Quantitative Seismic Interpretation: Applying Rock Physics Tools to Reduce Interpretation Risk
NASA Astrophysics Data System (ADS)
Sondergeld, Carl H.
This book is divided into seven chapters that cover rock physics, statistical rock physics, seismic inversion techniques, case studies, and work flows. On balance, the emphasis is on rock physics. Included are 56 color figures that greatly help in the interpretation of more complicated plots and displays.The domain of rock physics falls between petrophysics and seismics. It is the basis for interpreting seismic observations and therefore is pivotal to the understanding of this book. The first two chapters are dedicated to this topic (109 pages).
Investigation of rock samples by neutron diffraction and ultrasonic sounding
NASA Astrophysics Data System (ADS)
Burilichev, D. E.; Ivankina, T. I.; Klima, K.; Locajicek, T.; Nikitin, A. N.; Pros, Z.
2000-03-01
The interpretation of large-scale geophysical anisotropies largely depends upon the knowledge of rock anisotropies of any kind (compositions, foliations, grain shape, physical properties). Almost all physical rock properties (e.g. elastic, thermal, magnetic properties) are related to the textures of the rock constituents since they are anisotropic for the single crystal. Although anisotropy determinations are numerous, systematic investigations are scarce. Therefore, several rock samples with different microfabrics were selected for texture analysis and to determine its P-wave distributions at various confining pressures.
NASA Astrophysics Data System (ADS)
Dutta, Tanima
This dissertation focuses on the link between seismic amplitudes and reservoir properties. Prediction of reservoir properties, such as sorting, sand/shale ratio, and cement-volume from seismic amplitudes improves by integrating knowledge from multiple disciplines. The key contribution of this dissertation is to improve the prediction of reservoir properties by integrating sequence stratigraphy and rock physics. Sequence stratigraphy has been successfully used for qualitative interpretation of seismic amplitudes to predict reservoir properties. Rock physics modeling allows quantitative interpretation of seismic amplitudes. However, often there is uncertainty about selecting geologically appropriate rock physics model and its input parameters, away from the wells. In the present dissertation, we exploit the predictive power of sequence stratigraphy to extract the spatial trends of sedimentological parameters that control seismic amplitudes. These spatial trends of sedimentological parameters can serve as valuable constraints in rock physics modeling, especially away from the wells. Consequently, rock physics modeling, integrated with the trends from sequence stratigraphy, become useful for interpreting observed seismic amplitudes away from the wells in terms of underlying sedimentological parameters. We illustrate this methodology using a comprehensive dataset from channelized turbidite systems, deposited in minibasin settings in the offshore Equatorial Guinea, West Africa. First, we present a practical recipe for using closed-form expressions of effective medium models to predict seismic velocities in unconsolidated sandstones. We use an effective medium model that combines perfectly rough and smooth grains (the extended Walton model), and use that model to derive coordination number, porosity, and pressure relations for P and S wave velocities from experimental data. Our recipe provides reasonable fits to other experimental and borehole data, and specifically improves the predictions of shear wave velocities. In addition, we provide empirical relations on normal compaction depth trends of porosity, velocities, and VP/VS ratio for shale and clean sands in shallow, supra-salt sediments in the Gulf of Mexico. Next, we identify probable spatial trends of sand/shale ratio and sorting as predicted by the conventional sequence stratigraphic model in minibasin settings (spill-and-fill model). These spatial trends are evaluated using well data from offshore West Africa, and the same well data are used to calibrate rock physics models (modified soft-sand model) that provide links between P-impedance and quartz/clay ratio, and sorting. The spatial increase in sand/shale ratio and sorting corresponds to an overall increase in P-impedance, and AVO intercept and gradient. The results are used as a guide to interpret sedimentological parameters from seismic attributes, away from the well locations. We present a quantitative link between carbonate cement and seismic attributes by combining stratigraphie cycles and the rock physics model (modified differential effective medium model). The variation in carbonate cement volume in West Africa can be linked with two distinct stratigraphic cycles: the coarsening-upward cycles and the fining-upward cycles. Cemented sandstones associated with these cycles exhibit distinct signatures on P-impedance vs. porosity and AVO intercept vs. gradient crossplots. These observations are important for assessing reservoir properties in the West Africa as well as in other analogous depositional environments. Finally, we investigate the relationship between seismic velocities and time temperature index (TTI) using basin and petroleum system modeling at Rio Muni basin, West Africa. We find that both VP and VS increase exponentially with TTI. The results can be applied to predict TTI, and thereby thermal maturity, from observed velocities.
NASA Astrophysics Data System (ADS)
Takahashi, T.
2017-12-01
The static Young's modulus (deformability) of a rock is indispensable for designing and constructing tunnels, dams and underground caverns in civil engineering. Static Young's modulus which is an elastic modulus at large strain level is usually obtained with the laboratory tests of rock cores sampled in boreholes drilled in a rock mass. A deformability model of the entire rock mass is then built by extrapolating the measurements based on a rock mass classification obtained in geological site characterization. However, model-building using data obtained from a limited number of boreholes in the rock mass, especially a complex rock mass, may cause problems in the accuracy and reliability of the model. On the other hand, dynamic Young's modulus which is the modulus at small strain level can be obtained from seismic velocity. If dynamic Young's modulus can be rationally converted to static one, a seismic velocity model by the seismic method can be effectively used to build a deformability model of the rock mass. In this study, we have, therefore, developed a rock physics model (Mavko et al., 2009) to estimate static Young's modulus from dynamic one for sedimentary rocks. The rock physics model has been generally applied to seismic properties at small strain level. In the proposed model, however, the sandy shale model, one of rock physics models, is extended for modeling the static Young's modulus at large strain level by incorporating the mixture of frictional and frictionless grain contacts into the Hertz-Mindlin model. The proposed model is verified through its application to the dynamic Young's moduli derived from well log velocities and static Young's moduli measured in the tri-axial compression tests of rock cores sampled in the same borehole as the logs were acquired. This application proves that the proposed rock physics model can be possibly used to estimate static Young's modulus (deformability) which is required in many types of civil engineering applications from seismically derived dynamic Young's modulus. References:Mavko, G., Mukerji, T. and Dvorkin, J., 2009, The Rock Physics Handbook, 2nd Edition, Cambridge University Press, Cambridge.
Spectral pattern classification in lidar data for rock identification in outcrops.
Campos Inocencio, Leonardo; Veronez, Mauricio Roberto; Wohnrath Tognoli, Francisco Manoel; de Souza, Marcelo Kehl; da Silva, Reginaldo Macedônio; Gonzaga, Luiz; Blum Silveira, César Leonardo
2014-01-01
The present study aimed to develop and implement a method for detection and classification of spectral signatures in point clouds obtained from terrestrial laser scanner in order to identify the presence of different rocks in outcrops and to generate a digital outcrop model. To achieve this objective, a software based on cluster analysis was created, named K-Clouds. This software was developed through a partnership between UNISINOS and the company V3D. This tool was designed to begin with an analysis and interpretation of a histogram from a point cloud of the outcrop and subsequently indication of a number of classes provided by the user, to process the intensity return values. This classified information can then be interpreted by geologists, to provide a better understanding and identification from the existing rocks in the outcrop. Beyond the detection of different rocks, this work was able to detect small changes in the physical-chemical characteristics of the rocks, as they were caused by weathering or compositional changes.
NASA Astrophysics Data System (ADS)
Mondal, Samit; Yadav, Ashok; Chatterjee, Rima
2018-01-01
Rock physical crossplots from different geological setup along eastern continental margin of India (ECMI) represent diversified signatures. To characterize the reservoirs in rock physics domain (velocity/modulus versus porosity) and then connecting the interpretation with geological model has been the objectives of the present study. Petrophysical logs (total porosity and volume of shale) from five wells located at sedimentary basins of ECMI have been analyzed to quantify the types of shale such as: laminated, dispersed and structural in reservoir. Presence of various shale types belonging to different depositional environments is coupled to define distinct rock physical crossplot trends for different geological setup. Wells from three different basins in East Coast of India have been used to capture diversity in depositional environments. Contact model theory has been applied to the crossplot to examine the change in rock velocity with change in reservoir properties like porosity and volume of shale. The depositional and diagenetic trends have been shown in the crossplot to showcase the prime controlling factor which reduces the reservoir porosity. Apart from that, the effect of geological factors like effective stress, sorting, packing, grain size uniformity on reservoir properties have also been focused. The rock physical signatures for distinct depositional environments, effect of crucial geological factors on crossplot trends coupled with established sedimentological models in drilled area are investigated to reduce the uncertainties in reservoir characterization for undrilled potentials.
Geophysical Parameter Estimation of Near Surface Materials Using Nuclear Magnetic Resonance
NASA Astrophysics Data System (ADS)
Keating, K.
2017-12-01
Proton nuclear magnetic resonance (NMR), a mature geophysical technology used in petroleum applications, has recently emerged as a promising tool for hydrogeophysicists. The NMR measurement, which can be made in the laboratory, in boreholes, and using a surface based instrument, are unique in that it is directly sensitive to water, via the initial signal magnitude, and thus provides a robust estimate of water content. In the petroleum industry rock physics models have been established that relate NMR relaxation times to pore size distributions and permeability. These models are often applied directly for hydrogeophysical applications, despite differences in the material in these two environments (e.g., unconsolidated versus consolidated, and mineral content). Furthermore, the rock physics models linking NMR relaxation times to pore size distributions do not account for partially saturated systems that are important for understanding flow in the vadose zone. In our research, we are developing and refining quantitative rock physics models that relate NMR parameters to hydrogeological parameters. Here we highlight the limitations of directly applying established rock physics models to estimate hydrogeological parameters from NMR measurements, and show some of the successes we have had in model improvement. Using examples drawn from both laboratory and field measurements, we focus on the use of NMR in partial saturated systems to estimate water content, pore-size distributions, and the water retention curve. Despite the challenges in interpreting the measurements, valuable information about hydrogeological parameters can be obtained from NMR relaxation data, and we conclude by outlining pathways for improving the interpretation of NMR data for hydrogeophysical investigations.
Rock physics properties of some lunar samples
NASA Technical Reports Server (NTRS)
Warren, N.; Trice, R.; Anderson, O. L.; Soga, N.
1973-01-01
Linear strains and acoustic velocity data for lunar samples under uniaxial and hydrostatic loading are presented. Elastic properties are presented for 60335,20; 15555,68; 15498,23; and 12063,97. Internal friction data are summarized for a number of artificial lunar glasses with compositions similar to lunar rocks 12009, 12012, 14305, 15021, and 15555. Zero porosity model-rock moduli are calculated for a number of lunar model-rocks, with mineralogies similar to Apollo 12, 14, and 16 rocks. Model-rock calculations indicate that rock types in the troctolitic composition range may provide reasonable modeling of the lunar upper mantle. Model calculations involving pore crack effects are compatible with a strong dependence of rock moduli on pore strain, and therefore of rock velocities on nonhydrostatic loading. The high velocity of rocks under uniaxial loading appears to be compatible with, and may aid in, interpretation of near-surface velocity profiles observed in the active seismic experiment.
SAPHYR: the Swiss Atlas of PHYsical properties of Rocks
NASA Astrophysics Data System (ADS)
Wenning, Q. C.; Zappone, A. S.; Kissling, E.
2015-12-01
The Swiss Atlas of PHYsical properties of Rocks (SAPHYR) is a multi-year project, aiming to compile a comprehensive data set on physical properties of rocks exposed in Switzerland and surrounding areas. The ultimate goal of SAPHYR is to make these data accessible to an open and wide public, such as industrial, engineering, land and resource planning companies, as well as academic institutions. Since the early sixties worldwide geophysicists, petrologists, and engineers, focused their work on laboratory measurements of rocks physical properties, and their relations with microstructures, mineralogical compositions and other rock parameters, in the effort to constrain the geological interpretation of geophysical surveys. In combination with efforts to investigate deep structure of the continental crust by controlled source seismology, laboratories capable to reproduce pressure and temperature conditions to depth of 50km and more collected measurements of various parameters on a wide variety of rock types. In recent years, the increasing interest on non-traditional energy supply, (deep geothermal energy, shale gas) and CO2 storage renovated the interests in physical characterization of the deep underground. The idea to organize those laboratory data into a geographically referenced database (GIS) is supported by the Swiss Commission for Geophysics. The data refer to density and porosity, seismic, magnetic, thermal properties, permeability and electrical properties. An effort has been placed on collecting samples and measuring the physical properties of lithologies that are poorly documented in literature. The phase of laboratory measurements is still in progress. At present SAPHYR focuses towards developing a 3-D physical properties model of the Swiss subsurface, using the structure of the exposed geology, boreholes data and seismic surveys, combined with lab determined pressure and temperature derivatives. An early version of the final product is presented here.
Alteration of Lunar Rock Surfaces through Interaction with the Space Environment
NASA Technical Reports Server (NTRS)
Frushour, A. M.; Noble, S. K; Christoffersen, R.; Keller, L P.
2014-01-01
Space weathering occurs on all ex-posed surfaces of lunar rocks, as well as on the surfaces of smaller grains in the lunar regolith. Space weather-ing alters these exposed surfaces primarily through the action of solar wind ions and micrometeorite impact processes. On lunar rocks specifically, the alteration products produced by space weathering form surface coatings known as patina. Patinas can have spectral reflectance properties different than the underlying rock. An understanding of patina composition and thickness is therefore important for interpreting re-motely sensed data from airless solar system bodies. The purpose of this study is to try to understand the physical and chemical properties of patina by expanding the number of patinas known and characterized in the lunar rock sample collection.
Elastic Rock Heterogeneity Controls Brittle Rock Failure during Hydraulic Fracturing
NASA Astrophysics Data System (ADS)
Langenbruch, C.; Shapiro, S. A.
2014-12-01
For interpretation and inversion of microseismic data it is important to understand, which properties of the reservoir rock control the occurrence probability of brittle rock failure and associated seismicity during hydraulic stimulation. This is especially important, when inverting for key properties like permeability and fracture conductivity. Although it became accepted that seismic events are triggered by fluid flow and the resulting perturbation of the stress field in the reservoir rock, the magnitude of stress perturbations, capable of triggering failure in rocks, can be highly variable. The controlling physical mechanism of this variability is still under discussion. We compare the occurrence of microseismic events at the Cotton Valley gas field to elastic rock heterogeneity, obtained from measurements along the treatment wells. The heterogeneity is characterized by scale invariant fluctuations of elastic properties. We observe that the elastic heterogeneity of the rock formation controls the occurrence of brittle failure. In particular, we find that the density of events is increasing with the Brittleness Index (BI) of the rock, which is defined as a combination of Young's modulus and Poisson's ratio. We evaluate the physical meaning of the BI. By applying geomechanical investigations we characterize the influence of fluctuating elastic properties in rocks on the probability of brittle rock failure. Our analysis is based on the computation of stress fluctuations caused by elastic heterogeneity of rocks. We find that elastic rock heterogeneity causes stress fluctuations of significant magnitude. Moreover, the stress changes necessary to open and reactivate fractures in rocks are strongly related to fluctuations of elastic moduli. Our analysis gives a physical explanation to the observed relation between elastic heterogeneity of the rock formation and the occurrence of brittle failure during hydraulic reservoir stimulations. A crucial factor for understanding seismicity in unconventional reservoirs is the role of anisotropy of rocks. We evaluate an elastic VTI rock model corresponding to a shale gas reservoir in the Horn River Basin to understand the relation between stress, event occurrence and elastic heterogeneity in anisotropic rocks.
The Vaigat Rock Avalanche Laboratory, west-central Greenland
NASA Astrophysics Data System (ADS)
Dunning, S.; Rosser, N. J.; Szczucinski, W.; Norman, E. C.; Benjamin, J.; Strzelecki, M.; Long, A. J.; Drewniak, M.
2013-12-01
Rock avalanches have unusually high mobility and pose both an immediate hazard, but also produce far-field impacts associated with dam breach, glacier collapse and where they run-out into water, tsunami. Such secondary hazards can often pose higher risks than the original landslide. The prediction of future threats posed by potential rock avalanches is heavily reliant upon understanding of the physics derived from an interpretation of deposits left by previous events, yet drawing comparisons between multiple events is normally challenging as interactions with complex mountainous terrain makes deposits from each event unique. As such numerical models and the interpretation of the underlying physics which govern landslide mobility is commonly case-specific and poorly suited to extrapolation beyond the single events the model is tuned to. Here we present a high-resolution LiDAR and hyperspectral dataset captured across a unique cluster of large rock avalanche source areas and deposits in the Vaigat straight, west central Greenland. Vaigat offers the unprecedented opportunity to model a sample of > 15 rock avalanches of various age sourced from an 80 km coastal escarpment. At Vaigat many of the key variables (topography, geology, post-glacial history) are held constant across all landslides providing the chance to investigate the variations in dynamics and emplacement style related to variable landslide volume, drop-heights, and thinning/spreading over relatively simple, unrestricted run-out zones both onto land and into water. Our data suggest that this region represents excellent preservation of landslide deposits, and hence is well suited to calibrate numerical models of run out dynamics. We use this data to aid the interpretation of deposit morphology, structure lithology and run-out characteristics in more complex settings. Uniquely, we are also able to calibrate our models using a far-field dataset of well-preserved tsunami run-up deposits, resulting from the 21.11.00 Paatuut landslide. The study was funded by Polish National Science Centre grant No. 2011/01/B/ST10/01553, and project UK NERC ARSF IG13-15.
Transmission Electron Microscopy of Minerals and Rocks
NASA Astrophysics Data System (ADS)
McLaren, Alex C.
1991-04-01
Of the many techniques that have been applied to the study of crystal defects, none has contributed more to our understanding of their nature and influence on the physical and chemical properties of crystalline materials than transmission electron microscopy (TEM). TEM is now used extensively by an increasing number of earth scientists for direct observation of defect microstructures in minerals and rocks. Transmission Electron Microscopy of Rocks and Minerals is an introduction to the principles of the technique and is the only book to date on the subject written specifically for geologists and mineralogists. The first part of the book deals with the essential physics of the transmission electron microscope and presents the basic theoretical background required for the interpretation of images and electron diffraction patterns. The final chapters are concerned with specific applications of TEM in mineralogy and deal with such topics as planar defects, intergrowths, radiation-induced defects, dislocations and deformation-induced microstructures. The examples cover a wide range of rock-forming minerals from crustal rocks to those in the lower mantle, and also take into account the role of defects in important mineralogical and geological processes.
Study of iron deposit using seismic refraction and resistivity in Carajás Mineral Province, Brazil
NASA Astrophysics Data System (ADS)
Nogueira, Pedro Vencovsky; Rocha, Marcelo Peres; Borges, Welitom Rodrigues; Silva, Adalene Moreira; Assis, Luciano Mozer de
2016-10-01
This work comprises the acquisition, processing and interpretation of 2D seismic shallow refraction (P-wave) and resistivity profiles located in the iron ore deposit of N4WS, Carajás Mineral Province (CMP), northern Brazil. The geophysical methods were used to identify the boundaries of the iron ore deposit. Another objective was to evaluate the potentiality of these geophysical methods in that geological context. In order to validate the results, the geophysical lines were located to match a geological borehole line. For the seismic refraction, we used 120 channels, spaced by 10 m, in a line of 1190 m, with seven shot points. The resistivity method used in the acquisition was the electrical resistivity imaging, with pole-pole array, in order to reach greater depths. The resistivity line had a length of 1430 m, with 10 m spacing between electrodes. The seismic results produced a model with two distinct layers. Based on the velocities values, the first layer was interpreted as altered rocks, and the second layer as more preserved rocks. It was not possible to discriminate different lithologies with the seismic method inside each layer. From the resistivity results, a zone of higher resistivity (> 3937 Ω·m) was interpreted as iron ore, and a region of intermediate resistivity (from 816 to 2330 Ω·m) as altered rocks. These two regions represent the first seismic layer. On the second seismic layer, an area with intermediated resistivity values (from 483 to 2330 Ω·m) was interpreted as mafic rocks, and the area with lower resistivity (< 483 Ω·m) as jaspilite. Our results were compared with geological boreholes and show reasonable correlation, suggesting that the geophysical anomalies correspond to the main variations in composition and physical properties of rocks.
The composition of the Martian dark regions: Observations and analysis. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Singer, R. B.
1980-01-01
Near infrared telescopic spectrophotometry for dark regions is present and interpreted using laboratory studies of iron bearing mineral mixtures and terrestrial oxidized and unoxidized basalts. Upon closer inspection (by spacecraft) the telescopic dark regions were found to consist of large scale intermixtures of bright soil (aeolian dust) and dark materials. The dark materials themselves consist of an intimate physical association of very fine grained ferric oxide bearing material with relatively high near infrared reflectance and darker, relatively unoxidized rocks or rock fragments. While these two components could exist finely intermixed in a soil, a number of lines of evidence indicate that the usual occurrence is probably a thin coating of physically bound oxidized material. The coated rocks are dark and generally clinopyroxene bearing. The shallow band depths and low overall reflectances indicate that opaque minerals such as magnetite are probably abundant.
Swiss Atlas of PHYsical properties of Rocks (SAPHYR)
NASA Astrophysics Data System (ADS)
Zappone, Alba; Kissling, Eduard
2015-04-01
The Swiss Atlas of PHYsical properties of Rocks (SAPHYR), is a multi-year project, funded entirely by Swiss Commission for Geophysics (SGPK), with the aim to compile a comprehensive data set in digital form on physical properties of rocks exposed in Switzerland and surrounding regions. The ultimate goal of SAPHYR is to make these data accessible to an open and wide public including industrial, engineering, land and resource planning companies, as well as academic institutions, or simply people interested in geology. Since the early sixties worldwide many scientists, i.e. geophysicists, petrologists, and engineers, focused their work on laboratory measurements of rocks physical properties, and their relations with microstructures, mineralogical compositions and other rock parameters, in the effort to constrain the geological interpretation of geophysical surveys. Particularly in the years in which seismic reflection and refraction crustal scale projects were investigating the deep structures of the Alps, laboratories capable to reproduce the pressure and temperature ranges of the continental crust were collecting measurements of various rock parameters on a wide variety of lithologies, developing in the meantime more and more sophisticated experimental methodologies. In recent years, the increasing interest of European Countries on non-traditional energy supply, (i.e. Deep Geothermal Energy and shale gas) and CO2 storage renovated the interests in physical characterization of the deep underground. SAPHYR aims to organize all those laboratory data into a geographically referenced database (GIS). The data refer to density, porosity, permeability, and seismic, magnetic, thermal and electric properties. In the past years, effort has been placed on collecting samples and measuring the physical properties of lithologies that were poorly documented in literature. The phase of laboratory measurements is still in progress. Recently, SAPHYR project focused towards developing a 3-D physical properties model of the Swiss subsurface, using the structure of the exposed geology and data from boreholes and seismic surveys, combined with empirically determined pressure and temperature derivatives. The product is now almost ready for publication and an early version is presented here.
Drenth, Benjamin J.
2014-01-01
The lower Paleozoic Elk Creek carbonatite is a 6–8-km-diameter intrusive complex buried under 200 m of sedimentary rocks in southeastern Nebraska. It hosts the largest known niobium deposit in the U.S. and a rare earth element (REE) deposit. The carbonatite is composed of several lithologies, the relations of which are poorly understood. Niobium mineralization is most enriched within a magnetite beforsite (MB) unit, and REE oxides are most concentrated in a barite beforsite unit. The carbonatite intrudes Proterozoic country rocks. Efforts to explore the carbonatite have used geophysical data and drilling. A high-resolution airborne gravity gradient and magnetic survey was flown over the carbonatite in 2012. The carbonatite is associated with a roughly annular vertical gravity gradient high and a subdued central low and a central magnetic high surrounded by magnetic field values lower than those over the country rocks. Geophysical, borehole, and physical property data are combined for an interpretation of these signatures. The carbonatite is denser than the country rocks, explaining the gravity gradient high. Most carbonatite lithologies have weaker magnetic susceptibilities than those of the country rocks, explaining why the carbonatite does not produce a magnetic high at its margin. The primary source of the central magnetic high is interpreted to be mafic rocks that are strongly magnetized and are present in large volumes. MB is very dense (mean density 3200 kg/m3) and strongly magnetized (median 0.073 magnetic susceptibility), producing a gravity gradient high and contributing to the aeromagnetic high. Barite beforsite has physical properties similar to most of the carbonatite volume, making it a poor geophysical target. Geophysical anomalies indicate the presence of dense and strongly magnetized rocks at depths below existing boreholes, either a large volume of MB or another unknown lithology.
NASA Astrophysics Data System (ADS)
Almqvist, B. S. G.; Czaplinska, D.; Piazolo, S.
2015-12-01
Progress in seismic methods offers the possibility to visualize in ever greater detail the structure and composition of middle to lower continental crust. Ideally, the seismic parameters, including compressional (Vp) and shear (Vs) wave velocities, anisotropy and Vp/Vs-ratio, allow the inference of detailed and quantitative information on the deformation conditions, chemical composition, temperature and the amount and geometry of fluids and melts in the crust. However, such inferences regarding the crust should be calibrated with known mineral and rock physical properties. Seismic properties calculated from the crystallographic preferred orientation (CPO) and laboratory measurements on representative core material allow us to quantify the interpretations from seismic data. The challenge of such calibrations lies in the non-unique interpretation of seismic data. A large catalogue of physical rock properties is therefore useful, with as many constraining geophysical parameters as possible (including anisotropy and Vp/Vs ratio). We present new CPO data and modelled seismic properties for amphibolite and greenschist grade rocks representing the orogenic wedge in the Central Scandinavian Caledonides. Samples were collected from outcrops in the field and from a 2.5 km long drill core, which penetrated an amphibolite-grade allochthonous unit composed of meta-sedimentary and meta-igneous rocks, as well as mica and chlorite-rich mylonites. The textural data was acquired using large area electron backscatter diffraction (EBSD) maps, and the chemical composition of minerals obtained by energy dispersive x-ray (EDS). Based on the texture data, we compare and evaluate some of the existing methods to calculate texture-based seismic properties of rocks. The suite of samples consists of weakly anisotropic rocks such as felsic gneiss and calc-silicates, and more anisotropic amphibolite, metagabbro, mica-schist. The newly acquired dataset provides a range of seismic properties that improves compositional and structural characterization of deformed middle and lower crust.
NASA Astrophysics Data System (ADS)
Cobden, L. J.
2017-12-01
Mineral physics provides the essential link between seismic observations of the Earth's interior, and laboratory (or computer-simulated) measurements of rock properties. In this presentation I will outline the procedure for quantitative conversion from thermochemical structure to seismic structure (and vice versa) using the latest datasets from seismology and mineralogy. I will show examples of how this method can allow us to infer major chemical and dynamic properties of the deep mantle. I will also indicate where uncertainties and limitations in the data require us to exercise caution, in order not to "over-interpret" seismic observations. Understanding and modelling these uncertainties serves as a useful guide for mineralogists to ascertain which mineral parameters are most useful in seismic interpretation, and enables seismologists to optimise their data assembly and inversions for quantitative interpretations.
Preliminary results on photometric properties of materials at the Sagan Memorial Station, Mars
Johnson, J. R.; Kirk, R.; Soderblom, L.A.; Gaddis, L.; Reid, R.J.; Britt, D.T.; Smith, P.; Lemmon, M.; Thomas, N.; Bell, J.F.; Bridges, N.T.; Anderson, R.; Herkenhoff, K. E.; Maki, J.; Murchie, S.; Dummel, A.; Jaumann, R.; Trauthan, F.; Arnold, G.
1999-01-01
Reflectance measurements of selected rocks and soils over a wide range of illumination geometries obtained by the Imager for Mars Pathfinder (IMP) camera provide constraints on interpretations of the physical and mineralogical nature of geologic materials at the landing site. The data sets consist of (1) three small "photometric spot" subframed scenes, covering phase angles from 20?? to 150??; (2) two image strips composed of three subframed images each, located along the antisunrise and antisunset lines (photometric equator), covering phase angles from ???0?? to 155??; and (3) full-image scenes of the rock "Yogi," covering phase angles from 48?? to 100??. Phase functions extracted from calibrated data exhibit a dominantly backscattering photometric function, consistent with the results from the Viking lander cameras. However, forward scattering behavior does appear at phase angles >140??, particularly for the darker gray rock surfaces. Preliminary efforts using a Hapke scattering model are useful in comparing surface properties of different rock and soil types but are not well constrained, possibly due to the incomplete phase angle availability, uncertainties related to the photometric function of the calibration targets, and/or the competing effects of diffuse and direct lighting. Preliminary interpretations of the derived Hapke parameters suggest that (1) red rocks can be modeled as a mixture of gray rocks with a coating of bright and dark soil or dust, and (2) gray rocks have macroscopically smoother surfaces composed of microscopically homogeneous, clear materials with little internal scattering, which may imply a glass-like or varnished surface. Copyright 1999 by the American Geophysical Union.
NASA Technical Reports Server (NTRS)
Lindstrom, M. M.; Tobola, K. W.; Stocco, K.; Henry, M.; Allen, J. S.; McReynolds, Julie; Porter, T. Todd; Veile, Jeri
2004-01-01
As the scientific community studies Mars remotely for signs of life and uses Martian meteorites as its only available samples, teachers, students, and the general public continue to ask, How do we know these meteorites are from Mars? This question sets the stage for a six-lesson instructional package Space Rocks Tell Their Secrets. Expanding on the short answer It s the chemistry of the rock , students are introduced to the research that reveals the true identities of the rocks. Since few high school or beginning college students have the opportunity to participate in this level of research, a slide presentation introduces them to the labs, samples, and people involved with the research. As they work through the lessons and interpret authentic data, students realize that the research is an application of two basic science concepts taught in the classroom, the electromagnetic spectrum and isotopes.
The Role of Forethought and Serendipity in Designing a Successful Hydrogeological Research Site
NASA Astrophysics Data System (ADS)
Shapiro, A. M.; Hsieh, P. A.
2008-12-01
Designing and implementing a successful hydrogeologic field research observatory requires careful planning among a multidisciplinary group of research scientists. In addition, a small team of research coordinators needs to assume responsibility for smoothly integrating the multidisciplinary experimental program and promoting the explanation of results across discipline boundaries. A narrow interpretation of success at these hydrogeologic observatories can be viewed as the completion of the field-based experiments and the reporting of results for the field site under investigation. This alone is no small task, given the financial and human resources that are needed to develop and maintain field infrastructure, as well as developing, maintaining, and sharing data and interpretive results. Despite careful planning, however, unexpected or serendipitous results can occur. Such serendipitous results can lead to new understanding and revision of original hypotheses. To fully evaluate such serendipitous results, the field program must collect a broad range of scientifically robust data-beyond what is needed to examine the original hypotheses. In characterizing ground water flow and chemical transport in fractured crystalline rock in the Mirror Lake watershed in central New Hampshire, unexpected effects of scale were observed for hydraulic conductivity and matrix diffusion. Contrary to existing theory, hydraulic conductivity at the site did not increase with scale, whereas the effective coefficient of matrix diffusion was found to increase with scale. These results came to light only after examination of extensive data from carefully designed hydraulic and chemical transport experiments. Experiments were conducted on rock cores, individual fractures and volumes of fractured rock over physical dimensions from meters to kilometers. The interpretation of this data yielded new insight into the effect of scale on chemical transport and hydraulic conductivity of fractured rock. Subsequent evaluation of experiments conducted at other fractured rock sites have showed similarities in hydraulic and chemical transport responses, allowing broader conclusions to be reached concerning geologic controls on ground water flow and chemical transport in fractured rock aquifers.
Quantifying Biofilm in Porous Media Using Rock Physics Models
NASA Astrophysics Data System (ADS)
Alhadhrami, F. M.; Jaiswal, P.; Atekwana, E. A.
2012-12-01
Biofilm formation and growth in porous rocks can change their material properties such as porosity, permeability which in turn will impact fluid flow. Finding a non-intrusive method to quantify biofilms and their byproducts in rocks is a key to understanding and modeling bioclogging in porous media. Previous geophysical investigations have documented that seismic techniques are sensitive to biofilm growth. These studies pointed to the fact that microbial growth and biofilm formation induces heterogeneity in the seismic properties. Currently there are no rock physics models to explain these observations and to provide quantitative interpretation of the seismic data. Our objectives are to develop a new class of rock physics model that incorporate microbial processes and their effect on seismic properties. Using the assumption that biofilms can grow within pore-spaces or as a layer coating the mineral grains, P-wave velocity (Vp) and S-wave (Vs) velocity models were constructed using travel-time and waveform tomography technique. We used generic rock physics schematics to represent our rock system numerically. We simulated the arrival times as well as waveforms by treating biofilms either as fluid (filling pore spaces) or as part of matrix (coating sand grains). The preliminary results showed that there is a 1% change in Vp and 3% change in Vs when biofilms are represented discrete structures in pore spaces. On the other hand, a 30% change in Vp and 100% change in Vs was observed when biofilm was represented as part of matrix coating sand grains. Therefore, Vp and Vs changes are more rapid when biofilm grows as grain-coating phase. The significant change in Vs associated with biofilms suggests that shear velocity can be used as a diagnostic tool for imaging zones of bioclogging in the subsurface. The results obtained from this study have significant implications for the study of the rheological properties of biofilms in geological media. Other applications include assessing biofilms used as barriers in CO2 sequestration studies as well as assisting in evaluating microbial enhanced oil recovery methods (MEOR), where microorganisms are used to plug highly porous rocks for efficient oil production.
NASA Astrophysics Data System (ADS)
Vanorio, T.; Virieux, J.; Capuano, P.; Russo, G.
2005-03-01
The Campi Flegrei (CF) Caldera experiences dramatic ground deformations unsurpassed anywhere in the world. The source responsible for this phenomenon is still debated. With the aim of exploring the structure of the caldera as well as the role of hydrothermal fluids on velocity changes, a multidisciplinary approach dealing with three-dimensional delay time tomography and rock physics characterization has been followed. Selected seismic data were modeled by using a tomographic method based on an accurate finite difference travel time computation which simultaneously inverts P wave and S wave first-arrival times for both velocity model parameters and hypocenter locations. The retrieved P wave and S wave velocity images as well as the deduced Vp/Vs images were interpreted by using experimental measurements of rock physical properties on CF samples to take into account steam/water phase transition mechanisms affecting P wave and S wave velocities. Also, modeling of petrophysical properties for site-relevant rocks constrains the role of overpressured fluids on velocity. A flat and low Vp/Vs anomaly lies at 4 km depth under the city of Pozzuoli. Earthquakes are located at the top of this anomaly. This anomaly implies the presence of fractured overpressured gas-bearing formations and excludes the presence of melted rocks. At shallow depth, a high Vp/Vs anomaly located at 1 km suggests the presence of rocks containing fluids in the liquid phase. Finally, maps of the Vp*Vs product show a high Vp*Vs horseshoe-shaped anomaly located at 2 km depth. It is consistent with gravity data and well data and might constitute the on-land remainder of the caldera rim, detected below sea level by tomography using active source seismic data.
Internal friction in rocks and its relationship to volatiles on the moon
NASA Technical Reports Server (NTRS)
Tittmann, B. R.; Housley, R. M.; Alers, G. A.; Cirlin, E. H.
1974-01-01
The physical properties of lunar rocks were measured using the vibrating bar technique in order to provide data for interpretation of geophysical results such as those from seismic measurements. The effect of volatiles on the mechanical Q in lunar rocks was studied in addition to the effect of exposing a sample to controlled amounts of those gases most likely to be present in the lunar environment or likely to have been outgassed from the lunar interior. The moderate temperatures to which the sample was exposed during the thermal treatment and the small drop in resonant frequency during the course of the outgassing suggests that there was little change in microfracture density. The frequency, composition and texture dependence of the damping were investigated, to study the loss mechanism.
Wood, David B.
2007-11-01
Between 1951 and 1992, 828 underground tests were conducted on the Nevada National Security Site, Nye County, Nevada. Prior to and following these nuclear tests, holes were drilled and mined to collect rock samples. These samples are organized and stored by depth of borehole or drift at the U.S. Geological Survey Core Library and Data Center at Mercury, Nevada, on the Nevada National Security Site. From these rock samples, rock properties were analyzed and interpreted and compiled into project files and in published reports that are maintained at the Core Library and at the U.S. Geological Survey office in Henderson, Nevada. These rock-sample data include lithologic descriptions, physical and mechanical properties, and fracture characteristics. Hydraulic properties also were compiled from holes completed in the water table. Rock samples are irreplaceable because pre-test, in-place conditions cannot be recreated and samples can not be recollected from the many holes destroyed by testing. Documenting these data in a published report will ensure availability for future investigators.
Mapping alpha-Particle X-Ray Fluorescence Spectrometer (Map-X)
NASA Technical Reports Server (NTRS)
Blake, D. F.; Sarrazin, P.; Bristow, T.
2014-01-01
Many planetary surface processes (like physical and chemical weathering, water activity, diagenesis, low-temperature or impact metamorphism, and biogenic activity) leave traces of their actions as features in the size range 10s to 100s of micron. The Mapping alpha-particle X-ray Spectrometer ("Map-X") is intended to provide chemical imaging at 2 orders of magnitude higher spatial resolution than previously flown instruments, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks.
Direct measurement of 3D elastic anisotropy on rocks from the Ivrea zone (Southern Alps, NW Italy)
NASA Astrophysics Data System (ADS)
Pros, Z.; Lokajíček, T.; Přikryl, R.; Klíma, K.
2003-07-01
Lower crustal and upper mantle rocks exposed at the earth's surface present direct possibility to measure their physical properties that must be, in other cases, interpreted using indirect methods. The results of these direct measurements can be then used for the corrections of models based on the indirect data. Elastic properties are among the most important parameters studied in geophysics and employed in many fields of earth sciences. In laboratory, dynamic elastic properties are commonly tested in three mutually perpendicular directions. The spatial distribution of P- and S-wave velocities are then computed using textural data, modal composition, density and elastic constants. During such computation, it is virtually impossible to involve all microfabric parameters like different types of microcracking, micropores, mineral alteration or quality of grain boundaries. In this study, complete 3D ultrasonic transmission of spherical samples in 132 independent directions at several levels of confining pressure up to 400 MPa has been employed for study of selected mafic and ultrabasic rocks sampled in and nearby Balmuccia ultrabasic massif (Ivrea zone, Southern Alps, NW Italy). This method revealed large directional variance of maximum P-wave velocity and different symmetries (orthorhombic vs. transversal isotropic) of elastic waves 3D distribution that has not been recorded on these rocks before. Moreover, one dunite sample exhibits P-wave velocity approaching to that of olivine single crystal being interpreted as influence of CPO.
A quantitative analysis of rock cliff erosion environments
NASA Astrophysics Data System (ADS)
Lim, M.; Rosser, N.; Petley, D. N.; Norman, E. C.; Barlow, J.
2009-12-01
The spatial patterns and temporal sequencing of failures from coastal rock cliffs are complex and typically generate weak correlations with environmental variables such as tidal inundation, wave energy, wind and rain. Consequently, understanding of rock cliff behaviour, its response to predicted changes in environmental forcing and, more specifically, the interaction between marine and climatic factors in influencing failure processes has remained limited. This work presents the results from the first attempt to characterise and quantify the conditions on coastal cliffs that lead to accelerated rates of material detachment. The rate of change in an 80 m high section of coastal rock cliffs has been surveyed annually with high-resolution terrestrial laser scanning (TLS). The rockfall data have been analysed according to a simplified source geology that exhibit distinct magnitude-frequency distributions relating to the dominance of particular failure types. An integrated network of sensors and instrumentation designed to reflect the lithological control on failure has been installed to examine both the distinction between prevailing conditions and those affecting the local cliff environment and the physical response of different rock types to micro-climatic processes. The monitoring system records near-surface rock strain, temperature, moisture and micro-seismic displacement in addition to air temperature, humidity, radiation, precipitation, water-level and three-dimensional wind characteristics. A characteristic environmental signal, unique to the cliff face material, has been identified that differs substantially from that experienced by the surrounding area; suggesting that established methods of meteorological and tidal data collection are insufficient and inappropriate to represent erosive processes. The interaction between thermo- and hydro-dynamics of the cliff environment and the physical response of the rock highlights the composite environmental effects acting on the rock mass and provides a new interpretation on the dominant controls on the behaviour of coastal rock cliffs that challenges the almost universal application of undercutting and cantilever collapse as the primary driver of rock cliff erosion.
NASA Technical Reports Server (NTRS)
Lindstrom, M. M.; Tobola, K. W.; Allen, J. S.; Stocco, K.; Henry, M.; Allen, J. S.; McReynolds, Julie; Porter, T. Todd; Veile, Jeri
2005-01-01
As the scientific community studies Mars remotely for signs of life and uses Martian meteorites as its only available samples, teachers, students, and the general public continue to ask, "How do we know these meteorites are from Mars?" This question sets the stage for a six-lesson instructional package Space Rocks Tell Their Secrets. Expanding on the short answer "It's the chemistry of the rock", students are introduced to the research that reveals the true identities of the rocks. Since few high school or beginning college students have the opportunity to participate in this level of research, a slide presentation introduces them to the labs, samples, and people involved with the research. As they work through the lessons and interpret authentic data, students realize that the research is an application of two basic science concepts taught in the classroom, the electromagnetic spectrum and isotopes. Additional information is included in the original extended abstract.
NASA Technical Reports Server (NTRS)
Lindstrom, M. M.; Tobola, K. W.; Stocco, K.; Henry, M.; Allen, J. S.
2003-01-01
As the scientific community studies Mars remotely for signs of life and uses Martian meteorites as its only available samples, teachers, students, and the general public continue to ask, "How do we know these meteorites are from Mars?" This question sets the stage for a three-lesson instructional package Space Rocks Tell Their Secrets. Expanding on the short answer "It's the chemistry of the rock", students are introduced to the research that reveals the true identities of the rocks. Since few high school or beginning college students have the opportunity to participate in this level of research, a slide presentation introduces them to the labs, samples, and people involved with the research. As they work through the lessons and interpret real data, students realize that the research is an application of basic science concepts they should know, the electromagnetic spectrum and isotopes. They can understand the results without knowing how to do the research or operate the instruments.
NASA Astrophysics Data System (ADS)
Bailly-Comte, Vincent; Martin, Jonathan B.; Jourde, Hervé; Screaton, Elizabeth J.; Pistre, Séverin; Langston, Abigail
2010-05-01
SummaryKarst aquifers are heterogeneous media where conduits usually drain water from lower permeability volumes (matrix and fractures). For more than a century, various approaches have used flood recession curves, which integrate all hydrodynamic processes in a karst aquifer, to infer physical properties of the movement and storage of groundwater. These investigations typically only consider flow to the conduits and thus have lacked quantitative observations of how pressure transfer and water exchange between matrix and conduit during flooding could influence recession curves. We present analyses of simultaneous discharge and water level time series of two distinctly different karst systems, one with low porosity and permeability matrix rocks in southern France, and one with high porosity and permeability matrix rocks in north-central Florida (USA). We apply simple mathematical models of flood recession using time series representations of recharge, storage, and discharge processes in the karst aquifer. We show that karst spring hydrographs can be interpreted according to pressure transfer between two distinct components of the aquifer, conduit and matrix porosity, which induce two distinct responses at the spring. Water exchange between conduits and matrix porosity successively control the flow regime at the spring. This exchange is governed by hydraulic head differences between conduits and matrix, head gradients within conduits, and the contrast of permeability between conduits and matrix. These observations have consequences for physical interpretations of recession curves and modeling of karst spring flows, particularly for the relative magnitudes of base flow and quick flow from karst springs. Finally, these results suggest that similar analyses of recession curves can be applied to karst aquifers with distinct physical characteristics utilizing well and spring hydrograph data, but information must be known about the hydrodynamics and physical properties of the aquifer before the results can be correctly interpreted.
Thermal Inertia of Rocks and Rock Populations and Implications for Landing Hazards on Mars
NASA Technical Reports Server (NTRS)
Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.
2001-01-01
Rocks represent an obvious potential hazard to a landing spacecraft. They also represent an impediment to rover travel and objects of prime scientific interest. Although Mars Orbiter Camera (MOC) images are of high enough resolution to distinguish the largest rocks (an extremely small population several meters diameter or larger), traditionally the abundance and distribution of rocks on Mars have been inferred from thermal inertia and radar measurements, our meager ground truth sampling of landing sites, and terrestrial rock populations. In this abstract, we explore the effective thermal inertia of rocks and rock populations, interpret the results in terms of abundances and populations of potentially hazardous rocks, and conclude with interpretations of rock hazards on the Martian surface and in extremely high thermal inertia areas.
Publications - GMC 83 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 83 Publication Details Title: Rock-eval pyrolysis data and interpretation for the Alaska and Ruth Laboratories, Inc., 1988, Rock-eval pyrolysis data and interpretation for the Alaska Information gmc083.pdf (274.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis Top of Page Department of Natural
Phosphates at the Surface of Mars: Primary Deposits and Alteration Products
NASA Technical Reports Server (NTRS)
Yen, Albert S.; Gellert, Ralf; Clark, Benton C.; Ming, Douglas W.; Mittlefehldt, David W.; Arvidson, Raymond E.; McSween, Harry Y., Jr.; Schroder, Christian
2014-01-01
Phosphorus is an essential element in terrestrial organisms and thus characterizing the occurrences of phosphate phases at the martian surface is crucial in the assessment of habitability. The Alpha Particle X-Ray Spectrometers onboard Spirit, Opportunity and Curiosity discovered a variety of primary and secondary phosphate phases allowing direct comparisons across the three landing sites. The Spirit rover at Gusev Crater encountered the "Wishstone/Watchtower" class of P-rich (up to 5.2 wt% P2O5) rocks interpreted to be alkaline volcanic rocks with a physical admixture of approximately 10 to 20% merrillite [Usui et al 2008]. These rocks are characterized by elevated Ti and Y and anomalously low Cr and Ni, which could largely reflect the nature of the protoliths: Evolved magmatic rocks. Many of these chemical signatures are also found in pyroclastic deposits at nearby "Home Plate" and in phosphate precipitates derived from fluid interactions with these rocks ("Paso Robles" soils). The Opportunity rover at Meridiani Planum recently analyzed approximately 4 cm clast in a fine-grained matrix, one of numerous rocks of similar appearance at the rim of Endeavour Crater. This clast, "Sarcobatus," has minor enrichments in Ca and P relative to the matrix, and like the P-rich rocks at Gusev, Sarcobatus also shows elevated Al and Ti. On the same segment of the Endeavour rim, subsurface samples were found with exceptional levels of Mn (approximately 3.5 wt% MnO). These secondary and likely aqueous deposits contain strong evidence for associated Mg-sulfate and Ca-phosphate phases. Finally, the Curiosity traverse at Gale crater encountered P-rich rocks compositionally comparable to Wishstone at Gusev, including elevated Y. Phosphorous-rich rocks with similar chemical characteristics are prevalent on Mars, and the trace and minor element signatures provide constraints on whether these are primary deposits, secondary products of physical weathering or secondary products of chemical weathering.
Magmas near the critical degassing pressure drive volcanic unrest towards a critical state.
Chiodini, Giovanni; Paonita, Antonio; Aiuppa, Alessandro; Costa, Antonio; Caliro, Stefano; De Martino, Prospero; Acocella, Valerio; Vandemeulebrouck, Jean
2016-12-20
During the reawaking of a volcano, magmas migrating through the shallow crust have to pass through hydrothermal fluids and rocks. The resulting magma-hydrothermal interactions are still poorly understood, which impairs the ability to interpret volcano monitoring signals and perform hazard assessments. Here we use the results of physical and volatile saturation models to demonstrate that magmatic volatiles released by decompressing magmas at a critical degassing pressure (CDP) can drive volcanic unrest towards a critical state. We show that, at the CDP, the abrupt and voluminous release of H 2 O-rich magmatic gases can heat hydrothermal fluids and rocks, triggering an accelerating deformation that can ultimately culminate in rock failure and eruption. We propose that magma could be approaching the CDP at Campi Flegrei, a volcano in the metropolitan area of Naples, one of the most densely inhabited areas in the world, and where accelerating deformation and heating are currently being observed.
NASA Astrophysics Data System (ADS)
Abers, Geoffrey A.; Hacker, Bradley R.
2016-02-01
To interpret seismic images, rock seismic velocities need to be calculated at elevated pressure and temperature for arbitrary compositions. This technical report describes an algorithm, software, and data to make such calculations from the physical properties of minerals. It updates a previous compilation and Excel® spreadsheet and includes new MATLAB® tools for the calculations. The database of 60 mineral end-members includes all parameters needed to estimate density and elastic moduli for many crustal and mantle rocks at conditions relevant to the upper few hundreds of kilometers of Earth. The behavior of α and β quartz is treated as a special case, owing to its unusual Poisson's ratio and thermal expansion that vary rapidly near the α-β transition. The MATLAB tools allow integration of these calculations into a variety of modeling and data analysis projects.
Ostermann, Marc; Sanders, Diethard; Ivy-Ochs, Susan; Alfimov, Vasily; Rockenschaub, Manfred; Römer, Alexander
2012-10-15
In the Obernberg valley, the Eastern Alps, landforms recently interpreted as moraines are re-interpreted as rock avalanche deposits. The catastrophic slope failure involved an initial rock volume of about 45 million m³, with a runout of 7.2 km over a total vertical distance of 1330 m (fahrböschung 10°). 36 Cl surface-exposure dating of boulders of the avalanche mass indicates an event age of 8.6 ± 0.6 ka. A 14 C age of 7785 ± 190 cal yr BP of a palaeosoil within an alluvial fan downlapping the rock avalanche is consistent with the event age. The distal 2 km of the rock-avalanche deposit is characterized by a highly regular array of transverse ridges that were previously interpreted as terminal moraines of Late-Glacial. 'Jigsaw-puzzle structure' of gravel to boulder-size clasts in the ridges and a matrix of cataclastic gouge indicate a rock avalanche origin. For a wide altitude range the avalanche deposit is preserved, and the event age of mass-wasting precludes both runout over glacial ice and subsequent glacial overprint. The regularly arrayed transverse ridges thus were formed during freezing of the rock avalanche deposits.
NASA Astrophysics Data System (ADS)
Anggit Maulana, Hiska; Haris, Abdul
2018-05-01
Reservoir and source rock Identification has been performed to deliniate the reservoir distribution of Talangakar Formation South Sumatra Basin. This study is based on integrated geophysical, geological and petrophysical data. The aims of study to determine the characteristics of the reservoir and source rock, to differentiate reservoir and source rock in same Talangakar formation, to find out the distribution of net pay reservoir and source rock layers. The method of geophysical included seismic data interpretation using time and depth structures map, post-stack inversion, interval velocity, geological interpretations included the analysis of structures and faults, and petrophysical processing is interpret data log wells that penetrating Talangakar formation containing hydrocarbons (oil and gas). Based on seismic interpretation perform subsurface mapping on Layer A and Layer I to determine the development of structures in the Regional Research. Based on the geological interpretation, trapping in the form of regional research is anticline structure on southwest-northeast trending and bounded by normal faults on the southwest-southeast regional research structure. Based on petrophysical analysis, the main reservoir in the field of research, is a layer 1,375 m of depth and a thickness 2 to 8.3 meters.
Mineralogy of the Martian Surface: Crustal Composition to Surface Processes
NASA Technical Reports Server (NTRS)
Mustard, John F.
1997-01-01
The main results have been published in the refereed literature, and thus this report serves mainly to summarize the main findings and indicate where the detailed papers may be found. Reflectance spectroscopy has been an important tool for determining the mineralogic makeup of the near surface materials on Mars. Analysis of the spectral properties of the surface have demonstrated that these attributes are heterogeneous from the coarse spatial but high spectral resolution spectra obtained with telescopes to the high spatial but coarse spectral resolution Viking data (e.g. Arvidson et al., 1989; McEwen et al., 1989). Low albedo materials show strong evidence for the presence of igneous rock forming minerals while bright materials are generally interpreted as representing heavily altered crustal material. How these materials are physically and genetically related has important implications for understanding martian surface properties and processes, weathering histories and paths, and crustal composition. The goal of this research is to characterize the physical and chemical properties of low albedo materials on Mars and the relationship to intermediate and high albedo materials. Fundamental science questions to be pursued include: (1) the observed distributions of soil, rock, and dust a function of physical processes or weathering and (2) different stages of chemical and physical alteration fresh rock identified. These objectives will be addressed through detailed analyses and modelling of the ISM data from the Phobos-2 mission with corroborating evidence of surface composition and properties provided by data from the Viking mission.
NASA Technical Reports Server (NTRS)
Scanvic, J. Y. (Principal Investigator)
1980-01-01
Thermal zones delimited on HCMM images, by visual interpretation only, were correlated with geological units and carbonated rocks, granitic, and volcanic rocks were individualized. Rock signature is an evolutive parameter and some distinctions were made by addition of day, night and seasonal thermal image interpretation. This analysis also demonstrated that forest cover does not mask the underlying rocks thermal signature. Thermal anomalies were discovered. Geological targets were defined in the Paris Basin and the Montmarault granite.
Omori’s law: a note on the history of geophysics
NASA Astrophysics Data System (ADS)
Guglielmi, A. V.
2017-06-01
In the late nineteenth century, the Japanese seismologist Omori discovered the first law of earthquake physics, which states that the rate of aftershocks decreases hyperbolically with time. Over the years since then, there has been a vast amount of literature on this law, and the significance of its discovery has been universally recognized. There is, however, a profound division of opinion as to the interpretation of the law. Some argue that Omori just proposed a simple data-fitting formula and replace this formula by a power-law one with a negative fractional exponent, whereas for others the Omori law makes physical sense. The paper describes the history and essence of Omori’s discovery, with special attention paid to interpretational questions. It is shown that Omori’s original formulation of the law correlates well with the current understanding of the rock destruction mechanism at the earthquake focus.
NASA Astrophysics Data System (ADS)
Lisé-Pronovost, Agathe; St-Onge, Guillaume; Gogorza, Claudia; Haberzettl, Torsten; Jouve, Guillaume; Francus, Pierre; Ohlendorf, Christian; Gebhardt, Catalina; Zolitschka, Bernd
2015-02-01
The sedimentary archive from Laguna Potrok Aike is the only continuous record reaching back to the last Glacial period in continental southeastern Patagonia. Located in the path of the Southern Hemisphere westerly winds and in the source region of dust deposited in Antarctica during Glacial periods, southern Patagonia is a vantage point to reconstruct past changes in aeolian activity. Here we use high-resolution rock-magnetic and physical grain size data from site 2 of the International Continental scientific Drilling Program (ICDP) Potrok Aike maar lake Sediment Archive Drilling prOject (PASADO) in order to develop magnetic proxies of dust and wind intensity at 52°S since 51,200 cal BP. Rock-magnetic analysis indicates the magnetic mineral assemblage is dominated by detrital magnetite. Based on the estimated flux of magnetite to the lake and comparison with distal dust records from the Southern Ocean and Antarctica, kLF is interpreted as a dust indicator in the dust source of southern Patagonia at the millennial time scale, when ferrimagnetic grain size and coercivity influence are minimal. Comparison to physical grain-size data indicates that the median destructive field of isothermal remanent magnetization (MDFIRM) mostly reflects medium to coarse magnetite bearing silts typically transported by winds for short-term suspension. Comparison with wind-intensity proxies from the Southern Hemisphere during the last Glacial period and with regional records from Patagonia since the last deglaciation including marine, lacustrine and peat bog sediments as well as speleothems reveals similar variability with MDFIRM up to the centennial time scale. MDFIRM is interpreted as a wind-intensity proxy independent of moisture changes for southeastern Patagonia, with stronger winds capable of transporting coarser magnetite bearing silts to the lake.
Friction and dynamics of rock avalanches travelling on glaciers
NASA Astrophysics Data System (ADS)
De Blasio, Fabio Vittorio
2014-05-01
Rock avalanches travelling on glaciers often exhibit effective friction coefficient lower than those on a rocky terrain. After briefly considering some data of rock avalanches on glaciers, the physics of sliding of solid objects on icy surfaces is reviewed, and a model is put forward for the mechanics of rock avalanche sliding on ice accounting for the formation of a natural lubricating layer. It is suggested that at the beginning of the flow of a rock avalanche, friction results from rocky blocks ploughing on ice. As the erosion continues, a gouge of ice particles results, which clogs the interstices between blocks and may partially melt as a consequence of the production of frictional heat. This conceptual model is numerically investigated for a slab travelling on ice. The results show an increase in mobility as a function of slab thickness, travelled length, and the gravity field, in agreement with case studies. The results are useful to interpret the peculiar features of rock avalanches travelling on icy surfaces such as digitations, out-runner blocks, and longitudinal furrows. The lubrication theory for landslides on ice proposed here may provide a framework for understanding landslides on Earth and for future modelling; in addition, it may help elucidate the presence of similar landslide deposits on the surface of Mars.
Ostermann, Marc; Sanders, Diethard; Ivy-Ochs, Susan; Alfimov, Vasily; Rockenschaub, Manfred; Römer, Alexander
2012-01-01
In the Obernberg valley, the Eastern Alps, landforms recently interpreted as moraines are re-interpreted as rock avalanche deposits. The catastrophic slope failure involved an initial rock volume of about 45 million m³, with a runout of 7.2 km over a total vertical distance of 1330 m (fahrböschung 10°). 36Cl surface-exposure dating of boulders of the avalanche mass indicates an event age of 8.6 ± 0.6 ka. A 14C age of 7785 ± 190 cal yr BP of a palaeosoil within an alluvial fan downlapping the rock avalanche is consistent with the event age. The distal 2 km of the rock-avalanche deposit is characterized by a highly regular array of transverse ridges that were previously interpreted as terminal moraines of Late-Glacial. ‘Jigsaw-puzzle structure’ of gravel to boulder-size clasts in the ridges and a matrix of cataclastic gouge indicate a rock avalanche origin. For a wide altitude range the avalanche deposit is preserved, and the event age of mass-wasting precludes both runout over glacial ice and subsequent glacial overprint. The regularly arrayed transverse ridges thus were formed during freezing of the rock avalanche deposits. PMID:24966447
The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam Onboard Curiosity
Le Deit, Laetitia; Mangold, Nicolas; Forni, Olivier; Cousin, Agnes; Lasue, Jeremie; Schröder, Susanne; Wiens, Roger C.; Sumner, Dawn Y.; Fabre, Cecile; Stack, Katherine M.; Anderson, Ryan; Blaney, Diana L.; Clegg, Samuel M.; Dromart, Gilles; Fisk, Martin; Gasnault, Olivier; Grotzinger, John P.; Gupta, Sanjeev; Lanza, Nina; Le Mouélic, Stephane; Maurice, Sylvestre; McLennan, Scott M.; Meslin, Pierre-Yves; Nachon, Marion; Newsom, Horton E.; Payre, Valerie; Rapin, William; Rice, Melissa; Sautter, Violaine; Treiman, Alan H.
2016-01-01
The Mars Science Laboratory rover Curiosity encountered potassium-rich clastic sedimentary rocks at two sites in Gale Crater, the waypoints Cooperstown and Kimberley. These rocks include several distinct meters thick sedimentary outcrops ranging from fine sandstone to conglomerate, interpreted to record an ancient fluvial or fluvio-deltaic depositional system. From ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) chemical analyses, this suite of sedimentary rocks has an overall mean K2O abundance that is more than 5 times higher than that of the average Martian crust. The combined analysis of ChemCam data with stratigraphic and geographic locations reveals that the mean K2O abundance increases upward through the stratigraphic section. Chemical analyses across each unit can be represented as mixtures of several distinct chemical components, i.e., mineral phases, including K-bearing minerals, mafic silicates, Fe-oxides, and Fe-hydroxide/oxyhydroxides. Possible K-bearing minerals include alkali feldspar (including anorthoclase and sanidine) and K-bearing phyllosilicate such as illite. Mixtures of different source rocks, including a potassium-rich rock located on the rim and walls of Gale Crater, are the likely origin of observed chemical variations within each unit. Physical sorting may have also played a role in the enrichment in K in the Kimberley formation. The occurrence of these potassic sedimentary rocks provides additional evidence for the chemical diversity of the crust exposed at Gale Crater.
