demand continues to grow and renewable energy increases its penetration in the power grid, realtime state estimation becomes essential for system monitoring and control. Recent development in phasor technology makes it possible with high-speed time-synchronized data provided by Phasor Measurement Units (PMU). In this paper we present a two-stage Kalman filter approach to estimate the static state of voltage magnitudes and phase angles, as well as the dynamic state of generator rotor angles and speeds. Kalman filters achieve optimal performance only when the system noise characteristics have known statistical properties (zero-mean, Gaussian, and spectrally white). However in practicemore » the process and measurement noise models are usually difficult to obtain. Thus we have developed the Adaptive Kalman Filter with Inflatable Noise Variances (AKF with InNoVa), an algorithm that can efficiently identify and reduce the impact of incorrect system modeling and/or erroneous measurements. In stage one, we estimate the static state from raw PMU measurements using the AKF with InNoVa; then in stage two, the estimated static state is fed into an extended Kalman filter to estimate the dynamic state. Simulations demonstrate its robustness to sudden changes of system dynamics and erroneous measurements.« less
On robust parameter estimation in brain-computer interfacing
NASA Astrophysics Data System (ADS)
Samek, Wojciech; Nakajima, Shinichi; Kawanabe, Motoaki; Müller, Klaus-Robert
2017-12-01
Objective. The reliable estimation of parameters such as mean or covariance matrix from noisy and high-dimensional observations is a prerequisite for successful application of signal processing and machine learning algorithms in brain-computer interfacing (BCI). This challenging task becomes significantly more difficult if the data set contains outliers, e.g. due to subject movements, eye blinks or loose electrodes, as they may heavily bias the estimation and the subsequent statistical analysis. Although various robust estimators have been developed to tackle the outlier problem, they ignore important structural information in the data and thus may not be optimal. Typical structural elements in BCI data are the trials consisting of a few hundred EEG samples and indicating the start and end of a task. Approach. This work discusses the parameter estimation problem in BCI and introduces a novel hierarchical view on robustness which naturally comprises different types of outlierness occurring in structured data. Furthermore, the class of minimum divergence estimators is reviewed and a robust mean and covariance estimator for structured data is derived and evaluated with simulations and on a benchmark data set. Main results. The results show that state-of-the-art BCI algorithms benefit from robustly estimated parameters. Significance. Since parameter estimation is an integral part of various machine learning algorithms, the presented techniques are applicable to many problems beyond BCI.
A subagging regression method for estimating the qualitative and quantitative state of groundwater
NASA Astrophysics Data System (ADS)
Jeong, Jina; Park, Eungyu; Han, Weon Shik; Kim, Kue-Young
2017-08-01
A subsample aggregating (subagging) regression (SBR) method for the analysis of groundwater data pertaining to trend-estimation-associated uncertainty is proposed. The SBR method is validated against synthetic data competitively with other conventional robust and non-robust methods. From the results, it is verified that the estimation accuracies of the SBR method are consistent and superior to those of other methods, and the uncertainties are reasonably estimated; the others have no uncertainty analysis option. To validate further, actual groundwater data are employed and analyzed comparatively with Gaussian process regression (GPR). For all cases, the trend and the associated uncertainties are reasonably estimated by both SBR and GPR regardless of Gaussian or non-Gaussian skewed data. However, it is expected that GPR has a limitation in applications to severely corrupted data by outliers owing to its non-robustness. From the implementations, it is determined that the SBR method has the potential to be further developed as an effective tool of anomaly detection or outlier identification in groundwater state data such as the groundwater level and contaminant concentration.
Heading Estimation for Pedestrian Dead Reckoning Based on Robust Adaptive Kalman Filtering.
Wu, Dongjin; Xia, Linyuan; Geng, Jijun
2018-06-19
Pedestrian dead reckoning (PDR) using smart phone-embedded micro-electro-mechanical system (MEMS) sensors plays a key role in ubiquitous localization indoors and outdoors. However, as a relative localization method, it suffers from the problem of error accumulation which prevents it from long term independent running. Heading estimation error is one of the main location error sources, and therefore, in order to improve the location tracking performance of the PDR method in complex environments, an approach based on robust adaptive Kalman filtering (RAKF) for estimating accurate headings is proposed. In our approach, outputs from gyroscope, accelerometer, and magnetometer sensors are fused using the solution of Kalman filtering (KF) that the heading measurements derived from accelerations and magnetic field data are used to correct the states integrated from angular rates. In order to identify and control measurement outliers, a maximum likelihood-type estimator (M-estimator)-based model is used. Moreover, an adaptive factor is applied to resist the negative effects of state model disturbances. Extensive experiments under static and dynamic conditions were conducted in indoor environments. The experimental results demonstrate the proposed approach provides more accurate heading estimates and supports more robust and dynamic adaptive location tracking, compared with methods based on conventional KF.
Doubly Robust Additive Hazards Models to Estimate Effects of a Continuous Exposure on Survival.
Wang, Yan; Lee, Mihye; Liu, Pengfei; Shi, Liuhua; Yu, Zhi; Abu Awad, Yara; Zanobetti, Antonella; Schwartz, Joel D
2017-11-01
The effect of an exposure on survival can be biased when the regression model is misspecified. Hazard difference is easier to use in risk assessment than hazard ratio and has a clearer interpretation in the assessment of effect modifications. We proposed two doubly robust additive hazards models to estimate the causal hazard difference of a continuous exposure on survival. The first model is an inverse probability-weighted additive hazards regression. The second model is an extension of the doubly robust estimator for binary exposures by categorizing the continuous exposure. We compared these with the marginal structural model and outcome regression with correct and incorrect model specifications using simulations. We applied doubly robust additive hazard models to the estimation of hazard difference of long-term exposure to PM2.5 (particulate matter with an aerodynamic diameter less than or equal to 2.5 microns) on survival using a large cohort of 13 million older adults residing in seven states of the Southeastern United States. We showed that the proposed approaches are doubly robust. We found that each 1 μg m increase in annual PM2.5 exposure was associated with a causal hazard difference in mortality of 8.0 × 10 (95% confidence interval 7.4 × 10, 8.7 × 10), which was modified by age, medical history, socioeconomic status, and urbanicity. The overall hazard difference translates to approximately 5.5 (5.1, 6.0) thousand deaths per year in the study population. The proposed approaches improve the robustness of the additive hazards model and produce a novel additive causal estimate of PM2.5 on survival and several additive effect modifications, including social inequality.
Robust Controller for Turbulent and Convective Boundary Layers
2006-08-01
filter and an optimal regulator. The Kalman filter equation and the optimal regulator equation corresponding to the state-space equations, (2.20), are...separate steady-state algebraic Riccati equations. The Kalman filter is used here as a state observer rather than as an estimator since no noises are...2001) which will not be repeated here. For robustness, in the design, the Kalman filter input matrix G has been set equal to the control input
A subagging regression method for estimating the qualitative and quantitative state of groundwater
NASA Astrophysics Data System (ADS)
Jeong, J.; Park, E.; Choi, J.; Han, W. S.; Yun, S. T.
2016-12-01
A subagging regression (SBR) method for the analysis of groundwater data pertaining to the estimation of trend and the associated uncertainty is proposed. The SBR method is validated against synthetic data competitively with other conventional robust and non-robust methods. From the results, it is verified that the estimation accuracies of the SBR method are consistent and superior to those of the other methods and the uncertainties are reasonably estimated where the others have no uncertainty analysis option. To validate further, real quantitative and qualitative data are employed and analyzed comparatively with Gaussian process regression (GPR). For all cases, the trend and the associated uncertainties are reasonably estimated by SBR, whereas the GPR has limitations in representing the variability of non-Gaussian skewed data. From the implementations, it is determined that the SBR method has potential to be further developed as an effective tool of anomaly detection or outlier identification in groundwater state data.
Estimating Power System Dynamic States Using Extended Kalman Filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhenyu; Schneider, Kevin P.; Nieplocha, Jaroslaw
2014-10-31
Abstract—The state estimation tools which are currently deployed in power system control rooms are based on a steady state assumption. As a result, the suite of operational tools that rely on state estimation results as inputs do not have dynamic information available and their accuracy is compromised. This paper investigates the application of Extended Kalman Filtering techniques for estimating dynamic states in the state estimation process. The new formulated “dynamic state estimation” includes true system dynamics reflected in differential equations, not like previously proposed “dynamic state estimation” which only considers the time-variant snapshots based on steady state modeling. This newmore » dynamic state estimation using Extended Kalman Filter has been successfully tested on a multi-machine system. Sensitivity studies with respect to noise levels, sampling rates, model errors, and parameter errors are presented as well to illustrate the robust performance of the developed dynamic state estimation process.« less
Robust double gain unscented Kalman filter for small satellite attitude estimation
NASA Astrophysics Data System (ADS)
Cao, Lu; Yang, Weiwei; Li, Hengnian; Zhang, Zhidong; Shi, Jianjun
2017-08-01
Limited by the low precision of small satellite sensors, the estimation theories with high performance remains the most popular research topic for the attitude estimation. The Kalman filter (KF) and its extensions have been widely applied in the satellite attitude estimation and achieved plenty of achievements. However, most of the existing methods just take use of the current time-step's priori measurement residuals to complete the measurement update and state estimation, which always ignores the extraction and utilization of the previous time-step's posteriori measurement residuals. In addition, the uncertainty model errors always exist in the attitude dynamic system, which also put forward the higher performance requirements for the classical KF in attitude estimation problem. Therefore, the novel robust double gain unscented Kalman filter (RDG-UKF) is presented in this paper to satisfy the above requirements for the small satellite attitude estimation with the low precision sensors. It is assumed that the system state estimation errors can be exhibited in the measurement residual; therefore, the new method is to derive the second Kalman gain Kk2 for making full use of the previous time-step's measurement residual to improve the utilization efficiency of the measurement data. Moreover, the sequence orthogonal principle and unscented transform (UT) strategy are introduced to robust and enhance the performance of the novel Kalman Filter in order to reduce the influence of existing uncertainty model errors. Numerical simulations show that the proposed RDG-UKF is more effective and robustness in dealing with the model errors and low precision sensors for the attitude estimation of small satellite by comparing with the classical unscented Kalman Filter (UKF).
Robust Modal Filtering and Control of the X-56A Model with Simulated Fiber Optic Sensor Failures
NASA Technical Reports Server (NTRS)
Suh, Peter M.; Chin, Alexander W.; Marvis, Dimitri N.
2014-01-01
The X-56A aircraft is a remotely-piloted aircraft with flutter modes intentionally designed into the flight envelope. The X-56A program must demonstrate flight control while suppressing all unstable modes. A previous X-56A model study demonstrated a distributed-sensing-based active shape and active flutter suppression controller. The controller relies on an estimator which is sensitive to bias. This estimator is improved herein, and a real-time robust estimator is derived and demonstrated on 1530 fiber optic sensors. It is shown in simulation that the estimator can simultaneously reject 230 worst-case fiber optic sensor failures automatically. These sensor failures include locations with high leverage (or importance). To reduce the impact of leverage outliers, concentration based on a Mahalanobis trim criterion is introduced. A redescending M-estimator with Tukey bisquare weights is used to improve location and dispersion estimates within each concentration step in the presence of asymmetry (or leverage). A dynamic simulation is used to compare the concentrated robust estimator to a state-of-the-art real-time robust multivariate estimator. The estimators support a previously-derived mu-optimal shape controller. It is found that during the failure scenario, the concentrated modal estimator keeps the system stable.
Robust Modal Filtering and Control of the X-56A Model with Simulated Fiber Optic Sensor Failures
NASA Technical Reports Server (NTRS)
Suh, Peter M.; Chin, Alexander W.; Mavris, Dimitri N.
2016-01-01
The X-56A aircraft is a remotely-piloted aircraft with flutter modes intentionally designed into the flight envelope. The X-56A program must demonstrate flight control while suppressing all unstable modes. A previous X-56A model study demonstrated a distributed-sensing-based active shape and active flutter suppression controller. The controller relies on an estimator which is sensitive to bias. This estimator is improved herein, and a real-time robust estimator is derived and demonstrated on 1530 fiber optic sensors. It is shown in simulation that the estimator can simultaneously reject 230 worst-case fiber optic sensor failures automatically. These sensor failures include locations with high leverage (or importance). To reduce the impact of leverage outliers, concentration based on a Mahalanobis trim criterion is introduced. A redescending M-estimator with Tukey bisquare weights is used to improve location and dispersion estimates within each concentration step in the presence of asymmetry (or leverage). A dynamic simulation is used to compare the concentrated robust estimator to a state-of-the-art real-time robust multivariate estimator. The estimators support a previously-derived mu-optimal shape controller. It is found that during the failure scenario, the concentrated modal estimator keeps the system stable.
Transfer Alignment Error Compensator Design Based on Robust State Estimation
NASA Astrophysics Data System (ADS)
Lyou, Joon; Lim, You-Chol
This paper examines the transfer alignment problem of the StrapDown Inertial Navigation System (SDINS), which is subject to the ship’s roll and pitch. Major error sources for velocity and attitude matching are lever arm effect, measurement time delay and ship-body flexure. To reduce these alignment errors, an error compensation method based on state augmentation and robust state estimation is devised. A linearized error model for the velocity and attitude matching transfer alignment system is derived first by linearizing the nonlinear measurement equation with respect to its time delay and dominant Y-axis flexure, and by augmenting the delay state and flexure state into conventional linear state equations. Then an H∞ filter is introduced to account for modeling uncertainties of time delay and the ship-body flexure. The simulation results show that this method considerably decreases azimuth alignment errors considerably.
A robust background regression based score estimation algorithm for hyperspectral anomaly detection
NASA Astrophysics Data System (ADS)
Zhao, Rui; Du, Bo; Zhang, Liangpei; Zhang, Lefei
2016-12-01
Anomaly detection has become a hot topic in the hyperspectral image analysis and processing fields in recent years. The most important issue for hyperspectral anomaly detection is the background estimation and suppression. Unreasonable or non-robust background estimation usually leads to unsatisfactory anomaly detection results. Furthermore, the inherent nonlinearity of hyperspectral images may cover up the intrinsic data structure in the anomaly detection. In order to implement robust background estimation, as well as to explore the intrinsic data structure of the hyperspectral image, we propose a robust background regression based score estimation algorithm (RBRSE) for hyperspectral anomaly detection. The Robust Background Regression (RBR) is actually a label assignment procedure which segments the hyperspectral data into a robust background dataset and a potential anomaly dataset with an intersection boundary. In the RBR, a kernel expansion technique, which explores the nonlinear structure of the hyperspectral data in a reproducing kernel Hilbert space, is utilized to formulate the data as a density feature representation. A minimum squared loss relationship is constructed between the data density feature and the corresponding assigned labels of the hyperspectral data, to formulate the foundation of the regression. Furthermore, a manifold regularization term which explores the manifold smoothness of the hyperspectral data, and a maximization term of the robust background average density, which suppresses the bias caused by the potential anomalies, are jointly appended in the RBR procedure. After this, a paired-dataset based k-nn score estimation method is undertaken on the robust background and potential anomaly datasets, to implement the detection output. The experimental results show that RBRSE achieves superior ROC curves, AUC values, and background-anomaly separation than some of the other state-of-the-art anomaly detection methods, and is easy to implement in practice.
NASA Astrophysics Data System (ADS)
Smith, James F.
2017-11-01
With the goal of designing interferometers and interferometer sensors, e.g., LADARs with enhanced sensitivity, resolution, and phase estimation, states using quantum entanglement are discussed. These states include N00N states, plain M and M states (PMMSs), and linear combinations of M and M states (LCMMS). Closed form expressions for the optimal detection operators; visibility, a measure of the state's robustness to loss and noise; a resolution measure; and phase estimate error, are provided in closed form. The optimal resolution for the maximum visibility and minimum phase error are found. For the visibility, comparisons between PMMSs, LCMMS, and N00N states are provided. For the minimum phase error, comparisons between LCMMS, PMMSs, N00N states, separate photon states (SPSs), the shot noise limit (SNL), and the Heisenberg limit (HL) are provided. A representative collection of computational results illustrating the superiority of LCMMS when compared to PMMSs and N00N states is given. It is found that for a resolution 12 times the classical result LCMMS has visibility 11 times that of N00N states and 4 times that of PMMSs. For the same case, the minimum phase error for LCMMS is 10.7 times smaller than that of PMMS and 29.7 times smaller than that of N00N states.
Robust Battery Fuel Gauge Algorithm Development, Part 3: State of Charge Tracking
2014-10-19
X. Zhang, F. Sun, and J. Fan, “State-of-charge estimation of the lithium - ion battery using an adaptive extended kalman filter based on an improved...framework with ex- tended kalman filter for lithium - ion battery soc and capacity estimation,” Applied Energy, vol. 92, pp. 694–704, 2012. [16] X. Hu, F...Sun, and Y. Zou, “Estimation of state of charge of a lithium - ion battery pack for electric vehicles using an adaptive luenberger observer,” Energies
Robust versus consistent variance estimators in marginal structural Cox models.
Enders, Dirk; Engel, Susanne; Linder, Roland; Pigeot, Iris
2018-06-11
In survival analyses, inverse-probability-of-treatment (IPT) and inverse-probability-of-censoring (IPC) weighted estimators of parameters in marginal structural Cox models are often used to estimate treatment effects in the presence of time-dependent confounding and censoring. In most applications, a robust variance estimator of the IPT and IPC weighted estimator is calculated leading to conservative confidence intervals. This estimator assumes that the weights are known rather than estimated from the data. Although a consistent estimator of the asymptotic variance of the IPT and IPC weighted estimator is generally available, applications and thus information on the performance of the consistent estimator are lacking. Reasons might be a cumbersome implementation in statistical software, which is further complicated by missing details on the variance formula. In this paper, we therefore provide a detailed derivation of the variance of the asymptotic distribution of the IPT and IPC weighted estimator and explicitly state the necessary terms to calculate a consistent estimator of this variance. We compare the performance of the robust and consistent variance estimators in an application based on routine health care data and in a simulation study. The simulation reveals no substantial differences between the 2 estimators in medium and large data sets with no unmeasured confounding, but the consistent variance estimator performs poorly in small samples or under unmeasured confounding, if the number of confounders is large. We thus conclude that the robust estimator is more appropriate for all practical purposes. Copyright © 2018 John Wiley & Sons, Ltd.
Pandiselvi, S; Raja, R; Cao, Jinde; Rajchakit, G; Ahmad, Bashir
2018-01-01
This work predominantly labels the problem of approximation of state variables for discrete-time stochastic genetic regulatory networks with leakage, distributed, and probabilistic measurement delays. Here we design a linear estimator in such a way that the absorption of mRNA and protein can be approximated via known measurement outputs. By utilizing a Lyapunov-Krasovskii functional and some stochastic analysis execution, we obtain the stability formula of the estimation error systems in the structure of linear matrix inequalities under which the estimation error dynamics is robustly exponentially stable. Further, the obtained conditions (in the form of LMIs) can be effortlessly solved by some available software packages. Moreover, the specific expression of the desired estimator is also shown in the main section. Finally, two mathematical illustrative examples are accorded to show the advantage of the proposed conceptual results.
An Information Retrieval Approach for Robust Prediction of Road Surface States.
Park, Jae-Hyung; Kim, Kwanho
2017-01-28
Recently, due to the increasing importance of reducing severe vehicle accidents on roads (especially on highways), the automatic identification of road surface conditions, and the provisioning of such information to drivers in advance, have recently been gaining significant momentum as a proactive solution to decrease the number of vehicle accidents. In this paper, we firstly propose an information retrieval approach that aims to identify road surface states by combining conventional machine-learning techniques and moving average methods. Specifically, when signal information is received from a radar system, our approach attempts to estimate the current state of the road surface based on the similar instances observed previously based on utilizing a given similarity function. Next, the estimated state is then calibrated by using the recently estimated states to yield both effective and robust prediction results. To validate the performances of the proposed approach, we established a real-world experimental setting on a section of actual highway in South Korea and conducted a comparison with the conventional approaches in terms of accuracy. The experimental results show that the proposed approach successfully outperforms the previously developed methods.
An Information Retrieval Approach for Robust Prediction of Road Surface States
Park, Jae-Hyung; Kim, Kwanho
2017-01-01
Recently, due to the increasing importance of reducing severe vehicle accidents on roads (especially on highways), the automatic identification of road surface conditions, and the provisioning of such information to drivers in advance, have recently been gaining significant momentum as a proactive solution to decrease the number of vehicle accidents. In this paper, we firstly propose an information retrieval approach that aims to identify road surface states by combining conventional machine-learning techniques and moving average methods. Specifically, when signal information is received from a radar system, our approach attempts to estimate the current state of the road surface based on the similar instances observed previously based on utilizing a given similarity function. Next, the estimated state is then calibrated by using the recently estimated states to yield both effective and robust prediction results. To validate the performances of the proposed approach, we established a real-world experimental setting on a section of actual highway in South Korea and conducted a comparison with the conventional approaches in terms of accuracy. The experimental results show that the proposed approach successfully outperforms the previously developed methods. PMID:28134859
Kendall, W.L.; Nichols, J.D.
2002-01-01
Temporary emigration was identified some time ago as causing potential problems in capture-recapture studies, and in the last five years approaches have been developed for dealing with special cases of this general problem. Temporary emigration can be viewed more generally as involving transitions to and from an unobservable state, and frequently the state itself is one of biological interest (e.g., 'nonbreeder'). Development of models that permit estimation of relevant parameters in the presence of an unobservable state requires either extra information (e.g., as supplied by Pollock's robust design) or the following classes of model constraints: reducing the order of Markovian transition probabilities, imposing a degree of determinism on transition probabilities, removing state specificity of survival probabilities, and imposing temporal constancy of parameters. The objective of the work described in this paper is to investigate estimability of model parameters under a variety of models that include an unobservable state. Beginning with a very general model and no extra information, we used numerical methods to systematically investigate the use of ancillary information and constraints to yield models that are useful for estimation. The result is a catalog of models for which estimation is possible. An example analysis of sea turtle capture-recapture data under two different models showed similar point estimates but increased precision for the model that incorporated ancillary data (the robust design) when compared to the model with deterministic transitions only. This comparison and the results of our numerical investigation of model structures lead to design suggestions for capture-recapture studies in the presence of an unobservable state.
Huang, Lei
2015-01-01
To solve the problem in which the conventional ARMA modeling methods for gyro random noise require a large number of samples and converge slowly, an ARMA modeling method using a robust Kalman filtering is developed. The ARMA model parameters are employed as state arguments. Unknown time-varying estimators of observation noise are used to achieve the estimated mean and variance of the observation noise. Using the robust Kalman filtering, the ARMA model parameters are estimated accurately. The developed ARMA modeling method has the advantages of a rapid convergence and high accuracy. Thus, the required sample size is reduced. It can be applied to modeling applications for gyro random noise in which a fast and accurate ARMA modeling method is required. PMID:26437409
Probability based remaining capacity estimation using data-driven and neural network model
NASA Astrophysics Data System (ADS)
Wang, Yujie; Yang, Duo; Zhang, Xu; Chen, Zonghai
2016-05-01
Since large numbers of lithium-ion batteries are composed in pack and the batteries are complex electrochemical devices, their monitoring and safety concerns are key issues for the applications of battery technology. An accurate estimation of battery remaining capacity is crucial for optimization of the vehicle control, preventing battery from over-charging and over-discharging and ensuring the safety during its service life. The remaining capacity estimation of a battery includes the estimation of state-of-charge (SOC) and state-of-energy (SOE). In this work, a probability based adaptive estimator is presented to obtain accurate and reliable estimation results for both SOC and SOE. For the SOC estimation, an n ordered RC equivalent circuit model is employed by combining an electrochemical model to obtain more accurate voltage prediction results. For the SOE estimation, a sliding window neural network model is proposed to investigate the relationship between the terminal voltage and the model inputs. To verify the accuracy and robustness of the proposed model and estimation algorithm, experiments under different dynamic operation current profiles are performed on the commercial 1665130-type lithium-ion batteries. The results illustrate that accurate and robust estimation can be obtained by the proposed method.
On-Orbit Multi-Field Wavefront Control with a Kalman Filter
NASA Technical Reports Server (NTRS)
Lou, John; Sigrist, Norbert; Basinger, Scott; Redding, David
2008-01-01
A document describes a multi-field wavefront control (WFC) procedure for the James Webb Space Telescope (JWST) on-orbit optical telescope element (OTE) fine-phasing using wavefront measurements at the NIRCam pupil. The control is applied to JWST primary mirror (PM) segments and secondary mirror (SM) simultaneously with a carefully selected ordering. Through computer simulations, the multi-field WFC procedure shows that it can reduce the initial system wavefront error (WFE), as caused by random initial system misalignments within the JWST fine-phasing error budget, from a few dozen micrometers to below 50 nm across the entire NIRCam Field of View, and the WFC procedure is also computationally stable as the Monte-Carlo simulations indicate. With the incorporation of a Kalman Filter (KF) as an optical state estimator into the WFC process, the robustness of the JWST OTE alignment process can be further improved. In the presence of some large optical misalignments, the Kalman state estimator can provide a reasonable estimate of the optical state, especially for those degrees of freedom that have a significant impact on the system WFE. The state estimate allows for a few corrections to the optical state to push the system towards its nominal state, and the result is that a large part of the WFE can be eliminated in this step. When the multi-field WFC procedure is applied after Kalman state estimate and correction, the stability of fine-phasing control is much more certain. Kalman Filter has been successfully applied to diverse applications as a robust and optimal state estimator. In the context of space-based optical system alignment based on wavefront measurements, a KF state estimator can combine all available wavefront measurements, past and present, as well as measurement and actuation error statistics to generate a Maximum-Likelihood optimal state estimator. The strength and flexibility of the KF algorithm make it attractive for use in real-time optical system alignment when WFC alone cannot effectively align the system.
Motion Field Estimation for a Dynamic Scene Using a 3D LiDAR
Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington
2014-01-01
This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively. PMID:25207868
Motion field estimation for a dynamic scene using a 3D LiDAR.
Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington
2014-09-09
This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively.
Control design for robust stability in linear regulators: Application to aerospace flight control
NASA Technical Reports Server (NTRS)
Yedavalli, R. K.
1986-01-01
Time domain stability robustness analysis and design for linear multivariable uncertain systems with bounded uncertainties is the central theme of the research. After reviewing the recently developed upper bounds on the linear elemental (structured), time varying perturbation of an asymptotically stable linear time invariant regulator, it is shown that it is possible to further improve these bounds by employing state transformations. Then introducing a quantitative measure called the stability robustness index, a state feedback conrol design algorithm is presented for a general linear regulator problem and then specialized to the case of modal systems as well as matched systems. The extension of the algorithm to stochastic systems with Kalman filter as the state estimator is presented. Finally an algorithm for robust dynamic compensator design is presented using Parameter Optimization (PO) procedure. Applications in a aircraft control and flexible structure control are presented along with a comparison with other existing methods.
Robust Parallel Motion Estimation and Mapping with Stereo Cameras in Underground Infrastructure
NASA Astrophysics Data System (ADS)
Liu, Chun; Li, Zhengning; Zhou, Yuan
2016-06-01
Presently, we developed a novel robust motion estimation method for localization and mapping in underground infrastructure using a pre-calibrated rigid stereo camera rig. Localization and mapping in underground infrastructure is important to safety. Yet it's also nontrivial since most underground infrastructures have poor lighting condition and featureless structure. Overcoming these difficulties, we discovered that parallel system is more efficient than the EKF-based SLAM approach since parallel system divides motion estimation and 3D mapping tasks into separate threads, eliminating data-association problem which is quite an issue in SLAM. Moreover, the motion estimation thread takes the advantage of state-of-art robust visual odometry algorithm which is highly functional under low illumination and provides accurate pose information. We designed and built an unmanned vehicle and used the vehicle to collect a dataset in an underground garage. The parallel system was evaluated by the actual dataset. Motion estimation results indicated a relative position error of 0.3%, and 3D mapping results showed a mean position error of 13cm. Off-line process reduced position error to 2cm. Performance evaluation by actual dataset showed that our system is capable of robust motion estimation and accurate 3D mapping in poor illumination and featureless underground environment.
2017-01-01
This work investigates the design of alternative monitoring tools based on state estimators for industrial crystallization systems with nucleation, growth, and agglomeration kinetics. The estimation problem is regarded as a structure design problem where the estimation model and the set of innovated states have to be chosen; the estimator is driven by the available measurements of secondary variables. On the basis of Robust Exponential estimability arguments, it is found that the concentration is distinguishable with temperature and solid fraction measurements while the crystal size distribution (CSD) is not. Accordingly, a state estimator structure is selected such that (i) the concentration (and other distinguishable states) are innovated by means of the secondary measurements processed with the geometric estimator (GE), and (ii) the CSD is estimated by means of a rigorous model in open loop mode. The proposed estimator has been tested through simulations showing good performance in the case of mismatch in the initial conditions, parametric plant-model mismatch, and noisy measurements. PMID:28890604
Porru, Marcella; Özkan, Leyla
2017-08-30
This work investigates the design of alternative monitoring tools based on state estimators for industrial crystallization systems with nucleation, growth, and agglomeration kinetics. The estimation problem is regarded as a structure design problem where the estimation model and the set of innovated states have to be chosen; the estimator is driven by the available measurements of secondary variables. On the basis of Robust Exponential estimability arguments, it is found that the concentration is distinguishable with temperature and solid fraction measurements while the crystal size distribution (CSD) is not. Accordingly, a state estimator structure is selected such that (i) the concentration (and other distinguishable states) are innovated by means of the secondary measurements processed with the geometric estimator (GE), and (ii) the CSD is estimated by means of a rigorous model in open loop mode. The proposed estimator has been tested through simulations showing good performance in the case of mismatch in the initial conditions, parametric plant-model mismatch, and noisy measurements.
A Robust Nonlinear Observer for Real-Time Attitude Estimation Using Low-Cost MEMS Inertial Sensors
Guerrero-Castellanos, José Fermi; Madrigal-Sastre, Heberto; Durand, Sylvain; Torres, Lizeth; Muñoz-Hernández, German Ardul
2013-01-01
This paper deals with the attitude estimation of a rigid body equipped with angular velocity sensors and reference vector sensors. A quaternion-based nonlinear observer is proposed in order to fuse all information sources and to obtain an accurate estimation of the attitude. It is shown that the observer error dynamics can be separated into two passive subsystems connected in “feedback”. Then, this property is used to show that the error dynamics is input-to-state stable when the measurement disturbance is seen as an input and the error as the state. These results allow one to affirm that the observer is “robustly stable”. The proposed observer is evaluated in real-time with the design and implementation of an Attitude and Heading Reference System (AHRS) based on low-cost MEMS (Micro-Electro-Mechanical Systems) Inertial Measure Unit (IMU) and magnetic sensors and a 16-bit microcontroller. The resulting estimates are compared with a high precision motion system to demonstrate its performance. PMID:24201316
Filtering Based Adaptive Visual Odometry Sensor Framework Robust to Blurred Images
Zhao, Haiying; Liu, Yong; Xie, Xiaojia; Liao, Yiyi; Liu, Xixi
2016-01-01
Visual odometry (VO) estimation from blurred image is a challenging problem in practical robot applications, and the blurred images will severely reduce the estimation accuracy of the VO. In this paper, we address the problem of visual odometry estimation from blurred images, and present an adaptive visual odometry estimation framework robust to blurred images. Our approach employs an objective measure of images, named small image gradient distribution (SIGD), to evaluate the blurring degree of the image, then an adaptive blurred image classification algorithm is proposed to recognize the blurred images, finally we propose an anti-blurred key-frame selection algorithm to enable the VO robust to blurred images. We also carried out varied comparable experiments to evaluate the performance of the VO algorithms with our anti-blur framework under varied blurred images, and the experimental results show that our approach can achieve superior performance comparing to the state-of-the-art methods under the condition with blurred images while not increasing too much computation cost to the original VO algorithms. PMID:27399704
Correlation techniques to determine model form in robust nonlinear system realization/identification
NASA Technical Reports Server (NTRS)
Stry, Greselda I.; Mook, D. Joseph
1991-01-01
The fundamental challenge in identification of nonlinear dynamic systems is determining the appropriate form of the model. A robust technique is presented which essentially eliminates this problem for many applications. The technique is based on the Minimum Model Error (MME) optimal estimation approach. A detailed literature review is included in which fundamental differences between the current approach and previous work is described. The most significant feature is the ability to identify nonlinear dynamic systems without prior assumption regarding the form of the nonlinearities, in contrast to existing nonlinear identification approaches which usually require detailed assumptions of the nonlinearities. Model form is determined via statistical correlation of the MME optimal state estimates with the MME optimal model error estimates. The example illustrations indicate that the method is robust with respect to prior ignorance of the model, and with respect to measurement noise, measurement frequency, and measurement record length.
Diffusion pseudotime robustly reconstructs lineage branching.
Haghverdi, Laleh; Büttner, Maren; Wolf, F Alexander; Buettner, Florian; Theis, Fabian J
2016-10-01
The temporal order of differentiating cells is intrinsically encoded in their single-cell expression profiles. We describe an efficient way to robustly estimate this order according to diffusion pseudotime (DPT), which measures transitions between cells using diffusion-like random walks. Our DPT software implementations make it possible to reconstruct the developmental progression of cells and identify transient or metastable states, branching decisions and differentiation endpoints.
NASA Astrophysics Data System (ADS)
Ait-El-Fquih, Boujemaa; El Gharamti, Mohamad; Hoteit, Ibrahim
2016-08-01
Ensemble Kalman filtering (EnKF) is an efficient approach to addressing uncertainties in subsurface groundwater models. The EnKF sequentially integrates field data into simulation models to obtain a better characterization of the model's state and parameters. These are generally estimated following joint and dual filtering strategies, in which, at each assimilation cycle, a forecast step by the model is followed by an update step with incoming observations. The joint EnKF directly updates the augmented state-parameter vector, whereas the dual EnKF empirically employs two separate filters, first estimating the parameters and then estimating the state based on the updated parameters. To develop a Bayesian consistent dual approach and improve the state-parameter estimates and their consistency, we propose in this paper a one-step-ahead (OSA) smoothing formulation of the state-parameter Bayesian filtering problem from which we derive a new dual-type EnKF, the dual EnKFOSA. Compared with the standard dual EnKF, it imposes a new update step to the state, which is shown to enhance the performance of the dual approach with almost no increase in the computational cost. Numerical experiments are conducted with a two-dimensional (2-D) synthetic groundwater aquifer model to investigate the performance and robustness of the proposed dual EnKFOSA, and to evaluate its results against those of the joint and dual EnKFs. The proposed scheme is able to successfully recover both the hydraulic head and the aquifer conductivity, providing further reliable estimates of their uncertainties. Furthermore, it is found to be more robust to different assimilation settings, such as the spatial and temporal distribution of the observations, and the level of noise in the data. Based on our experimental setups, it yields up to 25 % more accurate state and parameter estimations than the joint and dual approaches.
NASA Technical Reports Server (NTRS)
Challa, M. S.; Natanson, G. A.; Baker, D. F.; Deutschmann, J. K.
1994-01-01
This paper describes real-time attitude determination results for the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), a gyroless spacecraft, using a Kalman filter/Euler equation approach denoted the real-time sequential filter (RTSF). The RTSF is an extended Kalman filter whose state vector includes the attitude quaternion and corrections to the rates, which are modeled as Markov processes with small time constants. The rate corrections impart a significant robustness to the RTSF against errors in modeling the environmental and control torques, as well as errors in the initial attitude and rates, while maintaining a small state vector. SAMPLEX flight data from various mission phases are used to demonstrate the robustness of the RTSF against a priori attitude and rate errors of up to 90 deg and 0.5 deg/sec, respectively, as well as a sensitivity of 0.0003 deg/sec in estimating rate corrections in torque computations. In contrast, it is shown that the RTSF attitude estimates without the rate corrections can degrade rapidly. RTSF advantages over single-frame attitude determination algorithms are also demonstrated through (1) substantial improvements in attitude solutions during sun-magnetic field coalignment and (2) magnetic-field-only attitude and rate estimation during the spacecraft's sun-acquisition mode. A robust magnetometer-only attitude-and-rate determination method is also developed to provide for the contingency when both sun data as well as a priori knowledge of the spacecraft state are unavailable. This method includes a deterministic algorithm used to initialize the RTSF with coarse estimates of the spacecraft attitude and rates. The combined algorithm has been found effective, yielding accuracies of 1.5 deg in attitude and 0.01 deg/sec in the rates and convergence times as little as 400 sec.
Real-Time Tracking of Selective Auditory Attention From M/EEG: A Bayesian Filtering Approach
Miran, Sina; Akram, Sahar; Sheikhattar, Alireza; Simon, Jonathan Z.; Zhang, Tao; Babadi, Behtash
2018-01-01
Humans are able to identify and track a target speaker amid a cacophony of acoustic interference, an ability which is often referred to as the cocktail party phenomenon. Results from several decades of studying this phenomenon have culminated in recent years in various promising attempts to decode the attentional state of a listener in a competing-speaker environment from non-invasive neuroimaging recordings such as magnetoencephalography (MEG) and electroencephalography (EEG). To this end, most existing approaches compute correlation-based measures by either regressing the features of each speech stream to the M/EEG channels (the decoding approach) or vice versa (the encoding approach). To produce robust results, these procedures require multiple trials for training purposes. Also, their decoding accuracy drops significantly when operating at high temporal resolutions. Thus, they are not well-suited for emerging real-time applications such as smart hearing aid devices or brain-computer interface systems, where training data might be limited and high temporal resolutions are desired. In this paper, we close this gap by developing an algorithmic pipeline for real-time decoding of the attentional state. Our proposed framework consists of three main modules: (1) Real-time and robust estimation of encoding or decoding coefficients, achieved by sparse adaptive filtering, (2) Extracting reliable markers of the attentional state, and thereby generalizing the widely-used correlation-based measures thereof, and (3) Devising a near real-time state-space estimator that translates the noisy and variable attention markers to robust and statistically interpretable estimates of the attentional state with minimal delay. Our proposed algorithms integrate various techniques including forgetting factor-based adaptive filtering, ℓ1-regularization, forward-backward splitting algorithms, fixed-lag smoothing, and Expectation Maximization. We validate the performance of our proposed framework using comprehensive simulations as well as application to experimentally acquired M/EEG data. Our results reveal that the proposed real-time algorithms perform nearly as accurately as the existing state-of-the-art offline techniques, while providing a significant degree of adaptivity, statistical robustness, and computational savings. PMID:29765298
Real-Time Tracking of Selective Auditory Attention From M/EEG: A Bayesian Filtering Approach.
Miran, Sina; Akram, Sahar; Sheikhattar, Alireza; Simon, Jonathan Z; Zhang, Tao; Babadi, Behtash
2018-01-01
Humans are able to identify and track a target speaker amid a cacophony of acoustic interference, an ability which is often referred to as the cocktail party phenomenon. Results from several decades of studying this phenomenon have culminated in recent years in various promising attempts to decode the attentional state of a listener in a competing-speaker environment from non-invasive neuroimaging recordings such as magnetoencephalography (MEG) and electroencephalography (EEG). To this end, most existing approaches compute correlation-based measures by either regressing the features of each speech stream to the M/EEG channels (the decoding approach) or vice versa (the encoding approach). To produce robust results, these procedures require multiple trials for training purposes. Also, their decoding accuracy drops significantly when operating at high temporal resolutions. Thus, they are not well-suited for emerging real-time applications such as smart hearing aid devices or brain-computer interface systems, where training data might be limited and high temporal resolutions are desired. In this paper, we close this gap by developing an algorithmic pipeline for real-time decoding of the attentional state. Our proposed framework consists of three main modules: (1) Real-time and robust estimation of encoding or decoding coefficients, achieved by sparse adaptive filtering, (2) Extracting reliable markers of the attentional state, and thereby generalizing the widely-used correlation-based measures thereof, and (3) Devising a near real-time state-space estimator that translates the noisy and variable attention markers to robust and statistically interpretable estimates of the attentional state with minimal delay. Our proposed algorithms integrate various techniques including forgetting factor-based adaptive filtering, ℓ 1 -regularization, forward-backward splitting algorithms, fixed-lag smoothing, and Expectation Maximization. We validate the performance of our proposed framework using comprehensive simulations as well as application to experimentally acquired M/EEG data. Our results reveal that the proposed real-time algorithms perform nearly as accurately as the existing state-of-the-art offline techniques, while providing a significant degree of adaptivity, statistical robustness, and computational savings.
Scheduling policies of intelligent sensors and sensor/actuators in flexible structures
NASA Astrophysics Data System (ADS)
Demetriou, Michael A.; Potami, Raffaele
2006-03-01
In this note, we revisit the problem of actuator/sensor placement in large civil infrastructures and flexible space structures within the context of spatial robustness. The positioning of these devices becomes more important in systems employing wireless sensor and actuator networks (WSAN) for improved control performance and for rapid failure detection. The ability of the sensing and actuating devices to possess the property of spatial robustness results in reduced control energy and therefore the spatial distribution of disturbances is integrated into the location optimization measures. In our studies, the structure under consideration is a flexible plate clamped at all sides. First, we consider the case of sensor placement and the optimization scheme attempts to produce those locations that minimize the effects of the spatial distribution of disturbances on the state estimation error; thus the sensor locations produce state estimators with minimized disturbance-to-error transfer function norms. A two-stage optimization procedure is employed whereby one first considers the open loop system and the spatial distribution of disturbances is found that produces the maximal effects on the entire open loop state. Once this "worst" spatial distribution of disturbances is found, the optimization scheme subsequently finds the locations that produce state estimators with minimum transfer function norms. In the second part, we consider the collocated actuator/sensor pairs and the optimization scheme produces those locations that result in compensators with the smallest norms of the disturbance-to-state transfer functions. Going a step further, an intelligent control scheme is presented which, at each time interval, activates a subset of the actuator/sensor pairs in order provide robustness against spatiotemporally moving disturbances and minimize power consumption by keeping some sensor/actuators in sleep mode.
Robust Transceiver Design for Multiuser MIMO Downlink with Channel Uncertainties
NASA Astrophysics Data System (ADS)
Miao, Wei; Li, Yunzhou; Chen, Xiang; Zhou, Shidong; Wang, Jing
This letter addresses the problem of robust transceiver design for the multiuser multiple-input-multiple-output (MIMO) downlink where the channel state information at the base station (BS) is imperfect. A stochastic approach which minimizes the expectation of the total mean square error (MSE) of the downlink conditioned on the channel estimates under a total transmit power constraint is adopted. The iterative algorithm reported in [2] is improved to handle the proposed robust optimization problem. Simulation results show that our proposed robust scheme effectively reduces the performance loss due to channel uncertainties and outperforms existing methods, especially when the channel errors of the users are different.
Efficiency in the Community College Sector: Stochastic Frontier Analysis
ERIC Educational Resources Information Center
Agasisti, Tommaso; Belfield, Clive
2017-01-01
This paper estimates technical efficiency scores across the community college sector in the United States. Using stochastic frontier analysis and data from the Integrated Postsecondary Education Data System for 2003-2010, we estimate efficiency scores for 950 community colleges and perform a series of sensitivity tests to check for robustness. We…
US Low-Temperature EGS Resource Potential Estimate
Katherine Young
2016-06-30
Shapefile of shallow, low-temperature EGS resources for the United States, and accompanying paper (submitted to GRC 2016) describing the methodology and analysis. These data are part of a very rough estimate created for use in the U.S. Department of Energy Geothermal Technology Office's Vision Study. They are not a robust estimate of low-temperature EGS resources in the U.S, and should be used accordingly.
NASA Astrophysics Data System (ADS)
Li, Yi; Abdel-Monem, Mohamed; Gopalakrishnan, Rahul; Berecibar, Maitane; Nanini-Maury, Elise; Omar, Noshin; van den Bossche, Peter; Van Mierlo, Joeri
2018-01-01
This paper proposes an advanced state of health (SoH) estimation method for high energy NMC lithium-ion batteries based on the incremental capacity (IC) analysis. IC curves are used due to their ability of detect and quantify battery degradation mechanism. A simple and robust smoothing method is proposed based on Gaussian filter to reduce the noise on IC curves, the signatures associated with battery ageing can therefore be accurately identified. A linear regression relationship is found between the battery capacity with the positions of features of interest (FOIs) on IC curves. Results show that the developed SoH estimation function from one single battery cell is able to evaluate the SoH of other batteries cycled under different cycling depth with less than 2.5% maximum errors, which proves the robustness of the proposed method on SoH estimation. With this technique, partial charging voltage curves can be used for SoH estimation and the testing time can be therefore largely reduced. This method shows great potential to be applied in reality, as it only requires static charging curves and can be easily implemented in battery management system (BMS).
A closed-form solution to tensor voting: theory and applications.
Wu, Tai-Pang; Yeung, Sai-Kit; Jia, Jiaya; Tang, Chi-Keung; Medioni, Gérard
2012-08-01
We prove a closed-form solution to tensor voting (CFTV): Given a point set in any dimensions, our closed-form solution provides an exact, continuous, and efficient algorithm for computing a structure-aware tensor that simultaneously achieves salient structure detection and outlier attenuation. Using CFTV, we prove the convergence of tensor voting on a Markov random field (MRF), thus termed as MRFTV, where the structure-aware tensor at each input site reaches a stationary state upon convergence in structure propagation. We then embed structure-aware tensor into expectation maximization (EM) for optimizing a single linear structure to achieve efficient and robust parameter estimation. Specifically, our EMTV algorithm optimizes both the tensor and fitting parameters and does not require random sampling consensus typically used in existing robust statistical techniques. We performed quantitative evaluation on its accuracy and robustness, showing that EMTV performs better than the original TV and other state-of-the-art techniques in fundamental matrix estimation for multiview stereo matching. The extensions of CFTV and EMTV for extracting multiple and nonlinear structures are underway.
A robust sparse-modeling framework for estimating schizophrenia biomarkers from fMRI.
Dillon, Keith; Calhoun, Vince; Wang, Yu-Ping
2017-01-30
Our goal is to identify the brain regions most relevant to mental illness using neuroimaging. State of the art machine learning methods commonly suffer from repeatability difficulties in this application, particularly when using large and heterogeneous populations for samples. We revisit both dimensionality reduction and sparse modeling, and recast them in a common optimization-based framework. This allows us to combine the benefits of both types of methods in an approach which we call unambiguous components. We use this to estimate the image component with a constrained variability, which is best correlated with the unknown disease mechanism. We apply the method to the estimation of neuroimaging biomarkers for schizophrenia, using task fMRI data from a large multi-site study. The proposed approach yields an improvement in both robustness of the estimate and classification accuracy. We find that unambiguous components incorporate roughly two thirds of the same brain regions as sparsity-based methods LASSO and elastic net, while roughly one third of the selected regions differ. Further, unambiguous components achieve superior classification accuracy in differentiating cases from controls. Unambiguous components provide a robust way to estimate important regions of imaging data. Copyright © 2016 Elsevier B.V. All rights reserved.
Dynamic State Estimation and Parameter Calibration of DFIG based on Ensemble Kalman Filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Rui; Huang, Zhenyu; Wang, Shaobu
2015-07-30
With the growing interest in the application of wind energy, doubly fed induction generator (DFIG) plays an essential role in the industry nowadays. To deal with the increasing stochastic variations introduced by intermittent wind resource and responsive loads, dynamic state estimation (DSE) are introduced in any power system associated with DFIGs. However, sometimes this dynamic analysis canould not work because the parameters of DFIGs are not accurate enough. To solve the problem, an ensemble Kalman filter (EnKF) method is proposed for the state estimation and parameter calibration tasks. In this paper, a DFIG is modeled and implemented with the EnKFmore » method. Sensitivity analysis is demonstrated regarding the measurement noise, initial state errors and parameter errors. The results indicate this EnKF method has a robust performance on the state estimation and parameter calibration of DFIGs.« less
Phase unwrapping algorithm using polynomial phase approximation and linear Kalman filter.
Kulkarni, Rishikesh; Rastogi, Pramod
2018-02-01
A noise-robust phase unwrapping algorithm is proposed based on state space analysis and polynomial phase approximation using wrapped phase measurement. The true phase is approximated as a two-dimensional first order polynomial function within a small sized window around each pixel. The estimates of polynomial coefficients provide the measurement of phase and local fringe frequencies. A state space representation of spatial phase evolution and the wrapped phase measurement is considered with the state vector consisting of polynomial coefficients as its elements. Instead of using the traditional nonlinear Kalman filter for the purpose of state estimation, we propose to use the linear Kalman filter operating directly with the wrapped phase measurement. The adaptive window width is selected at each pixel based on the local fringe density to strike a balance between the computation time and the noise robustness. In order to retrieve the unwrapped phase, either a line-scanning approach or a quality guided strategy of pixel selection is used depending on the underlying continuous or discontinuous phase distribution, respectively. Simulation and experimental results are provided to demonstrate the applicability of the proposed method.
NASA Astrophysics Data System (ADS)
Xu, Liangfei; Hu, Junming; Cheng, Siliang; Fang, Chuan; Li, Jianqiu; Ouyang, Minggao; Lehnert, Werner
2017-07-01
A scheme for designing a second-order sliding-mode (SOSM) observer that estimates critical internal states on the cathode side of a polymer electrolyte membrane (PEM) fuel cell system is presented. A nonlinear, isothermal dynamic model for the cathode side and a membrane electrolyte assembly are first described. A nonlinear observer topology based on an SOSM algorithm is then introduced, and equations for the SOSM observer deduced. Online calculation of the inverse matrix produces numerical errors, so a modified matrix is introduced to eliminate the negative effects of these on the observer. The simulation results indicate that the SOSM observer performs well for the gas partial pressures and air stoichiometry. The estimation results follow the simulated values in the model with relative errors within ± 2% at stable status. Large errors occur during the fast dynamic processes (<1 s). Moreover, the nonlinear observer shows good robustness against variations in the initial values of the internal states, but less robustness against variations in system parameters. The partial pressures are more sensitive than the air stoichiometry to system parameters. Finally, the order of effects of parameter uncertainties on the estimation results is outlined and analyzed.
GPS Imaging of vertical land motion in California and Nevada: Implications for Sierra Nevada uplift
NASA Astrophysics Data System (ADS)
Hammond, William C.; Blewitt, Geoffrey; Kreemer, Corné
2016-10-01
We introduce Global Positioning System (GPS) Imaging, a new technique for robust estimation of the vertical velocity field of the Earth's surface, and apply it to the Sierra Nevada Mountain range in the western United States. Starting with vertical position time series from Global Positioning System (GPS) stations, we first estimate vertical velocities using the MIDAS robust trend estimator, which is insensitive to undocumented steps, outliers, seasonality, and heteroscedasticity. Using the Delaunay triangulation of station locations, we then apply a weighted median spatial filter to remove velocity outliers and enhance signals common to multiple stations. Finally, we interpolate the data using weighted median estimation on a grid. The resulting velocity field is temporally and spatially robust and edges in the field remain sharp. Results from data spanning 5-20 years show that the Sierra Nevada is the most rapid and extensive uplift feature in the western United States, rising up to 2 mm/yr along most of the range. The uplift is juxtaposed against domains of subsidence attributable to groundwater withdrawal in California's Central Valley. The uplift boundary is consistently stationary, although uplift is faster over the 2011-2016 period of drought. Uplift patterns are consistent with groundwater extraction and concomitant elastic bedrock uplift, plus slower background tectonic uplift. A discontinuity in the velocity field across the southeastern edge of the Sierra Nevada reveals a contrast in lithospheric strength, suggesting a relationship between late Cenozoic uplift of the southern Sierra Nevada and evolution of the southern Walker Lane.
Dama, James F; Rotskoff, Grant; Parrinello, Michele; Voth, Gregory A
2014-09-09
Well-tempered metadynamics has proven to be a practical and efficient adaptive enhanced sampling method for the computational study of biomolecular and materials systems. However, choosing its tunable parameter can be challenging and requires balancing a trade-off between fast escape from local metastable states and fast convergence of an overall free energy estimate. In this article, we present a new smoothly convergent variant of metadynamics, transition-tempered metadynamics, that removes that trade-off and is more robust to changes in its own single tunable parameter, resulting in substantial speed and accuracy improvements. The new method is specifically designed to study state-to-state transitions in which the states of greatest interest are known ahead of time, but transition mechanisms are not. The design is guided by a picture of adaptive enhanced sampling as a means to increase dynamical connectivity of a model's state space until percolation between all points of interest is reached, and it uses the degree of dynamical percolation to automatically tune the convergence rate. We apply the new method to Brownian dynamics on 48 random 1D surfaces, blocked alanine dipeptide in vacuo, and aqueous myoglobin, finding that transition-tempered metadynamics substantially and reproducibly improves upon well-tempered metadynamics in terms of first barrier crossing rate, convergence rate, and robustness to the choice of tuning parameter. Moreover, the trade-off between first barrier crossing rate and convergence rate is eliminated: the new method drives escape from an initial metastable state as fast as metadynamics without tempering, regardless of tuning.
Needs Assessment for Behavioral Health Workforce: a State-Level Analysis.
Nayar, Preethy; Apenteng, Bettye; Nguyen, Anh T; Shaw-Sutherland, Kelly; Ojha, Diptee; Deras, Marlene
2017-07-01
This study describes trends in the supply and the need for behavioral health professionals in Nebraska. A state-level health workforce database was used to estimate the behavioral health workforce supply and need. Compared with national estimates, Nebraska has a lower proportion of all categories of behavioral health professionals. The majority of Nebraska counties have unusually high needs for mental health professionals, with rural areas experiencing a decline in the supply of psychiatrists over the last decade. Availability of robust state-level health workforce data can assist in crafting effective policy for successful systems change, particularly for behavioral health.
Effective Visual Tracking Using Multi-Block and Scale Space Based on Kernelized Correlation Filters
Jeong, Soowoong; Kim, Guisik; Lee, Sangkeun
2017-01-01
Accurate scale estimation and occlusion handling is a challenging problem in visual tracking. Recently, correlation filter-based trackers have shown impressive results in terms of accuracy, robustness, and speed. However, the model is not robust to scale variation and occlusion. In this paper, we address the problems associated with scale variation and occlusion by employing a scale space filter and multi-block scheme based on a kernelized correlation filter (KCF) tracker. Furthermore, we develop a more robust algorithm using an appearance update model that approximates the change of state of occlusion and deformation. In particular, an adaptive update scheme is presented to make each process robust. The experimental results demonstrate that the proposed method outperformed 29 state-of-the-art trackers on 100 challenging sequences. Specifically, the results obtained with the proposed scheme were improved by 8% and 18% compared to those of the KCF tracker for 49 occlusion and 64 scale variation sequences, respectively. Therefore, the proposed tracker can be a robust and useful tool for object tracking when occlusion and scale variation are involved. PMID:28241475
Effective Visual Tracking Using Multi-Block and Scale Space Based on Kernelized Correlation Filters.
Jeong, Soowoong; Kim, Guisik; Lee, Sangkeun
2017-02-23
Accurate scale estimation and occlusion handling is a challenging problem in visual tracking. Recently, correlation filter-based trackers have shown impressive results in terms of accuracy, robustness, and speed. However, the model is not robust to scale variation and occlusion. In this paper, we address the problems associated with scale variation and occlusion by employing a scale space filter and multi-block scheme based on a kernelized correlation filter (KCF) tracker. Furthermore, we develop a more robust algorithm using an appearance update model that approximates the change of state of occlusion and deformation. In particular, an adaptive update scheme is presented to make each process robust. The experimental results demonstrate that the proposed method outperformed 29 state-of-the-art trackers on 100 challenging sequences. Specifically, the results obtained with the proposed scheme were improved by 8% and 18% compared to those of the KCF tracker for 49 occlusion and 64 scale variation sequences, respectively. Therefore, the proposed tracker can be a robust and useful tool for object tracking when occlusion and scale variation are involved.
Gao, Wei; Liu, Yalong; Xu, Bo
2014-12-19
A new algorithm called Huber-based iterated divided difference filtering (HIDDF) is derived and applied to cooperative localization of autonomous underwater vehicles (AUVs) supported by a single surface leader. The position states are estimated using acoustic range measurements relative to the leader, in which some disadvantages such as weak observability, large initial error and contaminated measurements with outliers are inherent. By integrating both merits of iterated divided difference filtering (IDDF) and Huber's M-estimation methodology, the new filtering method could not only achieve more accurate estimation and faster convergence contrast to standard divided difference filtering (DDF) in conditions of weak observability and large initial error, but also exhibit robustness with respect to outlier measurements, for which the standard IDDF would exhibit severe degradation in estimation accuracy. The correctness as well as validity of the algorithm is demonstrated through experiment results.
NASA Technical Reports Server (NTRS)
Sullivan, Michael J.
2005-01-01
This thesis develops a state estimation algorithm for the Centrifuge Rotor (CR) system where only relative measurements are available with limited knowledge of both rotor imbalance disturbances and International Space Station (ISS) thruster disturbances. A Kalman filter is applied to a plant model augmented with sinusoidal disturbance states used to model both the effect of the rotor imbalance and the 155 thrusters on the CR relative motion measurement. The sinusoidal disturbance states compensate for the lack of the availability of plant inputs for use in the Kalman filter. Testing confirms that complete disturbance modeling is necessary to ensure reliable estimation. Further testing goes on to show that increased estimator operational bandwidth can be achieved through the expansion of the disturbance model within the filter dynamics. In addition, Monte Carlo analysis shows the varying levels of robustness against defined plant/filter uncertainty variations.
Experimental Demonstration of a Cheap and Accurate Phase Estimation
Rudinger, Kenneth; Kimmel, Shelby; Lobser, Daniel; ...
2017-05-11
We demonstrate an experimental implementation of robust phase estimation (RPE) to learn the phase of a single-qubit rotation on a trapped Yb + ion qubit. Here, we show this phase can be estimated with an uncertainty below 4 × 10 -4 rad using as few as 176 total experimental samples, and our estimates exhibit Heisenberg scaling. Unlike standard phase estimation protocols, RPE neither assumes perfect state preparation and measurement, nor requires access to ancillae. We crossvalidate the results of RPE with the more resource-intensive protocol of gate set tomography.
NASA Astrophysics Data System (ADS)
Azizi, S.; Torres, L. A. B.; Palhares, R. M.
2018-01-01
The regional robust stabilisation by means of linear time-invariant state feedback control for a class of uncertain MIMO nonlinear systems with parametric uncertainties and control input saturation is investigated. The nonlinear systems are described in a differential algebraic representation and the regional stability is handled considering the largest ellipsoidal domain-of-attraction (DOA) inside a given polytopic region in the state space. A novel set of sufficient Linear Matrix Inequality (LMI) conditions with new auxiliary decision variables are developed aiming to design less conservative linear state feedback controllers with corresponding larger DOAs, by considering the polytopic description of the saturated inputs. A few examples are presented showing favourable comparisons with recently published similar control design methodologies.
NASA Astrophysics Data System (ADS)
Wei, Zhongbao; Tseng, King Jet; Wai, Nyunt; Lim, Tuti Mariana; Skyllas-Kazacos, Maria
2016-11-01
Reliable state estimate depends largely on an accurate battery model. However, the parameters of battery model are time varying with operating condition variation and battery aging. The existing co-estimation methods address the model uncertainty by integrating the online model identification with state estimate and have shown improved accuracy. However, the cross interference may arise from the integrated framework to compromise numerical stability and accuracy. Thus this paper proposes the decoupling of model identification and state estimate to eliminate the possibility of cross interference. The model parameters are online adapted with the recursive least squares (RLS) method, based on which a novel joint estimator based on extended Kalman Filter (EKF) is formulated to estimate the state of charge (SOC) and capacity concurrently. The proposed joint estimator effectively compresses the filter order which leads to substantial improvement in the computational efficiency and numerical stability. Lab scale experiment on vanadium redox flow battery shows that the proposed method is highly authentic with good robustness to varying operating conditions and battery aging. The proposed method is further compared with some existing methods and shown to be superior in terms of accuracy, convergence speed, and computational cost.
Yong, Alan K.; Hough, Susan E.; Iwahashi, Junko; Braverman, Amy
2012-01-01
We present an approach based on geomorphometry to predict material properties and characterize site conditions using the VS30 parameter (time‐averaged shear‐wave velocity to a depth of 30 m). Our framework consists of an automated terrain classification scheme based on taxonomic criteria (slope gradient, local convexity, and surface texture) that systematically identifies 16 terrain types from 1‐km spatial resolution (30 arcsec) Shuttle Radar Topography Mission digital elevation models (SRTM DEMs). Using 853 VS30 values from California, we apply a simulation‐based statistical method to determine the mean VS30 for each terrain type in California. We then compare the VS30 values with models based on individual proxies, such as mapped surface geology and topographic slope, and show that our systematic terrain‐based approach consistently performs better than semiempirical estimates based on individual proxies. To further evaluate our model, we apply our California‐based estimates to terrains of the contiguous United States. Comparisons of our estimates with 325 VS30 measurements outside of California, as well as estimates based on the topographic slope model, indicate our method to be statistically robust and more accurate. Our approach thus provides an objective and robust method for extending estimates of VS30 for regions where in situ measurements are sparse or not readily available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yunlong; Wang, Hong; Guo, Lei
Here in this note, the robust stochastic stabilization and robust H_infinity control problems are investigated for uncertain stochastic time-delay systems with nonlinearity and multiple disturbances. By estimating the disturbance, which can be described by an exogenous model, a composite hierarchical control scheme is proposed that integrates the output of the disturbance observer with state feedback control law. Sufficient conditions for the existence of the disturbance observer and composite hierarchical controller are established in terms of linear matrix inequalities, which ensure the mean-square asymptotic stability of the resulting closed-loop system and the disturbance attenuation. It has been shown that the disturbancemore » rejection performance can also be achieved. A numerical example is provided to show the potential of the proposed techniques and encouraging results have been obtained.« less
Liu, Yunlong; Wang, Hong; Guo, Lei
2018-03-26
Here in this note, the robust stochastic stabilization and robust H_infinity control problems are investigated for uncertain stochastic time-delay systems with nonlinearity and multiple disturbances. By estimating the disturbance, which can be described by an exogenous model, a composite hierarchical control scheme is proposed that integrates the output of the disturbance observer with state feedback control law. Sufficient conditions for the existence of the disturbance observer and composite hierarchical controller are established in terms of linear matrix inequalities, which ensure the mean-square asymptotic stability of the resulting closed-loop system and the disturbance attenuation. It has been shown that the disturbancemore » rejection performance can also be achieved. A numerical example is provided to show the potential of the proposed techniques and encouraging results have been obtained.« less
Cuevas, Erik; Díaz, Margarita
2015-01-01
In this paper, a new method for robustly estimating multiple view relations from point correspondences is presented. The approach combines the popular random sampling consensus (RANSAC) algorithm and the evolutionary method harmony search (HS). With this combination, the proposed method adopts a different sampling strategy than RANSAC to generate putative solutions. Under the new mechanism, at each iteration, new candidate solutions are built taking into account the quality of the models generated by previous candidate solutions, rather than purely random as it is the case of RANSAC. The rules for the generation of candidate solutions (samples) are motivated by the improvisation process that occurs when a musician searches for a better state of harmony. As a result, the proposed approach can substantially reduce the number of iterations still preserving the robust capabilities of RANSAC. The method is generic and its use is illustrated by the estimation of homographies, considering synthetic and real images. Additionally, in order to demonstrate the performance of the proposed approach within a real engineering application, it is employed to solve the problem of position estimation in a humanoid robot. Experimental results validate the efficiency of the proposed method in terms of accuracy, speed, and robustness.
Robust Bounded Influence Tests in Linear Models
1988-11-01
sensitivity analysis and bounded influence estimation. In: Evaluation of Econometric Models, J. Kmenta and J.B. Ramsey (eds.) Academic Press, New York...1R’OBUST bOUNDED INFLUENCE TESTS IN LINEA’ MODELS and( I’homas P. [lettmansperger* Tim [PennsylvanLa State UJniversity A M i0d fix pu111 rsos.p JJ 1 0...November 1988 ROBUST BOUNDED INFLUENCE TESTS IN LINEAR MODELS Marianthi Markatou The University of Iowa and Thomas P. Hettmansperger* The Pennsylvania
Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter
Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Gu, Chengfan
2018-01-01
This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation. PMID:29415509
Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter.
Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Zhong, Yongmin; Gu, Chengfan
2018-02-06
This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation.
Data-Adaptive Bias-Reduced Doubly Robust Estimation.
Vermeulen, Karel; Vansteelandt, Stijn
2016-05-01
Doubly robust estimators have now been proposed for a variety of target parameters in the causal inference and missing data literature. These consistently estimate the parameter of interest under a semiparametric model when one of two nuisance working models is correctly specified, regardless of which. The recently proposed bias-reduced doubly robust estimation procedure aims to partially retain this robustness in more realistic settings where both working models are misspecified. These so-called bias-reduced doubly robust estimators make use of special (finite-dimensional) nuisance parameter estimators that are designed to locally minimize the squared asymptotic bias of the doubly robust estimator in certain directions of these finite-dimensional nuisance parameters under misspecification of both parametric working models. In this article, we extend this idea to incorporate the use of data-adaptive estimators (infinite-dimensional nuisance parameters), by exploiting the bias reduction estimation principle in the direction of only one nuisance parameter. We additionally provide an asymptotic linearity theorem which gives the influence function of the proposed doubly robust estimator under correct specification of a parametric nuisance working model for the missingness mechanism/propensity score but a possibly misspecified (finite- or infinite-dimensional) outcome working model. Simulation studies confirm the desirable finite-sample performance of the proposed estimators relative to a variety of other doubly robust estimators.
