Science.gov

Sample records for rock laboratory ch

  1. Laboratory Spectroscopy of CH(+) and Isotopic CH

    NASA Technical Reports Server (NTRS)

    Pearson, John C.; Drouin, Brian J.

    2006-01-01

    The A1II - X1(Epsilon) electronic band of the CH(+) ion has been used as a probe of the physical and dynamical conditions of the ISM for 65 years. In spite of being one of the first molecular species observed in the ISM and the very large number of subsequent observations with large derived column densities, the pure rotational spectra of CH+ has remained elusive in both the laboratory and in the ISM as well. We report the first laboratory measurement of the pure rotation of the CH(+) ion and discuss the detection of CH-13(+) in the ISM. Also reported are the somewhat unexpected chemical conditions that resulted in laboratory production.

  2. Laboratory characterization of rock joints

    SciTech Connect

    Hsiung, S.M.; Kana, D.D.; Ahola, M.P.; Chowdhury, A.H.; Ghosh, A.

    1994-05-01

    A laboratory characterization of the Apache Leap tuff joints under cyclic pseudostatic and dynamic loads has been undertaken to obtain a better understanding of dynamic joint shear behavior and to generate a complete data set that can be used for validation of existing rock-joint models. Study has indicated that available methods for determining joint roughness coefficient (JRC) significantly underestimate the roughness coefficient of the Apache Leap tuff joints, that will lead to an underestimation of the joint shear strength. The results of the direct shear tests have indicated that both under cyclic pseudostatic and dynamic loadings the joint resistance upon reverse shearing is smaller than that of forward shearing and the joint dilation resulting from forward shearing recovers during reverse shearing. Within the range of variation of shearing velocity used in these tests, the shearing velocity effect on rock-joint behavior seems to be minor, and no noticeable effect on the peak joint shear strength and the joint shear strength for the reverse shearing is observed.

  3. Developing a Virtual Rock Deformation Laboratory

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In

  4. Submillimeter laboratory identification of CH{sup +} and CH{sub 2}D{sup +}

    SciTech Connect

    Amano, T.

    2015-01-22

    Laboratory identification of two basic and important interstellar molecular ions is presented. The J = 1 - 0 rotational transition of {sup 12}CH{sup +} together with those of {sup 13}CH{sup +} and {sup 12}CD{sup +} was observed in the laboratory. The newly obtained frequencies were found to be different from those reported previously. Various experimental evidences firmly support the new measurements. In addition, the Zeeman effect and the spin-rotation hyperfine interaction enforce the laboratory identification with no ambiguity. Rotational lines of CH{sub 2}D{sup +} were observed in the submillimeter-wave region. This laboratory observation is consistent with a recent tentative identification of CH{sub 2}D{sup +} toward Ori IRc2.

  5. A Junior Year ChE Laboratory.

    ERIC Educational Resources Information Center

    Paterson, W. R.

    1985-01-01

    Discusses features of experiments (conducted during 1980-81 in the University of Edinburgh's third-year chemical engineering laboratory) which might make them attractive for wider use. Experiments focus on convective mass and heat transfer, diffusion, heat transfer to a jet, and adiabatic batch reactors. (JN)

  6. A Junior Year ChE Laboratory.

    ERIC Educational Resources Information Center

    Paterson, W. R.

    1985-01-01

    Discusses features of experiments (conducted during 1980-81 in the University of Edinburgh's third-year chemical engineering laboratory) which might make them attractive for wider use. Experiments focus on convective mass and heat transfer, diffusion, heat transfer to a jet, and adiabatic batch reactors. (JN)

  7. Laboratory rock mechanics testing manual. Public draft

    SciTech Connect

    Shuri, F S; Cooper, J D; Hamill, M L

    1981-10-01

    Standardized laboratory rock mechanics testing procedures have been prepared for use in the National Terminal Waste Storage Program. The procedures emphasize equipment performance specifications, documentation and reporting, and Quality Assurance acceptance criteria. Sufficient theoretical background is included to allow the user to perform the necessary data reduction. These procedures incorporate existing standards when possible, otherwise they represent the current state-of-the-art. Maximum flexibility in equipment design has been incorporated to allow use of this manual by existing groups and to encourage future improvements.

  8. AeSPoe HARD ROCK LABORATORY

    SciTech Connect

    Svemar, C; Pettersson, S.; Hedman, T.

    2003-02-27

    Aespoe Hard Rock Laboratory (AEHRL) has been constructed in virgin bedrock as part of the development of a deep geological repository for spent nuclear fuel in Sweden, the role being to provide input to the performance assessment, to test engineered barrier systems and to develop and refine full scale methods and machines for construction and operation of the real repository. The AEHRL extends down to 460 m depth with access via both ramp and shaft. Work in the laboratory has been separated into 4 different stage goals: (1) Verification of site investigation methods. (2) Development of detailed investigation methodology. (3) Testing of models for description of the barrier function of the host rock. (4) Demonstration of technology for and function of important parts of the repository system Stage goals 1 and 2 were in focus during the period 1986-95 and are now completed. Stage goal 1 concerns investigations carried out from ground surface and stage goal 2 investigations carried out underground, in this case during excavation of the ramp. The present work is focused on the two operative stage goals 3 and 4. The activities on barrier function of the host rock comprises primarily in-situ tests with tracer migration in natural fractures and migration of actinides in small samples of rock or bentonite inside a chemical laboratory probe installed in a borehole. The data collected from the tests are used for model development and verification. The demonstration of technology includes studies of engineered barriers and comprises tests of copper stability, bentonite buffer, backfill, plugging and practical development of the main disposal sequences. Up today five full scale deposition holes with buffer and canister, and one full-scale test of backfill and plugging have been installed. The prototype for the deposition machine is in operation. The work is conducted in an international environment and altogether eight organizations from seven countries besides Sweden take

  9. MM-ChIP enables integrative analysis of cross-platform and between-laboratory ChIP-chip or ChIP-seq data

    PubMed Central

    2011-01-01

    The ChIP-chip and ChIP-seq techniques enable genome-wide mapping of in vivo protein-DNA interactions and chromatin states. The cross-platform and between-laboratory variation poses a challenge to the comparison and integration of results from different ChIP experiments. We describe a novel method, MM-ChIP, which integrates information from cross-platform and between-laboratory ChIP-chip or ChIP-seq datasets. It improves both the sensitivity and the specificity of detecting ChIP-enriched regions, and is a useful meta-analysis tool for driving discoveries from multiple data sources. PMID:21284836

  10. Rock physics at Los Alamos Scientific Laboratory

    SciTech Connect

    Not Available

    1980-01-01

    Rock physics refers to the study of static and dynamic chemical and physical properties of rocks and to phenomenological investigations of rocks reacting to man-made forces such as stress waves and fluid injection. A bibliography of rock physics references written by LASL staff members is given. Listing is by surname of first author. (RWR)

  11. Laboratory Spectra of Mixtures of CH4, C2H6, and CH3OH

    NASA Technical Reports Server (NTRS)

    Mastrapa, Rachel; Berry, Matthew T.; Sandford, Scott

    2011-01-01

    Infrared spectroscopy is commonly used as a tool for identifying the composition of objects in the Solar System and beyond. Using laboratory spectra, optical constants can be calculated and used to create model spectra for comparison to spectra obtained from infrared telescopes. In this study, the optical constants of mixtures of simple organics, including CH4, C2H6, and CH3OH were calculated from 15 to 70 K, in the frequency range of 9000-500 cm(sup -1) (1.1-20 micrometers), at a spectral resolution of 1 cm(sup -1).

  12. Estimating Abrasivity of Rock by Laboratory and In Situ Tests

    NASA Astrophysics Data System (ADS)

    Okubo, S.; Fukui, K.; Nishimatsu, Y.

    2011-03-01

    The degree to which a rock abrades another rock is called its "abrasivity". Laboratory tests of abrasivity can be broadly divided into four kinds: drilling, rubbing, turning-operation and tumbling tests. The present study was initiated 30 years ago with the objective of investigating and developing methods for measuring rock abrasivity, and making some contribution towards understanding the relationships between the above test methods. Within the range of tests conducted, the turning-operation test turned out to be superior to the drilling test, albeit slightly, in terms of practicality. We have also conducted in situ tests using rock drills for the last 20 years. The results of those tests have been investigated and compared with the results of laboratory tests. There is a large degree of scatter in the data on gauge loss in button bits, which has obscured any correlations with laboratory data. Some correlations were found between height loss in button bits and laboratory findings.

  13. Underground Research Laboratories for Crystalline Rock and Sedimentary Rock in Japan

    SciTech Connect

    Shigeta, N.; Takeda, S.; Matsui, H.; Yamasaki, S.

    2003-02-27

    The Japan Nuclear Cycle Development Institute (JNC) has started two off-site (generic) underground research laboratory (URL) projects, one for crystalline rock as a fractured media and the other for sedimentary rock as a porous media. This paper introduces an overview and current status of these projects.

  14. Laboratory Noble Gas Migration Experiments through Rock

    NASA Astrophysics Data System (ADS)

    Broome, S.; Cashion, A.; Feldman, J.; Sussman, A. J.; Swanson, E.; Wilson, J.

    2016-12-01

    The Underground Nuclear Explosion Signatures Experiment (UNESE) was created to address science and research and development aspects associated with nuclear explosion verification and nuclear nonproliferation with a focus on non-prompt signals. A critical component of the UNESE program is a realistic understanding of the post-detonation processes and changes in the environment that produce observable physical and radio-chemical signatures. As such, an understanding of noble gas migration properties through various lithologies is essential. Here we present an empirical methodology to measure tortuosity on well-characterized rhyolitic tuffs and lavas. Tortuosity is then compared with microfracture networks characterized by microscopy. To quantify tortuosity, a pressurized (1500 mbar) fixed volume of argon is expanded into a sample under high vacuum (0.200 mbar). A quadrupole mass spectrometer (QMS) is used to measure argon downstream of the sample in real time, allowing the time-series gas arrival curve to be characterized for each sample. To evaluate the method, blank samples have been machined to correspond with tortuosities of 1, 2, and 4 in conjunction with a restricted-flow valve to mimic rock sample permeability. Data from the blanks are analyzed with this system to correct for system effects on gas arrival. High vacuum is maintained in the QMS system during sampling by precise metering of the gas through a leak valve with active feedback control which allows arrival time and concentration of argon to be established in real time. Along with a comprehensive characterization of the rock and fracture properties, the parameters derived from these experiments will provide invaluable insight into the three-dimensional structure of damage zones, the production of temporally variable signatures and the methods to best detect underground nuclear explosion signatures. SAND2016-7309 A

  15. A Virtual Rock Physics Laboratory Through Visualized and Interactive Experiments

    NASA Astrophysics Data System (ADS)

    Vanorio, T.; Di Bonito, C.; Clark, A. C.

    2014-12-01

    As new scientific challenges demand more comprehensive and multidisciplinary investigations, laboratory experiments are not expected to become simpler and/or faster. Experimental investigation is an indispensable element of scientific inquiry and must play a central role in the way current and future generations of scientist make decisions. To turn the complexity of laboratory work (and that of rocks!) into dexterity, engagement, and expanded learning opportunities, we are building an interactive, virtual laboratory reproducing in form and function the Stanford Rock Physics Laboratory, at Stanford University. The objective is to combine lectures on laboratory techniques and an online repository of visualized experiments consisting of interactive, 3-D renderings of equipment used to measure properties central to the study of rock physics (e.g., how to saturate rocks, how to measure porosity, permeability, and elastic wave velocity). We use a game creation system together with 3-D computer graphics, and a narrative voice to guide the user through the different phases of the experimental protocol. The main advantage gained in employing computer graphics over video footage is that students can virtually open the instrument, single out its components, and assemble it. Most importantly, it helps describe the processes occurring within the rock. These latter cannot be tracked while simply recording the physical experiment, but computer animation can efficiently illustrate what happens inside rock samples (e.g., describing acoustic waves, and/or fluid flow through a porous rock under pressure within an opaque core-holder - Figure 1). The repository of visualized experiments will complement lectures on laboratory techniques and constitute an on-line course offered through the EdX platform at Stanford. This will provide a virtual laboratory for anyone, anywhere to facilitate teaching/learning of introductory laboratory classes in Geophysics and expand the number of courses

  16. Rock fragment movement in shallow rill flow - A laboratory study

    NASA Astrophysics Data System (ADS)

    Becker, Kerstin; Wirtz, Stefan; Seeger, Manuel; Gronz, Oliver; Remke, Alexander; Iserloh, Thomas; Brings, Christine; Casper, Markus; Ries, Johannes B.

    2014-05-01

    Studies concerning rill erosion mainly deal with the erosion and transport of fine material. The transport of rock fragments is examined mostly for mountain rivers. But there are important differences between the conditions and processes in rivers and in rills: (1) In most cases, the river cuts into a coarse substrate, where fine material is sparse, whereas rill erosion occurs on arable land. So the main part of the substrate is fine material and only single rock fragments influence the processes. (2) In rivers, the water depth is relatively high. There are a lot of studies about hydraulic parameters in such flows, but there is almost nothing known about hydraulic conditions in surface runoff events of a few centimeters. Additionally, little information exists about the rock fragment movement as a part of rill erosion processes on arable land. This knowledge should be increased because rock fragments cause non-stationary water turbulences in rills, which enhance the erosive force of flowing water. Field experiments can only show the fact that a certain rock fragment has moved: The starting point and the final position can be estimated. But the moving path and especially the initiation of the movement is not detectable under field conditions. Hence, we developed a laboratory setup to analyze the movement of rock fragments depending on rock fragment properties (size, form), slope gradient, flow velocity and surface roughness. By observing the rock fragments with cameras from two different angles we are able (1) to measure the rotation angles of a rock fragment during the experiment and (2) to deduce different rock fragment movement patterns. On this poster we want to present the experimental setup, developed within the scope of a master thesis, and the results of these experiments.

  17. Research in the Mont Terri Rock laboratory: Quo vadis?

    NASA Astrophysics Data System (ADS)

    Bossart, Paul; Thury, Marc

    During the past 10 years, the 12 Mont Terri partner organisations ANDRA, BGR, CRIEPI, ENRESA, FOWG (now SWISSTOPO), GRS, HSK, IRSN, JAEA, NAGRA, OBAYASHI and SCK-CEN have jointly carried out and financed a research programme in the Mont Terri Rock Laboratory. An important strategic question for the Mont Terri project is what type of new experiments should be carried out in the future. This question has been discussed among partner delegates, authorities, scientists, principal investigators and experiment delegates. All experiments at Mont Terri - past, ongoing and future - can be assigned to the following three categories: (1) process and mechanism understanding in undisturbed argillaceous formations, (2) experiments related to excavation- and repository-induced perturbations and (3) experiments related to repository performance during the operational and post-closure phases. In each of these three areas, there are still open questions and hence potential experiments to be carried out in the future. A selection of key issues and questions which have not, or have only partly been addressed so far and in which the project partners, but also the safety authorities and other research organisations may be interested, are presented in the following. The Mont Terri Rock Laboratory is positioned as a generic rock laboratory, where research and development is key: mainly developing methods for site characterisation of argillaceous formations, process understanding and demonstration of safety. Due to geological constraints, there will never be a site specific rock laboratory at Mont Terri. The added value for the 12 partners in terms of future experiments is threefold: (1) the Mont Terri project provides an international scientific platform of high reputation for research on radioactive waste disposal (= state-of-the-art research in argillaceous materials); (2) errors are explicitly allowed (= rock laboratory as a “playground” where experience is often gained through

  18. Muon tomography in the Mont Terri underground rock laboratory

    NASA Astrophysics Data System (ADS)

    Lesparre, N.; Gibert, D.; Marteau, J.; Carlus, B.; Nussbaum, C.

    2012-04-01

    The Mont Terri underground rock laboratory (Switzerland) was excavated in a Mesozoic shale formation constituted by Opalinus clay. This impermeable formation presents suitable properties for hosting repository sites of radioactive waste. A muon telescope has been placed in this laboratory in October 2009 to establish the feasibility of the muon tomography and to test the sensor performance in a calm environment, where we are protected from atmospheric noisy particles. However, the presence of radon in the gallery as well as charged particles issued from the decay of gamma rays may create a background noise. This noise shift and smooths the signal inducing an under estimation of the rock density. The uncorrelated background has been measured by placing the planes of detection in anti-coincidence. This estimation is preponderant and has to be combined to the theoretical feasibility evaluation to determine the best experimental set-up to observe muon flux fluctuations due to density variations. The muon densitometry experience is here exposed with the estimation of its feasibility. The data acquired from different locations inside the underground laboratory are presented. They are compared to two models representing the layer above the laboratory corresponding to a minimum and a maximum muon flux expectation depending on the values of the rock density.

  19. Laboratory experiment of the rock anelastic strain recovery compliances

    NASA Astrophysics Data System (ADS)

    Gao, Lu; Wang, Lianjie

    2012-09-01

    Anelastic strain recovery (ASR) compliances are the important parameters for the ASR in situ stress measurement method to accurately evaluate the magnitude of the stress. The laboratory experiment of the creep and ASR processes for three types of rocks (sandstone, marble and granite) were performed. The tests were carried out at 50% of the uniaxial compressive strength (UCS). And the ASR compliances of the shear mode Jas(t), the volumetric mode Jav(t) and the ratio of Jas(t) and Jav(t) were obtained, respectively. The experimental result show that both the magnitude and increase rate of the ASR compliance greatly depend on the rock type, and the ratios of Jas(t) and Jav(t) trend to different constant values after enough elapsed time for each type of rock specimen.

  20. Laboratory experiments for defining scaling relations between rock material properties and rock resistance to erosion

    NASA Astrophysics Data System (ADS)

    Sklar, L. S.; Beyeler, J. D.; Collins, G. C.; Farrow, J. W.; Hsu, L.; Litwin, K. L.; Polito, P. J.

    2012-12-01

    Rock resistance to erosion is a key variable that limits rates of morphologic change and mass flux in landscapes. However, we have limited knowledge of how measurable material properties influence rock resistance to specific erosion processes. Rock 'erodibility' is commonly a free parameter in surface process models, where users assign or solve for numerical values that lack meaning outside of the model. Moreover, erodibility parameters often lump material resistance to erosion together with aspects of the forces driving erosion that are not explicitly represented in the model. Laboratory experiments in which rock types are varied, while erosive forces are held constant, can be used to develop scaling relationships between rock properties and erosion resistance for individual detachment mechanisms. With knowledge of why erosion rates vary between rock types for constant erosive forces, laboratory and field experiments that vary erosive intensity can be used to quantify the absolute susceptibility to erosion in physically explicit terms. Here we synthesize data collected over the past decade from a suite of laboratory investigations of rock resistance to wear by sediment particle impacts, and wear of sediment particles themselves, in experiments replicating fluvial and granular flow conditions. Materials tested included: field-sampled bedrock and sediment covering the widest feasible range of apparent durability and lithologic type; synthetic sandstones made from mixtures of sand and Portland cement; and water ice, both pure and containing solid impurities, tested over a wide range of temperatures. Material properties measured included: dry-bulk and saturated density, porosity, tensile strength, fracture toughness, elastic moduli, mineralogy, cement type, and the grain size of mineral crystals and cemented clasts. Erosion rates were measured by mass or volume loss divided by run time, in bedrock abrasion mills, barrel tumblers, and a large rotating drum. We find

  1. The instantaneous rate dependence in low temperature laboratory rock friction and rock deformation experiments

    USGS Publications Warehouse

    Beeler, N.M.; Tullis, T.E.; Kronenberg, A.K.; Reinen, L.A.

    2007-01-01

    Earthquake occurrence probabilities that account for stress transfer and time-dependent failure depend on the product of the effective normal stress and a lab-derived dimensionless coefficient a. This coefficient describes the instantaneous dependence of fault strength on deformation rate, and determines the duration of precursory slip. Although an instantaneous rate dependence is observed for fracture, friction, crack growth, and low temperature plasticity in laboratory experiments, the physical origin of this effect during earthquake faulting is obscure. We examine this rate dependence in laboratory experiments on different rock types using a normalization scheme modified from one proposed by Tullis and Weeks [1987]. We compare the instantaneous rate dependence in rock friction with rate dependence measurements from higher temperature dislocation glide experiments. The same normalization scheme is used to compare rate dependence in friction to rock fracture and to low-temperature crack growth tests. For particular weak phyllosilicate minerals, the instantaneous friction rate dependence is consistent with dislocation glide. In intact rock failure tests, for each rock type considered, the instantaneous rate dependence is the same size as for friction, suggesting a common physical origin. During subcritical crack growth in strong quartzofeldspathic and carbonate rock where glide is not possible, the instantaneous rate dependence measured during failure or creep tests at high stress has long been thought to be due to crack growth; however, direct comparison between crack growth and friction tests shows poor agreement. The crack growth rate dependence appears to be higher than the rate dependence of friction and fracture by a factor of two to three for all rock types considered. Copyright 2007 by the American Geophysical Union.

  2. Hydraulic and Hydromechanical Laboratory Testing of Large Crystalline Rock Cores

    NASA Astrophysics Data System (ADS)

    Thörn, Johan; Ericsson, Lars O.; Fransson, Åsa

    2015-01-01

    In this paper, fracture stiffness in rock samples is determined by means of hydromechanical laboratory testing. The aim is three-fold: to develop a procedure for sampling, to update testing equipment and to relate fracture stiffness to the geological history (e.g., stress history and fracture infillings). The hydraulic properties of twenty rock cores (diameter 190 mm, c. 100 mm high) from the Äspö Hard Rock Laboratory were tested in a permeameter cell under different isotropic pressures up to 2.5 MPa. The flow rate through individual fracture samples was recorded. Four of the samples were re-tested in the permeameter cell using an updated hydromechanical procedure with deformation measurement across the fracture. Four load cycles of gradually increasing cell pressure were applied, resulting in a clearly observed hysteresis effect in the first and second cycles. Hydraulic aperture changes calculated using the cubic law were compared with their mechanical equivalents. The aperture changes followed similar trends, although these differed between the samples. Fracture stiffness was determined from the tests, and the stiffness to hydraulic aperture relationship was found to follow previously published patterns linked to the storativity of fractures. Differences in stiffness are explained in the context of the geological history of individual samples, particularly their stress history. The paper presents a conceptualisation of the stiffness behaviour, which includes flow properties, geometric properties and the geological stress history of the tested samples.

  3. Prehistoric Rock Structures of the Idaho National Laboratory

    SciTech Connect

    Brenda R Pace

    2007-04-01

    Over the past 13,500 years, human populations have lived in and productively utilized the natural resources offered by the cold desert environment of the northeastern Snake River Plain in eastern Idaho. Within an overall framework of hunting and gathering, groups relied on an intimate familiarity with the natural world and developed a variety of technologies to extract the resources that they needed to survive. Useful items were abundant and found everywhere on the landscape. Even the basaltic terrain and the rocks, themselves, were put to productive use. This paper presents a preliminary classification scheme for rock structures built on the Idaho National Laboratory landscape by prehistoric aboriginal populations, including discussions of the overall architecture of the structures, associated artifact assemblages, and topographic placement. Adopting an ecological perspective, the paper concludes with a discussion of the possible functions of these unique resources for the desert populations that once called the INL home.

  4. Seismic attenuation: Laboratory measurements in fluid saturated rocks

    NASA Astrophysics Data System (ADS)

    Subramaniyan, Shankar; Madonna, Claudio; Tisato, Nicola; Saenger, Erik; Quintal, Beatriz

    2014-05-01

    Seismic wave attenuation could be used as an indicator of reservoir fluids due to its dependence on rock and fluid properties. Over the past 30 years, many laboratory methodologies to study attenuation in rocks have been employed, such as ultrasonic (MHz), resonant bar (kHz) and forced oscillation methods in the low frequency range (0.01-100Hz) (Tisato & Madonna 2012; Madonna & Tisato 2013). Forced oscillation methods have gained prominence over time as the frequency range of measurements correspond to that of field seismic data acquired for oil/gas exploration. These experiments measure attenuation as the phase shift between the applied stress (sinusoidal) and measured strain. Since the magnitudes of measured phase shifts are quite low (Q-1 ~0.01-0.1) and the amplitudes of strain applied to the rock samples are of the order ~10-6 (i.e., similar orders of magnitude to seismic waves), it is challenging. A comparison of such forced oscillation setups will be presented to provide an overview of the various possibilities of design and implementation for future setups. In general, there is a lack of laboratory data and most of the published data are for sandstones. Currently, attenuation measurements are being carried out on carbonate and sandstone samples. We employ the Seismic Wave Attenuation Module (SWAM, Madonna & Tisato 2013) to measure seismic attenuation in these samples for different saturation degrees (90% and 100% water) and under three different confining pressures (5, 10 and 15MPa). Preliminary results from these investigations will be discussed. REFERENCES Madonna, C. & Tisato, N. 2013: A new seismic wave attenuation module to experimentally measure low-frequency attenuation in extensional mode. Geophysical Prospecting, doi: 10.1111/1365-2478.12015. Tisato, N. & Madonna, C. 2012: Attenuation at low seismic frequencies in partially saturated rocks: Measurements and description of a new apparatus. Journal of Applied Geophysics, 86, 44-53.

  5. Microwave applications to rock specimen drying in laboratory

    NASA Astrophysics Data System (ADS)

    Park, Jihwan; Park, Hyeong-Dong

    2014-05-01

    Microwave heating is the process in which electromagnetic wave with 300 MHz - 300 GHz heats dielectric material. Although in the beginning microwave was mainly used in food industry to cook or heat the food, it soon became clear that microwave had a large potential for other applications. It was thus introduced in geological fields of investigation like mineral processing, oil sand and oil shale extraction, soil remediation, waste treatment. However, the drying techniques using microwave was rarely treated in geology field. According to the ISRM suggested methods, experimental rock specimens in laboratory test were dried in 105°C oven for a period of at least 24 hours. In this method, hot air transmits heats to material by means of thermal conduction, and the heat was transferred from the surface to the inside of the rock specimens. The thermal gradient and moisture gradient can deteriorate the specimens, and energy can be wasted in bulk heating the specimens. The aim of our study was to compare physical property, microstructural property, and energy efficiency between microwave drying method and conventional oven drying method, and to suggest new method for rock drying. Granite, basalt, and sandstone were selected as specimens and were made in cylinder shape with 54 mm diameter. To compare two different methods, one set of saturated specimens were dried in 105°C conventional oven and the other set of saturated specimens were dried in microwave oven. After dried, the specimens were cooled and saturated in 20°C water 48 hours. The saturation-drying were repeated 50 cycles, and the physical property and microstructural property were measured every 10 cycles. Absorption and elastic wave velocity were measured to investigate the change of physical property, and microscope image and X-ray computed tomography image were obtained to investigate the change of microstructural property of rock specimens. The electricity consumption of conventional oven and microwave oven

  6. ChemCam rock laser for Mars Science Laboratory "Curiosity"

    SciTech Connect

    Wiens, Roger

    2010-09-03

    Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008. The Flight Model was shipped in August, 2010 for installation on the rover at JPL. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components were concurrently assembled at Los Alamos and in Toulouse, France. The Mars Science Laboratory is scheduled to launch in 2011. Animations courtesy of JPL/NASA.

  7. ChemCam Rock Laser for the Mars Science Laboratory

    SciTech Connect

    LANL

    2008-03-24

    Los Alamos has a long history of space-related instr... Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components are concurrently being assembled at Los Alamos and in Toulouse, France, and will be delivered to JPL in July. The Mars Science Laboratory is scheduled to launch in 2009. Animations courtesy of JPL/NASA.

  8. ChemCam rock laser for Mars Science Laboratory "Curiosity"

    ScienceCinema

    Wiens, Roger

    2016-07-12

    Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008. The Flight Model was shipped in August, 2010 for installation on the rover at JPL. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components were concurrently assembled at Los Alamos and in Toulouse, France. The Mars Science Laboratory is scheduled to launch in 2011. Animations courtesy of JPL/NASA.

  9. ChemCam Rock Laser for the Mars Science Laboratory

    ScienceCinema

    LANL

    2016-07-12

    Los Alamos has a long history of space-related instr... Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components are concurrently being assembled at Los Alamos and in Toulouse, France, and will be delivered to JPL in July. The Mars Science Laboratory is scheduled to launch in 2009. Animations courtesy of JPL/NASA.

  10. Integrating the ChE Curriculum via a Recurring Laboratory

    ERIC Educational Resources Information Center

    Kubilius, Matthew B.; Tu, Raymond S.; Anderson, Ryan

    2014-01-01

    A recurring framework has been integrated throughout the curriculum via a Continuously Stirred Tank Reactor (CSTR) platform. This laboratory is introduced during the material and energy balance course, and subsequent courses can use these results when explaining more advanced concepts. Further, this laboratory gives students practical experience…

  11. Integrating the ChE Curriculum via a Recurring Laboratory

    ERIC Educational Resources Information Center

    Kubilius, Matthew B.; Tu, Raymond S.; Anderson, Ryan

    2014-01-01

    A recurring framework has been integrated throughout the curriculum via a Continuously Stirred Tank Reactor (CSTR) platform. This laboratory is introduced during the material and energy balance course, and subsequent courses can use these results when explaining more advanced concepts. Further, this laboratory gives students practical experience…

  12. Rock fracture by ice segregation: linking laboratory modelling and rock slope erosion

    NASA Astrophysics Data System (ADS)

    Murton, J.

    2009-04-01

    It has been unclear until recently if ice can fracture intact bedrock subject to natural freezing regimes, or whether it simply enlarges existing fractures or does both. This question is important, because if ice segregation in bedrock permafrost is widespread, then there may be considerable potential for significantly increased rock slope instability as ice-cemented discontinuities warm and active layers thicken. Laboratory modelling has now begun to elucidate the process of ice segregation in bedrock. Laboratory experiments indicate that moist, porous rock behaves remarkably like moist, frost-susceptible soil, with both substrates experiencing ice enrichment and fracture / fissuring of near-surface permafrost. It appears that significant concentrations of segregated ice are most likely in the transition zone between the active layer and the permafrost, as a result of downward migration of water in summer and upward advance of freezing at the beginning of the winter. Laboratory modelling indicates that given adequate water supply, ice segregation produces a zone of ice-bonded fractured bedrock immediately below the permafrost table. In general, the importance of ice segregation relative to in situ volume expansion increases with decreasing thermal gradients and increasing duration of freezing. Recent theoretical developments suggest that the maximum possible disjointing pressure is governed by the temperature depression below the bulk-melting point, even in the absence of large temperature gradients, and therefore slow ice segregation in bedrock may be possible at greater depths where the frozen permeability of rock limits the actual amount of heave produced. Thus, over long timescales, ice segregation may be highly significant in frozen steep bedrock slopes where the presence of ice-rich fractured bedrock may be critically important in releasing rock falls and rock slides during climate-induced warming and permafrost degradation. With recent climate warming

  13. The torsionally-excited CH{sub 3}-rocking band of CH{sub 3}OH - gateway to the OH bend?

    SciTech Connect

    Lees, R.M.

    1995-12-31

    Recently reported progress on the analysis of Fourier transform spectra of the O-18 and C-13 isotopomers of methanol has illuminated the torsion-rotation energy level structure of the in-plane CH{sub 3}-rocking and OH-bending modes. Extension of these insights to the parent CH{sub 3}OH isotopic species has permitted assignment of several subbands in the n=1 torsionally excited in-plane CH{sub 3}-rocking band of normal CH{sub 3}OH. The subband pattern is very similar to that of the C-13 species with a relatively small upward isotopic shift. One of the subbands identified is the K=2 subband of A torsional symmetry, which shows substantial asymmetry doubling. The splitting constants are very different in the ground and excited states, suggesting strong Fermi mixing between the n=1 CH{sub 3}-rocking state and the n=0 OH-bending state, as found previously for the O-18 and C-13 species. The Fermi mixing between modes is likely a principal reason that the low-resolution methanol spectrum shows no clear band structure in the region of the OH-bend but simply a broad, rather featureless peak which has been something of an enigma for a very long time. Analysis of the high-resolution CH{sub 3}OH spectrum in this region is also underway, and it is hoped that keys to the gateway will shortly be found in order to shine some light on the fertile spectroscopic pastures within.

  14. Direct laboratory tensile testing of select yielding rock bolt systems

    SciTech Connect

    VandeKraats, J.D.; Watson, S.O.

    1996-08-01

    Yielding rock bolt support systems have been developed to accommodate ground movement in shifting ground such as in coal operations; in creeping ground such as salt, trona, and potash; and in swelling ground associated with some clays. These systems, designed to remain intact despite ground movement, should enhance mine safety and help contain costs in areas where rebolting of rigid non-yielding systems is typically required. Four such systems were tested in straight tensile pulls in the laboratory. They include the Slip Nut System from Dywidag Systems International USA, Inc., Ischebeck`s bolt mounted Titan Load Indicator, Rocky Mountain Bolt Company`s Yielding Cable Bolt, and a rock bolt installed variation of the yielding steel post developed by RE/SPEC Inc. The first two systems are currently marketed products and the latter two are prototype systems. Each system responds to load and displacement by yielding in an unique manner. All are designed to yield at predetermined loads. A description of each system and its yield function is provided. Each system was tested over its prescribed yield range in a test machine. At least five tests were performed on each system. Each system yielded and continued to provide support according to its design. Each shows promise for ground control use in shifting or creeping rock. This work helps to illustrate the comparative differences in performance between these specialized systems and the applications where they may be most useful.

  15. Synchrotron Spectroscopy and Torsional Structure of the Csh-Bending and CH3-ROCKING Bands of Methyl Mercaptan

    NASA Astrophysics Data System (ADS)

    Lees, Ronald M.; Xu, Li-Hong; Billinghurst, Brant E.

    2016-06-01

    The Fourier transform spectra of the CSH-bending and CH3-rocking infrared bands of CH3SH have been investigated at 0.001 cm-1 resolution employing synchrotron radiation at the Canadian Light Source in Saskatoon. The relative band strengths and structures are remarkably different from those for the analogous CH3OH relative, with the CSH bend being very weak and both the in-plane and out-of-plane CH3 rocks being strong with comparable intensities. The CSH bend, centered at 801.5 cm-1, has parallel a-type character with no detectable b-type component. The out-of-plane CH3 rock at 957.0 cm-1 is a purely c-type perpendicular band, whereas the in-plane rock around 1074 cm-1 is of mixed a/b character. The K-reduced vt = 0 sub-state origins for the CSH bend follow the normal oscillatory torsional pattern as a function of K with an amplitude of 0.362 cm-1, as compared to 0.653 cm-1 for the ground state and 0.801 cm-1 for the C-S stretching mode. The torsional energy curves for the out-of-plane rock are also well-behaved but are inverted, with an amplitude of 1.33 cm-1. In contrast, the sub-state origins for the in-plane rock do not display a clear oscillatory structure but are scattered over a range of about 2 cm-1, with indications of some significant perturbations. The assignments for the three bands all extend up to about K = 10 and are well-determined from GSCD relations, particularly for the a/b in-plane rock for which ΔK = 0, +1 and -1 transitions are all observed.

  16. Further Analysis of the Laboratory Rotational Spectrum of CH_3NCO

    NASA Astrophysics Data System (ADS)

    Kisiel, Zbigniew; Kolesniková, Lucie; Alonso, E. R.; Alonso, José L.; Winnewisser, Manfred; De Lucia, Frank C.; Medvedev, Ivan; Tercero, Belén; Cernicharo, Jose; Guillemin, J.-C.

    2016-06-01

    Identification by the Rosetta mission that CH_3NCO is among the more plentiful molecules on the surface of the comet Churyumov-Gerasimenko stimulated rapid detection of this molecule in the interstellar medium. In particular, we have been successful in detecting almost 400 lines of CH_3NCO in Orion^b by extending the Koput cm-wave assignment to frequencies relevant to mm-wave radio-telescopes through measurement of the complete laboratory spectrum up to 363 GHz. Presently, we describe further progress in understanding the laboratory rotational spectrum of CH_3NCO. Assignment has been extended to transitions with K>3 by analysis of Stark and hyperfine patterns of the corresponding lowest-J transitions. Broadband spectra of synthezised pure 13CH_3NCO and CH_3N13CO isotopic species have also been recorded and assigned. Furthermore, the progress in fitting this very low barrier and highly perturbed internal rotation spectrum is described. D.T.Halfen, V.V.Ilyushin, L.Ziurys, ApJ 812, L5 (1915) J.Cernicharo, Z.Kisiel, B.Tercero, et al., A&A 587, L4 (2016) J.Koput, J. Mol. Spectrosc. 115, 131 (1986) Z.Kisiel et al., 65th ISMS, Columbus, Ohio, RC-13 (2010); 70th ISMS, Champaign-Urbana, Illinois, TG-08 (2015)

  17. Laboratory and field testing of improved geothermal rock bits

    SciTech Connect

    Hendrickson, R.R.; Jones, A.H.; Winzenried, R.W.; Maish, A.B.

    1980-07-01

    The development and testing of 222 mm (8-3/4 inch) unsealed, insert type, medium hard formation, high-temperature bits are described. The new bits were fabricated by substituting improved materials in critical bit components. These materials were selected on bases of their high temperature properties, machinability, and heat treatment response. Program objectives required that both machining and heat treating could be accomplished with existing rock bit production equipment. Two types of experimental bits were subjected to laboratory air drilling tests at 250/sup 0/C (482/sup 0/F) in cast iron. These tests indicated field testing could be conducted without danger to the hole, and that bearing wear would be substantially reduced. Six additional experimental bits, and eight conventional bits were then subjected to air drilling a 240/sup 0/C (464/sup 0/F) in Francisan Graywacke at The Geysers, CA. The materials selected improved roller wear by 200%, friction-pin wear by 150%, and lug wear by 150%. Geysers drilling performances compared directly to conventional bits indicate that in-gage drilling life was increased by 70%. All bits at The Geysers are subjected to reaming out-of-gage hole prior to drilling. Under these conditions the experimental bits showed a 30% increase in usable hole over the conventional bits. These tests demonstrated a potential well cost reduction of 4 to 8%. Savings of 12% are considered possible with drilling procedures optimized for the experimental bits.

  18. Digital material laboratory: Considerations on high-porous volcanic rock

    NASA Astrophysics Data System (ADS)

    Saenger, Erik H.; Stöckhert, Ferdinand; Duda, Mandy; Fischer, Laura; Osorno, Maria; Steeb, Holger

    2017-04-01

    Digital material methodology combines modern microscopic imaging with advanced numerical simulations of the physical properties of materials. One goal is to complement physical laboratory investigations for a deeper understanding of relevant physical processes. Large-scale numerical modeling of elastic wave propagation directly from the microstructure of the porous material is integral to this technology. The parallelized finite-difference-based Stokes solver is suitable for the calculation of effective hydraulic parameters for low and high porous materials. Reticulite is formed in very high Hawaiian fire fountaining events. Hawaiian fire fountaining eruptions produce columns or fountains of lava, which can last for a few hours to days. Reticulite was originally thought to have formed from further expanded hot scoria foam. However, some researchers believe reticulite forms from magma that formed vesicles instantly, which expanded rapidly and uniformly to produce the polyhedral vesicle walls. These walls then ruptured and cooled rapidly. The (open) honeycomb network of bubbles is held together by glassy threads and forms a structure with a porosity higher than 80%. The fragile rock sample is difficult to characterize with classical experimental methods and we show how to determine porosity, effective elastic properties and Darcy permeability by using digital material methodology. A technical challenge will be to image with the CT technique the thin skin between the glassy threads visible on the microscopy image. A numerical challenge will be determination of effective material properties and viscous fluid effects on wave propagation in such a high porous material.

  19. Event triggered data acquisition in the Rock Mechanics Laboratory

    SciTech Connect

    Hardy, R.D.

    1993-03-01

    Increasing complexity of experiments coupled with limitations of the previously used computers required improvements in both hardware and software in the Rock Mechanics Laboratories. Increasing numbers of input channels and the need for better graphics could no longer be supplied by DATAVG, an existing software package for data acquisition and display written by D. J. Holcomb in 1983. After researching the market and trying several alternatives, no commercial program was found which met our needs. The previous version of DATAVG had the basic features needed but was tied to obsolete hardware. Memory limitations on the previously used PDP-11 made it impractical to upgrade the software further. With the advances in IBM compatible computers it is now desirable to use them as data recording platforms. With this information in mind, it was decided to write a new version of DATAVG which would take advantage of newer hardware. The new version had to support multiple graphic display windows and increased channel counts. It also had to be easier to use.

  20. Laboratory detection of a new interstellar free radical CH2CN(2B1)

    NASA Technical Reports Server (NTRS)

    Saito, Shuji; Yamamoto, Satoshi; Irvine, W. M.; Ziurys, L. M.; Suzuki, Hiroko

    1988-01-01

    An asymmetric-top free radical CH2CN with a 2B1 ground state was detected by laboratory microwave spectroscopy. The radical was produced in a free-space absorption cell by a DC glow discharge in pure CH3CN gas. About 60 fine-structure components were observed for the N = 11-10 to 14-13 a-type rotational transitions in the frequency region of 220-260 GHz. Hyperfine resolved components for the N = 4-3 and 5-4 transitions were resolved in the 80 and 100 GHz regions, respectively. Molecular constants were determined and U100602 and U80484 from Sgr B2, and U40240 and U20120 from TMC-1 were assigned to the N = 5-4, 4-3, 2-1, and 1-0 transitions with K(-1) = 0 of the CH2CN radical.

  1. Laboratory measurements on reservoir rocks from The Geysers geothermal field

    SciTech Connect

    Boitnott, G.N.

    1995-01-26

    A suite of laboratory measurements have been conducted on Geysers metagraywacke and metashale recovered from a drilled depth of 2599 to 2602 meters in NEGU-17. The tests have been designed to constrain the mechanical and water-storage properties of the matrix material. Various measurements have been made at a variety of pressures and at varying degrees of saturation. Both compressional and shear velocities exhibit relatively little change with effective confining pressure. In all of the samples, water saturation causes an increase in the compressional velocity. In some samples, saturation results in a moderate decrease in shear velocity greater in magnitude than would be expected based on the slight increase in bulk density. It is found that the effect of saturation on the velocities can be quantitatively modeled through a modification of Biot-Gassmann theory to include weakening of the shear modulus with saturation. The decrease is attributed to chemo-mechanical weakening caused by the presence of water. The degree of frame weakening of the shear modulus is variable between samples, and appears correlated with petrographic features of the cores. Two related models are presented through which we can study the importance of saturation effects on field-scale velocity variations. The model results indicate that the saturation effects within the matrix are significant and may contribute to previously observed field anomalies. The results help to define ways in which we may be able to separate the effects of variations in rock properties, caused by phenomena such as degree of fracturing, from similar effects caused by variations in matrix saturation. The need for both compressional and shear velocity data in order to interpret field anomalies is illustrated through comparisons of model results with the field observations.

  2. Event triggered data acquisition in the Rock Mechanics Laboratory upgrades and revisions

    SciTech Connect

    Hardy, R.D.

    1997-06-01

    This paper describes updates and revisions to the data acquisition computer program DATAVG which has served as the basic data collection system for the Sandia National Laboratories Geomechanics Department, Rock Mechanics Laboratory since late 1992. DATAVG was first described in Event Triggered Data Acquisition in the Rock Mechanics Laboratory, [Hardy, 1993]. DATAVG has been modified to incorporate numerous user-requested enhancements and a few bug fixes. In this paper these changes to DATAVG are described.

  3. Viscoelastic Anisotropic Constitutive Law for Rock Shales based on Laboratory Creep Experiments

    NASA Astrophysics Data System (ADS)

    Trzeciak, Maciej; Sone, Hiroki; Dabrowski, Marcin

    2017-04-01

    In situ stress prediction is critical for successful hydraulic fracturing and later exploitation of an unconventional shale gas/oil reservoir. In order to provide stress models during and after fracturing a reliable stress-strain constitutive law is needed. The most popular models used in the petroleum industry take into account only elastic constitutive laws, which have the assumption of no energy dissipation. As was shown by several authors (e.g. Warpinsky 1986, Gunzburger&Cornet 2007, Sone&Zoback 2013, 2014) viscoelastic creep strain and stress relaxation reach significant amounts in rock shales and should be considered in stress modeling. Viscoelastic functions needed for the constitutive law were obtained during creep experiments on horizontal and vertical shale plugs. We were not in the possesion of samples cut at 45˚ to bedding, and because of that the constitutive relation is limited to the normal strains and stresses. During experiments two creep functions, Ch(t)and Cv(t), and two hereditary Poisson's ratio functions v12(t)and v13(t)were measured. In this paper we present laboratory procedures for creep tests, basic theory of anisotropic (vertical transverse isotropy) viscoelastic constitutive modeling and a simple model of stress relaxation after application of constant strain.

  4. Existing approaches to tight rock laboratory petrophysics: a critical review

    NASA Astrophysics Data System (ADS)

    Konoshonkin, D. V.; Parnachev, S. V.

    2015-02-01

    A review of the existing methods for tight rock porosity, saturation, and permeability determination was performed taking into account that these methods should be applicable for Bazhenov formation evaluation. The following methods were considered: Archimedes mercury immersion; mercury displacement; caliper; helium pycnometry on crushed samples; nuclear magnetic resonance; modified retort method; modified Dean-Stark extraction; pulse decay method; and pressure decay test on crushed samples. The applicability of the pressure decay test on a crushed sample for Bazhenov formation evaluation is checked experimentally with the SMP-200 commercial permeameter. All the above listed methods were combined into five protocols for tight rock petrophysical evaluation. These protocols were analyzed and compared according to the following criteria: accuracy of the results; usage experience; time of measurements; easiness of interpretation; reliability and safety; price. The obtained results revealed that the most effective protocol is the one that includes pressure pulse on a core plug for permeability determination, He pycnometry and modified retort analysis on crushed samples for porosity and saturation determination. As there were cases when the proposed protocol was less effective vs. other protocols, a special scheme was suggested in order to choose the most effective protocol for tight rock petrophysical properties evaluation in definite conditions.

  5. Reconstruction of multistage massive rock slope failure: Polymethodical approach in Lake Oeschinen (CH)

    NASA Astrophysics Data System (ADS)

    Knapp, Sibylle; Gilli, Adrian; Anselmetti, Flavio S.; Hajdas, Irka

    2016-04-01

    Lateglacial and Holocene rock-slope failures occur often as multistage failures where paraglacial adjustment and stress adaptation are hypothesised to control stages of detachment. However, we have only limited datasets to reconstruct detailed stages of large multistage rock-slope failures, and still aim at improving our models in terms of geohazard assessment. Here we use lake sediments, well-established for paleoclimate and paleoseismological reconstruction, with a focus on the reconstruction of rock-slope failures. We present a unique inventory from Lake Oeschinen (Bernese Alps, Switzerland) covering about 2.4 kyrs of rock-slope failure history. The lake sediments have been analysed using sediment-core analysis, radiocarbon dating and seismic-to-core and core-to-core correlations, and these were linked to historical and meteorological records. The results imply that the lake is significantly younger than the ~9 kyrs old Kandersteg rock avalanche (Tinner et al., 2005) and shows multiple rock-slope failures, two of which could be C14-dated. Several events detached from the same area potentially initiated by prehistoric earthquakes (Monecke et al., 2006) and later from stress relaxation processes. The data imply unexpected short recurrence rates that can be related to certain detachment scarps and also help to understand the generation of a historical lake-outburst flood. Here we show how polymethodical analysis of lake sediments can help to decipher massive multistage rock-slope failure. References Monecke, K., Anselmetti, F.S., Becker, A., Schnellmann, M., Sturm, M., Giardini, D., 2006. Earthquake-induced deformation structures in lake deposits: A Late Pleistocene to Holocene paleoseismic record for Central Switzerland. Eclogae Geologicae Helvetiae, 99(3), 343-362. Tinner, W., Kaltenrieder, P., Soom, M., Zwahlen, P., Schmidhalter, M., Boschetti, A., Schlüchter, C., 2005. Der nacheiszeitliche Bergsturz im Kandertal (Schweiz): Alter und Auswirkungen auf die

  6. Laboratory detection of the rotational-tunnelling spectrum of the hydroxymethyl radical, CH2OH

    NASA Astrophysics Data System (ADS)

    Bermudez, C.; Bailleux, S.; Cernicharo, J.

    2017-02-01

    Context. Of the two structural isomers of CH3O, methoxy is the only radical whose astronomical detection has been reported through the observation of several rotational lines at 2 and 3 mm wavelengths. Although the hydroxymethyl radical, CH2OH, is known to be thermodynamically the most stable (by 3300 cm-1), it has so far eluded rotational spectroscopy presumably because of its high chemical reactivity. Aims: Recent high-resolution ( 10 MHz) sub-Doppler rovibrationally resolved infrared spectra of CH2OH (symmetric CH stretching a-type band) provided accurate ground vibrational state rotational constants, thus reviving the quest for its millimeter-wave spectrum in laboratory and subsequently in space. Methods: The search and assignment of the rotational spectrum of this fundamental species were guided by our quantum chemical calculations and by using rotational constants derived from high-resolution IR data. The hydroxymethyl radical was produced by hydrogen abstraction from methanol by atomic chlorine. Results: Ninety-six b-type rotational transitions between the v = 0 and v = 1 tunnelling sublevels involving 25 fine-structure components of Q branches (with Ka = 1 ← 0) and 4 fine-structure components of R branches (assigned to Ka = 0 ← 1) were measured below 402 GHz. Hyperfine structure alternations due to the two identical methylenic hydrogens were observed and analysed based on the symmetry and parity of the rotational levels. A global fit including infrared and millimeter-wave lines has been conducted using Pickett's reduced axis system Hamiltonian. The recorded transitions (odd ΔKa) did not allow us to evaluate the Coriolis tunnelling interaction term. The comparison of the experimentally determined constants for both tunnelling levels with their computed values secures the long-awaited first detection of the rotational-tunnelling spectrum of this radical. In particular, a tunnelling rate of 139.73 ± 0.10 MHz (4.6609(32) × 10-3 cm-1) was obtained along

  7. The interactions of the bacterium Cupriavidus metallidurans CH34 with basalt rock, on Earth and in Space

    NASA Astrophysics Data System (ADS)

    Byloos, Bo; Van Houdt, Rob; Leys, Natalie; Ilyin, Vyacheslav; Nicholson, Natasha; Childers, Delma; Cockell, Charles; Boon, Nico

    2016-07-01

    Microbe-mineral interactions have become of interest for space exploration as microorganisms can biomine elements from extra-terrestrial materials, which could be used as nutrients in a life support system. This research is aimed at identifying the molecular mechanisms behind the interaction of Cupriavidus metallidurans CH34 with basalt, a lunar-type rock, and determining the influence of space flight conditions on this interaction. Survival and physiology of CH34 was monitored, with and without basalt, in mineral water over several months by flow cytometry, plate counts, ICP-MS, microscopy and proteomics. To study the influence of space conditions, a flight experiment on board the Russian FOTON-M4 capsule was performed. The results obtained from from water survival experiments on ground showed that CH34 was able to survive in mineral water, in the absence and presence of basalt, for several months. The total cell concentration remained stable but the cultivable fraction dropped to 10%, indicating a transition to a more dormant state. In the presence of basalt, this transition was less pronounced and cultivability was enhanced. In addition, with basalt, CH34 attached to the rock surface and formed a biofilm. The space flight experiment indicated more viable and cultivable cells compared to the ground experiment, both in the absence and presence of basalt, indicating a positive effect of space flight on survival. Chemical analysis indicated that basalt leaches out elements which may contribute to a positive effect of basalt on survival. Basalt may thus enhance survival and viability of CH34 both in ground and space flight experimental conditions. This study hopefully can contribute to a better understanding of microbe-mineral interactions, opening the door to future applications, in space, and on Earth. Acknowledgments: This work is supported by the European Space Agency (ESA-PRODEX) and the Belgian Science Policy (Belspo) through the BIOROCK project. We thank Kai

  8. The Vaigat Rock Avalanche Laboratory, west-central Greenland

    NASA Astrophysics Data System (ADS)

    Dunning, S.; Rosser, N. J.; Szczucinski, W.; Norman, E. C.; Benjamin, J.; Strzelecki, M.; Long, A. J.; Drewniak, M.

    2013-12-01

    Rock avalanches have unusually high mobility and pose both an immediate hazard, but also produce far-field impacts associated with dam breach, glacier collapse and where they run-out into water, tsunami. Such secondary hazards can often pose higher risks than the original landslide. The prediction of future threats posed by potential rock avalanches is heavily reliant upon understanding of the physics derived from an interpretation of deposits left by previous events, yet drawing comparisons between multiple events is normally challenging as interactions with complex mountainous terrain makes deposits from each event unique. As such numerical models and the interpretation of the underlying physics which govern landslide mobility is commonly case-specific and poorly suited to extrapolation beyond the single events the model is tuned to. Here we present a high-resolution LiDAR and hyperspectral dataset captured across a unique cluster of large rock avalanche source areas and deposits in the Vaigat straight, west central Greenland. Vaigat offers the unprecedented opportunity to model a sample of > 15 rock avalanches of various age sourced from an 80 km coastal escarpment. At Vaigat many of the key variables (topography, geology, post-glacial history) are held constant across all landslides providing the chance to investigate the variations in dynamics and emplacement style related to variable landslide volume, drop-heights, and thinning/spreading over relatively simple, unrestricted run-out zones both onto land and into water. Our data suggest that this region represents excellent preservation of landslide deposits, and hence is well suited to calibrate numerical models of run out dynamics. We use this data to aid the interpretation of deposit morphology, structure lithology and run-out characteristics in more complex settings. Uniquely, we are also able to calibrate our models using a far-field dataset of well-preserved tsunami run-up deposits, resulting from the 21

  9. The variation of the mechanical properties of rock on spatial scales from the laboratory to outcrop

    NASA Astrophysics Data System (ADS)

    Gage, J.; Wang, H. F.; Fratta, D.; Maclaughlin, M.; Turner, A. L.; GEOX^TM

    2011-12-01

    We have installed a dense array of Fiber Bragg Grating (FBG) strain and temperature sensors on the 4100'-level (1250 m) at the site of the former Homestake gold mine in Lead, SD. The sensor installation site is composed of the Precambrian Poorman formation that contains deformed and metamorphosed Precambrian sediments that is anisotropic including a well-developed foliation, quartz veins, and several joint sets. We have installed nine Micron Optics Inc. OS3600 tube gages. Four of these gages are mounted on the surface of the rock mass and attached to rock bolts that extend 2 m into the rock mass. The other five OS3600 sensors are embedded in drill holes into the rock mass. Additionally, we have developed a new method for measuring in situ strain and temperature in intact rock masses. Fiber optically instrumented rock strain and temperature strips (FROSTS) are 2 m-long strips of 304 stainless steel specially designed to measure temperature and both shortening and elongation in an intact rock mass. FROSTS have FBG strain and temperature sensors mounted on them at 30 cm interval and are grouted into a drill hole in a rock mass. In May 2011, we performed an active loading experiment that consisted of using two hydraulic rams to apply over 200 kN of force to the rock mass. Elastic strain was measured with the fiber optic sensor array. A one-dimensional Boussinesq solution calculates a Young's Modulus of 6.25 GPa for the rock mass. The laboratory-determined values for Young's Modulus in the Poorman formation vary between 49.6 and 94.5 GPa. The difference between the laboratory and field values can be attributed to the closing of fractures and microcracks in the rock mass making the rock mass more compliant than the smaller specimens used for the laboratory experiments. The results of the active loading experiment have implications for the up-scaling of rock mechanical properties between the laboratory and field scales.

  10. Seismically invisible fault zones: Laboratory insights into imaging faults in anisotropic rocks

    NASA Astrophysics Data System (ADS)

    Kelly, C. M.; Faulkner, D. R.; Rietbrock, A.

    2017-08-01

    Phyllosilicate-rich rocks which commonly occur within fault zones cause seismic velocity anisotropy. However, anisotropy is not always taken into account in seismic imaging and the extent of the anisotropy is often unknown. Laboratory measurements of the velocity anisotropy of fault zone rocks and gouge from the Carboneras fault zone in SE Spain indicate 10-15% velocity anisotropy in the gouge and 35-50% anisotropy in the mica-schist protolith. Greater differences in velocity are observed between the fast and slow directions in the mica-schist rock than between the gouge and the slow direction of the rock. This implies that the orientation of the anisotropy with respect to the fault is key in imaging the fault seismically. For example, for fault-parallel anisotropy, a significantly greater velocity contrast between fault gouge and rock will occur along the fault than across it, highlighting the importance of considering the foliation orientation in design of seismic experiments.

  11. Site study plan for routine laboratory rock mechanics, Deaf Smith County Site, Texas: Revision 1

    SciTech Connect

    Not Available

    1987-12-01

    This Site Study Plan for Routine Laboratory Rock Mechanics describes routine laboratory testing to be conducted on rock samples collected as part of the characterization of the Deaf Smith County site, Texas. This study plan describes the early laboratory testing. Additional testing may be required and the type and scope of testing will be dependent upon the results of the early testing. This study provides for measurements of index, hydrological, mechanical, and chemical properties with tests which are standardized and used widely in geotechnical investigations. Another Site Study Plan for Nonroutine Laboratory Rock Mechanics describes laboratory testing of samples from the site to determine mechanical, thermomechanical, and thermal properties by less widely used methods, many of which have been developed specifically for characterization of the site. Data from laboratory tests will be used for characterization of rock strata, design of shafts and underground facilities, and modeling of repository behavior in support of resolution of both preclosure and postclosure issues. A tentative testing schedule and milestone log are given. A quality assurance program will be utilized to assure that activities affecting quality are performed correctly and that appropriate documentation is maintained. 18 refs., 8 figs., 3 tabs.

  12. Monitoring and Analysis of Transient Pore Water Pressures in Large Suspended Rock Slides near Poschiavo, CH

    NASA Astrophysics Data System (ADS)

    de Palézieux, Larissa; Loew, Simon; Zwahlen, Peter

    2016-04-01

    Many mountain slopes in the Alps exhibit large compound rock slides or Deep Seated Gravitational Slope Deformations. Due to the basal rupture plane geometry and the cumulative displacement magnitude such landslide bodies are often strongly deformed, highly fractured and - at least locally - very permeable. This can lead to high infiltration rates and low phreatic groundwater tables. This is also the situation in the studied mountain slopes southwest of Poschiavo, where large suspended rockslides occur, with very little surface runoff at high elevations, and torrents developing only at the elevation of the basal rupture planes. Below the landslide toes, at altitudes below ca. 1700 m a.s.l., groundwater appears forming spring lines or distributed spring clusters. Within the scope of the design of a hydropower pump storage plant in the Poschiavo valley by Lagobianco SA (Repower AG), numerous cored and deep boreholes (of 50 to 300 m depth) have been drilled along the planned pressure tunnel alignement at elevations ranging from 963 to 2538 m a.s.l. in the years 2010 and 2012. In several boreholes Lugeon and transient pressure tests were executed and pore water pressure sensors installed in short monitoring sections at various depths. Most of these boreholes intersect deep rockslides in crystalline rocks and limestones, showing highly fragmented rock masses and cohesionless cataclastic shear zones of several tens of meters thickness. This study explores these borehole observations in landslides and adjacent stable slopes and links them to the general hydrologic and hydrogeologic framework. The analysis of the pore water pressure data shows significant variability in seasonal trends and short-term events (from snow melt and summer rain storms) and remarkable pressure differences over short horizontal and vertical distances. This reflects rock mass damage within landslide bodies and important sealing horizons at their base. Based on water balances, the estimated effective

  13. Geoengineering Research for a Deep Underground Science and Engineering Laboratory in Sedimentary Rock

    NASA Astrophysics Data System (ADS)

    Mauldon, M.

    2004-12-01

    A process to identify world-class research for a Deep Underground Science and Engineering Laboratory (DUSEL) in the USA has been initiated by NSF. While allowing physicists to study, inter alia, dark matter and dark energy, this laboratory will create unprecedented opportunities for biologists to study deep life, geoscientists to study crustal processes and geoengineers to study the behavior of rock, fluids and underground cavities at depth, on time scales of decades. A substantial portion of the nation's future infrastructure is likely to be sited underground because of energy costs, urban crowding and vulnerability of critical surface facilities. Economic and safe development of subsurface space will require an improved ability to engineer the geologic environment. Because of the prevalence of sedimentary rock in the upper continental crust, much of this subterranean infrastructure will be hosted in sedimentary rock. Sedimentary rocks are fundamentally anisotropic due to lithology and bedding, and to discontinuities ranging from microcracks to faults. Fractures, faults and bedding planes create structural defects and hydraulic pathways over a wide range of scales. Through experimentation, observation and monitoring in a sedimentary rock DUSEL, in conjunction with high performance computational models and visualization tools, we will explore the mechanical and hydraulic characteristics of layered rock. DUSEL will permit long-term experiments on 100 m blocks of rock in situ, accessed via peripheral tunnels. Rock volumes will be loaded to failure and monitored for post-peak behavior. The response of large rock bodies to stress relief-driven, time-dependent strain will be monitored over decades. Large block experiments will be aimed at measurement of fluid flow and particle/colloid transport, in situ mining (incl. mining with microbes), remediation technologies, fracture enhancement for resource extraction and large scale long-term rock mass response to induced

  14. Laboratory investigation of steam adsorption in geothermal reservoir rocks

    SciTech Connect

    Luetkehans, J.

    1988-02-01

    Some vapor-dominated geothermal reservoirs and low-permeability gas reservoirs exhibit anomalous behavior that may be caused by surface adsorption. For example, geothermal reservoirs in the Larderello are of Italy and reservoirs in the Geysers Geothermal Field, California produce little, if any, liquid. Yet to satisfy material balance constraints, another phase besides steam must be present. If steam adsorption occurring in significant amounts is not accounted for, the reserves will be grossly under-estimated. In addition, well tests may be misinterpreted because the pressure response is delayed owing to be adsorbed material leaving or entering the gaseous phase. In the present research the role of adsorption in geothermal reservoirs in investigated. Two sets of laboratory equipment were constructed to measure adsorption isotherms of cores from Berea sandstone, Larderello, and The Geysers. Seven experimental runs were completed using nitrogen on the low temperature apparatus at -196/sup 0/C. Eight runs were conducted using steam on the high temperature apparatus at temperatures ranging from 150 C to 207/sup 0/C. The largest specific surface area and the greatest nitrogen adsorption isotherm were measured on the Berea sandstone, followed by a core from Larderello and then The Geysers. Difficulties in determining whether a system had reached equilibrium at the end of each step lead to questions regarding the magnitude of adsorption measured by the steam runs. Nevertheless, adsorption was observed and the difficulties themselves were useful indicators of needed future research.

  15. Quantification of rock heterogeneities by structural geological field studies combined with laboratory analyses

    NASA Astrophysics Data System (ADS)

    Reyer, Dorothea; Afsar, Filiz; Philipp, Sonja

    2013-04-01

    Heterogeneous rock properties in terms of layering and complex infrastructure of fault zones are typical in sedimentary successions. The knowledge of in-situ mechanical rock properties is crucial for a better understanding of processes such as fracturing and fluid transport in fractured reservoirs. To estimate in situ rock properties at different depths it is important to understand how rocks from outcrops differ from rocks at depth, for example due to alteration and removal of the overburden load. We aim at quantifying these properties by performing structural geological field studies in outcrop analogues combined with laboratory analyses of outcrop samples and drill-cores. The field studies focus on 1) fault zone infrastructure and 2) host rock fracture systems in two different study areas with different lithologies, the North German and the Bristol Channel Basin. We analyse quantitatively the dimension, geometry, persistence and connectivity of fracture systems. The field studies are complemented by systematic sampling to obtain the parameters Young's modulus, compressive and tensile strengths and elastic strain energy (also referred to as destruction work) from which we estimate rock and fracture toughnesses. The results show that in rocks with distinctive layering fractures are often restricted to individual layers, that is, stratabound. The probability of arrest seems to depend on the stiffness contrast between two single layers as well as on the thickness of the softer layer. The results also show that there are clear differences between fault zones in the different lithologies in terms of damage zone thicknesses and fracture system parameters. The results of laboratory analyses show that the mechanical properties vary considerably and for many samples there are clear directional differences. That is, samples taken perpendicular to layering commonly have higher stiffnesses and strengths than those taken parallel to layering. We combine the results of

  16. Laboratory study of CH4-N2 clathrate hydrates applied to Titan's surface conditions

    NASA Astrophysics Data System (ADS)

    Nna Mvondo, D.; Tobie, G.; Le Menn, E.; Bollengier, O.; Grasset, O.