NASA Astrophysics Data System (ADS)
Gogoi, Bibhuti; Saikia, Ashima; Ahmad, Mansoor; Ahmad, Talat
2018-06-01
The subvolcanic rocks exposed in the Ghansura Felsic Dome (GFD) of the Bathani volcano-sedimentary sequence at the northern fringe of the Rajgir fold belt in the Proterozoic Chotanagpur Granite Gneiss Complex preserves evidence of magma mixing and mingling in mafic (dolerite), felsic (microgranite) and intermediate (hybrid) rocks. Structures like crenulated margins of mafic enclaves, felsic microgranular enclaves and ocelli with reaction surfaces in mafic rocks, hybrid zones at mafic-felsic contacts, back-veining and mafic flows in the granitic host imply magma mingling phenomena. Textural features like quartz and titanite ocelli, acicular apatite, rapakivi and anti-rapakivi feldspar intergrowths, oscillatory zoned plagioclase, plagioclase with resorbed core and intact rim, resorbed crystals, mafic clots and mineral transporting veins are interpreted as evidence of magma mixing. Three distinct hybridized rocks have formed due to varied interactions of the intruding mafic magma with the felsic host, which include porphyritic diorite, mingled rocks and intermediate rocks containing felsic ocelli. Geochemical signatures confirm that the hybrid rocks present in the study area are mixing products formed due to the interaction of mafic and felsic magmas. Physical parameters like temperature, viscosity, glass transition temperature and fragility calculated for different rock types have been used to model the relative contributions of mafic and felsic end-member magmas in forming the porphyritic diorite. From textural and geochemical investigations it appears that the GFD was a partly solidified magma chamber when mafic magma intruded it leading to the formation of a variety of hybrid rock types.
Le Deit, L.; Mangold, N.; Forni, O.; ...
2016-05-13
The Mars Science Laboratory rover Curiosity encountered potassium-rich clastic sedimentary rocks at two sites in Gale Crater, the waypoints Cooperstown and Kimberley. These rocks include several distinct meters thick sedimentary outcrops ranging from fine sandstone to conglomerate, interpreted to record an ancient fluvial or fluvio-deltaic depositional system. Furthermore, from ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) chemical analyses, this suite of sedimentary rocks has an overall mean K 2O abundance that is more than 5 times higher than that of the average Martian crust. The combined analysis of ChemCam data with stratigraphic and geographic locations then reveals that the mean K 2Omore » abundance increases upward through the stratigraphic section. Chemical analyses across each unit can be represented as mixtures of several distinct chemical components, i.e., mineral phases, including K-bearing minerals, mafic silicates, Fe-oxides, and Fe-hydroxide/oxyhydroxides. Possible K-bearing minerals include alkali feldspar (including anorthoclase and sanidine) and K-bearing phyllosilicate such as illite. Mixtures of different source rocks, including a potassium-rich rock located on the rim and walls of Gale Crater, are the likely origin of observed chemical variations within each unit. Physical sorting may have also played a role in the enrichment in K in the Kimberley formation. The occurrence of these potassic sedimentary rocks provides additional evidence for the chemical diversity of the crust exposed at Gale Crater.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Deit, L.; Mangold, N.; Forni, O.
The Mars Science Laboratory rover Curiosity encountered potassium-rich clastic sedimentary rocks at two sites in Gale Crater, the waypoints Cooperstown and Kimberley. These rocks include several distinct meters thick sedimentary outcrops ranging from fine sandstone to conglomerate, interpreted to record an ancient fluvial or fluvio-deltaic depositional system. Furthermore, from ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) chemical analyses, this suite of sedimentary rocks has an overall mean K 2O abundance that is more than 5 times higher than that of the average Martian crust. The combined analysis of ChemCam data with stratigraphic and geographic locations then reveals that the mean K 2Omore » abundance increases upward through the stratigraphic section. Chemical analyses across each unit can be represented as mixtures of several distinct chemical components, i.e., mineral phases, including K-bearing minerals, mafic silicates, Fe-oxides, and Fe-hydroxide/oxyhydroxides. Possible K-bearing minerals include alkali feldspar (including anorthoclase and sanidine) and K-bearing phyllosilicate such as illite. Mixtures of different source rocks, including a potassium-rich rock located on the rim and walls of Gale Crater, are the likely origin of observed chemical variations within each unit. Physical sorting may have also played a role in the enrichment in K in the Kimberley formation. The occurrence of these potassic sedimentary rocks provides additional evidence for the chemical diversity of the crust exposed at Gale Crater.« less
Lunar highland rock types: Their implications for impact-induced fractionation
NASA Technical Reports Server (NTRS)
Phinney, W. C.; Warner, J. L.; Simonds, C. H.
1977-01-01
Lunar rocks may be classified into three major groups: (1) coarse-grained igneous rocks, (2) fine-grained igneous rocks, and (3) breccias. Group 1 is interpreted as primitive lunar crustal rocks that display various degrees of crushing and/or annealing. Group 2 is interpreted as volcanic rocks. Group 3 is interpreted as resulting from impacts on the lunar surface and is subdivided on the basis of matrix textures into fragmental breccias, crystalline breccias that have been annealed, and crystalline breccias with igneous matrices. A synthesis of the data concerning lunar highlands polymict breccias compels the prediction that the breccias should have homogeneous matrices from rock to rock within regions of the highlands of limited size where impact mixing has been efficient and extensive. But the returned breccias, even from one landing site, display a wide range in composition. This incompatibility between prediction and observation is a paradox that may be resolved by a process that acts after impact mixing to cause a differentiation of the breccia compositions. Partial melting of the local average crustal composition (as modeled by the average soil composition for each site) and separation of melt and residue in ejecta and/or fall-back blankets are compatible with the reviewed data and may resolve the paradox.
Magmas near the critical degassing pressure drive volcanic unrest towards a critical state
Chiodini, Giovanni; Paonita, Antonio; Aiuppa, Alessandro; Costa, Antonio; Caliro, Stefano; De Martino, Prospero; Acocella, Valerio; Vandemeulebrouck, Jean
2016-01-01
During the reawaking of a volcano, magmas migrating through the shallow crust have to pass through hydrothermal fluids and rocks. The resulting magma–hydrothermal interactions are still poorly understood, which impairs the ability to interpret volcano monitoring signals and perform hazard assessments. Here we use the results of physical and volatile saturation models to demonstrate that magmatic volatiles released by decompressing magmas at a critical degassing pressure (CDP) can drive volcanic unrest towards a critical state. We show that, at the CDP, the abrupt and voluminous release of H2O-rich magmatic gases can heat hydrothermal fluids and rocks, triggering an accelerating deformation that can ultimately culminate in rock failure and eruption. We propose that magma could be approaching the CDP at Campi Flegrei, a volcano in the metropolitan area of Naples, one of the most densely inhabited areas in the world, and where accelerating deformation and heating are currently being observed. PMID:27996976
NASA Technical Reports Server (NTRS)
Williams, H.; Mcbirney, A. R.
1969-01-01
Pyroclastic ejecta and the deposits they form were classified in many ways, and many interpretations were given to individual terms. Some classifications are based on the modes of orgin and deposition of the ejecta; others emphasized the chemical and physical composition of the ejecta. Particle-size was used as the prime basis of subdivision, and the same size-limits were used as those employed in the classification of sediments and sedimentary rocks.
NASA Astrophysics Data System (ADS)
Király, Csilla; Szamosfalvi, Ágnes; Sendula, Eszter; Páles, Mariann; Kovács, István; Kónya, Péter; Falus, György; Szabó, Csaba
2015-04-01
The physical and geochemical consistency of the cap rock is primarily important for safe geological storage of CO2.. As a consequence of CO2 injection reactions took place between the minerals of the reservoir, the cap rock and CO2 saturated pore water. These reactions may change the mineral composition and petrophysical properties of the storage reservoir as well as the cap rock that provides the only physical barrier that retains carbon dioxide in the target reservoir formation. Study of the natural CO2 occurrences delivers information to understand which properties of a cap rock provide the sustainable closure and retainment. Knowledge of the long term effect of CO2 on the behavior of the cap rock is an important input in the selection procedure of a potential CO2 injection site. Yet, very few data exist on geochemical properties and reactivity of the cap rocks. During normal commercial operations the reservoir is typically cored, but not the cap rock. This study may enhance our knowledge about possible mineralogical reactions, which can occur in clayey-aleuritic cap rocks. The Mihályi-Répcelak natural CO2 occurrence is believed to be leakage safe. There is no known seepage on the surface. It is suggested that the aleuritic clay rich cap rock occurring at the natural reservoir can stop CO2 migration into other reservoirs or to the surface. The most important characteristics of cap rocks that they have low permeability (<0.1 mD) and porosity (eff.por. = 4%) and high clayeyness (approx. 80%). However, we demonstrate that in addition to these parameters the geochemical properties of cap rock is also important. In order to characterize the natural CO2 occurrence, we applied the following analysis, like XRD, FTIR, SEM. The petrophysical properties are determined from the interpretation of geophysical well-logs and grain size distribution. The most important result of this study that adequate petrophysical properties do not completely define the suitability of a cap rock. The effective porosity (~4 %), permeability (0.026 mD) and clayeyness (~80%) data imply that the studied aleurolites are good cap rocks. The mineral composition of cap rock is similar to that of reservoir rock, however, the ratio of components is different. The mineralogical analysis and petrography yield to the reaction between CO2 and the cap rocks. The most visible effect of CO2 presence is the dawsonite precipitation after albite dissolution within the cap rocks. Therefore, the CO2 may migrate through the cap rocks in geological time scale, however the total system could be leakage safe.
NASA Astrophysics Data System (ADS)
Juhlin, C.; Almqvist, B. S. G.; Buske, S.; Giese, R.; Hedin, P.; Lorenz, H.
2017-12-01
Mountain belts (orogens) have influenced, and do influence, geological processes and climatic conditions considerably, perhaps more than any other natural phenomenon. The Alpine-Himalayan mountain belt is the prime example of a collisional orogen today. However, research in an active orogen is mostly constrained to observe and interpret the expression of processes at the surface, while the driving processes act at depth, often at mid-crustal levels (20 km) and deeper. About 440 million years ago, an orogen comparable in dimension and tectonic setting to today's Alpine-Himalayan orogen was developing in what is western Scandinavia today. Since then, erosion has removed much of the overburden and exposed the deep interior of the orogen, facilitating direct observation of rocks that are deep in the crust in modern orogens. In the COSC project we study how large rock volumes (allochthons) were transported during the collision of two continents and the associated deformation. The emplacement of high-grade metamorphic allochthons during orogeny has been the focus of COSC-1 research, centered on a 2.5 km deep fully cored borehole drilled in the summer of 2014 through the lower part of the high-grade Seve Nappe Complex near the town of Åre in western Sweden. The planned COSC-2 borehole (also fully cored to 2.5 km) will complement the COSC-1 borehole and allow a 5 km deep tectonostratigraphic column of the Caledonides to be constructed. The rock volume in the proximity of the COSC-2 borehole will be imaged with a combination of very-high and high-resolution geophysical experiments, such as a combination of high frequency seismics; zero offset and walk-away vertical seismic profiling (VSP); and a sparse 3D coverage around the drill site combined with 2D seismic profiles of several kilometers length in different directions. Downhole geophysical logging will provide additional information on the in-situ rock physical properties. Data from surface surveys will be calibrated against and integrated with the borehole data and the geological interpretation of the drill core. The COSC-1 and COSC-2 boreholes will provide a field laboratory for investigating mountain building processes, how plates and rock units deform, what structures and units are formed and their physical properties.
NASA Astrophysics Data System (ADS)
Gallen, Sean; Clark, Marin; Godt, Jonathan; Lowe, Katherine
2016-04-01
The material strength of rock is known to be a fundamental property in setting landscape form and geomorphic process rates as it acts to modulate feedbacks between earth surface processes, tectonics, and climate. Despite the long recognition of its importance in landscape evolution, a quantitative understanding of the role of rock strength in affecting geomorphic processes lags our knowledge of the influence of tectonics and climate. This gap stems largely from the fact that it remains challenging to quantify rock strength at the hillslope scale. Rock strength is strongly scale dependent because the number, size, spacing, and aperture of fractures sets the upper limit on rock strength, making it difficult to extrapolate laboratory measurements to landscape-scale interpretations. Here we present a method to determine near-surface rock strength at the hillslope-scale, relying on earthquake-triggered landslides as a regional-scale "shear strength" test. We define near-surface strength as the average strength of rock sample by the landslides, which is typically < 10 m. Based on a Newmark sliding block model, which approximates slope stability during an earthquake assuming a material with frictional and cohesive strength, we developed a coseismic landslide model that is capable of reproducing statistical characteristics of the distribution of earthquake-triggered landslides. We present results from two well-documented case-studies of earthquakes that caused widespread mass-wasting; the 2008 Mw 7.9 Wenchuan Earthquake, Sichuan Province, China and the 1994 Mw. 6.8 Northridge Earthquake, CA, USA. We show how this model can be used to determine near-surface rock strength and reproduce mapped landslide patterns provided the spatial distribution of local hillslope gradient, earthquake peak ground acceleration (PGA), and coseismic landsliding are well constrained. Results suggest that near-surface rock strength in these tectonically active settings is much lower than that obtained using typical laboratory shear strength measurements on intact rock samples. Furthermore, the near-surface material strength is similar between the study areas despite differences in tectonic, climatic, and lithologic conditions. Variations in near-surface strength within each setting appear to be more strongly associated with factors contributing to the weakening rock through chemical or physical weathering, such as mean annual precipitation and distance to active faults (a proxy for rock shattering intensity), rather than intrinsic lithologic properties. We hypothesize that the shattering of rock through long-term permanent strain accumulation and by repeated earthquakes is an important mechanism that can explain low rock strength values among the different study sites and the spatial pattern of rock strength within each location. These findings emphasize the potential role of factors other than lithology in controlling the spatial distribution of near-surface rock strength in high-relief, tectonically active settings, which has important implications for understanding the evolution of landscapes, interpreting tectonic and climatic signals from topography, critical zone processes, and natural hazard assessment.
Influence of rock strength variations on interpretation of thermochronologic data
NASA Astrophysics Data System (ADS)
Flowers, Rebecca; Ehlers, Todd
2017-04-01
Low temperature thermochronologic datasets are the primary means for estimating the timing, magnitude, and rates of erosion over extended (10s to 100s of Ma) timescales. Typically, abrupt shifts in cooling rates recorded by thermochronologic data are interpreted as changes in erosion rates caused by shifts in uplift rates, drainage patterns, or climate. However, recent work shows that different rock types vary in strength and erodibility by as much as several orders of magnitude, therefore implying that lithology should be an important control on how landscapes change through time and the thermochronometer record of erosion histories. Attention in the surface processes community has begun to focus on rock strength as a critical control on short-term (Ka to Ma) landscape evolution, but there has been less consideration of the influence of this factor on landscapes over longer intervals. If intrinsic lithologic variability can strongly modify erosion rates without changes in external factors, this result would have important implications for how thermochronologic datasets are interpreted. Here we evaluate the importance of rock strength for interpreting thermochronologic datasets by examining erosion rates and total denudation magnitudes across sedimentary rock-crystalline basement rock interfaces. We particularly focus on the 'Great Unconformity', a global stratigraphic surface between Phanerozoic sedimentary rocks and Precambrian crystalline basement, which based on rock strength studies marks a dramatic rock erodibility contrast across which erosion rates should decelerate. In the Rocky Mountain basement uplifts of the western U.S., thermochronologic data and geologic observations indicate that erosion rates were high during latest Cretaceous-early Tertiary denudation of the sedimentary cover (3-4 km over 10 m.y., 300-400 m/m.y.) but dramatically decelerated when less erodible basement rocks were encountered (0.1-0.5 km over 55 m.y., 2-9 m/m.y.). Similarly, the western Canadian shield underwent multiple Phanerozoic episodes of substantial (1-4 km) sedimentary rock burial and erosion, but total Phanerozoic erosion of the crystalline basement below the Great Unconformity was no more than a few hundred meters. We use published low temperature thermochronologic dates, the LandLab landscape evolution model, and 1D thermokinematic and erosion (Pecube) models to assess whether the observed deceleration of erosion can be explained by measured variations in rock strength alone. We use these results to consider the extent to which rock strength can change the cooling history recorded by thermochronologic datasets.
ERIC Educational Resources Information Center
Henn, Cynthia A.
2004-01-01
There are many interpretations for the symbols that are seen in rock art, but no decoding key has ever been discovered. This article describes one classroom's experiences with a lesson on rock art--making their rock art and developing their own personal symbols. This lesson allowed for creativity, while giving an opportunity for integration…
A methodology for the semi-automatic digital image analysis of fragmental impactites
NASA Astrophysics Data System (ADS)
Chanou, A.; Osinski, G. R.; Grieve, R. A. F.
2014-04-01
A semi-automated digital image analysis method is developed for the comparative textural study of impact melt-bearing breccias. This method uses the freeware software ImageJ developed by the National Institute of Health (NIH). Digital image analysis is performed on scans of hand samples (10-15 cm across), based on macroscopic interpretations of the rock components. All image processing and segmentation are done semi-automatically, with the least possible manual intervention. The areal fraction of components is estimated and modal abundances can be deduced, where the physical optical properties (e.g., contrast, color) of the samples allow it. Other parameters that can be measured include, for example, clast size, clast-preferred orientations, average box-counting dimension or fragment shape complexity, and nearest neighbor distances (NnD). This semi-automated method allows the analysis of a larger number of samples in a relatively short time. Textures, granulometry, and shape descriptors are of considerable importance in rock characterization. The methodology is used to determine the variations of the physical characteristics of some examples of fragmental impactites.
Rock.XML - Towards a library of rock physics models
NASA Astrophysics Data System (ADS)
Jensen, Erling Hugo; Hauge, Ragnar; Ulvmoen, Marit; Johansen, Tor Arne; Drottning, Åsmund
2016-08-01
Rock physics modelling provides tools for correlating physical properties of rocks and their constituents to the geophysical observations we measure on a larger scale. Many different theoretical and empirical models exist, to cover the range of different types of rocks. However, upon reviewing these, we see that they are all built around a few main concepts. Based on this observation, we propose a format for digitally storing the specifications for rock physics models which we have named Rock.XML. It does not only contain data about the various constituents, but also the theories and how they are used to combine these building blocks to make a representative model for a particular rock. The format is based on the Extensible Markup Language XML, making it flexible enough to handle complex models as well as scalable towards extending it with new theories and models. This technology has great advantages as far as documenting and exchanging models in an unambiguous way between people and between software. Rock.XML can become a platform for creating a library of rock physics models; making them more accessible to everyone.
NASA Astrophysics Data System (ADS)
Bebout, G. E.; Penniston-Dorland, S.
2014-12-01
We provide a view of lithologic makeup, deformation, and fluid-rock interaction along the deep forearc to subarc plate interface, based on insights gained from study of HP/UHP metamorphic rocks. Exposures of plate-boundary shear zones on which we base our perspective represent 30-80 km depths and are on Catalina Island and at Monviso, Syros, and New Caledonia. Each contains highly deformed zones with schistose matrix, commonly with a large ultramafic component, containing bodies of less deformed mafic, sedimentary, and ultramafic rocks. These "blocks" have varying geometries, are up to km-scale, and can preserve disparate P-T histories reflecting dynamics of incorporation and entrainment. Sheared matrices contain high-variance, hydrous mineral assemblages in some cases resembling metasomatic zones ("rinds") at block-matrix contacts, and rinds and matrices have homogenized isotopic compositions reflecting extensive fluid-rock interaction. Shearing and related physical juxtaposition of disparate metasomatic rocks can result in mixed or 'hybrid' chemical compositions. The chlorite-, talc-, and amphibole-rich schists developed by these processes can stabilize H2O to great depth and influence its cycling. Fluids (hydrous fluids, silicate melts) released within slabs necessarily interact with highly deformed, lithologically hybridized zones at the plate interface as they ascend to potentially enter mantle wedges. Fluids bearing chemical/isotopic signatures of hybrid rocks appear capable of producing arc magma compositions interpreted as reflecting multiple, chemically distinct fluids sources. Geophysical signatures of these rheologically weak zones are equivocal but many recognize the presence of zones of low seismic velocity at/near the top of slabs and attribute them to hydrated rocks. Whether rocks from this interface buoyantly ascend into mantle wedges, indicated in some theoretical models, remains largely untested by field and geophysical observations.
2008 Gordon Research Conference on Rock Deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirth, James G.; Gray, Nancy Ryan
2009-09-21
The GRC on Rock Deformation highlights the latest research in brittle and ductile rock mechanics from experimental, field and theoretical perspectives. The conference promotes a multi-disciplinary forum for assessing our understanding of rock strength and related physical properties in the Earth. The theme for the 2008 conference is 'Real-time Rheology'. Using ever-improving geophysical techniques, our ability to constrain the rheological behavior during earthquakes and post-seismic creep has improved significantly. Such data are used to investigate the frictional behavior of faults, processes responsible for strain localization, the viscosity of the lower crust, and viscous coupling between the crust and mantle. Seismologicalmore » data also provide information on the rheology of the lower crust and mantle through analysis of seismic attenuation and anisotropy. Geologists are improving our understanding of rheology by combining novel analyses of microstructures in naturally deformed rocks with petrologic data. This conference will bring together experts and students in these research areas with experimentalists and theoreticians studying the same processes. We will discuss and assess where agreement exists on rheological constraints derived at different length/time scales using different techniques - and where new insight is required. To encompass the elements of these topics, speakers and discussion leaders with backgrounds in geodesy, experimental rock deformation, structural geology, earthquake seismology, geodynamics, glaciology, materials science, and mineral physics will be invited to the conference. Thematic sessions will be organized on the dynamics of earthquake rupture, the rheology of the lower crust and coupling with the upper mantle, the measurement and interpretation of seismic attenuation and anisotropy, the dynamics of ice sheets and the coupling of reactive porous flow and brittle deformation for understanding geothermal and chemical properties of the shallow crust that are important for developing ideas in CO2 sequestration, geothermal and petrochemical research and the mechanics of shallow faults.« less
Physical properties of two core samples from Well 34-9RD2 at the Coso geothermal field, California
Morrow, C.A.; Lockner, D.A.
2006-01-01
The Coso geothermal field, located along the Eastern California Shear Zone, is composed of fractured granitic rocks above a shallow heat source. Temperatures exceed 640 ?F (~338 ?C) at a depth of less than 10000 feet (3 km). Permeability varies throughout the geothermal field due to the competing processes of alteration and mineral precipitation, acting to reduce the interconnectivity of faults and fractures, and the generation of new fractures through faulting and brecciation. Currently, several hot regions display very low permeability, not conducive to the efficient extraction of heat. Because high rates of seismicity in the field indicate that the area is highly stressed, enhanced permeability can be stimulated by increasing the fluid pressure at depth to induce faulting along the existing network of fractures. Such an Enhanced Geothermal System (EGS), planned for well 46A-19RD, would greatly facilitate the extraction of geothermal fluids from depth by increasing the extent and depth of the fracture network. In order to prepare for and interpret data from such a stimulation experiment, the physical properties and failure behavior of the target rocks must be fully understood. Various diorites and granodiorites are the predominant rock types in the target area of the well, which will be pressurized from 10000 feet measured depth (MD) (3048m MD) to the bottom of the well at 13,000 feet MD (3962 m MD). Because there are no core rocks currently available from well 46A-19RD, we report here on the results of compressive strength, frictional sliding behavior, and elastic measurements of a granodiorite and diorite from another well, 34-9RD2, at the Coso site. Rocks cored from well 34-9RD2 are the deepest samples to date available for testing, and are representative of rocks from the field in general.
Life on Earth before 3.83 Ga? Carbonaceous Inclusions from Akilia (West Greenland)
NASA Astrophysics Data System (ADS)
Mojzsis, S. J.; Papineau, D.; Adam, J. D.; Harrison, T. M.
2005-12-01
The earliest records of life on Earth have been obscured by the intense metamorphism experienced by all known terranes older than ca. 3600 Ma; fragile microfossil shapes become obliterated, and chemical/isotopic biosignatures are potentially blurred, overprinted, mimicked or erased. Prior studies sought to overcome this dilemma utilizing chemofossils ~ biosignatures resistant to physical and chemical change since formation ~ in the search for possible traces of a biosphere in pre-3.8 Ga rocks. Interpreting the geology, age and origin of the oldest rocks is fraught with difficulty, yet new field- and laboratory-based techniques permit direct assessment of proposed evidence for early life in the >3.83 Ga paragneisses of the Akilia association in southern West Greenland. A comprehensive program of sampling guided by 1:100 scale mapping of these highly deformed units coupled with structural, geochemical and geochronological analyses, provides a basis for understanding of the petrogenesis of the Akilia rocks (Manning et al., in press). The new studies resolve existing controversies over this complex terrane and (i) corroborate a sedimentary rather than metasomatic origin for Fe-rich quartz pyroxene ( Aqp) units as supported by separate trace element, REE, δ18O, δ33S/δ34S and δ56Fe isotope studies; (ii) validate a >3.83 Ga age for Aqp units on Akilia and related units in southern West Greenland as among the oldest known rocks of sedimentary origin; and (iii) verify the presence of apatite-hosted graphite in Aqp units (cf. Lepland et al., 2005; Moorbath, 2005). This growing list of results lend support to our original interpretation (Mojzsis et al., 1996) that the simplest explanation for depleted 13C in carbonaceous inclusions in apatite from Akilia is that life had emerged on Earth prior to 3.83 Ga. Manning, C.E., Mojzsis, S.J. and Harrison, T.M. (2005) Geology, age and origin of supracrustal rocks, Akilia, Greenland (Amer. J. Sci. in press).
NASA Astrophysics Data System (ADS)
Kuwatani, T.; Toriumi, M.
2009-12-01
Recent advances in methodologies of geophysical observations, such as seismic tomography, seismic reflection method and geomagnetic method, provide us a large amount and a wide variety of data for physical properties of a crust and upper mantle (e.g. Matsubara et al. (2008)). However, it has still been difficult to specify a rock type and its physical conditions, mainly because (1) available data usually have a lot of error and uncertainty, and (2) physical properties of rocks are greatly affected by fluid and microstructures. The objective interpretation and quantitative evaluation for lithology and fluid-related structure require the statistical analyses of integrated geophysical and geological data. Self-Organizing Maps (SOMs) are unsupervised artificial neural networks that map the input space into clusters in a topological form whose organization is related to trends in the input data (Kohonen 2001). SOMs are powerful neural network techniques to classify and interpret multiattribute data sets. Results of SOM classifications can be represented as 2D images, called feature maps which illustrate the complexity and interrelationships among input data sets. Recently, some works have used SOM in order to interpret multidimensional, non-linear, and highly noised geophysical data for purposes of geological prediction (e.g. Klose 2006; Tselentis et al. 2007; Bauer et al. 2008). This paper describes the application of SOM to the 3D velocity structure beneath the whole Japan islands (e.g. Matsubara et al. 2008). From the obtained feature maps, we can specify the lithology and qualitatively evaluate the effect of fluid-related structures. Moreover, re-projection of feature maps onto the 3D velocity structures resulted in detailed images of the structures within the plates. The Pacific plate and the Philippine Sea plate subducting beneath the Eurasian plate can be imaged more clearly than the original P- and S-wave velocity structures. In order to understand more precise prediction of lithology and its structure, we will use the additional input data sets, such as tomographic images of random velocity fluctuation (Takahashi et al. 2009) and b-value mapping data. Additionally, different kinds of data sets, including the experimental and petrological results (e.g. Christensen 1991; Hacker et al. 2003) can be applied to our analyses.
Dissolution-Enlarged Fractures Imaging Using Electrical Resistivity Tomography (ERT)
NASA Astrophysics Data System (ADS)
Siami-Irdemoosa, Elnaz
In recent years the electrical imaging techniques have been largely applied to geotechnical and environmental investigations. These techniques have proven to be the best geophysical methods for site investigations in karst terrain, particularly when the overburden soil is clay-dominated. Karst is terrain with a special landscape and distinctive hydrological system developed by dissolution of rocks, particularly carbonate rocks such as limestone and dolomite, made by enlarging fractures into underground conduits that can enlarge into caverns, and in some cases collapse to form sinkholes. Bedding planes, joints, and faults are the principal structural guides for underground flow and dissolution in almost all karstified rocks. Despite the important role of fractures in karst development, the geometry of dissolution-enlarged fractures remain poorly unknown. These features are characterized by an strong contrast with the surrounding formations in terms of physical properties, such as electrical resistivity. Electrical resistivity tomography (ERT) was used as the primary geophysical tool to image the subsurface in a karst terrain in Greene County, Missouri. Pattern, orientation and density of the joint sets were interpreted from ERT data in the investigation site. The Multi-channel Analysis of Surface Wave (MASW) method and coring were employed to validate the interpretation results. Two sets of orthogonal visually prominent joints have been identified in the investigation site: north-south trending joint sets and west-east trending joint sets. However, most of the visually prominent joint sets are associated with either cultural features that concentrate runoff, natural surface drainage features or natural surface drainage.
NASA Astrophysics Data System (ADS)
Berrezueta, E.; Ordóñez-Casado, B.; Quintana, L.
2015-08-01
The aim of this article is to describe and interpret qualitative and quantitative changes at rock matrix scale of Lower-Upper Cretaceous sandstones exposed to supercritical (SC) CO2 and brine. The effects of experimental injection of SC CO2 during the first injection phases were studied at rock matrix scale, in a potential deep sedimentary reservoir in Northern Spain (Utrillas unit, at the base of the Cenozoic Duero Basin). Experimental wet CO2 injection was performed in a reactor chamber under realistic conditions of deep saline formations (P ≈ 78 bar, T ≈ 38 °C and 24 h exposure time). After the experiment, exposed and non-exposed equivalent sample sets were compared with the aim of assessing possible changes due to the effect of the CO2-brine exposure. Optical microscopy (OpM) and scanning electron microscopy (SEM) aided by optical image analysis (OIA) were used to compare the rock samples and get qualitative and quantitative information about mineralogy, texture and porous network distribution. Chemical analyses were performed to refine the mineralogical information and to obtain whole rock geochemical data. Brine composition was also analysed before and after the experiment. The results indicate an evolution of the pore network (porosity increase ≈ 2 %). Intergranular quartz matrix detachment and partial removal from the rock sample (due to CO2 input/release dragging) are the main processes that may explain the porosity increase. Primary mineralogy (≈ 95 % quartz) and rock texture (heterogeneous sand with interconnected framework of micro-channels) are important factors that seem to enhance textural/mineralogical changes in this heterogeneous system. The whole rock and brine chemical analyses after interaction with SC CO2-brine do not present important changes in the mineralogical, porosity and chemical configuration of the rock with respect to initial conditions, ruling out relevant precipitation or dissolution at these early stages. These results, simulating the CO2 injection near the injection well during the first phases (24 h) indicate that, in this environment where CO2 displaces the brine, the mixture principally generates local mineralogical/textural re-adjustments due to physical detachment of quartz grains. Consequences deriving from these changes are variable. Possible porosity and permeability increases could facilitate further CO2 injection but textural re-adjustment could also affect the rock physically. However, it is not clear yet what effect the quartz (solid suspension) could provoke in more distant areas of the rock. Quartz could be transported in the fluid flow path and probably accumulated at pore throats.
Drenth, Benjamin J.; Anderson, Raymond R.; Schulz, Klaus J.; Feinberg, Joshua M.; Chandler, Val W.; Cannon, William F.
2015-01-01
Large-amplitude gravity and magnetic highs over northeast Iowa are interpreted to reflect a buried intrusive complex composed of mafic–ultramafic rocks, the northeast Iowa intrusive complex (NEIIC), intruding Yavapai province (1.8–1.72 Ga) rocks. The age of the complex is unproven, although it has been considered to be Keweenawan (∼1.1 Ga). Because only four boreholes reach the complex, which is covered by 200–700 m of Paleozoic sedimentary rocks, geophysical methods are critical to developing a better understanding of the nature and mineral resource potential of the NEIIC. Lithologic and cross-cutting relations interpreted from high-resolution aeromagnetic and airborne gravity gradient data are presented in the form of a preliminary geologic map of the basement Precambrian rocks. Numerous magnetic anomalies are coincident with airborne gravity gradient (AGG) highs, indicating widespread strongly magnetized and dense rocks of likely mafic–ultramafic composition. A Yavapai-age metagabbro unit is interpreted to be part of a layered intrusion with subvertical dip. Another presumed Yavapai unit has low density and weak magnetization, observations consistent with felsic plutons. Northeast-trending, linear magnetic lows are interpreted to reflect reversely magnetized diabase dikes and have properties consistent with Keweenawan rocks. The interpreted dikes are cut in places by normally magnetized mafic–ultramafic rocks, suggesting that the latter represent younger Keweenawan rocks. Distinctive horseshoe-shaped magnetic and AGG highs correspond with a known gabbro, and surround rocks with weaker magnetization and lower density. Here, informally called the Decorah complex, the source body has notable geophysical similarities to Keweenawan alkaline ring complexes, such as the Coldwell and Killala Lake complexes, and Mesoproterozoic anorogenic complexes, such as the Kiglapait, Hettasch, and Voisey’s Bay intrusions in Labrador. Results presented here suggest that much of the NEIIC is composed of such complexes, and broadly speaking, may be a discontinuous group of several intrusive bodies. Most units are cut by suspected northwest-trending faults imaged as magnetic lineaments, and one produces apparent sinistral fault separation of a dike in the eastern part of the survey area. The location, trend, and apparent sinistral sense of motion are consistent with the suspected faults being part of the Belle Plaine fault zone, a complex transform fault zone within the Midcontinent rift system that is here proposed to correspond with a major structural discontinuity.
DeWitt, Ed; Langenheim, V.E.; Force, Eric; Vance, R.K.; Lindberg, P.A.; Driscoll, R.L.
2008-01-01
This 1:100,000-scale digital geologic map details the complex Early Proterozoic metavolcanic and plutonic basement of north-central Arizona; shows the mildly deformed cover of Paleozoic rocks; reveals where Laramide to mid-Tertiary plutonic rocks associated with base- and precious-metals deposits are exposed; subdivides the Tertiary volcanic rocks according to chemically named units; and maps the Pliocene to Miocene fill of major basins. Associated digital files include more than 1,300 geochemical analyses of all rock units; 1,750 logs of water wells deeper than 300 feet; and interpreted logs of 300 wells that define the depth to basement in major basins. Geophysically interpreted buried features include normal faults defining previous unknown basins, mid-Tertiary intrusive rocks, and half-grabens within shallow bains.
Late diagenetic indicators of buried oil and gas
Donovan, Terrence J.; Dalziel, Mary C.
1977-01-01
At least three hydrocarbon seepage mechanisms are interpreted to operate over oil and gas fields. These are: (1) effusion ofh ydrocarbons through inadequate caprocks and along faults and fractures, (2) low-molecular-weight hydrocarbons dissolved in water moving vertically through capping shales as a result of a hydrodynamic or chemical potential drive, and (3) diffusion of gases dissolved in water. Combinations of these mechanisms may also occur. Seeping hydrocarbons are oxidized near the earth's surface, and the resulting carbon dioxide reacts with water producing bicarbonate ions, which combine with calcium and magnesium dissolved in ground waters to yield isotopically distinctive pore-filling carbonate cements and surface rocks. The passage of hydrocarbons and associated compounds such as hydrogen sulfide through surface rocks causes a reducing environment and consequent reduction, mobilization, and loss of iron from iron-bearing minerals commonly resulting in a discoloration. Other metals such as manganese are also mobilized and redistributed. These changes in the physical and chemical properties of surface rocks correlate with the subsurface distribution of petroleum, and potentially can be detected from both airborne and spaceborne platforms.
NASA Astrophysics Data System (ADS)
James, Noel P.; Narbonne, Guy M.; Dalrymple, Robert W.; Kurtis Kyser, T.
2005-01-01
Stellate crystals of ferroan dolomite in neritic siliciclastic and carbonate sedimentary rocks between Sturtian and Marinoan glaciations in the Mackenzie Mountains are interpreted as replaced glendonites. These pseudomorphs after ikaite indicate that shallow seawater at that time was near freezing. Stromatolites verify that paleoenvironments were in the photic zone and physical sedimentary structures such as hummocky cross-bedding confirm that the seafloor was repeatedly disturbed by storms. Glendonites within these low-latitude, continental shelf to coastal sedimentary deposits imply that global ocean water during much of Cryogenian time was likely very cold. Such an ocean would easily have cooled to yield widespread sea ice and, through positive feedback, growth of low-latitude continental glaciers. In this situation gas hydrates could have formed in shallow-water, cold shelf sediment, but would have been particularly sensitive to destabilization as a result of sea-level change. Co-occurrence of pisolites and glendonites in these rocks additionally implies that some ooids and pisoids might have been, unlike Phanerozoic equivalents, characteristic of cold-water sediments.
Interpretation of K-Ar dates of illitic clays from sedimentary rocks aided by modeling
Srodon, J.; Clauer, Norbert; Eberl, D.D.D.
2002-01-01
K-Ar dates of illitic clays from sedimentary rocks may contain "mixed ages," i.e., may have ages that are intermediate between the ages of end-member events. Two phenomena that may cause mixed ages are: (1) long-lasting reaction during the burial illitization of smectite: and (2) physical mixing of detrital and diagenetic components. The first phenomenon was investigated by simulation of illitization reactions using a nucleation and growth mechanism. These calculations indicate that values for mixed ages are related to burial history: for an equivalent length of reaction time, fast burial followed by slow burial produces much older mixed ages than slow burial followed by fast. The type of reaction that occured in a rock can be determined from the distribution of ages with respect to the thickness of illite crystals. Dating of artificial mixtures confirms a non-linear relation between mixed ages and the proportions of the components. Vertical variation of K-Ar age dates from Gulf Coast shales can be modeled by assuming diagenetic illitization that overprints a subtle vertical trend (presumably of sedimentary origin) in detrital mineral content.
Using Rock Music To Teach History.
ERIC Educational Resources Information Center
Hoffman, Paul Dennis
1985-01-01
A secondary history teacher describes how he uses rock and roll music to help students study and interpret modern American history. Besides being a lot of fun to teach, a rock unit makes students realize that even contemporary music has a place in history. (RM)
NASA Astrophysics Data System (ADS)
Grab, Melchior; Scott, Samuel; Quintal, Beatriz; Caspari, Eva; Maurer, Hansruedi; Greenhalgh, Stewart
2016-04-01
Seismic methods are amongst the most common techniques to explore the earth's subsurface. Seismic properties such as velocities, impedance contrasts and attenuation enable the characterization of the rocks in a geothermal system. The most important goal of geothermal exploration, however, is to describe the enthalpy state of the pore fluids, which act as the main transport medium for the geothermal heat, and to detect permeable structures such as fracture networks, which control the movement of these pore fluids in the subsurface. Since the quantities measured with seismic methods are only indirectly related with the fluid state and the rock permeability, the interpretation of seismic datasets is difficult and usually delivers ambiguous results. To help overcome this problem, we use a numerical modeling tool that quantifies the seismic properties of fractured rock formations that are typically found in magmatic geothermal systems. We incorporate the physics of the pore fluids, ranging from the liquid to the boiling and ultimately vapor state. Furthermore, we consider the hydromechanics of permeable structures at different scales from small cooling joints to large caldera faults as are known to be present in volcanic systems. Our modeling techniques simulate oscillatory compressibility and shear tests and yield the P- and S-wave velocities and attenuation factors of fluid saturated fractured rock volumes. To apply this modeling technique to realistic scenarios, numerous input parameters need to be indentified. The properties of the rock matrix and individual fractures were derived from extensive literature research including a large number of laboratory-based studies. The geometries of fracture networks were provided by structural geologists from their published studies of outcrops. Finally, the physical properties of the pore fluid, ranging from those at ambient pressures and temperatures up to the supercritical conditions, were taken from the fluid physics literature. The results of this study allow us to describe the seismic properties as a function of hydrothermal and geological features. We use it in a forward seismic modeling study to examine how the seismic response changes with temporally and/or spatially varying fluid properties.
McSween, H.Y.; Murchie, S.L.; Crisp, J.A.; Bridges, N.T.; Anderson, R.C.; Bell, J.F.; Britt, D.T.; Brückner, J.; Dreibus, G.; Economou, T.; Ghosh, A.; Golombek, M.P.; Greenwood, J.P.; Johnson, J. R.; Moore, H.J.; Morris, R.V.; Parker, T.J.; Rieder, R.; Singer, R.; Wänke, H.
1999-01-01
Rocks at the Mars Pathfinder site are probably locally derived. Textures on rock surfaces may indicate volcanic, sedimentary, or impact-generated rocks, but aeolian abration and dust coatings prevent unambiguous interpretation. Multispectral imaging has resolved four spectral classes of rocks: gray and red, which occur on different surfaces of the same rocks; pink, which is probably soil crusts; and maroon, which occurs as large boulders, mostly in the far field. Rocks are assigned to two spectral trends based on the position of peak reflectance: the primary spectral trend contains gray, red, and pink rocks; maroon rocks constitute the secondary spectral trend. The spatial pattern of spectral variations observed is oriented along the prevailing wind direction. The primary spectral trend arises from thin ferric coatings of aeolian dust on darker rocks. The secondary spectral trend is apparently due to coating by a different mineral, probably maghemite or ferrihydrite. A chronology based on rock spectra suggests that rounded maroon boulders constitute the oldest petrologic unit (a flood deposit), succeeded by smaller cobbles possibly deposited by impact, and followed by aeolian erosion and deposition. Nearly linear chemical trends in alpha proton X-ray spectrometer rock compositions are interpreted as mixing lines between rock and adhering dust, a conclusion supported by a correlation between sulfur abundance and red/blue spectral ratio. Extrapolations of regression lines to zero sulfur give the composition of a presumed igneous rock. The chemistry and normative mineralogy of the sulfur-free rock resemble common terrestrial volcanic rocks, and its classification corresponds to andesite. Igneous rocks of this composition may occur with clastic sedimentary rocks or impact melts and breccias. However, the spectral mottling expected on conglomerates or breccias is not observed in any APXS-analyzed rocks. Interpretation of the rocks as andesites is complicated by absence of a "1 μm" pyroxene absorption band. Plausible explanations include impact glass, band masking by magnetite, or presence of calcium- and iron-rich pyroxenes and olivine which push the absorption band minimum past the imager's spectral range. The inferred andesitic composition is most similar to terrestrial anorogenic icelandites, formed by fractionation of tholeiitic basaltic magmas. Early melting of a relatively primitive Martian mantle could produce an appropriate parent magma, supporting the ancient age of Pathfinder rocks inferred from their incorporation in Hesperian flood deposits. Although rocks of andesitic composition at the Pathfinder site may represent samples of ancient Martian crust, inferences drawn about a necessary role for water or plate tectonics in their petrogenesis are probably unwarranted.
NASA Astrophysics Data System (ADS)
Vinciguerra, S.; Colombero, C.; Comina, C.; Umili, G.
2015-12-01
Rock slope monitoring is a major aim in territorial risk assessment and mitigation. The use of "site specific" microseismic monitoring systems can allow to detect pre-failure signals in unstable sectors within the rock mass and to predict the possible acceleration to the failure. To this aim multi-scale geophysical methods can provide a unique tool for an high-resolution imaging of the internal structure of the rock mass and constraints on the physical state of the medium. We present here a cross-hole seismic tomography survey coupled with laboratory ultrasonic velocity measurements and determination of physical properties on rock samples to characterize the damaged and potentially unstable granitic cliff of Madonna del Sasso (NW, Italy). Results allowed to achieve two main advances, in terms of obtaining: i) a lithological interpretation of the velocity field obtained at the site, ii) a systematic correlation of the measured velocities with physical properties (density and porosity) and macroscopic features of the granite (weathering and anisotropy) of the cliff. A microseismic monitoring system developed by the University of Turin/Compagnia San Paolo, consisting of a network of 4 triaxial geophones (4.5 Hz) connected to a 12-channel data logger, has been deployed on the unstable granitic cliff. More than 2000 events with different waveforms, duration and frequency content were recorded between November 2013 and July 2014. By inspecting the acquired events we identified the key parameters for a reliable distinction among the nature of each signal, i.e. the signal shape (in terms of amplitude, duration, kurtosis) and the frequency content (maximum frequency content and frequency distribution). Four main classes of recorded signals can be recognised: microseismic events, regional earthquakes, electrical noises and calibration signals, and unclassified events (probably grouping rockfalls, quarry blasts, other anthropic and natural sources of seismic noise).
The limits of palaeontological knowledge: finding the gold among the dross
NASA Technical Reports Server (NTRS)
Knoll, A. H.; Walter, M. R.
1996-01-01
Palaeontological interpretation rests on two interwoven sets of comparisons with the modern world. Palaeobiological interpretation relies on the placement of fossils within a phylogenetic and functional framework based primarily on the comparative biology of living organisms. Analogy to currently observable chemical, physical and taphonomic processes enables palaeoenvironmental inferences to be drawn from geological data. In older rocks, comparisons with the modern Earth can become tenuous, limiting palaeontological interpretation. The problem reaches its apogee in Archaean successions, yet pursuit of multiple lines of evidence establishes that complex microbial communities, fuelled by autotrophy and, likely, photoautotrophy, existed 3500 million years ago. Although Archaean palaeontology has to date focused on silicified coastal sediments, improved understanding of Earth's earliest biosphere may depend on the development of alternative environmental and taphonomic analogies. Spring precipitates and hydrothermal metal deposits are promising candidates. Terrestrial organisms may be of limited value in interpreting such fossils as may be found on Mars, although some points of comparison could prove general. Given limited opportunities for exploration, proper choice of environmental analogy is critical. Spring precipitates constitute excellent deposits for addressing questions of biology on another planet.
Baggio, Sérgio B; Hartmann, Léo A; Bello, Rosa M S
2016-01-01
The occurrences of glassy rocks containing long and curved phenocrysts in the Paraná volcanic province, South America, are here interpreted as paralavas. The large number of thin (0.1-0.5 m) dikes and sills of glassy volcanic rocks with hopper, hollow or curved, large crystals of clinopyroxene (up to 10 cm), plagioclase (up to 1 cm), magnetite and apatite are contained in the core of thick (>70 m) pahoehoe flows. They are strongly concentrated in the state of Paraná, coincident with the presence of the large number of dikes in the Ponta Grossa arch. These rocks were previously defined as pegmatites, although other names have also been used. A paralava is here interpreted as the product of melting of basaltic rocks following varied, successive processes of sill emplacement in high-kerogen bituminous shale and ascent of the resultant methane. As the gas reached the lower portion of the most recent lava flow of the volcanic pile, the methane reacted with the silicate and oxide minerals of the host volcanic rock (1,000 ºC) and thus elevated the local temperature to 1,600 ºC. The affected area of host rock remelted (possibly 75 wt.%) and injected buoyantly the central and upper portion of the core. This methane-related mechanism explains the evidence found in the paralavas from this volcanic province, one of the largest in the continents.
NASA Astrophysics Data System (ADS)
Motanated, K.; Tice, M. M.
2009-12-01
KANNIPA MOTANATED and MICHAEL M. TICE Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843-3115, USA Sediment sorting data are commonly used for interpreting depositional environments, analyzing mechanisms of deposition and transportation, and inferring relative transport distance of sediments. Typically, sorting in sandstones is estimated by point-counting thin sections which is a time consuming procedure and requires cutting sections of rock samples. We demonstrate a new technique for quantifying sediment sorting using element distribution maps obtained by x-ray fluorescence microscopy. We show that hydraulic sorting of Zr- and Ti- bearing grains (probably zircon and rutile, respectively) results in characteristic vertical profiles of Zr and Ti abundances within the Bouma A divisions of turbidites of the Brushy Canyon Formation, Delaware Basin, southern New Mexico. Zr- and Ti- bearing grains decrease in abundance and diameter from bases to tops of A divisions in every sample examined in this study. These results contrast with previous observations which suggest that grading in Brushy Canyon Formation structureless sandstones is absent or rare. The data support turbiditic interpretations of these rocks against traction current interpretations which rely on the lack of textural grading. Grading is reflected in vertical profiles of Ti/Al, Zr/Al and Zr/Ti ratios, which each decrease upward. These compositional variations could potentially be used as geochemical proxies for physical sorting, and might be useful for inferring depositional processes and relative transport distances.
Seismic Velocities Contain Information About Depth, Lithology, Fluid Content, and Microstructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berge, P A; Bonner, B P
2002-01-03
Recent advances in field and laboratory methods for measuring elastic wave velocities provide incentive and opportunity for improving interpretation of geophysical data for engineering and environmental applications. Advancing the state-of-the-art of seismic imaging requires developing petrophysical relationships between measured velocities and the hydrogeology parameters and lithology. Our approach uses laboratory data and rock physics methods. Compressional (Vp) and shear (Vs) wave velocities, Vp/Vs ratios, and relative wave amplitudes show systematic changes related to composition, saturation, applied stress (analogous to depth), and distribution of clay for laboratory ultrasonic measurements on soils. The artificial soils were mixtures of Ottawa sand and amore » second phase, either Wyoming bentonite or peat moss used to represent clay or organic components found in natural soils. Compressional and shear wave velocities were measured for dry, saturated, and partially-saturated conditions, for applied stresses between about 7 and 100 kPa, representing approximately the top 5 m of the subsurface. Analysis of the results using rock physics methods shows the link between microstructure and wave propagation, and implications for future advances in seismic data interpretation. For example, we found that Vp in dry sand-clay mixtures initially increases as clay cements the sand grains and fills porosity, but then Vp decreases when the clay content is high enough that the clay matrix controls the elastic response of the material. Vs decreases monotonically with increasing clay content. This provides a method for using Vp/Vs ratios to estimate clay content in a dry soil.« less
NASA Technical Reports Server (NTRS)
Garvin, J. B.; Mouginis-Mark, P. J.; Head, J. W.
1981-01-01
A data collection and analysis scheme developed for the interpretation of rock morphology from lander images is reviewed with emphasis on rock population characterization techniques. Data analysis techniques are also discussed in the context of identifying key characteristics of a rock that place it in a single category with similar rocks. Actual rock characteristics observed from Viking and Venera lander imagery are summarized. Finally, some speculations regarding the block fields on Mars and Venus are presented.
Clastic rocks associated with the Midcontinent rift system in Iowa
Anderson, Raymond R.; McKay, Robert M.
1997-01-01
The Middle Proterozoic Midcontinent Rift System (MRS) of North America is a failed rift that formed in response to region-wide stresses about 1,100 Ma. In Iowa, the MRS is buried beneath 2,200?3,500 ft of Paleozoic and Mesozoic sedimentary rocks and Quaternary glaciogenic deposits. An extremely large volume of sediments was deposited within basins associated with the rift at several stages during its development. Although the uplift of a rift-axial horst resulted in the erosional removal of most of these clastic rocks from the central region of the MRS in Iowa, thick sequences are preserved in a series of horst-bounding basins. Recent studies incorporating petrographic analysis, geophysical modeling, and other analytical procedures have led to the establishment of a preliminary stratigraphy for these clastic rocks and interpretations of basin geometries. This information has allowed the refinement of existing theories and history of MRS formation in Iowa. Additionally, drill samples previously interpreted as indicating the existence of early Paleozoic basins overlying the Proterozoic MRS basins were re-examined. Samples previously interpreted as deep-lying Paleozoic rocks are now known to have caved from upper levels of the drillhole and were out of stratigraphic position. No deep Paleozoic basins exist in this area. These investigations led to the development of petrographic parameters useful in differentiating the Proterozoic MRS Red clastics from Paleozoic clastic rocks having similar lithologies.
NASA Astrophysics Data System (ADS)
Lee, Y. I.; Lim, H. S.; Choi, T.
2017-12-01
We studied the provenance of beach sediments of the Baton and Weaver peninsulas of King George Island, the South Shetland Islands of West Antarctica. The studied beach sand sediments of the both peninsulas are predominantly composed of volcanic-rock fragment, followed by altered grain and plutonic rock fragment in that order. In rock fragments, the volcanic rock fragments are about four times more than the plutonic rock fragments. The median quartz-feldspar-rock fragment (Q-F-R) ratios of the beach sands of the Weaver and Barton peninsulas are Q3.4-F5.5-R99.1 and Q0.5-F2.7-R96.8, respectively. These beach sands may have been originated from basaltic andesite-andesite distributed in the ice-free areas of the Barton and Weaver peninsulas and granodiorite of the Barton Peninsula. According to the geochemistry of the beach sand sediments of the two peninsulas, most of the sand samples are interpreted as originating from intermediate rocks that have experienced little chemical weathering. Taking together the modal composition and geochemical composition of the beach sand samples, the tectonic setting of the source area is interpreted as a magmatic arc setting. This interpretation is consistent with geology of the ice-free areas of the Barton and Weaver peninsulas and the tectonic setting of King George Island. However, the sand samples of the Barton Peninsula southern beach and the Weaver Peninsula beach were not derived from basement rocks currently exposed in the ice-free areas of the corresponding peninsula, but were formerly glaciomarine sediments derived from erosion of ice-covered subglacial basement rocks and transported to the submerged glacier grounding line prior to deglaciation. Sand sediments derived from wave erosion of basement rocks of paleoshoreline might have been mixed with these glaciomarine sediments. King George Island became uplifted due to deglaciation 6,000 years ago. The studied beach sediments might have been reworked after the uplift of the King George Island to the present level. Accordingly, the studied beach sand sediments of the Barton and Weaver peninsulas are interpreted to be a palimpsest deposit comprising a mixture of originally glaciomarine sediments accumulated in the shallow fjord post the Last Glacial Maximum and some detritus supplied to the beaches since deglaciation.
NASA Astrophysics Data System (ADS)
Syafriyono, S.; Caesario, D.; Swastika, A.; Adlan, Q.; Syafri, I.; Abdurrokhim, A.; Mardiana, U.; Mohamad, F.; Alfadli, M. K.; Sari, V. M.
2018-03-01
Rock physical parameters value (Vp and Vs) is one of fundamental aspects in reservoir characterization as a tool to detect rock heterogenity. Its response is depend on several reservoir conditions such as lithology, pressure and reservoir fluids. The value of Vp and Vs is controlled by grain contact and contact stiffness, a function of clay mineral content and porosity also affected by mineral composition. The study about Vp and Vs response within sandstone and its relationship with petrographic parameters has become important to define anisotrophy of reservoir characteristics distribution and could give a better understanding about local diagenesis that influence clastic reservoir properties. Petrographic analysis and Vp-Vs calculation was carried out to 12 core sample which is obtained by hand-drilling of the outcrop in Sukabumi area, West Java as a part of Bayah Formation. Data processing and interpretation of sedimentary vertical succession showing that this outcrop comprises of 3 major sandstone layers indicating fluvial depositional environment. As stated before, there are 4 petrographic parameters (sorting, roundness, clay mineral content, and grain contact) which are responsible to the differences of shear wave and compressional wave value in this outcrop. Lithology with poor-sorted and well- roundness has Vp value lower than well-sorted and poor-roundness (sub-angular) grain. For the sample with high clay content, Vp value is ranging from 1681 to 2000 m/s and could be getting high until 2190 to 2714 m/s in low clay content sample even though the presence of clay minerals cannot be defined neither as matrix nor cement. The whole sample have suture grain contact indicating telogenesis regime whereas facies has no relationship with Vp and Vs value because of the different type of facies show similar petrographic parameters after diagenesis.
NASA Astrophysics Data System (ADS)
Colombero, Chiara; Baillet, Laurent; Comina, Cesare; Jongmans, Denis; Vinciguerra, Sergio
2016-04-01
Appropriate characterization and monitoring of potentially unstable rock masses may provide a better knowledge of the active processes and help to forecast the evolution to failure. Among the available geophysical methods, active seismic surveys are often suitable to infer the internal structure and the fracturing conditions of the unstable body. For monitoring purposes, although remote-sensing techniques and in-situ geotechnical measurements are successfully tested on landslides, they may not be suitable to early forecast sudden rapid rockslides. Passive seismic monitoring can help for this purpose. Detection, classification and localization of microseismic events within the prone-to-fall rock mass can provide information about the incipient failure of internal rock bridges. Acceleration to failure can be detected from an increasing microseismic event rate. The latter can be compared with meteorological data to understand the external factors controlling stability. On the other hand, seismic noise recorded on prone-to-fall rock slopes shows that the temporal variations in spectral content and correlation of ambient vibrations can be related to both reversible and irreversible changes within the rock mass. We present the results of the active and passive seismic data acquired at the potentially unstable granitic cliff of Madonna del Sasso (NW Italy). Down-hole tests, surface refraction and cross-hole tomography were carried out for the characterization of the fracturing state of the site. Field surveys were implemented with laboratory determination of physico-mechanical properties on rock samples and measurements of the ultrasonic pulse velocity. This multi-scale approach led to a lithological interpretation of the seismic velocity field obtained at the site and to a systematic correlation of the measured velocities with physical properties (density and porosity) and macroscopic features of the granitic cliff (fracturing, weathering and anisotropy). Continuous passive seismic monitoring at the site, from October 2013 to present, systematically highlighted clear energy peaks in the spectral content of seismic noise on the unstable sector, interpreted as resonant frequencies of the investigated volume. Both spectral analysis and cross-correlation of seismic noise showed seasonal reversible variation trends related to air temperature fluctuations. No irreversible changes, resulting from serious damage processes within the rock mass, were detected so far. Modal analysis and geomechanical modeling of the unstable cliff are currently under investigation to better understand the vibration modes that could explain the measured amplitude and orientation of ground motion at the first resonant frequencies. Classification and location of microseismic events still remains the most challenging task, due to the complex structural and morphological setting of the site.
2006-05-19
This MOC image shows outcrops of light-toned rock, interpreted to be sedimentary in origin, in east Candor Chasma. The exposures of light-toned rock are separated by areas of windblown ripples and dark sand
An introductory review on gravitational-deformation induced structures, fabrics and modeling
NASA Astrophysics Data System (ADS)
Jaboyedoff, Michel; Penna, Ivanna; Pedrazzini, Andrea; Baroň, Ivo; Crosta, Giovanni B.
2013-10-01
Recent studies have pointed out a similarity between tectonics and slope tectonic-induced structures. Numerous studies have demonstrated that structures and fabrics previously interpreted as of purely geodynamical origin are instead the result of large slope deformation, and this led in the past to erroneous interpretations. Nevertheless, their limit seems not clearly defined, but it is somehow transitional. Some studies point out continuity between failures developing at surface with upper crust movements. In this contribution, the main studies which examine the link between rock structures and slope movements are reviewed. The aspects regarding model and scale of observation are discussed together with the role of pre-existing weaknesses in the rock mass. As slope failures can develop through progressive failure, structures and their changes in time and space can be recognized. Furthermore, recognition of the origin of these structures can help in avoiding misinterpretations of regional geology. This also suggests the importance of integrating different slope movement classifications based on distribution and pattern of deformation and the application of structural geology techniques. A structural geology approach in the landslide community is a tool that can greatly support the hazard quantification and related risks, because most of the physical parameters, which are used for landslide modeling, are derived from geotechnical tests or the emerging geophysical approaches.
NASA Astrophysics Data System (ADS)
Schumacher, J. C.; Brady, J. B.; Prinkey, D. R.; Walton, A. J.; Able, L. M.; Sinitsin, A. G.; Cheney, J. T.
2004-05-01
The island of Syros is part of the Attic-Cycladic blueschist belt and high-P mineral assemblages indicating peak metamorphic conditions of at least 15-16 kbar and 500 C are common. Two main marble units, which locally contain Mississippian fossils, are partly dolomitic, contain abundant calcite pseudomorphs after aragonite (Dixon, 1969), and are intercalated with the glaucophane (Glau)-schists, retrograde greenschists, and minor quartzites and Mn-cherts. Discrete, fault-bounded packages of blueschist/eclogite-facies mafic rocks with minor serpentinite are also present. The mineral compositions and assemblages in marbles and associated rocks tightly constrain the metamorphic P, T and the fluid compositions and suggest X(H2O) in the range 0.97-0.99. In general, the mafic rocks have a variety of textures and modes, but most are either fine-grained, blueschists with a well-developed fabric (S approx.=L) or coarse-grained (>1 cm), massive omphacite- or Glau-rich rocks. Based on textures, mineralogy and field relations, previous workers (Dixon and Ridley, 1987) have interpreted the mafic rocks as meta-basalt and metagabbros. Evidence of pillow structures, as well as metamorphosed alteration zones which are interpreted as evidence of ocean-floor metamorphism (?) have survived locally. We obtained whole-rock XRF and INAA analyses for fine- and coarse-grained mafic and felsic rocks and some mica-rich samples. Low chemical index of alteration (CIA) for most samples suggest very minor weathering. On a TAS diagram, mafic rocks span the basalt - basaltic andesite - trachy-basalt - basaltic trachy-andesite fields. REE patterns generally fall between 10-100 times chondrite and show flat to moderately LREE-enriched patterns. Coarse-grained rocks have positive Eu anomalies, consistent with their interpretation by other investigators as fractionally crystallized gabbros. Felsic rocks (now epidote-mica-schists) that are associated with the metamorphosed gabbros have negative Eu anomalies, and modeling of the REEs suggests that the felsic rocks represent residual melts during the crystallization of the gabbros. The low CIA-values indicate that the mica-schist precursors lacked significant clay material. The presence of abundant epidote (Zo) is consistent with a feldspar-rich (magmatic) protolith for the mica-schists.