Nakamura, Yoshihiro; Hasegawa, Osamu
2017-01-01
With the ongoing development and expansion of communication networks and sensors, massive amounts of data are continuously generated in real time from real environments. Beforehand, prediction of a distribution underlying such data is difficult; furthermore, the data include substantial amounts of noise. These factors make it difficult to estimate probability densities. To handle these issues and massive amounts of data, we propose a nonparametric density estimator that rapidly learns data online and has high robustness. Our approach is an extension of both kernel density estimation (KDE) and a self-organizing incremental neural network (SOINN); therefore, we call our approach KDESOINN. An SOINN provides a clustering method that learns about the given data as networks of prototype of data; more specifically, an SOINN can learn the distribution underlying the given data. Using this information, KDESOINN estimates the probability density function. The results of our experiments show that KDESOINN outperforms or achieves performance comparable to the current state-of-the-art approaches in terms of robustness, learning time, and accuracy.
Butler, Troy; Wildey, Timothy
2018-01-01
In thist study, we develop a procedure to utilize error estimates for samples of a surrogate model to compute robust upper and lower bounds on estimates of probabilities of events. We show that these error estimates can also be used in an adaptive algorithm to simultaneously reduce the computational cost and increase the accuracy in estimating probabilities of events using computationally expensive high-fidelity models. Specifically, we introduce the notion of reliability of a sample of a surrogate model, and we prove that utilizing the surrogate model for the reliable samples and the high-fidelity model for the unreliable samples gives preciselymore » the same estimate of the probability of the output event as would be obtained by evaluation of the original model for each sample. The adaptive algorithm uses the additional evaluations of the high-fidelity model for the unreliable samples to locally improve the surrogate model near the limit state, which significantly reduces the number of high-fidelity model evaluations as the limit state is resolved. Numerical results based on a recently developed adjoint-based approach for estimating the error in samples of a surrogate are provided to demonstrate (1) the robustness of the bounds on the probability of an event, and (2) that the adaptive enhancement algorithm provides a more accurate estimate of the probability of the QoI event than standard response surface approximation methods at a lower computational cost.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, Troy; Wildey, Timothy
In thist study, we develop a procedure to utilize error estimates for samples of a surrogate model to compute robust upper and lower bounds on estimates of probabilities of events. We show that these error estimates can also be used in an adaptive algorithm to simultaneously reduce the computational cost and increase the accuracy in estimating probabilities of events using computationally expensive high-fidelity models. Specifically, we introduce the notion of reliability of a sample of a surrogate model, and we prove that utilizing the surrogate model for the reliable samples and the high-fidelity model for the unreliable samples gives preciselymore » the same estimate of the probability of the output event as would be obtained by evaluation of the original model for each sample. The adaptive algorithm uses the additional evaluations of the high-fidelity model for the unreliable samples to locally improve the surrogate model near the limit state, which significantly reduces the number of high-fidelity model evaluations as the limit state is resolved. Numerical results based on a recently developed adjoint-based approach for estimating the error in samples of a surrogate are provided to demonstrate (1) the robustness of the bounds on the probability of an event, and (2) that the adaptive enhancement algorithm provides a more accurate estimate of the probability of the QoI event than standard response surface approximation methods at a lower computational cost.« less
Roh, Min K; Gillespie, Dan T; Petzold, Linda R
2010-11-07
The weighted stochastic simulation algorithm (wSSA) was developed by Kuwahara and Mura [J. Chem. Phys. 129, 165101 (2008)] to efficiently estimate the probabilities of rare events in discrete stochastic systems. The wSSA uses importance sampling to enhance the statistical accuracy in the estimation of the probability of the rare event. The original algorithm biases the reaction selection step with a fixed importance sampling parameter. In this paper, we introduce a novel method where the biasing parameter is state-dependent. The new method features improved accuracy, efficiency, and robustness.
Maximum Correntropy Unscented Kalman Filter for Spacecraft Relative State Estimation.
Liu, Xi; Qu, Hua; Zhao, Jihong; Yue, Pengcheng; Wang, Meng
2016-09-20
A new algorithm called maximum correntropy unscented Kalman filter (MCUKF) is proposed and applied to relative state estimation in space communication networks. As is well known, the unscented Kalman filter (UKF) provides an efficient tool to solve the non-linear state estimate problem. However, the UKF usually plays well in Gaussian noises. Its performance may deteriorate substantially in the presence of non-Gaussian noises, especially when the measurements are disturbed by some heavy-tailed impulsive noises. By making use of the maximum correntropy criterion (MCC), the proposed algorithm can enhance the robustness of UKF against impulsive noises. In the MCUKF, the unscented transformation (UT) is applied to obtain a predicted state estimation and covariance matrix, and a nonlinear regression method with the MCC cost is then used to reformulate the measurement information. Finally, the UT is adopted to the measurement equation to obtain the filter state and covariance matrix. Illustrative examples demonstrate the superior performance of the new algorithm.
Maximum Correntropy Unscented Kalman Filter for Spacecraft Relative State Estimation
Liu, Xi; Qu, Hua; Zhao, Jihong; Yue, Pengcheng; Wang, Meng
2016-01-01
A new algorithm called maximum correntropy unscented Kalman filter (MCUKF) is proposed and applied to relative state estimation in space communication networks. As is well known, the unscented Kalman filter (UKF) provides an efficient tool to solve the non-linear state estimate problem. However, the UKF usually plays well in Gaussian noises. Its performance may deteriorate substantially in the presence of non-Gaussian noises, especially when the measurements are disturbed by some heavy-tailed impulsive noises. By making use of the maximum correntropy criterion (MCC), the proposed algorithm can enhance the robustness of UKF against impulsive noises. In the MCUKF, the unscented transformation (UT) is applied to obtain a predicted state estimation and covariance matrix, and a nonlinear regression method with the MCC cost is then used to reformulate the measurement information. Finally, the UT is adopted to the measurement equation to obtain the filter state and covariance matrix. Illustrative examples demonstrate the superior performance of the new algorithm. PMID:27657069
GPS Imaging of vertical land motion in California and Nevada: Implications for Sierra Nevada uplift
Blewitt, Geoffrey; Kreemer, Corné
2016-01-01
Abstract We introduce Global Positioning System (GPS) Imaging, a new technique for robust estimation of the vertical velocity field of the Earth's surface, and apply it to the Sierra Nevada Mountain range in the western United States. Starting with vertical position time series from Global Positioning System (GPS) stations, we first estimate vertical velocities using the MIDAS robust trend estimator, which is insensitive to undocumented steps, outliers, seasonality, and heteroscedasticity. Using the Delaunay triangulation of station locations, we then apply a weighted median spatial filter to remove velocity outliers and enhance signals common to multiple stations. Finally, we interpolate the data using weighted median estimation on a grid. The resulting velocity field is temporally and spatially robust and edges in the field remain sharp. Results from data spanning 5–20 years show that the Sierra Nevada is the most rapid and extensive uplift feature in the western United States, rising up to 2 mm/yr along most of the range. The uplift is juxtaposed against domains of subsidence attributable to groundwater withdrawal in California's Central Valley. The uplift boundary is consistently stationary, although uplift is faster over the 2011–2016 period of drought. Uplift patterns are consistent with groundwater extraction and concomitant elastic bedrock uplift, plus slower background tectonic uplift. A discontinuity in the velocity field across the southeastern edge of the Sierra Nevada reveals a contrast in lithospheric strength, suggesting a relationship between late Cenozoic uplift of the southern Sierra Nevada and evolution of the southern Walker Lane. PMID:27917328
GPS Imaging of vertical land motion in California and Nevada: Implications for Sierra Nevada uplift.
Hammond, William C; Blewitt, Geoffrey; Kreemer, Corné
2016-10-01
We introduce Global Positioning System (GPS) Imaging, a new technique for robust estimation of the vertical velocity field of the Earth's surface, and apply it to the Sierra Nevada Mountain range in the western United States. Starting with vertical position time series from Global Positioning System (GPS) stations, we first estimate vertical velocities using the MIDAS robust trend estimator, which is insensitive to undocumented steps, outliers, seasonality, and heteroscedasticity. Using the Delaunay triangulation of station locations, we then apply a weighted median spatial filter to remove velocity outliers and enhance signals common to multiple stations. Finally, we interpolate the data using weighted median estimation on a grid. The resulting velocity field is temporally and spatially robust and edges in the field remain sharp. Results from data spanning 5-20 years show that the Sierra Nevada is the most rapid and extensive uplift feature in the western United States, rising up to 2 mm/yr along most of the range. The uplift is juxtaposed against domains of subsidence attributable to groundwater withdrawal in California's Central Valley. The uplift boundary is consistently stationary, although uplift is faster over the 2011-2016 period of drought. Uplift patterns are consistent with groundwater extraction and concomitant elastic bedrock uplift, plus slower background tectonic uplift. A discontinuity in the velocity field across the southeastern edge of the Sierra Nevada reveals a contrast in lithospheric strength, suggesting a relationship between late Cenozoic uplift of the southern Sierra Nevada and evolution of the southern Walker Lane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verbanis, E.; Martin, A.; Rosset, D.
Imperfections in experimental measurement schemes can lead to falsely identifying, or over estimating, entanglement in a quantum system. A recent solution to this is to define schemes that are robust to measurement imperfections—measurement-device-independent entanglement witness (MDI-EW). This approach can be adapted to witness all entangled qubit states for a wide range of physical systems and does not depend on detection efficiencies or classical communication between devices. In this paper, we extend the theory to remove the necessity of prior knowledge about the two-qubit states to be witnessed. Moreover, we tested this model via a novel experimental implementation for MDI-EW thatmore » significantly reduces the experimental complexity. Finally, by applying it to a bipartite Werner state, we demonstrate the robustness of this approach against noise by witnessing entanglement down to an entangled state fraction close to 0.4.« less
Enhancing Data Assimilation by Evolutionary Particle Filter and Markov Chain Monte Carlo
NASA Astrophysics Data System (ADS)
Moradkhani, H.; Abbaszadeh, P.; Yan, H.
2016-12-01
Particle Filters (PFs) have received increasing attention by the researchers from different disciplines in hydro-geosciences as an effective method to improve model predictions in nonlinear and non-Gaussian dynamical systems. The implication of dual state and parameter estimation by means of data assimilation in hydrology and geoscience has evolved since 2005 from SIR-PF to PF-MCMC and now to the most effective and robust framework through evolutionary PF approach based on Genetic Algorithm (GA) and Markov Chain Monte Carlo (MCMC), the so-called EPF-MCMC. In this framework, the posterior distribution undergoes an evolutionary process to update an ensemble of prior states that more closely resemble realistic posterior probability distribution. The premise of this approach is that the particles move to optimal position using the GA optimization coupled with MCMC increasing the number of effective particles, hence the particle degeneracy is avoided while the particle diversity is improved. The proposed algorithm is applied on a conceptual and highly nonlinear hydrologic model and the effectiveness, robustness and reliability of the method in jointly estimating the states and parameters and also reducing the uncertainty is demonstrated for few river basins across the United States.
Robust Magnetotelluric Impedance Estimation
NASA Astrophysics Data System (ADS)
Sutarno, D.
2010-12-01
Robust magnetotelluric (MT) response function estimators are now in standard use by the induction community. Properly devised and applied, these have ability to reduce the influence of unusual data (outliers). The estimators always yield impedance estimates which are better than the conventional least square (LS) estimation because the `real' MT data almost never satisfy the statistical assumptions of Gaussian distribution and stationary upon which normal spectral analysis is based. This paper discuses the development and application of robust estimation procedures which can be classified as M-estimators to MT data. Starting with the description of the estimators, special attention is addressed to the recent development of a bounded-influence robust estimation, including utilization of the Hilbert Transform (HT) operation on causal MT impedance functions. The resulting robust performances are illustrated using synthetic as well as real MT data.
Robust passive control for a class of uncertain neutral systems based on sliding mode observer.
Liu, Zhen; Zhao, Lin; Kao, Yonggui; Gao, Cunchen
2017-01-01
The passivity-based sliding mode control (SMC) problem for a class of uncertain neutral systems with unmeasured states is investigated. Firstly, a particular non-fragile state observer is designed to generate the estimations of the system states, based upon which a novel integral-type sliding surface function is established for the control process. Secondly, a new sufficient condition for robust asymptotic stability and passivity of the resultant sliding mode dynamics (SMDs) is obtained in terms of linear matrix inequalities (LMIs). Thirdly, the finite-time reachability of the predesigned sliding surface is ensured by resorting to a novel adaptive SMC law. Finally, the validity and superiority of the scheme are justified via several examples. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Magis, David
2014-11-01
In item response theory, the classical estimators of ability are highly sensitive to response disturbances and can return strongly biased estimates of the true underlying ability level. Robust methods were introduced to lessen the impact of such aberrant responses on the estimation process. The computation of asymptotic (i.e., large-sample) standard errors (ASE) for these robust estimators, however, has not yet been fully considered. This paper focuses on a broad class of robust ability estimators, defined by an appropriate selection of the weight function and the residual measure, for which the ASE is derived from the theory of estimating equations. The maximum likelihood (ML) and the robust estimators, together with their estimated ASEs, are then compared in a simulation study by generating random guessing disturbances. It is concluded that both the estimators and their ASE perform similarly in the absence of random guessing, while the robust estimator and its estimated ASE are less biased and outperform their ML counterparts in the presence of random guessing with large impact on the item response process. © 2013 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Cao, Lu; Li, Hengnian
2016-10-01
For the satellite attitude estimation problem, the serious model errors always exist and hider the estimation performance of the Attitude Determination and Control System (ACDS), especially for a small satellite with low precision sensors. To deal with this problem, a new algorithm for the attitude estimation, referred to as the unscented predictive variable structure filter (UPVSF) is presented. This strategy is proposed based on the variable structure control concept and unscented transform (UT) sampling method. It can be implemented in real time with an ability to estimate the model errors on-line, in order to improve the state estimation precision. In addition, the model errors in this filter are not restricted only to the Gaussian noises; therefore, it has the advantages to deal with the various kinds of model errors or noises. It is anticipated that the UT sampling strategy can further enhance the robustness and accuracy of the novel UPVSF. Numerical simulations show that the proposed UPVSF is more effective and robustness in dealing with the model errors and low precision sensors compared with the traditional unscented Kalman filter (UKF).
Robust Methods for Moderation Analysis with a Two-Level Regression Model.
Yang, Miao; Yuan, Ke-Hai
2016-01-01
Moderation analysis has many applications in social sciences. Most widely used estimation methods for moderation analysis assume that errors are normally distributed and homoscedastic. When these assumptions are not met, the results from a classical moderation analysis can be misleading. For more reliable moderation analysis, this article proposes two robust methods with a two-level regression model when the predictors do not contain measurement error. One method is based on maximum likelihood with Student's t distribution and the other is based on M-estimators with Huber-type weights. An algorithm for obtaining the robust estimators is developed. Consistent estimates of standard errors of the robust estimators are provided. The robust approaches are compared against normal-distribution-based maximum likelihood (NML) with respect to power and accuracy of parameter estimates through a simulation study. Results show that the robust approaches outperform NML under various distributional conditions. Application of the robust methods is illustrated through a real data example. An R program is developed and documented to facilitate the application of the robust methods.
Profitability of Contrarian Strategies in the Chinese Stock Market
Shi, Huai-Long; Jiang, Zhi-Qiang; Zhou, Wei-Xing
2015-01-01
This paper reexamines the profitability of loser, winner and contrarian portfolios in the Chinese stock market using monthly data of all stocks traded on the Shanghai Stock Exchange and Shenzhen Stock Exchange covering the period from January 1997 to December 2012. We find evidence of short-term and long-term contrarian profitability in the whole sample period when the estimation and holding horizons are 1 month or longer than 12 months and the annualized return of contrarian portfolios increases with the estimation and holding horizons. We perform subperiod analysis and find that the long-term contrarian effect is significant in both bullish and bearish states, while the short-term contrarian effect disappears in bullish states. We compare the performance of contrarian portfolios based on different grouping manners in the estimation period and unveil that decile grouping outperforms quintile grouping and tertile grouping, which is more evident and robust in the long run. Generally, loser portfolios and winner portfolios have positive returns and loser portfolios perform much better than winner portfolios. Both loser and winner portfolios in bullish states perform better than those in the whole sample period. In contrast, loser and winner portfolios have smaller returns in bearish states, in which loser portfolio returns are significant only in the long term and winner portfolio returns become insignificant. These results are robust to the one-month skipping between the estimation and holding periods and for the two stock exchanges. Our findings show that the Chinese stock market is not efficient in the weak form. These findings also have obvious practical implications for financial practitioners. PMID:26368537
Profitability of Contrarian Strategies in the Chinese Stock Market.
Shi, Huai-Long; Jiang, Zhi-Qiang; Zhou, Wei-Xing
2015-01-01
This paper reexamines the profitability of loser, winner and contrarian portfolios in the Chinese stock market using monthly data of all stocks traded on the Shanghai Stock Exchange and Shenzhen Stock Exchange covering the period from January 1997 to December 2012. We find evidence of short-term and long-term contrarian profitability in the whole sample period when the estimation and holding horizons are 1 month or longer than 12 months and the annualized return of contrarian portfolios increases with the estimation and holding horizons. We perform subperiod analysis and find that the long-term contrarian effect is significant in both bullish and bearish states, while the short-term contrarian effect disappears in bullish states. We compare the performance of contrarian portfolios based on different grouping manners in the estimation period and unveil that decile grouping outperforms quintile grouping and tertile grouping, which is more evident and robust in the long run. Generally, loser portfolios and winner portfolios have positive returns and loser portfolios perform much better than winner portfolios. Both loser and winner portfolios in bullish states perform better than those in the whole sample period. In contrast, loser and winner portfolios have smaller returns in bearish states, in which loser portfolio returns are significant only in the long term and winner portfolio returns become insignificant. These results are robust to the one-month skipping between the estimation and holding periods and for the two stock exchanges. Our findings show that the Chinese stock market is not efficient in the weak form. These findings also have obvious practical implications for financial practitioners.
Sidler, Dominik; Schwaninger, Arthur; Riniker, Sereina
2016-10-21
In molecular dynamics (MD) simulations, free-energy differences are often calculated using free energy perturbation or thermodynamic integration (TI) methods. However, both techniques are only suited to calculate free-energy differences between two end states. Enveloping distribution sampling (EDS) presents an attractive alternative that allows to calculate multiple free-energy differences in a single simulation. In EDS, a reference state is simulated which "envelopes" the end states. The challenge of this methodology is the determination of optimal reference-state parameters to ensure equal sampling of all end states. Currently, the automatic determination of the reference-state parameters for multiple end states is an unsolved issue that limits the application of the methodology. To resolve this, we have generalised the replica-exchange EDS (RE-EDS) approach, introduced by Lee et al. [J. Chem. Theory Comput. 10, 2738 (2014)] for constant-pH MD simulations. By exchanging configurations between replicas with different reference-state parameters, the complexity of the parameter-choice problem can be substantially reduced. A new robust scheme to estimate the reference-state parameters from a short initial RE-EDS simulation with default parameters was developed, which allowed the calculation of 36 free-energy differences between nine small-molecule inhibitors of phenylethanolamine N-methyltransferase from a single simulation. The resulting free-energy differences were in excellent agreement with values obtained previously by TI and two-state EDS simulations.
Accurate Initial State Estimation in a Monocular Visual–Inertial SLAM System
Chen, Jing; Zhou, Zixiang; Leng, Zhen; Fan, Lei
2018-01-01
The fusion of monocular visual and inertial cues has become popular in robotics, unmanned vehicles and augmented reality fields. Recent results have shown that optimization-based fusion strategies outperform filtering strategies. Robust state estimation is the core capability for optimization-based visual–inertial Simultaneous Localization and Mapping (SLAM) systems. As a result of the nonlinearity of visual–inertial systems, the performance heavily relies on the accuracy of initial values (visual scale, gravity, velocity and Inertial Measurement Unit (IMU) biases). Therefore, this paper aims to propose a more accurate initial state estimation method. On the basis of the known gravity magnitude, we propose an approach to refine the estimated gravity vector by optimizing the two-dimensional (2D) error state on its tangent space, then estimate the accelerometer bias separately, which is difficult to be distinguished under small rotation. Additionally, we propose an automatic termination criterion to determine when the initialization is successful. Once the initial state estimation converges, the initial estimated values are used to launch the nonlinear tightly coupled visual–inertial SLAM system. We have tested our approaches with the public EuRoC dataset. Experimental results show that the proposed methods can achieve good initial state estimation, the gravity refinement approach is able to efficiently speed up the convergence process of the estimated gravity vector, and the termination criterion performs well. PMID:29419751
NASA Astrophysics Data System (ADS)
Li, Xiaoyu; Pan, Ke; Fan, Guodong; Lu, Rengui; Zhu, Chunbo; Rizzoni, Giorgio; Canova, Marcello
2017-11-01
State of energy (SOE) is an important index for the electrochemical energy storage system in electric vehicles. In this paper, a robust state of energy estimation method in combination with a physical model parameter identification method is proposed to achieve accurate battery state estimation at different operating conditions and different aging stages. A physics-based fractional order model with variable solid-state diffusivity (FOM-VSSD) is used to characterize the dynamic performance of a LiFePO4/graphite battery. In order to update the model parameter automatically at different aging stages, a multi-step model parameter identification method based on the lexicographic optimization is especially designed for the electric vehicle operating conditions. As the battery available energy changes with different applied load current profiles, the relationship between the remaining energy loss and the state of charge, the average current as well as the average squared current is modeled. The SOE with different operating conditions and different aging stages are estimated based on an adaptive fractional order extended Kalman filter (AFEKF). Validation results show that the overall SOE estimation error is within ±5%. The proposed method is suitable for the electric vehicle online applications.
A methodology for designing robust multivariable nonlinear control systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Grunberg, D. B.
1986-01-01
A new methodology is described for the design of nonlinear dynamic controllers for nonlinear multivariable systems providing guarantees of closed-loop stability, performance, and robustness. The methodology is an extension of the Linear-Quadratic-Gaussian with Loop-Transfer-Recovery (LQG/LTR) methodology for linear systems, thus hinging upon the idea of constructing an approximate inverse operator for the plant. A major feature of the methodology is a unification of both the state-space and input-output formulations. In addition, new results on stability theory, nonlinear state estimation, and optimal nonlinear regulator theory are presented, including the guaranteed global properties of the extended Kalman filter and optimal nonlinear regulators.
Fišer, Jaromír; Zítek, Pavel; Skopec, Pavel; Knobloch, Jan; Vyhlídal, Tomáš
2017-05-01
The purpose of the paper is to achieve a constrained estimation of process state variables using the anisochronic state observer tuned by the dominant root locus technique. The anisochronic state observer is based on the state-space time delay model of the process. Moreover the process model is identified not only as delayed but also as non-linear. This model is developed to describe a material flow process. The root locus technique combined with the magnitude optimum method is utilized to investigate the estimation process. Resulting dominant roots location serves as a measure of estimation process performance. The higher the dominant (natural) frequency in the leftmost position of the complex plane the more enhanced performance with good robustness is achieved. Also the model based observer control methodology for material flow processes is provided by means of the separation principle. For demonstration purposes, the computer-based anisochronic state observer is applied to the strip temperatures estimation in the hot strip finishing mill composed of seven stands. This application was the original motivation to the presented research. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Fat water decomposition using globally optimal surface estimation (GOOSE) algorithm.
Cui, Chen; Wu, Xiaodong; Newell, John D; Jacob, Mathews
2015-03-01
This article focuses on developing a novel noniterative fat water decomposition algorithm more robust to fat water swaps and related ambiguities. Field map estimation is reformulated as a constrained surface estimation problem to exploit the spatial smoothness of the field, thus minimizing the ambiguities in the recovery. Specifically, the differences in the field map-induced frequency shift between adjacent voxels are constrained to be in a finite range. The discretization of the above problem yields a graph optimization scheme, where each node of the graph is only connected with few other nodes. Thanks to the low graph connectivity, the problem is solved efficiently using a noniterative graph cut algorithm. The global minimum of the constrained optimization problem is guaranteed. The performance of the algorithm is compared with that of state-of-the-art schemes. Quantitative comparisons are also made against reference data. The proposed algorithm is observed to yield more robust fat water estimates with fewer fat water swaps and better quantitative results than other state-of-the-art algorithms in a range of challenging applications. The proposed algorithm is capable of considerably reducing the swaps in challenging fat water decomposition problems. The experiments demonstrate the benefit of using explicit smoothness constraints in field map estimation and solving the problem using a globally convergent graph-cut optimization algorithm. © 2014 Wiley Periodicals, Inc.
A robust nonlinear position observer for synchronous motors with relaxed excitation conditions
NASA Astrophysics Data System (ADS)
Bobtsov, Alexey; Bazylev, Dmitry; Pyrkin, Anton; Aranovskiy, Stanislav; Ortega, Romeo
2017-04-01
A robust, nonlinear and globally convergent rotor position observer for surface-mounted permanent magnet synchronous motors was recently proposed by the authors. The key feature of this observer is that it requires only the knowledge of the motor's resistance and inductance. Using some particular properties of the mathematical model it is shown that the problem of state observation can be translated into one of estimation of two constant parameters, which is carried out with a standard gradient algorithm. In this work, we propose to replace this estimator with a new one called dynamic regressor extension and mixing, which has the following advantages with respect to gradient estimators: (1) the stringent persistence of excitation (PE) condition of the regressor is not necessary to ensure parameter convergence; (2) the latter is guaranteed requiring instead a non-square-integrability condition that has a clear physical meaning in terms of signal energy; (3) if the regressor is PE, the new observer (like the old one) ensures convergence is exponential, entailing some robustness properties to the observer; (4) the new estimator includes an additional filter that constitutes an additional degree of freedom to satisfy the non-square integrability condition. Realistic simulation results show significant performance improvement of the position observer using the new parameter estimator, with a less oscillatory behaviour and a faster convergence speed.
Hierarchical Control of Semi-Autonomous Teams Under Uncertainty (HICST)
2004-05-01
17 2.4 Module 4: Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5... Database SoW 1 2 34 5 Txt file: paths Figure 3: Integration of modules 1-5. The modules make provision for human intervention, not indicated in the...figure. SoW is ‘state of the world’. 3. Task execution; 4. Database for state estimation; 5. Java interface to OEP; 6. Robust dynamic programming for
Baseline estimation in flame's spectra by using neural networks and robust statistics
NASA Astrophysics Data System (ADS)
Garces, Hugo; Arias, Luis; Rojas, Alejandro
2014-09-01
This work presents a baseline estimation method in flame spectra based on artificial intelligence structure as a neural network, combining robust statistics with multivariate analysis to automatically discriminate measured wavelengths belonging to continuous feature for model adaptation, surpassing restriction of measuring target baseline for training. The main contributions of this paper are: to analyze a flame spectra database computing Jolliffe statistics from Principal Components Analysis detecting wavelengths not correlated with most of the measured data corresponding to baseline; to systematically determine the optimal number of neurons in hidden layers based on Akaike's Final Prediction Error; to estimate baseline in full wavelength range sampling measured spectra; and to train an artificial intelligence structure as a Neural Network which allows to generalize the relation between measured and baseline spectra. The main application of our research is to compute total radiation with baseline information, allowing to diagnose combustion process state for optimization in early stages.
Cuevas, Erik; Díaz, Margarita
2015-01-01
In this paper, a new method for robustly estimating multiple view relations from point correspondences is presented. The approach combines the popular random sampling consensus (RANSAC) algorithm and the evolutionary method harmony search (HS). With this combination, the proposed method adopts a different sampling strategy than RANSAC to generate putative solutions. Under the new mechanism, at each iteration, new candidate solutions are built taking into account the quality of the models generated by previous candidate solutions, rather than purely random as it is the case of RANSAC. The rules for the generation of candidate solutions (samples) are motivated by the improvisation process that occurs when a musician searches for a better state of harmony. As a result, the proposed approach can substantially reduce the number of iterations still preserving the robust capabilities of RANSAC. The method is generic and its use is illustrated by the estimation of homographies, considering synthetic and real images. Additionally, in order to demonstrate the performance of the proposed approach within a real engineering application, it is employed to solve the problem of position estimation in a humanoid robot. Experimental results validate the efficiency of the proposed method in terms of accuracy, speed, and robustness. PMID:26339228
Resource-Efficient Measurement-Device-Independent Entanglement Witness
Verbanis, E.; Martin, A.; Rosset, D.; ...
2016-05-09
Imperfections in experimental measurement schemes can lead to falsely identifying, or over estimating, entanglement in a quantum system. A recent solution to this is to define schemes that are robust to measurement imperfections—measurement-device-independent entanglement witness (MDI-EW). This approach can be adapted to witness all entangled qubit states for a wide range of physical systems and does not depend on detection efficiencies or classical communication between devices. In this paper, we extend the theory to remove the necessity of prior knowledge about the two-qubit states to be witnessed. Moreover, we tested this model via a novel experimental implementation for MDI-EW thatmore » significantly reduces the experimental complexity. Finally, by applying it to a bipartite Werner state, we demonstrate the robustness of this approach against noise by witnessing entanglement down to an entangled state fraction close to 0.4.« less
Robust Head-Pose Estimation Based on Partially-Latent Mixture of Linear Regressions.
Drouard, Vincent; Horaud, Radu; Deleforge, Antoine; Ba, Sileye; Evangelidis, Georgios
2017-03-01
Head-pose estimation has many applications, such as social event analysis, human-robot and human-computer interaction, driving assistance, and so forth. Head-pose estimation is challenging, because it must cope with changing illumination conditions, variabilities in face orientation and in appearance, partial occlusions of facial landmarks, as well as bounding-box-to-face alignment errors. We propose to use a mixture of linear regressions with partially-latent output. This regression method learns to map high-dimensional feature vectors (extracted from bounding boxes of faces) onto the joint space of head-pose angles and bounding-box shifts, such that they are robustly predicted in the presence of unobservable phenomena. We describe in detail the mapping method that combines the merits of unsupervised manifold learning techniques and of mixtures of regressions. We validate our method with three publicly available data sets and we thoroughly benchmark four variants of the proposed algorithm with several state-of-the-art head-pose estimation methods.
Adaptive particle filter for robust visual tracking
NASA Astrophysics Data System (ADS)
Dai, Jianghua; Yu, Shengsheng; Sun, Weiping; Chen, Xiaoping; Xiang, Jinhai
2009-10-01
Object tracking plays a key role in the field of computer vision. Particle filter has been widely used for visual tracking under nonlinear and/or non-Gaussian circumstances. In particle filter, the state transition model for predicting the next location of tracked object assumes the object motion is invariable, which cannot well approximate the varying dynamics of the motion changes. In addition, the state estimate calculated by the mean of all the weighted particles is coarse or inaccurate due to various noise disturbances. Both these two factors may degrade tracking performance greatly. In this work, an adaptive particle filter (APF) with a velocity-updating based transition model (VTM) and an adaptive state estimate approach (ASEA) is proposed to improve object tracking. In APF, the motion velocity embedded into the state transition model is updated continuously by a recursive equation, and the state estimate is obtained adaptively according to the state posterior distribution. The experiment results show that the APF can increase the tracking accuracy and efficiency in complex environments.
Allemani, Claudia; Harewood, Rhea; Johnson, Christopher J; Carreira, Helena; Spika, Devon; Bonaventure, Audrey; Ward, Kevin; Weir, Hannah K; Coleman, Michel P
2017-12-15
Robust comparisons of population-based cancer survival estimates require tight adherence to the study protocol, standardized quality control, appropriate life tables of background mortality, and centralized analysis. The CONCORD program established worldwide surveillance of population-based cancer survival in 2015, analyzing individual data on 26 million patients (including 10 million US patients) diagnosed between 1995 and 2009 with 1 of 10 common malignancies. In this Cancer supplement, we analyzed data from 37 state cancer registries that participated in the second cycle of the CONCORD program (CONCORD-2), covering approximately 80% of the US population. Data quality checks were performed in 3 consecutive phases: protocol adherence, exclusions, and editorial checks. One-, 3-, and 5-year age-standardized net survival was estimated using the Pohar Perme estimator and state- and race-specific life tables of all-cause mortality for each year. The cohort approach was adopted for patients diagnosed between 2001 and 2003, and the complete approach for patients diagnosed between 2004 and 2009. Articles in this supplement report population coverage, data quality indicators, and age-standardized 5-year net survival by state, race, and stage at diagnosis. Examples of tables, bar charts, and funnel plots are provided in this article. Population-based cancer survival is a key measure of the overall effectiveness of services in providing equitable health care. The high quality of US cancer registry data, 80% population coverage, and use of an unbiased net survival estimator ensure that the survival trends reported in this supplement are robustly comparable by race and state. The results can be used by policymakers to identify and address inequities in cancer survival in each state and for the United States nationally. Cancer 2017;123:4982-93. Published 2017. This article is a U.S. Government work and is in the public domain in the USA. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Robust estimation for partially linear models with large-dimensional covariates
Zhu, LiPing; Li, RunZe; Cui, HengJian
2014-01-01
We are concerned with robust estimation procedures to estimate the parameters in partially linear models with large-dimensional covariates. To enhance the interpretability, we suggest implementing a noncon-cave regularization method in the robust estimation procedure to select important covariates from the linear component. We establish the consistency for both the linear and the nonlinear components when the covariate dimension diverges at the rate of o(n), where n is the sample size. We show that the robust estimate of linear component performs asymptotically as well as its oracle counterpart which assumes the baseline function and the unimportant covariates were known a priori. With a consistent estimator of the linear component, we estimate the nonparametric component by a robust local linear regression. It is proved that the robust estimate of nonlinear component performs asymptotically as well as if the linear component were known in advance. Comprehensive simulation studies are carried out and an application is presented to examine the finite-sample performance of the proposed procedures. PMID:24955087
Robust estimation for partially linear models with large-dimensional covariates.
Zhu, LiPing; Li, RunZe; Cui, HengJian
2013-10-01
We are concerned with robust estimation procedures to estimate the parameters in partially linear models with large-dimensional covariates. To enhance the interpretability, we suggest implementing a noncon-cave regularization method in the robust estimation procedure to select important covariates from the linear component. We establish the consistency for both the linear and the nonlinear components when the covariate dimension diverges at the rate of [Formula: see text], where n is the sample size. We show that the robust estimate of linear component performs asymptotically as well as its oracle counterpart which assumes the baseline function and the unimportant covariates were known a priori. With a consistent estimator of the linear component, we estimate the nonparametric component by a robust local linear regression. It is proved that the robust estimate of nonlinear component performs asymptotically as well as if the linear component were known in advance. Comprehensive simulation studies are carried out and an application is presented to examine the finite-sample performance of the proposed procedures.
Luo, Jianjun; Wei, Caisheng; Dai, Honghua; Yin, Zeyang; Wei, Xing; Yuan, Jianping
2018-03-01
In this paper, a robust inertia-free attitude takeover control scheme with guaranteed prescribed performance is investigated for postcapture combined spacecraft with consideration of unmeasurable states, unknown inertial property and external disturbance torque. Firstly, to estimate the unavailable angular velocity of combination accurately, a novel finite-time-convergent tracking differentiator is developed with a quite computationally achievable structure free from the unknown nonlinear dynamics of combined spacecraft. Then, a robust inertia-free prescribed performance control scheme is proposed, wherein, the transient and steady-state performance of combined spacecraft is first quantitatively studied by stabilizing the filtered attitude tracking errors. Compared with the existing works, the prominent advantage is that no parameter identifications and no neural or fuzzy nonlinear approximations are needed, which decreases the complexity of robust controller design dramatically. Moreover, the prescribed performance of combined spacecraft is guaranteed a priori without resorting to repeated regulations of the controller parameters. Finally, four illustrative examples are employed to validate the effectiveness of the proposed control scheme and tracking differentiator. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Patel, R. V.; Toda, M.; Sridhar, B.
1977-01-01
In connection with difficulties concerning an accurate mathematical representation of a linear quadratic state feedback (LQSF) system, it is often necessary to investigate the robustness (stability) of an LQSF design in the presence of system uncertainty and obtain some quantitative measure of the perturbations which such a design can tolerate. A study is conducted concerning the problem of expressing the robustness property of an LQSF design quantitatively in terms of bounds on the perturbations (modeling errors or parameter variations) in the system matrices. Bounds are obtained for the general case of nonlinear, time-varying perturbations. It is pointed out that most of the presented results are readily applicable to practical situations for which a designer has estimates of the bounds on the system parameter perturbations. Relations are provided which help the designer to select appropriate weighting matrices in the quadratic performance index to attain a robust design. The developed results are employed in the design of an autopilot logic for the flare maneuver of the Augmentor Wing Jet STOL Research Aircraft.
NASA Astrophysics Data System (ADS)
Hernandez, F.; Liang, X.
2017-12-01
Reliable real-time hydrological forecasting, to predict important phenomena such as floods, is invaluable to the society. However, modern high-resolution distributed models have faced challenges when dealing with uncertainties that are caused by the large number of parameters and initial state estimations involved. Therefore, to rely on these high-resolution models for critical real-time forecast applications, considerable improvements on the parameter and initial state estimation techniques must be made. In this work we present a unified data assimilation algorithm called Optimized PareTo Inverse Modeling through Inverse STochastic Search (OPTIMISTS) to deal with the challenge of having robust flood forecasting for high-resolution distributed models. This new algorithm combines the advantages of particle filters and variational methods in a unique way to overcome their individual weaknesses. The analysis of candidate particles compares model results with observations in a flexible time frame, and a multi-objective approach is proposed which attempts to simultaneously minimize differences with the observations and departures from the background states by using both Bayesian sampling and non-convex evolutionary optimization. Moreover, the resulting Pareto front is given a probabilistic interpretation through kernel density estimation to create a non-Gaussian distribution of the states. OPTIMISTS was tested on a low-resolution distributed land surface model using VIC (Variable Infiltration Capacity) and on a high-resolution distributed hydrological model using the DHSVM (Distributed Hydrology Soil Vegetation Model). In the tests streamflow observations are assimilated. OPTIMISTS was also compared with a traditional particle filter and a variational method. Results show that our method can reliably produce adequate forecasts and that it is able to outperform those resulting from assimilating the observations using a particle filter or an evolutionary 4D variational method alone. In addition, our method is shown to be efficient in tackling high-resolution applications with robust results.
Robust time and frequency domain estimation methods in adaptive control
NASA Technical Reports Server (NTRS)
Lamaire, Richard Orville
1987-01-01
A robust identification method was developed for use in an adaptive control system. The type of estimator is called the robust estimator, since it is robust to the effects of both unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator was motivated by a need to provide guarantees in the identification part of an adaptive controller. To enable the design of a robust control system, a nominal model as well as a frequency-domain bounding function on the modeling uncertainty associated with this nominal model must be provided. Two estimation methods are presented for finding parameter estimates, and, hence, a nominal model. One of these methods is based on the well developed field of time-domain parameter estimation. In a second method of finding parameter estimates, a type of weighted least-squares fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown to perform better, in general, than the time-domain parameter estimator. In addition, a methodology for finding a frequency-domain bounding function on the disturbance is used to compute a frequency-domain bounding function on the additive modeling error due to the effects of the disturbance and the use of finite-length data. The performance of the robust estimator in both open-loop and closed-loop situations is examined through the use of simulations.
Robust Control Algorithm for a Two Cart System and an Inverted Pendulum
NASA Technical Reports Server (NTRS)
Wilson, Chris L.; Capo-Lugo, Pedro
2011-01-01
The Rectilinear Control System can be used to simulate a launch vehicle during liftoff. Several control schemes have been developed that can control different dynamic models of the rectilinear plant. A robust control algorithm was developed that can control a pendulum to maintain an inverted position. A fluid slosh tank will be attached to the pendulum in order to test robustness in the presence of unknown slosh characteristics. The rectilinear plant consists of a DC motor and three carts mounted in series. Each cart s weight can be adjusted with brass masses and the carts can be coupled with springs. The pendulum is mounted on the first cart and an adjustable air damper can be attached to the third cart if desired. Each cart and the pendulum have a quadrature encoder to determine position. Full state feedback was implemented in order to develop the control algorithm along with a state estimator to determine the velocity states of the system. A MATLAB program was used to convert the state space matrices from continuous time to discrete time. This program also used a desired phase margin and damping ratio to determine the feedback gain matrix that would be used in the LabVIEW program. This experiment will allow engineers to gain a better understanding of liquid propellant slosh dynamics, therefore enabling them to develop more robust control algorithms for launch vehicle systems
NASA Astrophysics Data System (ADS)
Angu, Rittu; Mehta, R. K.
2018-04-01
This paper presents a robust controller known as Extended State Observer (ESO) in order to improve the stability and voltage regulation of a synchronous machine connected to an infinite bus power system through a transmission line. The ESO-based control scheme is implemented with an automatic voltage regulator in conjunction with an excitation system to enhance the damping of low frequency power system oscillations, as the Power System Stabilizer (PSS) does. The implementation of PSS excitation control techniques however requires reliable information about the entire states, though they are not always directly measureable. To address this issue, the proposed ESO provides the estimate of system states as well as disturbance state together in order to improve not only the damping but also compensates system efficiently in presence of parameter uncertainties and external disturbances. The Closed-Loop Poles (CLPs) of the system have been assigned by the symmetric root locus technique, with the desired level of system damping provided by the dominant CLPs. The performance of the system is analyzed through simulating at different operating conditions. The control method is not only capable of providing zero estimation error in steady-state, but also shows robustness in tracking the reference command under parametric variations and external disturbances. Illustrative examples have been provided to demonstrate the effectiveness of the developed methodology.
Statistics based sampling for controller and estimator design
NASA Astrophysics Data System (ADS)
Tenne, Dirk
The purpose of this research is the development of statistical design tools for robust feed-forward/feedback controllers and nonlinear estimators. This dissertation is threefold and addresses the aforementioned topics nonlinear estimation, target tracking and robust control. To develop statistically robust controllers and nonlinear estimation algorithms, research has been performed to extend existing techniques, which propagate the statistics of the state, to achieve higher order accuracy. The so-called unscented transformation has been extended to capture higher order moments. Furthermore, higher order moment update algorithms based on a truncated power series have been developed. The proposed techniques are tested on various benchmark examples. Furthermore, the unscented transformation has been utilized to develop a three dimensional geometrically constrained target tracker. The proposed planar circular prediction algorithm has been developed in a local coordinate framework, which is amenable to extension of the tracking algorithm to three dimensional space. This tracker combines the predictions of a circular prediction algorithm and a constant velocity filter by utilizing the Covariance Intersection. This combined prediction can be updated with the subsequent measurement using a linear estimator. The proposed technique is illustrated on a 3D benchmark trajectory, which includes coordinated turns and straight line maneuvers. The third part of this dissertation addresses the design of controller which include knowledge of parametric uncertainties and their distributions. The parameter distributions are approximated by a finite set of points which are calculated by the unscented transformation. This set of points is used to design robust controllers which minimize a statistical performance of the plant over the domain of uncertainty consisting of a combination of the mean and variance. The proposed technique is illustrated on three benchmark problems. The first relates to the design of prefilters for a linear and nonlinear spring-mass-dashpot system and the second applies a feedback controller to a hovering helicopter. Lastly, the statistical robust controller design is devoted to a concurrent feed-forward/feedback controller structure for a high-speed low tension tape drive.
NASA Technical Reports Server (NTRS)
Troudet, T.; Garg, S.; Merrill, W.
1992-01-01
The design of a dynamic neurocontroller with good robustness properties is presented for a multivariable aircraft control problem. The internal dynamics of the neurocontroller are synthesized by a state estimator feedback loop. The neurocontrol is generated by a multilayer feedforward neural network which is trained through backpropagation to minimize an objective function that is a weighted sum of tracking errors, and control input commands and rates. The neurocontroller exhibits good robustness through stability margins in phase and vehicle output gains. By maintaining performance and stability in the presence of sensor failures in the error loops, the structure of the neurocontroller is also consistent with the classical approach of flight control design.
Aerial Surveys Give New Estimates for Orangutans in Sabah, Malaysia
Gimenez, Olivier; Ambu, Laurentius; Ancrenaz, Karine; Andau, Patrick; Goossens, Benoît; Payne, John; Sawang, Azri; Tuuga, Augustine; Lackman-Ancrenaz, Isabelle
2005-01-01
Great apes are threatened with extinction, but precise information about the distribution and size of most populations is currently lacking. We conducted orangutan nest counts in the Malaysian state of Sabah (North Borneo), using a combination of ground and helicopter surveys, and provided a way to estimate the current distribution and size of the populations living throughout the entire state. We show that the number of nests detected during aerial surveys is directly related to the estimated true animal density and that a helicopter is an efficient tool to provide robust estimates of orangutan numbers. Our results reveal that with a total estimated population size of about 11,000 individuals, Sabah is one of the main strongholds for orangutans in North Borneo. More than 60% of orangutans living in the state occur outside protected areas, in production forests that have been through several rounds of logging extraction and are still exploited for timber. The role of exploited forests clearly merits further investigation for orangutan conservation in Sabah. PMID:15630475
Income inequality, poverty, and population health: evidence from recent data for the United States.
Ram, Rati
2005-12-01
In this study, state-level US data for the years 2000 and 1990 are used to provide additional evidence on the roles of income inequality and poverty in population health. Five main points are noted. First, contrary to the suggestion made in several recent studies, the income inequality parameter is observed to be quite robust and carries statistical significance in mortality equations estimated from several observation sets and a fairly wide variety of specificational choices. Second, the evidence does not indicate that significance of income inequality is lost when education variables are included. Third, similarly, the income inequality parameter shows significance when a race variable is added, and also when both race and urbanization terms are entered. Fourth, while poverty is seen to have some mortality-increasing consequence, the role of income inequality appears stronger. Fifth, income inequality retains statistical significance when a quadratic income term is added and also if the log-log version of a fairly inclusive model is estimated. I therefore suggest that the recent skepticism articulated by several scholars in regard to the robustness of the income inequality parameters in mortality equations estimated from the US data should be reconsidered.
State-granted practice authority: do nurse practitioners vote with their feet?
Perry, John J
2012-01-01
Nurse practitioners have become an increasingly important part of the US medical workforce as they have gained greater practice authority through state-level regulatory changes. This study investigates one labor market impact of this large change in nurse practitioner regulation. Using data from the National Sample Survey of Registered Nurses and a dataset of state-level nurse practitioner prescribing authority, a multivariate estimation is performed analysing the impact of greater practice authority on the probability of a nurse practitioner moving from a state. The empirical results indicate that nurse practitioners in states that grant expanded practice are less likely to move from the state than nurse practitioners in states that have not granted expanded practice authority. The estimated effect is robust and is statistically and economically meaningful. This finding is in concert with and strengthens the wider literature which finds states that grant expanded practice authority to nurse practitioners tend to have larger nurse practitioner populations.
Doubly robust nonparametric inference on the average treatment effect.
Benkeser, D; Carone, M; Laan, M J Van Der; Gilbert, P B
2017-12-01
Doubly robust estimators are widely used to draw inference about the average effect of a treatment. Such estimators are consistent for the effect of interest if either one of two nuisance parameters is consistently estimated. However, if flexible, data-adaptive estimators of these nuisance parameters are used, double robustness does not readily extend to inference. We present a general theoretical study of the behaviour of doubly robust estimators of an average treatment effect when one of the nuisance parameters is inconsistently estimated. We contrast different methods for constructing such estimators and investigate the extent to which they may be modified to also allow doubly robust inference. We find that while targeted minimum loss-based estimation can be used to solve this problem very naturally, common alternative frameworks appear to be inappropriate for this purpose. We provide a theoretical study and a numerical evaluation of the alternatives considered. Our simulations highlight the need for and usefulness of these approaches in practice, while our theoretical developments have broad implications for the construction of estimators that permit doubly robust inference in other problems.
Strong Tracking Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking.
Liu, Hua; Wu, Wen
2017-03-31
Conventional spherical simplex-radial cubature Kalman filter (SSRCKF) for maneuvering target tracking may decline in accuracy and even diverge when a target makes abrupt state changes. To overcome this problem, a novel algorithm named strong tracking spherical simplex-radial cubature Kalman filter (STSSRCKF) is proposed in this paper. The proposed algorithm uses the spherical simplex-radial (SSR) rule to obtain a higher accuracy than cubature Kalman filter (CKF) algorithm. Meanwhile, by introducing strong tracking filter (STF) into SSRCKF and modifying the predicted states' error covariance with a time-varying fading factor, the gain matrix is adjusted on line so that the robustness of the filter and the capability of dealing with uncertainty factors is improved. In this way, the proposed algorithm has the advantages of both STF's strong robustness and SSRCKF's high accuracy. Finally, a maneuvering target tracking problem with abrupt state changes is used to test the performance of the proposed filter. Simulation results show that the STSSRCKF algorithm can get better estimation accuracy and greater robustness for maneuvering target tracking.
Robust geostatistical analysis of spatial data
NASA Astrophysics Data System (ADS)
Papritz, Andreas; Künsch, Hans Rudolf; Schwierz, Cornelia; Stahel, Werner A.
2013-04-01
Most of the geostatistical software tools rely on non-robust algorithms. This is unfortunate, because outlying observations are rather the rule than the exception, in particular in environmental data sets. Outliers affect the modelling of the large-scale spatial trend, the estimation of the spatial dependence of the residual variation and the predictions by kriging. Identifying outliers manually is cumbersome and requires expertise because one needs parameter estimates to decide which observation is a potential outlier. Moreover, inference after the rejection of some observations is problematic. A better approach is to use robust algorithms that prevent automatically that outlying observations have undue influence. Former studies on robust geostatistics focused on robust estimation of the sample variogram and ordinary kriging without external drift. Furthermore, Richardson and Welsh (1995) proposed a robustified version of (restricted) maximum likelihood ([RE]ML) estimation for the variance components of a linear mixed model, which was later used by Marchant and Lark (2007) for robust REML estimation of the variogram. We propose here a novel method for robust REML estimation of the variogram of a Gaussian random field that is possibly contaminated by independent errors from a long-tailed distribution. It is based on robustification of estimating equations for the Gaussian REML estimation (Welsh and Richardson, 1997). Besides robust estimates of the parameters of the external drift and of the variogram, the method also provides standard errors for the estimated parameters, robustified kriging predictions at both sampled and non-sampled locations and kriging variances. Apart from presenting our modelling framework, we shall present selected simulation results by which we explored the properties of the new method. This will be complemented by an analysis a data set on heavy metal contamination of the soil in the vicinity of a metal smelter. Marchant, B.P. and Lark, R.M. 2007. Robust estimation of the variogram by residual maximum likelihood. Geoderma 140: 62-72. Richardson, A.M. and Welsh, A.H. 1995. Robust restricted maximum likelihood in mixed linear models. Biometrics 51: 1429-1439. Welsh, A.H. and Richardson, A.M. 1997. Approaches to the robust estimation of mixed models. In: Handbook of Statistics Vol. 15, Elsevier, pp. 343-384.
Robustness of Reconstructed Ancestral Protein Functions to Statistical Uncertainty.
Eick, Geeta N; Bridgham, Jamie T; Anderson, Douglas P; Harms, Michael J; Thornton, Joseph W
2017-02-01
Hypotheses about the functions of ancient proteins and the effects of historical mutations on them are often tested using ancestral protein reconstruction (APR)-phylogenetic inference of ancestral sequences followed by synthesis and experimental characterization. Usually, some sequence sites are ambiguously reconstructed, with two or more statistically plausible states. The extent to which the inferred functions and mutational effects are robust to uncertainty about the ancestral sequence has not been studied systematically. To address this issue, we reconstructed ancestral proteins in three domain families that have different functions, architectures, and degrees of uncertainty; we then experimentally characterized the functional robustness of these proteins when uncertainty was incorporated using several approaches, including sampling amino acid states from the posterior distribution at each site and incorporating the alternative amino acid state at every ambiguous site in the sequence into a single "worst plausible case" protein. In every case, qualitative conclusions about the ancestral proteins' functions and the effects of key historical mutations were robust to sequence uncertainty, with similar functions observed even when scores of alternate amino acids were incorporated. There was some variation in quantitative descriptors of function among plausible sequences, suggesting that experimentally characterizing robustness is particularly important when quantitative estimates of ancient biochemical parameters are desired. The worst plausible case method appears to provide an efficient strategy for characterizing the functional robustness of ancestral proteins to large amounts of sequence uncertainty. Sampling from the posterior distribution sometimes produced artifactually nonfunctional proteins for sequences reconstructed with substantial ambiguity. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Robust Low-dose CT Perfusion Deconvolution via Tensor Total-Variation Regularization
Zhang, Shaoting; Chen, Tsuhan; Sanelli, Pina C.
2016-01-01
Acute brain diseases such as acute strokes and transit ischemic attacks are the leading causes of mortality and morbidity worldwide, responsible for 9% of total death every year. ‘Time is brain’ is a widely accepted concept in acute cerebrovascular disease treatment. Efficient and accurate computational framework for hemodynamic parameters estimation can save critical time for thrombolytic therapy. Meanwhile the high level of accumulated radiation dosage due to continuous image acquisition in CT perfusion (CTP) raised concerns on patient safety and public health. However, low-radiation leads to increased noise and artifacts which require more sophisticated and time-consuming algorithms for robust estimation. In this paper, we focus on developing a robust and efficient framework to accurately estimate the perfusion parameters at low radiation dosage. Specifically, we present a tensor total-variation (TTV) technique which fuses the spatial correlation of the vascular structure and the temporal continuation of the blood signal flow. An efficient algorithm is proposed to find the solution with fast convergence and reduced computational complexity. Extensive evaluations are carried out in terms of sensitivity to noise levels, estimation accuracy, contrast preservation, and performed on digital perfusion phantom estimation, as well as in-vivo clinical subjects. Our framework reduces the necessary radiation dose to only 8% of the original level and outperforms the state-of-art algorithms with peak signal-to-noise ratio improved by 32%. It reduces the oscillation in the residue functions, corrects over-estimation of cerebral blood flow (CBF) and under-estimation of mean transit time (MTT), and maintains the distinction between the deficit and normal regions. PMID:25706579
Accurate feature detection and estimation using nonlinear and multiresolution analysis
NASA Astrophysics Data System (ADS)
Rudin, Leonid; Osher, Stanley
1994-11-01
A program for feature detection and estimation using nonlinear and multiscale analysis was completed. The state-of-the-art edge detection was combined with multiscale restoration (as suggested by the first author) and robust results in the presence of noise were obtained. Successful applications to numerous images of interest to DOD were made. Also, a new market in the criminal justice field was developed, based in part, on this work.
Ahmed, Hafiz; Salgado, Ivan; Ríos, Héctor
2018-02-01
Robust synchronization of master slave chaotic systems are considered in this work. First an approximate model of the error system is obtained using the ultra-local model concept. Then a Continuous Singular Terminal Sliding-Mode (CSTSM) Controller is designed for the purpose of synchronization. The proposed approach is output feedback-based and uses fixed-time higher order sliding-mode (HOSM) differentiator for state estimation. Numerical simulation and experimental results are given to show the effectiveness of the proposed technique. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Robust Rate Maximization for Heterogeneous Wireless Networks under Channel Uncertainties
Xu, Yongjun; Hu, Yuan; Li, Guoquan
2018-01-01
Heterogeneous wireless networks are a promising technology in next generation wireless communication networks, which has been shown to efficiently reduce the blind area of mobile communication and improve network coverage compared with the traditional wireless communication networks. In this paper, a robust power allocation problem for a two-tier heterogeneous wireless networks is formulated based on orthogonal frequency-division multiplexing technology. Under the consideration of imperfect channel state information (CSI), the robust sum-rate maximization problem is built while avoiding sever cross-tier interference to macrocell user and maintaining the minimum rate requirement of each femtocell user. To be practical, both of channel estimation errors from the femtocells to the macrocell and link uncertainties of each femtocell user are simultaneously considered in terms of outage probabilities of users. The optimization problem is analyzed under no CSI feedback with some cumulative distribution function and partial CSI with Gaussian distribution of channel estimation error. The robust optimization problem is converted into the convex optimization problem which is solved by using Lagrange dual theory and subgradient algorithm. Simulation results demonstrate the effectiveness of the proposed algorithm by the impact of channel uncertainties on the system performance. PMID:29466315
Risk, Robustness and Water Resources Planning Under Uncertainty
NASA Astrophysics Data System (ADS)
Borgomeo, Edoardo; Mortazavi-Naeini, Mohammad; Hall, Jim W.; Guillod, Benoit P.
2018-03-01
Risk-based water resources planning is based on the premise that water managers should invest up to the point where the marginal benefit of risk reduction equals the marginal cost of achieving that benefit. However, this cost-benefit approach may not guarantee robustness under uncertain future conditions, for instance under climatic changes. In this paper, we expand risk-based decision analysis to explore possible ways of enhancing robustness in engineered water resources systems under different risk attitudes. Risk is measured as the expected annual cost of water use restrictions, while robustness is interpreted in the decision-theoretic sense as the ability of a water resource system to maintain performance—expressed as a tolerable risk of water use restrictions—under a wide range of possible future conditions. Linking risk attitudes with robustness allows stakeholders to explicitly trade-off incremental increases in robustness with investment costs for a given level of risk. We illustrate the framework through a case study of London's water supply system using state-of-the -art regional climate simulations to inform the estimation of risk and robustness.
A hybrid robust fault tolerant control based on adaptive joint unscented Kalman filter.
Shabbouei Hagh, Yashar; Mohammadi Asl, Reza; Cocquempot, Vincent
2017-01-01
In this paper, a new hybrid robust fault tolerant control scheme is proposed. A robust H ∞ control law is used in non-faulty situation, while a Non-Singular Terminal Sliding Mode (NTSM) controller is activated as soon as an actuator fault is detected. Since a linear robust controller is designed, the system is first linearized through the feedback linearization method. To switch from one controller to the other, a fuzzy based switching system is used. An Adaptive Joint Unscented Kalman Filter (AJUKF) is used for fault detection and diagnosis. The proposed method is based on the simultaneous estimation of the system states and parameters. In order to show the efficiency of the proposed scheme, a simulated 3-DOF robotic manipulator is used. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Optimized tomography of continuous variable systems using excitation counting
NASA Astrophysics Data System (ADS)
Shen, Chao; Heeres, Reinier W.; Reinhold, Philip; Jiang, Luyao; Liu, Yi-Kai; Schoelkopf, Robert J.; Jiang, Liang
2016-11-01
We propose a systematic procedure to optimize quantum state tomography protocols for continuous variable systems based on excitation counting preceded by a displacement operation. Compared with conventional tomography based on Husimi or Wigner function measurement, the excitation counting approach can significantly reduce the number of measurement settings. We investigate both informational completeness and robustness, and provide a bound of reconstruction error involving the condition number of the sensing map. We also identify the measurement settings that optimize this error bound, and demonstrate that the improved reconstruction robustness can lead to an order-of-magnitude reduction of estimation error with given resources. This optimization procedure is general and can incorporate prior information of the unknown state to further simplify the protocol.
Mears, Lisa; Stocks, Stuart M; Albaek, Mads O; Sin, Gürkan; Gernaey, Krist V
2017-03-01
A mechanistic model-based soft sensor is developed and validated for 550L filamentous fungus fermentations operated at Novozymes A/S. The soft sensor is comprised of a parameter estimation block based on a stoichiometric balance, coupled to a dynamic process model. The on-line parameter estimation block models the changing rates of formation of product, biomass, and water, and the rate of consumption of feed using standard, available on-line measurements. This parameter estimation block, is coupled to a mechanistic process model, which solves the current states of biomass, product, substrate, dissolved oxygen and mass, as well as other process parameters including k L a, viscosity and partial pressure of CO 2 . State estimation at this scale requires a robust mass model including evaporation, which is a factor not often considered at smaller scales of operation. The model is developed using a historical data set of 11 batches from the fermentation pilot plant (550L) at Novozymes A/S. The model is then implemented on-line in 550L fermentation processes operated at Novozymes A/S in order to validate the state estimator model on 14 new batches utilizing a new strain. The product concentration in the validation batches was predicted with an average root mean sum of squared error (RMSSE) of 16.6%. In addition, calculation of the Janus coefficient for the validation batches shows a suitably calibrated model. The robustness of the model prediction is assessed with respect to the accuracy of the input data. Parameter estimation uncertainty is also carried out. The application of this on-line state estimator allows for on-line monitoring of pilot scale batches, including real-time estimates of multiple parameters which are not able to be monitored on-line. With successful application of a soft sensor at this scale, this allows for improved process monitoring, as well as opening up further possibilities for on-line control algorithms, utilizing these on-line model outputs. Biotechnol. Bioeng. 2017;114: 589-599. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Robust partial integrated guidance and control for missiles via extended state observer.
Wang, Qing; Ran, Maopeng; Dong, Chaoyang
2016-11-01
A novel extended state observer (ESO) based control is proposed for a class of nonlinear systems subject to multiple uncertainties, and then applied to partial integrated guidance and control (PIGC) design for a missile. The proposed control strategy incorporates both an ESO and an adaptive sliding mode control law. The multiple uncertainties are treated as an extended state of the plant, and then estimate them using the ESO and compensate for them in the control action, in real time. Based on the output of the ESO, the resulting adaptive sliding mode control law is inherently continuous and differentiable. Strict proof is given to show that the estimation error of the ESO can be arbitrarily small in a finite time. In addition, the adaptive sliding mode control law can achieve finite time convergence to a neighborhood of the origin, and the accurate expression of the convergent region is given. Finally, simulations are conducted on the planar missile-target engagement geometry. The effectiveness of the proposed control strategy in enhanced interception performance and improved robustness against multiple uncertainties are demonstrated. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Royer, Lucas; Krupa, Alexandre; Dardenne, Guillaume; Le Bras, Anthony; Marchand, Eric; Marchal, Maud
2017-01-01
In this paper, we present a real-time approach that allows tracking deformable structures in 3D ultrasound sequences. Our method consists in obtaining the target displacements by combining robust dense motion estimation and mechanical model simulation. We perform evaluation of our method through simulated data, phantom data, and real-data. Results demonstrate that this novel approach has the advantage of providing correct motion estimation regarding different ultrasound shortcomings including speckle noise, large shadows and ultrasound gain variation. Furthermore, we show the good performance of our method with respect to state-of-the-art techniques by testing on the 3D databases provided by MICCAI CLUST'14 and CLUST'15 challenges. Copyright © 2016 Elsevier B.V. All rights reserved.
Tanner-Smith, Emily E; Tipton, Elizabeth
2014-03-01
Methodologists have recently proposed robust variance estimation as one way to handle dependent effect sizes in meta-analysis. Software macros for robust variance estimation in meta-analysis are currently available for Stata (StataCorp LP, College Station, TX, USA) and spss (IBM, Armonk, NY, USA), yet there is little guidance for authors regarding the practical application and implementation of those macros. This paper provides a brief tutorial on the implementation of the Stata and spss macros and discusses practical issues meta-analysts should consider when estimating meta-regression models with robust variance estimates. Two example databases are used in the tutorial to illustrate the use of meta-analysis with robust variance estimates. Copyright © 2013 John Wiley & Sons, Ltd.
Multimodel Kalman filtering for adaptive nonuniformity correction in infrared sensors.
Pezoa, Jorge E; Hayat, Majeed M; Torres, Sergio N; Rahman, Md Saifur
2006-06-01
We present an adaptive technique for the estimation of nonuniformity parameters of infrared focal-plane arrays that is robust with respect to changes and uncertainties in scene and sensor characteristics. The proposed algorithm is based on using a bank of Kalman filters in parallel. Each filter independently estimates state variables comprising the gain and the bias matrices of the sensor, according to its own dynamic-model parameters. The supervising component of the algorithm then generates the final estimates of the state variables by forming a weighted superposition of all the estimates rendered by each Kalman filter. The weights are computed and updated iteratively, according to the a posteriori-likelihood principle. The performance of the estimator and its ability to compensate for fixed-pattern noise is tested using both simulated and real data obtained from two cameras operating in the mid- and long-wave infrared regime.
NASA Astrophysics Data System (ADS)
Noh, Seong Jin; Tachikawa, Yasuto; Shiiba, Michiharu; Kim, Sunmin
Applications of data assimilation techniques have been widely used to improve upon the predictability of hydrologic modeling. Among various data assimilation techniques, sequential Monte Carlo (SMC) filters, known as "particle filters" provide the capability to handle non-linear and non-Gaussian state-space models. This paper proposes a dual state-parameter updating scheme (DUS) based on SMC methods to estimate both state and parameter variables of a hydrologic model. We introduce a kernel smoothing method for the robust estimation of uncertain model parameters in the DUS. The applicability of the dual updating scheme is illustrated using the implementation of the storage function model on a middle-sized Japanese catchment. We also compare performance results of DUS combined with various SMC methods, such as SIR, ASIR and RPF.
Robust estimation approach for blind denoising.