    2013-12-01

    It is proposed that clathrate hydrates may be present at the surface of Titan (Choukroun et al., 2013, 2010). At Titan's surface pressure, pure methane and ethane hydrate (as well as other guests) could exist in the sI structure and nitrogen hydrate as sII structure. The large reservoir of several guest compounds in Titan's atmosphere is expected to result in the formation of multicomponent (compound) clathrate hydrates, as sII or sH structures, stable relative to water ice on the surface of Titan, and with faster expected growth kinetics relative to pure hydrate (Osegovic et al., 2005). Compound hydrate could be a likely sink for many chemicals occurring on Titan's surface. We note that experimental studies on the formation and thermodynamics of the methane-water system, at low and high pressures applied to Titan have been carried out (Lunine and Stevenson; 1985; Choukroun et al., 2013, 2010 and references therein). However, laboratory work on mixing of methane with other compounds in the clathrate phase (ethane, N2, CO2, etc...) applied to Titan conditions (and other icy moons) has still to be addressed. In this context, we have studied the formation and spectral signatures of CH4-N2 clathrate hydrates at temperature and pressure conditions relevant for Titan's surface. Clathrate hydrates samples have been synthesized in an autoclave combined with a cooling system and a multi-gas mixer. Few ml of deionized water was introduced in the autoclave and pressurized with the N2 and CH4 gaseous species for a couple of days, at controlled low temperature and low pressure of the formation and stability of clathrate hydrates. Their formation has been monitored by gas chromatography. Their spectral characterization at low temperature was performed by infrared (FTIR) reflectance spectroscopy. Raman spectroscopy was also used to give constraints on the composition, structure and cage occupancy of the formed clathrates. Here we present the results obtained for different mixing

  17. Rocks.

    ERIC Educational Resources Information Center

    Lee, Alice

    This science unit is designed for limited- and non-English speaking students in a Chinese bilingual education program. The unit covers rock material, classification, characteristics of types of rocks, and rock cycles. It is written in Chinese and simple English. At the end of the unit there is a list of main terms in both English and Chinese, and…

  18. Comparison of field and laboratory weathering rates in carbonate rocks from an Eastern Mediterranean drainage basin

    NASA Astrophysics Data System (ADS)

    Levenson, Yael; Ryb, Uri; Emmanuel, Simon

    2017-05-01

    The rates of carbonate rock weathering affect the global carbon cycle over timescales of hundreds to thousands of years. While field measurements show that the rate of carbonate denudation increases with rainfall, significant variability exists. To determine whether the mineralogical composition of the rocks causes this variability, we compare published long-term field denudation rates determined from cosmogenic isotopes (36Cl) with the weathering rates measured in laboratory experiments conducted on the same rock samples. The samples were collected from natural-rock outcrops across the Soreq drainage basin (Israel) that experience similar mean annual precipitation, but exhibit long-term denudation rates that vary from 6 mm ky-1 to 20 mm ky-1. In laboratory experiments, we found that the laboratory rates also varied, decreasing as the ratio of dolomite to calcite increased. However, no correlation was evident between the long-term denudation rates and mineral composition, suggesting that the variability in field rates was not controlled by the kinetics of dissolution. Other factors, such as rain intensity, biological activity, and mechanical erosion are likely to control the variability in the rates by inhibiting or accelerating the weathering of carbonate surfaces in natural settings.

  19. Real-time forecasting of sample failure in laboratory rock deformation experiments

    NASA Astrophysics Data System (ADS)

    Bell, Andrew; Main, Ian; Atkinson, Malcolm; Filgueira, Rosa; Meredith, Philip; Boon, Steve

    2013-04-01

    The ability to accurately forecast catastrophic failure in rocks is likely to be a key component in reliable eruption forecasting models. The processes controlling the approach to failure produce highly non-linear behaviour, with a large stochastic component due to material heterogeneity. In the laboratory, mechanical, hydraulic, and rock physical properties are known to change in systematic ways prior to catastrophic failure. The effectiveness of such signals in real-time forecasting has never been tested before in a controlled laboratory setting; previous work has often been qualitative in nature, and subject to retrospective selection bias. Here we describe a collaborative experiment in real-time data assimilation to explore the limits of predictability of rock failure in a best-case scenario. Data are streamed from a remote rock deformation laboratory to a user-friendly portal, where several proposed physical/stochastic models can be analyzed in parallel in real time, using a variety of statistical fitting techniques, including least squares regression, maximum likelihood fitting, Markov-chain Monte-Carlo and Bayesian analysis. The results are posted and regularly updated on the web site prior to catastrophic failure, to ensure a true and verifiable prospective test of forecasting power.

  20. Ancient microbial activity recorded in fracture fillings from granitic rocks (Äspö Hard Rock Laboratory, Sweden).

    PubMed

    Heim, C; Lausmaa, J; Sjövall, P; Toporski, J; Dieing, T; Simon, K; Hansen, B T; Kronz, A; Arp, G; Reitner, J; Thiel, V

    2012-07-01

    Fracture minerals within the 1.8-Ga-old Äspö Diorite (Sweden) were investigated for fossil traces of subterranean microbial activity. To track the potential organic and inorganic biosignatures, an approach combining complementary analytical techniques of high lateral resolution was applied to drill core material obtained at -450 m depth in the Äspö Hard Rock Laboratory. This approach included polarization microscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS), confocal Raman microscopy, electron microprobe (EMP) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The fracture mineral succession, consisting of fluorite and low-temperature calcite, showed a thin (20-100 μm), dark amorphous layer lining the boundary between the two phases. Microscopic investigations of the amorphous layer revealed corrosion marks and, in places, branched tubular structures within the fluorite. Geochemical analysis showed significant accumulations of Si, Al, Mg, Fe and the light rare earth elements (REE) in the amorphous layer. In the same area, ToF-SIMS imaging revealed abundant, partly functionalized organic moieties, for example, C(x)H(y)⁺, C(x)H(y)N⁺, C(x)H(y)O⁺. The presence of such functionalized organic compounds was corroborated by Raman imaging showing bands characteristic of C-C, C-N and C-O bonds. According to its organic nature and the abundance of relatively unstable N- and O- heterocompounds, the organic-rich amorphous layer is interpreted to represent the remains of a microbial biofilm that established much later than the initial cooling of the Precambrian host rock. Indeed, δ¹³C, δ¹⁸O and ⁸⁷Sr/⁸⁶Sr isotope data of the fracture minerals and the host rock point to an association with a fracture reactivation event in the most recent geological past. © 2012 Blackwell Publishing Ltd.

  1. Laboratory Detection and Analysis of Organic Compounds in Rocks Using HPLC and XRD Methods

    NASA Technical Reports Server (NTRS)

    Dragoi, D.; Kanik, I.; Bar-Cohen, Y.; Sherrit, S.; Tsapin, A.; Kulleck, J.

    2004-01-01

    In this work we describe an analytical method for determining the presence of organic compounds in rocks, limestone, and other composite materials. Our preliminary laboratory experiments on different rocks/limestone show that the organic component in mineralogical matrices is a minor phase on order of hundreds of ppm and can be better detected using high precision liquid chromatography (HPLC). The matrix, which is the major phase, plays an important role in embedding and protecting the organic molecules from the harsh Martian environment. Some rocks bear significant amounts of amino acids therefore, it is possible to identify these phases using powder x-ray diffraction (XRD) by crystallizing the organic. The method of detection/analysis of organics, in particular amino acids, that have been associated with life will be shown in the next section.

  2. Laboratory Detection and Analysis of Organic Compounds in Rocks Using HPLC and XRD Methods

    NASA Technical Reports Server (NTRS)

    Dragoi, D.; Kanik, I.; Bar-Cohen, Y.; Sherrit, S.; Tsapin, A.; Kulleck, J.

    2004-01-01

    In this work we describe an analytical method for determining the presence of organic compounds in rocks, limestone, and other composite materials. Our preliminary laboratory experiments on different rocks/limestone show that the organic component in mineralogical matrices is a minor phase on order of hundreds of ppm and can be better detected using high precision liquid chromatography (HPLC). The matrix, which is the major phase, plays an important role in embedding and protecting the organic molecules from the harsh Martian environment. Some rocks bear significant amounts of amino acids therefore, it is possible to identify these phases using powder x-ray diffraction (XRD) by crystallizing the organic. The method of detection/analysis of organics, in particular amino acids, that have been associated with life will be shown in the next section.

  3. Hyperspectral Signatures (400 to 2500 nm) of Vegetation, Minerals, Soils, Rocks, and Cultural Features: Laboratory and Field Measurements

    DTIC Science & Technology

    1990-12-01

    SHEET NUMBER SPECTRUM NUMBER Anorthosite RI.0008 JGR.34, .35 RI.0010 JGR.28, .29 BaatRI.0002 87LCS.56, .57 RI.0002LJOR.76, .77, .78, .79 Gabbronorite RI...Laboratory Reflectance Spectra of Rock Rock Type: Anorthosite Date Collected: 2 Jun 1988 Spectrum No.: JGR.34, .35. Sample No.: JE-0508 Site Location...Lu 0D L LL \\a wr-i W 0n) 0 LW cc co 0o L 0 0 Wo 4-)) 0 Laboratory Reflectance Spectra of Rock Rock Type: Anorthosite Date Collected: 2 Jun 1988

  4. Intense CH 4 plumes generated by serpentinization of ultramafic rocks at the intersection of the 15°20'N fracture zone and the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Charlou, Jean Luc; Fouquet, Yves; Bougault, Henri; Donval, Jean P.; Etoubleau, Joel; Jean-Baptiste, Philippe; Dapoigny, Arnaud; Appriou, Pierre; Rona, Peter A.

    1998-07-01

    As part of the FARA French-US Program designed to study the Mid- Atlantic Ridge (MAR) between 15°N and the Azores, twenty-three dives with the submersible Nautile were conducted during the French-US Faranaut 15N cruise on the eastern and western parts of the 15°20'N Fracture Zone/Ridge axis intersection. South of the eastern ridge-transform fault intersection, nine Nautile dives were made within the rift valley and along the western rift valley wall. CH 4 concentrations in the bottom waters reach 53.2 nmol/kg along faulted zones on top and on the east flank of the ultramafic inner corner high (15°05'N, 44°59'W) where serpentinized rocks outcrop. No 3He anomaly is associated with methane, ruling out any primary mantle component. Fourteen dives were also made in the rift valley to the north, close to the western intersection of the 15°20'N Transform. High CH 4 anomalies (up to 22 nmol/kg) are also present in the bottom waters of the rift valley northern segment on both the western and eastern valley walls and on the inner high adjacent to the eastern wall where ultramafic rocks outcrop. Seven vertical hydrocasts carried out in the axial valley (4500 m deep) show an intense CH 4 anomaly, with a maximum (35.8 nmol/kg) at 3200 m depth. This CH 4 concentration is among the highest found along the Mid-Atlantic Ridge (Charlou and Donval, 1993; Charlou et al., 1997). CH 4 concentrations of 9.9-14.9 nmol/kg are also present on the western wall along the 3200 m isobath. The high CH 4 concentrations correspond to only weak 3He anomalies. This CH 4-rich plume is also associated with active fault zones that expose peridotite rocks. CH 4 output from ultramafic outcrops on the western and eastern intersections of the 15°20'N Fracture Zone with the MAR is believed to reflect ongoing serpentinization. These results associated with many other CH 4 anomalies measured in the water column above ultramafic outcrops found between 12°N and the Azores most likely reflect

  5. Laboratory Detection of IZnCH_{3} (X^{1}A_{1}) : Further Evidence for Zinc Insertion

    NASA Astrophysics Data System (ADS)

    Bucchino, Matthew P.; Young, Justin P.; Sheridan, Phil M.; Ziurys, Lucy M.

    2013-06-01

    Millimeter-wave direct absorption techniques were used to record the pure rotational spectrum of IZnCH_{3} (X^{1}A_{1}). This species was produced by the reaction of zinc vapor with ICH_{3} in the presence of a DC discharge. Rotational transitions ranging from J = 109 {→} 108 to J = 122 {→} 121 were recorded for I^{64}ZnCH_{3} and I^{66}ZnCH_{3} in the frequency range of 250{-290} GHz. The Ka = 0{-4} components were measured for each transition, with the K-ladder structure and nuclear spin statistics indicative of a symmetric top. As with HZnCH_{3} (X^{1}A_{1}), the detection of IZnCH_{3} provides further evidence for a zinc insertion process.

  6. Pore-space alteration in source rock (shales) during hydrocarbons generation: laboratory experiment

    NASA Astrophysics Data System (ADS)

    Giliazetdinova, D. R.; Korost, D. V.; Nadezhkin, D. V.

    2013-12-01

    Hydrocarbons (HC) are generated from solid organic matter (kerogen) due to thermocatalytic reactions. The rate of such reactions shows direct correlation with temperature and depends on the depth of source rock burial. Burial of sedimentary rock is also inevitably accompanied by its structural alteration owing to compaction, dehydration and re-crystallization. Processes of HC generation, primary migration and structural changes are inaccessible for direct observation in nature, but they can be studied in laboratory experiments. Experiment was carried out with a clayey-carbonate rock sample of the Domanik Horizon taken from boreholes drilled in the northeastern part of the south Tatar arch. The rock chosen fits the very essential requirements - high organic matter content and its low metamorphic grade. Our work aimed at laboratory modeling of HC generation in an undisturbed rock sample by its heating in nitrogen atmosphere based on a specified temperature regime and monitoring alterations in the pore space structure. Observations were carried out with a SkyScan-1172 X-ray microtomography scanner (resulting scan resolution of 1 μm). A cylinder, 44 mm in diameter, was prepared from the rock sample for the pyrolitic and microtomographic analyses. Scanning procedures were carried out in 5 runs. Temperature interval for each run had to match the most important stage of HC generation in the source rock, namely: (1) original structure; (2) 100-300°C - discharge of free and adsorbed HC and water; (3) 300-400°C - initial stage of HC formation owing to high-temperature pyrolysis of the solid organic matter and discharge of the chemically bound water; (4) 400-470°C - temperature interval fitting the most intense stage of HC formation; (5) 470-510°C - final stage of HC formation. Maximum sample heating in the experiment was determined as temperature of the onset of active decomposition of carbonates, i.e., in essence, irreversible metamorphism of the rock. Additional

  7. Experiments in a Deep Underground Science and Engineering Laboratory (DUSEL) Hosted in Sedimentary Rocks

    NASA Astrophysics Data System (ADS)

    Burbey, T. J.; Kimballton, M. O.; Science Team

    2004-12-01

    Sedimentary-rock environments, particularly those dominated by carbonate rock, provide unique opportunities for geoscientists, geobiologists, and geophysicists, to perform revolutionary experiments aimed at answering fundamental science questions and satisfying our societal demands for resources and environmental stewardship. As part of the National Science Foundation's DUSEL initiative, the selected site should offer structurally and biologically diverse environments. At the same time, the site should offer host rock capable of providing safely engineered hallways and laboratories at depths as great as 2,200 m for numerous deep underground physics, engineering, and earth science experiments. An ideal sedimentary-rock environment offers the prospect of highly folded, thrusted, and fractured rocks that allow opportunities to study the 3-D behavior of thrusts that propagate parallel to bedding as well as those that ramp across bedding. Flow dynamics along and across deeply buried faults is poorly understood. Experiments will be developed at various scales to assess flow and transport processes to better quantify hydrogeological mechanisms influencing flow and possible aquifer compartmentalization. Seismic reflection images, vertical seismic profiles, and tomograms will provide details of the fault properties and geometry, which can be verified in-situ. Repeated overthrusted sequences provide opportunities for geobiologists to investigate how microbes in rocks of similar age are affected by differences in pressure, temperature, and depth. Carbonate rocks provide opportunities to study energy sources and adaptations for nutrient acquisition, reproduction, stability, survival, and repair under extreme conditions. Results from these investigations will permit comparisons with other foreland fold-thrust belts worldwide. Fossil fuels remain the world's main energy resource and the large majority of these are hosted in sedimentary rocks. Improved methods for reservoir

  8. Change Analysis of Laser Scans of Laboratory Rock Slopes Subject to Wave Attack Testing

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Lindenbergh, R.; Hofland, B.; Kramer, R.

    2017-09-01

    For better understanding how coastal structures with gentle slopes behave during high energy events, a wave attack experiment representing a storm of 3000 waves was performed in a flume facility. Two setups with different steepness of slope were compared under the same conditions. In order to quantify changes in the rock slopes after the wave attack, a terrestrial laser scanner was used to obtain 3D coordinates of the rock surface before and after each experiment. Next, through a series of processing steps, the point clouds were converted to a suitable 2D raster for change analysis. This allowed to estimate detailed and quantitative change information. The results indicate that the area around the artificial coast line, defined as the intersection between sloped surface and wave surface, is most strongly affected by wave attacks. As the distances from the sloped surface to the waves are shorter, changes for the mildly sloped surface, slope 1 (1 : 10), are distributed over a larger area compared to the changes for the more steeply sloped surface, slope 2 (1 : 5). The results of this experiment show that terrestrial laser scanning is an effective and feasible method for change analysis of rock slopes in a laboratory setting. Most striking results from a process point of view is that the transport direction of the rocks change between the two different slopes: from seaward transport for the steeper slope to landward transport for the milder slope.

  9. Large rock-slope failures impacting on lakes - Reconstruction of events and deciphering mobility processes at Lake Oeschinen (CH) and Lake Eibsee (D)

    NASA Astrophysics Data System (ADS)

    Knapp, Sibylle; Anselmetti, Flavio; Gilli, Adrian; Krautblatter, Michael; Hajdas, Irka

    2017-04-01

    Among single event landslide disasters large rock-slope failures account for 75% of disasters with more than 1000 casualties. The precise determination of recurrence rates and failure volumes combined with an improved understanding of mobility processes are essential to better constrain runout models and establish early warning systems. Here we present the data sets from the two alpine regions Lake Oeschinen (CH) and Lake Eibsee (D) to show how lake studies can help to decipher the multistage character of rock-slope failures and to improve the understanding of the processes related to rock avalanche runout dynamics. We focus on such that impacted on a (paleo-) lake for two main reasons. First, the lake background sedimentation acts as a natural chronometer, which enables the stratigraphic positioning of events and helps to reconstruct the event history. This way it becomes possible to (i) decipher the multistage character of the failure of a certain rock slope and maybe detect progressive failure, (ii) determine the recurrence rates of failures at that certain rock slope, and (iii) consider energies based on estimated failure volumes, fall heights and deposition patterns. Hence, the interactions between a rock-slope failure, the water reservoir and the altered rock-slope are better understood. Second, picturing a rock avalanche running through and beyond a lake, we assume the entrainment of water and slurry to be crucial for the subsequent flow dynamics. The entrainment consumes a large share of the total energy, and orchestrates the mobility leading to fluidization, a much higher flow velocity and a longer runout-path length than expected. At Lake Oeschinen (CH) we used lake sediment cores and reflection seismic profiles in order to reconstruct the 2.5 kyrs spanning rock-slope failure history including 10 events, six of which detached from the same mountain flank, and correlated them with (pre-) historical data. The Lake Eibsee records provide insights into the

  10. Relating changes in radon exhalation to increasing loading in rocks. New insights from rock deformation laboratory experiments.

    NASA Astrophysics Data System (ADS)

    Tuccimei, P.; Vinciguerra, S.; Moretti, S.; Mollo, S.; Castelluccio, M.; Soligo, M.

    2009-04-01

    Radon emissions increase is regarded as a valuable geophysical precursor of earthquakes. Radon concentrations are observed in the soil or groundwater and have been related to increasing fracturing of the medium, which increases the exhaling surface area and originates pathways for radon release. In order to investigate the relation between increasing load and changes of radon exhalation rates, a volcanic tuff ("Tufo Rosso a Scorie Nere") from Vico volcano (central Italy) has been investigated in the laboratory. Four samples of 120 (length) x 60 (diameter) mm, have been loaded at constant strain rate, to guarantee a homogeneous deformation of the microstructure, with a strain rate of 0.5 micron / s. Two samples have been loaded up to the failure, while the remaining two have been downloaded, before the onset of dilatancy, when the highest compaction of existing voids space was reached. Radon exhalation rates of rock samples before deformation (step 1), at the end of the compaction phase (step 2) and after rupture, with a partial creep along the failure plain (step 3) have been measured in laboratory by using a solid-state alpha detector, connected to a small accumulation chamber kept at the constant temperature of 60 °C, with the aim to enhance radon exhalation. Measurements have been always performed on groups of two samples to achieve strong signals and being able to discriminate better changes in radon emissions. Analyses were repeated several times in order to verify their reproducibility. A decrease of radon emissions, induced by a stress of about 2 MPa has been measured after step 2, when samples porosity (about 47 %) was reduced from the compaction and formation of new cracks did not start yet. On the contrary, radon release increased after rupture, when the total exhaling surface of test samples was evidently enlarged.

  11. Mont Terri Underground Rock Laboratory, Switzerland-Research Program And Key Results

    NASA Astrophysics Data System (ADS)

    Nussbaum, C. O.; Bossart, P. J.

    2012-12-01

    Argillaceous formations generally act as aquitards because of their low hydraulic conductivities. This property, together with the large retention capacity of clays for cationic contaminants and the potential for self-sealing, has brought clay formations into focus as potential host rocks for the geological disposal of radioactive waste. Excavated in the Opalinus Clay formation, the Mont Terri underground rock laboratory in the Jura Mountains of NW Switzerland is an important international test site for researching clay formations. Research is carried out in the underground facility, which is located adjacent to the security gallery of the Mont Terri motorway tunnel. Fifteen partners from European countries, USA, Canada and Japan participate in the project. The objectives of the research program are to analyze the hydrogeological, geochemical and rock mechanical properties of the Opalinus Clay, to determine the changes induced by the excavation of galleries and by heating of the rock formation, to test sealing and container emplacement techniques and to evaluate and improve suitable investigation techniques. For the safety of deep geological disposal, it is of key importance to understand the processes occurring in the undisturbed argillaceous environment, as well as the processes in a disturbed system, during the operation of the repository. The objectives are related to: 1. Understanding processes and mechanisms in undisturbed clays and 2. Experiments related to repository-induced perturbations. Experiments of the first group are dedicated to: i) Improvement of drilling and excavation technologies and sampling methods; ii) Estimation of hydrogeological, rock mechanical and geochemical parameters of the undisturbed Opalinus Clay. Upscaling of parameters from laboratory to in situ scale; iii) Geochemistry of porewater and natural gases; evolution of porewater over time scales; iv) Assessment of long-term hydraulic transients associated with erosion and thermal

  12. A versatile facility for laboratory studies of viscoelastic and poroelastic behaviour of rocks

    SciTech Connect

    Jackson, Ian; Schijns, Heather; Schmitt, Douglas R.; Mu Junjie; Delmenico, Alison

    2011-06-15

    Novel laboratory equipment has been modified to allow both torsional and flexural oscillation measurements at sub-microstrain amplitudes, thereby providing seismic-frequency constraints on both the shear and compressional wave properties of cylindrical rock specimens within the linear regime. The new flexural mode capability has been tested on experimental assemblies containing fused silica control specimens. Close consistency between the experimental data and the results of numerical modelling with both finite-difference and finite-element methods demonstrates the viability of the new technique. The capability to perform such measurements under conditions of independently controlled confining and pore-fluid pressure, with emerging strategies for distinguishing between local (squirt) and global (specimen-wide) fluid flow, will have particular application to the study of frequency-dependent seismic properties expected of cracked and fluid-saturated rocks of the Earth's upper crust.

  13. A Computational Method for 3D Anisotropic Travel-time Tomography of Rocks in the Laboratory

    NASA Astrophysics Data System (ADS)

    Ghofranitabari, Mehdi; Young, R. Paul

    2013-04-01

    True triaxial loading in the laboratory applies three principal stresses on a cubic rock specimen. Elliptical anisotropy and distributed heterogeneities are introduced in the rock due to closure and opening of the pre-existing cracks and creation and growth of the new aligned cracks. The rock sample is tested in a Geophysical Imaging Cell that is armed with an Acoustic Emission monitoring system which can perform transducer to transducer velocity surveys to image velocity structure of the sample during the experiment. Ultrasonic travel-time tomography as a non-destructive method outfits a map of wave propagation velocity in the sample in order to detect the uniformly distributed or localised heterogeneities and provide the spatial variation and temporal evolution of induced damages in rocks at various stages of loading. The rock sample is partitioned into cubic grid cells as model space. Ray-based tomography method measuring body wave travel time along ray paths between pairs of emitting and receiving transducers is used to calculate isotropic ray-path segment matrix elements (Gij) which contain segment lengths of the ith ray in the jth cell in three dimensions. Synthetic P wave travel times are computed between pairs of transducers in a hypothetical isotropic heterogeneous cubic sample as data space along with an error due to precision of measurement. 3D strain of the squeezed rock and the consequent geometrical deformation is also included in computations for further accuracy. Singular Value Decomposition method is used for the inversion from data space to model space. In the next step, the anisotropic ray-path segment matrix and the corresponded data space are computed for hypothetical anisotropic heterogeneous samples based on the elliptical anisotropic model of velocity which is obtained from the real laboratory experimental data. The method is examined for several different synthetic heterogeneous models. An "Inaccuracy factor" is utilized to inquire the

  14. Numerical Simulation of Rock Fracturing under Laboratory True-Triaxial Stress Conditions

    NASA Astrophysics Data System (ADS)

    Ghofrani Tabari, Mehdi; Hazzard, Jim; Young, R. Paul

    2016-04-01

    A True-triaxial test (TTT) also known as polyaxial test was carried out on saturated Fontainebleau sandstone to elevate our knowledge about the role of the intermediate principal stress on deformation, fracturing and failure patterns of the rock using acoustic emission (AE) monitoring. The induced AE activities were studied by location of the AE events and mapping them on the captured features in the post-mortem CT scan images of the failed sample. The time-lapse monitoring of the velocity structure and AE activity in the sample portrayed a deformational path which led to propagation of fractures and formation of failure patterns in the rock. Having these experimental results, we aimed at running a numerical model of our true-triaxial testing system using an Itasca software based on three-dimensional explicit finite-difference method called FLAC3D. The loads were applied at the end of each platen while the steel platens transferred the stress to the surface of the cubic specimen. In order to simulate the failure, randomly distributed strength demonstrated by Mohr-Columb failure criterion was implemented in the spatial elements of the model representing the random distribution of the micro-cracks. During the experiment, pseudo-boundary surfaces were formed along the minimum and intermediate principal stress axes in the rock due to non-uniform distribution of stress as a result of geometrical constraints including the corner effects and friction on the platen-rock surfaces. Both the real AE data as well as the numerical simulation verified that coalescence of micro-cracks mainly occurred around these pseudo-boundaries with highest stress gradients as well as highest velocity gradients in the rock specimen and formed curvi-planar fractures. The rock specimen strength and brittleness in the macro-scale was also obtained from the stress-strain curve which was consistent with the experimental laboratory measurements. Eventually, the failure of the rock specimen was

  15. Phase curves of meteorites and terrestrial rocks - Laboratory measurements and applications to asteroids

    NASA Astrophysics Data System (ADS)

    Capaccioni, F.; Cerroni, P.; Barucci, M. A.; Fulchignoni, M.

    1990-02-01

    Laboratory measurements have been conducted to ascertain the reflectance characteristics of powdered meteorites and terrestrial rocks at various phase angles. In addition to analyzing the reflectance of 14 chondrites and three achondrites, attention is given to the phase curve effects of varying the size fraction and the degree of compaction of such terrestrial minerals as peridotite, diabase, and quartz-rich sand. In varying degrees, all samples are found to exhibit an opposition effect, and homogeneity is observed for phase curves of meteorites of similar petrologic type. Meteorites are ordered in terms of the parameter delta, which describes the magnitude of the opposition effect following an evolutionary trend.

  16. Laboratory rotational spectrum of singly 13C-substituted dimethyl ether up to 1.5 THz and interstellar detection of 13CH_3O12CH_3 - a fruitful interplay between laboratory work and inter

    NASA Astrophysics Data System (ADS)

    Koerber, M.; Bisschop, S.; Endres, C.; Lewen, F.; Schlemmer, S.

    2011-05-01

    Dimethyl ether (CH_3OCH_3) is found in high abundance in star forming regions. However, the interstellar formation process of dimethyl ether still remains unclear up to now. In current gas-grain models gas-phase synthesis via self-methylation of methanol evaporating from grains is discussed in contrast to the surface reaction of CH_3 with successively hydrogenated CO (Garrod & Herbst 2006). An observational test for the formation mechanism has been proposed by Charnley et al. (2004) making use of the 13C fractionation into CO at low temperatures on grains: Comparing the 12C/13C ratio of molecules to the 12CO/13CO ratio allows to distinguish between formation from CO on cold grains and pure gas-phase formation routes. The isotopic ratio of species like dimethyl ether thus can be used as a tracer of the chemical evolution of the observed region. Due to its two methyl groups undergoing large amplitude motions and a relatively strong dipole moment of μ = 1.302 D it shows a strong and dense complex spectrum all over the terahertz region relevant for Herschel and ALMA observations. Accurate transition frequencies are needed to interpret the astronomical spectra. For the main isotopologue extensive data are now available (Endres et al. 2009). However, due to the greatly improved sensitivity of the new observatories isotopic species of abundant molecules like dimethyl ether are appearing in the spectra as well. In this work we present laboratory measurements of singly 13C-substituted dimethyl ether (13CH_3O12CH_3) up to 1.5 THz. More than 1700 transitions of 13CH_3O12CH_3 with rotational quantum numbers up to J = 53 and K = 25 have been analyzed. Based on the laboratory measurements singly 13C-substituted dimethyl ether has been detected for the first time in the spectrum of G327.3-0.6 (Bisschop et al. in prep.) and a preliminary value for the 12C/13C abundance ratio has been determined.

  17. Laboratory measurements of p-wave seismic Q on lunar and analog rocks

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.; Nadler, H.; Richardson, J. M.; Ahlberg, L.

    1978-01-01

    The longitudinal-wave, internal friction quality factor (Qp) of out-gassed rock subjected to hydrostatic confining pressure was measured by a technique of aerodynamically shaping the sample ends to remove most of the air drag. Q values of about 1000 and 100 were obtained at 100 MPa and in laboratory air, respectively. The temperature dependence of Q in lunar rock 70215.85 and an analog of lunar basalt was investigated over the range -100 to 450 deg C. A systematic increase in Q was observed at 50 Hz, 5 kHz and 50 kHz. When the temperature was lowered to -100 deg C moderate decreases in Q were observed from 100 to 250 deg C, and high Q values were obtained at 450 deg C. The temperature and pressure dependences of Q suggest that high lunar seismic Q values imply a very dry crust to depths of at least 50 km. These results further indicate that elastic waves are damped in volatile-rich rock by an absorption mechanism which involves changes in the bonding, structure and coverage of the molecular, physisorbed and chemisorbed H2O at crack and grain boundaries.

  18. Using high-resolution laboratory and ground-based solar spectra to assess CH4 absorption coefficient calculations

    NASA Astrophysics Data System (ADS)

    Mendonca, J.; Strong, K.; Sung, K.; Devi, V. M.; Toon, G. C.; Wunch, D.; Franklin, J. E.

    2017-03-01

    A quadratic-speed-dependent Voigt line shape (qSDV) with line mixing (qSDV+LM), together with spectroscopic line parameters from Devi et al. [1,2] for the 2v3 band of CH4, was used to retrieve total columns of CH4 from atmospheric solar absorption spectra. The qSDV line shape (Tran et al., 2013) [3] with line mixing (Lévy et al., 1992) [4] was implemented into the forward model of GFIT (the retrieval algorithm that is at the heart of the GGG software (Wunch et al., 2015) [5]) to calculate CH4 absorption coefficients. High-resolution laboratory spectra of CH4 were used to assess absorption coefficients calculated using a Voigt line shape and spectroscopic parameters from the atm line list (Toon, 2014) [6]. The same laboratory spectra were used to test absorption coefficients calculated using the qSDV+LM line shape with spectroscopic line parameters from Devi et al. [1,2] for the 2v3 band of CH4 and a Voigt line shape for lines that don't belong to the 2v3 band. The spectral line list for lines that don't belong to the 2v3 band is an amalgamation of multiple spectral line lists. We found that for the P, Q, and R branches of the 2v3 band, the qSDV+LM simulated the laboratory spectra better than the Voigt line shape. The qSDV+LM was also used in the spectral fitting of high-resolution solar absorption spectra from four ground-based remote sensing sites and compared to spectra fitted with a Voigt line shape. The average root mean square (RMS) residual for 131,124 solar absorption spectra fitted with absorption coefficients calculated using the qSDV+LM for the 2v3 band of CH4 and the new spectral line list for lines for lines that don't belong to the 2v3 band, was reduced in the P, Q, and R branches by 5%, 13%, and 3%, respectively when compared with spectra fitted using a Voigt line shape and the atm line list. We found that the average total column of CH4 retrieved from these 131,124 spectra, with the qSDV+LM was 1.1±0.3% higher than the retrievals performed using a

  19. Analysis of the hydraulic data from the MI fracture zone at the Grimsel Rock Laboratory, Switzerland

    SciTech Connect

    Davey, A.; Karasaki, K.; Long, J.C.S.; Landsfeld, M.; Mensch, A.; Martel, S.J.

    1989-10-01

    One of the major problems in analyzing flow and transport in fractured rock is that the flow may be largely confined to a poorly connected network of fractures. In order to overcome some of this problem, Lawrence Berkeley Laboratory (LBL) has been developing a new type of fracture hydrology model called an equivalent discontinuum model. In this model the authors represent the discontinuous nature of the problem through flow on a partially filled lattice. A key component in constructing an equivalent discontinuum model from this lattice is removing some of the conductive elements such that the system is partially connected in the same manner as the fracture network. This is done through a statistical inverse technique called simulated annealing. The fracture network model is annealed by continually modifying a base model, or template such that the modified systems behave more and more like the observed system. In order to see how the simulated annealing algorithm works, the authors have developed a series of synthetic real cases. In these cases, the real system is completely known so that the results of annealing to steady state data can be evaluated absolutely. The effect of the starting configuration has been studied by varying the percent of conducting elements in the initial configuration. Results have shown that the final configurations converge to about the same percentage of conducting elements. An example using Nagra field data from the Migration Experiment (MI) at Grimsel Rock Laboratory in Switzerland is also analyzed. 24 refs., 33 figs., 3 tabs.

  20. In situ and laboratory measurements of hydraulic conductivity in granitic rock matrix

    NASA Astrophysics Data System (ADS)

    Zaruba, J.; Najser, J.; Rukavickova, L.; Sosna, K.

    2012-12-01

    In the Czech Republic, granitic massifs are considered to provide the most suitable hosts for a radioactive waste repository. The aim of the current research project is to study the hydraulic properties of low-permeable rrock matrix. Field measurements of hydraulic conductivity were taken in boreholes while laboratory tests were undertaken on samples from the borehole cores. In the field, two boreholes with depths of 100 m were tested. The intergranular hydraulic conductivity was measured in 0.5 m long sections sealed by packers while the rock quality and position of cracks was determined by geophysical logging. In the laboratory, intergranular hydraulic conductivity was measured on homogenous samples in pressurised cells. A constant pressure gradient of Δ = 50 kPa was kept between upper and lower bases and from this the average effective stress corresponded to the in situ effective stress. The use of field and laboratory methods allowed the results to be interpreted in detail. These have provided new information about microcrack networks and the intergranular hydraulic conductivity of granite matrix. The obtained data also revealed a significant scale effect that influences the hydraulic conductivities determined by the in situ and laboratory tests.

  1. Second order Coriolis resonance between the C-O stretch and the CH3 rock levels of methanol involving excited torsional state.

    PubMed

    Mukhopadhyay, I

    1997-12-01

    In this paper, it is shown that the interaction responsible for making the series of 'forbidden' transitions from the state (n tau K) = (110) in the ground vibrational (v = 0) state of the levels of (122+) in the CH3-rocking vibrational state (v = r) of methanol is 'Coriolis' resonance and not 'Fermi' resonance as proposed in a recent publication. This has been established from the J-dependence of the observed perturbed energy spacings between the two interacting pairs from high resolution spectroscopic analysis. The J-dependence clearly follows the classic 'Coriolis' interaction matrix elements for delta K = 2, which would not occur if the interaction were due to 'Fermi' resonance.

  2. E. coli RS2GFP Retention Mechanisms in Laboratory-Scale Fractured Rocks: A Statistical Model

    NASA Astrophysics Data System (ADS)

    Rodrigues, S. N.; Qu, J.; Dickson, S. E.

    2011-12-01

    With billions of gallons of groundwater being withdrawn every day in the US and Canada, it is imperative to understand the mechanisms which jeopardize this resource and the health of those who rely on it. Porous media aquifers have typically been considered to provide significant filtration of particulate matter (e.g. microorganisms), while the fractures in fractured rock aquifers and aquitards are considered to act as contaminant highways allowing a large fraction of pathogens to travel deep into an aquifer relatively quickly. Recent research results indicate that fractured rocks filter out more particulates than typically believed. The goal of the research presented here is to quantify the number of E. coli RS2GFP retained in a single, saturated, laboratory-scale fracture, and to relate the retention of E. coli RS2GFP to the aperture field characteristics and groundwater flow rate. To achieve this goal, physical experiments were conducted at the laboratory-scale to quantify the retention of E. coli RS2GFP through several single, saturated, dolomitic limestone fractures under a range of flow rates. These fractures were also cast with a transparent epoxy in order to visualize the transport mechanisms in the various different aperture fields. The E. coli RS2GFP is tagged with a green-fluorescent protein (GFP) that is used to obtain visualization data when excited by ultraviolet light. A series of experiments was conducted, each of which involved the release of a known number of E. coli RS2GFP at the upstream end of the fracture and measuring the effluent concentration profile. These experiments were conducted using both the natural rock and transparent cast of several different aperture fields, under a range of flow rates. The effects of different aperture field characteristics and flow rates on the retention of E. coli RS2GFP will be determined by conducting a statistical analysis of the retention data under different experimental conditions. The images captured

  3. Element mobility during metasomatism of granitic rocks in the Saint-Chély d'Apcher area (Lozère, France).

    PubMed

    El Maghraoui, M; Joron, J L; Raimbault, L; Treuil, M

    2002-11-01

    This paper summarises the behaviour of major and trace elements during hydrothermal alteration processes in the Vareilles albite deposit, Saint-Chély d' Apcher area (Lozère, France). Sampling focused mainly on fine- to medium-grained two-mica granite facies surrounding albitite veins in two open pits. The primary chemical variability inherent in sampling parent rock and analytical uncertainties can seriously affect element mobility calculations. Here we present a simple model that allows to discriminate between magmatic and alteration effects and to make a proper evaluation of the chemical changes that have caused the alteration. For this reason, a range of unaltered granites and albitites were sampled to evaluate the degree of parent rock heterogeneity. Duplicate measurements were performed by epithermal neutron activation analysis (ENAA) to obtain a reliable mean concentration for trace elements and to evaluate results reproducibility. ENAA measurements are completed by analysis of major elements by inductively coupled plasma-mass spectrometry (ICP-MS). The enrichment or depletion of an element during alteration, relative to its concentration in fresh parent rock, can be calculated on the basis of the assumed immobility of some elements during the process. In this study, we have assumed Ta as immobile element on the basis for his inert behaviour. The distinct differences in chemical change between altered and unaltered granite suggest the need to consider alteration event as an important parameter in evaluating granitic rocks for nuclear waste disposal.

  4. Microstructure and porosity of Opalinus Clay at the Mont Terri rock laboratory (Switzerland)

    NASA Astrophysics Data System (ADS)

    Houben, M. E.; Laurich, B.; Desbois, G.; Urai, J. L.

    2012-04-01

    The Mont Terri rock laboratory (Canton Jura, Switzerland) is an international scientific platform of research on radioactive waste disposal in Opalinus Clay and results provide input for assessing the feasibility and safety of deep geological disposal of radioactive waste in argillaceous formations [1]. A main safety issue is to accurately investigate mass transport rates. To date several methods analyzed bulk permeability and porosity of Opalinus Clay. However, detailed quantitative investigation of microstructure and pore morphology is necessary to understand sealing capacity, coupled flow, capillary processes and associated deformation. To produce high quality cross-sections without microstructural damage that enable investigation of microstructure and porosity down the nm scale a combination of Broad Ion Beam (BIB) milling and SEM imaging has been used [2]. This method allowed direct imaging of the clay fabric and porosity on ca. 1 mm2 areas. The lateral variability of Opalinus Clay is low on the regional scale [1], whereas vertically the Opalinus Clay can be subdivided into six different lithological subfacies [3] based on variable silt layers, sandstone layers and siderite concretions present, where the end-members are the Shaly and Sandy facies. In this contribution microstructures and pore space in Opalinus Clay from the undisturbed Shaly and Sandy facies are studied and compared to disturbed samples from the "Main fault" within the Mont Terri rock laboratory. The Shaly facies in the lower half of the sequence constitutes of dark grey silty calcerous shales and argillaceous marls, whereas the Sandy facies comprises silty to sandy marls with sandstone lenses cemented with carbonate [3]. The qualitative mineralogical composition of all Opalinus Clay facies is similar, whereas the "Main Fault" shows calcite, celestite and pyrite veins. Although the overall microfabric differs per layer and per facies we observe low variability of microstructure and porosity in

  5. Accelerating Moment Release of Acoustic Emission During Rock Deformation in the Laboratory

    NASA Astrophysics Data System (ADS)

    Wang, Lifeng; Ma, Shengli; Ma, Li

    2008-02-01

    The Accelerating Moment Release (AMR) of seismicity before large earthquakes has been discussed by an increasing number of seismologists over recent years; however, most of their research is concentrated on theoretical descriptions based on statistical physics. In this paper, we investigate the laboratory AMR phenomenon of acoustic emission (AE), and attempt to understand the physical mechanism of AMR behavior from the point of view of rock deformation. AE data used in this paper are from a granitic porphyry (GP) sample with heterogeneous structure, including grains of different size and a naturally healed joint. Based on a stochastic AMR model, the microfracturing activity during rock deformation is analyzed. Three stages, Pre-AMR, AMR and nucleation, that cover the entire deformation period, are defined according to their different microfracturing features. The fractal structure of each stage is investigated. Our results indicate that the AE activity is highly sensitive to both the stress load and the rock structure. The AMR stage, in which the moderate AE events demonstrated typical AMR behaviors, features a process of stress concentration and stress transfer on the fault plane. The AMR stage had a constant stress load condition and was characterized by a much earlier increase of AE rate than the elevation of mean AE magnitude, both of which are consistent with the results derived from the damage rheology model (B en-Z ion and L yakhovsky, 2002). The AMR stage was immediately followed by the nucleation stage, caused by quasi-static/dynamic fracture of the main fault. Therefore, regarding the GP sample, the AMR stage is a long-term preparatory process for dynamic fault fracture.

  6. Laboratory determination of mechanical properties of rocks from the Parcperdue geopressured/geothermal site

    SciTech Connect

    Sinha, K.P.; Borschel, T.F.; Holland, M.T.; Schatz, J.F.; Bebout, D.G.; Bachman, A.L.

    1981-01-01

    The deformational behavior and fluid flow characteristics of rock samples obtained from DOW/DOE L.R. Sweezy No. 1 Test Well at the Parcperdue Geopressured/Geothermal Site have been investigated in the laboratory. Elastic moduli, compressibility, uniaxial compaction coefficient, strength, creep parameters, permeability, acoustic velocites (all at reservoir conditions) and changes in these quantities induced by simulated reservoir production have been obtained from tests on several sandstone and shale samples from different depths. Tests consisting of several hydrostatic and triaxial loading phases and pore pressure reduction were designed to provide measurements to be used for calculating several of the above mentioned parameters in a single test. Pore volume changes were measured during some phases of the tests.

  7. Electrical conductivity of lunar surface rocks - Laboratory measurements and implications for lunar interior temperatures

    NASA Technical Reports Server (NTRS)

    Schwerer, F. C.; Huffman, G. P.; Fisher, R. M.; Nagata, T.

    1974-01-01

    Results are reported for laboratory measurements of the dc and low-frequency ac electrical conductivity of three lunar rocks with ferrous iron contents of 5 to 26 wt %. The measurements were made at temperatures ranging from 20 to 1000 C, and Mossbauer spectroscopy was used to determine the dependence of electrical conductivity on furnace atmosphere. It is found that the magnitude of electrical conductivity generally increases with increasing iron content. A comparison of the data on these samples with data on terrestrial olivines and pyroxenes shows that the electrical conductivity of anhydrous silicate minerals is influenced primarily by the concentration, oxidation state, and distribution of iron, while the silicate crystal structure is only of secondary importance. Lunar interior temperatures are deduced from experimental lunar conductivity profiles, and the resulting temperature-depth profiles are found to be consistent with those calculated for two different lunar evolutionary models as well as with various experimental constraints.

  8. A transient laboratory method for determining the hydraulic properties of 'tight' rocks-I. Theory

    USGS Publications Warehouse

    Hsieh, P.A.; Tracy, J.V.; Neuzil, C.E.; Bredehoeft, J.D.; Silliman, S.E.

    1981-01-01

    Transient pulse testing has been employed increasingly in the laboratory to measure the hydraulic properties of rock samples with low permeability. Several investigators have proposed a mathematical model in terms of an initial-boundary value problem to describe fluid flow in a transient pulse test. However, the solution of this problem has not been available. In analyzing data from the transient pulse test, previous investigators have either employed analytical solutions that are derived with the use of additional, restrictive assumptions, or have resorted to numerical methods. In Part I of this paper, a general, analytical solution for the transient pulse test is presented. This solution is graphically illustrated by plots of dimensionless variables for several cases of interest. The solution is shown to contain, as limiting cases, the more restrictive analytical solutions that the previous investigators have derived. A method of computing both the permeability and specific storage of the test sample from experimental data will be presented in Part II. ?? 1981.

  9. Minerals Associated with Biofilms Occurring on Exposed Rock in a Granitic Underground Research Laboratory

    PubMed Central

    Brown, D. Ann; Kamineni, D. Choudari; Sawicki, Jerzy A.; Beveridge, Terry J.

    1994-01-01

    The concept of disposal of nuclear fuel waste in crystalline rock requires the effects of microbial action to be investigated. The Underground Research Laboratory excavated in a pluton of the Canadian Shield provides a unique opportunity to study these effects. Three biofilms kept moist by seepage through fractures in granitic rock faces of the Underground Research Laboratory have been examined. The biofilms contained a variety of gram-negative and gram-positive morphotypes held together by an organic extracellular matrix. Nutrient levels in the groundwater were low, but energy-dispersive X-ray spectroscopy has shown biogeochemical immobilization of several elements in the biofilms; some of these elements were concentrated from extremely dilute environmental concentrations, and all elements were chemically complexed together to form amorphous or crystalline fine-grained minerals. These were seen by transmission electron microscopy to be both associated with the surfaces of the bacteria and scattered throughout the extracellular matrix, suggesting their de novo development through bacterial surface-mediated nucleation. The biofilm consortia are thought to concentrate elements both by passive sorption and by energy metabolism. By Mössbauer spectroscopy and X-ray diffraction, one of the biofilms showed that iron was both oxidized and precipitated as ferrihydrite or hematite aerobically and reduced and precipitated as siderite anaerobically. We believe that some Archean banded-iron formations could have been formed in a manner similar to this, as it would explain the deposition of hematite and siderite in close proximity. This biogeochemical development of minerals may also affect the transport of material in waste disposal sites. Images PMID:16349374

  10. Minerals associated with biofilms occurring on exposed rock in a granitic underground research laboratory.

    PubMed

    Brown, D A; Kamineni, D C; Sawicki, J A; Beveridge, T J

    1994-09-01

    The concept of disposal of nuclear fuel waste in crystalline rock requires the effects of microbial action to be investigated. The Underground Research Laboratory excavated in a pluton of the Canadian Shield provides a unique opportunity to study these effects. Three biofilms kept moist by seepage through fractures in granitic rock faces of the Underground Research Laboratory have been examined. The biofilms contained a variety of gram-negative and gram-positive morphotypes held together by an organic extracellular matrix. Nutrient levels in the groundwater were low, but energy-dispersive X-ray spectroscopy has shown biogeochemical immobilization of several elements in the biofilms; some of these elements were concentrated from extremely dilute environmental concentrations, and all elements were chemically complexed together to form amorphous or crystalline fine-grained minerals. These were seen by transmission electron microscopy to be both associated with the surfaces of the bacteria and scattered throughout the extracellular matrix, suggesting their de novo development through bacterial surface-mediated nucleation. The biofilm consortia are thought to concentrate elements both by passive sorption and by energy metabolism. By Mössbauer spectroscopy and X-ray diffraction, one of the biofilms showed that iron was both oxidized and precipitated as ferrihydrite or hematite aerobically and reduced and precipitated as siderite anaerobically. We believe that some Archean banded-iron formations could have been formed in a manner similar to this, as it would explain the deposition of hematite and siderite in close proximity. This biogeochemical development of minerals may also affect the transport of material in waste disposal sites.

  11. Analyses of rocks from the laboratory of the United States Geological Survey, 1880-1903

    USGS Publications Warehouse

    Clarke, F.W.

    1904-01-01

    The present Geological Survey of the United States was organized in 1879. In 1880 a chemical laboratory was established at Denver, in connection with the Colorado work, in charge of Dr. W. F. Hillebrand, with whom were associated Mr. Antony Guyard and, later, Mr. L. G. Eakins. In 1882 Dr. W. H. Melville was placed in charge of a second laboratory at San Francisco, and in the autumn of 1883 the central laboratory was started in Washington, with myself as chief chemist. In November, 1885, Doctor Hillebrand was transferred to Washington; early in 1888 he was followed by Mr. Eakins, and the Denver laboratory was discontinued. In the spring of 1890 Doctor Melville also was transferred to Washington, and since then the chemical work of the Survey has been concentrated at headquarters.Up to January 1, 1904, over 5,300 analyses have been made in the laboratory at Washington. These represent rocks, minerals, ores, waters, sediments, coals, metals, and so on through all the range of substances with which geology has to do. There were also some hundreds of analyses made in the laboratories at Denver and San Francisco. A fair amount of research work upon mineralogical and analytical problems has also been done. In all of this work the following chemists have been employed: E. T. Allen, Charles Catlett, T. M. Chatard, F. W. Clarke, L. G. Eakins, F. A. Gooch, Antony Guyard, W. F. Hillebrand, W. H. Melville, R. B. Riggs, W. T. Schaller, E. A. Schneider, George Steiger, H. N. Stokes, E. C. Sullivan, William Valentine, and J. E. Whitfield. As many as eight of these have been at work simultaneously; at present only six are connected with the Survey. Other officers of the Survey have been occupied more or less with chemical questions; but the men named in this list were connected directly with the laboratory. Some work for the chemical division has also been done by chemists not regularly on the rolls of the Survey; but their analyses, with the exception of a single group to be

  12. Direct laboratory observation of fluid distribution and its influence on acoustic properties of patchy saturated rocks

    NASA Astrophysics Data System (ADS)

    Lebedev, M.; Clennell, B.; Pervukhina, M.; Shulakova, V.; Mueller, T.; Gurevich, B.

    2009-04-01

    samples (38 mm in diameter, approximately 60 mm long) were dried in oven under reduced pressure. In dynamic saturation experiments, samples were jacketed in the experimental cell, made from transparent for X-radiation material (PMMA). Distillate water was injected into the sample from the one side. Fluid distribution in such "dynamic" experiment: both spatial and time dependant was measured using X-ray Computer Tomograph (CT) with resolution 0.2 x 0.2 x 1 mm3. Velocities (Vp, and Vs) at ultrasonic frequency of 1 MHz, were measured in the direction perpendicular to initial direction of the fluid flow injection. Sample saturation was estimated from the CT results. In "quasi static" experiments samples were saturated during long period of time (over 2 weeks) to achieve uniform distribution of liquid inside the sample. Saturation was determined by measurement of the weight of water fraction. All experiments were performed at laboratory environments at temperature 25 C. Ultrasonic velocities and fluid saturations were measured simultaneously during water injection into sandstone core samples. The experimental results obtained on low-permeability samples show that at low saturation values the velocity-saturation dependence can be described by the Gassmann-Wood relationship. However, with increasing saturation a sharp increase of P-wave velocity is observed, eventually approaching the Gassmann-Hill relationship. We connect the characteristics of the transition behavior of the velocity-saturation relationships to the increasing size of the patches inside the rock sample. In particular, we show that for relatively large fluid injection rate this transition occurs at smaller degrees of saturation as compared with high injection rate. We model the experimental data using the so-called White model (Toms 2007) that assumes fluid patch distribution as a periodic assemblage of concentric spheres. We can observe reasonable agreement between experimental results and theoretical

  13. Swedish-German actinide migration experiment at ASPO hard rock laboratory.

    PubMed

    Kienzler, B; Vejmelka, P; Römer, J; Fanghänel, E; Jansson, M; Eriksen, T E; Wikberg, P

    2003-03-01

    Within the scope of a bilateral cooperation between Svensk Kärnbränslehantering (SKB) and Forschungszentrum Karlsruhe, Institut für Nukleare Entsorgung (FZK-INE), an actinide migration experiment is currently being performed at the Aspö Hard Rock Laboratory (HRL) in Sweden. This paper covers laboratory and in situ investigations on actinide migration in single-fractured granite core samples. For the in situ experiment, the CHEMLAB 2 probe developed by SKB was used. The experimental setup as well as the breakthrough of inert tracers and of the actinides Am, Np and Pu are presented. The breakthrough curves of inert tracers were analyzed to determine hydraulic properties of the fractured samples. Postmortem analyses of the solid samples were performed to characterize the flow path and the sorbed actinides. After cutting the cores, the abraded material was analyzed with respect to sorbed actinides. The slices were scanned optically to visualize the flow path. Effective volumes and inner surface areas were measured. In the experiments, only breakthrough of Np(V) was observed. In each experiment, the recovery of Np(V) was < or = 40%. Breakthrough of Am(III) and Pu(IV) as well as of Np(IV) was not observed.

  14. Rock preference of planulae of jellyfish Aurelia aurita (Linnaeus 1758) for settlement in the laboratory

    NASA Astrophysics Data System (ADS)

    Yoon, Won Duk; Choi, Sung-Hwan; Han, Changhoon; Park, Won Gyu

    2014-06-01

    Planulae of Aurelia aurita were exposed to 11 types of rocks (basalt, gabbro, granite, rhyolite, sandstone, limestone, conglomerate, gneiss, quartzite, marble and schist) to examine their attachment preference among rock material and position. Numbers of attached polyps was the highest on marble and the least on limestone. Their preference with regard to settling position was the same among the rocks, showing the highest density of polyps on the underside (88.5%) compared to upper (23.6%) and perpendicular sides (10.3%) of rock. The results showed that while position preference is more important than rock property, higher numbers of polyps were observed in rocks with a medium surface hardness.

  15. Transient hydraulic tomography in a fractured dolostone: Laboratory rock block experiments

    NASA Astrophysics Data System (ADS)

    Sharmeen, Rubaiat; Illman, Walter A.; Berg, Steven J.; Yeh, Tian-Chyi J.; Park, Young-Jin; Sudicky, Edward A.; Ando, Ken

    2012-10-01

    The accurate characterization of fractured geologic medium, imaging of fracture patterns and their connectivity have been a challenge for decades. Recently, hydraulic tomography has been proposed as a new method for imaging the hydraulic conductivity (K) and specific storage (Ss) distributions of fractured geologic media. While encouraging results have been obtained in the field, the method has not been rigorously assessed in a controlled laboratory setting. In this study, we assess the performance of transient hydraulic tomography (THT) in a fractured dolomitic rock block. The block is characterized through flow-through tests and multiple pumping tests. The pumping test data were then analyzed with the THT code of Zhu and Yeh (2005) to image the fracture patterns and their connectivity through the delineation of K and Ss distributions (or tomograms). Results show that the THT analysis of pumping tests yields high-K and low-Ss zones that capture the fracture pattern and their connectivity quite well and those patterns become more vivid as additional pumping test data are added to the inverse model. The performance of the estimated K and Ss tomograms are then assessed by: (1) comparing the tomograms obtained from synthetic to real data; (2) comparing the tomograms from two different pumping configurations; (3) comparing the estimated geometric mean of the hydraulic conductivity (KG) from the K tomogram to the effective hydraulic conductivity (Keff) estimated from the flow-through tests; and (4) predicting five independent pumping tests not used in the construction of the K and Ss tomograms. The performance assessment of the K and Ss tomograms reveals that THT is able to image high-K and low-Ss zones that correspond to fracture locations in the fractured rock block and that the tomograms can be used to predict drawdowns from pumping tests not used in the construction of the tomograms with reasonable fidelity.

  16. Rock Formation and Cosmic Radiation Exposure Ages in Gale Crater Mudstones from the Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    Mahaffy, Paul; Farley, Ken; Malespin, Charles; Gellert, Ralph; Grotzinger, John

    2014-05-01

    The quadrupole mass spectrometer (QMS) in the Sample Analysis at Mars (SAM) suite of the Mars Science Laboratory (MSL) has been utilized to secure abundances of 3He, 21Ne, 36Ar, and 40Ar thermally evolved from the mudstone in the stratified Yellowknife Bay formation in Gale Crater. As reported by Farley et al. [1] these measurements of cosmogenic and radiogenic noble gases together with Cl and K abundances measured by MSL's alpha particle X-ray spectrometer enable a K-Ar rock formation age of 4.21+0.35 Ga to be established as well as a surface exposure age to cosmic radiation of 78+30 Ma. Understanding surface exposures to cosmic radiation is relevant to the MSL search for organic compounds since even the limited set of studies carried out, to date, indicate that even 10's to 100's of millions of years of near surface (1-3 meter) exposure may transform a significant fraction of the organic compounds exposed to this radiation [2,3,4]. Transformation of potential biosignatures and even loss of molecular structural information in compounds that could point to exogenous or endogenous sources suggests a new paradigm in the search for near surface organics that incorporates a search for the most recently exposed outcrops through erosional processes. The K-Ar rock formation age determination shows promise for more precise in situ measurements that may help calibrate the martian cratering record that currently relies on extrapolation from the lunar record with its ground truth chronology with returned samples. We will discuss the protocol for the in situ noble gas measurements secured with SAM and ongoing studies to optimize these measurements using the SAM testbed. References: [1] Farley, K.A.M Science Magazine, 342, (2013). [2] G. Kminek et al., Earth Planet Sc Lett 245, 1 (2006). [3] Dartnell, L.R., Biogeosciences 4, 545 (2007). [4] Pavlov, A. A., et al. Geophys Res Lett 39, 13202 (2012).

  17. Laboratory Testing of Acoustic Tomography in Rock Samples Using Regularization of Incomplete Data

    NASA Astrophysics Data System (ADS)

    Li, C.; Nowack, R. L.; Pyrak-Nolte, L. J.

    2002-12-01

    Seismic tomography is an important exploration method because it has been shown that it can determine subsurface structures from surface measurements. In the field, it is often difficult to design a dense tomographic coverage. However, for rock samples in the laboratory, it is possible to design tomographic experiments that are repeatable and have uniform ray coverage. In this study, we performed a series of tomographic experiments in the laboratory on synthetic sediments with known structures. In these tomographic experiments, glass beads saturated with de-ionized water were used as the water-saturated unconsolidated synthetic background sediments. The synthetic sediments were packed in a plastic cylindrical container with a diameter of 220 mm. Tomographic experiments were set up to measure transmitted acoustic waves through the sediment samples from multiple directions. The acoustic tomographic imaging system we used is composed of an oscilloscope, two computer-controlled rotary stages, and two water-coupled point wave transducers with a central frequency of 1 MHz. One transducer is used as a source to send out acoustic signals, the other is used to receive the acoustic signals after the signals have passed through the sample. At each source-receiver location, a waveform is recorded. The recorded data can then be used to develop useful protocols for the field seismic tomographic design, acquisition and interpretation. We recorded datasets with varying locations for the sources and receivers, and used this to tomographically reconstruct the laboratory geometries. We simulated variable non-uniform ray geometries using partial data reconstructions. The partial data can then be used to test different techniques for dealing with ill-posed problems. Because the incomplete datasets alone cannot completely resolve the model, a priori information and an appropriate regularization are necessary to obtain stable solutions. With the datasets recorded in the laboratory we can

  18. Laboratory tools to quantify biogenic dissolution of rocks and minerals: a model rock biofilm growing in percolation columns

    NASA Astrophysics Data System (ADS)

    Seiffert, Franz; Bandow, Nicole; Kalbe, Ute; Milke, Ralf; Gorbushina, Anna

    2016-04-01

    Sub-aerial biofilms (SAB) are ubiquitous, self-sufficient microbial ecosystems found on mineral surfaces at all altitudes and latitudes. SABs, which are the principal causes of weathering on exposed terrestrial surfaces, are characterised by patchy growth dominated by associations of algae, cyanobacteria, fungi and heterotrophic bacteria. A recently developed in vitro system to study colonisation of rocks exposed to air included two key SAB participants - the rock-inhabiting ascomycete Knufia petricola (CBS 123872) and the phototrophic cyanobacterium Nostoc punctiforme ATCC29133. Both partners are genetically tractable and we used them here to study weathering of granite, K-feldspar and plagioclase. Small fragments of the various rocks or minerals (1 to 6 mm) were packed into flow-through columns and incubated with 0.1% glucose and 10 µM thiamine-hydrochloride (90 µL.min-1) to compare weathering with and without biofilms. Dissolution of the minerals was followed by: analysing (i) the degradation products in the effluent from the columns via Inductively Coupled Plasma Spectroscopy and (ii) by studying polished sections of the incubated mineral fragment/grains using scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray analyses. K. petricola/N. punctiforme stimulated release of Ca, Na, Mg and Mn. Analyses of the polished sections confirmed depletion of Ca, Na and K near the surface of the fragments. The abrupt decrease in Ca concentration observed in peripheral areas of plagioclase fragments favoured a dissolution-reprecipitation mechanism. Percolation columns in combination with a model biofilm can thus be used to study weathering in closed systems. Columns can easily be filled with different minerals and biofilms, the effluent as well as grains can be collected after long-term exposure under axenic conditions and easily analysed.

  19. Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations

    SciTech Connect

    Michael S. Bruno

    2005-12-31

    This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptual drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer

  20. Does lightning destroy rocks?: Results from a laboratory lightning experiment using an impulse high-current generator

    NASA Astrophysics Data System (ADS)

    Wakasa, Sachi A.; Nishimura, Seisuke; Shimizu, Hiroyuki; Matsukura, Yukinori

    2012-08-01

    To understand the destruction of rocks and changes to landforms by lightning strikes, laboratory experiments of lightning strikes were performed using three kinds of rock samples as targets. Artificial lightning with known electric current was simulated by an impulse high-current generator in the laboratory. The artificial lightning is different to natural lightning. The high-current generator can generate up to 20 kA of electric current equal to 50% of the value of natural lightning, but up to 50 kV of electric voltage which is a tenth to hundredth that of natural lightning. Experimental results showed that the rock samples with low mechanical resistance, tuff and rhyolite, were destroyed, while the rock sample with high mechanical resistance, i.e., granite, was not broken by lightning strikes. These results indicate that natural lightning causes rocks and bedrock to break. These imply that lightning might change landforms, for example gnammas and fractures on tors and mountain peaks where lightning tends to strike.

  1. Laboratory Characterization of Cemented Rock Fill for Underhand Cut and Fill Method of Mining

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Singh, Upendra Kumar; Singh, Gauri Shankar Prasad

    2016-10-01

    Backfilling with controlled specifications is employed for improved ground support and pillar recovery in underground metalliferous mine workings. This paper reports the results of a laboratory study to characterise various mechanical properties of cemented rock fill (CRF) formulations for different compaction levels and cement content percentage for use in underhand cut and fill method of mining. Laboratory test set ups and procedures have been described for conducting compressive and bending tests of CRF block samples. A three dimensional numerical modelling study has also been carried out to overcome the limitations arising due to non-standard dimension of test blocks used in flexural loading test and the test setup devised for this purpose. Based on these studies, specific relations have been established between the compressive and the flexural properties of the CRF. The flexural strength of the wire mesh reinforced CRF is also correlated with its residual strength and the Young's modulus of elasticity under flexural loading condition. The test results of flexural strength, residual flexural strength and modulus show almost linear relations with cement content in CRF. The compressive strength of the CRF block samples is estimated as seven times the flexural strength whereas the compressive modulus is four times the flexural modulus. It has been found that the strengths of CRF of low compaction and no compaction are 75 and 60 % respectively to that of the medium compaction CRF. The relation between the strength and the unit weight of CRF as obtained in this study is significantly important for design and quality control of CRF during its large scale application in underhand cut and fill stopes.

  2. Planning and Analysis of Fractured Rock Injection Tests in the Cerro Brillador Underground Laboratory, Northern Chile

    NASA Astrophysics Data System (ADS)

    Fairley, J. P., Jr.; Oyarzún L, R.; Villegas, G.

    2015-12-01

    Early theories of fluid migration in unsaturated fractured rock hypothesized that matrix suction would dominate flow up to the point of matrix saturation. However, experiments in underground laboratories such as the ESF (Yucca Mountain, NV) have demonstrated that liquid water can migrate significant distances through fractures in an unsaturated porous medium, suggesting limited interaction between fractures and unsaturated matrix blocks and potentially rapid transmission of recharge to the sat- urated zone. Determining the conditions under which this rapid recharge may take place is an important factor in understanding deep percolation processes in arid areas with thick unsaturated zones. As part of an on-going, Fondecyt-funded project (award 11150587) to study mountain block hydrological processes in arid regions, we are plan- ning a series of in-situ fracture flow injection tests in the Cerro Brillador/Mina Escuela, an underground laboratory and teaching facility belonging to the Universidad la Serena, Chile. Planning for the tests is based on an analytical model and curve-matching method, originally developed to evaluate data from injection tests at Yucca Mountain (Fairley, J.P., 2010, WRR 46:W08542), that uses a known rate of liquid injection to a fracture (for example, from a packed-off section of borehole) and the observed rate of seepage discharging from the fracture to estimate effective fracture aperture, matrix sorptivity, fracture/matrix flow partitioning, and the wetted fracture/matrix interac- tion area between the injection and recovery points. We briefly review the analytical approach and its application to test planning and analysis, and describe the proposed tests and their goals.