Orientale and South Pole-Aitken basins on the Moon: Preliminary Galileo imaging results
NASA Technical Reports Server (NTRS)
Head, J.; Fischer, E.; Murchie, S.; Pieters, C.; Plutchak, J.; Sunshine, J.; Belton, M.; Carr, M.; Chapman, C.; Davies, M.
1991-01-01
During the Earth-Moon flyby the Galileo Solid State Imaging System obtained new information on the landscape and physical geology of the Moon. Multicolor Galileo images of the Moon reveal variations in color properties of the lunar surface. Using returned lunar samples as a key, the color differences can be interpreted in terms of variations in the mineral makeup of the lunar rocks and soil. The combined results of Apollo landings and multicolor images from Galileo allow extrapolation of surface composition to areas distant from the landing sites, including the far side invisible from Earth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohacs, K.M.
1990-05-01
Deep basinal rocks of the Monterey Formation can be allocated to different depositional environments based on an integration of bedding, facies stacking patterns, lithology, biofacies, and inorganic and organic chemistry. These rocks show evidence of systematic changes in depositional environments that can be related to eustatic sea level change and basin evolution. Even deep-basinal environments are affected by changing sea level through changes in circulation patterns and intensities nutrient budgets and dispersal patterns, and location and intensity of the oceanic oxygen minimum. The sequence-stratigraphic framework was constructed based on the physical expression of the outcrop strata and confirmed by typingmore » the outcrop sections to an integrated well-log/seismic grid through outcrop gamma-ray-spectral profiles. Interpretation of a sequence boundary was based on increased proportions of hemipelagic facies, evidence of increased bottom-energy levels above the boundary, and local erosion and relief on the surface. The proportion of shallower water and reworked dinoflagellates increased to a local maximum above the boundary, Downlap surfaces exhibited increased proportions of pelagic facies around the surface, evidence of decreased bottom-energy levels and terrigenous sedimentation rates, and little or no significant erosion on the surface. The proportion of deeper water dinoflagellates increased to a local maximum at or near the downlap surface; there was no evidence of reworked individuals. The detailed sequence-stratigraphic framework makes it possible to the rock properties to genetic processes for construction of predictive models.« less
Weathering profiles in soils and rocks on Earth and Mars
NASA Astrophysics Data System (ADS)
Hausrath, E.; Adcock, C. T.; Bamisile, T.; Baumeister, J. L.; Gainey, S.; Ralston, S. J.; Steiner, M.; Tu, V.
2017-12-01
Interactions of liquid water with rock, soil, or sediments can result in significant chemical and mineralogical changes with depth. These changes can include transformation from one phase to another as well as translocation, addition, and loss of material. The resulting chemical and mineralogical depth profiles can record characteristics of the interacting liquid water such as pH, temperature, duration, and abundance. We use a combined field, laboratory, and modeling approach to interpret the environmental conditions preserved in soils and rocks. We study depth profiles in terrestrial field environments; perform dissolution experiments of primary and secondary phases important in soil environments; and perform numerical modeling to quantitatively interpret weathering environments. In our field studies we have measured time-integrated basaltic mineral dissolution rates, and interpreted the impact of pH and temperature on weathering in basaltic and serpentine-containing rocks and soils. These results help us interpret fundamental processes occurring in soils on Earth and on Mars, and can also be used to inform numerical modeling and laboratory experiments. Our laboratory experiments provide fundamental kinetic data to interpret processes occurring in soils. We have measured dissolution rates of Mars-relevant phosphate minerals, clay minerals, and amorphous phases, as well as dissolution rates under specific Mars-relevant conditions such as in concentrated brines. Finally, reactive transport modeling allows a quantitative interpretation of the kinetic, thermodynamic, and transport processes occurring in soil environments. Such modeling allows the testing of conditions under longer time frames and under different conditions than might be possible under either terrestrial field or laboratory conditions. We have used modeling to examine the weathering of basalt, olivine, carbonate, phosphate, and clay minerals, and placed constraints on the duration, pH, and solution chemistry of past aqueous alteration occurring on Mars.
Multispectral Imaging from Mars PATHFINDER
NASA Technical Reports Server (NTRS)
Ferrand, William H.; Bell, James F., III; Johnson, Jeffrey R.; Bishop, Janice L.; Morris, Richard V.
2007-01-01
The Imager for Mars Pathfinder (IMP) was a mast-mounted instrument on the Mars Pathfinder lander which landed on Mars Ares Vallis floodplain on July 4, 1997. During the 83 sols of Mars Pathfinders landed operations, the IMP collected over 16,600 images. Multispectral images were collected using twelve narrowband filters at wavelengths between 400 and 1000 nm in the visible and near infrared (VNIR) range. The IMP provided VNIR spectra of the materials surrounding the lander including rocks, bright soils, dark soils, and atmospheric observations. During the primary mission, only a single primary rock spectral class, Gray Rock, was recognized; since then, Black Rock, has been identified. The Black Rock spectra have a stronger absorption at longer wavelengths than do Gray Rock spectra. A number of coated rocks have also been described, the Red and Maroon Rock classes, and perhaps indurated soils in the form of the Pink Rock class. A number of different soil types were also recognized with the primary ones being Bright Red Drift, Dark Soil, Brown Soil, and Disturbed Soil. Examination of spectral parameter plots indicated two trends which were interpreted as representing alteration products formed in at least two different environmental epochs of the Ares Vallis area. Subsequent analysis of the data and comparison with terrestrial analogs have supported the interpretation that the rock coatings provide evidence of earlier martian environments. However, the presence of relatively uncoated examples of the Gray and Black rock classes indicate that relatively unweathered materials can persist on the martian surface.
Seismic refraction survey of the ANS preferred site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, R.K.; Hopkins, R.A.; Doll, W.E.
1992-02-01
Between September 19, 1991 and October 8, 1991 personnel from Martin Marietta Energy Systems, Inc. (Energy Systems), Automated Sciences Group, Inc., and Marrich, Inc. performed a seismic refraction survey at the Advanced Neutron Source (ANS) preferred site. The purpose of this survey was to provide estimates of top-of-rock topography, based on seismic velocities, and to delineate variations in rock and soil velocities. Forty-four seismic refraction spreads were shot to determine top-of-rock depths at 42 locations. Nine of the seismic spreads were shot with long offsets to provide 216 top-of-rock depths for 4 seismic refraction profiles. The refraction spread locations weremore » based on the grid for the ANS Phase I drilling program. Interpretation of the seismic refraction data supports the assumption that the top-of-rock surface generally follows the local topography. The shallow top-of-rock interface interpreted from the seismic refraction data is also supported by limited drill information at the site. Some zones of anomalous data are present that could be the result of locally variable weathering, a localized variation in shale content, or depth to top-of-rock greater than the site norm.« less
Aeromagnetic maps with geologic interpretations for the Tularosa Valley, south-central New Mexico
Bath, G.D.
1977-01-01
An aeromagnetic survey of the Tularosa Valley in south-central New Mexico has provided information on the igneous rocks that are buried beneath alluvium and colluvium. The data, compiled as residual magnetic anomalies, are shown on twelve maps at a scale of 1:62,500. Measurements of magnetic properties of samples collected in the valley and adjacent highlands give a basis for identifying the anomaly-producing rocks. Precambrian rocks of the crystalline basement have weakly induced magnetizations and produce anomalies having low magnetic intensities and low magnetic gradients. Late Cretaceous and Cenozoic intrusive rocks have moderately to strongly induced magnetizations. Precambrian rocks produce prominent magnetic anomalies having higher amplitudes and higher gradients. The Quaternary basalt has a strong remanent magnetization of normal polarity and produces narrow anomalies having high-magnetic gradients. Interpretations include an increase in elevation to the top of buried Precambrian rock in the northern part of the valley, a large Late Cretaceous and Cenozoic intrusive near Alamogordo, and a southern extension of the intrusive rock exposed in the Jarilla Mountains. Evidence for the southern extension comes from a quantitative analysis of the magnetic anomalies..
NASA Technical Reports Server (NTRS)
Scanvic, J. Y. (Principal Investigator)
1980-01-01
Thermal zones delimited on HCMM images, by visual interpretation only, were correlated with geological units and carbonated rocks, granitic, and volcanic rocks were individualized rock signature is evolutive parameter and some distinctions were made by addition of day, night and seasonal thermal image interpretation. This analysis also demonstrated that forest cover does not mask the underlying rocks thermal signature. Thermal linears are associated with known tectonics but the observed thermal variations from day to night and from one to another represent a promising concept to be studied in function of neotectonics and hydrogeology. The thermal anomalies discovered represent a potential interest which is to be evaluated. Significant results were obtained in the Mont Dore area and additional geological targets were defined in the Paris Basin and the Montmarault granite.
Mechanistic models of biofilm growth in porous media
NASA Astrophysics Data System (ADS)
Jaiswal, Priyank; Al-Hadrami, Fathiya; Atekwana, Estella A.; Atekwana, Eliot A.
2014-07-01
Nondestructive acoustics methods can be used to monitor in situ biofilm growth in porous media. In practice, however, acoustic methods remain underutilized due to the lack of models that can translate acoustic data into rock properties in the context of biofilm. In this paper we present mechanistic models of biofilm growth in porous media. The models are used to quantitatively interpret arrival times and amplitudes recorded in the 29 day long Davis et al. (2010) physical scale biostimulation experiment in terms of biofilm morphologies and saturation. The model pivots on addressing the sediment elastic behavior using the lower Hashin-Shtrikman bounds for grain mixing and Gassmann substitution for fluid saturation. The time-lapse P wave velocity (VP; a function of arrival times) is explained by a combination of two rock models (morphologies); "load bearing" which assumes the biofilm as an additional mineral in the rock matrix and "pore filling" which assumes the biofilm as an additional fluid phase in the pores. The time-lapse attenuation (QP-1; a function of amplitudes), on the other hand, can be explained adequately in two ways; first, through squirt flow where energy is lost from relative motion between rock matrix and pore fluid, and second, through an empirical function of porosity (φ), permeability (κ), and grain size. The squirt flow model-fitting results in higher internal φ (7% versus 5%) and more oblate pores (0.33 versus 0.67 aspect ratio) for the load-bearing morphology versus the pore-filling morphology. The empirical model-fitting results in up to 10% increase in κ at the initial stages of the load-bearing morphology. The two morphologies which exhibit distinct mechanical and hydraulic behavior could be a function of pore throat size. The biofilm mechanistic models developed in this study can be used for the interpretation of seismic data critical for the evaluation of biobarriers in bioremediation, microbial enhanced oil recovery, and CO2 sequestration.
Measurement of rock mass deformation with grouted coaxial antenna cables
NASA Astrophysics Data System (ADS)
Dowding, C. H.; Su, M. B.; O'Connor, K.
1989-01-01
Techniques presented herein show how reflected voltage pulses from coaxial antenna cable grouted in rock masses can be employed to quantify the type and magnitude of rock mass deformation. This measurement is similar to that obtained from a combined full profile extensometer (to measure local extension) and inclinometer (to measure local shearing). Rock mass movements deform the grouted cable, which locally changes cable capacitance and thereby the reflected wave form of the voltage pulse. Thus, by monitoring changes in these reflection signatures, it is possible to monitor rock mass deformation. This paper presents laboratory measurements necessary to quantitatively interpret the reflected voltage signatures. Cables were sheared and extended to correlate measured cable deformation with reflected voltage signals. Laboratory testing included development of grout mixtures with optimum properties for field installation and performance of a TDR (Time Domain Reflectometry) monitoring system. Finally, the interpretive techniques developed through laboratory measurements were applied to previously collected field data to extract hitherto unrealized information.
SOURCES OF INFORMATION ON ROCK PHYSICS. CURRENT LITERATURE, FEBRUARY 28, 1962
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgin, L.
1962-02-28
A literature review on the field of rock physics, rock mechanics, wave propagation and other related subjects is presented. The 206 references, wtth abstracts, are included under the following categories: physical properties, rock deformation, loading, engineering applications, seismology, wave propagation, and instruments and methods. In each section the articles are arranged alphabetically according to author. The titles are from material which was made available at the Colorado School of Mines, Arthur Lakes Library during February 1962. (M.C.G.)
NASA Astrophysics Data System (ADS)
Hong, Tao; Xu, Xing-Wang; Gao, Jun; Peters, Stephen G.; Zhang, Di; Jielili, Reyaniguli; Xiang, Peng; Li, Hao; Wu, Chu; You, Jun; Liu, Jie; Ke, Qiang
2018-01-01
Adakitic intrusions are supposed to have a close genetic and spatial relationship to porphyry Cu deposits. However, the genesis of adakitic intrusions is still under dispute. Here, we describe newly discovered intrusive complex rocks, which are composed of ore-bearing, layered magnetite-bearing gabbroic and adakitic rocks in Jiamate, East Junggar, NW China. These Jiamate Complex intrusions have diagnostic petrologic, geochronologic and geochemical signatures that indicate they were all generated from the same oxidized precursor magma source. Additionally, these layered rocks underwent the same fractional crystallization process as the ore-bearing adakitic rocks in the adjacent Kalaxiangar Porphyry Cu Belt (KPCB) in an oceanic island arc (OIA) setting. The rocks studied for this paper include layered magnetite-bearing gabbroic intrusive rocks that contain: (1) gradual contact changes between lithological units of mafic and intermediate rocks, (2) geochemical signatures that are the same as those found in oceanic island arc (OIA) rocks, (3) typical adakitic geochemistry, and (4) similar characteristics and apparent fractional crystallization relationships of ultra-basic to basic rocks to those in the nearby Beitashan Formation and to ore-bearing adakitic rocks in the KPCB. They also display similar zircon U-Pb and zircon Hf model ages. The Jiamate Complex intrusions contain intergrowths of magnetite and layered gabbro, and the intermediate-acidic intrusions of the Complex display typical adakitic affinities. Moreover, in conjunction with previously published geochronological and geochemistry data of the mafic rocks in the Beitashan Formation and in the KPCB area, additional data generated for the Jiamate Complex intrusions rocks indicate that they were formed from fractional crystallization processes. The Jiamate Complex intrusions most likely were derived from a metasomatized mantle wedge that was underplated at the root of the Saur oceanic island arc (Saur OIA). The ore-bearing adakitic intrusions in the KPCB and the adakitic Jiamate Complex intrusions were both probably generated from the same basaltic parental magmas through fractional crystallization. In addition, characteristics of the layered, magnetite-bearing, oxidized, basaltic Jiamate Complex intrusive rocks indicate that they are likely to be the parental arc magmas for the nearby porphyry Cu deposits. This conclusion is based on new interpretations of the regional and local geology, on interpretation of new geochemical analysis, new stable isotope analysis, new geothermobarometry, and new zircon age dating as well as other techniques and interpretations.
Hong, Tao; Xu, Xing-Wang; Gao, Jun; Peters, Stephen; Zhang, Di; Jielili, Reyaniguli; Xiang, Peng; Li, Hao; Wu, Chu; You, Jun; Liu, Jie; Ke, Qiang
2018-01-01
Adakitic intrusions are supposed to have a close genetic and spatial relationship to porphyry Cu deposits. However, the genesis of adakitic intrusions is still under dispute. Here, we describe newly discovered intrusive complex rocks, which are composed of ore-bearing, layered magnetite-bearing gabbroic and adakitic rocks in Jiamate, East Junggar, NW China. These Jiamate Complex intrusions have diagnostic petrologic, geochronologic and geochemical signatures that indicate they were all generated from the same oxidized precursor magma source. Additionally, these layered rocks underwent the same fractional crystallization process as the ore-bearing adakitic rocks in the adjacent Kalaxiangar Porphyry Cu Belt (KPCB) in an oceanic island arc (OIA) setting. The rocks studied for this paper include layered magnetite-bearing gabbroic intrusive rocks that contain: (1) gradual contact changes between lithological units of mafic and intermediate rocks, (2) geochemical signatures that are the same as those found in oceanic island arc (OIA) rocks, (3) typical adakitic geochemistry, and (4) similar characteristics and apparent fractional crystallization relationships of ultra-basic to basic rocks to those in the nearby Beitashan Formation and to ore-bearing adakitic rocks in the KPCB. They also display similar zircon U-Pb and zircon Hf model ages.The Jiamate Complex intrusions contain intergrowths of magnetite and layered gabbro, and the intermediate-acidic intrusions of the Complex display typical adakitic affinities. Moreover, in conjunction with previously published geochronological and geochemistry data of the mafic rocks in the Beitashan Formation and in the KPCB area, additional data generated for the Jiamate Complex intrusions rocks indicate that they were formed from fractional crystallization processes. The Jiamate Complex intrusions most likely were derived from a metasomatized mantle wedge that was underplated at the root of the Saur oceanic island arc (Saur OIA). The ore-bearing adakitic intrusions in the KPCB and the adakitic Jiamate Complex intrusions were both probably generated from the same basaltic parental magmas through fractional crystallization. In addition, characteristics of the layered, magnetite-bearing, oxidized, basaltic Jiamate Complex intrusive rocks indicate that they are likely to be the parental arc magmas for the nearby porphyry Cu deposits. This conclusion is based on new interpretations of the regional and local geology, on interpretation of new geochemical analysis, new stable isotope analysis, new geothermobarometry, and new zircon age dating as well as other techniques and interpretations.
Application of borehole geophysics to water-resources investigations
Keys, W.S.; MacCary, L.M.
1971-01-01
This manual is intended to be a guide for hydrologists using borehole geophysics in ground-water studies. The emphasis is on the application and interpretation of geophysical well logs, and not on the operation of a logger. It describes in detail those logging techniques that have been utilized within the Water Resources Division of the U.S. Geological Survey, and those used in petroleum investigations that have potential application to hydrologic problems. Most of the logs described can be made by commercial logging service companies, and many can be made with small water-well loggers. The general principles of each technique and the rules of log interpretation are the same, regardless of differences in instrumentation. Geophysical well logs can be interpreted to determine the lithology, geometry, resistivity, formation factor, bulk density, porosity, permeability, moisture content, and specific yield of water-bearing rocks, and to define the source, movement, and chemical and physical characteristics of ground water. Numerous examples of logs are used to illustrate applications and interpretation in various ground-water environments. The interrelations between various types of logs are emphasized, and the following aspects are described for each of the important logging techniques: Principles and applications, instrumentation, calibration and standardization, radius of investigation, and extraneous effects.
Column Experiments to Interpret Weathering in Columbia Hills
NASA Technical Reports Server (NTRS)
Hausrath, E. M.; Morris, R.V.; Ming, D.W.; Golden, D.C.; Galindo, C.; Sutter, B.
2009-01-01
Phosphate mobility has been postulated as an indicator of early aqueous activity on Mars. In addition, rock surfaces analyzed by the Mars Exploration Rover Spirit are consistent with the loss of a phosphate- containing mineral To interpret phosphate alteration behavior on Mars, we performed column dissolution experiments leaching the primary phases Durango fluorapatite, San Carlos olivine, and basalt glass (Stapafjell Volcano, courtesy of S. Gislason, University of Iceland) [3,4]) with acidic solutions. These phases were chosen to represent quickly dissolving phases likely present in Columbia Hills. Column dissolution experiments are closer to natural dissolution conditions than batch experiments, although they can be difficult to interpret. Acidic solutions were used because the leached layers on the surfaces of these rocks have been interpreted as resulting from acid solutions [5].
The Opportunity Rover's Athena science investigation at Meridiani Planum, Mars
NASA Technical Reports Server (NTRS)
Squyres, S. W.; Arvidson, R. E.; Bell, J. F., III; Bruckner, J.; Cabrol, N. A.; Calvin, W.; Carr, M. H.; Christensen, P. R.; Clark, B. C.; Crumpler, L.;
2004-01-01
The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by episodic inundation by shallow surface water, followed by evaporation, exposure, and desiccation. Hematite-rich spherules are embedded in the rock and eroding from them. We interpret these spherules to be concretions formed by postdepositional diagenesis, again involving liquid water.
The opportunity Rover's athena science investigation at Meridiani Planum, Mars
Squyres, S. W.; Arvidson, R. E.; Bell, J.F.; Brückner, J.; Cabrol, N.A.; Calvin, W.; Carr, M.H.; Christensen, P.R.; Clark, B. C.; Crumpler, L.; Des Marais, D.J.; D'Uston, C.; Economou, T.; Farmer, J.; Farrand, W.; Folkner, W.; Golombek, M.; Gorevan, S.; Grant, J. A.; Greeley, R.; Grotzinger, J.; Haskin, L.; Herkenhoff, K. E.; Hviid, S.; Johnson, J.; Klingelhofer, G.; Knoll, A.H.; Landis, G.; Lemmon, M.; Li, R.; Madsen, M.B.; Malin, M.C.; McLennan, S.M.; McSween, H.Y.; Ming, D. W.; Moersch, J.; Morris, R.V.; Parker, T.; Rice, J. W.; Richter, L.; Rieder, R.; Sims, M.; Smith, M.; Smith, P.; Soderblom, L.A.; Sullivan, R.; Wanke, H.; Wdowiak, T.; Wolff, M.; Yen, A.
2004-01-01
The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by episodic inundation by shallow surface water, followed by evaporation, exposure, and desiccation. Hematite-rich spherules are embedded in the rock and eroding from them. We interpret these spherules to be concretions formed by postdepositional diagenesis, again involving liquid water.
ERIC Educational Resources Information Center
Jena, S. P. K.
1995-01-01
A boy with severe mental retardation was unresponsive to his environment and spent 80% of his day body-rocking. Stereotyped body-rocking was greatly reduced via differential reinforcement of incompatible responding (DRI), physical restraint, and reprimand. (JDD)
Gas Hydrate Estimation Using Rock Physics Modeling and Seismic Inversion
NASA Astrophysics Data System (ADS)
Dai, J.; Dutta, N.; Xu, H.
2006-05-01
ABSTRACT We conducted a theoretical study of the effects of gas hydrate saturation on the acoustic properties (P- and S- wave velocities, and bulk density) of host rocks, using wireline log data from the Mallik wells in the Mackenzie Delta in Northern Canada. We evaluated a number of gas hydrate rock physics models that correspond to different rock textures. Our study shows that, among the existing rock physics models, the one that treats gas hydrate as part of the solid matrix best fits the measured data. This model was also tested on gas hydrate hole 995B of ODP leg 164 drilling at Blake Ridge, which shows adequate match. Based on the understanding of rock models of gas hydrates and properties of shallow sediments, we define a procedure that quantifies gas hydrate using rock physics modeling and seismic inversion. The method allows us to estimate gas hydrate directly from seismic information only. This paper will show examples of gas hydrates quantification from both 1D profile and 3D volume in the deepwater of Gulf of Mexico.
Geology of the Trenton Prong, west-central New Jersey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkert, R.A.; Drake, A.A.Jr.
1993-03-01
The Trenton Prong in New Jersey is underlain by a heterogeneous sequence of rocks that is divisible into northern and southern belts separated by the steeply southeast-dipping Huntingdon Valley fault (HVF). The northern belt contains metagabbro, charnockite, and dacite/tonalite, upon which biotite-bearing quartzofeldspathic gneiss, calc-silicate gneiss, and minor marble may rest unconformably. The mineralogy and geochemistry of these rocks are remarkably similar to those of Middle Proterozoic rocks in the New Jersey Highlands, and the authors interpret them to be correlative. Northern belt rocks are unconformably overlain by the Cambrian Chickies Quartzite, which is cut off to the northeast bymore » the HVF. The southern belt contains felsic to intermediate quartzofeldspathic gneiss and schist and minor amounts of metavolcanic rocks, all of which may be at slightly lower metamorphic grade than those in the northern belt. High TiO[sub 2] metabasalt is chemically identical to diabase dikes that intrude Middle Proterozoic rocks in the New Jersey Highlands; it is interpreted to be Late Proterozoic in age. Rocks in the southern belt have been thrust northwestward over the Chickies and Middle Proterozoic rocks along the HVF. South of the southern belt, biotite schist and gneiss of the Wissahickon Formation are thrust onto both belts of basement rocks on the HVF and a splay from the HVF, the Morrisville thrust fault. Both faults are marked by augen gneiss that shows evidence of dextral shear.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohacs, K.M.
1991-02-01
Deep basinal rocks of the Monterey Formation can be allocated to different depositional environments based on an integration of bedding, stacking patterns of facies, lithology, biofacies, and inorganic and organic chemistry. These rocks show evidence of systematic changes in depositional environments that can be related to eustatic sea level changes and basin evolution. Even deep-basinal environments are affected by changing sea level through changes in circulation patterns and intensities, nutrient budgets and dispersal patterns, and location and intensity of the oceanic oxygen minimum. The sequence-stratigraphic framework was constructed based on the physical expression of the outcrop strata and confirmed bymore » typing the outcrop sections to an integrated will-log/seismic grid through outcrop gamma-ray spectral profiles. Interpretation of a sequence boundary was based on increased proportions of hemipelagic facies and evidence of increased bottom-energy levels above the boundary, and local erosion and relief on the surface. The proportion of shallower water and reworked dinoflagellates increased to a local maximum above the boundary. Downlap surfaces exhibited increased proportions of pelagic facies around the surface, a secular change in the dominant lithology across the surface, evidence of decreased bottom-energy levels and terrigenous sedimentation rates, and little or not significant erosion on the surface. The proportion of deeper water dinoflagellates increased to a local maximum at or near the downlap surface; there was no evidence of reworked individuals. The detailed sequence-stratigraphic framework makes it possible to tie rock properties to genetic processes for construction of predictive models.« less
Estimation of anisotropy parameters in organic-rich shale: Rock physics forward modeling approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herawati, Ida, E-mail: ida.herawati@students.itb.ac.id; Winardhi, Sonny; Priyono, Awali
Anisotropy analysis becomes an important step in processing and interpretation of seismic data. One of the most important things in anisotropy analysis is anisotropy parameter estimation which can be estimated using well data, core data or seismic data. In seismic data, anisotropy parameter calculation is generally based on velocity moveout analysis. However, the accuracy depends on data quality, available offset, and velocity moveout picking. Anisotropy estimation using seismic data is needed to obtain wide coverage of particular layer anisotropy. In anisotropic reservoir, analysis of anisotropy parameters also helps us to better understand the reservoir characteristics. Anisotropy parameters, especially ε, aremore » related to rock property and lithology determination. Current research aims to estimate anisotropy parameter from seismic data and integrate well data with case study in potential shale gas reservoir. Due to complexity in organic-rich shale reservoir, extensive study from different disciplines is needed to understand the reservoir. Shale itself has intrinsic anisotropy caused by lamination of their formed minerals. In order to link rock physic with seismic response, it is necessary to build forward modeling in organic-rich shale. This paper focuses on studying relationship between reservoir properties such as clay content, porosity and total organic content with anisotropy. Organic content which defines prospectivity of shale gas can be considered as solid background or solid inclusion or both. From the forward modeling result, it is shown that organic matter presence increases anisotropy in shale. The relationships between total organic content and other seismic properties such as acoustic impedance and Vp/Vs are also presented.« less
NASA Astrophysics Data System (ADS)
Zalan, Pedro
2014-05-01
Three facts helped to establish a revolution in the understanding of how mega-continents stretch, rupture and breakup to form new continents and related passive margins: (1) the penetration of the distal portions of the Iberia-Newfoundland conjugate margins by several ODP wells (late 70's/early 80's), with the discovery of hyperextended crust and exhumation of lower crust and mantle between typical continental and oceanic domains, (2) field works in the Alps and in the Pyrenees that re-interpreted sedimentary successions and associated "ophiolites" as remnants of old Tethyan passive margins that recorded structural domains similar to those found in Iberia-Newfoundland, and (3) the acquisition of long and ultra-deep reflection seismic sections that could image for the first time sub-crustal levels (25-40 km) in several passive margins around the world. The interpretation of such sections showed that the concepts developed in the Iberia-Newfoundland margins and in the Alps could be applied to a great extent to most passive margins, especially those surrounding the North and South Atlantic Oceans. The new concepts of (i) decoupled deformation (upper brittle X lower ductile) within the proximal domain of the continental crust, (ii) of coupled deformation (hyperextension) in the distal crust and, (iii) of exhumation of deeper levels in the outer domain, with the consequent change in the physical properties of the rising rocks, defined an end-member in the new classification of passive margins, the magma-poor type (as opposed to volcanic passive margins). These concepts, together with the new reflection seismic views of the entire crustal structure of passive margins, forced the re-interpretation of older refraction and potential field data and the re-drawing of long established models. Passive margins are prime targets for petroleum exploration, thus, the great interest raised by this subject in both the academy and in the industry. Interestingly enough, the deformation modes envisaged by Manatschal and Peron-Pinvidic in several works published in the last ten years, dealing with the development of conjugate rifted margins (stretching, thinning, hyperextension/exhumation, oceanization/breakup), can be found in physical analogs of geological nature and of mundane phenomena, in a much smaller scale than that of a continental rupture. Rocks strained and cut by normal faults, especially the brittle sedimentary rocks, display geometries and structural domains, which in turn were formed by the particular deformation modes, very similar to those published for the Norwegian, Angolan and Southeastern Brazilian margins. A non-geological and non-conventional physical analog is the everyday breakup of a chocolate bar. Given it is stuffed by a thick ductile filling and covered by a thin, brittle chocolate layer; it is incredible how such a common phenomenon can replicate the rupture and breakup of a mega-continent. Such physical analogs can be compared to ultra-deep seismic sections and raise a cloud of incertitude on the definition of hyperextension. Instead of representing the coupling of the deformation of the upper and lower crusts into a brittle mode, rather, hyperextension could correspond to their coupling into a plastic or, at least, into a semi-brittle mode, but not into an entirely brittle mode.
Geophysical interpretations west of and within the northwestern part of the Nevada Test Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grauch, V.J.; Sawyer, D.A.; Fridrich, C.J.
1997-12-31
This report focuses on interpretation of gravity and new magnetic data west of the Nevada Test Site (NTS) and within the northwestern part of NTS. The interpretations integrate the gravity and magnetic data with other geophysical, geological, and rock property data to put constraints on tectonic and magmatic features not exposed at the surface. West of NTS, where drill hole information is absent, these geophysical data provide the best available information on the subsurface. Interpreted subsurface features include calderas, intrusions, basalt flows and volcanoes, Tertiary basins, structurally high pre-Tertiary rocks, and fault zones. New features revealed by this study includemore » (1) a north-south buried tectonic fault east of Oasis Mountain, which the authors call the Hogback fault; (2) an east striking fault or accommodation zone along the south side of Oasis Valley basin, which they call the Hot Springs fault; (3) a NNE striking structural zone coinciding with the western margins of the caldera complexes; (4) regional magnetic highs that probably represent a thick sequence of Tertiary volcanic rocks; and (5) two probable buried calderas that may be related to the tuffs of Tolicha Peak and of Sleeping Butte, respectively.« less
Basaltic rocks analyzed by the Spirit Rover in Gusev Crater.
McSween, H Y; Arvidson, R E; Bell, J F; Blaney, D; Cabrol, N A; Christensen, P R; Clark, B C; Crisp, J A; Crumpler, L S; Des Marais, D J; Farmer, J D; Gellert, R; Ghosh, A; Gorevan, S; Graff, T; Grant, J; Haskin, L A; Herkenhoff, K E; Johnson, J R; Jolliff, B L; Klingelhoefer, G; Knudson, A T; McLennan, S; Milam, K A; Moersch, J E; Morris, R V; Rieder, R; Ruff, S W; De Souza, P A; Squyres, S W; Wänke, H; Wang, A; Wyatt, M B; Yen, A; Zipfel, J
2004-08-06
The Spirit landing site in Gusev Crater on Mars contains dark, fine-grained, vesicular rocks interpreted as lavas. Pancam and Mini-Thermal Emission Spectrometer (Mini-TES) spectra suggest that all of these rocks are similar but have variable coatings and dust mantles. Magnified images of brushed and abraded rock surfaces show alteration rinds and veins. Rock interiors contain =25% megacrysts. Chemical analyses of rocks by the Alpha Particle X-ray Spectrometer are consistent with picritic basalts, containing normative olivine, pyroxenes, plagioclase, and accessory FeTi oxides. Mössbauer, Pancam, and Mini-TES spectra confirm the presence of olivine, magnetite, and probably pyroxene. These basalts extend the known range of rock compositions composing the martian crust.
Basaltic rocks analyzed by the Spirit rover in Gusev crater
McSween, H.Y.; Arvidson, R. E.; Bell, J.F.; Blaney, D.; Cabrol, N.A.; Christensen, P.R.; Clark, B. C.; Crisp, J.A.; Crumpler, L.S.; Des Marias, D.J.; Farmer, J.D.; Gellert, Ralf; Ghosh, A.; Gorevan, S.; Graff, T.; Grant, J.; Haskin, L.A.; Herkenhoff, K. E.; Johnson, J. R.; Jolliff, B.L.; Klingelhoefer, G.; Knudson, A.T.; McLennan, S.; Milam, K.A.; Moersch, J.E.; Morris, R.V.; Rieder, R.; Ruff, S.W.; De Souza, P.A.; Squyres, S. W.; Wanke, H.; Wang, A.; Wyatt, M.B.; Yen, A.; Zipfel, J.
2004-01-01
The Spirit landing site in Gusev Crater on Mars contains dark, fine-grained, vesicular rocks interpreted as lavas. Pancam and Mini-Thermal Emission Spectrometer (Mini-TES) spectra suggest that all of these rocks are similar but have variable coatings and dust mantles. Magnified images of brushed and abraded rock surfaces show alteration rinds and veins. Rock interiors contain ???25% megacrysts. Chemical analyses of rocks by the Alpha Particle X-ray Spectrometer are consistent with picritic basalts, containing normative olivine, pyroxenes, plagioclase, and accessory FeTi oxides. Mo??ssbauer, Pancam, and Mini-TES spectra confirm the presence of olivine, magnetite, and probably pyroxene. These basalts extend the known range of rock compositions composing the martian crust.
NASA Technical Reports Server (NTRS)
2004-01-01
This approximate true color image taken by the panoramic camera onboard the Mars Exploration Rover Spirit shows 'Adirondack,' the rover's first target rock. Spirit traversed the sandy martian terrain at Gusev Crater to arrive in front of the football-sized rock on Sunday, Jan. 18, 2004, just three days after it successfully rolled off the lander. The rock was selected as Spirit's first target because its dust-free, flat surface is ideally suited for grinding. Clean surfaces also are better for examining a rock's top coating. Scientists named the angular rock after the Adirondack mountain range in New York. The word Adirondack is Native American and is interpreted by some to mean 'They of the great rocks.'
Basaltic rocks analyzed by the Spirit Rover in Gusev Crater
NASA Technical Reports Server (NTRS)
McSween, H. Y.; Arvidson, R. E.; Bell, J. F., III; Blaney, D.; Cabrol, N. A.; Christensen, P. R.; Clark, B. C.; Crisp, J. A.; Crumpler, L. S.; DesMarais, D. J.;
2004-01-01
The Spirit landing site in Gusev Crater on Mars contains dark, fine-grained, vesicular rocks interpreted as lavas. Pancam and Mini-Thermal Emission Spectrometer (Mini-TES) spectra suggest that all of these rocks are similar but have variable coatings and dust mantles. Magnified images of brushed and abraded rock surfaces show alteration rinds and veins. Rock interiors contain =25% megacrysts. Chemical analyses of rocks by the Alpha Particle X-ray Spectrometer are consistent with picritic basalts, containing normative olivine, pyroxenes, plagioclase, and accessory FeTi oxides. Mossbauer, Pancam, and Mini-TES spectra confirm the presence of olivine, magnetite, and probably pyroxene. These basalts extend the known range of rock compositions composing the martian crust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, J.; Hoversten, G.M.
2011-09-15
Joint inversion of seismic AVA and CSEM data requires rock-physics relationships to link seismic attributes to electrical properties. Ideally, we can connect them through reservoir parameters (e.g., porosity and water saturation) by developing physical-based models, such as Gassmann’s equations and Archie’s law, using nearby borehole logs. This could be difficult in the exploration stage because information available is typically insufficient for choosing suitable rock-physics models and for subsequently obtaining reliable estimates of the associated parameters. The use of improper rock-physics models and the inaccuracy of the estimates of model parameters may cause misleading inversion results. Conversely, it is easy tomore » derive statistical relationships among seismic and electrical attributes and reservoir parameters from distant borehole logs. In this study, we develop a Bayesian model to jointly invert seismic AVA and CSEM data for reservoir parameter estimation using statistical rock-physics models; the spatial dependence of geophysical and reservoir parameters are carried out by lithotypes through Markov random fields. We apply the developed model to a synthetic case, which simulates a CO{sub 2} monitoring application. We derive statistical rock-physics relations from borehole logs at one location and estimate seismic P- and S-wave velocity ratio, acoustic impedance, density, electrical resistivity, lithotypes, porosity, and water saturation at three different locations by conditioning to seismic AVA and CSEM data. Comparison of the inversion results with their corresponding true values shows that the correlation-based statistical rock-physics models provide significant information for improving the joint inversion results.« less
Attempt to model laboratory-scale diffusion and retardation data.
Hölttä, P; Siitari-Kauppi, M; Hakanen, M; Tukiainen, V
2001-02-01
Different approaches for measuring the interaction between radionuclides and rock matrix are needed to test the compatibility of experimental retardation parameters and transport models used in assessing the safety of the underground repositories for the spent nuclear fuel. In this work, the retardation of sodium, calcium and strontium was studied on mica gneiss, unaltered, moderately altered and strongly altered tonalite using dynamic fracture column method. In-diffusion of calcium into rock cubes was determined to predict retardation in columns. In-diffusion of calcium into moderately and strongly altered tonalite was interpreted using a numerical code FTRANS. The code was able to interprete in-diffusion of weakly sorbing calcium into the saturated porous matrix. Elution curves of calcium for the moderately and strongly altered tonalite fracture columns were explained adequately using FTRANS code and parameters obtained from in-diffusion calculations. In this paper, mass distribution ratio values of sodium, calcium and strontium for intact rock are compared to values, previously obtained for crushed rock from batch and crushed rock column experiments. Kd values obtained from fracture column experiments were one order of magnitude lower than Kd values from batch experiments.
Modelling Mass Movements for Planetary Studies
NASA Technical Reports Server (NTRS)
Bulmer, M. H.; Glaze, L.; Barnouin-Jha, O.; Murphy, W.; Neumann, G.
2002-01-01
Use of an empirical model in conjunction with data from the Chaos Jumbles rock avalanches constrain to first order their flow behavior, and provide a method to interpret rock/debris avalanche emplacement on Mars. Additional information is contained in the original extended abstract.
On the physical properties of volcanic rock masses
NASA Astrophysics Data System (ADS)
Heap, M. J.; Villeneuve, M.; Ball, J. L.; Got, J. L.
2017-12-01
The physical properties (e.g., elastic properties, porosity, permeability, cohesion, strength, amongst others) of volcanic rocks are crucial input parameters for modelling volcanic processes. These parameters, however, are often poorly constrained and there is an apparent disconnect between modellers and those who measure/determine rock and rock mass properties. Although it is well known that laboratory measurements are scale dependent, experimentalists, field volcanologists, and modellers should work together to provide the most appropriate model input parameters. Our pluridisciplinary approach consists of (1) discussing with modellers to better understand their needs, (2) using experimental know-how to build an extensive database of volcanic rock properties, and (3) using geotechnical and field-based volcanological know-how to address scaling issues. For instance, increasing the lengthscale of interest from the laboratory-scale to the volcano-scale will reduce the elastic modulus and strength and increase permeability, but to what extent? How variable are the physical properties of volcanic rocks, and is it appropriate to assume constant, isotropic, and/or homogeneous values for volcanoes? How do alteration, depth, and temperature influence rock physical and mechanical properties? Is rock type important, or do rock properties such as porosity exert a greater control on such parameters? How do we upscale these laboratory-measured properties to rock mass properties using the "fracturedness" of a volcano or volcanic outcrop, and how do we quantify fracturedness? We hope to discuss and, where possible, address some of these issues through active discussion between two (or more) scientific communities.
VarPy: A python library for volcanology and rock physics data analysis
NASA Astrophysics Data System (ADS)
Filgueira, Rosa; Atkinson, Malcom; Bell, Andrew; Snelling, Brawen; Main, Ian
2014-05-01
The increasing prevalence of digital instrumentation in volcanology and rock physics is leading to a wealth of data, which in turn is increasing the need for computational analyses and models. Today, these are largely developed by each individual or researcher. The introduction of a shared library that can be used for this purpose has several benefits: 1. when an existing function in the library meets a need recognised by a researcher it is usually much less effort than developing ones own code; 2. once functions are established and multiply used they become better tested, more reliable and eventually trusted by the community; 3. use of the same functions by different researchers makes it easier to compare results and to compare the skill of rival analysis and modelling methods; and 4. in the longer term the cost of maintaining these functions is shared over a wide community and they therefore have greater duration. Python is a high-level interpreted programming language, with capabilities for object-oriented programming. Often scientists choose this language to program their programs because of the increased productivity it provides. Although, there are many software tools available for interactive data analysis and development, there are not libraries designed specifically for volcanology and rock physics data. Therefore, we propose a new Python open-source toolbox called "VarPy" to facilitate rapid application development for rock physicists and volcanologists, which allow users to define their own workflows to develop models, analyses and visualisations. This proposal is triggered by our work on data assimilation in the NERC EFFORT (Earthquake and Failure Forecasting in Real Time) project, using data provided by the NERC CREEP 2 experimental project and volcanic experiments from INVG observatory Etna and IGN observatory Hierro as a test cases. In EFFORT project we are developing a scientist gateway which offers services for collecting and sharing volcanology and rock physics data with the intent of stimulating sharing, collaboration and comparison of methods among the practitioners in the two fields. As such, it offers facilities for running analyses and models either under a researcher's control or periodically as part of an experiment and to compare the skills of predictive methods. The gateway therefore runs code on behalf of volcanology and rock physics researchers. Varpy library is intended to make it much easier for those researchers to set up the code they need to run. The library also makes it easier to arrange that code is in a form suitable for running in the EFFORT computational services. Care has been taken to ensure that the library can also be used outside of EFFORT systems, e.g., on a researcher's own laptop, providing two variants of the library: the gateway version and developer's version, with many of the functions completely identical. The library must fulfill two purposes simultaneously: • by providing a full repertoire of commonly required actions it must make it easy for volcanologist and rock physicists to write the python scripts they need to accomplish their work, and • by wrapping operations it must enable the EFFORT gateway to maintain the integrity of its data. Notice that proposal of VarPy library does not attempt to replace the functions provided by other libraries, such as NumpY and ScipY. VarPy is complementary to them.
NASA Astrophysics Data System (ADS)
Buchen, Christopher T.
U-Pb dating of detrital zircon grains separated from elastic sedimentary rocks is combined with field, petrographic and geochemical data to reconstruct the geologic history of Mesozoic rocks exposed at the southern end of the Lake Kaweah metamorphic pendant, western Sierra Nevada. Identification of rocks exposed at Limekiln Hill, Kern County, CA, as belonging to the Calaveras complex and Kings sequence was confirmed. Detrital zircon populations from two Calaveras complex samples provide Permo-Triassic maximum depositional ages (MDA) and reveal a Laurentian provenance indicating that continental accretion of the northwest-trending Kings-Kaweah ophiolite belt was in process prior to the Jurassic Period. Rock types including radiolarian metachert, metachert-argillite, and calc-silicate rocks with marble lenses are interpreted as formed in a hemipelagic environment of siliceous radiolarian deposition, punctuated by extended episodes of lime-mud gravity flows mixing with siliceous ooze forming cafe-silicate protoliths and limestone olistoliths forming marble lenses. Two samples of the overlying Kings sequence turbidites yield detrital zircons with an MDA of 181.4 +/-3.0 Ma and an interpreted provenance similar to other Jurassic metasediments found in the Yokohl Valley, Sequoia and Boyden Cave roof pendants. Age peaks indicative of Jurassic erg heritage are also present. In contrast, detrital zircon samples from the Sequoia and Slate Mountain roof pendants bear age-probability distributions interpreted as characteristic of the Snow Lake block, a tectonic sliver offset from the Paleozoic miogeocline.
Plant taphonomy in incised valleys: Implications for interpreting paleoclimate from fossil plants
Demko, T.M.; Dubiel, R.F.; Parrish, Judith T.
1998-01-01
Paleoclimatic interpretations of the Upper Triassic Chinle Formation (Colorado Plateau) based on plants conflict with those based on the sedimentary rocks. The plants are suggestive of a humid, equable climate, whereas the rocks are more consistent with deposition under highly seasonal precipitation and ground-water conditions. Fossil plant assemblages are limited to the lower members of the Chinle Formation, which were deposited within incised valleys that were cut into underlying Lower to Middle Triassic and older rocks. In contrast, the upper members of the formation, which were deposited across the fluvial plain after the incised valleys were filled, have few preserved fossil plants. The taphonomic characteristics of the plant fossil assemblages, within the stratigraphic and hydrologic context of the incised valley-fill sequence, explain the vertical and lateral distribution of these assemblages. The depositional, hydrological, and near-surface geochemical conditions were more conducive to preservation of the plants. Fossil plant assemblages in fully terrestrial incised-valley fills should be taphonomically biased toward riparian wetland environments. If those assemblages are used to interpret paleoclimate, the paleoclimatic interpretations will also be biased. The bias may be particularly strong in climates such as those during deposition of the Chinle Formation, when the riparian wetlands may reflect local hydrologic conditions rather than regional climate, and should be taken into account when using these types of plant assemblages in paleoclimatic interpretations.
Blakely, Richard J.; Senior, Lisa
1983-01-01
The mapped geology of the Wild Rogue Wilderness (Gray and others, 1982) consists of a tectonic wedge of volcanic and intrusive rocks of Jurassic age surrounded on all sides by thick sequences of Jurassic, Creacetous, and Tertiary sedimentary rocks. Normally, volcanic and intrusive rocks are more magnetic than sedimentary rocks, a property which should be reflected by the areomagnetic data. We conclude, however, that most of the magnetic anomalies of the Wild Rogue Wilderness are caused by magnetic rocks that are not exposed but which occur at relatively shallow depth below the topographic surface.
Structural relationships of pre-Tertiary rocks in the Nevada Test Site region, southern Nevada
Cole, James C.; Cashman, Patricia Hughes
1999-01-01
This report contains a synthesis and interpretation of structural and stratigraphic data for pre-Tertiary rocks in a large area of southern Nevada within and near the Nevada Test Site. Its presents descriptive and interpretive information from discontinuously exposed localities in the context of a regional model that integrates stratigraphy, sedimentology, crustal structure, and deformational style and timing. Evidence is given for substantial strike-slip faults, for modest excursion on low-angle faults, and for pre-Oligocene formation of the regional oroclinal flexure in neighboring mountain ranges.
NASA Astrophysics Data System (ADS)
Jarzyna, Jadwiga A.; Krakowska, Paulina I.; Puskarczyk, Edyta; Wawrzyniak-Guz, Kamila; Zych, Marcin
2018-03-01
More than 70 rock samples from so-called sweet spots, i.e. the Ordovician Sa Formation and Silurian Ja Member of Pa Formation from the Baltic Basin (North Poland) were examined in the laboratory to determine bulk and grain density, total and effective/dynamic porosity, absolute permeability, pore diameters size, total surface area, and natural radioactivity. Results of the pyrolysis, i.e., TOC (Total Organic Carbon) together with S1 and S2 - parameters used to determine the hydrocarbon generation potential of rocks, were also considered. Elemental composition from chemical analyses and mineral composition from XRD measurements were also included. SCAL analysis, NMR experiments, Pressure Decay Permeability measurements together with water immersion porosimetry and adsorption/ desorption of nitrogen vapors method were carried out along with the comprehensive interpretation of the outcomes. Simple and multiple linear statistical regressions were used to recognize mutual relationships between parameters. Observed correlations and in some cases big dispersion of data and discrepancies in the property values obtained from different methods were the basis for building shale gas rock model for well logging interpretation. The model was verified by the result of the Monte Carlo modelling of spectral neutron-gamma log response in comparison with GEM log results.
NASA Astrophysics Data System (ADS)
Han, Liang; Hole, John A.; Stock, Joann M.; Fuis, Gary S.; Kell, Annie; Driscoll, Neal W.; Kent, Graham M.; Harding, Alistair J.; Rymer, Michael J.; González-Fernández, Antonio; Lázaro-Mancilla, Octavio
2016-10-01
A refraction and wide-angle reflection seismic profile along the axis of the Salton Trough, California and Mexico, was analyzed to constrain crustal and upper mantle seismic velocity structure during active continental rifting. From the northern Salton Sea to the southern Imperial Valley, the crust is 17-18 km thick and approximately one-dimensional. The transition at depth from Colorado River sediment to underlying crystalline rock is gradual and is not a depositional surface. The crystalline rock from 3 to 8 km depth is interpreted as sediment metamorphosed by high heat flow. Deeper felsic crystalline rock could be stretched preexisting crust or higher-grade metamorphosed sediment. The lower crust below 12 km depth is interpreted to be gabbro emplaced by rift-related magmatic intrusion by underplating. Low upper mantle velocity indicates high temperature and partial melting. Under the Coachella Valley, sediment thins to the north and the underlying crystalline rock is interpreted as granitic basement. Mafic rock does not exist at 12-18 km depth as it does to the south, and a weak reflection suggests Moho at 28 km depth. Structure in adjacent Mexico has slower midcrustal velocity, and rocks with mantle velocity must be much deeper than in the Imperial Valley. Slower velocity and thicker crust in the Coachella and Mexicali valleys define the rift zone between them to be >100 km wide in the direction of plate motion. North American lithosphere in the central Salton Trough has been rifted apart and is being replaced by new crust created by magmatism, sedimentation, and metamorphism.
Han, Liang; Hole, John A.; Stock, Joann M.; Fuis, Gary S.; Kell, Annie; Driscoll, Neal W.; Kent, Graham M.; Rymer, Michael J.; Gonzalez-Fernandez, Antonio; Aburto-Oropeza, Octavio
2016-01-01
A refraction and wide-angle reflection seismic profile along the axis of the Salton Trough, California and Mexico, was analyzed to constrain crustal and upper mantle seismic velocity structure during active continental rifting. From the northern Salton Sea to the southern Imperial Valley, the crust is 17-18 km thick and approximately one-dimensional. The transition at depth from Colorado River sediment to underlying crystalline rock is gradual and is not a depositional surface. The crystalline rock from ~3 to ~8 km depth is interpreted as sediment metamorphosed by high heat flow. Deeper felsic crystalline rock could be stretched pre-existing crust or higher grade metamorphosed sediment. The lower crust below ~12 km depth is interpreted to be gabbro emplaced by rift-related magmatic intrusion by underplating. Low upper-mantle velocity indicates high temperature and partial melting. Under the Coachella Valley, sediment thins to the north and the underlying crystalline rock is interpreted as granitic basement. Mafic rock does not exist at 12-18 depth as it does to the south, and a weak reflection suggests Moho at ~28 km depth. Structure in adjacent Mexico has slower mid-crustal velocity and rocks with mantle velocity must be much deeper than in the Imperial Valley. Slower velocity and thicker crust in the Coachella and Mexicali valleys define the rift zone between them to be >100 km wide in the direction of plate motion. North American lithosphere in the central Salton Trough has been rifted apart and is being replaced by new crust created by magmatism, sedimentation, and metamorphism.
NASA Astrophysics Data System (ADS)
Nono, Franck; Gibert, Benoit; Loggia, Didier; Parat, Fleurice; Azais, Pierre; Cichy, Sarah
2016-04-01
Although the Icelandic geothermal system has been intensively investigated over the years, targeting increasingly deeper reservoirs (i.e. under supercritical conditions) requires a good knowledge of the behaviour of physical properties of the host rock in order to better interpret large scale geophysical observations. In particular, the interpretation of deep electrical soundings remains controversial as only few studies have investigated the influence of altered minerals and pore fluid properties on electrical properties of rocks at high temperature and pressure. In this study, we investigate the electrical conductivity of drilled samples from different Icelandic geothermal fields at elevated temperature, confining pressure and pore pressure conditions (100°C < T < 600°C, confining pressure up to 100 MPa and pore pressure up to 35 MPa). The investigated rocks are composed of hyaloclastites, dolerites and basalts taken from depths of about 800 m for the hyaloclastites, to almost 2500 m for the dolerites. They display different porosity structures, from vuggy and intra-granular to micro-cracked porosities, and have been hydrothermally alterated in the chlorite to amphibolite facies. Electrical conductivity measurements are first determined at ambient conditions as a function of pore fluid conductivity in order to establish their relationships with lithology and pore space topology, prior to the high pressure and temperature measurements. Cementation factor varies from 1.5 for the dolerites to 2.83 for the basalt, reflecting changes in the shape of the conductive channels. The surface conductivities, measured at very low fluid conductivity, increases with the porosity and is correlated with the cation exchange capacity. At high pressure and temperature, we used the two guard-ring electrodes system. Measurements have been performed in dry and saturated conditions as a function of temperature and pore pressure. The supercritical conditions have been investigated and temperature cycles have been performed systematically. Dry electrical conductivity measurements show for most of the samples irreversible changes when temperatures exceed 500°C. These changes are interpreted as destabilization/dehydration of alteration minerals that could lead to the presence of a conductive fluid phase in the samples. Very low and high salinity (NaCl) electrical conductivity measurements have been performed as a function of temperature. At supercritical conditions, electrical conductivity at low salinity is not pore pressure dependent and surface conduction is preponderant. At saturated conditions, the rock's electrical conductivity increases linearly (as a function of T-1) until 350°C. Above 350°C, the conductivity decreases. All rock types exhibit the same increasing rate. This work was funded by the of the EC project IMAGE (Integrated Methods for Advanced Geothermal Exploration, grant agreement No. 608553).
Catalog of Apollo 17 rocks. Volume 1: Stations 2 and 3 (South Massif)
NASA Technical Reports Server (NTRS)
Ryder, Graham
1993-01-01
The Catalog of Apollo 17 Rocks is a set of volumes that characterize each of 334 individually numbered rock samples (79 larger than 100 g) in the Apollo 17 collection, showing what each sample is and what is known about it. Unconsolidated regolith samples are not included. The catalog is intended to be used by both researchers requiring sample allocations and a broad audience interested in Apollo 17 rocks. The volumes are arranged geographically, with separate volumes for the South Massif and Light Mantle, the North Massif, and two volumes for the mare plains. Within each volume, the samples are arranged in numerical order, closely corresponding with the sample collection stations. The present volume, for the South Massif and Light Mantle, describes the 55 individual rock fragments collected at Stations two, two-A, three, and LRV-five. Some were chipped from boulders, others collected as individual rocks, some by raking, and a few by picking from the soil in the processing laboratory. Information on sample collection, petrography, chemistry, stable and radiogenic isotopes, rock surface characteristics, physical properties, and curatorial processing is summarized and referenced as far as it is known up to early 1992. The intention has been to be comprehensive: to include all published studies of any kind that provide information on the sample, as well as some unpublished information. References which are primarily bulk interpretations of existing data or mere lists of samples are not generally included. Foreign language journals were not scrutinized, but little data appears to have been published only in such journals. We have attempted to be consistent in format across all of the volumes, and have used a common reference list that appears in all volumes. Where possible, ages based on Sr and Ar isotopes have been recalculated using the 'new' decay constants recommended by Steiger and Jager; however, in many of the reproduced diagrams the ages correspond with the 'old' decay constants. In this volume, mg' or Mg' = atomic Mg/(Mg +Fe).
NASA Astrophysics Data System (ADS)
Moskowitz, B. M.
2015-12-01
A 1986 meeting on the future of rock magnetism proposed an idea for a center where researchers in rock magnetism, other earth science disciplines, and allied fields in the physical sciences could share ideas and have access to advanced instrumentation in magnetism. The idea became reality in 1990, when the Institute for Rock Magnetism (IRM) was established as a shared resource for the GP and broader research communities, providing instruments to study the magnetism of rocks, sediment, biological materials and synthetic analogs. This is accomplished with a suite of instruments that measures magnetization from 2-1000 K, in DC fields up to 5 T and AC fields up to 10 kHz. These are complemented by Mössbauer spectrometers (4.2-300K, 0-6.5T), a high-temperature magnetic force microscope (Tmax~ 673 K), and a low-temperature probe (20-300 K) for vector remanence measurements. A unique aspect of the IRM was that it allowed for routine measurements below 300 K and provided new ways of "seeing" magnetism. This has enabled researchers to study magnetic behavior through magnetic ordering temperatures, crystal phase transitions, and blocking temperatures, providing new insights into mineral magnetism as well as developing new methods to interpret the magnetism of natural materials. The main access to the IRM is the Visiting Fellowship (VF) program, where 379 have been awarded representing 157 institutions from the US and 30 countries. Nearly 50% of VFs have gone to students. The total output of visiting and in-house researches have produced about 800 publications to date. The IRM also provides education and outreach activities including: (1) The IRM Quarterly with over 600 subscribers; (2) The Biennial Santa Fe meetings on the current state and future trends in magnetic research; and (3) The Biennial Summer Schools for Rock Magnetism offering graduate students in the geosciences with instruction in rock magnetism theory and hands-on lab training.
Wood, David B.
2018-03-14
Rock samples have been collected, analyzed, and interpreted from drilling and mining operations at the Nevada National Security Site for over one-half of a century. Records containing geologic and hydrologic analyses and interpretations have been compiled into a series of databases. Rock samples have been photographed and thin sections scanned. Records and images are preserved and available for public viewing and downloading at the U.S. Geological Survey ScienceBase, Mercury Core Library and Data Center Web site at https://www.sciencebase.gov/mercury/ and documented in U.S. Geological Survey Data Series 297. Example applications of these data and images are provided in this report.
Laboratory measurements of P- and S-wave anisotropy in synthetic rocks by 3D printing
NASA Astrophysics Data System (ADS)
Kong, L.; Ostadhassan, M.; Tamimi, N.; Li, C.; Alexeyev, A.
2017-12-01
Synthetic rocks have been widely used to realize the models with controlled factors in rock physics and geomechanics experiments. Additive manufacturing technology, known as 3D printing, is becoming a popular method to produce the synthetic rocks as the advantages of timesaving, economics, and control. In terms of mechanical properties, the duplicability of 3D printed rock towards a natural rock has been studied whereas the seismic anisotropy still remains unknown as being the key factor in conducting rock physics experiments. This study utilized a 3D printer with gypsum as the ink to manufacture a series of synthetic rocks that have the shapes of octagonal prisms, with half of them printed from lateral and another half from the bottom. An ultrasonic investigation system was set up to measure the P- and S- wave velocities at different frequencies while samples were under dry conditions. The results show the impact of layered property on the P- and S- wave velocities. The measurement results were compared with the predicted results of Hudson model, demonstrating that the synthetic rock from 3D printing is a transverse isotropic model. The seismic anisotropy indicates that the availability of using 3D printed rocks to duplicate natural rocks for the purpose of recreating the experiments of rock physics. Future experiments will be performed on the dependence of seismic anisotropy on fracture geometry and density in 3D printed synthetic rocks.
Types of rocks exposed at the Viking landing sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guinness, E.; Arvidson, R.; Dale-Bannister, M.