Rabie, Tamer
2005-11-01
This work develops a new robust statistical framework for blind image denoising. Robust statistics addresses the problem of estimation when the idealized assumptions about a system are occasionally violated. The contaminating noise in an image is considered as a violation of the assumption of spatial coherence of the image intensities and is treated as an outlier random variable. A denoised image is estimated by fitting a spatially coherent stationary image model to the available noisy data using a robust estimator-based regression method within an optimal-size adaptive window. The robust formulation aims at eliminating the noise outliers while preserving the edge structures in the restored image. Several examples demonstrating the effectiveness of this robust denoising technique are reported and a comparison with other standard denoising filters is presented.
Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters.
Xu, Lingyun; Luo, Haibo; Hui, Bin; Chang, Zheng
2016-09-07
Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Kernelized Correlation Filter (KCF) to significantly improve performance on motion blur and fast motion. By fusing KCF and STC trackers, our algorithm also solve the estimation of scale variation in many scenarios. We theoretically analyze the problem for CFs towards motions and utilize the point sharpness function of the target patch to evaluate the motion state of target. Then we set up an efficient scheme to handle the motion and scale variation without much time consuming. Our algorithm preserves the properties of KCF besides the ability to handle special scenarios. In the end extensive experimental results on benchmark of VOT datasets show our algorithm performs advantageously competed with the top-rank trackers.
NASA Technical Reports Server (NTRS)
Canfield, Stephen
1999-01-01
This work will demonstrate the integration of sensor and system dynamic data and their appropriate models using an optimal filter to create a robust, adaptable, easily reconfigurable state (motion) estimation system. This state estimation system will clearly show the application of fundamental modeling and filtering techniques. These techniques are presented at a general, first principles level, that can easily be adapted to specific applications. An example of such an application is demonstrated through the development of an integrated GPS/INS navigation system. This system acquires both global position data and inertial body data, to provide optimal estimates of current position and attitude states. The optimal states are estimated using a Kalman filter. The state estimation system will include appropriate error models for the measurement hardware. The results of this work will lead to the development of a "black-box" state estimation system that supplies current motion information (position and attitude states) that can be used to carry out guidance and control strategies. This black-box state estimation system is developed independent of the vehicle dynamics and therefore is directly applicable to a variety of vehicles. Issues in system modeling and application of Kalman filtering techniques are investigated and presented. These issues include linearized models of equations of state, models of the measurement sensors, and appropriate application and parameter setting (tuning) of the Kalman filter. The general model and subsequent algorithm is developed in Matlab for numerical testing. The results of this system are demonstrated through application to data from the X-33 Michael's 9A8 mission and are presented in plots and simple animations.
A non-linear regression method for CT brain perfusion analysis
NASA Astrophysics Data System (ADS)
Bennink, E.; Oosterbroek, J.; Viergever, M. A.; Velthuis, B. K.; de Jong, H. W. A. M.
2015-03-01
CT perfusion (CTP) imaging allows for rapid diagnosis of ischemic stroke. Generation of perfusion maps from CTP data usually involves deconvolution algorithms providing estimates for the impulse response function in the tissue. We propose the use of a fast non-linear regression (NLR) method that we postulate has similar performance to the current academic state-of-art method (bSVD), but that has some important advantages, including the estimation of vascular permeability, improved robustness to tracer-delay, and very few tuning parameters, that are all important in stroke assessment. The aim of this study is to evaluate the fast NLR method against bSVD and a commercial clinical state-of-art method. The three methods were tested against a published digital perfusion phantom earlier used to illustrate the superiority of bSVD. In addition, the NLR and clinical methods were also tested against bSVD on 20 clinical scans. Pearson correlation coefficients were calculated for each of the tested methods. All three methods showed high correlation coefficients (>0.9) with the ground truth in the phantom. With respect to the clinical scans, the NLR perfusion maps showed higher correlation with bSVD than the perfusion maps from the clinical method. Furthermore, the perfusion maps showed that the fast NLR estimates are robust to tracer-delay. In conclusion, the proposed fast NLR method provides a simple and flexible way of estimating perfusion parameters from CT perfusion scans, with high correlation coefficients. This suggests that it could be a better alternative to the current clinical and academic state-of-art methods.
Reliability-Based Control Design for Uncertain Systems
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Kenny, Sean P.
2005-01-01
This paper presents a robust control design methodology for systems with probabilistic parametric uncertainty. Control design is carried out by solving a reliability-based multi-objective optimization problem where the probability of violating design requirements is minimized. Simultaneously, failure domains are optimally enlarged to enable global improvements in the closed-loop performance. To enable an efficient numerical implementation, a hybrid approach for estimating reliability metrics is developed. This approach, which integrates deterministic sampling and asymptotic approximations, greatly reduces the numerical burden associated with complex probabilistic computations without compromising the accuracy of the results. Examples using output-feedback and full-state feedback with state estimation are used to demonstrate the ideas proposed.
Estimating parameters of hidden Markov models based on marked individuals: use of robust design data
Kendall, William L.; White, Gary C.; Hines, James E.; Langtimm, Catherine A.; Yoshizaki, Jun
2012-01-01
Development and use of multistate mark-recapture models, which provide estimates of parameters of Markov processes in the face of imperfect detection, have become common over the last twenty years. Recently, estimating parameters of hidden Markov models, where the state of an individual can be uncertain even when it is detected, has received attention. Previous work has shown that ignoring state uncertainty biases estimates of survival and state transition probabilities, thereby reducing the power to detect effects. Efforts to adjust for state uncertainty have included special cases and a general framework for a single sample per period of interest. We provide a flexible framework for adjusting for state uncertainty in multistate models, while utilizing multiple sampling occasions per period of interest to increase precision and remove parameter redundancy. These models also produce direct estimates of state structure for each primary period, even for the case where there is just one sampling occasion. We apply our model to expected value data, and to data from a study of Florida manatees, to provide examples of the improvement in precision due to secondary capture occasions. We also provide user-friendly software to implement these models. This general framework could also be used by practitioners to consider constrained models of particular interest, or model the relationship between within-primary period parameters (e.g., state structure) and between-primary period parameters (e.g., state transition probabilities).
NASA Astrophysics Data System (ADS)
Zahari, Siti Meriam; Ramli, Norazan Mohamed; Moktar, Balkiah; Zainol, Mohammad Said
2014-09-01
In the presence of multicollinearity and multiple outliers, statistical inference of linear regression model using ordinary least squares (OLS) estimators would be severely affected and produces misleading results. To overcome this, many approaches have been investigated. These include robust methods which were reported to be less sensitive to the presence of outliers. In addition, ridge regression technique was employed to tackle multicollinearity problem. In order to mitigate both problems, a combination of ridge regression and robust methods was discussed in this study. The superiority of this approach was examined when simultaneous presence of multicollinearity and multiple outliers occurred in multiple linear regression. This study aimed to look at the performance of several well-known robust estimators; M, MM, RIDGE and robust ridge regression estimators, namely Weighted Ridge M-estimator (WRM), Weighted Ridge MM (WRMM), Ridge MM (RMM), in such a situation. Results of the study showed that in the presence of simultaneous multicollinearity and multiple outliers (in both x and y-direction), the RMM and RIDGE are more or less similar in terms of superiority over the other estimators, regardless of the number of observation, level of collinearity and percentage of outliers used. However, when outliers occurred in only single direction (y-direction), the WRMM estimator is the most superior among the robust ridge regression estimators, by producing the least variance. In conclusion, the robust ridge regression is the best alternative as compared to robust and conventional least squares estimators when dealing with simultaneous presence of multicollinearity and outliers.
A frequency-domain estimator for use in adaptive control systems
NASA Technical Reports Server (NTRS)
Lamaire, Richard O.; Valavani, Lena; Athans, Michael; Stein, Gunter
1991-01-01
This paper presents a frequency-domain estimator that can identify both a parametrized nominal model of a plant as well as a frequency-domain bounding function on the modeling error associated with this nominal model. This estimator, which we call a robust estimator, can be used in conjunction with a robust control-law redesign algorithm to form a robust adaptive controller.
Robust head pose estimation via supervised manifold learning.
Wang, Chao; Song, Xubo
2014-05-01
Head poses can be automatically estimated using manifold learning algorithms, with the assumption that with the pose being the only variable, the face images should lie in a smooth and low-dimensional manifold. However, this estimation approach is challenging due to other appearance variations related to identity, head location in image, background clutter, facial expression, and illumination. To address the problem, we propose to incorporate supervised information (pose angles of training samples) into the process of manifold learning. The process has three stages: neighborhood construction, graph weight computation and projection learning. For the first two stages, we redefine inter-point distance for neighborhood construction as well as graph weight by constraining them with the pose angle information. For Stage 3, we present a supervised neighborhood-based linear feature transformation algorithm to keep the data points with similar pose angles close together but the data points with dissimilar pose angles far apart. The experimental results show that our method has higher estimation accuracy than the other state-of-art algorithms and is robust to identity and illumination variations. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Jianqiao; Ye, Dong; Sun, Zhaowei; Liu, Chuang
2018-02-01
This paper presents a robust adaptive controller integrated with an extended state observer (ESO) to solve coupled spacecraft tracking maneuver in the presence of model uncertainties, external disturbances, actuator uncertainties including magnitude deviation and misalignment, and even actuator saturation. More specifically, employing the exponential coordinates on the Lie group SE(3) to describe configuration tracking errors, the coupled six-degrees-of-freedom (6-DOF) dynamics are developed for spacecraft relative motion, in which a generic fully actuated thruster distribution is considered and the lumped disturbances are reconstructed by using anti-windup technique. Then, a novel ESO, developed via second order sliding mode (SOSM) technique and adding linear correction terms to improve the performance, is designed firstly to estimate the disturbances in finite time. Based on the estimated information, an adaptive fast terminal sliding mode (AFTSM) controller is developed to guarantee the almost global asymptotic stability of the resulting closed-loop system such that the trajectory can be tracked with all the aforementioned drawbacks addressed simultaneously. Finally, the effectiveness of the controller is illustrated through numerical examples.
Clutch pressure estimation for a power-split hybrid transmission using nonlinear robust observer
NASA Astrophysics Data System (ADS)
Zhou, Bin; Zhang, Jianwu; Gao, Ji; Yu, Haisheng; Liu, Dong
2018-06-01
For a power-split hybrid transmission, using the brake clutch to realize the transition from electric drive mode to hybrid drive mode is an available strategy. Since the pressure information of the brake clutch is essential for the mode transition control, this research designs a nonlinear robust reduced-order observer to estimate the brake clutch pressure. Model uncertainties or disturbances are considered as additional inputs, thus the observer is designed in order that the error dynamics is input-to-state stable. The nonlinear characteristics of the system are expressed as the lookup tables in the observer. Moreover, the gain matrix of the observer is solved by two optimization procedures under the constraints of the linear matrix inequalities. The proposed observer is validated by offline simulation and online test, the results have shown that the observer achieves significant performance during the mode transition, as the estimation error is within a reasonable range, more importantly, it is asymptotically stable.
Dynamic State Estimation of Power Systems With Quantization Effects: A Recursive Filter Approach.
Hu, Liang; Wang, Zidong; Liu, Xiaohui
2016-08-01
In this paper, a recursive filter algorithm is developed to deal with the state estimation problem for power systems with quantized nonlinear measurements. The measurements from both the remote terminal units and the phasor measurement unit are subject to quantizations described by a logarithmic quantizer. Attention is focused on the design of a recursive filter such that, in the simultaneous presence of nonlinear measurements and quantization effects, an upper bound for the estimation error covariance is guaranteed and subsequently minimized. Instead of using the traditional approximation methods in nonlinear estimation that simply ignore the linearization errors, we treat both the linearization and quantization errors as norm-bounded uncertainties in the algorithm development so as to improve the performance of the estimator. For the power system with such kind of introduced uncertainties, a filter is designed in the framework of robust recursive estimation, and the developed filter algorithm is tested on the IEEE benchmark power system to demonstrate its effectiveness.
Variational optical flow estimation based on stick tensor voting.
Rashwan, Hatem A; Garcia, Miguel A; Puig, Domenec
2013-07-01
Variational optical flow techniques allow the estimation of flow fields from spatio-temporal derivatives. They are based on minimizing a functional that contains a data term and a regularization term. Recently, numerous approaches have been presented for improving the accuracy of the estimated flow fields. Among them, tensor voting has been shown to be particularly effective in the preservation of flow discontinuities. This paper presents an adaptation of the data term by using anisotropic stick tensor voting in order to gain robustness against noise and outliers with significantly lower computational cost than (full) tensor voting. In addition, an anisotropic complementary smoothness term depending on directional information estimated through stick tensor voting is utilized in order to preserve discontinuity capabilities of the estimated flow fields. Finally, a weighted non-local term that depends on both the estimated directional information and the occlusion state of pixels is integrated during the optimization process in order to denoise the final flow field. The proposed approach yields state-of-the-art results on the Middlebury benchmark.
A Comparative Study of Distribution System Parameter Estimation Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yannan; Williams, Tess L.; Gourisetti, Sri Nikhil Gup
2016-07-17
In this paper, we compare two parameter estimation methods for distribution systems: residual sensitivity analysis and state-vector augmentation with a Kalman filter. These two methods were originally proposed for transmission systems, and are still the most commonly used methods for parameter estimation. Distribution systems have much lower measurement redundancy than transmission systems. Therefore, estimating parameters is much more difficult. To increase the robustness of parameter estimation, the two methods are applied with combined measurement snapshots (measurement sets taken at different points in time), so that the redundancy for computing the parameter values is increased. The advantages and disadvantages of bothmore » methods are discussed. The results of this paper show that state-vector augmentation is a better approach for parameter estimation in distribution systems. Simulation studies are done on a modified version of IEEE 13-Node Test Feeder with varying levels of measurement noise and non-zero error in the other system model parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stetzel, KD; Aldrich, LL; Trimboli, MS
2015-03-15
This paper addresses the problem of estimating the present value of electrochemical internal variables in a lithium-ion cell in real time, using readily available measurements of cell voltage, current, and temperature. The variables that can be estimated include any desired set of reaction flux and solid and electrolyte potentials and concentrations at any set of one-dimensional spatial locations, in addition to more standard quantities such as state of charge. The method uses an extended Kalman filter along with a one-dimensional physics-based reduced-order model of cell dynamics. Simulations show excellent and robust predictions having dependable error bounds for most internal variables.more » (C) 2014 Elsevier B.V. All rights reserved.« less
Robust linear discriminant models to solve financial crisis in banking sectors
NASA Astrophysics Data System (ADS)
Lim, Yai-Fung; Yahaya, Sharipah Soaad Syed; Idris, Faoziah; Ali, Hazlina; Omar, Zurni
2014-12-01
Linear discriminant analysis (LDA) is a widely-used technique in patterns classification via an equation which will minimize the probability of misclassifying cases into their respective categories. However, the performance of classical estimators in LDA highly depends on the assumptions of normality and homoscedasticity. Several robust estimators in LDA such as Minimum Covariance Determinant (MCD), S-estimators and Minimum Volume Ellipsoid (MVE) are addressed by many authors to alleviate the problem of non-robustness of the classical estimates. In this paper, we investigate on the financial crisis of the Malaysian banking institutions using robust LDA and classical LDA methods. Our objective is to distinguish the "distress" and "non-distress" banks in Malaysia by using the LDA models. Hit ratio is used to validate the accuracy predictive of LDA models. The performance of LDA is evaluated by estimating the misclassification rate via apparent error rate. The results and comparisons show that the robust estimators provide a better performance than the classical estimators for LDA.
Robust Fault Detection Using Robust Z1 Estimation and Fuzzy Logic
NASA Technical Reports Server (NTRS)
Curry, Tramone; Collins, Emmanuel G., Jr.; Selekwa, Majura; Guo, Ten-Huei (Technical Monitor)
2001-01-01
This research considers the application of robust Z(sub 1), estimation in conjunction with fuzzy logic to robust fault detection for an aircraft fight control system. It begins with the development of robust Z(sub 1) estimators based on multiplier theory and then develops a fixed threshold approach to fault detection (FD). It then considers the use of fuzzy logic for robust residual evaluation and FD. Due to modeling errors and unmeasurable disturbances, it is difficult to distinguish between the effects of an actual fault and those caused by uncertainty and disturbance. Hence, it is the aim of a robust FD system to be sensitive to faults while remaining insensitive to uncertainty and disturbances. While fixed thresholds only allow a decision on whether a fault has or has not occurred, it is more valuable to have the residual evaluation lead to a conclusion related to the degree of, or probability of, a fault. Fuzzy logic is a viable means of determining the degree of a fault and allows the introduction of human observations that may not be incorporated in the rigorous threshold theory. Hence, fuzzy logic can provide a more reliable and informative fault detection process. Using an aircraft flight control system, the results of FD using robust Z(sub 1) estimation with a fixed threshold are demonstrated. FD that combines robust Z(sub 1) estimation and fuzzy logic is also demonstrated. It is seen that combining the robust estimator with fuzzy logic proves to be advantageous in increasing the sensitivity to smaller faults while remaining insensitive to uncertainty and disturbances.
Ye, Yalan; He, Wenwen; Cheng, Yunfei; Huang, Wenxia; Zhang, Zhilin
2017-02-16
The estimation of heart rate (HR) based on wearable devices is of interest in fitness. Photoplethysmography (PPG) is a promising approach to estimate HR due to low cost; however, it is easily corrupted by motion artifacts (MA). In this work, a robust approach based on random forest is proposed for accurately estimating HR from the photoplethysmography signal contaminated by intense motion artifacts, consisting of two stages. Stage 1 proposes a hybrid method to effectively remove MA with a low computation complexity, where two MA removal algorithms are combined by an accurate binary decision algorithm whose aim is to decide whether or not to adopt the second MA removal algorithm. Stage 2 proposes a random forest-based spectral peak-tracking algorithm, whose aim is to locate the spectral peak corresponding to HR, formulating the problem of spectral peak tracking into a pattern classification problem. Experiments on the PPG datasets including 22 subjects used in the 2015 IEEE Signal Processing Cup showed that the proposed approach achieved the average absolute error of 1.65 beats per minute (BPM) on the 22 PPG datasets. Compared to state-of-the-art approaches, the proposed approach has better accuracy and robustness to intense motion artifacts, indicating its potential use in wearable sensors for health monitoring and fitness tracking.
Lin, Faa-Jeng; Lee, Shih-Yang; Chou, Po-Huan
2012-12-01
The objective of this study is to develop an intelligent nonsingular terminal sliding-mode control (INTSMC) system using an Elman neural network (ENN) for the threedimensional motion control of a piezo-flexural nanopositioning stage (PFNS). First, the dynamic model of the PFNS is derived in detail. Then, to achieve robust, accurate trajectory-tracking performance, a nonsingular terminal sliding-mode control (NTSMC) system is proposed for the tracking of the reference contours. The steady-state response of the control system can be improved effectively because of the addition of the nonsingularity in the NTSMC. Moreover, to relax the requirements of the bounds and discard the switching function in NTSMC, an INTSMC system using a multi-input-multioutput (MIMO) ENN estimator is proposed to improve the control performance and robustness of the PFNS. The ENN estimator is proposed to estimate the hysteresis phenomenon and lumped uncertainty, including the system parameters and external disturbance of the PFNS online. Furthermore, the adaptive learning algorithms for the training of the parameters of the ENN online are derived using the Lyapunov stability theorem. In addition, two robust compensators are proposed to confront the minimum reconstructed errors in INTSMC. Finally, some experimental results for the tracking of various contours are given to demonstrate the validity of the proposed INTSMC system for PFNS.
Multi-category micro-milling tool wear monitoring with continuous hidden Markov models
NASA Astrophysics Data System (ADS)
Zhu, Kunpeng; Wong, Yoke San; Hong, Geok Soon
2009-02-01
In-process monitoring of tool conditions is important in micro-machining due to the high precision requirement and high tool wear rate. Tool condition monitoring in micro-machining poses new challenges compared to conventional machining. In this paper, a multi-category classification approach is proposed for tool flank wear state identification in micro-milling. Continuous Hidden Markov models (HMMs) are adapted for modeling of the tool wear process in micro-milling, and estimation of the tool wear state given the cutting force features. For a noise-robust approach, the HMM outputs are connected via a medium filter to minimize the tool state before entry into the next state due to high noise level. A detailed study on the selection of HMM structures for tool condition monitoring (TCM) is presented. Case studies on the tool state estimation in the micro-milling of pure copper and steel demonstrate the effectiveness and potential of these methods.
NASA Astrophysics Data System (ADS)
Bureick, Johannes; Alkhatib, Hamza; Neumann, Ingo
2016-03-01
In many geodetic engineering applications it is necessary to solve the problem of describing a measured data point cloud, measured, e. g. by laser scanner, by means of free-form curves or surfaces, e. g., with B-Splines as basis functions. The state of the art approaches to determine B-Splines yields results which are seriously manipulated by the occurrence of data gaps and outliers. Optimal and robust B-Spline fitting depend, however, on optimal selection of the knot vector. Hence we combine in our approach Monte-Carlo methods and the location and curvature of the measured data in order to determine the knot vector of the B-Spline in such a way that no oscillating effects at the edges of data gaps occur. We introduce an optimized approach based on computed weights by means of resampling techniques. In order to minimize the effect of outliers, we apply robust M-estimators for the estimation of control points. The above mentioned approach will be applied to a multi-sensor system based on kinematic terrestrial laserscanning in the field of rail track inspection.
A Direct Adaptive Control Approach in the Presence of Model Mismatch
NASA Technical Reports Server (NTRS)
Joshi, Suresh M.; Tao, Gang; Khong, Thuan
2009-01-01
This paper considers the problem of direct model reference adaptive control when the plant-model matching conditions are violated due to abnormal changes in the plant or incorrect knowledge of the plant's mathematical structure. The approach consists of direct adaptation of state feedback gains for state tracking, and simultaneous estimation of the plant-model mismatch. Because of the mismatch, the plant can no longer track the state of the original reference model, but may be able to track a new reference model that still provides satisfactory performance. The reference model is updated if the estimated plant-model mismatch exceeds a bound that is determined via robust stability and/or performance criteria. The resulting controller is a hybrid direct-indirect adaptive controller that offers asymptotic state tracking in the presence of plant-model mismatch as well as parameter deviations.
Single neuron modeling and data assimilation in BNST neurons
NASA Astrophysics Data System (ADS)
Farsian, Reza
Neurons, although tiny in size, are vastly complicated systems, which are responsible for the most basic yet essential functions of any nervous system. Even the most simple models of single neurons are usually high dimensional, nonlinear, and contain many parameters and states which are unobservable in a typical neurophysiological experiment. One of the most fundamental problems in experimental neurophysiology is the estimation of these parameters and states, since knowing their values is essential in identification, model construction, and forward prediction of biological neurons. Common methods of parameter and state estimation do not perform well for neural models due to their high dimensionality and nonlinearity. In this dissertation, two alternative approaches for parameters and state estimation of biological neurons have been demonstrated: dynamical parameter estimation (DPE) and a Markov Chain Monte Carlo (MCMC) method. The first method uses elements of chaos control and synchronization theory for parameter and state estimation. MCMC is a statistical approach which uses a path integral formulation to evaluate a mean and an error bound for these unobserved parameters and states. These methods have been applied to biological system of neurons in Bed Nucleus of Stria Termialis neurons (BNST) of rats. State and parameters of neurons in both systems were estimated, and their value were used for recreating a realistic model and predicting the behavior of the neurons successfully. The knowledge of biological parameters can ultimately provide a better understanding of the internal dynamics of a neuron in order to build robust models of neuron networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Kai; Qi, Junjian; Kang, Wei
2016-08-01
Growing penetration of intermittent resources such as renewable generations increases the risk of instability in a power grid. This paper introduces the concept of observability and its computational algorithms for a power grid monitored by the wide-area measurement system (WAMS) based on synchrophasors, e.g. phasor measurement units (PMUs). The goal is to estimate real-time states of generators, especially for potentially unstable trajectories, the information that is critical for the detection of rotor angle instability of the grid. The paper studies the number and siting of synchrophasors in a power grid so that the state of the system can be accuratelymore » estimated in the presence of instability. An unscented Kalman filter (UKF) is adopted as a tool to estimate the dynamic states that are not directly measured by synchrophasors. The theory and its computational algorithms are illustrated in detail by using a 9-bus 3-generator power system model and then tested on a 140-bus 48-generator Northeast Power Coordinating Council power grid model. Case studies on those two systems demonstrate the performance of the proposed approach using a limited number of synchrophasors for dynamic state estimation for stability assessment and its robustness against moderate inaccuracies in model parameters.« less
An Estimate of Avian Mortality at Communication Towers in the United States and Canada
Longcore, Travis; Rich, Catherine; Mineau, Pierre; MacDonald, Beau; Bert, Daniel G.; Sullivan, Lauren M.; Mutrie, Erin; Gauthreaux, Sidney A.; Avery, Michael L.; Crawford, Robert L.; Manville, Albert M.; Travis, Emilie R.; Drake, David
2012-01-01
Avian mortality at communication towers in the continental United States and Canada is an issue of pressing conservation concern. Previous estimates of this mortality have been based on limited data and have not included Canada. We compiled a database of communication towers in the continental United States and Canada and estimated avian mortality by tower with a regression relating avian mortality to tower height. This equation was derived from 38 tower studies for which mortality data were available and corrected for sampling effort, search efficiency, and scavenging where appropriate. Although most studies document mortality at guyed towers with steady-burning lights, we accounted for lower mortality at towers without guy wires or steady-burning lights by adjusting estimates based on published studies. The resulting estimate of mortality at towers is 6.8 million birds per year in the United States and Canada. Bootstrapped subsampling indicated that the regression was robust to the choice of studies included and a comparison of multiple regression models showed that incorporating sampling, scavenging, and search efficiency adjustments improved model fit. Estimating total avian mortality is only a first step in developing an assessment of the biological significance of mortality at communication towers for individual species or groups of species. Nevertheless, our estimate can be used to evaluate this source of mortality, develop subsequent per-species mortality estimates, and motivate policy action. PMID:22558082
An estimate of avian mortality at communication towers in the United States and Canada.
Longcore, Travis; Rich, Catherine; Mineau, Pierre; MacDonald, Beau; Bert, Daniel G; Sullivan, Lauren M; Mutrie, Erin; Gauthreaux, Sidney A; Avery, Michael L; Crawford, Robert L; Manville, Albert M; Travis, Emilie R; Drake, David
2012-01-01
Avian mortality at communication towers in the continental United States and Canada is an issue of pressing conservation concern. Previous estimates of this mortality have been based on limited data and have not included Canada. We compiled a database of communication towers in the continental United States and Canada and estimated avian mortality by tower with a regression relating avian mortality to tower height. This equation was derived from 38 tower studies for which mortality data were available and corrected for sampling effort, search efficiency, and scavenging where appropriate. Although most studies document mortality at guyed towers with steady-burning lights, we accounted for lower mortality at towers without guy wires or steady-burning lights by adjusting estimates based on published studies. The resulting estimate of mortality at towers is 6.8 million birds per year in the United States and Canada. Bootstrapped subsampling indicated that the regression was robust to the choice of studies included and a comparison of multiple regression models showed that incorporating sampling, scavenging, and search efficiency adjustments improved model fit. Estimating total avian mortality is only a first step in developing an assessment of the biological significance of mortality at communication towers for individual species or groups of species. Nevertheless, our estimate can be used to evaluate this source of mortality, develop subsequent per-species mortality estimates, and motivate policy action.
New robust statistical procedures for the polytomous logistic regression models.
Castilla, Elena; Ghosh, Abhik; Martin, Nirian; Pardo, Leandro
2018-05-17
This article derives a new family of estimators, namely the minimum density power divergence estimators, as a robust generalization of the maximum likelihood estimator for the polytomous logistic regression model. Based on these estimators, a family of Wald-type test statistics for linear hypotheses is introduced. Robustness properties of both the proposed estimators and the test statistics are theoretically studied through the classical influence function analysis. Appropriate real life examples are presented to justify the requirement of suitable robust statistical procedures in place of the likelihood based inference for the polytomous logistic regression model. The validity of the theoretical results established in the article are further confirmed empirically through suitable simulation studies. Finally, an approach for the data-driven selection of the robustness tuning parameter is proposed with empirical justifications. © 2018, The International Biometric Society.
The Burden of Pulmonary Nontuberculous Mycobacterial Disease in the United States
Strollo, Sara E.; Adjemian, Jennifer; Adjemian, Michael K.
2015-01-01
Rationale: State-specific case numbers and costs are critical for quantifying the burden of pulmonary nontuberculous mycobacterial disease in the United States. Objectives: To estimate and project national and state annual cases of nontuberculous mycobacterial disease and associated direct medical costs. Methods: Available direct cost estimates of nontuberculous mycobacterial disease medical encounters were applied to nontuberculous mycobacterial disease prevalence estimates derived from Medicare beneficiary data (2003–2007). Prevalence was adjusted for International Classification of Diseases, 9th Revision, undercoding and the inclusion of persons younger than 65 years of age. U.S. Census Bureau data identified 2010 and 2014 population counts and 2012 primary insurance-type distribution. Medical costs were reported in constant 2014 dollars. Projected 2014 estimates were adjusted for population growth and assumed a previously published 8% annual growth rate of nontuberculous mycobacterial disease prevalence. Measurements and Main Results: In 2010, we estimated 86,244 national cases, totaling to $815 million, of which 87% were inpatient related ($709 million) and 13% were outpatient related ($106 million). Annual state estimates varied from 48 to 12,544 cases ($503,000–$111 million), with a median of 1,208 cases ($11.5 million). Oceanic coastline states and Gulf States comprised 70% of nontuberculous mycobacterial disease cases but 60% of the U.S. population. Medical encounters among individuals aged 65 years and older ($562 million) were twofold higher than those younger than 65 years of age ($253 million). Of all costs incurred, medications comprised 76% of nontuberculous mycobacterial disease expenditures. Projected 2014 estimates resulted in 181,037 national annual cases ($1.7 billion). Conclusions: For a relatively rare disease, the financial cost of nontuberculous mycobacterial disease is substantial, particularly among older adults. Better data on disease dynamics and more recent prevalence estimates will generate more robust estimates. PMID:26214350
Robust Characterization of Loss Rates
NASA Astrophysics Data System (ADS)
Wallman, Joel J.; Barnhill, Marie; Emerson, Joseph
2015-08-01
Many physical implementations of qubits—including ion traps, optical lattices and linear optics—suffer from loss. A nonzero probability of irretrievably losing a qubit can be a substantial obstacle to fault-tolerant methods of processing quantum information, requiring new techniques to safeguard against loss that introduce an additional overhead that depends upon the loss rate. Here we present a scalable and platform-independent protocol for estimating the average loss rate (averaged over all input states) resulting from an arbitrary Markovian noise process, as well as an independent estimate of detector efficiency. Moreover, we show that our protocol gives an additional constraint on estimated parameters from randomized benchmarking that improves the reliability of the estimated error rate and provides a new indicator for non-Markovian signatures in the experimental data. We also derive a bound for the state-dependent loss rate in terms of the average loss rate.
Engineering Robust Nanocomposite Networks
2014-12-16
Krieger –Dougherty type constitutive relationship and steady-‐state viscosity measurements to estimate the...state thixotropic behavior of the rod suspensions at modest concentrations, using a fit to the Krieger ...fits reveal an aggregate density that increases with shear rate (B). Krieger -‐Dougherty
Robust Alternatives to the Standard Deviation in Processing of Physics Experimental Data
NASA Astrophysics Data System (ADS)
Shulenin, V. P.
2016-10-01
Properties of robust estimations of the scale parameter are studied. It is noted that the median of absolute deviations and the modified estimation of the average Gini differences have asymptotically normal distributions and bounded influence functions, are B-robust estimations, and hence, unlike the estimation of the standard deviation, are protected from the presence of outliers in the sample. Results of comparison of estimations of the scale parameter are given for a Gaussian model with contamination. An adaptive variant of the modified estimation of the average Gini differences is considered.
Local Estimators for Spacecraft Formation Flying
NASA Technical Reports Server (NTRS)
Fathpour, Nanaz; Hadaegh, Fred Y.; Mesbahi, Mehran; Nabi, Marzieh
2011-01-01
A formation estimation architecture for formation flying builds upon the local information exchange among multiple local estimators. Spacecraft formation flying involves the coordination of states among multiple spacecraft through relative sensing, inter-spacecraft communication, and control. Most existing formation flying estimation algorithms can only be supported via highly centralized, all-to-all, static relative sensing. New algorithms are needed that are scalable, modular, and robust to variations in the topology and link characteristics of the formation exchange network. These distributed algorithms should rely on a local information-exchange network, relaxing the assumptions on existing algorithms. In this research, it was shown that only local observability is required to design a formation estimator and control law. The approach relies on breaking up the overall information-exchange network into sequence of local subnetworks, and invoking an agreement-type filter to reach consensus among local estimators within each local network. State estimates were obtained by a set of local measurements that were passed through a set of communicating Kalman filters to reach an overall state estimation for the formation. An optimization approach was also presented by means of which diffused estimates over the network can be incorporated in the local estimates obtained by each estimator via local measurements. This approach compares favorably with that obtained by a centralized Kalman filter, which requires complete knowledge of the raw measurement available to each estimator.
Robust location and spread measures for nonparametric probability density function estimation.
López-Rubio, Ezequiel
2009-10-01
Robustness against outliers is a desirable property of any unsupervised learning scheme. In particular, probability density estimators benefit from incorporating this feature. A possible strategy to achieve this goal is to substitute the sample mean and the sample covariance matrix by more robust location and spread estimators. Here we use the L1-median to develop a nonparametric probability density function (PDF) estimator. We prove its most relevant properties, and we show its performance in density estimation and classification applications.
Karnowski, T P; Aykac, D; Giancardo, L; Li, Y; Nichols, T; Tobin, K W; Chaum, E
2011-01-01
The automated detection of diabetic retinopathy and other eye diseases in images of the retina has great promise as a low-cost method for broad-based screening. Many systems in the literature which perform automated detection include a quality estimation step and physiological feature detection, including the vascular tree and the optic nerve / macula location. In this work, we study the robustness of an automated disease detection method with respect to the accuracy of the optic nerve location and the quality of the images obtained as judged by a quality estimation algorithm. The detection algorithm features microaneurysm and exudate detection followed by feature extraction on the detected population to describe the overall retina image. Labeled images of retinas ground-truthed to disease states are used to train a supervised learning algorithm to identify the disease state of the retina image and exam set. Under the restrictions of high confidence optic nerve detections and good quality imagery, the system achieves a sensitivity and specificity of 94.8% and 78.7% with area-under-curve of 95.3%. Analysis of the effect of constraining quality and the distinction between mild non-proliferative diabetic retinopathy, normal retina images, and more severe disease states is included.
Goring, Simon; Mladenoff, David J.; Cogbill, Charles; Record, Sydne; Paciorek, Christopher J.; Dietze, Michael C.; Dawson, Andria; Matthes, Jaclyn; McLachlan, Jason S.; Williams, John W.
2016-01-01
EuroAmerican land-use and its legacies have transformed forest structure and composition across the United States (US). More accurate reconstructions of historical states are critical to understanding the processes governing past, current, and future forest dynamics. Here we present new gridded (8x8km) reconstructions of pre-settlement (1800s) forest composition and structure from the upper Midwestern US (Minnesota, Wisconsin, and most of Michigan), using 19th Century Public Land Survey System (PLSS), with estimates of relative composition, above-ground biomass, stem density, and basal area for 28 tree types. This mapping is more robust than past efforts, using spatially varying correction factors to accommodate sampling design, azimuthal censoring, and biases in tree selection.
NASA Astrophysics Data System (ADS)
Matsunaga, Y.; Sugita, Y.
2018-06-01
A data-driven modeling scheme is proposed for conformational dynamics of biomolecules based on molecular dynamics (MD) simulations and experimental measurements. In this scheme, an initial Markov State Model (MSM) is constructed from MD simulation trajectories, and then, the MSM parameters are refined using experimental measurements through machine learning techniques. The second step can reduce the bias of MD simulation results due to inaccurate force-field parameters. Either time-series trajectories or ensemble-averaged data are available as a training data set in the scheme. Using a coarse-grained model of a dye-labeled polyproline-20, we compare the performance of machine learning estimations from the two types of training data sets. Machine learning from time-series data could provide the equilibrium populations of conformational states as well as their transition probabilities. It estimates hidden conformational states in more robust ways compared to that from ensemble-averaged data although there are limitations in estimating the transition probabilities between minor states. We discuss how to use the machine learning scheme for various experimental measurements including single-molecule time-series trajectories.
Chen, Wansu; Shi, Jiaxiao; Qian, Lei; Azen, Stanley P
2014-06-26
To estimate relative risks or risk ratios for common binary outcomes, the most popular model-based methods are the robust (also known as modified) Poisson and the log-binomial regression. Of the two methods, it is believed that the log-binomial regression yields more efficient estimators because it is maximum likelihood based, while the robust Poisson model may be less affected by outliers. Evidence to support the robustness of robust Poisson models in comparison with log-binomial models is very limited. In this study a simulation was conducted to evaluate the performance of the two methods in several scenarios where outliers existed. The findings indicate that for data coming from a population where the relationship between the outcome and the covariate was in a simple form (e.g. log-linear), the two models yielded comparable biases and mean square errors. However, if the true relationship contained a higher order term, the robust Poisson models consistently outperformed the log-binomial models even when the level of contamination is low. The robust Poisson models are more robust (or less sensitive) to outliers compared to the log-binomial models when estimating relative risks or risk ratios for common binary outcomes. Users should be aware of the limitations when choosing appropriate models to estimate relative risks or risk ratios.
Lamont, Margaret M.; Fujisaki, Ikuko; Carthy, Raymond R.
2014-01-01
Because subpopulations can differ geographically, genetically and/or phenotypically, using data from one subpopulation to derive vital rates for another, while often unavoidable, is not optimal. We used a two-state open robust design model to analyze a 14-year dataset (1998–2011) from the St. Joseph Peninsula, Florida (USA; 29.748°, −85.400°) which is the densest loggerhead (Caretta caretta) nesting beach in the Northern Gulf of Mexico subpopulation. For these analyses, 433 individuals were marked of which only 7.2 % were observed re-nesting in the study area in subsequent years during the study period. Survival was estimated at 0.86 and is among the highest estimates for all subpopulations in the Northwest Atlantic population. The robust model estimated a nesting assemblage size that ranged from 32 to 230 individuals each year with an annual average of 110. The model estimates indicated an overall population decline of 17 %. The results presented here for this nesting group represent the first estimates for this subpopulation. These data provide managers with information specific to this subpopulation that can be used to develop recovery plans and conduct subpopulation-specific modeling exercises explicit to the challenges faced by turtles nesting in this region.
Robust Portfolio Optimization Using Pseudodistances.
Toma, Aida; Leoni-Aubin, Samuela
2015-01-01
The presence of outliers in financial asset returns is a frequently occurring phenomenon which may lead to unreliable mean-variance optimized portfolios. This fact is due to the unbounded influence that outliers can have on the mean returns and covariance estimators that are inputs in the optimization procedure. In this paper we present robust estimators of mean and covariance matrix obtained by minimizing an empirical version of a pseudodistance between the assumed model and the true model underlying the data. We prove and discuss theoretical properties of these estimators, such as affine equivariance, B-robustness, asymptotic normality and asymptotic relative efficiency. These estimators can be easily used in place of the classical estimators, thereby providing robust optimized portfolios. A Monte Carlo simulation study and applications to real data show the advantages of the proposed approach. We study both in-sample and out-of-sample performance of the proposed robust portfolios comparing them with some other portfolios known in literature.
Robust Portfolio Optimization Using Pseudodistances
2015-01-01
The presence of outliers in financial asset returns is a frequently occurring phenomenon which may lead to unreliable mean-variance optimized portfolios. This fact is due to the unbounded influence that outliers can have on the mean returns and covariance estimators that are inputs in the optimization procedure. In this paper we present robust estimators of mean and covariance matrix obtained by minimizing an empirical version of a pseudodistance between the assumed model and the true model underlying the data. We prove and discuss theoretical properties of these estimators, such as affine equivariance, B-robustness, asymptotic normality and asymptotic relative efficiency. These estimators can be easily used in place of the classical estimators, thereby providing robust optimized portfolios. A Monte Carlo simulation study and applications to real data show the advantages of the proposed approach. We study both in-sample and out-of-sample performance of the proposed robust portfolios comparing them with some other portfolios known in literature. PMID:26468948
Improved Uncertainty Quantification in Groundwater Flux Estimation Using GRACE
NASA Astrophysics Data System (ADS)
Reager, J. T., II; Rao, P.; Famiglietti, J. S.; Turmon, M.
2015-12-01
Groundwater change is difficult to monitor over large scales. One of the most successful approaches is in the remote sensing of time-variable gravity using NASA Gravity Recovery and Climate Experiment (GRACE) mission data, and successful case studies have created the opportunity to move towards a global groundwater monitoring framework for the world's largest aquifers. To achieve these estimates, several approximations are applied, including those in GRACE processing corrections, the formulation of the formal GRACE errors, destriping and signal recovery, and the numerical model estimation of snow water, surface water and soil moisture storage states used to isolate a groundwater component. A major weakness in these approaches is inconsistency: different studies have used different sources of primary and ancillary data, and may achieve different results based on alternative choices in these approximations. In this study, we present two cases of groundwater change estimation in California and the Colorado River basin, selected for their good data availability and varied climates. We achieve a robust numerical estimate of post-processing uncertainties resulting from land-surface model structural shortcomings and model resolution errors. Groundwater variations should demonstrate less variability than the overlying soil moisture state does, as groundwater has a longer memory of past events due to buffering by infiltration and drainage rate limits. We apply a model ensemble approach in a Bayesian framework constrained by the assumption of decreasing signal variability with depth in the soil column. We also discuss time variable errors vs. time constant errors, across-scale errors v. across-model errors, and error spectral content (across scales and across model). More robust uncertainty quantification for GRACE-based groundwater estimates would take all of these issues into account, allowing for more fair use in management applications and for better integration of GRACE-based measurements with observations from other sources.
ERIC Educational Resources Information Center
Tanner-Smith, Emily E.; Tipton, Elizabeth
2014-01-01
Methodologists have recently proposed robust variance estimation as one way to handle dependent effect sizes in meta-analysis. Software macros for robust variance estimation in meta-analysis are currently available for Stata (StataCorp LP, College Station, TX, USA) and SPSS (IBM, Armonk, NY, USA), yet there is little guidance for authors regarding…
Barbosa, Carolina; Bray, Jeremy W; Dowd, William N; Mills, Michael J; Moen, Phyllis; Wipfli, Brad; Olson, Ryan; Kelly, Erin L
2015-09-01
To estimate the return on investment (ROI) of a workplace initiative to reduce work-family conflict in a group-randomized 18-month field experiment in an information technology firm in the United States. Intervention resources were micro-costed; benefits included medical costs, productivity (presenteeism), and turnover. Regression models were used to estimate the ROI, and cluster-robust bootstrap was used to calculate its confidence interval. For each participant, model-adjusted costs of the intervention were $690 and company savings were $1850 (2011 prices). The ROI was 1.68 (95% confidence interval, -8.85 to 9.47) and was robust in sensitivity analyses. The positive ROI indicates that employers' investment in an intervention to reduce work-family conflict can enhance their business. Although this was the first study to present a confidence interval for the ROI, results are comparable with the literature.
Covariate selection with group lasso and doubly robust estimation of causal effects
Koch, Brandon; Vock, David M.; Wolfson, Julian
2017-01-01
Summary The efficiency of doubly robust estimators of the average causal effect (ACE) of a treatment can be improved by including in the treatment and outcome models only those covariates which are related to both treatment and outcome (i.e., confounders) or related only to the outcome. However, it is often challenging to identify such covariates among the large number that may be measured in a given study. In this paper, we propose GLiDeR (Group Lasso and Doubly Robust Estimation), a novel variable selection technique for identifying confounders and predictors of outcome using an adaptive group lasso approach that simultaneously performs coefficient selection, regularization, and estimation across the treatment and outcome models. The selected variables and corresponding coefficient estimates are used in a standard doubly robust ACE estimator. We provide asymptotic results showing that, for a broad class of data generating mechanisms, GLiDeR yields a consistent estimator of the ACE when either the outcome or treatment model is correctly specified. A comprehensive simulation study shows that GLiDeR is more efficient than doubly robust methods using standard variable selection techniques and has substantial computational advantages over a recently proposed doubly robust Bayesian model averaging method. We illustrate our method by estimating the causal treatment effect of bilateral versus single-lung transplant on forced expiratory volume in one year after transplant using an observational registry. PMID:28636276
Covariate selection with group lasso and doubly robust estimation of causal effects.
Koch, Brandon; Vock, David M; Wolfson, Julian
2018-03-01
The efficiency of doubly robust estimators of the average causal effect (ACE) of a treatment can be improved by including in the treatment and outcome models only those covariates which are related to both treatment and outcome (i.e., confounders) or related only to the outcome. However, it is often challenging to identify such covariates among the large number that may be measured in a given study. In this article, we propose GLiDeR (Group Lasso and Doubly Robust Estimation), a novel variable selection technique for identifying confounders and predictors of outcome using an adaptive group lasso approach that simultaneously performs coefficient selection, regularization, and estimation across the treatment and outcome models. The selected variables and corresponding coefficient estimates are used in a standard doubly robust ACE estimator. We provide asymptotic results showing that, for a broad class of data generating mechanisms, GLiDeR yields a consistent estimator of the ACE when either the outcome or treatment model is correctly specified. A comprehensive simulation study shows that GLiDeR is more efficient than doubly robust methods using standard variable selection techniques and has substantial computational advantages over a recently proposed doubly robust Bayesian model averaging method. We illustrate our method by estimating the causal treatment effect of bilateral versus single-lung transplant on forced expiratory volume in one year after transplant using an observational registry. © 2017, The International Biometric Society.
1981-10-01
earthquake. The analysis works from first "hysical principles and, so rar as possible, uses elementary ray theory and kinematic arguments. Nevertheless...elements of the more sophisticated theory of earthquake mechanisms and seismic wave propagation in the near field were taken into account in the...Broad Principles of Interpretation 163 4.2 Robust Estimation of Parameters 171 4.3 Some Remarks on High-Acceleration Values 180 4.4 The Focussing
NASA Astrophysics Data System (ADS)
Tong, M.; Xue, M.
2006-12-01
An important source of model error for convective-scale data assimilation and prediction is microphysical parameterization. This study investigates the possibility of estimating up to five fundamental microphysical parameters, which are closely involved in the definition of drop size distribution of microphysical species in a commonly used single-moment ice microphysics scheme, using radar observations and the ensemble Kalman filter method. The five parameters include the intercept parameters for rain, snow and hail/graupel, and the bulk densities of hail/graupel and snow. Parameter sensitivity and identifiability are first examined. The ensemble square-root Kalman filter (EnSRF) is employed for simultaneous state and parameter estimation. OSS experiments are performed for a model-simulated supercell storm, in which the five microphysical parameters are estimated individually or in different combinations starting from different initial guesses. When error exists in only one of the microphysical parameters, the parameter can be successfully estimated without exception. The estimation of multiple parameters is found to be less robust, with end results of estimation being sensitive to the realization of the initial parameter perturbation. This is believed to be because of the reduced parameter identifiability and the existence of non-unique solutions. The results of state estimation are, however, always improved when simultaneous parameter estimation is performed, even when the estimated parameters values are not accurate.
Using Robust Variance Estimation to Combine Multiple Regression Estimates with Meta-Analysis
ERIC Educational Resources Information Center
Williams, Ryan
2013-01-01
The purpose of this study was to explore the use of robust variance estimation for combining commonly specified multiple regression models and for combining sample-dependent focal slope estimates from diversely specified models. The proposed estimator obviates traditionally required information about the covariance structure of the dependent…
Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters
Xu, Lingyun; Luo, Haibo; Hui, Bin; Chang, Zheng
2016-01-01
Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Kernelized Correlation Filter (KCF) to significantly improve performance on motion blur and fast motion. By fusing KCF and STC trackers, our algorithm also solve the estimation of scale variation in many scenarios. We theoretically analyze the problem for CFs towards motions and utilize the point sharpness function of the target patch to evaluate the motion state of target. Then we set up an efficient scheme to handle the motion and scale variation without much time consuming. Our algorithm preserves the properties of KCF besides the ability to handle special scenarios. In the end extensive experimental results on benchmark of VOT datasets show our algorithm performs advantageously competed with the top-rank trackers. PMID:27618046
Strong Tracking Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking
Liu, Hua; Wu, Wen
2017-01-01
Conventional spherical simplex-radial cubature Kalman filter (SSRCKF) for maneuvering target tracking may decline in accuracy and even diverge when a target makes abrupt state changes. To overcome this problem, a novel algorithm named strong tracking spherical simplex-radial cubature Kalman filter (STSSRCKF) is proposed in this paper. The proposed algorithm uses the spherical simplex-radial (SSR) rule to obtain a higher accuracy than cubature Kalman filter (CKF) algorithm. Meanwhile, by introducing strong tracking filter (STF) into SSRCKF and modifying the predicted states’ error covariance with a time-varying fading factor, the gain matrix is adjusted on line so that the robustness of the filter and the capability of dealing with uncertainty factors is improved. In this way, the proposed algorithm has the advantages of both STF’s strong robustness and SSRCKF’s high accuracy. Finally, a maneuvering target tracking problem with abrupt state changes is used to test the performance of the proposed filter. Simulation results show that the STSSRCKF algorithm can get better estimation accuracy and greater robustness for maneuvering target tracking. PMID:28362347
Graphical Evaluation of the Ridge-Type Robust Regression Estimators in Mixture Experiments
Erkoc, Ali; Emiroglu, Esra
2014-01-01
In mixture experiments, estimation of the parameters is generally based on ordinary least squares (OLS). However, in the presence of multicollinearity and outliers, OLS can result in very poor estimates. In this case, effects due to the combined outlier-multicollinearity problem can be reduced to certain extent by using alternative approaches. One of these approaches is to use biased-robust regression techniques for the estimation of parameters. In this paper, we evaluate various ridge-type robust estimators in the cases where there are multicollinearity and outliers during the analysis of mixture experiments. Also, for selection of biasing parameter, we use fraction of design space plots for evaluating the effect of the ridge-type robust estimators with respect to the scaled mean squared error of prediction. The suggested graphical approach is illustrated on Hald cement data set. PMID:25202738
Graphical evaluation of the ridge-type robust regression estimators in mixture experiments.
Erkoc, Ali; Emiroglu, Esra; Akay, Kadri Ulas
2014-01-01
In mixture experiments, estimation of the parameters is generally based on ordinary least squares (OLS). However, in the presence of multicollinearity and outliers, OLS can result in very poor estimates. In this case, effects due to the combined outlier-multicollinearity problem can be reduced to certain extent by using alternative approaches. One of these approaches is to use biased-robust regression techniques for the estimation of parameters. In this paper, we evaluate various ridge-type robust estimators in the cases where there are multicollinearity and outliers during the analysis of mixture experiments. Also, for selection of biasing parameter, we use fraction of design space plots for evaluating the effect of the ridge-type robust estimators with respect to the scaled mean squared error of prediction. The suggested graphical approach is illustrated on Hald cement data set.
NASA Astrophysics Data System (ADS)
Liu, Jie; Wang, Wilson; Ma, Fai
2011-07-01
System current state estimation (or condition monitoring) and future state prediction (or failure prognostics) constitute the core elements of condition-based maintenance programs. For complex systems whose internal state variables are either inaccessible to sensors or hard to measure under normal operational conditions, inference has to be made from indirect measurements using approaches such as Bayesian learning. In recent years, the auxiliary particle filter (APF) has gained popularity in Bayesian state estimation; the APF technique, however, has some potential limitations in real-world applications. For example, the diversity of the particles may deteriorate when the process noise is small, and the variance of the importance weights could become extremely large when the likelihood varies dramatically over the prior. To tackle these problems, a regularized auxiliary particle filter (RAPF) is developed in this paper for system state estimation and forecasting. This RAPF aims to improve the performance of the APF through two innovative steps: (1) regularize the approximating empirical density and redraw samples from a continuous distribution so as to diversify the particles; and (2) smooth out the rather diffused proposals by a rejection/resampling approach so as to improve the robustness of particle filtering. The effectiveness of the proposed RAPF technique is evaluated through simulations of a nonlinear/non-Gaussian benchmark model for state estimation. It is also implemented for a real application in the remaining useful life (RUL) prediction of lithium-ion batteries.
Capture-recapture analysis for estimating manatee reproductive rates
Kendall, W.L.; Langtimm, C.A.; Beck, C.A.; Runge, M.C.
2004-01-01
Modeling the life history of the endangered Florida manatee (Trichechus manatus latirostris) is an important step toward understanding its population dynamics and predicting its response to management actions. We developed a multi-state mark-resighting model for data collected under Pollock's robust design. This model estimates breeding probability conditional on a female's breeding state in the previous year; assumes sighting probability depends on breeding state; and corrects for misclassification of a cow with first-year calf, by estimating conditional sighting probability for the calf. The model is also appropriate for estimating survival and unconditional breeding probabilities when the study area is closed to temporary emigration across years. We applied this model to photo-identification data for the Northwest and Atlantic Coast populations of manatees, for years 1982?2000. With rare exceptions, manatees do not reproduce in two consecutive years. For those without a first-year calf in the previous year, the best-fitting model included constant probabilities of producing a calf for the Northwest (0.43, SE = 0.057) and Atlantic (0.38, SE = 0.045) populations. The approach we present to adjust for misclassification of breeding state could be applicable to a large number of marine mammal populations.
Estimating transition probabilities in unmarked populations --entropy revisited
Cooch, E.G.; Link, W.A.
1999-01-01
The probability of surviving and moving between 'states' is of great interest to biologists. Robust estimation of these transitions using multiple observations of individually identifiable marked individuals has received considerable attention in recent years. However, in some situations, individuals are not identifiable (or have a very low recapture rate), although all individuals in a sample can be assigned to a particular state (e.g. breeding or non-breeding) without error. In such cases, only aggregate data (number of individuals in a given state at each occasion) are available. If the underlying matrix of transition probabilities does not vary through time and aggregate data are available for several time periods, then it is possible to estimate these parameters using least-squares methods. Even when such data are available, this assumption of stationarity will usually be deemed overly restrictive and, frequently, data will only be available for two time periods. In these cases, the problem reduces to estimating the most likely matrix (or matrices) leading to the observed frequency distribution of individuals in each state. An entropy maximization approach has been previously suggested. In this paper, we show that the entropy approach rests on a particular limiting assumption, and does not provide estimates of latent population parameters (the transition probabilities), but rather predictions of realized rates.
Vector Observation-Aided/Attitude-Rate Estimation Using Global Positioning System Signals
NASA Technical Reports Server (NTRS)
Oshman, Yaakov; Markley, F. Landis
1997-01-01
A sequential filtering algorithm is presented for attitude and attitude-rate estimation from Global Positioning System (GPS) differential carrier phase measurements. A third-order, minimal-parameter method for solving the attitude matrix kinematic equation is used to parameterize the filter's state, which renders the resulting estimator computationally efficient. Borrowing from tracking theory concepts, the angular acceleration is modeled as an exponentially autocorrelated stochastic process, thus avoiding the use of the uncertain spacecraft dynamic model. The new formulation facilitates the use of aiding vector observations in a unified filtering algorithm, which can enhance the method's robustness and accuracy. Numerical examples are used to demonstrate the performance of the method.
May, Peter; Garrido, Melissa M; Cassel, J Brian; Morrison, R Sean; Normand, Charles
2016-10-01
To evaluate the sensitivity of treatment effect estimates when length of stay (LOS) is used to control for unobserved heterogeneity when estimating treatment effect on cost of hospital admission with observational data. We used data from a prospective cohort study on the impact of palliative care consultation teams (PCCTs) on direct cost of hospital care. Adult patients with an advanced cancer diagnosis admitted to five large medical and cancer centers in the United States between 2007 and 2011 were eligible for this study. Costs were modeled using generalized linear models with a gamma distribution and a log link. We compared variability in estimates of PCCT impact on hospitalization costs when LOS was used as a covariate, as a sample parameter, and as an outcome denominator. We used propensity scores to account for patient characteristics associated with both PCCT use and total direct hospitalization costs. We analyzed data from hospital cost databases, medical records, and questionnaires. Our propensity score weighted sample included 969 patients who were discharged alive. In analyses of hospitalization costs, treatment effect estimates are highly sensitive to methods that control for LOS, complicating interpretation. Both the magnitude and significance of results varied widely with the method of controlling for LOS. When we incorporated intervention timing into our analyses, results were robust to LOS-controls. Treatment effect estimates using LOS-controls are not only suboptimal in terms of reliability (given concerns over endogeneity and bias) and usefulness (given the need to validate the cost-effectiveness of an intervention using overall resource use for a sample defined at baseline) but also in terms of robustness (results depend on the approach taken, and there is little evidence to guide this choice). To derive results that minimize endogeneity concerns and maximize external validity, investigators should match and analyze treatment and comparison arms on baseline factors only. Incorporating intervention timing may deliver results that are more reliable, more robust, and more useful than those derived using LOS-controls. © Health Research and Educational Trust.
Robust infrared targets tracking with covariance matrix representation
NASA Astrophysics Data System (ADS)
Cheng, Jian
2009-07-01
Robust infrared target tracking is an important and challenging research topic in many military and security applications, such as infrared imaging guidance, infrared reconnaissance, scene surveillance, etc. To effectively tackle the nonlinear and non-Gaussian state estimation problems, particle filtering is introduced to construct the theory framework of infrared target tracking. Under this framework, the observation probabilistic model is one of main factors for infrared targets tracking performance. In order to improve the tracking performance, covariance matrices are introduced to represent infrared targets with the multi-features. The observation probabilistic model can be constructed by computing the distance between the reference target's and the target samples' covariance matrix. Because the covariance matrix provides a natural tool for integrating multiple features, and is scale and illumination independent, target representation with covariance matrices can hold strong discriminating ability and robustness. Two experimental results demonstrate the proposed method is effective and robust for different infrared target tracking, such as the sensor ego-motion scene, and the sea-clutter scene.
Brainstem response and state-trait variables
NASA Technical Reports Server (NTRS)
Gilliland, Kirby
1988-01-01
A series of investigations are summarized from a personality research program that have relevance for mental state estimation. Of particular concern are those personality variables that are believed to have either a biological or perceptual basis and their relationship to human task performance and psychophysiology. These variables are among the most robust personality measures and include such dimensions as extraversion-introversion, sensation seeking, and impulsiveness. These dimensions also have the most distinct link to performance and psychophysiology. Through the course of many of these investigations two issues have emerged repeatedly: these personality dimensions appear to mediate mental state, and mental state appears to influence measures of performance or psychophysiology.
Chen, Siyuan; Epps, Julien
2014-12-01
Monitoring pupil and blink dynamics has applications in cognitive load measurement during human-machine interaction. However, accurate, efficient, and robust pupil size and blink estimation pose significant challenges to the efficacy of real-time applications due to the variability of eye images, hence to date, require manual intervention for fine tuning of parameters. In this paper, a novel self-tuning threshold method, which is applicable to any infrared-illuminated eye images without a tuning parameter, is proposed for segmenting the pupil from the background images recorded by a low cost webcam placed near the eye. A convex hull and a dual-ellipse fitting method are also proposed to select pupil boundary points and to detect the eyelid occlusion state. Experimental results on a realistic video dataset show that the measurement accuracy using the proposed methods is higher than that of widely used manually tuned parameter methods or fixed parameter methods. Importantly, it demonstrates convenience and robustness for an accurate and fast estimate of eye activity in the presence of variations due to different users, task types, load, and environments. Cognitive load measurement in human-machine interaction can benefit from this computationally efficient implementation without requiring a threshold calibration beforehand. Thus, one can envisage a mini IR camera embedded in a lightweight glasses frame, like Google Glass, for convenient applications of real-time adaptive aiding and task management in the future.
Optimal structure of metaplasticity for adaptive learning
2017-01-01
Learning from reward feedback in a changing environment requires a high degree of adaptability, yet the precise estimation of reward information demands slow updates. In the framework of estimating reward probability, here we investigated how this tradeoff between adaptability and precision can be mitigated via metaplasticity, i.e. synaptic changes that do not always alter synaptic efficacy. Using the mean-field and Monte Carlo simulations we identified ‘superior’ metaplastic models that can substantially overcome the adaptability-precision tradeoff. These models can achieve both adaptability and precision by forming two separate sets of meta-states: reservoirs and buffers. Synapses in reservoir meta-states do not change their efficacy upon reward feedback, whereas those in buffer meta-states can change their efficacy. Rapid changes in efficacy are limited to synapses occupying buffers, creating a bottleneck that reduces noise without significantly decreasing adaptability. In contrast, more-populated reservoirs can generate a strong signal without manifesting any observable plasticity. By comparing the behavior of our model and a few competing models during a dynamic probability estimation task, we found that superior metaplastic models perform close to optimally for a wider range of model parameters. Finally, we found that metaplastic models are robust to changes in model parameters and that metaplastic transitions are crucial for adaptive learning since replacing them with graded plastic transitions (transitions that change synaptic efficacy) reduces the ability to overcome the adaptability-precision tradeoff. Overall, our results suggest that ubiquitous unreliability of synaptic changes evinces metaplasticity that can provide a robust mechanism for mitigating the tradeoff between adaptability and precision and thus adaptive learning. PMID:28658247
Scalable Robust Principal Component Analysis Using Grassmann Averages.
Hauberg, Sren; Feragen, Aasa; Enficiaud, Raffi; Black, Michael J
2016-11-01
In large datasets, manual data verification is impossible, and we must expect the number of outliers to increase with data size. While principal component analysis (PCA) can reduce data size, and scalable solutions exist, it is well-known that outliers can arbitrarily corrupt the results. Unfortunately, state-of-the-art approaches for robust PCA are not scalable. We note that in a zero-mean dataset, each observation spans a one-dimensional subspace, giving a point on the Grassmann manifold. We show that the average subspace corresponds to the leading principal component for Gaussian data. We provide a simple algorithm for computing this Grassmann Average ( GA), and show that the subspace estimate is less sensitive to outliers than PCA for general distributions. Because averages can be efficiently computed, we immediately gain scalability. We exploit robust averaging to formulate the Robust Grassmann Average (RGA) as a form of robust PCA. The resulting Trimmed Grassmann Average ( TGA) is appropriate for computer vision because it is robust to pixel outliers. The algorithm has linear computational complexity and minimal memory requirements. We demonstrate TGA for background modeling, video restoration, and shadow removal. We show scalability by performing robust PCA on the entire Star Wars IV movie; a task beyond any current method. Source code is available online.
Tong, Shaocheng; Wang, Tong; Li, Yongming; Zhang, Huaguang
2014-06-01
This paper discusses the problem of adaptive neural network output feedback control for a class of stochastic nonlinear strict-feedback systems. The concerned systems have certain characteristics, such as unknown nonlinear uncertainties, unknown dead-zones, unmodeled dynamics and without the direct measurements of state variables. In this paper, the neural networks (NNs) are employed to approximate the unknown nonlinear uncertainties, and then by representing the dead-zone as a time-varying system with a bounded disturbance. An NN state observer is designed to estimate the unmeasured states. Based on both backstepping design technique and a stochastic small-gain theorem, a robust adaptive NN output feedback control scheme is developed. It is proved that all the variables involved in the closed-loop system are input-state-practically stable in probability, and also have robustness to the unmodeled dynamics. Meanwhile, the observer errors and the output of the system can be regulated to a small neighborhood of the origin by selecting appropriate design parameters. Simulation examples are also provided to illustrate the effectiveness of the proposed approach.
Adaptive torque estimation of robot joint with harmonic drive transmission
NASA Astrophysics Data System (ADS)
Shi, Zhiguo; Li, Yuankai; Liu, Guangjun
2017-11-01
Robot joint torque estimation using input and output position measurements is a promising technique, but the result may be affected by the load variation of the joint. In this paper, a torque estimation method with adaptive robustness and optimality adjustment according to load variation is proposed for robot joint with harmonic drive transmission. Based on a harmonic drive model and a redundant adaptive robust Kalman filter (RARKF), the proposed approach can adapt torque estimation filtering optimality and robustness to the load variation by self-tuning the filtering gain and self-switching the filtering mode between optimal and robust. The redundant factor of RARKF is designed as a function of the motor current for tolerating the modeling error and load-dependent filtering mode switching. The proposed joint torque estimation method has been experimentally studied in comparison with a commercial torque sensor and two representative filtering methods. The results have demonstrated the effectiveness of the proposed torque estimation technique.
Robust estimation for ordinary differential equation models.
Cao, J; Wang, L; Xu, J
2011-12-01
Applied scientists often like to use ordinary differential equations (ODEs) to model complex dynamic processes that arise in biology, engineering, medicine, and many other areas. It is interesting but challenging to estimate ODE parameters from noisy data, especially when the data have some outliers. We propose a robust method to address this problem. The dynamic process is represented with a nonparametric function, which is a linear combination of basis functions. The nonparametric function is estimated by a robust penalized smoothing method. The penalty term is defined with the parametric ODE model, which controls the roughness of the nonparametric function and maintains the fidelity of the nonparametric function to the ODE model. The basis coefficients and ODE parameters are estimated in two nested levels of optimization. The coefficient estimates are treated as an implicit function of ODE parameters, which enables one to derive the analytic gradients for optimization using the implicit function theorem. Simulation studies show that the robust method gives satisfactory estimates for the ODE parameters from noisy data with outliers. The robust method is demonstrated by estimating a predator-prey ODE model from real ecological data. © 2011, The International Biometric Society.