  3. Joint seismic, hydrogeological, and geomechanical investigations of a fracture zone in the Grimsel Rock Laboratory, Switzerland

    SciTech Connect

    Majer, E.L.; Myer, L.R.; Peterson, J.E. Jr.; Karasaki, K.; Long, J.C.S.; Martel, S.J. ); Bluemling, P.; Vomvoris, S. )

    1990-06-01

    This report is one of a series documenting the results of the Nagra-DOE Cooperative (NDC-I) research program in which the cooperating scientists explore the geological, geophysical, hydrological, geochemical, and structural effects anticipated from the use of a rock mass as a geologic repository for nuclear waste. From 1987 to 1989 the United States Department of Energy (DOE) and the Swiss Cooperative for the Storage of Nuclear Waste (Nagra) participated in an agreement to carryout experiments for understanding the effect of fractures in the storage and disposal of nuclear waste. As part of this joint work field and laboratory experiments were conducted at a controlled site in the Nagra underground Grimsel test site in Switzerland. The primary goal of these experiments in this fractured granite was to determine the fundamental nature of the propagation of seismic waves in fractured media, and to relate the seismological parameters to the hydrological parameters. The work is ultimately aimed at the characterization and monitoring of subsurface sites for the storage of nuclear waste. The seismic experiments utilizes high frequency (1000 to 10,000 Hertz) signals in a cross-hole configuration at scales of several tens of meters. Two-, three-, and four-sided tomographic images of the fractures and geologic structure were produced from over 60,000 raypaths through a 10 by 21 meter region bounded by two nearly horizontal boreholes and two tunnels. Intersecting this region was a dominant fracture zone which was the target of the investigations. In addition to these controlled seismic imaging experiments, laboratory work using core from this region were studied for the relation between fracture content, saturation, and seismic velocity and attenuation. In-situ geomechanical and hydrologic tests were carried out to determine the mechanical stiffness and conductivity of the fractures. 20 refs., 90 figs., 6 tabs.

  4. Anisotropy of electrical conductivity of the excavation damaged zone in the Mont Terri Underground Rock Laboratory

    NASA Astrophysics Data System (ADS)

    Nicollin, Florence; Gibert, Dominique; Lesparre, Nolwenn; Nussbaum, Christophe

    2010-04-01

    Electrical resistivity measurements were performed to characterize the anisotropy of electrical resistivity of the excavation damaged zone (EDZ) at the end-face of a gallery in the Opalinus clay of the Mont Terri Underground Rock Laboratory (URL). The data were acquired with a combination of square arrays in 18 zones on the gallery's face and in two series of four boreholes perpendicular to the face. Each data set is independently inverted using simulated annealing to recover the resistivity tensor. Both the stability and the non-uniqueness of the inverse problem are discussed with synthetic examples. The inversion of the data shows that the face is split in two domains separated by a tectonic fracture, with different resistivity values but with a common orientation. The direction of the maximum resistivity is found perpendicular to the bedding plane, and the direction of minimum resistivity is contained in the face's plane. These results show that the geo-electrical structure of the EDZ is controlled by a combination of effects due to tectonics, stratigraphy, and recent fracturing produced by the excavation of the gallery.

  5. Calculations of fluid-mineral equilibria in the Aspo Hard Rock Laboratory

    SciTech Connect

    Bruton, C.J.

    1995-05-01

    The purpose of this report is to evaluate the utility of the EQ3/6 geochemical codes in describing mineral-fluid equilibria in the low temperature (<25{degrees}C) systems at the Aespoe Hard Rock Laboratory (HRL). Data on fluid chemistry and on fracture-filling mineralogy with depth were obtained from Smellie and Laaksoharju. Average temperatures in the HRL boreholes are generally less than 20{degrees}C. EQ3/6 was used to evaluate the extent to which equilibrium is achieved between minerals and fluids in these systems. Smellie and Laaksoharju used the PHREEQE geochemical modeling code to calculate saturation indices for fracture-lining minerals in boreholes KAS02, KAS03, KAS04 and KAS06 in order to ``support the presence or absence of the major fracture minerals``. They noted that only calcite and gypsum may be expected to attain equilibrium under the low temperature conditions Aespoe. However, they used closeness to equilibrium as an indicator of ``stable conditions, long bedrock residence/reaction times and slow to stagnant flow in the system.`` EQ3 was used to calculate mineral saturation indices for comparison, and EQ6 was used to try to predict the mineral assemblages coexisting with fluids.

  6. Modelling fault surface roughness and fault rocks thickness evolution with slip: calibration based on field and laboratory data

    NASA Astrophysics Data System (ADS)

    Bistacchi, A.; Tisato, N.; Spagnuolo, E.; Nielsen, S. B.; Di Toro, G.

    2012-12-01

    deformation processes (e.g. frictional melting vs. cataclasis) and experimental conditions (unconfined vs. confined). Since the model is based on geometrical and volume-conservation considerations (and not on a particular deformation mechanism), we conclude that the surface roughness and fault-rock thickness after some slip is mostly determined by the initial roughness (measured over several orders of magnitude in wavelength), rather than the particular deformation process (cataclasis, melting, etc.) activated during faulting. Conveniently, since the model can be applied (under certain conditions) to surfaces which depart from self-affine roughness, the model parameters can be calibrated with laboratory experiments. If this conclusion will be confirmed by a larger dataset, the forward model proposed here will provide realistic fault roughness and fault rock thickness predictions to be used in the mechanics of earthquakes and faulting, oil and water exploration, and underground engineering projects.

  7. Transport Properties of Carbonate and Sandstone Samples: Digital Rock Physics and Laboratory Measurements

    NASA Astrophysics Data System (ADS)

    Alabbad, A. A.; Dvorkin, J. P.

    2015-12-01

    achieved a match between the computed and measured permeability, although not as robust as for the electrical formation factor. Both the computational and laboratory results indicated that all samples were practically isotropic. This study is an example of using coarse resolution digital images to estimate the effective transport properties of rock.

  8. Fluid geochemistry and soil gas fluxes (CO2-CH4-H2S) at a promissory Hot Dry Rock Geothermal System: The Acoculco caldera, Mexico

    NASA Astrophysics Data System (ADS)

    Peiffer, L.; Bernard-Romero, R.; Mazot, A.; Taran, Y. A.; Guevara, M.; Santoyo, E.

    2014-09-01

    The Acoculco caldera has been recognized by the Mexican Federal Electricity Company (CFE) as a Hot Dry Rock Geothermal System (HDR) and could be a potential candidate for developing an Enhanced Geothermal System (EGS). Apart from hydrothermally altered rocks, geothermal manifestations within the Acoculco caldera are scarce. Close to ambient temperature bubbling springs and soil degassing are reported inside the caldera while a few springs discharge warm water on the periphery of the caldera. In this study, we infer the origin of fluids and we characterize for the first time the soil degassing dynamic. Chemical and isotopic (δ18O-δD) analyses of spring waters indicate a meteoric origin and the dissolution of CO2 and H2S gases, while gas chemical and isotopic compositions (N2/He, 3He/4He, 13C, 15N) reveal a magmatic contribution with both MORB- and arc-type signatures which could be explained by an extension regime created by local and regional fault systems. Gas geothermometry results are in agreement with temperature measured during well drilling (260 °C-300 °C). Absence of well-developed water reservoir at depth impedes re-equilibration of gases upon surface. A multi-gas flux survey including CO2, CH4 and H2S measurements was performed within the caldera. Using the graphical statistical analysis (GSA) approach, CO2 flux measurements were classified in two populations. Population A, representing 95% of measured fluxes is characterized by low values (mean: 18 g m- 2 day- 1) while the remaining 5% fluxes belonging to Population B are much higher (mean: 5543 g m- 2 day- 1). This low degassing rate probably reflects the low permeability of the system, a consequence of the intense hydrothermal alteration observed in the upper 800 m of volcanic rocks. An attempt to interpret the origin and transport mechanism of these fluxes is proposed by means of flux ratios as well as by numerical modeling. Measurements with CO2/CH4 and CO2/H2S flux ratios similar to mass ratios

  9. An Aquatic Journey toward Aeolis Mons (Mount Sharp): Sedimentary Rock Evidence observed by Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    Gupta, Sanjeev; Edgar, Lauren; Williams, Rebecca; Rubin, David; Yingst, Aileen; Lewis, Kevin; Kocurek, Gary; Anderson, Ryan; Dromart, Gilles; Edgett, Ken; Hardgrove, Craig; Kah, Linda; Mangold, Nicolas; Milliken, Ralph; Minitti, Michelle; Palucis, Marisa; Rice, Melissa; Stack, Katie; Sumner, Dawn; Williford, Ken

    2014-05-01

    Since leaving Yellowknife Bay (summer 2013), Mars Science Laboratory Curiosity has investigated a number of key outcrops as it traverses along the Rapid Transit Route toward the entry point to begin its investigations of the extensive rock outcrops at the base of Mount Sharp. Rover observations are characterizing the variability of lithologies and sedimentary facies along the traverse and establishing stratigraphic relationships with the aim of reconstructing depositional processes and palaeoenvironments. Here, we report on sedimentological and stratigraphic observations based on images from the Mastcam and MAHLI instruments at Shaler and the Darwin waypoint. The informally named Shaler outcrop, which forms part of the Glenelg member of the Yellowknife Bay formation [1] is remarkable for the preservation of a rich suite of sedimentary structures and architecture, and was investigated on sols 120-121 and 309-324. The outcrop forms a pebbly sandstone body that is ~0.7 m thick and extends for up to 20 m. Shaler is largely characterized by pebbly sandstone facies showing well-developed decimeter-scale trough cross-stratification. Bedding geometries indicate sub-critical angles of climb, resulting in preservation of only the lee slope deposits. The grain size, and the presence and scale of cross-stratification imply sediment transport and deposition by unidirectional currents in a fluvial sedimentary environment. Curiosity investigated the informally named Darwin waypoint between sols 390 and 401, making detailed Mastcam and MAHLI observations at two separate locations. The Darwin outcrop comprises light-toned sandstone beds separated by darker pebbly sandstones. MAHLI observations permit differentiation of distinct sedimentary facies. The Altar Mountain facies is a poorly sorted pebbly sandstone that is rich in fine pebbles. Pebbles are sub-angular to sub-rounded in shape and show no preferred orientation or fabric. Pebbles and sand grains show clast-to-clast contacts

  10. The "Key" Method of Identifying Igneous and Metamorphic Rocks in Introductory Laboratory.

    ERIC Educational Resources Information Center

    Eves, Robert Leo; Davis, Larry Eugene

    1987-01-01

    Proposes that identification keys provide an orderly strategy for the identification of igneous and metamorphic rocks in an introductory geology course. Explains the format employed in the system and includes the actual key guides for both igneous and metamorphic rocks. (ML)

  11. The "Key" Method of Identifying Igneous and Metamorphic Rocks in Introductory Laboratory.

    ERIC Educational Resources Information Center

    Eves, Robert Leo; Davis, Larry Eugene

    1987-01-01

    Proposes that identification keys provide an orderly strategy for the identification of igneous and metamorphic rocks in an introductory geology course. Explains the format employed in the system and includes the actual key guides for both igneous and metamorphic rocks. (ML)

  12. Evaluation of stress and saturation effects on seismic velocity and electrical resistivity - laboratory testing of rock samples

    NASA Astrophysics Data System (ADS)

    Vilhelm, Jan; Jirků, Jaroslav; Slavík, Lubomír; Bárta, Jaroslav

    2016-04-01

    Repository, located in a deep geological formation, is today considered the most suitable solution for disposal of spent nuclear fuel and high-level waste. The geological formations, in combination with an engineered barrier system, should ensure isolation of the waste from the environment for thousands of years. For long-term monitoring of such underground excavations special monitoring systems are developed. In our research we developed and tested monitoring system based on repeated ultrasonic time of flight measurement and electrical resistivity tomography (ERT). As a test site Bedřichov gallery in the northern Bohemia was selected. This underground gallery in granitic rock was excavated using Tunnel Boring Machine (TBM). The seismic high-frequency measurements are performed by pulse-transmission technique directly on the rock wall using one seismic source and three receivers in the distances of 1, 2 and 3 m. The ERT measurement is performed also on the rock wall using 48 electrodes. The spacing between electrodes is 20 centimeters. An analysis of relation of seismic velocity and electrical resistivity on water saturation and stress state of the granitic rock is necessary for the interpretation of both seismic monitoring and ERT. Laboratory seismic and resistivity measurements were performed. One series of experiments was based on uniaxial loading of dry and saturated granitic samples. The relation between stress state and ultrasonic wave velocities was tested separately for dry and saturated rock samples. Other experiments were focused on the relation between electrical resistivity of the rock sample and its saturation level. Rock samples with different porosities were tested. Acknowledgments: This work was partially supported by the Technology Agency of the Czech Republic, project No. TA 0302408

  13. A modeling solution for predicting (a) dry rock bulk modulus, rigidity modulus and (b) seismic velocities and reflection coefficients in porous, fluid-filled rocks with applications to laboratory rock samples and well logs

    NASA Astrophysics Data System (ADS)

    Benson, Alvin K.; Wu, Jie

    1999-02-01

    rock parameters provide valuable information for imaging and interpreting seismic data, interpreting well log data, aiding in the direct detection of subsurface fluids, and in developing reasonable models of the subsurface geology to assist with exploration and exploitation decisions. When our modeling program is applied to water-saturated reservoir rocks (sandstones and limestones) under controlled laboratory conditions, the percentage error between velocities predicted by our modeling program and values measured in the laboratory are typically less than 10% for both sandstone and limestone samples. When applied to well logs to predict sonic travel times and/or velocities for hydrocarbon-saturated rocks in the uninvaded formation, the predictions correlate with interpretations from other well logs and with hydrocarbon production from zones of interest.

  14. The Impact of Space Flight on Survival and Interaction of Cupriavidus metallidurans CH34 with Basalt, a Volcanic Moon Analog Rock

    PubMed Central

    Byloos, Bo; Coninx, Ilse; Van Hoey, Olivier; Cockell, Charles; Nicholson, Natasha; Ilyin, Vyacheslav; Van Houdt, Rob; Boon, Nico; Leys, Natalie

    2017-01-01

    Microbe-mineral interactions have become of interest for space exploration as microorganisms could be used to biomine from extra-terrestrial material and extract elements useful as micronutrients in life support systems. This research aimed to identify the impact of space flight on the long-term survival of Cupriavidus metallidurans CH34 in mineral water and the interaction with basalt, a lunar-type rock in preparation for the ESA spaceflight experiment, BIOROCK. Therefore, C. metallidurans CH34 cells were suspended in mineral water supplemented with or without crushed basalt and send for 3 months on board the Russian FOTON-M4 capsule. Long-term storage had a significant impact on cell physiology and energy status (by flow cytometry analysis, plate count and intracellular ATP measurements) as 60% of cells stored on ground lost their cell membrane potential, only 17% were still active, average ATP levels per cell were significantly lower and cultivability dropped to 1%. The cells stored in the presence of basalt and exposed to space flight conditions during storage however showed less dramatic changes in physiology, with only 16% of the cells lost their cell membrane potential and 24% were still active, leading to a higher cultivability (50%) and indicating a general positive effect of basalt and space flight on survival. Microbe-mineral interactions and biofilm formation was altered by spaceflight as less biofilm was formed on the basalt during flight conditions. Leaching from basalt also changed (measured with ICP-OES), showing that cells release more copper from basalt and the presence of cells also impacted iron and magnesium concentration irrespective of the presence of basalt. The flight conditions thus could counteract some of the detrimental effects observed after the 3 month storage conditions. PMID:28503167

  15. The Impact of Space Flight on Survival and Interaction of Cupriavidus metallidurans CH34 with Basalt, a Volcanic Moon Analog Rock.

    PubMed

    Byloos, Bo; Coninx, Ilse; Van Hoey, Olivier; Cockell, Charles; Nicholson, Natasha; Ilyin, Vyacheslav; Van Houdt, Rob; Boon, Nico; Leys, Natalie

    2017-01-01

    Microbe-mineral interactions have become of interest for space exploration as microorganisms could be used to biomine from extra-terrestrial material and extract elements useful as micronutrients in life support systems. This research aimed to identify the impact of space flight on the long-term survival of Cupriavidus metallidurans CH34 in mineral water and the interaction with basalt, a lunar-type rock in preparation for the ESA spaceflight experiment, BIOROCK. Therefore, C. metallidurans CH34 cells were suspended in mineral water supplemented with or without crushed basalt and send for 3 months on board the Russian FOTON-M4 capsule. Long-term storage had a significant impact on cell physiology and energy status (by flow cytometry analysis, plate count and intracellular ATP measurements) as 60% of cells stored on ground lost their cell membrane potential, only 17% were still active, average ATP levels per cell were significantly lower and cultivability dropped to 1%. The cells stored in the presence of basalt and exposed to space flight conditions during storage however showed less dramatic changes in physiology, with only 16% of the cells lost their cell membrane potential and 24% were still active, leading to a higher cultivability (50%) and indicating a general positive effect of basalt and space flight on survival. Microbe-mineral interactions and biofilm formation was altered by spaceflight as less biofilm was formed on the basalt during flight conditions. Leaching from basalt also changed (measured with ICP-OES), showing that cells release more copper from basalt and the presence of cells also impacted iron and magnesium concentration irrespective of the presence of basalt. The flight conditions thus could counteract some of the detrimental effects observed after the 3 month storage conditions.

  16. Factors affecting the pore space transformation during hydrocarbon generation in source rock (shales): laboratory experiment

    NASA Astrophysics Data System (ADS)

    Giliazetdinova, D. R.; Korost, D. V.

    2014-12-01

    Oil and gas generation is a set of processes which taking place in the interior, the processes can't be observable in nature. In the process of dumping the source rock, organic matter is transformed into a complex of high-molecular compounds - precursors of oil and gas (kerogen). Entering of a source column for specific thermobaric conditions, triggers the formation of low molecular weight hydrocarbon compounds. Generation of sufficient quantities of hydrocarbons leads to the primary fluid migration within the source rock. For the experiment were selected mainly siliceous-carbonate composition rocks from Domanic horizon South-Tatar arch. The main aim of experiment was heating the rocks in the pyrolyzer to temperatures which correspond katagenes stages. For monitoring changes in the morphology of the pore space X-ray microtomography method was used. As a result, when was made a study of the composition of mineral and organic content of the rocks, as well as textural and structural features, have been identified that the majority of the rock samples within the selected collection are identical. However, characteristics such as organic content and texture of rocks are different. Thus, the experiment was divided into two parts: 1) the study of the influence of organic matter content on the morphology of the rock in the process of thermal effects; 2) study the effect of texture on the primary migration processes for the same values of organic matter. Also, an additional experiment was conducted to study the dynamics of changes in the structure of the pore space. At each stage of the experiment morphology of altered rocks characterized by the formation of new pores and channels connecting the primary voids. However, it was noted that the samples with a relatively low content of the organic matter had less changes in pore space morphology, in contrast to rocks with a high organic content. At the second stage of the research also revealed that the conversion of the pore

  17. Geological modeling of a fault zone in clay rocks at the Mont-Terri laboratory (Switzerland)

    NASA Astrophysics Data System (ADS)

    Kakurina, M.; Guglielmi, Y.; Nussbaum, C.; Valley, B.

    2016-12-01

    Clay-rich formations are considered to be a natural barrier for radionuclides or fluids (water, hydrocarbons, CO2) migration. However, little is known about the architecture of faults affecting clay formations because of their quick alteration at the Earth's surface. The Mont Terri Underground Research Laboratory provides exceptional conditions to investigate an un-weathered, perfectly exposed clay fault zone architecture and to conduct fault activation experiments that allow explore the conditions for stability of such clay faults. Here we show first results from a detailed geological model of the Mont Terri Main Fault architecture, using GoCad software, a detailed structural analysis of 6 fully cored and logged 30-to-50m long and 3-to-15m spaced boreholes crossing the fault zone. These high-definition geological data were acquired within the Fault Slip (FS) experiment project that consisted in fluid injections in different intervals within the fault using the SIMFIP probe to explore the conditions for the fault mechanical and seismic stability. The Mont Terri Main Fault "core" consists of a thrust zone about 0.8 to 3m wide that is bounded by two major fault planes. Between these planes, there is an assembly of distinct slickensided surfaces and various facies including scaly clays, fault gouge and fractured zones. Scaly clay including S-C bands and microfolds occurs in larger zones at top and bottom of the Mail Fault. A cm-thin layer of gouge, that is known to accommodate high strain parts, runs along the upper fault zone boundary. The non-scaly part mainly consists of undeformed rock block, bounded by slickensides. Such a complexity as well as the continuity of the two major surfaces are hard to correlate between the different boreholes even with the high density of geological data within the relatively small volume of the experiment. This may show that a poor strain localization occurred during faulting giving some perspectives about the potential for

  18. Effect of thermal shock on the decomposition of rocks under controlled laboratory conditions

    NASA Astrophysics Data System (ADS)

    Kasanin-Grubin, Milica; Vezmar, Tijuana; Kuhn, Nikolaus J.

    2013-04-01

    The major factor determining the rate of weathering of a given rock are the climatic conditions of the surrounding environment, most notably type and amount of precipitation and temperature. For the latter, average annual temperature and where applicable, the frequency of freezing and thawing are often considered to be relevant for weathering. The rate of temperature change is mostly ignored. However, a rapid change in temperature, referred to as thermal shock could have more severe consequences of rock deterioration then gradual heating and cooling of rocks is gradual. Thermal shock induces a stress of such a magnitude that the material is unable to adjust fast enough and so it breaks down. The aim of this study is to examine the importance of mechanical decomposition of rocks when treated with thermal shock by freezing. The rate of decomposition of rocks of various sizes was measured based on their weight loss. In addition, they were immersed in water after freezing and the electrical conductivity and pH of the water were measured as an index for thermal-shock induced micro-fracturing. Samples of three rock types were chosen for the experiment: limestone, tuffaceous rock and basalt. Samples were examined in two separate cycles: (i) 24h immersion in ultra-clean water followed by 24h drying at 30o and (ii) 24h immersion, 24h temperature shock by freezing at -20˚C and 6h thawing. Each cycle was repeated approximately 20 times. In each cycle three different sizes of rock were examined: <16mm, 16-8mm and 8-5mm. Limestone mass decreased for both cycles, although more distinctly after repeated thermal shocks. Furthermore, the rate of decay decreased with increasing rock size. Tuffaceous rock exposed to cycle (i) also showed a significant weight loss. Somewhat surprisingly, the mass of the tuffaceous rock exposed to thermal shock increased by about 13% in all sample size groups. It is possible that pore volume increased during experiment and that the rocks became

  19. Modeling of laboratory experiments determining the chemico-osmotic, hydraulic and diffusion properties of sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Takeda, M.; Hiratsuka, T.; Ito, K.

    2008-12-01

    -osmotic properties of clay-rich materials have been demonstrated in laboratory experiments. However, it remains inconclusive whether chemical osmosis can retain the pressure disequilibrium and so influence groundwater flow in a geologic time scale. Therefore, systematic research involving field-scale investigations of pressure and salinity distributions and experimental estimations of the chemico-osmotic, hydraulic and diffusive properties of formation media is required. This study focuses on the development of a laboratory experimental system and the analytical solutions to estimate the chemico-osmotic, hydraulic and diffusive properties of formation media. The experimental system consists of a flexible-wall permeameter cell that loads confining pressures, along with a closed fluid circuit to perform osmotic, hydraulic and diffusion experiments under background fluid pressures. This experimental design enables simulating underground conditions at the depths required for safety assessments of geological waste disposal. The effectiveness of the experimental system and the analytical solutions are demonstrated with a set of osmotic, hydraulic and diffusion experiments performed using sedimentary rocks.

  20. Spectral discrimination of ignimbritic rocks of southern Argentina in Landsat Thematic Mapper imagery using GER SIRIS laboratory data

    NASA Astrophysics Data System (ADS)

    Mehl, Harald; Reimer, Wolfgang; Miller, Hubert

    1994-12-01

    The article shows some basic approaches to discriminate ignimbrite type pyroclastic flow deposits in Landsat Thematic Mapper imagery of semi-arid areas. Beside certain topographical and tectonical fea- tures which already describe ignimbrites and associated pyroclastic flows in those environments, our interest is focused on the influence of specific mineralogical and depositional characteristics on the spectral reflectance response. Spectral signatures in the visible and near infrared region of various fresh and weathered samples as well as desert varnish and soil samples were recorded using a GER SIRIS laboratory spectroscope to determine the factors controlling their proper response in all Thematic Mapper bands. Whole rock geochemistry data, X-ray powder diffraction analysis and microscopical studies as well as surface interpretations of the samples documented certain properties which might cause different spectral signatures also of geochemically mostly equivalent rocks. According to the semi-arid conditions of the South Patagonian Massif which are the most important constituents with respect to rock weathering and mineral alteration a more effective discrimination of the mostly leucocratic rocks was obtained using TM bands 7-4-1 and 7-5-2 as RGB false colour com- posites. Three image processing techniques, contrast stretched ratio composites, decorrelation stretched false colour composites and relative channel colour composites were examined to distinguish the variable ignimbrite outcrops in the chosen test site.

  1. A laboratory apparatus for forced-oscillation experiments on partially saturated rocks

    NASA Astrophysics Data System (ADS)

    Musialak, Jana; Renner, Jörg; Steeb, Holger

    2016-04-01

    Seismic wave attenuation in partially saturated reservoir rocks is influenced by the physical properties of the porous rock and of the inherent pore fluids, including their local saturation state. Therefore, wave attenuation, when studied over a range of frequencies, can be useful to obtain valuable information on the morphology of partially saturated rocks. Quantitative estimates for pore-fluid content and saturation degree as well as fracture density are crucial for a substantial characterization of geothermal reservoirs and monitoring of processes in subsurface fluid-rock systems. Reservoir rocks, such as sandstones, can show heterogeneities of various sizes, starting from micro-cracks on the grain or micrometer scale to faults with several kilometers in length. Solid and fluid heterogeneities may lead to a patch-wise saturation state on the mesoscopic scale, i.e. the characteristic length scale of the patches is much larger than the dominant grain or pore size. The length scales of heterogeneities affect the characteristics of seismic attenuation. Studying this effect is important for the interpretation of seismic data, as obtained for geothermal reservoirs. Thus, we developed a new experimental setup to measure the effective hydro-mechanical properties of partially and fully saturated rock samples under realistic reservoir stress states in the seismic frequency range. This forced-oscillation apparatus is suitable for cylindrical rock samples with a diameter of 30 mm and a length of 75 mm. It is composed of a high-pressure triaxial cell which permits multistep in- and outflow of two different pore fluids under in situ pressure conditions, and a dynamic excitation device. This preloaded piezoelectric actuator with DMS-position sensor can generate a sinusoidal axial displacement that subjects the triaxially loaded sample to an additional harmonic stress with a frequency up to 1 kHz. The applied force is measured externally as well as inside the triaxial cell by a

  2. Study of gamma spectrometry laboratory measurement in various sediment and vulcanic rocks

    NASA Astrophysics Data System (ADS)

    Nurhandoko, Bagus Endar B.; Kurniadi, Rizal; Rizka Asmara Hadi, Muhammad; Rizal Komara, Insan

    2017-01-01

    Gamma-ray spectroscopy is the quantitative study of the energy spectra of gamma-ray sources. This method is powerful to characterize some minerals, especially to differentiate rocks which contains among Potassium, Uranium, dan Thorium. Rock contains radioactive material which produce gamma rays in various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be used as indicator for mineral content of rock. Some sediment and vulcanic rock have been collected from East Java Basin. Samples are ranging from Andesite vulcanics, Tuff, Shale, various vulcanic clay and Alluvial clay. We present some unique characteristics of gamma spectrometry in various sedimentar and vulcanic rocks of East Java Basins. Details contents of gamma ray spectra give enrichments to characterize sample of sediment and vulcanic in East Java. Weathered vulcanic clay has lower counting rate of gamma ray than alluvial deltaic clay counting rate. Therefore, gamma spectrometrometry can be used as tool for characterizing the enviroment of clay whether vulcanic or alluvial-deltaic. This phenomena indicates that gamma ray spectrometry can be as tool for characterizing the clay whether it tends to Smectite or Illite

  3. Characterization of rock weathering using elastic waves: A Laboratory-scale experimental study

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Sub; Yoon, Hyung-Koo

    2017-05-01

    The weathering of rock through various mechanisms can be characterized by multiple techniques. For example, the compressional wave velocity has been mainly used with the advantage of being a non-destructive method. However, the application of shear wave velocity, which is suitable for representing the lithological characteristics of the medium, has rarely been applied to assess the deterioration of rock. The objective of this study is to apply the elastic waves, including both compressional and shear waves, to characterize weathered rock. Furthermore, the technique of weight change is adopted to estimate the weathering of rock based on porosity. Highly concentrated salty water is used to achieve chemical weathering by simulating sea water. In addition, the slake durability test is performed to simulate the mechanical weathering. Compressional waves, shear waves and weight are measured at each weathering step. The average variation in compressional wave velocity, shear wave velocity and porosity after 3 chemical and 9 mechanical weathering steps is approximately 47.4%, 55.5% and 78.2%, respectively. The slake durability index gradually decreases with increasing amounts of mechanical weathering. Furthermore, the statistical and the multiple linear regression analyses were carried out to correlate the slake durability index with the compressional wave velocity, shear wave velocity, and porosity. These tests indicate that the shear wave velocity is highly correlated with the slake durability index. This study demonstrates that the elastic wave velocities can be effectively used to characterize rock weathering.

  4. Laboratory evaluation of mechanical properties of rock using an automated triaxial compression test with a constant mean stress criterion

    SciTech Connect

    Mellegard, K.D.; Pfeifle, T.W.

    1999-07-01

    A computerized, servohydraulic test system has been used in the laboratory to perform axisymmetric, triaxial compression tests on natural rock salt using a load path that maintains constant mean stress. The constant mean stress test protocol illustrates that modern test systems allow a nonstandard load path which can focus on a particular aspect of rock characterization; namely, the onset of dilation. Included are discussions of how the constant mean stress test could be used to investigate material anisotropy and determine elastic moduli. The results from the constant mean stress tests are compared to test results from a traditional test method. The paper also addresses system calibration concerns and the effects of pressure changes on the direct-contact extensometers used to measure strain.

  5. Evaluation of laboratory-scale in situ capping sediments with purple parent rock to control the eutrophication.

    PubMed

    Huang, Xuejiao; Shi, Wenhao; Ni, Jiupai; Li, Zhenlun

    2017-01-16

    In this study, the effectiveness of controlling the eutrophication using purple parent rock to cap the sediments was evaluated in the laboratory scale. Sediments were collected from Sanxikou reservoir (China) in July 2013. Then, three types of purple parent rock (T1f, J3p, and J2s) which are distributed widely in southwest China were used to cap the sediments. Limestone and calcite were used as the contrast group, because they had been reported as effective controls on eutrophication. Then, they were incubated at 20 °C for 46 days. The results indicated that the application of purple parent rock as a barrier material can effectively inhibit the release of nutrient elements in sediments, and the inhibition rates of total nitrogen (TN), total phosphorus (TP), ammonium (NH4-N), and nitrate (NO3-N) were much better than that of limestone and calcite. Among the three types of purple parent rock, J3p exhibited the best inhibitory effect on the release of nitrogen in sediments, and the inhibition efficiency of TN, NH4-N, and NO3-N was 59.7, 77.6, and 45.1%, respectively. As for T1f, it exhibited the best inhibitory effect on the release of TP in sediments with the inhibition rate of 94.4%. Whereas all these capping materials showed weak inhibition on release of organic matter in sediments, and the inhibition efficiencies were less than 20%. Moreover, these treatments could also cause distinct changes in the microbial community in sediments and overlying water, and the contents of TN and TP in all capping materials increased. All results demonstrated that purple parent rock could inhibit the release of nutrient in sediments through mechanical interception, physical adsorption, and chemical absorption as well as changing the microbial activity in the covering layer, sediments, or overlying water.

  6. A comparative study of melt-rock reactions in the mantle: laboratory dissolution experiments and geological field observations

    NASA Astrophysics Data System (ADS)

    Tursack, Emily; Liang, Yan

    2012-05-01

    Systematic variations in mineralogy and chemical composition across dunite-harzburgite (DH) and dunite-harzburgite-lherzolite (DHL) sequences in the mantle sections of ophiolites have been widely observed. The compositional variations are due to melt-rock reactions as basaltic melts travel through mantle peridotite, and may be key attributes to understanding melting and melt transport processes in the mantle. In order to better understand melt-rock reactions in the mantle, we conducted laboratory dissolution experiments by juxtaposing a spinel lherzolite against an alkali basalt or a mid-ocean ridge basalt. The charges were run at 1 GPa and either 1,300°C or 1,320°C for 8-28 h. Afterward, the charges were slowly cooled to 1,200°C and 1 GPa, which was maintained for at least 24 h to promote in situ crystallization of interstitial melts. Cooling allowed for better characterization of the mineralogy and mineral compositional trends produced and observed from melt-rock reactions. Dissolution of lherzolite in basaltic melts with cooling results in a clinopyroxene-bearing DHL sequence, in contrast to sequences observed in previously reported isothermal-isobaric dissolution experiments, but similar to those observed in the mantle sections of ophiolites. Compositional variations in minerals in the experimental charges follow similar melt-rock trends suggested by the field observations, including traverses across DH and DHL sequences from mantle sections of ophiolites as well as clinopyroxene and olivine from clinopyroxenite, dunite, and wehrlite dikes and xenoliths. These chemical variations are controlled by the composition of reacting melt, mineralogy and composition of host peridotite, and grain-scale processes that occur at various stages of melt-peridotite reaction. We suggest that laboratory dissolution experiments are a robust model to natural melt-rock reaction processes and that clinopyroxene in replacive dunites in the mantle sections of ophiolites is

  7. An Infrared Laboratory for the Study of Planetary Materials (IRIS): First Results of Impact Rock Studies

    NASA Astrophysics Data System (ADS)

    Morlok, A.; Ahmedi, M.; Hiesinger, H.

    2013-09-01

    We present the results of a study about the mid-infrared reflect ance properties of impact rocks from the zördlinger Ries impact crater. Spectra from separated components of suevite, melt glass, devitrified glass and matrix show a high degree of similarity, reflecting the high abundance of amorphous materials.

  8. Sulfidogenesis and Control in Fractured Rock: Laboratory Experiments and Implication for Souring Intervention in Oil Reservoirs

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Hubbard, C. G.; Geller, J. T.; Ajo Franklin, J. B.

    2016-12-01

    Microbial sulfidogenesis in oil reservoirs, referred to as souring, is commonly encountered during sea water flooding. A better understanding of the souring process and effective control is of great interest to the oil industry. While a large fraction of global oil reserve is found in fractured rock, understanding of sulfidogenesis and control in fractured rock is next to non-existent. Complex and contrasting flow properties between fracture and matrix result in heterogeneous thermal and reaction gradients, posing great challenges to both experimental and modeling studies. We conducted the first experiment on biogenic sulfidogenesis and control in fractured rock. A 2D flow cell was used and straight fractures were created in order to reduce complexity, producing datasets more amenable to models. Heating was applied to simulate temperature gradients from colder sea-water injection. Perchlorate treatment was performed following sulfidogenesis as a thermodynamic control strategy. Synthetic sea water (SSW) with acetate was used as the growth media. Inoculations were carried out with sulfate reducing and perchlorate reducing microbes. A set of control and monitoring methods was applied including temperature, optical and infrared imaging, distributed galvanic sensing and fluid sampling as well as influent/effluent monitoring. Tracer tests were conducted before and after the experiment. Our experiment captured the dynamics of sulfur cycling in fractured rocks. Time-lapse optical imaging recorded the evolution of microbial biomass. Infrared imaging revealed the thermal gradient and the impacts from flow. Such data was essential for the identification of a mesophilic zone and it's co-location with sufidogenesis. Galvanic-potential signals provided the critical dataset for tracking spatial sulfide distribution over time. Our experiment demonstrated for the first time the role of heterogeneous flow and temperature controlling sulfidogenesis and treatment in fractured rock

  9. Active and passive seismic methods for characterization and monitoring of unstable rock masses: field surveys, laboratory tests and modeling.

    NASA Astrophysics Data System (ADS)

    Colombero, Chiara; Baillet, Laurent; Comina, Cesare; Jongmans, Denis; Vinciguerra, Sergio

    2016-04-01

    Appropriate characterization and monitoring of potentially unstable rock masses may provide a better knowledge of the active processes and help to forecast the evolution to failure. Among the available geophysical methods, active seismic surveys are often suitable to infer the internal structure and the fracturing conditions of the unstable body. For monitoring purposes, although remote-sensing techniques and in-situ geotechnical measurements are successfully tested on landslides, they may not be suitable to early forecast sudden rapid rockslides. Passive seismic monitoring can help for this purpose. Detection, classification and localization of microseismic events within the prone-to-fall rock mass can provide information about the incipient failure of internal rock bridges. Acceleration to failure can be detected from an increasing microseismic event rate. The latter can be compared with meteorological data to understand the external factors controlling stability. On the other hand, seismic noise recorded on prone-to-fall rock slopes shows that the temporal variations in spectral content and correlation of ambient vibrations can be related to both reversible and irreversible changes within the rock mass. We present the results of the active and passive seismic data acquired at the potentially unstable granitic cliff of Madonna del Sasso (NW Italy). Down-hole tests, surface refraction and cross-hole tomography were carried out for the characterization of the fracturing state of the site. Field surveys were implemented with laboratory determination of physico-mechanical properties on rock samples and measurements of the ultrasonic pulse velocity. This multi-scale approach led to a lithological interpretation of the seismic velocity field obtained at the site and to a systematic correlation of the measured velocities with physical properties (density and porosity) and macroscopic features of the granitic cliff (fracturing, weathering and anisotropy). Continuous

  10. Laboratory Experiments to Evaluate Matrix Diffusion of Dissolved Organic Carbon Carbon-14 in Southern Nevada Fractured-rock Aquifers

    SciTech Connect

    Hershey, Ronald L.; Fereday, Wyatt

    2016-05-01

    Dissolved inorganic carbon (DIC) carbon-14 (14C) is used to estimate groundwater ages by comparing the DIC 14C content in groundwater in the recharge area to the DIC 14C content in the downgradient sampling point. However, because of chemical reactions and physical processes between groundwater and aquifer rocks, the amount of DIC 14C in groundwater can change and result in 14C loss that is not because of radioactive decay. This loss of DIC 14C results in groundwater ages that are older than the actual groundwater ages. Alternatively, dissolved organic carbon (DOC) 14C in groundwater does not react chemically with aquifer rocks, so DOC 14C ages are generally younger than DIC 14C ages. In addition to chemical reactions, 14C ages may also be altered by the physical process of matrix diffusion. The net effect of a continuous loss of 14C to the aquifer matrix by matrix diffusion and then radioactive decay is that groundwater appears to be older than it actually is. Laboratory experiments were conducted to measure matrix diffusion coefficients for DOC 14C in volcanic and carbonate aquifer rocks from southern Nevada. Experiments were conducted using bromide (Br-) as a conservative tracer and 14C-labeled trimesic acid (TMA) as a surrogate for groundwater DOC. Outcrop samples from six volcanic aquifers and five carbonate aquifers in southern Nevada were used. The average DOC 14C matrix diffusion coefficient for volcanic rocks was 2.9 x 10-7 cm2/s, whereas the average for carbonate rocks was approximately the same at 1.7 x 10-7 cm2/s. The average Br- matrix diffusion coefficient for volcanic rocks was 10.4 x 10-7 cm2/s, whereas the average for carbonate rocks was less at 6.5 x 10-7 cm2/s. Carbonate rocks exhibited greater variability in

  11. Redrilling of well EE-3 at the Los Alamos National Laboratory HDR (Hot Dry Rock) project

    SciTech Connect

    Schillo, J.C.; Nicholson, R.W.; Hendron, R.H.; Thomson, J.C.

    1987-01-01

    The successful sidetracking of well EE-3 and the drilling of well EE-3A proved that with detailed planning and by adjusting techniques based on previous experience at Fenton Hill, drilling can be accomplished with reduced risk. The primary drilling problems associated with drilling of hot, crystalline basement rock, are (a) abrasiveness between the downhole tools and the formations and (b) a crooked wellbore path. These were essentially eliminated by a specially designed drilling fluid and careful pre-planning of the directional drilling operations. These improvements have taken much of the risk out of drilling at the Fenton Hill Hot Dry Rock (HDR) Geothermal Test Site. The sidetracking of EE-3 and drilling of EE-3A were undertaken to complete the hydraulic connection between boreholes. Drilling through fractured regions indicated by the dense zones of microseismic activity increased the probability of success. EE-3 was sidetracked at 9373' and redrilled to a depth of 13,182'.

  12. An experimental comparison of laboratory techniques in determining bulk properties of tuffaceous rocks; Yucca Mountain Site Characterization Project

    SciTech Connect

    Boyd, P.J.; Martin, R.J. III; Price, R.H.

    1994-04-01

    Samples of tuffaceous rock were studied as part of the site characterization for a potential nuclear waste repository at Yucca Mountain in southern Nevada. These efforts were scoping in nature, and their results, along with those of other investigations, are being used to develop suitable procedures for determining bulk properties of tuffaceous rock in support of thermal and mechanical properties evaluations. Comparisons were made between various sample preparation, handling, and measurement techniques for both zeolitized and nonzeolitized tuff in order to assess their effects on bulk property determinations. Laboratory tests included extensive drying regimes to evaluate dehydration behavior, the acquisition of data derived from both gas and water pycnometers to compare their suitability in determining grain densities, a comparison of particle size effects, and a set of experiments to evaluate whole core saturation methods. The results affirm the added complexity of these types of measurements where there is a zeolite component in the sample mineralogy. Absolute values for the bulk properties of zeolitized tuff are immeasurable due to the complex nature of their dehydration behavior. However, the results of the techniques that were investigated provide a basis for the development of preferred, consistent methods for determining the grain density, dry and saturated bulk densities, and porosity of tuffaceous rock, including zeolitic tuff in support of thermal and mechanical properties evaluations.

  13. Laboratory Investigation on Shear Behavior of Rock Joints and a New Peak Shear Strength Criterion

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaobo; Jiang, Qinghui; Chen, Na; Wei, Wei; Feng, Xixia

    2016-09-01

    In this study, shear tests on artificial rock joints with different roughness were conducted under five normal stress levels. Test results showed that the shear strength of rock joints had a positive correlation with roughness and the applied normal stress. Observation of joint specimens after shear tests indicated that asperity damage was mainly located in the steep areas facing the shear direction. The damaged joint surfaces tend to be rough, which implies that tensile failure plays an important role in shear behavior. As a result of the anisotropic characteristic of joint roughness, two quantitative 2D roughness parameters, i.e., the revised root-mean-square of asperity angle tan-1( Z 2r) and the maximum contact coefficient C m, were proposed considering the shear direction. The proposed roughness parameters can capture the difference of roughness in forward and reverse directions along a single joint profile. The normalized tensile strength and the proposed roughness parameters were used to perform a rational derivation of peak dilatancy angle. A negative exponential-type function was found to be appropriate to model the peak dilatancy angle. Using the new model of peak dilatancy angle, we obtained a new criterion for peak shear strength of rock joints. The good agreement between test results and predicted results by the new criterion indicated that the proposed criterion is capable of estimating the peak shear strength of rock joints. Comparisons between the new criterion and published models from available literature revealed that the proposed criterion has a good accuracy for predicting the peak shear strength of joints investigated in this study.

  14. A laboratory study of supercritical CO2 adsorption on cap rocks in the geological storage conditions

    NASA Astrophysics Data System (ADS)

    Jedli, Hedi; Jbara, Abdessalem; Hedfi, Hachem; Bouzgarrou, Souhail; Slimi, Khalifa

    2017-04-01

    In the present study, various cap rocks have been experimentally reacted in water with supercritical CO2 in geological storage conditions ( P = 8 × 106 Pa and T = 80 °C) for 25 days. To characterize the potential CO2-water-rock interactions, an experimental setup has been built to provide additional information concerning the effects of structure, thermal and surface characteristics changes due to CO2 injection with cap rocks. In addition, CO2 adsorption capacities of different materials (i.e., clay evaporate and sandstone) are measured. These samples were characterized by XRD technique. The BET specific surface area was determined by nitrogen isotherms. In addition, thermal characteristics of untreated adsorbents were analyzed via TGA method and topography surfaces are identified by Scanning Electron Microscope (SEM). Taking into account pressure and temperature, the physical as well as chemical mechanisms of CO2 retention were determined. Isotherm change profiles of samples for relative pressure range indicate clearly that CO2 was adsorbed in different quantities. In accordance with the X-ray diffraction, a crystalline phase was formed due to the carbonic acid attack and precipitation of some carbonate.

  15. Paleoproterozoic structural evolution of rocks exposed in the underground science and engineering laboratory, Lead SD, USA

    NASA Astrophysics Data System (ADS)

    Terry, M. P.; Redden, J. A.

    2008-12-01

    The lab provides a unique 3-dimensional view of the crustal structure of the Precambrian core of the Black Hills that lies along the margin of the Wyoming Craton. The Paleoproterozoic structural evolution of these rocks controls the distribution of lithologies and rock fabric and thus the rheologic properties in the lab. These properties have potential to influence later formed structures such as fractures and a range of experiments from in the areas hydrology to rock mechanics. The rock at the lab is composed of metamorphosed volcanic and sedimentary rocks that include, from oldest to youngest, the Yates unit, Poorman Formation, Homestake Formation and Ellison Formation. The Yates unit is a hornblende- plagioclase schist. The Poorman Formation is a sericite-biotite carbonate-bearing phyllite. The Homestake Formation is a grunerite-siderite schist with interbedded chlorite or biotite phyllite. The Ellison Formation is a sericite-biotite phyllite or schist with interbedded impure quartzite (biotite-quartzschist). Compilation of available structural data and analysis indicate a complex evolution of folds and fabrics between 1780 and 1715 Ma. The lab is located on a late upright SE-plunging anticlinorium which is interpreted to deform the earliest folds (NE trending?). The earliest phase resulted in repetition is Homestake Formation and associated units. Overprinting during later deformation events caused tightening and local dismemberment of these early folds that led to the previous interpretation that multiple iron formations existed in the lab. The second phase of folding shallow to moderate upright SE-plunging folds and associated northwest striking, steeply dipping foliation. The third phase of folding overprints the previous phase to varying degrees and produced four structural domains that are recognized by changes in the orientation of structural fabrics. The third phase of folding is best developed in the western part of the lab and is represented by steeply

  16. A Sequence of Laboratory Experiments for the Determination of Chemico-osmotic, Hydraulic and Diffusion Parameters of Rock Sample

    NASA Astrophysics Data System (ADS)

    Takeda, M.; Hiratsuka, T.; Manaka, M.; Finsterle, S.; Ito, K.

    2012-12-01

    One of the key issues in the hydrogeologic characterization of sedimentary formations is the uncertainties of fluid pressure anomalies which could be caused by chemical osmosis. Chemical osmosis is the migration of water through a semi-permeable membrane driven by the difference of chemical potentials between waters to compensate for the difference in water potentials, leading to an increase in the pressure gradient. Accordingly, if geologic media can act as semi-permeable membranes, and if salinity is not uniform in the formation, localized fluid pressures may be generated by chemical osmosis. In order to identify the possibility of chemical osmosis in formations, it is essential to evaluate the membrane properties of representative rock types. However, for the examination of the magnitude and the duration time of osmotically induced pressures, the parameters relevant to the migration of water and dissolved substances, such as the hydraulic and diffusion parameters, are also necessary since they control the spatial variation of salinity and the dissipation of osmotically induced pressures. In order to obtain the chemico-osmotic, hydraulic and diffusion parameters from a rock sample, this study developed a laboratory experimental system capable of performing chemical osmosis and permeability experiments under the confining pressure simulating in-situ effective stress conditions. The permeability and chemical-osmosis experiments are performed in sequence on a rock sample, and the progress of each experiment is monitored by measuring fluid pressures and salt concentrations in reservoirs contacting the ends of the disc-shaped rock sample. Analytical solutions for the permeability and chemical osmosis experiments were also derived for parameter determination. The semi-analytical solution for the chemical osmosis experiment involves five unknown parameters, i.e., the reflection coefficient, intrinsic permeability, specific storage and effective diffusion coefficient of

  17. 3D Anisotropic Velocity Tomography of a Water Saturated Rock under True-Triaxial Stress in the Laboratory

    NASA Astrophysics Data System (ADS)

    Ghofrani Tabari, M.; Goodfellow, S. D.; Nasseri, M. B.; Young, R.

    2013-12-01

    A cubic specimen of water saturated Fontainebleau Sandstone is tested in the laboratory under true-triaxial loading where three different principal stresses are applied under drained conditions. Due to the loading arrangement, closure and opening of the pre-existing cracks in the rock, as well as creation and growth of the aligned cracks cause elliptical anisotropy and distributed heterogeneities. A Geophysical Imaging Cell equipped with an Acoustic Emission monitoring system is employed to image velocity structure of the sample during the experiment through repeated transducer to transducer non-destructive ultrasonic surveys. Apparent P-wave velocities along the rock body are calculated in different directions and shown in stereonet plots which demonstrate an overall anisotropy of the sample. The apparent velocities in the main three orthogonal cubic directions are used as raw data for building a mean spatial distribution model of anisotropy ratios. This approach is based on the concept of semi-principal axes in an elliptical anisotropic model and appointing two ratios between the three orthogonal velocities in each of the cubic grid cells. The spatial distribution model of anisotropy ratios are used to calculate the anisotropic ray-path segment matrix elements (Gij). These contain segment lengths of the ith ray in the jth cell in three dimensions where, length of each ray in each cell is computed for one principal direction based on the dip and strike of the ray and these lengths differ from the ones in an isotropic G Matrix. 3D strain of the squeezed rock and the consequent geometrical deformation is also included in the ray-path segment matrix. A Singular Value Decomposition (SVD) method is used for inversion from the data space of apparent velocities to the model space of P-wave propagation velocities in the three principal directions. Finally, spatial variation and temporal evolution of induced damages in the rock, representing uniformly distributed or

  18. Laboratory and Field Measurements of Electrical Resistivity to Determine Saturation and Detect Fractures in a Heated Rock Mass

    SciTech Connect

    Roberts, J J; Ramirez, A; Carlson, S; Ralph, W; Bonner, B P

    2001-04-03

    Laboratory measurements of the electrical resistivity of intact and fractured representative geothermal reservoir rocks were performed to investigate the resistivity contrast caused by active boiling and to infer saturation and fracture location in a large-scale field test. Measurements were performed to simulate test conditions with confining pressures up to 100 bars and temperatures to 145 C. Measurements presented are a first step toward making the search for fractures using electrical methods quantitatively. Intact samples showed a gradual resistivity increase when pore pressure was decreased below the phase-boundary pressure of free water, while fractured samples show a larger resistivity change at the onset of boiling. The resistivity change is greatest for samples with the most exposed surface area. Analysis of a field test provided the opportunity to evaluate fracture detection using electrical methods at a large scale. Interpretation of electrical resistance tomography (ERT) images of resistivity contrasts, aided by laboratory derived resistivity-saturation-temperature relationships, indicates that dynamic saturation changes in a heated rock mass are observable and that fractures experiencing drying or resaturation can be identified. The same techniques can be used to locate fractures in geothermal reservoirs using electrical field methods.

  19. Opportunities for Multidisciplinary Research in Partnership with Rock Engineers at the Deep Underground Science and Engineering Laboratory

    NASA Astrophysics Data System (ADS)

    Laughton, C.

    2008-12-01

    For the last half century the physics community has increasingly turned to the use of underground space to conduct basic research. The community is currently planning to conduct a new generation of underground experiments at the Deep Underground Science and Engineering Laboratory (DUSEL). DUSEL will be constructed within the footprint of the defunct Homestake Gold Mine, located in Lead, South Dakota. Physics proposals call for the construction of new caverns in which to conduct major new experiments. Some of the proposed laboratory facilities will be significantly larger and deeper than any previously constructed. The talk will highlight possible opportunities for integrating multi-disciplinary research in to the cavern construction program, and will stress the need to work closely with design and construction contractors to ensure that research goals can be achieve with minimal impact on project work. The constructors of large caverns should be particularly receptive to, and encouraging of geoscience research that could improve the engineering characterization of the rock mass. An improved understanding of the rock mass, as the host construction material, would result in a more reliable cavern design and construction process, and a reduced construction risk to the Project.

  20. Analysis of Copper-Bearing Rocks and Minerals for Their Metal Content Using Visible Spectroscopy: A First Year Chemistry Laboratory Exploration

    ERIC Educational Resources Information Center

    Bopegedera, A. M. R. P.

    2016-01-01

    General chemistry and introductory chemistry students were presented with a laboratory exploration for the determination of the mass percent of copper in rock and mineral samples. They worked independently in the laboratory, which involved multiple lab (pipetting, preparing standard solutions by quantitative dilution, recording visible spectra…

  1. Analysis of Copper-Bearing Rocks and Minerals for Their Metal Content Using Visible Spectroscopy: A First Year Chemistry Laboratory Exploration

    ERIC Educational Resources Information Center

    Bopegedera, A. M. R. P.

    2016-01-01

    General chemistry and introductory chemistry students were presented with a laboratory exploration for the determination of the mass percent of copper in rock and mineral samples. They worked independently in the laboratory, which involved multiple lab (pipetting, preparing standard solutions by quantitative dilution, recording visible spectra…

  2. Experimental investigations and geochemical modelling of site-specific fluid-fluid and fluid-rock interactions in underground storage of CO2/H2/CH4 mixtures: the H2STORE project

    NASA Astrophysics Data System (ADS)

    De Lucia, Marco; Pilz, Peter

    2015-04-01

    work packages hosted at the German Research Centre for Geosciences (GFZ) focus on the fluid-fluid and fluid-rock interactions triggered by CO2, H2 and their mixtures. Laboratory experiments expose core samples to hydrogen and CO2/hydrogen mixtures under site-specific conditions (temperatures up to 200 °C and pressure up to 300 bar). The resulting qualitative and, whereas possible, quantitative data are expected to ameliorate the precision of predictive geochemical and reactive transport modelling, which is also performed within the project. The combination of experiments, chemical and mineralogical analyses and models is needed to improve the knowledge about: (1) solubility model and mixing rule for multicomponent gas mixtures in high saline formation fluids: no data are namely available in literature for H2-charged gas mixtures in the conditions expected in the potential sites; (2) chemical reactivity of different mineral assemblages and formation fluids in a broad spectrum of P-T conditions and composition of the stored gas mixtures; (3) thermodynamics and kinetics of relevant reactions involving mineral dissolution or precipitation. The resulting amelioration of site characterization and the overall enhancement in understanding the potential processes will benefit the operational reliability, the ecological tolerance, and the economic efficiency of future energy storing plants, crucial aspects for public acceptance and for industrial investors.

  3. Laboratory measurements of reservoir rock from the Geysers geothermal field, California

    USGS Publications Warehouse

    Lockner, D.A.; Summers, R.; Moore, D.; Byerlee, J.D.

    1982-01-01

    Rock samples taken from two outcrops, as well as rare cores from three well bores at the Geysers geothermal field, California, were tested at temperatures and pressures similar to those found in the geothermal field. Both intact and 30?? sawcut cylinders were deformed at confining pressures of 200-1000 bars, pore pressure of 30 bars and temperatures of 150?? and 240??C. Thin-section and X-ray analysis revealed that some borehole samples had undergone extensive alteration and recrystallization. Constant strain rate tests of 10-4 and 10-6 per sec gave a coefficient of friction of 0.68. Due to the highly fractured nature of the rocks taken from the production zone, intact samples were rarely 50% stronger than the frictional strength. This result suggests that the Geysers reservoir can support shear stresses only as large as its frictional shear strength. Velocity of p-waves (6.2 km/sec) was measured on one sample. Acoustic emission and sliding on a sawcut were related to changes in pore pressure. b-values computed from the acoustic emissions generated during fluid injection were typically about 0.55. An unusually high b-value (approximately 1.3) observed during sudden injection of water into the sample may have been related to thermal cracking. ?? 1982.

  4. Glomerular lipidosis accompanied by renal tubular oxalosis in wild and laboratory-reared Japanese rock ptarmigans (Lagopus mutus japonicus).

    PubMed

    Murai, Atsuko; Murakami, Mami; Sakai, Hiroki; Shimizu, Hiroaki; Murata, Koichi; Yanai, Tokuma

    2011-12-01

    Glomerular lipidosis is a disease characterized by lipid accumulation in mesangial cells but that has not been fully investigated in avian species. We examined four wild and two laboratory-reared Japanese rock ptarmigans (Lagopus mutus japonicus)--an endangered avian species--presenting vacuolar deposits in the glomeruli. All cases had vacuolar deposits in the glomeruli. In the wild cases, fewer than 30% of all glomeruli were affected, compared with more than 90% in the laboratory-reared cases. In the wild cases, most deposits were mild and restricted to the mesangial areas of glomeruli. In the laboratory-reared cases, nearly all of the deposits covered entire glomeruli. Electron microscopy of mild deposits revealed vacuoles in the cytoplasm of mesangial cells. These vacuoles were positive for Sudan III, Sudan black B, oil red O, Nile blue, periodic acid-Schiff, Schultz test, and digitonin stain and were negative for performaric acid-Schiff stains. Based on these results, we diagnosed the glomerular lesion as glomerular lipidosis caused by uptake of low-density lipoprotein in mesangial cells. Except for one wild case, all cases exhibited renal tubular oxalosis. The severity of tubular oxalosis tended to be related to the severity of glomerular lipidosis: In cases of mild glomerular lipidosis, tubular oxalosis was also mild or absent. We therefore diagnosed the primary lesion as glomerular lipidosis accompanied by tubular oxalosis. The four wild cases came from different zones and therefore had no opportunities to interbreed and no common relatives. We believe these data support the hypothesis that glomerular lipidosis is a disease of the general population ofJapanese rock ptarmigans. This is the first report of glomerular lipidosis accompanied by renal tubular oxalosis in an avian species.

  5. Analytical performance of a versatile laboratory microscopic X-ray fluorescence system for metal uptake studies on argillaceous rocks

    NASA Astrophysics Data System (ADS)

    Gergely, Felicián; Osán, János; Szabó, B. Katalin; Török, Szabina

    2016-02-01

    Laboratory-scale microscopic X-ray fluorescence (micro-XRF) plays an increasingly important role in various fields where multielemental investigations of samples are indispensable. In case of geological samples, the reasonable detection limits (LOD) and spatial resolutions are necessary to identify the trace element content in microcrystalline level. The present study focuses on the analytical performance of a versatile laboratory-scale micro-XRF system with various options of X-ray sources and detectors to find the optimal experimental configuration in terms of sensitivities and LOD for selected elements in loaded petrographic thin sections. The method was tested for sorption studies involving thin sections prepared from cores of Boda Claystone Formation, which is a potential site for a high-level radioactive waste repository. Loaded ions in the sorption measurements were Cs(I) and Ni(II) chemically representing fission and corrosion products. Based on the collected elemental maps, the correlation between the elements representative of main rock components and the selected loaded ion was studied. For the elements of interest, Cs(I) and Ni(II) low-power iMOXS source with polycapillary and silicon drift detector was found to be the best configuration to reach the optimal LOD values. Laboratory micro-XRF was excellent to identify the responsible key minerals for the uptake of Cs(I). In case of nickel, careful corrections were needed because of the relatively high Ca content of the rock samples. The results were compared to synchrotron radiation micro-XRF.

  6. Melt-rock reaction in the asthenospheric mantle: Perspectives from laboratory dissolution experiments (Invited)

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Wang, C.; Saper, L.; Dygert, N. J.; Xu, W.

    2013-12-01

    The primary motivation for melt-rock interaction in the mantle is chemical disequilibrium that arises when melt generated in the deep mantle percolates through the overlying mantle. This is a continuous process involving both thermal and chemical exchange between the melt and the solid matrix. It occurs in all major active tectonic regimes within the upper mantle and is responsible for a range of petrologic and geochemical observations. Factors that are important in controlling the kinetics of melt-rock interaction include temperature, pressure, and melt composition. The present study focuses on the effect of reacting melting composition, especially water and silica content, on reaction kinetics. In terms of melt composition, we can broadly divide melt-rock interaction into three groups: (1) reaction between peridotite and silica-undersaturated (anhydrous) melt; (2) reaction between peridotite and silica-saturated (anhydrous) melt; and (3) reaction between peridotite and hydrous melt. (1) is important to melt migration beneath mid-ocean ridges, (2) is relevant to magma genesis involving pyroxenite, and (3) is important to melt generation in the mantle wedge and back-arc basin. Reaction between peridotites and silica-undersaturated melts such as alkali basalt and MORB at moderate to low pressures can produce a melt-bearing dunite-harzburgite or dunite-harzburgite-lherzolite sequence. Reaction between peridotites and siliceous melts derived from melting of eclogite or garnet pyroxenite do not form dunite at moderate to high pressures (1-3.5 GPa and 1200-1550°C). Instead, they produce melt-bearing harzburgite at moderate pressure and opx-rich harzburgite or orthopyroxenite at high pressure. The opx is produced at the expense of olivine and the siliceous melt, which may hinder further reaction because of porosity reduction in these reactions. The rate of peridotite dissolution is considerably lower when the peridotite is subsolidus, and a high-porosity harzburgite or

  7. High Resolution Laboratory FTIR Spectroscopy at Planetary and Astrophysical Temperatures: Temperature Dependence of 13CH4 Line Shapes Broadened by N2

    NASA Astrophysics Data System (ADS)

    Sung, Keeyoon; Mantz, A. M.; Brown, L. R.; Smith, M. A. H.; Devi, V. M.; Benner, D. C.; Crawford, T. J.

    2009-12-01

    We present engineering results obtained with a Michelson Interferometer (Bruker IFS-125HR) newly configured with a temperature stabilized cryogenic absorption cell that hangs from the top cover of the evacuated sample compartment. The cell has an optical path of 24.29 cm and a demonstrated temperature stability of better than 0.01 K at all temperatures between 300 K and 90 K. The cryogenic cell is mounted on the cold finger of a closed cycle helium refrigerator, and the temperatures are monitored with Si diode sensors. The wedged ZnSe cell windows are vacuum sealed with crushed indium gaskets. To test the system performance, we first recorded spectra of the ν4 band of 13CH4 broadened by nitrogen at 0.0056 cm-1 instrumental resolution (Resolving power = 232000) using a HgCdTe detector . The 13CH4+N2 mixture pressures ranged from 140 to 796 torr with the volume mixing ratios of 13CH4 varying between 0.003 to 0.01 at 296, 255, 225 and 180 K. Line shape parameters of the R(4) manifold at 1324 cm-1 (7.55 μm) were retrieved using the nonlinear least squares multispectrum technique, fitting all spectra simultaneously to determine the temperature dependences for the 13CH4 nitrogen broadening and shift coefficients. The analysis of the entire band from 1200 to 1400 cm-1 (8.33 to 7.14 μm) is currently underway to support remote sensing of Titan. This new spectroscopic capability at the Jet Propulsion Laboratory will enable future research in studies of planetary science and astrophysics. The research at the Jet Propulsion Laboratory (JPL), California Institute of Technology, the College of William and Mary and Connecticut College was performed under contracts and grants with National Aeronautics and Space Administration.

  8. Measuring the DC electrokinetic coupling coefficient of porous rock samples in the laboratory : a new apparatus

    NASA Astrophysics Data System (ADS)

    Walker, E.; Tardif, E.; Glover, P. W.; Ruel, J.; Hadjigeorgiou, J.