1985-01-01
Spectral estimates derived from Viking Lander multispectral images have been used to investigate the types of rocks exposed at both landing sites, and to infer whether the rocks are primary igneous rocks or weathering products. These analyses should aid interpretations of spectra to be returned from the Visual and Infrared Mapping Spectrometer on the upcoming Mars Observer Mission. A series of gray surfaces on the Landers were used to check the accuracy of the camera preflight calibrations. Results indicate that the pre-flight calibrations for the three color channels are probably correct for all cameras but camera 2 on Lander 1.more » The calibration for the infrared channels appears to have changed, although the cause is not known. For this paper, only the color channels were used to derive data for rocks. Rocks at both sites exhibit a variety of reflectance values. For example, reflectance estimates for two rocks in the blue (0.4-0.5 microns), green (0.5-0.6 microns), and red (0.6-0.75 microns) channels are 0.16, 0.23, and 0.33 and 0.12, 0.19, 0.37 at a phase angle of 20 degrees. These values have been compared with laboratory reflectance spectra of analog materials and telescopic spectra of Mars, both convolved to the Lander bandpasses. Lander values for some rocks are similar to earth based observations of martian dark regions and with certain mafic igneous rocks thinly coated with amorphous ferric-oxide rich weathering products. These results are consistent with previous interpretations.« less
Lithological and Surface Geometry Joint Inversions Using Multi-Objective Global Optimization Methods
NASA Astrophysics Data System (ADS)
Lelièvre, Peter; Bijani, Rodrigo; Farquharson, Colin
2016-04-01
Geologists' interpretations about the Earth typically involve distinct rock units with contacts (interfaces) between them. In contrast, standard minimum-structure geophysical inversions are performed on meshes of space-filling cells (typically prisms or tetrahedra) and recover smoothly varying physical property distributions that are inconsistent with typical geological interpretations. There are several approaches through which mesh-based minimum-structure geophysical inversion can help recover models with some of the desired characteristics. However, a more effective strategy may be to consider two fundamentally different types of inversions: lithological and surface geometry inversions. A major advantage of these two inversion approaches is that joint inversion of multiple types of geophysical data is greatly simplified. In a lithological inversion, the subsurface is discretized into a mesh and each cell contains a particular rock type. A lithological model must be translated to a physical property model before geophysical data simulation. Each lithology may map to discrete property values or there may be some a priori probability density function associated with the mapping. Through this mapping, lithological inverse problems limit the parameter domain and consequently reduce the non-uniqueness from that presented by standard mesh-based inversions that allow physical property values on continuous ranges. Furthermore, joint inversion is greatly simplified because no additional mathematical coupling measure is required in the objective function to link multiple physical property models. In a surface geometry inversion, the model comprises wireframe surfaces representing contacts between rock units. This parameterization is then fully consistent with Earth models built by geologists, which in 3D typically comprise wireframe contact surfaces of tessellated triangles. As for the lithological case, the physical properties of the units lying between the contact surfaces are set to a priori values. The inversion is tasked with calculating the geometry of the contact surfaces instead of some piecewise distribution of properties in a mesh. Again, no coupling measure is required and joint inversion is simplified. Both of these inverse problems involve high nonlinearity and discontinuous or non-obtainable derivatives. They can also involve the existence of multiple minima. Hence, one can not apply the standard descent-based local minimization methods used to solve typical minimum-structure inversions. Instead, we are applying Pareto multi-objective global optimization (PMOGO) methods, which generate a suite of solutions that minimize multiple objectives (e.g. data misfits and regularization terms) in a Pareto-optimal sense. Providing a suite of models, as opposed to a single model that minimizes a weighted sum of objectives, allows a more complete assessment of the possibilities and avoids the often difficult choice of how to weight each objective. While there are definite advantages to PMOGO joint inversion approaches, the methods come with significantly increased computational requirements. We are researching various strategies to ameliorate these computational issues including parallelization and problem dimension reduction.
Photogeologic mapping in central southwest Bahia, using LANDSAT-1 multispectral images. [Brazil
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Ohara, T.
1981-01-01
The interpretation of LANDSAT multispectral imagery for geologic mapping of central southwest Bahia, Brazil is described. Surface features such as drainage, topography, vegetation and land use are identified. The area is composed of low grade Precambrian rocks covered by Mezozoic and Cenozoic sediments. The principal mineral prospects of economic value are fluorite and calcareous rocks. Gold, calcite, rock crystal, copper, potassium nitrate and alumina were also identified.
NASA Astrophysics Data System (ADS)
Linek, M.; Jungmann, M.; Berlage, T.; Clauser, C.
2005-12-01
Within the Ocean Drilling Program (ODP), image logging tools have been routinely deployed such as the Formation MicroScanner (FMS) or the Resistivity-At-Bit (RAB) tools. Both logging methods are based on resistivity measurements at the borehole wall and therefore are sensitive to conductivity contrasts, which are mapped in color scale images. These images are commonly used to study the structure of the sedimentary rocks and the oceanic crust (petrologic fabric, fractures, veins, etc.). So far, mapping of lithology from electrical images is purely based on visual inspection and subjective interpretation. We apply digital image analysis on electrical borehole wall images in order to develop a method, which augments objective rock identification. We focus on supervised textural pattern recognition which studies the spatial gray level distribution with respect to certain rock types. FMS image intervals of rock classes known from core data are taken in order to train textural characteristics for each class. A so-called gray level co-occurrence matrix is computed by counting the occurrence of a pair of gray levels that are a certain distant apart. Once the matrix for an image interval is computed, we calculate the image contrast, homogeneity, energy, and entropy. We assign characteristic textural features to different rock types by reducing the image information into a small set of descriptive features. Once a discriminating set of texture features for each rock type is found, we are able to discriminate the entire FMS images regarding the trained rock type classification. A rock classification based on texture features enables quantitative lithology mapping and is characterized by a high repeatability, in contrast to a purely visual subjective image interpretation. We show examples for the rock classification between breccias, pillows, massive units, and horizontally bedded tuffs based on ODP image data.
NASA Technical Reports Server (NTRS)
Harper, G. D.
1986-01-01
Archean mafic and ultramafic rocks occur in the southeastern Wind River Mountains near Atlantic City, Wyoming and are interpreted to represent a dismembered ophiolite suite. The ophiolitic rocks occur in a thin belt intruded by the 2.6 Ga Louis Lake Batholith on the northwest. On the southeast they are in fault contact with the Miners Delight Formation comprised primarily of metagraywackes with minor calc-alkaline volcanics. The ophiolitic and associated metasedimentry rocks (Goldman Meadows Formation) have been multiply deformed and metamorphosed. The most prominant structures are a pronounced steeply plunging stretching lineation and steeply dipping foliation. These structural data indicate that the ophiolitic and associated metasedimentary rocks have been deformed by simple shear. The ophiolitic rocks are interpreted as the remains of Archean oceanic crust, probably formed at either a mid-ocean ridge or back-arc basin. All the units of a complete ophiolite are present except for upper mantle periodotities. The absence of upper mantle rocks may be the result of detactment within the crust, rather than within the upper mantle, during emplacement. This could have been the result of a steeper geothermal gradient in the Archean oceanic lithosphere, or may have resulted from a thicker oceanic crust in the Archean.
Colgan, Joseph P.; Henry, Christopher D.; John, David A.
2014-01-01
The northern Shoshone and Toiyabe Ranges in north-central Nevada expose numerous areas of mineralized Paleozoic rock, including major Carlin-type gold deposits at Pipeline and Cortez. Paleozoic rocks in these areas were previously interpreted to have undergone negligible postmineralization extension and tilting, but here we present new data that suggest major post-Eocene extension along west-dipping normal faults. Tertiary rocks in the northern Shoshone Range crop out in two W-NW–trending belts that locally overlie and intrude highly deformed Lower Paleozoic rocks of the Roberts Mountains allochthon. Tertiary exposures in the more extensive, northern belt were interpreted as subvertical breccia pipes (intrusions), but new field data indicate that these “pipes” consist of a 35.8 Ma densely welded dacitic ash flow tuff (informally named the tuff of Mount Lewis) interbedded with sandstones and coarse volcaniclastic deposits. Both tuff and sedimentary rocks strike N-S and dip 30° to 70° E; the steeply dipping compaction foliation in the tuffs was interpreted as subvertical flow foliation in breccia pipes. The southern belt along Mill Creek, previously mapped as undivided welded tuff, includes the tuff of Cove mine (34.4 Ma) and unit B of the Bates Mountain Tuff (30.6 Ma). These tuffs dip 30° to 50° east, suggesting that their west-dipping contacts with underlying Paleozoic rocks (previously mapped as depositional) are normal faults. Tertiary rocks in both belts were deposited on Paleozoic basement and none appear to be breccia pipes. We infer that their present east tilt is due to extension on west-dipping normal faults. Some of these faults may be the northern strands of middle Miocene (ca. 16 Ma) faults that cut and tilted the 34.0 Ma Caetano caldera ~40° east in the central Shoshone Range (
Impact-Facilitated Hydrothermal Alteration in the Rim of Endeavour Crater, Mars
NASA Technical Reports Server (NTRS)
Mittlefehldt, D. W.; Schroeder, C.; Farrand, W. H.; Crumpler, L. S.; Yen, A. S.
2017-01-01
Endeavour crater, a Noachian-aged, 22 km diameter impact structure on Meridiani Planum, Mars, has been investigated by the Mars Exploration Rover Opportunuity for over 2000 sols (Mars days). The rocks of the western rim region (oldest to youngest) are: (i) the pre-impact Matijevic fm.; (ii) rim-forming Shoemaker fm. polymict impact breccias; (iii) Grasberg fm., fine-grained sediments draping the lower slopes; and (iv) Burns fm., sulfate-rich sandstones that onlap the Grasberg fm. The rim is segmented and transected by radial fracture zones. Evidence for fluid-mediated alteration includes m-scale detections of phyllosilicates from orbit, and cm-scale variations in rock/soil composition/mineralogy documented by the Opportunity instrument suite. The m-scale phyllosilicate detections include Fe(3+)-Mg and aluminous smectites that occur in patches in the Matijevic and Shoemaker fms. Rock compositions do not reveal substantial differences for smectite-bearing compared to smectite-free rocks. Interpretation: large-scale hydrothermal alteration powered by impact-deposited heat acting on limited water supplies engendered mineralogic transfomations under low water/rock, near-isochemical conditions. The cm-scale alterations, localized in fracture zones, occurred at higher water/rock as evidenced by enhanced Si and Al contents through leaching of more soluble elements, and deposition of Mg, Ni and Mn sulphates and halogen salts in soils. Visible/near infrared reflectance of narrow curvilinear red zones indicate higher nanophase ferric oxide contents and possibly hydration compared to surrounding outcrops. Broad fracture zones on the rim have reflectance features consistent with development of ferric oxide minerals. Interpretation: water fluxing through the fractures in a hydrothermal system resulting from the impact engendered alteration and leaching under high water/rock conditions. Late, localized alteration is documented by Ca-sulfate-rich veins that are not confined to fracture zones; some cross-cut the Grasberg fm. Interpretation: late fluid mobilization of soluble elements, likely in a later alteration event.
NASA Astrophysics Data System (ADS)
Yue, Z. Q. Q.
2015-12-01
Many phenomena and data related to volcanoes and volcano eruptions have been observed and collected over the past four hundred years. They have been interpreted with the conventional and widely accepted hypothesis or theory of hot magma fluid from mantle. However, the prediction of volcano eruption sometimes is incorrect. For example, the devastating eruption of the Mount Ontake on Sept. 27, 2014 was not predicted and/or warned at all, which caused 55 fatalities, 9 missing and more than 60 injured. Therefore, there is a need to reconsider the cause and mechanism of active volcano and its hydrothermal system. On the basis of more than 30 year study and research in geology, volcano, earthquake, geomechanics, geophysics, geochemistry and geohazards, the author has developed a new and alternative modeling framework (or hypothesis) to better interpret the observed volcano-hydrothermal system data and to more accurately predict the occurrence of volcano explosion. An active volcano forms a cone-shape mountain and has a crater with vertical pipe conduit to allow hot lava, volcanic ash and gases to escape or erupt from its chamber (Figure). The chamber locates several kilometers below the ground rocks. The active volcanos are caused by highly compressed and dense gases escaped from the Mantle of the Earth. The gases are mainly CH4 and further trapped in the upper crustal rock mass. They make chemical reactions with the surrounding rocks in the chamber. The chemical reactions are the types of reduction and decomposition. The reactions change the gas chemical compounds into steam water gas H2O, CO2, H2S, SO2 and others. The oxygen in the chemical reaction comes from the surrounding rocks. So, the product lava has a less amount of oxygen than that of the surrounding rocks. The gas-rock chemical reactions produce heat. The gas expansion and penetration power and the heat further break and crack the surrounding rock mass and make them into lavas, fragments, ashes or bombs. The pyroclastic deposits are carried out of the chamber by the gas expansion and uplift power and form the cone-shape mountain. The crust loses its rocks and the chamber becomes larger and larger. Eventually, the last eruption occurs and breaks the upper rocks and the cone mountain. The pyroclatic rocks collapse into the chamber space and leave a basin or lake.
NASA Astrophysics Data System (ADS)
Brengman, Latisha A.; Fedo, Christopher M.
2018-04-01
We investigated a group of silicified volcanic rocks from the ∼2.72 Ga Hunter Mine Group (HMG), Abitibi Greenstone Belt, Canada, in order to document progressive compositional change associated with alteration in a subaqueous caldera system. Rocks of the HMG divide into three groups based on mineralogy and texture for petrographic and geochemical analyses. Volcanic features (phenocrysts, pseudomorphs after primary glass shards, lapilli, volcanic clasts) are preserved in all groups, despite changing mineralogy from primarily quartz, feldspar, chlorite (Groups 1 and 2), to quartz, hematite and carbonate (Groups 2 and 3). Compositionally, Group 1 rocks resemble volcanic rocks in the region, while Group 2 and 3 rocks show a change in mineralogy to iron, silica, and carbonate minerals, which is associated with depletion of many major and trace elements associated with volcanic rocks (Al2O3, Na2O, K2O, Zr). In addition, rare earth elements display a clear progression from volcanic signatures in Group 1 (PrSN/YbSN = 1.7-2.96, EuSN/EuSN∗ = 0.84-1.72, Y/Ho = 25.20-27.41, LaSN/LaSN∗ = 0.97-1.29, and Zr/Hf = 38.38-42.09) to transitional mixed volcanic, hydrothermal, and seawater signatures in Group 2 (PrSN/YbSN 1.33-2.89, EuSN/EuSN∗ 1.33-2.5, Y/Ho = 23.94-30, LaSN/LaSN∗ 0.93-1.34, and Zr/Hf = 40-70), to mixed hydrothermal and seawater signatures in Group 3 (PrSN/YbSN 0.62-2.88, EuSN/EuSN∗ 1.30-7.15, LaSN/LaSN∗ 1.02-1.86, Y/Ho = 25.56-55, and Zr/Hf = 35-50). We interpret that silicification of volcanic rocks (Group 1) produced transitional altered volcanic rocks (Group 2), and siliceous and jaspilitic rocks (Group 3), based on preservation of delicate volcanic features. Building on this explanation, we interpret that major, trace- and rare-earth element mobility occurred during the process of silicification, during which siliceous and jaspilitic rocks (Group 3) acquired aspects of the rare-earth element geochemical signatures of marine chemical precipitates. We conclude that seafloor silicification in hydrothermal depositional settings is capable of producing rocks that resemble marine chemical precipitates such as banded iron formation, and could be a process that is widespread in the Archean. Consequently, because silicified volcanic rocks from the HMG possess mixed seawater and hydrothermal rare-earth element characteristics similar to Archean iron formations and cherts, we suggest caution must be exercised when interpreting the geochemical information preserved in metamorphosed rocks where original genesis is unknown.
Grauch, V.J.S.; Drenth, Benjamin J.; Thompson, Ren A.; Bauer, Paul W.
2015-08-01
This report presents geophysical interpretations of regional subsurface geology in the vicinity of the Tailing Facility of the Questa Mine near Guadalupe Mountain, Taos County, New Mexico, in cooperation with the New Mexico Environment Department. The interpretations were developed from aeromagnetic data, regional gravity data, data from four ground magnetic traverses, geologic mapping, a digital elevation model, and information from a few shallow wells. The resolution of the geophysical data is only appropriate for a broad assessment of the regional setting. Aeromagnetic data provided the most comprehensive information for interpretation. Qualitative and semiquantitative interpretations indicate the nature and extent of volcanic rocks, their relative depths, and inferred contacts between them, as well as conjectured locations of faults. In particular, the aeromagnetic data indicate places where volcanic rocks extend at shallow depths under sedimentary cover. Trachydacites of Guadalupe Mountain are magnetic, but their associated aeromagnetic anomalies are opposite in sign over the northern versus the southern parts of the mountain. The difference indicates that lavas erupted during different magnetic-polarity events in the north (reverse polarity) versus the south (normal polarity) and therefore have different ages. We postulate a buried volcano with reverse-polarity magnetization lies under the northeast side of Guadalupe Mountain, which likely predated the exposed trachydacites. Faults interpreted for the study area generally align with known fault zones. We interpret a northern extension to one of these faults that crosses northwesterly underneath the Tailing Facility. Gravity data indicate that Guadalupe Mountain straddles the western margin of a subbasin of the Rio Grande rift and that significant (>400 meters) thicknesses of both volcanic and sedimentary rocks underlie the mountain.
NASA Astrophysics Data System (ADS)
Minnett, R.; Koppers, A. A.; Tauxe, L.; Constable, C.; Jarboe, N. A.
2011-12-01
The Magnetics Information Consortium (MagIC) provides an archive for the wealth of rock- and paleomagnetic data and interpretations from studies on natural and synthetic samples. As with many fields, most peer-reviewed paleo- and rock magnetic publications only include high level results. However, access to the raw data from which these results were derived is critical for compilation studies and when updating results based on new interpretation and analysis methods. MagIC provides a detailed metadata model with places for everything from raw measurements to their interpretations. Prior to MagIC, these raw data were extremely cumbersome to collect because they mostly existed in a lab's proprietary format on investigator's personal computers or undigitized in field notebooks. MagIC has developed a suite of offline and online tools to enable the paleomagnetic, rock magnetic, and affiliated scientific communities to easily contribute both their previously published data and data supporting an article undergoing peer-review, to retrieve well-annotated published interpretations and raw data, and to analyze and visualize large collections of published data online. Here we present the technology we chose (including VBA in Excel spreadsheets, Python libraries, FastCGI JSON webservices, Oracle procedures, and jQuery user interfaces) and how we implemented it in order to serve the scientific community as seamlessly as possible. These tools are now in use in labs worldwide, have helped archive many valuable legacy studies and datasets, and routinely enable new contributions to the MagIC Database (http://earthref.org/MAGIC/).
Seismic structure and lithospheric rheology from deep crustal xenoliths, central Montana, USA
NASA Astrophysics Data System (ADS)
Mahan, K. H.; Schulte-Pelkum, V.; Blackburn, T. J.; Bowring, S. A.; Dudas, F. O.
2012-10-01
Improved resolution of lower crustal structure, composition, and physical properties enhances our understanding and ability to model tectonic processes. The cratonic core of Montana and Wyoming, USA, contains some of the most enigmatic lower crust known in North America, with a high seismic velocity layer contributing to as much as half of the crustal column. Petrological and physical property data for xenoliths in Eocene volcanic rocks from central Montana provide new insight into the nature of the lower crust in this region. Inherent heterogeneity in xenoliths derived from depths below ˜30 km support a composite origin for the deep layer. Possible intralayer velocity steps may complicate the seismic definition of the crust/mantle boundary and interpretations of crustal thickness, particularly when metasomatized upper mantle is considered. Mafic mineral-dominant crustal xenoliths and published descriptions of mica-bearing peridotite and pyroxenite xenoliths suggest a strong lower crust overlying a potentially weaker upper mantle.
NASA Astrophysics Data System (ADS)
Haddad, D. E.; Arrowsmith, R.
2009-12-01
Terrestrial laser scanning (TLS) technology is rapidly becoming an effective three-dimensional imaging tool. Precariously balanced rocks are a subset of spheroidally weathered boulders. They are balanced on bedrock pedestals and are formed in upland drainage basins and pediments of exhumed plutons. Precarious rocks are used as negative evidence of earthquake-driven extreme ground motions. Field surveys of PBRs are coupled with cosmogenic radionuclide (CRN) surface exposure dating techniques to determine their exhumation rates. These rates are used in statistical simulations to estimate the magnitudes and recurrences of earthquake-generated extreme ground shaking as a means to physically validate seismic hazard analyses. However, the geomorphic setting of PBRs in the landscape is poorly constrained when interpreting their exhumation rates from CRN surface exposure dates. Are PBRs located on steep or gentle hillslopes? Are they located near drainages or hillslope crests? What geomorphic processes control the spatial distribution of PBRs in a landscape, and where do these processes dominate? Because the fundamental hillslope transport laws are largely controlled by local hillslope gradient and contributing area, the location of a PBR is controlled by the geomorphic agents and their rates acting on it. Our latest efforts involve using a combination of TLS and airborne laser swath mapping (ALSM) to characterize the geomorphic situation of PBRs. We used a Riegl LPM 800i (LPM 321) terrestrial laser scanner to scan a ~1.5 m tall by ~1 m wide precariously balanced rock in the Granite Dells, central Arizona. The PBR was scanned from six positions, and the scans were aligned to a point cloud totaling 3.4M points. We also scanned a ~50 m by ~150 m area covering PBR hillslopes from five scan positions. The resulting 5.5M points were used to create a digital terrain model of precarious rocks and their hillslopes. Our TLS- and ALSM-generated surface models and DEMs provide a unique opportunity to understand the roles of hillslope-scale geomorphic processes in the PBR life cycle. Initial results show that the studied PBRs are located near hillslope crests ~33 m above the nearest drainages and on slopes >17°. No PBRs were found on gentle slopes adjacent to channels, suggesting that hillslope crests are conducive to preserving PBRs. Understanding these landscape morphometrics for precarious rock zones is critical to building our confidence in interpreting PBR exhumation rates from CRN dating techniques, thus improving the evaluation of seismic hazard analyses.
Hansen, Cristi V.; Spinazola, Joseph M.; Underwood, E.J.; Wolf, R.J.
1992-01-01
The purpose of this Hydrologic Investigations Atlas is to provide a description of the principal geohydrologic systems in Upper Cambrian through Lower Cretaceous rocks in Kansas. This investigation was made as part of the Central Midwest Regional Aquifer-System Analysis (CMRASA). The CMRASA is one of several major investigations by the U.S. Geological Survey of regional aquifer systems in the United States. These regional investigations are designed to increase knowledge of the flow regime and hydrologic properties of major aquifer systems and to provide quantitative information for the assessment, development, and management water supplies. The CMRASA study area includes all or parts of 10 Central Midwestern States (Jorgensen and Signor, 1981), as shown on the envelope cover.This Hydrologic Investigations Atlas, which consists of a series of nine chapters, presents a description of the physical framework and the geohydrology of principal aquifers and confining systems in Kansas. Chapter D presents maps that show the areal extent, altitude and configuration of the top, and thickness of Mississippian rocks that compose the upper aquifer unit of the Western Interior Plains aquifer system in Kansas, The chapter is limited to the presentation of the physical framework of the upper aquifer unit. The interpretation of the physical framework of the upper aquifer unit is based on selected geophysical and lithologic logs and published maps of stratigraphically equivalent units. Maps indicating the thickness and the altitude and configuration of the top of the upper aquifer unit in the Western Interior Plains aquifer system have been prepared as part of a series of interrelated maps that describe the stratigraphic interval from the Precambrian basement through Lower Cretaceous rocks. A concerted effort was made to ensure that maps of each geohydrologic unit are consistent with the maps of underlying and overlying units. Chapter A of this atlas series (Wolf and others, 1990) describes the relation of principal geohydrologic systems in Kansas and presents a more detailed discussion of the methods and data used to prepare and ensure consistency among the sets of maps.
Hill, R.J.; Schenk, C.J.
2005-01-01
Petroleum produced from the Barbados accretionary prism (at Woodbourne Field on Barbados) is interpreted as generated from Cretaceous marine shale deposited under normal salinity and dysoxic conditions rather than from a Tertiary source rock as previously proposed. Barbados oils correlate with some oils from eastern Venezuela and Trinidad that are positively correlated to extracts from Upper Cretaceous La Luna-like source rocks. Three distinct groups of Barbados oils are recognized based on thermal maturity, suggesting petroleum generation occurred at multiple levels within the Barbados accretionary prism. Biodegradation is the most significant process affecting Barbados oils resulting in increased sulfur content and decreased API gravity. Barbados gases are interpreted as thermogenic, having been co-generated with oil, and show mixing with biogenic gas is limited. Gas biodegradation occurred in two samples collected from shallow reservoirs at the Woodbourne Field. The presence of Cretaceous source rocks within the Barbados accretionary prism suggests that greater petroleum potential exists regionally, and perhaps further southeast along the passive margin of South America. Likewise, confirmation of a Cretaceous source rock indicates petroleum potential exists within the Barbados accretionary prism in reservoirs that are deeper than those from Woodbourne Field.
Collins, K.L.; Thornton, C.I.; Mefford, B.; Holmquist-Johnson, C. L.
2009-01-01
Rock weir and ramp structures uniquely serve a necessary role in river management: to meet water deliveries in an ecologically sound manner. Uses include functioning as low head diversion dams, permitting fish passage, creating habitat diversity, and stabilizing stream banks and profiles. Existing information on design and performance of in-stream rock structures does not provide the guidance necessary to implement repeatable and sustainable construction and retrofit techniques. As widespread use of rock structures increases, the need for reliable design methods with a broad range of applicability at individual sites grows as well. Rigorous laboratory testing programs were implemented at the U.S. Bureau of Reclamation (Reclamation) and at Colorado State University (CSU) as part of a multifaceted research project focused on expanding the current knowledge base and developing design methods to improve the success rate of river spanning rock structures in meeting project goals. Physical modeling at Reclamation is being used to measure, predict, and reduce interstitial flow through rock ramps. CSU is using physical testing to quantify and predict scour development downstream of rock weirs and its impact on the stability of rock structures. ?? 2009 ASCE.
NASA Astrophysics Data System (ADS)
D'Antonio, Massimo
2011-02-01
A geologically reasonable working hypothesis is proposed for the lithology of the basement underlying the Campi Flegrei caldera in the ca. 4-8 km depth range. In most current geophysical modeling, this portion of crust is interpreted as composed of Meso-Cenozoic carbonate rocks, underlain by a ca. 1 km thick sill of partially molten rock, thought to be a main magma reservoir. Shallower magma reservoirs likely occur in the 3-4 km depth range. However, the lack of carbonate lithics in any Campi Flegrei caldera volcanic rocks does not support the hypothesis of a limestone basement. Considering the major caldera-forming eruptions, which generated widespread and voluminous ignimbrites during late Quaternary times, including the Campanian Ignimbrite and Neapolitan Yellow Tuff eruptions, the total volume of trachytic to phonolitic ejected magma is conservatively estimated at not less than 350 km 3. Results of least-squared mass-balance calculations suggest that this evolved magma formed through fractional crystallization from at least 2500 km 3 of parent shoshonitic magma, in turn derived from even more voluminous, more mafic, K-basaltic magma. Calculations suggest that shoshonitic magma, likely emplaced at ca. 8 km depth, must have crystallized about 2100 km 3 of solid material, dominated by alkali-feldspar and plagioclase, with a slightly lower amount of mafic minerals, during its route toward shallower magma reservoirs, before feeding the Campi Flegrei large-volume eruptions. The calculated volume of cumulate material, likely syenitic in composition at least in its upper portions, is more than enough to completely fill the basement volume in the 4-8 km depth range beneath the Campi Flegrei caldera, estimated at ca. 1250 km 3. Thus, it is proposed that the basement underlying the Campi Flegrei caldera below 4 km is composed mostly of crystalline igneous rocks, as for many large calderas worldwide. Syenite sensu lato would meet physical properties requirements for geophysical data interpretations, explain some geochemical and isotopic features of the past 15 ka volcanics, and justify the carbon isotopic composition of fumaroles at the Campi Flegrei caldera. This implies that Meso-Cenozoic limestones, if still present today beneath the Campi Flegrei caldera, no longer constitute significant portions of its basement.
Classification and Distribution of Mars Pathfinder Rocks Using Quantitative Morphologic Indices
NASA Technical Reports Server (NTRS)
Yingst, R. A.; Biederman, K. L.; Monhead, A. M.; Haldemann, A. F. C.; Kowalczyk, M. R.
2004-01-01
The Mars Pathfinder (MPF) landing site was predicted to contain a broad sampling of rock types varying in mineralogical, physical, mechanical and geochemical characteristics. Although rocks have been divided into several spectral categories based on Imager for Mars Pathfinder visible/near-infrared spectra, it has not been fully determined which of these stem from intrinsic mineralogical differences between rocks or rock surfaces, and which result from factors such as physical or chemical weathering. This has made isolation of unique mineralogy's difficult. Efforts in isolating and classifying spectral units among MPF rocks and soils have met with varying degrees of success, and the current understanding is such that many factors influencing spectral signatures cannot be quantified to a sufficient level so they may be removed. The result is that fundamental questions regarding information needed to reveal the present and past interactions between the rocks and rock surfaces and the Martian environment remain unanswered. But it is possible to approach the issue of identifying distinct rock and rock surface types from a different angle.
Maps showing geology, structure, and geophysics of the central Black Hills, South Dakota
Redden, Jack A.; DeWitt, Ed
2008-01-01
This 1:100,000-scale digital geologic map details the complex Early Proterozoic granitic rocks, Early Proterozoic supracrustal metamorphic rocks, and Archean crystalline basement of the Black Hills. The granitic rocks host pegmatite deposits renowned for their feldspar, mica, spodumene, and beryl. The supracrustal rocks host the Homestake gold mine, which produced more than 40 million ounces of gold over a 125-year lifetime. The map documents the Laramide deformation of Paleozoic and Mesozoic cover rocks; and shows the distribution of Laramide plutonic rocks associated with precious-metals deposits. Four 1:300,000-scale maps summarize Laramide structures; Early Proterozoic structures; aeromagnetic anomalies; and gravity anomalies. Three 1:500,000-scale maps show geophysical interpretations of buried Early Proterozoic to Archean rocks in western South Dakota and eastern Wyoming.
NASA Astrophysics Data System (ADS)
Omura, K.
2014-12-01
In recent years, many examples of physical logging have been carried out in deep boreholes. The loggings are direct in-situ measurements of rock physical properties under the ground. They provide significant basic data for the geological, geophysical and geotechnical investigations, e.g., tectonic history, seismic wave propagation, and ground motion prediction. Since about 1980's, Natl. Res. Inst. for Earth Sci. and Disast. Prev. (NIED) dug deep boreholes (from 200m to 3000m depth) in sedimentary basin of Kanto distinct, Japan, for purposes of installing seismographs and hydrological instruments, and in-situ stress and pore pressure measurements. At that time, downhole physical loggings were conducted in the boreholes: spontaneous potential, electrical resistance, elastic wave velocity, formation density, neutron porosity, total gamma ray, caliper, temperature loggings. In many cases, digital data values were provided every 2m or 1m or 0.1m. In other cases, we read printed graphs of logging plots and got digital data values. Data from about 30 boreholes are compiled. Especially, particular change of logging data at the depth of an interface between a shallow part (soft sedimentary rock) and a base rock (equivalent to hard pre-Neogene rock) is examined. In this presentation, the correlations among physical properties of rock (especially, formation density, elastic wave velocity and electrical resistance) are introduced and the relation to the lithology is discussed. Formation density, elastic wave velocity and electric resistance data indicate the data are divide in two groups that are higher or lower than 2.5g/cm3: the one correspond to a shallow part and the other correspond to a base rock part. In each group, the elastic wave velocity and electric resistance increase with increase of formation density. However the rates of increases in the shallow part are smaller than in the base rock part. The shallow part has lower degree of solidification and higher porosity than that in the base rock part. It appears differences in the degree of solidification and/or porosity are related to differences in the increasing rates. The present data show that the physical logging data are effective information to explore where the base rock is and what properties of the base rock are different from those in the shallow part.
Geophysical interpretations of the Libby thrust belt, northwestern Montana
Kleinkopf, M. Dean; with sections by Harrison, Jack Edward; Stanley, W.D.
1997-01-01
Interpretations of gravity and aeromagnetic anomaly data, supplemented by results from two seismic reflection profiles and five magnetotelluric soundings, were used to study buried structure and lithology of the Libby thrust belt of northwestern Montana. The gravity anomaly data show a marked correlation with major structures. The Purcell anticlinorium and the Sylvanite anticline are very likely cored by stacks of thrust slices of dense crystalline basement rocks that account for the large gravity highs across these two structures. Gravity anomaly data for the Cabinet Mountains Wilderness show a string of four broad highs. The principal magnetic anomaly sources are igneous intrusive rocks, major fault zones, and magnetite-bearing sedimentary rocks of the Ravalli Group. The most important magnetic anomalies in the principal study area are five distinct positive anomalies associated with Cretaceous or younger cupolas and stocks.
Colorado Potential Geothermal Pathways
Richard E. Zehner
2012-02-01
This layer contains the weakened basement rocks. Isostatic gravity was utilized to identify structural basin areas, characterized by gravity low values reflecting weakened basement rocks. Together interpreted regional fault zones and basin outlines define geothermal "exploration fairways", where the potential exists for deep, superheated fluid flow in the absence of Pliocene or younger volcanic units.
NASA Technical Reports Server (NTRS)
Craddock, Robert A.; Golombek, Matthew; Howard, Alan D.
2000-01-01
Both the size-frequency distribution and morphometry of rock populations emplaced by a variety of geologic processes in Hawaii indicate that such information may be useful in planning future landing sites on Mars and interpreting the surface geology.
Geophysical testing of rock and its relationships to physical properties
DOT National Transportation Integrated Search
2011-02-01
Testing techniques were designed to characterize spatial variability in geotechnical engineering physical parameters of : rock formations. Standard methods using seismic waves, which are routinely used for shallow subsurface : investigation, have lim...
NASA Astrophysics Data System (ADS)
Bradbury, Kelly K.; Davis, Colter R.; Shervais, John W.; Janecke, Susanne U.; Evans, James P.
2015-05-01
We examine the fine-scale variations in mineralogical composition, geochemical alteration, and texture of the fault-related rocks from the Phase 3 whole-rock core sampled between 3,187.4 and 3,301.4 m measured depth within the San Andreas Fault Observatory at Depth (SAFOD) borehole near Parkfield, California. This work provides insight into the physical and chemical properties, structural architecture, and fluid-rock interactions associated with the actively deforming traces of the San Andreas Fault zone at depth. Exhumed outcrops within the SAF system comprised of serpentinite-bearing protolith are examined for comparison at San Simeon, Goat Rock State Park, and Nelson Creek, California. In the Phase 3 SAFOD drillcore samples, the fault-related rocks consist of multiple juxtaposed lenses of sheared, foliated siltstone and shale with block-in-matrix fabric, black cataclasite to ultracataclasite, and sheared serpentinite-bearing, finely foliated fault gouge. Meters-wide zones of sheared rock and fault gouge correlate to the sites of active borehole casing deformation and are characterized by scaly clay fabric with multiple discrete slip surfaces or anastomosing shear zones that surround conglobulated or rounded clasts of compacted clay and/or serpentinite. The fine gouge matrix is composed of Mg-rich clays and serpentine minerals (saponite ± palygorskite, and lizardite ± chrysotile). Whole-rock geochemistry data show increases in Fe-, Mg-, Ni-, and Cr-oxides and hydroxides, Fe-sulfides, and C-rich material, with a total organic content of >1 % locally in the fault-related rocks. The faults sampled in the field are composed of meters-thick zones of cohesive to non-cohesive, serpentinite-bearing foliated clay gouge and black fine-grained fault rock derived from sheared Franciscan Formation or serpentinized Coast Range Ophiolite. X-ray diffraction of outcrop samples shows that the foliated clay gouge is composed primarily of saponite and serpentinite, with localized increases in Ni- and Cr-oxides and C-rich material over several meters. Mesoscopic and microscopic textures and deformation mechanisms interpreted from the outcrop sites are remarkably similar to those observed in the SAFOD core. Micro-scale to meso-scale fabrics observed in the SAFOD core exhibit textural characteristics that are common in deformed serpentinites and are often attributed to aseismic deformation with episodic seismic slip. The mineralogy and whole-rock geochemistry results indicate that the fault zone experienced transient fluid-rock interactions with fluids of varying chemical composition, including evidence for highly reducing, hydrocarbon-bearing fluids.
The Nahuel Niyeu basin: A Cambrian forearc basin in the eastern North Patagonian Massif
NASA Astrophysics Data System (ADS)
Greco, Gerson A.; González, Santiago N.; Sato, Ana M.; González, Pablo D.; Basei, Miguel A. S.; Llambías, Eduardo J.; Varela, Ricardo
2017-11-01
Early Paleozoic basement of the eastern North Patagonian Massif includes low- and high grade metamorphic units, which consist mainly of alternating paraderived metamorphic rocks (mostly derived from siliciclastic protoliths) with minor intercalations of orthoderived metamorphic rocks. In this contribution we provide a better understanding of the tectonic setting in which the protoliths of these units were formed, which adds to an earlier suggested idea. With this purpose, we studied the metasedimentary rocks of the low-grade Nahuel Niyeu Formation from the Aguada Cecilio area combining mapping and petrographic analysis with U-Pb geochronology and characterization of detrital zircon grains. The results and interpretations of this unit, together with published geological, geochronological and geochemical information, allow us to interpret the sedimentary and igneous protoliths of all metamorphic units from the massif as formed in a forearc basin at ∼520-510 Ma (Nahuel Niyeu basin). It probably was elongated in the ∼NW-SE direction, and would have received detritus from a proximal source area situated toward its northeastern side (present coordinates). The basin might be related to an extensional tectonic regime. Most likely source rocks were: (1) 520-510 Ma, acidic volcanic rocks (an active magmatic arc), (2) ∼555->520 Ma, acidic plutonic and volcanic rocks (earlier stages of the same arc), and (3) latest Ediacaran-Terreneuvian, paraderived metamorphic rocks (country rocks of the arc). We evaluate the Nahuel Niyeu basin considering the eastern North Patagonian Massif as an autochthonous part of South America, adding to the discussion of the origin of Patagonia.
Jiang, D.-X.; Wang, Y.-D.; Robbins, E.I.; Wei, J.; Tian, N.
2008-01-01
The Tarim Basin in Northwest China hosts petroleum reservoirs of Cambrian, Ordovician, Carboniferous, Triassic, Jurassic, Cretaceous and Tertiary ages. The sedimentary thickness in the basin reaches about 15 km and with an area of 560000 km2, the basin is expected to contain giant oil and gas fields. It is therefore important to determine the ages and depositional environments of the petroleum source rocks. For prospective evaluation and exploration of petroleum, palynological investigations were carried out on 38 crude oil samples collected from 22 petroleum reservoirs in the Tarim Basin and on additionally 56 potential source rock samples from the same basin. In total, 173 species of spores and pollen referred to 80 genera, and 27 species of algae and fungi referred to 16 genera were identified from the non-marine Mesozoic sources. By correlating the palynormorph assemblages in the crude oil samples with those in the potential source rocks, the Triassic and Jurassic petroleum source rocks were identified. Furthermore, the palynofloras in the petroleum provide evidence for interpretation of the depositional environments of the petroleum source rocks. The affinity of the miospores indicates that the petroleum source rocks were formed in swamps in brackish to lacustrine depositional environments under warm and humid climatic conditions. The palynomorphs in the crude oils provide further information about passage and route of petroleum migration, which is significant for interpreting petroleum migration mechanisms. Additionally, the thermal alternation index (TAI) based on miospores indicates that the Triassic and Jurassic deposits in the Tarim Basin are mature petroleum source rocks. ?? Cambridge University Press 2008.
Cohen, B. A.; James, O.B.; Taylor, L.A.; Nazarov, M.A.; Barsukova, L.D.
2004-01-01
Studies of lunar meteorite Dhofar 026, and comparison to Apollo sample 15418, indicate that Dhofar 026 is a strongly shocked granulitic breccia (or a fragmental breccia consisting almost entirely of granulitic breccia clasts) that experienced considerable post-shock heating, probably as a result of diffusion of heat into the rock from an external, hotter source. The shock converted plagioclase to maskelynite, indicating that the shock pressure was between 30 and 45 GPa. The post-shock heating raised the rock's temperature to about 1200 ??C; as a result, the maskelynite devitrified, and extensive partial melting took place. The melting was concentrated in pyroxene-rich areas; all pyroxene melted. As the rock cooled, the partial melts crystallized with fine-grained, subophitic-poikilitic textures. Sample 15418 is a strongly shocked granulitic breccia that had a similar history, but evidence for this history is better preserved than in Dhofar 026. The fact that Dhofar 026 was previously interpreted as an impact melt breccia underscores the importance of detailed petrographic study in interpretation of lunar rocks that have complex textures. The name "impact melt" has, in past studies, been applied only to rocks in which the melt fraction formed by shock-induced total fusion. Recently, however, this name has also been applied to rocks containing melt formed by heating of the rocks by conductive heat transfer, assuming that impact is the ultimate source of the heat. We urge that the name "impact melt" be restricted to rocks in which the bulk of the melt formed by shock-induced fusion to avoid confusion engendered by applying the same name to rocks melted by different processes. ?? Meteoritical Society, 2004.
Iconography in Bradshaw rock art: breaking the circularity.
Pettigrew, Jack
2011-09-01
Interpreting the symbols found in the rock art of an extinct culture is hampered by the fact that such symbols are culturally determined. How does one break the circularity inherent in the fact that the knowledge of both the symbols and the culture comes from the same source? In this study, the circularity is broken for the Bradshaw rock art of the Kimberley by seeking anchors from outside the culture. Bradshaw rock art in the Kimberley region of Australia and Sandawe rock art in the Kolo region of Eastern Tanzania were surveyed in six visits on foot, by vehicle, by helicopter and from published or shared images, as well as from the published and online images of Khoisan rock art. Uniquely shared images between Bradshaw and Sandawe art, such as the 'mushroom head' symbol of psilocybin use, link the two cultures and indicate that they were shamanistic. Therefore, many mysterious features in the art can be understood in terms of trance visualisations. A number of other features uniquely link Bradshaw and Sandawe cultures, such as a special affinity for small mammals. There are also many references to baobabs in early Bradshaw art but not later. This can be explained in the context of the Toba super-volcano, the likely human transport of baobabs to the Kimberley and the extraordinary utility of the baobab. Many more mysterious symbols in Bradshaw rock art might await interpretation using the approaches adopted here. © 2011 The Author. Clinical and Experimental Optometry © 2011 Optometrists Association Australia.
Extraordinary phase separation and segregation in vent fluids from the southern East Pacific Rise
Von Damm, Karen L.; Lilley, M.D.; Shanks, Wayne C.; Brockington, M.; Bray, A.M.; O'Grady, K. M.; Olson, E.; Graham, A.; Proskurowski, G.
2003-01-01
The discovery of Brandon vent on the southern East Pacific Rise is providing new insights into the controls on midocean ridge hydrothermal vent fluid chemistry. The physical conditions at the time ofsampling (287 bar and 405??C) place the Brandon fluids very close to the critical point of seawater (298 bar and 407??C). This permits in situ study of the effects of near criticalphenomena, which are interpreted to be the primary cause of enhanced transition metal transport in these fluids. Of the five orifices on Brandon sampled, three were venting fluids with less than seawater chlorinity, and two were venting fluids with greater than seawater chlorinity. The liquid phase orifices contain 1.6-1.9 times the chloride content of the vapors. Most other elements, excluding the gases, have this same ratio demonstrating the conservative nature of phase separation and the lack of subsequent water-rock interaction. The vapor and liquid phases vent at the same time from orifices within meters of each other on the Brandon structure. Variations in fluid compositions occur on a time scale of minutes. Our interpretation is that phase separation and segregation must be occurring 'real time' within the sulfide structure itself. Fluids from Brandon therefore provide an unique opportunity to understand in situ phase separation without the overprinting of continued water-rock interaction with the oceanic crust, as well as critical phenomena. ?? 2002 Elsevier Science B.V. All rights reserved.
Morin, R.H.
1997-01-01
Returns from drilling in unconsolidated cobble and sand aquifers commonly do not identify lithologic changes that may be meaningful for Hydrogeologic investigations. Vertical resolution of saturated, Quaternary, coarse braided-slream deposits is significantly improved by interpreting natural gamma (G), epithermal neutron (N), and electromagnetically induced resistivity (IR) logs obtained from wells at the Capital Station site in Boise, Idaho. Interpretation of these geophysical logs is simplified because these sediments are derived largely from high-gamma-producing source rocks (granitics of the Boise River drainage), contain few clays, and have undergone little diagenesis. Analysis of G, N, and IR data from these deposits with principal components analysis provides an objective means to determine if units can be recognized within the braided-stream deposits. In particular, performing principal components analysis on G, N, and IR data from eight wells at Capital Station (1) allows the variable system dimensionality to be reduced from three to two by selecting the two eigenvectors with the greatest variance as axes for principal component scatterplots, (2) generates principal components with interpretable physical meanings, (3) distinguishes sand from cobble-dominated units, and (4) provides a means to distinguish between cobble-dominated units.
Bostick, N.H.; Daws, T.A.
1994-01-01
Basic research on coal and oil shale led to automated pyrolysis analysis of petroleum source rocks; most widely used is the Rock-Eval equipment. In order to interpret Rock-Eval analyses in relation to traditional coal data, we analyzed 142 commercial coals with diverse rank, age, maceral and sulfur contents, for most regions of the United States. We compared the Rock-Eval data with traditional industrial coal data, including volatile matter, calorific value, hydrogen and oxygen content, free swelling index, and vitrinite reflectance. We found: (1) there is a close relationship between Tmax and vitrinite reflectance in the ranges 420-590??C Tmax and 0.4-3%Romax of most coals. (2) A close relationship between Tmax and volatile matter (%VM) extends through the entire sample range, including low-rank samples with 35-70% VM, a range where %VM is not considered to be a useful rank parameter. (3) TOC of medium- and high-rank coals is seriously under-measured by Rock-Eval; TOC of low-rank coals (less than 0.8%Romax) is close to "dry basis" carbon from ultimate analysis. (4) The direct relationships between oxygen index (OI) and %O and between hydrogen index (HI) and %H are clear, though only broadly defined. However, there is virtually no band of concentrated data points on the HI versus OI pseudo-Van Krevelen diagram comparable to the "development line" on the H/C versus O/C diagram. (5) There are systematic relationships between Rock-Eval and industrial coal parameters such as calorific value and FSI, but much standardization would be needed before Rock-Eval could find a place in the coal industry. Tests with blends of coal and quartz sand and with various loads of coal alone showed that the amount of organic matter in the Rock-Eval load greatly influences results. Total load in the crucible, if largely inert, plays a small role, however. Increasing absolute or relative coal content causes under-evaluation of Rock-Eval TOC and over-rating of hydrogen. Blends of several coals yielded hydrogen and oxygen indexes related proportionally to the properties of the individual coals, but Tmax is not raised by addition of high-rank coal until over 40% is added. ?? 1994.
Numerical modeling of regional stress distributions for geothermal exploration
NASA Astrophysics Data System (ADS)
Guillon, Theophile; Peter-Borie, Mariane; Gentier, Sylvie; Blaisonneau, Arnold
2017-04-01
Any high-enthalpy unconventional geothermal projectcan be jeopardized by the uncertainty on the presence of the geothermal resource at depth. Indeed, for the majority of such projects the geothermal resource is deeply seated and, with the drilling costs increasing accordingly, must be located as precisely as possible to increase the chance of their economic viability. In order to reduce the "geological risk", i.e., the chance to poorly locate the geothermal resource, a maximum amount of information must be gathered prior to any drilling of exploration and/or operational well. Cross-interpretation from multiple disciplines (e.g., geophysics, hydrology, geomechanics …) should improve locating the geothermal resource and so the position of exploration wells ; this is the objective of the European project IMAGE (grant agreement No. 608553), under which the work presented here was carried out. As far as geomechanics is concerned, in situ stresses can have a great impact on the presence of a geothermal resource since they condition both the regime within the rock mass, and the state of the major fault zones (and hence, the possible flow paths). In this work, we propose a geomechanical model to assess the stress distribution at the regional scale (characteristic length of 100 kilometers). Since they have a substantial impact on the stress distributions and on the possible creation of regional flow paths, the major fault zones are explicitly taken into account. The Distinct Element Method is used, where the medium is modeled as fully deformable blocks representing the rock mass interacting through mechanically active joints depicting the fault zones. The first step of the study is to build the model geometry based on geological and geophysical evidences. Geophysical and structural geology results help positioning the major fault zones in the first place. Then, outcrop observations, structural models and site-specific geological knowledge give information on the fault zones family sets and their priority rule. In the second step, the physical model must be established, including constitutive equations for the rock mass and the fault zones, initial state and boundary conditions. At such large scales, physical laws and parameters are difficult to assess and must be constrained by sensitivity analysis. In the last step of the study, the results can be interpreted to highlight areas where the mechanical conditions favor the presence of a geothermal resource. The DEM enables accounting for the strong stress redistributions inherent to highly-segmented geometries, and to the dilational opening of fault zones under shearing. A 130x150 square-kilometers region within the Upper Rhine Graben is used as a case-study to illustrate the building and interpretation of a regional stress model.
Aşçi, F Hülya; Demirhan, Giyasettin; Dinç, S Cem
2007-06-01
The purpose of this study was to examine sensation seeking, physical self-perception, and intrinsic and extrinsic motives of rock climbers and to compare these psychological constructs with respect to their years of climbing experience and the difficulty of their climbing routes. 64 climbers (M age=29.1 yr., SD=6.4) voluntarily participated in this study. The Arnett Inventory of Sensation Seeking (AISS), Physical Self-Description Questionnaire (PSDQ), and Sport Motivation Scale (SMS) were administered to the rock climbers. Analysis indicated that the mean score of rock climbers on the Novelty subscale of the Sensation Seeking Scale was 33.9 (SD= 3.6) and mean value on the Intensity subscale was 29.2 (SD=5.2). The mean scores of rock climbers on the PSDQ ranged between 3.9 (SD= 1.0, Physical Activity) and 5.1 (SD= 1.1, Body Fat). Descriptive analysis indicated that the highest mean score of rock climbers on the SMS was obtained in Intrinsic motivation to Experience Stimulation (5.7, SD= 0.9). The independent sample t test showed no significant differences in sensation seeking, physical self-perception, and sport motivation with regard to years of climbing experience and route difficulty (p>.05). It may be concluded that sensation seeking in climbers is high, and they have internal motivational orientation and positive physical self-perception; their competence in climbing has no obvious relationship to these variables.
NASA Astrophysics Data System (ADS)
Czaja, Klaudia; Matula, Rafal
2014-05-01
The paper presents analysis of the possibilities of application geophysical methods to investigation groundwater conditions. In this paper groundwater is defined as liquid water flowing through shallow aquifers. Groundwater conditions are described through the distribution of permeable layers (like sand, gravel, fractured rock) and impermeable or low-permeable layers (like clay, till, solid rock) in the subsurface. GPR (Ground Penetrating Radar), ERT(Electrical Resistivity Tomography), VES (Vertical Electric Soundings) and seismic reflection, refraction and MASW (Multichannel Analysis of Surface Waves) belong to non - invasive, surface, geophysical methods. Due to differences in physical parameters like dielectric constant, resistivity, density and elastic properties for saturated and saturated zones it is possible to use geophysical techniques for groundwater investigations. Few programmes for GPR, ERT, VES and seismic modelling were applied in order to verify and compare results. Models differ in values of physical parameters such as dielectric constant, electrical conductivity, P and S-wave velocity and the density, layers thickness and the depth of occurrence of the groundwater level. Obtained results for computer modelling for GPR and seismic methods and interpretation of test field measurements are presented. In all of this methods vertical resolution is the most important issue in groundwater investigations. This require proper measurement methodology e.g. antennas with frequencies high enough, Wenner array in electrical surveys, proper geometry for seismic studies. Seismic velocities of unconsolidated rocks like sand and gravel are strongly influenced by porosity and water saturation. No influence of water saturation degree on seismic velocities is observed below a value of about 90% water saturation. A further saturation increase leads to a strong increase of P-wave velocity and a slight decrease of S-wave velocity. But in case of few models only the relationship between differences in density and P-wave and S-wave velocity were observed. This is probably due to the way the modelling program calculates the wave field. Trace by trace should be analyzed during GPR interpretation, especially changes in signal amplitude. High permittivity of water results in higher permittivity of material and high reflection coefficient of electromagnetic wave. In case of electrical studies groundwater mineralization has the highest influence. When the layer thickness is small VES gives much better results than ERT.
Vanorio, Tiziana; Kanitpanyacharoen, Waruntorn
2015-08-07
Uplifts in the Campi Flegrei caldera reach values unsurpassed anywhere in the world (~2 meters). Despite the marked deformation, the release of strain appears delayed. The rock physics analysis of well cores highlights the presence of two horizons, above and below the seismogenic area, underlying a coupled process. The basement is a calc-silicate rock housing hydrothermal decarbonation reactions, which provide lime-rich fluids. The caprock above the seismogenic area has a pozzolanic composition and a fibril-rich matrix that results from lime-pozzolanic reactions. These findings provide evidence for a natural process reflecting that characterizing the cementitious pastes in modern and Roman concrete. The formation of fibrous minerals by intertwining filaments confers shear and tensile strength to the caprock, contributing to its ductility and increased resistance to fracture. Copyright © 2015, American Association for the Advancement of Science.
Igneous rocks formed by hypervelocity impact
NASA Astrophysics Data System (ADS)
Osinski, Gordon R.; Grieve, Richard A. F.; Bleacher, Jacob E.; Neish, Catherine D.; Pilles, Eric A.; Tornabene, Livio L.
2018-03-01
Igneous rocks are the primary building blocks of planetary crusts. Most igneous rocks originate via decompression melting and/or wet melting of protolith lithologies within planetary interiors and their classification and compositional, petrographic, and textural characteristics, are well-studied. As our exploration of the Solar System continues, so too does the inventory of intrusive and extrusive igneous rocks, settings, and processes. The results of planetary exploration have also clearly demonstrated that impact cratering is a ubiquitous geological process that has affected, and will continue to affect, all planetary objects with a solid surface, whether that be rock or ice. It is now recognized that the production of igneous rocks is a fundamental outcome of hypervelocity impact. The goal of this review is to provide an up-to-date synthesis of our knowledge and understanding of igneous rocks formed by hypervelocity impact. Following a brief overview of the basics of the impact process, we describe how and why melts are generated during impact events and how impact melting differs from endogenic igneous processes. While the process may differ, we show that the products of hypervelocity impact can share close similarities with volcanic and shallow intrusive igneous rocks of endogenic origin. Such impact melt rocks, as they are termed, can display lobate margins and cooling cracks, columnar joints and at the hand specimen and microscopic scale, such rocks can display mineral textures that are typical of volcanic rocks, such as quench crystallites, ophitic, porphyritic, as well as features such as vesicles, flow textures, and so on. Historically, these similarities led to the misidentification of some igneous rocks now known to be impact melt rocks as being of endogenic origin. This raises the question as to how to distinguish between an impact versus an endogenic origin for igneous-like rocks on other planetary bodies where fieldwork and sample analysis may not be possible and all that may be available is remote sensing data. While the interpretation of some impact melt rocks may be relatively straightforward (e.g., for clast-rich varieties and those with clear projectile contamination) we conclude that distinguishing between impact and endogenic igneous rocks is a non-trivial task that ultimately may require sample investigation and analysis to be conducted. Caution is, therefore, urged in the interpretation of igneous rocks on planetary surfaces.
Prediction of brittleness based on anisotropic rock physics model for kerogen-rich shale
NASA Astrophysics Data System (ADS)
Qian, Ke-Ran; He, Zhi-Liang; Chen, Ye-Quan; Liu, Xi-Wu; Li, Xiang-Yang
2017-12-01
The construction of a shale rock physics model and the selection of an appropriate brittleness index ( BI) are two significant steps that can influence the accuracy of brittleness prediction. On one hand, the existing models of kerogen-rich shale are controversial, so a reasonable rock physics model needs to be built. On the other hand, several types of equations already exist for predicting the BI whose feasibility needs to be carefully considered. This study constructed a kerogen-rich rock physics model by performing the selfconsistent approximation and the differential effective medium theory to model intercoupled clay and kerogen mixtures. The feasibility of our model was confirmed by comparison with classical models, showing better accuracy. Templates were constructed based on our model to link physical properties and the BI. Different equations for the BI had different sensitivities, making them suitable for different types of formations. Equations based on Young's Modulus were sensitive to variations in lithology, while those using Lame's Coefficients were sensitive to porosity and pore fluids. Physical information must be considered to improve brittleness prediction.
NASA Astrophysics Data System (ADS)
Gupta, S.; Rubin, D. M.; Sumner, D. Y.; Grotzinger, J. P.; Lewis, K. W.; Stack, K.; Kah, L. C.; Banham, S.; Edgett, K. S.
2015-12-01
The Mars Science Laboratory Curiosity rover has been exploring sedimentary rocks at the foothills of Mount Sharp since August 2014. Robust interpretation of the paleoenvironmental contexts requires detailed facies analysis of these rocks including analysis and interpretation of sedimentary structures and sediment body geometries. Here, we describe some of the detailed sedimentary structures and sedimentary geometries observed by Curiosity between the Pahrump_Hills field site and its current location at Marias Pass. The Pahrump Hills sedimentary section comprises a succession dominated by finely laminated mudstones of the Murray formation that are interpreted to have been deposited in an ancient lake within Gale crater. Toward the top of the Pahump Hills succession, we observe the appearance of coarser-grained sandstones that are interstratified within the lacustrine mudstones. These sandstones that include Whale Rock and Newspaper Rock show lenticular geometries, and are pervasively cross-stratified. These features indicate that currents eroded shallow scours in the lake beds that were then infilled by deposition from migrating subaqueous dunes. The paleoenvironmental setting may represent either a gullied delta front setting or one in which lake level fall caused fluvial erosion and infilling of the shallow scours. Since leaving Pahrump_Hills, Curiosity has imaged extensive exposures of strata that are partly correlative with and stratigraphically overlie the uppermost part of the Pahrump section. Isolated cross-bedded sandstones and possible interstratified conglomerates beds occur within Murray formation mudstones. Capping sandstones with a likely variety of environmental contexts overlie mudstones. Where imaged in detail, sedimentary structures, such as trough-cross bedding and possible eolian pinstriping, provide constraints on plausible sedimentary processes and bounds on depositional setting.
A Multi-physics Approach to Understanding Low Porosity Soils and Reservoir Rocks
NASA Astrophysics Data System (ADS)
Prasad, M.; Mapeli, C.; Livo, K.; Hasanov, A.; Schindler, M.; Ou, L.
2017-12-01
We present recent results on our multiphysics approach to rock physics. Thus, we evaluate geophysical measurements by simultaneously measuring petrophysical properties or imaging strains. In this paper, we present simultaneously measured acoustic and electrical anisotropy data as functions of pressure. Similarly, we present strains and strain localization images simultaneously acquired with acoustic measurements as well as NMR T2 relaxations on pressurized fluids as well as rocks saturated with these pressurized fluids. Such multiphysics experiments allow us to constrain and assign appropriate causative mechanisms to development rock physics models. They also allow us to decouple various effects, for example, fluid versus pressure, on geophysical measurements. We show applications towards reservoir characterization as well as CO2 sequestration applications.
NASA Astrophysics Data System (ADS)
Robyr, Martin; Goswami-Banerjee, Sriparna
2014-05-01
Dating metamorphic rocks raises specific issues because metamorphism comprises a complex sequence of structural changes and chemical reactions that can be extended over millions or tens of millions of years so that metamorphic rocks cannot in general be said to have "an age". Therefore, an accurate interpretation of radiometric age data from metamorphic rocks requires first to establish the behavior of the isotopic system used for dating relative to the pressure and temperature (P-T) conditions that a metamorphic rock experienced. As the U-Th-Pb system in LREE-accessory phases like monazite and allanite is not easily reset during subsequent temperature increase, allanite and monazite U-Th-Pb ages are collectively interpreted as reflecting crystallization ages. As a consequence, to correctly interpret allanite and monazite crystallization ages, it is essential to accurately determine the physical conditions of their crystallization. A meticulous account of the chemical and textural evolution of monazite and allanite along a well constrained prograde pelitic sequence of the High Himalayan Crystalline of Zanskar (Miyar Valley; e.g. Robyr et al., 2002; 2006; 2014) reveals that: (1) the occurrence of the first metamorphic allanite coincides with the biotite-in isograd and (2) the formation of the first metamorphic monazite occurs at the staurolite-in isograd. The finding of both monazite and allanite as inclusion in staurolite porphyroblasts indicates that the breakdown of allanite and the formation of monazite occurred during staurolite crystallization. Thermobarometry results show that the metamorphic allanites are appeared in the 400-420 °C, while the signature of the first metamorphic monazite is found at ~ 600 °C with staurolite-in isograd. Allanite and monazite U-Th-Pb ages thus constrain the timing when the rocks reached the ~ 420 °C and ~ 600 °C isotherms respectively. In situ LA-ICPMS dating of coexisting allanite and monazite inclusions in garnet porphyroblasts yield respective ages of 33.6 ± 0.9 Ma and 29.5 ± 0.2 Ma, constraining the time elapsed between allanite crystallization (~ 420 °C) and monazite crystallization (~ 600°C). These data indicate that the rock needed ~ 4 Myr to be subducted from the 420 °C isotherm down to the 600°C isotherm, implying a heating rate of ca. 45°C/m.y. References Robyr, M., Epard, J.-L. & El Korh, A., 2014. Structural, metamorphic and geochronological relations between the Zanskar Shear Zone and the Miyar Shear Zone (NW Indian Himalaya): Evidence for two distinct tectonic structures and implications for the evolution of the High Himalayan Crystalline of Zanskar. Journal of Asian Earth Sciences, 79, 1-15. Robyr, M., Hacker, B. R. & Mattinson, J. M., 2006. Doming in compressional orogenic settings: New geochronological constraints from the NW Himalaya. Tectonics, 25. Robyr, M., Vannay, J. C., Epard, J. L. & Steck, A., 2002. Thrusting, extension, and doming during the polyphase tectonometamorphic evolution of the High Himalayan Crystalline Zone in NW India. Journal of Asian Earth Sciences, 21, 221-239.