Robust geostatistical analysis of spatial data
NASA Astrophysics Data System (ADS)
Papritz, A.; Künsch, H. R.; Schwierz, C.; Stahel, W. A.
2012-04-01
Most of the geostatistical software tools rely on non-robust algorithms. This is unfortunate, because outlying observations are rather the rule than the exception, in particular in environmental data sets. Outlying observations may results from errors (e.g. in data transcription) or from local perturbations in the processes that are responsible for a given pattern of spatial variation. As an example, the spatial distribution of some trace metal in the soils of a region may be distorted by emissions of local anthropogenic sources. Outliers affect the modelling of the large-scale spatial variation, the so-called external drift or trend, the estimation of the spatial dependence of the residual variation and the predictions by kriging. Identifying outliers manually is cumbersome and requires expertise because one needs parameter estimates to decide which observation is a potential outlier. Moreover, inference after the rejection of some observations is problematic. A better approach is to use robust algorithms that prevent automatically that outlying observations have undue influence. Former studies on robust geostatistics focused on robust estimation of the sample variogram and ordinary kriging without external drift. Furthermore, Richardson and Welsh (1995) [2] proposed a robustified version of (restricted) maximum likelihood ([RE]ML) estimation for the variance components of a linear mixed model, which was later used by Marchant and Lark (2007) [1] for robust REML estimation of the variogram. We propose here a novel method for robust REML estimation of the variogram of a Gaussian random field that is possibly contaminated by independent errors from a long-tailed distribution. It is based on robustification of estimating equations for the Gaussian REML estimation. Besides robust estimates of the parameters of the external drift and of the variogram, the method also provides standard errors for the estimated parameters, robustified kriging predictions at both sampled and unsampled locations and kriging variances. The method has been implemented in an R package. Apart from presenting our modelling framework, we shall present selected simulation results by which we explored the properties of the new method. This will be complemented by an analysis of the Tarrawarra soil moisture data set [3].
NASA Astrophysics Data System (ADS)
Wu, Yun-jie; Li, Guo-fei
2018-01-01
Based on sliding mode extended state observer (SMESO) technique, an adaptive disturbance compensation finite control set optimal control (FCS-OC) strategy is proposed for permanent magnet synchronous motor (PMSM) system driven by voltage source inverter (VSI). So as to improve robustness of finite control set optimal control strategy, a SMESO is proposed to estimate the output-effect disturbance. The estimated value is fed back to finite control set optimal controller for implementing disturbance compensation. It is indicated through theoretical analysis that the designed SMESO could converge in finite time. The simulation results illustrate that the proposed adaptive disturbance compensation FCS-OC possesses better dynamical response behavior in the presence of disturbance.
Tsiatis, Anastasios A.; Davidian, Marie; Cao, Weihua
2010-01-01
Summary A routine challenge is that of making inference on parameters in a statistical model of interest from longitudinal data subject to drop out, which are a special case of the more general setting of monotonely coarsened data. Considerable recent attention has focused on doubly robust estimators, which in this context involve positing models for both the missingness (more generally, coarsening) mechanism and aspects of the distribution of the full data, that have the appealing property of yielding consistent inferences if only one of these models is correctly specified. Doubly robust estimators have been criticized for potentially disastrous performance when both of these models are even only mildly misspecified. We propose a doubly robust estimator applicable in general monotone coarsening problems that achieves comparable or improved performance relative to existing doubly robust methods, which we demonstrate via simulation studies and by application to data from an AIDS clinical trial. PMID:20731640
Integrated direct/indirect adaptive robust motion trajectory tracking control of pneumatic cylinders
NASA Astrophysics Data System (ADS)
Meng, Deyuan; Tao, Guoliang; Zhu, Xiaocong
2013-09-01
This paper studies the precision motion trajectory tracking control of a pneumatic cylinder driven by a proportional-directional control valve. An integrated direct/indirect adaptive robust controller is proposed. The controller employs a physical model based indirect-type parameter estimation to obtain reliable estimates of unknown model parameters, and utilises a robust control method with dynamic compensation type fast adaptation to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. Due to the use of projection mapping, the robust control law and the parameter adaption algorithm can be designed separately. Since the system model uncertainties are unmatched, the recursive backstepping technology is adopted to design the robust control law. Extensive comparative experimental results are presented to illustrate the effectiveness of the proposed controller and its performance robustness to parameter variations and sudden disturbances.
The effectiveness of robust RMCD control chart as outliers’ detector
NASA Astrophysics Data System (ADS)
Darmanto; Astutik, Suci
2017-12-01
A well-known control chart to monitor a multivariate process is Hotelling’s T 2 which its parameters are estimated classically, very sensitive and also marred by masking and swamping of outliers data effect. To overcome these situation, robust estimators are strongly recommended. One of robust estimators is re-weighted minimum covariance determinant (RMCD) which has robust characteristics as same as MCD. In this paper, the effectiveness term is accuracy of the RMCD control chart in detecting outliers as real outliers. In other word, how effectively this control chart can identify and remove masking and swamping effects of outliers. We assessed the effectiveness the robust control chart based on simulation by considering different scenarios: n sample sizes, proportion of outliers, number of p quality characteristics. We found that in some scenarios, this RMCD robust control chart works effectively.
NASA Astrophysics Data System (ADS)
Chang, Insu
The objective of the thesis is to introduce a relatively general nonlinear controller/estimator synthesis framework using a special type of the state-dependent Riccati equation technique. The continuous time state-dependent Riccati equation (SDRE) technique is extended to discrete-time under input and state constraints, yielding constrained (C) discrete-time (D) SDRE, referred to as CD-SDRE. For the latter, stability analysis and calculation of a region of attraction are carried out. The derivation of the D-SDRE under state-dependent weights is provided. Stability of the D-SDRE feedback system is established using Lyapunov stability approach. Receding horizon strategy is used to take into account the constraints on D-SDRE controller. Stability condition of the CD-SDRE controller is analyzed by using a switched system. The use of CD-SDRE scheme in the presence of constraints is then systematically demonstrated by applying this scheme to problems of spacecraft formation orbit reconfiguration under limited performance on thrusters. Simulation results demonstrate the efficacy and reliability of the proposed CD-SDRE. The CD-SDRE technique is further investigated in a case where there are uncertainties in nonlinear systems to be controlled. First, the system stability under each of the controllers in the robust CD-SDRE technique is separately established. The stability of the closed-loop system under the robust CD-SDRE controller is then proven based on the stability of each control system comprising switching configuration. A high fidelity dynamical model of spacecraft attitude motion in 3-dimensional space is derived with a partially filled fuel tank, assumed to have the first fuel slosh mode. The proposed robust CD-SDRE controller is then applied to the spacecraft attitude control system to stabilize its motion in the presence of uncertainties characterized by the first fuel slosh mode. The performance of the robust CD-SDRE technique is discussed. Subsequently, filtering techniques are investigated by using the D-SDRE technique. Detailed derivation of the D-SDRE-based filter (D-SDREF) is provided under the assumption of Gaussian noises and the stability condition of the error signal between the measured signal and the estimated signals is proven to be input-to-state stable. For the non-Gaussian distributed noises, we propose a filter by combining the D-SDREF and the particle filter (PF), named the combined D-SDRE/PF. Two algorithms for the filtering techniques are provided. Several filtering techniques are compared with challenging numerical examples to show the reliability and efficacy of the proposed D-SDREF and the combined D-SDRE/PF.
Experimental demonstration of cheap and accurate phase estimation
NASA Astrophysics Data System (ADS)
Rudinger, Kenneth; Kimmel, Shelby; Lobser, Daniel; Maunz, Peter
We demonstrate experimental implementation of robust phase estimation (RPE) to learn the phases of X and Y rotations on a trapped Yb+ ion qubit.. Unlike many other phase estimation protocols, RPE does not require ancillae nor near-perfect state preparation and measurement operations. Additionally, its computational requirements are minimal. Via RPE, using only 352 experimental samples per phase, we estimate phases of implemented gates with errors as small as 10-4 radians, as validated using gate set tomography. We also demonstrate that these estimates exhibit Heisenberg scaling in accuracy. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Efficient Robust Regression via Two-Stage Generalized Empirical Likelihood
Bondell, Howard D.; Stefanski, Leonard A.
2013-01-01
Large- and finite-sample efficiency and resistance to outliers are the key goals of robust statistics. Although often not simultaneously attainable, we develop and study a linear regression estimator that comes close. Efficiency obtains from the estimator’s close connection to generalized empirical likelihood, and its favorable robustness properties are obtained by constraining the associated sum of (weighted) squared residuals. We prove maximum attainable finite-sample replacement breakdown point, and full asymptotic efficiency for normal errors. Simulation evidence shows that compared to existing robust regression estimators, the new estimator has relatively high efficiency for small sample sizes, and comparable outlier resistance. The estimator is further illustrated and compared to existing methods via application to a real data set with purported outliers. PMID:23976805
Johnson, F R; Banzhaf, M R; Desvousges, W H
2000-06-01
This study uses stated-preference (SP) analysis to measure willingness to pay (WTP) to reduce acute episodes of respiratory and cardiovascular ill health. The SP survey employs a modified version of the health state descriptions used in the Quality of Well Being (QWB) Index. The four health state attributes are symptom, episode duration, activity restrictions and cost. Preferences are elicited using two different SP formats: graded-pair and discrete-choice. The different formats cause subjects to focus on different evaluation strategies. Combining two elicitation formats yields more valid and robust estimates than using only one approach. Estimates of indirect utility function parameters are obtained using advanced panel econometrics for each format separately and jointly. Socio-economic differences in health preferences are modelled by allowing the marginal utility of money relative to health attributes to vary across respondents. Because the joint model captures the combined preference information provided by both elicitation formats, these model estimates are used to calculate WTP. The results demonstrate the feasibility of estimating meaningful WTP values for policy-relevant respiratory and cardiac symptoms, even from subjects who never have personally experienced these conditions. Furthermore, because WTP estimates are for individual components of health improvements, estimates can be aggregated in various ways depending upon policy needs. Thus, using generic health attributes facilitates transferring WTP estimates for benefit-cost analysis of a variety of potential health interventions. Copyright 2000 John Wiley & Sons, Ltd.
Kalman Filter for Spinning Spacecraft Attitude Estimation
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Sedlak, Joseph E.
2008-01-01
This paper presents a Kalman filter using a seven-component attitude state vector comprising the angular momentum components in an inertial reference frame, the angular momentum components in the body frame, and a rotation angle. The relatively slow variation of these parameters makes this parameterization advantageous for spinning spacecraft attitude estimation. The filter accounts for the constraint that the magnitude of the angular momentum vector is the same in the inertial and body frames by employing a reduced six-component error state. Four variants of the filter, defined by different choices for the reduced error state, are tested against a quaternion-based filter using simulated data for the THEMIS mission. Three of these variants choose three of the components of the error state to be the infinitesimal attitude error angles, facilitating the computation of measurement sensitivity matrices and causing the usual 3x3 attitude covariance matrix to be a submatrix of the 6x6 covariance of the error state. These variants differ in their choice for the other three components of the error state. The variant employing the infinitesimal attitude error angles and the angular momentum components in an inertial reference frame as the error state shows the best combination of robustness and efficiency in the simulations. Attitude estimation results using THEMIS flight data are also presented.
Sampling design considerations for demographic studies: a case of colonial seabirds
Kendall, William L.; Converse, Sarah J.; Doherty, Paul F.; Naughton, Maura B.; Anders, Angela; Hines, James E.; Flint, Elizabeth
2009-01-01
For the purposes of making many informed conservation decisions, the main goal for data collection is to assess population status and allow prediction of the consequences of candidate management actions. Reducing the bias and variance of estimates of population parameters reduces uncertainty in population status and projections, thereby reducing the overall uncertainty under which a population manager must make a decision. In capture-recapture studies, imperfect detection of individuals, unobservable life-history states, local movement outside study areas, and tag loss can cause bias or precision problems with estimates of population parameters. Furthermore, excessive disturbance to individuals during capture?recapture sampling may be of concern because disturbance may have demographic consequences. We address these problems using as an example a monitoring program for Black-footed Albatross (Phoebastria nigripes) and Laysan Albatross (Phoebastria immutabilis) nesting populations in the northwestern Hawaiian Islands. To mitigate these estimation problems, we describe a synergistic combination of sampling design and modeling approaches. Solutions include multiple capture periods per season and multistate, robust design statistical models, dead recoveries and incidental observations, telemetry and data loggers, buffer areas around study plots to neutralize the effect of local movements outside study plots, and double banding and statistical models that account for band loss. We also present a variation on the robust capture?recapture design and a corresponding statistical model that minimizes disturbance to individuals. For the albatross case study, this less invasive robust design was more time efficient and, when used in combination with a traditional robust design, reduced the standard error of detection probability by 14% with only two hours of additional effort in the field. These field techniques and associated modeling approaches are applicable to studies of most taxa being marked and in some cases have individually been applied to studies of birds, fish, herpetofauna, and mammals.
Robust guaranteed-cost adaptive quantum phase estimation
NASA Astrophysics Data System (ADS)
Roy, Shibdas; Berry, Dominic W.; Petersen, Ian R.; Huntington, Elanor H.
2017-05-01
Quantum parameter estimation plays a key role in many fields like quantum computation, communication, and metrology. Optimal estimation allows one to achieve the most precise parameter estimates, but requires accurate knowledge of the model. Any inevitable uncertainty in the model parameters may heavily degrade the quality of the estimate. It is therefore desired to make the estimation process robust to such uncertainties. Robust estimation was previously studied for a varying phase, where the goal was to estimate the phase at some time in the past, using the measurement results from both before and after that time within a fixed time interval up to current time. Here, we consider a robust guaranteed-cost filter yielding robust estimates of a varying phase in real time, where the current phase is estimated using only past measurements. Our filter minimizes the largest (worst-case) variance in the allowable range of the uncertain model parameter(s) and this determines its guaranteed cost. It outperforms in the worst case the optimal Kalman filter designed for the model with no uncertainty, which corresponds to the center of the possible range of the uncertain parameter(s). Moreover, unlike the Kalman filter, our filter in the worst case always performs better than the best achievable variance for heterodyne measurements, which we consider as the tolerable threshold for our system. Furthermore, we consider effective quantum efficiency and effective noise power, and show that our filter provides the best results by these measures in the worst case.
Dolley, T.P.
2006-01-01
In 2005, domestic production of industrial sand and gravel was about 31 Mt, a 5% increase from 2004. This increase was bouyed by robust construction and petroleum sectors of the US economy. Based on estimated world production figures, the United States was the world's leading producer and consumer of industrial sand and gravel. In the short term, local shortages of industrial sand and gravel will continue to increase.
A Robust Approach to Risk Assessment Based on Species Sensitivity Distributions.
Monti, Gianna S; Filzmoser, Peter; Deutsch, Roland C
2018-05-03
The guidelines for setting environmental quality standards are increasingly based on probabilistic risk assessment due to a growing general awareness of the need for probabilistic procedures. One of the commonly used tools in probabilistic risk assessment is the species sensitivity distribution (SSD), which represents the proportion of species affected belonging to a biological assemblage as a function of exposure to a specific toxicant. Our focus is on the inverse use of the SSD curve with the aim of estimating the concentration, HCp, of a toxic compound that is hazardous to p% of the biological community under study. Toward this end, we propose the use of robust statistical methods in order to take into account the presence of outliers or apparent skew in the data, which may occur without any ecological basis. A robust approach exploits the full neighborhood of a parametric model, enabling the analyst to account for the typical real-world deviations from ideal models. We examine two classic HCp estimation approaches and consider robust versions of these estimators. In addition, we also use data transformations in conjunction with robust estimation methods in case of heteroscedasticity. Different scenarios using real data sets as well as simulated data are presented in order to illustrate and compare the proposed approaches. These scenarios illustrate that the use of robust estimation methods enhances HCp estimation. © 2018 Society for Risk Analysis.
Robust Eye Center Localization through Face Alignment and Invariant Isocentric Patterns
Teng, Dongdong; Chen, Dihu; Tan, Hongzhou
2015-01-01
The localization of eye centers is a very useful cue for numerous applications like face recognition, facial expression recognition, and the early screening of neurological pathologies. Several methods relying on available light for accurate eye-center localization have been exploited. However, despite the considerable improvements that eye-center localization systems have undergone in recent years, only few of these developments deal with the challenges posed by the profile (non-frontal face). In this paper, we first use the explicit shape regression method to obtain the rough location of the eye centers. Because this method extracts global information from the human face, it is robust against any changes in the eye region. We exploit this robustness and utilize it as a constraint. To locate the eye centers accurately, we employ isophote curvature features, the accuracy of which has been demonstrated in a previous study. By applying these features, we obtain a series of eye-center locations which are candidates for the actual position of the eye-center. Among these locations, the estimated locations which minimize the reconstruction error between the two methods mentioned above are taken as the closest approximation for the eye centers locations. Therefore, we combine explicit shape regression and isophote curvature feature analysis to achieve robustness and accuracy, respectively. In practical experiments, we use BioID and FERET datasets to test our approach to obtaining an accurate eye-center location while retaining robustness against changes in scale and pose. In addition, we apply our method to non-frontal faces to test its robustness and accuracy, which are essential in gaze estimation but have seldom been mentioned in previous works. Through extensive experimentation, we show that the proposed method can achieve a significant improvement in accuracy and robustness over state-of-the-art techniques, with our method ranking second in terms of accuracy. According to our implementation on a PC with a Xeon 2.5Ghz CPU, the frame rate of the eye tracking process can achieve 38 Hz. PMID:26426929
Product code optimization for determinate state LDPC decoding in robust image transmission.
Thomos, Nikolaos; Boulgouris, Nikolaos V; Strintzis, Michael G
2006-08-01
We propose a novel scheme for error-resilient image transmission. The proposed scheme employs a product coder consisting of low-density parity check (LDPC) codes and Reed-Solomon codes in order to deal effectively with bit errors. The efficiency of the proposed scheme is based on the exploitation of determinate symbols in Tanner graph decoding of LDPC codes and a novel product code optimization technique based on error estimation. Experimental evaluation demonstrates the superiority of the proposed system in comparison to recent state-of-the-art techniques for image transmission.
Porter, Kimberly R; McCarthy, Bridget J; Freels, Sally; Kim, Yoonsang; Davis, Faith G
2010-06-01
Prevalence is the best indicator of cancer survivorship in the population, but few studies have focused on brain tumor prevalence because of previous data limitations. Hence, the full impact of primary brain tumors on the healthcare system in the United States is not completely described. The present study provides an estimate of the prevalence of disease in the United States, updating an earlier prevalence study. Incidence data for 2004 and survival data for 1985-2005 were obtained by the Central Brain Tumor Registry of the United States from selected regions, modeled under 2 different survival assumptions, to estimate prevalence rates for the year 2004 and projected estimates for 2010. The overall incidence rate for primary brain tumors was 18.1 per 100 000 person-years with 2-, 5-, 10-, and 20-year observed survival rates of 62%, 54%, 45%, and 30%, respectively. On the basis of the sum of nonmalignant and averaged malignant estimates, the overall prevalence rate of individuals with a brain tumor was estimated to be 209.0 per 100 000 in 2004 and 221.8 per 100 000 in 2010. The female prevalence rate (264.8 per 100 000) was higher than that in males (158.7 per 100 000). The averaged prevalence rate for malignant tumors (42.5 per 100 000) was lower than the prevalence for nonmalignant tumors (166.5 per 100 000). This study provides estimates of the 2004 (n = 612 770) and 2010 (n = 688 096) expected number of individuals living with primary brain tumor diagnoses in the United States, providing more current and robust estimates for aiding healthcare planning and patient advocacy for an aging US population.
NASA Astrophysics Data System (ADS)
Yang, Duo; Zhang, Xu; Pan, Rui; Wang, Yujie; Chen, Zonghai
2018-04-01
The state-of-health (SOH) estimation is always a crucial issue for lithium-ion batteries. In order to provide an accurate and reliable SOH estimation, a novel Gaussian process regression (GPR) model based on charging curve is proposed in this paper. Different from other researches where SOH is commonly estimated by cycle life, in this work four specific parameters extracted from charging curves are used as inputs of the GPR model instead of cycle numbers. These parameters can reflect the battery aging phenomenon from different angles. The grey relational analysis method is applied to analyze the relational grade between selected features and SOH. On the other hand, some adjustments are made in the proposed GPR model. Covariance function design and the similarity measurement of input variables are modified so as to improve the SOH estimate accuracy and adapt to the case of multidimensional input. Several aging data from NASA data repository are used for demonstrating the estimation effect by the proposed method. Results show that the proposed method has high SOH estimation accuracy. Besides, a battery with dynamic discharging profile is used to verify the robustness and reliability of this method.
Contributions of the US state park system to nature recreation.
Siikamäki, Juha
2011-08-23
Nature recreation in the United States concentrates in publicly provided natural areas. They are costly to establish and maintain, but their societal contributions are difficult to measure. Here, a unique approach is developed to quantifying nature recreation services generated by the US state park system. The assessment first uses data from five national surveys conducted between 1975 and 2007 to consistently measure the amount of time used for nature recreation. The surveys comprise two official federal surveys and their predecessors. Each survey was designed to elicit nationally representative, detailed data on how people divide their time into different activities. State-level data on time use for nature recreation were then matched with information on the availability of state parks and other potentially important drivers of recreation, so that statistical estimation methods for nonexperimental panel data (difference-in-differences) could be used to examine the net contribution of state parks to nature recreation. The results show that state parks have a robust positive effect on nature recreation. For example, the approximately 2 million acres of state parks established between 1975 and 2007 are estimated to contribute annually 600 million hours of nature recreation (2.7 h per capita, approximately 9% of all nature recreation). All state parks generate annually an estimated 2.2 billion hours of nature recreation (9.7 h per capita; approximately 33% of all nature recreation). Using conventional approaches to valuing time, the estimated time value of nature recreation services generated by the US state park system is approximately $14 billion annually.
Contributions of the US state park system to nature recreation
Siikamäki, Juha
2011-01-01
Nature recreation in the United States concentrates in publicly provided natural areas. They are costly to establish and maintain, but their societal contributions are difficult to measure. Here, a unique approach is developed to quantifying nature recreation services generated by the US state park system. The assessment first uses data from five national surveys conducted between 1975 and 2007 to consistently measure the amount of time used for nature recreation. The surveys comprise two official federal surveys and their predecessors. Each survey was designed to elicit nationally representative, detailed data on how people divide their time into different activities. State-level data on time use for nature recreation were then matched with information on the availability of state parks and other potentially important drivers of recreation, so that statistical estimation methods for nonexperimental panel data (difference-in-differences) could be used to examine the net contribution of state parks to nature recreation. The results show that state parks have a robust positive effect on nature recreation. For example, the approximately 2 million acres of state parks established between 1975 and 2007 are estimated to contribute annually 600 million hours of nature recreation (2.7 h per capita, approximately 9% of all nature recreation). All state parks generate annually an estimated 2.2 billion hours of nature recreation (9.7 h per capita; approximately 33% of all nature recreation). Using conventional approaches to valuing time, the estimated time value of nature recreation services generated by the US state park system is approximately $14 billion annually. PMID:21831838
Robust image modeling techniques with an image restoration application
NASA Astrophysics Data System (ADS)
Kashyap, Rangasami L.; Eom, Kie-Bum
1988-08-01
A robust parameter-estimation algorithm for a nonsymmetric half-plane (NSHP) autoregressive model, where the driving noise is a mixture of a Gaussian and an outlier process, is presented. The convergence of the estimation algorithm is proved. An algorithm to estimate parameters and original image intensity simultaneously from the impulse-noise-corrupted image, where the model governing the image is not available, is also presented. The robustness of the parameter estimates is demonstrated by simulation. Finally, an algorithm to restore realistic images is presented. The entire image generally does not obey a simple image model, but a small portion (e.g., 8 x 8) of the image is assumed to obey an NSHP model. The original image is divided into windows and the robust estimation algorithm is applied for each window. The restoration algorithm is tested by comparing it to traditional methods on several different images.
NASA Astrophysics Data System (ADS)
Shariff, Nurul Sima Mohamad; Ferdaos, Nur Aqilah
2017-08-01
Multicollinearity often leads to inconsistent and unreliable parameter estimates in regression analysis. This situation will be more severe in the presence of outliers it will cause fatter tails in the error distributions than the normal distributions. The well-known procedure that is robust to multicollinearity problem is the ridge regression method. This method however is expected to be affected by the presence of outliers due to some assumptions imposed in the modeling procedure. Thus, the robust version of existing ridge method with some modification in the inverse matrix and the estimated response value is introduced. The performance of the proposed method is discussed and comparisons are made with several existing estimators namely, Ordinary Least Squares (OLS), ridge regression and robust ridge regression based on GM-estimates. The finding of this study is able to produce reliable parameter estimates in the presence of both multicollinearity and outliers in the data.
Leveraging AMI data for distribution system model calibration and situational awareness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peppanen, Jouni; Reno, Matthew J.; Thakkar, Mohini
The many new distributed energy resources being installed at the distribution system level require increased visibility into system operations that will be enabled by distribution system state estimation (DSSE) and situational awareness applications. Reliable and accurate DSSE requires both robust methods for managing the big data provided by smart meters and quality distribution system models. This paper presents intelligent methods for detecting and dealing with missing or inaccurate smart meter data, as well as the ways to process the data for different applications. It also presents an efficient and flexible parameter estimation method based on the voltage drop equation andmore » regression analysis to enhance distribution system model accuracy. Finally, it presents a 3-D graphical user interface for advanced visualization of the system state and events. Moreover, we demonstrate this paper for a university distribution network with the state-of-the-art real-time and historical smart meter data infrastructure.« less
Leveraging AMI data for distribution system model calibration and situational awareness
Peppanen, Jouni; Reno, Matthew J.; Thakkar, Mohini; ...
2015-01-15
The many new distributed energy resources being installed at the distribution system level require increased visibility into system operations that will be enabled by distribution system state estimation (DSSE) and situational awareness applications. Reliable and accurate DSSE requires both robust methods for managing the big data provided by smart meters and quality distribution system models. This paper presents intelligent methods for detecting and dealing with missing or inaccurate smart meter data, as well as the ways to process the data for different applications. It also presents an efficient and flexible parameter estimation method based on the voltage drop equation andmore » regression analysis to enhance distribution system model accuracy. Finally, it presents a 3-D graphical user interface for advanced visualization of the system state and events. Moreover, we demonstrate this paper for a university distribution network with the state-of-the-art real-time and historical smart meter data infrastructure.« less
Gould, William R.; Kendall, William L.
2013-01-01
Capture-recapture methods were initially developed to estimate human population abundance, but since that time have seen widespread use for fish and wildlife populations to estimate and model various parameters of population, metapopulation, and disease dynamics. Repeated sampling of marked animals provides information for estimating abundance and tracking the fate of individuals in the face of imperfect detection. Mark types have evolved from clipping or tagging to use of noninvasive methods such as photography of natural markings and DNA collection from feces. Survival estimation has been emphasized more recently as have transition probabilities between life history states and/or geographical locations, even where some states are unobservable or uncertain. Sophisticated software has been developed to handle highly parameterized models, including environmental and individual covariates, to conduct model selection, and to employ various estimation approaches such as maximum likelihood and Bayesian approaches. With these user-friendly tools, complex statistical models for studying population dynamics have been made available to ecologists. The future will include a continuing trend toward integrating data types, both for tagged and untagged individuals, to produce more precise and robust population models.
NASA Technical Reports Server (NTRS)
Oshman, Yaakov; Markley, Landis
1998-01-01
A sequential filtering algorithm is presented for attitude and attitude-rate estimation from Global Positioning System (GPS) differential carrier phase measurements. A third-order, minimal-parameter method for solving the attitude matrix kinematic equation is used to parameterize the filter's state, which renders the resulting estimator computationally efficient. Borrowing from tracking theory concepts, the angular acceleration is modeled as an exponentially autocorrelated stochastic process, thus avoiding the use of the uncertain spacecraft dynamic model. The new formulation facilitates the use of aiding vector observations in a unified filtering algorithm, which can enhance the method's robustness and accuracy. Numerical examples are used to demonstrate the performance of the method.
Using permutation tests to enhance causal inference in interrupted time series analysis.
Linden, Ariel
2018-06-01
Interrupted time series analysis (ITSA) is an evaluation methodology in which a single treatment unit's outcome is studied serially over time and the intervention is expected to "interrupt" the level and/or trend of that outcome. The internal validity is strengthened considerably when the treated unit is contrasted with a comparable control group. In this paper, we introduce a robustness check based on permutation tests to further improve causal inference. We evaluate the effect of California's Proposition 99 for reducing cigarette sales by iteratively casting each nontreated state into the role of "treated," creating a comparable control group using the ITSAMATCH package in Stata, and then evaluating treatment effects using ITSA regression. If statistically significant "treatment effects" are estimated for pseudotreated states, then any significant changes in the outcome of the actual treatment unit (California) cannot be attributed to the intervention. We perform these analyses setting the cutpoint significance level to P > .40 for identifying balanced matches (the highest threshold possible for which controls could still be found for California) and use the difference in differences of trends as the treatment effect estimator. Only California attained a statistically significant treatment effect, strengthening confidence in the conclusion that Proposition 99 reduced cigarette sales. The proposed permutation testing framework provides an additional robustness check to either support or refute a treatment effect identified in for the true treated unit in ITSA. Given its value and ease of implementation, this framework should be considered as a standard robustness test in all multiple group interrupted time series analyses. © 2018 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Kawai, Soshi; Terashima, Hiroshi; Negishi, Hideyo
2015-11-01
This paper addresses issues in high-fidelity numerical simulations of transcritical turbulent flows at supercritical pressure. The proposed strategy builds on a tabulated look-up table method based on REFPROP database for an accurate estimation of non-linear behaviors of thermodynamic and fluid transport properties at the transcritical conditions. Based on the look-up table method we propose a numerical method that satisfies high-order spatial accuracy, spurious-oscillation-free property, and capability of capturing the abrupt variation in thermodynamic properties across the transcritical contact surface. The method introduces artificial mass diffusivity to the continuity and momentum equations in a physically-consistent manner in order to capture the steep transcritical thermodynamic variations robustly while maintaining spurious-oscillation-free property in the velocity field. The pressure evolution equation is derived from the full compressible Navier-Stokes equations and solved instead of solving the total energy equation to achieve the spurious pressure oscillation free property with an arbitrary equation of state including the present look-up table method. Flow problems with and without physical diffusion are employed for the numerical tests to validate the robustness, accuracy, and consistency of the proposed approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawai, Soshi, E-mail: kawai@cfd.mech.tohoku.ac.jp; Terashima, Hiroshi; Negishi, Hideyo
2015-11-01
This paper addresses issues in high-fidelity numerical simulations of transcritical turbulent flows at supercritical pressure. The proposed strategy builds on a tabulated look-up table method based on REFPROP database for an accurate estimation of non-linear behaviors of thermodynamic and fluid transport properties at the transcritical conditions. Based on the look-up table method we propose a numerical method that satisfies high-order spatial accuracy, spurious-oscillation-free property, and capability of capturing the abrupt variation in thermodynamic properties across the transcritical contact surface. The method introduces artificial mass diffusivity to the continuity and momentum equations in a physically-consistent manner in order to capture themore » steep transcritical thermodynamic variations robustly while maintaining spurious-oscillation-free property in the velocity field. The pressure evolution equation is derived from the full compressible Navier–Stokes equations and solved instead of solving the total energy equation to achieve the spurious pressure oscillation free property with an arbitrary equation of state including the present look-up table method. Flow problems with and without physical diffusion are employed for the numerical tests to validate the robustness, accuracy, and consistency of the proposed approach.« less
Sideslip estimation for articulated heavy vehicles at the limits of adhesion
NASA Astrophysics Data System (ADS)
Morrison, Graeme; Cebon, David
2016-11-01
Various active safety systems proposed for articulated heavy goods vehicles (HGVs) require an accurate estimate of vehicle sideslip angle. However in contrast to passenger cars, there has been minimal published research on sideslip estimation for articulated HGVs. State-of-the-art observers, which rely on linear vehicle models, perform poorly when manoeuvring near the limits of tyre adhesion. This paper investigates three nonlinear Kalman filters (KFs) for estimating the tractor sideslip angle of a tractor-semitrailer. These are compared to the current state-of-the-art, through computer simulations and vehicle test data. An unscented KF using a 5 degrees-of-freedom single-track vehicle model with linear adaptive tyres is found to substantially outperform the state-of-the-art linear KF across a range of test manoeuvres on different surfaces, both at constant speed and during emergency braking. Robustness of the observer to parameter uncertainty is also demonstrated. Data supporting this research can be accessed at
Cho, HyunGi; Yeon, Suyong; Choi, Hyunga; Doh, Nakju
2018-01-01
In a group of general geometric primitives, plane-based features are widely used for indoor localization because of their robustness against noises. However, a lack of linearly independent planes may lead to a non-trivial estimation. This in return can cause a degenerate state from which all states cannot be estimated. To solve this problem, this paper first proposed a degeneracy detection method. A compensation method that could fix orientations by projecting an inertial measurement unit’s (IMU) information was then explained. Experiments were conducted using an IMU-Kinect v2 integrated sensor system prone to fall into degenerate cases owing to its narrow field-of-view. Results showed that the proposed framework could enhance map accuracy by successful detection and compensation of degenerated orientations. PMID:29565287
The economic impact of state cigarette taxes and smoke-free air policies on convenience stores.
Huang, Jidong; Chaloupka, Frank J
2013-03-01
To investigate whether increasing state cigarette taxes and/or enacting stronger smoke-free air (SFA) policies have negative impact on convenience store density in a state, a proxy that is determined by store openings and closings, which reflects store profits. State-level business count estimates for convenience stores for 50 states and District of Columbia from 1997 to 2009 were analysed using two-way fixed effects regression techniques that control for state-specific and year-specific determinants of convenience store density. The impact of tax and SFA policies was examined using a quasi-experimental research design that exploits changes in cigarette taxes and SFA policies within a state over time. Taxes are found to be uncorrelated with the density of combined convenience stores and gas stations in a state. Taxes are positively correlated with the density of convenience stores; however, the magnitude of this correlation is small, with a 10% increase in state cigarette taxes associated with a 0.19% (p<0.05) increase in the number of convenience stores per million people in a state. State-level SFA policies do not correlate with convenience store density in a state, regardless whether gas stations were included. These results are robust across different model specifications. In addition, they are robust with regard to the inclusion/exclusion of other state-level tobacco control measures and gasoline prices. Contrary to tobacco industry and related organisations' claims, higher cigarette taxes and stronger SFA policies do not negatively affect convenience stores.
Motion robust high resolution 3D free-breathing pulmonary MRI using dynamic 3D image self-navigator.
Jiang, Wenwen; Ong, Frank; Johnson, Kevin M; Nagle, Scott K; Hope, Thomas A; Lustig, Michael; Larson, Peder E Z
2018-06-01
To achieve motion robust high resolution 3D free-breathing pulmonary MRI utilizing a novel dynamic 3D image navigator derived directly from imaging data. Five-minute free-breathing scans were acquired with a 3D ultrashort echo time (UTE) sequence with 1.25 mm isotropic resolution. From this data, dynamic 3D self-navigating images were reconstructed under locally low rank (LLR) constraints and used for motion compensation with one of two methods: a soft-gating technique to penalize the respiratory motion induced data inconsistency, and a respiratory motion-resolved technique to provide images of all respiratory motion states. Respiratory motion estimation derived from the proposed dynamic 3D self-navigator of 7.5 mm isotropic reconstruction resolution and a temporal resolution of 300 ms was successful for estimating complex respiratory motion patterns. This estimation improved image quality compared to respiratory belt and DC-based navigators. Respiratory motion compensation with soft-gating and respiratory motion-resolved techniques provided good image quality from highly undersampled data in volunteers and clinical patients. An optimized 3D UTE sequence combined with the proposed reconstruction methods can provide high-resolution motion robust pulmonary MRI. Feasibility was shown in patients who had irregular breathing patterns in which our approach could depict clinically relevant pulmonary pathologies. Magn Reson Med 79:2954-2967, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Whitmore, Roy W; Chen, Wenlin
2013-12-04
The ability to infer human exposure to substances from drinking water using monitoring data helps determine and/or refine potential risks associated with drinking water consumption. We describe a survey sampling approach and its application to an atrazine groundwater monitoring study to adequately characterize upper exposure centiles and associated confidence intervals with predetermined precision. Study design and data analysis included sampling frame definition, sample stratification, sample size determination, allocation to strata, analysis weights, and weighted population estimates. Sampling frame encompassed 15 840 groundwater community water systems (CWS) in 21 states throughout the U. S. Median, and 95th percentile atrazine concentrations were 0.0022 and 0.024 ppb, respectively, for all CWS. Statistical estimates agreed with historical monitoring results, suggesting that the study design was adequate and robust. This methodology makes no assumptions regarding the occurrence distribution (e.g., lognormality); thus analyses based on the design-induced distribution provide the most robust basis for making inferences from the sample to target population.
Absolute phase estimation: adaptive local denoising and global unwrapping.
Bioucas-Dias, Jose; Katkovnik, Vladimir; Astola, Jaakko; Egiazarian, Karen
2008-10-10
The paper attacks absolute phase estimation with a two-step approach: the first step applies an adaptive local denoising scheme to the modulo-2 pi noisy phase; the second step applies a robust phase unwrapping algorithm to the denoised modulo-2 pi phase obtained in the first step. The adaptive local modulo-2 pi phase denoising is a new algorithm based on local polynomial approximations. The zero-order and the first-order approximations of the phase are calculated in sliding windows of varying size. The zero-order approximation is used for pointwise adaptive window size selection, whereas the first-order approximation is used to filter the phase in the obtained windows. For phase unwrapping, we apply the recently introduced robust (in the sense of discontinuity preserving) PUMA unwrapping algorithm [IEEE Trans. Image Process.16, 698 (2007)] to the denoised wrapped phase. Simulations give evidence that the proposed algorithm yields state-of-the-art performance, enabling strong noise attenuation while preserving image details. (c) 2008 Optical Society of America
Measuring coral reef decline through meta-analyses
Côté, I.M; Gill, J.A; Gardner, T.A; Watkinson, A.R
2005-01-01
Coral reef ecosystems are in decline worldwide, owing to a variety of anthropogenic and natural causes. One of the most obvious signals of reef degradation is a reduction in live coral cover. Past and current rates of loss of coral are known for many individual reefs; however, until recently, no large-scale estimate was available. In this paper, we show how meta-analysis can be used to integrate existing small-scale estimates of change in coral and macroalgal cover, derived from in situ surveys of reefs, to generate a robust assessment of long-term patterns of large-scale ecological change. Using a large dataset from Caribbean reefs, we examine the possible biases inherent in meta-analytical studies and the sensitivity of the method to patchiness in data availability. Despite the fact that our meta-analysis included studies that used a variety of sampling methods, the regional estimate of change in coral cover we obtained is similar to that generated by a standardized survey programme that was implemented in 1991 in the Caribbean. We argue that for habitat types that are regularly and reasonably well surveyed in the course of ecological or conservation research, meta-analysis offers a cost-effective and rapid method for generating robust estimates of past and current states. PMID:15814352
A less field-intensive robust design for estimating demographic parameters with Mark-resight data
McClintock, B.T.; White, Gary C.
2009-01-01
The robust design has become popular among animal ecologists as a means for estimating population abundance and related demographic parameters with mark-recapture data. However, two drawbacks of traditional mark-recapture are financial cost and repeated disturbance to animals. Mark-resight methodology may in many circumstances be a less expensive and less invasive alternative to mark-recapture, but the models developed to date for these data have overwhelmingly concentrated only on the estimation of abundance. Here we introduce a mark-resight model analogous to that used in mark-recapture for the simultaneous estimation of abundance, apparent survival, and transition probabilities between observable and unobservable states. The model may be implemented using standard statistical computing software, but it has also been incorporated into the freeware package Program MARK. We illustrate the use of our model with mainland New Zealand Robin (Petroica australis) data collected to ascertain whether this methodology may be a reliable alternative for monitoring endangered populations of a closely related species inhabiting the Chatham Islands. We found this method to be a viable alternative to traditional mark-recapture when cost or disturbance to species is of particular concern in long-term population monitoring programs. ?? 2009 by the Ecological Society of America.
Kalman-variant estimators for state of charge in lithium-sulfur batteries
NASA Astrophysics Data System (ADS)
Propp, Karsten; Auger, Daniel J.; Fotouhi, Abbas; Longo, Stefano; Knap, Vaclav
2017-03-01
Lithium-sulfur batteries are now commercially available, offering high specific energy density, low production costs and high safety. However, there is no commercially-available battery management system for them, and there are no published methods for determining state of charge in situ. This paper describes a study to address this gap. The properties and behaviours of lithium-sulfur are briefly introduced, and the applicability of 'standard' lithium-ion state-of-charge estimation methods is explored. Open-circuit voltage methods and 'Coulomb counting' are found to have a poor fit for lithium-sulfur, and model-based methods, particularly recursive Bayesian filters, are identified as showing strong promise. Three recursive Bayesian filters are implemented: an extended Kalman filter (EKF), an unscented Kalman filter (UKF) and a particle filter (PF). These estimators are tested through practical experimentation, considering both a pulse-discharge test and a test based on the New European Driving Cycle (NEDC). Experimentation is carried out at a constant temperature, mirroring the environment expected in the authors' target automotive application. It is shown that the estimators, which are based on a relatively simple equivalent-circuit-network model, can deliver useful results. If the three estimators implemented, the unscented Kalman filter gives the most robust and accurate performance, with an acceptable computational effort.
A Portuguese value set for the SF-6D.
Ferreira, Lara N; Ferreira, Pedro L; Pereira, Luis N; Brazier, John; Rowen, Donna
2010-08-01
The SF-6D is a preference-based measure of health derived from the SF-36 that can be used for cost-effectiveness analysis using cost-per-quality adjusted life-year analysis. This study seeks to estimate a system weight for the SF-6D for Portugal and to compare the results with the UK system weights. A sample of 55 health states defined by the SF-6D has been valued by a representative random sample of the Portuguese population, stratified by sex and age (n = 140), using the Standard Gamble (SG). Several models are estimated at both the individual and aggregate levels for predicting health-state valuations. Models with main effects, with interaction effects and with the constant forced to unity are presented. Random effects (RE) models are estimated using generalized least squares (GLS) regressions. Generalized estimation equations (GEE) are used to estimate RE models with the constant forced to unity. Estimations at the individual level were performed using 630 health-state valuations. Alternative functional forms are considered to account for the skewed distribution of health-state valuations. The models are analyzed in terms of their coefficients, overall fit, and the ability for predicting the SG-values. The RE models estimated using GLS and through GEE produce significant coefficients, which are robust across model specification. However, there are concerns regarding some inconsistent estimates, and so parsimonious consistent models were estimated. There is evidence of under prediction in some states assigned to poor health. The results are consistent with the UK results. The models estimated provide preference-based quality of life weights for the Portuguese population when health status data have been collected using the SF-36. Although the sample was randomly drowned findings should be treated with caution, given the small sample size, even knowing that they have been estimated at the individual level.
NASA Astrophysics Data System (ADS)
Xu, Shaoping; Zeng, Xiaoxia; Jiang, Yinnan; Tang, Yiling
2018-01-01
We proposed a noniterative principal component analysis (PCA)-based noise level estimation (NLE) algorithm that addresses the problem of estimating the noise level with a two-step scheme. First, we randomly extracted a number of raw patches from a given noisy image and took the smallest eigenvalue of the covariance matrix of the raw patches as the preliminary estimation of the noise level. Next, the final estimation was directly obtained with a nonlinear mapping (rectification) function that was trained on some representative noisy images corrupted with different known noise levels. Compared with the state-of-art NLE algorithms, the experiment results show that the proposed NLE algorithm can reliably infer the noise level and has robust performance over a wide range of image contents and noise levels, showing a good compromise between speed and accuracy in general.
The Robustness of LISREL Estimates in Structural Equation Models with Categorical Variables.
ERIC Educational Resources Information Center
Ethington, Corinna A.
1987-01-01
This study examined the effect of type of correlation matrix on the robustness of LISREL maximum likelihood and unweighted least squares structural parameter estimates for models with categorical variables. The analysis of mixed matrices produced estimates that closely approximated the model parameters except where dichotomous variables were…
A Novel Robust H∞ Filter Based on Krein Space Theory in the SINS/CNS Attitude Reference System.
Yu, Fei; Lv, Chongyang; Dong, Qianhui
2016-03-18
Owing to their numerous merits, such as compact, autonomous and independence, the strapdown inertial navigation system (SINS) and celestial navigation system (CNS) can be used in marine applications. What is more, due to the complementary navigation information obtained from two different kinds of sensors, the accuracy of the SINS/CNS integrated navigation system can be enhanced availably. Thus, the SINS/CNS system is widely used in the marine navigation field. However, the CNS is easily interfered with by the surroundings, which will lead to the output being discontinuous. Thus, the uncertainty problem caused by the lost measurement will reduce the system accuracy. In this paper, a robust H∞ filter based on the Krein space theory is proposed. The Krein space theory is introduced firstly, and then, the linear state and observation models of the SINS/CNS integrated navigation system are established reasonably. By taking the uncertainty problem into account, in this paper, a new robust H∞ filter is proposed to improve the robustness of the integrated system. At last, this new robust filter based on the Krein space theory is estimated by numerical simulations and actual experiments. Additionally, the simulation and experiment results and analysis show that the attitude errors can be reduced by utilizing the proposed robust filter effectively when the measurements are missing discontinuous. Compared to the traditional Kalman filter (KF) method, the accuracy of the SINS/CNS integrated system is improved, verifying the robustness and the availability of the proposed robust H∞ filter.
Observability and Estimation of Distributed Space Systems via Local Information-Exchange Networks
NASA Technical Reports Server (NTRS)
Fathpour, Nanaz; Hadaegh, Fred Y.; Mesbahi, Mehran; Rahmani, Amirreza
2011-01-01
Spacecraft formation flying involves the coordination of states among multiple spacecraft through relative sensing, inter-spacecraft communication, and control. Most existing formation-flying estimation algorithms can only be supported via highly centralized, all-to-all, static relative sensing. New algorithms are proposed that are scalable, modular, and robust to variations in the topology and link characteristics of the formation exchange network. These distributed algorithms rely on a local information exchange network, relaxing the assumptions on existing algorithms. Distributed space systems rely on a signal transmission network among multiple spacecraft for their operation. Control and coordination among multiple spacecraft in a formation is facilitated via a network of relative sensing and interspacecraft communications. Guidance, navigation, and control rely on the sensing network. This network becomes more complex the more spacecraft are added, or as mission requirements become more complex. The observability of a formation state was observed by a set of local observations from a particular node in the formation. Formation observability can be parameterized in terms of the matrices appearing in the formation dynamics and observation matrices. An agreement protocol was used as a mechanism for observing formation states from local measurements. An agreement protocol is essentially an unforced dynamic system whose trajectory is governed by the interconnection geometry and initial condition of each node, with a goal of reaching a common value of interest. The observability of the interconnected system depends on the geometry of the network, as well as the position of the observer relative to the topology. For the first time, critical GN&C (guidance, navigation, and control estimation) subsystems are synthesized by bringing the contribution of the spacecraft information-exchange network to the forefront of algorithmic analysis and design. The result is a formation estimation algorithm that is modular and robust to variations in the topology and link properties of the underlying formation network.
A Novel Continuous Blood Pressure Estimation Approach Based on Data Mining Techniques.
Miao, Fen; Fu, Nan; Zhang, Yuan-Ting; Ding, Xiao-Rong; Hong, Xi; He, Qingyun; Li, Ye
2017-11-01
Continuous blood pressure (BP) estimation using pulse transit time (PTT) is a promising method for unobtrusive BP measurement. However, the accuracy of this approach must be improved for it to be viable for a wide range of applications. This study proposes a novel continuous BP estimation approach that combines data mining techniques with a traditional mechanism-driven model. First, 14 features derived from simultaneous electrocardiogram and photoplethysmogram signals were extracted for beat-to-beat BP estimation. A genetic algorithm-based feature selection method was then used to select BP indicators for each subject. Multivariate linear regression and support vector regression were employed to develop the BP model. The accuracy and robustness of the proposed approach were validated for static, dynamic, and follow-up performance. Experimental results based on 73 subjects showed that the proposed approach exhibited excellent accuracy in static BP estimation, with a correlation coefficient and mean error of 0.852 and -0.001 ± 3.102 mmHg for systolic BP, and 0.790 and -0.004 ± 2.199 mmHg for diastolic BP. Similar performance was observed for dynamic BP estimation. The robustness results indicated that the estimation accuracy was lower by a certain degree one day after model construction but was relatively stable from one day to six months after construction. The proposed approach is superior to the state-of-the-art PTT-based model for an approximately 2-mmHg reduction in the standard derivation at different time intervals, thus providing potentially novel insights for cuffless BP estimation.
NASA Astrophysics Data System (ADS)
Shrivastava, Akash; Mohanty, A. R.
2018-03-01
This paper proposes a model-based method to estimate single plane unbalance parameters (amplitude and phase angle) in a rotor using Kalman filter and recursive least square based input force estimation technique. Kalman filter based input force estimation technique requires state-space model and response measurements. A modified system equivalent reduction expansion process (SEREP) technique is employed to obtain a reduced-order model of the rotor system so that limited response measurements can be used. The method is demonstrated using numerical simulations on a rotor-disk-bearing system. Results are presented for different measurement sets including displacement, velocity, and rotational response. Effects of measurement noise level, filter parameters (process noise covariance and forgetting factor), and modeling error are also presented and it is observed that the unbalance parameter estimation is robust with respect to measurement noise.
Converse, S.J.; Kendall, W.L.; Doherty, P.F.; Naughton, M.B.; Hines, J.E.; Thomson, David L.; Cooch, Evan G.; Conroy, Michael J.
2009-01-01
For many animal populations, one or more life stages are not accessible to sampling, and therefore an unobservable state is created. For colonially-breeding populations, this unobservable state could represent the subset of adult breeders that have foregone breeding in a given year. This situation applies to many seabird populations, notably albatrosses, where skipped breeders are either absent from the colony, or are present but difficult to capture or correctly assign to breeding state. Kendall et al. have proposed design strategies for investigations of seabird demography where such temporary emigration occurs, suggesting the use of the robust design to permit the estimation of time-dependent parameters and to increase the precision of estimates from multi-state models. A traditional robust design, where animals are subject to capture multiple times in a sampling season, is feasible in many cases. However, due to concerns that multiple captures per season could cause undue disturbance to animals, Kendall et al. developed a less-invasive robust design (LIRD), where initial captures are followed by an assessment of the ratio of marked-to-unmarked birds in the population or sampled plot. This approach has recently been applied in the Northwestern Hawaiian Islands to populations of Laysan (Phoebastria immutabilis) and black-footed (P. nigripes) albatrosses. In this paper, we outline the LIRD and its application to seabird population studies. We then describe an approach to determining optimal allocation of sampling effort in which we consider a non-robust design option (nRD), and variations of both the traditional robust design (RD), and the LIRD. Variations we considered included the number of secondary sampling occasions for the RD and the amount of total effort allocated to the marked-to-unmarked ratio assessment for the LIRD. We used simulations, informed by early data from the Hawaiian study, to address optimal study design for our example cases. We found that the LIRD performed as well or nearly as well as certain variations of the RD in terms of root mean square error, especially when relatively little of the total effort was allocated to the assessment of the marked-to-unmarked ratio versus to initial captures. For the RD, we found no clear benefit of using 2, 4, or 6 secondary sampling occasions per year, though this result will depend on the relative effort costs of captures versus recaptures and on the length of the study. We also found that field-readable bands, which may be affixed to birds in addition to standard metal bands, will be beneficial in longer-term studies of albatrosses in the Northwestern Hawaiian Islands. Field-readable bands reduce the effort cost of recapturing individuals, and in the long-term this cost reduction can offset the additional effort expended in affixing the bands. Finally, our approach to determining optimal study design can be generally applied by researchers, with little seed data, to design their studies at the outset.
NASA Astrophysics Data System (ADS)
Hassanabadi, Amir Hossein; Shafiee, Masoud; Puig, Vicenc
2018-01-01
In this paper, sensor fault diagnosis of a singular delayed linear parameter varying (LPV) system is considered. In the considered system, the model matrices are dependent on some parameters which are real-time measurable. The case of inexact parameter measurements is considered which is close to real situations. Fault diagnosis in this system is achieved via fault estimation. For this purpose, an augmented system is created by including sensor faults as additional system states. Then, an unknown input observer (UIO) is designed which estimates both the system states and the faults in the presence of measurement noise, disturbances and uncertainty induced by inexact measured parameters. Error dynamics and the original system constitute an uncertain system due to inconsistencies between real and measured values of the parameters. Then, the robust estimation of the system states and the faults are achieved with H∞ performance and formulated with a set of linear matrix inequalities (LMIs). The designed UIO is also applicable for fault diagnosis of singular delayed LPV systems with unmeasurable scheduling variables. The efficiency of the proposed approach is illustrated with an example.
Model-Based Method for Sensor Validation
NASA Technical Reports Server (NTRS)
Vatan, Farrokh
2012-01-01
Fault detection, diagnosis, and prognosis are essential tasks in the operation of autonomous spacecraft, instruments, and in situ platforms. One of NASA s key mission requirements is robust state estimation. Sensing, using a wide range of sensors and sensor fusion approaches, plays a central role in robust state estimation, and there is a need to diagnose sensor failure as well as component failure. Sensor validation can be considered to be part of the larger effort of improving reliability and safety. The standard methods for solving the sensor validation problem are based on probabilistic analysis of the system, from which the method based on Bayesian networks is most popular. Therefore, these methods can only predict the most probable faulty sensors, which are subject to the initial probabilities defined for the failures. The method developed in this work is based on a model-based approach and provides the faulty sensors (if any), which can be logically inferred from the model of the system and the sensor readings (observations). The method is also more suitable for the systems when it is hard, or even impossible, to find the probability functions of the system. The method starts by a new mathematical description of the problem and develops a very efficient and systematic algorithm for its solution. The method builds on the concepts of analytical redundant relations (ARRs).
A note on variance estimation in random effects meta-regression.
Sidik, Kurex; Jonkman, Jeffrey N
2005-01-01
For random effects meta-regression inference, variance estimation for the parameter estimates is discussed. Because estimated weights are used for meta-regression analysis in practice, the assumed or estimated covariance matrix used in meta-regression is not strictly correct, due to possible errors in estimating the weights. Therefore, this note investigates the use of a robust variance estimation approach for obtaining variances of the parameter estimates in random effects meta-regression inference. This method treats the assumed covariance matrix of the effect measure variables as a working covariance matrix. Using an example of meta-analysis data from clinical trials of a vaccine, the robust variance estimation approach is illustrated in comparison with two other methods of variance estimation. A simulation study is presented, comparing the three methods of variance estimation in terms of bias and coverage probability. We find that, despite the seeming suitability of the robust estimator for random effects meta-regression, the improved variance estimator of Knapp and Hartung (2003) yields the best performance among the three estimators, and thus may provide the best protection against errors in the estimated weights.
NASA Astrophysics Data System (ADS)
Shao, Xingling; Liu, Jun; Wang, Honglun
2018-05-01
In this paper, a robust back-stepping output feedback trajectory tracking controller is proposed for quadrotors subject to parametric uncertainties and external disturbances. Based on the hierarchical control principle, the quadrotor dynamics is decomposed into translational and rotational subsystems to facilitate the back-stepping control design. With given model information incorporated into observer design, a high-order extended state observer (ESO) that relies only on position measurements is developed to estimate the remaining unmeasurable states and the lumped disturbances in rotational subsystem simultaneously. To overcome the problem of "explosion of complexity" in the back-stepping design, the sigmoid tracking differentiator (STD) is introduced to compute the derivative of virtual control laws. The advantage is that the proposed controller via output-feedback scheme not only can ensure good tracking performance using very limited information of quadrotors, but also has the ability of handling the undesired uncertainties. The stability analysis is established using the Lyapunov theory. Simulation results demonstrate the effectiveness of the proposed control scheme in achieving a guaranteed tracking performance with respect to an 8-shaped reference trajectory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basher, A.M.H.
Poor control of steam generator water level of a nuclear power plant may lead to frequent nuclear reactor shutdowns. These shutdowns are more common at low power where the plant exhibits strong non-minimum phase characteristics and flow measurements at low power are unreliable in many instances. There is need to investigate this problem and systematically design a controller for water level regulation. This work is concerned with the study and the design of a suitable controller for a U-Tube Steam Generator (UTSG) of a Pressurized Water Reactor (PWR) which has time varying dynamics. The controller should be suitable for themore » water level control of UTSG without manual operation from start-up to full load transient condition. Some preliminary simulation results are presented that demonstrate the effectiveness of the proposed controller. The development of the complete control algorithm includes components such as robust output tracking, and adaptively estimating both the system parameters and state variables simultaneously. At the present time all these components are not completed due to time constraints. A robust tracking component of the controller for water level control is developed and its effectiveness on the parameter variations is demonstrated in this study. The results appear encouraging and they are only preliminary. Additional work is warranted to resolve other issues such as robust adaptive estimation.« less
Handheld pose tracking using vision-inertial sensors with occlusion handling
NASA Astrophysics Data System (ADS)
Li, Juan; Slembrouck, Maarten; Deboeverie, Francis; Bernardos, Ana M.; Besada, Juan A.; Veelaert, Peter; Aghajan, Hamid; Casar, José R.; Philips, Wilfried
2016-07-01
Tracking of a handheld device's three-dimensional (3-D) position and orientation is fundamental to various application domains, including augmented reality (AR), virtual reality, and interaction in smart spaces. Existing systems still offer limited performance in terms of accuracy, robustness, computational cost, and ease of deployment. We present a low-cost, accurate, and robust system for handheld pose tracking using fused vision and inertial data. The integration of measurements from embedded accelerometers reduces the number of unknown parameters in the six-degree-of-freedom pose calculation. The proposed system requires two light-emitting diode (LED) markers to be attached to the device, which are tracked by external cameras through a robust algorithm against illumination changes. Three data fusion methods have been proposed, including the triangulation-based stereo-vision system, constraint-based stereo-vision system with occlusion handling, and triangulation-based multivision system. Real-time demonstrations of the proposed system applied to AR and 3-D gaming are also included. The accuracy assessment of the proposed system is carried out by comparing with the data generated by the state-of-the-art commercial motion tracking system OptiTrack. Experimental results show that the proposed system has achieved high accuracy of few centimeters in position estimation and few degrees in orientation estimation.
Robust Statistical Approaches for RSS-Based Floor Detection in Indoor Localization.
Razavi, Alireza; Valkama, Mikko; Lohan, Elena Simona
2016-05-31
Floor detection for indoor 3D localization of mobile devices is currently an important challenge in the wireless world. Many approaches currently exist, but usually the robustness of such approaches is not addressed or investigated. The goal of this paper is to show how to robustify the floor estimation when probabilistic approaches with a low number of parameters are employed. Indeed, such an approach would allow a building-independent estimation and a lower computing power at the mobile side. Four robustified algorithms are to be presented: a robust weighted centroid localization method, a robust linear trilateration method, a robust nonlinear trilateration method, and a robust deconvolution method. The proposed approaches use the received signal strengths (RSS) measured by the Mobile Station (MS) from various heard WiFi access points (APs) and provide an estimate of the vertical position of the MS, which can be used for floor detection. We will show that robustification can indeed increase the performance of the RSS-based floor detection algorithms.
Letcher, Benjamin H.; Schueller, Paul; Bassar, Ronald D.; Nislow, Keith H.; Coombs, Jason A.; Sakrejda, Krzysztof; Morrissey, Michael; Sigourney, Douglas B.; Whiteley, Andrew R.; O'Donnell, Matthew J.; Dubreuil, Todd L.
2015-01-01
Modelling the effects of environmental change on populations is a key challenge for ecologists, particularly as the pace of change increases. Currently, modelling efforts are limited by difficulties in establishing robust relationships between environmental drivers and population responses.We developed an integrated capture–recapture state-space model to estimate the effects of two key environmental drivers (stream flow and temperature) on demographic rates (body growth, movement and survival) using a long-term (11 years), high-resolution (individually tagged, sampled seasonally) data set of brook trout (Salvelinus fontinalis) from four sites in a stream network. Our integrated model provides an effective context within which to estimate environmental driver effects because it takes full advantage of data by estimating (latent) state values for missing observations, because it propagates uncertainty among model components and because it accounts for the major demographic rates and interactions that contribute to annual survival.We found that stream flow and temperature had strong effects on brook trout demography. Some effects, such as reduction in survival associated with low stream flow and high temperature during the summer season, were consistent across sites and age classes, suggesting that they may serve as robust indicators of vulnerability to environmental change. Other survival effects varied across ages, sites and seasons, indicating that flow and temperature may not be the primary drivers of survival in those cases. Flow and temperature also affected body growth rates; these responses were consistent across sites but differed dramatically between age classes and seasons. Finally, we found that tributary and mainstem sites responded differently to variation in flow and temperature.Annual survival (combination of survival and body growth across seasons) was insensitive to body growth and was most sensitive to flow (positive) and temperature (negative) in the summer and fall.These observations, combined with our ability to estimate the occurrence, magnitude and direction of fish movement between these habitat types, indicated that heterogeneity in response may provide a mechanism providing potential resilience to environmental change. Given that the challenges we faced in our study are likely to be common to many intensive data sets, the integrated modelling approach could be generally applicable and useful.
Letcher, Benjamin H; Schueller, Paul; Bassar, Ronald D; Nislow, Keith H; Coombs, Jason A; Sakrejda, Krzysztof; Morrissey, Michael; Sigourney, Douglas B; Whiteley, Andrew R; O'Donnell, Matthew J; Dubreuil, Todd L
2015-03-01
Modelling the effects of environmental change on populations is a key challenge for ecologists, particularly as the pace of change increases. Currently, modelling efforts are limited by difficulties in establishing robust relationships between environmental drivers and population responses. We developed an integrated capture-recapture state-space model to estimate the effects of two key environmental drivers (stream flow and temperature) on demographic rates (body growth, movement and survival) using a long-term (11 years), high-resolution (individually tagged, sampled seasonally) data set of brook trout (Salvelinus fontinalis) from four sites in a stream network. Our integrated model provides an effective context within which to estimate environmental driver effects because it takes full advantage of data by estimating (latent) state values for missing observations, because it propagates uncertainty among model components and because it accounts for the major demographic rates and interactions that contribute to annual survival. We found that stream flow and temperature had strong effects on brook trout demography. Some effects, such as reduction in survival associated with low stream flow and high temperature during the summer season, were consistent across sites and age classes, suggesting that they may serve as robust indicators of vulnerability to environmental change. Other survival effects varied across ages, sites and seasons, indicating that flow and temperature may not be the primary drivers of survival in those cases. Flow and temperature also affected body growth rates; these responses were consistent across sites but differed dramatically between age classes and seasons. Finally, we found that tributary and mainstem sites responded differently to variation in flow and temperature. Annual survival (combination of survival and body growth across seasons) was insensitive to body growth and was most sensitive to flow (positive) and temperature (negative) in the summer and fall. These observations, combined with our ability to estimate the occurrence, magnitude and direction of fish movement between these habitat types, indicated that heterogeneity in response may provide a mechanism providing potential resilience to environmental change. Given that the challenges we faced in our study are likely to be common to many intensive data sets, the integrated modelling approach could be generally applicable and useful. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Nichols, James D.; Pollock, Kenneth H.; Hines, James E.
1984-01-01
The robust design of Pollock (1982) was used to estimate parameters of a Maryland M. pennsylvanicus population. Closed model tests provided strong evidence of heterogeneity of capture probability, and model M eta (Otis et al., 1978) was selected as the most appropriate model for estimating population size. The Jolly-Seber model goodness-of-fit test indicated rejection of the model for this data set, and the M eta estimates of population size were all higher than the Jolly-Seber estimates. Both of these results are consistent with the evidence of heterogeneous capture probabilities. The authors thus used M eta estimates of population size, Jolly-Seber estimates of survival rate, and estimates of birth-immigration based on a combination of the population size and survival rate estimates. Advantages of the robust design estimates for certain inference procedures are discussed, and the design is recommended for future small mammal capture-recapture studies directed at estimation.
A robust vision-based sensor fusion approach for real-time pose estimation.
Assa, Akbar; Janabi-Sharifi, Farrokh
2014-02-01
Object pose estimation is of great importance to many applications, such as augmented reality, localization and mapping, motion capture, and visual servoing. Although many approaches based on a monocular camera have been proposed, only a few works have concentrated on applying multicamera sensor fusion techniques to pose estimation. Higher accuracy and enhanced robustness toward sensor defects or failures are some of the advantages of these schemes. This paper presents a new Kalman-based sensor fusion approach for pose estimation that offers higher accuracy and precision, and is robust to camera motion and image occlusion, compared to its predecessors. Extensive experiments are conducted to validate the superiority of this fusion method over currently employed vision-based pose estimation algorithms.