    2009-12-01

    Electro-kinetic properties of rocks allow the generation of an electric potential by the flow of an aqueous fluid through a porous media. The electrical potential is called the streaming potential, and the streaming potential coupling coefficient Cs is the ratio of the generated electric potential to the pressure difference that causes the fluid flow. The streaming potential coupling coefficient for rocks is described in the steady-state regime by the well known Helmholtz-Smoluchowski equation, and is supported by a relatively small body of experimental data. However, the electrokinetic coupling coefficient measurement is important for the further development of different area of expertise such as reservoir prospection and monitoring, volcano and earthquake monitoring and the underground sequestration of CO2. We have designed, constructed and tested a new experimental cell that is capable of measuring the DC streaming potential of consolidated and unconsolidated porous media. The new cell is made from stainless steel, perspex and other engineering polymers. Cylindrical samples of 25.4 mm can be placed in a deformable rubber sleeve and subjected to a radial confining pressure of compressed nitrogen up to 4.5 MPa. Actively degassed aqueous fluids can be flowed by an Agilent 1200 series binary pump (2 to 10 mL/min). A maximum input fluid pressure of 2.5 MPa can be applied, with a maximum exit pressure of 1 MPa to ensure sample saturation is stable and to reduce gas bubbles. The pressures each side of the sample are measured by high stability pressure transducers (Omega PX302-300GV), previously calibrated by a high precision differential pressure transducer Endress and Hauser Deltabar S PMD75. The streaming potentials are measured with Harvard Apparatus LF-1 and LF-2 Ag/AgCl non-polarising miniature electrodes. An axial pressure is applied (1 to 6.5 MPa) to counteract the radial pressure and provide additional axial load with a hydraulic piston. It is our intention to

  9. Measuring the DC electrokinetic coupling coefficient of porous rock samples in the laboratory : A new apparatus

    NASA Astrophysics Data System (ADS)

    Walker, Emilie; Tardif, Eric; Glover, Paul; Ruel, Jean; Lalande, Guillaume; Hadjigeorgiou, John

    2010-05-01

    Electro-kinetic properties of rocks allow the generation of an electric potential by the flow of an aqueous fluid through a porous media. The electrical potential is called the streaming potential, and the streaming potential coupling coefficient is the ratio of the generated electric potential to the pressure difference that causes the fluid flow. The streaming potential coupling coefficient for rocks is described in the steady-state regime by the well known Helmholtz-Smoluchowski equation, and is supported by a relatively small body of experimental data. However, the electrokinetic coupling coefficient measurement is important for the further development of different area of expertise such as reservoir prospection and monitoring, volcano and earthquake monitoring and the underground sequestration of carbon dioxide. We have designed, constructed and tested a new experimental cell that is capable of measuring the DC streaming potential of consolidated and unconsolidated porous media. The new cell is made from stainless steel, perspex and other engineering polymers. Cylindrical samples of 25.4 mm can be placed in a deformable rubber sleeve and subjected to a radial confining pressure of compressed nitrogen up to 4.5 MPa. Actively degassed aqueous fluids can be flowed by an Agilent 1200 series binary pump (2 to 10 mL/min). A maximum input fluid pressure of 2.5 MPa can be applied, with a maximum exit pressure of 1 MPa to ensure sample saturation is stable and to reduce gas bubbles. The pressures each side of the sample are measured by high stability pressure transducers (Omega PX302-300GV), previously calibrated by a high precision differential pressure transducer Endress and Hauser Deltabar S PMD75. The streaming potentials are measured with Harvard Apparatus LF-1 and LF-2 Ag/AgCl non-polarising miniature electrodes. An axial pressure is applied (1 to 6.5 MPa) to counteract the radial pressure and provide additional axial load with a hydraulic piston. It is our

  10. The rock abrasion record at Gale Crater: Mars Science Laboratory results from Bradbury Landing to Rocknest

    USGS Publications Warehouse

    Bridges, N.T.; Calef, F.J.; Hallett, B.W.; Herkenhoff, Kenneth E.; Lanza, N.L.; Le Mouélic, S.; Newman, C.E.; Blaney, D.L.; de Pablo, M.A.; Kocurek, G.A.; Langevin, Y.; Lewis, K.W.; Mangold, N.; Maurice, S.; Meslin, P.-Y.; Pinet, P.; Renno, N.O.; Rice, CM.S.; Richardson, M.E.; Sautter, V.; Sletten, R.S.; Wiens, R.C.; Yingst, R.A.

    2014-01-01

    Ventifacts, rocks abraded by wind-borne particles, are found in Gale Crater, Mars. In the eastward drive from “Bradbury Landing” to “Rocknest,” they account for about half of the float and outcrop seen by Curiosity's cameras. Many are faceted and exhibit abrasion textures found at a range of scales, from submillimeter lineations to centimeter-scale facets, scallops, flutes, and grooves. The drive path geometry in the first 100 sols of the mission emphasized the identification of abrasion facets and textures formed by westerly flow. This upwind direction is inconsistent with predictions based on models and the orientation of regional dunes, suggesting that these ventifact features formed from very rare high-speed winds. The absence of active sand and evidence for deflation in the area indicates that most of the ventifacts are fossil features experiencing little abrasion today.

  11. Prevention and Control of Antimicrobial Resistant Healthcare-Associated Infections: The Microbiology Laboratory Rocks!

    PubMed

    Simões, Alexandra S; Couto, Isabel; Toscano, Cristina; Gonçalves, Elsa; Póvoa, Pedro; Viveiros, Miguel; Lapão, Luís V

    2016-01-01

    In Europe, each year, more than four milion patients acquire a healthcare-associated infection (HAI) and almost 40 thousand die as a direct consequence of it. Regardless of many stategies to prevent and control HAIs, they remain an important cause of morbidity and mortality worldwide with a significant economic impact: a recent estimate places it at the ten billion dollars/year. The control of HAIs requires a prompt and efficient identification of the etiological agent and a rapid communication with the clinician. The Microbiology Laboratory has a significant role in the prevention and control of these infections and is a key element of any Infection Control Program. The work of the Microbiology Laboratory covers microbial isolation and identification, determination of antimicrobial susceptibility patterns, epidemiological surveillance and outbreak detection, education, and report of quality assured results. In this paper we address the role and importance of the Microbiology Laboratory in the prevention and control of HAI and in Antibiotic Stewardship Programs and how it can be leveraged when combined with the use of information systems. Additionally, we critically review some challenges that the Microbiology Laboratory has to deal with, including the selection of analytic methods and the proper use of communication channels with other healthcare services.

  12. Prevention and Control of Antimicrobial Resistant Healthcare-Associated Infections: The Microbiology Laboratory Rocks!

    PubMed Central

    Simões, Alexandra S.; Couto, Isabel; Toscano, Cristina; Gonçalves, Elsa; Póvoa, Pedro; Viveiros, Miguel; Lapão, Luís V.

    2016-01-01

    In Europe, each year, more than four milion patients acquire a healthcare-associated infection (HAI) and almost 40 thousand die as a direct consequence of it. Regardless of many stategies to prevent and control HAIs, they remain an important cause of morbidity and mortality worldwide with a significant economic impact: a recent estimate places it at the ten billion dollars/year. The control of HAIs requires a prompt and efficient identification of the etiological agent and a rapid communication with the clinician. The Microbiology Laboratory has a significant role in the prevention and control of these infections and is a key element of any Infection Control Program. The work of the Microbiology Laboratory covers microbial isolation and identification, determination of antimicrobial susceptibility patterns, epidemiological surveillance and outbreak detection, education, and report of quality assured results. In this paper we address the role and importance of the Microbiology Laboratory in the prevention and control of HAI and in Antibiotic Stewardship Programs and how it can be leveraged when combined with the use of information systems. Additionally, we critically review some challenges that the Microbiology Laboratory has to deal with, including the selection of analytic methods and the proper use of communication channels with other healthcare services. PMID:27375577

  13. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate

    USGS Publications Warehouse

    Winters, W.J.; Pecher, I.A.; Waite, W.F.; Mason, D.H.

    2004-01-01

    This paper presents results of shear strength and acoustic velocity (p-wave) measurements performed on: (1) samples containing natural gas hydrate from the Mallik 2L-38 well, Mackenzie Delta, Northwest Territories; (2) reconstituted Ottawa sand samples containing methane gas hydrate formed in the laboratory; and (3) ice-bearing sands. These measurements show that hydrate increases shear strength and p-wave velocity in natural and reconstituted samples. The proportion of this increase depends on (1) the amount and distribution of hydrate present, (2) differences, in sediment properties, and (3) differences in test conditions. Stress-strain curves from the Mallik samples suggest that natural gas hydrate does not cement sediment grains. However, stress-strain curves from the Ottawa sand (containing laboratory-formed gas hydrate) do imply cementation is present. Acoustically, rock physics modeling shows that gas hydrate does not cement grains of natural Mackenzie Delta sediment. Natural gas hydrates are best modeled as part of the sediment frame. This finding is in contrast with direct observations and results of Ottawa sand containing laboratory-formed hydrate, which was found to cement grains (Waite et al. 2004). It therefore appears that the microscopic distribution of gas hydrates in sediment, and hence the effect of gas hydrate on sediment physical properties, differs between natural deposits and laboratory-formed samples. This difference may possibly be caused by the location of water molecules that are available to form hydrate. Models that use laboratory-derived properties to predict behavior of natural gas hydrate must account for these differences.

  14. A laboratory study of the effects of roughness on the mid-infrared spectra of rock surfaces

    NASA Astrophysics Data System (ADS)

    Osterloo, M. M.; Hamilton, V. E.; Anderson, F. S.

    2010-12-01

    We have completed a laboratory study on the effects of surface roughness on the thermal emission spectra of a diverse suite of rock samples, including igneous, metamorphic, and sedimentary compositions. We roughened our samples with abrasives, which created average roughnesses that range from < ~1μm to > ~10μm and compare mid-infrared emissivity spectra from initial and roughened surfaces. The initial and roughened surfaces were characterized by using a profilometer to calculate the length scale-dependent root mean square deviation (Rqɛ). Initial results indicate that 1) rock classes vary in the degree that they are susceptible to abrasion, 2) absorption features shallow with increasing roughness across all rock groups, 3) in general, absorption features do not change shape with increasing surface roughness, 4) we see no first order correlations between increasing surface roughness and reduction in spectral contrast, and 5) we do not see complete obscuration of features in any of our roughened spectra. One of the fundamental goals of acquiring spectroscopic observations of planetary surfaces is to determine the composition of rocks and minerals, which can provide insight into a wide variety of geological processes that may have shaped the region. The mid-infrared region is able to provide such information because wavelength dependent molecular vibrations within the lattice structure cause absorption and emission of infrared radiation. Emission spectra from most mineral groups contain distinctive absorptions and it is these spectral signatures that can be exploited to determine mineralogy. However, previous studies have shown that surface roughness can change the contrast or obscure the diagnostic spectral signatures in the mid-infrared wavelength region. A solid laboratory basis for interpreting remotely acquired data is imperative to understanding the mineralogy of a surface. If the detectability of all minerals in the infrared may be dependent in part on their

  15. Analyses of rocks and minerals from the laboratory of the United States Geological Survey, 1880 to 1914

    USGS Publications Warehouse

    Clarke, Frank Wigglesworth

    1915-01-01

    The present Geological Survey of the United States was organized in 1879. In 1880, in connection with the Colorado work, a chemical laboratory was established at Denver in charge of W. F. Hillebrand, with whom were associated Antony Guyard and, later, L. G. Eakins. In 1882 W. H. Melville was placed in charge of a second laboratory at San Francisco, and in the autumn of 1883 the central laboratory was started in Washington, with myself as chief chemist. In November, 1885, Dr. Hillebrand was transferred to Washington; early in 1888 he was followed by Mr. Eakins, and the Denver laboratory was discontinued. In the spring of 1890 Dr. Melville also was transferred to Washington, and since then the geochemical work of the Survey has been concentrated at headquarters. The special laboratories of the water-resources and technologic branches of the Survey are not included in this statement and their work is not represented in this bulletin.Up to January 1, 1914, nearly 8,000 analyses have been made in the laboratory at Washington of rocks, minerals, ores, waters, sediments, coals, metals, and other substances with which geology has to do. Some-hundreds of analyses were also made in the laboratories at Denver and San Francisco. A fair amount of research work upon mineralogical and analytical problems has also been done. In *all of this work the following chemists have been employed: E. T. Allen, R. K. Bailey, Charles Catlett, T. M. Chatard, F. W. Clarke, L. G. Eakins, J. G. Fairchild, F. A. Gooch, Antony Guyard, W. B. Hicks, W. F. Hillebrand, W. F. Hunt, W. H. Melville, H. C. McNeil, Chase Palmer, R. B. Riggs, W. T. Schaller, E. A. Schneider, George Steiger, H. N. Stokes, E. C. Sullivan, William Valentine, R. C. Wells, W. C. Wheeler, and J. E. Whitfield. At present, January 1, 1914, eight of these chemists are employed in the Survey. Other officers of the Survey have been occupied more or less with chemical questions, but the men named in this list were connected directly

  16. Calcite fracture fillings as indicators of paleohydrology at Laxemar at the Aspo Hard Rock Laboratory, southern Sweden

    USGS Publications Warehouse

    Wallin, B.; Peterman, Z.

    1999-01-01

    Isotopic compositions of C (??13C), O (??18O) and Sr (??87Sr) were determined for calcite fracture fillings in the crystalline rock penetrated by a 1.6 km drill hole at Laxemar, near the Aspo Hard Rock Laboratory (AHRL) in southern Sweden. These calcites precipitated from groundwater some time in the past, and their ??13C, ??18O and ??87Sr values reflect those of the source waters. The present-day groundwater system is hydrochemically stratified with highly saline water underlying more shallow brackish and fresh water. The origin of this stratified system is probably related to past glaciations although the ultimate origin of the deep, highly saline water is still problematical. None of the calcite fracture fillings sampled below 900 m could have precipitated from any of the present-day ground waters which in view of the glacial history of the region is not surprising. However, several shallow calcite fracture fillings are formed by precipitation from the present-day groundwater. Coupled variations in ??13C, ??18O and ??87Sr isotopes at depths in excess of 900 m suggest that these isotope systems in calcite are recording a time-dependent evolution of groundwater composition.

  17. Transport and attenuation of carboxylate-modified latex microspheres in fractured rock laboratory and field tracer tests

    USGS Publications Warehouse

    Becker, M.W.; Reimus, P.W.; Vilks, P.

    1999-01-01

    Understanding colloid transport in ground water is essential to assessing the migration of colloid-size contaminants, the facilitation of dissolved contaminant transport by colloids, in situ bioremediation, and the health risks of pathogen contamination in drinking water wells. Much has been learned through laboratory and field-scale colloid tracer tests, but progress has been hampered by a lack of consistent tracer testing methodology at different scales and fluid velocities. This paper presents laboratory and field tracer tests in fractured rock that use the same type of colloid tracer over an almost three orders-of-magnitude range in scale and fluid velocity. Fluorescently-dyed carboxylate-modified latex (CML) microspheres (0.19 to 0.98 ??m diameter) were used as tracers in (1) a naturally fractured tuff sample, (2) a large block of naturally fractured granite, (3) a fractured granite field site, and (4) another fractured granite/schist field site. In all cases, the mean transport time of the microspheres was shorter than the solutes, regardless of detection limit. In all but the smallest scale test, only a fraction of the injected microsphere mass was recovered, with the smaller microspheres being recovered to a greater extent than the larger microspheres. Using existing theory, we hypothesize that the observed microsphere early arrival was due to volume exclusion and attenuation was due to aggregation and/or settling during transport. In most tests, microspheres were detected using flow cytometry, which proved to be an excellent method of analysis. CML microspheres appear to be useful tracers for fractured rock in forced gradient and short-term natural gradient tests, but longer residence times may result in small microsphere recoveries.Understanding colloid transport in ground water is essential to assessing the migration of colloid-size contaminants, the facilitation of dissolved contaminant transport by colloids, in situ bioremediation, and the health risks

  18. Results of Laboratory Scale Fracture Tests on Rock/Cement Interfaces

    SciTech Connect

    Um, Wooyong; Jung, Hun Bok

    2012-06-01

    A number of pure cement and cement-basalt interface samples were subjected to a range of compressive loads to form internal fractures. X-ray microtomography was used to visualize the formation and growth of internal fractures in three dimensions as a function of compressive loads. This laboratory data will be incorporated into a geomechanics model to predict the risk of CO2 leakage through wellbores during geologic carbon storage.

  19. Exploratory simulations of multiphase effects in gas injection and ventilation tests in an underground rock laboratory

    SciTech Connect

    Finsterle, S. . Versuchsanstalt fuer Wasserbau, Hydrologie und Glaciologie); Schlueter, E.; Pruess, K. )

    1990-06-01

    This report is one of a series documenting the results of the Nagra-DOE Cooperative (NDC-I) research program in which the cooperating scientists explore the geological, geophysical, hydrological, geochemical, and structural effects was sponsored by the US Department of Energy (DOE) through the Lawrence Berkeley Laboratory (LBL) and the Swiss Nationale Genossenschaft fuer die Lagerung radioaktiver Abfaella (Nagra) and concluded in September 1989. 16 refs., 29 figs., 4 tabs.

  20. Transport and attenuation of carboxylate-modified latex microspheres in fractured rock laboratory and field tracer tests

    SciTech Connect

    Becker, M.W.; Reimus, P.W.; Vilks, P.

    1999-05-01

    Understanding colloid transport in ground water is essential to assessing the migration of colloid-size contaminants, the facilitation of dissolved contaminant transport by colloids, in situ bioremediation, and the health risks of pathogen contamination in drinking water wells. Much has been learned through laboratory and field-scale colloid tracer tests, but progress has been hampered by a lack of consistent tracer testing methodology at different scales and fluid velocities. This paper presents laboratory and field tracer tests in fractured rock that use the same type of colloid tracer over an almost three orders-of-magnitude range in scale and fluid velocity. Fluorescently-dyed carboxylate-modified latex (CML) microspheres were used as tracers in (1) a naturally fractured tuff sample, (2) a large block of naturally fractured granite, (3) a fractured granite field site, and (4) another fractured granite/schist field site. In all cases, the mean transport time of the microspheres was shorter than the solutes, regardless of detection limit. In all but the smallest scale test, only a fraction of the injected microsphere mass was recovered, with the smaller microspheres being recovered to a greater extent than the larger microspheres. Using existing theory, the authors hypothesize that the observed microsphere early arrival was due to volume exclusion and attenuation was due to aggregation and/or settling during transport. In most tests, microspheres were detected using flow cytometry, which proved to be an excellent method of analysis. CML microspheres appear to be useful tracers for fractured rock in forced gradient and short-term natural gradient tests, but longer residence times may result in small microsphere recoveries.

  1. Laboratory Experiments of Silica Powder Lubrication Between Rock Faces at Coseismic Velocities

    NASA Astrophysics Data System (ADS)

    Lu, K.; Kavehpour, P.; Brodsky, E.

    2004-12-01

    One of the unresolved problems in earthquake mechanics is the physical process controlling friction on faults during the rupture of large earthquakes. Many studies suggest that coseismic friction is low even at great depths and several mechanisms have been introduced to explain these observations. In these experiments, we attempt to investigate the physics of mechanical lubrication between rock surfaces by using dry powder. To simulate rock friction, we utilize a tribo-rheometer where two novaculite disks, with 1-inch diameter and 5-micron surface roughness, are compressed together with a thin layer of 5-micron silica powder applied in between. The tribo-rheometer is a highly sensitive instrument that measures torque and normal force when a test substance is placed between the rotating plates. The measurements can be used to directly calculate the viscosity and the friction coefficient. These experiments investigate the velocity dependence of friction by rotating the top disk through velocities from 10-3 to 102 rad/sec while the normal stress is kept constant on the order of 104 Pa. The preliminary experiments show frictional regimes of boundary, mixed, and hydrodynamic lubrication; together known as the Stribeck curve. At high shear rates of >10 rad/sec, hydrodynamic lubrication occurs when fluid-like behavior of granular flow are responsible for the shear stress between the surfaces. In contrast, boundary lubrication has full asperity contact between the top and bottom surfaces during low shear rates of <0.01 rad/sec and shear stress arises from physical interactions. Between the two regimes above, the mixed lubrication is where there is a combination of surface asperity and powder lubricant interactions. From the data, we find the friction coefficient drops from a boundary lubrication value of ˜0.3 -- 0.4 to a mixed regime minimum of ˜0.2 -- 0.3 while transitioning to the hydrodynamic lubrication. The transition corresponds to a change from solid

  2. Laboratory Studies on the Formation of Three C2H4O Isomers-Acetaldehyde (CH3CHO), Ethylene Oxide (c-C2H4O), and Vinyl Alcohol (CH2CHOH)-in Interstellar and Cometary Ices

    NASA Astrophysics Data System (ADS)

    Bennett, Chris J.; Osamura, Yoshihiro; Lebar, Matt D.; Kaiser, Ralf I.

    2005-11-01

    Laboratory experiments were conducted to unravel synthetic routes to form three C2H4O isomers-acetaldehyde (CH3CHO), ethylene oxide (c-C2H4O), and vinyl alcohol (CH2CHOH)-in extraterrestrial ices via electronic energy transfer processes initiated by electrons in the track of MeV ion trajectories. Here we present the results of electron irradiation on a 2:1 mixture of carbon dioxide (CO2) and ethylene (C2H4). Our studies suggest that suprathermal oxygen atoms can add to the carbon-carbon π bond of an ethylene molecule to form initially an oxirene diradical (addition to one carbon atom) and the cyclic ethylene oxide molecule (addition to two carbon atoms) at 10 K. The oxirene diradical can undergo a [1, 2]-H shift to the acetaldehyde molecule. Both the ethylene oxide and the acetaldehyde isomers can be stabilized in the surrounding ice matrix. To a minor amount, suprathermal oxygen atoms can insert into a carbon-hydrogen bond of the ethylene molecule, forming vinyl alcohol. Once these isomers have been synthesized inside the ice layers of the coated grains in cold molecular clouds, the newly formed molecules can sublime as the cloud reaches the hot molecular core stage. These laboratory investigations help to explain astronomical observations by Nummelin et al. and Ikeda et al. toward massive star-forming regions and hot cores, where observed fractional abundances of these isomers are higher than can be accounted for by gas-phase reactions alone. Similar synthetic routes could help explain the formation of acetaldehyde and ethylene oxide in comet C/1995 O1 (Hale-Bopp) and also suggest a presence of both isomers in Titan's atmosphere.

  3. LABORATORY EXPERIMENTS ON HEAT-DRIVEN TWO-PHASE FLOWS IN NATURAL AND ARTIFICIAL ROCK FRACTURES

    SciTech Connect

    TIMOTHY J. KNEAFSEY AND KARSTEN PRUESS

    1998-05-21

    Water flow in partially saturated fractures under thermal drive may lead to fast flow along preferential localized pathways and heat pipe conditions. At the potential high-level nuclear waste repository at Yucca Mountain, water flowing in fast pathways may ultimately contact waste packages and transport radionuclides to the accessible environment. Sixteen experiments were conducted to visualize heat-driven liquid flow in fracture models that included (1) assemblies of roughened glass plates, (2) epoxy replicas of rock fractures, and (3) a fractured specimen of Topopah Spring tuff. Continuous rivulet flow was observed for high liquid flow rates, intermittent rivulet flow and drop flow for intermediate flow rates, and film flow for lower flow rates and wide apertures. Heat pipe conditions (vapor-liquid counterflow with phase change) were identified in five of the seven experiments in which spatially resolved thermal monitoring was performed, but not when liquid-vapor counterflow was hindered by very narrow apertures, and when inadequate working fluid volume was used.

  4. P-waves imaging of the FRI and BK zones at the Grimsel Rock Laboratory

    SciTech Connect

    Majer, E.L.; Peterson, J.E. Jr. ); Blueming, P.; Sattel, G. )

    1990-08-01

    This report is one of a series documenting the results of the Nagra-DOE Cooperative (NDC-I) research program in which the cooperating scientists explore the geological, geophysical, hydrological, geochemical, and structural effects anticipated from the use of a rock mass as a geological repository for nuclear waste. Tomographic imaging studies using a high frequency (10 Khz.) piezoelectric source and a three component receiver were carried out in two different regions of the underground Nagra Grimsel test facility in Switzerland. Both sites were in fractured granite, one being in a strongly foliated granite (FRI site), and the other being in a relatively homogeneous granite (BK zone). The object of the work was to determine if the seismic techniques could be useful in imaging the fracture zones and provide information on the hydrologic conditions. Both amplitude and velocity tomograms were obtained from the Data. The results indicate that the fracture zones strongly influenced the seismic wave propagation, thus imaging the fracture zones that were hydrologically important. 11 refs., 24 figs.

  5. Secure, Long-Term Sequestration of CO2 in Basaltic Rocks: Results from Preliminary Field and Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Matter, J. M.; Takahashi, T.; Goldberg, D.; Alessi-Friedlander, Z.

    2002-05-01

    For long-term geologic sequestration of CO2 solid end products such as (Ca, Mg)CO3 are desirable because of their chemical stability, non-toxic nature and lack of fluidity for rapid migration. When high pressure CO2 is injected into deep aquifers, it will acidify the aquifer waters. If the aquifer is associated with mafic igneous rock, this acid may be neutralized by reactions with the surrounding rocks by forming carbonate minerals. The reactions may be represented by: Mg2SiO4 (forsterite) + 2 CO2(g) = 2 MgCO3 + SiO2 and CaAl2Si2O8 (anorthite) + CO2(g) + H2O + 2 SiO2 = CaCO3 + Al2Si4O10(OH)2. Under high CO2 pressure (gas or liquid), these reactions may be driven to the right to form carbonates. We test the feasibility of this concept with field and laboratory experiments. First, in order to estimate the sequestration capacity of an aquifer, hydraulic parameters such as effective porosity and permeability of the target aquifer system are required. In experimental wells that have been drilled into the 300 m thick Palisades Diabase (basalt) and the underlying sediments of the Newark Basin Series on the campus of the Lamont-Doherty Earth Observatory, we have located several highly fractured layers within the diabase and are developing field methods for characterizing fractured aquifer properities. Using downhole geophysical surveys, including acoustic televiewer and digital camera images in combination with hydraulic testing with a double packer system, the in situ fracture pattern, density, porosity and permeability of aquifer layers can be determined. Second, the rates of dissolution of diabase samples have been investigated using crushed rock samples in acidified aqueous solutions for a pH range from 1 to 4 at temperatures 20° C and 70° C. The dissolution rates were measured by monitoring the concentration of Ca2+ and Mg2+ in the fluid over several weeks. The laboratory experiments show that in the early, "far from equilibrium phase" range, the rates vary from 1

  6. Bayesian inference of spectral induced polarization parameters for laboratory complex resistivity measurements of rocks and soils

    NASA Astrophysics Data System (ADS)

    Bérubé, Charles L.; Chouteau, Michel; Shamsipour, Pejman; Enkin, Randolph J.; Olivo, Gema R.

    2017-08-01

    Spectral induced polarization (SIP) measurements are now widely used to infer mineralogical or hydrogeological properties from the low-frequency electrical properties of the subsurface in both mineral exploration and environmental sciences. We present an open-source program that performs fast multi-model inversion of laboratory complex resistivity measurements using Markov-chain Monte Carlo simulation. Using this stochastic method, SIP parameters and their uncertainties may be obtained from the Cole-Cole and Dias models, or from the Debye and Warburg decomposition approaches. The program is tested on synthetic and laboratory data to show that the posterior distribution of a multiple Cole-Cole model is multimodal in particular cases. The Warburg and Debye decomposition approaches yield unique solutions in all cases. It is shown that an adaptive Metropolis algorithm performs faster and is less dependent on the initial parameter values than the Metropolis-Hastings step method when inverting SIP data through the decomposition schemes. There are no advantages in using an adaptive step method for well-defined Cole-Cole inversion. Finally, the influence of measurement noise on the recovered relaxation time distribution is explored. We provide the geophysics community with a open-source platform that can serve as a base for further developments in stochastic SIP data inversion and that may be used to perform parameter analysis with various SIP models.

  7. Geochemical modelling of terrestrial igneous rock compositions using laboratory thermal emission spectroscopy with an overview on its applications to Indian Mars Mission

    NASA Astrophysics Data System (ADS)

    Nair, Archana M.; Mathew, George

    2017-06-01

    We attempt geochemical modelling of igneous rock samples with a range of compositions using laboratory-generated thermal emission spectra. Igneous rock samples, plutonic and volcanic variants of alkaline and sub-alkaline composition were used for the analysis. The collected rock samples were analysed for mineralogical composition, mineral chemistry, and bulk rock chemistry using various techniques. Laboratory thermal emission spectrometer was developed by attaching an in-house fabricated emissivity apparatus to FTIR spectrometer thus, modifying the optical path of FT-IR spectrometer. Rock samples, chipped for the fresh surface, of fist size, were used to generate emissivity spectra. The emissivity spectrum of each rock sample so generated was deconvolved into its constituent minerals with the help of a spectral library of end-member minerals and using simple linear retrieval algorithm. The deconvolution was achieved by reducing RMS error while matching the measured spectrum to the modelled spectrum. Mineral chemistry and bulk rock chemistry was derived from the modelled spectrum with the help of the spectral library of end-member minerals developed by ASU, USA. We applied the existing IUGS classification scheme for all the analysed rock samples based on bulk rock chemistry derived using thermal emission spectroscopy and compared with measured bulk chemistry from XRF. The method is found to be useful in the classification of both plutonic and volcanic rock types within an error limit of 1σ. The classification is effective in differentiating alkaline rock types from sub-alkaline varieties. Measured and modelled silica percentage is found to be closely matching whereas total alkali shows over and under estimation. The emissivity spectra of collected rock samples were resampled to 12 bands corresponding to the spectral bands of Thermal Infrared Imaging Spectrometer (TIS) onboard Indian Mars Orbiter Mission. The analysis shows that TIS will be able to differentiate

  8. The role of fluids in rock layering development: a pressure solution self-organized process revealed by laboratory experiments

    NASA Astrophysics Data System (ADS)

    Gratier, Jean-Pierre; Noiriel, Catherine; Renard, Francois

    2015-04-01

    Natural deformation of rocks is often associated with stress-driven differentiation processes leading to irreversible transformations of their microstructures. The development mechanisms of such processes during diagenesis, tectonic, metamorphism or fault differentiation are poorly known as they are difficult to reproduce experimentally due to the very slow kinetics of stress-driven chemical processes. Here, we show that experimental compaction with development of differentiated layering, similar to what happens in natural deformation, can be obtained by indenter techniques in laboratory conditions. Samples of plaster mixed with clay and of diatomite loosely interbedded with volcanic dust were loaded in presence of their saturated aqueous solutions during several months at 40°C and 150°C, respectively. High-resolution X-ray microtomography and scanning electron microscopy observations show that the layering development is a pressure solution self-organized process. Stress-driven dissolution of the soluble minerals (either gypsum or silica) is initiated in the areas initially richer in insoluble minerals (clays or volcanic dust) because the kinetics of diffusive mass transfer along the soluble/insoluble mineral interfaces is much faster than along the healed boundaries of the soluble minerals. The passive concentration of insoluble minerals amplifies the localization of dissolution along some layers oriented perpendicular to the maximum compressive stress. Conversely, in the areas with initial low content in insoluble minerals and clustered soluble minerals, dissolution is slower. Consequently, these areas are less deformed, they host the re-deposition of the soluble species and they act as rigid objects that concentrate the dissolution near their boundaries thus amplifying the differentiation. A crucial parameter required for self-organized process of pressure solution is the presence of a fluid that is a good solvent of at least some of the rock-forming minerals

  9. Laboratory hydraulic fracturing experiments in intact and pre-fractured rock

    USGS Publications Warehouse

    Zoback, M.D.; Rummel, F.; Jung, R.; Raleigh, C.B.

    1977-01-01

    Laboratory hydraulic fracturing experiments were conducted to investigate two factors which could influence the use of the hydrofrac technique for in-situ stress determinations; the possible dependence of the breakdown pressure upon the rate of borehole pressurization, and the influence of pre-existing cracks on the orientation of generated fractures. The experiments have shown that while the rate of borehole pressurization has a marked effect on breakdown pressures, the pressure at which hydraulic fractures initiate (and thus tensile strength) is independent of the rate of borehole pressurization when the effect of fluid penetration is negligible. Thus, the experiments indicate that use of breakdown pressures rather than fracture initiation pressures may lead to an erroneous estimate of tectonic stresses. A conceptual model is proposed to explain anomalously high breakdown pressures observed when fracturing with high viscosity fluids. In this model, initial fracture propagation is presumed to be stable due to large differences between the borehole pressure and that within the fracture. In samples which contained pre-existing fractures which were 'leaky' to water, we found it possible to generate hydraulic fractures oriented parallel to the direction of maximum compression if high viscosity drilling mud was used as the fracturing fluid. ?? 1977.

  10. Report on laboratory tests of drying and re-wetting of intact rocks

    SciTech Connect

    Roberts, J.J.; Lin, Wunan

    1996-03-01

    This report is an update on progress made during FY1995 on hydrological property measurements performed in the laboratory. The report contains descriptions of experimental designs and procedures, data, observations, preliminary analyses, and future work. The primary focus of this report is the measurement of moisture retention curves of tuff as a function of temperature for both drying and re-wetting conditions. This work is a continuation of work described in MOL80 (UCRL-ID-119033), Hydrological Property Measurements of Topopah Spring Tuff (Roberts and Lin, 1995). Knowledge of unsaturated transport properties is critical for understanding the movement of water through the unsaturated zone. Evaluation of the performance of a potential nuclear waste repository also depends on these properties. Moisture retention data are important input for models of moisture movement in unsaturated porous media. Also important is the effect of sample history on the moisture retention curves, whether or not a complete saturation cycle at elevated temperature affects the moisture retention curve at subsequent lower temperature cycles. This report addresses initial observations regarding this aspect of the research.

  11. Does fault strengthening in laboratory rock friction experiments really depend primarily upon time and not slip?

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Pathikrit; Rubin, Allan M.; Beeler, Nicholas M.

    2017-08-01

    The popular constitutive formulations of rate-and-state friction offer two end-member views on whether friction evolves only with slip (Slip law) or with time even without slip (Aging law). While rate stepping experiments show support for the Slip law, laboratory-observed frictional behavior near-zero slip rates has traditionally been inferred as supporting Aging law style time-dependent healing, in particular, from the slide-hold-slide experiments of Beeler et al. (1994). Using a combination of new analytical results and explicit numerical (Bayesian) inversion, we show instead that the slide-hold-slide data of Beeler et al. (1994) favor slip-dependent state evolution during holds. We show that, while the stiffness-independent rate of growth of peak stress (following reslides) with hold duration is a property shared by both the Aging and (under a more restricted set of parameter combinations) Slip laws, the observed stiffness dependence of the rate of stress relaxation during long holds is incompatible with the Aging law with constant rate-state parameters. The Slip law consistently fits the evolution of the stress minima at the end of the holds well, whether fitting jointly with peak stresses or otherwise. But neither the Aging nor Slip laws fit all the data well when a - b is constrained to values derived from prior velocity steps. We also attempted to fit the evolution of stress peaks and minima with the Kato-Tullis hybrid law and the shear stress-dependent Nagata law, both of which, even with the freedom of an extra parameter, generally reproduced the best Slip law fits to the data.

  12. Electric resistivity and seismic refraction tomography: a challenging joint underwater survey at Äspö Hard Rock Laboratory

    NASA Astrophysics Data System (ADS)

    Ronczka, Mathias; Hellman, Kristofer; Günther, Thomas; Wisén, Roger; Dahlin, Torleif

    2017-06-01

    Tunnelling below water passages is a challenging task in terms of planning, pre-investigation and construction. Fracture zones in the underlying bedrock lead to low rock quality and thus reduced stability. For natural reasons, they tend to be more frequent at water passages. Ground investigations that provide information on the subsurface are necessary prior to the construction phase, but these can be logistically difficult. Geophysics can help close the gaps between local point information by producing subsurface images. An approach that combines seismic refraction tomography and electrical resistivity tomography has been tested at the Äspö Hard Rock Laboratory (HRL). The aim was to detect fracture zones in a well-known but logistically challenging area from a measuring perspective. The presented surveys cover a water passage along part of a tunnel that connects surface facilities with an underground test laboratory. The tunnel is approximately 100 m below and 20 m east of the survey line and gives evidence for one major and several minor fracture zones. The geological and general test site conditions, e.g. with strong power line noise from the nearby nuclear power plant, are challenging for geophysical measurements. Co-located positions for seismic and ERT sensors and source positions are used on the 450 m underwater section of the 700 m profile. Because of a large transition zone that appeared in the ERT result and the missing coverage of the seismic data, fracture zones at the southern and northern parts of the underwater passage cannot be detected by separated inversion. Synthetic studies show that significant three-dimensional (3-D) artefacts occur in the ERT model that even exceed the positioning errors of underwater electrodes. The model coverage is closely connected to the resolution and can be used to display the model uncertainty by introducing thresholds to fade-out regions of medium and low resolution. A structural coupling cooperative inversion

  13. Toward "Reality-Based" Integrative Laboratories in ChE: Introducing Real-Time, Hands-On Troubleshooting

    ERIC Educational Resources Information Center

    Hoare, Todd

    2015-01-01

    The implementation of troubleshooting within a pre-existing expository laboratory is described and evaluated. Student feedback indicated that troubleshooting activities are highly effective in providing a hands-on opportunity to exercise problem-solving skills and gain a better understanding of the whole process in addition to effectively…

  14. Toward "Reality-Based" Integrative Laboratories in ChE: Introducing Real-Time, Hands-On Troubleshooting

    ERIC Educational Resources Information Center

    Hoare, Todd

    2015-01-01

    The implementation of troubleshooting within a pre-existing expository laboratory is described and evaluated. Student feedback indicated that troubleshooting activities are highly effective in providing a hands-on opportunity to exercise problem-solving skills and gain a better understanding of the whole process in addition to effectively…

  15. Nano iron particles transport in fractured rocks: laboratory and field scale

    NASA Astrophysics Data System (ADS)

    Cohen, Meirav; Weisbrod, Noam

    2017-04-01

    Our study deals with the transport potential of nano iron particles (NIPs) in fractured media. Two different systemswere used to investigate transport on two scales: (1 )a laboratory flow system of a naturally discrete fractured chalk core, 0.43 and 0.18 m in length and diamater, respectively; and (2) a field system of hydraulically connected boreholes located 47 m apart which penetrate a fractured chalk aquifer. We started by testing the transport potential of various NIPs under different conditions. Particle stability experiments were conducted using various NIPs and different stabilizersat two ionic strengths. Overall, four different NIPs and three stabilizers were tested. Particles and solution properties (stability, aggregate/particle size, viscosity and density) were tested in batch experiments, and transport experiments (breakthrough curves (BTCs) and recovery) were conduted in the fractured chalk core. We have learned that the key parameters controlling particle transport are the particle/aggregate size and stability, which govern NIP settling rates and ultimately their migration distance. The governing mechanism controlling NIP transport was found to be sedimentation, and to a much lesser extent, processes such as diffusion, straining or interception. On the basis of these experiments, Carbo-Iron® particles ( 800 nm activated carbon particles doped with nano zero valent iron particles) and Carboxymethyl cellulose (CMC) stabilizer were selected for the field test injection. In the field, Carbo-Iron particles were initially injected into the fractured aquifer using an excess of stabilizer in order to ensure maximum recovery. This resulted in high particle recovery and fast arrival time, similar to the ideal tracer (iodide). The high recovery of the stable particle solution emphasized the importance of particle stability for transport in fractures. To test mobility manipulation potential of the particles and simulate more realistic scenarios, a second field

  16. Exploring Iron Silicate Precursors of Ancient Iron Formations through Rock Record, Laboratory and Field Analogue Investigations

    NASA Astrophysics Data System (ADS)

    Johnson, J. E.; Rasmussen, B.; Muhling, J.; Benzerara, K.; Jezequel, D.; Cosmidis, J.; Templeton, A. S.

    2016-12-01

    In direct contrast to today's oceans, iron-rich chemical precipitates dominate the deep marine sedimentary record > 2.3 billion years ago. The deposition of these minerals resulted in massive iron formations and indicate that the ocean was previously ferruginous and largely anoxic. To precipitate and concentrate iron in the sediments, many hypotheses have centered on the oxidation of soluble Fe(II) to solid Fe(III)-oxyhydroxides; these ideas have stimulated extensive research using iron-oxidizing bacteria to produce Fe(III)-oxides and trace metal sorption experiments on Fe(III)-oxides, leading to inferences of trace metal availability and implications for enzymatic and microbial evolution as well as pO2 levels and seawater chemistry. However, recent discoveries of disseminated iron-silicate nanoparticles in early-silicifying chert indicate that iron-silicates may have instead been the primary precipitates from these Archean ferruginous oceans (Rasmussen et al, 2015). Considering the significant paradigm shift this discovery implies for interpretations of Archean elemental cycling, redox state and potential microbial metabolisms, we investigated these iron-silicate inclusions and their implications for ancient seawater chemistry in a multi-faceted approach using spectroscopic- and diffraction-based techniques. The crystal structure, Fe oxidation state and Fe coordination environment of iron-silicate nanoparticles have been interrogated using microscale X-ray absorption spectroscopy, TEM and nanoscale scanning transmission X-ray microscopy. To further explore the chemical and potential biological controls on iron-silicate formation, we have also performed laboratory experiments to mimic Archean seawater and precipitate iron-bearing silicate minerals under abiotic conditions and in the presence of iron-oxidizing bacteria. In a complementary study, sediments from a natural Archean analogue system were sampled to determine if iron-silicate minerals form in Mexican

  17. The Application of Coreless Inductors for Displacement Measurements in Laboratory Investigations of Rock Properties

    NASA Astrophysics Data System (ADS)

    Nurkowski, Janusz

    2014-12-01

    The paper presented the coreless inductive sensor, its construction and principle of operation. The impact of temperature on the outcome of a measurement performed with the inductor was discusses, together with the possibility of temperature compensation of the inductor's performance. Subsequently, the reasons for limited measurement accuracy and resolution were discussed, particularly under the variable pressure in the order of some hundreds MPa. Two types of such sensor were presented: a sensor for measuring linear strains, e.g. during compressibility measurements, and an sensor for measuring circumferential strains during triaxial compression tests. Additionally, the manners of fixing the sensor on rock samples were presented. Finally, some examples of the sensor application were shown, together with the results of measurements of deformations of rock samples - especially in cases when resistance gauges cannot be used, and the samples are subjected to a load in the uniaxial and triaxial system, under the hydrostatic pressure of up to 400 MPa and the normal one. W Pracowni Odkształceń Skał Instytutu Mechaniki Górotworu prowadzone są badania właściwości mechanicznych skał. Wymaga to precyzyjnego pomiaru odkształcenia, na ogół pod wysokim ciśnieniem hydrostatycznym, które symuluje warunki panujące w głębi górotworu. Ciśnienie hydrostatyczne (do 400MPa w aparacie GTA-10) i ograniczona do kilku milimetrów przestrzeń w komorze ciśnieniowej na zainstalowanie odpowiedniego przyrządu, a także spękania i kawerny w skałach powodują znaczne trudności pomiaru odkształcenia z wymaganą rozdzielczością (nawet 10-6). Stosowanie tensometrów elektrooporowych naklejanych wprost na próbkę często jest zawodne, gdyż ciśnienie wgniata ścieżkę rezystancyjną w nierówności próbki, powodując jej przerwanie, a co gorsze, fałszuje wyniki pomiaru. Wypełnianie szczelin lub kawern różnymi podkładami jak klej epoksydowy, gips, jest

  18. Seismic tomography of the Excavation Damaged Zone of the Gallery 04 in the Mont Terri Rock Laboratory

    NASA Astrophysics Data System (ADS)

    Nicollin, F.; Gibert, D.; Bossart, P.; Nussbaum, Ch.; Guervilly, C.

    2008-01-01

    An endoscopic antenna is used to perform a seismic cross-hole tomography in the Excavation Damaged Zone (EDZ) of the new G04 gallery of the Mont Terri Underground Rock Laboratory (Switzerland) excavated in Opalinus clay. More than 800 seismic traces were recorded between two vertical boreholes by combining 22 source and 48 receiver locations. A vertical area of 1.2 × 3.4 m under the floor of the gallery is investigated with a high-resolution tomography. Data with a very good quality allow to determine the traveltimes and the amplitudes of a 40kHz source wavelet propagating between the two boreholes. The analysis of the traveltimes shows that the wave velocity is homogeneous but anisotropic with a minimum value of 2490 +/- 45ms-1 in the direction normal to the bedding and a maximum of 3330 +/- 90ms-1 parallel to the bedding. The amplitude of the first arrivals strongly varies depending on the source-receiver locations, and suggesting an heterogeneous distribution of the attenuation coefficient of the seismic waves. A Bayesian inversion provides likely models of attenuation that are compared with geological observations. The areas where fractures or cracks exist in the Opalinus clay appear as highly absorbing the seismic waves.

  19. Site study plan for non-routine laboratory rock mechanics, Deaf Smith County Site, Texas: Revision 1

    SciTech Connect

    Not Available

    1987-12-01

    This Site Study Plan describes the non-routine rock mechanics and thermal properties laboratory testing program planned for the characterization of site-specific geologic materials for the Deaf Smith County site, Texas. The study design provides for measurements of index, mechanical, thermomechanical, thermal and special properties for the host salt, and where appropriate, for nonhost lithologies. The types of tests which will be conducted are constant stress (creep) tests, constant strain (stress relaxation) tests, constant strain-rate tests, constant stress-rate tests, cyclic loading tests, hollow cylinder tests, uniaxial and triaxial compression tests, direct tension tests, indirect (triaxial) shear tests, thermal property determinations (conductivity, specific heat, expansivity, and diffusivity), fracture healing tests, thermal decrepitation tests, moisture content determinations, and petrographic and micromechanics analyses. Tests will be conducted at confining pressures up to 30 MPa and temperatures up to 300/degree/C. These data are used to construct mathematical models for the phenomenology of salt deformation. The models are then used in finite-element codes to predict repository response. A tentative testing schedule and milestone log are given. The duration of the testing program is expected to be approximately 5 years. 44 refs., 13 figs., 13 tabs.

  20. Rock Garden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false color composite image of the Rock Garden shows the rocks 'Shark' and 'Half Dome' at upper left and middle, respectively. Between these two large rocks is a smaller rock (about 0.20 m wide, 0.10 m high, and 6.33 m from the Lander) that was observed close-up with the Sojourner rover (see PIA00989).

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  1. LIA Rock Drill Laboratory

    DTIC Science & Technology

    1999-06-02

    Johnson, LIA Fern Gaffey, LIA Rick Callahan, LIA Doug Korba, Innolog Chris Ogburn, Gensym Outstanding Senior Leadership Support and...Campbell and Ft Stewart to test initial business rules and estimate - Developed & validated Training & Doctrine Command (TRADOC) models - Tailored models

  2. Tight Reservoir Properties Derived by Nuclear Magnetic Resonance, Mercury Porosimetry and Computed Microtomography Laboratory Techniques. Case Study of Palaeozoic Clastic Rocks

    NASA Astrophysics Data System (ADS)

    Krakowska, Paulina I.; Puskarczyk, Edyta

    2015-06-01

    Results of the nuclear magnetic resonance (NMR) investigations, mercury porosimetry measurements (MP) and computed microtomography (micro-CT), applied to the tight Palaeozoic rocks from the depths lower than 3000 m, were presented to estimate their reservoir potential. NMR signal analysis and interpretation were performed. Based on NMR driven models, permeability and Free Fluid Index were calculated for data sets divided into homogeneous clusters. Computerized mercury porosimetry results visualization and processing provided useful information, as the automatically determined Swanson parameter is correlated with petrophysical properties of rocks. Micro-CT enriched the image of porous space in qualitative and quantitative ways. Homogeneity of pore space structure was discussed using micro-CT approach. Integration of the results in the frame of reservoir parameters from standard laboratory methods and the modern ones resulted in the improvement of methodology for determining the old, deep-seated, hard sedimentary rocks reservoir potential.

  3. Laboratory Visualization Experiments of Temperature-induced Fractures Around a Borehole (Cryogenic Fracturing) in Shale and Analogue Rock Samples

    NASA Astrophysics Data System (ADS)

    Kneafsey, T. J.; Nakagawa, S.; Wu, Y. S.; Mukhopadhyay, S.

    2014-12-01

    In tight shales, hydraulic fracturing is the dominant method for improving reservoir permeability. However, injecting water-based liquids can induce formation damage and disposal problems, thus other techniques are being sought. One alternative to hydraulic fracturing is producing fractures thermally, using low-temperature fluids (cryogens). The primary consequence of thermal stimulation is that shrinkage fractures are produced around the borehole wall. Recently, cryogenic stimulation produced some promising results when the cryogen (typically liquid nitrogen and cold nitrogen gas) could be brought to reservoir depth. Numerical modeling also showed possible significant increases in gas production from a shale reservoir after cryogenic stimulation. However, geometry and the dynamic behavior of these thermally induced fractures under different stress regimes and rock anisotropy and heterogeneity is not yet well understood.Currently, we are conducting a series of laboratory thermal fracturing experiments on Mancos Shale and transparent glass blocks, by injecting liquid nitrogen under atmospheric pressure into room temperature blocks under various anisotropic stress states. The glass blocks allow clear optical visualization of fracture development and final fracturing patterns. For the shale blocks, X-ray CT is used to image both pre-existing and induced fractures. Also, the effect of borehole orientation with respect to the bedding planes and aligned preexisting fractures is examined. Our initial experiment on a uniaxially compressed glass block showed fracturing behavior which was distinctly different from conventional hydraulic fracturing. In addition to tensile fractures in the maximum principal stress directions, the thermal contraction by the cryogen induced (1) chaotic, spalling fractures around the borehole wall, and (2) a series of disk-shaped annular fractures perpendicular to the borehole. When applied to a horizontal borehole, the propagation plane of the

  4. Laboratory Investigations of a Low-Swirl Injector with H2 and CH4 at Gas Turbine Conditions

    SciTech Connect

    Cheng, R. K.; Littlejohn, D.; Strakey, P.A.; Sidwell, T.

    2008-03-05

    Laboratory experiments were conducted at gas turbine and atmospheric conditions (0.101 < P{sub 0} < 0.810 MPa, 298 < T{sub 0} < 580K, 18 < U{sub 0} < 60 m/s) to characterize the overall behaviors and emissions of the turbulent premixed flames produced by a low-swirl injector (LSI) for gas turbines. The objective was to investigate the effects of hydrogen on the combustion processes for the adaptation to gas turbines in an IGCC power plant. The experiments at high pressures and temperatures showed that the LSI can operate with 100% H{sub 2} at up to {phi} = 0.5 and has a slightly higher flashback tolerance than an idealized high-swirl design. With increasing H{sub 2} fuel concentration, the lifted LSI flame begins to shift closer to the exit and eventually attaches to the nozzle rim and assumes a different shape at 100% H{sub 2}. The STP experiments show the same phenomena. The analysis of velocity data from PIV shows that the stabilization mechanism of the LSI remains unchanged up to 60% H{sub 2}. The change in the flame position with increasing H{sub 2} concentration is attributed to the increase in the turbulent flame speed. The NO{sub x} emissions show a log linear dependency on the adiabatic flame temperature and the concentrations are similar to those obtained previously in a LSI prototype developed for natural gas. These results show that the LSI exhibits the same overall behaviors at STP and at gas turbine conditions. Such insight will be useful for scaling the LSI to operate at IGCC conditions.

  5. Spectral variations in rocks and soils containing ferric iron hydroxide and(or) sulfate minerals as seen by AVIRIS and laboratory spectroscopy

    USGS Publications Warehouse

    Rockwell, Barnaby W.

    2004-01-01

    Analysis of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data covering the Big Rock Candy Mountain area of the Marysvale volcanic field, west-central Utah, identified abundant rocks and soils bearing jarosite, goethite, and chlorite associated with volcanic rocks altered to propylitic grade during the Miocene (2321 Ma). Propylitically-altered rocks rich in pyrite associated with the relict feeder zones of convecting, shallow hydrothermal systems are currently undergoing supergene oxidation to natrojarosite, kaolinite, and gypsum. Goethite coatings are forming at the expense of jarosite where most pyrite has been consumed through oxidation in alluvium derived from pyrite-bearing zones. Spectral variations in the goethite-bearing rocks that resemble variations found in reference library samples of goethites of varying grain size were observed in the AVIRIS data. Rocks outside of the feeder zones have relatively low pyrite content and are characterized by chlorite, epidote, and calcite, with local copper-bearing quartz-calcite veins. Iron-bearing minerals in these rocks are weathering directly to goethite. Laboratory spectral analyses were applied to samples of iron-bearing rock outcrops and alluvium collected from the area to determine the accuracy of the AVIRIS-based mineral identification. The accuracy of the iron mineral identification results obtained by analysis of the AVIRIS data was confirmed. In general, the AVIRIS analysis results were accurate in identifying medium-grained goethite, coarse-grained goethite, medium- to coarse-grained goethite with trace jarosite, and mixtures of goethite and jarosite. However, rock fragments from alluvial areas identified as thin coatings of goethite with the AVIRIS data were found to consist mainly of medium- to coarse-grained goethite based on spectral characteristics in the visible and near-infrared. To determine if goethite abundance contributed to the spectral variations observed in goethite-bearing rocks

  6. Field-verification program (aquatic disposal): comparison of field and laboratory bioaccumulation of organic and inorganic contaminants from Black Rock Harbor dredged material. Final report

    SciTech Connect

    Lake, J.L.; Galloway, W.; Hoffman, G.; Nelson, W.; Scott, K.J.

    1988-05-01

    The utility of laboratory tests for predicting bioaccumulation of contaminants in the field was evaluated by comparing the identities, relative abundances, and quantities of organic and inorganic contaminants accumulated by organisms exposed to dredged material in both laboratory and field studies. The organisms used were Mytilus edulis (a filter-feeding bivalve) and Nephtys incisa (a benthic polychaete). These organisms were exposed in the laboratory and in the field to a contaminated dredged material from Black Rock Harbor (BRH), Connecticut. Both organisms had positive and negative attributes for these exposure studies. Mytilus edulis appeared to reach steady-state in laboratory-exposure studies. However, the determination of field-exposure concentrations was precluded due to limitations on obtaining an integrated water sample during the exposure period in the field. Nephtys incisa did not appear to reach steady-state in laboratory studies and, although field-exposure data (sediment concentrations) were obtained, the exposure zone for these organisms could not be determined. Estimates of field exposures were made using laboratory-derived exposure-residue relationships and residues from field-exposed organisms. These field-exposure estimates were compared with those estimated using exposure data from the field. A comparison of these estimates showed the same general trends in the exposure-residue relationships from the laboratory and the field and further supports the laboratory predictive approach.

  7. Laboratory measurements of Vp and Vs in a porosity-developed crustal rock: Experimental investigation into the effects of porosity at deep crustal pressures

    NASA Astrophysics Data System (ADS)

    Saito, Satoshi; Ishikawa, Masahiro; Arima, Makoto; Tatsumi, Yoshiyuki

    2016-05-01

    In order to evaluate the influence of porosity on the elastic properties of crustal rocks at deep crustal pressures, we performed laboratory measurements of compressional-wave (Vp) and shear-wave (Vs) velocities in a porosity-developed gabbro sample up to 1.0 GPa at room temperature. Based on the measured Vp and Vs data, we evaluated the changes in velocities, Vp/Vs, Poisson's ratio (σ), and total porosity of the rock as a function of pressure. Compared with the 'porosity-free' intrinsic elastic values of the gabbro sample, our results suggest that the development of porosity in crustal rocks lowers their Vp, Vs, Vp/Vs, and Poisson's ratio. Deviations (ΔVp, ΔVs, ΔVp/Vs, and Δσ) of the measured values from the intrinsic values are enhanced with increasing porosity. We evaluated the ΔVp from previous experimental study on the rocks of Tanzawa plutonic complex providing constraints on interpretation of the seismic velocity profiles of the Izu-Bonin-Mariana (IBM) arc and found a large negative ΔVp (up to - 22.7%) at lower pressures. The intrinsic velocity combined with the measured velocity data at in situ pressure conditions suggest that the ranges of Vp (6.0-6.5 km/s) in the middle crust of the IBM arc reflect the presence of considerable porosity and its closure in intermediate rocks and/or the change of composition from felsic to intermediate in mid-crustal rocks.

  8. Simulating the metamorphic evolution of rocks in the laboratory: experimental modelling of orogenic metamorphism of metapelites using a piston cylinder apparatus

    NASA Astrophysics Data System (ADS)

    Tropper, Peter; Mair, Philipp

    2017-04-01

    Metamorphic rocks contain a more or less complex mineral assemblage reflecting their metamorphic evolution. If the complex mineral assemblage is of multi-stage origin how do we know which mineral grew at which stage during the P-T evolution? To answer this question one needs to put constraints on the geological evolution of a given rock. The metamorphic evolution of a rock can be deciphered using three approaches: 1.) the practical geothermobarometric approach (inverse modelling), 2.) the theoretical pseudosection approach (forward modelling) and 3.) the experimental approach. Whereas with the first two approaches it is possible to constrain several stages of the P-T-X evolution but how do we know what assemblage is actually present at the desired P-T conditions? This question leads to the experimental approach, which allows a detailed mineralogical investigation of a given rock at distinct P-T conditions. Therefore, experimental investigations should be viewed as a forward modelling technique, which allow putting additional constraints on the evolution of a rock under defined P and T conditions and hence represents a snap-shot of a P-T point of the evolution of a given rock! For this purpose, simple experiments using natural rocks as starting materials can easily be conducted. The disadvantage of this method lies in the complex chemical composition of natural rocks and the deviation from chemical end-member systems. Therefore these experiments need to be evaluated not only 1.) in terms of their ability to reproduce the natural observations but also 2.) in their ability to reproduce theoretical calculations. In this study experimental investigations of orogenic metamorphism of metapelites (quartzphyllites with Grt1 + Ms1 + Ch1 + Bt1 + Rt) was investigated. Four different P-T conditions were chosen to represent an orogenic clockwise P-T loop: 400°C, 0.8 GPa, 600°C, 1.2 GPa, 700°C, 1 GPa and 500°C, 0.4 GPa. Two experiments with a duration of 16 and 33 days were

  9. Laboratory tests to study the influence of rock stress confinement on the performances of TBM discs in tunnels

    NASA Astrophysics Data System (ADS)

    Innaurato, N.; Oggeri, C.; Oreste, P.; Vinai, R.

    2011-06-01

    To clarify some aspects of rock destruction with a disc acting on a high confined tunnel face, a series of tests were carried out to examine fracture mechanisms under an indenter that simulates the tunnel boring machine (TBM) tool action, in the presence of an adjacent groove, when a state of stress (lateral confinement) is imposed on a rock sample. These tests proved the importance of carefully establishing the optimal distance of grooves produced by discs acting on a confined surface, and the value (as a mere order of magnitude) of the increase of the thrust to produce the initiation of chip formation, as long as the confinement pressure becomes greater.

  10. The ALMA-PILS survey: detection of CH3NCO towards the low-mass protostar IRAS 16293-2422 and laboratory constraints on its formation

    NASA Astrophysics Data System (ADS)

    Ligterink, N. F. W.; Coutens, A.; Kofman, V.; Müller, H. S. P.; Garrod, R. T.; Calcutt, H.; Wampfler, S. F.; Jørgensen, J. K.; Linnartz, H.; van Dishoeck, E. F.

    2017-08-01

    Methyl isocyanate (CH3NCO) belongs to a select group of interstellar molecules considered to be relevant precursors in the formation of larger organic compounds, including those with peptide bonds. The molecule has only been detected in a couple of high-mass protostars and potentially on comets. A formation route on icy grains has been postulated for this molecule but experimental evidence is lacking. Here we extend the range of environments where methyl isocyanate is found and unambiguously identify CH3NCO through the detection of 43 unblended transitions in the ALMA Protostellar Interferometric Line Survey (PILS) of the low-mass solar-type protostellar binary IRAS 16293-2422. The molecule is detected towards both components of the binary with a ratio HNCO/CH3NCO ∼ 4-12. The isomers CH3CNO and CH3OCN are not identified, resulting in upper abundance ratios of CH3NCO/CH3CNO > 100 and CH3NCO/CH3OCN > 10. The resulting abundance ratios compare well with those found for related N-containing species towards high-mass protostars. To constrain its formation, a set of cryogenic UHV experiments is performed. VUV irradiation of CH4:HNCO mixtures at 20 K strongly indicate that methyl isocyanate can be formed in the solid state through CH3 and (H)NCO recombinations. Combined with gas-grain models that include this reaction, the solid-state route is found to be a plausible scenario to explain the methyl isocyanate abundances found in IRAS 16293-2422.

  11. Permeability and continuous gradient temperature monitoring of volcanic rocks: new insights from borehole and laboratory analysis at the Campi Flegrei caldera (Southern Italy).

    NASA Astrophysics Data System (ADS)

    Carlino, Stefano; Piochi, Monica; Tramelli, Anna; Troise, Claudia; Mormone, Angela; Montanaro, Cristian; Scheu, Bettina; Klaus, Mayer; Somma, Renato; De Natale, Giuseppe

    2016-04-01

    The pilot borehole recently drilled in the eastern caldera of Campi Flegrei (Southern Italy), during the Campi Flegrei Deep Drill Project (CFDDP) (in the framework of the International Continental Scientific Drilling Program) allowed (i) estimating on-field permeability and coring the crustal rocks for laboratory experiments, and (ii) determining thermal gradient measurements down to ca. 500 m of depth. We report here a first comparative in situ and laboratory tests to evaluate the rock permeability in the very high volcanic risk caldera of Campi Flegrei, in which ground deformations likely occur as the persistent disturbance effect of fluid circulation in the shallower geothermal system. A large amount of petro-physical information derives from outcropping welded tuffs, cores and geophysical logs from previous AGIP's drillings, which are located in the central and western part of the caldera. We discuss the expected scale dependency of rock permeability results in relation with well-stratigraphy and core lithology, texture and mineralogy. The new acquired data improve the database related to physical property of Campi Flegrei rocks, allowing a better constrain for the various fluid-dynamical models performed in the tentative to understand (and forecast) the caldera behavior. We also present the first data on thermal gradient continuously measured through 0 - to 475 m of depth by a fiber optic sensor installed in the CFDDP pilot hole. As regards, we show that the obtained values of permeability, compared with those inferred from eastern sector of the caldera, can explain the different distribution of temperature at depth, as well as the variable amount of vapor phase in the shallow geothermal system. The measured temperatures are consistent with the distribution of volcanism in the last 15 ka.

  12. Manifestation of nonlinear elasticity in rock: Convincing evidence over large frequency and strain intervals from laboratory studies

    SciTech Connect

    Johnson, P.A. |; Rasolofosaon, P.N.J.

    1995-11-01

    Nonlinear elastic response in rock is established as a robust and representative characteristic of rock rather than a curiosity. This behavior is illustrated from a variety of experiments conducted over many orders of magnitude in strain and frequency. The evidence leads to a pattern of unifying behavior in rock: (1) Nonlinear response in rock is enormous; (2) the response takes place over a large frequency interval (dc--10{sup 6} Hz at least); (3) the response not only occurs, as is commonly appreciated, at large strains but also at small strains where nonlinear response and the manifestations of this behavior are commonly disregarded. Nonlinear response may manifest itself in a variety of manners, including a nonlinear stress{minus}strain relation (hysteretic/discrete memory), nonlinear dissipation, harmonic generation, and resonant peak shift, all of which are related. The experiments described include: quasistatic stress{minus}strain tests (strains of 10{sup -4}--10{sup -1} at frequencies near dc-1Hz); torsional oscillator experiments (strains of 10{sup {minus}4}--10{sup {minus}7}, frequencies between 0.1 and 100Hz); resonant bar experiments (strains of 10{sup {minus}4}--10{sup {minus}8}, frequencies between 10{sup 3} and 10{sup 4} Hz); and dynamic, propagating wave experiments (strains of 10{sup {minus}6}--10{sup {minus}9}, frequencies between 10{sup 3} and 10{sup 6} Hz). [Work supported by OBES/DOE through the University of California and the Institut Francais du Petrole.

  13. U–Pb, Rb–Sr, and U-series isotope geochemistry of rocks and fracture minerals from the Chalk River Laboratories site, Grenville Province, Ontario, Canada

    USGS Publications Warehouse

    Neymark, Leonid; Peterman, Zell E.; Moscati, Richard J.; Thivierge, R. H.

    2013-01-01

    As part of the Geologic Waste Management Facility feasibility study, Atomic Energy of Canada Ltd. (AECL) is evaluating the suitability of the Chalk River Laboratories (CRL) site in Ontario, situated in crystalline rock of the southwestern Grenville Province, for the possible development of an underground repository for low- and intermediate-level nuclear waste. This paper presents petrographic and trace element analyses, U–Pb zircon dating results, and Rb–Sr, U–Pb and U-series isotopic analyses of gneissic drill core samples from the deep CRG-series characterization boreholes at the CRL site. The main rock types intersected in the boreholes include hornblende–biotite (±pyroxene) gneisses of granitic to granodioritic composition, leucocratic granitic gneisses with sparse mafic minerals, and garnet-bearing gneisses with variable amounts of biotite and/or hornblende. The trace element data for whole-rock samples plot in the fields of within-plate, syn-collision, and volcanic arc-type granites in discrimination diagrams used for the tectonic interpretation of granitic rocks.Zircons separated from biotite gneiss and metagranite samples yielded SHRIMP-RG U–Pb ages of 1472 ± 14 (2σ) and 1045 ± 6 Ma, respectively, in very good agreement with widespread Early Mesoproterozoic plutonic ages and Ottawan orogeny ages in the Central Gneiss Belt. The Rb–Sr, U–Pb, and Pb–Pb whole-rock errorchron apparent ages of most of the CRL gneiss samples are consistent with zircon U–Pb age and do not indicate substantial large-scale preferential element mobility during superimposed metamorphic and water/rock interaction processes. This may confirm the integrity of the rock mass, which is a positive attribute for a potential nuclear waste repository. Most 234U/238U activity ratios (AR) in whole rock samples are within errors of the secular equilibrium value of one, indicating that the rocks have not experienced any appreciable U loss or gain within the past 1

  14. Laboratory tests of mafic, ultra-mafic, and sedimentary rock types for in-situ applications for carbon dioxide sequestration

    SciTech Connect

    Rush, G.E.; O'Connor, William K.; Dahlin, David C.; Penner, Larry R.; Gerdemann, Stephen J.