Is the Rock Cycle an Outdated Idea, or a Unifying Concept?
ERIC Educational Resources Information Center
Eves, Robert Leo; Davis, Larry Eugene
1988-01-01
Discusses how rock-cycle diagrams can graphically illustrate the interrelationship between materials and processes in physical geology courses. Reviews nine contemporary physical geology textbooks with regard to their use of such diagrams. (TW)
NASA Astrophysics Data System (ADS)
Tsukanov, N. V.; Saveliev, D. P.; Kovalenko, D. V.
2018-01-01
This study presents new geochemical and isotope data on igneous rocks of the Vetlovaya marginal sea paleobasin (part of the Late Mesozoic-Cenozoic margin of the northwestern Pacific). The results show that the rock complexes of this marginal sea basin comprise igneous rocks with geochemical compositions similar to those of normal oceanic tholeiites, enriched transitional tholeiites, and ocean island and back-arc basin basalts. Island-arc tholeiitic basalts are present only rarely. The specific geochemical signatures of these rocks are interpreted as being related to mantle heterogeneity and the geodynamic conditions in the basin.
Brittle strength of basaltic rock masses with applications to Venus
NASA Astrophysics Data System (ADS)
Schultz, R. A.
1993-06-01
Spacecraft images of surfaces with known or suspected basaltic composition on Venus (as well as on moon and Mars) indicate that these rocks have been deformed in the brittle regime to form faults and perhaps joints, in addition to folding and more distributed types of deformation. This paper presents results of detailed examinations and interpretations of Venus surface materials which show that the strengths of basaltic rocks on planetary surfaces and in the shallow subsurface are significantly different from strength values commonly used in tectonic modeling studies which assume properties of either intact rock samples or single planar shear surface.
NASA Technical Reports Server (NTRS)
Nie, N. X.; Dauphas, N.; Morris, R. V
2017-01-01
The Mars Exploration Rover mission revealed the presence of rocks and minerals indicative of water-rock interactions on Mars. A range of mineralogies have been identified, including hematite spherules (i.e., blueberries), jarosite, Mg-, Ca-sulfates, silica-rich materials and silicate relics from basaltic rocks. The mineral assemblages have been interpreted to be derived from acid-sulfate alteration of basaltic materials. Indeed, the chemical compositions of rocks and soils at Home Plate in Gusev Crater follow the trends expected for acid-sulfate alteration.
Hsi-Ping, Liu
1980-01-01
Harmonic distortion in the stress-time function applied to rock specimens affects the measurement of rock internal friction in the seismic wave periods by the stress-strain hysteresis loop method. If neglected, the harmonic distortion can cause measurements of rock internal friction to be in error by 3O% in the linear range. The stress-time function therefore must be recorded and Fourier analysed for correct interpretation of the experimental data. Such a procedure would also yield a value for internal friction at the higher harmonic frequencies.-Author
NASA Astrophysics Data System (ADS)
Morris, R.; DeBari, S. M.; Busby, C. J.; Medynski, S.
2015-12-01
Exposed paleo-arcs, such as the Rosario segment of the Cretaceous Alisitos Arc in Baja California, Mexico, provide an opportunity to explore the evolution of arc crust through time. Remarkable 3-D exposures of the Rosario segment record crustal generation processes in the volcanic rocks and underlying plutonic rocks. In this study, we explore the physical and geochemical connection between the plutonic and volcanic sections of the extensional Alisitos Arc, and elucidate differentiation processes responsible for generating them. These results provide an outstanding analog for extensional active arc systems, such as the Izu-Bonin-Mariana (IBM) Arc. Upper crustal volcanic rocks have a coherent stratigraphy that is 3-5 km thick and ranges in composition from basalt to dacite. The most felsic compositions (70.9% SiO2) are from a welded ignimbrite unit. The most mafic compositions (51.5% SiO2, 3.2% MgO) are found in basaltic sill-like units. Phenocrysts in the volcanic units include plagioclase +/- amphibole and clinopyroxene. The transition to deeper plutonic rocks is clearly an intrusive boundary, where plutonic units intrude the volcanic units. Plutonic rocks are dominantly a quartz diorite main phase with a more mafic, gabbroic margin. A transitional zone is observed along the contact between the plutonic and volcanic rocks, where volcanics have coarsely recrystallized textures. Mineral assemblages in the plutonic units include plagioclase +/- quartz, biotite, amphibole, clinopyroxene and orthopyroxene. Most, but not all, samples are low K. REE patterns are relatively flat with limited enrichment. Normalization diagrams show LILE enrichment and HFSE depletion, where trends are similar to average IBM values. We interpret plutonic and volcanic units to have similar geochemical relationships, where liquid lines of descent show the evolution of least to most evolved magma types. We provide a model for the formation and magmatic evolution of the Alisitos Arc.
Consumption and diffusion of dissolved oxygen in sedimentary rocks.
Manaka, M; Takeda, M
2016-10-01
Fe(II)-bearing minerals (e.g., biotite, chlorite, and pyrite) are a promising reducing agent for the consumption of atmospheric oxygen in repositories for the geological disposal of high-level radioactive waste. To estimate effective diffusion coefficients (D e , in m 2 s -1 ) for dissolved oxygen (DO) and the reaction rates for the oxidation of Fe(II)-bearing minerals in a repository environment, we conducted diffusion-chemical reaction experiments using intact rock samples of Mizunami sedimentary rock. In addition, we conducted batch experiments on the oxidation of crushed sedimentary rock by DO in a closed system. From the results of the diffusion-chemical reaction experiments, we estimated the values of D e for DO to lie within the range 2.69×10 -11
Trade-off of Elastic Structure and Q in Interpretations of Seismic Attenuation
NASA Astrophysics Data System (ADS)
Deng, Wubing; Morozov, Igor B.
2017-10-01
The quality factor Q is an important phenomenological parameter measured from seismic or laboratory seismic data and representing wave-energy dissipation rate. However, depending on the types of measurements and models or assumptions about the elastic structure, several types of Qs exist, such as intrinsic and scattering Qs, coda Q, and apparent Qs observed from wavefield fluctuations. We consider three general types of elastic structures that are commonly encountered in seismology: (1) shapes and dimensions of rock specimens in laboratory studies, (2) geometric spreading or scattering in body-, surface- and coda-wave studies, and (3) reflectivity on fine layering in reflection seismic studies. For each of these types, the measured Q strongly trades off with the (inherently limited) knowledge about the respective elastic structure. For the third of the above types, the trade-off is examined quantitatively in this paper. For a layered sequence of reflectors (e.g., an oil or gas reservoir or a hydrothermal zone), reflection amplitudes and phases vary with frequency, which is analogous to a reflection from a contrast in attenuation. We demonstrate a quantitative equivalence between phase-shifted reflections from anelastic zones and reflections from elastic layering. Reflections from the top of an elastic layer followed by weaker reflections from its bottom can appear as resulting from a low Q within or above this layer. This apparent Q can be frequency-independent or -dependent, according to the pattern of thin layering. Due to the layering, the interpreted Q can be positive or negative, and it can depend on source-receiver offsets. Therefore, estimating Q values from frequency-dependent or phase-shifted reflection amplitudes always requires additional geologic or rock-physics constraints, such as sparseness and/or randomness of reflectors, the absence of attenuation in certain layers, or specific physical mechanisms of attenuation. Similar conclusions about the necessity of extremely detailed models of the elastic structure apply to other types of Q measurements.
NASA Astrophysics Data System (ADS)
Adam, L.; Sim, C. Y.; Macfarlane, J.; van Wijk, K.; Shragge, J. C.; Higgs, K.
2015-12-01
Time-lapse seismic signatures can be used to quantify fluid saturation and pressure changes in a reservoir undergoing CO2 sequestration. However, the injection of CO2 acidifies the water, which may dissolve and/or precipitate minerals. Understanding the impact on the rock frame from field seismic time-lapse changes remains an outstanding challenge. Here, we study the effects of carbonate-CO2-water reactions on the physical and elastic properties of rock samples with variable volumes of carbonate cementation. The effects of fluid substitution alone (brine to CO2) and those due to the combination of fluid substitution and mineral dissolution on time-lapse seismic signatures are studied by combining laboratory data, geophysical well-log data and 1-D seismic modeling. Nine rocks from Pohokura Field (New Zealand) are reacted with carbonic acid. The elastic properties are measured using a high-density laser-ultrasonic setup. We observe that P-wave velocity changes up to -19% and correlate with sandstone grain size. Coarse-grained sandstones show greater changes in elastic wave velocities due to dissolution than fine-grained sandstones. To put this in perspective, this velocity change is comparable to the effect of fluid substitution from brine to CO2. This can potentially create an ambiguity in the interpretation of the physical processes responsible for time-lapse signatures in a CO2injection scenario. The laboratory information is applied onto well-log data to model changes in elastic properties of sandstones at the well-log scale. Well-logs and core petrographic analyses are used to find an elastic model that best describes the observed elastic waves velocities in the cemented reservoir sandstones. The Constant-cement rock physics model is found to predict the elastic behaviour of the cemented sandstones. A possible late-time sequestration scenario is that both mineral dissolution and fluid substitution occur in the reservoir. 1-D synthetic seismograms show that seismic amplitudes can change up to 126% in such a scenario. Our work shows that it is important to consider that time-lapse seismic signatures in carbonate-cemented reservoirs can result not only from fluid and pressure changes but also potentially from chemical reaction between CO2-water mixtures and carbonate cemented sandstones.
NASA Technical Reports Server (NTRS)
Bishop, J. L.; Murchie, S.; Pieters, C.; Zent, A.
1999-01-01
This model is one of many possible scenarios to explain the generation of the current surface material on Mars using chemical, magnetic and spectroscopic data from Mars and geologic analogs from terrestrial sites. One basic premise is that there are physical and chemical interactions of the atmospheric dust particles and that these two processes create distinctly different results. Physical processes distribute dust particles on rocks, forming physical rock coatings, and on the surface between rocks forming soil units; these are reversible processes. Chemical reactions of the dust/soil particles create alteration rinds on rock surfaces or duricrust surface units, both of which are relatively permanent materials. According to this model the mineral components of the dust/soil particles are derived from a combination of "typical" palagonitic weathering of volcanic ash and hydrothermally altered components, primarily from steam vents or fumeroles. Both of these altered materials are composed of tiny particles, about 1 micron or smaller, that are aggregates of silicates and iron oxide/oxyhydroxide/sulfate phases. Additional information is contained in the original extended abstract.
NASA Astrophysics Data System (ADS)
Henry, D.; Mogk, D. W.; Goodwin, C.
2011-12-01
Field work requires cognitive processing on many different levels, and constitutes a powerful and important learning environment. To be effective and meaningful, the context of field work must be fully understood in terms of key research questions, earlier published work, regional geology, geologic history, and geologic processes. Scale(s) of observation and sample selection methods and strategies must be defined. Logistical decisions must be made about equipment needed, points of access, and navigation in the field. Professional skills such as field note-taking, measuring structural data, and rock descriptions must be employed, including appropriate use of field tools. Interpretations of geologic features in the field must be interpreted through recall of concepts from the geologic knowledge base (e.g. crystallization history of igneous rocks interpreted through phase diagrams). Field workers need to be able to self-monitor and self-regulate their actions (metacognitively), and make adjustments to daily plans as needed. The results of field work must be accurately and effectively communicated to other geoscientists. Personal and professional ethics and values are brought to bear as decisions are made about whether or not the work has been satisfactorily completed at a field site. And, all of this must be done against a back drop of environmental factors that affect the ability to do this work (e.g. inclement weather, bears, impassable landscapes). The simultaneous relevance of all these factors creates a challenging, but rewarding environment for learning on many different scales. During our REU project to study the Precambrian rocks in the back country of Yellowstone National Park (YNP), we considered these cognitive factors in designing our project curriculum. To reduce the "novelty space" of the project a website was developed that described the project goals and expected outcomes, introduced primary literature, and alerted students about the physical demands of working in YNP.. Daily field activities were designed to scaffold accrued knowledge by placing specific new experiences in the path of students to sequentially build their own understanding of local geology. Students gained increasing responsibility and autonomy for developing daily research objectives and plans, and for decision-making while in the field. Instructors demonstrated specific field skills, and used "talk-through" approaches to explain what, why, and how we conduct our own investigations. We were particularly interested in helping students make the first inscriptions of their interpretations of nature in field notes, sketches, and maps, and in using embodiment (positioning oneself in space to correctly make observations and collect data) to foster learning. In the course of this study we videotaped students in the field to document the evolution of their field skills. Observations, interviews and surveys of students indicate that students' confidence in their abilities to conduct geologic research in the field increased by 20-40% (Likert scale) in this project. By explicitly addressing cognitive demands, students working in the field can achieve significant learning gains.
Peterman, Z.E.; Sims, P.K.
1988-01-01
Rb-Sr biotite ages of Archean and Early to Middle Proterozoic crystalline rocks in northern Wisconsin and adjacent Upper Peninsula of Michigan describe a regionally systematic pattern related to differential uplift. An "age low' occurs in northern Wisconsin where values range from 1070-1172 Ma for rocks with crystallization ages of 1760 to 1865 Ma. These values overlap with the main episode of mafic igneous activity (1090 to 1120 Ma) along the Midcontinent rift system (MRS). We interpret these low biotite ages as registering closure due to cooling below the 300??C isotherm as a consequence of uplift and rapid erosion of an area that we are informally naming the Goodman swell. We interpret the swell to be a forebulge imposed on an elastic crust by loading of mafic igneous rocks along and within the axis of the MRS. -from Authors
Acoustic and optical borehole-wall imaging for fractured-rock aquifer studies
Williams, J.H.; Johnson, C.D.
2004-01-01
Imaging with acoustic and optical televiewers results in continuous and oriented 360?? views of the borehole wall from which the character, relation, and orientation of lithologic and structural planar features can be defined for studies of fractured-rock aquifers. Fractures are more clearly defined under a wider range of conditions on acoustic images than on optical images including dark-colored rocks, cloudy borehole water, and coated borehole walls. However, optical images allow for the direct viewing of the character of and relation between lithology, fractures, foliation, and bedding. The most powerful approach is the combined application of acoustic and optical imaging with integrated interpretation. Imaging of the borehole wall provides information useful for the collection and interpretation of flowmeter and other geophysical logs, core samples, and hydraulic and water-quality data from packer testing and monitoring. ?? 2003 Elsevier B.V. All rights reserved.
78 FR 39820 - Standing Rock Sioux Tribe Disaster #SD-00058
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-02
... SMALL BUSINESS ADMINISTRATION [Disaster Declaration 13639 and 13640] Standing Rock Sioux Tribe... the Presidential declaration of a major disaster for Public Assistance Only for the Standing Rock...: Standing Rock Indian Reservation. The Interest Rates are: Percent For Physical Damage: Non-Profit...
Climate Implications of an Ancient Lake Basin in Gale Crater, Mars
NASA Astrophysics Data System (ADS)
Vasavada, A. R.; Arvidson, R. E.; Edgett, K. S.; Fairén, A. G.; Fedo, C.; Grotzinger, J. P.; Gupta, S.; House, C. H.; Lewis, K. W.; Rivera-Hernandez, F.; Wiens, R. C.
2017-12-01
The sedimentary rock record explored in Aeolis Palus and in the lower slopes of Aeolis Mons using the Curiosity rover is interpreted to be that of streams and lakes that persisted for millions of years. Fluvio-deltaic rocks of the Bradbury group, upon which Curiosity landed, are interpreted to interfinger with the Murray formation rocks of lower Aeolis Mons (Mount Sharp). The more than 200 vertical meters of Murray formation section investigated using Curiosity primarily comprise laminated mudstones, with interstratified cross-stratified facies prevalent higher in the succession. These rocks are interpreted as lacustrine with minor fluvial and aeolian intervals. Comparison with depositional rates in terrestrial lake basins suggests that lakes were present within Gale crater for millions of years. Facies diagnostic of seasonal or perennial ice cover, or of ice within the sediment, have not been found, but ice cannot be ruled out. Calculated chemical index of alteration (CIA) values suggest cold and arid conditions in rocks studied on the plains but warmer and more humid conditions in the rocks of lower Aeolis Mons. Evidence of early and late diagenesis, e.g., concretions, calcium sulfate veins, and fracture-adjacent alteration haloes, implies that multiple generations of groundwater (i.e., liquid) interacted with the sediments post-deposition. Crater counts indicate that Gale crater formed at about 3.8-3.6 Ga near the Noachian-Hesperian boundary and that deposition, burial, lithification, and exhumation of the lower section of central mound occurred by 3.3-3.1 Ga. Together, these observations constrain the climate of early Hesperian equatorial Mars to states that permitted liquid water to be thermodynamically stable at the surface and in the subsurface at Gale crater, and that were sufficiently humid to reduce evaporative losses and to drive fluvial erosion, transport, and re-charging of the lakes with a hydrological cycle. Isotopic measurements of atmospheric gases and of water evolved from Hesperian-age clay minerals support models of atmospheric loss in the early history of Mars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukul M. Sharma; Steven L. Bryant; Carlos Torres-Verdin
The petrophysical properties of rocks, particularly their relative permeability and wettability, strongly influence the efficiency and the time-scale of all hydrocarbon recovery processes. However, the quantitative relationships needed to account for the influence of wettability and pore structure on multi-phase flow are not yet available, largely due to the complexity of the phenomena controlling wettability and the difficulty of characterizing rock properties at the relevant length scales. This project brings together several advanced technologies to characterize pore structure and wettability. Grain-scale models are developed that help to better interpret the electric and dielectric response of rocks. These studies allow themore » computation of realistic configurations of two immiscible fluids as a function of wettability and geologic characteristics. These fluid configurations form a basis for predicting and explaining macroscopic behavior, including the relationship between relative permeability, wettability and laboratory and wireline log measurements of NMR and dielectric response. Dielectric and NMR measurements have been made show that the response of the rocks depends on the wetting and flow properties of the rock. The theoretical models can be used for a better interpretation and inversion of standard well logs to obtain accurate and reliable estimates of fluid saturation and of their producibility. The ultimate benefit of this combined theoretical/empirical approach for reservoir characterization is that rather than reproducing the behavior of any particular sample or set of samples, it can explain and predict trends in behavior that can be applied at a range of length scales, including correlation with wireline logs, seismic, and geologic units and strata. This approach can substantially enhance wireline log interpretation for reservoir characterization and provide better descriptions, at several scales, of crucial reservoir flow properties that govern oil recovery.« less
NASA Astrophysics Data System (ADS)
Aprilana, C.; Premonowati; S, Hanif I.; Choirotunnisa; Shirly, A.; Utama, M. K.; Sinulingga, Y. R.; Syafitra, F.
2018-03-01
Paleogeography is one of critical points that always less considered by explorationist in the world. Almost all of the consideration is focused on trapping mechanism. Paleogeography is guidance in understanding both of physical and chemical of rock characteristic which will correlate with its depositional environment. Integration of various geological and geophysical data such as; tectonic, structural geology, stratigraphy, lithology, and biostratigraphy will lead us to a better understanding of rock characteristics. Six paleogeographic interpretations was made consist of; Early Tertiary (P5-56-55 ma), Middle Eocene (P14-41 ma), Late Oiligocene (P22-25.5 ma), Early Miocene (N7-16.5 ma), Middle Miocene (N9-14.5 ma), and Pleistocene (NN19-1.5 ma). That six paleogeographic interpretations are assumed represent the paleogeographic evolution of East Java Basin time after time. In Middle Eocene time, it would be more than hundred possibilities regarding the location where the formation deposited. This would be controlled by the existence of some local structural paleohighs and horsts which oriented NW-SE followed by their own sedimentary transportation path. With assumption that hydrocarbon generation was occurred in 15 Ma and the depth of maturation window lies on about 2,500 m depth. Therefore, the possibility of source rock maturation is high, due to almost of the clastics sediment of Ngimbang deposited into the series of grabens. The Kujung reef types simplified defines and categorize into; 1) Patch Reef 2) Berrier Reef 3) Pinnacle Reef Over Isolated Reef. Kujung Carbonates were deposited in Early Miocene when regional transgression occurred. The depositional environments were dominated by shallow marine littoral-sublittoral. Generally, the reservoir quality of this Kujung Carbonate shows fair to good quality, in range7-32% porosity, and 1-1400 mD permeability (internal SKK Migas data).
Hansen, Murphy, Receive Mineral and Rock Physics Graduate Research Awards
NASA Astrophysics Data System (ADS)
2014-08-01
Lars N. Hansen and Caitlin A. Murphy were awarded the 2013 Mineral and Rock Physics Graduate Research Award, given annually to one or more promising young scientists for outstanding contributions achieved during their Ph.D. research. Recipients of this award are engaged in experimental and/or theoretical studies of Earth and planetary materials with the purpose of unraveling the physics and chemistry that govern their origin and physical properties.
McCrink, T.P.; Wills, C.J.; Real, C.R.; Manson, M.W.
2010-01-01
A statistical evaluation of shaking damage to wood-framed houses caused by the 2003 M6.5 San Simeon earthquake indicates that both the rate and severity of damage, independent of structure type, are significantly greater on hilltops compared to hill slopes when underlain by Cretaceous or Tertiary sedimentary rocks. This increase in damage is interpreted to be the result of topographic amplification. An increase in the damage rate is found for all structures built on Plio-Pleistocene rocks independent of topographic position, and this is interpreted to be the result of amplified shaking caused by geologic site response. Damage rate and severity to houses built on Tertiary rocks suggest that amplification due to both topographic position and geologic site response may be occurring in these rocks, but effects from other topographic parameters cannot be ruled out. For all geologic and topographic conditions, houses with raised foundations are more frequently damaged than those with slab foundations. However, the severity of damage to houses on raised foundations is only significantly greater for those on hill slopes underlain by Tertiary rocks. Structures with some damage-resistant characteristics experienced greater damage severity on hilltops, suggesting a spectral response to topographic amplification. ?? 2010, Earthquake Engineering Research Institute.
NASA Astrophysics Data System (ADS)
Høien, Are Håvard; Nilsen, Bjørn
2014-05-01
The Løren road tunnel is a part of a major project at Ring road 3 in Oslo, Norway. The rock part of the tunnel is 915 m long and has two tubes with three lanes and breakdown lanes. Strict water ingress restriction was specified and continuous rock mass grouting was, therefore, carried out for the entire tunnel, which was excavated in folded Cambro-Silurian shales intruded by numerous dykes. This paper describes the rock mass grouting that was carried out for the Løren tunnel. Particular emphasis is placed on discussing grout consumption and the challenges that were encountered when passing under a distinct rock depression. Measurement while drilling (MWD) technology was used for this project, and, in this paper, the relationships between the drill parameter interpretation (DPI) factors water and fracturing are examined in relation to grout volumes. A lowering of the groundwater table was experienced during excavation under the rock depression, but the groundwater was nearly re-established after completion of the main construction work. A planned 80-m watertight concrete lining was not required to be built due to the excellent results from grouting in the rock depression area. A relationship was found between leakages mapped in the tunnel and the DPI water factor, indicating that water is actually present where the DPI water factor shows water in the rock. It is concluded that, for the Løren tunnel, careful planning and high-quality execution of the rock mass grouting made the measured water ingress meet the restrictions. For future projects, the DPI water factor may be used to give a better understanding of the material in which the rock mass grouting is performed and may also be used to reduce the time spent and volumes used when grouting.
The fracture criticality of crustal rocks
NASA Astrophysics Data System (ADS)
Crampin, Stuart
1994-08-01
The shear-wave splitting observed along almost all shear-wave ray paths in the Earth's crust is interpreted as the effects of stress-aligned fluid-filled cracks, microcracks, and preferentially oriented pore space. Once away from the free surface, where open joints and fractures may lead to strong anisotropy of 10 per cent or greater, intact ostensibly unfractured crustal rock exhibits a limited range of shear-wave splitting from about 1.5 to 4.5 per cent differential shear-wave velocity anisotropy. Interpreting this velocity anisotropy as normalized crack densities, a factor of less than two in crack radius covers the range from the minimum 1.5 per cent anisotropy observed in intact rock to the 10 per cent observed in heavily cracked almost disaggregated near-surface rocks. This narrow range of crack dimensions and the pronounced effect on rock cohesion suggests that there is a state of fracture criticality at some level of anisotropy between 4.5 and 10 per cent marking the boundary between essentially intact, and heavily fractured rock. When the level of fracture criticality is exceeded, cracking is so severe that there is a breakdown in shear strength, the likelihood of progressive fracturing and the dispersal of pore fluids through enhanced permeability. The range of normalized crack dimensions below fracture criticality is so small in intact rock, that any modification to the crack geometry by even minor changes of conditions or minor deformation (particularly in the presence of high pore-fluid pressures) may change rock from being essentially intact (below fracture criticality) to heavily fractured (above fracture criticality). This recognition of the essential compliance of most crustal rocks, and its effect on shear-wave splitting, has implications for monitoring changes in any conditions affecting the rock mass. These include monitoring changes in reservoir evolution during hydrocarbon production and enhanced oil recovery, and in monitoring changes before and after earthquakes, amongst others.
Jones, D.S.; Barnes, C.G.; Premo, W.R.; Snoke, A.W.
2011-01-01
The inferred subduction affinity of the ~1780-Ma Green Mountain arc, a dominantly bimodal igneous terrane (together with immature marine and volcaniclastic sedimentary rocks) accreted to the southern margin of the Wyoming province, is integral to arc-accretion models of the Paleoproterozoic growth of southern Laurentia. Conversely, the dominantly bimodal nature of many putative arc-related igneous suites throughout southern Laurentia, including the Green Mountain arc, has also been used to support models of growth by extension of pre-existing crust. We report new geochemical and isotopic data from ~1780-Ma gabbroic and granodioritic to tonalitic rocks of the Big Creek Gneiss, interpreted as consanguineous with previously studied metavolcanic rocks of the Green Mountain Formation.The ~1780-Ma Big Creek Gneiss mafic rocks show clear geochemical signatures of a subduction origin and provide no supporting evidence for extensional tectonism. The ~1780-Ma Big Creek Gneiss felsic rocks are attributed to partial melting of mafic and/or mixed lower-crustal material. The bimodal nature of the suite results from the combination of arc basalts and felsic crustal melts. The lack of andesite is consistent with the observed tholeiitic differentiation trend of the mafic magmas. The lower e{open}Nd(1780Ma) values for the felsic rocks vs. the mafic rocks suggest that the unexposed lower crust of the arc may be older than the arc and that Trans-Hudson- or Penokean-aged rocks possibly form the substratum of the arc. Our results reinforce previous interpretations that arc-related magmatism played a key role in the Paleoproterozoic crustal growth of southern Laurentia, but also support the possibility of unexposed older crust as basement to the arcs. ?? 2011 Elsevier B.V.
Johnson, J. R.; Ruff, S.W.; Moersch, J.; Roush, T.; Horton, K.; Bishop, J.; Cabrol, N.A.; Cockell, C.; Gazis, P.; Newsom, Horton E.; Stoker, C.
2001-01-01
Upcoming Mars Surveyor lander missions will include extensive spectroscopic capabilities designed to improve interpretations of the mineralogy and geology of landing sites on Mars. The 1999 Marsokhod Field Experiment (MFE) was a Mars rover simulation designed in part to investigate the utility of visible/near-infrared and thermal infrared field spectrometers to contribute to the remote geological exploration of a Mars analog field site in the California Mojave Desert. The experiment simultaneously investigated the abilities of an off-site science team to effectively analyze and acquire useful imaging and spectroscopic data and to communicate efficiently with rover engineers and an on-site field team to provide meaningful input to rover operations and traverse planning. Experiences gained during the MFE regarding effective communication between different mission operation teams will be useful to upcoming Mars mission teams. Field spectra acquired during the MFE mission exhibited features interpreted at the time as indicative of carbonates (both dolomitic and calcitic), mafic rocks and associated weathering products, and silicic rocks with desert varnish-like coatings. The visible/near-infrared spectra also suggested the presence of organic compounds, including chlorophyll in one rock. Postmission laboratory petrologic and spectral analyses of returned samples confirmed that all rocks identified as carbonates using field measurements alone were calc-silicates and that chlorophyll associated with endolithic organisms was present in the one rock for which it was predicted. Rocks classified from field spectra as silicics and weathered mafics were recognized in the laboratory as metamorphosed monzonites and diorite schists. This discrepancy was likely due to rock coatings sampled by the field spectrometers compared to fresh rock interiors analyzed petrographically, in addition to somewhat different surfaces analyzed by laboratory thermal spectroscopy compared to field spectra. Copyright 2001 by the American Geophysical Union.
Bioturbating animals control the mobility of redox-sensitive trace elements in organic-rich mudstone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harazim, Dario; McIlroy, Duncan; Edwards, Nicholas P.
Bioturbating animals modify the original mineralogy, porosity, organic content, and fabric of mud, thus affecting the burial diagenetic pathways of potential hydrocarbon source, seal, and reservoir rocks. High-sensitivity, synchrotron rapid scanning X-ray fluorescence elemental mapping reveals that producers of phycosiphoniform burrows systematically partition redox-sensitive trace elements (i.e., Fe, V, Cr, Mn, Co, Ni, Cu, and As) in fine-grained siliciclastic rocks. Systematic differences in organic carbon content (total organic carbon >1.5 wt%) and quality (Δ 13C org~0.6‰) are measured between the burrow core and host sediment. The relative enrichment of redox-sensitive elements in the burrow core does not correlate with significantmore » neo-formation of early diagenetic pyrite (via trace metal pyritization), but is best explained by physical concentration of clay- and silt-sized components. A measured loss (~–15%) of the large-ionic-radius elements Sr and Ba from both burrow halo and core is most likely associated with the release of Sr and Ba to pore waters during biological ( in vivo) weathering of silt- to clay-sized lithic components and feldspar. In conclusion, this newly documented effect has significant potential to inform the interpretation of geochemical proxy and rock property data, particularly from shales, where elemental analyses are commonly employed to predict reservoir quality and support paleoenvironmental analysis.« less
Bioturbating animals control the mobility of redox-sensitive trace elements in organic-rich mudstone
Harazim, Dario; McIlroy, Duncan; Edwards, Nicholas P.; ...
2015-10-07
Bioturbating animals modify the original mineralogy, porosity, organic content, and fabric of mud, thus affecting the burial diagenetic pathways of potential hydrocarbon source, seal, and reservoir rocks. High-sensitivity, synchrotron rapid scanning X-ray fluorescence elemental mapping reveals that producers of phycosiphoniform burrows systematically partition redox-sensitive trace elements (i.e., Fe, V, Cr, Mn, Co, Ni, Cu, and As) in fine-grained siliciclastic rocks. Systematic differences in organic carbon content (total organic carbon >1.5 wt%) and quality (Δ 13C org~0.6‰) are measured between the burrow core and host sediment. The relative enrichment of redox-sensitive elements in the burrow core does not correlate with significantmore » neo-formation of early diagenetic pyrite (via trace metal pyritization), but is best explained by physical concentration of clay- and silt-sized components. A measured loss (~–15%) of the large-ionic-radius elements Sr and Ba from both burrow halo and core is most likely associated with the release of Sr and Ba to pore waters during biological ( in vivo) weathering of silt- to clay-sized lithic components and feldspar. In conclusion, this newly documented effect has significant potential to inform the interpretation of geochemical proxy and rock property data, particularly from shales, where elemental analyses are commonly employed to predict reservoir quality and support paleoenvironmental analysis.« less
NASA Astrophysics Data System (ADS)
Byrne, T. B.; Huang, C.; Ouimet, W. B.; Rau, R.; Hsieh, M.; Lee, Y.
2011-12-01
We integrate a suite of new and recently re-interpreted profiles of the 3-D crustal velocity structure from the southern Central Range of Taiwan with geomorphic data from the range and propose that the topography is supported by a crustal-scale, west-verging thrust. The extent and geometry of the thrust is indicated by contours of P-wave velocity that are progressively overturned from south to north, placing high Vp rocks above low Vp rocks. The interpreted thrust dips gently east (15-20 degrees) and carries pre-Tertiary metamorphic rocks and Eocene to Miocene rocks with a well-developed slaty cleavage in its hanging wall. The thrust is interpreted to cut up section to the west and link with the basal detachment of the fold-and-thrust belt. Leveling data1 along the South Cross-Island Highway also suggest that the thrust is active. Along-strike profiles suggest that the thrust is propagating southward, consistent with a progressive decrease in mean elevation and an increase in reset apatite fission track ages from north to south. The hanging wall of the propagating thrust also correlates with anomalous areas of low topographic relief that straddle the crest of the southern part of the range. The areas of low relief are fringed by stream channels with relatively high stream gradient indexes and do not appear related to weaker rock types, glacial erosion, or lower rock uplift rates along the range crest. We propose that the surfaces represent relict topography that formed prior to a recent acceleration in rock uplift rate, consistent with the presence of a propagating, crustal-scale thrust in the subsurface. Taken together, these results raise questions about the notion of steady state topography and critically tapered wedges in Taiwan. 1) Ching, Kuo-En, Hsieh, M.-L., Johnson, K. M., Chen, K-H., Rau, R.-J., Yang M., Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000-2008, in press, JGR.
Preliminary Result of Geophysical Some Studieson the Nariinsukhait Coal Deposit
NASA Astrophysics Data System (ADS)
Norov, B.; Purevjav, N.; Roy, D. K., Sr.
2017-12-01
Nariinsukhait coal deposit has a strategic importance on Mongolian national economic development. The deposit is located in Gurvan-tes of the Umnu-gobi province, as 849 km south-west away from Ulaanbaatar. The deposit in geographically, belongs to Gobi Altai region region of the Altai mountain region. The area contains Permian, Cretaceous, Jurassic, Triassic age of sediments. Sediments are red or sedimentary cover on some part of area (Minjin. Ch., Batnyam. D., Rentsendorj. S (Baatarkhuyag. A., Altantsetseg. D., 2015). The coal deposit is located in the center portion of the Nariinsukhait basin. The age of coal hosted sedimentary rock is Jurassic estimated by Paleo-botanic methodology, using examination of a total 59 kind of plants, 288 pollen grains (Baatarkhuyag. A., Altantsetseg. D., 2015). The thickness of coal hosted sedimentary sequence is approximately 1105.5m and named as Orgilohbulag formation. In case of geophysical exploration, preliminary interpretation of the coal basin has been done by 3 geophysical methodologies which commonly applying during exploration stage of coal. The interpretations are given below. Natural Gamma Sonde /NGRS 4140/: use to determine natural gamma activation on rock by radionuclides content (238U; 235U; 232Th; 40K). During measurements well contrasted coal bedding and, value indicate between 0-15cps. And depending on the rock type it has been changed, in case of siltstone, argillite, conglomerate value fluctuated between 15-40cps. However, those rocks natural gamma values are difference little, therefore not showing much contrast between rock types. Formation Density Sonde Version B /FDSB 4036/: The Nariinsukhait coal deposit Open holes and protective pipes of density is 0.5-1.5 g/cm3, 1.2-2.3 g/cm3 respectively. Not well contrasted during measurement due to some of sedimentary rock density range is so low as such sandstone, siltstone, and conglomerate. Therefore, applied resistivity methodology and done interpretation. DLL3 Resistivity Sonde /DLL3 4160/: Resistivity can fluctuations depend upon the compact, porosity, holes satisfaction, cement composition and clay material mixture. Goal has contrast on indicating high value of electrical resistivity comparatively host rock.
Cole, James C.; Harris, Anita G.; Wahl, Ronald R.
1997-01-01
This map displays interpreted structural and stratigraphic relations among the Paleozoic and older rocks of the Nevada Test Site region beneath the Miocene volcanic rocks and younger alluvium in the Yucca Flat and northern Frenchman Flat basins. These interpretations are based on a comprehensive examination and review of data for more than 77 drillholes that penetrated part of the pre-Tertiary basement beneath these post-middle Miocene structural basins. Biostratigraphic data from conodont fossils were newly obtained for 31 of these holes, and a thorough review of all prior microfossil paleontologic data is incorporated in the analysis. Subsurface relationships are interpreted in light of a revised regional geologic framework synthesized from detailed geologic mapping in the ranges surrounding Yucca Flat, from comprehensive stratigraphic studies in the region, and from additional detailed field studies on and around the Nevada Test Site.All available data indicate the subsurface geology of Yucca Flat is considerably more complicated than previous interpretations have suggested. The western part of the basin, in particular, is underlain by relics of the eastward-vergent Belted Range thrust system that are folded back toward the west and thrust by local, west-vergent contractional structures of the CP thrust system. Field evidence from the ranges surrounding the north end of Yucca Flat indicate that two significant strike-slip faults track southward beneath the post-middle Miocene basin fill, but their subsurface traces cannot be closely defined from the available evidence. In contrast, the eastern part of the Yucca Flat basin is interpreted to be underlain by a fairly simple north-trending, broad syncline in the pre-Tertiary units. Far fewer data are available for the northern Frenchman Flat basin, but regional analysis indicates the pre- Tertiary structure there should also be relatively simple and not affected by thrusting.This new interpretation has implications for ground water flow through pre-Tertiary rocks beneath the Yucca Flat and northern Frenchman Flat areas, and has consequences for ground water modeling and model validation. Our data indicate that the Mississippian Chainman Shale is not a laterally extensive confining unit in the western part of the basin because it is folded back onto itself by the convergent structures of the Belted Range and CP thrust systems. Early and Middle Paleozoic limestone and dolomite are present beneath most of both basins and, regardless of structural complications, are interpreted to form a laterally continuous and extensive carbonate aquifer. Structural culmination that marks the French Peak accommodation zone along the topographic divide between the two basins provides a lateral pathway through highly fractured rock between the volcanic aquifers of Yucca Flat and the regional carbonate aquifer. This pathway may accelerate the migration of ground-water contaminants introduced by underground nuclear testing toward discharge areas beyond the Nevada Test Site boundaries. Predictive three-dimensional models of hydrostratigraphic units and ground-water flow in the pre-Tertiary rocks of subsurface Yucca Flat are likely to be unrealistic due to the extreme structural complexities. The interpretation of hydrologic and geochemical data obtained from monitoring wells will be difficult to extrapolate through the flow system until more is known about the continuity of hydrostratigraphic units.
ERIC Educational Resources Information Center
Arnhold, Robert W.
2008-01-01
Slippery Rock University (SRU), located in western Pennsylvania, is one of 14 state-owned institutions of higher education in Pennsylvania. The university has a rich tradition of providing professional preparation programs in special education, therapeutic recreation, physical education, and physical therapy for individuals with disabilities.…
Numerical Simulation of Electrical Properties of Carbonate Reservoir Rocks Using µCT Images
NASA Astrophysics Data System (ADS)
Colgin, J.; Niu, Q.; Zhang, C.; Zhang, F.
2017-12-01
Digital rock physics involves the modern microscopic imaging of geomaterials, digitalization of the microstructure, and numerical simulation of physical properties of rocks. This physics-based approach can give important insight into understanding properties of reservoir rocks, and help reveal the link between intrinsic rock properties and macroscopic geophysical responses. The focus of this study is the simulation of the complex conductivity of carbonate reservoir rocks using reconstructed 3D rock structures from high-resolution X-ray micro computed tomography (µCT). Carbonate core samples with varying lithofacies and pore structures from the Cambro-Ordovician Arbuckle Group and the Upper Pennsylvanian Lansing-Kansas City Group in Kansas are used in this study. The wide variations in pore geometry and connectivity of these samples were imaged using µCT. A two-phase segmentation method was used to reconstruct a digital rock of solid particles and pores. We then calculate the effective electrical conductivity of the digital rock volume using a pore-scale numerical approach. The complex conductivity of geomaterials is influenced by the electrical properties and geometry of each phase, i.e., the solid and fluid phases. In addition, the electrical double layer that forms between the solid and fluid phases can also affect the effective conductivity of the material. In the numerical modeling, the influence of the electrical double layer is quantified by a complex surface conductance and converted to an apparent volumetric complex conductivity of either solid particles or pore fluid. The effective complex conductivity resulting from numerical simulations based on µCT images will be compared to results from laboratory experiments on equivalent rock samples. The imaging and digital segmentation method, assumptions in the numerical simulation, and trends as compared to laboratory results will be discussed. This study will help us understand how microscale physics affects macroscale electrical conductivity in porous media.
NASA Astrophysics Data System (ADS)
Mukuhira, Yusuke; Asanuma, Hiroshi; Ito, Takatoshi; Häring, Markus
2016-04-01
Occurrence of induced seismicity with large magnitude is critical environmental issues associated with fluid injection for shale gas/oil extraction, waste water disposal, carbon capture and storage, and engineered geothermal systems (EGS). Studies for prediction of the hazardous seismicity and risk assessment of induced seismicity has been activated recently. Many of these studies are based on the seismological statistics and these models use the information of the occurrence time and event magnitude. We have originally developed physics based model named "possible seismic moment model" to evaluate seismic activity and assess seismic moment which can be ready to release. This model is totally based on microseismic information of occurrence time, hypocenter location and magnitude (seismic moment). This model assumes existence of representative parameter having physical meaning that release-able seismic moment per rock volume (seismic moment density) at given field. Seismic moment density is to be estimated from microseismic distribution and their seismic moment. In addition to this, stimulated rock volume is also inferred by progress of microseismic cloud at given time and this quantity can be interpreted as the rock volume which can release seismic energy due to weakening effect of normal stress by injected fluid. Product of these two parameters (equation (1)) provide possible seismic moment which can be released from current stimulated zone as a model output. Difference between output of this model and observed cumulative seismic moment corresponds the seismic moment which will be released in future, based on current stimulation conditions. This value can be translated into possible maximum magnitude of induced seismicity in future. As this way, possible seismic moment can be used to have feedback to hydraulic stimulation operation in real time as an index which can be interpreted easily and intuitively. Possible seismic moment is defined as equation (1), where D is seismic moment density (Mo/m3) and V stim is stimulated rock volume (m3). Mopossible = D ∗ V stim(1) We applied this conceptual model to real microseismic data set from Basel EGS project where several induced seismicity with large magnitude occurred and brought constructive damage. Using the hypocenter location determined by the researcher of Tohoku Univ., Japan and moment magnitude estimated from Geothermal Explorers Ltd., operating company, we were able to estimate reasonable seismic moment density meaning that one representative parameter exists and can characterize seismic activity at Basel at each time step. With stimulated rock volume which was also inferred from microseismic information, we estimated possible seismic moment and assess the difference with observed value. Possible seismic moment significantly increased after shut-in when the seismic cloud (stimulated zone) mostly progressed, resulting that the difference with the observed cumulative seismic moment automatically became larger. This suggests that there is moderate seismic moment which will be released in near future. In next few hours, the largest event actually occurred. Therefore, our proposed model was successfully able to forecast occurrence of the large events. Furthermore, best forecast of maximum magnitude was Mw 3 level and the largest event was Mw 3.41, showing reasonable performance in terms of quantitative forecast in magnitude. Our attempt to assess the seismic activity from microseismic information was successful and it also suggested magnitude release can be correlate with the expansion of seismic cloud as the definition of possible seismic moment model indicates. This relationship has been observed in microseismic observational study and several previous study also suggested their correlation with stress released rock volume. Our model showed harmonic results with these studies and provide practical method having clear physical meaning to assess the seismic activity in real time, based on microseismic data.
NASA Technical Reports Server (NTRS)
Yingst, R. A.; Biedermann, K. L.; Pierre, N. M.; Haldemann, A. F. C.; Johnson, J. R.
2005-01-01
The Mars Pathfinder (MPF) landing site was predicted to contain a broad sampling of rock types varying in mineralogical, physical, mechanical and geochemical characteristics. Although rocks have been divided into several spectral categories based on Imager for Mars Pathfinder (IMP) visible/near-infrared data, efforts in isolating and classifying spectral units among MPF rocks and soils have met with varying degrees of success, as many factors influencing spectral signatures cannot be quantified to a sufficient level to be removed. It has not been fully determined which spectral categories stem from intrinsic mineralogical differences between rocks or rock surfaces, and which result from factors such as physical or chemical weathering. This has made isolation of unique rock mineralogies difficult. Morphology, like composition, is a characteristic tied to the intrinsic properties and geologic and weathering history of rocks. Rock morphologies can be assessed quantitatively and compared with spectral data, to identify and classify rock types at the MPF landing site. They can also isolate actual rock spectra from spectral types that are surficial in origin, as compositions associated with mantling dust or chemical coatings would presumably not influence rock morphology during weathering events. We previously reported on an initial classification of rocks using the quantitative morphologic indices of size, roundness, sphericity and elongation. Here, we compare this database of rock characteristics with associated rock surface spectra to improve our ability to discriminate between spectra associated with rock types and those from other sources.
NASA Astrophysics Data System (ADS)
Pogue, K. R.
2003-12-01
In the Albion Mountains of southern Idaho, granitic rock of the 28 Ma Almo pluton and 2.5 Ga Green Creek Complex of southern Idaho has weathered and eroded into a spectacular landscape of towers and spires. These unusual landforms impressed travelers on the California Trail who compared their shapes to cathedrals, castles, pyramids, and other man-made structures. The region eventually became know as the City of Rocks and was a local scenic attraction until City of Rocks National Reserve (CRNR) was established in 1989 to provide more effective management for the main group of spires which were drawing an increasing number of tourists. In 2003, Castle Rocks State Park (CRSP) was created to provide both access and protection to a less extensive group of spires located a few kilometers north of the City of Rocks. Interpretive resources at CRNR have generally focused on the human history of the region, particularly its importance to the California Trail, and have largely neglected the fascinating geologic story. Although the general framework of the geology of the Albion Mountains is reasonably well known, this "big-picture" geology does little to answer many of the questions posed by the average visitor. During the summer of 2001, a Keck Geology Consortium undergraduate research project was conducted in CRNR to seek answers to these types of questions. CRNR staff could then utilize the students' research to develop interpretive resources. Six students and two professors spent 4 weeks in the field investigating the structures and processes that have contributed to the architecture of the City of Rocks. The general geomorphology of the Albion Mountains was the focus of a Keck Geology Consortium undergraduate research project conducted during the summer of 2002. Nine students and three professors studied the glacial and landslide history of the highest peaks and the geomorphic evolution of the proposed CRSP. Students working in the Castle Rocks had 2 main goals: 1) assisting park management in the recognition of geologic features that are exceptional, unique, or fragile, and 2) investigating processes responsible for the large- and small-scale geomorphic evolution of the spires. These students were able to document evidence for the complex multi-stage evolution of the Big Cove, the basin that hosts Castle Rocks. Episodic exhumation of the spires is almost certainly related to variations in late Quaternary climate recorded in lake cores obtained by other students studying glaciation. The projects as a whole have produced extended abstracts published by the Keck Consortium and senior theses. A simplified geologic map of the CRNR and CRSP, as well as other maps, diagrams, and photographs suitable for use by the general public have been provided to park management. The staff of CRSP was also provided with GPS waypoints and aerial photographs detailing the locations of important or sensitive geologic features. A proposal has been made to CRNR for a self-guided interpretive geologic trail and road log. The Idaho Geological Survey has agreed to publish a geologic guidebook to the area that will incorporate many of the results of the Keck projects.
Geophysical Characterization and Structural Model of the Santa ROSALÍA Aquifer, Sonora, MÉXICO
NASA Astrophysics Data System (ADS)
Martínez-Retama, S.; Montaño-Del Cid, M. A.
2017-12-01
The main objective of this work was to determine the morphology and depth of the basement, as well as the elaboration of a structural model for the Santa Rosalía aquifer, from the processing and interpretation of gravimetric and aeromagnetic data and its correlation with the Geology of the area. The study area is located in the central portion of the State of Sonora, Mexico. In general, the geology of the site is characterized by sedimentary, igneous and metamorphic rocks whose ages vary from the Precambrian to Recent. Chronologically, the geology of the study area consists of igneous and metamorphic rocks of Precambrian age, considered as a metamorphic complex. The Paleozoic is represented by a sequence of prebatolytic rocks. This sequence is intruded by rocks of the Upper Cretaceous. The Triassic-Jurassic periods consist of arenaceous units of the Barranca Group. The Cretaceous is constituted by the Tarahumara Formation, as well as granite bodies. The Quaternary is composed of alluvial deposits, which are overlain by sediments of Recent. In this work a gravimetric survey was performed, registering a total of 7 profiles. In addition, measured data from the National Institute of Statistics and Geography (INEGI) were used. The aeromagnetic study was carried out with data from the Mexican Geological Service (SGM). In order to reduce the ambiguity in the modeling process, a rock sampling was taken from the study area and its density and magnetic susceptibility were measured. Finally, two-dimensional models of gravimetric and magnetic profiles were made to obtain the structural model of the study area. The geological-structural models obtained show gravimetric anomalies (low)associated with sedimentary basins with depths of 800 m to 1,500 m., indicating the most susceptible áreas to water storage. The basement is represented by volcanic and granite rocks that are in contact with Paleozoic sedimentary rocks (Limestone) and in some areas with volcanic rocks of the Tarahumara Formation. In these models two types of sliding tectonic events were interpreted. In the first one a system of low-angle normal faulting related to the distensive event Basin and Range was interpreted. In the second, a series of high- angle normal faults, which form Horst and Grabens structures related to the opening of the Gulf of California were modeled.
NASA Astrophysics Data System (ADS)
Ghent, R. R.; Tai Udovicic, C.; Mazrouei, S.; Bottke, W. F., Jr.
2017-12-01
The bombardment history of the Moon holds the key to understanding important aspects of the evolution of the Solar System at 1AU. It informs our thinking about the rates and chronology of events on other planetary bodies and the evolution of the asteroid belt. In previous work, we established a quantitative relationship between the ages of lunar craters and the rockiness of their ejecta. That result was based on the idea that crater-forming impacts eject rocks from beneath the regolith, instantaneously emplacing a deposit with characteristic initial physical properties, such as rock abundance. The ejecta rocks are then gradually removed and / or covered by a combination of mechanical breakdown via micrometeorite bombardment, emplacement of regolith fines due to nearby impacts, and possibly rupture due to thermal stresses. We found that ejecta rocks, as detected by the Lunar Reconnaissance Orbiter Diviner thermal radiometer disappear on a timescale of 1 Gyr, eventually becoming undetectable by the Diviner instrument against the ambient background rock abundance of the regolith.The "index" craters we used to establish the rock abundance—age relationship are all larger than 15 km (our smallest index crater is Byrgius A, at 18.7 km), and therefore above the transition diameter between simple and complex craters (15-20 km). Here, we extend our analysis to include craters smaller than the transition diameter. It is not obvious a priori that the initial ejecta properties of simple and complex craters should be identical, and therefore, that the same metrics of crater age can be applied to both populations. We explore this issue using LRO Diviner rock abundance and a high-resolution optical maturity dataset derived from Kaguya multiband imager VIS/NIR data to identify young craters to 5 km diameter. We examine the statistical properties of this population relative to that of the NEO population, and interpret the results in the context of our recently documented evidence for changes in the flux of impactors that create larger craters. Finally, we detail implications of our result for understanding the dynamic history of the lunar surface and the evolution of the asteroid belt.
Research on the equivalence between digital core and rock physics models
NASA Astrophysics Data System (ADS)
Yin, Xingyao; Zheng, Ying; Zong, Zhaoyun
2017-06-01
In this paper, we calculate the elastic modulus of 3D digital cores using the finite element method, systematically study the equivalence between the digital core model and various rock physics models, and carefully analyze the conditions of the equivalence relationships. The influences of the pore aspect ratio and consolidation coefficient on the equivalence relationships are also further refined. Theoretical analysis indicates that the finite element simulation based on the digital core is equivalent to the boundary theory and Gassmann model. For pure sandstones, effective medium theory models (SCA and DEM) and the digital core models are equivalent in cases when the pore aspect ratio is within a certain range, and dry frame models (Nur and Pride model) and the digital core model are equivalent in cases when the consolidation coefficient is a specific value. According to the equivalence relationships, the comparison of the elastic modulus results of the effective medium theory and digital rock physics is an effective approach for predicting the pore aspect ratio. Furthermore, the traditional digital core models with two components (pores and matrix) are extended to multiple minerals to more precisely characterize the features and mineral compositions of rocks in underground reservoirs. This paper studies the effects of shale content on the elastic modulus in shaly sandstones. When structural shale is present in the sandstone, the elastic modulus of the digital cores are in a reasonable agreement with the DEM model. However, when dispersed shale is present in the sandstone, the Hill model cannot describe the changes in the stiffness of the pore space precisely. Digital rock physics describes the rock features such as pore aspect ratio, consolidation coefficient and rock stiffness. Therefore, digital core technology can, to some extent, replace the theoretical rock physics models because the results are more accurate than those of the theoretical models.
In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars.
Squyres, S W; Grotzinger, J P; Arvidson, R E; Bell, J F; Calvin, W; Christensen, P R; Clark, B C; Crisp, J A; Farrand, W H; Herkenhoff, K E; Johnson, J R; Klingelhöfer, G; Knoll, A H; McLennan, S M; McSween, H Y; Morris, R V; Rice, J W; Rieder, R; Soderblom, L A
2004-12-03
Sedimentary rocks at Eagle crater in Meridiani Planum are composed of fine-grained siliciclastic materials derived from weathering of basaltic rocks, sulfate minerals (including magnesium sulfate and jarosite) that constitute several tens of percent of the rock by weight, and hematite. Cross-stratification observed in rock outcrops indicates eolian and aqueous transport. Diagenetic features include hematite-rich concretions and crystal-mold vugs. We interpret the rocks to be a mixture of chemical and siliciclastic sediments with a complex diagenetic history. The environmental conditions that they record include episodic inundation by shallow surface water, evaporation, and desiccation. The geologic record at Meridiani Planum suggests that conditions were suitable for biological activity for a period of time in martian history.
NASA Astrophysics Data System (ADS)
2010-07-01
Music: Here comes science that rocks Student trip: Two views of the future of CERN Classroom: Researchers can motivate pupils Appointment: AstraZeneca trust appoints new director Multimedia: Physics Education comes to YouTube Competition: Students compete in European Union Science Olympiad 2010 Physics roadshow: Pupils see wonders of physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKeown, F.A.; Diehl, S.F.; Glick, E.E.
1990-11-01
Most of the earthquakes in the New Madrid seismic zone correlate spatially with the Blytheville arch and part of the Pascoal arch, which are interpreted to be the same structure. Both arches may have formed by diapirism along the axis of the Reelfoot rift. Seismic, geophysical, and drill-hole data indicate that the rocks in the arches are highly deformed and fractured and have gross lithologic properties that make them weaker than rocks adjacent to the arches. The weaker rocks are inferred to fail seismically more readily than the stronger rocks adjacent to the arches.
NASA Astrophysics Data System (ADS)
Gottschalk, Ian P.; Hermans, Thomas; Knight, Rosemary; Caers, Jef; Cameron, David A.; Regnery, Julia; McCray, John E.
2017-12-01
Geophysical data have proven to be very useful for lithological characterization. However, quantitatively integrating the information gained from acquiring geophysical data generally requires colocated lithological and geophysical data for constructing a rock-physics relationship. In this contribution, the issue of integrating noncolocated geophysical and lithological data is addressed, and the results are applied to simulate groundwater flow in a heterogeneous aquifer in the Prairie Waters Project North Campus aquifer recharge site, Colorado. Two methods of constructing a rock-physics transform between electrical resistivity tomography (ERT) data and lithology measurements are assessed. In the first approach, a maximum likelihood estimation (MLE) is used to fit a bimodal lognormal distribution to horizontal crosssections of the ERT resistivity histogram. In the second approach, a spatial bootstrap is applied to approximate the rock-physics relationship. The rock-physics transforms provide soft data for multiple point statistics (MPS) simulations. Subsurface models are used to run groundwater flow and tracer test simulations. Each model's uncalibrated, predicted breakthrough time is evaluated based on its agreement with measured subsurface travel time values from infiltration basins to selected groundwater recovery wells. We find that incorporating geophysical information into uncalibrated flow models reduces the difference with observed values, as compared to flow models without geophysical information incorporated. The integration of geophysical data also narrows the variance of predicted tracer breakthrough times substantially. Accuracy is highest and variance is lowest in breakthrough predictions generated by the MLE-based rock-physics transform. Calibrating the ensemble of geophysically constrained models would help produce a suite of realistic flow models for predictive purposes at the site. We find that the success of breakthrough predictions is highly sensitive to the definition of the rock-physics transform; it is therefore important to model this transfer function accurately.
NASA Astrophysics Data System (ADS)
Reyer, D.; Philipp, S. L.
2014-09-01
Information about geomechanical and physical rock properties, particularly uniaxial compressive strength (UCS), are needed for geomechanical model development and updating with logging-while-drilling methods to minimise costs and risks of the drilling process. The following parameters with importance at different stages of geothermal exploitation and drilling are presented for typical sedimentary and volcanic rocks of the Northwest German Basin (NWGB): physical (P wave velocities, porosity, and bulk and grain density) and geomechanical parameters (UCS, static Young's modulus, destruction work and indirect tensile strength both perpendicular and parallel to bedding) for 35 rock samples from quarries and 14 core samples of sandstones and carbonate rocks. With regression analyses (linear- and non-linear) empirical relations are developed to predict UCS values from all other parameters. Analyses focus on sedimentary rocks and were repeated separately for clastic rock samples or carbonate rock samples as well as for outcrop samples or core samples. Empirical relations have high statistical significance for Young's modulus, tensile strength and destruction work; for physical properties, there is a wider scatter of data and prediction of UCS is less precise. For most relations, properties of core samples plot within the scatter of outcrop samples and lie within the 90% prediction bands of developed regression functions. The results indicate the applicability of empirical relations that are based on outcrop data on questions related to drilling operations when the database contains a sufficient number of samples with varying rock properties. The presented equations may help to predict UCS values for sedimentary rocks at depth, and thus develop suitable geomechanical models for the adaptation of the drilling strategy on rock mechanical conditions in the NWGB.
The Usability of Rock-Like Materials for Numerical Studies on Rocks
NASA Astrophysics Data System (ADS)
Zengin, Enes; Abiddin Erguler, Zeynal
2017-04-01
The approaches of synthetic rock material and mass are widely used by many researchers for understanding the failure behavior of different rocks. In order to model the failure behavior of rock material, researchers take advantageous of different techniques and software. But, the majority of all these instruments are based on distinct element method (DEM). For modeling the failure behavior of rocks, and so to create a fundamental synthetic rock material model, it is required to perform related laboratory experiments for providing strength parameters. In modelling studies, model calibration processes are performed by using parameters of intact rocks such as porosity, grain size, modulus of elasticity and Poisson ratio. In some cases, it can be difficult or even impossible to acquire representative rock samples for laboratory experiments from heavily jointed rock masses and vuggy rocks. Considering this limitation, in this study, it was aimed to investigate the applicability of rock-like material (e.g. concrete) to understand and model the failure behavior of rock materials having complex inherent structures. For this purpose, concrete samples having a mixture of %65 cement dust and %35 water were utilized. Accordingly, intact concrete samples representing rocks were prepared in laboratory conditions and their physical properties such as porosity, pore size and density etc. were determined. In addition, to acquire the mechanical parameters of concrete samples, uniaxial compressive strength (UCS) tests were also performed by simultaneously measuring strain during testing. The measured physical and mechanical properties of these extracted concrete samples were used to create synthetic material and then uniaxial compressive tests were modeled and performed by using two dimensional discontinuum program known as Particle Flow Code (PFC2D). After modeling studies in PFC2D, approximately similar failure mechanism and testing results were achieved from both experimental and artificial simulations. The results obtained from these laboratory tests and modelling studies were compared with the other researcher's studies in respect to failure mechanism of different type of rocks. It can be concluded that there is similar failure mechanism between concrete and rock materials. Therefore, the results obtained from concrete samples that would be prepared at different porosity and pore sizes can be used in future studies in selection micro-mechanical and physical properties to constitute synthetic rock materials for understanding failure mechanism of rocks having complex inherent structures such as vuggy rocks or heavily jointed rock masses.