Zhang, Zhiyong; Yuan, Ke-Hai
2016-06-01
Cronbach's coefficient alpha is a widely used reliability measure in social, behavioral, and education sciences. It is reported in nearly every study that involves measuring a construct through multiple items. With non-tau-equivalent items, McDonald's omega has been used as a popular alternative to alpha in the literature. Traditional estimation methods for alpha and omega often implicitly assume that data are complete and normally distributed. This study proposes robust procedures to estimate both alpha and omega as well as corresponding standard errors and confidence intervals from samples that may contain potential outlying observations and missing values. The influence of outlying observations and missing data on the estimates of alpha and omega is investigated through two simulation studies. Results show that the newly developed robust method yields substantially improved alpha and omega estimates as well as better coverage rates of confidence intervals than the conventional nonrobust method. An R package coefficientalpha is developed and demonstrated to obtain robust estimates of alpha and omega.
Zhang, Zhiyong; Yuan, Ke-Hai
2015-01-01
Cronbach’s coefficient alpha is a widely used reliability measure in social, behavioral, and education sciences. It is reported in nearly every study that involves measuring a construct through multiple items. With non-tau-equivalent items, McDonald’s omega has been used as a popular alternative to alpha in the literature. Traditional estimation methods for alpha and omega often implicitly assume that data are complete and normally distributed. This study proposes robust procedures to estimate both alpha and omega as well as corresponding standard errors and confidence intervals from samples that may contain potential outlying observations and missing values. The influence of outlying observations and missing data on the estimates of alpha and omega is investigated through two simulation studies. Results show that the newly developed robust method yields substantially improved alpha and omega estimates as well as better coverage rates of confidence intervals than the conventional nonrobust method. An R package coefficientalpha is developed and demonstrated to obtain robust estimates of alpha and omega. PMID:29795870
Robustness of location estimators under t-distributions: a literature review
NASA Astrophysics Data System (ADS)
Sumarni, C.; Sadik, K.; Notodiputro, K. A.; Sartono, B.
2017-03-01
The assumption of normality is commonly used in estimation of parameters in statistical modelling, but this assumption is very sensitive to outliers. The t-distribution is more robust than the normal distribution since the t-distributions have longer tails. The robustness measures of location estimators under t-distributions are reviewed and discussed in this paper. For the purpose of illustration we use the onion yield data which includes outliers as a case study and showed that the t model produces better fit than the normal model.
Robust Regression for Slope Estimation in Curriculum-Based Measurement Progress Monitoring
ERIC Educational Resources Information Center
Mercer, Sterett H.; Lyons, Alina F.; Johnston, Lauren E.; Millhoff, Courtney L.
2015-01-01
Although ordinary least-squares (OLS) regression has been identified as a preferred method to calculate rates of improvement for individual students during curriculum-based measurement (CBM) progress monitoring, OLS slope estimates are sensitive to the presence of extreme values. Robust estimators have been developed that are less biased by…
State estimation and prediction using clustered particle filters.
Lee, Yoonsang; Majda, Andrew J
2016-12-20
Particle filtering is an essential tool to improve uncertain model predictions by incorporating noisy observational data from complex systems including non-Gaussian features. A class of particle filters, clustered particle filters, is introduced for high-dimensional nonlinear systems, which uses relatively few particles compared with the standard particle filter. The clustered particle filter captures non-Gaussian features of the true signal, which are typical in complex nonlinear dynamical systems such as geophysical systems. The method is also robust in the difficult regime of high-quality sparse and infrequent observations. The key features of the clustered particle filtering are coarse-grained localization through the clustering of the state variables and particle adjustment to stabilize the method; each observation affects only neighbor state variables through clustering and particles are adjusted to prevent particle collapse due to high-quality observations. The clustered particle filter is tested for the 40-dimensional Lorenz 96 model with several dynamical regimes including strongly non-Gaussian statistics. The clustered particle filter shows robust skill in both achieving accurate filter results and capturing non-Gaussian statistics of the true signal. It is further extended to multiscale data assimilation, which provides the large-scale estimation by combining a cheap reduced-order forecast model and mixed observations of the large- and small-scale variables. This approach enables the use of a larger number of particles due to the computational savings in the forecast model. The multiscale clustered particle filter is tested for one-dimensional dispersive wave turbulence using a forecast model with model errors.
State estimation and prediction using clustered particle filters
Lee, Yoonsang; Majda, Andrew J.
2016-01-01
Particle filtering is an essential tool to improve uncertain model predictions by incorporating noisy observational data from complex systems including non-Gaussian features. A class of particle filters, clustered particle filters, is introduced for high-dimensional nonlinear systems, which uses relatively few particles compared with the standard particle filter. The clustered particle filter captures non-Gaussian features of the true signal, which are typical in complex nonlinear dynamical systems such as geophysical systems. The method is also robust in the difficult regime of high-quality sparse and infrequent observations. The key features of the clustered particle filtering are coarse-grained localization through the clustering of the state variables and particle adjustment to stabilize the method; each observation affects only neighbor state variables through clustering and particles are adjusted to prevent particle collapse due to high-quality observations. The clustered particle filter is tested for the 40-dimensional Lorenz 96 model with several dynamical regimes including strongly non-Gaussian statistics. The clustered particle filter shows robust skill in both achieving accurate filter results and capturing non-Gaussian statistics of the true signal. It is further extended to multiscale data assimilation, which provides the large-scale estimation by combining a cheap reduced-order forecast model and mixed observations of the large- and small-scale variables. This approach enables the use of a larger number of particles due to the computational savings in the forecast model. The multiscale clustered particle filter is tested for one-dimensional dispersive wave turbulence using a forecast model with model errors. PMID:27930332
NASA Astrophysics Data System (ADS)
Rock, N. M. S.
ROBUST calculates 53 statistics, plus significance levels for 6 hypothesis tests, on each of up to 52 variables. These together allow the following properties of the data distribution for each variable to be examined in detail: (1) Location. Three means (arithmetic, geometric, harmonic) are calculated, together with the midrange and 19 high-performance robust L-, M-, and W-estimates of location (combined, adaptive, trimmed estimates, etc.) (2) Scale. The standard deviation is calculated along with the H-spread/2 (≈ semi-interquartile range), the mean and median absolute deviations from both mean and median, and a biweight scale estimator. The 23 location and 6 scale estimators programmed cover all possible degrees of robustness. (3) Normality: Distributions are tested against the null hypothesis that they are normal, using the 3rd (√ h1) and 4th ( b 2) moments, Geary's ratio (mean deviation/standard deviation), Filliben's probability plot correlation coefficient, and a more robust test based on the biweight scale estimator. These statistics collectively are sensitive to most usual departures from normality. (4) Presence of outliers. The maximum and minimum values are assessed individually or jointly using Grubbs' maximum Studentized residuals, Harvey's and Dixon's criteria, and the Studentized range. For a single input variable, outliers can be either winsorized or eliminated and all estimates recalculated iteratively as desired. The following data-transformations also can be applied: linear, log 10, generalized Box Cox power (including log, reciprocal, and square root), exponentiation, and standardization. For more than one variable, all results are tabulated in a single run of ROBUST. Further options are incorporated to assess ratios (of two variables) as well as discrete variables, and be concerned with missing data. Cumulative S-plots (for assessing normality graphically) also can be generated. The mutual consistency or inconsistency of all these measures helps to detect errors in data as well as to assess data-distributions themselves.
ERIC Educational Resources Information Center
Rhemtulla, Mijke; Brosseau-Liard, Patricia E.; Savalei, Victoria
2012-01-01
A simulation study compared the performance of robust normal theory maximum likelihood (ML) and robust categorical least squares (cat-LS) methodology for estimating confirmatory factor analysis models with ordinal variables. Data were generated from 2 models with 2-7 categories, 4 sample sizes, 2 latent distributions, and 5 patterns of category…
Software For Least-Squares And Robust Estimation
NASA Technical Reports Server (NTRS)
Jeffreys, William H.; Fitzpatrick, Michael J.; Mcarthur, Barbara E.; Mccartney, James
1990-01-01
GAUSSFIT computer program includes full-featured programming language facilitating creation of mathematical models solving least-squares and robust-estimation problems. Programming language designed to make it easy to specify complex reduction models. Written in 100 percent C language.
Rank-preserving regression: a more robust rank regression model against outliers.
Chen, Tian; Kowalski, Jeanne; Chen, Rui; Wu, Pan; Zhang, Hui; Feng, Changyong; Tu, Xin M
2016-08-30
Mean-based semi-parametric regression models such as the popular generalized estimating equations are widely used to improve robustness of inference over parametric models. Unfortunately, such models are quite sensitive to outlying observations. The Wilcoxon-score-based rank regression (RR) provides more robust estimates over generalized estimating equations against outliers. However, the RR and its extensions do not sufficiently address missing data arising in longitudinal studies. In this paper, we propose a new approach to address outliers under a different framework based on the functional response models. This functional-response-model-based alternative not only addresses limitations of the RR and its extensions for longitudinal data, but, with its rank-preserving property, even provides more robust estimates than these alternatives. The proposed approach is illustrated with both real and simulated data. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Aeroservoelastic Uncertainty Model Identification from Flight Data
NASA Technical Reports Server (NTRS)
Brenner, Martin J.
2001-01-01
Uncertainty modeling is a critical element in the estimation of robust stability margins for stability boundary prediction and robust flight control system development. There has been a serious deficiency to date in aeroservoelastic data analysis with attention to uncertainty modeling. Uncertainty can be estimated from flight data using both parametric and nonparametric identification techniques. The model validation problem addressed in this paper is to identify aeroservoelastic models with associated uncertainty structures from a limited amount of controlled excitation inputs over an extensive flight envelope. The challenge to this problem is to update analytical models from flight data estimates while also deriving non-conservative uncertainty descriptions consistent with the flight data. Multisine control surface command inputs and control system feedbacks are used as signals in a wavelet-based modal parameter estimation procedure for model updates. Transfer function estimates are incorporated in a robust minimax estimation scheme to get input-output parameters and error bounds consistent with the data and model structure. Uncertainty estimates derived from the data in this manner provide an appropriate and relevant representation for model development and robust stability analysis. This model-plus-uncertainty identification procedure is applied to aeroservoelastic flight data from the NASA Dryden Flight Research Center F-18 Systems Research Aircraft.
Estimating open population site occupancy from presence-absence data lacking the robust design.
Dail, D; Madsen, L
2013-03-01
Many animal monitoring studies seek to estimate the proportion of a study area occupied by a target population. The study area is divided into spatially distinct sites where the detected presence or absence of the population is recorded, and this is repeated in time for multiple seasons. However, when occupied sites are detected with probability p < 1, the lack of a detection does not imply lack of occupancy. MacKenzie et al. (2003, Ecology 84, 2200-2207) developed a multiseason model for estimating seasonal site occupancy (ψt ) while accounting for unknown p. Their model performs well when observations are collected according to the robust design, where multiple sampling occasions occur during each season; the repeated sampling aids in the estimation p. However, their model does not perform as well when the robust design is lacking. In this paper, we propose an alternative likelihood model that yields improved seasonal estimates of p and Ψt in the absence of the robust design. We construct the marginal likelihood of the observed data by conditioning on, and summing out, the latent number of occupied sites during each season. A simulation study shows that in cases without the robust design, the proposed model estimates p with less bias than the MacKenzie et al. model and hence improves the estimates of Ψt . We apply both models to a data set consisting of repeated presence-absence observations of American robins (Turdus migratorius) with yearly survey periods. The two models are compared to a third estimator available when the repeated counts (from the same study) are considered, with the proposed model yielding estimates of Ψt closest to estimates from the point count model. Copyright © 2013, The International Biometric Society.
NASA Astrophysics Data System (ADS)
Smallman, Luke; Williams, Mathew
2016-04-01
Forests are a critical component of the global carbon cycle, storing significant amounts of carbon, split between living biomass and dead organic matter. The carbon budget of forests is the most uncertain component of the global carbon cycle - it is currently impossible to quantify accurately the carbon source/sink strength of forest biomes due to their heterogeneity and complex dynamics. It has been a major challenge to generate robust carbon budgets across landscapes due to data scarcity. Models have been used but outputs have lacked an assessment of uncertainty, making a robust assessment of their reliability and accuracy challenging. Here a Metropolis Hastings - Markov Chain Monte Carlo (MH-MCMC) data assimilation framework has been used to combine remotely sensed leaf area index (MODIS), biomass (where available) and deforestation estimates, in addition to forest planting and clear-felling information from the UK's national forest inventory, an estimate of soil carbon from the Harmonized World Database (HWSD) and plant trait information with a process model (DALEC) to produce a constrained analysis with a robust estimate of uncertainty of the UK forestry carbon budget between 2000 and 2010. Our analysis estimates the mean annual UK forest carbon sink at -3.9 MgC ha-1yr-1 with a 95 % confidence interval between -4.0 and -3.1 MgC ha-1 yr-1. The UK national forest inventory (NFI) estimates the mean UK forest carbon sink to be between -1.4 and -5.5 MgC ha-1 yr-1. The analysis estimate for total forest biomass stock in 2010 is estimated at 229 (177/232) TgC, while the NFI an estimated total forest biomass carbon stock of 216 TgC. Leaf carbon area (LCA) is a key plant trait which we are able to estimate using our analysis. Comparison of median estimates for LCA retrieved from the analysis and a UK land cover map show higher and lower values for LCA are estimated areas dominated by needle leaf and broad leaf forests forest respectively, consistent with ecological expectations. Moreover, the retrieved LCA is positively correlated with leaf-life span and negatively correlated with allocation of photosynthate to foliage, supported by field observations. This emergence of key plant traits and correlations between traits increases our confidence in the robustness of this analysis. Furthermore, this framework also allows us to search for additional emergent properties from the analysis such as spatial variation of retrieved drought tolerance. Finally our analysis is able to identify components of the carbon cycle with the largest uncertainty providing targets for future observations (e.g. remotely sensed biomass). Our Bayesian analysis system is ideally suited for assimilation of multiple biomass estimates and their associated uncertainties to reduce both uncertainty in the state of the system but also process parameters (e.g. wood residence time).
Robust inference in the negative binomial regression model with an application to falls data.
Aeberhard, William H; Cantoni, Eva; Heritier, Stephane
2014-12-01
A popular way to model overdispersed count data, such as the number of falls reported during intervention studies, is by means of the negative binomial (NB) distribution. Classical estimating methods are well-known to be sensitive to model misspecifications, taking the form of patients falling much more than expected in such intervention studies where the NB regression model is used. We extend in this article two approaches for building robust M-estimators of the regression parameters in the class of generalized linear models to the NB distribution. The first approach achieves robustness in the response by applying a bounded function on the Pearson residuals arising in the maximum likelihood estimating equations, while the second approach achieves robustness by bounding the unscaled deviance components. For both approaches, we explore different choices for the bounding functions. Through a unified notation, we show how close these approaches may actually be as long as the bounding functions are chosen and tuned appropriately, and provide the asymptotic distributions of the resulting estimators. Moreover, we introduce a robust weighted maximum likelihood estimator for the overdispersion parameter, specific to the NB distribution. Simulations under various settings show that redescending bounding functions yield estimates with smaller biases under contamination while keeping high efficiency at the assumed model, and this for both approaches. We present an application to a recent randomized controlled trial measuring the effectiveness of an exercise program at reducing the number of falls among people suffering from Parkinsons disease to illustrate the diagnostic use of such robust procedures and their need for reliable inference. © 2014, The International Biometric Society.
Observability and Estimation of Distributed Space Systems via Local Information-Exchange Networks
NASA Technical Reports Server (NTRS)
Rahmani, Amirreza; Mesbahi, Mehran; Fathpour, Nanaz; Hadaegh, Fred Y.
2008-01-01
In this work, we develop an approach to formation estimation by explicitly characterizing formation's system-theoretic attributes in terms of the underlying inter-spacecraft information-exchange network. In particular, we approach the formation observer/estimator design by relaxing the accessibility to the global state information by a centralized observer/estimator- and in turn- providing an analysis and synthesis framework for formation observers/estimators that rely on local measurements. The noveltyof our approach hinges upon the explicit examination of the underlying distributed spacecraft network in the realm of guidance, navigation, and control algorithmic analysis and design. The overarching goal of our general research program, some of whose results are reported in this paper, is the development of distributed spacecraft estimation algorithms that are scalable, modular, and robust to variations inthe topology and link characteristics of the formation information exchange network. In this work, we consider the observability of a spacecraft formation from a single observation node and utilize the agreement protocol as a mechanism for observing formation states from local measurements. Specifically, we show how the symmetry structure of the network, characterized in terms of its automorphism group, directly relates to the observability of the corresponding multi-agent system The ramification of this notion of observability over networks is then explored in the context of distributed formation estimation.
Trajectory prediction for ballistic missiles based on boost-phase LOS measurements
NASA Astrophysics Data System (ADS)
Yeddanapudi, Murali; Bar-Shalom, Yaakov
1997-10-01
This paper addresses the problem of the estimation of the trajectory of a tactical ballistic missile using line of sight (LOS) measurements from one or more passive sensors (typically satellites). The major difficulties of this problem include: the estimation of the unknown time of launch, incorporation of (inaccurate) target thrust profiles to model the target dynamics during the boost phase and an overall ill-conditioning of the estimation problem due to poor observability of the target motion via the LOS measurements. We present a robust estimation procedure based on the Levenberg-Marquardt algorithm that provides both the target state estimate and error covariance taking into consideration the complications mentioned above. An important consideration in the defense against tactical ballistic missiles is the determination of the target position and error covariance at the acquisition range of a surveillance radar in the vicinity of the impact point. We present a systematic procedure to propagate the target state and covariance to a nominal time, when it is within the detection range of a surveillance radar to obtain a cueing volume. Mont Carlo simulation studies on typical single and two sensor scenarios indicate that the proposed algorithms are accurate in terms of the estimates and the estimator calculated covariances are consistent with the errors.
Rowen, Donna; Stevens, Katherine; Labeit, Alexander; Elliott, Jackie; Mulhern, Brendan; Carlton, Jill; Basarir, Hasan; Ratcliffe, Julie; Brazier, John
2018-01-01
To describe the use of a novel approach in health valuation of a discrete-choice experiment (DCE) including a cost attribute to value a recently developed classification system for measuring the quality-of-life impact (both health and treatment experience) of self-management for diabetes. A large online survey was conducted using DCE with cost on UK respondents from the general population (n = 1497) and individuals with diabetes (n = 405). The data were modeled using a conditional logit model with robust standard errors. The marginal rate of substitution was used to generate willingness-to-pay (WTP) estimates for every state defined by the classification system. Robustness of results was assessed by including interaction effects for household income. There were some logical inconsistencies and insignificant coefficients for the milder levels of some attributes. There were some differences in the rank ordering of different attributes for the general population and diabetic patients. The WTP to avoid the most severe state was £1118.53 per month for the general population and £2356.02 per month for the diabetic patient population. The results were largely robust. Health and self-management can be valued in a single classification system using DCE with cost. The marginal rate of substitution for key attributes can be used to inform cost-benefit analysis of self-management interventions in diabetes using results from clinical studies in which this new classification system has been applied. The method shows promise, but found large WTP estimates exceeding the cost levels used in the survey. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Novel health monitoring method using an RGB camera.
Hassan, M A; Malik, A S; Fofi, D; Saad, N; Meriaudeau, F
2017-11-01
In this paper we present a novel health monitoring method by estimating the heart rate and respiratory rate using an RGB camera. The heart rate and the respiratory rate are estimated from the photoplethysmography (PPG) and the respiratory motion. The method mainly operates by using the green spectrum of the RGB camera to generate a multivariate PPG signal to perform multivariate de-noising on the video signal to extract the resultant PPG signal. A periodicity based voting scheme (PVS) was used to measure the heart rate and respiratory rate from the estimated PPG signal. We evaluated our proposed method with a state of the art heart rate measuring method for two scenarios using the MAHNOB-HCI database and a self collected naturalistic environment database. The methods were furthermore evaluated for various scenarios at naturalistic environments such as a motion variance session and a skin tone variance session. Our proposed method operated robustly during the experiments and outperformed the state of the art heart rate measuring methods by compensating the effects of the naturalistic environment.
Recent Experience with a Hybrid SCADA/PMU On-Line State Estimator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizy, D Tom
2009-01-01
PMU devices are expected to grow in number from a few to several hundreds in the next five years. Some relays are already global positioning system-capable and could provide the same type of data as any PMU. This introduces a new paradigm of very fast accurate synchrophasor measurements from across the grid in real-time that augment and parallel existing slower SCADA measurements. Control center applications will benefit from this PMU data; for example, use of PMU data in state estimation is expected to improve accuracy and robustness, which in turn will result in more timely and accurate N-1 security analysis,more » resulting in an overall improvement of grid system reliability and security. This paper describes results from a recent implementation of this technology, the benefits and future work.« less
Satellite Angular Rate Estimation From Vector Measurements
NASA Technical Reports Server (NTRS)
Azor, Ruth; Bar-Itzhack, Itzhack Y.; Harman, Richard R.
1996-01-01
This paper presents an algorithm for estimating the angular rate vector of a satellite which is based on the time derivatives of vector measurements expressed in a reference and body coordinate. The computed derivatives are fed into a spacial Kalman filter which yields an estimate of the spacecraft angular velocity. The filter, named Extended Interlaced Kalman Filter (EIKF), is an extension of the Kalman filter which, although being linear, estimates the state of a nonlinear dynamic system. It consists of two or three parallel Kalman filters whose individual estimates are fed to one another and are considered as known inputs by the other parallel filter(s). The nonlinear dynamics stem from the nonlinear differential equation that describes the rotation of a three dimensional body. Initial results, using simulated data, and real Rossi X ray Timing Explorer (RXTE) data indicate that the algorithm is efficient and robust.
Model-Based Therapeutic Correction of Hypothalamic-Pituitary-Adrenal Axis Dysfunction
Ben-Zvi, Amos; Vernon, Suzanne D.; Broderick, Gordon
2009-01-01
The hypothalamic-pituitary-adrenal (HPA) axis is a major system maintaining body homeostasis by regulating the neuroendocrine and sympathetic nervous systems as well modulating immune function. Recent work has shown that the complex dynamics of this system accommodate several stable steady states, one of which corresponds to the hypocortisol state observed in patients with chronic fatigue syndrome (CFS). At present these dynamics are not formally considered in the development of treatment strategies. Here we use model-based predictive control (MPC) methodology to estimate robust treatment courses for displacing the HPA axis from an abnormal hypocortisol steady state back to a healthy cortisol level. This approach was applied to a recent model of HPA axis dynamics incorporating glucocorticoid receptor kinetics. A candidate treatment that displays robust properties in the face of significant biological variability and measurement uncertainty requires that cortisol be further suppressed for a short period until adrenocorticotropic hormone levels exceed 30% of baseline. Treatment may then be discontinued, and the HPA axis will naturally progress to a stable attractor defined by normal hormone levels. Suppression of biologically available cortisol may be achieved through the use of binding proteins such as CBG and certain metabolizing enzymes, thus offering possible avenues for deployment in a clinical setting. Treatment strategies can therefore be designed that maximally exploit system dynamics to provide a robust response to treatment and ensure a positive outcome over a wide range of conditions. Perhaps most importantly, a treatment course involving further reduction in cortisol, even transient, is quite counterintuitive and challenges the conventional strategy of supplementing cortisol levels, an approach based on steady-state reasoning. PMID:19165314
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ping; Lv, Youbin; Wang, Hong
Optimal operation of a practical blast furnace (BF) ironmaking process depends largely on a good measurement of molten iron quality (MIQ) indices. However, measuring the MIQ online is not feasible using the available techniques. In this paper, a novel data-driven robust modeling is proposed for online estimation of MIQ using improved random vector functional-link networks (RVFLNs). Since the output weights of traditional RVFLNs are obtained by the least squares approach, a robustness problem may occur when the training dataset is contaminated with outliers. This affects the modeling accuracy of RVFLNs. To solve this problem, a Cauchy distribution weighted M-estimation basedmore » robust RFVLNs is proposed. Since the weights of different outlier data are properly determined by the Cauchy distribution, their corresponding contribution on modeling can be properly distinguished. Thus robust and better modeling results can be achieved. Moreover, given that the BF is a complex nonlinear system with numerous coupling variables, the data-driven canonical correlation analysis is employed to identify the most influential components from multitudinous factors that affect the MIQ indices to reduce the model dimension. Finally, experiments using industrial data and comparative studies have demonstrated that the obtained model produces a better modeling and estimating accuracy and stronger robustness than other modeling methods.« less
Hidden Markov models for fault detection in dynamic systems
NASA Technical Reports Server (NTRS)
Smyth, Padhraic J. (Inventor)
1995-01-01
The invention is a system failure monitoring method and apparatus which learns the symptom-fault mapping directly from training data. The invention first estimates the state of the system at discrete intervals in time. A feature vector x of dimension k is estimated from sets of successive windows of sensor data. A pattern recognition component then models the instantaneous estimate of the posterior class probability given the features, p(w(sub i) (vertical bar)/x), 1 less than or equal to i isless than or equal to m. Finally, a hidden Markov model is used to take advantage of temporal context and estimate class probabilities conditioned on recent past history. In this hierarchical pattern of information flow, the time series data is transformed and mapped into a categorical representation (the fault classes) and integrated over time to enable robust decision-making.
Hidden Markov models for fault detection in dynamic systems
NASA Technical Reports Server (NTRS)
Smyth, Padhraic J. (Inventor)
1993-01-01
The invention is a system failure monitoring method and apparatus which learns the symptom-fault mapping directly from training data. The invention first estimates the state of the system at discrete intervals in time. A feature vector x of dimension k is estimated from sets of successive windows of sensor data. A pattern recognition component then models the instantaneous estimate of the posterior class probability given the features, p(w(sub i) perpendicular to x), 1 less than or equal to i is less than or equal to m. Finally, a hidden Markov model is used to take advantage of temporal context and estimate class probabilities conditioned on recent past history. In this hierarchical pattern of information flow, the time series data is transformed and mapped into a categorical representation (the fault classes) and integrated over time to enable robust decision-making.
NASA Astrophysics Data System (ADS)
Mazidi, Hesam; Nehorai, Arye; Lew, Matthew D.
2018-02-01
In single-molecule (SM) super-resolution microscopy, the complexity of a biological structure, high molecular density, and a low signal-to-background ratio (SBR) may lead to imaging artifacts without a robust localization algorithm. Moreover, engineered point spread functions (PSFs) for 3D imaging pose difficulties due to their intricate features. We develop a Robust Statistical Estimation algorithm, called RoSE, that enables joint estimation of the 3D location and photon counts of SMs accurately and precisely using various PSFs under conditions of high molecular density and low SBR.
Prognostics Health Management Model for LED Package Failure Under Contaminated Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lall, Pradeep; Zhang, Hao; Davis, J Lynn
2015-06-06
The reliability consideration of LED products includes both luminous flux drop and color shift. Previous research either talks about luminous maintenance or color shift, because luminous flux degradation usually takes very long time to observe. In this paper, the impact of a VOC (volatile organic compound) contaminated luminous flux and color stability are examined. As a result, both luminous degradation and color shift had been recorded in a short time. Test samples are white, phosphor-converted, high-power LED packages. Absolute radiant flux is measured with integrating sphere system to calculate the luminous flux. Luminous flux degradation and color shift distance weremore » plotted versus aging time to show the degradation pattern. A prognostic health management (PHM) method based on the state variables and state estimator have been proposed in this paper. In this PHM framework, unscented kalman filter (UKF) was deployed as the carrier of all states. During the estimation process, third order dynamic transfer function was used to implement the PHM framework. Both of the luminous flux and color shift distance have been used as the state variable with the same PHM framework to exam the robustness of the method. Predicted remaining useful life is calculated at every measurement point to compare with the tested remaining useful life. The result shows that state estimator can be used as the method for the PHM of LED degradation with respect to both luminous flux and color shift distance. The prediction of remaining useful life of LED package, made by the states estimator and data driven approach, falls in the acceptable error-bounds (20%) after a short training of the estimator.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lall, Pradeep; Zang, Hao; Davis, J Lynn
The reliability of LED products may be affected by both luminous flux drop and color shift. Previous research on the topic focuses on either luminous maintenance or color shift. However, luminous flux degradation usually takes very long time to observe in LEDs under normal operating conditions. In this paper, the impact of a VOC (volatile organic compound) contaminated luminous flux and color stability are examined. As a result, both luminous degradation and color shift had been recorded in a short time. Test samples are white, phosphorconverted, high-power LED packages. Absolute radiant flux is measured with integrating sphere system to calculatemore » the luminous flux. Luminous flux degradation and color shift distance were plotted versus aging time to show the degradation pattern. A prognostic health management (PHM) method based on the state variables and state estimator have been proposed in this paper. In this PHM framework, unscented kalman filter (UKF) was deployed as the carrier of all states. During the estimation process, third order dynamic transfer function was used to implement the PHM framework. Both of the luminous flux and color shift distance have been used as the state variable with the same PHM framework to exam the robustness of the method. Predicted remaining useful life is calculated at every measurement point to compare with the tested remaining useful life. The result shows that state estimator can be used as the method for the PHM of LED degradation with respect to both luminous flux and color shift distance. The prediction of remaining useful life of LED package, made by the states estimator and data driven approach, falls in the acceptable errorbounds (20%) after a short training of the estimator.« less
A Novel Robust H∞ Filter Based on Krein Space Theory in the SINS/CNS Attitude Reference System
Yu, Fei; Lv, Chongyang; Dong, Qianhui
2016-01-01
Owing to their numerous merits, such as compact, autonomous and independence, the strapdown inertial navigation system (SINS) and celestial navigation system (CNS) can be used in marine applications. What is more, due to the complementary navigation information obtained from two different kinds of sensors, the accuracy of the SINS/CNS integrated navigation system can be enhanced availably. Thus, the SINS/CNS system is widely used in the marine navigation field. However, the CNS is easily interfered with by the surroundings, which will lead to the output being discontinuous. Thus, the uncertainty problem caused by the lost measurement will reduce the system accuracy. In this paper, a robust H∞ filter based on the Krein space theory is proposed. The Krein space theory is introduced firstly, and then, the linear state and observation models of the SINS/CNS integrated navigation system are established reasonably. By taking the uncertainty problem into account, in this paper, a new robust H∞ filter is proposed to improve the robustness of the integrated system. At last, this new robust filter based on the Krein space theory is estimated by numerical simulations and actual experiments. Additionally, the simulation and experiment results and analysis show that the attitude errors can be reduced by utilizing the proposed robust filter effectively when the measurements are missing discontinuous. Compared to the traditional Kalman filter (KF) method, the accuracy of the SINS/CNS integrated system is improved, verifying the robustness and the availability of the proposed robust H∞ filter. PMID:26999153
NASA Astrophysics Data System (ADS)
Erazo, Kalil; Nagarajaiah, Satish
2017-06-01
In this paper an offline approach for output-only Bayesian identification of stochastic nonlinear systems is presented. The approach is based on a re-parameterization of the joint posterior distribution of the parameters that define a postulated state-space stochastic model class. In the re-parameterization the state predictive distribution is included, marginalized, and estimated recursively in a state estimation step using an unscented Kalman filter, bypassing state augmentation as required by existing online methods. In applications expectations of functions of the parameters are of interest, which requires the evaluation of potentially high-dimensional integrals; Markov chain Monte Carlo is adopted to sample the posterior distribution and estimate the expectations. The proposed approach is suitable for nonlinear systems subjected to non-stationary inputs whose realization is unknown, and that are modeled as stochastic processes. Numerical verification and experimental validation examples illustrate the effectiveness and advantages of the approach, including: (i) an increased numerical stability with respect to augmented-state unscented Kalman filtering, avoiding divergence of the estimates when the forcing input is unmeasured; (ii) the ability to handle arbitrary prior and posterior distributions. The experimental validation of the approach is conducted using data from a large-scale structure tested on a shake table. It is shown that the approach is robust to inherent modeling errors in the description of the system and forcing input, providing accurate prediction of the dynamic response when the excitation history is unknown.
Efficient robust doubly adaptive regularized regression with applications.
Karunamuni, Rohana J; Kong, Linglong; Tu, Wei
2018-01-01
We consider the problem of estimation and variable selection for general linear regression models. Regularized regression procedures have been widely used for variable selection, but most existing methods perform poorly in the presence of outliers. We construct a new penalized procedure that simultaneously attains full efficiency and maximum robustness. Furthermore, the proposed procedure satisfies the oracle properties. The new procedure is designed to achieve sparse and robust solutions by imposing adaptive weights on both the decision loss and the penalty function. The proposed method of estimation and variable selection attains full efficiency when the model is correct and, at the same time, achieves maximum robustness when outliers are present. We examine the robustness properties using the finite-sample breakdown point and an influence function. We show that the proposed estimator attains the maximum breakdown point. Furthermore, there is no loss in efficiency when there are no outliers or the error distribution is normal. For practical implementation of the proposed method, we present a computational algorithm. We examine the finite-sample and robustness properties using Monte Carlo studies. Two datasets are also analyzed.
An evaluation of sex-age-kill (SAK) model performance
Millspaugh, Joshua J.; Skalski, John R.; Townsend, Richard L.; Diefenbach, Duane R.; Boyce, Mark S.; Hansen, Lonnie P.; Kammermeyer, Kent
2009-01-01
The sex-age-kill (SAK) model is widely used to estimate abundance of harvested large mammals, including white-tailed deer (Odocoileus virginianus). Despite a long history of use, few formal evaluations of SAK performance exist. We investigated how violations of the stable age distribution and stationary population assumption, changes to male or female harvest, stochastic effects (i.e., random fluctuations in recruitment and survival), and sampling efforts influenced SAK estimation. When the simulated population had a stable age distribution and λ > 1, the SAK model underestimated abundance. Conversely, when λ < 1, the SAK overestimated abundance. When changes to male harvest were introduced, SAK estimates were opposite the true population trend. In contrast, SAK estimates were robust to changes in female harvest rates. Stochastic effects caused SAK estimates to fluctuate about their equilibrium abundance, but the effect dampened as the size of the surveyed population increased. When we considered both stochastic effects and sampling error at a deer management unit scale the resultant abundance estimates were within ±121.9% of the true population level 95% of the time. These combined results demonstrate extreme sensitivity to model violations and scale of analysis. Without changes to model formulation, the SAK model will be biased when λ ≠ 1. Furthermore, any factor that alters the male harvest rate, such as changes to regulations or changes in hunter attitudes, will bias population estimates. Sex-age-kill estimates may be precise at large spatial scales, such as the state level, but less so at the individual management unit level. Alternative models, such as statistical age-at-harvest models, which require similar data types, might allow for more robust, broad-scale demographic assessments.
NASA Astrophysics Data System (ADS)
Mayvan, Ali D.; Aghaeinia, Hassan; Kazemi, Mohammad
2017-12-01
This paper focuses on robust transceiver design for throughput enhancement on the interference channel (IC), under imperfect channel state information (CSI). In this paper, two algorithms are proposed to improve the throughput of the multi-input multi-output (MIMO) IC. Each transmitter and receiver has, respectively, M and N antennas and IC operates in a time division duplex mode. In the first proposed algorithm, each transceiver adjusts its filter to maximize the expected value of signal-to-interference-plus-noise ratio (SINR). On the other hand, the second algorithm tries to minimize the variances of the SINRs to hedge against the variability due to CSI error. Taylor expansion is exploited to approximate the effect of CSI imperfection on mean and variance. The proposed robust algorithms utilize the reciprocity of wireless networks to optimize the estimated statistical properties in two different working modes. Monte Carlo simulations are employed to investigate sum rate performance of the proposed algorithms and the advantage of incorporating variation minimization into the transceiver design.
Design of Robust Adaptive Unbalance Response Controllers for Rotors with Magnetic Bearings
NASA Technical Reports Server (NTRS)
Knospe, Carl R.; Tamer, Samir M.; Fedigan, Stephen J.
1996-01-01
Experimental results have recently demonstrated that an adaptive open loop control strategy can be highly effective in the suppression of unbalance induced vibration on rotors supported in active magnetic bearings. This algorithm, however, relies upon a predetermined gain matrix. Typically, this matrix is determined by an optimal control formulation resulting in the choice of the pseudo-inverse of the nominal influence coefficient matrix as the gain matrix. This solution may result in problems with stability and performance robustness since the estimated influence coefficient matrix is not equal to the actual influence coefficient matrix. Recently, analysis tools have been developed to examine the robustness of this control algorithm with respect to structured uncertainty. Herein, these tools are extended to produce a design procedure for determining the adaptive law's gain matrix. The resulting control algorithm has a guaranteed convergence rate and steady state performance in spite of the uncertainty in the rotor system. Several examples are presented which demonstrate the effectiveness of this approach and its advantages over the standard optimal control formulation.
MAPPING GROWTH AND GRAVITY WITH ROBUST REDSHIFT SPACE DISTORTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwan, Juliana; Lewis, Geraint F.; Linder, Eric V.
2012-04-01
Redshift space distortions (RSDs) caused by galaxy peculiar velocities provide a window onto the growth rate of large-scale structure and a method for testing general relativity. We investigate through a comparison of N-body simulations to various extensions of perturbation theory beyond the linear regime, the robustness of cosmological parameter extraction, including the gravitational growth index {gamma}. We find that the Kaiser formula and some perturbation theory approaches bias the growth rate by 1{sigma} or more relative to the fiducial at scales as large as k > 0.07 h Mpc{sup -1}. This bias propagates to estimates of the gravitational growth indexmore » as well as {Omega}{sub m} and the equation-of-state parameter and presents a significant challenge to modeling RSDs. We also determine an accurate fitting function for a combination of line-of-sight damping and higher order angular dependence that allows robust modeling of the redshift space power spectrum to substantially higher k.« less
An improved method for bivariate meta-analysis when within-study correlations are unknown.
Hong, Chuan; D Riley, Richard; Chen, Yong
2018-03-01
Multivariate meta-analysis, which jointly analyzes multiple and possibly correlated outcomes in a single analysis, is becoming increasingly popular in recent years. An attractive feature of the multivariate meta-analysis is its ability to account for the dependence between multiple estimates from the same study. However, standard inference procedures for multivariate meta-analysis require the knowledge of within-study correlations, which are usually unavailable. This limits standard inference approaches in practice. Riley et al proposed a working model and an overall synthesis correlation parameter to account for the marginal correlation between outcomes, where the only data needed are those required for a separate univariate random-effects meta-analysis. As within-study correlations are not required, the Riley method is applicable to a wide variety of evidence synthesis situations. However, the standard variance estimator of the Riley method is not entirely correct under many important settings. As a consequence, the coverage of a function of pooled estimates may not reach the nominal level even when the number of studies in the multivariate meta-analysis is large. In this paper, we improve the Riley method by proposing a robust variance estimator, which is asymptotically correct even when the model is misspecified (ie, when the likelihood function is incorrect). Simulation studies of a bivariate meta-analysis, in a variety of settings, show a function of pooled estimates has improved performance when using the proposed robust variance estimator. In terms of individual pooled estimates themselves, the standard variance estimator and robust variance estimator give similar results to the original method, with appropriate coverage. The proposed robust variance estimator performs well when the number of studies is relatively large. Therefore, we recommend the use of the robust method for meta-analyses with a relatively large number of studies (eg, m≥50). When the sample size is relatively small, we recommend the use of the robust method under the working independence assumption. We illustrate the proposed method through 2 meta-analyses. Copyright © 2017 John Wiley & Sons, Ltd.
Robust Visual Tracking via Online Discriminative and Low-Rank Dictionary Learning.
Zhou, Tao; Liu, Fanghui; Bhaskar, Harish; Yang, Jie
2017-09-12
In this paper, we propose a novel and robust tracking framework based on online discriminative and low-rank dictionary learning. The primary aim of this paper is to obtain compact and low-rank dictionaries that can provide good discriminative representations of both target and background. We accomplish this by exploiting the recovery ability of low-rank matrices. That is if we assume that the data from the same class are linearly correlated, then the corresponding basis vectors learned from the training set of each class shall render the dictionary to become approximately low-rank. The proposed dictionary learning technique incorporates a reconstruction error that improves the reliability of classification. Also, a multiconstraint objective function is designed to enable active learning of a discriminative and robust dictionary. Further, an optimal solution is obtained by iteratively computing the dictionary, coefficients, and by simultaneously learning the classifier parameters. Finally, a simple yet effective likelihood function is implemented to estimate the optimal state of the target during tracking. Moreover, to make the dictionary adaptive to the variations of the target and background during tracking, an online update criterion is employed while learning the new dictionary. Experimental results on a publicly available benchmark dataset have demonstrated that the proposed tracking algorithm performs better than other state-of-the-art trackers.
Toward Robust Estimation of the Components of Forest Population Change
Francis A. Roesch
2014-01-01
Multiple levels of simulation are used to test the robustness of estimators of the components of change. I first created a variety of spatial-temporal populations based on, but more variable than, an actual forest monitoring data set and then sampled those populations under a variety of sampling error structures. The performance of each of four estimation approaches is...
ERIC Educational Resources Information Center
Thissen, David; Wainer, Howard
Simulation studies of the performance of (potentially) robust statistical estimation produce large quantities of numbers in the form of performance indices of the various estimators under various conditions. This report presents a multivariate graphical display used to aid in the digestion of the plentiful results in a current study of Item…
Sub-Second Parallel State Estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yousu; Rice, Mark J.; Glaesemann, Kurt R.
This report describes the performance of Pacific Northwest National Laboratory (PNNL) sub-second parallel state estimation (PSE) tool using the utility data from the Bonneville Power Administrative (BPA) and discusses the benefits of the fast computational speed for power system applications. The test data were provided by BPA. They are two-days’ worth of hourly snapshots that include power system data and measurement sets in a commercial tool format. These data are extracted out from the commercial tool box and fed into the PSE tool. With the help of advanced solvers, the PSE tool is able to solve each BPA hourly statemore » estimation problem within one second, which is more than 10 times faster than today’s commercial tool. This improved computational performance can help increase the reliability value of state estimation in many aspects: (1) the shorter the time required for execution of state estimation, the more time remains for operators to take appropriate actions, and/or to apply automatic or manual corrective control actions. This increases the chances of arresting or mitigating the impact of cascading failures; (2) the SE can be executed multiple times within time allowance. Therefore, the robustness of SE can be enhanced by repeating the execution of the SE with adaptive adjustments, including removing bad data and/or adjusting different initial conditions to compute a better estimate within the same time as a traditional state estimator’s single estimate. There are other benefits with the sub-second SE, such as that the PSE results can potentially be used in local and/or wide-area automatic corrective control actions that are currently dependent on raw measurements to minimize the impact of bad measurements, and provides opportunities to enhance the power grid reliability and efficiency. PSE also can enable other advanced tools that rely on SE outputs and could be used to further improve operators’ actions and automated controls to mitigate effects of severe events on the grid. The power grid continues to grow and the number of measurements is increasing at an accelerated rate due to the variety of smart grid devices being introduced. A parallel state estimation implementation will have better performance than traditional, sequential state estimation by utilizing the power of high performance computing (HPC). This increased performance positions parallel state estimators as valuable tools for operating the increasingly more complex power grid.« less
NASA Astrophysics Data System (ADS)
Juesas, P.; Ramasso, E.
2016-12-01
Condition monitoring aims at ensuring system safety which is a fundamental requirement for industrial applications and that has become an inescapable social demand. This objective is attained by instrumenting the system and developing data analytics methods such as statistical models able to turn data into relevant knowledge. One difficulty is to be able to correctly estimate the parameters of those methods based on time-series data. This paper suggests the use of the Weighted Distribution Theory together with the Expectation-Maximization algorithm to improve parameter estimation in statistical models with latent variables with an application to health monotonic under uncertainty. The improvement of estimates is made possible by incorporating uncertain and possibly noisy prior knowledge on latent variables in a sound manner. The latent variables are exploited to build a degradation model of dynamical system represented as a sequence of discrete states. Examples on Gaussian Mixture Models, Hidden Markov Models (HMM) with discrete and continuous outputs are presented on both simulated data and benchmarks using the turbofan engine datasets. A focus on the application of a discrete HMM to health monitoring under uncertainty allows to emphasize the interest of the proposed approach in presence of different operating conditions and fault modes. It is shown that the proposed model depicts high robustness in presence of noisy and uncertain prior.
NASA Astrophysics Data System (ADS)
Addawe, Rizavel C.; Addawe, Joel M.; Magadia, Joselito C.
2016-10-01
Accurate forecasting of dengue cases would significantly improve epidemic prevention and control capabilities. This paper attempts to provide useful models in forecasting dengue epidemic specific to the young and adult population of Baguio City. To capture the seasonal variations in dengue incidence, this paper develops a robust modeling approach to identify and estimate seasonal autoregressive integrated moving average (SARIMA) models in the presence of additive outliers. Since the least squares estimators are not robust in the presence of outliers, we suggest a robust estimation based on winsorized and reweighted least squares estimators. A hybrid algorithm, Differential Evolution - Simulated Annealing (DESA), is used to identify and estimate the parameters of the optimal SARIMA model. The method is applied to the monthly reported dengue cases in Baguio City, Philippines.
Lin, Huan-Ting; Okumura, Takashi; Yatsuda, Yukinori; Ito, Satoru; Nakauchi, Hiromitsu; Otsu, Makoto
2016-10-01
Stable gene transfer into target cell populations via integrating viral vectors is widely used in stem cell gene therapy (SCGT). Accurate vector copy number (VCN) estimation has become increasingly important. However, existing methods of estimation such as real-time quantitative PCR are more restricted in practicality, especially during clinical trials, given the limited availability of sample materials from patients. This study demonstrates the application of an emerging technology called droplet digital PCR (ddPCR) in estimating VCN states in the context of SCGT. Induced pluripotent stem cells (iPSCs) derived from a patient with X-linked chronic granulomatous disease were used as clonable target cells for transduction with alpharetroviral vectors harboring codon-optimized CYBB cDNA. Precise primer-probe design followed by multiplex analysis conferred assay specificity. Accurate estimation of per-cell VCN values was possible without reliance on a reference standard curve. Sensitivity was high and the dynamic range of detection was wide. Assay reliability was validated by observation of consistent, reproducible, and distinct VCN clustering patterns for clones of transduced iPSCs with varying numbers of transgene copies. Taken together, use of ddPCR appears to offer a practical and robust approach to VCN estimation with a wide range of clinical and research applications.
Lin, Huan-Ting; Okumura, Takashi; Yatsuda, Yukinori; Ito, Satoru; Nakauchi, Hiromitsu; Otsu, Makoto
2016-01-01
Stable gene transfer into target cell populations via integrating viral vectors is widely used in stem cell gene therapy (SCGT). Accurate vector copy number (VCN) estimation has become increasingly important. However, existing methods of estimation such as real-time quantitative PCR are more restricted in practicality, especially during clinical trials, given the limited availability of sample materials from patients. This study demonstrates the application of an emerging technology called droplet digital PCR (ddPCR) in estimating VCN states in the context of SCGT. Induced pluripotent stem cells (iPSCs) derived from a patient with X-linked chronic granulomatous disease were used as clonable target cells for transduction with alpharetroviral vectors harboring codon-optimized CYBB cDNA. Precise primer–probe design followed by multiplex analysis conferred assay specificity. Accurate estimation of per-cell VCN values was possible without reliance on a reference standard curve. Sensitivity was high and the dynamic range of detection was wide. Assay reliability was validated by observation of consistent, reproducible, and distinct VCN clustering patterns for clones of transduced iPSCs with varying numbers of transgene copies. Taken together, use of ddPCR appears to offer a practical and robust approach to VCN estimation with a wide range of clinical and research applications. PMID:27763786
Kassanjee, Reshma; De Angelis, Daniela; Farah, Marian; Hanson, Debra; Labuschagne, Jan Phillipus Lourens; Laeyendecker, Oliver; Le Vu, Stéphane; Tom, Brian; Wang, Rui; Welte, Alex
2017-03-01
The application of biomarkers for 'recent' infection in cross-sectional HIV incidence surveillance requires the estimation of critical biomarker characteristics. Various approaches have been employed for using longitudinal data to estimate the Mean Duration of Recent Infection (MDRI) - the average time in the 'recent' state. In this systematic benchmarking of MDRI estimation approaches, a simulation platform was used to measure accuracy and precision of over twenty approaches, in thirty scenarios capturing various study designs, subject behaviors and test dynamics that may be encountered in practice. Results highlight that assuming a single continuous sojourn in the 'recent' state can produce substantial bias. Simple interpolation provides useful MDRI estimates provided subjects are tested at regular intervals. Regression performs the best - while 'random effects' describe the subject-clustering in the data, regression models without random effects proved easy to implement, stable, and of similar accuracy in scenarios considered; robustness to parametric assumptions was improved by regressing 'recent'/'non-recent' classifications rather than continuous biomarker readings. All approaches were vulnerable to incorrect assumptions about subjects' (unobserved) infection times. Results provided show the relationships between MDRI estimation performance and the number of subjects, inter-visit intervals, missed visits, loss to follow-up, and aspects of biomarker signal and noise.
Quantifying confidence in density functional theory predictions of magnetic ground states
NASA Astrophysics Data System (ADS)
Houchins, Gregory; Viswanathan, Venkatasubramanian
2017-10-01
Density functional theory (DFT) simulations, at the generalized gradient approximation (GGA) level, are being routinely used for material discovery based on high-throughput descriptor-based searches. The success of descriptor-based material design relies on eliminating bad candidates and keeping good candidates for further investigation. While DFT has been widely successfully for the former, oftentimes good candidates are lost due to the uncertainty associated with the DFT-predicted material properties. Uncertainty associated with DFT predictions has gained prominence and has led to the development of exchange correlation functionals that have built-in error estimation capability. In this work, we demonstrate the use of built-in error estimation capabilities within the BEEF-vdW exchange correlation functional for quantifying the uncertainty associated with the magnetic ground state of solids. We demonstrate this approach by calculating the uncertainty estimate for the energy difference between the different magnetic states of solids and compare them against a range of GGA exchange correlation functionals as is done in many first-principles calculations of materials. We show that this estimate reasonably bounds the range of values obtained with the different GGA functionals. The estimate is determined as a postprocessing step and thus provides a computationally robust and systematic approach to estimating uncertainty associated with predictions of magnetic ground states. We define a confidence value (c-value) that incorporates all calculated magnetic states in order to quantify the concurrence of the prediction at the GGA level and argue that predictions of magnetic ground states from GGA level DFT is incomplete without an accompanying c-value. We demonstrate the utility of this method using a case study of Li-ion and Na-ion cathode materials and the c-value metric correctly identifies that GGA-level DFT will have low predictability for NaFePO4F . Further, there needs to be a systematic test of a collection of plausible magnetic states, especially in identifying antiferromagnetic (AFM) ground states. We believe that our approach of estimating uncertainty can be readily incorporated into all high-throughput computational material discovery efforts and this will lead to a dramatic increase in the likelihood of finding good candidate materials.
Robust estimation procedure in panel data model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shariff, Nurul Sima Mohamad; Hamzah, Nor Aishah
2014-06-19
The panel data modeling has received a great attention in econometric research recently. This is due to the availability of data sources and the interest to study cross sections of individuals observed over time. However, the problems may arise in modeling the panel in the presence of cross sectional dependence and outliers. Even though there are few methods that take into consideration the presence of cross sectional dependence in the panel, the methods may provide inconsistent parameter estimates and inferences when outliers occur in the panel. As such, an alternative method that is robust to outliers and cross sectional dependencemore » is introduced in this paper. The properties and construction of the confidence interval for the parameter estimates are also considered in this paper. The robustness of the procedure is investigated and comparisons are made to the existing method via simulation studies. Our results have shown that robust approach is able to produce an accurate and reliable parameter estimates under the condition considered.« less
NASA Astrophysics Data System (ADS)
Chou, Shuo-Ju
2011-12-01
In recent years the United States has shifted from a threat-based acquisition policy that developed systems for countering specific threats to a capabilities-based strategy that emphasizes the acquisition of systems that provide critical national defense capabilities. This shift in policy, in theory, allows for the creation of an "optimal force" that is robust against current and future threats regardless of the tactics and scenario involved. In broad terms, robustness can be defined as the insensitivity of an outcome to "noise" or non-controlled variables. Within this context, the outcome is the successful achievement of defense strategies and the noise variables are tactics and scenarios that will be associated with current and future enemies. Unfortunately, a lack of system capability, budget, and schedule robustness against technology performance and development uncertainties has led to major setbacks in recent acquisition programs. This lack of robustness stems from the fact that immature technologies have uncertainties in their expected performance, development cost, and schedule that cause to variations in system effectiveness and program development budget and schedule requirements. Unfortunately, the Technology Readiness Assessment process currently used by acquisition program managers and decision-makers to measure technology uncertainty during critical program decision junctions does not adequately capture the impact of technology performance and development uncertainty on program capability and development metrics. The Technology Readiness Level metric employed by the TRA to describe program technology elements uncertainties can only provide a qualitative and non-descript estimation of the technology uncertainties. In order to assess program robustness, specifically requirements robustness, against technology performance and development uncertainties, a new process is needed. This process should provide acquisition program managers and decision-makers with the ability to assess or measure the robustness of program requirements against such uncertainties. A literature review of techniques for forecasting technology performance and development uncertainties and subsequent impacts on capability, budget, and schedule requirements resulted in the conclusion that an analysis process that coupled a probabilistic analysis technique such as Monte Carlo Simulations with quantitative and parametric models of technology performance impact and technology development time and cost requirements would allow the probabilities of meeting specific constraints of these requirements to be established. These probabilities of requirements success metrics can then be used as a quantitative and probabilistic measure of program requirements robustness against technology uncertainties. Combined with a Multi-Objective Genetic Algorithm optimization process and computer-based Decision Support System, critical information regarding requirements robustness against technology uncertainties can be captured and quantified for acquisition decision-makers. This results in a more informed and justifiable selection of program technologies during initial program definition as well as formulation of program development and risk management strategies. To meet the stated research objective, the ENhanced TEchnology Robustness Prediction and RISk Evaluation (ENTERPRISE) methodology was formulated to provide a structured and transparent process for integrating these enabling techniques to provide a probabilistic and quantitative assessment of acquisition program requirements robustness against technology performance and development uncertainties. In order to demonstrate the capabilities of the ENTERPRISE method and test the research Hypotheses, an demonstration application of this method was performed on a notional program for acquiring the Carrier-based Suppression of Enemy Air Defenses (SEAD) using Unmanned Combat Aircraft Systems (UCAS) and their enabling technologies. The results of this implementation provided valuable insights regarding the benefits and inner workings of this methodology as well as its limitations that should be addressed in the future to narrow the gap between current state and the desired state.
Robust Hinfinity position control synthesis of an electro-hydraulic servo system.
Milić, Vladimir; Situm, Zeljko; Essert, Mario
2010-10-01
This paper focuses on the use of the techniques based on linear matrix inequalities for robust H(infinity) position control synthesis of an electro-hydraulic servo system. A nonlinear dynamic model of the hydraulic cylindrical actuator with a proportional valve has been developed. For the purpose of the feedback control an uncertain linearized mathematical model of the system has been derived. The structured (parametric) perturbations in the electro-hydraulic coefficients are taken into account. H(infinity) controller extended with an integral action is proposed. To estimate internal states of the electro-hydraulic servo system an observer is designed. Developed control algorithms have been tested experimentally in the laboratory model of an electro-hydraulic servo system. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
A Robust Method to Detect Zero Velocity for Improved 3D Personal Navigation Using Inertial Sensors
Xu, Zhengyi; Wei, Jianming; Zhang, Bo; Yang, Weijun
2015-01-01
This paper proposes a robust zero velocity (ZV) detector algorithm to accurately calculate stationary periods in a gait cycle. The proposed algorithm adopts an effective gait cycle segmentation method and introduces a Bayesian network (BN) model based on the measurements of inertial sensors and kinesiology knowledge to infer the ZV period. During the detected ZV period, an Extended Kalman Filter (EKF) is used to estimate the error states and calibrate the position error. The experiments reveal that the removal rate of ZV false detections by the proposed method increases 80% compared with traditional method at high walking speed. Furthermore, based on the detected ZV, the Personal Inertial Navigation System (PINS) algorithm aided by EKF performs better, especially in the altitude aspect. PMID:25831086
Nonlinear control of magnetic bearings
NASA Technical Reports Server (NTRS)
Pradeep, A. K.; Gurumoorthy, R.
1994-01-01
In this paper we present a variety of nonlinear controllers for the magnetic bearing that ensure both stability and robustness. We utilize techniques of discontinuous control to design novel control laws for the magnetic bearing. We present in particular sliding mode controllers, time optimal controllers, winding algorithm based controllers, nested switching controllers, fractional controllers, and synchronous switching controllers for the magnetic bearing. We show existence of solutions to systems governed by discontinuous control laws, and prove stability and robustness of the chosen control laws in a rigorous setting. We design sliding mode observers for the magnetic bearing and prove the convergence of the state estimates to their true values. We present simulation results of the performance of the magnetic bearing subject to the aforementioned control laws, and conclude with comments on design.
The health benefits of a targeted cash transfer: The UK Winter Fuel Payment.
Crossley, Thomas F; Zilio, Federico
2018-05-09
Each year, the UK records 25,000 or more excess winter deaths, primarily among the elderly. A key policy response is the "Winter Fuel Payment" (WFP), a labelled but unconditional cash transfer to households with a member above the female state pension age. The WFP has been shown to raise fuel spending among eligible households. We examine the causal effect of the WFP on health outcomes, including self-reports of chest infection, measured hypertension, and biomarkers of infection and inflammation. We find a robust, 6 percentage point reduction in the incidence of high levels of serum fibrinogen. Reductions in other disease markers point to health benefits, but the estimated effects are less robust. © 2018 The Authors. Health Economics published by John Wiley & Sons Ltd.
Drug Trafficking Organizations and Local Economic Activity in Mexico.
González, Felipe
2015-01-01
Little is known about the relationship between illegal firms and local economic activity. In this paper I study changes in satellite night lights across Mexican municipalities after the arrival of large drug trafficking organizations in the period 2000-2010. After accounting for state trends and differences in political regimes, results indicate no significant change in night lights after the arrival of these illegal firms. Estimated coefficients are precise, robust, and similar across different drug trafficking organizations.
Guo, Yu; Dong, Daoyi; Shu, Chuan-Cun
2018-04-04
Achieving fast and efficient quantum state transfer is a fundamental task in physics, chemistry and quantum information science. However, the successful implementation of the perfect quantum state transfer also requires robustness under practically inevitable perturbative defects. Here, we demonstrate how an optimal and robust quantum state transfer can be achieved by shaping the spectral phase of an ultrafast laser pulse in the framework of frequency domain quantum optimal control theory. Our numerical simulations of the single dibenzoterrylene molecule as well as in atomic rubidium show that optimal and robust quantum state transfer via spectral phase modulated laser pulses can be achieved by incorporating a filtering function of the frequency into the optimization algorithm, which in turn has potential applications for ultrafast robust control of photochemical reactions.
A Study on the Requirements for Fast Active Turbine Tip Clearance Control Systems
NASA Technical Reports Server (NTRS)
DeCastro, Jonathan A.; Melcher, Kevin J.
2004-01-01
This paper addresses the requirements of a control system for active turbine tip clearance control in a generic commercial turbofan engine through design and analysis. The control objective is to articulate the shroud in the high pressure turbine section in order to maintain a certain clearance set point given several possible engine transient events. The system must also exhibit reasonable robustness to modeling uncertainties and reasonable noise rejection properties. Two actuators were chosen to fulfill such a requirement, both of which possess different levels of technological readiness: electrohydraulic servovalves and piezoelectric stacks. Identification of design constraints, desired actuator parameters, and actuator limitations are addressed in depth; all of which are intimately tied with the hardware and controller design process. Analytical demonstrations of the performance and robustness characteristics of the two axisymmetric LQG clearance control systems are presented. Takeoff simulation results show that both actuators are capable of maintaining the clearance within acceptable bounds and demonstrate robustness to parameter uncertainty. The present model-based control strategy was employed to demonstrate the tradeoff between performance, control effort, and robustness and to implement optimal state estimation in a noisy engine environment with intent to eliminate ad hoc methods for designing reliable control systems.
Yoo, Sung Jin; Park, Jin Bae; Choi, Yoon Ho
2008-10-01
In this paper, we propose a new robust output feedback control approach for flexible-joint electrically driven (FJED) robots via the observer dynamic surface design technique. The proposed method only requires position measurements of the FJED robots. To estimate the link and actuator velocity information of the FJED robots with model uncertainties, we develop an adaptive observer using self-recurrent wavelet neural networks (SRWNNs). The SRWNNs are used to approximate model uncertainties in both robot (link) dynamics and actuator dynamics, and all their weights are trained online. Based on the designed observer, the link position tracking controller using the estimated states is induced from the dynamic surface design procedure. Therefore, the proposed controller can be designed more simply than the observer backstepping controller. From the Lyapunov stability analysis, it is shown that all signals in a closed-loop adaptive system are uniformly ultimately bounded. Finally, the simulation results on a three-link FJED robot are presented to validate the good position tracking performance and robustness of the proposed control system against payload uncertainties and external disturbances.
Detailed 3D representations for object recognition and modeling.
Zia, M Zeeshan; Stark, Michael; Schiele, Bernt; Schindler, Konrad
2013-11-01
Geometric 3D reasoning at the level of objects has received renewed attention recently in the context of visual scene understanding. The level of geometric detail, however, is typically limited to qualitative representations or coarse boxes. This is linked to the fact that today's object class detectors are tuned toward robust 2D matching rather than accurate 3D geometry, encouraged by bounding-box-based benchmarks such as Pascal VOC. In this paper, we revisit ideas from the early days of computer vision, namely, detailed, 3D geometric object class representations for recognition. These representations can recover geometrically far more accurate object hypotheses than just bounding boxes, including continuous estimates of object pose and 3D wireframes with relative 3D positions of object parts. In combination with robust techniques for shape description and inference, we outperform state-of-the-art results in monocular 3D pose estimation. In a series of experiments, we analyze our approach in detail and demonstrate novel applications enabled by such an object class representation, such as fine-grained categorization of cars and bicycles, according to their 3D geometry, and ultrawide baseline matching.
Bacciu, Davide; Starita, Antonina
2008-11-01
Determining a compact neural coding for a set of input stimuli is an issue that encompasses several biological memory mechanisms as well as various artificial neural network models. In particular, establishing the optimal network structure is still an open problem when dealing with unsupervised learning models. In this paper, we introduce a novel learning algorithm, named competitive repetition-suppression (CoRe) learning, inspired by a cortical memory mechanism called repetition suppression (RS). We show how such a mechanism is used, at various levels of the cerebral cortex, to generate compact neural representations of the visual stimuli. From the general CoRe learning model, we derive a clustering algorithm, named CoRe clustering, that can automatically estimate the unknown cluster number from the data without using a priori information concerning the input distribution. We illustrate how CoRe clustering, besides its biological plausibility, posses strong theoretical properties in terms of robustness to noise and outliers, and we provide an error function describing CoRe learning dynamics. Such a description is used to analyze CoRe relationships with the state-of-the art clustering models and to highlight CoRe similitude with rival penalized competitive learning (RPCL), showing how CoRe extends such a model by strengthening the rival penalization estimation by means of loss functions from robust statistics.
Accuracy and robustness evaluation in stereo matching
NASA Astrophysics Data System (ADS)
Nguyen, Duc M.; Hanca, Jan; Lu, Shao-Ping; Schelkens, Peter; Munteanu, Adrian
2016-09-01
Stereo matching has received a lot of attention from the computer vision community, thanks to its wide range of applications. Despite of the large variety of algorithms that have been proposed so far, it is not trivial to select suitable algorithms for the construction of practical systems. One of the main problems is that many algorithms lack sufficient robustness when employed in various operational conditions. This problem is due to the fact that most of the proposed methods in the literature are usually tested and tuned to perform well on one specific dataset. To alleviate this problem, an extensive evaluation in terms of accuracy and robustness of state-of-the-art stereo matching algorithms is presented. Three datasets (Middlebury, KITTI, and MPEG FTV) representing different operational conditions are employed. Based on the analysis, improvements over existing algorithms have been proposed. The experimental results show that our improved versions of cross-based and cost volume filtering algorithms outperform the original versions with large margins on Middlebury and KITTI datasets. In addition, the latter of the two proposed algorithms ranks itself among the best local stereo matching approaches on the KITTI benchmark. Under evaluations using specific settings for depth-image-based-rendering applications, our improved belief propagation algorithm is less complex than MPEG's FTV depth estimation reference software (DERS), while yielding similar depth estimation performance. Finally, several conclusions on stereo matching algorithms are also presented.
The valuation of the EQ-5D in Portugal.