    2004-01-01

    Recent tests conducted at the Albany Research Center have addressed the possibility of in-situ storage of carbon dioxide in geological formations, particularly in deep brackish to saline non-potable aquifers, and the formation of secondary carbonate minerals over time within these aquifers. Various rock types including Columbia River Basalt Group (CRBG) drill core samples, blocks of ultra-mafic rock and sandstone were used. A solution formulated from aquifer data, a bicarbonate salt solution, and distilled water were tested. Pressure and temperature regimens were used to mimic existing in-situ conditions, higher temperatures were used to simulate longer time frames, and higher pressures were used to simulate enhanced oil recovery (EOR) pressure. Results are encouraging, indicating mineral dissolution with an increase of desirable ions (Ca, Fe2+, Mg) in solution that can form the carbonate minerals, calcite (CaCO3), siderite (FeCO3), and magnesite (MgCO3).

  15. Degree of impactor fragmentation under collision with a regolith surface—Laboratory impact experiments of rock projectiles

    NASA Astrophysics Data System (ADS)

    Nagaoka, Hiroki; Takasawa, Susumu; Nakamura, Akiko M.; Sangen, Kazuyoshi

    2014-01-01

    Some meteorites consist of a mix of components of various parent bodies that were presumably brought together by past collisions. Impact experiments have been performed to investigate the degree of target fragmentation during such collisions. However, much less attention has been paid to the fate of the impactors. Here, we report the results of our study of the empirical relationship between the degree of projectile fragmentation and the impact conditions. Millimeter-sized pyrophyllite and basalt projectiles were impacted onto regolith-like sand targets and an aluminum target at velocities of up to 960 m s-1. Experiments using millimeter-sized pyrophyllite blocks as targets were also conducted to fill the gap between this study and the previous studies of centimeter-sized rock targets. The catastrophic disruption threshold for a projectile is defined as the energy density at which the mass of the largest fragment is the half of the original mass. The thresholds with the sand target were 4.5 ± 1.1 × 104 and 9.0 ± 1.9 × 104 J kg-1, for pyrophyllite and basalt projectiles, respectively. These values are two orders of magnitude larger than the threshold for impacts between pyrophyllite projectiles onto aluminum targets, but are qualitatively consistent with the fact that the compressive and tensile strengths of basalt are larger than those of pyrophyllite. The threshold for pyrophyllite projectiles and the aluminum target agrees with the threshold for aluminum projectiles and pyrophyllite targets within the margin of error. Consistent with a previous result, the threshold depended on the size of the rocks with a power of approximately -0.4 (Housen and Holsapple 1999). Destruction of rock projectiles occurred when the peak pressure was about ten times the tensile strength of the rocks.

  16. Creep: long-term time-dependent rock deformation in a deep-sea laboratory in the ionian sea: a pilot study

    NASA Astrophysics Data System (ADS)

    Meredith, P.; Boon, S.; Vinciguerra, S.; Bowles, J.; Hughes, N.; Migneco, E.; Musumeci, M.; Piattelli, P.; Riccobene, G.; Vinciguerra, D.

    2003-04-01

    Time-dependent brittle rock deformation is of first-order importance for understanding the long-term behaviour of water saturated rocks in the Earth's upper crust. The traditional way of investigating this has been to carry out laboratory "brittle creep" experiments. Results have been interpreted involving three individual creep phases; primary (decelerating), secondary (constant strain rate or steady state) and tertiary (accelerating or unstable). The deformation may be distributed during the first two, but localizes onto a fault plane during phase three. However, it is difficult to distinguish between competing mechanisms and models given the lower limit of strain rates practicably achievable in the laboratory. The study reported here aims to address this problem directly by extending significantly the range of achievable strain rates through much longer-term experiments conducted in a deep-sea laboratory in the Ionian sea. The project takes advantage of a collaboration with the Laboratori Nazionali del Sud (LNS) of the Italian National Institute of Nuclear Physics (INFN), that is developing a deep-sea laboratory for a very large volume (1 km3) deep-sea detector of high-energy (>1019 eV) cosmic neutrinos (NEMO). A suitable deep-sea site has been identified, some 20km south-west of Catania in Sicily, with flat bathymetry at a depth of 2100m. The CREEP deformation apparatus is driven by an actuator that amplifies the ambient water pressure, while the confining pressure around the rock sample is provided by the ambient water pressure (>20MPa). Measurement transducers and a low-energy data acquisition system are sealed internally, with power provided for up to 6 months by an internal battery pack. The great advantage of operating in the deep sea in this way is that the system is simple; it is "passive", has few moving parts, and requires no maintenance. The apparatus is fixed approximately 10m above the seabed; held in place by a disposable concrete anchor and

  17. Infrared absorption of gaseous CH2BrOO detected with a step-scan Fourier-transform absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Hsuan; Lee, Yuan-Pern

    2014-10-01

    CH2BrOO radicals were produced upon irradiation, with an excimer laser at 248 nm, of a flowing mixture of CH2Br2 and O2. A step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to record temporally resolved infrared (IR) absorption spectra of reaction intermediates. Transient absorption with origins at 1276.1, 1088.3, 961.0, and 884.9 cm-1 are assigned to ν4 (CH2-wagging), ν6 (O-O stretching), ν7 (CH2-rocking mixed with C-O stretching), and ν8 (C-O stretching mixed with CH2-rocking) modes of syn-CH2BrOO, respectively. The assignments were made according to the expected photochemistry and a comparison of observed vibrational wavenumbers, relative IR intensities, and rotational contours with those predicted with the B3LYP/aug-cc-pVTZ method. The rotational contours of ν7 and ν8 indicate that hot bands involving the torsional (ν12) mode are also present, with transitions 7_0^1 12_v^v and 8_0^1 12_v^v, v = 1-10. The most intense band (ν4) of anti-CH2BrOO near 1277 cm-1 might have a small contribution to the observed spectra. Our work provides information for directly probing gaseous CH2BrOO with IR spectroscopy, in either the atmosphere or laboratory experiments.

  18. Seismic Absorption and Modulus Measurements in Porous Rocks Under Fluid and Gas Flow-Physical and Chemical Effects: a Laboratory Study

    SciTech Connect

    Harmut Spetzler

    2005-11-28

    This paper describes the culmination of a research project in which we investigated the complex modulus change in partially fluid saturated porous rocks. The investigation started with simple flow experiments over ''clean'' and ''contaminated'' surfaces, progressed to moduli measurements on partially filled single cracks, to measurements in ''clean'' and ''contaminated'' porous rocks and finally to a feasibility study in the field. For the experiments with the simple geometries we were able to measure fundamental physical properties such as contact angles of the meniscus and time dependent forces required to get the meniscus moving and to keep it moving at various velocities. From the data thus gathered we were able to interpret the complex elastic moduli data we measured in the partially saturated single cracks. While the geometry in real rocks is too complex to make precise calculations we determined that we had indeed identified the mechanisms responsible for the changes in the moduli we had measured. Thus encouraged by the laboratory studies we embarked on a field experiment in the desert of Arizona. The field site allowed for controlled irrigation. Instrumentation for fluid sampling and water penetration were already in place. The porous loosely consolidated rocks at the site were not ideal for finding the effects of the attenuation mechanism we had identified in the lab, but for logistic and cost constraint reasons we chose to field test the idea at that site. Tiltmeters and seismometers were installed and operated nearly continuously for almost 3 years. The field was irrigated with water in the fall of 2003 and with water containing a biosurfactant in the fall of 2004. We have indications that the biosurfactant irrigation has had a notable effect on the tilt data.

  19. Microstructures and deformation mechanisms in Opalinus Clay: insights from scaly clay from the Main Fault in the Mont Terri Rock Laboratory (CH)

    NASA Astrophysics Data System (ADS)

    Laurich, Ben; Urai, Janos L.; Nussbaum, Christophe

    2017-01-01

    The Main Fault in the shaly facies of Opalinus Clay is a small reverse fault formed in slightly overconsolidated claystone at around 1 km depth. The fault zone is up to 6 m wide, with micron-thick shear zones, calcite and celestite veins, scaly clay and clay gouge. Scaly clay occurs in up to 1.5 m wide lenses, providing hand specimens for this study. We mapped the scaly clay fabric at 1 m-10 nm scale, examining scaly clay for the first time using broad-ion beam polishing combined with scanning electron microscopy (BIB-SEM). Results show a network of thin shear zones and microveins, separating angular to lensoid microlithons between 10 cm and 10 µm in diameter, with slickensided surfaces. Our results show that microlithons are only weakly deformed and that strain is accumulated by fragmentation of microlithons by newly formed shear zones, by shearing in the micron-thick zones and by rearrangement of the microlithons.The scaly clay aggregates can be easily disintegrated into individual microlithons because of the very low tensile strength of the thin shear zones. Analyses of the microlithon size by sieving indicate a power-law distribution model with exponents just above 2. From this, we estimate that only 1 vol % of the scaly clay aggregate is in the shear zones.After a literature review of the hypotheses for scaly clay generation, we present a new model to explain the progressive formation of a self-similar network of anastomosing thin shear zones in a fault relay. The relay provides the necessary boundary conditions for macroscopically continuous deformation. Localization of strain in thin shear zones which are locally dilatant, and precipitation of calcite veins in dilatant shear fractures, evolve into complex microscale re-partitioning of shear, forming new shear zones while the microlithons remain much less deformed internally and the volume proportion of the µm-thick shear zones slowly increases. Grain-scale deformation mechanisms are microfracturing, boudinage and rotation of mica grains, pressure solution of carbonate fossils and pore collapse during ductile flow of the clay matrix. This study provides a microphysical basis to relate microstructures to macroscopic observations of strength and permeability of the Main Fault, and extrapolating fault properties in long-term deformation.

  20. Occurrence, frequency, and significance of cavities in fractured-rock aquifers near Oak Ridge National Laboratory, Tennessee

    SciTech Connect

    Moore, G.K.

    1988-01-01

    Virtually all wells drilled into bedrock intercept a water-bearing fracture, but cavities occur only in areas underlaid by limy rocks. Multiple cavities are common in wells in the Conasauga and Knox Groups but are rare in the Rome Formation and the Chickamauga Group. The geometric mean height (vertical dimension) of the cavities is 0.59 m, the geometric mean depth is 14 m, the average lateral spatial frequency is 0.16, and the average vertical spatial frequency is 0.019. Differences in cavity parameter values are caused partly by geologic factors such as lithology, bed thickness, and spatial fracture frequency. However, hydrologic factors such as percolation rate, recharge amount, aquifer storage capacity, and differences between lateral and vertical permeability may also be important. Tracer tests show that groundwater velocity in some cavities is in the range 20-300 m/d, and relatively rapid flow rates occur near springs. In contrast, wells that intercept cavities have about the same range in hydraulic conductivity as wells in regolith and fractured rock. The hydraulic conductivity data indicate a flow rate of less than 1.0 m/d. This difference cannot be adequately explained, but rapid groundwater movement may be much more common above the water table than below. Rapid groundwater flows below the water table might be rare except near springs in the Knox Group. 10 refs., 3 figs., 4 tabs.

  1. Experimental Investigation of the Anisotropic Mechanical Properties of a Columnar Jointed Rock Mass: Observations from Laboratory-Based Physical Modelling

    NASA Astrophysics Data System (ADS)

    Ji, H.; Zhang, J. C.; Xu, W. Y.; Wang, R. B.; Wang, H. L.; Yan, L.; Lin, Z. N.

    2017-07-01

    Because of the complex geological structure, determination of the field mechanical parameters of the columnar jointed rock mass (CJRM) was a challenging task in the design and construction of the Baihetan hydropower plant. To model the mechanical behaviour of the CJRM, uniaxial compression tests were conducted on artificial CJRM specimens with geological structure similar to that found in the actual CJRM. Based on the test results, the anisotropic deformation and strength were mainly analysed. The empirical correlations of evaluating the field mechanical parameters were derived based on the joint factor approach and the modulus reduction factor method. The findings of the physical model tests were then used to estimate the field moduli and unconfined compressive strengths of the Baihetan CJRM. The results predicted by physical model tests were compared with those obtained from the field tests and the RMR classification system. It is concluded that physical model tests were capable of providing valuable estimations on the field mechanical parameters of the CJRM.

  2. Density and velocity relationships for digital sonic and density logs from coastal Washington and laboratory measurements of Olympic Peninsula mafic rocks and greywackes

    USGS Publications Warehouse

    Brocher, Thomas M.; Christensen, Nikolas I.

    2001-01-01

    for each well log. We also present two-way traveltimes for 15 of the wells calculated from the sonic velocities. Average velocities and densities for the wells having both logs can be reasonably well related using a modified Gardner’s rule, with p=1825v1/4, where p is the density (in kg/m3) and v is the sonic velocity (in km/s). In contrast, a similar analysis of published well logs from Puget Lowland is best matched by a Gardner’s rule of p=1730v1/4, close to the p=1740v1/4 proposed by Gardner et al. (1974). Finally, we present laboratory measurements of compressional-wave velocity, shear-wave velocity, and density for 11 greywackes and 29 mafic rocks from the Olympic Peninsula and Puget Lowland. These units have significance for earthquake-hazard investigations in Puget Lowland as they dip eastward beneath the Lowland, forming the “bedrock” beneath much of the lowland. Average Vp/Vs ratios for the mafic rocks, mainly Crescent Formation volcanics, lie between 1.81 and 1.86. Average Vp/Vs ratios for the greywackes from the accretionary core complex in the Olympic Peninsula show greater scatter but lie between 1.77 and 1.88. Both the Olympic Peninsula mafic rocks and greywackes have lower shear-wave velocities than would be expected for a Poisson solid (Vp/Vs=1.732). Although the P-wave velocities and densities in the greywackes can be related by a Gardner’s rule of p=1720v1/4, close to the p=1740v1/4 proposed by Gardner et al. (1974), the velocities and densities of the mafic rocks are best related by a Gardner’s rule of p=1840v1/4. Thus, the density/velocity relations are similar for the Puget Lowland well logs and greywackes from the Olympic Peninsula. Density/velocity relations are similar for the Washington coastal well logs and mafic rocks from the Olympic Peninsula, but differ from those of the Puget Lowland well logs and greywackes from the Olympic Peninsula.

  3. A Laboratory Practical Illustrating the Use of the ChIP-qPCR Method in a Robust Model: Estrogen Receptor Alpha Immunoprecipitation Using MCF-7 Culture Cells

    ERIC Educational Resources Information Center

    Lacazette, Eric

    2017-01-01

    Chromatin immunoprecipitation followed by qPCR analysis (ChIP-qPCR) is a widely used technique to study gene expression. A large number of students in molecular biology and more generally in life sciences will be confronted with the use of this technique, which is quite difficult to set up and can lead to misinterpretation if not carefully…

  4. Field Verification Program (Aquatic Disposal). The Assessment of Black Rock Harbor Dredged Material Impacts on Laboratory Population Responses.

    DTIC Science & Technology

    1987-07-01

    A84 569 FIELD VERIFICATION PROGRAM (AQUATIC DISPORAL) THE i/l ASSESSMENT OF BLACK ROC (U) ARMY ENGINEER MATERWAYS EXPERIMENT STATION VICKSBURG MS...and US Environmental Protection Agency Washington, DC 20460 Monitored by Environmental Laboratory US Army Engineer Vwaterways Experiment Station PO... Experiment Station (WES), Vicksburg, Miss. The objective of this interagency program was to field verify existing test methodologies for predicting the

  5. Laboratory experiments simulating poroelastic stress changes associated with depletion and injection in low-porosity sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Ma, Xiaodong; Zoback, Mark D.

    2017-04-01

    We characterized the poroelastic deformation of six cores from three formations associated with the Bakken play in the Williston Basin (the Lodgepole, Middle Bakken, and Three Forks formations). All are low-porosity, low-permeability formations, but vary considerably in clay, kerogen, and carbonate content. The experimental program simulated reservoir stress changes associated with depletion and injection via cycling both the confining pressure (Pc) and pore pressure (Pp). We measured volumetric strain, derived the corresponding bulk modulus, and calculated the Biot coefficient (α). We found α, which generally ranges between 0.3 and 0.9, to vary systematically with Pc and Pp for each of the specimens tested. The effect of pore pressure on α is much larger at low simple effective stress (σ = Pc-Pp) during depletion than injection. The α decreases with σ for all pore pressures. For the same Pc and Pp, the Biot coefficient is consistently higher during injection than during depletion. Given the observed variations of α with Pc and Pp, the modeling of reservoir stress changes using a constant α could be problematic as poroelastic stress changes during depletion and injection are not likely to follow the same path. Scanning electron microscope examination of microstructures suggests that the variations of the bulk modulus and the Biot coefficient can be attributed to the abundance of compliant components (pores, microcracks, clays, and organic matter) and how they are distributed throughout the rock matrix.

  6. The Geothermic Fatigue Hydraulic Fracturing Experiment in Äspö Hard Rock Laboratory, Sweden: New Insights Into Fracture Process through In-situ AE Monitoring

    NASA Astrophysics Data System (ADS)

    Kwiatek, G.; Plenkers, K.; Zang, A.; Stephansson, O.; Stenberg, L.

    2016-12-01

    The geothermic Fatigue Hydraulic Fracturing (FHF) in situ experiment (Nova project 54-14-1) took place in the Äspö Hard Rock Laboratory/Sweden in a 1.8 Ma old granitic to dioritic rock mass. The experiment aims at optimizing geothermal heat exchange in crystalline rock mass by multistage hydraulic fracturing at 10 m scale. Six fractures are driven by three different water injection schemes (continuous, cyclic, pulse pressurization) inside a 28 m long, horizontal borehole at depth level 410 m. The rock volume subject to hydraulic fracturing and monitored by three different networks with acoustic emission (AE), micro-seismicity and electromagnetic sensors is about 30 m x 30 m x 30 m in size. The 16-channel In-situ AE monitoring network by GMuG monitored the rupture generation and propagation in the frequency range 1000 Hz to 100,000 Hz corresponding to rupture dimensions from cm- to dm-scale. The in-situ AE monitoring system detected and analyzed AE activity in-situ (P- and S-wave picking, localization). The results were used to review the ongoing microfracturing activity in near real-time. The in-situ AE monitoring network successfully recorded and localized 196 seismic events for most, but not all, hydraulic fractures. All AE events detected in-situ occurred during fracturing time periods. The source parameters (fracture sizes, moment magnitudes, static stress drop) of AE events framing injection periods were calculated using the combined spectral fitting/spectra ratio techniques. The AE activity is clustered in space and clearly outline the fractures location, its orientation, and expansion as well as their temporal evolution. The outward migration of AE events away from the borehole is observed. Fractures extend up to 7 m from the injection interval in the horizontal borehole. The fractures orientation and location correlate for most fractures roughly with the results gained by image packer. Clear differences in seismic response between hydraulic fractures in

  7. Role of fractures in weathering of solid rocks: narrowing the gap between laboratory and field weathering rates

    NASA Astrophysics Data System (ADS)

    Pacheco, Fernando A. L.; Alencoão, Ana M. P.

    2006-01-01

    A weathering study of a fractured environment composed of granites and metasediments was conducted in Trás-os-Montes and Alto Douro (north of Portugal) and covered the hydrographic basin of Sordo river. Within the basin, a number of perennial springs were monitored for discharge rate, which allowed for the estimation of annual recharges. A small area of the basin was characterized for parameters such as hydraulic conductivity and effective porosity, which, in combination with the previously calculated recharges, allowed for the calculation of a fracture surface area. The monitored springs were also sampled and analyzed for major inorganic compounds, and using a mole balance model the chemistry of the water samples was explained by weathering to kaolinite of albite-oligoclase plus biotite (granites) or of albite plus chlorite (metasediments). The number of moles of dissolved primary minerals (e.g. albite) could be calculated using this method. These mass transfers were then multiplied by the spring's median discharge rate and divided by the fracture surface area to obtain a weathering rate. Another weathering rate was determined, but using a BET surface area as normalizing factor. Comparing both rates with a representative record of laboratory as well as of field-based weathering rates, it has been noted that rates normalized by the BET were, as expected, similar to commonly reported field-based rates, whereas rates normalized by the fracture surface area were unexpectedly relatively close to laboratory rates (one order of magnitude smaller). The monitored springs are of the fracture artesian type, which means that water emerging at the spring site flowed preferentially through joints and fractures and that weathering took place predominantly at their walls. Consequently, it was concluded that the most realistic weathering rates are those normalized by the fracture surface area, and as a corollary that the gap between laboratory and field weathering rates might not

  8. Poohbear Rock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image, taken by Sojourner's front right camera, was taken when the rover was next to Poohbear (rock at left) and Piglet (not seen) as it looked out toward Mermaid Dune. The textures differ from the foreground soil containing a sorted mix of small rocks, fines and clods, from the area a bit ahead of the rover where the surface is covered with a bright drift material. Soil experiments where the rover wheels dug in the soil revealed that the cloudy material exists underneath the drift.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  9. Poohbear Rock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image, taken by Sojourner's front right camera, was taken when the rover was next to Poohbear (rock at left) and Piglet (not seen) as it looked out toward Mermaid Dune. The textures differ from the foreground soil containing a sorted mix of small rocks, fines and clods, from the area a bit ahead of the rover where the surface is covered with a bright drift material. Soil experiments where the rover wheels dug in the soil revealed that the cloudy material exists underneath the drift.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  10. 'Scarecrow' Climbs Rocks

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Scarecrow, a mobility-testing model for NASA's Mars Science Laboratory, easily traverses large rocks in the Mars Yard testing area at NASA's Jet Propulsion Laboratory.

    The Mars Science Laboratory rover is in development for launch in 2009. JPL, a division of the California Institute of Technology, Pasadena, manages the mission for the NASA Science Mission Directorate, Washington.

  11. Evaluation of the predictive capability of coupled thermo-hydro-mechanical models for a heated bentonite/clay system (HE-E) in the Mont Terri Rock Laboratory

    DOE PAGES

    Garitte, B.; Shao, H.; Wang, X. R.; ...

    2017-01-09

    Process understanding and parameter identification using numerical methods based on experimental findings are a key aspect of the international cooperative project DECOVALEX. Comparing the predictions from numerical models against experimental results increases confidence in the site selection and site evaluation process for a radioactive waste repository in deep geological formations. In the present phase of the project, DECOVALEX-2015, eight research teams have developed and applied models for simulating an in-situ heater experiment HE-E in the Opalinus Clay in the Mont Terri Rock Laboratory in Switzerland. The modelling task was divided into two study stages, related to prediction and interpretation ofmore » the experiment. A blind prediction of the HE-E experiment was performed based on calibrated parameter values for both the Opalinus Clay, that were based on the modelling of another in-situ experiment (HE-D), and modelling of laboratory column experiments on MX80 granular bentonite and a sand/bentonite mixture .. After publication of the experimental data, additional coupling functions were analysed and considered in the different models. Moreover, parameter values were varied to interpret the measured temperature, relative humidity and pore pressure evolution. The analysis of the predictive and interpretative results reveals the current state of understanding and predictability of coupled THM behaviours associated with geologic nuclear waste disposal in clay formations.« less

  12. Our World: Lunar Rock

    NASA Image and Video Library

    Learn about NASA'€™s Lunar Sample Laboratory Facility at Johnson Space Center in Houston, Texas. See how NASA protects these precious moon rocks brought to Earth by the Apollo astronauts. Explore t...

  13. GRAAL - Griggs-type Apparatus equipped with Acoustics in the Laboratory: a new instrument to explore the rheology of rocks at high pressure

    NASA Astrophysics Data System (ADS)

    Schubnel, A.; Champallier, R.; Precigout, J.; Pinquier, Y.; Ferrand, T. P.; Incel, S.; Hilairet, N.; Labrousse, L.; Renner, J.; Green, H. W., II; Stunitz, H.; Jolivet, L.

    2015-12-01

    Two new generation solid-medium Griggs-type apparatus have been set up at the Laboratoire de Géologie of ENS PARIS, and the Institut des Sciences de la Terre d'Orléans (ISTO). These new set-ups allow to perform controlled rock deformation experiments on large volume samples, up to 5 GPa and 1300°C. Careful pressure - stress calibration will be performed (using D-DIA and/or Paterson-type experiments as standards), strain-stress-pressure will be measured using modern techniques and state of the art salt assemblies. Focusing on rheology, the pressure vessel at ISTO has been designed in a goal of deforming large sample diameter (8 mm) at confining pressure of up to 3 GPa. Thanks to this large sample size, this new vessel will allow to explore the microstructures related to the deformation processes occurring at pressures of the deep lithosphere and in subduction zones. In this new apparatus, we moreover included a room below the pressure vessel in order to develop a basal load cell as close as possible to the sample. This new design, in progress, aims at significantly improving the accuracy of stress measurements in the Griggs-type apparatus. The ultimate goal is to set up a new technique able to routinely quantify the rheology of natural rocks between 0.5 and 5 GPa. Although fundamental to document the rheology of the lithosphere, such a technique is still missing in rock mechanics. Focusing on the evolution of physical and mechanical properties during mineral phase transformations, the vessel at ENS is equipped with continuous acoustic emission (AE) multi-sensor monitoring in order to "listen" to the sample during deformation. Indeed, these continuous recordings enable to detect regular AE like signals during dynamic crack propagation, as well as non-impulsive signals, which might be instrumental to identify laboratory analogs to non-volcanic tremor and low frequency earthquake signals. P and S elastic wave velocities will also be measured contemporaneously during

  14. Generation of Hydrogen and Methane during Experimental Low-Temperature Reaction of Ultramafic Rocks with Water

    NASA Astrophysics Data System (ADS)

    McCollom, Thomas M.; Donaldson, Christopher

    2016-06-01

    Serpentinization of ultramafic rocks is widely recognized as a source of molecular hydrogen (H2) and methane (CH4) to support microbial activity, but the extent and rates of formation of these compounds in low-temperature, near-surface environments are poorly understood. Laboratory experiments were conducted to examine the production of H2 and CH4 during low-temperature reaction of water with ultramafic rocks and minerals. Experiments were performed by heating olivine or harzburgite with aqueous solutions at 90°C for up to 213 days in glass bottles sealed with butyl rubber stoppers. Although H2 and CH4 increased steadily throughout the experiments, the levels were very similar to those found in mineral-free controls, indicating that the rubber stoppers were the predominant source of these compounds. Levels of H2 above background were observed only during the first few days of reaction of harzburgite when CO2 was added to the headspace, with no detectable production of H2 or CH4 above background during further heating of the harzburgite or in experiments with other mineral reactants. Consequently, our results indicate that production of H2 and CH4 during low-temperature alteration of ultramafic rocks may be much more limited than some recent experimental studies have suggested. We also found no evidence to support a recent report suggesting that spinels in ultramafic rocks may stimulate H2 production. While secondary silicates were observed to precipitate during the experiments, formation of these deposits was dominated by Si released by dissolution of the glass bottles, and reaction of the primary silicate minerals appeared to be very limited. While use of glass bottles and rubber stoppers has become commonplace in experiments intended to study processes that occur during serpentinization of ultramafic rocks at low temperatures, the high levels of H2, CH4, and SiO2 released during heating indicate that these reactor materials are unsuitable for this purpose.

  15. Talking Rocks.

    ERIC Educational Resources Information Center

    Rice, Dale; Corley, Brenda

    1987-01-01

    Discusses some of the ways that rocks can be used to enhance children's creativity and their interest in science. Suggests the creation of a dramatic production involving rocks. Includes basic information on sedimentary, igneous, and metamorphic rocks. (TW)

  16. Talking Rocks.

    ERIC Educational Resources Information Center

    Rice, Dale; Corley, Brenda

    1987-01-01

    Discusses some of the ways that rocks can be used to enhance children's creativity and their interest in science. Suggests the creation of a dramatic production involving rocks. Includes basic information on sedimentary, igneous, and metamorphic rocks. (TW)

  17. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2006-01-18

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  18. CH-TRU Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2005-10-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  19. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2007-06-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  20. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2007-02-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  1. CH-TRU Waste Content Codes (CH TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2004-12-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  2. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2007-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  3. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2006-06-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  4. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2004-10-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  5. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2006-09-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  6. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2005-12-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  7. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2006-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  8. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2007-09-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  9. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2006-12-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  10. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2005-11-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  11. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2005-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  12. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2005-01-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codesand corresponding shipping categories for "Controlled Shipments

  13. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2005-06-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  14. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2005-03-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  15. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2005-01-30

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  16. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2005-05-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  17. Evaluation of 3-D turbula mixing coupled with focused subsampling as a method to obtain representative laboratory subsamples of rock and soil for analysis when performing the CARB 435 test protocol

    NASA Astrophysics Data System (ADS)

    Martin, C.; Bailey, R.; Suess, T.

    2012-12-01

    Rock and samples submitted to asbestos testing laboratories for CARB 435 method analysis typically range from one pint (~1 kg) to five gallons (~40kg) in size with contained rock fragments as large as 3" in diameter. Extracting a representative test sample, which requires 8 sample preps containing ~3 mg per grain mount of ~200 mesh powder, is a non-trivial and poorly understood process. The CARB 435 test method calls for crushing and pulverizing of rock/soil samples, but gives no guidance as to how to extract a representative sample from the resulting powdered material, allowing for large errors due to poor lab subsampling protocols (too often a simple scoop off the top). This talk presents the results of a series of experiments which evaluate the efficacy and efficiency of 3-D turbula powder sample mixing coupled with focused multiple sampling thief extractions from the mixed powder to obtain representative subsamples for CARB 435 method analysis.

  18. Characterization of Unfractured Wall Rocks of TCDP Hole-B by Combination of Thermal-Property and TDR Measurements in Laboratory

    NASA Astrophysics Data System (ADS)

    Matsubayashi, O.; Lin, W.; Hirono, T.; Song, S.; Hung, J.

    2005-12-01

    As part of comprehensive studies of non-destructive physical properties of the cores from Hole-B drilled for the Taiwan Chelungpu-fault Drilling Project (TCDP), we have closely examined the data of combined thermal-property and TDR (water content) measurements which were carefully performed in laboratory. The purpose is to establish the bulk characteristics of thermal-properties in response to water content for the non-fractured part of the formations in TCDP Hole-B, so that we can properly assess the baseline thermal regime undisturbed by the thermal effect of fault activity. The sections studied in this work are unfractured parts of the cores (i) from 1142 to 1170m, and (ii) from 1200 to 1235m of Hole-B, which compose the wall rocks immediately below the fault zones of 1137m and 1194m depths, respectively. The instruments used were a transient type thermal-property analyzer with a half space probe for thermal conductivity, and a parallel-rod sensor probe for TDR water content, both are commercially available. Measured value of thermal conductivity ranges from 2.2 to 3.7 W/mK, while TDR water content value covers the approximate range of 15 to 26 percent. It is found by a correlation plot of thermal conductivity (Lamda) vs. water content (w) that within each section there is a very good negative correlation between the two for most of the good quality measurements, indicating thermal conductivity being primarily controlled by the volume ratio of solid grain to interstitial water. Such a relationship is reasonable and would be very useful in evaluation of thermal-properties of the whole section along the drillhole, and also for estimating the thermal-properties of fault zones in particular, which is always difficult to measure directly due to practical constrains.

  19. Zapping Rocks on Mars

    ScienceCinema

    Wiens, Roger

    2016-07-12

    Better understanding Mars means better understanding its geology. That’s why, sitting atop NASA’s Curiosity rover, is ChemCam, an instrument built by Los Alamos National Laboratory that shoots lasers at Martian rocks and analyzes the data. After nearly 1,500 rock zaps, ChemCam has uncovered some surprising facts about the Red Planet, including the discovery of igneous rocks. Soon, a new Los Alamos-built instrument—the SuperCam—will ride aboard the Mars 2020 rover and bring with it enhanced capabilities to unlock new secrets about the planet.

  20. Zapping Rocks on Mars

    SciTech Connect

    Wiens, Roger

    2016-05-16

    Better understanding Mars means better understanding its geology. That’s why, sitting atop NASA’s Curiosity rover, is ChemCam, an instrument built by Los Alamos National Laboratory that shoots lasers at Martian rocks and analyzes the data. After nearly 1,500 rock zaps, ChemCam has uncovered some surprising facts about the Red Planet, including the discovery of igneous rocks. Soon, a new Los Alamos-built instrument—the SuperCam—will ride aboard the Mars 2020 rover and bring with it enhanced capabilities to unlock new secrets about the planet.

  1. Rock Garden Mosaic

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image mosaic of part of the 'Rock Garden' was taken by the Sojourner rover's left front camera on Sol 71 (September 14). The rock 'Shark' is at left center and 'Half Dome' is at right. Fine-scale textures on the rocks are clearly seen. Broken crust-like material is visible at bottom center.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  2. Field Verification Program (Aquatic Disposal). Use of Bioenergetics to Investigate the Impact of Dredged Material on Benthic Species: A Laboratory Study with Polychaetes and Black Rock Harbor Material.

    DTIC Science & Technology

    1985-09-01

    physiological responses were found to be dose-dependent. Dosage was based on the relative proportion of reference and Black Rock Harbor sediment in a particular treatment. Keywords: Marine pollution .

  3. Development of a Laboratory Micron-Resolution X-ray Microprobe to Map Mineralogy and Trace Elements at PPM Sensitivity for Digital Rock, Magma, and Mining Applications

    NASA Astrophysics Data System (ADS)

    Yun, W.; Lewis, S.; Stripe, B.; Chen, S.; Reynolds, D.; Spink, I.; Lyon, A.

    2015-12-01

    We are developing a patent-pending x-ray microprobe with substantially unprecedented performance attributes: <5 μm spot on the sample (with 1 μm targeted), large working distances of >2 cm, narrow spectral bandwidth, and large x-ray flux. The outstanding performance is enabled by: (1) a revolutionary new type of high flux x-ray source designed to be >10X brighter than the brightest rotating anode x-ray source available; (2) an axially symmetric x-ray mirror lens with large solid angle collection and high focusing efficiency; and (3) a detector configuration that enables the collection of 10X more x-rays than current microXRF designs. The sensitivity will be ppm-scale, far surpassing charged particle analysis (e.g. EPMA and SEM-EDS), and >1000X throughput over the leading micro-XRFs. Despite the introduction of a number of laboratory microXRF systems in the past decade, the state-of-the-art has been limited primarily by low resolution (~30 μm) and low throughput. This is substantially attributable to a combination of low x-ray source brightness and poor performance x-ray optics. Here we present our initial results in removing the x-ray source bottleneck, in which we use a novel x-ray source using Fine Anode Array Source Technology (Sigray FAAST™). When coupled with our proprietary high efficiency x-ray mirror lens, the throughput achieved is comparable to that of many synchrotron microXRF beamlines. Potential applications of the x-ray microprobe include high throughput mapping of mineralogy at high resolution, including trace elements, such as rare earth metals, and deposits (e.g. siderite, clays), with ppm sensitivity, providing information for properties such as permeability and elastic/mechanical properties, and to provide compositional information for Digital Rock. Additional applications include those in which the limited penetration of electrons limits achieving adequate statistics, such as determining the concentration of precious minerals in mine

  4. CO2, CO, and CH4 measurements from tall towers in the NOAA Earth System Research Laboratory's Global Greenhouse Gas Reference Network: instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts

    NASA Astrophysics Data System (ADS)

    Andrews, A. E.; Kofler, J. D.; Trudeau, M. E.; Williams, J. C.; Neff, D. H.; Masarie, K. A.; Chao, D. Y.; Kitzis, D. R.; Novelli, P. C.; Zhao, C. L.; Dlugokencky, E. J.; Lang, P. M.; Crotwell, M. J.; Fischer, M. L.; Parker, M. J.; Lee, J. T.; Baumann, D. D.; Desai, A. R.; Stanier, C. O.; De Wekker, S. F. J.; Wolfe, D. E.; Munger, J. W.; Tans, P. P.

    2014-02-01

    A reliable and precise in situ CO2 and CO analysis system has been developed and deployed at eight sites in the NOAA Earth System Research Laboratory's (ESRL) Global Greenhouse Gas Reference Network. The network uses very tall (> 300 m) television and radio transmitter towers that provide a convenient platform for mid-boundary-layer trace-gas sampling. Each analyzer has three sample inlets for profile sampling, and a complete vertical profile is obtained every 15 min. The instrument suite at one site has been augmented with a cavity ring-down spectrometer for measuring CO2 and CH4. The long-term stability of the systems in the field is typically better than 0.1 ppm for CO2, 6 ppb for CO, and 0.5 ppb for CH4, as determined from repeated standard gas measurements. The instrumentation is fully automated and includes sensors for measuring a variety of status parameters, such as temperatures, pressures, and flow rates, that are inputs for automated alerts and quality control algorithms. Detailed and time-dependent uncertainty estimates have been constructed for all of the gases, and the uncertainty framework could be readily adapted to other species or analysis systems. The design emphasizes use of off-the-shelf parts and modularity to facilitate network operations and ease of maintenance. The systems report high-quality data with > 93% uptime. Recurrent problems and limitations of the current system are discussed along with general recommendations for high-accuracy trace-gas monitoring. The network is a key component of the North American Carbon Program and a useful model for future research-grade operational greenhouse gas monitoring efforts.

  5. Thz Spectroscopy of 12CH^+, 13CH^+, and 12CD^+

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Drouin, Brian; Pearson, John; Amano, Takayoshi

    2015-06-01

    In 1937, Dunham detected a couple of unidentified lines in near-UV, and later Douglas and Herzberg identified them based on their laboratory observations to be low-J electronic transitions of CH^+. The electronic spectra, in particular the A^1Π-X^1σ^+ band, have been investigated extensively. On the other hand, the pure rotational transitions have not been studied so extensively. Only the lowest rotational transition, J=1-0, was observed in the laboratory for the normal species, 13CH^+, and CD^+. Based on the laboratory frequency, CH^+ was detected in star forming regions with the Hershel space observatory. Cernicharo et al identified pure rotational transitions from J=2-1 to J=6-5 in the far-infrared region in the ISO spectrum of the planetary nebula NGC 7027. The ISO spectra, however, were of low-resolution, so high-resolution spectroscopic observation is highly desirable. In this presentation, we have extended the measurements to higher-J lines up to 2 THz. For production of CH^+, an extended negative glow discharge in a gas mixture of CH_4 (˜ 0.5 mTorr) diluted in He (˜ 60 mTorr) was used. The optimum discharge current was about 15 mA and the axial magnetic filed to 160 Gauss was applied up. The discharge cell was cooled down to liquid nitrogen temperature. Several frequency multiplier chains, developed at JPL and purchased from Virginia Diodes, were used as THz radiation sources. New THz measurements are not only useful for providing better characterization of spectroscopic properties but also will serve as starting point for astronomical observations. T. Dunham, Publ. Astron. Soc. Pac., 49,~26 (1937) A. E. Douglas and G. Herzberg, Ap. J. 94,~381 (1941) T. Amano, Ap.J.Lett., 716, L1 (2010) T. Amano, J. Chem. Phys., 133, 244305 (2010) J. Cernicharo et al., Ap. J. Lett., 483, L65 (1997)

  6. "Rock Garden"

    NASA Image and Video Library

    1997-10-14

    This false color composite image of the Rock Garden shows the rocks "Shark" and "Half Dome" at upper left and middle, respectively. Between these two large rocks is a smaller rock (about 0.20 m wide, 0.10 m high, and 6.33 m from the Lander) that was observed close-up with the Sojourner rover (see PIA00989). http://photojournal.jpl.nasa.gov/catalog/PIA00987

  7. A laboratory experiment for determining both the hydraulic and diffusive properties and the initial pore-water composition of an argillaceous rock sample: a test with the Opalinus clay (Mont Terri, Switzerland).

    PubMed

    Savoye, S; Michelot, J-L; Matray, J-M; Wittebroodt, Ch; Mifsud, A

    2012-02-01

    Argillaceous formations are thought to be suitable natural barriers to the release of radionuclides from a radioactive waste repository. However, the safety assessment of a waste repository hosted by an argillaceous rock requires knowledge of several properties of the host rock such as the hydraulic conductivity, diffusion properties and the pore water composition. This paper presents an experimental design that allows the determination of these three types of parameters on the same cylindrical rock sample. The reliability of this method was evaluated using a core sample from a well-investigated indurated argillaceous formation, the Opalinus Clay from the Mont Terri Underground Research Laboratory (URL) (Switzerland). In this test, deuterium- and oxygen-18-depleted water, bromide and caesium were injected as tracer pulses in a reservoir drilled in the centre of a cylindrical core sample. The evolution of these tracers was monitored by means of samplers included in a circulation circuit for a period of 204 days. Then, a hydraulic test (pulse-test type) was performed. Finally, the core sample was dismantled and analysed to determine tracer profiles. Diffusion parameters determined for the four tracers are consistent with those previously obtained from laboratory through-diffusion and in-situ diffusion experiments. The reconstructed initial pore-water composition (chloride and water stable-isotope concentrations) was also consistent with those previously reported. In addition, the hydraulic test led to an estimate of hydraulic conductivity in good agreement with that obtained from in-situ tests.

  8. A laboratory experiment for determining both the hydraulic and diffusive properties and the initial pore-water composition of an argillaceous rock sample: A test with the Opalinus clay (Mont Terri, Switzerland)

    NASA Astrophysics Data System (ADS)

    Savoye, S.; Michelot, J.-L.; Matray, J.-M.; Wittebroodt, Ch.; Mifsud, A.

    2012-02-01

    Argillaceous formations are thought to be suitable natural barriers to the release of radionuclides from a radioactive waste repository. However, the safety assessment of a waste repository hosted by an argillaceous rock requires knowledge of several properties of the host rock such as the hydraulic conductivity, diffusion properties and the pore water composition. This paper presents an experimental design that allows the determination of these three types of parameters on the same cylindrical rock sample. The reliability of this method was evaluated using a core sample from a well-investigated indurated argillaceous formation, the Opalinus Clay from the Mont Terri Underground Research Laboratory (URL) (Switzerland). In this test, deuterium- and oxygen-18-depleted water, bromide and caesium were injected as tracer pulses in a reservoir drilled in the centre of a cylindrical core sample. The evolution of these tracers was monitored by means of samplers included in a circulation circuit for a period of 204 days. Then, a hydraulic test (pulse-test type) was performed. Finally, the core sample was dismantled and analysed to determine tracer profiles. Diffusion parameters determined for the four tracers are consistent with those previously obtained from laboratory through-diffusion and in-situ diffusion experiments. The reconstructed initial pore-water composition (chloride and water stable-isotope concentrations) was also consistent with those previously reported. In addition, the hydraulic test led to an estimate of hydraulic conductivity in good agreement with that obtained from in-situ tests.

  9. Structural factors affecting pore space transformation during hydrocarbon generation in source rock (shales): laboratory experiments and X-ray microtomography/SEM study

    NASA Astrophysics Data System (ADS)

    Giliazetdinova, Dina; Korost, Dmitry; Gerke, Kirill

    2015-04-01

    Oil and gas generation is a complex superposition of processes which take place in the interiors and are not readily observable in nature in human life time-frames. During burial of the source rocks organic matter is transformed into a mixture of high-molecular compounds - precursors of oil and gas (kerogen). Specific thermobaric conditions trigger formation of low molecular weight hydrocarbon compounds. Generation of sufficient quantities of hydrocarbons leads to the primary fluid migration. For series of our experiments we selected mainly siliceous-carbonate composition shale rocks from Domanic horizon of South-Tatar arch. Rock samples were heated in the pyrolyzer to temperatures closely corresponding to different catagenesis stages. X-ray microtomography method was used to monitor changes in the morphology of the pore space within studied shale rocks. By routine measurements we made sure that all samples (10 in total) had similar composition of organic and mineral phases. All samples in the collection were grouped according to initial structure and amount of organics and processed separately to: 1) study the influence of organic matter content on the changing morphology of the rock under thermal effects; 2) study the effect of initial structure on the primary migration processes for samples with similar organic matter content. An additional experiment was conducted to study the dynamics of changes in the structure of the pore space and prove the validity of our approach. At each stage of heating the morphology of altered rocks was characterized by formation of new pores and channels connecting primary voids. However, it was noted that the samples with a relatively low content of the organic matter had less changes in pore space morphology, in contrast to rocks with a high organic content. Second part of the study also revealed significant differences in resulting pore structures depending on initial structure of the unaltered rocks and connectivity of original

  10. Science Rocks!

    ERIC Educational Resources Information Center

    Prestwich, Dorothy; Sumrall, Joseph; Chessin, Debby A.

    2010-01-01

    It all began one Monday morning. Raymond could not wait to come to large group. In his hand, he held a chunk of white granite he had found. "Look at my beautiful rock!" he cried. The rock was passed around and examined by each student. "I wonder how rocks are made?" wondered one student. "Where do they come from?"…

  11. Rock Finding

    ERIC Educational Resources Information Center

    Rommel-Esham, Katie; Constable, Susan D.

    2006-01-01

    In this article, the authors discuss a literature-based activity that helps students discover the importance of making detailed observations. In an inspiring children's classic book, "Everybody Needs a Rock" by Byrd Baylor (1974), the author invites readers to go "rock finding," laying out 10 rules for finding a "perfect" rock. In this way, the…

  12. Rock Art

    ERIC Educational Resources Information Center

    Henn, Cynthia A.

    2004-01-01

    There are many interpretations for the symbols that are seen in rock art, but no decoding key has ever been discovered. This article describes one classroom's experiences with a lesson on rock art--making their rock art and developing their own personal symbols. This lesson allowed for creativity, while giving an opportunity for integration…

  13. Collecting Rocks.

    ERIC Educational Resources Information Center

    Barker, Rachel M.

    One of a series of general interest publications on science topics, the booklet provides those interested in rock collecting with a nontechnical introduction to the subject. Following a section examining the nature and formation of igneous, sedimentary, and metamorphic rocks, the booklet gives suggestions for starting a rock collection and using…

  14. Science Rocks!

    ERIC Educational Resources Information Center

    Prestwich, Dorothy; Sumrall, Joseph; Chessin, Debby A.

    2010-01-01

    It all began one Monday morning. Raymond could not wait to come to large group. In his hand, he held a chunk of white granite he had found. "Look at my beautiful rock!" he cried. The rock was passed around and examined by each student. "I wonder how rocks are made?" wondered one student. "Where do they come from?"…

  15. Rock Art

    ERIC Educational Resources Information Center

    Henn, Cynthia A.

    2004-01-01

    There are many interpretations for the symbols that are seen in rock art, but no decoding key has ever been discovered. This article describes one classroom's experiences with a lesson on rock art--making their rock art and developing their own personal symbols. This lesson allowed for creativity, while giving an opportunity for integration…

  16. Rock Finding

    ERIC Educational Resources Information Center

    Rommel-Esham, Katie; Constable, Susan D.

    2006-01-01

    In this article, the authors discuss a literature-based activity that helps students discover the importance of making detailed observations. In an inspiring children's classic book, "Everybody Needs a Rock" by Byrd Baylor (1974), the author invites readers to go "rock finding," laying out 10 rules for finding a "perfect" rock. In this way, the…

  17. Predicting rock bursts in mines

    USGS Publications Warehouse

    Spall, H.

    1979-01-01

    The microseismic method relies on observational data, amply demonstrated in laboratory experiments, that acoustic noise occurs in rocks subjected to high differential stresses. Acoustic emission becomes most pronounced as the breaking strength of the rock is reached. Laboratory studies have shown that the acoustic emission is linked with the release of stored strain energy as the rock mass undergoes small-scale adjustments such as the formation of cracks. Studies in actual mines have shown that acoustic noises often precede failure of rock masses in rock bursts or in coal bumps. Seismologists are, therefore, very interested in whether these results can be applied to large-scale failures; that is, earthquakes. An active research program in predicting rock bursts in mines is being conducted by Brian T. Brady and his colleagues at the U.S Bureau of Mines, Denver Colo.  

  18. Weathering of rock 'Ginger'

    NASA Technical Reports Server (NTRS)

    1997-01-01

    One of the more unusual rocks at the site is Ginger, located southeast of the lander. Parts of it have the reddest color of any material in view, whereas its rounded lobes are gray and relatively unweathered. These color differences are brought out in the inset, enhanced at the upper right. In the false color image at the lower right, the shape of the visible-wavelength spectrum (related to the abundance of weathered ferric iron minerals) is indicated by the hue of the rocks. Blue indicates relatively unweathered rocks. Typical soils and drift, which are heavily weathered, are shown in green and flesh tones. The very red color in the creases in the rock surface correspond to a crust of ferric minerals. The origin of the rock is uncertain; the ferric crust may have grown underneath the rock, or it may cement pebbles together into a conglomerate. Ginger will be a target of future super-resolution studies to better constrain its origin.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  19. On the Unimolecular Reactions of CH3O and CH2OH

    DTIC Science & Technology

    1981-09-21

    elimination reaction of methoxy C- 05 The reaction of methoxy to produce the formyl j 2r.43. 9,. radical and hydrogen molecule is similar to the molec...reaction of CH 2OH is the isomerization to be viewed as a rocking of the H2 fragment perpendicu- CH3 0. lar to the plane defined by the formyl radical ...reaction CH30 - HCO + H12 has a higher energy barrier. I. Introduction pete with other faster reactions of the radical that are important in atmospheric

  20. 'Escher' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Chemical Changes in 'Endurance' Rocks

    [figure removed for brevity, see original site] Figure 1

    This false-color image taken by NASA's Mars Exploration Rover Opportunity shows a rock dubbed 'Escher' on the southwestern slopes of 'Endurance Crater.' Scientists believe the rock's fractures, which divide the surface into polygons, may have been formed by one of several processes. They may have been caused by the impact that created Endurance Crater, or they might have arisen when water leftover from the rock's formation dried up. A third possibility is that much later, after the rock was formed, and after the crater was created, the rock became wet once again, then dried up and developed cracks. Opportunity has spent the last 14 sols investigating Escher, specifically the target dubbed 'Kirchner,' and other similar rocks with its scientific instruments. This image was taken on sol 208 (Aug. 24, 2004) by the rover's panoramic camera, using the 750-, 530- and 430-nanometer filters.

    The graph above shows that rocks located deeper into 'Endurance Crater' are chemically altered to a greater degree than rocks located higher up. This chemical alteration is believed to result from exposure to water.

    Specifically, the graph compares ratios of chemicals between the deep rock dubbed 'Escher,' and the more shallow rock called 'Virginia,' before (red and blue lines) and after (green line) the Mars Exploration Rover Opportunity drilled into the rocks. As the red and blue lines indicate, Escher's levels of chlorine relative to Virginia's went up, and sulfur down, before the rover dug a hole into the rocks. This implies that the surface of Escher has been chemically altered to a greater extent than the surface of Virginia. Scientists are still investigating the role water played in influencing this trend.

    These data were taken by the rover's alpha particle X-ray spectrometer.

  1. 'Escher' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Chemical Changes in 'Endurance' Rocks

    [figure removed for brevity, see original site] Figure 1

    This false-color image taken by NASA's Mars Exploration Rover Opportunity shows a rock dubbed 'Escher' on the southwestern slopes of 'Endurance Crater.' Scientists believe the rock's fractures, which divide the surface into polygons, may have been formed by one of several processes. They may have been caused by the impact that created Endurance Crater, or they might have arisen when water leftover from the rock's formation dried up. A third possibility is that much later, after the rock was formed, and after the crater was created, the rock became wet once again, then dried up and developed cracks. Opportunity has spent the last 14 sols investigating Escher, specifically the target dubbed 'Kirchner,' and other similar rocks with its scientific instruments. This image was taken on sol 208 (Aug. 24, 2004) by the rover's panoramic camera, using the 750-, 530- and 430-nanometer filters.

    The graph above shows that rocks located deeper into 'Endurance Crater' are chemically altered to a greater degree than rocks located higher up. This chemical alteration is believed to result from exposure to water.

    Specifically, the graph compares ratios of chemicals between the deep rock dubbed 'Escher,' and the more shallow rock called 'Virginia,' before (red and blue lines) and after (green line) the Mars Exploration Rover Opportunity drilled into the rocks. As the red and blue lines indicate, Escher's levels of chlorine relative to Virginia's went up, and sulfur down, before the rover dug a hole into the rocks. This implies that the surface of Escher has been chemically altered to a greater extent than the surface of Virginia. Scientists are still investigating the role water played in influencing this trend.

    These data were taken by the rover's alpha particle X-ray spectrometer.

  2. Two-wavelength single laser CH and CH(4) imaging in a lifted turbulent diffusion flame.

    PubMed

    Namazian, M; Schmitt, R L; Long, M B

    1988-09-01

    A new technique has been developed which allows simultaneous 2-D mapping of CH and CH 4 in a turbulent methane flame. A flashlamp-pumped dye laser using two back mirrors produces output at 431.5 and 444 nm simultaneously. The 431.5-nm line is used to excite the (0, 0) band of the A(2)Delta-X(2)Pi system of CH, and the fluorescence of the (0, 1) transition is observed at 489 nm. Coincidentally, the spontaneous Raman scattering from CH(4) also occurs near 489 nm for a 431.5-nm excitation. To separate the CH(4) and CH contributions, the 444-nm line is used to produce a spontaneous Raman signal from CH(4) that is spectrally separated from the CH fluorescence. Subtraction of the signals generated by the 431.5- and 444-nm wavelength beams yields separate measurements of CH(4) and CH. Raman-scattered light records the instantaneous distribution of the fuel, and simultaneously the CH fluorescence indicates the location of the flame zone. The resulting composite images provide important insight on the interrelationship between fuel-air mixing and subsequent combustion.M. Namazian is with Altex Technologies Corporation, 109 Via De Tesoros, Los Gatos, California 95030; R. L. Schmitt is with Sandia National Laboratories, Combustion Research Facility, Livermore, California 94550; and M. B. Long is with Yale University, Department of Mechanical Engineering, New Haven, Connecticut 06520.

  3. Three classes of Martian rocks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this portion of the 360-degree color gallery pan, looking to the northeast, the colors have been exaggerated to highlight the differences between rocks and soils. Visible are the downwind sides of rocks, not exposed to wind scouring like Barnacle Bill (which faces upwind). There is a close correspondence between the shapes and colors of the rocks. Three general classes of rocks are recognized: large rounded rocks with weathered coatings, small gray angular rocks lacking weathered coatings, and flat white rocks. The large rounded rocks in the distance, marked by the red arrows, are comparable to Yogi. Spectral properties show that these rocks have a highly weathered coating in addition to a distinctive shape. A second population of smaller, angular rocks (blue arrows) in the foreground have unweathered surfaces even on the downwind side, except where covered on their tops by drift. These are comparable to Barnacle Bill. They may have been emplaced at the site relatively recently, perhaps as ejecta from an impact crater, so they have not had time to weather as extensively as the larger older rocks. The third kind of rock (white arrows) is white and flat, and includes Scooby Doo in the foreground and a large deposit in the background called Baker's Bank. The age of the white rock relative to the other two classes is still being debated. One representative rock of each class (Yogi, Barnacle Bill, and Scooby Doo) has been measured by the rover.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  4. Abiogenic methanogenesis in crystalline rocks

    SciTech Connect

    Lollar, B.S.; Frape, S.K. ); Weise, S.M. , Neuherberg ); Fritz, P. ); Macko, S.A. ); Welhan, J.A. )

    1993-12-01

    Isotopically anomalous CH[sub 4]-rich gas deposits are found in mining sites on both the Canadian and Fennoscandian shields. With [delta][sup 13]C[sub CH4] values from -22.4 to -48.5% and [delta]D[sub CH4] values from -133 to -372%, these methane deposits cannot be accounted for by conventional processes for bacterial or thermogenic methanogenesis. Compositionally the gases are similar to other CH[sub 4]-rich gas occurrences found in Canadian and Fennoscandian shield rocks. However, the isotopically anomalous gases of this study are characterized by unexpectedly high concentrations of H[sub 2] gas, ranging from several volume percent up to 30 vol%. The H[sub 2] gases are consistently depleted in the heavy isotope, with [delta]D[sub H[sub 2

  5. 'Earhart' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by NASA's Mars Exploration Rover Opportunity shows a rock informally named 'Earhart' on the lower slopes of 'Endurance Crater.' The rock was named after the pilot Amelia Earhart. Like 'Escher' and other rocks dotting the bottom of Endurance, scientists believe fractures in Earhart could have been formed by one of several processes. They may have been caused by the impact that created Endurance Crater, or they might have arisen when water leftover from the rock's formation dried up. A third possibility is that much later, after the rock was formed, and after the crater was created, the rock became wet once again, then dried up and developed cracks. Rover team members do not have plans to investigate Earhart in detail because it is located across potentially hazardous sandy terrain. This image was taken on sol 219 (Sept. 4) by the rover's panoramic camera, using its 750-, 530- and 430-nanometer filters.

  6. Geoelectrical Classification of Gypsum Rocks

    NASA Astrophysics Data System (ADS)

    Guinea, Ander; Playà, Elisabet; Rivero, Lluís; Himi, Mahjoub; Bosch, Ricard

    2010-12-01

    Gypsum rocks are widely exploited in the world as industrial minerals. The purity of the gypsum rocks (percentage in gypsum mineral in the whole rock) is a critical factor to evaluate the potential exploitability of a gypsum deposit. It is considered than purities higher than 80% in gypsum are required to be economically profitable. Gypsum deposits have been studied with geoelectrical methods; a direct relationship between the electrical resistivity values of the gypsum rocks and its lithological composition has been established, with the presence of lutites being the main controlling factor in the geoelectrical response of the deposit. This phenomenon has been quantified in the present study, by means of a combination of theoretical calculations, laboratory measurements and field data acquisition. Direct modelling has been performed; the data have been inverted to obtain the mean electrical resistivity of the models. The laboratory measurements have been obtained from artificial gypsum-clay mixture pills, and the electrical resistivity has been measured using a simple electrical circuit with direct current power supply. Finally, electrical resistivity tomography data have been acquired in different evaporite Tertiary basins located in North East Spain; the selected gypsum deposits have different gypsum compositions. The geoelectrical response of gypsum rocks has been determined by comparing the resistivity values obtained from theoretical models, laboratory tests and field examples. A geoelectrical classification of gypsum rocks defining three types of gypsum rocks has been elaborated: (a) Pure Gypsum Rocks (>75% of gypsum content), (b) Transitional Gypsum Rocks (75-55%), and (c) Lutites and Gypsum-rich Lutites (<55%). From the economic point of view, the Pure Gypsum Rocks, displaying a resistivity value of >800 ohm.m, can be exploited as industrial rocks. The methodology used could be applied in other geoelectrical rock studies, given that this relationship

  7. Rock flows

    NASA Technical Reports Server (NTRS)

    Matveyev, S. N.

    1986-01-01

    Rock flows are defined as forms of spontaneous mass movements, commonly found in mountainous countries, which have been studied very little. The article considers formations known as rock rivers, rock flows, boulder flows, boulder stria, gravel flows, rock seas, and rubble seas. It describes their genesis as seen from their morphological characteristics and presents a classification of these forms. This classification is based on the difference in the genesis of the rubbly matter and characterizes these forms of mass movement according to their source, drainage, and deposit areas.

  8. Infrared absorption of gaseous CH{sub 2}BrOO detected with a step-scan Fourier-transform absorption spectrometer

    SciTech Connect

    Huang, Yu-Hsuan; Lee, Yuan-Pern

    2014-10-28

    CH{sub 2}BrOO radicals were produced upon irradiation, with an excimer laser at 248 nm, of a flowing mixture of CH{sub 2}Br{sub 2} and O{sub 2}. A step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to record temporally resolved infrared (IR) absorption spectra of reaction intermediates. Transient absorption with origins at 1276.1, 1088.3, 961.0, and 884.9 cm{sup −1} are assigned to ν{sub 4} (CH{sub 2}-wagging), ν{sub 6} (O–O stretching), ν{sub 7} (CH{sub 2}-rocking mixed with C–O stretching), and ν{sub 8} (C–O stretching mixed with CH{sub 2}-rocking) modes of syn-CH{sub 2}BrOO, respectively. The assignments were made according to the expected photochemistry and a comparison of observed vibrational wavenumbers, relative IR intensities, and rotational contours with those predicted with the B3LYP/aug-cc-pVTZ method. The rotational contours of ν{sub 7} and ν{sub 8} indicate that hot bands involving the torsional (ν{sub 12}) mode are also present, with transitions 7{sub 0}{sup 1}12{sub v}{sup v} and 8{sub 0}{sup 1}12{sub v}{sup v}, v = 1–10. The most intense band (ν{sub 4}) of anti-CH{sub 2}BrOO near 1277 cm{sup −1} might have a small contribution to the observed spectra. Our work provides information for directly probing gaseous CH{sub 2}BrOO with IR spectroscopy, in either the atmosphere or laboratory experiments.

  9. Low-Temperature Hydrocarbon Photochemistry: CH3 + CH3 Recombination in Giant Planet Atmospheres

    NASA Technical Reports Server (NTRS)

    Smith, Gregory P.; Huestis, David L.

    2002-01-01

    Planetary emissions of the methyl radical CH3 were observed for the first time in 1998 on Saturn and Neptune by the ISO (Infrared Space Observatory) mission satellite. CH3 is produced by VUV photolysis of CH4 and is the key photochemical intermediate leading complex organic molecules on the giant planets and moons. The CH3 emissions from Saturn were unexpectedly weak. A suggested remedy is to increase the rate of the recombination reaction CH3 + CH3 + H2 --> C2H6 + H2 at 140 K to a value at least 10 times that measured at room temperature in rare gases, but within the range of disagreeing theoretical expressions at low temperature. We are performing laboratory experiments at low temperature and very low pressure. The experiments are supported by RRKM theoretical modeling that is calibrated using the extensive combustion literature.

  10. Rock and soil mechanics

    SciTech Connect

    Derski, W.; Izbicki, R.; Kisiel, I.; Mroz, Z.

    1988-01-01

    Although theoretical in character, this book provides a useful source of information for those dealing with practical problems relating to rock and soil mechanics - a discipline which, in the view of the authors, attempts to apply the theory of continuum to the mechanical investigation of rock and soil media. The book is in two separate parts. The first part, embodying the first three chapters, is devoted to a description of the media of interest. Chapter 1 introduces the main argument and discusses the essence of the discipline and its links with other branches of science which are concerned, on the one hand, with technical mechanics and, on the other, with the properties, origins, and formation of rock and soil strata under natural field conditions. Chapter 2 describes mechanical models of bodies useful for the purpose of the discourse and defines the concept of the limit shear resistance of soils and rocks. Chapter 3 gives the actual properties of soils and rocks determined from experiments in laboratories and in situ. Several tests used in geotechnical engineering are described and interconnections between the physical state of rocks and soils and their rheological parameters are considered.

  11. Diverse Rock Named Squash

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image from the Sojourner rover's right front camera was taken on Sol 27. The Pathfinder lander is seen at middle left. The large rock at right, nicknamed 'Squash', exhibits a diversity of textures. It looks very similar to a conglomerate, a type of rock found on Earth that forms from sedimentary processes.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and managed the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  12. Pollack Crater's White Rock

    NASA Technical Reports Server (NTRS)

    2008-01-01

    has a higher spatial resolution that enables CRISM to see smaller exposures of these minerals, if they occur. If White Rock is an evaporative lacustrine or lake deposit, CRISM has the best chance of detecting telltale mineralogical signatures. The images above reveal what CRISM found.

    The top panel in the montage above shows the location of the CRISM image on a mosaic of Pollack Crater taken by the Mars Odyssey spacecraft's Thermal Emission Imaging System (THEMIS). White Rock actually appears dark in the THEMIS mosaic due to a low daytime temperature, because its light color leads to less heating by the Sun. The middle-left image is an infrared, false color image that reveals White Rock's reddish hue. The middle-right image shows the signatures of different minerals that are present. CRISM found that White Rock is composed of accumulated dust perhaps with some fine-grained olivine (an igneous mineral), surrounded by basaltic sand containing olivine and dark-colored pyroxene. The lower two images were constructed by draping CRISM images over topography and exaggerating the vertical scale to better illustrate White Rock's topography. White Rock still appears not to contain evaporite, but instead to be composed of accumulated dust and sand.

    CRISM is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter and the Mars Science Laboratory for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter.

  13. Pollack Crater's White Rock

    NASA Technical Reports Server (NTRS)

    2008-01-01

    has a higher spatial resolution that enables CRISM to see smaller exposures of these minerals, if they occur. If White Rock is an evaporative lacustrine or lake deposit, CRISM has the best chance of detecting telltale mineralogical signatures. The images above reveal what CRISM found.

    The top panel in the montage above shows the location of the CRISM image on a mosaic of Pollack Crater taken by the Mars Odyssey spacecraft's Thermal Emission Imaging System (THEMIS). White Rock actually appears dark in the THEMIS mosaic due to a low daytime temperature, because its light color leads to less heating by the Sun. The middle-left image is an infrared, false color image that reveals White Rock's reddish hue. The middle-right image shows the signatures of different minerals that are present. CRISM found that White Rock is composed of accumulated dust perhaps with some fine-grained olivine (an igneous mineral), surrounded by basaltic sand containing olivine and dark-colored pyroxene. The lower two images were constructed by draping CRISM images over topography and exaggerating the vertical scale to better illustrate White Rock's topography. White Rock still appears not to contain evaporite, but instead to be composed of accumulated dust and sand.

    CRISM is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter and the Mars Science Laboratory for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter.