Mechanical and physical properties of hydrothermally altered rocks, Taupo Volcanic Zone, New Zealand
NASA Astrophysics Data System (ADS)
Wyering, L. D.; Villeneuve, M. C.; Wallis, I. C.; Siratovich, P. A.; Kennedy, B. M.; Gravley, D. M.; Cant, J. L.
2014-11-01
Mechanical characterization of hydrothermally altered rocks from geothermal reservoirs will lead to an improved understanding of rock mechanics in a geothermal environment. To characterize rock properties of the selected formations, we prepared samples from intact core for non-destructive (porosity, density and ultrasonic wave velocities) and destructive laboratory testing (uniaxial compressive strength). We characterised the hydrothermal alteration assemblage using optical mineralogy and existing petrography reports and showed that lithologies had a spread of secondary mineralisation that occurred across the smectite, argillic and propylitic alteration zones. The results from the three geothermal fields show a wide variety of physical rock properties. The testing results for the non-destructive testing shows that samples that originated from the shallow and low temperature section of the geothermal field had higher porosity (15 - 56%), lower density (1222 - 2114 kg/m3) and slower ultrasonic waves (1925 - 3512 m/s (vp) and 818 - 1980 m/s (vs)), than the samples from a deeper and higher temperature section of the field (1.5 - 20%, 2072 - 2837 kg/m3, 2639 - 4593 m/s (vp) and 1476 - 2752 m/s (vs), respectively). The shallow lithologies had uniaxial compressive strengths of 2 - 75 MPa, and the deep lithologies had strengths of 16 - 211 MPa. Typically samples of the same lithologies that originate from multiple wells across a field have variable rock properties because of the different alteration zones from which each sample originates. However, in addition to the alteration zones, the primary rock properties and burial depth of the samples also have an impact on the physical and mechanical properties of the rock. Where this data spread exists, we have been able to derive trends for this specific dataset and subsequently have gained an improved understanding of how hydrothermal alteration affects physical and mechanical properties.
Yokose, H.; Lipman, P.W.; Kanamatsu, T.
2005-01-01
To evaluate physical and chemical diversity in submarine basaltic rocks, approximately 280 deep submarine samples recovered by submersibles from the underwater flanks of the Hawaiian Islands were analyzed and compared. Based on observations from the submersibles and hand specimens, these samples were classified into three main occurrence types (lavas, coarse-grained volcaniclastic rocks, and fine-grained sediments), each with several subtypes. The whole-rock sulfur content and porosity in submarine basaltic rocks, recovered from depths greater than 2000 m, range from < 10 ppm and 2 vol.% to 2200 ppm and 47 vol.%, respectively. These wide variations cannot be due just to different ambient pressures at the collection depths, as inferred previously for submarine erupted lavas. The physical and chemical properties of the recovered samples, especially a combination of three whole-rock parameters (Fe-oxidation state, Sulfur content, and Porosity), are closely related to the occurrence type. The FSP triangular diagram is a valuable indicator of the source location of basaltic fragments deposited in deep submarine areas. This diagram can be applied to basaltic rocks such as clasts in debris-flow deposits, submarine-emplaced lava flows that may have crossed the shoreline, and slightly altered geological samples. ?? 2005 Elsevier B.V. All rights reserved.
Real Time Seismic Prediction while Drilling
NASA Astrophysics Data System (ADS)
Schilling, F. R.; Bohlen, T.; Edelmann, T.; Kassel, A.; Heim, A.; Gehring, M.; Lüth, S.; Giese, R.; Jaksch, K.; Rechlin, A.; Kopf, M.; Stahlmann, J.; Gattermann, J.; Bruns, B.
2009-12-01
Efficient and safe drilling is a prerequisite to enhance the mobility of people and goods, to improve the traffic as well as utility infrastructure of growing megacities, and to ensure the growing energy demand while building geothermal and in hydroelectric power plants. Construction within the underground is often building within the unknown. An enhanced risk potential for people and the underground building may arise if drilling enters fracture zones, karsts, brittle rocks, mixed solid and soft rocks, caves, or anthropogenic obstacles. Knowing about the material behavior ahead of the drilling allows reducing the risk during drilling and construction operation. In drilling operations direct observations from boreholes can be complemented with geophysical investigations. In this presentation we focus on “real time” seismic prediction while drilling which is seen as a prerequisite while using geophysical methods in modern drilling operations. In solid rocks P- and S-wave velocity, refraction and reflection as well as seismic wave attenuation can be used for the interpretation of structures ahead of the drilling. An Integrated Seismic Imaging System (ISIS) for exploration ahead of a construction is used, where a pneumatic hammer or a magnetostrictive vibration source generate repetitive signals behind the tunneling machine. Tube waves are generated which travel along the tunnel to the working face. There the tube waves are converted to mainly S- but also P-Waves which interact with the formation ahead of the heading face. The reflected or refracted waves travel back to the working front are converted back to tube waves and recorded using three-component geophones which are fit into the tips of anchor rods. In near real time, the ISIS software allows for an integrated 3D imaging and interpretation of the observed data, geological and geotechnical parameters. Fracture zones, heterogeneities, and variations in the rock properties can be revealed during the drilling operation. First experiments indicate that parts of the ISIS system can be used for smaller diameters e.g. in vertical drilling. In unconsolidated rocks S-waves are strongly attenuated. For the Sonic Softground Probing (SSP) system P-waves are used. A vibration-seismic correlation positioning system was developed. One transmitter and several receiver are placed within the cutting wheel. During drilling, a specially coded transmitter signal is sent directly from the cutterhead via the face support medium in the direction of tunneling. With this geometry, boulders can be detected 50 m ahead of the working face. Fracture zones and other discontinuities can be localized, and the physical properties of the upcoming rocks can be partly determined nearly in real time, while using sound velocity and attenuation as indicators. All evaluation is based on real time 3D velocity models which are determined during the drilling operation. Different technologies allow a seismic prediction while drilling in various rock types and geologies. Seismic prediction during vertical drilling will significantly profit from the lesson learned from state of the art tunneling systems.
2009 Mineral and Rock Physics Graduate Research Award to Yu and Austin
NASA Astrophysics Data System (ADS)
2010-04-01
Yonggang Yu and Nicholas J. Austin have been awarded the Mineral and Rock Physics Graduate Research Award, given annually to one or more promising young scientists for outstanding contributions achieved during their Ph.D. research. Recipients of this award are engaged in experimental and/or theoretical studies of Earth and planetary materials with the purpose of unraveling the physics and chemistry that govern their origin and physical properties. Yu's thesis is entitled “Structure properties and phase transitions in earth minerals: A first principles study.” Austin's thesis is entitled “Grain size evolution and strain localization in deformed marbles.” They were both formally presented with the award at the Mineral and Rock Physics focus group reception during the 2009 AGU Fall Meeting, held 14-18 December in San Francisco, Calif.
Interpretation of well logs in a carbonate aquifer
MacCary, L.M.
1978-01-01
This report describes the log analysis of the Randolph and Sabial core holes in the Edwards aquifer in Texas, with particular attention to the principles that can be applied generally to any carbonate system. The geologic and hydrologic data were obtained during the drilling of the two holes, from extensive laboratory analysis of the cores, and from numerous geophysical logs run in the two holes. Some logging methods are inherently superiors to others for the analysis of limestone and dolomite aquifers. Three such systems are the dentistry, neutron, and acoustic-velocity (sonic) logs. Most of the log analysis described here is based on the interpretation of suites of logs from these three systems. In certain instances, deeply focused resistivity logs can be used to good advantage in carbonate rock studies; this technique is used to computer the water resistivity in the Randolph core hole. The rocks penetrated by the Randolph core hole are typical of those carbonates that have undergone very little solution by recent ground-water circulation. There are few large solutional openings; the water is saline; and the rocks are dark, dolomitic, have pore space that is interparticle or intercrystalline, and contain unoxidized organic material. The total porosity of rocks in the saline zone is higher than that of rocks in the fresh-water aquifer; however, the intrinsic permeability is much less in the saline zone because there are fewer large solutional openings. The Sabinal core hole penetrates a carbonate environment that has experienced much solution by ground water during recent geologic time. The rocks have high secondary porosities controlled by sedimentary structures within the rock; the water is fresh; and the dominant rock composition is limestone. The relative percentages of limestone and dolomite, the average matrix (grain) densities of the rock mixtures , and the porosity of the rock mass can be calculated from density, neutron, and acoustic logs. With supporting data from resistivity logs, the formation water quality can be estimated, as well as the relative cementation or tortuosity of the rock. Many of these properties calculated from logs can be verified by analysis of the core available from test holes drilled in the saline and fresh water zones.
Observation of the geology and geomorphology of the 1999 Marsokhod test site
De Hon, R. A.; Barlow, N.G.; Reagan, M.K.; Bettis, E. Arthur; Foster, C.T.; Gulick, V.C.; Crumpler, L.S.; Aubele, J.C.; Chapman, M.G.; Tanaka, K.L.
2001-01-01
The Marsokhod rover returned data from six stations that were used to decipher the geomorphology and geology of a region not previously visited by members of the geomorphology field team. Satellite images and simulated descent images provided information about the regional setting. The landing zone was on an alluvial apron flanking a mountain block to the west and a playa surface to the east. Rover color images, infrared spectra analysis of the mountains, and the apron surface provided insight into the rock composition of the nearby mountains. From the return data the geomorphology team interpreted the region to consist of compressionally deformed, ancient marine sediments and igneous rocks exposed by more recent extensional tectonics. Unconsolidated alluvial materials blanket the lower flanks of the mountains. An ancient shoreline cut into alluvial material marks a high stand of water during a past, wetter climate period. Playa sediments floor a present-day, seasonally, dry lake. Observations made by the rover using panoramic and close-up (hand specimens-scale) image data and color scene data confirmed the presence of boulders, cobbles, and fines of various provinces. Rover traverses to sites identified as geologically distinct, such as fan, channel, shoreline, and playa, provided useful clues to the geologic interpretations. Analysis of local rocks was given context only through comparison with distant geologic features. These results demonstrated the importance of a multifaceted approach to site interpretation through comparison of interpretations derived by differing geologic techniques. Copyright 2001 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Zaitsev, Vladimir Y.; Radostin, Andrey V.; Pasternak, Elena; Dyskin, Arcady
2016-04-01
Conventionally the interpretation of wave velocities and their variations under load is conducted assuming that closable cracks have simple planar shapes, like the popular model of penny-shape cracks. For such cracks, the proportion between complementary variations in different elastic parameters of rocks (such as S- and P-wave velocities) is strictly pre-determined, in particular, it is independent of the crack aspect ratio and rather weakly dependent on the Poisson's ratio of the intact rock. Real rocks, however, contain multitude of cracks of different geometry. Faces of such cracks can exhibit complex modes of interaction when closed by external load, which may result in very different ratios between normal- and shear compliances of such defects. In order to describe the reduction of different elastic moduli, we propose a model in which the compliances of crack-like defects are explicitly decoupled and are not predetermined, so that the ratio q between total normal- and shear- compliances imparted to the rock mass (as well as individual values of these compliances) can be estimated from experimental data on reduction of different elastic moduli (e.g., pressure dependences of P- and S-wave velocities). Physically, the so-extracted ratio q can be interpreted as intrinsic property of individual crack-like defects similar to each other, or as a characteristic of proportion between concentrations of pure normal cracks with very large q and pure shear cracks with q→0. The latter case can correspond, e.g., to saturated cracks in which weakly-compressible liquid prevents crack closing under normal loading. It can be shown that for conventional dry planar cracks, the compliance ratio is q ˜2. The developed model applied to the data on wave-velocity variations with external pressure indicates that elastic properties of the real crack-like defects in rocks can differ considerably from the usually assumed ones. Comparison with experimental data on variations P- and S-wave velocities with hydrostatic compression of different dry and saturated rocks (sandstones, Westerly granite and Webatuck dolomite, etc.) shows that our model is accurate in a wide range of pressures with constant (i.e., pressure-independent) values of parameter q. Furthermore, the determined values of the latter are considerably different from those of conventional cracks. In particular, although all saturated samples have values q <1, the simplified approximation q=0 (i.e., the absence of normal compressibility that is often assumed for wet cracks) leads to large errors in the prediction of complementary variations in the shear- and bulk elastic moduli. Among dry sandstones, the majority have q >2 and many sandstones exhibit unusually high q»1 suggesting quite rough and tortoise nature of real cracks in those rocks. We demonstrate that in such cases, the use of the conventional assumption q ˜2 typical of penny-shape cracks leads to striking inconsistency between the predicted and experimentally observed crack-induced complementary variations in different elastic moduli. Furthermore, among samples with q»1, we revealed numerous examples that demonstrate negative Poisson's ratio at low pressures. VYZ and AVR acknowledge the financial support by RFBR grant No 15-05-05143.
Metallic-mineral assessment of the Aban Al Ahmar quadrangle, sheet 25F, Kingdom of Saudi Arabia
Kamilli, Robert J.; Arnold, Mark A.; Cole, James C.; Kleinkopf, M. Dean; Lee, Keenan; Miller, William R.; Raines, Gary L.; ,; ,
1990-01-01
Comprehensive detailed interdisciplinary study assesses the metallic-mineral-resource potential in the Aban Al Ahmar Quadrangle of the Kingdom of Saudi Arabia, located in the eastern margin of the northeastern Arabian Shield, utilizing techniques of geophysics, geologic mapping, remote sensing and geochemistry. The landscape of the study area is characterized by isolated mountain groups, inselbergs, and local tracts of dissected hills separated by broad, low-relief peneplain. Topics covered include mining and exploration history; geological setting; interpretation of geophysical anomalies; limonitic hydrothermally altered and mineralized rocks; geochemical interpretation; mineral resource potential; skarn deposiits associated with intermediate igneous rocks; gold deposits; tin/tungsten skarn deposits; etc.
Piatak, Nadine M.; Seal, Robert R.; Hammarstrom, Jane M.; Meier, Allen L.; Briggs, Paul H.
2003-01-01
Waste-rock material produced at historic metal mines contains elevated concentrations of potentially toxic trace elements. Two types of mine waste were examined in this study: sintered waste rock and slag. The samples were collected from the Elizabeth and Ely mines in the Vermont copper belt (Besshi-type massive sulfide deposits), from the Copper Basin mining district near Ducktown, Tennessee (Besshi-type massive sulfide deposits), and from the Clayton silver mine in the Bayhorse mining district, Idaho (polymetallic vein and replacement deposits). The data in this report are presented as a compilation with minimal interpretation or discussion. A detailed discussion and interpretation of the slag data are presented in a companion paper. Data collected from sintered waste rock and slag include: (1) bulk rock chemistry, (2) mineralogy, (3) and the distribution of trace elements among phases for the slag samples. In addition, the reactivity of the waste material under surficial conditions was assessed by examining secondary minerals formed on slag and by laboratory leaching tests using deionized water and a synthetic solution approximating precipitation in the eastern United States.
NASA Astrophysics Data System (ADS)
Rutherford, B. S.; Speece, M. A.; Constenius, K. N.
2015-12-01
The geometry of the Precambrian Belt-Purcell basin and subsequent allochthon, that dominates the geology of northwestern Montana, played a critical role in the development of compressional structures during orogenesis and their ensuing reactivation during the later phase of extensional collapse. Five reprocessed seismic reflection profiles provide images in the Swan Range and adjacent valleys that we have correlated to published seismic data north into Canada. Reflections from syndepositional sills encased within Lower Belt rocks offer clues to the configuration of the basin prior to its tectonic inversion. Thick basinal facies of the Lewis salient are contrasted by thin shelfal facies found in hanging wall rocks of frontal Belt carrying thrusts south of the salient. The along strike change in hanging wall rocks reflects the original configuration of the Belt basin margin. Rocks of the Lewis salient were deposited in an embayment on the northeastern margin of the Belt basin. Shelfal accumlations of the embayment comprise an autochthonous wedge that has remained in the footwall of the Lewis thrust system. South of the embayment and related salient, nearly the entire Belt basin was detached from pre-Belt crystalline rocks and inverted at the latitude of the Sawtooth Range. Deeply exhumed Phanerozoic rocks of the Sawtooth Range are a direct consequence of the thin wedge geometry of the detached basin south of the Lewis salient that required growth of a substantial orogenic wedge to obtain critical taper values. We offer an alternate interpretation of a >10 km high, west facing décollement ramp that coincides with the Belt-Purcell basin margin. Previous interpretations in Montana have inferred the location of the basin margin ramp to approximate the trace of the Purcell Anticlinorium. Seismic data and cross-section balancing suggest the Rocky Mountain Trench as a more accurate location. Based on our proposed position of the basin margin the Belt-Purcell allocthon requires insignificant rotation during thrust emplacement which is in agreement with published interpretations of paleomagnetic data. We suggest small (<5°) clockwise rotation is due to an increase in extensional slip from the international border south to the Flathead Valley as opposed to an increase in compressional shortening to the north.The geometry of the Precambrian Belt-Purcell basin and subsequent allochthon, that dominates the geology of northwestern Montana, played a critical role in the development of compressional structures during orogenesis and their ensuing reactivation during the later phase of extensional collapse. Five reprocessed seismic reflection profiles provide images in the Swan Range and adjacent valleys that we have correlated to published seismic data north into Canada. Reflections from syndepositional sills encased within Lower Belt rocks offer clues to the configuration of the basin prior to its tectonic inversion. Thick basinal facies of the Lewis salient are contrasted by thin shelfal facies found in hanging wall rocks of frontal Belt carrying thrusts south of the salient. The along strike change in hanging wall rocks reflects the original configuration of the Belt basin margin. Rocks of the Lewis salient were deposited in an embayment on the northeastern margin of the Belt basin. Shelfal accumlations of the embayment comprise an autochthonous wedge that has remained in the footwall of the Lewis thrust system. South of the embayment and related salient, nearly the entire Belt basin was detached from pre-Belt crystalline rocks and inverted at the latitude of the Sawtooth Range. Deeply exhumed Phanerozoic rocks of the Sawtooth Range are a direct consequence of the thin wedge geometry of the detached basin south of the Lewis salient that required growth of a substantial orogenic wedge to obtain critical taper values. We offer an alternate interpretation of a >10 km high, west facing décollement ramp that coincides with the Belt-Purcell basin margin. Previous interpretations in Montana have inferred the location of the basin margin ramp to approximate the trace of the Purcell Anticlinorium. Seismic data and cross-section balancing suggest the Rocky Mountain Trench as a more accurate location. Based on our proposed position of the basin margin the Belt-Purcell allocthon requires insignificant rotation during thrust emplacement which is in agreement with published interpretations of paleomagnetic data. We suggest small (<5°) clockwise rotation is due to an increase in extensional slip from the international border south to the Flathead Valley as opposed to an increase in compressional shortening to the north.
Examining the relation between rock mass cuttability index and rock drilling properties
NASA Astrophysics Data System (ADS)
Yetkin, Mustafa E.; Özfırat, M. Kemal; Yenice, Hayati; Şimşir, Ferhan; Kahraman, Bayram
2016-12-01
Drilling rate is a substantial index value in drilling and excavation operations at mining. It is not only a help in determining physical and mechanical features of rocks, but also delivers strong estimations about instantaneous cutting rates. By this way, work durations to be finished on time, proper machine/equipment selection and efficient excavation works can be achieved. In this study, physical and mechanical properties of surrounding rocks and ore zones are determined by investigations carried out on specimens taken from an underground ore mine. Later, relationships among rock mass classifications, drillability rates, cuttability, and abrasivity have been investigated using multi regression analysis. As a result, equations having high regression rates have been found out among instantaneous cutting rates and geomechanical properties of rocks. Moreover, excavation machine selection for the study area has been made at the best possible interval.
Developing a Virtual Rock Deformation Laboratory
NASA Astrophysics Data System (ADS)
Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.
2012-12-01
Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In addition, some web based data collection tools are available to collect student feedback and opinions on their learning experience. The virtual laboratory is designed to be an online education tool that facilitates interactive learning.; Virtual Deformation Laboratory
NASA Astrophysics Data System (ADS)
Wardaya, P. D.; Noh, K. A. B. M.; Yusoff, W. I. B. W.; Ridha, S.; Nurhandoko, B. E. B.
2014-09-01
This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave velocity of rock.
A generic model for the shallow velocity structure of volcanoes
NASA Astrophysics Data System (ADS)
Lesage, Philippe; Heap, Michael J.; Kushnir, Alexandra
2018-05-01
The knowledge of the structure of volcanoes and of the physical properties of volcanic rocks is of paramount importance to the understanding of volcanic processes and the interpretation of monitoring observations. However, the determination of these structures by geophysical methods suffers limitations including a lack of resolution and poor precision. Laboratory experiments provide complementary information on the physical properties of volcanic materials and their behavior as a function of several parameters including pressure and temperature. Nevertheless combined studies and comparisons of field-based geophysical and laboratory-based physical approaches remain scant in the literature. Here, we present a meta-analysis which compares 44 seismic velocity models of the shallow structure of eleven volcanoes, laboratory velocity measurements on about one hundred rock samples from five volcanoes, and seismic well-logs from deep boreholes at two volcanoes. The comparison of these measurements confirms the strong variability of P- and S-wave velocities, which reflects the diversity of volcanic materials. The values obtained from laboratory experiments are systematically larger than those provided by seismic models. This discrepancy mainly results from scaling problems due to the difference between the sampled volumes. The averages of the seismic models are characterized by very low velocities at the surface and a strong velocity increase at shallow depth. By adjusting analytical functions to these averages, we define a generic model that can describe the variations in P- and S-wave velocities in the first 500 m of andesitic and basaltic volcanoes. This model can be used for volcanoes where no structural information is available. The model can also account for site time correction in hypocenter determination as well as for site and path effects that are commonly observed in volcanic structures.
Chemistry of diagenetic features analyzed by ChemCam at Pahrump Hills, Gale crater, Mars
Nachon, M.; Mangold, N.; Forni, O.; ...
2017-09-01
The Curiosity rover's campaign at Pahrump Hills provides the first analyses of lower Mount Sharp strata. We report ChemCam elemental composition of a diverse assemblage of post-depositional features embedded in, or cross-cutting, the host rock. ChemCam results demonstrate their compositional diversity, especially compared to the surrounding host rock: (i) Dendritic aggregates and relief enhanced features, characterized by a magnesium enhancement and sulfur detection, and interpreted as Mg-sulfates; (ii) A localized observation that displays iron enrichment associated with sulfur, interpreted as Fe-sulfate; (iii) Dark raised ridges with varying Mg- and Ca-enriched compositions compared to host rock; (iv) Several dark-toned veins withmore » calcium enhancement associated with fluorine detection, interpreted as fluorite veins. (v) Light-toned veins with enhanced calcium associated with sulfur detection, and interpreted as Ca-sulfates. The diversity of the Pahrump Hills diagenetic assemblage suggests a complex post-depositional history for fine-grained sediments for which the origin has been interpreted as fluvial and lacustrine. Assessment of the spatial and relative temporal distribution of these features shows that the Mg-sulfate features are predominant in the lower part of the section, suggesting local modification of the sediments by early diagenetic fluids. Conversely, light-toned Ca-sulfate veins occur in the whole section and cross-cut all other features. A relatively late stage shift in geochemical conditions could explain this observation. The Pahrump Hills diagenetic features have no equivalent compared to targets analyzed in other locations at Gale crater. Only the light-toned Ca-sulfate veins are present elsewhere, along Curiosity's path, suggesting they formed through a common late-stage process that occurred at over a broad area.« less
Chemistry of diagenetic features analyzed by ChemCam at Pahrump Hills, Gale crater, Mars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nachon, M.; Mangold, N.; Forni, O.
The Curiosity rover's campaign at Pahrump Hills provides the first analyses of lower Mount Sharp strata. We report ChemCam elemental composition of a diverse assemblage of post-depositional features embedded in, or cross-cutting, the host rock. ChemCam results demonstrate their compositional diversity, especially compared to the surrounding host rock: (i) Dendritic aggregates and relief enhanced features, characterized by a magnesium enhancement and sulfur detection, and interpreted as Mg-sulfates; (ii) A localized observation that displays iron enrichment associated with sulfur, interpreted as Fe-sulfate; (iii) Dark raised ridges with varying Mg- and Ca-enriched compositions compared to host rock; (iv) Several dark-toned veins withmore » calcium enhancement associated with fluorine detection, interpreted as fluorite veins. (v) Light-toned veins with enhanced calcium associated with sulfur detection, and interpreted as Ca-sulfates. The diversity of the Pahrump Hills diagenetic assemblage suggests a complex post-depositional history for fine-grained sediments for which the origin has been interpreted as fluvial and lacustrine. Assessment of the spatial and relative temporal distribution of these features shows that the Mg-sulfate features are predominant in the lower part of the section, suggesting local modification of the sediments by early diagenetic fluids. Conversely, light-toned Ca-sulfate veins occur in the whole section and cross-cut all other features. A relatively late stage shift in geochemical conditions could explain this observation. The Pahrump Hills diagenetic features have no equivalent compared to targets analyzed in other locations at Gale crater. Only the light-toned Ca-sulfate veins are present elsewhere, along Curiosity's path, suggesting they formed through a common late-stage process that occurred at over a broad area.« less
Chemistry of diagenetic features analyzed by ChemCam at Pahrump Hills, Gale crater, Mars
Nachon, Marion; Mangold, Nicolas; Forni, Olivier; Kah, Linda C.; Cousin, Agnes; Wiens, Roger C.; Anderson, Ryan; Blaney, Diana L.; Blank, Jen G.; Calef, Fred J.; Clegg, Samuel M.; Fabre, Cecile; Fisk, Martin R.; Gasnault, Olivier; Grotzinger, John P.; Kronyak, Rachel; Lanza, Nina L.; Lasue, Jeremie; Le Deit, Laetitia; Le Mouelic, Stephane; Maurice, Sylvestre; Meslin, Pierre-Yves; Oehler, D. Z.; Payre, Valerie; Rapin, William; Schroder, Susanne; Stack, Katherine M.; Sumner, Dawn
2017-01-01
The Curiosity rover's campaign at Pahrump Hills provides the first analyses of lower Mount Sharp strata. Here we report ChemCam elemental composition of a diverse assemblage of post-depositional features embedded in, or cross-cutting, the host rock. ChemCam results demonstrate their compositional diversity, especially compared to the surrounding host rock: (i) Dendritic aggregates and relief enhanced features, characterized by a magnesium enhancement and sulfur detection, and interpreted as Mg-sulfates; (ii) A localized observation that displays iron enrichment associated with sulfur, interpreted as Fe-sulfate; (iii) Dark raised ridges with varying Mg- and Ca-enriched compositions compared to host rock; (iv) Several dark-toned veins with calcium enhancement associated with fluorine detection, interpreted as fluorite veins. (v) Light-toned veins with enhanced calcium associated with sulfur detection, and interpreted as Ca-sulfates. The diversity of the Pahrump Hills diagenetic assemblage suggests a complex post-depositional history for fine-grained sediments for which the origin has been interpreted as fluvial and lacustrine. Assessment of the spatial and relative temporal distribution of these features shows that the Mg-sulfate features are predominant in the lower part of the section, suggesting local modification of the sediments by early diagenetic fluids. In contrast, light-toned Ca-sulfate veins occur in the whole section and cross-cut all other features. A relatively late stage shift in geochemical conditions could explain this observation. The Pahrump Hills diagenetic features have no equivalent compared to targets analyzed in other locations at Gale crater. Only the light-toned Ca-sulfate veins are present elsewhere, along Curiosity's path, suggesting they formed through a common late-stage process that occurred at over a broad area.
Changes in crack shape and saturation during water penetration into stressed rock
NASA Astrophysics Data System (ADS)
Masuda, K.; Nishizawa, O.
2012-12-01
Open cracks and cavities in rocks play important roles in fluid transport. Water penetration induced microcrack activities and caused the failure of rocks. Fluids in cracks affect earthquake generation mechanism through physical and physicochemical effects. Methods of characterizing crack shape and water saturation of rocks underground are needed for many scientific and industrial applications. It would be desirable to estimate the status of cracks using readily observable data such as elastic-wave velocities. We demonstrate a laboratory method for estimating crack status inside a cylindrical rock sample based on least-squares fitting of a cracked solid model to measured P- and S-wave velocities, and porosity derived from strain data. We used a cylinder (50 mm in diameter and 100 mm in length) of medium-grained granite. We applied a differential stress of 370 MPa, which corresponds to about 70% of fracture strength, to the rock sample under 30 MPa confining pressure and held it constant throughout the experiment. When the primary creep stage and acoustic emission (AE) caused by the initial loading had ceased, we injected distilled water into the bottom end of the sample at a constant pressure of 25 MPa until macroscopic fracture occurred. During water migration, we measured P waves and S waves (Sv and Sh), in five directions parallel to the top and bottom surfaces of the sample. We also measured strains of the sample surface and monitored AE. We created X-ray computer tomography (CT) images of the rock sample after the experiment in order to recognize the location and shape of fractured surfaces. We observed the different patterns of velocity changes in the upper and lower portions of the rock sample. Changes in P-wave velocities can be interpreted based on the crack density. S-waves showed the splitting with Vsv being faster than Vsh, corresponding to the second kind of anisotropy. We estimated two crack characteristics, crack shape and the degree of water saturation, and their changes during the loading and water migration into a granitic rock subjected to confining pressure and differential stress. We found that during injection of water to induce failure of a stressed rock sample, the aspect ratio of cracks increased and the degree of water saturation increased to about 70%. Laboratory derived method can be applicable for the well-planned observation in the field experiments. Monitoring in situ crack situations with seismic waves are useful for industrial and scientific applications such as sequestrations of carbon dioxide and waste, and measuring the regional stress field.
NASA Technical Reports Server (NTRS)
Schroeder, C.; Klingelhoefer, G.; Morris, R. V.; Rodionov, D. S.; deSouza, P. A.; Ming, D. W.; Yen, A. S.; Gellert, R.; Bell, J. F., III
2005-01-01
Rocks on the ejecta blanket of Bonneville crater and along Spirit s traverse over the Gusev plains towards the Columbia Hills are angular and strewn across the surface. They have a basaltic composition [1,2], and their Mossbauer spectra are dominated by an olivine doublet [1]. The ubiquitous presence of abundant olivine in rocks and in surrounding soil suggests that physical rather than chemical weathering processes currently dominate the plains at Gusev crater [1]. However, MB spectra of rocks and outcrops in the Columbia Hills suggest more aggressive alteration processes have occurred. Ascending into the hills, Spirit encountered outcrop and rocks exhibiting layered structures. Some scattered rocks at the foot of the Columbia Hills appeared "rotten" or highly altered by physical and/or chemical processes (fig. 1). Mossbauer spectra of those rocks show a decrease in olivine accompanied by an increase in the Fe-oxides magnetite, hematite, and nanophase Fe3+ -oxides (fig. 2), suggesting that chemical weathering processes in the presence of water have altered these rocks and outcrops.
NASA Astrophysics Data System (ADS)
Melih Çörtük, Rahmi; Faruk Çelik, Ömer; Özkan, Mutlu; Sherlock, Sarah C.; Marzoli, Andrea; Altıntaş, İsmail Emir; Topuz, Gültekin
2016-04-01
The İzmir-Ankara-Erzincan suture zone in northern Turkey is one of the major tectonic zones separating the Pontides to the North from the Anatolide-Tauride block and Kı rşehir Massif to the South. The accretionary complex of the İzmir-Ankara-Erzincan suture zone, near Artova, is composed mainly of peridotites with varying degree serpentinization, metamorphic rocks, basalt, sandstones, pelagic and neritic limestones. The metamorphic rocks are represented by amphibolite, garnet micaschit, calc-schist and marble. The metamorphic rocks were interpreted as the metamorphic sole rocks. Because; (i) They are tectonically located beneath the serpentinized peridotites. (ii) Foliation planes of both the amphibolites and mantle tectonites are parallel to each other. (iii) The metamorphic rocks are crosscut by non-metamorphic dolerite dikes which exhibite Nb and Ta depletion relative to Th enrichment on the N-MORB normalized multi-element spider diagram. The dolerite dikes display flat REE patterns (LaN/YbN=0.85-1.24). These geochemical signatures of the dolerite dikes are indicative of subduction component during their occurrences. Geochemical observations of the amphibolites suggest E-MORB- and OIB-like signatures (LaN/SmN= 1.39-3.14) and their protoliths are represented by basalt and alkali basaltic rocks. Amphiboles from the amphibolites are represented by calcic amphiboles (magnesio-hornblende, tchermakite and tremolite) and they yielded 40Ar-39Ar ages between 157.8 ± 3.6 Ma and 139 ± 11 Ma. These cooling ages were interpreted to be the intra-oceanic subduction/thrusting time of the İzmir-Ankara-Erzincan oceanic domain. This study was funded by TÜBİTAK (Project no: 112Y123).
NASA Astrophysics Data System (ADS)
Hassan, M.; Abu-Alam, T. S.; Hauzenberger, C.; Stüwe, K.
2016-10-01
Late Precambrian intrusive rocks in the Arabian-Nubian Shield emplaced within and around the Najd Fault System of Saudi Arabia feature a great compositional diversity and a variety of degrees of deformation (i.e. pre-shearing deformed, sheared mylonitized, and post-shearing undeformed) that allows placing them into a relative time order. It is shown here that the degree of deformation is related to compositional variations where early, usually pre-shearing deformed rocks are of dioritic, tonalitic to granodioritic, and later, mainly post-shearing undeformed rocks are mostly of granitic composition. Correlation of the geochemical signature and time of emplacement is interpreted in terms of changes in the source region of the produced melts due to the change of the stress regime during the tectonic evolution of the Arabian-Nubian Shield. The magma of the pre-shearing rocks has tholeiitic and calc-alkaline affinity indicating island arc or continental arc affinity. In contrast, the syn- and post-shearing rocks are mainly potassium rich peraluminous granites which are typically associated with post-orogenic uplift and collapse. This variation in geochemical signature is interpreted to reflect the change of the tectonic regime from a compressional volcanic arc nature to extensional within-plate setting of the Arabian-Nubian Shield. Within the context of published geochronological data, this change is likely to have occurred around 605-580 Ma.
Interaction between ROCK II and nucleophosmin/B23 in the regulation of centrosome duplication.
Ma, Zhiyong; Kanai, Masayuki; Kawamura, Kenji; Kaibuchi, Kozo; Ye, Keqiang; Fukasawa, Kenji
2006-12-01
Nucleophosmin (NPM)/B23 has been implicated in the regulation of centrosome duplication. NPM/B23 localizes between two centrioles in the unduplicated centrosome. Upon phosphorylation on Thr(199) by cyclin-dependent kinase 2 (CDK2)/cyclin E, the majority of centrosomal NPM/B23 dissociates from centrosomes, but some NPM/B23 phosphorylated on Thr(199) remains at centrosomes. It has been shown that Thr(199) phosphorylation of NPM/B23 is critical for the physical separation of the paired centrioles, an initial event of the centrosome duplication process. Here, we identified ROCK II kinase, an effector of Rho small GTPase, as a protein that localizes to centrosomes and physically interacts with NPM/B23. Expression of the constitutively active form of ROCK II promotes centrosome duplication, while down-regulation of ROCK II expression results in the suppression of centrosome duplication, especially delaying the initiation of centrosome duplication during the cell cycle. Moreover, ROCK II regulates centrosome duplication in its kinase and centrosome localization activity-dependent manner. We further found that ROCK II kinase activity is significantly enhanced by binding to NPM/B23 and that NPM/B23 acquires a higher binding affinity to ROCK II upon phosphorylation on Thr(199). Moreover, physical interaction between ROCK II and NPM/B23 in vivo occurs in association with CDK2/cyclin E activation and the emergence of Thr(199)-phosphorylated NPM/B23. All these findings point to ROCK II as the effector of the CDK2/cyclin E-NPM/B23 pathway in the regulation of centrosome duplication.
PHYSICAL SOLUTIONS FOR ACID ROCK DRAINAGE AT REMOTE SITES DEMONSTRATION PROJECT
This report summarizes the results of Mine Waste Technology Program, Activity III, Project 42, Physical Solutions for Acid Rock Drainage at Remote Sites, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S. Department of Energy. A...
Martian soil stratigraphy and rock coatings observed in color-enhanced Viking Lander images
NASA Technical Reports Server (NTRS)
Strickland, E. L., III
1979-01-01
Subtle color variations of martian surface materials were enhanced in eight Viking Lander (VL) color images. Well-defined soil units recognized at each site (six at VL-1 and four at VL-2), are identified on the basis of color, texture, morphology, and contact relations. The soil units at the Viking 2 site form a well-defined stratigraphic sequence, whereas the sequence at the Viking 1 site is only partially defined. The same relative soil colors occur at the two sites, suggesting that similar soil units are widespread on Mars. Several types of rock surface materials can be recognized at the two sites; dark, relatively 'blue' rock surfaces are probably minimally weathered igneous rock, whereas bright rock surfaces, with a green/(blue + red) ratio higher than that of any other surface material, are interpreted as a weathering product formed in situ on the rock. These rock surface types are common at both sites. Soil adhering to rocks is common at VL-2, but rare at VL-1. The mechanism that produces the weathering coating on rocks probably operates planet-wide.
Jing and King Receive Mineral and Rock Physics Graduate Research Awards
NASA Astrophysics Data System (ADS)
Anonymous
2012-02-01
Zhicheng Jing and Daniel King have been awarded the 2011 Mineral and Rock Physics Graduate Research Award, given annually to one or more promising young scientists for outstanding contributions achieved during their Ph.D. research. Recipients of this award are engaged in experimental and/or theoretical studies of Earth and planetary materials with the purpose of unraveling the physics and chemistry that govern their origin and physical properties. Jing's thesis is entitled "Equation of state of silicate liquids." King's thesis is entitled "Stress-driven melt segregation and reactive melt infiltration in partially molten rocks deformed in torsion with applications to melt extraction from Earth's mantle." They both were formally presented with the award at the 2011 AGU Fall Meeting, held 5-9 December in San Francisco, Calif.
Jing and King Receive Mineral and Rock Physics Graduate Research Awards
NASA Astrophysics Data System (ADS)
2012-02-01
Zhicheng Jing and Daniel King have been awarded the 2011 Mineral and Rock Physics Graduate Research Award, given annually to one or more promising young scientists for outstanding contributions achieved during their Ph.D. research. Recipients of this award are engaged in experimental and/or theoretical studies of Earth and planetary materials with the purpose of unraveling the physics and chemistry that govern their origin and physical properties. Jing's thesis is entitled “Equation of state of silicate liquids.” King's thesis is entitled “Stress-driven melt segregation and reactive melt infiltration in partially molten rocks deformed in torsion with applications to melt extraction from Earth's mantle.” They both were formally presented with the award at the 2011 AGU Fall Meeting, held 5-9 December in San Francisco, Calif.
Donovan, Terrence J.; Termain, Patricia A.; Henry, Mitchell E.
1979-01-01
The Cement oil field, Oklahoma, was a test site for an experiment designed to evaluate LANDSAT's capability to detect an alteration zone in surface rocks caused by hydrocarbon microseepage. Loss of iron and impregnation of sandstone by carbonate cements and replacement of gypsum by calcite are the major alteration phenomena at Cement. The bedrock alterations are partially masked by unaltered overlying beds, thick soils, and dense natural and cultivated vegetation. Interpreters biased by detailed ground truth were able to map the alteration zone subjectively using a magnified, filtered, and sinusoidally stretched LANDSAT composite image; other interpreters, unbiased by ground truth data, could not duplicate that interpretation. Similar techniques were applied at a secondary test site (Garza oil field, Texas), where similar alterations in surface rocks occur. Enhanced LANDSAT images resolved the alteration zone to a biased interpreter and some individual altered outcrops could be mapped using higher resolution SKYLAB color and conventional black and white aerial photographs suggesting repeat experiments with LANDSAT C and D.
NASA Astrophysics Data System (ADS)
Koeberl, Christian; Plescia, J. B.; Hayward, Chris L.; Reimold, Wolf Uwe
1999-11-01
Upheaval Dome, in Canyonlands National Park, Utah, USA, is a unique structure on the Colorado Plateau. It has earlier been interpreted as an impact structure or as a pinched-off salt diapir. Some subrounded quartzose fragments were found in a ring depression near the eastern margin of the structure and, based on vesicularity and apparent flow structure, the fragments were earlier interpreted researchers as "impactites". Our petrographic studies show no indication of a high-temperature history and are in agreement with a slow, low-temperature formation of the quartz nodules. Compositionally, the lag deposit samples are almost pure SiO2. They show no chemical similarity to any of the possible target rocks (e.g., Navajo Sandstone), from which they should have formed by melting if they were impactites. Instead, the samples have relatively high contents of elements that indicate fluid interaction (e.g., hydrothermal growth), such as As, Sb, Ba, and U, and show positive Ce anomalies. Thus, we interpret the "lag deposit samples" as normal low-temperature (hydrothermally-grown?) quartz that show no indication of being impact-derived. In addition, a petrographic and geochemical analysis of a series of dike samples yielded no evidence for shock metamorphism or a meteoritic component.
Koeberl, C.; Plescia, J.B.; Hayward, C.L.; Reimold, W.U.
1999-01-01
Upheaval Dome, in Canyonlands National Park, Utah, USA, is a unique structure on the Colorado Plateau. It has earlier been interpreted as an impact structure or as a pinched-off salt diapir. Some subrounded quartzose fragments were found in a ring depression near the eastern margin of the structure and, based on vesicularity and apparent flow structure, the fragments were interpreted by early researchers as 'impactites.' Our petrographic studies show no indication of a high-temperature history and are in agreement with a slow, low-temperature formation of the quartz nodules. Compositionally, the lag deposit samples are almost pure SiO2. They show no chemical similarity to any of the possible target rocks (e.g., Navajo Sandstone), from which they should have formed by melting if they were impactites. Instead, the samples have relatively high contents of elements that indicate fluid interaction (e.g., hydrothermal growth), such as As, Sb, Ba, and U, and show positive Ce anomalies. Thus, we interpret the 'lag deposit samples' as normal low-temperature (hydrothermally-grown?) quartz that show no indication of being impact-derived. In addition, a petrographic and geochemical analysis of a series of dike samples yielded no evidence for shock metamorphism or a meteoritic component.
A Magnetic Petrology Database for Satellite Magnetic Anomaly Interpretations
NASA Astrophysics Data System (ADS)
Nazarova, K.; Wasilewski, P.; Didenko, A.; Genshaft, Y.; Pashkevich, I.
2002-05-01
A Magnetic Petrology Database (MPDB) is now being compiled at NASA/Goddard Space Flight Center in cooperation with Russian and Ukrainian Institutions. The purpose of this database is to provide the geomagnetic community with a comprehensive and user-friendly method of accessing magnetic petrology data via Internet for more realistic interpretation of satellite magnetic anomalies. Magnetic Petrology Data had been accumulated in NASA/Goddard Space Flight Center, United Institute of Physics of the Earth (Russia) and Institute of Geophysics (Ukraine) over several decades and now consists of many thousands of records of data in our archives. The MPDB was, and continues to be in big demand especially since recent launching in near Earth orbit of the mini-constellation of three satellites - Oersted (in 1999), Champ (in 2000), and SAC-C (in 2000) which will provide lithospheric magnetic maps with better spatial and amplitude resolution (about 1 nT). The MPDB is focused on lower crustal and upper mantle rocks and will include data on mantle xenoliths, serpentinized ultramafic rocks, granulites, iron quartzites and rocks from Archean-Proterozoic metamorphic sequences from all around the world. A substantial amount of data is coming from the area of unique Kursk Magnetic Anomaly and Kola Deep Borehole (which recovered 12 km of continental crust). A prototype MPDB can be found on the Geodynamics Branch web server of Goddard Space Flight Center at http://core2.gsfc.nasa.gov/terr_mag/magnpetr.html. The MPDB employs a searchable relational design and consists of 7 interrelated tables. The schema of database is shown at http://core2.gsfc.nasa.gov/terr_mag/doc.html. MySQL database server was utilized to implement MPDB. The SQL (Structured Query Language) is used to query the database. To present the results of queries on WEB and for WEB programming we utilized PHP scripting language and CGI scripts. The prototype MPDB is designed to search database by major satellite magnetic anomaly, tectonic structure, geographical location, rock type, magnetic properties, chemistry and reference, see http://core2.gsfc.nasa.gov/terr_mag/query1.html. The output of database is HTML structured table, text file, and downloadable file. This database will be very useful for studies of lithospheric satellite magnetic anomalies on the Earth and other terrestrial planets.
A Reconsideration of the Extension Strain Criterion for Fracture and Failure of Rock
NASA Astrophysics Data System (ADS)
Wesseloo, J.; Stacey, T. R.
2016-12-01
The complex behaviours of rocks and rock masses have presented paradoxes to the rock engineer, including the fracturing of seemingly strong rock under low stress conditions, which often occurs near excavation boundaries. The extension strain criterion was presented as a fracture initiation criterion under these conditions (Stacey in Int J Rock Mech Min Sci 18:469-474, 1981). This criterion has been used successfully by some and criticised by others. In this paper, we review the literature on the extension strain criterion and present a case for the correct interpretation of the criterion and the conditions suitable for its use. We argue that the extension strain criterion can also be used to provide an indication of damage level under conditions of relatively low confining stress. We also present an augmentation of the criterion, the ultimate extension strain, which is applicable under extensional loading conditions when σ 2 is similar in magnitude to σ 1.
Cyclic and Fatigue Behaviour of Rock Materials: Review, Interpretation and Research Perspectives
NASA Astrophysics Data System (ADS)
Cerfontaine, B.; Collin, F.
2018-02-01
The purpose of this paper is to provide a comprehensive state of the art of fatigue and cyclic loading of natural rock materials. Papers published in the literature are classified and listed in order to ease bibliographical review, to gather data (sometimes contradictory) on classical experimental results and to analyse the main interpretation concepts. Their advantages and limitations are discussed, and perspectives for further work are highlighted. The first section summarises and defines the different experimental set-ups (type of loading, type of experiment) already applied to cyclic/fatigue investigation of rock materials. The papers are then listed based on these different definitions. Typical results are highlighted in next section. Fatigue/cyclic loading mainly results in accumulation of plastic deformation and/or damage cycle after cycle. A sample cyclically loaded at constant amplitude finally leads to failure even if the peak load is lower than its monotonic strength. This subcritical crack is due to a diffuse microfracturing and decohesion of the rock structure. The third section reviews and comments the concepts used to interpret the results. The fatigue limit and S- N curves are the most common concepts used to describe fatigue experiments. Results published from all papers are gathered into a single figure to highlight the tendency. Predicting the monotonic peak strength of a sample is found to be critical in order to compute accurate S- N curves. Finally, open questions are listed to provide a state of the art of grey areas in the understanding of fatigue mechanisms and challenges for the future.
NASA Astrophysics Data System (ADS)
Denis, Carole M. M.; Demouchy, Sylvie; Alard, Olivier
2018-03-01
Experimental studies have shown that hydrogen embedded as a trace element in mantle mineral structures affects the physical properties of mantle minerals and rocks. Nevertheless, hydrogen concentrations in mantle minerals are much lower than predicted by hydrogen solubilities obtained experimentally at high pressure and temperature. Here, we report textural analyses and major and trace element concentrations (including hydrogen) in upper mantle minerals from a spinel-bearing composite xenolith (dunite and pyroxenite) transported by silica-undersaturated mafic alkaline lavas from the San Carlos volcanic field (Arizona, USA). Our results suggest that the composite xenolith results from the percolation-reaction of a basaltic liquid within dunite channels, and is equilibrated with respect to trace elements. Equilibrium temperatures range between 1011 and 1023 °C. Hydrogen concentrations (expressed in ppm H2O by weight) obtained from unpolarized and polarized Fourier transform infrared spectroscopy are low, with average values <2 ppm H2O, 24 ppm H2O, and 53 ppm H2O for olivine, orthopyroxene, and clinopyroxene, respectively; hydrogen concentrations in olivine are below the detection limit. These low hydrogen concentrations are consistent with depletion by high melt-rock ratio interactions. Clinopyroxene hydrogen concentrations are homogeneous, whereas polarized infrared profile measurements across single-crystals of orthopyroxene reveal hydrogen-depleted rims, which are interpreted as the result of dehydration by ionic diffusion, possibly triggered by melt-rock interactions. We conclude that pyroxenes, like olivine, are unreliable hydrogen proxies, and that the remaining hydrogen concentrations observed in peridotites might only represent the 'tip of the iceberg' of the water stored in the Earth's upper mantle.
Site Characterization for a Deep Borehole Field Test
NASA Astrophysics Data System (ADS)
Kuhlman, K. L.; Hardin, E. L.; Freeze, G. A.; Sassani, D.; Brady, P. V.
2015-12-01
The US Department of Energy Office of Nuclear Energy is at the beginning of 5-year Deep Borehole Field Test (DBFT) to investigate the feasibility of constructing and characterizing two boreholes in crystalline basement rock to a depth of 5 km (16,400 ft). The concept of deep borehole disposal for radioactive waste has some advantages over mined repositories, including incremental construction and loading, the enhanced natural barriers provided by deep continental crystalline basement, and reduced site characterization. Site characterization efforts need to determine an eligible site that does not have the following disqualifying characteristics: greater than 2 km to crystalline basement, upward vertical fluid potential gradients, presence of economically exploitable natural resources, presence of high permeability connection to the shallow subsurface, and significant probability of future seismic or volcanic activity. Site characterization activities for the DBFT will include geomechanical (i.e., rock in situ stress state, and fluid pressure), geological (i.e., rock and fracture infill lithology), hydrological (i.e., quantity of fluid, fluid convection properties, and solute transport mechanisms), and geochemical (i.e., rock-water interaction and natural tracers) aspects. Both direct (i.e., sampling and in situ testing) and indirect (i.e., borehole geophysical) methods are planned for efficient and effective characterization of these site aspects and physical processes. Borehole-based characterization will be used to determine the variability of system state (i.e., stress, pressure, temperature, and chemistry) with depth, and interpretation of material and system parameters relevant to numerical site simulation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Viccaro, Marco; Calcagno, Rosario; Garozzo, Ileana; Giuffrida, Marisa; Nicotra, Eugenio
2015-02-01
Volcanic rocks erupted during the January 2011 - April 2013 paroxysmal sequence at Mt. Etna volcano have been investigated through in situ microanalysis of mineral phases and whole rock geochemistry. These products have been also considered within the framework of the post-2001 record, evidencing that magmas feeding the 2011-2013 paroxysmal activity inherited deep signature comparable to that of the 2007-2009 volcanic rocks for what concerns their trace element concentration. Analysis performed on plagioclase, clinopyroxene and olivine, which are sensitive to differentiation processes, show respectively fluctuations of the An, Mg# and Fo contents during the considered period. Also major and trace elements measured on the whole rock provide evidence of the evolutionary degree variations through time. Simulations by MELTS at fixed chemical-physical parameters allowed the definition of feeding system dynamics controlling the geochemical variability of magmas during the 2011-2013 period. Specifically, compositional changes have been interpreted as due to superimposition of fractional crystallization and mixing in variable proportions with more basic magma ascending from intermediate to shallower levels of the plumbing system. Composition of the recharging end-member is compatible with that of the most basic magmas emitted during the 2007 and the early paroxysmal eruptions of 2012. Analysis of the erupted volumes of magma combined with its petrologic evolution through time support the idea that large volumes of magma are continuously intruded and stored in the intermediate plumbing system after major recharging phases in the deepest levels of it. Transient recharge from the intermediate to the shallow levels is then responsible for the paroxysmal eruptions.
The Place of Rock and Mineral Identification in Geoscience Programs
NASA Astrophysics Data System (ADS)
Nicholls, J.
2011-12-01
Geoscience programs traditionally required a significant amount of class and laboratory time for students to learn to identify Earth materials: minerals, rocks, soils, and fossils. Two decades ago, courses devoted to the mineral sciences, mineralogy and petrology, constituted approximately 20% of a geoscience program. Today, they make up between 5% and 10% of the courses in such a program. Two decades ago students spent their laboratory time learning to identify Earth materials. Today, they do the same thing, even though the time set aside for students to achieve proficiency is limited. A typical learning objective for a geoscience program reads: Identify common Earth materials and interpret their composition, origin and uses. The three underlined words convey the essence of the objective: We ask students to identify and interpret common Earth materials, which begs the questions: Do the common Earth materials provide adequate information for interpreting the composition, origin, and use of Earth materials? Do modern curricula contain enough laboratory time for students to learn to identify Earth materials? Do all geoscientists need to be able to identify Earth materials? The assemblage kyanite plus sillimanite is crucial for interpreting metamorphic history yet they are not common minerals. The IUGS classification contains 179 rock names yet we expect students to identify only a handful of them. The upper mantle is dominated by peridotite yet do geophysicists need to be able to identify peridotite in order to study the upper mantle? All geoscientists should be able to interpret Earth materials, at least at some level, and deduce the information Earth materials provide about Earth history and processes. Only a subset of geoscientists needs to learn how to identify them. Identification skills can be learned in upper level courses designed for those who will become mineral scientists. Many of the interpretations derived from Earth materials can be learned in the lower level courses required of all geoscience students.
Segmentation-less Digital Rock Physics
NASA Astrophysics Data System (ADS)
Tisato, N.; Ikeda, K.; Goldfarb, E. J.; Spikes, K. T.
2017-12-01
In the last decade, Digital Rock Physics (DRP) has become an avenue to investigate physical and mechanical properties of geomaterials. DRP offers the advantage of simulating laboratory experiments on numerical samples that are obtained from analytical methods. Potentially, DRP could allow sparing part of the time and resources that are allocated to perform complicated laboratory tests. Like classic laboratory tests, the goal of DRP is to estimate accurately physical properties of rocks like hydraulic permeability or elastic moduli. Nevertheless, the physical properties of samples imaged using micro-computed tomography (μCT) are estimated through segmentation of the μCT dataset. Segmentation proves to be a challenging and arbitrary procedure that typically leads to inaccurate estimates of physical properties. Here we present a novel technique to extract physical properties from a μCT dataset without the use of segmentation. We show examples in which we use segmentation-less method to simulate elastic wave propagation and pressure wave diffusion to estimate elastic properties and permeability, respectively. The proposed method takes advantage of effective medium theories and uses the density and the porosity that are measured in the laboratory to constrain the results. We discuss the results and highlight that segmentation-less DRP is more accurate than segmentation based DRP approaches and theoretical modeling for the studied rock. In conclusion, the segmentation-less approach here presented seems to be a promising method to improve accuracy and to ease the overall workflow of DRP.
The Mapping X-ray Fluorescence Spectrometer (MapX)
NASA Astrophysics Data System (ADS)
Sarrazin, P.; Blake, D. F.; Marchis, F.; Bristow, T.; Thompson, K.
2017-12-01
Many planetary surface processes leave traces of their actions as features in the size range 10s to 100s of microns. The Mapping X-ray Fluorescence Spectrometer (MapX) will provide elemental imaging at 100 micron spatial resolution, yielding elemental chemistry at a scale where many relict physical, chemical, or biological features can be imaged and interpreted in ancient rocks on planetary bodies and planetesimals. MapX is an arm-based instrument positioned on a rock or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample with X-rays or alpha-particles / gamma-rays, resulting in sample X-ray Fluorescence (XRF). X-rays emitted in the direction of an X-ray sensitive CCD imager pass through a 1:1 focusing lens (X-ray micro-pore Optic (MPO)) that projects a spatially resolved image of the X-rays onto the CCD. The CCD is operated in single photon counting mode so that the energies and positions of individual X-ray photons are recorded. In a single analysis, several thousand frames are both stored and processed in real-time. Higher level data products include single-element maps with a lateral spatial resolution of 100 microns and quantitative XRF spectra from ground- or instrument- selected Regions of Interest (ROI). XRF spectra from ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. When applied to airless bodies and implemented with an appropriate radioisotope source for alpha-particle excitation, MapX will be able to analyze biogenic elements C, N, O, P, S, in addition to the cations of the rock-forming elements >Na, accessible with either X-ray or gamma-ray excitation. The MapX concept has been demonstrated with a series of lab-based prototypes and is currently under refinement and TRL maturation.
Modeling of carbonate reservoir variable secondary pore space based on CT images
NASA Astrophysics Data System (ADS)
Nie, X.; Nie, S.; Zhang, J.; Zhang, C.; Zhang, Z.
2017-12-01
Digital core technology has brought convenience to us, and X-ray CT scanning is one of the most common way to obtain 3D digital cores. However, it can only provide the original information of the only samples being scanned, and we can't modify the porosity of the scanned cores. For numerical rock physical simulations, a series of cores with variable porosities are needed to determine the relationship between the physical properties and porosity. In carbonate rocks, the secondary pore space including dissolution pores, caves and natural fractures is the key reservoir space, which makes the study of carbonate secondary porosity very important. To achieve the variation of porosities in one rock sample, based on CT scanned digital cores, according to the physical and chemical properties of carbonate rocks, several mathematical methods are chosen to simulate the variation of secondary pore space. We use the erosion and dilation operations of mathematical morphology method to simulate the pore space changes of dissolution pores and caves. We also use the Fractional Brownian Motion model to generate natural fractures with different widths and angles in digital cores to simulate fractured carbonate rocks. The morphological opening-and-closing operations in mathematical morphology method are used to simulate distribution of fluid in the pore space. The established 3D digital core models with different secondary porosities and water saturation status can be used in the study of the physical property numerical simulations of carbonate reservoir rocks.
NASA Astrophysics Data System (ADS)
Braun, Jean; van der Beek, Peter; Batt, Geoffrey
2006-05-01
Thermochronology, the study of the thermal history of rocks, enables us to quantify the nature and timing of tectonic processes. Quantitative Thermochronology is a robust review of isotopic ages, and presents a range of numerical modeling techniques to allow the physical implications of isotopic age data to be explored. The authors provide analytical, semi-analytical, and numerical solutions to the heat transfer equation in a range of tectonic settings and under varying boundary conditions. They then illustrate their modeling approach built around a large number of case studies. The benefits of different thermochronological techniques are also described. Computer programs on an accompanying website at www.cambridge.org/9780521830577 are introduced through the text and provide a means of solving the heat transport equation in the deforming Earth to predict the ages of rocks and compare them directly to geological and geochronological data. Several short tutorials, with hints and solutions, are also included. Numerous case studies help geologists to interpret age data and relate it to Earth processes Essential background material to aid understanding and using thermochronological data Provides a thorough treatise on numerical modeling of heat transport in the Earth's crust Supported by a website hosting relevant computer programs and colour slides of figures from the book for use in teaching
Fast-moving dislocations trigger flash weakening in carbonate-bearing faults during earthquakes.
Spagnuolo, Elena; Plümper, Oliver; Violay, Marie; Cavallo, Andrea; Di Toro, Giulio
2015-11-10
Rupture fronts can cause fault displacement, reaching speeds up to several ms(-1) within a few milliseconds, at any distance away from the earthquake nucleation area. In the case of silicate-bearing rocks the abrupt slip acceleration results in melting at asperity contacts causing a large reduction in fault frictional strength (i.e., flash weakening). Flash weakening is also observed in experiments performed in carbonate-bearing rocks but evidence for melting is lacking. To unravel the micro-physical mechanisms associated with flash weakening in carbonates, experiments were conducted on pre-cut Carrara marble cylinders using a rotary shear apparatus at conditions relevant to earthquakes propagation. In the first 5 mm of slip the shear stress was reduced up to 30% and CO2 was released. Focused ion beam, scanning and transmission electron microscopy investigations of the slipping zones reveal the presence of calcite nanograins and amorphous carbon. We interpret the CO2 release, the formation of nanograins and amorphous carbon to be the result of a shock-like stress release associated with the migration of fast-moving dislocations. Amorphous carbon, given its low friction coefficient, is responsible for flash weakening and promotes the propagation of the seismic rupture in carbonate-bearing fault patches.
Mammola, Stefano; Giachino, Pier Mauro; Piano, Elena; Jones, Alexandra; Barberis, Marcel; Badino, Giovanni; Isaia, Marco
2016-12-01
The term Milieu Souterrain Superficiel (MSS) has been used since the early 1980s in subterranean biology to categorize an array of different hypogean habitats. In general terms, a MSS habitat represents the underground network of empty air-filled voids and cracks developing within multiple layers of rock fragments. Its origins can be diverse and is generally covered by topsoil. The MSS habitat is often connected both with the deep hypogean domain-caves and deep rock cracks-and the superficial soil horizon. A MSS is usually characterized by peculiar microclimatic conditions, and it can harbor specialized hypogean, endogean, and surface-dwelling species. In light of the many interpretations given by different authors, we reviewed 235 papers regarding the MSS in order to provide a state-of-the-art description of these habitats and facilitate their study. We have briefly described the different types of MSS mentioned in the scientific literature (alluvial, bedrock, colluvial, volcanic, and other types) and synthesized the advances in the study of the physical and ecological factors affecting this habitat-i.e., microclimate, energy flows, animal communities, and trophic interactions. We finally described and reviewed the available sampling methods used to investigate MSS fauna.