Ferreira, Lara N; Ferreira, Pedro L; Pereira, Luis N; Oppe, Mark
2014-03-01
The EQ-5D is a preference-based measure widely used in cost-utility analysis (CUA). Several countries have conducted surveys to derive value sets, but this was not the case for Portugal. The purpose of this study was to estimate a value set for the EQ-5D for Portugal using the time trade-off (TTO). A representative sample of the Portuguese general population (n = 450) stratified by age and gender valued 24 health states. Face-to-face interviews were conducted by trained interviewers. Each respondent ranked and valued seven health states using the TTO. Several models were estimated at both the individual and aggregated levels to predict health state valuations. Alternative functional forms were considered to account for the skewed distribution of these valuations. The models were analyzed in terms of their coefficients, overall fit and the ability for predicting the TTO values. Random effects models were estimated using generalized least squares and were robust across model specification. The results are generally consistent with other value sets. This research provides the Portuguese EQ-5D value set based on the preferences of the Portuguese general population as measured by the TTO. This value set is recommended for use in CUA conducted in Portugal.
Robust Variable Selection with Exponential Squared Loss.
Wang, Xueqin; Jiang, Yunlu; Huang, Mian; Zhang, Heping
2013-04-01
Robust variable selection procedures through penalized regression have been gaining increased attention in the literature. They can be used to perform variable selection and are expected to yield robust estimates. However, to the best of our knowledge, the robustness of those penalized regression procedures has not been well characterized. In this paper, we propose a class of penalized robust regression estimators based on exponential squared loss. The motivation for this new procedure is that it enables us to characterize its robustness that has not been done for the existing procedures, while its performance is near optimal and superior to some recently developed methods. Specifically, under defined regularity conditions, our estimators are [Formula: see text] and possess the oracle property. Importantly, we show that our estimators can achieve the highest asymptotic breakdown point of 1/2 and that their influence functions are bounded with respect to the outliers in either the response or the covariate domain. We performed simulation studies to compare our proposed method with some recent methods, using the oracle method as the benchmark. We consider common sources of influential points. Our simulation studies reveal that our proposed method performs similarly to the oracle method in terms of the model error and the positive selection rate even in the presence of influential points. In contrast, other existing procedures have a much lower non-causal selection rate. Furthermore, we re-analyze the Boston Housing Price Dataset and the Plasma Beta-Carotene Level Dataset that are commonly used examples for regression diagnostics of influential points. Our analysis unravels the discrepancies of using our robust method versus the other penalized regression method, underscoring the importance of developing and applying robust penalized regression methods.
Robust Variable Selection with Exponential Squared Loss
Wang, Xueqin; Jiang, Yunlu; Huang, Mian; Zhang, Heping
2013-01-01
Robust variable selection procedures through penalized regression have been gaining increased attention in the literature. They can be used to perform variable selection and are expected to yield robust estimates. However, to the best of our knowledge, the robustness of those penalized regression procedures has not been well characterized. In this paper, we propose a class of penalized robust regression estimators based on exponential squared loss. The motivation for this new procedure is that it enables us to characterize its robustness that has not been done for the existing procedures, while its performance is near optimal and superior to some recently developed methods. Specifically, under defined regularity conditions, our estimators are n-consistent and possess the oracle property. Importantly, we show that our estimators can achieve the highest asymptotic breakdown point of 1/2 and that their influence functions are bounded with respect to the outliers in either the response or the covariate domain. We performed simulation studies to compare our proposed method with some recent methods, using the oracle method as the benchmark. We consider common sources of influential points. Our simulation studies reveal that our proposed method performs similarly to the oracle method in terms of the model error and the positive selection rate even in the presence of influential points. In contrast, other existing procedures have a much lower non-causal selection rate. Furthermore, we re-analyze the Boston Housing Price Dataset and the Plasma Beta-Carotene Level Dataset that are commonly used examples for regression diagnostics of influential points. Our analysis unravels the discrepancies of using our robust method versus the other penalized regression method, underscoring the importance of developing and applying robust penalized regression methods. PMID:23913996
NASA Astrophysics Data System (ADS)
Gadsden, S. Andrew; Kirubarajan, T.
2017-05-01
Signal processing techniques are prevalent in a wide range of fields: control, target tracking, telecommunications, robotics, fault detection and diagnosis, and even stock market analysis, to name a few. Although first introduced in the 1950s, the most popular method used for signal processing and state estimation remains the Kalman filter (KF). The KF offers an optimal solution to the estimation problem under strict assumptions. Since this time, a number of other estimation strategies and filters were introduced to overcome robustness issues, such as the smooth variable structure filter (SVSF). In this paper, properties of the SVSF are explored in an effort to detect and diagnosis faults in an electromechanical system. The results are compared with the KF method, and future work is discussed.
NASA Astrophysics Data System (ADS)
Tugores, M. Pilar; Iglesias, Magdalena; Oñate, Dolores; Miquel, Joan
2016-02-01
In the Mediterranean Sea, the European anchovy (Engraulis encrasicolus) displays a key role in ecological and economical terms. Ensuring stock sustainability requires the provision of crucial information, such as species spatial distribution or unbiased abundance and precision estimates, so that management strategies can be defined (e.g. fishing quotas, temporal closure areas or marine protected areas MPA). Furthermore, the estimation of the precision of global abundance at different sampling intensities can be used for survey design optimisation. Geostatistics provide a priori unbiased estimations of the spatial structure, global abundance and precision for autocorrelated data. However, their application to non-Gaussian data introduces difficulties in the analysis in conjunction with low robustness or unbiasedness. The present study applied intrinsic geostatistics in two dimensions in order to (i) analyse the spatial distribution of anchovy in Spanish Western Mediterranean waters during the species' recruitment season, (ii) produce distribution maps, (iii) estimate global abundance and its precision, (iv) analyse the effect of changing the sampling intensity on the precision of global abundance estimates and, (v) evaluate the effects of several methodological options on the robustness of all the analysed parameters. The results suggested that while the spatial structure was usually non-robust to the tested methodological options when working with the original dataset, it became more robust for the transformed datasets (especially for the log-backtransformed dataset). The global abundance was always highly robust and the global precision was highly or moderately robust to most of the methodological options, except for data transformation.
Bias and robustness of uncertainty components estimates in transient climate projections
NASA Astrophysics Data System (ADS)
Hingray, Benoit; Blanchet, Juliette; Jean-Philippe, Vidal
2016-04-01
A critical issue in climate change studies is the estimation of uncertainties in projections along with the contribution of the different uncertainty sources, including scenario uncertainty, the different components of model uncertainty and internal variability. Quantifying the different uncertainty sources faces actually different problems. For instance and for the sake of simplicity, an estimate of model uncertainty is classically obtained from the empirical variance of the climate responses obtained for the different modeling chains. These estimates are however biased. Another difficulty arises from the limited number of members that are classically available for most modeling chains. In this case, the climate response of one given chain and the effect of its internal variability may be actually difficult if not impossible to separate. The estimate of scenario uncertainty, model uncertainty and internal variability components are thus likely to be not really robust. We explore the importance of the bias and the robustness of the estimates for two classical Analysis of Variance (ANOVA) approaches: a Single Time approach (STANOVA), based on the only data available for the considered projection lead time and a time series based approach (QEANOVA), which assumes quasi-ergodicity of climate outputs over the whole available climate simulation period (Hingray and Saïd, 2014). We explore both issues for a simple but classical configuration where uncertainties in projections are composed of two single sources: model uncertainty and internal climate variability. The bias in model uncertainty estimates is explored from theoretical expressions of unbiased estimators developed for both ANOVA approaches. The robustness of uncertainty estimates is explored for multiple synthetic ensembles of time series projections generated with MonteCarlo simulations. For both ANOVA approaches, when the empirical variance of climate responses is used to estimate model uncertainty, the bias is always positive. It can be especially high with STANOVA. In the most critical configurations, when the number of members available for each modeling chain is small (< 3) and when internal variability explains most of total uncertainty variance (75% or more), the overestimation is higher than 100% of the true model uncertainty variance. The bias can be considerably reduced with a time series ANOVA approach, owing to the multiple time steps accounted for. The longer the transient time period used for the analysis, the larger the reduction. When a quasi-ergodic ANOVA approach is applied to decadal data for the whole 1980-2100 period, the bias is reduced by a factor 2.5 to 20 depending on the projection lead time. In all cases, the bias is likely to be not negligible for a large number of climate impact studies resulting in a likely large overestimation of the contribution of model uncertainty to total variance. For both approaches, the robustness of all uncertainty estimates is higher when more members are available, when internal variability is smaller and/or the response-to-uncertainty ratio is higher. QEANOVA estimates are much more robust than STANOVA ones: QEANOVA simulated confidence intervals are roughly 3 to 5 times smaller than STANOVA ones. Excepted for STANOVA when less than 3 members is available, the robustness is rather high for total uncertainty and moderate for internal variability estimates. For model uncertainty or response-to-uncertainty ratio estimates, the robustness is conversely low for QEANOVA to very low for STANOVA. In the most critical configurations (small number of member, large internal variability), large over- or underestimation of uncertainty components is very thus likely. To propose relevant uncertainty analyses and avoid misleading interpretations, estimates of uncertainty components should be therefore bias corrected and ideally come with estimates of their robustness. This work is part of the COMPLEX Project (European Collaborative Project FP7-ENV-2012 number: 308601; http://www.complex.ac.uk/). Hingray, B., Saïd, M., 2014. Partitioning internal variability and model uncertainty components in a multimodel multireplicate ensemble of climate projections. J.Climate. doi:10.1175/JCLI-D-13-00629.1 Hingray, B., Blanchet, J. (revision) Unbiased estimators for uncertainty components in transient climate projections. J. Climate Hingray, B., Blanchet, J., Vidal, J.P. (revision) Robustness of uncertainty components estimates in climate projections. J.Climate
Li, Dongming; Sun, Changming; Yang, Jinhua; Liu, Huan; Peng, Jiaqi; Zhang, Lijuan
2017-04-06
An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods.
NASA Astrophysics Data System (ADS)
Ombadi, Mohammed; Nguyen, Phu; Sorooshian, Soroosh
2017-12-01
Intensity Duration Frequency (IDF) curves are essential for the resilient design of infrastructures. Since their earlier development, IDF relationships have been derived using precipitation records from rainfall gauge stations. However, with the recent advancement in satellite observation of precipitation which provides near global coverage and high spatiotemporal resolution, it is worthy of attention to investigate the validity of utilizing the relatively short record length of satellite rainfall to generate robust IDF relationships. These satellite-based IDF can address the paucity of such information in the developing countries. Few studies have used satellite precipitation data in IDF development but mainly focused on merging satellite and gauge precipitation. In this study, however, IDF have been derived solely from satellite observations using PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record). The unique PERSIANN-CDR attributes of high spatial resolution (0.25°×0.25°), daily temporal resolution and a record dating back to 1983 allow for the investigation at fine resolution. The results are compared over most of the contiguous United States against NOAA Atlas 14. The impact of using different methods of sampling, distribution estimators and regionalization in the resulting relationships is investigated. Main challenges to estimate robust and accurate IDF from satellite observations are also highlighted.
Design and Analysis of Map Relative Localization for Access to Hazardous Landing Sites on Mars
NASA Technical Reports Server (NTRS)
Johnson, Andrew E.; Aaron, Seth; Cheng, Yang; Montgomery, James; Trawny, Nikolas; Tweddle, Brent; Vaughan, Geoffrey; Zheng, Jason
2016-01-01
Human and robotic planetary lander missions require accurate surface relative position knowledge to land near science targets or next to pre-deployed assets. In the absence of GPS, accurate position estimates can be obtained by automatically matching sensor data collected during descent to an on-board map. The Lander Vision System (LVS) that is being developed for Mars landing applications generates landmark matches in descent imagery and combines these with inertial data to estimate vehicle position, velocity and attitude. This paper describes recent LVS design work focused on making the map relative localization algorithms robust to challenging environmental conditions like bland terrain, appearance differences between the map and image and initial input state errors. Improved results are shown using data from a recent LVS field test campaign. This paper also fills a gap in analysis to date by assessing the performance of the LVS with data sets containing significant vertical motion including a complete data set from the Mars Science Laboratory mission, a Mars landing simulation, and field test data taken over multiple altitudes above the same scene. Accurate and robust performance is achieved for all data sets indicating that vertical motion does not play a significant role in position estimation performance.
Li, Dongming; Sun, Changming; Yang, Jinhua; Liu, Huan; Peng, Jiaqi; Zhang, Lijuan
2017-01-01
An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods. PMID:28383503
Does more education lead to better health habits? Evidence from the school reforms in Australia.
Li, Jinhu; Powdthavee, Nattavudh
2015-02-01
The current study provides new empirical evidence on the causal effect of education on health-related behaviors by exploiting historical changes in the compulsory schooling laws in Australia. Since World War II, Australian states increased the minimum school leaving age from 14 to 15 in different years. Using differences in the laws regarding minimum school leaving age across different cohorts and across different states as a source of exogenous variation in education, we show that more education improves people's diets and their tendency to engage in more regular exercise and drinking moderately, but not necessarily their tendency to avoid smoking and to engage in more preventive health checks. The improvements in health behaviors are also reflected in the estimated positive effect of education on some health outcomes. Our results are robust to alternative measures of education and different estimation methods. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
He, Shaoming; Wang, Jiang; Wang, Wei
2017-12-01
This paper proposes a new composite guidance law to intercept manoeuvring targets without line-of-sight (LOS) angular rate information in the presence of autopilot lag. The presented formulation is obtained via a combination of homogeneous theory and sliding mode control approach. Different from some existing observers, the proposed homogeneous observer can estimate the lumped uncertainty and the LOS angular rate in an integrated manner. To reject the mismatched lumped uncertainty in the integrated guidance and autopilot system, a sliding surface, which consists of the system states and the estimated states, is proposed and a robust guidance law is then synthesised. Stability analysis shows that the LOS angular rate can be stabilised in a small region around zero asymptotically and the upper bound can be lowered by appropriate parameter choice. Numerical simulations with some comparisons are carried out to demonstrate the superiority of the proposed method.
Performance analysis of improved iterated cubature Kalman filter and its application to GNSS/INS.
Cui, Bingbo; Chen, Xiyuan; Xu, Yuan; Huang, Haoqian; Liu, Xiao
2017-01-01
In order to improve the accuracy and robustness of GNSS/INS navigation system, an improved iterated cubature Kalman filter (IICKF) is proposed by considering the state-dependent noise and system uncertainty. First, a simplified framework of iterated Gaussian filter is derived by using damped Newton-Raphson algorithm and online noise estimator. Then the effect of state-dependent noise coming from iterated update is analyzed theoretically, and an augmented form of CKF algorithm is applied to improve the estimation accuracy. The performance of IICKF is verified by field test and numerical simulation, and results reveal that, compared with non-iterated filter, iterated filter is less sensitive to the system uncertainty, and IICKF improves the accuracy of yaw, roll and pitch by 48.9%, 73.1% and 83.3%, respectively, compared with traditional iterated KF. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Distributed Multisensor Data Fusion under Unknown Correlation and Data Inconsistency
Abu Bakr, Muhammad; Lee, Sukhan
2017-01-01
The paradigm of multisensor data fusion has been evolved from a centralized architecture to a decentralized or distributed architecture along with the advancement in sensor and communication technologies. These days, distributed state estimation and data fusion has been widely explored in diverse fields of engineering and control due to its superior performance over the centralized one in terms of flexibility, robustness to failure and cost effectiveness in infrastructure and communication. However, distributed multisensor data fusion is not without technical challenges to overcome: namely, dealing with cross-correlation and inconsistency among state estimates and sensor data. In this paper, we review the key theories and methodologies of distributed multisensor data fusion available to date with a specific focus on handling unknown correlation and data inconsistency. We aim at providing readers with a unifying view out of individual theories and methodologies by presenting a formal analysis of their implications. Finally, several directions of future research are highlighted. PMID:29077035
Less money, more problems: How changes in disposable income affect child maltreatment.
McLaughlin, Michael
2017-05-01
A number of research studies have documented an association between child maltreatment and family income. Yet, little is known about the specific types of economic shocks that affect child maltreatment rates. The paucity of information is troubling given that more than six million children are reported for maltreatment annually in the U.S. alone. This study examines whether an exogenous shock to families' disposable income, a change in the price of gasoline, predicts changes in child maltreatment. The findings of a fixed-effects regression show that increases in state-level gas prices are associated with increases in state-level child maltreatment referral rates, even after controlling for demographic and other economic variables. The results are robust to the manner of estimation; random-effects and mixed-effects regressions produce similar estimates. The findings suggest that fluctuations in the price of gas may have important consequences for children. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reducing bias in survival under non-random temporary emigration
Peñaloza, Claudia L.; Kendall, William L.; Langtimm, Catherine Ann
2014-01-01
Despite intensive monitoring, temporary emigration from the sampling area can induce bias severe enough for managers to discard life-history parameter estimates toward the terminus of the times series (terminal bias). Under random temporary emigration unbiased parameters can be estimated with CJS models. However, unmodeled Markovian temporary emigration causes bias in parameter estimates and an unobservable state is required to model this type of emigration. The robust design is most flexible when modeling temporary emigration, and partial solutions to mitigate bias have been identified, nonetheless there are conditions were terminal bias prevails. Long-lived species with high adult survival and highly variable non-random temporary emigration present terminal bias in survival estimates, despite being modeled with the robust design and suggested constraints. Because this bias is due to uncertainty about the fate of individuals that are undetected toward the end of the time series, solutions should involve using additional information on survival status or location of these individuals at that time. Using simulation, we evaluated the performance of models that jointly analyze robust design data and an additional source of ancillary data (predictive covariate on temporary emigration, telemetry, dead recovery, or auxiliary resightings) in reducing terminal bias in survival estimates. The auxiliary resighting and predictive covariate models reduced terminal bias the most. Additional telemetry data was effective at reducing terminal bias only when individuals were tracked for a minimum of two years. High adult survival of long-lived species made the joint model with recovery data ineffective at reducing terminal bias because of small-sample bias. The naïve constraint model (last and penultimate temporary emigration parameters made equal), was the least efficient, though still able to reduce terminal bias when compared to an unconstrained model. Joint analysis of several sources of data improved parameter estimates and reduced terminal bias. Efforts to incorporate or acquire such data should be considered by researchers and wildlife managers, especially in the years leading up to status assessments of species of interest. Simulation modeling is a very cost effective method to explore the potential impacts of using different sources of data to produce high quality demographic data to inform management.
Robust detection, isolation and accommodation for sensor failures
NASA Technical Reports Server (NTRS)
Emami-Naeini, A.; Akhter, M. M.; Rock, S. M.
1986-01-01
The objective is to extend the recent advances in robust control system design of multivariable systems to sensor failure detection, isolation, and accommodation (DIA), and estimator design. This effort provides analysis tools to quantify the trade-off between performance robustness and DIA sensitivity, which are to be used to achieve higher levels of performance robustness for given levels of DIA sensitivity. An innovations-based DIA scheme is used. Estimators, which depend upon a model of the process and process inputs and outputs, are used to generate these innovations. Thresholds used to determine failure detection are computed based on bounds on modeling errors, noise properties, and the class of failures. The applicability of the newly developed tools are demonstrated on a multivariable aircraft turbojet engine example. A new concept call the threshold selector was developed. It represents a significant and innovative tool for the analysis and synthesis of DiA algorithms. The estimators were made robust by introduction of an internal model and by frequency shaping. The internal mode provides asymptotically unbiased filter estimates.The incorporation of frequency shaping of the Linear Quadratic Gaussian cost functional modifies the estimator design to make it suitable for sensor failure DIA. The results are compared with previous studies which used thresholds that were selcted empirically. Comparison of these two techniques on a nonlinear dynamic engine simulation shows improved performance of the new method compared to previous techniques
Trong Bui, Duong; Nguyen, Nhan Duc; Jeong, Gu-Min
2018-06-25
Human activity recognition and pedestrian dead reckoning are an interesting field because of their importance utilities in daily life healthcare. Currently, these fields are facing many challenges, one of which is the lack of a robust algorithm with high performance. This paper proposes a new method to implement a robust step detection and adaptive distance estimation algorithm based on the classification of five daily wrist activities during walking at various speeds using a smart band. The key idea is that the non-parametric adaptive distance estimator is performed after two activity classifiers and a robust step detector. In this study, two classifiers perform two phases of recognizing five wrist activities during walking. Then, a robust step detection algorithm, which is integrated with an adaptive threshold, peak and valley correction algorithm, is applied to the classified activities to detect the walking steps. In addition, the misclassification activities are fed back to the previous layer. Finally, three adaptive distance estimators, which are based on a non-parametric model of the average walking speed, calculate the length of each strike. The experimental results show that the average classification accuracy is about 99%, and the accuracy of the step detection is 98.7%. The error of the estimated distance is 2.2⁻4.2% depending on the type of wrist activities.
Stenroos, Matti; Hauk, Olaf
2013-01-01
The conductivity profile of the head has a major effect on EEG signals, but unfortunately the conductivity for the most important compartment, skull, is only poorly known. In dipole modeling studies, errors in modeled skull conductivity have been considered to have a detrimental effect on EEG source estimation. However, as dipole models are very restrictive, those results cannot be generalized to other source estimation methods. In this work, we studied the sensitivity of EEG and combined MEG + EEG source estimation to errors in skull conductivity using a distributed source model and minimum-norm (MN) estimation. We used a MEG/EEG modeling set-up that reflected state-of-the-art practices of experimental research. Cortical surfaces were segmented and realistically-shaped three-layer anatomical head models were constructed, and forward models were built with Galerkin boundary element method while varying the skull conductivity. Lead-field topographies and MN spatial filter vectors were compared across conductivities, and the localization and spatial spread of the MN estimators were assessed using intuitive resolution metrics. The results showed that the MN estimator is robust against errors in skull conductivity: the conductivity had a moderate effect on amplitudes of lead fields and spatial filter vectors, but the effect on corresponding morphologies was small. The localization performance of the EEG or combined MEG + EEG MN estimator was only minimally affected by the conductivity error, while the spread of the estimate varied slightly. Thus, the uncertainty with respect to skull conductivity should not prevent researchers from applying minimum norm estimation to EEG or combined MEG + EEG data. Comparing our results to those obtained earlier with dipole models shows that general judgment on the performance of an imaging modality should not be based on analysis with one source estimation method only. PMID:23639259
On the robustness of a Bayes estimate. [in reliability theory
NASA Technical Reports Server (NTRS)
Canavos, G. C.
1974-01-01
This paper examines the robustness of a Bayes estimator with respect to the assigned prior distribution. A Bayesian analysis for a stochastic scale parameter of a Weibull failure model is summarized in which the natural conjugate is assigned as the prior distribution of the random parameter. The sensitivity analysis is carried out by the Monte Carlo method in which, although an inverted gamma is the assigned prior, realizations are generated using distribution functions of varying shape. For several distributional forms and even for some fixed values of the parameter, simulated mean squared errors of Bayes and minimum variance unbiased estimators are determined and compared. Results indicate that the Bayes estimator remains squared-error superior and appears to be largely robust to the form of the assigned prior distribution.
Robust range estimation with a monocular camera for vision-based forward collision warning system.
Park, Ki-Yeong; Hwang, Sun-Young
2014-01-01
We propose a range estimation method for vision-based forward collision warning systems with a monocular camera. To solve the problem of variation of camera pitch angle due to vehicle motion and road inclination, the proposed method estimates virtual horizon from size and position of vehicles in captured image at run-time. The proposed method provides robust results even when road inclination varies continuously on hilly roads or lane markings are not seen on crowded roads. For experiments, a vision-based forward collision warning system has been implemented and the proposed method is evaluated with video clips recorded in highway and urban traffic environments. Virtual horizons estimated by the proposed method are compared with horizons manually identified, and estimated ranges are compared with measured ranges. Experimental results confirm that the proposed method provides robust results both in highway and in urban traffic environments.
Robust Range Estimation with a Monocular Camera for Vision-Based Forward Collision Warning System
2014-01-01
We propose a range estimation method for vision-based forward collision warning systems with a monocular camera. To solve the problem of variation of camera pitch angle due to vehicle motion and road inclination, the proposed method estimates virtual horizon from size and position of vehicles in captured image at run-time. The proposed method provides robust results even when road inclination varies continuously on hilly roads or lane markings are not seen on crowded roads. For experiments, a vision-based forward collision warning system has been implemented and the proposed method is evaluated with video clips recorded in highway and urban traffic environments. Virtual horizons estimated by the proposed method are compared with horizons manually identified, and estimated ranges are compared with measured ranges. Experimental results confirm that the proposed method provides robust results both in highway and in urban traffic environments. PMID:24558344
Relative Navigation for Formation Flying of Spacecraft
NASA Technical Reports Server (NTRS)
Alonso, Roberto; Du, Ju-Young; Hughes, Declan; Junkins, John L.; Crassidis, John L.
2001-01-01
This paper presents a robust and efficient approach for relative navigation and attitude estimation of spacecraft flying in formation. This approach uses measurements from a new optical sensor that provides a line of sight vector from the master spacecraft to the secondary satellite. The overall system provides a novel, reliable, and autonomous relative navigation and attitude determination system, employing relatively simple electronic circuits with modest digital signal processing requirements and is fully independent of any external systems. Experimental calibration results are presented, which are used to achieve accurate line of sight measurements. State estimation for formation flying is achieved through an optimal observer design. Also, because the rotational and translational motions are coupled through the observation vectors, three approaches are suggested to separate both signals just for stability analysis. Simulation and experimental results indicate that the combined sensor/estimator approach provides accurate relative position and attitude estimates.
Valuing improved wetland quality using choice modeling
NASA Astrophysics Data System (ADS)
Morrison, Mark; Bennett, Jeff; Blamey, Russell
1999-09-01
The main stated preference technique used for estimating environmental values is the contingent valuation method. In this paper the results of an application of an alternative technique, choice modeling, are reported. Choice modeling has been developed in the marketing and transport applications but has only been used in a handful of environmental applications, most of which have focused on use values. The case study presented here involves the estimation of the nonuse environmental values provided by the Macquarie Marshes, a major wetland in New South Wales, Australia. Estimates of the nonuse value the community places on preventing job losses are also presented. The reported models are robust, having high explanatory power and variables that are statistically significant and consistent with expectations. These results provide support for the hypothesis that choice modeling can be used to estimate nonuse values for both environmental and social consequences of resource use changes.
NASA Astrophysics Data System (ADS)
Gao, Haibo; Chen, Chao; Ding, Liang; Li, Weihua; Yu, Haitao; Xia, Kerui; Liu, Zhen
2017-11-01
Wheeled mobile robots (WMRs) often suffer from the longitudinal slipping when moving on the loose soil of the surface of the moon during exploration. Longitudinal slip is the main cause of WMRs' delay in trajectory tracking. In this paper, a nonlinear extended state observer (NESO) is introduced to estimate the longitudinal velocity in order to estimate the slip ratio and the derivative of the loss of velocity which are used in modelled disturbance compensation. Owing to the uncertainty and disturbance caused by estimation errors, a multi-objective controller using the mixed H2/H∞ method is employed to ensure the robust stability and performance of the WMR system. The final inputs of the trajectory tracking consist of the feedforward compensation, compensation for the modelled disturbances and designed multi-objective control inputs. Finally, the simulation results demonstrate the effectiveness of the controller, which exhibits a satisfactory tracking performance.
Quantum control and quantum tomography on neutral atom qudits
NASA Astrophysics Data System (ADS)
Sosa Martinez, Hector
Neutral atom systems are an appealing platform for the development and testing of quantum control and measurement techniques. This dissertation presents experimental investigations of control and measurement tools using as a testbed the 16-dimensional hyperfine manifold associated with the electronic ground state of cesium atoms. On the control side, we present an experimental realization of a protocol to implement robust unitary transformations in the presence of static and dynamic perturbations. We also present an experimental realization of inhomogeneous quantum control. Specifically, we demonstrate our ability to perform two different unitary transformations on atoms that see different light shifts from an optical addressing field. On the measurement side, we present experimental realizations of quantum state and process tomography. The state tomography project encompasses a comprehensive evaluation of several measurement strategies and state estimation algorithms. Our experimental results show that in the presence of experimental imperfections, there is a clear tradeoff between accuracy, efficiency and robustness in the reconstruction. The process tomography project involves an experimental demonstration of efficient reconstruction by using a set of intelligent probe states. Experimental results show that we are able to reconstruct unitary maps in Hilbert spaces with dimension ranging from d=4 to d=16. To the best of our knowledge, this is the first time that a unitary process in d=16 is successfully reconstructed in the laboratory.
Liu, Hong; Wang, Jie; Xu, Xiangyang; Song, Enmin; Wang, Qian; Jin, Renchao; Hung, Chih-Cheng; Fei, Baowei
2014-11-01
A robust and accurate center-frequency (CF) estimation (RACE) algorithm for improving the performance of the local sine-wave modeling (SinMod) method, which is a good motion estimation method for tagged cardiac magnetic resonance (MR) images, is proposed in this study. The RACE algorithm can automatically, effectively and efficiently produce a very appropriate CF estimate for the SinMod method, under the circumstance that the specified tagging parameters are unknown, on account of the following two key techniques: (1) the well-known mean-shift algorithm, which can provide accurate and rapid CF estimation; and (2) an original two-direction-combination strategy, which can further enhance the accuracy and robustness of CF estimation. Some other available CF estimation algorithms are brought out for comparison. Several validation approaches that can work on the real data without ground truths are specially designed. Experimental results on human body in vivo cardiac data demonstrate the significance of accurate CF estimation for SinMod, and validate the effectiveness of RACE in facilitating the motion estimation performance of SinMod. Copyright © 2014 Elsevier Inc. All rights reserved.
Robust THP Transceiver Designs for Multiuser MIMO Downlink with Imperfect CSIT
NASA Astrophysics Data System (ADS)
Ubaidulla, P.; Chockalingam, A.
2009-12-01
We present robust joint nonlinear transceiver designs for multiuser multiple-input multiple-output (MIMO) downlink in the presence of imperfections in the channel state information at the transmitter (CSIT). The base station (BS) is equipped with multiple transmit antennas, and each user terminal is equipped with one or more receive antennas. The BS employs Tomlinson-Harashima precoding (THP) for interuser interference precancellation at the transmitter. We consider robust transceiver designs that jointly optimize the transmit THP filters and receive filter for two models of CSIT errors. The first model is a stochastic error (SE) model, where the CSIT error is Gaussian-distributed. This model is applicable when the CSIT error is dominated by channel estimation error. In this case, the proposed robust transceiver design seeks to minimize a stochastic function of the sum mean square error (SMSE) under a constraint on the total BS transmit power. We propose an iterative algorithm to solve this problem. The other model we consider is a norm-bounded error (NBE) model, where the CSIT error can be specified by an uncertainty set. This model is applicable when the CSIT error is dominated by quantization errors. In this case, we consider a worst-case design. For this model, we consider robust (i) minimum SMSE, (ii) MSE-constrained, and (iii) MSE-balancing transceiver designs. We propose iterative algorithms to solve these problems, wherein each iteration involves a pair of semidefinite programs (SDPs). Further, we consider an extension of the proposed algorithm to the case with per-antenna power constraints. We evaluate the robustness of the proposed algorithms to imperfections in CSIT through simulation, and show that the proposed robust designs outperform nonrobust designs as well as robust linear transceiver designs reported in the recent literature.
The 'robust' capture-recapture design allows components of recruitment to be estimated
Pollock, K.H.; Kendall, W.L.; Nichols, J.D.; Lebreton, J.-D.; North, P.M.
1993-01-01
The 'robust' capture-recapture design (Pollock 1982) allows analyses which combine features of closed population model analyses (Otis et aI., 1978, White et aI., 1982) and open population model analyses (Pollock et aI., 1990). Estimators obtained under these analyses are more robust to unequal catch ability than traditional Jolly-Seber estimators (Pollock, 1982; Pollock et al., 1990; Kendall, 1992). The robust design also allows estimation of parameters for population size, survival rate and recruitment numbers for all periods of the study unlike under Jolly-Seber type models. The major advantage of this design that we emphasize in this short review paper is that it allows separate estimation of immigration and in situ recruitment numbers for a two or more age class model (Nichols and Pollock, 1990). This is contrasted with the age-dependent Jolly-Seber model (Pollock, 1981; Stokes, 1984; Pollock et L, 1990) which provides separate estimates for immigration and in situ recruitment for all but the first two age classes where there is at least a three age class model. The ability to achieve this separation of recruitment components can be very important to population modelers and wildlife managers as many species can only be separated into two easily identified age classes in the field.
Calibrating recruitment estimates for mourning doves from harvest age ratios
Miller, David A.; Otis, David L.
2010-01-01
We examined results from the first national-scale effort to estimate mourning dove (Zenaida macroura) age ratios and developed a simple, efficient, and generalizable methodology for calibrating estimates. Our method predicted age classes of unknown-age wings based on backward projection of molt distributions from fall harvest collections to preseason banding. We estimated 1) the proportion of late-molt individuals in each age class, and 2) the molt rates of juvenile and adult birds. Monte Carlo simulations demonstrated our estimator was minimally biased. We estimated model parameters using 96,811 wings collected from hunters and 42,189 birds banded during preseason from 68 collection blocks in 22 states during the 2005–2007 hunting seasons. We also used estimates to derive a correction factor, based on latitude and longitude of samples, which can be applied to future surveys. We estimated differential vulnerability of age classes to harvest using data from banded birds and applied that to harvest age ratios to estimate population age ratios. Average, uncorrected age ratio of known-age wings for states that allow hunting was 2.25 (SD 0.85) juveniles:adult, and average, corrected ratio was 1.91 (SD 0.68), as determined from harvest age ratios from an independent sample of 41,084 wings collected from random hunters in 2007 and 2008. We used an independent estimate of differential vulnerability to adjust corrected harvest age ratios and estimated the average population age ratio as 1.45 (SD 0.52), a direct measure of recruitment rates. Average annual recruitment rates were highest east of the Mississippi River and in the northwestern United States, with lower rates between. Our results demonstrate a robust methodology for calibrating recruitment estimates for mourning doves and represent the first large-scale estimates of recruitment for the species. Our methods can be used by managers to correct future harvest survey data to generate recruitment estimates for use in formulating harvest management strategies.
Carbonell, Felix; Bellec, Pierre; Shmuel, Amir
2011-01-01
The influence of the global average signal (GAS) on functional-magnetic resonance imaging (fMRI)-based resting-state functional connectivity is a matter of ongoing debate. The global average fluctuations increase the correlation between functional systems beyond the correlation that reflects their specific functional connectivity. Hence, removal of the GAS is a common practice for facilitating the observation of network-specific functional connectivity. This strategy relies on the implicit assumption of a linear-additive model according to which global fluctuations, irrespective of their origin, and network-specific fluctuations are super-positioned. However, removal of the GAS introduces spurious negative correlations between functional systems, bringing into question the validity of previous findings of negative correlations between fluctuations in the default-mode and the task-positive networks. Here we present an alternative method for estimating global fluctuations, immune to the complications associated with the GAS. Principal components analysis was applied to resting-state fMRI time-series. A global-signal effect estimator was defined as the principal component (PC) that correlated best with the GAS. The mean correlation coefficient between our proposed PC-based global effect estimator and the GAS was 0.97±0.05, demonstrating that our estimator successfully approximated the GAS. In 66 out of 68 runs, the PC that showed the highest correlation with the GAS was the first PC. Since PCs are orthogonal, our method provides an estimator of the global fluctuations, which is uncorrelated to the remaining, network-specific fluctuations. Moreover, unlike the regression of the GAS, the regression of the PC-based global effect estimator does not introduce spurious anti-correlations beyond the decrease in seed-based correlation values allowed by the assumed additive model. After regressing this PC-based estimator out of the original time-series, we observed robust anti-correlations between resting-state fluctuations in the default-mode and the task-positive networks. We conclude that resting-state global fluctuations and network-specific fluctuations are uncorrelated, supporting a Resting-State Linear-Additive Model. In addition, we conclude that the network-specific resting-state fluctuations of the default-mode and task-positive networks show artifact-free anti-correlations.
Accurately estimating PSF with straight lines detected by Hough transform
NASA Astrophysics Data System (ADS)
Wang, Ruichen; Xu, Liangpeng; Fan, Chunxiao; Li, Yong
2018-04-01
This paper presents an approach to estimating point spread function (PSF) from low resolution (LR) images. Existing techniques usually rely on accurate detection of ending points of the profile normal to edges. In practice however, it is often a great challenge to accurately localize profiles of edges from a LR image, which hence leads to a poor PSF estimation of the lens taking the LR image. For precisely estimating the PSF, this paper proposes firstly estimating a 1-D PSF kernel with straight lines, and then robustly obtaining the 2-D PSF from the 1-D kernel by least squares techniques and random sample consensus. Canny operator is applied to the LR image for obtaining edges and then Hough transform is utilized to extract straight lines of all orientations. Estimating 1-D PSF kernel with straight lines effectively alleviates the influence of the inaccurate edge detection on PSF estimation. The proposed method is investigated on both natural and synthetic images for estimating PSF. Experimental results show that the proposed method outperforms the state-ofthe- art and does not rely on accurate edge detection.
Chu, Hui-May; Ette, Ene I
2005-09-02
his study was performed to develop a new nonparametric approach for the estimation of robust tissue-to-plasma ratio from extremely sparsely sampled paired data (ie, one sample each from plasma and tissue per subject). Tissue-to-plasma ratio was estimated from paired/unpaired experimental data using independent time points approach, area under the curve (AUC) values calculated with the naïve data averaging approach, and AUC values calculated using sampling based approaches (eg, the pseudoprofile-based bootstrap [PpbB] approach and the random sampling approach [our proposed approach]). The random sampling approach involves the use of a 2-phase algorithm. The convergence of the sampling/resampling approaches was investigated, as well as the robustness of the estimates produced by different approaches. To evaluate the latter, new data sets were generated by introducing outlier(s) into the real data set. One to 2 concentration values were inflated by 10% to 40% from their original values to produce the outliers. Tissue-to-plasma ratios computed using the independent time points approach varied between 0 and 50 across time points. The ratio obtained from AUC values acquired using the naive data averaging approach was not associated with any measure of uncertainty or variability. Calculating the ratio without regard to pairing yielded poorer estimates. The random sampling and pseudoprofile-based bootstrap approaches yielded tissue-to-plasma ratios with uncertainty and variability. However, the random sampling approach, because of the 2-phase nature of its algorithm, yielded more robust estimates and required fewer replications. Therefore, a 2-phase random sampling approach is proposed for the robust estimation of tissue-to-plasma ratio from extremely sparsely sampled data.
Montone, Verona O; Fraisse, Clyde W; Peres, Natalia A; Sentelhas, Paulo C; Gleason, Mark; Ellis, Michael; Schnabel, Guido
2016-11-01
Leaf wetness duration (LWD) plays a key role in disease development and is often used as an input in disease-warning systems. LWD is often estimated using mathematical models, since measurement by sensors is rarely available and/or reliable. A strawberry disease-warning system called "Strawberry Advisory System" (SAS) is used by growers in Florida, USA, in deciding when to spray their strawberry fields to control anthracnose and Botrytis fruit rot. Currently, SAS is implemented at six locations, where reliable LWD sensors are deployed. A robust LWD model would facilitate SAS expansion from Florida to other regions where reliable LW sensors are not available. The objective of this study was to evaluate the use of mathematical models to estimate LWD and time of spray recommendations in comparison to on site LWD measurements. Specific objectives were to (i) compare model estimated and observed LWD and resulting differences in timing and number of fungicide spray recommendations, (ii) evaluate the effects of weather station sensors precision on LWD models performance, and (iii) compare LWD models performance across four states in the USA. The LWD models evaluated were the classification and regression tree (CART), dew point depression (DPD), number of hours with relative humidity equal or greater than 90 % (NHRH ≥90 %), and Penman-Monteith (P-M). P-M model was expected to have the lowest errors, since it is a physically based and thus portable model. Indeed, the P-M model estimated LWD most accurately (MAE <2 h) at a weather station with high precision sensors but was the least accurate when lower precision sensors of relative humidity and estimated net radiation (based on solar radiation and temperature) were used (MAE = 3.7 h). The CART model was the most robust for estimating LWD and for advising growers on fungicide-spray timing for anthracnose and Botrytis fruit rot control and is therefore the model we recommend for expanding the strawberry disease warning beyond Florida, to other locations where weather stations may be deployed with lower precision sensors, and net radiation observations are not available.
NASA Astrophysics Data System (ADS)
Montone, Verona O.; Fraisse, Clyde W.; Peres, Natalia A.; Sentelhas, Paulo C.; Gleason, Mark; Ellis, Michael; Schnabel, Guido
2016-11-01
Leaf wetness duration (LWD) plays a key role in disease development and is often used as an input in disease-warning systems. LWD is often estimated using mathematical models, since measurement by sensors is rarely available and/or reliable. A strawberry disease-warning system called "Strawberry Advisory System" (SAS) is used by growers in Florida, USA, in deciding when to spray their strawberry fields to control anthracnose and Botrytis fruit rot. Currently, SAS is implemented at six locations, where reliable LWD sensors are deployed. A robust LWD model would facilitate SAS expansion from Florida to other regions where reliable LW sensors are not available. The objective of this study was to evaluate the use of mathematical models to estimate LWD and time of spray recommendations in comparison to on site LWD measurements. Specific objectives were to (i) compare model estimated and observed LWD and resulting differences in timing and number of fungicide spray recommendations, (ii) evaluate the effects of weather station sensors precision on LWD models performance, and (iii) compare LWD models performance across four states in the USA. The LWD models evaluated were the classification and regression tree (CART), dew point depression (DPD), number of hours with relative humidity equal or greater than 90 % (NHRH ≥90 %), and Penman-Monteith (P-M). P-M model was expected to have the lowest errors, since it is a physically based and thus portable model. Indeed, the P-M model estimated LWD most accurately (MAE <2 h) at a weather station with high precision sensors but was the least accurate when lower precision sensors of relative humidity and estimated net radiation (based on solar radiation and temperature) were used (MAE = 3.7 h). The CART model was the most robust for estimating LWD and for advising growers on fungicide-spray timing for anthracnose and Botrytis fruit rot control and is therefore the model we recommend for expanding the strawberry disease warning beyond Florida, to other locations where weather stations may be deployed with lower precision sensors, and net radiation observations are not available.
Robust control of burst suppression for medical coma
NASA Astrophysics Data System (ADS)
Westover, M. Brandon; Kim, Seong-Eun; Ching, ShiNung; Purdon, Patrick L.; Brown, Emery N.
2015-08-01
Objective. Medical coma is an anesthetic-induced state of brain inactivation, manifest in the electroencephalogram by burst suppression. Feedback control can be used to regulate burst suppression, however, previous designs have not been robust. Robust control design is critical under real-world operating conditions, subject to substantial pharmacokinetic and pharmacodynamic parameter uncertainty and unpredictable external disturbances. We sought to develop a robust closed-loop anesthesia delivery (CLAD) system to control medical coma. Approach. We developed a robust CLAD system to control the burst suppression probability (BSP). We developed a novel BSP tracking algorithm based on realistic models of propofol pharmacokinetics and pharmacodynamics. We also developed a practical method for estimating patient-specific pharmacodynamics parameters. Finally, we synthesized a robust proportional integral controller. Using a factorial design spanning patient age, mass, height, and gender, we tested whether the system performed within clinically acceptable limits. Throughout all experiments we subjected the system to disturbances, simulating treatment of refractory status epilepticus in a real-world intensive care unit environment. Main results. In 5400 simulations, CLAD behavior remained within specifications. Transient behavior after a step in target BSP from 0.2 to 0.8 exhibited a rise time (the median (min, max)) of 1.4 [1.1, 1.9] min; settling time, 7.8 [4.2, 9.0] min; and percent overshoot of 9.6 [2.3, 10.8]%. Under steady state conditions the CLAD system exhibited a median error of 0.1 [-0.5, 0.9]%; inaccuracy of 1.8 [0.9, 3.4]%; oscillation index of 1.8 [0.9, 3.4]%; and maximum instantaneous propofol dose of 4.3 [2.1, 10.5] mg kg-1. The maximum hourly propofol dose was 4.3 [2.1, 10.3] mg kg-1 h-1. Performance fell within clinically acceptable limits for all measures. Significance. A CLAD system designed using robust control theory achieves clinically acceptable performance in the presence of realistic unmodeled disturbances and in spite of realistic model uncertainty, while maintaining infusion rates within acceptable safety limits.
Robust control of burst suppression for medical coma
Westover, M Brandon; Kim, Seong-Eun; Ching, ShiNung; Purdon, Patrick L; Brown, Emery N
2015-01-01
Objective Medical coma is an anesthetic-induced state of brain inactivation, manifest in the electroencephalogram by burst suppression. Feedback control can be used to regulate burst suppression, however, previous designs have not been robust. Robust control design is critical under real-world operating conditions, subject to substantial pharmacokinetic and pharmacodynamic parameter uncertainty and unpredictable external disturbances. We sought to develop a robust closed-loop anesthesia delivery (CLAD) system to control medical coma. Approach We developed a robust CLAD system to control the burst suppression probability (BSP). We developed a novel BSP tracking algorithm based on realistic models of propofol pharmacokinetics and pharmacodynamics. We also developed a practical method for estimating patient-specific pharmacodynamics parameters. Finally, we synthesized a robust proportional integral controller. Using a factorial design spanning patient age, mass, height, and gender, we tested whether the system performed within clinically acceptable limits. Throughout all experiments we subjected the system to disturbances, simulating treatment of refractory status epilepticus in a real-world intensive care unit environment. Main results In 5400 simulations, CLAD behavior remained within specifications. Transient behavior after a step in target BSP from 0.2 to 0.8 exhibited a rise time (the median (min, max)) of 1.4 [1.1, 1.9] min; settling time, 7.8 [4.2, 9.0] min; and percent overshoot of 9.6 [2.3, 10.8]%. Under steady state conditions the CLAD system exhibited a median error of 0.1 [−0.5, 0.9]%; inaccuracy of 1.8 [0.9, 3.4]%; oscillation index of 1.8 [0.9, 3.4]%; and maximum instantaneous propofol dose of 4.3 [2.1, 10.5] mg kg−1. The maximum hourly propofol dose was 4.3 [2.1, 10.3] mg kg−1 h−1. Performance fell within clinically acceptable limits for all measures. Significance A CLAD system designed using robust control theory achieves clinically acceptable performance in the presence of realistic unmodeled disturbances and in spite of realistic model uncertainty, while maintaining infusion rates within acceptable safety limits. PMID:26020243
NASA Astrophysics Data System (ADS)
Brunner, R.; Akis, R.; Ferry, D. K.; Kuchar, F.; Meisels, R.
2008-07-01
We discuss a quantum system coupled to the environment, composed of an open array of billiards (dots) in series. Beside pointer states occurring in individual dots, we observe sets of robust states which arise only in the array. We define these new states as bipartite pointer states, since they cannot be described in terms of simple linear combinations of robust single-dot states. The classical existence of bipartite pointer states is confirmed by comparing the quantum-mechanical and classical results. The ability of the robust states to create “offspring” indicates that quantum Darwinism is in action.
Brunner, R; Akis, R; Ferry, D K; Kuchar, F; Meisels, R
2008-07-11
We discuss a quantum system coupled to the environment, composed of an open array of billiards (dots) in series. Beside pointer states occurring in individual dots, we observe sets of robust states which arise only in the array. We define these new states as bipartite pointer states, since they cannot be described in terms of simple linear combinations of robust single-dot states. The classical existence of bipartite pointer states is confirmed by comparing the quantum-mechanical and classical results. The ability of the robust states to create "offspring" indicates that quantum Darwinism is in action.
An optimal state estimation model of sensory integration in human postural balance
NASA Astrophysics Data System (ADS)
Kuo, Arthur D.
2005-09-01
We propose a model for human postural balance, combining state feedback control with optimal state estimation. State estimation uses an internal model of body and sensor dynamics to process sensor information and determine body orientation. Three sensory modalities are modeled: joint proprioception, vestibular organs in the inner ear, and vision. These are mated with a two degree-of-freedom model of body dynamics in the sagittal plane. Linear quadratic optimal control is used to design state feedback and estimation gains. Nine free parameters define the control objective and the signal-to-noise ratios of the sensors. The model predicts statistical properties of human sway in terms of covariance of ankle and hip motion. These predictions are compared with normal human responses to alterations in sensory conditions. With a single parameter set, the model successfully reproduces the general nature of postural motion as a function of sensory environment. Parameter variations reveal that the model is highly robust under normal sensory conditions, but not when two or more sensors are inaccurate. This behavior is similar to that of normal human subjects. We propose that age-related sensory changes may be modeled with decreased signal-to-noise ratios, and compare the model's behavior with degraded sensors against experimental measurements from older adults. We also examine removal of the model's vestibular sense, which leads to instability similar to that observed in bilateral vestibular loss subjects. The model may be useful for predicting which sensors are most critical for balance, and how much they can deteriorate before posture becomes unstable.
Pearson, Kristen Nicole; Kendall, William L.; Winkelman, Dana L.; Persons, William R.
2015-01-01
Our findings reveal evidence for skipped spawning in a potamodromous cyprinid, humpback chub (HBC; Gila cypha ). Using closed robust design mark-recapture models, we found, on average, spawning HBC transition to the skipped spawning state () with a probability of 0.45 (95% CRI (i.e. credible interval): 0.10, 0.80) and skipped spawners remain in the skipped spawning state () with a probability of 0.60 (95% CRI: 0.26, 0.83), yielding an average spawning cycle of every 2.12 years, conditional on survival. As a result, migratory skipped spawners are unavailable for detection during annual sampling events. If availability is unaccounted for, survival and detection probability estimates will be biased. Therefore, we estimated annual adult survival probability (S), while accounting for skipped spawning, and found S remained reasonably stable throughout the study period, with an average of 0.75 ((95% CRI: 0.66, 0.82), process varianceσ2 = 0.005), while skipped spawning probability was highly dynamic (σ2 = 0.306). By improving understanding of HBC spawning strategies, conservation decisions can be based on less biased estimates of survival and a more informed population model structure.
Ergon, T.; Yoccoz, N.G.; Nichols, J.D.; Thomson, David L.; Cooch, Evan G.; Conroy, Michael J.
2009-01-01
In many species, age or time of maturation and survival costs of reproduction may vary substantially within and among populations. We present a capture-mark-recapture model to estimate the latent individual trait distribution of time of maturation (or other irreversible transitions) as well as survival differences associated with the two states (representing costs of reproduction). Maturation can take place at any point in continuous time, and mortality hazard rates for each reproductive state may vary according to continuous functions over time. Although we explicitly model individual heterogeneity in age/time of maturation, we make the simplifying assumption that death hazard rates do not vary among individuals within groups of animals. However, the estimates of the maturation distribution are fairly robust against individual heterogeneity in survival as long as there is no individual level correlation between mortality hazards and latent time of maturation. We apply the model to biweekly capture?recapture data of overwintering field voles (Microtus agrestis) in cyclically fluctuating populations to estimate time of maturation and survival costs of reproduction. Results show that onset of seasonal reproduction is particularly late and survival costs of reproduction are particularly large in declining populations.
Indispensable finite time corrections for Fokker-Planck equations from time series data.
Ragwitz, M; Kantz, H
2001-12-17
The reconstruction of Fokker-Planck equations from observed time series data suffers strongly from finite sampling rates. We show that previously published results are degraded considerably by such effects. We present correction terms which yield a robust estimation of the diffusion terms, together with a novel method for one-dimensional problems. We apply these methods to time series data of local surface wind velocities, where the dependence of the diffusion constant on the state variable shows a different behavior than previously suggested.
Ensemble Kalman filter inference of spatially-varying Manning's n coefficients in the coastal ocean
NASA Astrophysics Data System (ADS)
Siripatana, Adil; Mayo, Talea; Knio, Omar; Dawson, Clint; Maître, Olivier Le; Hoteit, Ibrahim
2018-07-01
Ensemble Kalman (EnKF) filtering is an established framework for large scale state estimation problems. EnKFs can also be used for state-parameter estimation, using the so-called "Joint-EnKF" approach. The idea is simply to augment the state vector with the parameters to be estimated and assign invariant dynamics for the time evolution of the parameters. In this contribution, we investigate the efficiency of the Joint-EnKF for estimating spatially-varying Manning's n coefficients used to define the bottom roughness in the Shallow Water Equations (SWEs) of a coastal ocean model. Observation System Simulation Experiments (OSSEs) are conducted using the ADvanced CIRCulation (ADCIRC) model, which solves a modified form of the Shallow Water Equations. A deterministic EnKF, the Singular Evolutive Interpolated Kalman (SEIK) filter, is used to estimate a vector of Manning's n coefficients defined at the model nodal points by assimilating synthetic water elevation data. It is found that with reasonable ensemble size (O (10)) , the filter's estimate converges to the reference Manning's field. To enhance performance, we have further reduced the dimension of the parameter search space through a Karhunen-Loéve (KL) expansion. We have also iterated on the filter update step to better account for the nonlinearity of the parameter estimation problem. We study the sensitivity of the system to the ensemble size, localization scale, dimension of retained KL modes, and number of iterations. The performance of the proposed framework in term of estimation accuracy suggests that a well-tuned Joint-EnKF provides a promising robust approach to infer spatially varying seabed roughness parameters in the context of coastal ocean modeling.
NASA Astrophysics Data System (ADS)
Wei, Jingwen; Dong, Guangzhong; Chen, Zonghai
2017-10-01
With the rapid development of battery-powered electric vehicles, the lithium-ion battery plays a critical role in the reliability of vehicle system. In order to provide timely management and protection for battery systems, it is necessary to develop a reliable battery model and accurate battery parameters estimation to describe battery dynamic behaviors. Therefore, this paper focuses on an on-board adaptive model for state-of-charge (SOC) estimation of lithium-ion batteries. Firstly, a first-order equivalent circuit battery model is employed to describe battery dynamic characteristics. Then, the recursive least square algorithm and the off-line identification method are used to provide good initial values of model parameters to ensure filter stability and reduce the convergence time. Thirdly, an extended-Kalman-filter (EKF) is applied to on-line estimate battery SOC and model parameters. Considering that the EKF is essentially a first-order Taylor approximation of battery model, which contains inevitable model errors, thus, a proportional integral-based error adjustment technique is employed to improve the performance of EKF method and correct model parameters. Finally, the experimental results on lithium-ion batteries indicate that the proposed EKF with proportional integral-based error adjustment method can provide robust and accurate battery model and on-line parameter estimation.
Estimating survival and breeding probability for pond-breeding amphibians: a modified robust design
Bailey, L.L.; Kendall, W.L.; Church, D.R.; Wilbur, H.M.
2004-01-01
Many studies of pond-breeding amphibians involve sampling individuals during migration to and from breeding habitats. Interpreting population processes and dynamics from these studies is difficult because (1) only a proportion of the population is observable each season, while an unknown proportion remains unobservable (e.g., non-breeding adults) and (2) not all observable animals are captured. Imperfect capture probability can be easily accommodated in capture?recapture models, but temporary transitions between observable and unobservable states, often referred to as temporary emigration, is known to cause problems in both open- and closed-population models. We develop a multistate mark?recapture (MSMR) model, using an open-robust design that permits one entry and one exit from the study area per season. Our method extends previous temporary emigration models (MSMR with an unobservable state) in two ways. First, we relax the assumption of demographic closure (no mortality) between consecutive (secondary) samples, allowing estimation of within-pond survival. Also, we add the flexibility to express survival probability of unobservable individuals (e.g., ?non-breeders?) as a function of the survival probability of observable animals while in the same, terrestrial habitat. This allows for potentially different annual survival probabilities for observable and unobservable animals. We apply our model to a relictual population of eastern tiger salamanders (Ambystoma tigrinum tigrinum). Despite small sample sizes, demographic parameters were estimated with reasonable precision. We tested several a priori biological hypotheses and found evidence for seasonal differences in pond survival. Our methods could be applied to a variety of pond-breeding species and other taxa where individuals are captured entering or exiting a common area (e.g., spawning or roosting area, hibernacula).
NASA Astrophysics Data System (ADS)
Meng, Deyuan; Tao, Guoliang; Liu, Hao; Zhu, Xiaocong
2014-07-01
Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation (RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This paper constructs an adaptive robust controller which can compensate the friction force in the cylinder.
Fast and robust estimation of spectro-temporal receptive fields using stochastic approximations.
Meyer, Arne F; Diepenbrock, Jan-Philipp; Ohl, Frank W; Anemüller, Jörn
2015-05-15
The receptive field (RF) represents the signal preferences of sensory neurons and is the primary analysis method for understanding sensory coding. While it is essential to estimate a neuron's RF, finding numerical solutions to increasingly complex RF models can become computationally intensive, in particular for high-dimensional stimuli or when many neurons are involved. Here we propose an optimization scheme based on stochastic approximations that facilitate this task. The basic idea is to derive solutions on a random subset rather than computing the full solution on the available data set. To test this, we applied different optimization schemes based on stochastic gradient descent (SGD) to both the generalized linear model (GLM) and a recently developed classification-based RF estimation approach. Using simulated and recorded responses, we demonstrate that RF parameter optimization based on state-of-the-art SGD algorithms produces robust estimates of the spectro-temporal receptive field (STRF). Results on recordings from the auditory midbrain demonstrate that stochastic approximations preserve both predictive power and tuning properties of STRFs. A correlation of 0.93 with the STRF derived from the full solution may be obtained in less than 10% of the full solution's estimation time. We also present an on-line algorithm that allows simultaneous monitoring of STRF properties of more than 30 neurons on a single computer. The proposed approach may not only prove helpful for large-scale recordings but also provides a more comprehensive characterization of neural tuning in experiments than standard tuning curves. Copyright © 2015 Elsevier B.V. All rights reserved.
Tools of Robustness for Item Response Theory.
ERIC Educational Resources Information Center
Jones, Douglas H.
This paper briefly demonstrates a few of the possibilities of a systematic application of robustness theory, concentrating on the estimation of ability when the true item response model does and does not fit the data. The definition of the maximum likelihood estimator (MLE) of ability is briefly reviewed. After introducing the notion of…
Model Uncertainty and Robustness: A Computational Framework for Multimodel Analysis
ERIC Educational Resources Information Center
Young, Cristobal; Holsteen, Katherine
2017-01-01
Model uncertainty is pervasive in social science. A key question is how robust empirical results are to sensible changes in model specification. We present a new approach and applied statistical software for computational multimodel analysis. Our approach proceeds in two steps: First, we estimate the modeling distribution of estimates across all…
The Robustness of LISREL Estimates in Structural Equation Models with Categorical Variables.
ERIC Educational Resources Information Center
Ethington, Corinna A.
This study examined the effect of type of correlation matrix on the robustness of LISREL maximum likelihood and unweighted least squares structural parameter estimates for models with categorical manifest variables. Two types of correlation matrices were analyzed; one containing Pearson product-moment correlations and one containing tetrachoric,…
NASA Astrophysics Data System (ADS)
Friedel, M. J.; Daughney, C.
2016-12-01
The development of a successful surface-groundwater management strategy depends on the quality of data provided for analysis. This study evaluates the statistical robustness when using a modified self-organizing map (MSOM) technique to estimate missing values for three hypersurface models: synoptic groundwater-surface water hydrochemistry, time-series of groundwater-surface water hydrochemistry, and mixed-survey (combination of groundwater-surface water hydrochemistry and lithologies) hydrostratigraphic unit data. These models of increasing complexity are developed and validated based on observations from the Southland region of New Zealand. In each case, the estimation method is sufficiently robust to cope with groundwater-surface water hydrochemistry vagaries due to sample size and extreme data insufficiency, even when >80% of the data are missing. The estimation of surface water hydrochemistry time series values enabled the evaluation of seasonal variation, and the imputation of lithologies facilitated the evaluation of hydrostratigraphic controls on groundwater-surface water interaction. The robust statistical results for groundwater-surface water models of increasing data complexity provide justification to apply the MSOM technique in other regions of New Zealand and abroad.
Robust mislabel logistic regression without modeling mislabel probabilities.
Hung, Hung; Jou, Zhi-Yu; Huang, Su-Yun
2018-03-01
Logistic regression is among the most widely used statistical methods for linear discriminant analysis. In many applications, we only observe possibly mislabeled responses. Fitting a conventional logistic regression can then lead to biased estimation. One common resolution is to fit a mislabel logistic regression model, which takes into consideration of mislabeled responses. Another common method is to adopt a robust M-estimation by down-weighting suspected instances. In this work, we propose a new robust mislabel logistic regression based on γ-divergence. Our proposal possesses two advantageous features: (1) It does not need to model the mislabel probabilities. (2) The minimum γ-divergence estimation leads to a weighted estimating equation without the need to include any bias correction term, that is, it is automatically bias-corrected. These features make the proposed γ-logistic regression more robust in model fitting and more intuitive for model interpretation through a simple weighting scheme. Our method is also easy to implement, and two types of algorithms are included. Simulation studies and the Pima data application are presented to demonstrate the performance of γ-logistic regression. © 2017, The International Biometric Society.
Real-time prediction of respiratory motion based on a local dynamic model in an augmented space
NASA Astrophysics Data System (ADS)
Hong, S.-M.; Jung, B.-H.; Ruan, D.
2011-03-01
Motion-adaptive radiotherapy aims to deliver ablative radiation dose to the tumor target with minimal normal tissue exposure, by accounting for real-time target movement. In practice, prediction is usually necessary to compensate for system latency induced by measurement, communication and control. This work focuses on predicting respiratory motion, which is most dominant for thoracic and abdominal tumors. We develop and investigate the use of a local dynamic model in an augmented space, motivated by the observation that respiratory movement exhibits a locally circular pattern in a plane augmented with a delayed axis. By including the angular velocity as part of the system state, the proposed dynamic model effectively captures the natural evolution of respiratory motion. The first-order extended Kalman filter is used to propagate and update the state estimate. The target location is predicted by evaluating the local dynamic model equations at the required prediction length. This method is complementary to existing work in that (1) the local circular motion model characterizes 'turning', overcoming the limitation of linear motion models; (2) it uses a natural state representation including the local angular velocity and updates the state estimate systematically, offering explicit physical interpretations; (3) it relies on a parametric model and is much less data-satiate than the typical adaptive semiparametric or nonparametric method. We tested the performance of the proposed method with ten RPM traces, using the normalized root mean squared difference between the predicted value and the retrospective observation as the error metric. Its performance was compared with predictors based on the linear model, the interacting multiple linear models and the kernel density estimator for various combinations of prediction lengths and observation rates. The local dynamic model based approach provides the best performance for short to medium prediction lengths under relatively low observation rate. Sensitivity analysis indicates its robustness toward the choice of parameters. Its simplicity, robustness and low computation cost makes the proposed local dynamic model an attractive tool for real-time prediction with system latencies below 0.4 s.
Real-time prediction of respiratory motion based on a local dynamic model in an augmented space.
Hong, S-M; Jung, B-H; Ruan, D
2011-03-21
Motion-adaptive radiotherapy aims to deliver ablative radiation dose to the tumor target with minimal normal tissue exposure, by accounting for real-time target movement. In practice, prediction is usually necessary to compensate for system latency induced by measurement, communication and control. This work focuses on predicting respiratory motion, which is most dominant for thoracic and abdominal tumors. We develop and investigate the use of a local dynamic model in an augmented space, motivated by the observation that respiratory movement exhibits a locally circular pattern in a plane augmented with a delayed axis. By including the angular velocity as part of the system state, the proposed dynamic model effectively captures the natural evolution of respiratory motion. The first-order extended Kalman filter is used to propagate and update the state estimate. The target location is predicted by evaluating the local dynamic model equations at the required prediction length. This method is complementary to existing work in that (1) the local circular motion model characterizes 'turning', overcoming the limitation of linear motion models; (2) it uses a natural state representation including the local angular velocity and updates the state estimate systematically, offering explicit physical interpretations; (3) it relies on a parametric model and is much less data-satiate than the typical adaptive semiparametric or nonparametric method. We tested the performance of the proposed method with ten RPM traces, using the normalized root mean squared difference between the predicted value and the retrospective observation as the error metric. Its performance was compared with predictors based on the linear model, the interacting multiple linear models and the kernel density estimator for various combinations of prediction lengths and observation rates. The local dynamic model based approach provides the best performance for short to medium prediction lengths under relatively low observation rate. Sensitivity analysis indicates its robustness toward the choice of parameters. Its simplicity, robustness and low computation cost makes the proposed local dynamic model an attractive tool for real-time prediction with system latencies below 0.4 s.
Li, Haojie; Graham, Daniel J
2016-08-01
This paper estimates the causal effect of 20mph zones on road casualties in London. Potential confounders in the key relationship of interest are included within outcome regression and propensity score models, and the models are then combined to form a doubly robust estimator. A total of 234 treated zones and 2844 potential control zones are included in the data sample. The propensity score model is used to select a viable control group which has common support in the covariate distributions. We compare the doubly robust estimates with those obtained using three other methods: inverse probability weighting, regression adjustment, and propensity score matching. The results indicate that 20mph zones have had a significant causal impact on road casualty reduction in both absolute and proportional terms. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Girinoto, Sadik, Kusman; Indahwati
2017-03-01
The National Socio-Economic Survey samples are designed to produce estimates of parameters of planned domains (provinces and districts). The estimation of unplanned domains (sub-districts and villages) has its limitation to obtain reliable direct estimates. One of the possible solutions to overcome this problem is employing small area estimation techniques. The popular choice of small area estimation is based on linear mixed models. However, such models need strong distributional assumptions and do not easy allow for outlier-robust estimation. As an alternative approach for this purpose, M-quantile regression approach to small area estimation based on modeling specific M-quantile coefficients of conditional distribution of study variable given auxiliary covariates. It obtained outlier-robust estimation from influence function of M-estimator type and also no need strong distributional assumptions. In this paper, the aim of study is to estimate the poverty indicator at sub-district level in Bogor District-West Java using M-quantile models for small area estimation. Using data taken from National Socioeconomic Survey and Villages Potential Statistics, the results provide a detailed description of pattern of incidence and intensity of poverty within Bogor district. We also compare the results with direct estimates. The results showed the framework may be preferable when direct estimate having no incidence of poverty at all in the small area.