  14. Art Rocks with Rock Art!

    ERIC Educational Resources Information Center

    Bickett, Marianne

    2011-01-01

    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals…

  15. Art Rocks with Rock Art!

    ERIC Educational Resources Information Center

    Bickett, Marianne

    2011-01-01

    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals…

  16. Characterizing water/rock interaction in simulated comet nuclei via calorimetry: Tool for in-situ science, laboratory analysis, and sample preservation

    NASA Technical Reports Server (NTRS)

    Allton, Judith H.; Gooding, James L.

    1991-01-01

    Although results from the Giotto and Vega spacecraft flybys of comet P/Halley indicate a complex chemistry for both the ices and dust in the nucleus, carbonaceous chondrite meteorites are still regarded as useful analogs for the rocky components. Carbonaceous chondrites mixed with water enable simulation of water/rock interactions which may occur in cometary nuclei. Three general types of interactions can be expected between water and minerals at sub-freezing temperatures: heterogeneous nucleation of ice by insoluble minerals; adsorption of water vapor by hygroscopic phases; and freezing and melting point depression of liquid water sustained by soluble minerals. Two series of experiments were performed in a differential scanning calorimeter (DSC) with homogenized powders of the following whole-rock meteorites and comparison samples: Allende (CV3), Murchison (CM2), Orgueil (CI), Holbrook (L6), and Pasamonte (eucrite) meteorites as well as on peridotite (PCC-1, USGS), saponite (Sap-Ca-1, CMS), montmorillonite (STx-1, CMS), and serpentine (Franciscan Formation, California). Results are briefly discussed.

  17. Preferential flow paths and heat pipes: Results from laboratory experiments on heat-driven flow in natural and artificial rock fractures

    SciTech Connect

    Kneafsey, T.J.; Pruess, K.

    1997-06-01

    Water flow in fractures under the conditions of partial saturation and thermal drive may lead to fast flow along preferential localized pathways and heat pipe conditions. Water flowing in fast pathways may ultimately contact waste packages at Yucca Mountain and transport radionuclides to the accessible environment. Sixteen experiments were conducted to visualize liquid flow in glass fracture models, a transparent epoxy fracture replica, and a rock/replica fracture assembly. Spatially resolved thermal monitoring was performed in seven of these experiments to evaluate heat-pipe formation. Depending on the fracture apertures and flow conditions, various flow regimes were observed including continuous rivulet flow for high flow rates, intermittent rivulet flow and drop flow for intermediate flow rates, and film flow for low flow rates and wide apertures. These flow regimes were present in both fracture models and in the replica of a natural fracture. Heat-pipe conditions indicated by low thermal gradients were observed in five experiments. Conditions conducive to heat-pipe formation include an evaporation zone, condensation zone, adequate space for vapor and liquid to travel, and appropriate fluid driving forces. In one of the two experiments where heat pipe conditions were not observed, adequate space for liquid-vapor counterflow was not provided. Heat pipe conditions were not established in the other, because liquid flow was inadequate to compensate for imbibition and the quantity of heat contained within the rock.

  18. Generation of Hydrogen and Methane during Experimental Low-Temperature Reaction of Ultramafic Rocks with Water.

    PubMed

    McCollom, Thomas M; Donaldson, Christopher

    2016-06-01

    Serpentinization of ultramafic rocks is widely recognized as a source of molecular hydrogen (H2) and methane (CH4) to support microbial activity, but the extent and rates of formation of these compounds in low-temperature, near-surface environments are poorly understood. Laboratory experiments were conducted to examine the production of H2 and CH4 during low-temperature reaction of water with ultramafic rocks and minerals. Experiments were performed by heating olivine or harzburgite with aqueous solutions at 90°C for up to 213 days in glass bottles sealed with butyl rubber stoppers. Although H2 and CH4 increased steadily throughout the experiments, the levels were very similar to those found in mineral-free controls, indicating that the rubber stoppers were the predominant source of these compounds. Levels of H2 above background were observed only during the first few days of reaction of harzburgite when CO2 was added to the headspace, with no detectable production of H2 or CH4 above background during further heating of the harzburgite or in experiments with other mineral reactants. Consequently, our results indicate that production of H2 and CH4 during low-temperature alteration of ultramafic rocks may be much more limited than some recent experimental studies have suggested. We also found no evidence to support a recent report suggesting that spinels in ultramafic rocks may stimulate H2 production. While secondary silicates were observed to precipitate during the experiments, formation of these deposits was dominated by Si released by dissolution of the glass bottles, and reaction of the primary silicate minerals appeared to be very limited. While use of glass bottles and rubber stoppers has become commonplace in experiments intended to study processes that occur during serpentinization of ultramafic rocks at low temperatures, the high levels of H2, CH4, and SiO2 released during heating indicate that these reactor materials are unsuitable for this purpose

  19. Terby's Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    27 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the light-toned, layered, sedimentary rock outcrops in northern Terby Crater. Terby is located along the north edge of Hellas Planitia. The sedimentary rocks might have been deposited in a greater, Hellas-filling sea -- or not. Today, the rocks are partly covered by dark-toned sediment and debris.

    Location near: 27.2oS, 285.3oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  20. Opportunity Rocks!

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This high-resolution image captured by the Mars Exploration Rover Opportunity's panoramic camera shows in superb detail a portion of the puzzling rock outcropping that scientists are eagerly planning to investigate. Presently, Opportunity is on its lander facing northeast; the outcropping lies to the northwest. These layered rocks measure only 10 centimeters (4 inches) tall and are thought to be either volcanic ash deposits or sediments carried by water or wind. The small rock in the center is about the size of a golf ball.

  1. Digital carbonate rock physics

    NASA Astrophysics Data System (ADS)

    Saenger, Erik H.; Vialle, Stephanie; Lebedev, Maxim; Uribe, David; Osorno, Maria; Duda, Mandy; Steeb, Holger

    2016-08-01

    Modern estimation of rock properties combines imaging with advanced numerical simulations, an approach known as digital rock physics (DRP). In this paper we suggest a specific segmentation procedure of X-ray micro-computed tomography data with two different resolutions in the µm range for two sets of carbonate rock samples. These carbonates were already characterized in detail in a previous laboratory study which we complement with nanoindentation experiments (for local elastic properties). In a first step a non-local mean filter is applied to the raw image data. We then apply different thresholds to identify pores and solid phases. Because of a non-neglectable amount of unresolved microporosity (micritic phase) we also define intermediate threshold values for distinct phases. Based on this segmentation we determine porosity-dependent values for effective P- and S-wave velocities as well as for the intrinsic permeability. For effective velocities we confirm an observed two-phase trend reported in another study using a different carbonate data set. As an upscaling approach we use this two-phase trend as an effective medium approach to estimate the porosity-dependent elastic properties of the micritic phase for the low-resolution images. The porosity measured in the laboratory is then used to predict the effective rock properties from the observed trends for a comparison with experimental data. The two-phase trend can be regarded as an upper bound for elastic properties; the use of the two-phase trend for low-resolution images led to a good estimate for a lower bound of effective elastic properties. Anisotropy is observed for some of the considered subvolumes, but seems to be insignificant for the analysed rocks at the DRP scale. Because of the complexity of carbonates we suggest using DRP as a complementary tool for rock characterization in addition to classical experimental methods.

  2. Velocity Structure of the Alpine Fault Zone, New Zealand: Laboratory and Log-Based Fault Rock Acoustic Properties at Elevated Pressures

    NASA Astrophysics Data System (ADS)

    Jeppson, T.; Graham, J. L., II; Tobin, H. J.; Paris Cavailhes, J.; Celerier, B. P.; Doan, M. L.; Nitsch, O.; Massiot, C.

    2015-12-01

    The elastic properties of fault zone rocks at seismogenic depth play a key role in rupture nucleation, propagation, and damage associated with fault slip. In order to understand the seismic hazard posed by a fault we need to both measure these properties and understand how they govern that particular fault's behavior. The Alpine Fault is the principal component of the active transpressional plate boundary through the South Island of New Zealand. Rapid exhumation along the fault provides an opportunity to study near-surface rocks that have experienced similar histories to those currently deforming at mid-crustal depths. In this study, we examine the acoustic properties of the Alpine Fault in Deep Fault Drilling Project (DFDP)-1 drill core samples and borehole logs from the shallow fault zone, DFDP-2 borehole logs from the hanging wall, and outcrop samples from a number of field localities along the central Alpine Fault. P- and S-wave velocities were measured at ultrasonic frequencies on saturated 2.5 cm-diameter core plugs taken from DFDP-1 core and outcrops. Sampling focused on mylonites, cataclasites, and fault gouge from both the hanging and foot walls of the fault in order to provide a 1-D seismic velocity transect across the entire fault zone. Velocities were measured over a range of effective pressures between 1 and 68 MPa to determine the variation in acoustic properties with depth and pore pressure. When possible, samples were cut in three orthogonal directions and S-waves were measured in two polarization directions on all samples to constrain velocity anisotropy. XRD and petrographic characterization were used to examine how fault-related alteration and deformation change the composition and texture of the rock, and to elucidate how these changes affect the measured velocities. The ultrasonic velocities were compared to sonic logs from DFDP to examine the potential effects of frequency dispersion, brittle deformation, and temperature on the measured

  3. White Rock

    NASA Image and Video Library

    2002-05-21

    White Rock is the unofficial name for this unusual landform which was first observed during NASA Mariner 9 mission in the early 1970 and is now shown here in an image from NASA Mars Odyssey spacecraft.

  4. 'Lutefisk' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1

    NASA's Mars Exploration Rover Spirit used its panoramic camera to take this image of a rock called 'Lutefisk' on the rover's 286th martian day (Oct. 22, 2004). The surface of the rock is studded with rounded granules of apparently more-resistant material up to several millimeters (0.1 inch) or more across. The visible portion of Lutefisk is about 25 centimeters (10 inches) across.

  5. Soil and rock 'Yogi'

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Several possible targets of study for rover Sojourner's Alpha Proton X-Ray Spectrometer (APXS) instrument are seen in this image, taken by the Imager for Mars Pathfinder (IMP) on Sol 2. The smaller rock at left has been dubbed 'Barnacle Bill,' while the larger rock at right, approximately 3-4 meters from the lander, is now nicknamed 'Yogi.' Barnacle Bill is scheduled to be the first object of study for the APXS. Portions of a petal and deflated airbag are also visible at lower right.

    Mars Pathfinder was developed and managed by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  6. Underground laboratory in China

    NASA Astrophysics Data System (ADS)

    Chen, Heshengc

    2012-09-01

    The underground laboratories and underground experiments of particle physics in China are reviewed. The Jinping underground laboratory in the Jinping mountain of Sichuan, China is the deepest underground laboratory with horizontal access in the world. The rock overburden in the laboratory is more than 2400 m. The measured cosmic-ray flux and radioactivities of the local rock samples are very low. The high-purity germanium experiments are taking data for the direct dark-matter search. The liquid-xenon experiment is under construction. The proposal of the China National Deep Underground Laboratory with large volume at Jinping for multiple discipline research is discussed.

  7. Theoretical and Laboratory Studies on the Interaction of Cosmic-Ray Particles with Interstellar Ices. III. Suprathermal Chemistry-Induced Formation of Hydrocarbon Molecules in Solid Methane (CH4), Ethylene (C2H4), and Acetylene (C2H2)

    NASA Astrophysics Data System (ADS)

    Kaiser, R. I.; Roessler, K.

    1998-08-01

    Methane, ethylene, and acetylene ices are irradiated in a ultra high vacuum vessel at 10 K with 9.0 MeV α-particles and 7.3 MeV protons to elucidate mechanisms to form hydrocarbon molecules upon interaction of Galactic cosmic-ray particles with extraterrestrial, organic ices. Theoretical calculations focus on computer simulations of ion-induced collision cascades in irradiated targets. Our experimental and computational investigations reveal that each MeV particle transfers its kinetic energy predominantly through inelastic encounters to the target leading to electronic excitation and ionization of the target molecules. Here electronically excited CH4 species can fragment to mobile H atoms and nonmobile CH3 radicals. The potential energy stored in Coulomb interaction of the CH+4 ions release energetic H and C atoms not in thermal equilibrium with the 10 K target (suprathermal species). Moderated to 1-10 eV kinetic energy, these carbon atoms and those triggered by the elastic energy transfer of the MeV projectile to the target are found to abstract up to two H atoms to yield suprathermal CH and CH2 species. C and CH, as well as CH2, can insert into a CH bond of a CH4 molecule to form methylcarbene (HCCH3), the ethyl radical (C2H5), and ethane (C2H6). HCCH3 either loses H2/2H to form acetylene, C2H2, rearranges to ethylene, C2H4, or adds two H atoms to form ethane, C2H6. C2H5 can abstract or lose an H atom, giving ethane and ethylene, respectively. C2H2 and C2H4 are found to react with suprathermal H atoms to form C2H3 and C2H5, respectively. Overlapping cascades and an increasing MeV ion exposure transforms C2Hx (x = 2, ..., 6) to even more complex alkanes up to C14H30. These elementary reactions of suprathermal species to insert, abstract, and add in/to bonds supply a powerful pathway to form new molecules in icy grain mantles condensed on interstellar grains or in hydrocarbon rich bodies in our solar system even at temperatures as low as 10 K.

  8. The reactions of Si + ions with CH3SiH3, CH3SiD3, C2H6, and CH3CHD2

    NASA Astrophysics Data System (ADS)

    Lim, K. P.; Lampe, F. W.

    1992-02-01

    The reactions of Si+ with CH3SiH3, CH3SiD3, C2H6, and CH3CHD2 have been studied in a tandem mass spectrometric apparatus over the kinetic energy range of 1-10 eV laboratory-frame-of reference (LAB). In all systems, the major process is the formation of SiCH+3, as well as SiCH2D+ and SiCHD+2 in the case of the reaction with CH3CHD2. It is shown that in the reaction of Si+ with CH3SiH3 and CH3SiD3, the process is best described as a Walden inversion, while in the reaction with C2H6 and CH3CHD2, the process appears to approximate the spectator stripping model or modified spectator stripping (polarization-reflection model). In the reaction with CH3CHD2, the slight preference of Si+ to strip the CH3 radical rather than the CHD2 radical is shown to be in accord with a cross-sectional energy dependence of approximately E-1.

  9. Rock support system development test plan

    SciTech Connect

    Patricio, J.G. . Rockwell Hanford Operations)

    1984-03-30

    The Test Plan has been prepared to support design activities for the development of a rock support system for a Nuclear Waste Repository in Basalt (NWRB). The rock support system is assumed to consist of a combination of shotcrete and rock bolts. The seven testing activities include mix development and physical testing of shotcrete, durability testing of shotcrete, durability testing of rock bolt grouts, field tests on rock bolts, field testing of shotcrete, and heated room test. The objective of the Test Plan is to develop required data through combined laboratory, field, and office studies for design and design validation of the rock support system. The overall Test Plan is developed to provide a logical progression from laboratory tests performed to characterize fundamental thermomechanical properties of shotcrete and grouts, to field tests on rock bolts and shotcrete, and in situ performance tests. 21 refs., 15 figs., 33 tabs.

  10. CH-TRU Waste Content Codes

    SciTech Connect

    Washington TRU Solutions LLC

    2008-01-16

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  11. 'Wopmay' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This approximate true-color image taken by NASA's Mars Exploration Rover Opportunity shows an unusual, lumpy rock informally named 'Wopmay' on the lower slopes of 'Endurance Crater.' The rock was named after the Canadian bush pilot Wilfrid Reid 'Wop' May. Like 'Escher' and other rocks dotting the bottom of Endurance, scientists believe the lumps in Wopmay may be related to cracking and alteration processes, possibly caused by exposure to water. The area between intersecting sets of cracks eroded in a way that created the lumpy appearance. Rover team members plan to drive Opportunity over to Wopmay for a closer look in coming sols. This image was taken by the rover's panoramic camera on sol 248 (Oct. 4, 2004), using its 750-, 530- and 480-nanometer filters.

  12. Mineral displacement and -dissolution processes and their relevance to rock porosity and permeability in Rotliegend sandstones of the Altmark natural gas field (central Germany) - results from CO2 laboratory batch experiments

    NASA Astrophysics Data System (ADS)

    Pudlo, Dieter; Enzmann, Frieder; Heister, Katja; Werner, Lars; Ganzer, Leonhard; Reitenbach, Viktor; Henkel, Steven; Albrecht, Daniel; Gaupp, Reinhard

    2014-05-01

    The Rotliegend reservoir sandstones of the Altmark area (central Germany) comprise the second largest natural gas field of Europe. These sandstones were deposited on a playa-like continental platform with braided river systems, ephemeral lakes and aeolian dunes under semi-arid conditions. Some of the pristine, red coloured deposits suffered intensive late diagenetic alteration and are now preserved as bleached, high porous and permeable sandstones. To evaluate the relevance of distinct fluids and their fluid-rock alteration reactions on such bleaching processes we performed laboratory static batch experiments on the Altmark sandstones. These 4-6 week lasting runs were conducted with CO2 saturated synthetic brines under typical Altmark reservoir conditions (p= 20 MPa, T= 125°C). Thereby mineralogical, petrophysical and (hydro- and geo-) chemical rock features were maintained prior and after the experiments. Chemical data proved the dissolution of carbonate and sulphate minerals during the runs, whereas the variation in abundance of further elements was within the detection limit of analytical accuracy. However, FE-SEM investigations on used, evaporated brines reveal the presence of illite and chlorite minerals within a matrix of Ca-, Si-, Fe, Al-, Na- and S components (carbonate, anhydrite, albite and Fe-(hydr-) oxides ?). By porosity and relative permeability measurements an increase in both rock features was observed after the runs, indicating that mineral dissolution and/or (clay) fine migration/detachment occurred during the experiments. Mineral dissolution, especially of pore-filling cements (e.g. carbonate-, sulphate minerals) is also deduced by BET analysis, in determining the specific surface of the sandstones. The size of these reactive surfaces increased after the experiments, suggesting that after the dissolution of pore-filling cements, formerly armoured grain rimming clay cutans were exposed to potential migrating fluids. These findings are also

  13. Laboratory observations of transient frictional slip in rock-analog materials at co-seismic slip rates and rapid changes in normal stress

    NASA Astrophysics Data System (ADS)

    Yuan, Fuping; Prakash, Vikas

    2012-08-01

    Knowledge of frictional (shear) resistance and its dependency on slip distance, slip velocity, normal stress, and surface roughness is fundamental information for understanding earthquake physics and the energy released during such events. In view of this, in the present study, plate-impact pressure-shear friction experiments are conducted to investigate the frictional resistance in a rock analog material, i.e. soda-lime glass, under interfacial conditions of relevance to fault rupture. The results of the experiments indicate that a wide range of frictional slip conditions exist at the slip interface ranging from initial no-slip and followed by slip weakening, slip strengthening (healing), and seizure all during a single slip event. The slip-weakening phase is understood to be most likely due to thermal-induced flash heating and incipient melting at asperity junctions, while the slip strengthening (slip-healing) phase is understood to be a result of coalescence and solidification of local melt patches on the slip interface. In addition, plate impact pressure-shear normal-stress change (drop) experiments are employed to probe the response of the slip interface due to sudden alterations in normal stress. In particular, the location (timing) of the stress drop is varied so as to investigate the behavior of the slip interface in its slip-weakening, slip-strengthening (healing) phase, or the seized phase, in response to sudden drop in normal stress. These experimental results provide a rich set of data to better understand the range of possible friction slip states that can be achieved and/or critically examine existing dynamic friction models for fault slip behavior.

  14. Rock strength under confined shock conditions

    SciTech Connect

    Scholz, C.H.

    1982-10-01

    This report addresses the laboratory measurements of the static strength of rock needed to simulate the response of rock to an underground explosion. The approach is to identify the variables that affect the strength of rock and to discuss each effect in terms of the underlying processes that cause it. Most of the report is the result of a literature review, although some new analyses and concepts are presented. Attention is directed at three basic rock types: low porosity brittle rock such as granodiorite, high porosity brittle rock such as volcanic tuff, and a rock that may be ductile under the relevant conditions, salt. These three rock types are sufficiently different that somewhat different constitutive laws may have to be used to model their behavior.

  15. Classic Rock

    ERIC Educational Resources Information Center

    Beem, Edgar Allen

    2004-01-01

    While "early college" programs designed for high-school-age students are beginning to proliferate nationwide, a small New England school has been successfully educating teens for nearly four decades. In this article, the author features Simon's Rock, a small liberal arts college located in the Great Barrington, Massachusetts, that has…

  16. CH Packaging Operations Manual

    SciTech Connect

    Washington TRU Solutions LLC

    2005-06-13

    This procedure provides instructions for assembling the CH Packaging Drum payload assembly, Standard Waste Box (SWB) assembly, Abnormal Operations and ICV and OCV Preshipment Leakage Rate Tests on the packaging seals, using a nondestructive Helium (He) Leak Test.

  17. Product detection of the CH radical reaction with acetaldehyde.

    PubMed

    Goulay, Fabien; Trevitt, Adam J; Savee, John D; Bouwman, Jordy; Osborn, David L; Taatjes, Craig A; Wilson, Kevin R; Leone, Stephen R

    2012-06-21

    The reaction of the methylidyne radical (CH) with acetaldehyde (CH(3)CHO) is studied at room temperature and at a pressure of 4 Torr (533.3 Pa) using a multiplexed photoionization mass spectrometer coupled to the tunable vacuum ultraviolet synchrotron radiation of the Advanced Light Source at Lawrence Berkeley National Laboratory. The CH radicals are generated by 248 nm multiphoton photolysis of CHBr(3) and react with acetaldehyde in an excess of helium and nitrogen gas flow. Five reaction exit channels are observed corresponding to elimination of methylene (CH(2)), elimination of a formyl radical (HCO), elimination of carbon monoxide (CO), elimination of a methyl radical (CH(3)), and elimination of a hydrogen atom. Analysis of the photoionization yields versus photon energy for the reaction of CH and CD radicals with acetaldehyde and CH radical with partially deuterated acetaldehyde (CD(3)CHO) provides fine details about the reaction mechanism. The CH(2) elimination channel is found to preferentially form the acetyl radical by removal of the aldehydic hydrogen. The insertion of the CH radical into a C-H bond of the methyl group of acetaldehyde is likely to lead to a C(3)H(5)O reaction intermediate that can isomerize by β-hydrogen transfer of the aldehydic hydrogen atom and dissociate to form acrolein + H or ketene + CH(3), which are observed directly. Cycloaddition of the radical onto the carbonyl group is likely to lead to the formation of the observed products, methylketene, methyleneoxirane, and acrolein.

  18. In situ analysis of Mars soil and rocks samples with the SAM experiment: laboratory measurements supporting treatment and interpretation of the detection of organics

    NASA Astrophysics Data System (ADS)

    Millan, M.; Szopa, C.; Buch, A.; Glavin, D.; Freissinet, C.; Coll, P.; Cabane, M.; Mahaffy, P.

    2015-10-01

    The Sample Analysis at Mars (SAM) experiment onboard the Curiosity rover detected numerous organic compounds when analyzing the solid samples collected on the way to Mount Sharp. But MTBSTFA, the chemical reactant for the chemical treatment of the refractory molecules present in the solid samples and present in cups of SAM,was shown to be unfortunately present in the Sample Manipulation System(SMS). During the sample analysis, this chemical species reacts with the organic and inorganic molecules present in the samples. This reaction leads to the production and subsequent detection of numerous MTBSTFA derivatives which makes the treatment and the interpretation of the SAM data complex. Moreover, for the first time on Mars, the wet chemistry method was used on a Cumberland sample to help the GC separation and the MS identification of non volatile compounds. To ensure the identification of the organic molecules and try to discriminate organics generated internally to SAM from those present in the samples analyzed, it is mandatory to perform laboratory experimental calibrations under martian operating conditions.

  19. Unboxing Space Rocks

    ScienceCinema

    Bruck Syal, Megan

    2016-07-12

    The box was inconspicuous, but Lawrence Livermore National Laboratory (LLNL) postdoctoral researcher Megan Bruck Syal immediately knew its contents: two meteorites around the size of walnuts. They formed about 4.6 billion years ago and survived a history of violent collisions in the asteroid belt before being bumped into a near-Earth-object orbit by gravitational interactions with the planets. After finally raining down on Earth, these rocks were scavenged in Antarctica by researchers, sorted and classified at NASA Johnson Space Center, then mailed first-class to Bruck Syal. Now that these space rocks are in Bruck Syal’s hands, they are mere months away from fulfilling their destiny. They are to be vaporized by a high-powered laser, and the data they yield on asteroid deflection could one day save the planet.

  20. Unboxing Space Rocks

    SciTech Connect

    Bruck Syal, Megan

    2016-05-09

    The box was inconspicuous, but Lawrence Livermore National Laboratory (LLNL) postdoctoral researcher Megan Bruck Syal immediately knew its contents: two meteorites around the size of walnuts. They formed about 4.6 billion years ago and survived a history of violent collisions in the asteroid belt before being bumped into a near-Earth-object orbit by gravitational interactions with the planets. After finally raining down on Earth, these rocks were scavenged in Antarctica by researchers, sorted and classified at NASA Johnson Space Center, then mailed first-class to Bruck Syal. Now that these space rocks are in Bruck Syal’s hands, they are mere months away from fulfilling their destiny. They are to be vaporized by a high-powered laser, and the data they yield on asteroid deflection could one day save the planet.

  1. TESS line: a laboratory line of the musk shrew (Suncus murinus, Insectivora), triple-homozygous for the curly hair (ch), cream coat-color (cr) and red-eyed dilution (rd) genes and segregating the sucrase deficients (suc/suc).

    PubMed

    Ohno, T; Oda, S; Namikawa, T

    1994-01-01

    The TESS line, the first tester line of the Suncus has been developed. The TESS shrews are homozygous for three morphological mutant genes, ch, cr and rd. The gene (suc) for sucrase activity deficiency in intestinal brush-border membranes also exists in the line, and its frequency was 34.3%. The deficients could easily be identified by the drastic body-weight losing up to more than 15% of the initial weight, that aroused two days after replacement of the drinking water for its 10%-sucrose solution. The TESS shrews have been maintained as a closed-colony consisting of more than 30 individuals, and will be utilized in linkage analysis with the four loci (ch, cr, rd and suc).

  2. White Rock

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 19 April 2002) The Science 'White Rock' is the unofficial name for this unusual landform which was first observed during the Mariner 9 mission in the early 1970's. As later analysis of additional data sets would show, White Rock is neither white nor dense rock. Its apparent brightness arises from the fact that the material surrounding it is so dark. Images from the Mars Global Surveyor MOC camera revealed dark sand dunes surrounding White Rock and on the floor of the troughs within it. Some of these dunes are just apparent in the THEMIS image. Although there was speculation that the material composing White Rock could be salts from an ancient dry lakebed, spectral data from the MGS TES instrument did not support this claim. Instead, the White Rock deposit may be the erosional remnant of a previously more continuous occurrence of air fall sediments, either volcanic ash or windblown dust. The THEMIS image offers new evidence for the idea that the original deposit covered a larger area. Approximately 10 kilometers to the southeast of the main deposit are some tiny knobs of similarly bright material preserved on the floor of a small crater. Given that the eolian erosion of the main White Rock deposit has produced isolated knobs at its edges, it is reasonable to suspect that the more distant outliers are the remnants of a once continuous deposit that stretched at least to this location. The fact that so little remains of the larger deposit suggests that the material is very easily eroded and simply blows away. The Story Fingers of hard, white rock seem to jut out like icy daggers across a moody Martian surface, but appearances can be deceiving. These bright, jagged features are neither white, nor icy, nor even hard and rocky! So what are they, and why are they so different from the surrounding terrain? Scientists know that you can't always trust what your eyes see alone. You have to use other kinds of science instruments to measure things that our eyes can

  3. Meridiani Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    16 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the complex surfaces of some of the light- and intermediate-toned sedimentary rock exposed by erosion in eastern Sinus Meridiani. Similar rocks occur at the Mars Exploration Rover, Opportunity, site, but they are largely covered by windblown sand and granules. The dark feature with a rayed pattern is the product of a meteor impact.

    Location near: 0.8oN, 355.2oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  4. Terby's Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    25 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered, sedimentary rock outcrops in the crater, Terby. The crater is located on the north rim of Hellas Basin. If one could visit the rocks in Terby, one might learn from them whether they formed in a body of water. It is possible, for example, that Terby was a bay in a larger, Hellas-wide sea.

    Location near: 27.9oS, 285.7oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  5. White Rock

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 19 April 2002) The Science 'White Rock' is the unofficial name for this unusual landform which was first observed during the Mariner 9 mission in the early 1970's. As later analysis of additional data sets would show, White Rock is neither white nor dense rock. Its apparent brightness arises from the fact that the material surrounding it is so dark. Images from the Mars Global Surveyor MOC camera revealed dark sand dunes surrounding White Rock and on the floor of the troughs within it. Some of these dunes are just apparent in the THEMIS image. Although there was speculation that the material composing White Rock could be salts from an ancient dry lakebed, spectral data from the MGS TES instrument did not support this claim. Instead, the White Rock deposit may be the erosional remnant of a previously more continuous occurrence of air fall sediments, either volcanic ash or windblown dust. The THEMIS image offers new evidence for the idea that the original deposit covered a larger area. Approximately 10 kilometers to the southeast of the main deposit are some tiny knobs of similarly bright material preserved on the floor of a small crater. Given that the eolian erosion of the main White Rock deposit has produced isolated knobs at its edges, it is reasonable to suspect that the more distant outliers are the remnants of a once continuous deposit that stretched at least to this location. The fact that so little remains of the larger deposit suggests that the material is very easily eroded and simply blows away. The Story Fingers of hard, white rock seem to jut out like icy daggers across a moody Martian surface, but appearances can be deceiving. These bright, jagged features are neither white, nor icy, nor even hard and rocky! So what are they, and why are they so different from the surrounding terrain? Scientists know that you can't always trust what your eyes see alone. You have to use other kinds of science instruments to measure things that our eyes can

  6. White Rock

    NASA Technical Reports Server (NTRS)

    2005-01-01

    14 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of the famous 'White Rock' feature in Pollack Crater in the Sinus Sabaeus region of Mars. The light-toned rock is not really white, but its light tone caught the eye of Mars geologists as far back as 1972, when it was first spotted in images acquired by Mariner 9. The light-toned materials are probably the remains of a suite of layered sediments that once spread completely across the interior of Pollack Crater. Dark materials in this image include sand dunes and large ripples.

    Location near: 8.1oS, 335.1oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  7. Rafted Rock

    NASA Image and Video Library

    2016-11-09

    This area of Amazonis Planitia to the west of the large volcano Olympus Mons was once flooded with lava. A huge eruption flowed out across the relatively flat landscape. Sometimes called "flood basalt," the lava surface quickly cooled and formed a thin crust of solidified rock that was pushed along with the flowing hot liquid rock. Hills and mounds that pre-dated the flooding eruption became surrounded, forming obstructions to the relentless march of lava. In this image, these obstructions appeared to have poked up and sliced through the lava crust as the molten rock and crust moved together from west to east, over and past the stationary mounds. The result is a series of parallel grooves or channels with the obstructing mound remaining at the western end as the flow came to rest. From such images scientists can reconstruct the direction of the lava flow, potentially tracing it back to the source vent. http://photojournal.jpl.nasa.gov/catalog/PIA21204

  8. Laboratory investigations of the effects of nitrification-induced acidification on Cr cycling in vadose zone material partially derived from ultramafic rocks.

    PubMed

    Mills, Christopher T; Goldhaber, Martin B

    2012-10-01

    Sacramento Valley (California, USA) soils and sediments have high concentrations of Cr(III) because they are partially derived from ultramafic material. Some Cr(III) is oxidized to more toxic and mobile Cr(VI) by soil Mn oxides. Valley soils typically have neutral to alkaline pH at which Cr(III) is highly immobile. Much of the valley is under cultivation and is both fertilized and irrigated. A series of laboratory incubation experiments were conducted to assess how cultivation might impact Cr cycling in shallow vadose zone material from the valley. The first experiments employed low (7.1 mmol N per kg soil) and high (35 mmol Nkg(-1)) concentrations of applied (NH(4))(2)SO(4). Initially, Cr(VI) concentrations were up to 45 and 60% greater than controls in low and high incubations, respectively. After microbially-mediated oxidation of all NH(4)(+), Cr(VI) concentrations dropped below control values. Increased nitrifying bacterial populations (estimated by measurement of phospholipid fatty acids) may have increased the Cr(VI) reduction capacity of the vadose zone material resulting in the observed decreases in Cr(VI). Another series of incubations employed vadose zone material from a different location to which low (45 meq kg(-1)) and high (128 meq kg(-1)) amounts of NH(4)Cl, KCl, and CaCl(2) were applied. All treatments, except high concentration KCl, resulted in mean soil Cr(VI) concentrations that were greater than the control. High concentrations of water-leachable Ba(2+) (mean 38 μmol kg(-1)) in this treatment may have limited Cr(VI) solubility. A final set of incubations were amended with low (7.1 mmol Nkg(-1)) and high (35 mmol Nkg(-1)) concentrations of commercial liquid ammonium polyphosphate (APP) fertilizer which contained high concentrations of Cr(III). Soil Cr(VI) in the low APP incubations increased to a concentration of 1.8 μmol kg(-1) (5× control) over 109 days suggesting that Cr(III) added with the APP fertilizer was more reactive than naturally

  9. Observations of fault zone heterogeneity effects on stress alteration and slip nucleation during a fault reactivation experiment in the Mont Terri rock laboratory, Switzerland

    NASA Astrophysics Data System (ADS)

    Nussbaum, C.; Guglielmi, Y.

    2016-12-01

    The FS experiment at the Mont Terri underground research laboratory consists of a series of controlled field stimulation tests conducted in a fault zone intersecting a shale formation. The Main Fault is a secondary order reverse fault that formed during the creation of the Jura fold-and-thrust belt, associated to a large décollement. The fault zone is up to 6 m wide, with micron-thick shear zones, calcite veins, scaly clay and clay gouge. We conducted fluid injection tests in 4 packed-off borehole intervals across the Main Fault using mHPP probes that allow to monitor 3D displacement between two points anchored to the borehole walls at the same time as fluid pressure and flow rate. While pressurizing the intervals above injection pressures of 3.9 to 5.3 MPa, there is an irreversible change in the displacements magnitude and orientation associated to the hydraulic opening of natural shear planes oriented N59 to N69 and dipping 39 to 58°. Displacements of 0.01 mm to larger than 0.1 mm were captured, the highest value being observed at the interface between the low permeable fault core and the damage zone. Contrasted fault movements were observed, mainly dilatant in the fault core, highly dilatant-normal slip at the fault core-damage zone interface and low dilatant-strike-slip-reverse in the damage-to-intact zones. First using a slip-tendency approach based on Coulomb reactivation potential of fault planes, we computed a stress tensor orientation for each test. The input parameters are the measured displacement vectors above the hydraulic opening pressure and the detailed fault geometry of each intervals. All measurements from the damage zone can be explained by a stress tensor in strike-slip regime. Fault movements measured at the core-damage zone interface and within the fault core are in agreement with the same stress orientations but changed as normal faulting, explaining the significant dilatant movements. We then conducted dynamic hydromechanical simulations

  10. Rock breakage mechanisms with a PDC cutter

    SciTech Connect

    Not Available

    1985-01-01

    Some aspects of chip generation by a polycrystalline diamond compact (PDC) cutter moving through a rock can be understood by examining the shapes of the chips and the fracture patterns in the remaining rock. Data from laboratory experiments have led to general conclusions about the uniformity of chip generation mechanisms in different kinds of rock and about crack nucleation position relative to the cutter tip. 20 refs., 12 figs., 2 tabs.

  11. Ice chemistry of acetaldehyde reveals competitive reactions in the first step of the Strecker synthesis of alanine: formation of HO-CH(CH3)-NH2 vs. HO-CH(CH3)-CN

    NASA Astrophysics Data System (ADS)

    Fresneau, Aurélien; Danger, Grégoire; Rimola, Albert; Duvernay, Fabrice; Theulé, Patrice; Chiavassa, Thierry

    2015-08-01

    The understanding of compound formation in laboratory simulated astrophysical environments is an important challenge in obtaining information on the chemistry occurring in these environments. We here investigate by means of both laboratory experiments and quantum chemical calculations the ice-based reactivity of acetaldehyde (CH3CHO) with ammonia (NH3) and hydrogen cyanide (HCN) in excess of water (H2O) promoted by temperature. A priori, this study should give information on alanine (2HN-CH(CH3)-COOH) formation (the simplest chiral amino acid detected in meteorites), since these reactions concern the first steps of its formation through the Strecker synthesis. However, infrared spectroscopy, mass spectrometry with HC14N or HC15N isotopologues and B3LYP-D3 results converge to indicate that an H2O-dominated ice containing CH3CHO, NH3 and HCN not only leads to the formation of α-aminoethanol (2HN-CH(CH3)-OH, the product compound of the first step of the Strecker mechanism) and its related polymers (2HN-(CH(CH3)-O)n-H) due to reaction between CH3CHO and NH3, but also to the 2-hydroxypropionitrile (HO­-CH(CH3)-CN) and its related polymers (H-(O-CH(CH3))n-CN) from direct reaction between CH3CHO and HCN. The ratio between these two species depends on the initial NH3/HCN ratio in the ice. Formation of α-aminoethanol is favoured when the NH3 concentration is larger than HCN. We also show that the presence of water is essential for the formation of HO­-CH(CH3)-CN, contrarily to 2HN-CH(CH3)-OH whose formation also takes place in absence of H2O ice. As in astrophysical ices NH3 is more abundant than HCN, formation of α-aminoethanol should consequently be favoured compared to 2-hydroxypropionitrile, thus pointing out α-aminoethanol as a plausible intermediate species for alanine synthesis through the Strecker mechanism in astrophysical ices.

  12. Sojourner near the Rock Garden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of the Sojourner rover was taken near the end of daytime operations on Sol 42. The rover is between the rocks 'Wedge' (left) and 'Flute Top' (right). Other rocks visible include 'Flat Top' (behind Flute Top) and those in the Rock Garden, at the top of the frame. The cylindrical object extending from the back end of Sojourner is the Alpha Proton X-Ray Spectrometer.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  13. Sojourner near the Rock Garden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of the Sojourner rover was taken near the end of daytime operations on Sol 42. The rover is between the rocks 'Wedge' (left) and 'Flute Top' (right). Other rocks visible include 'Flat Top' (behind Flute Top) and those in the Rock Garden, at the top of the frame. The cylindrical object extending from the back end of Sojourner is the Alpha Proton X-Ray Spectrometer.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  14. Impact of artifact removal on ChIP quality metrics in ChIP-seq and ChIP-exo data

    PubMed Central

    Carroll, Thomas S.; Liang, Ziwei; Salama, Rafik; Stark, Rory; de Santiago, Ines

    2014-01-01

    With the advent of ChIP-seq multiplexing technologies and the subsequent increase in ChIP-seq throughput, the development of working standards for the quality assessment of ChIP-seq studies has received significant attention. The ENCODE consortium's large scale analysis of transcription factor binding and epigenetic marks as well as concordant work on ChIP-seq by other laboratories has established a new generation of ChIP-seq quality control measures. The use of these metrics alongside common processing steps has however not been evaluated. In this study, we investigate the effects of blacklisting and removal of duplicated reads on established metrics of ChIP-seq quality and show that the interpretation of these metrics is highly dependent on the ChIP-seq preprocessing steps applied. Further to this we perform the first investigation of the use of these metrics for ChIP-exo data and make recommendations for the adaptation of the NSC statistic to allow for the assessment of ChIP-exo efficiency. PMID:24782889

  15. Impact of artifact removal on ChIP quality metrics in ChIP-seq and ChIP-exo data.

    PubMed

    Carroll, Thomas S; Liang, Ziwei; Salama, Rafik; Stark, Rory; de Santiago, Ines

    2014-01-01

    With the advent of ChIP-seq multiplexing technologies and the subsequent increase in ChIP-seq throughput, the development of working standards for the quality assessment of ChIP-seq studies has received significant attention. The ENCODE consortium's large scale analysis of transcription factor binding and epigenetic marks as well as concordant work on ChIP-seq by other laboratories has established a new generation of ChIP-seq quality control measures. The use of these metrics alongside common processing steps has however not been evaluated. In this study, we investigate the effects of blacklisting and removal of duplicated reads on established metrics of ChIP-seq quality and show that the interpretation of these metrics is highly dependent on the ChIP-seq preprocessing steps applied. Further to this we perform the first investigation of the use of these metrics for ChIP-exo data and make recommendations for the adaptation of the NSC statistic to allow for the assessment of ChIP-exo efficiency.

  16. Thermal Inertia of Rocks and Rock Populations

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    The effective thermal inertia of rock populations on Mars and Earth is derived from a model of effective inertia versus rock diameter. Results allow a parameterization of the effective rock inertia versus rock abundance and bulk and fine component inertia. Additional information is contained in the original extended abstract.

  17. 19. ROOM 34 AT WEST END OF LABORATORY, THAT FORMERLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. ROOM 34 AT WEST END OF LABORATORY, THAT FORMERLY HOUSED ROCK CUTTING EQUIPMENT. NOTE BLACKED OUT ORIGINAL WINDOW AT LEFT. - U.S. Geological Survey, Rock Magnetics Laboratory, 345 Middlefield Road, Menlo Park, San Mateo County, CA

  18. Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    6 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcrops of sedimentary rocks in a crater located just north of the Sinus Meridiani region. Perhaps the crater was once the site of a martian lake.

    Location near: 2.9oN, 359.0oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  19. Chemistry Rocks: Redox Chemistry as a Geologic Tool.

    ERIC Educational Resources Information Center

    Burns, Mary Sue

    2001-01-01

    Applies chemistry to earth science, uses rocks in chemistry laboratories, and teaches about transition metal chemistry, oxidation states, and oxidation-reduction reactions from firsthand experiences. (YDS)

  20. Chemistry Rocks: Redox Chemistry as a Geologic Tool.

    ERIC Educational Resources Information Center

    Burns, Mary Sue

    2001-01-01

    Applies chemistry to earth science, uses rocks in chemistry laboratories, and teaches about transition metal chemistry, oxidation states, and oxidation-reduction reactions from firsthand experiences. (YDS)

  1. An organo-functionalized metal-oxide cluster, [VO6{(OCH2CH2)2N(CH2CH2OH)}6], with Anderson-like structure.

    PubMed

    Li, H; Swenson, L; Doedens, R J; Khan, M I

    2016-10-18

    A new polyoxovanadium cluster compound, [VO6{(OCH2CH2)2N(CH2CH2OH)}6]·0.5CH3CN, was synthesized and characterized by single-crystal X-ray diffraction analysis, FTIR and UV-vis spectroscopy, and TGA. The cluster is composed of a fully reduced cyclic {V6N6O18} framework, which adopts an Anderson-like structure and is comprised of a ring of six edge-sharing {VO5N} octahedra incorporating six {(OCH2CH2)2N(CH2CH2OH)} ligands. Two (OCH2CH2-) arms of each of the six triethanolamine ligands are directly incorporated into the oxometalate core and the third {-CH2CH2OH} arm remains pendant. In the condensed phase, the clusters form discrete hcp layers through inter-cluster hydrogen bonding. These layers stack through soft chemical interactions to form a 3D network structure. The neutral cluster, [VO6{(OCH2CH2)2N(CH2CH2OH)}6], is the isopolyoxovanadium analogue to the cationic clusters contained in a series of heteropolyoxovanadium compounds previously introduced by our laboratory, e.g., [LiVO6{(OCH2CH2)2N(CH2CH2OH)}6](+); its existence shows that a heteroatom is not required to form or stabilize the common organofunctionalized vanadium oxide framework: [VO6{(OCH2CH2)2N(CH2CH2OH)}6]. To the best of our knowledge, the isopolyoxovanadium and heteropolyoxovanadium clusters represent the first reported isopoly-heteropoly analogues in the polyoxometalate field. We compare the TGA profile, FTIR and UV-vis spectra of the new compound with two of its cationic heteropoly analogues.

  2. Rock mechanics. Second edition

    SciTech Connect

    Jumikis, A.R.

    1983-01-01

    Rock Mechanics, 2nd Edition deals with rock as an engineering construction material-a material with which, upon which, and within which civil engineers build structures. It thus pertains to hydraulic structures engineering; to highway, railway, canal, foundation, and tunnel engineering; and to all kinds of rock earthworks and to substructures in rock. Major changes in this new edition include: rock classification, rock types and description, rock testing equipment, rock properties, stability effects of discontinuity and gouge, grouting, gunite and shotcrete, and Lugeon's water test. This new edition also covers rock bolting and prestressing, pressure-grouted soil anchors, and rock slope stabilization.

  3. Technicians examine largest lunar rock sample collected

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Three Brown and Root/Northrop technicians in the Nonsterile Nitrogen Laboratory in the Lunar Receiving Laboratory (LRL) peer through glass at the much-discussed basketball size rock which Apollo 14 crewmen brought back from the Fra Mauro area of the Moon. They are, left to right, Linda Tyler, Nancy L. Trent and Sandra Richards (21244); Dr. Daniel Anderson, an aerospace technologist and test director in the LRL, looks at basketball size rock through a microscope (21245).

  4. Rock Driller

    NASA Technical Reports Server (NTRS)

    Peterson, Thomas M.

    2001-01-01

    The next series of planetary exploration missions require a method of extracting rock and soil core samples. Therefore a prototype ultrasonic core driller (UTCD) was developed to meet the constraints of Small Bodies Exploration and Mars Sample Return Missions. The constraints in the design are size, weight, power, and axial loading. The ultrasonic transducer requires a relatively low axial load, which is one of the reasons this technology was chosen. The ultrasonic generator breadboard section can be contained within the 5x5x3 limits and weighs less than two pounds. Based on results attained the objectives for the first phase were achieved. A number of transducer probes were made and tested. One version only drills, and the other will actually provide a small core from a rock. Because of a more efficient transducer/probe, it will run at very low power (less than 5 Watts) and still drill/core. The prototype generator was built to allow for variation of all the performance-effecting elements of the transducer/probe/end effector, i.e., pulse, duty cycle, frequency, etc. The heart of the circuitry is what will be converted to a surface mounted board for the next phase, after all the parameters have been optimized and the microprocessor feedback can be installed.

  5. Analysis of Inflatable Rock Bolts

    NASA Astrophysics Data System (ADS)

    Li, Charlie C.

    2016-01-01

    An inflatable bolt is integrated in the rock mass through the friction and mechanical interlock at the bolt-rock interface. The pullout resistance of the inflatable bolt is determined by the contact stress at the interface. The contact stress is composed of two parts, termed the primary and secondary contact stresses. The former refers to the stress established during bolt installation and the latter is mobilized when the bolt tends to slip in the borehole owing to the roughness of the borehole surface. The existing analysis of the inflatable rock bolt does not appropriately describe the interaction between the bolt and the rock since the influence of the folded tongue of the bolt on the stiffness of the bolt and the elastic rebound of the bolt tube in the end of bolt installation are ignored. The interaction of the inflatable bolt with the rock is thoroughly analysed by taking into account the elastic displacements of the rock mass and the bolt tube during and after bolt installation in this article. The study aims to reveal the influence of the bolt tongue on the contact stress and the different anchoring mechanisms of the bolt in hard and soft rocks. A new solution to the primary contact stress is derived, which is more realistic than the existing one in describing the interaction between the bolt and the rock. The mechanism of the secondary contact stress is also discussed from the point of view of the mechanical behaviour of the asperities on the borehole surface. The analytical solutions are in agreement with both the laboratory and field pullout test results. The analysis reveals that the primary contact stress decreases with the Young's modulus of the rock mass and increases with the borehole diameter and installation pump pressure. The primary contact stress can be easily established in soft and weak rock but is low or zero in hard and strong rock. In soft and weak rock, the primary contact stress is crucially important for the anchorage of the bolt, while

  6. Conformational analysis of (CH 3) 2CCl(CH 2) xCH(CH 3) 2

    NASA Astrophysics Data System (ADS)

    Crowder, G. A.; Richardson, Mary Townsend

    Liquid and solid-state i.r. spectra and liquid-state Raman spectra were obtained for three compounds in a family of compounds with the general formula (CH 3) 2CCl(CH 2) xCH(CH 3) 2 with x = 0, 1 and 2. Two carbon—chlorine stretching bands were observed in the liquid-state spectra of each of the three: 2-chloro-2,3-dimethylbutane, 569 and 611 cm -1; 2-chloro-2,4-dimethypentane, 573 and 628 cm -1; 2-chloro-2,5-dimethylhexane, 561 and 626 cm -1. It was determined that two conformers ( TCHH and THHH) exist in the liquid state of 2-chloro-2,3-dimethylbutane and that only the THHH conformer was present in the crystalline solid. For both 2-chloro-2,4-dimethylpentane and 2-chloro-2,5-dimethylhexane, the liquid is composed of the TCHH conformer and at least one of the two possible THHH conformers. The crystalline solid exists as one of the two possible THHH conformers. Normal coordinate calculations were made for all three compounds and a force field was developed for the family. It was not possible to distinguish between the two THHH forms of 2-chloro-2,4-dimethylpentane and 2-chloro-2,5-dimethylhexane.

  7. Odyssey/White Rock

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These Mars Odyssey images show the 'White Rock' feature on Mars in both infrared (left) and visible (right) wavelengths. The images were acquired simultaneously on March 11, 2002. The box shows where the visible image is located in the infrared image. 'White Rock' is the unofficial name for this unusual landform that was first observed during the Mariner 9 mission in the early 1970's. The variations in brightness in the infrared image are due to differences in surface temperature, where dark is cool and bright is warm. The dramatic differences between the infrared and visible views of White Rock are the result of solar heating. The relatively bright surfaces observed at visible wavelengths reflect more solar energy than the darker surfaces, allowing them to stay cooler and thus they appear dark in the infrared image. The new thermal emission imaging system data will help to address the long standing question of whether the White Rock deposit was produced in an ancient crater lake or by dry processes of volcanic or wind deposition. The infrared image has a resolution of 100 meters (328 feet) per pixel and is 32 kilometers (20 miles) wide. The visible image has a resolution of 18 meters per pixel and is approximately 18 kilometers (11 miles) wide. The images are centered at 8.2 degrees south latitude and 24.9 degrees east longitude.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. High-Silica Lamoose Rock

    NASA Image and Video Library

    2015-07-23

    A rock fragment dubbed "Lamoose" is shown in this picture taken by the Mars Hand Lens Imager (MAHLI) on NASA's Curiosity rover. Like other nearby rocks in a portion of the "Marias Pass" area of Mt. Sharp, Mars, it has unusually high concentrations of silica. The high silica was first detected in the area by the Chemistry & Camera (ChemCam) laser spectrometer. This rock was targeted for follow-up study by the MAHLI and the arm-mounted Alpha Particle X-ray Spectrometer (APXS). Silica is a rock-forming compound containing silicon and oxygen, commonly found on Earth as quartz. High levels of silica could indicate ideal conditions for preserving ancient organic material, if present, so the science team wants to take a closer look. The rock is about 4 inches (10 centimeters) across. It is fine-grained, perhaps finely layered, and etched by the wind. The image was taken on the 1,041st Martian day, or sol, of the mission (July 11, 2015). MAHLI was built by Malin Space Science Systems, San Diego. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover. http://photojournal.jpl.nasa.gov/catalog/PIA19828

  9. Mineral and Rock Deformation: Laboratory Studies

    NASA Astrophysics Data System (ADS)

    Hobbs, B. E.; Heard, H. C.

    Born on March 7, 1925 at Booleroo, South Australia, Mervyn Paterson's childhood revolved around life on the family farm. His father was a methodist lay preacher and the local church with its practices was part of his early experiences—it is rare nowadays for people to attend church services four times on Sunday! His early life contrasted markedly with Maginnis Magee of Australian bush fame, whom the namesake poet A. B. Paterson described so colorfully in A Bush Christening: "On the outer Barcoo where the churches are a few, And men of religion are scanty". Mervyn's early sharing of the beauties of nature developed, no doubt, during those peaceful moments as he rode his horse to the local bush school. Such interests continue to this day with his frequent treks from his home in the suburb of Aranda to the lab through the picturesque, relatively unspoilt forest that adorns Black Mountain in Canberra. Mervyn grew up with a respect for nature tempered by an experiential awareness of its hazards as in 1939 he drove with his father through one of those horrendous, nightmarish bushfires that periodically sweep through the Australia bush-land, as they transferred the family possessions from one farm to another.

  10. Characteristics of neutrons produced by muons in a standard rock

    SciTech Connect

    Malgin, A. S.

    2015-10-15

    Characteristics of cosmogenic neutrons, such as the yield, production rate, and flux, were determined for a standard rock. The dependences of these quantities on the standard-rock depth and on the average muon energy were obtained. These properties and dependences make it possible to estimate easy the muon-induced neutron background in underground laboratories for various chemical compositions of rock.

  11. Laboratory Method for Evaluating the Characteristics of Expansion Rock Bolts Subjected to Axial Tension / Laboratoryjna Metoda Badania Charakterystyk Kotew Rozprężnych Poddanych Rozciąganiu Osiowemu

    NASA Astrophysics Data System (ADS)

    Korzeniowski, Waldemar; Skrzypkowski, Krzysztof; Herezy, Łukasz

    2015-03-01

    Rock bolts have long been used in Poland, above all in the ore mining. Worldwide experience (Australia, Chile, Canada, South Africa, Sweden, and USA) provides evidence of rock bolt supports being used for loads under both static and dynamic conditions. There are new construction designs dedicated to the more extreme operating conditions, particularly in mining but also in tunneling. Appreciating the role and significance of the rock bolt support and its use in Polish conditions amounting to millions of units per year, this article describes a new laboratory test facility which enables rock bolt testing under static load conditions. Measuring equipment used as well as the possibilities of the test facility were characterized. Tests were conducted on expansion rock bolt supports installed inside a block simulating rock mass with compression strength of 80 MPa, which was loaded statically as determined by taking account of the load in order to maintain the desired axial tension, which was statically burdened in accordance with determined program load taking into consideration the maintenance of set axial tension strength at specified time intervals until capacity was exceeded. As an experiment the stress-strain characteristics of the rock bolt support were removed showing detailed dependence between its geometrical parameters as well as actual rock bolt deformation and its percentage share in total displacement and deformation resulting from the deformation of the bolt support elements (washer, thread). Two characteristic exchange parts with varying intensity of deformation /displacement per unit were highlighted with an increase in axial force static rock bolt supports installed in the rock mass. Obudowa kotwowa jest już od dawna stosowana w Polsce, przede wszystkim w górnictwie rudnym. Światowe doświadczenia (Australia, Chile, Kanada, RPA, Szwecja,USA) świadczą o stosowaniu obudowy kotwowej zarówno w warunkach obciążeń o charakterze

  12. The Usability of Rock-Like Materials for Numerical Studies on Rocks

    NASA Astrophysics Data System (ADS)

    Zengin, Enes; Abiddin Erguler, Zeynal

    2017-04-01

    The approaches of synthetic rock material and mass are widely used by many researchers for understanding the failure behavior of different rocks. In order to model the failure behavior of rock material, researchers take advantageous of different techniques and software. But, the majority of all these instruments are based on distinct element method (DEM). For modeling the failure behavior of rocks, and so to create a fundamental synthetic rock material model, it is required to perform related laboratory experiments for providing strength parameters. In modelling studies, model calibration processes are performed by using parameters of intact rocks such as porosity, grain size, modulus of elasticity and Poisson ratio. In some cases, it can be difficult or even impossible to acquire representative rock samples for laboratory experiments from heavily jointed rock masses and vuggy rocks. Considering this limitation, in this study, it was aimed to investigate the applicability of rock-like material (e.g. concrete) to understand and model the failure behavior of rock materials having complex inherent structures. For this purpose, concrete samples having a mixture of %65 cement dust and %35 water were utilized. Accordingly, intact concrete samples representing rocks were prepared in laboratory conditions and their physical properties such as porosity, pore size and density etc. were determined. In addition, to acquire the mechanical parameters of concrete samples, uniaxial compressive strength (UCS) tests were also performed by simultaneously measuring strain during testing. The measured physical and mechanical properties of these extracted concrete samples were used to create synthetic material and then uniaxial compressive tests were modeled and performed by using two dimensional discontinuum program known as Particle Flow Code (PFC2D). After modeling studies in PFC2D, approximately similar failure mechanism and testing results were achieved from both experimental and

  13. A Rock Encyclopedia That Includes Rock Samples.

    ERIC Educational Resources Information Center

    Laznicka, Peter

    1981-01-01

    Described is a rock encyclopedia combining rock sample sets and encyclopedic word and picture entries which can be used as a realistic information resource for independent study or as a part of a course. (JT)

  14. Quantifying rock mass strength degradation in coastal rock cliffs

    NASA Astrophysics Data System (ADS)

    Brain, Matthew; Lim, Michael; Rosser, Nick; Petley, David; Norman, Emma; Barlow, John

    2010-05-01

    Although rock cliffs are generally perceived to evolve through undercutting and cantilever collapse of material, the recent application of high-resolution three-dimensional monitoring techniques has suggested that the volumetric losses recorded from layers above the intertidal zone produce an equally significant contribution to cliff behaviour. It is therefore important to understand the controls on rockfalls in such layers. Here we investigate the progressive influence of subaerial exposure and weathering on the geotechnical properties of the rocks encountered within the geologically complex coastal cliffs of the northeast coast of England, UK. Through a program of continuous in situ monitoring of local environmental and tidal conditions and laboratory rock strength testing, we aim to better quantify the relationships between environmental processes and the geotechnical response of the cliff materials. We have cut fresh (not previously exposed) samples from the three main rock types (sandstone, mudstone and shale) found within the cliff to uniform size, shape and volume, thus minimizing variability and removing previous surface weathering effects. In order to characterise the intact strength of the rocks, we have undertaken unconfined compressive strength and triaxial strength tests using high pressure (400 kN maximum axial load; 64 MPa maximum cell pressure) triaxial testing apparatus. The results outline the peak strength characteristics of the unweathered materials. We then divided the samples of each lithology into different experimental groups. The first set of samples remained in the laboratory at constant temperature and humidity; this group provides our control. Samples from each of the three rock types were located at heights on the cliff face corresponding with the different lithologies: at the base (mudstone), in the mid cliff (shale) and at the top of the cliff (sandstone). This subjected them to the same conditions experienced by the in situ cliff

  15. Lunar Rocks

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples, some of which can be seen in this photograph. Apollo 12 safely returned to Earth on November 24, 1969.

  16. Martian sediments and sedimentary rocks

    NASA Technical Reports Server (NTRS)

    Markun, C. D.

    1988-01-01

    Martian sediments and sedimentary rocks, clastic and nonclastic, should represent a high priority target in any future return-sample mission. The discovery of such materials and their subsequent analysis in terrestrial laboratories, would greatly increase the understanding of the Martian paleoclimate. The formation of Martian clastic sedimentary rocks, under either present, low-pressure, xeric conditions or a postulated, high-pressure, hydric environment, depends upon the existence of a supply of particles, various cementing agents and depositional basins. A very high resolution (mm-cm range) photographic reconnaissance of these areas would produce a quantum jump in the understanding of Martian geological history. Sampling would be confined to more horizontal (recent) surfaces. Exploration techniques are suggested for various hypothetical Martian sedimentary rocks.

  17. Technicians examine largest lunar rock sample collected

    NASA Image and Video Library

    1971-02-24

    S71-21244 (24 Feb. 1971) --- Three Brown and Root/Northrop technicians in the Nonsterile Nitrogen Laboratory in the Lunar Receiving Laboratory (LRL) peer through glass at the much-discussed basketball size rock which Apollo 14 crewmen brought back from the Fra Mauro area of the moon. They are, left to right, Linda Tyler, Nancy L. Trent and Sandra Richards.

  18. Reactions of CH3, CH3O, and CH3O2 radicals with O3

    NASA Technical Reports Server (NTRS)

    Simonaitis, R.; Heicklen, J.

    1975-01-01

    Ozone was photolyzed at 253.7 nm at 25 and -52 degrees in the presence of CH4 and O2 to measure the reactions of O3 with CH3, CH3O, and CH3O2. The O(1D) atoms produced in the primary photochemical act react with CH4 to give CH3 radicals which in turn can react with O2 to give CH3O2 and CH3O radicals. At very high O2 to O3 concentration ratios, the quantum yield of O3 disappearance approached 1.0, indicating that O3 reactions with CH3O2 and CH3O are slow. Upper limits to the rate coefficients at 25 degrees were computed. At lower values of the concentration ratio, chain decomposition of O3 occurred which could be explained by the reaction of O3 with CH3 radicals to produce CH2O, O2, and H atoms all the time. The two routes to these products are considered, and the preferred reaction channel is found.

  19. Estudio del CH interestelar

    NASA Astrophysics Data System (ADS)

    Olano, C.; Lemarchand, G.; Sanz, A. J.; Bava, J. A.

    El objetivo principal de este proyecto consiste en el estudio de la distribución y abundancia del CH en nubes interestelares a través de la observación de las líneas hiperfinas del CH en 3,3 GHz. El CH es una molécula de amplia distribución en el espacio interestelar y una de las pocas especies que han sido observadas tanto con técnicas de radio como ópticas. Desde el punto de vista tecnológico se ha desarrollado un cabezal de receptor que permitirá la realización de observaciones polarimétricas en la frecuencia de 3,3 GHz, con una temperatura del sistema de 60 K y un ancho de banda de 140 MHz, y que será instalado en el foco primario de la antena parabólica del IAR. El cabezal del receptor es capaz de detectar señales polarizadas, separando las componentes de polarización circular derecha e izquierda. Para tal fin el cabezal consta de dos ramas receptoras que amplificarán la señal y la trasladarán a una frecuencia más baja (frecuencia intermedia), permitiendo de esa forma un mejor transporte de la señal a la sala de control para su posterior procesamiento. El receptor además de tener características polarimétricas, podrá ser usado en el continuo y en la línea, utilizando las ventajas observacionales y de procesamiento de señal que actualmente posee el IAR.

  20. Initiation and Persistence of Preferential Flow in Fractured Rock

    NASA Astrophysics Data System (ADS)

    Salve, R.; Ghezzehei, T. A.

    2006-12-01

    To better understand preferential flow in fractured rock, we carried out an in situ field experiment in the underground Exploratory Studies Facililty in the fractured Topopah Spring tuff at Yucca Mountain, Nevada. Ponded water (with a ~0.04 m head) was released onto a 12 m2 infiltration plot (divided into 12 square subplots) over a period of ~800 days. As water was released, spatial and temporal variability in infiltration rates was continuously monitored. In addition, changes in moisture content were monitored along horizontal boreholes located in the formation ~19-22 m below. This experiment revealed peculiar infiltration patterns. In particular, we observed that in some of the subplots, the infiltration rate abruptly increased a few weeks into the infiltration tests before gradually decreasing, while in others a relatively low infiltration rate persisted for the duration of the experiment. Distinct flow zones, varying in flow velocity, wetted cross-sectional area, and extent of lateral movement, intercepted the monitoring boreholes. There was also evidence of water being diverted above the ceiling of a cavity in the immediate vicinity of the monitoring boreholes. Observations from this field experiment suggest that isolated conduits, each encompassing a large number of fractures, develop within the fractured rock formation to form preferential flow paths that persist if there is a continuous supply of water. An overriding conclusion is that field investigations at spatial scales of tens of meters provide data critical to the fundamental understanding of preferential flow in fractured rock. This work was supported by the Director, Office of Civilian Radioactive Waste Management, U.S. Department of Energy, through Memorandum Purchase Order EA9013MC5X between Bechtel SAIC Company, LLC, and the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab). The support is provided to Berkeley Lab through the U.S. Department of Energy Contract No. DE-AC02-05CH

  1. Sojourner Sits Near Rock Garden

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Mars Pathfinder Rover Sojourner is images by the Imager for Mars Pathfinder as it nears the rock 'Wedge.' Part of the Rock Garden is visible in the upper right of the image.

    Pathfinder, a low-cost Discovery mission, is the first of a new fleet of spacecraft that are planned to explore Mars over the next ten years. Mars Global Surveyor, already en route, arrives at Mars on September 11 to begin a two year orbital reconnaissance of the planet's composition, topography, and climate. Additional orbiters and landers will follow every 26 months.

    The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  2. Rover, airbags, & surrounding rocks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of the Martian surface was taken by the Imager for Mars Pathfinder (IMP) before sunset on July 4 (Sol 1), the spacecraft's first day on Mars. The airbags have been partially retracted, and portions the petal holding the undeployed rover Sojourner can be seen at lower left. The rock in the center of the image may be a future target for chemical analysis. The soil in the foreground has been disturbed by the movement of the airbags as they retracted.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C.

  3. Rollerjaw Rock Crusher

    NASA Technical Reports Server (NTRS)

    Peters, Gregory; Brown, Kyle; Fuerstenau, Stephen

    2009-01-01

    The rollerjaw rock crusher melds the concepts of jaw crushing and roll crushing long employed in the mining and rock-crushing industries. Rollerjaw rock crushers have been proposed for inclusion in geological exploration missions on Mars, where they would be used to pulverize rock samples into powders in the tens of micrometer particle size range required for analysis by scientific instruments.

  4. Photochemical production of CH3Br: Possibly the unknown source

    NASA Astrophysics Data System (ADS)

    Wingenter, O. W.; Gorham, K. A.; Blake, N. J.; Meinardi, S.; Blake, D. R.; Rowland, F. S.