NASA Astrophysics Data System (ADS)
Mammola, Stefano; Giachino, Pier Mauro; Piano, Elena; Jones, Alexandra; Barberis, Marcel; Badino, Giovanni; Isaia, Marco
2016-12-01
The term Milieu Souterrain Superficiel (MSS) has been used since the early 1980s in subterranean biology to categorize an array of different hypogean habitats. In general terms, a MSS habitat represents the underground network of empty air-filled voids and cracks developing within multiple layers of rock fragments. Its origins can be diverse and is generally covered by topsoil. The MSS habitat is often connected both with the deep hypogean domain—caves and deep rock cracks—and the superficial soil horizon. A MSS is usually characterized by peculiar microclimatic conditions, and it can harbor specialized hypogean, endogean, and surface-dwelling species. In light of the many interpretations given by different authors, we reviewed 235 papers regarding the MSS in order to provide a state-of-the-art description of these habitats and facilitate their study. We have briefly described the different types of MSS mentioned in the scientific literature (alluvial, bedrock, colluvial, volcanic, and other types) and synthesized the advances in the study of the physical and ecological factors affecting this habitat—i.e., microclimate, energy flows, animal communities, and trophic interactions. We finally described and reviewed the available sampling methods used to investigate MSS fauna.
Jolliff, B.; Knoll, A.; Morris, R.V.; Moersch, J.; McSween, H.; Gilmore, M.; Arvidson, R.; Greeley, R.; Herkenhoff, K.; Squyres, S.
2002-01-01
Blind field tests of the Field Integration Design and Operations (FIDO) prototype Mars rover were carried out 7-16 May 2000. A Core Operations Team (COT), sequestered at the Jet Propulsion Laboratory without knowledge of test site location, prepared command sequences and interpreted data acquired by the rover. Instrument sensors included a stereo panoramic camera, navigational and hazard-avoidance cameras, a color microscopic imager, an infrared point spectrometer, and a rock coring drill. The COT designed command sequences, which were relayed by satellite uplink to the rover, and evaluated instrument data. Using aerial photos and Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data, and information from the rover sensors, the COT inferred the geology of the landing site during the 18 sol mission, including lithologic diversity, stratigraphic relationships, environments of deposition, and weathering characteristics. Prominent lithologic units were interpreted to be dolomite-bearing rocks, kaolinite-bearing altered felsic volcanic materials, and basalt. The color panoramic camera revealed sedimentary layering and rock textures, and geologic relationships seen in rock exposures. The infrared point spectrometer permitted identification of prominent carbonate and kaolinite spectral features and permitted correlations to outcrops that could not be reached by the rover. The color microscopic imager revealed fine-scale rock textures, soil components, and results of coring experiments. Test results show that close-up interrogation of rocks is essential to investigations of geologic environments and that observations must include scales ranging from individual boulders and outcrops (microscopic, macroscopic) to orbital remote sensing, with sufficient intermediate steps (descent images) to connect in situ and remote observations.
Permafrost Favourability Index: Spatial modelling in the French Alps using a Rock Glacier Inventory
NASA Astrophysics Data System (ADS)
Marcer, Marco; Bodin, Xavier; Brenning, Alexander; Schoeneich, Philippe; Charvet, Raphaële; Gottardi, Frédéric
2017-12-01
In the present study we used the first rock glacier inventory for the entire French Alps to model spatial permafrost distribution in the region. The inventory, which does not originally belong to this study, was revised by the authors in order to obtain a database suitable for statistical modelling. Climatic and topographic data evaluated at the rock glacier locations were used as predictor variables in a Generalized Linear Model. Model performances are strong, suggesting that, in agreement with several previous studies, this methodology is able to model accurately rock glacier distribution. A methodology to estimate model uncertainties is proposed, revealing that the subjectivity in the interpretation of rock glacier activity and contours may substantially bias the model. The model highlights a North-South trend in the regional pattern of permafrost distribution which is attributed to the climatic influences of the Atlantic and Mediterranean climates. Further analysis suggest that lower amounts of precipitation in the early winter and a thinner snow cover, as typically found in the Mediterranean area, could contribute to the existence of permafrost at higher temperatures compared to the Northern Alps. A comparison with the Alpine Permafrost Index Map (APIM) shows no major differences with our model, highlighting the very good predictive power of the APIM despite its tendency to slightly overestimate permafrost extension with respect to our database. The use of rock glaciers as indicators of permafrost existence despite their time response to climate change is discussed and an interpretation key is proposed in order to ensure the proper use of the model for research as well as for operational purposes.
Accounting hierarchical heterogeneity of rock during its working off by explosive methods
NASA Astrophysics Data System (ADS)
Hachay, Olga; Khachay, Oleg
2017-04-01
First the phenomenon of zonal disintegration of rocks around excavations have been described and published as a discovery. Questions of structures formation are related to the fundamental problems of the natural sciences and the study of the structural appearance is one of the most important purposes of scientific knowledge. In real systems, considered in physics, it had been found spatial and temporal structures. The temporal structures are inseparable from the dynamics of the system, here it are particularly important principles of pointedness and causality. Formation of structures by irreversible processes is associated with a qualitative leap when it reaches the critical parameters. Self organization is a supercritical phenomenon when the system parameters exceed their critical values. When the system deviates greatly from its equilibrium, it's state variables satisfy the nonlinear equations. Non linearity is an important and common feature of the processes taking place far from equilibrium. By that the supercritical output of entropy is only possible if there is an unusual, special internal structure of the system. This means that self-organization is not a universal property of matter; it exists in certain internal and external conditions and is not associated with a particular class of substances. So, there are two classes of irreversible processes: 1.Destroying of the structure near the equilibrium position that is a universal property of systems under arbitrary conditions. 2. Occuring structures far from the equilibrium position under the conditions that the system is open and has a non-linear internal dynamics and its external parameters have supercritical parameters. Prigogine called them dissipative structures. The study of the morphology and dynamics of the migration of these zones is of particular importance when developing deep deposits, complicated by, dynamically events as rock bursts. Important tools for this study are the geophysical surveys. Because the information about the structure and state of the environment can be obtained from the geophysical data by interpreting them in frames of the model, which is an approximation to the real environment, therefore you must select it from the class of physically and geologically reasonable. For a description of the geological environment in the form of a rock massif with its natural and technogenic heterogeneity we should use more adequate description as is a discrete model of the environment in the form of a piece wise non-homogeneous block media with embedded heterogeneities of lower rank than the block size . This nesting can be traced back several times, ie, changing the scale of the study, we see that the heterogeneity of lower rank now appear as blocks for the irregularities of the next rank. The simple average of the measured geophysical parameters can lead to a distorted view of the structure of the environment and its evolution. The Institute of Geophysics, UB RAS has developed a hardware-methodological and interpretative system for studying the structure and state of complex geological environment, which has the potential instability and the ability to rebuild the hierarchy structure with significant external influence. The basis of this complex is the developed 3-D technique planshet electromagnetic induction studies in frequency geometrical variant, resting on one side on the interpretation software system for 3-D alternating electromagnetic fields, and on the other hand on developed by Ph.D. A.I.Chelovechkov device for carrying out the inductive research. On the basis of this technology the active monitoring of the structure and state of the rock massif inside the mines of different material composition can be provided, it can be carried out to detect short-term precursors of strong dynamic phenomena according to the electromagnetic induction monitoring. There are developed algorithms for modeling of electromagnetic fields in hierarchic heterogeneous media.
A new 3-D thin-skinned rock glacier model based on helicopter GPR results from the Swiss Alps
NASA Astrophysics Data System (ADS)
Merz, Kaspar; Green, Alan G.; Buchli, Thomas; Springman, Sarah M.; Maurer, Hansruedi
2015-06-01
Mountainous locations and steep rugged surfaces covered by boulders and other loose debris are the main reasons why rock glaciers are among the most challenging geological features to investigate using ground-based geophysical methods. Consequently, geophysical surveys of rock glaciers have only ever involved recording data along sparse lines. To address this issue, we acquired quasi-3-D ground-penetrating radar (GPR) data across a rock glacier in the Swiss Alps using a helicopter-mounted system. Our interpretation of the derived GPR images constrained by borehole information results in a novel "thin-skinned" rock glacier model that explains a concentration of deformation across a principal shear zone (décollement) and faults across which rock glacier lobes are juxtaposed. The new model may be applicable to many rock glaciers worldwide. We suggest that the helicopter GPR method may be useful for 3-D surveying numerous other difficult-to-access mountainous terrains.
Gao, Jintian; Gu, Zuowen; Dagva, Baatarkhuu; Tserenpil, Batsaikhan
2013-01-01
Petrophysical properties of 585 rock samples from the Suhbaatar-Ulaanbaatar-Dalandzadgad geophysical profile in Mongolia are presented. Based on the rock classifications and tectonic units, petrophysical parameters (bulk density, magnetic susceptibility, intensity of natural remanent magnetization, and Köenigsberger ratio) of these rocks are summarized. Results indicate that (1) significant density contrast of different rocks would result in variable gravity anomalies along the profile; (2) magnetic susceptibility and natural remanent magnetization of all rocks are variable, covering 5-6 orders of magnitude, which would make a variable induced magnetization and further links to complex magnetic anomalies in ground surface; (3) the distribution of rocks with different lithologies controls the pattern of lithospheric magnetic anomaly along the profile. The petrophysical database thus provides not only one of the keys to understand the geological history and structure of the profile, but also essential information for analysis and interpretation of the geophysical (e.g., magnetic and gravity) survey data. PMID:24324382
Assessments of Potential Rock Coatings at Rocknest, Gale Crater with ChemCam
NASA Technical Reports Server (NTRS)
Blaney, D. L.; Anderson, R.; Berger, G.; Bridges, J.; Bridges, N.; Clark, B.; Clegg, S.; Ehlman, B.; Goetz, W.; King, P.;
2013-01-01
Many locations on Mars have low color contrast between the rocks and soils due to the rocks being "dusty"--basically having a surface that is spectrally similar to Martian soil. In general this has been interpreted as soil and/or dust clinging to the rock though either mechanical or electrostic processes. However, given the apparent mobility of thin films of water forming cemented soils on Mars and at Gale Crater, the possibility exists that some of these "dusty" surfaces may actually be coatings formed by thin films of water locally mobilizing soil/air fall material at the rock interface. This type of coating was observed by Spirit during an investigation of the rock Mazatzal which showed enhanced salts above "normal soil" and an enhancement of nano phase iron oxide that was 10 micronmeters thick. We decided to use ChemCam to investigate the possibility of similar rock coatings forming at the Rocknest site at Gale Crater.
Yang, Tao; Gao, Jintian; Gu, Zuowen; Dagva, Baatarkhuu; Tserenpil, Batsaikhan
2013-01-01
Petrophysical properties of 585 rock samples from the Suhbaatar-Ulaanbaatar-Dalandzadgad geophysical profile in Mongolia are presented. Based on the rock classifications and tectonic units, petrophysical parameters (bulk density, magnetic susceptibility, intensity of natural remanent magnetization, and Köenigsberger ratio) of these rocks are summarized. Results indicate that (1) significant density contrast of different rocks would result in variable gravity anomalies along the profile; (2) magnetic susceptibility and natural remanent magnetization of all rocks are variable, covering 5-6 orders of magnitude, which would make a variable induced magnetization and further links to complex magnetic anomalies in ground surface; (3) the distribution of rocks with different lithologies controls the pattern of lithospheric magnetic anomaly along the profile. The petrophysical database thus provides not only one of the keys to understand the geological history and structure of the profile, but also essential information for analysis and interpretation of the geophysical (e.g., magnetic and gravity) survey data.
Evidence for life on Earth more than 3850 million years ago.
Holland, H D
1997-01-03
A recent study by Mojzsis et al., (Nature 384, 55, 1996) found evidence of life in rocks in Greenland estimated by new isotopic data to be more than 3800 million years old. The author examines this study in relation to studies conducted on rocks between 3250 and 3800 million years old and presents reasons to agree and disagree with the interpretation of data.
High Spatial Resolution 40Ar/39Ar Geochronology of Lunar Impact Melt Rocks
NASA Astrophysics Data System (ADS)
Mercer, Cameron Mark
Impact cratering has played a key role in the evolution of the solid surfaces of Solar System bodies. While much of Earth’s impact record has been erased, its Moon preserves an extensive history of bombardment. Quantifying the timing of lunar impact events is crucial to understanding how impacts have shaped the evolution of early Earth, and provides the basis for estimating the ages of other cratered surfaces in the Solar System. Many lunar impact melt rocks are complex mixtures of glassy and crystalline “melt” materials and inherited clasts of pre-impact minerals and rocks. If analyzed in bulk, these samples can yield complicated incremental release 40Ar/39Ar spectra, making it challenging to uniquely interpret impact ages. Here, I have used a combination of high-spatial resolution 40Ar/39Ar geochronology and thermal-kinetic modeling to gain new insights into the impact histories recorded by such lunar samples. To compare my data to those of previous studies, I developed a software tool to account for differences in the decay, isotopic, and monitor age parameters used for different published 40Ar/39Ar datasets. Using an ultraviolet laser ablation microprobe (UVLAMP) system I selectively dated melt and clast components of impact melt rocks collected during the Apollo 16 and 17 missions. UVLAMP 40Ar/39Ar data for samples 77135, 60315, 61015, and 63355 show evidence of open-system behavior, and provide new insights into how to interpret some complexities of published incremental heating 40Ar/39Ar spectra. Samples 77115, 63525, 63549, and 65015 have relatively simple thermal histories, and UVLAMP 40Ar/39Ar data for the melt components of these rocks indicate the timing of impact events—spanning hundreds of millions of years—that influenced the Apollo 16 and 17 sites. My modeling and UVLAMP 40Ar/39Ar data for sample 73217 indicate that some impact melt rocks can quantitatively retain evidence for multiple melt-producing impact events, and imply that such polygenetic rocks should be regarded as high-value sampling opportunities during future exploration missions to cratered planetary surfaces. Collectively, my results complement previous incremental heating 40Ar/39Ar studies, and support interpretations that the Moon experienced a prolonged period of heavy bombardment early in its history.
NASA Astrophysics Data System (ADS)
Nachon, M.; Sumner, D. Y.; Borges, S. R.; Stack, K.; Stein, N.; Watkins, J. A.; Banham, S.; Rivera-Hernandez, F.; Wiens, R. C.; l'Haridon, J.; Rapin, W.; Kronyak, R. E.
2017-12-01
Since landing at Gale crater, Mars, in August 2012, the Curiosity rover has driven through more than 300m of stratigraphy. From the first to the most recent sedimentary rocks explored, light-toned veins have been observed cutting the host-rock and were interpreted as diagenetic features emplaced by hydraulic fracturing. Chemical and mineralogical analyses show they consist of Ca-sulfate. Here we report on the veins' distribution within two geological formations explored more recently by the rover: (a) the Murray Formation that consists mainly of fine-grained laminated rocks that have been interpreted as having been deposited in a former lacustrine environment [1], and (b) the Stimson Formation, which lies unconformably above the Murray, and consists of cross bedded sandstones interpreted as being deposited in a aeolian environment [2]. We have performed a systematic observation of the veins within the MastCam images, from the base of the Murray (Sol 750) up to Sol 1515 [3], described their main geometrical characteristics (e.g. orientation to laminae, relative density, branching). Five veins facies were defined based on veins' geometrical properties, abundance, and host-rock grain size. The distribution of veins facies was placed within the broader stratigraphic context. The distribution of veins within the Murray and Stimson Formations shows strong rheological controls. In the Murray, light-toned veins are present from the basal part of the section up to the most recently explored exposures. Several dense vein outcrops are associated with local variations in host-rock type, suggesting rheological control of fluid circulation. In Stimson sandstones, light-toned veins are also present though much rarer, again possibly due to rheological properties. The light-toned veins represent post depositional fluid circulation, occurring after accumulation of the lacustrine Murray rocks; at least some veins formed after Murray's burial, erosion, and the deposition and lithification of the overlying Stimson aeolian rocks. Given the distribution of veins, ground water was likely present during an extended time interval, spanning a duration of at least millions of years. [1]Grotzinger et al., 2015, DOI: 10.1126/science.aac7575 [2]Banham et al., 2017, this meeting [3]Nachon et al., 2017, AbSciCon #3667
NASA Astrophysics Data System (ADS)
Zhan, Weiwei; Fan, Xuanmei; Huang, Runqiu; Pei, Xiangjun; Xu, Qiang; Li, Weile
2017-06-01
Rock avalanches are extremely rapid, massive flow-like movements of fragmented rock. The travel path of the rock avalanches may be confined by channels in some cases, which are referred to as channelized rock avalanches. Channelized rock avalanches are potentially dangerous due to their difficult-to-predict travel distance. In this study, we constructed a dataset with detailed characteristic parameters of 38 channelized rock avalanches triggered by the 2008 Wenchuan earthquake using the visual interpretation of remote sensing imagery, field investigation and literature review. Based on this dataset, we assessed the influence of different factors on the runout distance and developed prediction models of the channelized rock avalanches using the multivariate regression method. The results suggested that the movement of channelized rock avalanche was dominated by the landslide volume, total relief and channel gradient. The performance of both models was then tested with an independent validation dataset of eight rock avalanches that were induced by the 2008 Wenchuan earthquake, the Ms 7.0 Lushan earthquake and heavy rainfall in 2013, showing acceptable good prediction results. Therefore, the travel-distance prediction models for channelized rock avalanches constructed in this study are applicable and reliable for predicting the runout of similar rock avalanches in other regions.
3D Printing and Digital Rock Physics for Geomaterials
NASA Astrophysics Data System (ADS)
Martinez, M. J.; Yoon, H.; Dewers, T. A.
2015-12-01
Imaging techniques for the analysis of porous structures have revolutionized our ability to quantitatively characterize geomaterials. Digital representations of rock from CT images and physics modeling based on these pore structures provide the opportunity to further advance our quantitative understanding of fluid flow, geomechanics, and geochemistry, and the emergence of coupled behaviors. Additive manufacturing, commonly known as 3D printing, has revolutionized production of custom parts with complex internal geometries. For the geosciences, recent advances in 3D printing technology may be co-opted to print reproducible porous structures derived from CT-imaging of actual rocks for experimental testing. The use of 3D printed microstructure allows us to surmount typical problems associated with sample-to-sample heterogeneity that plague rock physics testing and to test material response independent from pore-structure variability. Together, imaging, digital rocks and 3D printing potentially enables a new workflow for understanding coupled geophysical processes in a real, but well-defined setting circumventing typical issues associated with reproducibility, enabling full characterization and thus connection of physical phenomena to structure. In this talk we will discuss the possibilities that these technologies can bring to geosciences and present early experiences with coupled multiscale experimental and numerical analysis using 3D printed fractured rock specimens. In particular, we discuss the processes of selection and printing of transparent fractured specimens based on 3D reconstruction of micro-fractured rock to study fluid flow characterization and manipulation. Micro-particle image velocimetry is used to directly visualize 3D single and multiphase flow velocity in 3D fracture networks. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Technical Reports Server (NTRS)
Richter, L.; Sims, M.; Economou, T.; Stoker, C.; Wright, I.; Tokano, T.
2004-01-01
Previous in-situ measurements of soil-like materials on the surface of Mars, in particular during the on-going Mars Exploration Rover missions, have shown complex relationships between composition, exposure to the surface environment, texture, and local rocks. In particular, a diversity in both compositional and physical properties could be established that is interpreted to be diagnostic of the complex geologic history of the martian surface layer. Physical and chemical properties vary laterally and vertically, providing insight into the composition of rocks from which soils derive, and environmental conditions that led to soil formation. They are central to understanding whether habitable environments existed on Mars in the distant past. An instrument the Mole for Soil Compositional Studies and Sampling (MOCSS) - is proposed to allow repeated access to subsurface regolith on Mars to depths of up to 1.5 meters for in-situ measurements of elemental composition and of physical and thermophysical properties, as well as for subsurface sample acquisition. MOCSS is based on the compact PLUTO (PLanetary Underground TOol) Mole system developed for the Beagle 2 lander and incorporates a small X-ray fluorescence spectrometer within the Mole which is a new development. Overall MOCSS mass is approximately 1.4 kilograms. Taken together, the MOCSS science data support to decipher the geologic history at the landing site as compositional and textural stratigraphy if they exist - can be detected at a number of places if the MOCSS were accommodated on a rover such as MSL. Based on uncovered stratigraphy, the regional sequence of depositional and erosional styles can be constrained which has an impact on understanding the ancient history of the Martian near-surface layer, considering estimates of Mars soil production rates of 0.5... 1.0 meters per billion years on the one hand and Mole subsurface access capability of approximately 1.5 meters. An overview of the MOCSS, XRS instrument accomodation and the impact that these instruments have on Mars science is discussed.
Early Tertiary Anaconda metamorphic core complex, southwestern Montana
O'Neill, J. M.; Lonn, J.D.; Lageson, D.R.; Kunk, Michael J.
2004-01-01
A sinuous zone of gently southeast-dipping low-angle Tertiary normal faults is exposed for 100 km along the eastern margins of the Anaconda and Flint Creek ranges in southwest Montana. Faults in the zone variously place Mesoproterozoic through Paleozoic sedimentary rocks on younger Tertiary granitic rocks or on sedimentary rocks older than the overlying detached rocks. Lower plate rocks are lineated and mylonitic at the main fault and, below the mylonitic front, are cut by mylonitic mesoscopic to microscopic shear zones. The upper plate consists of an imbricate stack of younger-on-older sedimentary rocks that are locally mylonitic at the main, lowermost detachment fault but are characteristically strongly brecciated or broken. Kinematic indicators in the lineated mylonite indicate tectonic transport to the east-southeast. Syntectonic sedimentary breccia and coarse conglomerate derived solely from upper plate rocks were deposited locally on top of hanging-wall rocks in low-lying areas between fault blocks and breccia zones. Muscovite occurs locally as mica fish in mylonitic quartzites at or near the main detachment. The 40Ar/39Ar age spectrum obtained from muscovite in one mylonitic quartzite yielded an age of 47.2 + 0.14 Ma, interpreted to be the age of mylonitization. The fault zone is interpreted as a detachment fault that bounds a metamorphic core complex, here termed the Anaconda metamorphic core complex, similar in age and character to the Bitterroot mylonite that bounds the Bitterroot metamorphic core complex along the Idaho-Montana state line 100 km to the west. The Bitterroot and Anaconda core complexes are likely components of a continuous, tectonically integrated system. Recognition of this core complex expands the region of known early Tertiary brittle-ductile crustal extension eastward into areas of profound Late Cretaceous contractile deformation characterized by complex structural interactions between the overthrust belt and Laramide basement uplifts, overprinted by late Tertiary Basin and Range faulting. ?? 2004 NRC Canada.
NASA Astrophysics Data System (ADS)
Klose, C. D.; Giese, R.; Löw, S.; Borm, G.
Especially for deep underground excavations, the prediction of the locations of small- scale hazardous geotechnical structures is nearly impossible when exploration is re- stricted to surface based methods. Hence, for the AlpTransit base tunnels, exploration ahead has become an essential component of the excavation plan. The project de- scribed in this talk aims at improving the technology for the geological interpretation of reflection seismic data. The discovered geological-seismic relations will be used to develop an interpretation system based on artificial intelligence to predict hazardous geotechnical structures of the advancing tunnel face. This talk gives, at first, an overview about the data mining of geological and seismic properties of metamorphic rocks within the Penninic gneiss zone in Southern Switzer- land. The data results from measurements of a specific geophysical prediction system developed by the GFZ Potsdam, Germany, along the 2600 m long and 1400 m deep Faido access tunnel. The goal is to find those seismic features (i.e. compression and shear wave velocities, velocity ratios and velocity gradients) which show a significant relation to geological properties (i.e. fracturing and fabric features). The seismic properties were acquired from different tomograms, whereas the geolog- ical features derive from tunnel face maps. The features are statistically compared with the seismic rock properties taking into account the different methods used for the tunnel excavation (TBM and Drill/Blast). Fracturing and the mica content stay in a positive relation to the velocity values. Both, P- and S-wave velocities near the tunnel surface describe the petrology better, whereas in the interior of the rock mass they correlate to natural micro- and macro-scopic fractures surrounding tectonites, i.e. cataclasites. The latter lie outside of the excavation damage zone and the tunnel loos- ening zone. The shear wave velocities are better indicators for rock fracturing than compression wave velocities. The velocity ratios indicate the mica content and the water content of the rocks.
Hydraulic fracturing in shales: the spark that created an oil and gas boom
NASA Astrophysics Data System (ADS)
Olson, J. E.
2017-12-01
In the oil and gas business, one of the valued properties of a shale was its lack of flow capacity (its sealing integrity) and its propensity to provide mechanical barriers to hydraulic fracture height growth when exploiting oil and gas bearing sandstones. The other important property was the high organic content that made shale a potential source rock for oil and gas, commodities which migrated elsewhere to be produced. Technological advancements in horizontal drilling and hydraulic fracturing have turned this perspective on its head, making shale (or other ultra-low permeability rocks that are described with this catch-all term) the most prized reservoir rock in US onshore operations. Field and laboratory results have changed our view of how hydraulic fracturing works, suggesting heterogeneities like bedding planes and natural fractures can cause significant complexity in hydraulic fracture growth, resulting in induced networks of fractures whose details are controlled by factors including in situ stress contrasts, ductility contrasts in the stratigraphy, the orientation and strength of pre-existing natural fractures, injection fluid viscosity, perforation cluster spacing and effective mechanical layer thickness. The stress shadowing and stress relief concepts that structural geologists have long used to explain joint spacing and orthogonal fracture pattern development in stratified sequences are key to understanding optimal injection point spacing and promotion of more uniform length development in induced hydraulic fractures. Also, fracture interaction criterion to interpret abutting vs crossing natural fracture relationships in natural fracture systems are key to modeling hydraulic fracture propagation within natural fractured reservoirs such as shale. Scaled physical experiments provide constraints on models where the physics is uncertain. Numerous interesting technical questions remain to be answered, and the field is particularly appealing in that better geologic understanding of the stratigraphic heterogeneity and material property attributes of shale can have a direct effect on the engineering design of wellbores and stimulation treatments.
Squyres, S. W.; Arvidson, R. E.; Blaney, D.L.; Clark, B. C.; Crumpler, L.; Farrand, W. H.; Gorevan, S.; Herkenhoff, K. E.; Hurowitz, J.; Kusack, A.; McSween, H.Y.; Ming, D. W.; Morris, R.V.; Ruff, S.W.; Wang, A.; Yen, A.
2006-01-01
The Mars Exploration Rover Spirit has identified five distinct rock types in the Columbia Hills of Gusev crater. Clovis Class rock is a poorly sorted clastic rock that has undergone substantial aqueous alteration. We interpret it to be aqueously altered ejecta deposits formed by impacts into basaltic materials. Wishstone Class rock is also a poorly sorted clastic rock that has a distinctive chemical composition that is high in Ti and P and low in Cr. Wishstone Class rock may be pyroclastic or impact in origin. Peace Class rock is a sedimentary material composed of ultramafic sand grains cemented by significant quantities of Mg- and Ca-sulfates. Peace Class rock may have formed when water briefly saturated the ultramafic sands and evaporated to allow precipitation of the sulfates. Watchtower Class rocks are similar chemically to Wishstone Class rocks and have undergone widely varying degrees of near-isochemical aqueous alteration. They may also be ejecta deposits, formed by impacts into Wishstone-rich materials and altered by small amounts of water. Backstay Class rocks are basalt/trachybasalt lavas that were emplaced in the Columbia Hills after the other rock classes were, either as impact ejecta or by localized volcanic activity. The geologic record preserved in the rocks of the Columbia Hills reveals a period very early in Martian history in which volcanic materials were widespread, impact was a dominant process, and water was commonly present. Copyright 2006 by the American Geophysical Union.
The Rocks of the Columbia Hills
NASA Technical Reports Server (NTRS)
Squyres, Steven W.; Arvidson, Raymond E.; Blaney, Diana L.; Clark, Benton C.; Crumpler, Larry; Farrand, William H.; Gorevan, Stephen; Herkenhoff, Kenneth; Hurowitz, Joel; Kusack, Alastair;
2006-01-01
The Mars Exploration Rover Spirit has identified five distinct rock types in the Columbia Hills of Gusev crater. Clovis Class rock is a poorly-sorted clastic rock that has undergone substantial aqueous alteration. We interpret it to be aqueously-altered ejecta deposits formed by impacts into basaltic materials. Wishstone Class rock is also a poorly-sorted clastic rock that has a distinctive chemical composition that is high in Ti and P and low in Cr. Wishstone Class rock may be pyroclastic in origin. Peace Class rock is a sedimentary material composed of ultramafic sand grains cemented by significant quantities of Mg- and Ca-sulfates. Peace Class rock may have formed when water briefly saturated the ultramafic sands, and evaporated to allow precipitation of the sulfates. Watchtower Class rocks are similar chemically to Wishstone Class rocks, and have undergone widely varying degrees of near-isochemical aqueous alteration. They may also be ejecta deposits, formed by impacts into Wishstone-rich materials and altered by small amounts of water. Backstay Class rocks are basalt/trachybasalt lavas that were emplaced in the Columbia Hills after the other rock classes were, either as impact ejecta or by localized volcanic activity. The geologic record preserved in the rocks of the Columbia Hills reveals a period very early in martian history in which volcanic materials were widespread, impact was a dominant process, and water was commonly present.
Extent and character of early tertiary penetrative deformation, Sonora, Northwest Mexico
NASA Technical Reports Server (NTRS)
Anderson, T. H.
1985-01-01
Reconnaissance field work has led to the recognition of extensive Early Tertiary gneiss and schist which are distinguished by weakly developed to highly conspicous northeast to east-trending stretching lineation commonly accompanied by low-dipping foliation. This structural fabric has been imposed on Precambrian to Paleogene rocks. Regionally, minimum ages of deformation are based upon interpreted U-Pb isotopic ages from suites of cogenetic zircon from the Paleogene orthogneiss. Locally, the interpreted ages indicate that ductile deformation continued as late as Oligocene (Anderson and others, 1980; Silver and Anderson, 1984). The consistency of the deformational style is such that, although considerable variation in intensity exists, the fabric can be recognized and correlated in rocks away from the Paleogene orthogneiss.
Features of Changing Microwave Radiation from Loaded Rock in Elastic Phase
NASA Astrophysics Data System (ADS)
Wu, Lixin; Mao, Wenfei; Huang, Jianwei; Liu, Shanjun; Xu, Zhongying
2017-04-01
Since the discovery of satellite infrared anomaly occurred before some earthquake by Russian geo-scientists in 1980's, both satellite remote sensing on seismic activities and experimental infrared detection on rock physics in process of rock loading were undertaken in many counties including China, Japan, Europe nations and United States. Infrared imager and spectrum instruments were applied to detect the changed infrared radiation from loaded rock to fracturing, which lead to the development of Remote Sensing Rock Mechanics. However, the change of microwave radiation from loaded rock was not so much studied, even if abnormal changes of microwave brightness temperature (MBT) preceding some large earthquakes were observed by satellite sensors such as AMSR-E on boarded Aqua. To monitor rock hazards, seismic activities, and to make earthquake precautions by via of microwave detection or microwave remote sensing, it is fairly demanded to explore the laws of microwave radiation variation with changed stress and to uncover the rock physics. We developed a large scale rock loading system with capability of 500 tons and 10 tons of load, respectively, at two horizontal loading head, and designed a group of microwave detectors in C, K, and Ka bands. To investigate the changed microwave radiation from loaded granite and sandstone in its elastics deformation phase, the first horizontal stress was circularly applied on rock samples of size 10×30×60cm3 at a constant second horizontal stress, and the changes microwave radiation was detected by the detectors hanged overhead the rock sample. The experiments were conducted outdoor at nighttime to keep off environmental radiation and to simulate the satellite observation conditions in background of cool sky. The first horizontal stress and the microwave radiations were synchronically detected and recorded. After reducing the random noise of detected microwave signals with wavelet method, we found the MBT increase with stress rising and decrease with stress dropping, and the correlation factor (R2) of MBT-stress reached 0.88. The experiments and results revealed an important rock physical phenomenon of rock dielectric property changing with stress, which leads to detectable MBT variation.
What Can Modern River Profiles Tell Us about Orogenic Processes and Orogen Evolution?
NASA Astrophysics Data System (ADS)
Whipple, K. X.
2008-12-01
Numerous lines of evidence from theory, numerical simulations, and physical experiments suggest that orogen evolution is strongly coupled to atmospheric processes through the interrelationships among climate, topography, and erosion rate. In terms of orogenic processes and orogen evolution, these relationships are most important at the regional scale (mean topographic gradient, mean relief above surrounding plains) largely because crustal deformation is most sensitive to erosional unloading averaged over sufficiently long wavelengths. For this reason, and because above moderate erosion rates (> 0.2 mm/yr) hillslope form becomes decoupled from erosion rate, attention has focused on the river network, and even on particularly large rivers. We now have data that demonstrates a monotonic relationship between erosion rate and the channel steepness index (slope normalized for differences in drainage area) in a variety of field settings. Consequently, study of modern river profiles can yield useful information on recent and on-going patterns of rock uplift. It is not yet possible, however, to quantitatively isolate expected climatic and lithologic influences on this relationship. A combination of field studies and theoretical analyses are beginning to reveal the timescale of landscape response, and thus the topographic memory of past conditions. At orogen scale, river profile response to a change in rock uplift rate is on the order of 1-10 Myr. Because of these long response times, the modern profiles of large rivers and their major tributaries can potentially preserve an interpretable record of rock uplift rates since the Miocene and are insensitive to short-term climatic fluctuations. Only significant increases in rock uplift rate, however, are likely to leave a clear topographic signature. Strategies have been developed to differentiate between temporal and spatial (tectonic, climatic, or lithologic) influences on channel profile form, especially where spatially distributed data on recent incision rates is available. A more difficult question is one of cause and effect. Only in some circumstances is it possible to determine whether rivers are steep in response to localized rock uplift or whether localized rock uplift occurs in response to rapidly incising steep rivers.
Fine-scale traverses in cumulate rocks, Stillwater Complex: A lunar analogue study
NASA Technical Reports Server (NTRS)
Elthon, Donald
1988-01-01
The objective was to document finite-scale compositional variations in cumulate rocks from the Stillwater Complex in Montana and to interpret these data in the context of planetary magma fractionation processes such as those operative during the formation of the Earth's Moon. This research problem involved collecting samples in the Stillwater Complex and analyzing them by electron microprobe, X-ray fluorescence (XRF), and instrumental neutron activation analysis (INAA). The electron microprobe is used to determine the compositions of cumulus and intercumulus phases in the rocks, the XRF is used to determine the bulk-rock major element and trace element (Y, Sr, Rb, Zr, Ni, and Cr) abundances, and the INAA lab. is used to determine the trace element (Sc, Co, Cr, Ni, Ta, Hf, U, Th, and the REE) abundances of mineral separates and bulk rocks.
Celestial Seasonings: Astronomy and Rock Art in the American Southwest
NASA Astrophysics Data System (ADS)
Krupp, E. C.
1994-12-01
Astronomical interpretations of prehistoric rock art have played a significant part in the development of modern archaeoastronomy since 1975, when interest was renewed in the possibility that the Crab supernova explosion of 1054 A.D. was represented in rock art of the American Southwest. (This hypothesis was actually first formulated in 1955.) In the last two decades, a variety of astronomical functions for rock art have been proposed and investigated. These include representation of specific historical celestial events, symbolic representation of elements of celestial myths, star maps, markers for astronomical observing stations markers for celestially tempered shrines, images intended to invoke and exploit cosmo-magical power, seasonally significant light-and-shadow displays. Examples of astronomical connotations in prehistoric rock art from the Southwest and California illustrate the necessity of understanding the culture in any attempt to understand its astronomy.
NASA Astrophysics Data System (ADS)
McSaveney, M. J.
2015-12-01
The transport mechanism of rapid long-runout rock avalanches was a hotly debated topic when I came on the scene in 1967. So how come it is still debated today? My explanation is that it is the expected outcome of peer review, poor comprehension, and technological advances outpacing intellectual advances. Why think about the problem when we can model it! So let us think about the problem. Shreve thought that rock avalanches fell upon and trapped a layer of air. What physics was he thinking about? It is how feathers and tissue papers fall. When my rock avalanches fly, they fly like unlubricated bricks using the physics of projectiles and ballistics. But the main transport mechanism is not flight. The dominant impression from watching a rock avalanche in motion is of fluid flow, as Heim described it in 1882. A rock avalanche is a very large grain flow. Bagnold studied dispersive grain flows, but why should one assume that rock avalanches are dispersive grain flows as many do. The more common grain flow type is a dense grain flow and rock avalanches are dense grain flows in which the weight can and does generate very high stresses at grain contacts. Brittle rock deforms elastically up to its compressive strength, whereupon it breaks, releasing elastic strain as transient elastic strain (seismic energy to a seismologist, acoustic energy to a physicist). Melosh and others have shown that acoustic energy can fluidize a grain mass. There is no exotic physics behind grain flow at high stress. When grains break, the released elastic strain has to go somewhere, and it goes somewhere principally by transmission though grain contacts. Depending on the state of stress at the grain contact, the contact will pass the stress or will slip at conventional values of Coulomb friction. Enough thinking! A physical model of the entire process is too big for any laboratory. So whose numerical model will do it?
A Virtual Rock Physics Laboratory Through Visualized and Interactive Experiments
NASA Astrophysics Data System (ADS)
Vanorio, T.; Di Bonito, C.; Clark, A. C.
2014-12-01
As new scientific challenges demand more comprehensive and multidisciplinary investigations, laboratory experiments are not expected to become simpler and/or faster. Experimental investigation is an indispensable element of scientific inquiry and must play a central role in the way current and future generations of scientist make decisions. To turn the complexity of laboratory work (and that of rocks!) into dexterity, engagement, and expanded learning opportunities, we are building an interactive, virtual laboratory reproducing in form and function the Stanford Rock Physics Laboratory, at Stanford University. The objective is to combine lectures on laboratory techniques and an online repository of visualized experiments consisting of interactive, 3-D renderings of equipment used to measure properties central to the study of rock physics (e.g., how to saturate rocks, how to measure porosity, permeability, and elastic wave velocity). We use a game creation system together with 3-D computer graphics, and a narrative voice to guide the user through the different phases of the experimental protocol. The main advantage gained in employing computer graphics over video footage is that students can virtually open the instrument, single out its components, and assemble it. Most importantly, it helps describe the processes occurring within the rock. These latter cannot be tracked while simply recording the physical experiment, but computer animation can efficiently illustrate what happens inside rock samples (e.g., describing acoustic waves, and/or fluid flow through a porous rock under pressure within an opaque core-holder - Figure 1). The repository of visualized experiments will complement lectures on laboratory techniques and constitute an on-line course offered through the EdX platform at Stanford. This will provide a virtual laboratory for anyone, anywhere to facilitate teaching/learning of introductory laboratory classes in Geophysics and expand the number of courses that can be offered for curricula in Earth Sciences. The primary goal is to open up a research laboratory such as the one available at Stanford to promising students worldwide who are currently left out of such educational resources.
Take a Tumble: Weathering and Erosion Using a Rock Tumbler
ERIC Educational Resources Information Center
Coffey, Patrick; Mattox, Steve
2006-01-01
Weathering--the physical and chemical breakdown of geologic materials--and erosion--the transport of materials by wind, water, or ice--can be subtle, yet powerful forces. For example, shale, a rock made of mud-sized particles, is by far the most common sedimentary rock, a testament to the ability of weathering and erosion to take a rock and reduce…
Blanca R. Lopez; Yoav Bashan; Macario Bacilio; Gustavo De la Cruz-Aguero
2009-01-01
Establishment, colonization, and permanence of plants affect biogenic and physical processes leading to development of soil. Rockiness, temperature, and humidity are accepted explanations to the influence and the presence of rock-dwelling plants, but the relationship between mineral and chemical composition of rocks with plant abundance is unknown in some regions. This...
NASA Astrophysics Data System (ADS)
Golombek, M. P.; Haldemann, A. F.; Simpson, R. A.; Furgason, R. L.; Putzig, N. E.; Huertas, A.; Arvidson, R. E.; Heet, T.; Bell, J. F.; Mellon, M. T.; McEwen, A. S.
2008-12-01
Surface characteristics at the six sites where spacecraft have successfully landed on Mars can be related favorably to their signatures in remotely sensed data from orbit and from the Earth. Comparisons of the rock abundance, types and coverage of soils (and their physical properties), thermal inertia, albedo, and topographic slope all agree with orbital remote sensing estimates and show that the materials at the landing sites can be used as ground truth for the materials that make up most of the equatorial and mid- to moderately high-latitude regions of Mars. The six landing sites sample two of the three dominant global thermal inertia and albedo units that cover ~80% of the surface of Mars. The Viking, Spirit, Mars Pathfinder, and Phoenix landing sites are representative of the moderate to high thermal inertia and intermediate to high albedo unit that is dominated by crusty, cloddy, blocky or frozen soils (duricrust that may be layered) with various abundances of rocks and bright dust. The Opportunity landing site is representative of the moderate to high thermal inertia and low albedo surface unit that is relatively dust free and composed of dark eolian sand and/or increased abundance of rocks. Rock abundance derived from orbital thermal differencing techniques in the equatorial regions agrees with that determined from rock counts at the surface and varies from ~3-20% at the landing sites. The size-frequency distributions of rocks >1.5 m diameter fully resolvable in HiRISE images of the landing sites follow exponential models developed from lander measurements of smaller rocks and are continuous with these rock distributions indicating both are part of the same population. Interpretation of radar data confirms the presence of load bearing, relatively dense surfaces controlled by the soil type at the landing sites, regional rock populations from diffuse scattering similar to those observed directly at the sites, and root-mean-squared slopes that compare favorably with 100 m scale topographic slopes extrapolated from altimetry profiles and meter scale slopes from high-resolution stereo images. The third global unit has very low thermal inertia and very high albedo, indicating it is dominated by deposits of bright red atmospheric dust that may be neither load bearing nor trafficable. The landers have thus sampled the majority of likely safe and trafficable surfaces that cover most of Mars and show that remote sensing data can be used to infer the surface characteristics, slopes, and surface materials present at other locations.
Multi-physics and multi-scale characterization of shale anisotropy
NASA Astrophysics Data System (ADS)
Sarout, J.; Nadri, D.; Delle Piane, C.; Esteban, L.; Dewhurst, D.; Clennell, M. B.
2012-12-01
Shales are the most abundant sedimentary rock type in the Earth's shallow crust. In the past decade or so, they have attracted increased attention from the petroleum industry as reservoirs, as well as more traditionally for their sealing capacity for hydrocarbon/CO2 traps or underground waste repositories. The effectiveness of both fundamental and applied shale research is currently limited by (i) the extreme variability of physical, mechanical and chemical properties observed for these rocks, and by (ii) the scarce data currently available. The variability in observed properties is poorly understood due to many factors that are often irrelevant for other sedimentary rocks. The relationships between these properties and the petrophysical measurements performed at the field and laboratory scales are not straightforward, translating to a scale dependency typical of shale behaviour. In addition, the complex and often anisotropic micro-/meso-structures of shales give rise to a directional dependency of some of the measured physical properties that are tensorial by nature such as permeability or elastic stiffness. Currently, fundamental understanding of the parameters controlling the directional and scale dependency of shale properties is far from complete. Selected results of a multi-physics laboratory investigation of the directional and scale dependency of some critical shale properties are reported. In particular, anisotropic features of shale micro-/meso-structures are related to the directional-dependency of elastic and fluid transport properties: - Micro-/meso-structure (μm to cm scale) characterization by electron microscopy and X-ray tomography; - Estimation of elastic anisotropy parameters on a single specimen using elastic wave propagation (cm scale); - Estimation of the permeability tensor using the steady-state method on orthogonal specimens (cm scale); - Estimation of the low-frequency diffusivity tensor using NMR method on orthogonal specimens (<μm scale). For each of the above properties, leading-edge experimental techniques have been associated with novel interpretation tools. In this contribution, these experimental and interpretation methods are described. Relationships between the measured properties and the corresponding micro-/meso-structural features are discussed. For example, P-wave velocity was measured along 100 different propagation paths on a single cylindrical shale specimen using miniature ultrasonic transducers. Assuming that (i) the elastic tensor of this shale is transversely isotropic; and (i) the sample has been cored perfectly perpendicular to the bedding plane (symmetry plane is horizontal), Thomsen's anisotropy parameters inverted from the measured velocities are: - P-wave velocity along the symmetry axis (perpendicular to the bedding plane) αo=3.45km/s; - P-wave anisotropy ɛ=0.12; - Parameter controlling the wave front geometry δ=0.058. A novel inversion algorithm allows for recovering these parameters without assuming a priori a horizontal bedding (symmetry) plane. The inversion of the same data set using this algorithm yields (i) αo=3.23km/s, ɛ=0.25 and δ=0.18, and (ii) the elastic symmetry axis is inclined of ω=30° with respect to the specimen's axis. Such difference can have strong impact on field applications (AVO, ray tracing, tomography).
Ghost Dancing the Grand Canyon. Southern Paiute Rock Art, Ceremony, and Cultural Landscapes.
Stoffle; Loendorf; Austin; Halmo; Bulletts
2000-02-01
Combining rock art studies with ethnohistory, contemporary ethnographic analysis, and the interpretations of people who share the cultural traditions being studied, this paper documents a rock art site in Kanab Creek Canyon that appears to have been the location of a Ghost Dance ceremony performed by Southern Paiute and perhaps Hualapai people in the late 1800s. Using the site as a point of departure, it focuses on the way in which synergistic associations among place, artifact, resources, events, and historic and contemporary Indian people contribute to the construction of a contextual cultural landscape.
Melting behavior and phase relations of lunar samples. [Apollo 12 rock samples
NASA Technical Reports Server (NTRS)
Hays, J. F.
1975-01-01
Cooling rate studies of 12002 were conducted and the results interpreted in terms of the crystallization history of this rock and certain other picritic Apollo 12 samples. Calculations of liquid densities and viscosities during crystallization, crystal settling velocities, and heat loss by the parent rock body are discussed, as are petrographic studies of other Apollo 12 samples. The process of magmatic differentiation that must have accompanied the early melting and chemical fractionation of the moon's outer layers was investigated. The source of regions of both high- and low-titanium mare basalts were also studied.
Geology of the Mahd Adh Dhahab District, Kingdom of Saudi Arabia
Afifi, A.M.
1990-01-01
Major-element data show that the Mahd Group was produced from separate basaltic and dacitic-rhyolitic magmas that overlapped without mixing. The alkalis and alkaline-earth elements were particularly mobile during metamorphism (which caused widespread albitization of feldspars) and also during hydrothermal alteration (which added secondary microcline). This mobility adversely affected rubidium-strontium whole-rock systematics, which makes whole-rock isochron dates obtained from these rocks questionable. The new geological data presented here are combined with the geochronologic data of Calvez and Kemp (1982) to re-interpret the geologic history of this area.
Methodological Preliminaries to the Development of an Expert System for Aerial Photo Interpretation.
1984-01-01
Region prl.7.2 Colorado Plateaus Province prl.7.2.1 High Plateaus of Utah Region prl.7.2.2 Uinta Basin Region prl.7.2.3 Canyon Lands Region prI.7.2.4...have a flat to undulating basin --does it?). If a majority of the questions generate negative answers some other hypothesis is sought. % (13) All...rf2.2 Lineaments rf2.3 Troughs -f2.4 Joints f2.5 Escarpments rf2.6 Gorges rfZ.7 Folds Rock Forms 3 Domes Rock Forms 4 Canyons Rock Forms 5 Basins
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-10-07
Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.
None
2017-12-09
Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.
BLUE RANGE WILDERNESS, ARIZONA AND NEW MEXICO.
Ratte, James C.; Raabe, R.G.
1984-01-01
A mineral survey of the area was completed and it was determined that a probable resource potential for molybdenum, copper, and silver is present in volcanic rocks of middle Tertiary age in the southern and southwestern parts of the area. There is also a likelihood for the occurrence of base-metal resources (including porphyry copper deposits) of Laramide age beneath the middle Tertiary volcanic rocks that cover the area, but data are insufficient to assess the resource potential. Improved techniques for interpreting geophysical data collected over complex volcanic terranes should be applied in an effort to identify Laramide intrusives beneath the middle Tertiary rocks. Additional geologic studies of the major faults and volcanic centers might enhance mineral-deposit target definition in the middle Tertiary rocks.
Coats, Robert Roy
1967-01-01
Recent geologic work in the Cornucopia mining district, a small silver-gold mining district in northwestern Elko County, Nev., has resulted in significant revision of the geological interpretation. Rocks formerly thought to be premineralization in age, but unmineralized, are now known to be postmineral extrusives, resting unconformably on the altered andesite in which the ore bodies are found. Extensions of the known productive veins may be expected at shallow depth beneath the younger volcanic rocks, and are separated from the mined part of the veins by postmineral high-angle faults that have brought the younger volcanic rocks into fault contact with the mineralized andesite. Some veins are apparently terminated against premineral faults.
Petrology and Composition of HED Polymict Breccias
NASA Technical Reports Server (NTRS)
Mittlefehldt, David W.; Herrin, J. S.; Mertzman, S. A.; Mertzman, K. R.
2010-01-01
The howardite, eucrite and diogenite (HED) clan of meteorites forms the largest suite of achondrites with over 900 named members. The HEDs are igneous rocks and breccias of igneous rocks from a differentiated asteroid [1]. The consensus view is that these rocks hail from the asteroid 4 Vesta, which will be the first target of NASA's Dawn mission. When Dawn arrives at Vesta, she will begin remote imagery and spectroscopy of the surface. The surface she will observe will be dominated by rocks and soils mixed through impact gardening. To help with the interpretation of the remotely sensed data, we have begun a project on the petrologic and compositional study of a suite of HED polymict breccias. Here we report on the preliminary findings of this project.
NASA Astrophysics Data System (ADS)
Magnin, Florence; Deline, Philip; Ravanel, Ludovic; Gruber, Stephan; Krautblatter, Michael
2014-05-01
The steep rockwalls of the Mont Blanc massif have been affected by an increase in rockfall activity in the last decades. Permafrost degradation is suggested as the most likely triggering factor. To better understand geomorphic processes we investigate permafrost distribution and address questions on its pattern in steep alpine bedrock. We use GIS-modeling to simulate Mean Annual Rock Surface Temperature (MARST) distribution. Rock temperature measurements including three 10-m-deep borehole monitoring at the Aiguille du Midi (AdM, 3842 m a.s.l) serve to estimate the temperature offset (i.e. temperature difference between rock surface and depth of negligible inter-annual temperature varibility). The estimation of the lower extent of permafrost distribution is derived from a combination of both approaches and hypotheses on permafrost occurrence are evaluated with Electrical Resistivity Tomography (ERT) measurements. The MARST model indicates that the 0°C isotherm extends down to 2600 m a.s.l in the most shaded faces and rises up to 3800 m in the most sun-exposed areas. According to recent literature and the AdM borehole thermal profiles, we postulate that permafrost could extends down below MARST reaching up to 3°C due to temperature offset processes. ERT measurements performed along 160-m-long profiles at six different sites which the top are located from 3360 m a.s.l to 2760 m a.s.l and the MARST range from <-1°C to > 3°C are the first of this kind. Five of sites are located in the granite area making them directly comparable. They all show high resistivity values at depth (>200 kΩ) interpreted as permafrost bodies. Lower resistivity values (< 90 kΩ) are found either above the high resistivity bodies and interpreted as thawed active layer, or below MARST warmer than 2-3°C and interpreted as non-perenially frozen rock. Two sites were measured in autumn 2012 and autumn 2013 allowing for time-lapse investigation which demonstrates the change in resistivity in repeated measurements. These preliminary results could confirm that steep alpine bedrock permafrost exists below surface temperature reaching up to 3°C. A temperature-resistivity calibration will be performed in a freezing laboratory at the Technical University of Munich to better assess ERT results and their interpretation in terms of permafrost occurrence and interannual changes.
Lindsey, D.A.
1998-01-01
Laramide structure of the central Sangre de Cristo Mountains (Culebra Range) is interpreted as a system of west-dipping, basement-involved thrusts and reverse faults. The Culebra thrust is the dominant structure in the central part of the range; it dips 30 -55?? west and brings Precambrian metamorphic base-ment rocks over unmetamorphosed Paleozoic rocks. East of the Culebra thrust, thrusts and reverse faults break the basement and overlying cover rocks into north-trending fault blocks; these boundary faults probably dip 40-60?? westward. The orientation of fault slickensides indicates oblique (northeast) slip on the Culebra thrust and dip-slip (ranging from eastward to northward) movement on adjacent faults. In sedimentary cover rocks, east-vergent anticlines overlie and merge with thrusts and reverse faults; these anticlines are interpreted as fault-propagation folds. Minor east-dipping thrusts and reverse faults (backthrusts) occur in both the hanging walls and footwalls of thrusts. The easternmost faults and folds of the Culebra Range form a continuous structural boundary between the Laramide Sangre de Cristo highland and the Raton Basin. Boundary structures consist of west-dipping frontal thrusts flanked on the basinward side by poorly exposed, east-dipping backthrusts. The backthrusts are interpreted to overlie structural wedges that have been emplaced above blind thrusts in the basin margin. West-dipping frontal thrusts and blind thrusts are interpreted to involve basement, but backthrusts are rooted in basin-margin cover rocks. At shallow structural levels where erosion has not exposed a frontal thrust, the structural boundary of the basin is represented by an anticline or monocline. Based on both regional and local stratigraphic evidence, Laramide deformation in the Culebra Range and accompanying synorogenic sedimentation in the western Raton Basin probably took place from latest Cretaceous through early Eocene time. The earliest evidence of uplift and erosion of a highland is the appearance of abundant feldspar in the Late Cretaceous Vermejo Formation. Above the Vermejo, unconformities overlain by conglomerate indicate continued thrusting and erosion of highlands from late Cretaceous (Raton) through Eocene (Cuchara) time. Eocene alluvial-fan conglomerates in the Cuchara Formation may represent erosion of the Culebra thrust block. Deposition in the Raton Basin probably shifted north from New Mexico to southern Colorado from Paleocene to Eocene time as movement on individual thrusts depressed adjacent segments of the basin.
Estimation of bedrock depth using the horizontal‐to‐vertical (H/V) ambient‐noise seismic method
Lane, John W.; White, Eric A.; Steele, Gregory V.; Cannia, James C.
2008-01-01
Estimating sediment thickness and the geometry of the bedrock surface is a key component of many hydrogeologic studies. The horizontal‐to‐vertical (H/V) ambient‐noise seismic method is a novel, non‐invasive technique that can be used to rapidly estimate the depth to bedrock. The H/V method uses a single, broad‐band three‐component seismometer to record ambient seismic noise. The ratio of the averaged horizontal‐to‐vertical frequency spectrum is used to determine the fundamental site resonance frequency, which can be interpreted using regression equations to estimate sediment thickness and depth to bedrock. The U.S. Geological Survey used the H/V seismic method during fall 2007 at 11 sites in Cape Cod, Massachusetts, and 13 sites in eastern Nebraska. In Cape Cod, H/V measurements were acquired along a 60‐kilometer (km) transect between Chatham and Provincetown, where glacial sediments overlie metamorphic rock. In Nebraska, H/V measurements were acquired along approximately 11‐ and 14‐km transects near Firth and Oakland, respectively, where glacial sediments overlie weathered sedimentary rock. The ambient‐noise seismic data from Cape Cod produced clear, easily identified resonance frequency peaks. The interpreted depth and geometry of the bedrock surface correlate well with boring data and previously published seismic refraction surveys. Conversely, the ambient‐noise seismic data from eastern Nebraska produced subtle resonance frequency peaks, and correlation of the interpreted bedrock surface with bedrock depths from borings is poor, which may indicate a low acoustic impedance contrast between the weathered sedimentary rock and overlying sediments and/or the effect of wind noise on the seismic records. Our results indicate the H/V ambient‐noise seismic method can be used effectively to estimate the depth to rock where there is a significant acoustic impedance contrast between the sediments and underlying rock. However, effective use of the method is challenging in the presence of gradational contacts such as gradational weathering or cementation. Further work is needed to optimize interpretation of resonance frequencies in the presence of extreme wind noise. In addition, local estimates of bedrock depth likely could be improved through development of regional or study‐area‐specific regression equations relating resonance frequency to bedrock depth.
Day-Lewis, F. D.; Lane, J.W.; Gorelick, S.M.
2006-01-01
An integrated interpretation of field experimental cross-hole radar, tracer, and hydraulic data demonstrates the value of combining time-lapse geophysical monitoring with conventional hydrologic measurements for improved characterization of a fractured-rock aquifer. Time-lapse difference-attenuation radar tomography was conducted during saline tracer experiments at the US Geological Survey Fractured Rock Hydrology Research Site near Mirror Lake, Grafton County, New Hampshire, USA. The presence of electrically conductive saline tracer effectively illuminates permeable fractures or pathways for geophysical imaging. The geophysical results guide the construction of three-dimensional numerical models of ground-water flow and solute transport. In an effort to explore alternative explanations for the tracer and tomographic data, a suite of conceptual models involving heterogeneous hydraulic conductivity fields and rate-limited mass transfer are considered. Calibration data include tracer concentrations, the arrival time of peak concentration at the outlet, and steady-state hydraulic head. Results from the coupled inversion procedure suggest that much of the tracer mass migrated outside the three tomographic image planes, and that solute is likely transported by two pathways through the system. This work provides basic and site-specific insights into the control of permeability heterogeneity on ground-water flow and solute transport in fractured rock. ?? Springer-Verlag 2004.
Automated Rock Identification for Future Mars Exploration Missions
NASA Technical Reports Server (NTRS)
Gulick, V. C.; Morris, R. L.; Gazis, P.; Bishop, J. L.; Alena, R.; Hart, S. D.; Horton, A.
2003-01-01
A key task for human or robotic explorers on the surface of Mars is choosing which particular rock or mineral samples should be selected for more intensive study. The usual challenges of such a task are compounded by the lack of sensory input available to a suited astronaut or the limited downlink bandwidth available to a rover. Additional challenges facing a human mission include limited surface time and the similarities in appearance of important minerals (e.g. carbonates, silicates, salts). Yet the choice of which sample to collect is critical. To address this challenge we are developing science analysis algorithms to interface with a Geologist's Field Assistant (GFA) device that will allow robotic or human remote explorers to better sense and explore their surroundings during limited surface excursions. We aim for our algorithms to interpret spectral and imaging data obtained by various sensors. The algorithms, for example, will identify key minerals, rocks, and sediments from mid-IR, Raman, and visible/near-IR spectra as well as from high resolution and microscopic images to help interpret data and to provide high-level advice to the remote explorer. A top-level system will consider multiple inputs from raw sensor data output by imagers and spectrometers (visible/near-IR, mid-IR, and Raman) as well as human opinion to identify rock and mineral samples.
1977-08-17
weather to gibbsite (plus or minus iron oxides) in well-drained, and smectite in poorly-drained, environments. Kaolinite found in the vicinity of quartz...rock and completely weathered saprolite. Quartz-rich rock types exhibit wide, gradational weathered zones and usually form kaolinite or halloysite in...free rocks is either formed by re-silication of gibbsite , or is of secondary origin (transported). Texture of the rock (aphanitic vs. phaneric) has
NASA Astrophysics Data System (ADS)
Shitrit, Omri; Hatzor, Yossef H.; Feinstein, Shimon; Vinegar, Harold J.