Estimating forest and woodland aboveground biomass using active and passive remote sensing
Wu, Zhuoting; Dye, Dennis G.; Vogel, John M.; Middleton, Barry R.
2016-01-01
Aboveground biomass was estimated from active and passive remote sensing sources, including airborne lidar and Landsat-8 satellites, in an eastern Arizona (USA) study area comprised of forest and woodland ecosystems. Compared to field measurements, airborne lidar enabled direct estimation of individual tree height with a slope of 0.98 (R2 = 0.98). At the plot-level, lidar-derived height and intensity metrics provided the most robust estimate for aboveground biomass, producing dominant species-based aboveground models with errors ranging from 4 to 14Mg ha –1 across all woodland and forest species. Landsat-8 imagery produced dominant species-based aboveground biomass models with errors ranging from 10 to 28 Mg ha –1. Thus, airborne lidar allowed for estimates for fine-scale aboveground biomass mapping with low uncertainty, while Landsat-8 seems best suited for broader spatial scale products such as a national biomass essential climate variable (ECV) based on land cover types for the United States.
Vision System for Coarsely Estimating Motion Parameters for Unknown Fast Moving Objects in Space
Chen, Min; Hashimoto, Koichi
2017-01-01
Motivated by biological interests in analyzing navigation behaviors of flying animals, we attempt to build a system measuring their motion states. To do this, in this paper, we build a vision system to detect unknown fast moving objects within a given space, calculating their motion parameters represented by positions and poses. We proposed a novel method to detect reliable interest points from images of moving objects, which can be hardly detected by general purpose interest point detectors. 3D points reconstructed using these interest points are then grouped and maintained for detected objects, according to a careful schedule, considering appearance and perspective changes. In the estimation step, a method is introduced to adapt the robust estimation procedure used for dense point set to the case for sparse set, reducing the potential risk of greatly biased estimation. Experiments are conducted against real scenes, showing the capability of the system of detecting multiple unknown moving objects and estimating their positions and poses. PMID:29206189
Robust power spectral estimation for EEG data
Melman, Tamar; Victor, Jonathan D.
2016-01-01
Background Typical electroencephalogram (EEG) recordings often contain substantial artifact. These artifacts, often large and intermittent, can interfere with quantification of the EEG via its power spectrum. To reduce the impact of artifact, EEG records are typically cleaned by a preprocessing stage that removes individual segments or components of the recording. However, such preprocessing can introduce bias, discard available signal, and be labor-intensive. With this motivation, we present a method that uses robust statistics to reduce dependence on preprocessing by minimizing the effect of large intermittent outliers on the spectral estimates. New method Using the multitaper method[1] as a starting point, we replaced the final step of the standard power spectrum calculation with a quantile-based estimator, and the Jackknife approach to confidence intervals with a Bayesian approach. The method is implemented in provided MATLAB modules, which extend the widely used Chronux toolbox. Results Using both simulated and human data, we show that in the presence of large intermittent outliers, the robust method produces improved estimates of the power spectrum, and that the Bayesian confidence intervals yield close-to-veridical coverage factors. Comparison to existing method The robust method, as compared to the standard method, is less affected by artifact: inclusion of outliers produces fewer changes in the shape of the power spectrum as well as in the coverage factor. Conclusion In the presence of large intermittent outliers, the robust method can reduce dependence on data preprocessing as compared to standard methods of spectral estimation. PMID:27102041
Robust power spectral estimation for EEG data.
Melman, Tamar; Victor, Jonathan D
2016-08-01
Typical electroencephalogram (EEG) recordings often contain substantial artifact. These artifacts, often large and intermittent, can interfere with quantification of the EEG via its power spectrum. To reduce the impact of artifact, EEG records are typically cleaned by a preprocessing stage that removes individual segments or components of the recording. However, such preprocessing can introduce bias, discard available signal, and be labor-intensive. With this motivation, we present a method that uses robust statistics to reduce dependence on preprocessing by minimizing the effect of large intermittent outliers on the spectral estimates. Using the multitaper method (Thomson, 1982) as a starting point, we replaced the final step of the standard power spectrum calculation with a quantile-based estimator, and the Jackknife approach to confidence intervals with a Bayesian approach. The method is implemented in provided MATLAB modules, which extend the widely used Chronux toolbox. Using both simulated and human data, we show that in the presence of large intermittent outliers, the robust method produces improved estimates of the power spectrum, and that the Bayesian confidence intervals yield close-to-veridical coverage factors. The robust method, as compared to the standard method, is less affected by artifact: inclusion of outliers produces fewer changes in the shape of the power spectrum as well as in the coverage factor. In the presence of large intermittent outliers, the robust method can reduce dependence on data preprocessing as compared to standard methods of spectral estimation. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhu, Bangyan; Li, Jiancheng; Chu, Zhengwei; Tang, Wei; Wang, Bin; Li, Dawei
2016-01-01
Spatial and temporal variations in the vertical stratification of the troposphere introduce significant propagation delays in interferometric synthetic aperture radar (InSAR) observations. Observations of small amplitude surface deformations and regional subsidence rates are plagued by tropospheric delays, and strongly correlated with topographic height variations. Phase-based tropospheric correction techniques assuming a linear relationship between interferometric phase and topography have been exploited and developed, with mixed success. Producing robust estimates of tropospheric phase delay however plays a critical role in increasing the accuracy of InSAR measurements. Meanwhile, few phase-based correction methods account for the spatially variable tropospheric delay over lager study regions. Here, we present a robust and multi-weighted approach to estimate the correlation between phase and topography that is relatively insensitive to confounding processes such as regional subsidence over larger regions as well as under varying tropospheric conditions. An expanded form of robust least squares is introduced to estimate the spatially variable correlation between phase and topography by splitting the interferograms into multiple blocks. Within each block, correlation is robustly estimated from the band-filtered phase and topography. Phase-elevation ratios are multiply- weighted and extrapolated to each persistent scatter (PS) pixel. We applied the proposed method to Envisat ASAR images over the Southern California area, USA, and found that our method mitigated the atmospheric noise better than the conventional phase-based method. The corrected ground surface deformation agreed better with those measured from GPS. PMID:27420066
Zhu, Bangyan; Li, Jiancheng; Chu, Zhengwei; Tang, Wei; Wang, Bin; Li, Dawei
2016-07-12
Spatial and temporal variations in the vertical stratification of the troposphere introduce significant propagation delays in interferometric synthetic aperture radar (InSAR) observations. Observations of small amplitude surface deformations and regional subsidence rates are plagued by tropospheric delays, and strongly correlated with topographic height variations. Phase-based tropospheric correction techniques assuming a linear relationship between interferometric phase and topography have been exploited and developed, with mixed success. Producing robust estimates of tropospheric phase delay however plays a critical role in increasing the accuracy of InSAR measurements. Meanwhile, few phase-based correction methods account for the spatially variable tropospheric delay over lager study regions. Here, we present a robust and multi-weighted approach to estimate the correlation between phase and topography that is relatively insensitive to confounding processes such as regional subsidence over larger regions as well as under varying tropospheric conditions. An expanded form of robust least squares is introduced to estimate the spatially variable correlation between phase and topography by splitting the interferograms into multiple blocks. Within each block, correlation is robustly estimated from the band-filtered phase and topography. Phase-elevation ratios are multiply- weighted and extrapolated to each persistent scatter (PS) pixel. We applied the proposed method to Envisat ASAR images over the Southern California area, USA, and found that our method mitigated the atmospheric noise better than the conventional phase-based method. The corrected ground surface deformation agreed better with those measured from GPS.
NASA Astrophysics Data System (ADS)
Liu, P. W.; Famiglietti, J. S.; Levoe, S.; Reager, J. T., II; David, C. H.; Kumar, S.; Li, B.; Peters-Lidard, C. D.
2017-12-01
Soil moisture is one of the critical factors in terrestrial hydrology. Accurate soil moisture information improves estimation of terrestrial water storage and fluxes, that is essential for water resource management including sustainable groundwater pumping and agricultural irrigation practices. It is particularly important during dry periods when water stress is high. The Western States Water Mission (WSWM), a multiyear mission project of NASA's Jet Propulsion Laboratory, is operated to understand and estimate quantities of the water availability in the western United States by integrating observations and measurements from in-situ and remote sensing sensors, and hydrological models. WSWM data products have been used to assess and explore the adverse impacts of the California drought (2011-2016) and provide decision-makers information for water use planning. Although the observations are often more accurate, simulations using land surface models can provide water availability estimates at desired spatio-temporal scales. The Land Information System (LIS), developed by NASA's Goddard Space Flight Center, integrates developed land surface models and data processing and management tools, that enables to utilize the measurements and observations from various platforms as forcings in the high performance computing environment to forecast the hydrologic conditions. The goal of this study is to implement the LIS in the western United States for estimates of soil moisture. We will implement the NOAH-MP model at the 12km North America Land Data Assimilation System grid and compare to other land surface models included in the LIS. Findings will provide insight into the differences between model estimates and model physics. Outputs from a multi-model ensemble from LIS can also be used to enhance estimated reliability and provide quantification of uncertainty. We will compare the LIS-based soil moisture estimates to the SMAP enhanced 9 km soil moisture product to understand the mechanistic differences between the model and observation. These outcomes will contribute to the WSWM for providing robust products.
Robust Sensing of Approaching Vehicles Relying on Acoustic Cues
Mizumachi, Mitsunori; Kaminuma, Atsunobu; Ono, Nobutaka; Ando, Shigeru
2014-01-01
The latest developments in automobile design have allowed them to be equipped with various sensing devices. Multiple sensors such as cameras and radar systems can be simultaneously used for active safety systems in order to overcome blind spots of individual sensors. This paper proposes a novel sensing technique for catching up and tracking an approaching vehicle relying on an acoustic cue. First, it is necessary to extract a robust spatial feature from noisy acoustical observations. In this paper, the spatio-temporal gradient method is employed for the feature extraction. Then, the spatial feature is filtered out through sequential state estimation. A particle filter is employed to cope with a highly non-linear problem. Feasibility of the proposed method has been confirmed with real acoustical observations, which are obtained by microphones outside a cruising vehicle. PMID:24887038
Scale-adaptive compressive tracking with feature integration
NASA Astrophysics Data System (ADS)
Liu, Wei; Li, Jicheng; Chen, Xiao; Li, Shuxin
2016-05-01
Numerous tracking-by-detection methods have been proposed for robust visual tracking, among which compressive tracking (CT) has obtained some promising results. A scale-adaptive CT method based on multifeature integration is presented to improve the robustness and accuracy of CT. We introduce a keypoint-based model to achieve the accurate scale estimation, which can additionally give a prior location of the target. Furthermore, by the high efficiency of data-independent random projection matrix, multiple features are integrated into an effective appearance model to construct the naïve Bayes classifier. At last, an adaptive update scheme is proposed to update the classifier conservatively. Experiments on various challenging sequences demonstrate substantial improvements by our proposed tracker over CT and other state-of-the-art trackers in terms of dealing with scale variation, abrupt motion, deformation, and illumination changes.
Information-geometric measures as robust estimators of connection strengths and external inputs.
Tatsuno, Masami; Fellous, Jean-Marc; Amari, Shun-Ichi
2009-08-01
Information geometry has been suggested to provide a powerful tool for analyzing multineuronal spike trains. Among several advantages of this approach, a significant property is the close link between information-geometric measures and neural network architectures. Previous modeling studies established that the first- and second-order information-geometric measures corresponded to the number of external inputs and the connection strengths of the network, respectively. This relationship was, however, limited to a symmetrically connected network, and the number of neurons used in the parameter estimation of the log-linear model needed to be known. Recently, simulation studies of biophysical model neurons have suggested that information geometry can estimate the relative change of connection strengths and external inputs even with asymmetric connections. Inspired by these studies, we analytically investigated the link between the information-geometric measures and the neural network structure with asymmetrically connected networks of N neurons. We focused on the information-geometric measures of orders one and two, which can be derived from the two-neuron log-linear model, because unlike higher-order measures, they can be easily estimated experimentally. Considering the equilibrium state of a network of binary model neurons that obey stochastic dynamics, we analytically showed that the corrected first- and second-order information-geometric measures provided robust and consistent approximation of the external inputs and connection strengths, respectively. These results suggest that information-geometric measures provide useful insights into the neural network architecture and that they will contribute to the study of system-level neuroscience.
Wavelet Filtering to Reduce Conservatism in Aeroservoelastic Robust Stability Margins
NASA Technical Reports Server (NTRS)
Brenner, Marty; Lind, Rick
1998-01-01
Wavelet analysis for filtering and system identification was used to improve the estimation of aeroservoelastic stability margins. The conservatism of the robust stability margins was reduced with parametric and nonparametric time-frequency analysis of flight data in the model validation process. Nonparametric wavelet processing of data was used to reduce the effects of external desirableness and unmodeled dynamics. Parametric estimates of modal stability were also extracted using the wavelet transform. Computation of robust stability margins for stability boundary prediction depends on uncertainty descriptions derived from the data for model validation. F-18 high Alpha Research Vehicle aeroservoelastic flight test data demonstrated improved robust stability prediction by extension of the stability boundary beyond the flight regime.
NASA Astrophysics Data System (ADS)
Chen, Shanjun; Duan, Haibin; Deng, Yimin; Li, Cong; Zhao, Guozhi; Xu, Yan
2017-12-01
Autonomous aerial refueling is a significant technology that can significantly extend the endurance of unmanned aerial vehicles. A reliable method that can accurately estimate the position and attitude of the probe relative to the drogue is the key to such a capability. A drogue pose estimation method based on infrared vision sensor is introduced with the general goal of yielding an accurate and reliable drogue state estimate. First, by employing direct least squares ellipse fitting and convex hull in OpenCV, a feature point matching and interference point elimination method is proposed. In addition, considering the conditions that some infrared LEDs are damaged or occluded, a missing point estimation method based on perspective transformation and affine transformation is designed. Finally, an accurate and robust pose estimation algorithm improved by the runner-root algorithm is proposed. The feasibility of the designed visual measurement system is demonstrated by flight test, and the results indicate that our proposed method enables precise and reliable pose estimation of the probe relative to the drogue, even in some poor conditions.
Gauterin, Eckhard; Kammerer, Philipp; Kühn, Martin; Schulte, Horst
2016-05-01
Advanced model-based control of wind turbines requires knowledge of the states and the wind speed. This paper benchmarks a nonlinear Takagi-Sugeno observer for wind speed estimation with enhanced Kalman Filter techniques: The performance and robustness towards model-structure uncertainties of the Takagi-Sugeno observer, a Linear, Extended and Unscented Kalman Filter are assessed. Hence the Takagi-Sugeno observer and enhanced Kalman Filter techniques are compared based on reduced-order models of a reference wind turbine with different modelling details. The objective is the systematic comparison with different design assumptions and requirements and the numerical evaluation of the reconstruction quality of the wind speed. Exemplified by a feedforward loop employing the reconstructed wind speed, the benefit of wind speed estimation within wind turbine control is illustrated. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
An algorithm of adaptive scale object tracking in occlusion
NASA Astrophysics Data System (ADS)
Zhao, Congmei
2017-05-01
Although the correlation filter-based trackers achieve the competitive results both on accuracy and robustness, there are still some problems in handling scale variations, object occlusion, fast motions and so on. In this paper, a multi-scale kernel correlation filter algorithm based on random fern detector was proposed. The tracking task was decomposed into the target scale estimation and the translation estimation. At the same time, the Color Names features and HOG features were fused in response level to further improve the overall tracking performance of the algorithm. In addition, an online random fern classifier was trained to re-obtain the target after the target was lost. By comparing with some algorithms such as KCF, DSST, TLD, MIL, CT and CSK, experimental results show that the proposed approach could estimate the object state accurately and handle the object occlusion effectively.
NASA Astrophysics Data System (ADS)
Basu, Sourish; Baker, David F.; Chevallier, Frédéric; Patra, Prabir K.; Liu, Junjie; Miller, John B.
2018-05-01
We estimate the uncertainty of CO2 flux estimates in atmospheric inversions stemming from differences between different global transport models. Using a set of observing system simulation experiments (OSSEs), we estimate this uncertainty as represented by the spread between five different state-of-the-art global transport models (ACTM, LMDZ, GEOS-Chem, PCTM and TM5), for both traditional in situ CO2 inversions and inversions of XCO2 estimates from the Orbiting Carbon Observatory 2 (OCO-2). We find that, in the absence of relative biases between in situ CO2 and OCO-2 XCO2, OCO-2 estimates of terrestrial flux for TRANSCOM-scale land regions can be more robust to transport model differences than corresponding in situ CO2 inversions. This is due to a combination of the increased spatial coverage of OCO-2 samples and the total column nature of OCO-2 estimates. We separate the two effects by constructing hypothetical in situ networks with the coverage of OCO-2 but with only near-surface samples. We also find that the transport-driven uncertainty in fluxes is comparable between well-sampled northern temperate regions and poorly sampled tropical regions. Furthermore, we find that spatiotemporal differences in sampling, such as between OCO-2 land and ocean soundings, coupled with imperfect transport, can produce differences in flux estimates that are larger than flux uncertainties due to transport model differences. This highlights the need for sampling with as complete a spatial and temporal coverage as possible (e.g., using both land and ocean retrievals together for OCO-2) to minimize the impact of selective sampling. Finally, our annual and monthly estimates of transport-driven uncertainties can be used to evaluate the robustness of conclusions drawn from real OCO-2 and in situ CO2 inversions.
Eigenspace techniques for active flutter suppression
NASA Technical Reports Server (NTRS)
Garrard, William L.; Liebst, Bradley S.; Farm, Jerome A.
1987-01-01
The use of eigenspace techniques for the design of an active flutter suppression system for a hypothetical research drone is discussed. One leading edge and two trailing edge aerodynamic control surfaces and four sensors (accelerometers) are available for each wing. Full state control laws are designed by selecting feedback gains which place closed loop eigenvalues and shape closed loop eigenvectors so as to stabilize wing flutter and reduce gust loads at the wing root while yielding accepatable robustness and satisfying constrains on rms control surface activity. These controllers are realized by state estimators designed using an eigenvalue placement/eigenvector shaping technique which results in recovery of the full state loop transfer characteristics. The resulting feedback compensators are shown to perform almost as well as the full state designs. They also exhibit acceptable performance in situations in which the failure of an actuator is simulated.
Cylus, Jonathan; Glymour, M. Maria; Avendano, Mauricio
2014-01-01
The recent economic recession has led to increases in suicide, but whether US state unemployment insurance programs ameliorate this association has not been examined. Exploiting US state variations in the generosity of benefit programs between 1968 and 2008, we tested the hypothesis that more generous unemployment benefit programs reduce the impact of economic downturns on suicide. Using state linear fixed-effect models, we found a negative additive interaction between unemployment rates and benefits among the US working-age (20–64 years) population (β = −0.57, 95% confidence interval: −0.86, −0.27; P < 0.001). The finding of a negative additive interaction was robust across multiple model specifications. Our results suggest that the impact of unemployment rates on suicide is offset by the presence of generous state unemployment benefit programs, though estimated effects are small in magnitude. PMID:24939978
NASA Astrophysics Data System (ADS)
Mueller, K. L.; Callahan, W.; Davis, K. J.; Dickerson, R. R.; Duren, R. M.; Gurney, K. R.; Karion, A.; Keeling, R. F.; Kim, J.; Lauvaux, T.; Miller, C. E.; Shepson, P. B.; Turnbull, J. C.; Weiss, R. F.; Whetstone, J. R.
2017-12-01
City and State governments are increasingly interested in mitigating greenhouse gas (GHG) emissions to improve sustainability within their jurisdictions. Estimation of urban GHG emissions remains an active research area with many sources of uncertainty. To support the effort of improving measurement of trace gas emissions in city environments, several federal agencies along with academic, research, and private entities have been working within a handful of domestic metropolitan areas to improve both (1) the assessment of GHG emissions accuracy using a variety of measurement technologies, and (2) the tools that can better assess GHG inventory data at urban mitigation scales based upon these measurements. The National Institute of Standards and Technology (NIST) activities have focused on three areas, or testbeds: Indianapolis (INFLUX experiment), Los Angeles (the LA Megacities project), and the Northeastern Corridor areas encompassing Washington and Baltimore (the NEC/BW GHG Measurements project). These cities represent diverse meteorological, terrain, demographic, and emissions characteristics having a broad range of complexities. To date this research has involved multiple measurement systems and integrated observing approaches, all aimed at advancing development of a robust, science-base upon which higher accuracy quantification approaches can rest. Progress toward such scientifically robust, widely-accepted emissions quantification methods will rely upon continuous performance assessment. Such assessment is challenged by the complexities of cities themselves (e.g., population, urban form) along with the many variables impacting a city's technological ability to estimate its GHG emissions (e.g., meteorology, density of observations). We present the different NIST testbeds and a proposal to initiate conceptual development of a reference framework supporting the comparison of multi-city GHG emissions estimates. Such a reference framework has potential to provide the basis for city governments to choose the measurements and methods that can quantify their GHG and related trace gas emissions at levels commensurate with their needs.
Jiang, Xuejun; Guo, Xu; Zhang, Ning; Wang, Bo
2018-01-01
This article presents and investigates performance of a series of robust multivariate nonparametric tests for detection of location shift between two multivariate samples in randomized controlled trials. The tests are built upon robust estimators of distribution locations (medians, Hodges-Lehmann estimators, and an extended U statistic) with both unscaled and scaled versions. The nonparametric tests are robust to outliers and do not assume that the two samples are drawn from multivariate normal distributions. Bootstrap and permutation approaches are introduced for determining the p-values of the proposed test statistics. Simulation studies are conducted and numerical results are reported to examine performance of the proposed statistical tests. The numerical results demonstrate that the robust multivariate nonparametric tests constructed from the Hodges-Lehmann estimators are more efficient than those based on medians and the extended U statistic. The permutation approach can provide a more stringent control of Type I error and is generally more powerful than the bootstrap procedure. The proposed robust nonparametric tests are applied to detect multivariate distributional difference between the intervention and control groups in the Thai Healthy Choices study and examine the intervention effect of a four-session motivational interviewing-based intervention developed in the study to reduce risk behaviors among youth living with HIV. PMID:29672555
Robust Arm and Hand Tracking by Unsupervised Context Learning
Spruyt, Vincent; Ledda, Alessandro; Philips, Wilfried
2014-01-01
Hand tracking in video is an increasingly popular research field due to the rise of novel human-computer interaction methods. However, robust and real-time hand tracking in unconstrained environments remains a challenging task due to the high number of degrees of freedom and the non-rigid character of the human hand. In this paper, we propose an unsupervised method to automatically learn the context in which a hand is embedded. This context includes the arm and any other object that coherently moves along with the hand. We introduce two novel methods to incorporate this context information into a probabilistic tracking framework, and introduce a simple yet effective solution to estimate the position of the arm. Finally, we show that our method greatly increases robustness against occlusion and cluttered background, without degrading tracking performance if no contextual information is available. The proposed real-time algorithm is shown to outperform the current state-of-the-art by evaluating it on three publicly available video datasets. Furthermore, a novel dataset is created and made publicly available for the research community. PMID:25004155
Zhong, Xungao; Zhong, Xunyu; Peng, Xiafu
2013-10-08
In this paper, a global-state-space visual servoing scheme is proposed for uncalibrated model-independent robotic manipulation. The scheme is based on robust Kalman filtering (KF), in conjunction with Elman neural network (ENN) learning techniques. The global map relationship between the vision space and the robotic workspace is learned using an ENN. This learned mapping is shown to be an approximate estimate of the Jacobian in global space. In the testing phase, the desired Jacobian is arrived at using a robust KF to improve the ENN learning result so as to achieve robotic precise convergence of the desired pose. Meanwhile, the ENN weights are updated (re-trained) using a new input-output data pair vector (obtained from the KF cycle) to ensure robot global stability manipulation. Thus, our method, without requiring either camera or model parameters, avoids the corrupted performances caused by camera calibration and modeling errors. To demonstrate the proposed scheme's performance, various simulation and experimental results have been presented using a six-degree-of-freedom robotic manipulator with eye-in-hand configurations.
Ye, Yu; Kerr, William C
2011-01-01
To explore various model specifications in estimating relationships between liver cirrhosis mortality rates and per capita alcohol consumption in aggregate-level cross-section time-series data. Using a series of liver cirrhosis mortality rates from 1950 to 2002 for 47 U.S. states, the effects of alcohol consumption were estimated from pooled autoregressive integrated moving average (ARIMA) models and 4 types of panel data models: generalized estimating equation, generalized least square, fixed effect, and multilevel models. Various specifications of error term structure under each type of model were also examined. Different approaches controlling for time trends and for using concurrent or accumulated consumption as predictors were also evaluated. When cirrhosis mortality was predicted by total alcohol, highly consistent estimates were found between ARIMA and panel data analyses, with an average overall effect of 0.07 to 0.09. Less consistent estimates were derived using spirits, beer, and wine consumption as predictors. When multiple geographic time series are combined as panel data, none of existent models could accommodate all sources of heterogeneity such that any type of panel model must employ some form of generalization. Different types of panel data models should thus be estimated to examine the robustness of findings. We also suggest cautious interpretation when beverage-specific volumes are used as predictors. Copyright © 2010 by the Research Society on Alcoholism.
The use of resighting data to estimate the rate of population growth of the snail kite in Florida
Dreitz, V.J.; Nichols, J.D.; Hines, J.E.; Bennetts, R.E.; Kitchens, W.M.; DeAngelis, D.L.
2002-01-01
The rate of population growth (lambda) is an important demographic parameter used to assess the viability of a population and to develop management and conservation agendas. We examined the use of resighting data to estimate lambda for the snail kite population in Florida from 1997-2000. The analyses consisted of (1) a robust design approach that derives an estimate of lambda from estimates of population size and (2) the Pradel (1996) temporal symmetry (TSM) approach that directly estimates lambda using an open-population capture-recapture model. Besides resighting data, both approaches required information on the number of unmarked individuals that were sighted during the sampling periods. The point estimates of lambda differed between the robust design and TSM approaches, but the 95% confidence intervals overlapped substantially. We believe the differences may be the result of sparse data and do not indicate the inappropriateness of either modelling technique. We focused on the results of the robust design because this approach provided estimates for all study years. Variation among these estimates was smaller than levels of variation among ad hoc estimates based on previously reported index statistics. We recommend that lambda of snail kites be estimated using capture-resighting methods rather than ad hoc counts.
Robust Means and Covariance Matrices by the Minimum Volume Ellipsoid (MVE).
ERIC Educational Resources Information Center
Blankmeyer, Eric
P. Rousseeuw and A. Leroy (1987) proposed a very robust alternative to classical estimates of mean vectors and covariance matrices, the Minimum Volume Ellipsoid (MVE). This paper describes the MVE technique and presents a BASIC program to implement it. The MVE is a "high breakdown" estimator, one that can cope with samples in which as…
A robust bayesian estimate of the concordance correlation coefficient.
Feng, Dai; Baumgartner, Richard; Svetnik, Vladimir
2015-01-01
A need for assessment of agreement arises in many situations including statistical biomarker qualification or assay or method validation. Concordance correlation coefficient (CCC) is one of the most popular scaled indices reported in evaluation of agreement. Robust methods for CCC estimation currently present an important statistical challenge. Here, we propose a novel Bayesian method of robust estimation of CCC based on multivariate Student's t-distribution and compare it with its alternatives. Furthermore, we extend the method to practically relevant settings, enabling incorporation of confounding covariates and replications. The superiority of the new approach is demonstrated using simulation as well as real datasets from biomarker application in electroencephalography (EEG). This biomarker is relevant in neuroscience for development of treatments for insomnia.
Kesselmeier, Miriam; Lorenzo Bermejo, Justo
2017-11-01
Logistic regression is the most common technique used for genetic case-control association studies. A disadvantage of standard maximum likelihood estimators of the genotype relative risk (GRR) is their strong dependence on outlier subjects, for example, patients diagnosed at unusually young age. Robust methods are available to constrain outlier influence, but they are scarcely used in genetic studies. This article provides a non-intimidating introduction to robust logistic regression, and investigates its benefits and limitations in genetic association studies. We applied the bounded Huber and extended the R package 'robustbase' with the re-descending Hampel functions to down-weight outlier influence. Computer simulations were carried out to assess the type I error rate, mean squared error (MSE) and statistical power according to major characteristics of the genetic study and investigated markers. Simulations were complemented with the analysis of real data. Both standard and robust estimation controlled type I error rates. Standard logistic regression showed the highest power but standard GRR estimates also showed the largest bias and MSE, in particular for associated rare and recessive variants. For illustration, a recessive variant with a true GRR=6.32 and a minor allele frequency=0.05 investigated in a 1000 case/1000 control study by standard logistic regression resulted in power=0.60 and MSE=16.5. The corresponding figures for Huber-based estimation were power=0.51 and MSE=0.53. Overall, Hampel- and Huber-based GRR estimates did not differ much. Robust logistic regression may represent a valuable alternative to standard maximum likelihood estimation when the focus lies on risk prediction rather than identification of susceptibility variants. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Qin, Guoyou; Zhang, Jiajia; Zhu, Zhongyi; Fung, Wing
2016-12-20
Outliers, measurement error, and missing data are commonly seen in longitudinal data because of its data collection process. However, no method can address all three of these issues simultaneously. This paper focuses on the robust estimation of partially linear models for longitudinal data with dropouts and measurement error. A new robust estimating equation, simultaneously tackling outliers, measurement error, and missingness, is proposed. The asymptotic properties of the proposed estimator are established under some regularity conditions. The proposed method is easy to implement in practice by utilizing the existing standard generalized estimating equations algorithms. The comprehensive simulation studies show the strength of the proposed method in dealing with longitudinal data with all three features. Finally, the proposed method is applied to data from the Lifestyle Education for Activity and Nutrition study and confirms the effectiveness of the intervention in producing weight loss at month 9. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Doubly robust estimation of generalized partial linear models for longitudinal data with dropouts.
Lin, Huiming; Fu, Bo; Qin, Guoyou; Zhu, Zhongyi
2017-12-01
We develop a doubly robust estimation of generalized partial linear models for longitudinal data with dropouts. Our method extends the highly efficient aggregate unbiased estimating function approach proposed in Qu et al. (2010) to a doubly robust one in the sense that under missing at random (MAR), our estimator is consistent when either the linear conditional mean condition is satisfied or a model for the dropout process is correctly specified. We begin with a generalized linear model for the marginal mean, and then move forward to a generalized partial linear model, allowing for nonparametric covariate effect by using the regression spline smoothing approximation. We establish the asymptotic theory for the proposed method and use simulation studies to compare its finite sample performance with that of Qu's method, the complete-case generalized estimating equation (GEE) and the inverse-probability weighted GEE. The proposed method is finally illustrated using data from a longitudinal cohort study. © 2017, The International Biometric Society.
Skeletal Correlates for Body Mass Estimation in Modern and Fossil Flying Birds
Field, Daniel J.; Lynner, Colton; Brown, Christian; Darroch, Simon A. F.
2013-01-01
Scaling relationships between skeletal dimensions and body mass in extant birds are often used to estimate body mass in fossil crown-group birds, as well as in stem-group avialans. However, useful statistical measurements for constraining the precision and accuracy of fossil mass estimates are rarely provided, which prevents the quantification of robust upper and lower bound body mass estimates for fossils. Here, we generate thirteen body mass correlations and associated measures of statistical robustness using a sample of 863 extant flying birds. By providing robust body mass regressions with upper- and lower-bound prediction intervals for individual skeletal elements, we address the longstanding problem of body mass estimation for highly fragmentary fossil birds. We demonstrate that the most precise proxy for estimating body mass in the overall dataset, measured both as coefficient determination of ordinary least squares regression and percent prediction error, is the maximum diameter of the coracoid’s humeral articulation facet (the glenoid). We further demonstrate that this result is consistent among the majority of investigated avian orders (10 out of 18). As a result, we suggest that, in the majority of cases, this proxy may provide the most accurate estimates of body mass for volant fossil birds. Additionally, by presenting statistical measurements of body mass prediction error for thirteen different body mass regressions, this study provides a much-needed quantitative framework for the accurate estimation of body mass and associated ecological correlates in fossil birds. The application of these regressions will enhance the precision and robustness of many mass-based inferences in future paleornithological studies. PMID:24312392
Control algorithms for aerobraking in the Martian atmosphere
NASA Technical Reports Server (NTRS)
Ward, Donald T.; Shipley, Buford W., Jr.
1991-01-01
The Analytic Predictor Corrector (APC) and Energy Controller (EC) atmospheric guidance concepts were adapted to control an interplanetary vehicle aerobraking in the Martian atmosphere. Changes are made to the APC to improve its robustness to density variations. These changes include adaptation of a new exit phase algorithm, an adaptive transition velocity to initiate the exit phase, refinement of the reference dynamic pressure calculation and two improved density estimation techniques. The modified controller with the hybrid density estimation technique is called the Mars Hybrid Predictor Corrector (MHPC), while the modified controller with a polynomial density estimator is called the Mars Predictor Corrector (MPC). A Lyapunov Steepest Descent Controller (LSDC) is adapted to control the vehicle. The LSDC lacked robustness, so a Lyapunov tracking exit phase algorithm is developed to guide the vehicle along a reference trajectory. This algorithm, when using the hybrid density estimation technique to define the reference path, is called the Lyapunov Hybrid Tracking Controller (LHTC). With the polynomial density estimator used to define the reference trajectory, the algorithm is called the Lyapunov Tracking Controller (LTC). These four new controllers are tested using a six degree of freedom computer simulation to evaluate their robustness. The MHPC, MPC, LHTC, and LTC show dramatic improvements in robustness over the APC and EC.
How Accurate and Robust Are the Phylogenetic Estimates of Austronesian Language Relationships?
Greenhill, Simon J.; Drummond, Alexei J.; Gray, Russell D.
2010-01-01
We recently used computational phylogenetic methods on lexical data to test between two scenarios for the peopling of the Pacific. Our analyses of lexical data supported a pulse-pause scenario of Pacific settlement in which the Austronesian speakers originated in Taiwan around 5,200 years ago and rapidly spread through the Pacific in a series of expansion pulses and settlement pauses. We claimed that there was high congruence between traditional language subgroups and those observed in the language phylogenies, and that the estimated age of the Austronesian expansion at 5,200 years ago was consistent with the archaeological evidence. However, the congruence between the language phylogenies and the evidence from historical linguistics was not quantitatively assessed using tree comparison metrics. The robustness of the divergence time estimates to different calibration points was also not investigated exhaustively. Here we address these limitations by using a systematic tree comparison metric to calculate the similarity between the Bayesian phylogenetic trees and the subgroups proposed by historical linguistics, and by re-estimating the age of the Austronesian expansion using only the most robust calibrations. The results show that the Austronesian language phylogenies are highly congruent with the traditional subgroupings, and the date estimates are robust even when calculated using a restricted set of historical calibrations. PMID:20224774
Dynamic dual-tracer PET reconstruction.
Gao, Fei; Liu, Huafeng; Jian, Yiqiang; Shi, Pengcheng
2009-01-01
Although of important medical implications, simultaneous dual-tracer positron emission tomography reconstruction remains a challenging problem, primarily because the photon measurements from dual tracers are overlapped. In this paper, we propose a simultaneous dynamic dual-tracer reconstruction of tissue activity maps based on guidance from tracer kinetics. The dual-tracer reconstruction problem is formulated in a state-space representation, where parallel compartment models serve as continuous-time system equation describing the tracer kinetic processes of dual tracers, and the imaging data is expressed as discrete sampling of the system states in measurement equation. The image reconstruction problem has therefore become a state estimation problem in a continuous-discrete hybrid paradigm, and H infinity filtering is adopted as the estimation strategy. As H infinity filtering makes no assumptions on the system and measurement statistics, robust reconstruction results can be obtained for the dual-tracer PET imaging system where the statistical properties of measurement data and system uncertainty are not available a priori, even when there are disturbances in the kinetic parameters. Experimental results on digital phantoms, Monte Carlo simulations and physical phantoms have demonstrated the superior performance.
Optimized pulses for the control of uncertain qubits
Grace, Matthew D.; Dominy, Jason M.; Witzel, Wayne M.; ...
2012-05-18
The construction of high-fidelity control fields that are robust to control, system, and/or surrounding environment uncertainties is a crucial objective for quantum information processing. Using the two-state Landau-Zener model for illustrative simulations of a controlled qubit, we generate optimal controls for π/2 and π pulses and investigate their inherent robustness to uncertainty in the magnitude of the drift Hamiltonian. Next, we construct a quantum-control protocol to improve system-drift robustness by combining environment-decoupling pulse criteria and optimal control theory for unitary operations. By perturbatively expanding the unitary time-evolution operator for an open quantum system, previous analysis of environment-decoupling control pulses hasmore » calculated explicit control-field criteria to suppress environment-induced errors up to (but not including) third order from π/2 and π pulses. We systematically integrate this criteria with optimal control theory, incorporating an estimate of the uncertain parameter to produce improvements in gate fidelity and robustness, demonstrated via a numerical example based on double quantum dot qubits. For the qubit model used in this work, postfacto analysis of the resulting controls suggests that realistic control-field fluctuations and noise may contribute just as significantly to gate errors as system and environment fluctuations.« less
Robust artifactual independent component classification for BCI practitioners.
Winkler, Irene; Brandl, Stephanie; Horn, Franziska; Waldburger, Eric; Allefeld, Carsten; Tangermann, Michael
2014-06-01
EEG artifacts of non-neural origin can be separated from neural signals by independent component analysis (ICA). It is unclear (1) how robustly recently proposed artifact classifiers transfer to novel users, novel paradigms or changed electrode setups, and (2) how artifact cleaning by a machine learning classifier impacts the performance of brain-computer interfaces (BCIs). Addressing (1), the robustness of different strategies with respect to the transfer between paradigms and electrode setups of a recently proposed classifier is investigated on offline data from 35 users and 3 EEG paradigms, which contain 6303 expert-labeled components from two ICA and preprocessing variants. Addressing (2), the effect of artifact removal on single-trial BCI classification is estimated on BCI trials from 101 users and 3 paradigms. We show that (1) the proposed artifact classifier generalizes to completely different EEG paradigms. To obtain similar results under massively reduced electrode setups, a proposed novel strategy improves artifact classification. Addressing (2), ICA artifact cleaning has little influence on average BCI performance when analyzed by state-of-the-art BCI methods. When slow motor-related features are exploited, performance varies strongly between individuals, as artifacts may obstruct relevant neural activity or are inadvertently used for BCI control. Robustness of the proposed strategies can be reproduced by EEG practitioners as the method is made available as an EEGLAB plug-in.
Boukattaya, Mohamed; Mezghani, Neila; Damak, Tarak
2018-06-01
In this paper, robust and adaptive nonsingular fast terminal sliding-mode (NFTSM) control schemes for the trajectory tracking problem are proposed with known or unknown upper bound of the system uncertainty and external disturbances. The developed controllers take the advantage of the NFTSM theory to ensure fast convergence rate, singularity avoidance, and robustness against uncertainties and external disturbances. First, a robust NFTSM controller is proposed which guarantees that sliding surface and equilibrium point can be reached in a short finite-time from any initial state. Then, in order to cope with the unknown upper bound of the system uncertainty which may be occurring in practical applications, a new adaptive NFTSM algorithm is developed. One feature of the proposed control law is their adaptation techniques where the prior knowledge of parameters uncertainty and disturbances is not needed. However, the adaptive tuning law can estimate the upper bound of these uncertainties using only position and velocity measurements. Moreover, the proposed controller eliminates the chattering effect without losing the robustness property and the precision. Stability analysis is performed using the Lyapunov stability theory, and simulation studies are conducted to verify the effectiveness of the developed control schemes. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Shifting the bell curve: the benefits and costs of raising student achievement.
Yeh, Stuart S
2009-02-01
Benefit-cost analysis was conducted to estimate the increase in earnings, increased tax revenues, value of less crime, and reductions in welfare costs attributable to nationwide implementation of rapid assessment, a promising intervention for raising student achievement in math and reading. Results suggest that social benefits would exceed total social costs by a ratio of 28. Fiscal benefits to the federal government would exceed costs to the federal treasury by a ratio of 93. Social benefits would exceed costs to each state treasury by a ratio no lower than 286, and fiscal benefits would exceed costs to each state treasury by a ratio no lower than 5, for all but two state treasuries. Sensitivity analyses suggest that the findings are robust to a 5-fold change in the underlying parameters.
Fixed points and limit cycles in the population dynamics of lysogenic viruses and their hosts
NASA Astrophysics Data System (ADS)
Wang, Zhenyu; Goldenfeld, Nigel
2010-07-01
Starting with stochastic rate equations for the fundamental interactions between microbes and their viruses, we derive a mean-field theory for the population dynamics of microbe-virus systems, including the effects of lysogeny. In the absence of lysogeny, our model is a generalization of that proposed phenomenologically by Weitz and Dushoff. In the presence of lysogeny, we analyze the possible states of the system, identifying a limit cycle, which we interpret physically. To test the robustness of our mean-field calculations to demographic fluctuations, we have compared our results with stochastic simulations using the Gillespie algorithm. Finally, we estimate the range of parameters that delineate the various steady states of our model.
Self-tuning control of attitude and momentum management for the Space Station
NASA Technical Reports Server (NTRS)
Shieh, L. S.; Sunkel, J. W.; Yuan, Z. Z.; Zhao, X. M.
1992-01-01
This paper presents a hybrid state-space self-tuning design methodology using dual-rate sampling for suboptimal digital adaptive control of attitude and momentum management for the Space Station. This new hybrid adaptive control scheme combines an on-line recursive estimation algorithm for indirectly identifying the parameters of a continuous-time system from the available fast-rate sampled data of the inputs and states and a controller synthesis algorithm for indirectly finding the slow-rate suboptimal digital controller from the designed optimal analog controller. The proposed method enables the development of digitally implementable control algorithms for the robust control of Space Station Freedom with unknown environmental disturbances and slowly time-varying dynamics.
Separate and unequal: Structural racism and infant mortality in the US.
Wallace, Maeve; Crear-Perry, Joia; Richardson, Lisa; Tarver, Meshawn; Theall, Katherine
2017-05-01
We examined associations between state-level measures of structural racism and infant mortality among black and white populations across the US. Overall and race-specific infant mortality rates in each state were calculated from national linked birth and infant death records from 2010 to 2013. Structural racism in each state was characterized by racial inequity (ratio of black to white population estimates) in educational attainment, median household income, employment, imprisonment, and juvenile custody. Poisson regression with robust standard errors estimated infant mortality rate ratios (RR) and 95% confidence intervals (CI) associated with an IQR increase in indicators of structural racism overall and separately within black and white populations. Across all states, increasing racial inequity in unemployment was associated with a 5% increase in black infant mortality (RR=1.05, 95% CI=1.01, 1.10). Decreasing racial inequity in education was associated with an almost 10% reduction in the black infant mortality rate (RR=0.92, 95% CI=0.85, 0.99). None of the structural racism measures were significantly associated with infant mortality among whites. Structural racism may contribute to the persisting racial inequity in infant mortality. Copyright © 2017 Elsevier Ltd. All rights reserved.
Secure Fusion Estimation for Bandwidth Constrained Cyber-Physical Systems Under Replay Attacks.
Chen, Bo; Ho, Daniel W C; Hu, Guoqiang; Yu, Li; Bo Chen; Ho, Daniel W C; Guoqiang Hu; Li Yu; Chen, Bo; Ho, Daniel W C; Hu, Guoqiang; Yu, Li
2018-06-01
State estimation plays an essential role in the monitoring and supervision of cyber-physical systems (CPSs), and its importance has made the security and estimation performance a major concern. In this case, multisensor information fusion estimation (MIFE) provides an attractive alternative to study secure estimation problems because MIFE can potentially improve estimation accuracy and enhance reliability and robustness against attacks. From the perspective of the defender, the secure distributed Kalman fusion estimation problem is investigated in this paper for a class of CPSs under replay attacks, where each local estimate obtained by the sink node is transmitted to a remote fusion center through bandwidth constrained communication channels. A new mathematical model with compensation strategy is proposed to characterize the replay attacks and bandwidth constrains, and then a recursive distributed Kalman fusion estimator (DKFE) is designed in the linear minimum variance sense. According to different communication frameworks, two classes of data compression and compensation algorithms are developed such that the DKFEs can achieve the desired performance. Several attack-dependent and bandwidth-dependent conditions are derived such that the DKFEs are secure under replay attacks. An illustrative example is given to demonstrate the effectiveness of the proposed methods.
Image interpolation via regularized local linear regression.
Liu, Xianming; Zhao, Debin; Xiong, Ruiqin; Ma, Siwei; Gao, Wen; Sun, Huifang
2011-12-01
The linear regression model is a very attractive tool to design effective image interpolation schemes. Some regression-based image interpolation algorithms have been proposed in the literature, in which the objective functions are optimized by ordinary least squares (OLS). However, it is shown that interpolation with OLS may have some undesirable properties from a robustness point of view: even small amounts of outliers can dramatically affect the estimates. To address these issues, in this paper we propose a novel image interpolation algorithm based on regularized local linear regression (RLLR). Starting with the linear regression model where we replace the OLS error norm with the moving least squares (MLS) error norm leads to a robust estimator of local image structure. To keep the solution stable and avoid overfitting, we incorporate the l(2)-norm as the estimator complexity penalty. Moreover, motivated by recent progress on manifold-based semi-supervised learning, we explicitly consider the intrinsic manifold structure by making use of both measured and unmeasured data points. Specifically, our framework incorporates the geometric structure of the marginal probability distribution induced by unmeasured samples as an additional local smoothness preserving constraint. The optimal model parameters can be obtained with a closed-form solution by solving a convex optimization problem. Experimental results on benchmark test images demonstrate that the proposed method achieves very competitive performance with the state-of-the-art interpolation algorithms, especially in image edge structure preservation. © 2011 IEEE
Lateral control system design for VTOL landing on a DD963 in high sea states. M.S. Thesis
NASA Technical Reports Server (NTRS)
Bodson, M.
1982-01-01
The problem of designing lateral control systems for the safe landing of VTOL aircraft on small ships is addressed. A ship model is derived. The issues of estimation and prediction of ship motions are discussed, using optimal linear linear estimation techniques. The roll motion is the most important of the lateral motions, and it is found that it can be predicted for up to 10 seconds in perfect conditions. The automatic landing of the VTOL aircraft is considered, and a lateral controller, defined as a ship motion tracker, is designed, using optimal control techniqes. The tradeoffs between the tracking errors and the control authority are obtained. The important couplings between the lateral motions and controls are demonstrated, and it is shown that the adverse couplings between the sway and the roll motion at the landing pad are significant constraints in the tracking of the lateral ship motions. The robustness of the control system, including the optimal estimator, is studied, using the singular values analysis. Through a robustification procedure, a robust control system is obtained, and the usefulness of the singular values to define stability margins that take into account general types of unstructured modelling errors is demonstrated. The minimal destabilizing perturbations indicated by the singular values analysis are interpreted and related to the multivariable Nyquist diagrams.
Robust Flutter Margin Analysis that Incorporates Flight Data
NASA Technical Reports Server (NTRS)
Lind, Rick; Brenner, Martin J.
1998-01-01
An approach for computing worst-case flutter margins has been formulated in a robust stability framework. Uncertainty operators are included with a linear model to describe modeling errors and flight variations. The structured singular value, mu, computes a stability margin that directly accounts for these uncertainties. This approach introduces a new method of computing flutter margins and an associated new parameter for describing these margins. The mu margins are robust margins that indicate worst-case stability estimates with respect to the defined uncertainty. Worst-case flutter margins are computed for the F/A-18 Systems Research Aircraft using uncertainty sets generated by flight data analysis. The robust margins demonstrate flight conditions for flutter may lie closer to the flight envelope than previously estimated by p-k analysis.
Robust dead reckoning system for mobile robots based on particle filter and raw range scan.
Duan, Zhuohua; Cai, Zixing; Min, Huaqing
2014-09-04
Robust dead reckoning is a complicated problem for wheeled mobile robots (WMRs), where the robots are faulty, such as the sticking of sensors or the slippage of wheels, for the discrete fault models and the continuous states have to be estimated simultaneously to reach a reliable fault diagnosis and accurate dead reckoning. Particle filters are one of the most promising approaches to handle hybrid system estimation problems, and they have also been widely used in many WMRs applications, such as pose tracking, SLAM, video tracking, fault identification, etc. In this paper, the readings of a laser range finder, which may be also interfered with by noises, are used to reach accurate dead reckoning. The main contribution is that a systematic method to implement fault diagnosis and dead reckoning in a particle filter framework concurrently is proposed. Firstly, the perception model of a laser range finder is given, where the raw scan may be faulty. Secondly, the kinematics of the normal model and different fault models for WMRs are given. Thirdly, the particle filter for fault diagnosis and dead reckoning is discussed. At last, experiments and analyses are reported to show the accuracy and efficiency of the presented method.
Robust Dead Reckoning System for Mobile Robots Based on Particle Filter and Raw Range Scan
Duan, Zhuohua; Cai, Zixing; Min, Huaqing
2014-01-01
Robust dead reckoning is a complicated problem for wheeled mobile robots (WMRs), where the robots are faulty, such as the sticking of sensors or the slippage of wheels, for the discrete fault models and the continuous states have to be estimated simultaneously to reach a reliable fault diagnosis and accurate dead reckoning. Particle filters are one of the most promising approaches to handle hybrid system estimation problems, and they have also been widely used in many WMRs applications, such as pose tracking, SLAM, video tracking, fault identification, etc. In this paper, the readings of a laser range finder, which may be also interfered with by noises, are used to reach accurate dead reckoning. The main contribution is that a systematic method to implement fault diagnosis and dead reckoning in a particle filter framework concurrently is proposed. Firstly, the perception model of a laser range finder is given, where the raw scan may be faulty. Secondly, the kinematics of the normal model and different fault models for WMRs are given. Thirdly, the particle filter for fault diagnosis and dead reckoning is discussed. At last, experiments and analyses are reported to show the accuracy and efficiency of the presented method. PMID:25192318
Magnitude Estimation for the 2011 Tohoku-Oki Earthquake Based on Ground Motion Prediction Equations
NASA Astrophysics Data System (ADS)
Eshaghi, Attieh; Tiampo, Kristy F.; Ghofrani, Hadi; Atkinson, Gail M.
2015-08-01
This study investigates whether real-time strong ground motion data from seismic stations could have been used to provide an accurate estimate of the magnitude of the 2011 Tohoku-Oki earthquake in Japan. Ultimately, such an estimate could be used as input data for a tsunami forecast and would lead to more robust earthquake and tsunami early warning. We collected the strong motion accelerograms recorded by borehole and free-field (surface) Kiban Kyoshin network stations that registered this mega-thrust earthquake in order to perform an off-line test to estimate the magnitude based on ground motion prediction equations (GMPEs). GMPEs for peak ground acceleration and peak ground velocity (PGV) from a previous study by Eshaghi et al. in the Bulletin of the Seismological Society of America 103. (2013) derived using events with moment magnitude ( M) ≥ 5.0, 1998-2010, were used to estimate the magnitude of this event. We developed new GMPEs using a more complete database (1998-2011), which added only 1 year but approximately twice as much data to the initial catalog (including important large events), to improve the determination of attenuation parameters and magnitude scaling. These new GMPEs were used to estimate the magnitude of the Tohoku-Oki event. The estimates obtained were compared with real time magnitude estimates provided by the existing earthquake early warning system in Japan. Unlike the current operational magnitude estimation methods, our method did not saturate and can provide robust estimates of moment magnitude within ~100 s after earthquake onset for both catalogs. It was found that correcting for average shear-wave velocity in the uppermost 30 m () improved the accuracy of magnitude estimates from surface recordings, particularly for magnitude estimates of PGV (Mpgv). The new GMPEs also were used to estimate the magnitude of all earthquakes in the new catalog with at least 20 records. Results show that the magnitude estimate from PGV values using borehole recordings had the smallest standard deviation among the estimated magnitudes and produced more stable and robust magnitude estimates. This suggests that incorporating borehole strong ground-motion records immediately available after the occurrence of large earthquakes can provide robust and accurate magnitude estimation.
Feedback Robust Cubature Kalman Filter for Target Tracking Using an Angle Sensor.
Wu, Hao; Chen, Shuxin; Yang, Binfeng; Chen, Kun
2016-05-09
The direction of arrival (DOA) tracking problem based on an angle sensor is an important topic in many fields. In this paper, a nonlinear filter named the feedback M-estimation based robust cubature Kalman filter (FMR-CKF) is proposed to deal with measurement outliers from the angle sensor. The filter designs a new equivalent weight function with the Mahalanobis distance to combine the cubature Kalman filter (CKF) with the M-estimation method. Moreover, by embedding a feedback strategy which consists of a splitting and merging procedure, the proper sub-filter (the standard CKF or the robust CKF) can be chosen in each time index. Hence, the probability of the outliers' misjudgment can be reduced. Numerical experiments show that the FMR-CKF performs better than the CKF and conventional robust filters in terms of accuracy and robustness with good computational efficiency. Additionally, the filter can be extended to the nonlinear applications using other types of sensors.
Sub-sampling genetic data to estimate black bear population size: A case study
Tredick, C.A.; Vaughan, M.R.; Stauffer, D.F.; Simek, S.L.; Eason, T.
2007-01-01
Costs for genetic analysis of hair samples collected for individual identification of bears average approximately US$50 [2004] per sample. This can easily exceed budgetary allowances for large-scale studies or studies of high-density bear populations. We used 2 genetic datasets from 2 areas in the southeastern United States to explore how reducing costs of analysis by sub-sampling affected precision and accuracy of resulting population estimates. We used several sub-sampling scenarios to create subsets of the full datasets and compared summary statistics, population estimates, and precision of estimates generated from these subsets to estimates generated from the complete datasets. Our results suggested that bias and precision of estimates improved as the proportion of total samples used increased, and heterogeneity models (e.g., Mh[CHAO]) were more robust to reduced sample sizes than other models (e.g., behavior models). We recommend that only high-quality samples (>5 hair follicles) be used when budgets are constrained, and efforts should be made to maximize capture and recapture rates in the field.
Robust Mean and Covariance Structure Analysis through Iteratively Reweighted Least Squares.
ERIC Educational Resources Information Center
Yuan, Ke-Hai; Bentler, Peter M.
2000-01-01
Adapts robust schemes to mean and covariance structures, providing an iteratively reweighted least squares approach to robust structural equation modeling. Each case is weighted according to its distance, based on first and second order moments. Test statistics and standard error estimators are given. (SLD)
NASA Astrophysics Data System (ADS)
Voityuk, Alexander A.; Rösch, Notker
2002-09-01
The purpose of this communication is two-fold. We introduce the fragment charge difference (FCD) method to estimate the electron transfer matrix element HDA between a donor D and an acceptor A, and we apply this method to several aspects of hole transfer electronic couplings in π-stacks of DNA, including systems with several donor-acceptor sites. Within the two-state model, our scheme can be simplified to recover a convenient estimate of the electron transfer matrix element HDA=(1-Δq2)1/2(E2-E1)/2 based on the vertical excitation energy E2-E1 and the charge difference Δq between donor and acceptor. For systems with strong charge separation, Δq≳0.95, one should resort to the FCD method. As favorable feature, we demonstrate the stability of the FCD approach for systems which require an approach beyond the two-state model. On the basis of ab initio calculations of various DNA related systems, we compared three approaches for estimating the electronic coupling: the minimum splitting method, the generalized Mulliken-Hush (GMH) scheme, and the FCD approach. We studied the sensitivity of FCD and GMH couplings to the donor-acceptor energy gap and found both schemes to be quite robust; they are applicable also in cases where donor and acceptor states are off resonance. In the application to π-stacks of DNA, we demonstrated for the Watson-Crick pair dimer [(GC),(GC)] how structural changes considerably affect the coupling strength of electron hole transfer. For models of three Watson-Crick pairs, we showed that the two-state model significantly overestimates the hole transfer coupling whereas simultaneous treatment of several states leads to satisfactory results.
Toward robust estimation of the components of forest population change: simulation results
Francis A. Roesch
2014-01-01
This report presents the full simulation results of the work described in Roesch (2014), in which multiple levels of simulation were used to test the robustness of estimators for the components of forest change. In that study, a variety of spatial-temporal populations were created based on, but more variable than, an actual forest monitoring dataset, and then those...
Robust Speech Enhancement Using Two-Stage Filtered Minima Controlled Recursive Averaging
NASA Astrophysics Data System (ADS)
Ghourchian, Negar; Selouani, Sid-Ahmed; O'Shaughnessy, Douglas
In this paper we propose an algorithm for estimating noise in highly non-stationary noisy environments, which is a challenging problem in speech enhancement. This method is based on minima-controlled recursive averaging (MCRA) whereby an accurate, robust and efficient noise power spectrum estimation is demonstrated. We propose a two-stage technique to prevent the appearance of musical noise after enhancement. This algorithm filters the noisy speech to achieve a robust signal with minimum distortion in the first stage. Subsequently, it estimates the residual noise using MCRA and removes it with spectral subtraction. The proposed Filtered MCRA (FMCRA) performance is evaluated using objective tests on the Aurora database under various noisy environments. These measures indicate the higher output SNR and lower output residual noise and distortion.
Robust control of the DC-DC boost converter based on the uncertainty and disturbance estimator
NASA Astrophysics Data System (ADS)
Oucheriah, Said
2017-11-01
In this paper, a robust non-linear controller based on the uncertainty and disturbance estimator (UDE) scheme is successfully developed and implemented for the output voltage regulation of the DC-DC boost converter. System uncertainties, external disturbances and unknown non-linear dynamics are lumped as a signal that is accurately estimated using a low-pass filter and their effects are cancelled by the controller. This methodology forms the basis of the UDE-based controller. A simple procedure is also developed that systematically determines the parameters of the controller to meet certain specifications. Using simulation, the effectiveness of the proposed controller is compared against the sliding-mode control (SMC). Experimental tests also show that the proposed controller is robust to system uncertainties, large input and load perturbations.
The Utility of Robust Means in Statistics
ERIC Educational Resources Information Center
Goodwyn, Fara
2012-01-01
Location estimates calculated from heuristic data were examined using traditional and robust statistical methods. The current paper demonstrates the impact outliers have on the sample mean and proposes robust methods to control for outliers in sample data. Traditional methods fail because they rely on the statistical assumptions of normality and…
Improving Zernike moments comparison for optimal similarity and rotation angle retrieval.
Revaud, Jérôme; Lavoué, Guillaume; Baskurt, Atilla
2009-04-01
Zernike moments constitute a powerful shape descriptor in terms of robustness and description capability. However the classical way of comparing two Zernike descriptors only takes into account the magnitude of the moments and loses the phase information. The novelty of our approach is to take advantage of the phase information in the comparison process while still preserving the invariance to rotation. This new Zernike comparator provides a more accurate similarity measure together with the optimal rotation angle between the patterns, while keeping the same complexity as the classical approach. This angle information is particularly of interest for many applications, including 3D scene understanding through images. Experiments demonstrate that our comparator outperforms the classical one in terms of similarity measure. In particular the robustness of the retrieval against noise and geometric deformation is greatly improved. Moreover, the rotation angle estimation is also more accurate than state-of-the-art algorithms.
An improved state-parameter analysis of ecosystem models using data assimilation
Chen, M.; Liu, S.; Tieszen, L.L.; Hollinger, D.Y.
2008-01-01
Much of the effort spent in developing data assimilation methods for carbon dynamics analysis has focused on estimating optimal values for either model parameters or state variables. The main weakness of estimating parameter values alone (i.e., without considering state variables) is that all errors from input, output, and model structure are attributed to model parameter uncertainties. On the other hand, the accuracy of estimating state variables may be lowered if the temporal evolution of parameter values is not incorporated. This research develops a smoothed ensemble Kalman filter (SEnKF) by combining ensemble Kalman filter with kernel smoothing technique. SEnKF has following characteristics: (1) to estimate simultaneously the model states and parameters through concatenating unknown parameters and state variables into a joint state vector; (2) to mitigate dramatic, sudden changes of parameter values in parameter sampling and parameter evolution process, and control narrowing of parameter variance which results in filter divergence through adjusting smoothing factor in kernel smoothing algorithm; (3) to assimilate recursively data into the model and thus detect possible time variation of parameters; and (4) to address properly various sources of uncertainties stemming from input, output and parameter uncertainties. The SEnKF is tested by assimilating observed fluxes of carbon dioxide and environmental driving factor data from an AmeriFlux forest station located near Howland, Maine, USA, into a partition eddy flux model. Our analysis demonstrates that model parameters, such as light use efficiency, respiration coefficients, minimum and optimum temperatures for photosynthetic activity, and others, are highly constrained by eddy flux data at daily-to-seasonal time scales. The SEnKF stabilizes parameter values quickly regardless of the initial values of the parameters. Potential ecosystem light use efficiency demonstrates a strong seasonality. Results show that the simultaneous parameter estimation procedure significantly improves model predictions. Results also show that the SEnKF can dramatically reduce the variance in state variables stemming from the uncertainty of parameters and driving variables. The SEnKF is a robust and effective algorithm in evaluating and developing ecosystem models and in improving the understanding and quantification of carbon cycle parameters and processes. ?? 2008 Elsevier B.V.
Spin-dependent recombination probed through the dielectric polarizability
Bayliss, Sam L.; Greenham, Neil C.; Friend, Richard H.; Bouchiat, Hélène; Chepelianskii, Alexei D
2015-01-01
Despite residing in an energetically and structurally disordered landscape, the spin degree of freedom remains a robust quantity in organic semiconductor materials due to the weak coupling of spin and orbital states. This enforces spin-selectivity in recombination processes which plays a crucial role in optoelectronic devices, for example, in the spin-dependent recombination of weakly bound electron-hole pairs, or charge-transfer states, which form in a photovoltaic blend. Here, we implement a detection scheme to probe the spin-selective recombination of these states through changes in their dielectric polarizability under magnetic resonance. Using this technique, we access a regime in which the usual mixing of spin-singlet and spin-triplet states due to hyperfine fields is suppressed by microwave driving. We present a quantitative model for this behaviour which allows us to estimate the spin-dependent recombination rate, and draw parallels with the Majorana–Brossel resonances observed in atomic physics experiments. PMID:26439933
Improving stability margins in discrete-time LQG controllers
NASA Technical Reports Server (NTRS)
Oranc, B. Tarik; Phillips, Charles L.
1987-01-01
Some of the problems are discussed which are encountered in the design of discrete-time stochastic controllers for problems that may adequately be described by the Linear Quadratic Gaussian (LQG) assumptions; namely, the problems of obtaining acceptable relative stability, robustness, and disturbance rejection properties. A dynamic compensator is proposed to replace the optimal full state feedback regulator gains at steady state, provided that all states are measurable. The compensator increases the stability margins at the plant input, which may possibly be inadequate in practical applications. Though the optimal regulator has desirable properties the observer based controller as implemented with a Kalman filter, in a noisy environment, has inadequate stability margins. The proposed compensator is designed to match the return difference matrix at the plant input to that of the optimal regulator while maintaining the optimality of the state estimates as directed by the measurement noise characteristics.
Rates of Household Firearm Ownership and Homicide Across US Regions and States, 1988–1997
Miller, Matthew; Azrael, Deborah; Hemenway, David
2002-01-01
Objectives. In this study we explored the association between rates of household firearm ownership and homicide across the United States, by age groups. Methods. We used cross-sectional time-series data (1988–1997) to estimate the association between rates of household firearm ownership and homicide. Results. In region- and state-level analyses, a robust association between rates of household firearm ownership and homicide was found. Regionally, the association exists for victims aged 5 to 14 years and those 35 years and older. At the state level, the association exists for every age group over age 5, even after controlling for poverty, urbanization, unemployment, alcohol consumption, and nonlethal violent crime. Conclusions. Although our study cannot determine causation, we found that in areas where household firearm ownership rates were higher, a disproportionately large number of people died from homicide. PMID:12453821
Kaneko, Kunihiko
2011-06-01
Here I present and discuss a model that, among other things, appears able to describe the dynamics of cancer cell origin from the perspective of stable and unstable gene expression profiles. In identifying such aberrant gene expression profiles as lying outside the normal stable states attracted through development and normal cell differentiation, the hypothesis explains why cancer cells accumulate mutations, to which they are not robust, and why these mutations create a new stable state far from the normal gene expression profile space. Such cells are in strong contrast with normal cell types that appeared as an attractor state in the gene expression dynamical system under cell-cell interaction and achieved robustness to noise through evolution, which in turn also conferred robustness to mutation. In complex gene regulation networks, other aberrant cellular states lacking such high robustness are expected to remain, which would correspond to cancer cells. Copyright © 2011 WILEY Periodicals, Inc.