    2009-12-01

    The budget of the stratospheric ozone depleting gas CH3Br is still in question. Measurements made during two aircraft campaigns in the Arctic and surface samples collected at Summit, Greenland; Barrow, Alaska and Alert, Canada show unusual spikes in CH3Br. During the NSF’s TOPSE (Tropospheric Ozone Production about the Spring Equinox) and NASA’s ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) airborne campaigns, CH3Br peaked during ozone depletion episodes (ODEs). During the June 2008 Greenland Summit HOx/Halogen Experiment, CH3Br correlated well with benzene/ethyne ratios but not during previous years. Benzene and ethyne have similar industrial sources, but ethyne is quite reactive to Br while benzene is not, so this ratio is a sensitive indicator of Br. The CH3Br data from Barrow and Alert (NOAA ESRL) show spikes in CH3Br typically occurring in March and April and in 2008, into June/July. Satellite observations also report a peak of concentration of BrO over the Arctic in March and April. In 2008, the SCIAMACHY instrument observed unusually high BrO for June. Thus, the Greenland CH3Br enhancements are consistent with the NOAA and SIAMACHY data in June of 2008. Previously, based only on our TOPSE data, we suggested two novel photochemical pathways that may explain the connection between ODEs and CH3Br enhancements. These are, CH3OO + BrO -> CH3OOOBr -> CH3Br + O3 (R1) and, CH3OO + Br -> CH3OOBr -> CH3Br + O2 (R2) For either pathway to proceed, an oxidant must react with CH4. At polar sunrise Cl can initiate the production of methyl peroxy radical (CH3OO) and in the presence of Br or BrO, R1 or R2 may proceed. By June, OH concentrations are at or near their peak and may contribute to the photochemical production of CH3Br and help explain the June 2008 data. Previous laboratory and ab initio studies can neither support nor rule out either pathway. Photochemical model results indicate these channels must be small

  5. Accelerated Weathering of Rocks.

    DTIC Science & Technology

    1977-08-01

    Dry tests en polished specimens with alternating heating and co- oling actions; ii) Wet tests in destilled water, with alternating...Rock-type Dry tests KxlO2 Wet tests KxlO2 Sound rock SR 3.64 8.31 Medium altered rock MAR 4.96 31.58 Very altered rock VAR 8.89 116.20 TABLE X...Sound rock SR Medium altered rock Very altered rock" KAR VAR ’ Reflectivity R (%) dry test wet test dry test wet test dry test wet

  6. Evolution of Rock Cracks Under Unloading Condition

    NASA Astrophysics Data System (ADS)

    Huang, R. Q.; Huang, D.

    2014-03-01

    Underground excavation normally causes instability of the mother rock due to the release and redistribution of stress within the affected zone. For gaining deep insight into the characteristics and mechanism of rock crack evolution during underground excavation, laboratory tests are carried out on 36 man-made rock specimens with single or double cracks under two different unloading conditions. The results show that the strength of rock and the evolution of cracks are clearly influenced by both the inclination angle of individual cracks with reference to the unloading direction and the combination geometry of cracks. The peak strength of rock with a single crack becomes smaller with the inclination angle. Crack propagation progresses intermittently, as evidenced by a sudden increase in deformation and repeated fluctuation of measured stress. The rock with a single crack is found to fail in three modes, i.e., shear, tension-shear, and splitting, while the rock bridge between two cracks is normally failed in shear, tension-shear, and tension. The failure mode in which a crack rock or rock bridge behaves is found to be determined by the inclination angle of the original crack, initial stress state, and unloading condition. Another observation is that the secondary cracks are relatively easily created under high initial stress and quick unloading.

  7. Astronaut David Scott - Sample - "Genesis Rock" - MSC

    NASA Image and Video Library

    1971-08-12

    S71-43477 (12 Aug. 1971) --- Astronaut David R. Scott, right, commander of the Apollo 15 mission, gets a close look at the sample referred to as "Genesis rock" in the Non-Sterile Nitrogen Processing Line (NNPL) in the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center (MSC). Scientist-astronaut Joseph P. Allen IV, left, an Apollo 15 spacecraft communicator, looks on with interest. The white-colored rock has been given the permanent identification of 15415.

  8. Scattering from Rock and Rock Outcrops

    DTIC Science & Technology

    2014-09-30

    slope was determined from high-resolution interferometric bathymetry so that the global grazing angle of the 5 ideal mean seafloor could be mapped to...from exposed rock on the seafloor , (i.e., individual rocks and rock outcrops) presents some of the most difficult challenges for modern MCM and ASW...classification tools. Inverse models based on forward models would be essential for using sonar systems for remote sensing of seafloor properties. An

  9. CH-47F Improved Cargo Helicopter (CH-47F)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-278 CH-47F Improved Cargo Helicopter (CH-47F) As of FY 2017 President’s Budget Defense...Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined TY

  10. CH-53K Heavy Lift Replacement Helicopter (CH-53K)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-390 CH-53K Heavy Lift Replacement Helicopter (CH-53K) As of FY 2017 President’s Budget...Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined TY

  11. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  12. A Novel Mobile Testing Equipment for Rock Cuttability Assessment: Vertical Rock Cutting Rig (VRCR)

    NASA Astrophysics Data System (ADS)

    Yasar, Serdar; Yilmaz, Ali Osman

    2017-04-01

    In this study, a new mobile rock cutting testing apparatus was designed and produced for rock cuttability assessment called vertical rock cutting rig (VRCR) which was designed specially to fit into hydraulic press testing equipment which are available in almost every rock mechanics laboratory. Rock cutting trials were initiated just after the production of VRCR along with calibration of the measuring load cell with an external load cell to validate the recorded force data. Then, controlled rock cutting tests with both relieved and unrelieved cutting modes were implemented on five different volcanic rock samples with a standard simple-shaped wedge tool. Additionally, core cutting test which is an important approach for roadheader performance prediction was simulated with VRCR. Mini disc cutters and point attack tools were used for execution of experimental trials. Results clearly showed that rock cutting tests were successfully realized and measuring system is delicate to rock strength, cutting depth and other variables. Core cutting test was successfully simulated, and it was also shown that rock cutting tests with mini disc cutters and point attack tools are also successful with VRCR.

  13. Computed barrier heights for H + CH2O yields CH3O yields CH2OH

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1993-01-01

    The barrier heights (including zero-point effects) for H + CH2O yields CH3O and CH3O yields CH2OH have been computed using complete active space self consistent field (CASSCF)/gradient calculations to define the stationary point geometries and harmonic frequencies and internally contracted configuration-interaction (CCI) to refine the energetics. The computed barrier heights are 5.6 kcal/mol and 30.1 kcal/mol, respectively. The former barrier height compares favorably to an experimental activation energy of 5.2 kcal/mol.

  14. Geotechnical Descriptions of Rock and Rock Masses.

    DTIC Science & Technology

    1985-04-01

    user of the field log can relate to the general class of rock being described. For example, the rock name " syenite " might be qualified by adding "the...FELDSPAR PRE-S---- Coarne Texture Granite Syenite Qts ononite Honzonite Cabbro Peridotite (Platonic or to Qtx Diorite to Diorite Pyroxenite intrusive

  15. RKR Franck-Condon factors for blue and ultraviolet transitions of some molecules of astrophysical interest and some comments on the interstellar abundance of CH, CH+ and SiH+.

    NASA Technical Reports Server (NTRS)

    Liszt, H. S.; Hayden Smith, W.

    1972-01-01

    RKR Franck-Condon factors for thirteen of the blue and ultraviolet transitions of AlF, AlO, BH, BD, CH, CD, CH(+), SiO and SiH(+) have been calculated. The interstellar abundances of CH, CH(+) and SiH(+) are discussed with regard to recent laboratory measurements, our Franck-Condon factors, and observations of the sun and the interstellar medium.

  16. Zapped, Martian Rock

    NASA Image and Video Library

    2013-02-20

    This image from the Mars Hand Lens Imager MAHLI on NASA Mars rover Curiosity shows details of rock texture and color in an area where the rover Dust Removal Tool DRT brushed away dust that was on the rock.

  17. The Rock Cycle

    ERIC Educational Resources Information Center

    Singh, Raman J.; Bushee, Jonathan

    1977-01-01

    Presents a rock cycle diagram suitable for use at the secondary or introductory college levels which separates rocks formed on and below the surface, includes organic materials, and separates products from processes. (SL)

  18. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C.-H.; Lan, C. E.

    1985-01-01

    Wing rock is one type of lateral-directional instabilities at high angles of attack. To predict wing rock characteristics and to design airplanes to avoid wing rock, parameters affecting wing rock characteristics must be known. A new nonlinear aerodynamic model is developed to investigate the main aerodynamic nonlinearities causing wing rock. In the present theory, the Beecham-Titchener asymptotic method is used to derive expressions for the limit-cycle amplitude and frequency of wing rock from nonlinear flight dynamics equations. The resulting expressions are capable of explaining the existence of wing rock for all types of aircraft. Wing rock is developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. Good agreement between theoretical and experimental results is obtained.

  19. Rocks in Our Pockets

    ERIC Educational Resources Information Center

    Plummer, Donna; Kuhlman, Wilma

    2005-01-01

    To introduce students to rocks and their characteristics, teacher can begin rock units with the activities described in this article. Students need the ability to make simple observations using their senses and simple tools.

  20. The Rock Cycle

    ERIC Educational Resources Information Center

    Singh, Raman J.; Bushee, Jonathan

    1977-01-01

    Presents a rock cycle diagram suitable for use at the secondary or introductory college levels which separates rocks formed on and below the surface, includes organic materials, and separates products from processes. (SL)

  1. Rocks and Minerals.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Provides background information on rocks and minerals, including the unique characteristics of each. Teaching activities on rock-hunting and identification, mineral configurations, mystery minerals, and growing crystals are provided. Reproducible worksheets are included for two of the activities. (TW)

  2. Rocks and Minerals.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Provides background information on rocks and minerals, including the unique characteristics of each. Teaching activities on rock-hunting and identification, mineral configurations, mystery minerals, and growing crystals are provided. Reproducible worksheets are included for two of the activities. (TW)

  3. Rocks in Our Pockets

    ERIC Educational Resources Information Center

    Plummer, Donna; Kuhlman, Wilma

    2005-01-01

    To introduce students to rocks and their characteristics, teacher can begin rock units with the activities described in this article. Students need the ability to make simple observations using their senses and simple tools.

  4. [Effects of temperature on CH4 emission from subtropical common tree species leaves].

    PubMed

    Yang, Yan-Hua; Yi, Li-Ming; Xie, Jin-Sheng; Yang, Zhi-Jie; Jiang, Jun; Xu, Chao; Yang, Yu-Sheng

    2013-06-01

    Laboratory incubation test was conducted to study the effects of temperature on the CH4 emission from the leaves of subtropical common tree species Castanopsis carlesii, Schima superb, Cinnamomum chekiangense, Castsanopsis fabri, Cunninghamia lanceolata, and Citrus reticulata. Among the six tree species, only S. superb, C. reticulate, and C. fabri emitted CH4 at 10 degrees C. At above 20 degrees C, all the six species emitted CH4, and the average CH4 emission rate at above 30 degrees C (1.010 ng CH4 x g(-1) DM x h(-1)) was 2.96 times higher than that at 10-30 degrees C (0.255 ng CH4 x g(-1) DM x h(-1)). Moreover, increasing temperature had much more effects on the CH4 emission rate of C. reticulata and C. lanceolata than on that of the other four tree species. Incubation time affected the CH4 emission rate of all test tree species significantly, suggesting that the effects of temperature stress on the CH4 emission could be controlled by plant activity. Dry leaves could not emit CH4 no matter the temperature was very high or low. It was suggested that high temperature stress had important effects on the CH4 emission from subtropical tree leaves, and global warming could increase the CH4 emission from plants.

  5. Principles of rock deformation

    SciTech Connect

    Nicolas, A.

    1987-01-01

    This text focuses on the recent achievements in the analysis of rock deformation. It gives an analytical presentation of the essential structures in terms of kinetic and dynamic interpretation. The physical properties underlying the interpretation of rock structures are exposed in simple terms. Emphasized in the book are: the role of fluids in rock fracturing; the kinematic analysis of magnetic flow structures; the application of crystalline plasticity to the kinematic and dynamic analysis of the large deformation imprinted in many metamorphic rocks.

  6. 68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: STRESS SHEET, SHEET 4; MAY, 1918. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  7. My Pet Rock

    ERIC Educational Resources Information Center

    Lark, Adam; Kramp, Robyne; Nurnberger-Haag, Julie

    2008-01-01

    Many teachers and students have experienced the classic pet rock experiment in conjunction with a geology unit. A teacher has students bring in a "pet" rock found outside of school, and the students run geologic tests on the rock. The tests include determining relative hardness using Mohs scale, checking for magnetization, and assessing luster.…

  8. My Pet Rock

    ERIC Educational Resources Information Center

    Lark, Adam; Kramp, Robyne; Nurnberger-Haag, Julie

    2008-01-01

    Many teachers and students have experienced the classic pet rock experiment in conjunction with a geology unit. A teacher has students bring in a "pet" rock found outside of school, and the students run geologic tests on the rock. The tests include determining relative hardness using Mohs scale, checking for magnetization, and assessing luster.…

  9. The ANDES underground laboratory

    NASA Astrophysics Data System (ADS)

    Bertou, X.

    2012-09-01

    The ANDES underground laboratory, planned for inclusion in the Agua Negra tunnel crossing the Andes between Argentina and Chile, will be the first deep underground laboratory in the southern hemisphere. It will be deep (1750 m of rock overburden), large (60 000 m3 of volume), and provide the international community with a unique site for testing dark-matter modulation signals. The site furthermore has a low nuclear reactor neutrino background and is of special interest to the geophysics sciences. The laboratory will be run as a multi-national facility, under a consortium of Latin-American countries. Its opening is expectedfor 2020.

  10. CH-53K Heavy Lift Replacement Helicopter (CH-53K)

    DTIC Science & Technology

    2013-12-01

    BA - Budget Authority/Budget Activity BY - Base Year DAMIR - Defense Acquisition Management Information Retrieval Dev Est - Development Estimate DoD...APUC None CH-53K December 2013 SAR April 16, 2014 17:02:21 UNCLASSIFIED 7 Schedule Milestones SAR Baseline Dev Est Current APB...2018 FEB 2018 IOT &E (OPEVAL) Complete JUN 2015 SEP 2018 MAR 2019 SEP 2018 IOC SEP 2015 JAN 2019 JUL 2019 JUL 2019 (Ch-1) FRP Decision Review DEC 2015

  11. Fluorescence from excitation of CH4, CH3OH and CH3SH by extreme vacuum ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Ma, Guang; Suto, Masako; Lee, L. C.

    1990-01-01

    The photoabsorption and fluorescence cross sections of CH4, CH3OH, and CH3SH were measured in the wavelength regions of 52-106, 48-106, and 48-106 nm, respectively. The fluorescence spectra were dispersed to identify the emitting species. Emissions from the excited species of H(asterisk) and CH(asterisk) are commonly observed for all three molecules. Emission from the excited CH2(asterisk) is observed from CH4, OH(asterisk) from CH3OH and CS(asterisk) from CH3SH. The photoexcitation processes that may produce the observed emission bands are discussed.

  12. Fluorescence from excitation of CH4, CH3OH and CH3SH by extreme vacuum ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Ma, Guang; Suto, Masako; Lee, L. C.

    1990-01-01

    The photoabsorption and fluorescence cross sections of CH4, CH3OH, and CH3SH were measured in the wavelength regions of 52-106, 48-106, and 48-106 nm, respectively. The fluorescence spectra were dispersed to identify the emitting species. Emissions from the excited species of H(asterisk) and CH(asterisk) are commonly observed for all three molecules. Emission from the excited CH2(asterisk) is observed from CH4, OH(asterisk) from CH3OH and CS(asterisk) from CH3SH. The photoexcitation processes that may produce the observed emission bands are discussed.

  13. Spirit Guidepost, 'Plymouth Rock'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Mars Exploration Rover Spirit took this panoramic camera image during Spirit's 152nd sol, on June 7, 2004. The rock, informally named 'Plymouth Rock,' is approximately 90 centimeters (35 inches) across and 50 centimeters (20 inches) tall. Spirit did not spend any time studying Plymouth Rock, but rover controllers used it as a guide to maneuver Spirit closer to the 'Columbia Hills.' Like most of the rocks found at the Gusev crater location, Plymouth is most likely a basalt. The tiny vesicles pitting the rock's surface further indicate its volcanic origin.

  14. Rock ramp design guidelines

    USGS Publications Warehouse

    Mooney, David M.; Holmquist-Johnson, Christopher L.; Broderick, Susan

    2007-01-01

    Rock ramps or roughened channels consist of steep reaches stabilized by large immobile material (riprap). Primary objectives for rock ramps include: Create adequate head for diversionMaintain fish passage during low-flow conditionsMaintain hydraulic conveyance during high-flow conditionsSecondary objectives for rock ramp design include:Emulate natural systemsMinimize costsThe rock ramp consists of a low-flow channel designed to maintain biologically adequate depth and velocity conditions during periods of small discharges. The remainder of the ramp is designed to withstand and pass large flows with minimal structural damage. The following chapters outline a process for designing rock ramps.

  15. Valence double ionization electron spectra of CH3F, CH3Cl and CH3I

    NASA Astrophysics Data System (ADS)

    Hult Roos, A.; Eland, J. H. D.; Koulentianos, D.; Squibb, R. J.; Karlsson, L.; Feifel, R.

    2017-07-01

    Valence double ionization electron spectra of the methyl fluoride, methyl chloride, and methyl iodide molecules have been recorded using a time-of-flight photoelectron-photoelectron coincidence technique. The spectra are interpreted by comparison with existing ionization data, Auger spectra, and theoretical calculations. The lowest double ionization energies have been found to be around 35.0 eV, 30.6 eV, and 26.67 eV for CH3F, CH3Cl and CH3I, respectively. These energies are also compared with the predictions and implications of an empirical rule for the lowest double ionization energy in molecules.

  16. Chromatin Immunoprecipitation (ChIP) in Schizosaccharomyces pombe.

    PubMed

    Cam, Hugh P; Whitehall, Simon

    2016-11-01

    Chromatin immunoprecipitation (ChIP), the cross-linking of chromatin followed by immunoprecipitation with antibodies against a chromatin target, is a key method for measuring association of proteins with a specific genomic region(s). As a negative control, a mock ChIP experiment in which no antibody is added to the immunoprecipitation reaction is included. Enriched DNA fragments from a ChIP experiment can be analyzed in a variety of ways. For semiquantitative analysis, a region of interest can be amplified using standard polymerase chain reaction (PCR) techniques. PCR products are analyzed on agarose (or polyacrylamide) gels and band intensity calculated with a standard imaging software. ChIP enrichment is usually calculated as the ratio of ChIP to input compared with a similar ratio for a reference region not expected to be enriched for that factor. For heterochromatin analysis, housekeeping genes such as act1(+) are good references. Real-time quantitative PCR (qPCR) can be used for a fully quantitative approach. If a factor is to be mapped across the genome, ChIP DNA can be amplified and labeled for microarray analysis or scrutinized on a next-generation DNA sequencing platform. © 2016 Cold Spring Harbor Laboratory Press.

  17. Dilation-induced permeability changes in rock salt

    SciTech Connect

    Stormont, J.C.; Fuenkajorn, K.

    1993-11-01

    A model of permeability changes in rock salt is developed and implemented in a time-dependent finite element code. Model parameters are developed from laboratory tests. The model is used to predict permeability changes adjacent to excavations in rock salt.

  18. Thermal stress microfracturing of crystalline and sedimentary rock

    SciTech Connect

    Wang, H.F.

    1989-05-01

    The goal of the research program is to understand mechanisms of thermal cracking in granitic rocks. The research plan included development of a theoretical understanding of cracking due to thermal stresses, laboratory work to characterize crack strain in rocks thermally stressed under different conditions (including natural thermal histories), and microscopic work to count and catalog crack occurrences, and geologic application to naturally occurring granites.

  19. 28. MODIFIED CHAIN SAW FOR CUTTING ROCK CORES; BRUNTON COMPASS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. MODIFIED CHAIN SAW FOR CUTTING ROCK CORES; BRUNTON COMPASS STAND FOR DETERMINING CORE'S FIELD ORIENTATION; INSECTICIDE DISPENSER MODIFIED TO LUBRICATE CORE DRILLING PROCESS. - U.S. Geological Survey, Rock Magnetics Laboratory, 345 Middlefield Road, Menlo Park, San Mateo County, CA

  20. A Sedimentary Rock Classification Scheme for Introductory Geology.

    ERIC Educational Resources Information Center

    Davis, Larry Eugene; Eves, Robert Leo

    1986-01-01

    Presents a classification scheme for identifying sedimentary rocks in introductory geology laboratories. The key consists of an ordered sequence of tests to perform and observations to make which then suggests a rock name or directs the student to additional tests and/or observations. (ML)

  1. A Sedimentary Rock Classification Scheme for Introductory Geology.

    ERIC Educational Resources Information Center

    Davis, Larry Eugene; Eves, Robert Leo

    1986-01-01

    Presents a classification scheme for identifying sedimentary rocks in introductory geology laboratories. The key consists of an ordered sequence of tests to perform and observations to make which then suggests a rock name or directs the student to additional tests and/or observations. (ML)

  2. Rock Drilling Performance Evaluation by an Energy Dissipation Based Rock Brittleness Index

    NASA Astrophysics Data System (ADS)

    Munoz, H.; Taheri, A.; Chanda, E. K.

    2016-08-01

    To reliably estimate drilling performance both tool-rock interaction laws along with a proper rock brittleness index are required to be implemented. In this study, the performance of a single polycrystalline diamond compact (PDC) cutter cutting and different drilling methods including PDC rotary drilling, roller-cone rotary drilling and percussive drilling were investigated. To investigate drilling performance by rock strength properties, laboratory PDC cutting tests were performed on different rocks to obtain cutting parameters. In addition, results of laboratory and field drilling on different rocks found elsewhere in literature were used. Laboratory and field cutting and drilling test results were coupled with values of a new rock brittleness index proposed herein and developed based on energy dissipation withdrawn from the complete stress-strain curve in uniaxial compression. To quantify cutting and drilling performance, the intrinsic specific energy in rotary-cutting action, i.e. the energy consumed in pure cutting action, and drilling penetration rate values in percussive action were used. The results show that the new energy-based brittleness index successfully describes the performance of different cutting and drilling methods and therefore is relevant to assess drilling performance for engineering applications.

  3. An introduction to carbonate sediments and rocks

    SciTech Connect

    Scoffin, T.P.

    1986-01-01

    This book provides an approach to the study of carbonate sediments and sedimentary rocks. Topics covered include the following: nature and origins of common carbonate grains; processes of sedimentation; the growth and structure of coral reefs; distribution of modern marine carbonates; diagenesis; classification of limestone; facies models and sequences in ancient limestone; economic aspects; and field and laboratory techniques.

  4. The origin of granites and related rocks

    USGS Publications Warehouse

    Brown, Michael; Piccoli, Philip M.

    1995-01-01

    This Circular is a compilation of abstracts for posters and oral presentations given at the third Hutton symposium on the Origin of granites and related rocks. The symposium was co-sponsored by the Department of Geology, University of Maryland at College Park; the U.S. Geological Survey, Reston, Virginia; and the Department of Terrestrial Magnetism and Geophysical Laboratory, Carnegie Institution of Washington.

  5. Sedimentary Rocks and Methane - Southwest Arabia Terra

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Oehler, Dorothy Z.; Venechuk, Elizabeth M.

    2006-01-01

    We propose to land the Mars Science Laboratory in southwest Arabia Terra to study two key aspects of martian history the extensive record of sedimentary rocks and the continuing release of methane. The results of this exploration will directly address the MSL Scientific Objectives regarding biological potential, geology and geochemistry, and past habitability.

  6. Test Image of Earth Rocks by Mars Camera Stereo

    NASA Image and Video Library

    2010-11-16

    This stereo view of terrestrial rocks combines two images taken by a testing twin of the Mars Hand Lens Imager MAHLI camera on NASA Mars Science Laboratory. 3D glasses are necessary to view this image.

  7. Improved Shock Tube Measurement of the CH4 + Ar = CH3 + H + Ar Rate Constant using UV Cavity-Enhanced Absorption Spectroscopy of CH3.

    PubMed

    Wang, Shengkai; Davidson, David F; Hanson, Ronald K

    2016-07-21

    We report an improved measurement for the rate constant of methane dissociation in argon (CH4 + Ar = CH3 + H + Ar) behind reflected shock waves. The experiment was conducted using a sub-parts per million sensitivity CH3 diagnostic recently developed in our laboratory based on ultraviolet cavity-enhanced absorption spectroscopy. The high sensitivity of this diagnostic allowed for measurements of quantitatively resolved CH3 time histories during the initial stage of CH4 pyrolysis, where the reaction system is clean and free from influences of secondary reactions and temperature change. This high sensitivity also allowed extension of our measurement range to much lower temperatures (<1500 K). The current-reflected shock measurements were performed at temperatures between 1487 and 1866 K and pressures near 1.7 atm, resulting in the following Arrhenius rate constant expression for the title reaction: k(1.7 atm) = 3.7 × 10(16) exp(-42 200 K/T) cm(3)/mol·s, with a 2σ uncertainty factor of 1.25. The current data are in good consensus with various theoretical and review studies, but at the low temperature end they suggest a slightly higher (up to 35%) rate constant compared to these previous results. A re-evaluation of previous and current experimental data in the falloff region was also performed, yielding updated expressions for both the low-pressure limit and the high-pressure limit rate constants and improved agreement with all existing data.

  8. Rotational excitation of CH4 by He atoms

    NASA Astrophysics Data System (ADS)

    Yanga, B. H.; Stancil, P. C.

    2008-10-01

    Quantum close-coupling and coupled-state approximation scattering calculations for rotational energy transfer of rotationally excited CH4 due to collisions with He are presented for collision energies between 10-7 and 3000 cm-1 using the MP4 potential of Calderoni et al. [J. Chem. Phys. 121, 8261 (2004)]. State-to-state cross sections and rate coefficients from selected initial rotational states of CH4 in symmetries A, E, and F are studied from the ultra-cold to the thermal regime. Comparison of the cross sections with available theoretical results and experimental data show good agreement. Applications to astrophysics and cold laboratory environments are briefly addressed.

  9. Rock type identification and abundance estimation from hyperspectral analysis

    NASA Astrophysics Data System (ADS)

    Feng, Jilu

    This study explores the usefulness of hyperspectral data to discriminate rock units and estimate the abundance of sulfides in rocks. Airborne visible-near infrared (VIS-NIR) hyperspectral data collected from northern Cape Smith, Quebec and laboratory thermal infrared reflectance (TIR) data measured on rock samples from eight different mines in the Sudbury Basin, Ontario are involved in the analysis. The study addressed four different geological application scenarios with the aim of retrieving useful lithological information from rock spectra while minimizing the influence of varying environmental factors. The research first examines the effects of topography on the selection of rock endmembers from airborne VIS_NIR spectra and demonstrates how a topographic correction process can improve the discrimination of rock units. It demonstrates that traditional ways of selecting spectral endmembers from hyperspectral data for areas of rugged terrain cannot provide representative rock unit signatures. The second part of the research targeted the mapping of wall rock in an underground environment using TIR spectra. Rock samples from mines of the Sudbury Basin in Ontario were measured using naturally broken surfaces both dry and wet to address environmental conditions encountered underground. An innovative method applying a spectral angle mapper on the 2nd derivative of rock spectra from 700--1300 cm-1 was proved to be robust to remove the effect of liquid water, local geometry and disseminated sulfide ores while preserving diagnostic rock signatures for mapping. The study then focuses on retrieving sulfide information from TIR to estimate ore (total sulfide abundance) grade on naturally broken rock faces and separate ore-bearing rocks from their host rocks in an underground environment regardless of rock types. An important finding is that reflectance at 1319 cm -1, where most silicate rocks demonstrate low reflectance, is related to total sulfide concentration in rocks

  10. Friction of rocks

    USGS Publications Warehouse

    Byerlee, J.

    1978-01-01

    Experimental results in the published literature show that at low normal stress the shear stress required to slide one rock over another varies widely between experiments. This is because at low stress rock friction is strongly dependent on surface roughness. At high normal stress that effect is diminished and the friction is nearly independent of rock type. If the sliding surfaces are separated by gouge composed of Montmorillonite or vermiculite the friction can be very low. ?? 1978 Birkha??user Verlag.

  11. Rock Magnetism: Successes and Mysteries

    NASA Astrophysics Data System (ADS)

    Dunlop, D. J.

    2011-12-01

    governs a rock's induced response to weak fields like the Earth's. In particular, the Hopkinson peak in susceptibility near the Curie temperature - a potential source of "missing magnetism" in the deep lithosphere - increases steadily over at least a decade of decreasing grain size in magnetite. Single-domain recorders, in addition to their strong and long-lasting memory, have the property of TRM additivity and independence. This makes possible the Thellier method of determining paleofield intensity, a much more demanding undertaking than tracking paleomagnetic field directions, in which the ancient magnetic moment is gradually replaced by a set of partial TRMs produced in a known laboratory field. Partial TRMs produced in nature by heating during deep burial are also additive and independent. The temperature at which these overprints are removed in the laboratory yields - after correction for the very different natural and laboratory heating times - the burial temperature. This is the basis of magnetic paleothermometry. The interplay of time and temperature in TRM when combined with thermal history models provides estimates of when the global magnetic field of a planet, e.g., Mars, was born and died. But the grand conclusions so important to geophysics rest ultimately on the fidelity of the microscopic recorders in rocks and here, despite many advances, our understanding is still a work in progress.

  12. On the unimolecular reactions of CH 3O and CH 2OH

    NASA Astrophysics Data System (ADS)

    Adams, George F.; Bartlett, Rodney J.; Purvis, George D.

    1982-04-01

    Recent experiments suggest that the isomerization reaction CH 3O ⇋ CH 2OH may compete with the hydrogen dissociation reaction CH 3O → CH 2O + H. We report correlated many-body calculations of barrier heights for these reactions and other decompositions of CH 3O and CH 2OH. The barriers for isomerization and dissociation are similar, while the reaction CH 3O → HCO + H 2 has a higher energy barrier.

  13. Bounce Rock Dimple

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This panoramic camera image shows the hole drilled by the Mars Exploration Rover Opportunity's rock abrasion tool into the rock dubbed 'Bounce' on Sol 65 of the rover's journey. The tool drilled about 7 millimeters (0.3 inches) into the rock and generated small piles of 'tailings' or rock dust around the central hole, which is about 4.5 centimeters (1.7 inches) across. The image from sol 66 of the mission was acquired using the panoramic camera's 430 nanometer filter.

  14. Opaque rock fragments

    SciTech Connect

    Abhijit, B.; Molinaroli, E.; Olsen, J.

    1987-05-01

    The authors describe a new, rare, but petrogenetically significant variety of rock fragments from Holocene detrital sediments. Approximately 50% of the opaque heavy mineral concentrates from Holocene siliciclastic sands are polymineralic-Fe-Ti oxide particles, i.e., they are opaque rock fragments. About 40% to 70% of these rock fragments show intergrowth of hm + il, mt + il, and mt + hm +/- il. Modal analysis of 23,282 opaque particles in 117 polished thin sections of granitic and metamorphic parent rocks and their daughter sands from semi-arid and humid climates show the following relative abundances. The data show that opaque rock fragments are more common in sands from igneous source rocks and that hm + il fragments are more durable. They assume that equilibrium conditions existed in parent rocks during the growth of these paired minerals, and that the Ti/Fe ratio did not change during oxidation of mt to hm. Geothermometric determinations using electron probe microanalysis of opaque rock fragments in sand samples from Lake Erie and the Adriatic Sea suggest that these rock fragments may have equilibrated at approximately 900/sup 0/ and 525/sup 0/C, respectively.

  15. Bounce Rock Dimple

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This panoramic camera image shows the hole drilled by the Mars Exploration Rover Opportunity's rock abrasion tool into the rock dubbed 'Bounce' on Sol 65 of the rover's journey. The tool drilled about 7 millimeters (0.3 inches) into the rock and generated small piles of 'tailings' or rock dust around the central hole, which is about 4.5 centimeters (1.7 inches) across. The image from sol 66 of the mission was acquired using the panoramic camera's 430 nanometer filter.

  16. Hungry for Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image from the Mars Exploration Rover Spirit hazard identification camera shows the rover's perspective just before its first post-egress drive on Mars. On Sunday, the 15th martian day, or sol, of Spirit's journey, engineers drove Spirit approximately 3 meters (10 feet) toward its first rock target, a football-sized, mountain-shaped rock called Adirondack (not pictured). In the foreground of this image are 'Sashimi' and 'Sushi' - two rocks that scientists considered investigating first. Ultimately, these rocks were not chosen because their rough and dusty surfaces are ill-suited for grinding.

  17. Estimating the Wet-Rock P-Wave Velocity from the Dry-Rock P-Wave Velocity for Pyroclastic Rocks

    NASA Astrophysics Data System (ADS)

    Kahraman, Sair; Fener, Mustafa; Kilic, Cumhur Ozcan

    2017-07-01

    Seismic methods are widely used for the geotechnical investigations in volcanic areas or for the determination of the engineering properties of pyroclastic rocks in laboratory. Therefore, developing a relation between the wet- and dry-rock P-wave velocities will be helpful for engineers when evaluating the formation characteristics of pyroclastic rocks. To investigate the predictability of the wet-rock P-wave velocity from the dry-rock P-wave velocity for pyroclastic rocks P-wave velocity measurements were conducted on 27 different pyroclastic rocks. In addition, dry-rock S-wave velocity measurements were conducted. The test results were modeled using Gassmann's and Wood's theories and it was seen that estimates for saturated P-wave velocity from the theories fit well measured data. For samples having values of less and greater than 20%, practical equations were derived for reliably estimating wet-rock P-wave velocity as function of dry-rock P-wave velocity.

  18. Above- and belowground fluxes of CH4 from boreal shrubs and Scots pine

    NASA Astrophysics Data System (ADS)

    Halmeenmäki, Elisa; Heinonsalo, Jussi; Santalahti, Minna; Putkinen, Anuliina; Fritze, Hannu; Pihlatie, Mari

    2016-04-01

    Boreal upland forests are considered as an important sink for the greenhouse gas methane (CH4) due to CH4 oxidizing microbes in the soil. However, recent evidence suggests that vegetation can act as a significant source of CH4. Also, preliminary measurements indicate occasional emissions of CH4 above the tree canopies of a boreal forest. Nevertheless, the sources and the mechanisms of the observed CH4 emissions are still mostly unknown. Furthermore, the majority of CH4 flux studies have been conducted with the soil chamber method, thus not considering the role of the vegetation itself. We conducted a laboratory experiment to study separately the above- and belowground CH4 fluxes of bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), heather (Calluna vulgaris), and Scots pine (Pinus sylvestris), which were grown in microcosms. The above- and belowground fluxes of the plants were measured separately, and these fluxes were compared to fluxes of microcosms containing only humus soil. In addition to the flux measurements, we analysed the CH4 producing archaea (methanogens) and the CH4 consuming bacteria (methanotrophs) with the qPCR method to discover whether these microbes contribute to the CH4 exchange from the plant material and the soil. The results of the flux measurements indicate that the humus soil with roots of lingonberry, heather, and Scots pine consume CH4 compared to bare humus soil. Simultaneously, the shoots of heather and Scots pine emit small amounts of CH4. We did not find detectable amounts of methanogens from any of the samples, suggesting the produced CH4 could be of non-microbial origin, or produced by very small population of methanogens. Based on the first preliminary results, methanotrophs were present in all the studied plant species, and especially in high amounts in the rooted soils, thus implying that the methanotrophs could be responsible of the CH4 uptake in the root-soil systems.

  19. Airbag roll marks & displaced rocks and soil

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Looking southwest from the lander, soil disturbances indicating the spacecraft rolled through the landing site are visible. Arriving from the east, the lander, still encased in its protective airbags, rolled up a slight rise and then rolled back down to its final position. The inset at left shows displaced rocks near the rock 'Flat Top.' Dark patches of disturbed soil indicate where the rocks had originally rested Both insets show rocks that were pushed into the soil from the weight of the lander, visible from the areas of raised rims of dark, disturbed soil around several rocks. The south summit of Twin Peaks is in the background, while a lander petal, deflated airbag, and rear rover deployment ramp are in the foreground.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  20. Airbag roll marks & displaced rocks and soil

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Looking southwest from the lander, soil disturbances indicating the spacecraft rolled through the landing site are visible. Arriving from the east, the lander, still encased in its protective airbags, rolled up a slight rise and then rolled back down to its final position. The inset at left shows displaced rocks near the rock 'Flat Top.' Dark patches of disturbed soil indicate where the rocks had originally rested Both insets show rocks that were pushed into the soil from the weight of the lander, visible from the areas of raised rims of dark, disturbed soil around several rocks. The south summit of Twin Peaks is in the background, while a lander petal, deflated airbag, and rear rover deployment ramp are in the foreground.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  1. Location-Related Differences in Weathering Behaviors and Populations of Culturable Rock-Weathering Bacteria Along a Hillside of a Rock Mountain.

    PubMed

    Wang, Qi; Wang, Rongrong; He, Linyan; Sheng, Xiafang

    2017-05-01

    Bacteria play important roles in rock weathering, elemental cycling, and soil formation. However, little is known about the weathering potential and population of bacteria inhabiting surfaces of rocks. In this study, we isolated bacteria from the top, middle, and bottom rock samples along a hillside of a rock (trachyte) mountain as well as adjacent soils and characterized rock-weathering behaviors and populations of the bacteria. Per gram of rock or surface soil, 10(6)-10(7) colony forming units were obtained and total 192 bacteria were isolated. Laboratory rock dissolution experiments indicated that the proportions of the highly effective Fe (ranging from 67 to 92 %), Al (ranging from 40 to 48 %), and Cu (ranging from 54 to 81 %) solubilizers were significantly higher in the top rock and soil samples, while the proportion of the highly effective Si (56 %) solubilizers was significantly higher in the middle rock samples. Furthermore, 78, 96, and 6 % of bacteria from the top rocks, soils, and middle rocks, respectively, significantly acidified the culture medium (pH < 4.0) in the rock dissolution process. Most rock-weathering bacteria (79 %) from the rocks were different to those from the soils and most of them (species level) have not been previously reported. Furthermore, location-specific rock-weathering bacterial populations were found and Bacillus species were the most (66 %) frequently isolated rock-weathering bacteria in the rocks based on cultivation methods. Notably, the top rocks and soils had the highest and lowest diversity of rock-weathering bacterial populations, respectively. The results suggested location-related differences in element (Si, Al, Fe, and Cu) releasing effectiveness and communities of rock-weathering bacteria along the hillside of the rock mountain.

  2. Stochastic investigation of rock anisotropy based on the climacogram

    NASA Astrophysics Data System (ADS)

    Dimitriadis, Panayiotis; Tzouka, Katerina; Tyralis, Hristos; Koutsoyiannis, Demetris

    2017-04-01

    Anisotropy plays an important role on rock properties and entails valuable information for many fields of applied geology and engineering. Many methods are developed in order to detect transitions from isotropy to anisotropy but as a scale-depended effect, anisotropy also needs to be determined in multiple scales. We investigate the application of a stochastic tool, the climacogram (i.e., variance of the averaged process vs. scale) to characterize anisotropy in rocks at different length scales through image processing. The data are pictures from laboratory, specifically thin sections, and pictures of rock samples and rock formations in the field in order to examine anisotropy in nano, micro and macroscale.

  3. Vibrational effects on valence electron momentum distributions of CH2F2.

    PubMed

    Watanabe, Noboru; Yamazaki, Masakazu; Takahashi, Masahiko

    2014-12-28

    We report an electron momentum spectroscopy study of vibrational effects on the electron momentum distributions for the outer valence orbitals of difluoromethane (CH2F2). The symmetric noncoplanar (e,2e) experiment has been performed at an incident electron energy of 1.2 keV. Furthermore, a theoretical calculation of the electron momentum distributions of the CH2F2 molecule has been carried out with vibrational effects being involved. It is shown from comparisons between experiment and theory that it is essential to take into account influences of the CH2 asymmetric stretching and CH2 rocking vibrational modes for a proper understanding of the electron momentum distribution of the 2b1 orbital having the CH-bonding character. The results of CH2F2and additional theoretical calculations for (CH3)2O and H2CO molecules strongly suggest that vibrational effects on electron momentum distributions tend to be appreciable for non-total symmetry molecular orbitals delocalized over some equivalent CH-bond sites.

  4. Vibrational effects on valence electron momentum distributions of CH{sub 2}F{sub 2}

    SciTech Connect

    Watanabe, Noboru; Yamazaki, Masakazu; Takahashi, Masahiko

    2014-12-28

    We report an electron momentum spectroscopy study of vibrational effects on the electron momentum distributions for the outer valence orbitals of difluoromethane (CH{sub 2}F{sub 2}). The symmetric noncoplanar (e,2e) experiment has been performed at an incident electron energy of 1.2 keV. Furthermore, a theoretical calculation of the electron momentum distributions of the CH{sub 2}F{sub 2} molecule has been carried out with vibrational effects being involved. It is shown from comparisons between experiment and theory that it is essential to take into account influences of the CH{sub 2} asymmetric stretching and CH{sub 2} rocking vibrational modes for a proper understanding of the electron momentum distribution of the 2b{sub 1} orbital having the CH-bonding character. The results of CH{sub 2}F{sub 2}and additional theoretical calculations for (CH{sub 3}){sub 2}O and H{sub 2}CO molecules strongly suggest that vibrational effects on electron momentum distributions tend to be appreciable for non-total symmetry molecular orbitals delocalized over some equivalent CH-bond sites.

  5. The Relative Abundances of Resolved 12CH2D2 and 13CH3D and Mechanisms Controlling Isotopic Bond Ordering in Abiotic and Biotic Methane Gases

    NASA Astrophysics Data System (ADS)

    Young, E. D.; Kohl, I. E.; Sherwood Lollar, B.; Etiope, G.; Rumble, D.; Li, S.; Haghnegahdar, M. A.; Schauble, E. A.; McCain, K.; Foustoukos, D.; Sutcliffe, C. N.; Warr, O.; Ballentine, C. J.; Onstott, T. C.; Hosgormez, H.; Neubeck, A.; Marques, J. M.; Perez-Rodriguez, I. M.; Rowe, A. R.; LaRowe, D.; Magnabosco, C.; Bryndzia, T.

    2016-12-01

    We report measurements of resolved 12CH2D2 and 13CH3D at natural abundances in a variety of methane gases produced naturally and in the laboratory. The ability to resolve 12CH2D2 from 13CH3D provides unprecedented insights into the origin and evolution of CH4. The results identify conditions under which either isotopic bond order disequilibrium or equilibrium are expected. Where equilibrium obtains, concordant Δ12CH2D2 and Δ13CH3D temperatures can be used reliably for thermometry. We find that concordant temperatures do not always match previous hypotheses based on indirect estimates of temperature of formation nor temperatures derived from CH4/H2 D/H exchange, underscoring the importance of reliable thermometry based on the CH4 molecules themselves. Where Δ12CH2D2 and Δ13CH3D values are inconsistent with thermodynamic equilibrium, temperatures of formation derived from these species are spurious. In such situations, while formation temperatures are unavailable, disequilibrium isotopologue ratios nonetheless provide important information about the formation mechanism of the gas and the presence or absence of multiple sources or sinks. In particular, disequilibrium isotopologue ratios may provide the means for differentiating between methane produced by abiotic synthesis versus biological processes. Deficits in 12CH2D2 compared with equilibrium values in CH4 gas made by surface-catalyzed abiotic reactions are so large as to point towards a quantum tunneling origin. Tunneling also accounts for the more moderate depletions in 13CH3D that accompany the low 12CH2D2 abundances produced by abiotic reactions. The tunneling signature of abiotic CH4 formation may prove to be an important tracer of abiotic methane formation, especially where it is preserved by dissolution of gas in cool hydrothermal systems (e.g., Mars). Isotopologue signatures of abiotic methane production can be erased by infiltration of microbial communities, and Δ12CH2D2 values are a key tracer of

  6. The Rock that Hit New York

    SciTech Connect

    Meade, Roger Allen; Keksis, August Lawrence

    2016-10-03

    On January 12, 1975, a rock seemed to fall from the sky over New York State’s Schoharie County hitting the tractor of a local farmer, who was “preparing his fields for spring planting.” As the farmer later described the event to a reporter from the UFO INVESTIGATOR, the object glanced off the tractor, fell to the ground, and melted its way through a patch of ice that was two and one half inches thick. The farmer, Leonard Tillapaugh, called the county sheriff, Harvey Stoddard, who recovered the rock, noting that it “was still warm.” Why and how a sample of the rock came to Los Alamos is not known. However, it captivated a wide Laboratory audience, was subjected to rigorous testing and evaluation. Los Alamos used the scientific method in the manner promoted by Hynek. Did Los Alamos solve the mystery of the rock’s origin? Not definitively. Although the exact origin could not be determined, it was shown conclusively that the rock was not from outer space. With that said, the saga of Rock that hit New York came to an end. Nothing more was said or written about it. The principals involved have long since passed from the scene. The NICAP ceased operations in 1980. And, the rock, itself, has disappeared.

  7. The Effects of Carbon Films Deposited on New Fracture Surfaces on Rock Strength and Electrical Conductivity

    NASA Astrophysics Data System (ADS)

    Roberts, J.; Duba, A.; Karner, S.; Kronenberg, A.; Mathez, E.

    2007-12-01

    Hollow cylinders of Sioux quartzite, jacketed by silver, were hydrostatically loaded to failure at temperatures up to 400 °C by applying pressurized Ar gas at the outer diameter (reaching ~290 MPa at a rate of 0.1 MPa/s) while maintaining a constant pore pressure at the inner diameter. Pore fluids consisted of CO, CO2, CH4, a 1:1 mixture of CO2 and CH4 (each with pore pressures of 2.0 to 4.1 MPa), and air (at atmospheric pressure). Biaxial-stress states were calculated using elastic-stress solutions that account for the applied pressures and hollow-cylinder dimensions. For the inner wall of the cylinders, effective radial stress was zero and calculated effective differential stress reached 1225 MPa. Failure occurred by the formation of mode II shear fractures that transected the hollow cylinder walls. The distribution of carbon in the run products was mapped by scanning electron microscopy and electron probe. Samples deformed in CO2 and air contained little or no carbon above the small amount that exists in the undeformed rock. Samples deformed in CO contain ubiquitous carbon films on the fracture surfaces that formed during deformation. Because carbon is absent on other free quartz surfaces present in the experiments, we conclude that the carbon films formed preferentially on the fractures as they formed. The radial resistivity of dry, undeformed Sioux quartzite cylinders is extremely large in the ambient laboratory atmosphere (>23 MØmega- m). The radial resistivity of Sioux quartzite cylinders that failed in pore fluids that promote carbon deposition is relatively low (2.9 to 3.1 MØmega-m for CO tests; 15.2 to 16.5 MØmega-m for CO2:CH4 tests). The results of this study help to isolate the role of carbon deposition on fresh fracture surfaces in altering the electrical properties of rocks with little initial porosity from that of carbon deposition on fractures and preexisting equant voids of porous rocks. Taken together, our results and those of Roberts et al

  8. Mars Rock Analysis Briefing

    NASA Image and Video Library

    2013-03-12

    John Grotzinger (second from left), Curiosity project scientist, California Institute of Technology in Pasadena, speaks at a news conference presenting findings of the Curiosity rover's analysis of the first sample of rock powder collected on Mars, Tuesday, March 12, 2013 in Washington. The rock sample collected shows ancient Mars could have supported living microbes. Photo Credit: (NASA/Carla Cioffi)

  9. Mars Rock Analysis Briefing

    NASA Image and Video Library

    2013-03-12

    John Grotzinger, Curiosity project scientist, California Institute of Technology in Pasadena, answers a reporter's question at a news conference where findings of the Curiosity rover's analysis of the first sample of rock powder collected on Mars were presented, Tuesday, March 12, 2013 in Washington. The rock sample collected shows ancient Mars could have supported living microbes. Photo Credit: (NASA/Carla Cioffi)

  10. Mars Rock Analysis Briefing

    NASA Image and Video Library

    2013-03-12

    John Grotzinger (center), Curiosity project scientist, California Institute of Technology in Pasadena, speaks at a news conference presenting findings of the Curiosity rover's analysis of the first sample of rock powder collected on Mars, Tuesday, March 12, 2013 in Washington. The rock sample collected shows ancient Mars could have supported living microbes. Photo Credit: (NASA/Carla Cioffi)

  11. Session: Hard Rock Penetration

    SciTech Connect

    Tennyson, George P. Jr.; Dunn, James C.; Drumheller, Douglas S.; Glowka, David A.; Lysne, Peter

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hard Rock Penetration - Summary'' by George P. Tennyson, Jr.; ''Overview - Hard Rock Penetration'' by James C. Dunn; ''An Overview of Acoustic Telemetry'' by Douglas S. Drumheller; ''Lost Circulation Technology Development Status'' by David A. Glowka; ''Downhole Memory-Logging Tools'' by Peter Lysne.

  12. Rock Bites into 'Bounce'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This panoramic camera image from the Mars Exploration Rover Opportunity features the 6.44 millimeter (0.25 inch) deep hole ground into the rock dubbed 'Bounce' by the rover's rock abrasion tool. The tool took 2 hours and 15 minutes to grind the hole on sol 66 of the rover's journey. A combination of limited solar power and the rock's jagged texture led the rock abrasion tool team to set very aggressive grinding parameters to ensure that the end result was a full circle, suitable for a thorough read from the rover's spectrometers.

    Bounce's markedly different appearance (when compared to the rocks that were previously examined in the Eagle Crater outcrop) made it a natural target for rover research. In order to achieve an ideal position from which to grind into the rock, Opportunity moved in very close with its right wheel next to Bounce. In this image, the panoramic camera on the rover's mast is looking down, catching the tip of the solar panel which partially blocks the full circle ground by the rock abrasion tool.

    The outer ring consists of the cuttings from the rock, pushed out by the brushes on the grinding instrument. The dark impression at the top of the outer circle was caused by the instrument's contact mechanism which serves to stabilize it while grinding.

  13. Odyssey/White Rock

    NASA Image and Video Library

    2002-10-01

    These Mars Odyssey images show the White Rock feature on Mars in both infrared left and visible right wavelengths. White Rock is the unofficial name for this landform that was first observed during NASA Mariner 9 mission in the early 1970.

  14. Rock Cycle Roulette.

    ERIC Educational Resources Information Center

    Schmidt, Stan M.; Palmer, Courtney

    2000-01-01

    Introduces an activity on the rock cycle. Sets 11 stages representing the transitions of an earth material in the rock cycle. Builds six-sided die for each station, and students move to the stations depending on the rolling side of the die. Evaluates students by discussing several questions in the classroom. Provides instructional information for…

  15. Welcome to Rock Day

    ERIC Educational Resources Information Center

    Varelas, Maria; Benhart, Jeaneen

    2004-01-01

    At the beginning of the school year, the authors, a first-grade teacher and a teacher educator, worked together to "spice up" the first-grade science curriculum. The teacher had taught the unit Rocks, Sand, and Soil several times, conducting hands-on explorations and using books to help students learn about properties of rocks, but she felt the…

  16. Welcome to Rock Day

    ERIC Educational Resources Information Center

    Varelas, Maria; Benhart, Jeaneen

    2004-01-01

    At the beginning of the school year, the authors, a first-grade teacher and a teacher educator, worked together to "spice up" the first-grade science curriculum. The teacher had taught the unit Rocks, Sand, and Soil several times, conducting hands-on explorations and using books to help students learn about properties of rocks, but she felt the…

  17. Mars Rock Analysis Briefing

    NASA Image and Video Library

    2013-03-12

    David Blake, principal investigator for Curiosity's Chemistry and Mineralogy investigation at NASA's Ames Research Center in Calif., speaks at a news conference presenting findings of the Curiosity rover's analysis of the first sample of rock powder collected on Mars, Tuesday, March 12, 2013 in Washington. The rock sample collected shows ancient Mars could have supported living microbes. Photo Credit: (NASA/Carla Cioffi)

  18. Chocolate Hills Rock

    NASA Image and Video Library

    2010-02-16

    This false-color image, taken by the panoramic camera on NASA rover Opportunity, shows the rock Chocolate Hills, perched on the rim of the 10-meter 33-foot wide Concepcion crater. This rock has a thick, dark-colored coating resembling chocolate.

  19. Rock Cycle Roulette.

    ERIC Educational Resources Information Center

    Schmidt, Stan M.; Palmer, Courtney

    2000-01-01

    Introduces an activity on the rock cycle. Sets 11 stages representing the transitions of an earth material in the rock cycle. Builds six-sided die for each station, and students move to the stations depending on the rolling side of the die. Evaluates students by discussing several questions in the classroom. Provides instructional information for…

  20. Rock Bites into 'Bounce'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This panoramic camera image from the Mars Exploration Rover Opportunity features the 6.44 millimeter (0.25 inch) deep hole ground into the rock dubbed 'Bounce' by the rover's rock abrasion tool. The tool took 2 hours and 15 minutes to grind the hole on sol 66 of the rover's journey. A combination of limited solar power and the rock's jagged texture led the rock abrasion tool team to set very aggressive grinding parameters to ensure that the end result was a full circle, suitable for a thorough read from the rover's spectrometers.

    Bounce's markedly different appearance (when compared to the rocks that were previously examined in the Eagle Crater outcrop) made it a natural target for rover research. In order to achieve an ideal position from which to grind into the rock, Opportunity moved in very close with its right wheel next to Bounce. In this image, the panoramic camera on the rover's mast is looking down, catching the tip of the solar panel which partially blocks the full circle ground by the rock abrasion tool.

    The outer ring consists of the cuttings from the rock, pushed out by the brushes on the grinding instrument. The dark impression at the top of the outer circle was caused by the instrument's contact mechanism which serves to stabilize it while grinding.

  1. Bounce Rock Snapshot

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1 This Mars Exploration Rover Opportunity panoramic camera image shows 'Bounce Rock,' a rock the airbag-packaged rover struck while rolling to a stop on January 24, 2004. This is the largest rock for as far as the eye can see, approximately 35 centimeters (14 inches) long and 10 centimeters (4 inches) high. There appears to be a dusty coating on the top of parts of the rock, which may have been broken when it was struck by the airbags. The rock was about 5 meters (16 feet) from the rover when this image was obtained. This is an enhanced color composite image from sol 36 of the rover's journey, generated using the camera's L2 (750 nanometer), L5 (530 nanometer), and L6 (480 nanometer) filters.

    Bounce Rock Spectra Figure 1 above is a plot of panoramic camera spectra extracted from three different regions on the rock dubbed 'Bounce.' The yellow spectrum is from the yellow box in the image on the left, from the dusty top part of the rock. The spectrum is dominated by the signature of oxidized 'ferric' iron (Fe3+) like that seen in the classic Martian dust. The red spectrum is from the darker Meridiani Planum soils that were disturbed by the airbag when it bounced near the rock. That spectrum is also dominated by ferric iron, though the reflectivity is lower. Scientists speculate that this may be because the grains are coarser in these soils compared to the dust. The green spectrum, which is from the right side of the rock, shows a strong drop in the infrared reflectance that is unlike any other rock yet seen at Meridiani Planum or Gusev Crater. This spectral signature is typical of un-oxidized 'ferrous' iron (Fe2+) in the rock, perhaps related to the presence of volcanic minerals like olivine or pyroxene. The possibility that this may be a basaltic rock that is distinctly different from the rocks seen in the Eagle Crater outcrop is being intensively explored using the rover's other instruments.

  2. Layered Rocks in Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    19 June 2004 Exposures of layered, sedimentary rock are common on Mars. From the rock outcrops examined by the Mars Exploration Rover, Opportunity, in Meridiani Planum to the sequence in Gale Crater's central mound that is twice the thickness of of the sedimentary rocks exposed by Arizona's Grand Canyon, Mars presents a world of sediment to study. This unusual example, imaged by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC), shows eroded layer outcrops in a crater in Terra Tyrrhena near 15.4oS, 270.5oW. Sedimentary rocks provide a record of past climates and events. Perhaps someday the story told by the rocks in this image will be known via careful field work. The image covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from the left.

  3. Terrestrial impact melt rocks and glasses

    NASA Astrophysics Data System (ADS)

    Dressler, B. O.; Reimold, W. U.

    2001-12-01

    craters. Impact melt rocks form sheets, lenses, and dike-like bodies within or beneath allogenic fallback breccia deposits in the impact crater and possibly on crater terraces and flanks. Dikes of impact melt rocks also intrude the rocks of the crater floor. They commonly contain shock metamorphosed target rock and mineral fragments in various stages of assimilation and are glassy or fine- to coarse-grained. Chemically, they are strikingly homogeneous, but as with impact glasses, exemptions to this rule do exist. Large and thick melt bodies, such as the Sudbury Igneous Complex (SIC), are differentiated or may represent a combination of impact melt rocks sensu-strictu and impact-triggered, deep-crustal melts. A concerted, multidisciplinary approach to future research on impact melting and on other aspects of meteorite and comet impact is advocated. Impact models are models only and uncritical reliance on their validity will not lead to a better understanding of impact processes—especially of melting, excavation, and deposition of allogenic breccias and the spatial position of breccias in relation to sheets and lenses of melt rocks within the crater. Impact-triggered pressure-release melting of target rocks beneath the excavation cavity may be responsible for the existence of melt rocks beneath the impact melt rocks sensu-strictu. This controversial idea needs to be tested by a re-evaluation of existing data and models, be they based on field or laboratory research. Only a relatively small number of terrestrial impact structures has been investigated in sufficient detail as it relates to geological and geophysical mapping. In this review, we summarize observations made on impact melt rocks and impact glasses in a number of North American (Brent, Haughton, Manicouagan, New Quebec, Sudbury, Wanapitei, all in Canada), Asian (Popigai, Russia; Zhamanshin, Kazakhstan), two South African structures (Morokweng and Vredefort), the Henbury crater field of Australia, and one

  4. Rate Constant for the Reaction CH3 + CH3 Yields C2H6 at T = 155 K and Model Calculation of the CH3 Abundance in the Atmospheres of Saturn and Neptune

    NASA Technical Reports Server (NTRS)

    Cody, Regina J.; Romani, Paul N.; Nesbitt, Fred L.; Iannone, Mark A.; Tardy, Dwight C.; Stief, Louis J.

    2003-01-01

    The column abundances of CH3 observed by the Infrared Space Observatory (ISO) satellite on Saturn and Neptune were lower than predicted by atmospheric photochemical models, especially for Saturn. It has been suggested that the models underestimated the loss of CH3 due to poor knowledge of the rate constant k of the CH3 + CH3 self-reaction at the low temperatures and pressures of these atmospheres. Motivated by this suggestion, we undertook a combined experimental and photochemical modeling study of the CH3 + CH3 reaction and its role in determining planetary CH3 abundances. In a discharge flow-mass spectrometer system, k was measured at T = 155 K and three pressures of He. The results in units of cu cm/molecule/s are k(0.6 Torr) = 6.82 x 10(exp -11), k(1.0 Torr) = 6.98 x 10(exp -11), and k(1.5 Torr) = 6.91 x 10(exp -11). Analytical expressions for k were derived that (1) are consistent with the present laboratory data at T = 155 K, our previous data at T = 202 K and 298 K, and those of other studies in He at T = 296-298 K and (2) have some theoretical basis to provide justification for extrapolation. The derived analytical expressions were then used in atmospheric photochemical models for both Saturn and Neptune. These model results reduced the disparity with observations of Saturn, but not with observations of Neptune. However, the disparity for Neptune is much smaller. The solution to the remaining excess CH3 prediction in the models relative to the ISO observations lies, to a large extent, elsewhere in the CH3 photochemistry or transport, not in the CH3 + CH3 rate.

  5. Estimation of Confined Peak Strength of Crack-Damaged Rocks

    NASA Astrophysics Data System (ADS)

    Bahrani, Navid; Kaiser, Peter K.

    2017-02-01

    It is known that the unconfined compressive strength of rock decreases with increasing density of geological features such as micro-cracks, fractures, and veins both at the laboratory specimen and rock block scales. This article deals with the confined peak strength of laboratory-scale rock specimens containing grain-scale strength dominating features such as micro-cracks. A grain-based distinct element model, whereby the rock is simulated with grains that are allowed to deform and break, is used to investigate the influence of the density of cracks on the rock strength under unconfined and confined conditions. A grain-based specimen calibrated to the unconfined and confined strengths of intact and heat-treated Wombeyan marble is used to simulate rock specimens with varying crack densities. It is demonstrated how such cracks affect the peak strength, stress-strain curve and failure mode with increasing confinement. The results of numerical simulations in terms of unconfined and confined peak strengths are used to develop semi-empirical relations that relate the difference in strength between the intact and crack-damaged rocks to the confining pressure. It is shown how these relations can be used to estimate the confined peak strength of a rock with micro-cracks when the unconfined and confined strengths of the intact rock and the unconfined strength of the crack-damaged rock are known. This approach for estimating the confined strength of crack-damaged rock specimens, called strength degradation approach, is then verified by application to published laboratory triaxial test data.

  6. Rock Moved by Mars Lander Arm

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The robotic arm on NASA's Phoenix Mars Lander slid a rock out of the way during the mission's 117th Martian day (Sept. 22, 2008) to gain access to soil that had been underneath the rock.The lander's Surface Stereo Imager took the two images for this stereo view later the same day, showing the rock, called 'Headless,' after the arm pushed it about 40 centimeters (16 inches) from its previous location.

    'The rock ended up exactly where we intended it to,' said Matt Robinson of NASA's Jet Propulsion Laboratory, robotic arm flight software lead for the Phoenix team.

    The arm had enlarged the trench near Headless two days earlier in preparation for sliding the rock into the trench. The trench was dug to about 3 centimeters (1.2 inches) deep. The ground surface between the rock's prior position and the lip of the trench had a slope of about 3 degrees downward toward the trench. Headless is about the size and shape of a VHS videotape.

    The Phoenix science team sought to move the rock in order to study the soil and the depth to subsurface ice underneath where the rock had been.

    This image was taken at about 12:30 p.m., local solar time on Mars. The view is to the north northeast of the lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  7. Digital Rock Studies of Tight Porous Media

    SciTech Connect

    Silin, Dmitriy

    2012-08-07

    This technical report summarizes some recently developed approaches to studies of rock properties at a pore scale. Digital rock approach is complementary to laboratory and field studies. It can be especially helpful in situations where experimental data are uncertain, or are difficult or impossible to obtain. Digitized binary images of the pore geometries of natural rocks obtained by different imaging techniques are the input data. Computer-generated models of natural rocks can be used instead of images in a case where microtomography data are unavailable, or the resolution of the tools is insufficient to adequately characterize the features of interest. Simulations of creeping viscous flow in pores produce estimates of Darcy permeability. Maximal Inscribed Spheres calculations estimate two-phase fluid distribution in capillary equilibrium. A combination of both produce relative permeability curves. Computer-generated rock models were employed to study two-phase properties of fractured rocks, or tight sands with slit-like pores, too narrow to be characterized with micro-tomography. Various scenarios can simulate different fluid displacement mechanisms, from piston-like drainage to liquid dropout at the dew point. A finite differences discretization of Stokes equation is developed to simulate flow in the pore space of natural rocks. The numerical schemes are capable to handle both no-slip and slippage flows. An upscaling procedure estimates the permeability by subsampling a large data set. Capillary equilibrium and capillary pressure curves are efficiently estimated with the method of maximal inscribed spheres both an arbitrary contact angle. The algorithms can handle gigobytes of data on a desktop workstation. Customized QuickHull algorithms model natural rocks. Capillary pressure curves evaluated from computer-generated images mimic those obtained for microtomography data.

  8. Rock Moved by Mars Lander Arm

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The robotic arm on NASA's Phoenix Mars Lander slid a rock out of the way during the mission's 117th Martian day (Sept. 22, 2008) to gain access to soil that had been underneath the rock.The lander's Surface Stereo Imager took the two images for this stereo view later the same day, showing the rock, called 'Headless,' after the arm pushed it about 40 centimeters (16 inches) from its previous location.

    'The rock ended up exactly where we intended it to,' said Matt Robinson of NASA's Jet Propulsion Laboratory, robotic arm flight software lead for the Phoenix team.

    The arm had enlarged the trench near Headless two days earlier in preparation for sliding the rock into the trench. The trench was dug to about 3 centimeters (1.2 inches) deep. The ground surface between the rock's prior position and the lip of the trench had a slope of about 3 degrees downward toward the trench. Headless is about the size and shape of a VHS videotape.

    The Phoenix science team sought to move the rock in order to study the soil and the depth to subsurface ice underneath where the rock had been.

    This image was taken at about 12:30 p.m., local solar time on Mars. The view is to the north northeast of the lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  9. Pore Type Classification on Carbonate Reservoir in Offshore Sarawak using Rock Physics Model and Rock Digital Images

    NASA Astrophysics Data System (ADS)

    Lubis, L. A.; Harith, Z. Z. T.