Robust gaze-steering of an active vision system against errors in the estimated parameters
NASA Astrophysics Data System (ADS)
Han, Youngmo
2015-01-01
Gaze-steering is often used to broaden the viewing range of an active vision system. Gaze-steering procedures are usually based on estimated parameters such as image position, image velocity, depth and camera calibration parameters. However, there may be uncertainties in these estimated parameters because of measurement noise and estimation errors. In this case, robust gaze-steering cannot be guaranteed. To compensate for such problems, this paper proposes a gaze-steering method based on a linear matrix inequality (LMI). In this method, we first propose a proportional derivative (PD) control scheme on the unit sphere that does not use depth parameters. This proposed PD control scheme can avoid uncertainties in the estimated depth and camera calibration parameters, as well as inconveniences in their estimation process, including the use of auxiliary feature points and highly non-linear computation. Furthermore, the control gain of the proposed PD control scheme on the unit sphere is designed using LMI such that the designed control is robust in the presence of uncertainties in the other estimated parameters, such as image position and velocity. Simulation results demonstrate that the proposed method provides a better compensation for uncertainties in the estimated parameters than the contemporary linear method and steers the gaze of the camera more steadily over time than the contemporary non-linear method.
The RAVE/VERTIGO vertex reconstruction toolkit and framework
NASA Astrophysics Data System (ADS)
Waltenberger, W.; Mitaroff, W.; Moser, F.; Pflugfelder, B.; Riedel, H. V.
2008-07-01
A detector-independent toolkit for vertex reconstruction (RAVE1) is being developed, along with a standalone framework (VERTIGO2) for testing, analyzing and debugging. The core algorithms represent state-of-the-art for geometric vertex finding and fitting by both linear (Kalman filter) and robust estimation methods. Main design goals are ease of use, flexibility for embedding into existing software frameworks, extensibility, and openness. The implementation is based on modern object-oriented techniques, is coded in C++ with interfaces for Java and Python, and follows an open-source approach. A beta release is available.
A novel phenomenological multi-physics model of Li-ion battery cells
NASA Astrophysics Data System (ADS)
Oh, Ki-Yong; Samad, Nassim A.; Kim, Youngki; Siegel, Jason B.; Stefanopoulou, Anna G.; Epureanu, Bogdan I.
2016-09-01
A novel phenomenological multi-physics model of Lithium-ion battery cells is developed for control and state estimation purposes. The model can capture electrical, thermal, and mechanical behaviors of battery cells under constrained conditions, e.g., battery pack conditions. Specifically, the proposed model predicts the core and surface temperatures and reaction force induced from the volume change of battery cells because of electrochemically- and thermally-induced swelling. Moreover, the model incorporates the influences of changes in preload and ambient temperature on the force considering severe environmental conditions electrified vehicles face. Intensive experimental validation demonstrates that the proposed multi-physics model accurately predicts the surface temperature and reaction force for a wide operational range of preload and ambient temperature. This high fidelity model can be useful for more accurate and robust state of charge estimation considering the complex dynamic behaviors of the battery cell. Furthermore, the inherent simplicity of the mechanical measurements offers distinct advantages to improve the existing power and thermal management strategies for battery management.
Tamayao, Mili-Ann M; Michalek, Jeremy J; Hendrickson, Chris; Azevedo, Inês M L
2015-07-21
We characterize regionally specific life cycle CO2 emissions per mile traveled for plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) across the United States under alternative assumptions for regional electricity emission factors, regional boundaries, and charging schemes. We find that estimates based on marginal vs average grid emission factors differ by as much as 50% (using National Electricity Reliability Commission (NERC) regional boundaries). Use of state boundaries versus NERC region boundaries results in estimates that differ by as much as 120% for the same location (using average emission factors). We argue that consumption-based marginal emission factors are conceptually appropriate for evaluating the emissions implications of policies that increase electric vehicle sales or use in a region. We also examine generation-based marginal emission factors to assess robustness. Using these two estimates of NERC region marginal emission factors, we find the following: (1) delayed charging (i.e., starting at midnight) leads to higher emissions in most cases due largely to increased coal in the marginal generation mix at night; (2) the Chevrolet Volt has higher expected life cycle emissions than the Toyota Prius hybrid electric vehicle (the most efficient U.S. gasoline vehicle) across the U.S. in nearly all scenarios; (3) the Nissan Leaf BEV has lower life cycle emissions than the Prius in the western U.S. and in Texas, but the Prius has lower emissions in the northern Midwest regardless of assumed charging scheme and marginal emissions estimation method; (4) in other regions the lowest emitting vehicle depends on charge timing and emission factor estimation assumptions.
Robust estimation for class averaging in cryo-EM Single Particle Reconstruction.
Huang, Chenxi; Tagare, Hemant D
2014-01-01
Single Particle Reconstruction (SPR) for Cryogenic Electron Microscopy (cryo-EM) aligns and averages the images extracted from micrographs to improve the Signal-to-Noise ratio (SNR). Outliers compromise the fidelity of the averaging. We propose a robust cross-correlation-like w-estimator for combating the effect of outliers on the average images in cryo-EM. The estimator accounts for the natural variation of signal contrast among the images and eliminates the need for a threshold for outlier rejection. We show that the influence function of our estimator is asymptotically bounded. Evaluations of the estimator on simulated and real cryo-EM images show good performance in the presence of outliers.
Evaluation of the robustness of estimating five components from a skin spectral image
NASA Astrophysics Data System (ADS)
Akaho, Rina; Hirose, Misa; Tsumura, Norimichi
2018-04-01
We evaluated the robustness of a method used to estimate five components (i.e., melanin, oxy-hemoglobin, deoxy-hemoglobin, shading, and surface reflectance) from the spectral reflectance of skin at five wavelengths against noise and a change in epidermis thickness. We also estimated the five components from recorded images of age spots and circles under the eyes using the method. We found that noise in the image must be no more 0.1% to accurately estimate the five components and that the thickness of the epidermis affects the estimation. We acquired the distribution of major causes for age spots and circles under the eyes by applying the method to recorded spectral images.
Methods for estimating the amount of vernal pool habitat in the northeastern United States
Van Meter, R.; Bailey, L.L.; Grant, E.H.C.
2008-01-01
The loss of small, seasonal wetlands is a major concern for a variety of state, local, and federal organizations in the northeastern U.S. Identifying and estimating the number of vernal pools within a given region is critical to developing long-term conservation and management strategies for these unique habitats and their faunal communities. We use three probabilistic sampling methods (simple random sampling, adaptive cluster sampling, and the dual frame method) to estimate the number of vernal pools on protected, forested lands. Overall, these methods yielded similar values of vernal pool abundance for each study area, and suggest that photographic interpretation alone may grossly underestimate the number of vernal pools in forested habitats. We compare the relative efficiency of each method and discuss ways of improving precision. Acknowledging that the objectives of a study or monitoring program ultimately determine which sampling designs are most appropriate, we recommend that some type of probabilistic sampling method be applied. We view the dual-frame method as an especially useful way of combining incomplete remote sensing methods, such as aerial photograph interpretation, with a probabilistic sample of the entire area of interest to provide more robust estimates of the number of vernal pools and a more representative sample of existing vernal pool habitats.
NASA Astrophysics Data System (ADS)
Farmann, Alexander; Waag, Wladislaw; Sauer, Dirk Uwe
2015-12-01
Robust algorithms using reduced order equivalent circuit model (ECM) for an accurate and reliable estimation of battery states in various applications become more popular. In this study, a novel adaptive, self-learning heuristic algorithm for on-board impedance parameters and voltage estimation of lithium-ion batteries (LIBs) in electric vehicles is introduced. The presented approach is verified using LIBs with different composition of chemistries (NMC/C, NMC/LTO, LFP/C) at different aging states. An impedance-based reduced order ECM incorporating ohmic resistance and a combination of a constant phase element and a resistance (so-called ZARC-element) is employed. Existing algorithms in vehicles are much more limited in the complexity of the ECMs. The algorithm is validated using seven day real vehicle data with high temperature variation including very low temperatures (from -20 °C to +30 °C) at different Depth-of-Discharges (DoDs). Two possibilities to approximate both ZARC-elements with finite number of RC-elements on-board are shown and the results of the voltage estimation are compared. Moreover, the current dependence of the charge-transfer resistance is considered by employing Butler-Volmer equation. Achieved results indicate that both models yield almost the same grade of accuracy.
Carbonell, Felix; Bellec, Pierre
2011-01-01
Abstract The influence of the global average signal (GAS) on functional-magnetic resonance imaging (fMRI)–based resting-state functional connectivity is a matter of ongoing debate. The global average fluctuations increase the correlation between functional systems beyond the correlation that reflects their specific functional connectivity. Hence, removal of the GAS is a common practice for facilitating the observation of network-specific functional connectivity. This strategy relies on the implicit assumption of a linear-additive model according to which global fluctuations, irrespective of their origin, and network-specific fluctuations are super-positioned. However, removal of the GAS introduces spurious negative correlations between functional systems, bringing into question the validity of previous findings of negative correlations between fluctuations in the default-mode and the task-positive networks. Here we present an alternative method for estimating global fluctuations, immune to the complications associated with the GAS. Principal components analysis was applied to resting-state fMRI time-series. A global-signal effect estimator was defined as the principal component (PC) that correlated best with the GAS. The mean correlation coefficient between our proposed PC-based global effect estimator and the GAS was 0.97±0.05, demonstrating that our estimator successfully approximated the GAS. In 66 out of 68 runs, the PC that showed the highest correlation with the GAS was the first PC. Since PCs are orthogonal, our method provides an estimator of the global fluctuations, which is uncorrelated to the remaining, network-specific fluctuations. Moreover, unlike the regression of the GAS, the regression of the PC-based global effect estimator does not introduce spurious anti-correlations beyond the decrease in seed-based correlation values allowed by the assumed additive model. After regressing this PC-based estimator out of the original time-series, we observed robust anti-correlations between resting-state fluctuations in the default-mode and the task-positive networks. We conclude that resting-state global fluctuations and network-specific fluctuations are uncorrelated, supporting a Resting-State Linear-Additive Model. In addition, we conclude that the network-specific resting-state fluctuations of the default-mode and task-positive networks show artifact-free anti-correlations. PMID:22444074
A pairwise maximum entropy model accurately describes resting-state human brain networks
Watanabe, Takamitsu; Hirose, Satoshi; Wada, Hiroyuki; Imai, Yoshio; Machida, Toru; Shirouzu, Ichiro; Konishi, Seiki; Miyashita, Yasushi; Masuda, Naoki
2013-01-01
The resting-state human brain networks underlie fundamental cognitive functions and consist of complex interactions among brain regions. However, the level of complexity of the resting-state networks has not been quantified, which has prevented comprehensive descriptions of the brain activity as an integrative system. Here, we address this issue by demonstrating that a pairwise maximum entropy model, which takes into account region-specific activity rates and pairwise interactions, can be robustly and accurately fitted to resting-state human brain activities obtained by functional magnetic resonance imaging. Furthermore, to validate the approximation of the resting-state networks by the pairwise maximum entropy model, we show that the functional interactions estimated by the pairwise maximum entropy model reflect anatomical connexions more accurately than the conventional functional connectivity method. These findings indicate that a relatively simple statistical model not only captures the structure of the resting-state networks but also provides a possible method to derive physiological information about various large-scale brain networks. PMID:23340410
Progress in navigation filter estimate fusion and its application to spacecraft rendezvous
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell
1994-01-01
A new derivation of an algorithm which fuses the outputs of two Kalman filters is presented within the context of previous research in this field. Unlike other works, this derivation clearly shows the combination of estimates to be optimal, minimizing the trace of the fused covariance matrix. The algorithm assumes that the filters use identical models, and are stable and operating optimally with respect to their own local measurements. Evidence is presented which indicates that the error ellipsoid derived from the covariance of the optimally fused estimate is contained within the intersections of the error ellipsoids of the two filters being fused. Modifications which reduce the algorithm's data transmission requirements are also presented, including a scalar gain approximation, a cross-covariance update formula which employs only the two contributing filters' autocovariances, and a form of the algorithm which can be used to reinitialize the two Kalman filters. A sufficient condition for using the optimally fused estimates to periodically reinitialize the Kalman filters in this fashion is presented and proved as a theorem. When these results are applied to an optimal spacecraft rendezvous problem, simulated performance results indicate that the use of optimally fused data leads to significantly improved robustness to initial target vehicle state errors. The following applications of estimate fusion methods to spacecraft rendezvous are also described: state vector differencing, and redundancy management.
Efficient data assimilation algorithm for bathymetry application
NASA Astrophysics Data System (ADS)
Ghorbanidehno, H.; Lee, J. H.; Farthing, M.; Hesser, T.; Kitanidis, P. K.; Darve, E. F.
2017-12-01
Information on the evolving state of the nearshore zone bathymetry is crucial to shoreline management, recreational safety, and naval operations. The high cost and complex logistics of using ship-based surveys for bathymetry estimation have encouraged the use of remote sensing techniques. Data assimilation methods combine the remote sensing data and nearshore hydrodynamic models to estimate the unknown bathymetry and the corresponding uncertainties. In particular, several recent efforts have combined Kalman Filter-based techniques such as ensembled-based Kalman filters with indirect video-based observations to address the bathymetry inversion problem. However, these methods often suffer from ensemble collapse and uncertainty underestimation. Here, the Compressed State Kalman Filter (CSKF) method is used to estimate the bathymetry based on observed wave celerity. In order to demonstrate the accuracy and robustness of the CSKF method, we consider twin tests with synthetic observations of wave celerity, while the bathymetry profiles are chosen based on surveys taken by the U.S. Army Corps of Engineer Field Research Facility (FRF) in Duck, NC. The first test case is a bathymetry estimation problem for a spatially smooth and temporally constant bathymetry profile. The second test case is a bathymetry estimation problem for a temporally evolving bathymetry from a smooth to a non-smooth profile. For both problems, we compare the results of CSKF with those obtained by the local ensemble transform Kalman filter (LETKF), which is a popular ensemble-based Kalman filter method.
WTA estimates using the method of paired comparison: tests of robustness
Patricia A. Champ; John B. Loomis
1998-01-01
The method of paired comparison is modified to allow choices between two alternative gains so as to estimate willingness to accept (WTA) without loss aversion. The robustness of WTA values for two public goods is tested with respect to sensitivity of theWTA measure to the context of the bundle of goods used in the paired comparison exercise and to the scope (scale) of...
Bayesian state space models for dynamic genetic network construction across multiple tissues.
Liang, Yulan; Kelemen, Arpad
2016-08-01
Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.
Xiong, Naixue; Liu, Ryan Wen; Liang, Maohan; Wu, Di; Liu, Zhao; Wu, Huisi
2017-01-18
Single-image blind deblurring for imaging sensors in the Internet of Things (IoT) is a challenging ill-conditioned inverse problem, which requires regularization techniques to stabilize the image restoration process. The purpose is to recover the underlying blur kernel and latent sharp image from only one blurred image. Under many degraded imaging conditions, the blur kernel could be considered not only spatially sparse, but also piecewise smooth with the support of a continuous curve. By taking advantage of the hybrid sparse properties of the blur kernel, a hybrid regularization method is proposed in this paper to robustly and accurately estimate the blur kernel. The effectiveness of the proposed blur kernel estimation method is enhanced by incorporating both the L 1 -norm of kernel intensity and the squared L 2 -norm of the intensity derivative. Once the accurate estimation of the blur kernel is obtained, the original blind deblurring can be simplified to the direct deconvolution of blurred images. To guarantee robust non-blind deconvolution, a variational image restoration model is presented based on the L 1 -norm data-fidelity term and the total generalized variation (TGV) regularizer of second-order. All non-smooth optimization problems related to blur kernel estimation and non-blind deconvolution are effectively handled by using the alternating direction method of multipliers (ADMM)-based numerical methods. Comprehensive experiments on both synthetic and realistic datasets have been implemented to compare the proposed method with several state-of-the-art methods. The experimental comparisons have illustrated the satisfactory imaging performance of the proposed method in terms of quantitative and qualitative evaluations.
Adaptive Control for Autonomous Navigation of Mobile Robots Considering Time Delay and Uncertainty
NASA Astrophysics Data System (ADS)
Armah, Stephen Kofi
Autonomous control of mobile robots has attracted considerable attention of researchers in the areas of robotics and autonomous systems during the past decades. One of the goals in the field of mobile robotics is development of platforms that robustly operate in given, partially unknown, or unpredictable environments and offer desired services to humans. Autonomous mobile robots need to be equipped with effective, robust and/or adaptive, navigation control systems. In spite of enormous reported work on autonomous navigation control systems for mobile robots, achieving the goal above is still an open problem. Robustness and reliability of the controlled system can always be improved. The fundamental issues affecting the stability of the control systems include the undesired nonlinear effects introduced by actuator saturation, time delay in the controlled system, and uncertainty in the model. This research work develops robustly stabilizing control systems by investigating and addressing such nonlinear effects through analytical, simulations, and experiments. The control systems are designed to meet specified transient and steady-state specifications. The systems used for this research are ground (Dr Robot X80SV) and aerial (Parrot AR.Drone 2.0) mobile robots. Firstly, an effective autonomous navigation control system is developed for X80SV using logic control by combining 'go-to-goal', 'avoid-obstacle', and 'follow-wall' controllers. A MATLAB robot simulator is developed to implement this control algorithm and experiments are conducted in a typical office environment. The next stage of the research develops an autonomous position (x, y, and z) and attitude (roll, pitch, and yaw) controllers for a quadrotor, and PD-feedback control is used to achieve stabilization. The quadrotor's nonlinear dynamics and kinematics are implemented using MATLAB S-function to generate the state output. Secondly, the white-box and black-box approaches are used to obtain a linearized second-order altitude models for the quadrotor, AR.Drone 2.0. Proportional (P), pole placement or proportional plus velocity (PV), linear quadratic regulator (LQR), and model reference adaptive control (MRAC) controllers are designed and validated through simulations using MATLAB/Simulink. Control input saturation and time delay in the controlled systems are also studied. MATLAB graphical user interface (GUI) and Simulink programs are developed to implement the controllers on the drone. Thirdly, the time delay in the drone's control system is estimated using analytical and experimental methods. In the experimental approach, the transient properties of the experimental altitude responses are compared to those of simulated responses. The analytical approach makes use of the Lambert W function to obtain analytical solutions of scalar first-order delay differential equations (DDEs). A time-delayed P-feedback control system (retarded type) is used in estimating the time delay. Then an improved system performance is obtained by incorporating the estimated time delay in the design of the PV control system (neutral type) and PV-MRAC control system. Furthermore, the stability of a parametric perturbed linear time-invariant (LTI) retarded-type system is studied. This is done by analytically calculating the stability radius of the system. Simulation of the control system is conducted to confirm the stability. This robust control design and uncertainty analysis are conducted for first-order and second-order quadrotor models. Lastly, the robustly designed PV and PV-MRAC control systems are used to autonomously track multiple waypoints. Also, the robustness of the PV-MRAC controller is tested against a baseline PV controller using the payload capability of the drone. It is shown that the PV-MRAC offers several benefits over the fixed-gain approach of the PV controller. The adaptive control is found to offer enhanced robustness to the payload fluctuations.
Robust inference under the beta regression model with application to health care studies.
Ghosh, Abhik
2017-01-01
Data on rates, percentages, or proportions arise frequently in many different applied disciplines like medical biology, health care, psychology, and several others. In this paper, we develop a robust inference procedure for the beta regression model, which is used to describe such response variables taking values in (0, 1) through some related explanatory variables. In relation to the beta regression model, the issue of robustness has been largely ignored in the literature so far. The existing maximum likelihood-based inference has serious lack of robustness against outliers in data and generate drastically different (erroneous) inference in the presence of data contamination. Here, we develop the robust minimum density power divergence estimator and a class of robust Wald-type tests for the beta regression model along with several applications. We derive their asymptotic properties and describe their robustness theoretically through the influence function analyses. Finite sample performances of the proposed estimators and tests are examined through suitable simulation studies and real data applications in the context of health care and psychology. Although we primarily focus on the beta regression models with a fixed dispersion parameter, some indications are also provided for extension to the variable dispersion beta regression models with an application.
Robust Angle Estimation for MIMO Radar with the Coexistence of Mutual Coupling and Colored Noise.
Wang, Junxiang; Wang, Xianpeng; Xu, Dingjie; Bi, Guoan
2018-03-09
This paper deals with joint estimation of direction-of-departure (DOD) and direction-of- arrival (DOA) in bistatic multiple-input multiple-output (MIMO) radar with the coexistence of unknown mutual coupling and spatial colored noise by developing a novel robust covariance tensor-based angle estimation method. In the proposed method, a third-order tensor is firstly formulated for capturing the multidimensional nature of the received data. Then taking advantage of the temporal uncorrelated characteristic of colored noise and the banded complex symmetric Toeplitz structure of the mutual coupling matrices, a novel fourth-order covariance tensor is constructed for eliminating the influence of both spatial colored noise and mutual coupling. After a robust signal subspace estimation is obtained by using the higher-order singular value decomposition (HOSVD) technique, the rotational invariance technique is applied to achieve the DODs and DOAs. Compared with the existing HOSVD-based subspace methods, the proposed method can provide superior angle estimation performance and automatically jointly perform the DODs and DOAs. Results from numerical experiments are presented to verify the effectiveness of the proposed method.
A Secure Trust Establishment Scheme for Wireless Sensor Networks
Ishmanov, Farruh; Kim, Sung Won; Nam, Seung Yeob
2014-01-01
Trust establishment is an important tool to improve cooperation and enhance security in wireless sensor networks. The core of trust establishment is trust estimation. If a trust estimation method is not robust against attack and misbehavior, the trust values produced will be meaningless, and system performance will be degraded. We present a novel trust estimation method that is robust against on-off attacks and persistent malicious behavior. Moreover, in order to aggregate recommendations securely, we propose using a modified one-step M-estimator scheme. The novelty of the proposed scheme arises from combining past misbehavior with current status in a comprehensive way. Specifically, we introduce an aggregated misbehavior component in trust estimation, which assists in detecting an on-off attack and persistent malicious behavior. In order to determine the current status of the node, we employ previous trust values and current measured misbehavior components. These components are combined to obtain a robust trust value. Theoretical analyses and evaluation results show that our scheme performs better than other trust schemes in terms of detecting an on-off attack and persistent misbehavior. PMID:24451471
Robust Angle Estimation for MIMO Radar with the Coexistence of Mutual Coupling and Colored Noise
Wang, Junxiang; Wang, Xianpeng; Xu, Dingjie; Bi, Guoan
2018-01-01
This paper deals with joint estimation of direction-of-departure (DOD) and direction-of- arrival (DOA) in bistatic multiple-input multiple-output (MIMO) radar with the coexistence of unknown mutual coupling and spatial colored noise by developing a novel robust covariance tensor-based angle estimation method. In the proposed method, a third-order tensor is firstly formulated for capturing the multidimensional nature of the received data. Then taking advantage of the temporal uncorrelated characteristic of colored noise and the banded complex symmetric Toeplitz structure of the mutual coupling matrices, a novel fourth-order covariance tensor is constructed for eliminating the influence of both spatial colored noise and mutual coupling. After a robust signal subspace estimation is obtained by using the higher-order singular value decomposition (HOSVD) technique, the rotational invariance technique is applied to achieve the DODs and DOAs. Compared with the existing HOSVD-based subspace methods, the proposed method can provide superior angle estimation performance and automatically jointly perform the DODs and DOAs. Results from numerical experiments are presented to verify the effectiveness of the proposed method. PMID:29522499
Multiple robustness in factorized likelihood models.
Molina, J; Rotnitzky, A; Sued, M; Robins, J M
2017-09-01
We consider inference under a nonparametric or semiparametric model with likelihood that factorizes as the product of two or more variation-independent factors. We are interested in a finite-dimensional parameter that depends on only one of the likelihood factors and whose estimation requires the auxiliary estimation of one or several nuisance functions. We investigate general structures conducive to the construction of so-called multiply robust estimating functions, whose computation requires postulating several dimension-reducing models but which have mean zero at the true parameter value provided one of these models is correct.
Kulesz, Paulina A.; Tian, Siva; Juranek, Jenifer; Fletcher, Jack M.; Francis, David J.
2015-01-01
Objective Weak structure-function relations for brain and behavior may stem from problems in estimating these relations in small clinical samples with frequently occurring outliers. In the current project, we focused on the utility of using alternative statistics to estimate these relations. Method Fifty-four children with spina bifida meningomyelocele performed attention tasks and received MRI of the brain. Using a bootstrap sampling process, the Pearson product moment correlation was compared with four robust correlations: the percentage bend correlation, the Winsorized correlation, the skipped correlation using the Donoho-Gasko median, and the skipped correlation using the minimum volume ellipsoid estimator Results All methods yielded similar estimates of the relations between measures of brain volume and attention performance. The similarity of estimates across correlation methods suggested that the weak structure-function relations previously found in many studies are not readily attributable to the presence of outlying observations and other factors that violate the assumptions behind the Pearson correlation. Conclusions Given the difficulty of assembling large samples for brain-behavior studies, estimating correlations using multiple, robust methods may enhance the statistical conclusion validity of studies yielding small, but often clinically significant, correlations. PMID:25495830
Kulesz, Paulina A; Tian, Siva; Juranek, Jenifer; Fletcher, Jack M; Francis, David J
2015-03-01
Weak structure-function relations for brain and behavior may stem from problems in estimating these relations in small clinical samples with frequently occurring outliers. In the current project, we focused on the utility of using alternative statistics to estimate these relations. Fifty-four children with spina bifida meningomyelocele performed attention tasks and received MRI of the brain. Using a bootstrap sampling process, the Pearson product-moment correlation was compared with 4 robust correlations: the percentage bend correlation, the Winsorized correlation, the skipped correlation using the Donoho-Gasko median, and the skipped correlation using the minimum volume ellipsoid estimator. All methods yielded similar estimates of the relations between measures of brain volume and attention performance. The similarity of estimates across correlation methods suggested that the weak structure-function relations previously found in many studies are not readily attributable to the presence of outlying observations and other factors that violate the assumptions behind the Pearson correlation. Given the difficulty of assembling large samples for brain-behavior studies, estimating correlations using multiple, robust methods may enhance the statistical conclusion validity of studies yielding small, but often clinically significant, correlations. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Bayesian Inference and Application of Robust Growth Curve Models Using Student's "t" Distribution
ERIC Educational Resources Information Center
Zhang, Zhiyong; Lai, Keke; Lu, Zhenqiu; Tong, Xin
2013-01-01
Despite the widespread popularity of growth curve analysis, few studies have investigated robust growth curve models. In this article, the "t" distribution is applied to model heavy-tailed data and contaminated normal data with outliers for growth curve analysis. The derived robust growth curve models are estimated through Bayesian…
Global optimization for quantum dynamics of few-fermion systems
NASA Astrophysics Data System (ADS)
Li, Xikun; Pecak, Daniel; Sowiński, Tomasz; Sherson, Jacob; Nielsen, Anne E. B.
2018-03-01
Quantum state preparation is vital to quantum computation and quantum information processing tasks. In adiabatic state preparation, the target state is theoretically obtained with nearly perfect fidelity if the control parameter is tuned slowly enough. As this, however, leads to slow dynamics, it is often desirable to be able to carry out processes more rapidly. In this work, we employ two global optimization methods to estimate the quantum speed limit for few-fermion systems confined in a one-dimensional harmonic trap. Such systems can be produced experimentally in a well-controlled manner. We determine the optimized control fields and achieve a reduction in the ramping time of more than a factor of four compared to linear ramping. We also investigate how robust the fidelity is to small variations of the control fields away from the optimized shapes.
Ancestral state reconstruction, rate heterogeneity, and the evolution of reptile viviparity.
King, Benedict; Lee, Michael S Y
2015-05-01
Virtually all models for reconstructing ancestral states for discrete characters make the crucial assumption that the trait of interest evolves at a uniform rate across the entire tree. However, this assumption is unlikely to hold in many situations, particularly as ancestral state reconstructions are being performed on increasingly large phylogenies. Here, we show how failure to account for such variable evolutionary rates can cause highly anomalous (and likely incorrect) results, while three methods that accommodate rate variability yield the opposite, more plausible, and more robust reconstructions. The random local clock method, implemented in BEAST, estimates the position and magnitude of rate changes on the tree; split BiSSE estimates separate rate parameters for pre-specified clades; and the hidden rates model partitions each character state into a number of rate categories. Simulations show the inadequacy of traditional models when characters evolve with both asymmetry (different rates of change between states within a character) and heterotachy (different rates of character evolution across different clades). The importance of accounting for rate heterogeneity in ancestral state reconstruction is highlighted empirically with a new analysis of the evolution of viviparity in squamate reptiles, which reveal a predominance of forward (oviparous-viviparous) transitions and very few reversals. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Modeling, Control, and Estimation of Flexible, Aerodynamic Structures
NASA Astrophysics Data System (ADS)
Ray, Cody W.
Engineers have long been inspired by nature’s flyers. Such animals navigate complex environments gracefully and efficiently by using a variety of evolutionary adaptations for high-performance flight. Biologists have discovered a variety of sensory adaptations that provide flow state feedback and allow flying animals to feel their way through flight. A specialized skeletal wing structure and plethora of robust, adaptable sensory systems together allow nature’s flyers to adapt to myriad flight conditions and regimes. In this work, motivated by biology and the successes of bio-inspired, engineered aerial vehicles, linear quadratic control of a flexible, morphing wing design is investigated, helping to pave the way for truly autonomous, mission-adaptive craft. The proposed control algorithm is demonstrated to morph a wing into desired positions. Furthermore, motivated specifically by the sensory adaptations organisms possess, this work transitions to an investigation of aircraft wing load identification using structural response as measured by distributed sensors. A novel, recursive estimation algorithm is utilized to recursively solve the inverse problem of load identification, providing both wing structural and aerodynamic states for use in a feedback control, mission-adaptive framework. The recursive load identification algorithm is demonstrated to provide accurate load estimate in both simulation and experiment.
Enhanced echolocation via robust statistics and super-resolution of sonar images
NASA Astrophysics Data System (ADS)
Kim, Kio
Echolocation is a process in which an animal uses acoustic signals to exchange information with environments. In a recent study, Neretti et al. have shown that the use of robust statistics can significantly improve the resiliency of echolocation against noise and enhance its accuracy by suppressing the development of sidelobes in the processing of an echo signal. In this research, the use of robust statistics is extended to problems in underwater explorations. The dissertation consists of two parts. Part I describes how robust statistics can enhance the identification of target objects, which in this case are cylindrical containers filled with four different liquids. Particularly, this work employs a variation of an existing robust estimator called an L-estimator, which was first suggested by Koenker and Bassett. As pointed out by Au et al.; a 'highlight interval' is an important feature, and it is closely related with many other important features that are known to be crucial for dolphin echolocation. A varied L-estimator described in this text is used to enhance the detection of highlight intervals, which eventually leads to a successful classification of echo signals. Part II extends the problem into 2 dimensions. Thanks to the advances in material and computer technology, various sonar imaging modalities are available on the market. By registering acoustic images from such video sequences, one can extract more information on the region of interest. Computer vision and image processing allowed application of robust statistics to the acoustic images produced by forward looking sonar systems, such as Dual-frequency Identification Sonar and ProViewer. The first use of robust statistics for sonar image enhancement in this text is in image registration. Random Sampling Consensus (RANSAC) is widely used for image registration. The registration algorithm using RANSAC is optimized for sonar image registration, and the performance is studied. The second use of robust statistics is in fusing the images. It is shown that the maximum a posteriori fusion method can be formulated in a Kalman filter-like manner, and also that the resulting expression is identical to a W-estimator with a specific weight function.
Robust Mosaicking of Stereo Digital Elevation Models from the Ames Stereo Pipeline
NASA Technical Reports Server (NTRS)
Kim, Tae Min; Moratto, Zachary M.; Nefian, Ara Victor
2010-01-01
Robust estimation method is proposed to combine multiple observations and create consistent, accurate, dense Digital Elevation Models (DEMs) from lunar orbital imagery. The NASA Ames Intelligent Robotics Group (IRG) aims to produce higher-quality terrain reconstructions of the Moon from Apollo Metric Camera (AMC) data than is currently possible. In particular, IRG makes use of a stereo vision process, the Ames Stereo Pipeline (ASP), to automatically generate DEMs from consecutive AMC image pairs. However, the DEMs currently produced by the ASP often contain errors and inconsistencies due to image noise, shadows, etc. The proposed method addresses this problem by making use of multiple observations and by considering their goodness of fit to improve both the accuracy and robustness of the estimate. The stepwise regression method is applied to estimate the relaxed weight of each observation.
Morales, Rafael; Rincón, Fernando; Gazzano, Julio Dondo; López, Juan Carlos
2014-01-01
Time derivative estimation of signals plays a very important role in several fields, such as signal processing and control engineering, just to name a few of them. For that purpose, a non-asymptotic algebraic procedure for the approximate estimation of the system states is used in this work. The method is based on results from differential algebra and furnishes some general formulae for the time derivatives of a measurable signal in which two algebraic derivative estimators run simultaneously, but in an overlapping fashion. The algebraic derivative algorithm presented in this paper is computed online and in real-time, offering high robustness properties with regard to corrupting noises, versatility and ease of implementation. Besides, in this work, we introduce a novel architecture to accelerate this algebraic derivative estimator using reconfigurable logic. The core of the algorithm is implemented in an FPGA, improving the speed of the system and achieving real-time performance. Finally, this work proposes a low-cost platform for the integration of hardware in the loop in MATLAB. PMID:24859033
Thilak, Vimal; Voelz, David G; Creusere, Charles D
2007-10-20
A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.
NASA Astrophysics Data System (ADS)
Thilak, Vimal; Voelz, David G.; Creusere, Charles D.
2007-10-01
A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.
Early Teen Marriage and Future Poverty
DAHL, GORDON B.
2010-01-01
Both early teen marriage and dropping out of high school have historically been associated with a variety of negative outcomes, including higher poverty rates throughout life. Are these negative outcomes due to preexisting differences, or do they represent the causal effect of marriage and schooling choices? To better understand the true personal and societal consequences, in this article, I use an instrumental variables (IV) approach that takes advantage of variation in state laws regulating the age at which individuals are allowed to marry, drop out of school, and begin work. The baseline IV estimate indicates that a woman who marries young is 31 percentage points more likely to live in poverty when she is older. Similarly, a woman who drops out of school is 11 percentage points more likely to be poor. The results are robust to a variety of alternative specifications and estimation methods, including limited information maximum likelihood (LIML) estimation and a control function approach. While grouped ordinary least squares (OLS) estimates for the early teen marriage variable are also large, OLS estimates based on individual-level data are small, consistent with a large amount of measurement error. PMID:20879684
Early teen marriage and future poverty.
Dahl, Gordon B
2010-08-01
Both early teen marriage and dropping out of high school have historically been associated with a variety of negative outcomes, including higher poverty rates throughout life. Are these negative outcomes due to preexisting differences, or do they represent the causal effect of marriage and schooling choices? To better understand the true personal and societal consequences, in this article, I use an instrumental variables (IV) approach that takes advantage of variation in state laws regulating the age at which individuals are allowed to marry, drop out of school, and begin work. The baseline IV estimate indicates that a woman who marries young is 31 percentage points more likely to live in poverty when she is older. Similarly, a woman who drops out of school is 11 percentage points more likely to be poor. The results are robust to a variety of alternative specifications and estimation methods, including limited information maximum likelihood (LIML) estimation and a control function approach. While grouped ordinary least squares (OLS) estimates for the early teen marriage variable are also large, OLS estimates based on individual-level data are small, consistent with a large amount of measurement error
Pyron, R Alexander
2017-01-01
Here, I combine previously underutilized models and priors to perform more biologically realistic phylogenetic inference from morphological data, with an example from squamate reptiles. When coding morphological characters, it is often possible to denote ordered states with explicit reference to observed or hypothetical ancestral conditions. Using this logic, we can integrate across character-state labels and estimate meaningful rates of forward and backward transitions from plesiomorphy to apomorphy. I refer to this approach as MkA, for “asymmetric.” The MkA model incorporates the biological reality of limited reversal for many phylogenetically informative characters, and significantly increases likelihoods in the empirical data sets. Despite this, the phylogeny of Squamata remains contentious. Total-evidence analyses using combined morphological and molecular data and the MkA approach tend toward recent consensus estimates supporting a nested Iguania. However, support for this topology is not unambiguous across data sets or analyses, and no mechanism has been proposed to explain the widespread incongruence between partitions, or the hidden support for various topologies in those partitions. Furthermore, different morphological data sets produced by different authors contain both different characters and different states for the same or similar characters, resulting in drastically different placements for many important fossil lineages. Effort is needed to standardize ontology for morphology, resolve incongruence, and estimate a robust phylogeny. The MkA approach provides a preliminary avenue for investigating morphological evolution while accounting for temporal evidence and asymmetry in character-state changes.
Universal non-adiabatic geometric manipulation of pseudo-spin charge qubits
NASA Astrophysics Data System (ADS)
Azimi Mousolou, Vahid
2017-01-01
Reliable quantum information processing requires high-fidelity universal manipulation of quantum systems within the characteristic coherence times. Non-adiabatic holonomic quantum computation offers a promising approach to implement fast, universal, and robust quantum logic gates particularly useful in nano-fabricated solid-state architectures, which typically have short coherence times. Here, we propose an experimentally feasible scheme to realize high-speed universal geometric quantum gates in nano-engineered pseudo-spin charge qubits. We use a system of three coupled quantum dots containing a single electron, where two computational states of a double quantum dot charge qubit interact through an intermediate quantum dot. The additional degree of freedom introduced into the qubit makes it possible to create a geometric model system, which allows robust and efficient single-qubit rotations through careful control of the inter-dot tunneling parameters. We demonstrate that a capacitive coupling between two charge qubits permits a family of non-adiabatic holonomic controlled two-qubit entangling gates, and thus provides a promising procedure to maintain entanglement in charge qubits and a pathway toward fault-tolerant universal quantum computation. We estimate the feasibility of the proposed structure by analyzing the gate fidelities to some extent.
Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells.
Bieler, Jonathan; Cannavo, Rosamaria; Gustafson, Kyle; Gobet, Cedric; Gatfield, David; Naef, Felix
2014-07-15
Circadian cycles and cell cycles are two fundamental periodic processes with a period in the range of 1 day. Consequently, coupling between such cycles can lead to synchronization. Here, we estimated the mutual interactions between the two oscillators by time-lapse imaging of single mammalian NIH3T3 fibroblasts during several days. The analysis of thousands of circadian cycles in dividing cells clearly indicated that both oscillators tick in a 1:1 mode-locked state, with cell divisions occurring tightly 5 h before the peak in circadian Rev-Erbα-YFP reporter expression. In principle, such synchrony may be caused by either unidirectional or bidirectional coupling. While gating of cell division by the circadian cycle has been most studied, our data combined with stochastic modeling unambiguously show that the reverse coupling is predominant in NIH3T3 cells. Moreover, temperature, genetic, and pharmacological perturbations showed that the two interacting cellular oscillators adopt a synchronized state that is highly robust over a wide range of parameters. These findings have implications for circadian function in proliferative tissues, including epidermis, immune cells, and cancer. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.
Robust efficient estimation of heart rate pulse from video.
Xu, Shuchang; Sun, Lingyun; Rohde, Gustavo Kunde
2014-04-01
We describe a simple but robust algorithm for estimating the heart rate pulse from video sequences containing human skin in real time. Based on a model of light interaction with human skin, we define the change of blood concentration due to arterial pulsation as a pixel quotient in log space, and successfully use the derived signal for computing the pulse heart rate. Various experiments with different cameras, different illumination condition, and different skin locations were conducted to demonstrate the effectiveness and robustness of the proposed algorithm. Examples computed with normal illumination show the algorithm is comparable with pulse oximeter devices both in accuracy and sensitivity.
Robust efficient estimation of heart rate pulse from video
Xu, Shuchang; Sun, Lingyun; Rohde, Gustavo Kunde
2014-01-01
We describe a simple but robust algorithm for estimating the heart rate pulse from video sequences containing human skin in real time. Based on a model of light interaction with human skin, we define the change of blood concentration due to arterial pulsation as a pixel quotient in log space, and successfully use the derived signal for computing the pulse heart rate. Various experiments with different cameras, different illumination condition, and different skin locations were conducted to demonstrate the effectiveness and robustness of the proposed algorithm. Examples computed with normal illumination show the algorithm is comparable with pulse oximeter devices both in accuracy and sensitivity. PMID:24761294
Analysis of gene network robustness based on saturated fixed point attractors
2014-01-01
The analysis of gene network robustness to noise and mutation is important for fundamental and practical reasons. Robustness refers to the stability of the equilibrium expression state of a gene network to variations of the initial expression state and network topology. Numerical simulation of these variations is commonly used for the assessment of robustness. Since there exists a great number of possible gene network topologies and initial states, even millions of simulations may be still too small to give reliable results. When the initial and equilibrium expression states are restricted to being saturated (i.e., their elements can only take values 1 or −1 corresponding to maximum activation and maximum repression of genes), an analytical gene network robustness assessment is possible. We present this analytical treatment based on determination of the saturated fixed point attractors for sigmoidal function models. The analysis can determine (a) for a given network, which and how many saturated equilibrium states exist and which and how many saturated initial states converge to each of these saturated equilibrium states and (b) for a given saturated equilibrium state or a given pair of saturated equilibrium and initial states, which and how many gene networks, referred to as viable, share this saturated equilibrium state or the pair of saturated equilibrium and initial states. We also show that the viable networks sharing a given saturated equilibrium state must follow certain patterns. These capabilities of the analytical treatment make it possible to properly define and accurately determine robustness to noise and mutation for gene networks. Previous network research conclusions drawn from performing millions of simulations follow directly from the results of our analytical treatment. Furthermore, the analytical results provide criteria for the identification of model validity and suggest modified models of gene network dynamics. The yeast cell-cycle network is used as an illustration of the practical application of this analytical treatment. PMID:24650364
Robust linear discriminant analysis with distance based estimators
NASA Astrophysics Data System (ADS)
Lim, Yai-Fung; Yahaya, Sharipah Soaad Syed; Ali, Hazlina
2017-11-01
Linear discriminant analysis (LDA) is one of the supervised classification techniques concerning relationship between a categorical variable and a set of continuous variables. The main objective of LDA is to create a function to distinguish between populations and allocating future observations to previously defined populations. Under the assumptions of normality and homoscedasticity, the LDA yields optimal linear discriminant rule (LDR) between two or more groups. However, the optimality of LDA highly relies on the sample mean and pooled sample covariance matrix which are known to be sensitive to outliers. To alleviate these conflicts, a new robust LDA using distance based estimators known as minimum variance vector (MVV) has been proposed in this study. The MVV estimators were used to substitute the classical sample mean and classical sample covariance to form a robust linear discriminant rule (RLDR). Simulation and real data study were conducted to examine on the performance of the proposed RLDR measured in terms of misclassification error rates. The computational result showed that the proposed RLDR is better than the classical LDR and was comparable with the existing robust LDR.
Lim, Changwon
2015-03-30
Nonlinear regression is often used to evaluate the toxicity of a chemical or a drug by fitting data from a dose-response study. Toxicologists and pharmacologists may draw a conclusion about whether a chemical is toxic by testing the significance of the estimated parameters. However, sometimes the null hypothesis cannot be rejected even though the fit is quite good. One possible reason for such cases is that the estimated standard errors of the parameter estimates are extremely large. In this paper, we propose robust ridge regression estimation procedures for nonlinear models to solve this problem. The asymptotic properties of the proposed estimators are investigated; in particular, their mean squared errors are derived. The performances of the proposed estimators are compared with several standard estimators using simulation studies. The proposed methodology is also illustrated using high throughput screening assay data obtained from the National Toxicology Program. Copyright © 2014 John Wiley & Sons, Ltd.
Ebrahimkhani, Sadegh
2016-07-01
Wind power plants have nonlinear dynamics and contain many uncertainties such as unknown nonlinear disturbances and parameter uncertainties. Thus, it is a difficult task to design a robust reliable controller for this system. This paper proposes a novel robust fractional-order sliding mode (FOSM) controller for maximum power point tracking (MPPT) control of doubly fed induction generator (DFIG)-based wind energy conversion system. In order to enhance the robustness of the control system, uncertainties and disturbances are estimated using a fractional order uncertainty estimator. In the proposed method a continuous control strategy is developed to achieve the chattering free fractional order sliding-mode control, and also no knowledge of the uncertainties and disturbances or their bound is assumed. The boundedness and convergence properties of the closed-loop signals are proven using Lyapunov׳s stability theory. Simulation results in the presence of various uncertainties were carried out to evaluate the effectiveness and robustness of the proposed control scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Application of unscented Kalman filter for robust pose estimation in image-guided surgery
NASA Astrophysics Data System (ADS)
Vaccarella, Alberto; De Momi, Elena; Valenti, Marta; Ferrigno, Giancarlo; Enquobahrie, Andinet
2012-02-01
Image-guided surgery (IGS) allows clinicians to view current, intra-operative scenes superimposed on preoperative images (typically MRI or CT scans). IGS systems use localization systems to track and visualize surgical tools overlaid on top of preoperative images of the patient during surgery. The most commonly used localization systems in the Operating Rooms (OR) are optical tracking systems (OTS) due to their ease of use and cost effectiveness. However, OTS' suffer from the major drawback of line-of-sight requirements. State space approaches based on different implementations of the Kalman filter have recently been investigated in order to compensate for short line-of-sight occlusion. However, the proposed parameterizations for the rigid body orientation suffer from singularities at certain values of rotation angles. The purpose of this work is to develop a quaternion-based Unscented Kalman Filter (UKF) for robust optical tracking of both position and orientation of surgical tools in order to compensate marker occlusion issues. This paper presents preliminary results towards a Kalman-based Sensor Management Engine (SME). The engine will filter and fuse multimodal tracking streams of data. This work was motivated by our experience working in robot-based applications for keyhole neurosurgery (ROBOCAST project). The algorithm was evaluated using real data from NDI Polaris tracker. The results show that our estimation technique is able to compensate for marker occlusion with a maximum error of 2.5° for orientation and 2.36 mm for position. The proposed approach will be useful in over-crowded state-of-the-art ORs where achieving continuous visibility of all tracked objects will be difficult.
Robust group-wise rigid registration of point sets using t-mixture model
NASA Astrophysics Data System (ADS)
Ravikumar, Nishant; Gooya, Ali; Frangi, Alejandro F.; Taylor, Zeike A.
2016-03-01
A probabilistic framework for robust, group-wise rigid alignment of point-sets using a mixture of Students t-distribution especially when the point sets are of varying lengths, are corrupted by an unknown degree of outliers or in the presence of missing data. Medical images (in particular magnetic resonance (MR) images), their segmentations and consequently point-sets generated from these are highly susceptible to corruption by outliers. This poses a problem for robust correspondence estimation and accurate alignment of shapes, necessary for training statistical shape models (SSMs). To address these issues, this study proposes to use a t-mixture model (TMM), to approximate the underlying joint probability density of a group of similar shapes and align them to a common reference frame. The heavy-tailed nature of t-distributions provides a more robust registration framework in comparison to state of the art algorithms. Significant reduction in alignment errors is achieved in the presence of outliers, using the proposed TMM-based group-wise rigid registration method, in comparison to its Gaussian mixture model (GMM) counterparts. The proposed TMM-framework is compared with a group-wise variant of the well-known Coherent Point Drift (CPD) algorithm and two other group-wise methods using GMMs, using both synthetic and real data sets. Rigid alignment errors for groups of shapes are quantified using the Hausdorff distance (HD) and quadratic surface distance (QSD) metrics.
Robust adaptive precision motion control of hydraulic actuators with valve dead-zone compensation.
Deng, Wenxiang; Yao, Jianyong; Ma, Dawei
2017-09-01
This paper addresses the high performance motion control of hydraulic actuators with parametric uncertainties, unmodeled disturbances and unknown valve dead-zone. By constructing a smooth dead-zone inverse, a robust adaptive controller is proposed via backstepping method, in which adaptive law is synthesized to deal with parametric uncertainties and a continuous nonlinear robust control law to suppress unmodeled disturbances. Since the unknown dead-zone parameters can be estimated by adaptive law and then the effect of dead-zone can be compensated effectively via inverse operation, improved tracking performance can be expected. In addition, the disturbance upper bounds can also be updated online by adaptive laws, which increases the controller operability in practice. The Lyapunov based stability analysis shows that excellent asymptotic output tracking with zero steady-state error can be achieved by the developed controller even in the presence of unmodeled disturbance and unknown valve dead-zone. Finally, the proposed control strategy is experimentally tested on a servovalve controlled hydraulic actuation system subjected to an artificial valve dead-zone. Comparative experimental results are obtained to illustrate the effectiveness of the proposed control scheme. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Li, Ming
2013-01-01
The goal of this work is to enhance the robustness and efficiency of the multimodal human states recognition task. Human states recognition can be considered as a joint term for identifying/verifing various kinds of human related states, such as biometric identity, language spoken, age, gender, emotion, intoxication level, physical activity, vocal…
Relaxation of ferroelectric states in 2D distributions of quantum dots: EELS simulation
NASA Astrophysics Data System (ADS)
Cortés, C. M.; Meza-Montes, L.; Moctezuma, R. E.; Carrillo, J. L.
2016-06-01
The relaxation time of collective electronic states in a 2D distribution of quantum dots is investigated theoretically by simulating EELS experiments. From the numerical calculation of the probability of energy loss of an electron beam, traveling parallel to the distribution, it is possible to estimate the damping time of ferroelectric-like states. We generate this collective response of the distribution by introducing a mean field interaction among the quantum dots, and then, the model is extended incorporating effects of long-range correlations through a Bragg-Williams approximation. The behavior of the dielectric function, the energy loss function, and the relaxation time of ferroelectric-like states is then investigated as a function of the temperature of the distribution and the damping constant of the electronic states in the single quantum dots. The robustness of the trends and tendencies of our results indicate that this scheme of analysis can guide experimentalists to develop tailored quantum dots distributions for specific applications.
Partial Deconvolution with Inaccurate Blur Kernel.
Ren, Dongwei; Zuo, Wangmeng; Zhang, David; Xu, Jun; Zhang, Lei
2017-10-17
Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.
Echo State Networks for data-driven downhole pressure estimation in gas-lift oil wells.
Antonelo, Eric A; Camponogara, Eduardo; Foss, Bjarne
2017-01-01
Process measurements are of vital importance for monitoring and control of industrial plants. When we consider offshore oil production platforms, wells that require gas-lift technology to yield oil production from low pressure oil reservoirs can become unstable under some conditions. This undesirable phenomenon is usually called slugging flow, and can be identified by an oscillatory behavior of the downhole pressure measurement. Given the importance of this measurement and the unreliability of the related sensor, this work aims at designing data-driven soft-sensors for downhole pressure estimation in two contexts: one for speeding up first-principle model simulation of a vertical riser model; and another for estimating the downhole pressure using real-world data from an oil well from Petrobras based only on topside platform measurements. Both tasks are tackled by employing Echo State Networks (ESN) as an efficient technique for training Recurrent Neural Networks. We show that a single ESN is capable of robustly modeling both the slugging flow behavior and a steady state based only on a square wave input signal representing the production choke opening in the vertical riser. Besides, we compare the performance of a standard network to the performance of a multiple timescale hierarchical architecture in the second task and show that the latter architecture performs better in modeling both large irregular transients and more commonly occurring small oscillations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jamsen, Kris M; Bell, J Simon; Hilmer, Sarah N; Kirkpatrick, Carl M J; Ilomäki, Jenni; Le Couteur, David; Blyth, Fiona M; Handelsman, David J; Waite, Louise; Naganathan, Vasi; Cumming, Robert G; Gnjidic, Danijela
2016-01-01
To investigate the effects of number of medications and Drug Burden Index (DBI) on transitions between frailty stages and death in community-dwelling older men. Cohort study. Sydney, Australia. Community-dwelling men aged 70 and older (N=1,705). Self-reported questionnaires and clinic visits were conducted at baseline and 2 and 5 years. Frailty was assessed at all three waves according to the modified Fried frailty phenotype. The total number of regular prescription medications and DBI (a measure of exposure to sedative and anticholinergic medications) were calculated over the three waves. Data on mortality over 9 years were obtained. Multistate modeling was used to characterize the transitions across three frailty states (robust, prefrail, frail) and death. Each additional medication was associated with a 22% greater risk of transitioning from the robust state to death (adjusted 95% confidence interval (CI)=1.06-1.41). Every unit increase in DBI was associated with a 73% greater risk of transitioning from the robust state to the prefrail state (adjusted 95% CI=1.30-2.31) and a 2.75 times greater risk of transitioning from the robust state to death (adjusted 95% CI=1.60-4.75). There was no evidence of an adjusted association between total number of medications or DBI and the other transitions. Although the possibility of confounding by indication cannot be excluded, additional medications were associated with greater risk of mortality in robust community-dwelling older men. Greater DBI was also associated with greater risk of death and transitioning from the robust state to the prefrail state. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.
Arevalillo-Herraez, Miguel; Cobos, Maximo; Garcia-Pineda, Miguel
2017-03-01
In this paper, we present an effective algorithm to reduce the number of wraps in a 2D phase signal provided as input. The technique is based on an accurate estimate of the fundamental frequency of a 2D complex signal with the phase given by the input, and the removal of a dependent additive term from the phase map. Unlike existing methods based on the discrete Fourier transform (DFT), the frequency is computed by using noise-robust estimates that are not restricted to integer values. Then, to deal with the problem of a non-integer shift in the frequency domain, an equivalent operation is carried out on the original phase signal. This consists of the subtraction of a tilted plane whose slope is computed from the frequency, followed by a re-wrapping operation. The technique has been exhaustively tested on fringe projection profilometry (FPP) and magnetic resonance imaging (MRI) signals. In addition, the performance of several frequency estimation methods has been compared. The proposed methodology is particularly effective on FPP signals, showing a higher performance than the state-of-the-art wrap reduction approaches. In this context, it contributes to canceling the carrier effect at the same time as it eliminates any potential slope that affects the entire signal. Its effectiveness on other carrier-free phase signals, e.g., MRI, is limited to the case that inherent slopes are present in the phase data.
Kendall, W.L.; Nichols, J.D.; Hines, J.E.
1997-01-01
Statistical inference for capture-recapture studies of open animal populations typically relies on the assumption that all emigration from the studied population is permanent. However, there are many instances in which this assumption is unlikely to be met. We define two general models for the process of temporary emigration, completely random and Markovian. We then consider effects of these two types of temporary emigration on Jolly-Seber (Seber 1982) estimators and on estimators arising from the full-likelihood approach of Kendall et al. (1995) to robust design data. Capture-recapture data arising from Pollock's (1982) robust design provide the basis for obtaining unbiased estimates of demographic parameters in the presence of temporary emigration and for estimating the probability of temporary emigration. We present a likelihood-based approach to dealing with temporary emigration that permits estimation under different models of temporary emigration and yields tests for completely random and Markovian emigration. In addition, we use the relationship between capture probability estimates based on closed and open models under completely random temporary emigration to derive three ad hoc estimators for the probability of temporary emigration, two of which should be especially useful in situations where capture probabilities are heterogeneous among individual animals. Ad hoc and full-likelihood estimators are illustrated for small mammal capture-recapture data sets. We believe that these models and estimators will be useful for testing hypotheses about the process of temporary emigration, for estimating demographic parameters in the presence of temporary emigration, and for estimating probabilities of temporary emigration. These latter estimates are frequently of ecological interest as indicators of animal movement and, in some sampling situations, as direct estimates of breeding probabilities and proportions.
Optimising experimental design for MEG resting state functional connectivity measurement.
Liuzzi, Lucrezia; Gascoyne, Lauren E; Tewarie, Prejaas K; Barratt, Eleanor L; Boto, Elena; Brookes, Matthew J
2017-07-15
The study of functional connectivity using magnetoencephalography (MEG) is an expanding area of neuroimaging, and adds an extra dimension to the more common assessments made using fMRI. The importance of such metrics is growing, with recent demonstrations of their utility in clinical research, however previous reports suggest that whilst group level resting state connectivity is robust, single session recordings lack repeatability. Such robustness is critical if MEG measures in individual subjects are to prove clinically valuable. In the present paper, we test how practical aspects of experimental design affect the intra-subject repeatability of MEG findings; specifically we assess the effect of co-registration method and data recording duration. We show that the use of a foam head-cast, which is known to improve co-registration accuracy, increased significantly the between session repeatability of both beamformer reconstruction and connectivity estimation. We also show that recording duration is a critical parameter, with large improvements in repeatability apparent when using ten minute, compared to five minute recordings. Further analyses suggest that the origin of this latter effect is not underpinned by technical aspects of source reconstruction, but rather by a genuine effect of brain state; short recordings are simply inefficient at capturing the canonical MEG network in a single subject. Our results provide important insights on experimental design and will prove valuable for future MEG connectivity studies. Copyright © 2016. Published by Elsevier Inc.
A Robust Semi-Parametric Test for Detecting Trait-Dependent Diversification.
Rabosky, Daniel L; Huang, Huateng
2016-03-01
Rates of species diversification vary widely across the tree of life and there is considerable interest in identifying organismal traits that correlate with rates of speciation and extinction. However, it has been challenging to develop methodological frameworks for testing hypotheses about trait-dependent diversification that are robust to phylogenetic pseudoreplication and to directionally biased rates of character change. We describe a semi-parametric test for trait-dependent diversification that explicitly requires replicated associations between character states and diversification rates to detect effects. To use the method, diversification rates are reconstructed across a phylogenetic tree with no consideration of character states. A test statistic is then computed to measure the association between species-level traits and the corresponding diversification rate estimates at the tips of the tree. The empirical value of the test statistic is compared to a null distribution that is generated by structured permutations of evolutionary rates across the phylogeny. The test is applicable to binary discrete characters as well as continuous-valued traits and can accommodate extremely sparse sampling of character states at the tips of the tree. We apply the test to several empirical data sets and demonstrate that the method has acceptable Type I error rates. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Self-Critical, and Robust, Procedures for the Analysis of Multivariate Normal Data.
1982-06-01
Influence Functions The influence function is the most important tt of qual- itative zobustness since many other robustness characteristics of an estimator...may be derived from it. The influence function characterizes the (asymptotic) response of an estimator to an additional observation as a function of...the influence function be bounded. It is also advantageous, in our opinion, if the influence functions are re-descending to zero. The influence function for
More About Robustness of Coherence
NASA Astrophysics Data System (ADS)
Li, Pi-Yu; Liu, Feng; Xu, Yan-Qin; La, Dong-Sheng
2018-07-01
Quantum coherence is an important physical resource in quantum computation and quantum information processing. In this paper, the distribution of the robustness of coherence in multipartite quantum system is considered. It is shown that the additivity of the robustness of coherence is not always valid for general quantum state, but the robustness of coherence is decreasing under partial trace for any bipartite quantum system. The ordering states with the coherence measures RoC, the l 1 norm of coherence C_{l1} and the relative entropy of coherence C r are also discussed.
Efficient and robust computation of PDF features from diffusion MR signal.
Assemlal, Haz-Edine; Tschumperlé, David; Brun, Luc
2009-10-01
We present a method for the estimation of various features of the tissue micro-architecture using the diffusion magnetic resonance imaging. The considered features are designed from the displacement probability density function (PDF). The estimation is based on two steps: first the approximation of the signal by a series expansion made of Gaussian-Laguerre and Spherical Harmonics functions; followed by a projection on a finite dimensional space. Besides, we propose to tackle the problem of the robustness to Rician noise corrupting in-vivo acquisitions. Our feature estimation is expressed as a variational minimization process leading to a variational framework which is robust to noise. This approach is very flexible regarding the number of samples and enables the computation of a large set of various features of the local tissues structure. We demonstrate the effectiveness of the method with results on both synthetic phantom and real MR datasets acquired in a clinical time-frame.
Robust Video Stabilization Using Particle Keypoint Update and l1-Optimized Camera Path
Jeon, Semi; Yoon, Inhye; Jang, Jinbeum; Yang, Seungji; Kim, Jisung; Paik, Joonki
2017-01-01
Acquisition of stabilized video is an important issue for various type of digital cameras. This paper presents an adaptive camera path estimation method using robust feature detection to remove shaky artifacts in a video. The proposed algorithm consists of three steps: (i) robust feature detection using particle keypoints between adjacent frames; (ii) camera path estimation and smoothing; and (iii) rendering to reconstruct a stabilized video. As a result, the proposed algorithm can estimate the optimal homography by redefining important feature points in the flat region using particle keypoints. In addition, stabilized frames with less holes can be generated from the optimal, adaptive camera path that minimizes a temporal total variation (TV). The proposed video stabilization method is suitable for enhancing the visual quality for various portable cameras and can be applied to robot vision, driving assistant systems, and visual surveillance systems. PMID:28208622
NASA Astrophysics Data System (ADS)
Zhang, Guoguang; Yu, Zitian; Wang, Junmin
2017-03-01
Yaw rate is a crucial signal for the motion control systems of ground vehicles. Yet it may be contaminated by sensor bias. In order to correct the contaminated yaw rate signal and estimate the sensor bias, a robust gain-scheduling observer is proposed in this paper. First of all, a two-degree-of-freedom (2DOF) vehicle lateral and yaw dynamic model is presented, and then a Luenberger-like observer is proposed. To make the observer more applicable to real vehicle driving operations, a 2DOF vehicle model with uncertainties on the coefficients of tire cornering stiffness is employed. Further, a gain-scheduling approach and a robustness enhancement are introduced, leading to a robust gain-scheduling observer. Sensor bias detection mechanism is also designed. Case studies are conducted using an electric ground vehicle to assess the performance of signal correction and sensor bias estimation under difference scenarios.
TLE uncertainty estimation using robust weighted differencing
NASA Astrophysics Data System (ADS)
Geul, Jacco; Mooij, Erwin; Noomen, Ron
2017-05-01
Accurate knowledge of satellite orbit errors is essential for many types of analyses. Unfortunately, for two-line elements (TLEs) this is not available. This paper presents a weighted differencing method using robust least-squares regression for estimating many important error characteristics. The method is applied to both classic and enhanced TLEs, compared to previous implementations, and validated using Global Positioning System (GPS) solutions for the GOCE satellite in Low-Earth Orbit (LEO), prior to its re-entry. The method is found to be more accurate than previous TLE differencing efforts in estimating initial uncertainty, as well as error growth. The method also proves more reliable and requires no data filtering (such as outlier removal). Sensitivity analysis shows a strong relationship between argument of latitude and covariance (standard deviations and correlations), which the method is able to approximate. Overall, the method proves accurate, computationally fast, and robust, and is applicable to any object in the satellite catalogue (SATCAT).
Robust distributed control of spacecraft formation flying with adaptive network topology
NASA Astrophysics Data System (ADS)
Shasti, Behrouz; Alasty, Aria; Assadian, Nima
2017-07-01
In this study, the distributed six degree-of-freedom (6-DOF) coordinated control of spacecraft formation flying in low earth orbit (LEO) has been investigated. For this purpose, an accurate coupled translational and attitude relative dynamics model of the spacecraft with respect to the reference orbit (virtual leader) is presented by considering the most effective perturbation acceleration forces on LEO satellites, i.e. the second zonal harmonic and the atmospheric drag. Subsequently, the 6-DOF coordinated control of spacecraft in formation is studied. During the mission, the spacecraft communicate with each other through a switching network topology in which the weights of its graph Laplacian matrix change adaptively based on a distance-based connectivity function between neighboring agents. Because some of the dynamical system parameters such as spacecraft masses and moments of inertia may vary with time, an adaptive law is developed to estimate the parameter values during the mission. Furthermore, for the case that there is no knowledge of the unknown and time-varying parameters of the system, a robust controller has been developed. It is proved that the stability of the closed-loop system coupled with adaptation in network topology structure and optimality and robustness in control is guaranteed by the robust contraction analysis as an incremental stability method for multiple synchronized systems. The simulation results show the effectiveness of each control method in the presence of uncertainties and parameter variations. The adaptive and robust controllers show their superiority in reducing the state error integral as well as decreasing the control effort and settling time.
Statistical plant set estimation using Schroeder-phased multisinusoidal input design
NASA Technical Reports Server (NTRS)
Bayard, D. S.
1992-01-01
A frequency domain method is developed for plant set estimation. The estimation of a plant 'set' rather than a point estimate is required to support many methods of modern robust control design. The approach here is based on using a Schroeder-phased multisinusoid input design which has the special property of placing input energy only at the discrete frequency points used in the computation. A detailed analysis of the statistical properties of the frequency domain estimator is given, leading to exact expressions for the probability distribution of the estimation error, and many important properties. It is shown that, for any nominal parametric plant estimate, one can use these results to construct an overbound on the additive uncertainty to any prescribed statistical confidence. The 'soft' bound thus obtained can be used to replace 'hard' bounds presently used in many robust control analysis and synthesis methods.