    2014-03-01

    It has been recognized that carbonate reservoirs are one of the biggest sources of hydrocarbon. Clearly, the evaluation of these reservoirs is important and critical. For rigorous reservoir characterization and performance prediction from geophysical measurements, the exact interpretation of geophysical response of different carbonate pore types is crucial. Yet, the characterization of carbonate reservoir rocks is difficult due to their complex pore systems. The significant diagenesis process and complex depositional environment makes pore systems in carbonates far more complicated than in clastics. Therefore, it is difficult to establish rock physics model for carbonate rock type. In this paper, we evaluate the possible rock physics model of 20 core plugs of a Miocene carbonate platform in Central Luconia, Sarawak. The published laboratory data of this area were used as an input to create the carbonate rock physics models. The elastic properties were analyzed to examine the validity of an existing analytical carbonate rock physics model. We integrate the Xu-Payne Differential Effective Medium (DEM) Model and the elastic modulus which was simulated from a digital carbonate rock image using Finite Element Modeling. The results of this integration matched well for the separation of carbonate pore types and sonic P-wave velocity obtained from laboratory measurement. Thus, the results of this study show that the integration of rock digital image and theoretical rock physics might improve the elastic properties prediction and useful for more advance geophysical techniques (e.g. Seismic Inversion) of carbonate reservoir in Sarawak.

  10. CH5+: chemistry's chameleon unmasked.

    PubMed

    Thompson, Keiran C; Crittenden, Deborah L; Jordan, Meredith J T

    2005-04-06

    The nuclear vibrational wave function and zero-point vibrational energy of CH5(+) are calculated using quantum diffusion Monte Carlo techniques on an interpolated potential energy surface constructed from CCSD(T)/aug'-cc-pVTZ ab initio data. From this multidimensional wave function, the vibrationally averaged rotational constants and radial distribution functions for atom-atom distances within the molecule are constructed. It is found that the distributions of all 10 H-H distances are bimodal and identical. The radial distribution functions obtained for the five C-H distances are also identical, but unimodal. The three rotational constants were found to be 3.78, 3.80, and 3.83 cm(-1). These values indicate that the ground state of CH5(+) is significantly more symmetric than its global minimum energy structure. We conclude that the zero-point motion of CH5(+) renders all five protons equivalent in the ground state and precludes the assignment of a unique structure to the molecule.

  11. Catalytic, oxidative condensation of CH4 to CH3COOH in one step via CH activation.

    PubMed

    Periana, Roy A; Mironov, Oleg; Taube, Doug; Bhalla, Gaurav; Jones, C J

    2003-08-08

    Acetic acid is an important petrochemical that is currently produced from methane (or coal) in a three-step process based on carbonylation of methanol. We report a direct, selective, oxidative condensation of two methane molecules to acetic acid at 180 degrees C in liquid sulfuric acid. Carbon-13 isotopic labeling studies show that both carbons of acetic acid originate from methane. The reaction is catalyzed by palladium, and the results are consistent with the reaction occurring by tandem catalysis, involving methane C-H activation to generate Pd-CH3 species, followed by efficient oxidative carbonylation with methanol, generated in situ from methane, to produce acetic acid.

  12. Mechanical changes in thawing permafrost rocks and their influence on rock stability at the Zugspitze summit, Germany - a research concept

    NASA Astrophysics Data System (ADS)

    Mamot, Philipp; Scandroglio, Riccardo; Krautblatter, Michael

    2015-04-01

    During the last century, alpine permafrost warmed up by 0.5 to 0.8 °C in the upper decameters. Its degradation can influence the stability of rock slopes in alpine environments. An increasing number of rockfalls and rockslides of all magnitudes are reported to originate from permafrost-affected rock faces which reveal massive ice at their detachment scarps after failure. Discontinuity patterns and their mechanical properties present a key control of rock slope stability. These fractures are considered to experience considerable mechanical changes during transition from frozen to unfrozen state: the shear resistance of rocks is reduced in terms of decreased critical fracture toughness of intact rock bridges and shear strength; compressive strength and tensile strength of the intact rock are reduced in the same way. The impact of rising rock temperature on rock-mechanical properties which control early stages of destabilization remains poorly understood. In this study we combine rock-mechanical testing in the laboratory with geotechnical, kinematic and geophysical monitoring at the Zugspitze summit, Germany, to investigate the influence of thawing rock on its rock-mechanical properties focusing on mechanisms of destabilization along discontinuities. Our investigations will contribute to a better rock-ice-mechanical process understanding of degrading permafrost rocks. To assess stability conditions at the Zugspitze summit we conduct field work at an unstable area of about 104 m3 of rock at the crest at 2885 m a.s.l. that is affected by degrading permafrost. This is indicated by a persistent ice filled cave with direct contact to the area of instability. Our preliminary work consists of i) continuous and discontinuous fracture displacement measurements since 2009 which reveal deformation rates of 0.06 to 1.7 cm/year, ii) electrical resistivity (ERT) and seismic refraction tomography (SRT) in the August of 2014 and iii) uniaxial compressive strength and tensile

  13. Our World: The Rock Cycle

    NASA Image and Video Library

    Find out how rocks brought to Earth by the Apollo astronauts have helped NASA learn more about the rock cycle. Compare igneous, sedimentary and metamorphic rocks found on Earth to three types of ro...

  14. The relative abundances of resolved l2CH2D2 and 13CH3D and mechanisms controlling isotopic bond ordering in abiotic and biotic methane gases

    NASA Astrophysics Data System (ADS)

    Young, E. D.; Kohl, I. E.; Lollar, B. Sherwood; Etiope, G.; Rumble, D.; Li (李姝宁), S.; Haghnegahdar, M. A.; Schauble, E. A.; McCain, K. A.; Foustoukos, D. I.; Sutclife, C.; Warr, O.; Ballentine, C. J.; Onstott, T. C.; Hosgormez, H.; Neubeck, A.; Marques, J. M.; Pérez-Rodríguez, I.; Rowe, A. R.; LaRowe, D. E.; Magnabosco, C.; Yeung, L. Y.; Ash, J. L.; Bryndzia, L. T.

    2017-04-01

    We report measurements of resolved 12CH2D2 and 13CH3D at natural abundances in a variety of methane gases produced naturally and in the laboratory. The ability to resolve 12CH2D2 from 13CH3D provides unprecedented insights into the origin and evolution of CH4. The results identify conditions under which either isotopic bond order disequilibrium or equilibrium are expected. Where equilibrium obtains, concordant Δ12CH2D2 and Δ13CH3D temperatures can be used reliably for thermometry. We find that concordant temperatures do not always match previous hypotheses based on indirect estimates of temperature of formation nor temperatures derived from CH4/H2 D/H exchange, underscoring the importance of reliable thermometry based on the CH4 molecules themselves. Where Δ12CH2D2 and Δ13CH3D values are inconsistent with thermodynamic equilibrium, temperatures of formation derived from these species are spurious. In such situations, while formation temperatures are unavailable, disequilibrium isotopologue ratios nonetheless provide novel information about the formation mechanism of the gas and the presence or absence of multiple sources or sinks. In particular, disequilibrium isotopologue ratios may provide the means for differentiating between methane produced by abiotic synthesis vs. biological processes. Deficits in 12CH2D2 compared with equilibrium values in CH4 gas made by surface-catalyzed abiotic reactions are so large as to point towards a quantum tunneling origin. Tunneling also accounts for the more moderate depletions in 13CH3D that accompany the low 12CH2D2 abundances produced by abiotic reactions. The tunneling signature may prove to be an important tracer of abiotic methane formation, especially where it is preserved by dissolution of gas in cool hydrothermal systems (e.g., Mars). Isotopologue signatures of abiotic methane production can be erased by infiltration of microbial communities, and Δ12CH2D2 values are a key tracer of microbial recycling.

  15. On the Assignment of Optically Pumped Far-Infrared Laser Emission from CH 3OH

    NASA Astrophysics Data System (ADS)

    Lees, R. M.; Xu, Li-Hong

    1999-08-01

    Progress in the analysis of the infrared spectrum of CH3OH in the 930-1450 cm-1 region has led to assignments, confirmations, or new insights for a number of far-infrared laser (FIRL) transition systems optically pumped by CO2 lasers. Many of the systems involve FIRL transitions among the CO-stretching, CH3-rocking, OH-bending, and CH3-deformation vibrational modes, giving useful information on the torsion-rotation structure of the methanol vibrational energy manifold. Some anomalies and mysteries concerning the identity of the lasing levels have been resolved, but several new ones have arisen. Altogether, 45 CH3OH IR-pump/FIR-laser systems are examined in light of the new spectroscopic information; about half of the system assignments are new and half have been previously reported in the literature and are here confirmed, extended, or revised.

  16. Rock fracture image acquisition with both visible and ultraviolet illuminations

    NASA Astrophysics Data System (ADS)

    Wang, Weixing; Hakami, Eva

    2006-02-01

    Swedish Nuclear Fuel and Waste Management Company (SKB) have identified the need for a better understanding of radionuclide transport and retention processes in fractured rock since 1994. In the study, the first hard problem is to obtain rock fracture images of a good quality, since rock surface is very rough, and composed of complicated and multiple fractures, as a result, image acquisition is the first important. As a cooperation project between Sweden and China, we sampled a number of rock specimens for analyzing rock fracture network by visible and ultraviolet image technique, in the field. The samples are resin injected, in which way; opened fractures can be seen clearly by means of UV light illumination, and the rock surface information can be obtained by using visible optical illumination. We used different digital cameras and microscope to take images by two illuminations. From the same samples; we found that UV illumination image gives the clear information of fracture opening or closing, and the visible optical illumination gives the information of the rock surface (e.g. filling materials inside of fractures). By applying this technique, the minimum width of rock fracture 0.01 mm can be analyzed. This paper presents: (1) Rock fracture image acquiring techniques; (2) Rock fracture image acquisition by using UV light illumination and visible optical illumination; and (3) Conclusions. The studied method can be used both in the field and a laboratory.

  17. Space Weathering of Rocks

    NASA Technical Reports Server (NTRS)

    Noble, Sarah

    2011-01-01

    Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. On the Moon, rocks make up only a very small percentage of the exposed surface and areas where rocks are exposed, like central peaks, are often among the least space weathered regions we find in remote sensing data. However, our studies of weathered Ap 17 rocks 76015 and 76237 show that significant amounts of weathering products can build up on rock surfaces. Because rocks have much longer surface lifetimes than an individual soil grain, and thus record a longer history of exposure, we can study these products to gain a deeper perspective on the weathering process and better assess the relative impo!1ance of various weathering components on the Moon. In contrast to the lunar case, on small asteroids, like Itokowa, rocks make up a large fraction of the exposed surface. Results from the Hayabusa spacecraft at Itokowa suggest that while the low gravity does not allow for the development of a mature regolith, weathering patinas can and do develop on rock surfaces, in fact, the rocky surfaces were seen to be darker and appear spectrally more weathered than regions with finer materials. To explore how weathering of asteroidal rocks may differ from lunar, a set of ordinary chondrite meteorites (H, L, and LL) which have been subjected to artificial space weathering by nanopulse laser were examined by TEM. NpFe(sup 0) bearing glasses were ubiquitous in both the naturally-weathered lunar and the artificially-weathered meteorite samples.

  18. The Cl-initiated oxidation of CH(3)C(O)OCH=CH (2), CH (3)C(O)OCH (2)CH=CH (2), and CH (2)=CHC(O)O(CH (2)) (3)CH (3) in the troposphere.

    PubMed

    Blanco, María B; Bejan, Iustinian; Barnes, Ian; Wiesen, Peter; Teruel, Mariano A

    2009-09-01

    Unsaturated esters are emitted to the atmosphere from biogenic and anthropogenic sources, including those from the polymer industry. Little information exists concerning the atmospheric degradation of unsaturated esters, which are mainly initiated by OH radicals. Limited information is available on the degradation of alkenes by Cl atoms and almost no data exists for the reactions of unsaturated esters with Cl atoms. This data is necessary to assess the impact of such reactions in maritime environments where, under circumstances, OH radical- and Cl atom-initiated oxidation of the compounds can be important. Rate coefficients for the reactions of chlorine atoms with vinyl acetate, allyl acetate, and n-butyl acrylate have been determined at 298 +/- 3 K and atmospheric pressure. The kinetic data have been used in combination with that for structurally similar compounds to infer the kinetic contributions from the possible reaction channels to the overall reaction rate. The decay of the organics was followed using in situ Fourier transform infrared spectroscopy and the rate coefficients were determined using a relative kinetic method and different hydrocarbon reference compounds. The following room temperature rate coefficients (in cm(3) molecule(-1) s(-1)) were obtained: k (1) (Cl + CH(3)C(O)OCH=CH(2)) = (2.68 +/- 0.91) x 10(-10), k (2) (Cl + CH(3)C(O)OCH(2)CH=CH(2)) = (1.30 +/- 0.45) x 10(-10), and k (3) (Cl + CH(2)=CHC(O)O(CH(2))(3)CH(3)) = (2.50 +/- 0.78) x 10(-10), where the uncertainties are a combination of the 2sigma statistical errors from linear regression analyses and a contribution to cover uncertainties in the rate coefficients of the reference hydrocarbons. This is the first kinetic study of the title reactions under atmospheric conditions. The kinetic data were analyzed in terms of reactivity trends and used to estimate the atmospheric lifetimes of the esters and assess their potential importance in the marine atmosphere. Although reaction with OH radicals

  19. CH-47F Improved Cargo Helicopter (CH-47F)

    DTIC Science & Technology

    2013-12-01

    Authority/Budget Activity BY - Base Year DAMIR - Defense Acquisition Management Information Retrieval Dev Est - Development Estimate DoD - Department of...SEP 1999 LRIP (#1) Contract Award DEC 2002 DEC 2002 JUN 2003 DEC 2002 LRIP (#2) Contract Award DEC 2003 DEC 2003 JUN 2004 DEC 2003 IOT &E Start MAR...NOV 2007 JUL 2007 Change Explanations None Memo CH-47F December 2013 SAR April 16, 2014 16:29:40 UNCLASSIFIED 8 IOT &E is a single effort

  20. Detached rock evaluation device

    DOEpatents

    Hanson, David R.

    1986-01-01

    A rock detachment evaluation device (10) having an energy transducer unit 1) for sensing vibrations imparted to a subject rock (172) for converting the sensed vibrations into electrical signals, a low band pass filter unit (12) for receiving the electrical signal and transmitting only a low frequency segment thereof, a high band pass filter unit (13) for receiving the electrical signals and for transmitting only a high frequency segment thereof, a comparison unit (14) for receiving the low frequency and high frequency signals and for determining the difference in power between the signals, and a display unit (16) for displaying indicia of the difference, which provides a quantitative measure of rock detachment.

  1. Dirty Rotten Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by the panoramic camera on the Mars Exploration Rover Spirit shows a collection of rocks (upper right) at Gusev Crater that have captured the attention of scientists for their resemblance to rotting loaves of bread. The insides of the rocks appear to have been eroded, while their outer rinds remain more intact. These outer rinds are reminiscent of those found on rocks at Meridiani Planum's 'Eagle Crater.' This image was captured on sol 158 (June 13, 2004).

  2. Weird 'Endurance' Rock Ahead

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the Mars Exploration Rover Opportunity shows a bizarre, lumpy rock dubbed 'Wopmay' on the inner slopes of 'Endurance Crater.' Scientists say the rock's unusual texture is unlike any others observed so far at Meridiani Planum. Wopmay measures approximately 1 meter (3.3 feet) across. The image was taken by the rover's panoramic camera on sol 195 (Aug. 11, 2004). Opportunity will likely travel to this or a similar rock in coming sols for a closer look at the alien surface.

  3. Weird 'Endurance' Rock Ahead

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the Mars Exploration Rover Opportunity shows a bizarre, lumpy rock dubbed 'Wopmay' on the inner slopes of 'Endurance Crater.' Scientists say the rock's unusual texture is unlike any others observed so far at Meridiani Planum. Wopmay measures approximately 1 meter (3.3 feet) across. The image was taken by the rover's panoramic camera on sol 195 (Aug. 11, 2004). Opportunity will likely travel to this or a similar rock in coming sols for a closer look at the alien surface.

  4. Dirty Rotten Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by the panoramic camera on the Mars Exploration Rover Spirit shows a collection of rocks (upper right) at Gusev Crater that have captured the attention of scientists for their resemblance to rotting loaves of bread. The insides of the rocks appear to have been eroded, while their outer rinds remain more intact. These outer rinds are reminiscent of those found on rocks at Meridiani Planum's 'Eagle Crater.' This image was captured on sol 158 (June 13, 2004).

  5. Do Bare Rocks Exist on the Moon?

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Bandfield, Joshua; Greenhagen, Benjamin; Hayne, Paul; Leader, Frank; Paige, David

    2017-01-01

    Astronaut surface observations and close-up images at the Apollo and Chang'e 1 landing sites confirm that at least some lunar rocks have no discernable dust cover. However, ALSEP (Apollo Lunar Surface Experiments Package) measurements as well as astronaut and LADEE (Lunar Atmosphere and Dust Environment Explorer) orbital observations and laboratory experiments possibly suggest that a fine fraction of dust is levitated and moves across and above the lunar surface. Over millions of years such dust might be expected to coat all exposed rock surfaces. This study uses thermal modeling, combined with Diviner (a Lunar Reconnaissance Orbiter experiment) orbital lunar eclipse temperature data, to further document the existence of bare rocks on the lunar surface.

  6. Rock-brine chemical interactions. Final report

    SciTech Connect

    Not Available

    1982-02-01

    The results of experimental interaction of powdered volcanic rock with aqueous solutions are presented at temperatures from 200 to 400/sup 0/C, 500 to 1000 bars fluid pressure, with reaction durations of approximately 30 days under controlled laboratory conditions. The aim of this research is to develop data on the kinetics and equilibria of rock solution interactions that will provide insight into the complex geochemical processes attending geothermal reservoir development, stimulation, and reinjection. The research was done in the Stanford Hydrothermal Lab using gold cell equipment of the Dickson design. This equipment inverts the solution rock mixture several times a minute to ensure thorough mixing. Solution samples were periodically withdrawn without interruption of the experimental conditions. The data from these experiments suggests a path dependent series of reactions by which geothermal fluids might evolve from meteoric or magmatic sources.

  7. Martian CH(4): sources, flux, and detection.

    PubMed

    Onstott, T C; McGown, D; Kessler, J; Lollar, B Sherwood; Lehmann, K K; Clifford, S M

    2006-04-01

    Recent observations have detected trace amounts of CH(4) heterogeneously distributed in the martian atmosphere, which indicated a subsurface CH(4) flux of ~2 x 10(5) to 2 x 10(9) cm(2) s(1). Four different origins for this CH(4) were considered: (1) volcanogenic; (2) sublimation of hydrate- rich ice; (3) diffusive transport through hydrate-saturated cryosphere; and (4) microbial CH(4) generation above the cryosphere. A diffusive flux model of the martian crust for He, H(2), and CH(4) was developed based upon measurements of deep fracture water samples from South Africa. This model distinguishes between abiogenic and microbial CH(4) sources based upon their isotopic composition, and couples microbial CH(4) production to H(2) generation by H(2)O radiolysis. For a He flux of approximately 10(5) cm(2) s(1) this model yields an abiogenic CH(4) flux and a microbial CH(4) flux of approximately 10(6) and approximately 10(9) cm(2) s(1), respectively. This flux will only reach the martian surface if CH(4) hydrate is saturated in the cryosphere; otherwise it will be captured within the cryosphere. The sublimation of a hydrate-rich cryosphere could generate the observed CH(4) flux, whereas microbial CH(4) production in a hypersaline environment above the hydrate stability zone only seems capable of supplying approximately 10(5) cm(2) s(1) of CH(4). The model predicts that He/H(2)/CH(4)/C(2)H(6) abundances and the C and H isotopic values of CH(4) and the C isotopic composition of C(2)H(6) could reveal the different sources. Cavity ring-down spectrometers represent the instrument type that would be most capable of performing the C and H measurements of CH(4) on near future rover missions and pinpointing the cause and source of the CH(4) emissions.

  8. [Study of density functional theory (DFT) for Raman spectra of CH3OLi and CH3CH2OLi].

    PubMed

    Yu, Hong-Jing; Liu, Zhao-Jun; Yin, Yan-Feng; Fu, Juan; Ding, Li; Mo, Yu-Jun

    2009-11-01

    Molecular configurations of CH3 OLi and CH3 CH2 OLi were structured based on the previous study that lithium atom and oxygen atom are directly joined by O-Li bond in alkoxy lithium (ROLi). Neither experimental nor theoretical Raman spectra of CH3 OLi and CH3 CH2 OLi have been reported up to now. In the present paper, DFT method at the B3LYP/ 6-31G(d,p) level was used to optimize molecular configurations of CH3 OLi and CH3 CH2 OLi, obtaining each corresponding equilibrium configuration. Vibration frequencies and Raman spectra of these two molecules were calculated based on equilibrium configuration. The vibration frequencies of obtained calculated results were analyzed by normal coordinate analysis. Besides, the Raman vibration modes of CH3 OLi and CH3 CH2 OLi were assigned according to potential energy distribution of each vibration frequency, which will provide theoretical basis for experimental workers to analyze the components of solid electrolyte interface film (SEI film) of lithium ion battery.

  9. Focus on the Rock.

    ERIC Educational Resources Information Center

    Shewell, John

    1994-01-01

    Describes historical accounts of the manipulation and importance of the Earth and its mineral resources. A foldout, "Out of the Rock," provides a collection of activities and information that helps make integration of the aforementioned concepts easy. (ZWH)

  10. Many-Layered Rock

    NASA Image and Video Library

    2006-08-23

    This MOC image shows light-toned, layered, sedimentary rocks in a crater in the northwestern part of Schiaparelli basin. The repetition of these horizontal layers suggests the sediments could have been deposited in an ancient crater lake

  11. Rock in Its Elements

    ERIC Educational Resources Information Center

    MacCluskey, Thomas

    1969-01-01

    A discussion of the following musical elements of rock: rhythm, melody, harmony, and form. A impromptu analysis made at a session of the Youth Music Symposium, July 25, 1969. Remarks transcribed from tape. (Author/AP)

  12. Prominent Rocks - 3-D

    NASA Image and Video Library

    1997-07-13

    Many prominent rocks near the Sagan Memorial Station are featured in this image from NASA Mars Pathfinder. Shark, Half-Dome, and Pumpkin are at center 3D glasses are necessary to identify surface detail.

  13. Terby's Layered Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    14 March 2004 Layered rock outcrops are common all across Mars, and the Mars rover, Opportunity, has recently investigated some layered rocks in Meridiani Planum. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layered sedimentary rocks in northern Terby Crater, located just north of the giant Hellas Basin near 27.5oS, 285.8oW. Hundreds of layers are exposed in a deposit several kilometers thick within Terby. A history of events that shaped the northern Hellas region is recorded in these rocks, just waiting for a person or robot to investigate. The picture covers an area 3 km (1.9 mi) across. Sunlight illuminates the scene from the left.

  14. Broken Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    18 May 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows broken-up blocks of sedimentary rock in western Candor Chasma. There are several locations in western Candor that exhibit this pattern of broken rock. The manner in which these landforms were created is unknown; it is possible that there was a landslide or a meteoritic impact that broke up the materials. One attribute that is known: in some of these cases, it seems that the rock was broken and then buried by later sedimentary rocks, before later being exhumed so that they can be seen from orbit today.

    Location near: 6.9oS, 75.5oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  15. Tithonium Chasma's Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-565, 5 December 2003

    Exposures of light-toned, layered, sedimentary rocks are common in the deep troughs of the Valles Marineris system. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example from western Tithonium Chasma. The banding seen here is an eroded expression of layered rock. Sedimentary rocks can be composed of (1) the detritus of older, eroded and weathered rocks, (2) grains produced by explosive volcanism (tephra, also known as volcanic ash), or (3) minerals that were chemically precipitated out of a body of liquid such as water. These outcrops are located near 4.8oS, 89.7oW. The image covers an area 3 km (1.9 mi) wide and is illuminated from the lower left.

  16. Ancient Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-469, 31 August 2003

    The terraced area in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image is an outcropping of ancient, sedimentary rock. It occurs in a crater in western Arabia Terra near 10.8oN, 4.5oW. Sedimentary rocks provide a record of past environments on Mars. Field work will likely be required to begin to get a good understanding of the nature of the record these rocks contain. Their generally uniform thickness and repeated character suggests that deposition of fine sediment in this crater was episodic, if not cyclic. These rocks might be indicators of an ancient lake, or they might have been deposited from grains settling out of an earlier, thicker, martian atmosphere. This image covers an area 3 km (1.9 mi) across and is illuminated from the lower left.

  17. Focus on the Rock.

    ERIC Educational Resources Information Center

    Shewell, John

    1994-01-01

    Describes historical accounts of the manipulation and importance of the Earth and its mineral resources. A foldout, "Out of the Rock," provides a collection of activities and information that helps make integration of the aforementioned concepts easy. (ZWH)

  18. Writing Rock Music Reviews.

    ERIC Educational Resources Information Center

    Brown, Donal

    1980-01-01

    Suggests ways student reviewers of rock music groups can write better reviews. Among the suggestions made are that reviewers occasionally discuss the audience or what makes a particular group unique, support general comment with detail, and avoid ecstatic adjectives. (TJ)

  19. East Candor Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    24 September 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a thick, massive outcrop of light-toned rock exposed within eastern Candor Chasma, part of the vast Valles Marineris trough system. Dark, windblown sand has banked against the lower outcrop slopes. Outcrops such as this in the Valles Marineris chasms have been known since Mariner 9 images were obtained in 1972. However, the debate as to whether these represent sedimentary or igneous rocks has not been settled within the Mars science community. In either case, they have the physical properties of sedimentary rock (that is, they are formed of fine-grained materials), but some igneous rocks made up of volcanic ash may also exhibit these properties. This image is located near 7.8oS, 65.3oW, and covers an area approximately 3 km (1.9 mi) across. The scene is illuminated by sunlight from the lower left.

  20. Terby's Layered Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    14 March 2004 Layered rock outcrops are common all across Mars, and the Mars rover, Opportunity, has recently investigated some layered rocks in Meridiani Planum. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layered sedimentary rocks in northern Terby Crater, located just north of the giant Hellas Basin near 27.5oS, 285.8oW. Hundreds of layers are exposed in a deposit several kilometers thick within Terby. A history of events that shaped the northern Hellas region is recorded in these rocks, just waiting for a person or robot to investigate. The picture covers an area 3 km (1.9 mi) across. Sunlight illuminates the scene from the left.

  1. Mars Rock Analysis Briefing

    NASA Image and Video Library

    2013-03-12

    Michael Meyer (left), lead scientist, Mars Exploration Program at NASA Headquarters, speaks at a news conference presenting findings of the Curiosity rover's analysis of the first sample of rock powder collected on Mars, Tuesday, March 12, 2013 in Washington. The rock sample collected shows ancient Mars could have supported living microbes. John Grotzinger, Curiosity project scientist, California Institute of Technology is seen on the right. Photo Credit: (NASA/Carla Cioffi)

  2. Fractal Geometry of Rocks

    SciTech Connect

    Radlinski, A.P.; Radlinska, E.Z.; Agamalian, M.; Wignall, G.D.; Lindner, P.; Randl, O.G.

    1999-04-01

    The analysis of small- and ultra-small-angle neutron scattering data for sedimentary rocks shows that the pore-rock fabric interface is a surface fractal (D{sub s}=2.82) over 3 orders of magnitude of the length scale and 10 orders of magnitude in intensity. The fractal dimension and scatterer size obtained from scanning electron microscopy image processing are consistent with neutron scattering data. {copyright} {ital 1999} {ital The American Physical Society}

  3. Mars Rock Analysis Briefing

    NASA Image and Video Library

    2013-03-12

    Paul Mahaffy (right), principal investigator for Curiosity's Sample Analysis at Mars (SAM) investigation at NASA's Goddard Space Flight Center in Maryland, demonstrates how the SAM instrument drilled and captured rock samples on the surface of Mars at a news conference, Tuesday, March 12, 2013 at NASA Headquarters in Washington. The analysis of the rock sample collected shows ancient Mars could have supported living microbes. Photo Credit: (NASA/Carla Cioffi)

  4. Evolution of sedimentary rock formation of a rock association level

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. G.

    2017-07-01

    The evolution of sedimentary rock formation of a highly organized level (paragenetic rock associations) is more complex than that of a poorly organized level (rocks). Subjacent rock associations are established for the entire geological evolution of the Earth: they varied in time and were obsolescent or, in contrast, nascent and momentary. A certain cyclicity of evolution is identified along with directed changes.

  5. CH Stars and Barium Stars

    NASA Astrophysics Data System (ADS)

    Bond, H.; Sion, E.; Murdin, P.

    2000-11-01

    The classical barium (or `Ba II') stars are RED GIANT STARS whose spectra show strong absorption lines of barium, strontium and certain other heavy elements, as well as strong features due to carbon molecules. Together with the related class of CH stars, the Ba II stars were crucial in establishing the existence of neutron-capture reactions in stellar interiors that are responsible for the synt...

  6. Petrology of metamorphic rocks

    SciTech Connect

    Suk, M.

    1983-01-01

    ''Petrology of Metamorphic Rocks'' reviews Central European opinions about the origin and formation of metamorphic rocks and their genetic systems, confronting the works of such distinguished European scientists as Rosenbusch, Becke, Niggli, Sander, Eskola, Barth and others with present-day knowledge and the results of Soviet and American investigations. The initial chapters discuss the processes that give rise to metamorphic rocks, and the main differences between regional metamorphism and other types of alterations, the emphasis being laid on the material characteristic of the processes of metamorphism, metasomatism and ultrametamorphism. Further chapters give a brief characterization of research methods, together with a detailed genetic classification based on the division of primary rocks into igneous rocks, sediments and ore materials. The effects of metamorphic alterations and those of the properties of the primary rocks are analyzed on the basis of examples taken chiefly from the Bohemian Massif, the West Carpathians, other parts of the European Variscides, from the crystalline Scandinavian Shelf in Norway and Finland, and from the Alps. Typical examples are documented by a number of charts, photographs and petrographical - particularly petrochemical - data.

  7. THE PROTOTYPE ALUMINUM - CARBON SINGLE, DOUBLE, AND TRIPLE BONDS: Al - CH3, Al = CH2, AND Al. = CH

    SciTech Connect

    Fox, Douglas J.; Ray, Douglas; Rubesin, Philip C.; Schaefer III, Henry F.

    1980-06-01

    Nonempirical quantum mechanical methods have been used to investigate the A{ell}CH{sub 3}, A{ell}CH{sub 2}, and A{ell}CH molecules, which may be considered to represent the simplest aluminum-carbon single, double, and triple bonds. Equilibrium geometries and vibrational frequencies were determined at the self-consistent-field level of theory using double zeta basis set: A{ell}(11s7p/6s4p), C(9s5p/4s2p), H(4s/2s). The {sup 1}A{sub 1} ground state of A{ell}CH{sub 3} has a reasonably conventional A{ell}-C single bond of length 2.013 {angstrom}, compared to 1.96 {angstrom} in the known molecule A{ell}(CH{sub 3}){sub 3}. The CH equilibrium distance is 1.093 {angstrom} and the A{ell}-C-H angle 111.9{sup o}. The structures of three electron states each of A{ell}CH{sub 2} and A{ell}CH were similarly predicted, The interesting result is that the ground state of A{ell}CH{sub 2} does not contain an A{ell}-C double bond, and the ground state of A{ell}CH is not characterized by an A{ell}{triple_bond}C bond. The multiply-bonded electronic states do exist but they lie 21 kcal (A{ell}CH{sub 2}) and 86 kcal (A{ell}CH) above the respective ground states. The dissociation energies of the three ground electronic states are predicted to be 68 kcal (A{ell}CH{sub 3}), 77 kcal (A{ell}CH{sub 2}), and 88 kcal (A{ell}CH), Vibrational frequencies are also predicted for the three molecules, and their electronic structures are discussed with reference to Mulliken populations and dipole moments.

  8. Dynamics of CH4 oxidation in landfill biocover soil: effect of O2/CH4 ratio on CH4 metabolism.

    PubMed

    Chi, Zi-Fang; Lu, Wen-Jing; Li, Huai; Wang, Hong-Tao

    2012-11-01

    The CH(4) oxidation dynamics was investigated by observing the CH(4) oxidation rates at concentrations (from 1.0 × 10(4) ppmv to 2.0 × 10(5) ppmv) mixed with O(2) (from 5.0 × 10(4) ppmv to 7.5 × 10(5) ppmv). The CH(4)-O(2) dual-substrate model based on Michaelis-Menten equation (K(m, CH4) = 1.4 × 10(5) ppmv; V(max) = 7.6 × 10(2) μmol kg(-1) d(-1); K(m, O2) = 5.5 × 10(4) ppmv) was got and agreed well with the experimental data when the initial O(2)/CH(4) ratio reached 3:1, indicating full aerobic CH(4) oxidization. Anoxic CH(4) oxidation gradually became predominant with decreasing O(2)/CH(4) ratios. The effect of CH(4) is more significant than O(2), as evidenced by higher slope (0.58 kg(-1) d(-1)) of V(CH4) - [S(CH4)] line graph compared with that of V(CH4) - [S(CH4)] line graph (0.062 kg(-1) d(-1)). The paper presents the dynamics of CH(4) oxidation and proposes that ratio of O(2)/CH(4) need to be considered for their dynamically changing in environmental habitats. The findings provide an important parameter for optimizing the operations of breathing biocover systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Modeling Transport of Viruses in Fractured Rock

    NASA Astrophysics Data System (ADS)

    Sleep, B. E.; Mondal, P. K.

    2011-12-01

    Fractured rock aquifers are frequently used for water supply for human consumption. In many instances the fractured rock aquifers are vulnerable to contamination by pathogens, including viruses, due to co-location of on-site septic systems, wastewater discharges, biosolids and agricultural activities. Approximately half of the illnesses associated with groundwater consumption in the Unites States have been attributed to viral contamination. A number of these cases have been related to transport of viruses from septic systems to drinking water wells. Despite the potential for rapid transport of viruses through rock fractures to drinking water wells, the understanding of virus transport in fractured rock is limited. In particular, the impacts of virus size, fracture aperture variability and roughness, matrix porosity, groundwater velocity, and geochemical conditions have not been well studied. In this study, a multidimensional model for virus transport in variable aperture fractures is presented. The model is applied to laboratory experiments on transport of virus-sized latex microspheres (0.02 and 0.2 microns) and bacteriophages (MS2 and PR772) in artificially fractured dolomite rocks. In these experiments significant impacts of particle size, fracture characteristics, groundwater velocity, and geochemistry were observed. Given the variability in aperture distribution and associated spatial variation in groundwater flow field, one-dimensional models were not suitable for a comprehensive evaluation of the mechanisms governing the microsphere and bacteriophage transport. Various relationships for virus retention (attachment and detachment) are evaluated to provide insight into the governing processes in virus transport in fractured rock. In addition, the role of virus size, fracture aperture variability, fracture roughness, fracture surface charge, matrix porosity, groundwater velocity, and ionic strength in virus transport are evaluated. Scale-up to the field is

  10. Percolation and Physical Properties of Rock Salt

    NASA Astrophysics Data System (ADS)

    Ghanbarzadeh, S.; Hesse, M. A.; Prodanovic, M.

    2015-12-01

    Textural equilibrium controls the distribution of the liquid phase in many naturally occurring porous materials such as partially molten rocks and alloys, salt-brine and ice-water systems. In these materials, pore geometry evolves to minimize the solid-liquid interfacial energy while maintaining a constant dihedral angle, θ, at solid-liquid contact lines. A characteristic of texturally equilibrated porous media, in the absence of deformation, is that the pore network percolates at any porosity for θ<60° while a percolation threshold exists for θ>60°. However, in ductile polycrystalline materials including rock salt, the balance between surface tension and ductile deformation controls the percolation of fluid pockets along grain corners and edges. Here we show sufficiently rapid deformation can overcome this threshold by elongating and connecting isolated pores by examining a large number of accessible salt samples from deep water Gulf of Mexico. We first confirm the percolation threshold in static laboratory experiments on synthetic salt samples with X-ray microtomography. We then provide field evidence on existence of interconnected pore space in rock salt in extremely low porosities, significantly below the static percolation threshold. Scaling arguments suggest that strain rates in salt are sufficient to overcome surface tension and may allow percolation. We also present the first level-set computations of three-dimensional texturally equilibrated melt networks in realistic rock fabrics. The resulting pore space is used to obtain the effective physical properties of rock, effective electrical conductivity and mechanical properties, with a novel numerical model.

  11. Dynamic elasticity of microbedded and fractured rocks

    NASA Astrophysics Data System (ADS)

    Frazer, L. Neil

    1990-04-01

    Microbedded rocks have an anisotropic frequency-dependent sound speed which depends on the intrinsic sound speeds of the individual microbeds and on the O'Doherty-Anstey effect. Fractured rocks have an anisotropic frequency-dependent sound speed which depends on the intrinsic sound speed of the unfractured rock, the frequency-dependent phase shift that occurs during reflection or transmission across a fracture, and the interfracture O'Doherty-Anstey effect. These effects are neglected by the quasistatic methods presently used to generate elastic constants. Here I introduce a new method for generating elastic constants that contain all the above effects. First, a statistical description of the rock is used to generate a sample of the rock. Then an exact two-way method is used to propagate just a few plane waves, of frequency ƒ, a distance of several wavelengths from the source. If an equivalent homogeneous medium exists at frequency ƒ, then the computed motions must also satisfy a one-way elastic wave equation for that equivalent medium. This one-way wave equation is used to invert for the elastic coefficients. When no equivalent medium exists, perhaps because ƒ is too large, this is indicated by the inversion. Possible applications of the method are prediction of seismic sound speeds from measurements of bed thicknesses in cores; analysis of laboratory data for fracture constitutive relations; and inversion of multioffset vertical seismic profiling data for elastic coefficients comparable with those predicted from cores.

  12. The Isotope Geochemistry of Abyssal Peridotites and Related Rocks

    DTIC Science & Technology

    1993-06-01

    of I mantle rocks have been more extensively studied, such as peridotite xenoliths in basalts and kimberlites (Peterman, et al., 1970; Shimizu, 1975...Annual International Kimberlite Conference 1977 American Geophysical Union, Washington, D.C. Bender, J.F., Langmuir, C.H. and Hanson, G.N. (1984...Shimizu, N. (1975) Geochemistry of ultramafic inclusions from Salt Lake Crater, 3 Hawaii and from South African Kimberlites . Physics and Chemistry of the

  13. Lake Physical and Geochemical Traits Impact CH4 and CO2 Concentrations

    NASA Astrophysics Data System (ADS)

    Perry, A. L.; Logozzo, L. A.; Wik, M.; Thornton, B. F.; Crill, P. M.; Johnson, J. E.; Varner, R. K.

    2014-12-01

    Spatiotemporal variability combined with few lake measurements have resulted in a large amount of uncertainty regarding the emission potential of lakes. Both the amount of methane (CH4) emitted and controls on this emission vary spatially and temporally. A positive correlation has been shown between lake water/sediment temperature and the amount of CH4 emitted from lakes. Lack of data available on how other lake characteristics affect the emission of greenhouse gasses, specifically CH4 and carbon dioxide (CO2), indicate the need for measurements across a diversity of lake types to be able to accurately predict emissions in the future. This study focused on answering the question of how lake physical and geochemical traits impact emission potential in lake waters. Twenty subarctic lakes located in the Stordalen area, Abisko, Sweden (68°21'N, 18°49'E) were sampled for dissolved CH4, CO2 (as dissolved inorganic carbon (DIC)), DOC, particulate organic carbon (POC), water temperature, dissolved oxygen (DO), conductivity, and pH. Qualitative characteristics of shoreline vegetation and lake bottom structure were also noted. Data analysis included analysis of variance (ANOVA) and multiple linear regression analysis to determine the differences and predictability of emission potential based on the observed lake characteristics. The strongest correlation between CH4 concentrations and temperature occurred in lakes with algae and sediment bottom types with the lowest occurrences in rock and peat bottom types. Methane concentrations were highest in lakes with shore types composed of Carex spp., peat/ Carex spp. and rock/ Carex spp..

  14. Fourier transform infrared spectroscopic study of the kinetics of a first-order phase transition in tridecanoic acid CH3(CH2)11COOH

    NASA Astrophysics Data System (ADS)

    Marikhin, V. A.; Myasnikova, L. P.; Radovanova, E. I.; Volchek, B. Z.; Medvedeva, D. A.

    2017-02-01

    The structural changes in crystalline lamella cores of tridecanoic acid CH3(CH2)11COOH during heating in the range from the temperature T 1 = 13.5°C to T 2 > T m = 41.6°C have been investigated using Fourier transform infrared spectroscopy. The behavior of the bands of rocking (in the region of 720 cm-1) and bending (in the region of 1470 cm-1) vibrations of CH2 groups in tridecanoic acid methylene segments has been analyzed. It has been shown that, in the first-order phase transition region ( T s-s 36°C) within a narrow temperature range (Δ T 1 ≤ 1 K), there is a gradual transformation of the initial triclinic subcell into the hexagonal subcell. The mechanism of this transition has been considered in terms of the theory of diffuse first-order phase transitions.

  15. Observing and modeling links between soil moisture, microbes and CH4 fluxes from forest soils

    NASA Astrophysics Data System (ADS)

    Christiansen, Jesper; Levy-Booth, David; Barker, Jason; Prescott, Cindy; Grayston, Sue

    2017-04-01

    Soil moisture is a key driver of methane (CH4) fluxes in forest soils, both of the net uptake of atmospheric CH4 and emission from the soil. Climate and land use change will alter spatial patterns of soil moisture as well as temporal variability impacting the net CH4 exchange. The impact on the resultant net CH4 exchange however is linked to the underlying spatial and temporal distribution of the soil microbial communities involved in CH4 cycling as well as the response of the soil microbial community to environmental changes. Significant progress has been made to target specific CH4 consuming and producing soil organisms, which is invaluable in order to understand the microbial regulation of the CH4 cycle in forest soils. However, it is not clear as to which extent soil moisture shapes the structure, function and abundance of CH4 specific microorganisms and how this is linked to observed net CH4 exchange under contrasting soil moisture regimes. Here we report on the results from a research project aiming to understand how the CH4 net exchange is shaped by the interactive effects soil moisture and the spatial distribution CH4 consuming (methanotrophs) and producing (methanogens). We studied the growing season variations of in situ CH4 fluxes, microbial gene abundances of methanotrophs and methanogens, soil hydrology, and nutrient availability in three typical forest types across a soil moisture gradient in a temperate rainforest on the Canadian Pacific coast. Furthermore, we conducted laboratory experiments to determine whether the net CH4 exchange from hydrologically contrasting forest soils responded differently to changes in soil moisture. Lastly, we modelled the microbial mediation of net CH4 exchange along the soil moisture gradient using structural equation modeling. Our study shows that it is possible to link spatial patterns of in situ net exchange of CH4 to microbial abundance of CH4 consuming and producing organisms. We also show that the microbial

  16. Electrical Resistivity of Crystalline Rocks: Role of Carbon Films on Fracture Surfaces

    NASA Astrophysics Data System (ADS)

    Duba, A.; Kronenberg, A.; Karner, S.; Mathez, E.; Roberts, J.

    2006-12-01

    Electrical resistivity of dense crystalline quartzite is reduced by carbon films deposited on fractures during failure experiments performed at T=400°C in the presence of carbon- bearing fluids. Hollow cylinders of Sioux quartzite, jacketed by silver, were hydrostatically loaded to failure by applying pressurized argon gas at the outer diameter (reaching ~290 MPa at a rate of 0.1 MPa/s) while maintaining a constant pore pressure at the inner diameter. Pore fluids consisted of CO, CO2, CH4, a 1:1 mixture of CO2 and CH4 (each with pore pressures of 2.0 to 4.1 MPa) and air (at atmospheric pressure). Biaxial-stress states are calculated using elastic-stress solutions that account for the applied pressures and hollow-cylinder dimensions. For the inner wall of the cylinders, effective radial stress (σr) is zero and calculated effective differential stresses (σq- σr) reach 1225 MPa. Failure of hollow Sioux quartzite cylinders occurred by the formation of mode II shear fractures that transect the cylinder wall. The distribution of carbon in the run products was mapped by electron probe. Samples deformed in CO2 and air contained little or no carbon above the small amount that exists in the undeformed rock. Samples deformed in CO contain ubiquitous carbon films on the fracture surfaces that formed during deformation. Because carbon is absent on other free quartz surfaces that existed during the experiments, we conclude that the carbon films formed preferentially on the fractures as they formed. The radial resistivity of dry, undeformed Sioux quartzite cylinders is extremely large in the ambient laboratory atmosphere (>23 MØmega-m). The radial resistivity of Sioux quartzite cylinders that failed in pore fluids that promote carbon deposition are lower (2.8 to 4.6 MØmega-m for CO tests; 15.2 to 18.4 MØmega-m for CO2:CH4 tests). The results of this study help to isolate the role of carbon deposition on fresh fracture surfaces in altering the electrical properties of rocks

  17. An interlaboratory study of potassium determination in rocks and minerals.

    PubMed

    Rice, T D

    1976-05-01

    Seven laboratories took part in this interlaboratory study which was part of an investigation of the flame-speetrometric determination of potassium in rocks and minerals suitable for potassium-argon age-measurement. Three of these laboratories determined potassium in the following five international reference rocks: tonalite T-1, basalt BCR-1, andesite AGV-1, granite G-2, and granodiorite GSP-1. The other five samples (with the number of laboratories analysing them in parentheses) were: a chlorite rock (7), an altered basic igneous rock (5), an altered basaltic andesite (5), a biotite (6) and a potassium feldspar (7). Details of sample preparation and methods of analysis are given; no laboratory used exactly the same method as any of the other six laboratories. Results have been examined by analysis of variance; larger relative between- and within-laboratory variations occurred for the two samples containing less than 0.1% potassium than for seven of the eight other (higher potassium) samples; between-laboratory variations for the basalt BCR-1 and, to a lesser extent, the andesite AGV-1, were high and of similar magnitude to those for the samples containing less than 0.1% potassium. The causes of any poor interlaboratory agreement in the present study are considered.

  18. Technicians examine largest lunar rock sample collected

    NASA Image and Video Library

    1971-02-24

    S71-21245 (24 Feb. 1971) --- Dr. Daniel H. Anderson, an aerospace technologist and test director in the Nonsterile Nitrogen Processing Laboratory in the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center (MSC) looks at much-discussed Apollo 14 basketball-size rock through a microscope. The two moon-exploring crew men of Apollo 14 brought back 90-odd pounds of lunar sample material from their two periods of extravehicular activity (EVA) on the lunar surface in the Fra Mauro area.

  19. Laboratory Reagents

    SciTech Connect

    CARLSON, D.D.

    1999-10-08

    Replaced by WMH-310, Section 4.17. This document outlined the basic methodology for preparing laboratory reagents used in the 222-S Standards Laboratory. Included were general guidelines for drying, weighing, transferring, dissolving, and diluting techniques common when preparing laboratory reagents and standards. Appendix A contained some of the reagents prepared by the laboratory.

  20. Radio observations of the planets - The importance of laboratory measurements

    NASA Astrophysics Data System (ADS)

    de Pater, I.; Mitchell, D. L.

    1993-03-01

    Laboratory data on the line broadening parameters of H2S gas under Uranian/Neptunian conditions, on the far wings of the H2S and NH3 line profiles, and on the dielectric properties of CH4-, NH3-, H2S-, and NH4SH-ice are needed to constrain elemental abundances and understand the dynamics and cloud physics in the atmospheres of the giant planets. Measurements of the absorption coefficient of gaseous H2SO4 at millimeter wavelengths are needed in order to obtain a better understanding of Venus' atmosphere. To determine wind velocity fields in Venus' and Mars' atmospheres, accurate measurements of the center frequencies of the CO lines are necessary. The absorption and scattering properties of lunar soils and/or terrestrial rock powders at frequencies from approximately 1 to 200 GHz, determined in laboratory experiments, would provide a valuable addition to existing data at 450 MHz, 35 GHz, and far infrared frequencies. These data would be used to analyze the microwave spectra of planetary surfaces. Such studies may be helpful in distinguishing the effects of radiative transfer from those of nonlinear heat conduction and internal heat sources.

  1. First look at rock & soil properties

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The earliest survey of spectral properties of the rocks and soils surrounding Pathfinder was acquired as a narrow strip covering the region just beyond the where the rover made its egress from the lander. The wavelength filters used, all in the binocular camera's right eye, cover mainly visible wavelengths. These data reveal at least five kinds of rocks and soil in the immediate vicinity of the lander. All of the spectra are ratioed to the mean spectrum of bright red drift to highlight the differences. Different occurrences of drift (pink spectra) are closely similar. Most of the rocks (black spectra) have a dark gray color, and are both darker and less red than the drift, suggesting less weathering. Typical soils (green spectra) are intermediate in properties to the rocks and drift. Both these data and subsequent higher resolution images show that the typical soil consists of a mixture of drift and small dark gray particles resembling the rock. However, two other kinds of materials are significantly different from the rocks and drift. Pinkish or whitish pebbles and crusts on some of the rocks (blue spectra) are brighter in blue light and darker in near-infrared light than is the drift, and they lack the spectral characteristics closely associated with iron minerals. Dark red soils in the lee of several rocks are about as red as the drift, but consistently darker. The curvature in the spectrum at visible wavelengths suggests either more ferric iron minerals than in the drift or a larger particle size.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division

  2. First look at rock & soil properties

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The earliest survey of spectral properties of the rocks and soils surrounding Pathfinder was acquired as a narrow strip covering the region just beyond the where the rover made its egress from the lander. The wavelength filters used, all in the binocular camera's right eye, cover mainly visible wavelengths. These data reveal at least five kinds of rocks and soil in the immediate vicinity of the lander. All of the spectra are ratioed to the mean spectrum of bright red drift to highlight the differences. Different occurrences of drift (pink spectra) are closely similar. Most of the rocks (black spectra) have a dark gray color, and are both darker and less red than the drift, suggesting less weathering. Typical soils (green spectra) are intermediate in properties to the rocks and drift. Both these data and subsequent higher resolution images show that the typical soil consists of a mixture of drift and small dark gray particles resembling the rock. However, two other kinds of materials are significantly different from the rocks and drift. Pinkish or whitish pebbles and crusts on some of the rocks (blue spectra) are brighter in blue light and darker in near-infrared light than is the drift, and they lack the spectral characteristics closely associated with iron minerals. Dark red soils in the lee of several rocks are about as red as the drift, but consistently darker. The curvature in the spectrum at visible wavelengths suggests either more ferric iron minerals than in the drift or a larger particle size.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division

  3. Mars Science Laboratory: Results From Bradbury Landing to Glenelg

    NASA Astrophysics Data System (ADS)

    Grotzinger, John; Blake, Dave; Crisp, Joy; Edgett, Ken; Gellert, Ralf; Gomez Elvira, Javier; Hassler, Don; Mahaffy, Paul; Malin, Mike; Mitrofanov, Igor; Meyer, Michael; Vasavada, Ashwin; Wiens, Roger; MSL Science Team

    2013-04-01

    The Mars Science Laboratory rover, Curiosity, analyzed rocks, soils, and the atmosphere between Bradbury Landing and the contact with a light-toned, fractured , high-thermal inertia unit ~500 meters to the east ("Glenelg"). A number of in-place outcrops were encountered along this traverse that allows a simple stratigraphy to be con-structed. A variety of siliciclastic sedimentary rocks are present in the section, possibly also including minor basaltic volcanics. At several localities en route to Glenelg, Curiosity observed conglomeratic bedrock containing rounded pebbles ranging in size from 5-40 mm, forming beds at least 5 cm thick with locally well-developed planar stratification; this, plus grain-supported and imbricated clast fabrics suggest transport in aqueous flows with depths of 0.1-0.8 m, and velocities of 14-63 cm/sec. These conglomerates were likely derived from the Gale crater rim and transported down the Peace Vallis channel network; ChemCam data suggest the presence of feldspar and basaltic composition rock fragments as pebbles. APXS and ChemCam data show the out-of-place rock, "Jake Matijevic", to have an evolved, alkaline composi-tion similar to nepheline-normative muegerites, and suggestive of high pressure partial melting of the mantle. Other, stratigraphically in-place rocks show basanitic composition, with high K2O, low SiO2, and high FeO. Between Sols 56 and 110 Curiosity studied the "Rocknest" eolian deposit which was selected for scooping and eventual delivery to CheMin and SAM. The APXS composition of this deposit is consistent with average Mars soils encountered by previous missions (SO3 + Cl ~6 wt.%). Scooped samples delivered to CheMin reveal the presence of forsterite, pigeonite, augite, plagioclase, and several trace minerals including quartz, anhydrite, magnetite, hematite and illmenite. SAM analysis of the scooped soil yielded four different Evolved Gas Analysis (EGA) experiments depending on the temperature at which evolved gases

  4. Ganges Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    24 May 2004 Mariner 9 images acquired in 1972 first revealed a large, light-toned, layered mound in Ganges Chasma, part of the vast Valles Marineris trough system. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a higher-resolution view of these rocks than was achieved by Mariner 9 or Viking, and higher than can be obtained by Mars Odyssey or Mars Express. The image, with a resolution of about 3.7 meters (12 feet) per pixel, shows eroded layered rock outcrops in Ganges Chasma. These rocks record a history of events that occurred either in Ganges Chasma, or in the rocks brought to the surface by the opening of Ganges Chasma. Either way, the story they might tell could be as fascinating and unprecedented as the story told by sedimentary rocks investigated this year in Meridiani Planum by the Opportunity Mars Exploration Rover ... no one knows. The image is located near 7.3oS, 48.8oW, and covers an area about 3 km (1.9 mi) across. The picture is illuminated by sunlight from the upper left.

  5. Ganges Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    24 May 2004 Mariner 9 images acquired in 1972 first revealed a large, light-toned, layered mound in Ganges Chasma, part of the vast Valles Marineris trough system. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a higher-resolution view of these rocks than was achieved by Mariner 9 or Viking, and higher than can be obtained by Mars Odyssey or Mars Express. The image, with a resolution of about 3.7 meters (12 feet) per pixel, shows eroded layered rock outcrops in Ganges Chasma. These rocks record a history of events that occurred either in Ganges Chasma, or in the rocks brought to the surface by the opening of Ganges Chasma. Either way, the story they might tell could be as fascinating and unprecedented as the story told by sedimentary rocks investigated this year in Meridiani Planum by the Opportunity Mars Exploration Rover ... no one knows. The image is located near 7.3oS, 48.8oW, and covers an area about 3 km (1.9 mi) across. The picture is illuminated by sunlight from the upper left.

  6. Shock tube investigation of CH3 + CH3OCH3.

    PubMed

    Tranter, Robert S; Lynch, Patrick T; Annesley, Christopher J

    2012-07-12

    The title reaction has been investigated in a diaphragmless shock tube by laser schlieren densitometry over the temperature range 1163-1629 K and pressures of 60, 120, and 240 Torr. Methyl radicals were produced by dissociation of 2,3-butanedione in the presence of an excess of dimethyl ether. Rate coefficients for CH(3) + CH(3)OCH(3) were obtained from simulations of the experimental data yielding the following expression which is valid over the range 1100-1700 K: k = (10.19 ± 3.0)T(3.78) exp((-4878/T)) cm(3) mol(-1)s(-1). The experimental results are in good agreement with estimates by Curran and co-workers [Fischer, S. L.; Dryer, F. L.; Curran, H. J. Int. J. Chem. Kinet.2000, 32 (12), 713-740. Curran, H. J.; Fischer, S. L.; Dryer, F. L. Int. J. Chem. Kinet.2000, 32 (12), 741-759] but about a factor of 2.6 lower than those of Zhao et al. [Zhao, Z.; Chaos, M.; Kazakov, A.; Dryer, F. L. Int. J. Chem. Kinet.2008, 40 (1), 1-18].

  7. CH4/CO2 ratios indicate highly efficient methane oxidation by a pumice landfill cover-soil.

    PubMed

    Pratt, Chris; Walcroft, Adrian S; Deslippe, Julie; Tate, Kevin R

    2013-02-01

    Landfills that generate too little biogas for economic energy recovery can potentially offset methane (CH(4)) emissions through biological oxidation by methanotrophic bacteria in cover soils. This study reports on the CH(4) oxidation efficiency of a 10-year old landfill cap comprising a volcanic pumice soil. Surface CH(4) and CO(2) fluxes were measured using field chambers during three sampling intervals over winter and summer. Methane fluxes were temporally and spatially variable (-0.36 to 3044 mgCH(4)m(-2)h(-1)); but were at least 15 times lower than typical literature CH(4) fluxes reported for older landfills in 45 of the 46 chambers tested. Exposure of soil from this landfill cover to variable CH(4) fluxes in laboratory microcosms revealed a very strong correlation between CH(4) oxidation efficiency and CH(4)/CO(2) ratios, confirming the utility of this relationship for approximating CH(4) oxidation efficiency. CH(4)/CO(2) ratios were applied to gas concentrations from the surface flux chambers and indicated a mean CH(4) oxidation efficiency of 72%. To examine CH(4) oxidation with soil depth, we collected 10 soil depth profiles at random locations across the landfill. Seven profiles exhibited CH(4) removal rates of 70-100% at depths <60 cm, supporting the high oxidation rates observed in the chambers. Based on a conservative 70% CH(4) oxidation efficiency occurring at the site, this cover soil is clearly offsetting far greater CH(4) quantities than the 10% default value currently adopted by the IPCC. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Infrared identification of the Criegee intermediates syn- and anti-CH3CHOO, and their distinct conformation-dependent reactivity

    PubMed Central

    Lin, Hui-Yu; Huang, Yu-Hsuan; Wang, Xiaohong; Bowman, Joel M.; Nishimura, Yoshifumi; Witek, Henryk A.; Lee, Yuan-Pern

    2015-01-01

    The Criegee intermediates are carbonyl oxides that play critical roles in ozonolysis of alkenes in the atmosphere. So far, the mid-infrared spectrum of only the simplest Criegee intermediate CH2OO has been reported. Methyl substitution of CH2OO produces two conformers of CH3CHOO and consequently complicates the infrared spectrum. Here we report the transient infrared spectrum of syn- and anti-CH3CHOO, produced from CH3CHI + O2 in a flow reactor, using a step-scan Fourier-transform spectrometer. Guided and supported by high-level full-dimensional quantum calculations, rotational contours of the four observed bands are simulated successfully and provide definitive identification of both conformers. Furthermore, anti-CH3CHOO shows a reactivity greater than syn-CH3CHOO towards NO/NO2; at the later period of reaction, the spectrum can be simulated with only syn-CH3CHOO. Without NO/NO2, anti-CH3CHOO also decays much faster than syn-CH3CHOO. The direct infrared detection of syn- and anti-CH3CHOO should prove useful for field measurements and laboratory investigations of the Criegee mechanism. PMID:25959902

  9. Infrared identification of the Criegee intermediates syn- and anti-CH3CHOO, and their distinct conformation-dependent reactivity

    NASA Astrophysics Data System (ADS)

    Lin, Hui-Yu; Huang, Yu-Hsuan; Wang, Xiaohong; Bowman, Joel M.; Nishimura, Yoshifumi; Witek, Henryk A.; Lee, Yuan-Pern

    2015-05-01

    The Criegee intermediates are carbonyl oxides that play critical roles in ozonolysis of alkenes in the atmosphere. So far, the mid-infrared spectrum of only the simplest Criegee intermediate CH2OO has been reported. Methyl substitution of CH2OO produces two conformers of CH3CHOO and consequently complicates the infrared spectrum. Here we report the transient infrared spectrum of syn- and anti-CH3CHOO, produced from CH3CHI + O2 in a flow reactor, using a step-scan Fourier-transform spectrometer. Guided and supported by high-level full-dimensional quantum calculations, rotational contours of the four observed bands are simulated successfully and provide definitive identification of both conformers. Furthermore, anti-CH3CHOO shows a reactivity greater than syn-CH3CHOO towards NO/NO2; at the later period of reaction, the spectrum can be simulated with only syn-CH3CHOO. Without NO/NO2, anti-CH3CHOO also decays much faster than syn-CH3CHOO. The direct infrared detection of syn- and anti-CH3CHOO should prove useful for field measurements and laboratory investigations of the Criegee mechanism.

  10. Longwave thermal infrared spectral variability in individual rocks

    SciTech Connect

    Balick, Lee K; Gillespie, Alan; French, Andrew; Danilina, Iryna

    2008-01-01

    A hyperspectral imaging spectrometer measuring in the longwave thermal infrared (7.6-11.6 {micro}m) with a spatial resolution less than 4 mm was used in the field to observe the variability of emissivity spectra within individual rocks. The rocks were obtained commercially, were on the order of 20 cm in size and were selected to have distinct spectral features: they include alabaster (gypsum), soapstone (steatite with talc), obsidian (volcanic glass), norite (plagioclase and orthopyroxene), and 'jasper' (silica with iron oxides). The advantages of using an imaging spectrometer to spectrally characterize these rocks are apparent. Large spectral variations were observed within individual rocks that may be attributed to roughness, surface geometry, and compositional variation. Non-imaging spectrometers would normally miss these variations as would small samples used in laboratory measurements, spatially averaged spectra can miss the optimum spectra for identification materials and spatially localized components of the rock can be obscured.

  11. Igneous Rocks: A Classification and Glossary of Terms

    NASA Astrophysics Data System (ADS)

    Le Maitre, R. W.; Streckeisen, A.; Zanettin, B.; Le Bas, M. J.; Bonin, B.; Bateman, P.

    2005-01-01

    Decades of field and microscope studies, and more recent quantitative geochemical analyses have resulted in a vast, and sometimes overwhelming, array of nomenclature and terminology associated with igneous rocks. This book presents a complete classification of igneous rocks based on all the recommendations of the International Union of Geological Sciences (IUGS) Subcommission on the Systematics of Igneous Rocks. The glossary of igneous terms has been fully updated since the first edition and now includes 1637 entries, of which 316 are recommended by the Subcommission. Incorporating a comprehensive bibliography of source references for all the terms included in the glossary, this book is an indispensable reference guide for all geologists studying igneous rocks, either in the field or the laboratory. It presents a standardised and widely accepted naming scheme that will allow geologists to interpret terminology in the primary literature and provide formal names for rock samples based on petrographic analyses. It is also supported by a website with downloadable code for chemical classifications.

  12. Boring and Sealing Rock with Directed Energy Millimeter-Waves

    NASA Astrophysics Data System (ADS)

    Woskov, P.; Einstein, H. H.; Oglesby, K.

    2015-12-01

    Millimeter-wave directed energy is being investigated to penetrate into deep crystalline basement rock formations to lower well costs and to melt rocks, metals, and other additives to seal wells for applications that include nuclear waste storage and geothermal energy. Laboratory tests have established that intense millimeter-wave (MMW) beams > 1 kW/cm2 can melt and/ or vaporize hard crystalline rocks. In principle this will make it possible to create open boreholes and a method to seal them with a glass/ceramic liner and plug formed from the original rock or with other materials. A 10 kW, 28 GHz commercial (CPI) gyrotron system with a launched beam diameter of about 32 mm was used to heat basalt, granite, limestone, and sandstone specimens to temperatures over 2500 °C to create melts and holes. A calibrated 137 GHz radiometer view, collinear with the heating beam, monitored real time peak rock temperature. A water load surrounding the rock test specimen primarily monitored unabsorbed power at 28 GHz. Power balance analysis of the laboratory observations shows that the temperature rise is limited by radiative heat loss, which would be expected to be trapped in a borehole. The analysis also indicates that the emissivity (absorption efficiency) in the radiated infrared range is lower than the emissivity at 28 GHz, giving the MMW frequency range an important advantage for rock melting. Strength tests on one granite type indicated that heating the rock initially weakens it, but with exposure to higher temperatures the resolidified black glassy product regains strength. Basalt was the easiest to melt and penetrate, if a melt leak path was provided, because of its low viscosity. Full beam holes up to about 50 mm diameter (diffraction increased beam size) were achieved through 30 mm thick basalt and granite specimens. Laboratory experiments to form a seal in an existing hole have also been carried out by melting rock and a simulated steel casing.

  13. Real-time noble gas release signaling rock deformation

    NASA Astrophysics Data System (ADS)

    Bauer, S. J.; Gardner, W. P.; Lee, H.

    2016-12-01

    We present empirical results/relationships of rock strain, microfracture density, acoustic emissions, and noble gas release from laboratory triaxial experiments for a granite and basalt. Noble gases are contained in most crustal rock at inter/intra granular sites, their release during natural and manmade stress and strain changes represents a signal of brittle/semi brittle deformation. The gas composition depends on lithology, geologic history and age, fluids present, and uranium, thorium and potassium-40 concentrations in the rocks that affect radiogenic noble gases (helium, argon) production. Noble gas emission and its relationship to crustal processes have been studied, including correlations to tectonic velocities and qualitative estimates of deep permeability from surface measurements, finger prints of nuclear weapon detonation, and as potential precursory signals to earthquakes attributed to gas release due to pre-seismic stress, dilatancy and/or rock fracturing. Helium emission has been shown as a precursor of volcanic activity. Real-time noble gas release is observed using an experimental system utilizing mass spectrometers to measure gases released during triaxial rock deformation. Noble gas release is shown to represent a sensitive precursor signal of