2017-12-01
Thermal maturation is known to influence the rock physics of organic-rich rocks. While most studies were performed on low-porosity organic-rich shales, here we examine the effect of thermal maturation on a high-porosity organic-rich chalk. We compare the physical properties of native state immature rock with the properties at two pyrolysis-simulated maturity levels: early-mature and over-mature. We further evaluate the applicability of results from unconfined pyrolysis experiments to naturally matured rock properties. Special attention is dedicated to the elastic properties of the organic phase and the influence of bitumen and kerogen contents. Rock physics is studied based on confined petrophysical measurements of porosity, density and permeability, and measurements of bedding-normal acoustic velocities at estimated field stresses. Geochemical parameters like total organic carbon (TOC), bitumen content and thermal maturation indicators are used to monitor variations in density and volume fraction of each phase. We find that porosity increases significantly upon pyrolysis and that P wave velocity decreases in accordance. Solids density versus TOC relationships indicate that the kerogen increases its density from 1.43 to 1.49 g/cc at the immature and early-mature stages to 2.98 g/cc at the over-mature stage. This density value is unusually high, although increase in S wave velocity and backscatter SEM images of the over-mature samples verify that the over-mature kerogen is significantly denser and stiffer. Using the petrophysical and acoustic properties, the elastic moduli of the rock are estimated by two Hashin-Shtrikman (HS)-based models: "HS + BAM" and "HS kerogen." The "HS + BAM" model is calibrated to the post-pyrolysis measurements to describe the mechanical effect of the unconfined pyrolysis on the rock. The absence of compaction in the pyrolysis process causes the post-pyrolysis samples to be extremely porous. The "HS kerogen" model, which simulates a kerogen-supported matrix, depicts a compacted version of the matrix and is believed to be more representative of a naturally matured rock. Rock physics analysis using the "HS kerogen" model indicates strong mechanical dominance of porosity and organic content, and only small maturity-associated effects.
Semantic modeling of plastic deformation of polycrystalline rock
NASA Astrophysics Data System (ADS)
Babaie, Hassan A.; Davarpanah, Armita
2018-02-01
We have developed the first iteration of the Plastic Rock Deformation (PRD) ontology by modeling the semantics of a selected set of deformational processes and mechanisms that produce, reconfigure, displace, and/or consume the material components of inhomogeneous polycrystalline rocks. The PRD knowledge model also classifies and formalizes the properties (relations) that hold between instances of the dynamic physical and chemical processes and the rock components, the complex physio-chemical, mathematical, and informational concepts of the plastic rock deformation system, the measured or calculated laboratory testing conditions, experimental procedures and protocols, the state and system variables, and the empirical flow laws that define the inter-relationships among the variables. The ontology reuses classes and properties from several existing ontologies that are built for physics, chemistry, biology, and mathematics. With its flexible design, the PRD ontology is well positioned to incrementally develop into a model that more fully represents the knowledge of plastic deformation of polycrystalline rocks in the future. The domain ontology will be used to consistently annotate varied data and information related to the microstructures and the physical and chemical processes that produce them at different spatial and temporal scales in the laboratory and in the solid Earth. The PRDKB knowledge base, when built based on the ontology, will help the community of experimental structural geologists and metamorphic petrologists to coherently and uniformly distribute, discover, access, share, and use their data through automated reasoning and integration and query of heterogeneous experimental deformation data that originate from autonomous rock testing laboratories.
2006-05-01
This MOC image shows dark sand dunes superposed on layered, light-toned outcrops -- interpreted to be sedimentary rocks -- in Melas Chasma. Melas Chasma is part of the enormous Valles Marineris trough system
NASA Astrophysics Data System (ADS)
Park, J.; Hyun, C.; Cho, H.; Park, H.
2010-12-01
Physical weathering caused by freeze-thaw action in cold regions was simulated with artificial weathering simulator in laboratory. Physical weathering of rock in cold regions usually depends on the temperature, rock type and moisture content. Then these three variables were considered in this study. The laboratory freeze-thaw tests were conducted on the three types of rocks, e.g. diorite, basalt and tuff, which are the major rock types around Sejong Station, King George Island, Antarctica. Nine core samples composed of three samples from each rock type were prepared in NX core, and 50 cycles of freeze-thaw test was carried out under dried and saturated water conditions. In this study, the physical weathering of rocks was investigated after each 10 cycles by measuring P-wave velocity, bulk density, effective porosity, Schmidt hardness and uniaxial compression strength(UCS). The experimental result of the diorite and the tuff specimens showed that P-wave velocity, bulk density, effective porosity, Schmidt hardness and UCS were gradually decreased as weathering progresses, but the result of the basalt specimens did not show typical trends due to the characteristics of irregular pore distribution and various pore sizes. Scanning electron microscopy(SEM) photographs of diorite, basalt and tuff specimens weathered in dried and saturated conditions were also acquired to investigate the role of water during physical weathering processes. The number and size of microcracks were increased as weathering progresses. This work was supported by the National Research Foundation of Korea(NRF) Grant(NRF-2010-0027753).
Physical Diversity of Phyllosilicate Deposits at the MSL Candidate Landing Sites
NASA Astrophysics Data System (ADS)
Fergason, R. L.
2008-12-01
The identification of phyllosilicates on Mars implies aqueous activity at the time of their formation and is important for understanding the history of Martian water and the past habitability of Mars. In addition, a significant fraction of the global water budget of Mars may be locked into clay mineral deposits within the Martian crust. As a result, six out of seven final landing sites being considered for the Mars Science Laboratory are sites where phyllosilicates have been identified in CRISM and OMEGA data. The physical characteristics of these materials, as identified using thermal inertia data, are an important component for understanding the geologic history of these deposits. Thermal inertia values provide information regarding effective particle size and help to constrain the possible presence of duricrust, rocks, and exposed bedrock at these locations. These identified physical characteristics suggest the degree of resistivity to erosion, which has implications for the post-emplacement modification of these deposits. At the aforementioned six locations (Nili Fossae Trough, Holden Crater, Mawrth Vallis, Miyamoto crater, southern Meridiani Planum, and Gale crater) the physical properties were quantified using THEMIS-derived thermal inertia data to characterize the physical properties at each site and identify the presence or absence of physical diversity among these materials. I identified a wide range of surface properties at these locations ranging from indurated surfaces intermixed with unconsolidated aeolian material (thermal inertia of 150-460 J m-2 K-1 s- 1/2) at Mawrth Vallis, to exposures of in-place bedrock and the presence of rocky material (thermal inertia exceeding 800 J m-2 K-1 s-1/2) in Gale crater. In addition, the surface texture and morphologic features observed in high-resolution visible images (such as narrow-angle MOC, HiRISE, and CTX) are dissimilar across these phyllosilicate exposures, and confirm the interpretation of thermal inertia values. The diversity of the physical nature of these materials implies that the environment that deposited phyllosilicates on Mars and their post-emplacement modification is not consistent across all deposits. This result has important implications for the interpretation of their emplacement and subsequent history, and the potential role of water in these regions.
NASA Astrophysics Data System (ADS)
Yugsi Molina, F. X.; Oppikofer, T.; Fischer, L.; Hermanns, R. L.; Taurisano, A.
2012-04-01
Traditional techniques to assess rockfall hazard are partially based on probabilistic analysis. Stochastic methods has been used for run-out analysis of rock blocks to estimate the trajectories that a detached block will follow during its fall until it stops due to kinetic energy loss. However, the selection of rockfall source areas is usually defined either by multivariate analysis or by field observations. For either case, a physically based approach is not used for the source area detection. We present an example of rockfall hazard assessment that integrates a probabilistic rockfall run-out analysis with a stochastic assessment of the rockfall source areas using kinematic stability analysis in a GIS environment. The method has been tested for a steep more than 200 m high rock wall, located in the municipality of Norddal (Møre og Romsdal county, Norway), where a large number of people are either exposed to snow avalanches, rockfalls, or debris flows. The area was selected following the recently published hazard mapping plan of Norway. The cliff is formed by medium to coarse-grained quartz-dioritic to granitic gneisses of Proterozoic age. Scree deposits product of recent rockfall activity are found at the bottom of the rock wall. Large blocks can be found several tens of meters away from the cliff in Sylte, the main locality in the Norddal municipality. Structural characterization of the rock wall was done using terrestrial laser scanning (TLS) point clouds in the software Coltop3D (www.terranum.ch), and results were validated with field data. Orientation data sets from the structural characterization were analyzed separately to assess best-fit probability density functions (PDF) for both dip angle and dip direction angle of each discontinuity set. A GIS-based stochastic kinematic analysis was then carried out using the discontinuity set orientations and the friction angle as random variables. An airborne laser scanning digital elevation model (ALS-DEM) with 1 m resolution was used for the analysis. Three failure mechanisms were analyzed: planar and wedge sliding, as well as toppling. Based on this kinematic analysis, areas where failure is feasible were used as source areas for run out analysis using Rockyfor3D v. 4.1 (www.ecorisq.org). The software calculates trajectories of single falling blocks in three dimensions using physically based algorithms developed under a stochastic approach. The ALS-DEM was down-scaled to 5 m resolution to optimize processing time. Results were compared with run-out simulations using Rockyfor3D with the whole rock wall as source area, and with maps of deposits generated from field observations and aerial photo interpretation. The results product of our implementation show a better correlation with field observations, and help to produce more accurate rock fall hazard assessment maps by a better definition of the source areas. It reduces the time processing for the analysis as well. The findings presented in this contribution are part of an effort to produce guidelines for natural hazard mapping in Norway. Guidelines will be used in upcoming years for hazard mapping in areas where larger groups of population are exposed to mass movements from steep slopes.
Identifying the Dynamic Catchment Storage That Does Not Drive Runoff
NASA Astrophysics Data System (ADS)
Dralle, D.; Hahm, W. J.; Rempe, D.; Karst, N.; Thompson, S. E.; Dietrich, W. E.
2017-12-01
The central importance of subsurface water storage in hydrology has resulted in numerous attempts to develop hydrograph and mass balance based techniques to quantify catchment storage state or capacity. In spite of these efforts, relatively few studies have linked catchment scale storage metrics to Critical Zone (CZ) structure and the status of water in hillslopes. Elucidating these relationships would increase the interpretability of catchment storage metrics, and aid the development of hydrologic models. Here, we propose that catchment storage consists of a dynamic component that varies on seasonal timescales, and a static component with negligible time variation. Discharge is assumed to be explicitly sensitive to changes in some fraction of the dynamic storage, while the remaining dynamic storage varies without directly influencing flow. We use a coupled mass balance and storage-discharge function approach to partition dynamic storage between these driving and non-driving storage pools, and compare inferences with direct observations of saturated and unsaturated dynamic water storages at two field sites in Northern California. We find that most dynamic catchment water storage does not drive streamflow in both sites, even during the wettest times of year. Moreover, the physical character of non-driving dynamic storage depends strongly on catchment CZ structure. At a site with a deep profile of weathered rock, the dynamic storage that drives streamflow occurs as a seasonally perched groundwater table atop fresh bedrock, and that which does not drive streamflow resides as seasonally dynamic unsaturated water in shallow soils and deep, weathered rock. At a second site with a relatively thin weathered zone, water tables rapidly rise to intersect the ground surface with the first rains of the wet season, yet only a small fraction of this dynamic saturated zone storage drives streamflow. Our findings emphasize how CZ structure governs the overlap in time and space of three pools of subsurface water: (i) seasonally dynamic vs. static; (ii) unsaturated vs. saturated, and (iii) storage whose magnitude directly influences runoff vs. that which does not. These results highlight the importance of hillslope monitoring for physically interpreting methods of runoff-based hydrologic analysis.
A new interpretation of the Besnus transition in monoclinic pyrrhotite
NASA Astrophysics Data System (ADS)
Gehring, Andreas
2016-04-01
Non-stoichiometric monoclinic 4C pyrrhotite (ideal formula: Fe7S8) is a major magnetic remanence carrier in the Earth's crust and in extraterrestrial materials. Because of its low-temperature magnetic transition around 30 K also known as Besnus transition, this mineral phase is easily detectable in natural samples. Considering the rock magnetic literature, an intrinsic origin of the Besnus transition similar to that of the Verwey transition has generally been assumed. Although the physical properties of pyrrhotite have intensively been studied, the mechanism behind the pronounced change in magnetization at the low-temperature transition is still debated. To address this question we performed magnetization experiments on a natural pyrrhotite crystal (Fe6.6S8) that consists of an epitaxial intergrowth of a commensurate 4C and an incommensurate 5C* superstructure that are different in their defect structure (1,2). The occurrence of two monoclinic superstructures detected by X-ray diffractometry is magnetically confirmed by symmetric inflection points in hysteresis measurements above the transition at about 30 K. The disappearance of the inflection points and the associated change of the hysteresis parameters indicate that the two superstructures become strongly coupled to form a unitary magnetic anisotropy system at the transition. From this it follows that the Besnus transition in monoclinic pyrrhotite is an extrinsic magnetic phenomenon with respect to the 4C superstructure and therefore the physics behind it is in fact different from that of the well-known Verwey transition. Finally, this novel interpretation explains the rock magnetic data for the low-temperature transition that has been reported for monoclinic pyrrhotite. It will also provide deeper understanding of magnetism in monoclinic pyrrhotite, which in turn will enable a more profound insight to the magnetization properties of the Earth's crust. 1.) Charilaou, M., Kind, J., Koulialias, D., Weidler, P.G., Mensing, C., Löffler, J.F. & Gehring, A.U., 2015. J. Appl. Phys., 118, 083903. 2.) Koulialias, D., Kind, J., Charilaou, M., Weidler, P.G., Löffler, J.F. & Gehring, A.U. 2016. Geophys. J. Int., 204, 961-967.
Physical Properties of the MER and Beagle II Landing Sites on Mars
NASA Astrophysics Data System (ADS)
Jakosky, B. M.; Pelkey, S. M.; Mellon, M. T.; Putzig, N.; Martinez-Alonso, S.; Murphy, N.; Hynek, B.
2003-12-01
The ESA Beagle II and the NASA Mars Exploration Rover spacecraft are scheduled to land on the martian surface in December 2003 and January 2004, respectively. Mission operations and success depends on the physical properties of the surfaces on which they land. Surface structural characteristics such as the abundances of loose, unconsolidated fine material, of fine material that has been cemented into a duricrust, and of rocks affect the ability to safely land and to successfully sample and traverse the surface. Also, physical properties affect surface and atmospheric temperatures, which affect lander and rover functionality. We are in the process of analyzing surface temperature information for these sites, derived from MGS TES and Odyssey THEMIS daytime and nighttime measurements. Our approach is to: (i) remap thermal inertia using TES data at ~3-km resolution, to obtain the most complete coverage possible; (ii) interpret physical properties from TES coverage in conjunction with other remote-sensing data sets; (iii) map infrared brightness using daytime and nighttime THEMIS data at 100-m resolution, and do qualitative analysis of physical properties and processes; and (iv) derive thermal inertia from THEMIS nighttime data in conjunction with daytime albedo measurements derived from TES, THEMIS, and MOC observations. In addition, we will use measured temperatures and derived thermal inertia to predict surface temperatures for the periods of the missions.
Microstructural controls on the macroscopic behavior of geo-architected rock samples
NASA Astrophysics Data System (ADS)
Mitchell, C. A.; Pyrak-Nolte, L. J.
2017-12-01
Reservoir caprocks, are known to span a range of mechanical behavior from elastic granitic units to visco-elastic shale units. Whether a rock will behave elastically, visco-elastically or plastically depends on both the compositional and textural or microsctructural components of the rock, and how these components are spatially distributed. In this study, geo-architected caprock fabrication was performed to develop synthetic rock to study the role of rock rheology on fracture deformations, fluid flow and geochemical alterations. Samples were geo-architected with Portland Type II cement, Ottawa sand, and different clays (kaolinite, illite, and Montmorillonite). The relative percentages of these mineral components are manipulated to generate different rock types. With set protocols, the mineralogical content, texture, and certain structural aspects of the rock were controlled. These protocols ensure that identical samples with the same morphological and mechanical characteristics are constructed, thus overcoming issues that may arise in the presence of heterogeneity and high anisotropy from natural rock samples. Several types of homogeneous geo-architected rock samples were created, and in some cases the methods were varied to manipulate the physical parameters of the rocks. Characterization of rocks that the samples exhibit good repeatability. Rocks with the same mineralogical content generally yielded similar compressional and shear wave velocities, UCS and densities. Geo-architected rocks with 10% clay in the matrix had lower moisture content and effective porosities than rocks with no clay. The process by which clay is added to the matrix can strongly affect the resulting compressive strength and physical properties of the geo-architected sample. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022).
Simulation of Asymmetric Destabilization of Mine-void Rock Masses Using a Large 3D Physical Model
NASA Astrophysics Data System (ADS)
Lai, X. P.; Shan, P. F.; Cao, J. T.; Cui, F.; Sun, H.
2016-02-01
When mechanized sub-horizontal section top coal caving (SSTCC) is used as an underground mining method for exploiting extremely steep and thick coal seams (ESTCS), a large-scale surrounding rock caving may be violently created and have the potential to induce asymmetric destabilization from mine voids. In this study, a methodology for assessing the destabilization was developed to simulate the Weihuliang coal mine in the Urumchi coal field, China. Coal-rock mass and geological structure characterization were integrated with rock mechanics testing for assessment of the methodology and factors influencing asymmetric destabilization. The porous rock-like composite material ensured accuracy for building a 3D geological physical model of mechanized SSTCC by combining multi-mean timely track monitoring including acoustic emission, crack optical acquirement, roof separation observation, and close-field photogrammetry. An asymmetric 3D modeling analysis for destabilization characteristics was completed. Data from the simulated hydraulic support and buried pressure sensor provided effective information that was linked with stress-strain relationship of the working face in ESTCS. The results of the 3D physical model experiments combined with hybrid statistical methods were effective for predicting dynamic hazards in ESTCS.
NASA Astrophysics Data System (ADS)
Auduson, Aaron E.
2018-07-01
One of the most common problems in the North Sea is the occurrence of salt (solid) in the pores of Triassic sandstones. Many wells have failed due to interpretation errors based conventional substitution as described by the Gassmann equation. A way forward is to device a means to model and characterize the salt-plugging scenarios. Modelling the effects of fluid and solids on rock velocity and density will ascertain the influence of pore material types on seismic data. In this study, two different rock physics modelling approaches are adopted in solid-fluid substitution, namely the extended Gassmann theory and multi-mineral mixing modelling. Using the modified new Gassmann equation, solid-and-fluid substitutions were performed from gas or water filling in the hydrocarbon reservoirs to salt materials being the pore-filling. Inverse substitutions were also performed from salt-filled case to gas- and water-filled scenarios. The modelling results show very consistent results - Salt-plugged wells clearly showing different elastic parameters when compared with gas- and water-bearing wells. While the Gassmann equation-based modelling was used to discretely compute effective bulk and shear moduli of the salt plugs, the algorithm based on the mineral-mixing (Hashin-Shtrikman) can only predict elastic moduli in a narrow range. Thus, inasmuch as both of these methods can be used to model elastic parameters and characterize pore-fill scenarios, the New Gassmann-based algorithm, which is capable of precisely predicting the elastic parameters, is recommended for use in forward seismic modelling and characterization of this reservoir and other reservoir types. This will significantly help in reducing seismic interpretation errors.
Borehole geophysics applied to ground-water investigations
Keys, W.S.
1990-01-01
The purpose of this manual is to provide hydrologists, geologists, and others who have the necessary background in hydrogeology with the basic information needed to apply the most useful borehole-geophysical-logging techniques to the solution of problems in ground-water hydrology. Geophysical logs can provide information on the construction of wells and on the character of the rocks and fluids penetrated by those wells, as well as on changes in the character of these factors over time. The response of well logs is caused by petrophysical factors, by the quality, temperature, and pressure of interstitial fluids, and by ground-water flow. Qualitative and quantitative analysis of analog records and computer analysis of digitized logs are used to derive geohydrologic information. This information can then be extrapolated vertically within a well and laterally to other wells using logs. The physical principles by which the mechanical and electronic components of a logging system measure properties of rocks, fluids, and wells, as well as the principles of measurement, must be understood if geophysical logs are to be interpreted correctly. Plating a logging operation involves selecting the equipment and the logs most likely to provide the needed information. Information on well construction and geohydrology is needed to guide this selection. Quality control of logs is an important responsibility of both the equipment operator and the log analyst and requires both calibration and well-site standardization of equipment. Logging techniques that are widely used in ground-water hydrology or that have significant potential for application to this field include spontaneous potential, resistance, resistivity, gamma, gamma spectrometry, gamma-gamma, neutron, acoustic velocity, acoustic televiewer, caliper, and fluid temperature, conductivity, and flow. The following topics are discussed for each of these techniques: principles and instrumentation, calibration and standardization, volume of investigation, extraneous effects, and interpretation and applications.
Borehole geophysics applied to ground-water investigations
Keys, W.S.
1988-01-01
The purpose of this manual is to provide hydrologists, geologists, and others who have the necessary training with the basic information needed to apply the most useful borehole-geophysical-logging techniques to the solution of problems in ground-water hydrology. Geophysical logs can provide information on the construction of wells and on the character of the rocks and fluids penetrated by those wells, in addition to changes in the character of these factors with time. The response of well logs is caused by: petrophysical factors; the quality; temperature, and pressure of interstitial fluids; and ground-water flow. Qualitative and quantitative analysis of the analog records and computer analysis of digitized logs are used to derive geohydrologic information. This information can then be extrapolated vertically within a well and laterally to other wells using logs.The physical principles by which the mechanical and electronic components of a logging system measure properties of rocks, fluids and wells, and the principles of measurement need to be understood to correctly interpret geophysical logs. Planning the logging operation involves selecting the equipment and the logs most likely to provide the needed information. Information on well construction and geohydrology are needed to guide this selection. Quality control of logs is an important responsibility of both the equipment operator and log analyst and requires both calibration and well-site standardization of equipment.Logging techniques that are widely used in ground-water hydrology or that have significant potential for application to this field include: spontaneous potential, resistance, resistivity, gamma, gamma spectrometry, gamma-gamma, neutron, acoustic velocity, acoustic televiewer, caliper, and fluid temperature, conductivity, and flow. The following topics are discussed for each of these techniques: principles and instrumentation, calibration and standardization, volume of investigation, extraneous effects, and interpretation and applications.
Rock magnetic stratigraphy of a mafic layered sill: A key to the Karoo volcanics plumbing system
NASA Astrophysics Data System (ADS)
Maes, S. M.; Ferré, E. C.; Tikoff, B.; Brown, P. E.; Marsh, J. S.
2008-05-01
The Insizwa sill is an ~ 1 km-thick subhorizontal layered mafic intrusion and part of the Karoo Large Igneous Province in South Africa. This well-exposed intrusion consists of several superimposed petrologically and geochemically distinct units. Magnetic methods were used to study the intrusion in order to constrain the physical processes active in these types of bodies during crystallization. Rock magnetism studies indicate that within different petrologic units bulk susceptibility is controlled by primary magnetite (with minor pyrrhotite) and/or paramagnetic minerals (olivine, pyroxene). New magnetic data based on 659 specimens obtained from 3 vertical borehole cores, each spaced 5 km apart, confirm the prominent vertical zonation in low field magnetic susceptibility ( Klf), degree of anisotropy ( Pj) and orientation of the anisotropy of magnetic susceptibility (AMS) axes. The magnetic susceptibility correlates very well with petrographic units and the lateral continuity of magnetic units between boreholes is very consistent. Petrologic units with high, but variable, Klf, also show moderate anisotropy and dominantly vertical foliations. We interpret these patterns to result from inverse fabrics from single domain magnetite. The degree of anisotropy is low in petrologic units with low Klf, which also show shallowly dipping magnetic foliations. We interpret that the magnetic properties of these units are dominated by the paramagnetic minerals. These low Klf petrologic units also show no systematic increase in Klf, suggesting that only minor differentiation is occurring in these units. The dataset derived from 2 surface sampling traverses are consistent with borehole core AMS data, showing a pattern of dominantly steep magnetic foliation and variably plunging magnetic lineation with a NW-SE trend.
NASA Astrophysics Data System (ADS)
Saif, S.; Brownlee, S. J.
2017-12-01
Compositional and structural heterogeneity in the continental crust are factors that contribute to the complex expression of crustal seismic anisotropy. Understanding deformation and flow in the crust using seismic anisotropy has thus proven difficult. Seismic anisotropy is affected by rock microstructure and mineralogy, and a number of studies have begun to characterize the full elastic tensors of crustal rocks in an attempt to increase our understanding of these intrinsic factors. However, there is still a large gap in length-scale between laboratory characterization on the scale of centimeters and seismic wavelengths on the order of kilometers. To address this length-scale gap we are developing a 3D crustal model that will help us determine the effects of rotating laboratory-scale elastic tensors into field-scale structures. The Chester gneiss dome in southeast Vermont is our primary focus. The model combines over 2000 structural data points from field measurements and published USGS structural data with elastic tensors of Chester dome rocks derived from electron backscatter diffraction data. We created a uniformly spaced grid by averaging structural measurements together in equally spaced grid boxes. The surface measurements are then projected into the third dimension using existing subsurface interpretations. A measured elastic tensor for the specific rock type is rotated according to its unique structural input at each point in the model. The goal is to use this model to generate artificial seismograms using existing numerical wave propagation codes. Once completed, the model input can be varied to examine the effects of different subsurface structure interpretations, as well as heterogeneity in rock composition and elastic tensors. Our goal is to be able to make predictions for how specific structures will appear in seismic data, and how that appearance changes with variations in rock composition.
Geophysical anatomy of counter-slope scarps in sedimentary flysch rocks (Outer Western Carpathians)
NASA Astrophysics Data System (ADS)
Tábořík, P.; Lenart, J.; Blecha, V.; Vilhelm, J.; Turský, O.
2017-01-01
A multidisciplinary geophysical survey, consisting of electrical resistivity tomography (ERT), ground penetrating radar (GPR), shallow seismic refraction (SSR) and gravity survey (GS), was used to investigate the counter-slope scarps, one of the typical manifestations of the relaxed zones of rock massifs, and the possible initial stages of deep-seated landslides (DSLs). Two upper parts of the extensive DSLs within the Moravskoslezské Beskydy Mountains (Outer Western Carpathians - OWC) built by the sedimentary flysch rock were chosen as the testing sites. A combined geophysical survey on the flysch rocks was performed on both localities to enhance our present findings. The survey revealed that the ERT is able to reliably detect underground discontinuities, which are manifested at the ground surface by one of the typical landforms (tension cracks, trenches, pseudokarst sinkholes, double-crested ridges and counter-slope scarps). Previous studies suggested that bedrock discontinuities should be depicted by high-resistivity features within ERT surveying. According to SSR and GS, expected zones of weakened rock massif were not confirmed directly underneath the superficial landforms, but they were shifted. Based on the SSR and GS measurements, the depicted high-contrast transitions between high- and low-resistivity domains within the ERT profiles were newly identified as possible manifestation of bedrock discontinuities. The results of GPR measurements give only limited information on the sedimentary flysch rocks, due to shallow penetrating depth and locally strong signal attenuation. The combined results of multidisciplinary geophysical surveying confirmed an importance of employing more than one geophysical technique for integrated interpretations of measured data. Integrated interpretations of the measured geophysical data provided a new insight into massif disintegration and the geomorphic origin of the landforms related to the DSL.
NASA Astrophysics Data System (ADS)
Bokiy, IB; Zoteev, OV; Pul, VV; Pul, EK
2018-03-01
The influence of structural features on the strength and elasticity modulus is studied in rock mass in the area of Mirny Mining and Processing Works. The authors make recommendations on the values of physical properties of rocks.
NASA Astrophysics Data System (ADS)
Samsanova, L.; Kotchergina, N. V.; Glinsky, M.; Zinin, A.; Ivanov, I.
2001-12-01
Industrial solutions from the surface storage of liquid radioactive wastes in Lake Karachay have been migrating in groundwaters for 50 years. Interaction of industrial solutions with fractured water-bearing rocks results in the formation of a plume body of contaminated rocks due to a partial retardation of the migrating radionuclides. In conducting research of the fractured rocks core samples from the wells located within the contaminated ground water plume, we have obtained empirical estimations of the retardation parameter (Sr-90 interphase distribution factor, Kd). To interpret the experimental data on Sr-90 Kd, a method of modeling of strontium-90 retardation by fractured rocks has been developed. The process of transient filtration for a flow fragment from Lake Karachay was reconstructed. Epignose modeling of the industrial solution's main flow migrating from Lake Karachay in south direction was performed. By solving the inverse tasks Kd of strontium-90 was estimated for the fractured rocks.
NASA Technical Reports Server (NTRS)
Rutherford, Malcolm J.; Mustard, Jack; Weitz, Catherine
2002-01-01
The composition and spectral properties of the Mars Pathfinder rocks and soils together with the identification of basaltic and andesitic Mars terrains based on Thermal Emission Spectrometer (TES) data raised interesting questions regarding the nature and origin of Mars surface rocks. We have investigated the following questions: (1) are the Pathfinder rocks igneous and is it possible these rocks could have formed by known igneous processes, such as equilibrium or fractional crystallization, operating within SNC magmas known to exist on Mars? If it is possible, what P (depth) and PH2O conditions are required? (2) whether TES-based interpretations of plagioclase-rich basalt and andesitic terrains in the south and north regions of Mars respectively are unique. Are the surface compositions of these regions plagioclase-rich, possibly indicating the presence of old AI-rich crust of Mars, or are the spectra being affected by something like surface weathering processes that might determine the spectral pyroxene to plagioclase ratio?
Rock avalanche deposits in Alai Valley, Central Asia: misinterpretation of glacial record
NASA Astrophysics Data System (ADS)
Reznichenko, Natalya; Davies, Tim; Robinson, Tom; De Pascale, Gregory
2013-04-01
The reconstruction of Quaternary glaciations has been restricted by conventional approaches with resulting contradictions in interpretation of the regional glacial record, that recently have been subjected to critical re-evaluation. Along with uncertainties in dating techniques and their applicability to particular landforms (Kirkbride and Winkler, 2012), it has recently been demonstrated that the presence of rock avalanche debris in a landform can be unequivocally detected; this allows for the first time definitive identification of and distinction between glacial moraines and landslide deposits. It also identifies moraines that have formed due to rock avalanche deposition on glaciers, possibly with no associated climatic signal (Reznichenko et al., 2012). Confusion between landslide deposits and moraines is evident for ranges in Central Asia (e.g., Hewitt, 1999) where the least-studied glacial record is selectively correlated with established glacial chronologies in Alpine ranges, which in turn masks the actual glacial extent and their responses to climate change, tectonics and landsliding activity. We describe examples in the glaciated Alai Valley, large intermountain depression between the Zaalay Range of the Northern Pamir and the Alay Range of the Southern Tien-Shan, showing that some large Quaternary deposits classically interpreted as moraines are of rock avalanche origin. Sediment from these deposits has been tested for the presence of agglomerates that are only produced under high stress conditions during rock avalanche motion, and are absent from glacial sediments (Reznichenko et al., 2012). This reveals that morphologically-similar deposits have radically different geneses: rock avalanche origin for a deposit in the Komansu river catchment and glacial origin for deposits in the Ashiktash and Kyzylart catchments. The enormous Komansu rock avalanche deposit, probably triggered by a rupture of the Main Pamir thrust, currently covers about 100 km2 with a minimum estimated volume more than 1 x 109 m3. Another smaller rock avalanche deposit rests on the Lenin Glacial sediment in the neighbour Ashiktash river catchment, which was previously suggested to originate from Mt. Lenin (7134 m). The revised origin of these deposits highlights the role of rock avalanches in glacial activity and in the resulting glacial record in this valley and other actively tectonic areas of Central Asia. Although further investigation is required to detail the geneses, magnitudes and ages for these and other landforms in the valley, this study contributes explicit evidence for contamination of palaeoclimate proxies with data from non-climatic events, and reinforces the urgent need for revised interpretation of the glacial chronologies. Hewitt, K., 1999. Quaternary moraines vs. catastrophic rock avalanches in the Karakoram Himalaya, Northern Pakistan. Quaternary Research, v. 51, p. 220-237. Kirkbride, M.P., and Winkler, S., 2012. Correlation of Late Quaternary moraines: impact of climate variability, glacier response, and chronological resolution: Quaternary Science Reviews, v. 46, p. 1-29. Reznichenko, N.V., Davies, T.R.H., Shulmeister, J. and Larsen S.H, 2012. A new technique for identifying rock-avalanche-sourced sediment in moraines and some paleoclimatic implications. Geology, v. 40, p. 319-322.
Database compilation for the geologic map of the San Francisco volcanic field, north-central Arizona
Bard, Joseph A.; Ramsey, David W.; Wolfe, Edward W.; Ulrich, George E.; Newhall, Christopher G.; Moore, Richard B.; Bailey, Norman G.; Holm, Richard F.
2016-01-08
The orignial geologic maps were prepared under the Geothermal Research Program of the U.S. Geological Survey as a basis for interpreting the history of magmatic activity in the volcanic field. The San Francisco field, which is largely Pleistocene in age, is in northern Arizona, just north of the broad transition zone between the Colorado Plateau and the Basin and Range province. It is one of several dominantly basaltic volcanic fields of the late Cenozoic age situated near the margin of the Colorado Plateau. The volcanic field contains rocks ranging in composition from basalt to rhyolite—the products of eruption through Precambrian basement rocks and approximately a kilometer of overlying, nearly horizontal, Paleozoic and Mesozoic sedimentary rocks. About 500 km3 of erupted rocks cover about 5,000 km2 of predominantly Permian and locally preserved Triassic sedimentary rocks that form the erosionally stripped surface of the Colorado Plateau in Northern Arizona.
The importance of bulk density determination in gravity data processing for structure interpretation
NASA Astrophysics Data System (ADS)
Wildan, D.; Akbar, A. M.; Novranza, K. M. S.; Sobirin, R.; Permadi, A. N.; Supriyanto
2017-07-01
Gravity method use rock density variation for determining subsurface lithology and geological structure. In the "green area" where measurement of rock density has not been done, an attemp to find density is usually performed by calculating using Parasnis method, or by using using the average of rock density in the earth's crust (2,67 gr/cm3) or by using theoritical value of dominant rock density in the survey area (2,90 gr/cm3). Those three values of densities are applied to gravity data analysis in the hilly "X" area. And we have compared all together in order to observed which value has represented the structure better. The result showed that the higher value of rock density, the more obvious structure in the Bouguer anomaly profile. It is due to the contrast of maximum and minimum value of Bouguer anomaly that will affect the exageration in distance vs Bouguer anomaly graphic.
NASA Astrophysics Data System (ADS)
Dona, Obie Mario; Ibrahim, Eddy; Susilo, Budhi Kuswan
2017-11-01
The research objective is to describe potential, to analyze the quality and quantity of limestone, and to know the limit distribution of rocks based on the value of resistivity, the pattern of distribution of rocks by drilling, the influence mineral growing on rock against resistivity values, the model deposition of limestone based on the value resistivity of rock and drilling, and the comparison between the interpretation resistivity values based on petrographic studies by drilling. Geologic Formations study area consists of assays consisting of altered sandstone, phyllite, slate, siltstone, grewake, and inset limestone. Local quartz sandstone, schist, genealogy, which is Member of Mersip Stylists Formation, consists of limestone that formed in shallow seas. Stylists Formation consists of slate, shale, siltstone and sandstone. This research methodology is quantitative using experimental observation by survey. This type of research methodology by its nature is descriptive analysis.
Principal facts for gravity stations in the vicinity of San Bernardino, Southern California
Anderson, Megan L.; Roberts, Carter W.; Jachens, Robert C.
2000-01-01
New gravity measurements in the vicinity of San Bernardino, California were collected to help define the characteristics of the Rialto-Colton fault. The data were processed using standard reduction formulas and parameters. Rock properties such as lithology, magnetic susceptibility and density also were measured at several locations. Rock property measurements will be helpful for future modeling and density inversion calculations from the gravity data. On both the Bouguer and isostatic gravity maps, a prominent, 13-km long (8 mi), approximately 1-km (0.62 mi) wide gradient with an amplitude of 7 mGal, down to the northeast, is interpreted as the gravity expression of the Rialto-Colton fault. The gravity gradient strikes in a northwest direction and runs from the San Jacinto fault zone at its south end to San Sevine Canyon at the foot of the San Gabriel mountains at its north end. The Rialto-Colton fault has experienced both right-lateral strike-slip and normal fault motion that has offset basement rocks; therefore it is interpreted as a major, through-going fault.
Deformation, geochemistry, and origin of massive sulfide deposits, Gossan lead district, Virginia.
Gair, J.E.; Slack, J.F.
1984-01-01
Lenses and layers of massive sulphides comprise a discontinuous horizon in the late Proterozoic metasedimentary Ashe formation. The folded and brecciated sulphides include pyrrhotite, minor chalcopyrite, sphalerite and pyrite, and rare arsenopyrite and galena. The deposits were mined for supergene copper, later for gossan iron, and finally for sulphur. The Ashe formation is interpreted to be marine turbidites, and contains lenses of mafic rocks of probable tholeiitic basalt parentage. Mineralogically and chemically distinctive rocks - for the Ashe formation - are interbedded with the sulphides and may represent metamorphosed alteration zones and/or mixed chemical and clastic sediments. The sulphide deposits are interpreted as syngenetic sediments, modified by deformation during metamorphism. Their deposition occurred in a deep, elongate marine basin overlying a crustal rift zone.-G.J.N.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wardaya, P. D., E-mail: pongga.wardaya@utp.edu.my; Noh, K. A. B. M., E-mail: pongga.wardaya@utp.edu.my; Yusoff, W. I. B. W., E-mail: pongga.wardaya@utp.edu.my
This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, anmore » advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave velocity of rock.« less
Law on the Rocks: International Law and China’s Maritime Disputes
2014-12-01
value .”258 Interpreting a rock as an island can entitle a coastal state to an additional 125,000 square nautical miles of exclusive economic zone...five patrol boats and an additional $18 million in assistance. Additionally , Vietnamese Defense Minister Gen. Phùng Quang Thanh extended an open...territory. Failure to defend what China perceives as national territory inspires maritime claimants to take more territory. Additionally , separatists in
Kraus Receives 2012 Mineral and Rock Physics Graduate Research Award
NASA Astrophysics Data System (ADS)
2013-08-01
Richard Kraus received the 2012 Mineral and Rock Physics Graduate Research Award, given annually to one or more promising young scientists for outstanding contributions achieved during their Ph.D. research. Recipients of this award are engaged in experimental and/or theoretical studies of Earth and planetary materials with the purpose of unraveling the physics and chemistry that govern their origins and physical properties. Kraus's thesis is entitled "On the thermodynamics of planetary impact events." He was formally presented with the award at the 2012 AGU Fall Meeting, held 3-7 December in San Francisco, Calif.
Fluids in crustal deformation: Fluid flow, fluid-rock interactions, rheology, melting and resources
NASA Astrophysics Data System (ADS)
Lacombe, Olivier; Rolland, Yann
2016-11-01
Fluids exert a first-order control on the structural, petrological and rheological evolution of the continental crust. Fluids interact with rocks from the earliest stages of sedimentation and diagenesis in basins until these rocks are deformed and/or buried and metamorphosed in orogens, then possibly exhumed. Fluid-rock interactions lead to the evolution of rock physical properties and rock strength. Fractures and faults are preferred pathways for fluids, and in turn physical and chemical interactions between fluid flow and tectonic structures, such as fault zones, strongly influence the mechanical behaviour of the crust at different space and time scales. Fluid (over)pressure is associated with a variety of geological phenomena, such as seismic cycle in various P-T conditions, hydrofracturing (including formation of sub-horizontal, bedding-parallel veins), fault (re)activation or gravitational sliding of rocks, among others. Fluid (over)pressure is a governing factor for the evolution of permeability and porosity of rocks and controls the generation, maturation and migration of economic fluids like hydrocarbons or ore forming hydrothermal fluids, and is therefore a key parameter in reservoir studies and basin modeling. Fluids may also help the crust partially melt, and in turn the resulting melt may dramatically change the rheology of the crust.
NASA Astrophysics Data System (ADS)
Lee, Minhee; Wang, Sookyun; Kim, Seyoon; Park, Jinyoung
2015-04-01
Lab scale experiments were performed to investigate the property changes of sandstone slabs and cores, resulting from the scCO2-rock-groundwater reaction for 180 days under CO2 sequestration conditions (100 bar and 50 °C). The geochemical reactions, including the surface roughness change of minerals in the slab, resulted from the dissolution and the secondary mineral precipitation for the sandstone reservoir of the Gyeongsang basin, Korea were reproduced in laboratory scale experiments and the relationship between the geochemical reaction and the physical rock property change was derived, for the consideration of successful subsurface CO2 sequestration. The use of the surface roughness value (SRrms) change rate and the physical property change rate to quantify scCO2-rock-groundwater reaction is the novel approach on the study area for CO2 sequestration in the subsurface. From the results of SPM (Scanning Probe Microscope) analyses, the SRrms for each sandstone slab was calculated at different reaction time. The average SRrms increased more than 3.5 times during early 90 days reaction and it continued to be steady after 90 days, suggesting that the surface weathering process of sandstone occurred in the early reaction time after CO2 injection into the subsurface reservoir. The average porosity of sandstone cores increased by 8.8 % and the average density decreased by 0.5 % during 90 days reaction and these values slightly changed after 90 days. The average P and S wave velocities of sandstone cores also decreased by 10 % during 90 days reaction. The trend of physical rock property change during the geochemical reaction showed in a logarithmic manner and it was also correlated to the logarithmic increase in SRrms, suggesting that the physical property change of reservoir rocks originated from scCO2 injection directly comes from the geochemical reaction process. Results suggested that the long-term estimation of the physical property change for reservoir rocks in CO2 injection site could be possible from the extrapolation process of SRrms and rocks property change rates, acquired from laboratory scale experiments. It will be aslo useful to determine the favorite CO2 injection site from the viewpoint of the safety.
NASA Astrophysics Data System (ADS)
Aligholi, Saeed; Lashkaripour, Gholam Reza; Ghafoori, Mohammad
2017-01-01
This paper sheds further light on the fundamental relationships between simple methods, rock strength, and brittleness of igneous rocks. In particular, the relationship between mechanical (point load strength index I s(50) and brittleness value S 20), basic physical (dry density and porosity), and dynamic properties (P-wave velocity and Schmidt rebound values) for a wide range of Iranian igneous rocks is investigated. First, 30 statistical models (including simple and multiple linear regression analyses) were built to identify the relationships between mechanical properties and simple methods. The results imply that rocks with different Schmidt hardness (SH) rebound values have different physicomechanical properties or relations. Second, using these results, it was proved that dry density, P-wave velocity, and SH rebound value provide a fine complement to mechanical properties classification of rock materials. Further, a detailed investigation was conducted on the relationships between mechanical and simple tests, which are established with limited ranges of P-wave velocity and dry density. The results show that strength values decrease with the SH rebound value. In addition, there is a systematic trend between dry density, P-wave velocity, rebound hardness, and brittleness value of the studied rocks, and rocks with medium hardness have a higher brittleness value. Finally, a strength classification chart and a brittleness classification table are presented, providing reliable and low-cost methods for the classification of igneous rocks.
An analysis of gravity data in Area 12, Nevada Test Site
Wahl, R.R.
1969-01-01
The gravity data available from Healey and Miller (1963a) were augmented by new observations along three profiles through two new drill holes in Area 12; UEI2t #1 and UEI2p #1. The data were interpreted to allow evaluation of the geologic structure prior to the planning and excavation of two proposed tunnel complexes, Ul2t and Ul2p. Density values for each of six rock units were determined to allow a two-dimensional analysis of the gravity data along the above-mentioned profiles. The surficial rocks of Quaternary and Tertiary age and the Tertiary volcanic rocks have a weighted average density of 1.86 gm/cc. The density of the caprock at Rainier and Aqueduct Mesas ranges from 2.17 gm/cc at UEI2p #1 to 2.27 gm/cc at UEI2t #1. The Gold Meadows stock and the associated Precambrian quartzite have an arithmetic average density of 2.60 gm/cc for all samples measured. The middle Paleozoic dolomite in Area 12 has an arithmetic average density of 2.75 gm/cc. The clastic rocks of Paleozoic age have an arithmetic average density of 2.60 gm/cc. Interpretation of the residual gravity data indicates a maximum thickness of about 2,800 feet for all Tertiary volcanic rocks. A normal fault striking N. 30 ? E. disrupts the pre-Cenozoic surface at UEI2p #1 and 0.4 mile east of UEI2t #1. The throw within rock of Paleozoic age is about 400-500 feet. Another normal fault that strikes about N. 20 ? E. is located about 1.5 miles east of UEI2p #1. The throw of this fault is at least 1,100 feet in rocks of pre-Cenozoic age. Elevation contours representing the pre-Cenozoic surface in Area 12 show a maximum relief of about 2,000 feet.
NASA Technical Reports Server (NTRS)
Neal, Clive R.; Taylor, Lawrence A.
1991-01-01
The criteria and clues for identifying meteorite contamination are outlined to aid in the quest for more knowledge regarding the evolution of the Moon and the early Earth. The Warren and Wasson seven criteria for establishing the pristine nature of highland rocks are presented. Other topics covered include iron/nickel metals, monomict nature, and lunar glasses. The major conclusion is that pristinity should not be the primary consideration in the study of lunar rocks. The most important criterion to establish is whether or not the lunar sample contains more than one lunar rock type. Even if a sample is non-pristine, as long as only one lunar rock type is present, petrogenetic interpretation can still be carried out.
3D Printing and Digital Rock Physics for the Geosciences
NASA Astrophysics Data System (ADS)
Martinez, M. J.; Yoon, H.; Dewers, T. A.
2014-12-01
Imaging techniques for the analysis of porous structures have revolutionized our ability to quantitatively characterize geomaterials. For example, digital representations of rock from CT images and physics modeling based on these pore structures provide the opportunity to further advance our quantitative understanding of fluid flow, geomechanics, and geochemistry, and the emergence of coupled behaviors. Additive manufacturing, commonly known as 3D printing, has revolutionized production of custom parts, to the point where parts might be cheaper to print than to make by traditional means in a plant and ship. Some key benefits of additive manufacturing include short lead times, complex shapes, parts on demand, zero required inventory and less material waste. Even subtractive processing, such as milling and etching, may be economized by additive manufacturing. For the geosciences, recent advances in 3D printing technology may be co-opted to print reproducible porous structures derived from CT-imaging of actual rocks for experimental testing. The use of 3D printed microstructure allows us to surmount typical problems associated with sample-to-sample heterogeneity that plague rock physics testing and to test material response independent from pore-structure variability. Together, imaging, digital rocks and 3D printing potentially enables a new workflow for understanding coupled geophysical processes in a real, but well-defined setting circumventing typical issues associated with reproducibility, enabling full characterization and thus connection of physical phenomena to structure. In this talk we will discuss the possibilities that the marriage of these technologies can bring to geosciences, including examples from our current research initiatives in developing constitutive laws for transport and geomechanics via digital rock physics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Zhao, Qi
Rock failure process is a complex phenomenon that involves elastic and plastic deformation, microscopic cracking, macroscopic fracturing, and frictional slipping of fractures. Understanding this complex behaviour has been the focus of a significant amount of research. In this work, the combined finite-discrete element method (FDEM) was first employed to study (1) the influence of rock discontinuities on hydraulic fracturing and associated seismicity and (2) the influence of in-situ stress on seismic behaviour. Simulated seismic events were analyzed using post-processing tools including frequency-magnitude distribution (b-value), spatial fractal dimension (D-value), seismic rate, and fracture clustering. These simulations demonstrated that at the local scale, fractures tended to propagate following the rock mass discontinuities; while at reservoir scale, they developed in the direction parallel to the maximum in-situ stress. Moreover, seismic signature (i.e., b-value, D-value, and seismic rate) can help to distinguish different phases of the failure process. The FDEM modelling technique and developed analysis tools were then coupled with laboratory experiments to further investigate the different phases of the progressive rock failure process. Firstly, a uniaxial compression experiment, monitored using a time-lapse ultrasonic tomography method, was carried out and reproduced by the numerical model. Using this combination of technologies, the entire deformation and failure processes were studied at macroscopic and microscopic scales. The results not only illustrated the rock failure and seismic behaviours at different stress levels, but also suggested several precursory behaviours indicating the catastrophic failure of the rock. Secondly, rotary shear experiments were conducted using a newly developed rock physics experimental apparatus ERDmu-T) that was paired with X-ray micro-computed tomography (muCT). This combination of technologies has significant advantages over conventional rotary shear experiments since it allowed for the direct observation of how two rough surfaces interact and deform without perturbing the experimental conditions. Some intriguing observations were made pertaining to key areas of the study of fault evolution, making possible for a more comprehensive interpretation of the frictional sliding behaviour. Lastly, a carefully calibrated FDEM model that was built based on the rotary experiment was utilized to investigate facets that the experiment was not able to resolve, for example, the time-continuous stress condition and the seismic activity on the shear surface. The model reproduced the mechanical behaviour observed in the laboratory experiment, shedding light on the understanding of fault evolution.
NASA Astrophysics Data System (ADS)
Scarciglia, Fabio; Critelli, Salvatore; Borrelli, Luigi; Coniglio, Sabrina; Muto, Francesco; Perri, Francesco
2016-05-01
In this paper we characterized several weathering profiles developed on granitoid rocks in the Sila Massif upland (Calabria, southern Italy), integrating detailed macro- and micromorphological observations with physico-mechanical field tests and petrographic, mineralogical and geochemical analyses. We focused our attention on the main weathering and pedogenetic processes, trying to understand apparent discrepancies between weathering grade classes based on field description and geomechanical properties, and two common weathering indices, such as the micropetrographic index (Ip) and the chemical index of alteration (CIA). Our results showed that sericite on plagioclase and biotite chloritization, that represent inherited features formed during late-stage hydrothermal alteration of granitoid rocks, may cause an overestimation of the real degree of weathering of primary mineral grains under meteoric conditions, especially in lower weathering grade classes. Moreover, the frequent identification of Fe-Mn oxides and clay coatings of illuvial origin (rather than or in addition to those formed in situ), both at the macro- and microscale, may also explain an overestimation of the weathering degree with respect to field-based classifications. Finally, some apparent inconsistencies between field geomechanical responses and chemical weathering were interpreted as related to physical weathering processes (cryoclastism and thermoclastism), that lead to rock breakdown even when chemical weathering is not well developed. Hence, our study showed that particular caution is needed for evaluating weathering grades, because traditional field and geochemical-petrographic tools may be biased by inherited hydrothermal alteration, physical weathering and illuvial processes. On the basis of chronological constraints to soil formation obtained from a 42 ka-old volcanic input (mixed to granite parent materials) detected in the soil cover of the Sila Massif upland, a first attempt to estimate soil formation rates was achieved for different depths of corresponding weathering profile zones. Soil formation rates ranged from 0.01-0.07 mm a- 1 for A and Bw horizons (weathering class VI) to 0.04-0.36 mm a- 1 for the underlying saprolite (C and Cr layers; class V). By comparing these results with the corresponding erosion rates available in the literature for the study area, that range from < 0.01-0.05 to 0.10-0.21 mm a- 1, we suggest that the upland landscape of the Sila Massif is close to steady-state conditions between weathering and erosive processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grana, Dario; Verma, Sumit; Pafeng, Josiane
We present a reservoir geophysics study, including rock physics modeling and seismic inversion, of a carbon dioxide sequestration site in Southwestern Wyoming, namely the Rock Springs Uplift, and build a petrophysical model for the potential injection reservoirs for carbon dioxide sequestration. Our objectives include the facies classification and the estimation of the spatial model of porosity and permeability for two sequestration targets of interest, the Madison Limestone and the Weber Sandstone. The available dataset includes a complete set of well logs at the location of the borehole available in the area, a set of 110 core samples, and a seismicmore » survey acquired in the area around the well. The proposed study includes a formation evaluation analysis and facies classification at the well location, the calibration of a rock physics model to link petrophysical properties and elastic attributes using well log data and core samples, the elastic inversion of the pre-stack seismic data, and the estimation of the reservoir model of facies, porosity and permeability conditioned by seismic inverted elastic attributes and well log data. In particular, the rock physics relations are facies-dependent and include granular media equations for clean and shaley sandstone, and inclusion models for the dolomitized limestone. The permeability model has been computed by applying a facies-dependent porosity-permeability relation calibrated using core sample measurements. Finally, the study shows that both formations show good storage capabilities. The Madison Limestone includes a homogeneous layer of high-porosity high-permeability dolomite; the Weber Sandstone is characterized by a lower average porosity but the layer is thicker than the Madison Limestone.« less
Grana, Dario; Verma, Sumit; Pafeng, Josiane; ...
2017-06-20
We present a reservoir geophysics study, including rock physics modeling and seismic inversion, of a carbon dioxide sequestration site in Southwestern Wyoming, namely the Rock Springs Uplift, and build a petrophysical model for the potential injection reservoirs for carbon dioxide sequestration. Our objectives include the facies classification and the estimation of the spatial model of porosity and permeability for two sequestration targets of interest, the Madison Limestone and the Weber Sandstone. The available dataset includes a complete set of well logs at the location of the borehole available in the area, a set of 110 core samples, and a seismicmore » survey acquired in the area around the well. The proposed study includes a formation evaluation analysis and facies classification at the well location, the calibration of a rock physics model to link petrophysical properties and elastic attributes using well log data and core samples, the elastic inversion of the pre-stack seismic data, and the estimation of the reservoir model of facies, porosity and permeability conditioned by seismic inverted elastic attributes and well log data. In particular, the rock physics relations are facies-dependent and include granular media equations for clean and shaley sandstone, and inclusion models for the dolomitized limestone. The permeability model has been computed by applying a facies-dependent porosity-permeability relation calibrated using core sample measurements. Finally, the study shows that both formations show good storage capabilities. The Madison Limestone includes a homogeneous layer of high-porosity high-permeability dolomite; the Weber Sandstone is characterized by a lower average porosity but the layer is thicker than the Madison Limestone.« less
Comparison of Crack Initiation, Propagation and Coalescence Behavior of Concrete and Rock Materials
NASA Astrophysics Data System (ADS)
Zengin, Enes; Abiddin Erguler, Zeynal
2017-04-01
There are many previously studies carried out to identify crack initiation, propagation and coalescence behavior of different type of rocks. Most of these studies aimed to understand and predict the probable instabilities on different engineering structures such as mining galleries or tunnels. For this purpose, in these studies relatively smaller natural rock and synthetic rock-like models were prepared and then the required laboratory tests were performed to obtain their strength parameters. By using results provided from these models, researchers predicted the rock mass behavior under different conditions. However, in the most of these studies, rock materials and models were considered as contains none or very few discontinuities and structural flaws. It is well known that rock masses naturally are extremely complex with respect to their discontinuities conditions and thus it is sometimes very difficult to understand and model their physical and mechanical behavior. In addition, some vuggy rock materials such as basalts and limestones also contain voids and gaps having various geometric properties. Providing that the failure behavior of these type of rocks controlled by the crack initiation, propagation and coalescence formed from their natural voids and gaps, the effect of these voids and gaps over failure behavior of rocks should be investigated. Intact rocks are generally preferred due to relatively easy side of their homogeneous characteristics in numerical modelling phases. However, it is very hard to extract intact samples from vuggy rocks because of their complex pore sizes and distributions. In this study, the feasibility of concrete samples to model and mimic the failure behavior vuggy rocks was investigated. For this purpose, concrete samples were prepared at a mixture of %65 cement dust and %35 water and their physical and mechanical properties were determined by laboratory experiments. The obtained physical and mechanical properties were used to constitute numerical models, and then uniaxial compressive strength (UCS) tests were performed on these models by using a commercial software called as Particle Flow Code (PFC2D). When the crack behavior of concrete samples obtained from both laboratory tests and numerical models are compared with the results of previous studies, a significant similarity was found. As a result, due to the observed similarity crack behavior between concretes and rocks, it can be concluded that intact concrete samples can be used for modelling purposes to understand the effect of voids and gaps on failure characteristics of vuggy rocks.
2006-09-27
This MOC image shows dark-toned, windblown sands and ripples, surrounding a light-toned hill, interpreted to be sedimentary rock, in Ganges Chasma. Ganges Chasma is part of the giant Valles Marineris trough system on Mars
NASA Astrophysics Data System (ADS)
Liddell, Mitch; Unsworth, Martyn; Pek, Josef
2016-06-01
Viability for the development of an engineered geothermal system (EGS) in the oilsands region near Fort McMurray, Alberta, is investigated by studying the structure of the Precambrian basement rocks with magnetotellurics (MT). MT data were collected at 94 broad-band stations on two east-west profiles. Apparent resistivity and phase data showed little variation along each profile. The short period MT data detected a 1-D resistivity structure that could be identified as the shallow sedimentary basin underlain by crystalline basement rocks to a depth of 4-5 km. At lower frequencies a strong directional dependence, large phase splits, and regions of out-of-quadrant (OOQ) phase were detected. 2-D isotropic inversions of these data failed to produce a realistic resistivity model. A detailed dimensionality analysis found links between large phase tensor skews (˜15°), azimuths, OOQ phases and tensor decomposition strike angles at periods greater than 1 s. Low magnitude induction vectors, as well as uniformity of phase splits and phase tensor character between the northern and southern profiles imply that a 3-D analysis is not necessary or appropriate. Therefore, 2-D anisotropic forward modelling was used to generate a resistivity model to interpret the MT data. The preferred model was based on geological observations of outcropping anisotropic mylonitic basement rocks of the Charles Lake shear zone, 150 km to the north, linked to the study area by aeromagnetic and core sample data. This model fits all four impedance tensor elements with an rms misfit of 2.82 on the southern profile, and 3.3 on the northern. The conductive phase causing the anisotropy is interpreted to be interconnected graphite films within the metamorphic basement rocks. Characterizing the anisotropy is important for understanding how artificial fractures, necessary for EGS development, would form. Features of MT data commonly interpreted to be 3-D (e.g. out of OOQ phase and large phase tensor skew) are shown to be interpretable with this 2-D anisotropic model.
NASA Astrophysics Data System (ADS)
Kang, Hongpu; Li, Jianzhong; Yang, Jinghe; Gao, Fuqiang
2017-02-01
In underground coal mining, high abutment loads caused by the extraction of coal can be a major contributor to many rock mechanic issues. In this paper, a large-scale physical modeling of a 2.6 × 2.0 × 1.0 m entry roof has been conducted to investigate the fundamentals of the fracture mechanics of entry roof strata subjected to high abutment loads. Two different types of roof, massive roof and laminated roof, are considered. Rock bolt system has been taken into consideration. A distinct element analyses based on the physical modeling conditions have been performed, and the results are compared with the physical results. The physical and numerical models suggest that under the condition of high abutment loads, the massive roof and the laminated roof fail in a similar pattern which is characterized as vertical tensile fracturing in the middle of the roof and inclined shear fracturing initiated at the roof and rib intersections and propagated deeper into the roof. Both the massive roof and the laminated roof collapse in a shear sliding mode shortly after shear fractures are observed from the roof surface. It is found that shear sliding is a combination of tensile cracking of intact rock and sliding on bedding planes and cross joints. Shear sliding occurs when the abutment load is much less than the compressive strength of roof.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabain, R.T.
1994-05-16
A rock strength analysis program, through intensive log analysis, can quantify rock hardness in terms of confined compressive strength to identify intervals suited for drilling with polycrystalline diamond compact (PDC) bits. Additionally, knowing the confined compressive strength helps determine the optimum PDC bit for the intervals. Computing rock strength as confined compressive strength can more accurately characterize a rock's actual hardness downhole than other methods. the information can be used to improve bit selections and to help adjust drilling parameters to reduce drilling costs. Empirical data compiled from numerous field strength analyses have provided a guide to selecting PDC drillmore » bits. A computer analysis program has been developed to aid in PDC bit selection. The program more accurately defines rock hardness in terms of confined strength, which approximates the in situ rock hardness downhole. Unconfined compressive strength is rock hardness at atmospheric pressure. The program uses sonic and gamma ray logs as well as numerous input data from mud logs. Within the range of lithologies for which the program is valid, rock hardness can be determine with improved accuracy. The program's output is typically graphed in a log format displaying raw data traces from well logs, computer-interpreted lithology, the calculated values of confined compressive strength, and various optional rock mechanic outputs.« less
NASA Astrophysics Data System (ADS)
Sarout, Joël.
2012-04-01
For the first time, a comprehensive and quantitative analysis of the domains of validity of popular wave propagation theories for porous/cracked media is provided. The case of a simple, yet versatile rock microstructure is detailed. The microstructural parameters controlling the applicability of the scattering theories, the effective medium theories, the quasi-static (Gassmann limit) and dynamic (inertial) poroelasticity are analysed in terms of pores/cracks characteristic size, geometry and connectivity. To this end, a new permeability model is devised combining the hydraulic radius and percolation concepts. The predictions of this model are compared to published micromechanical models of permeability for the limiting cases of capillary tubes and penny-shaped cracks. It is also compared to published experimental data on natural rocks in these limiting cases. It explicitly accounts for pore space topology around the percolation threshold and far above it. Thanks to this permeability model, the scattering, squirt-flow and Biot cut-off frequencies are quantitatively compared. This comparison leads to an explicit mapping of the domains of validity of these wave propagation theories as a function of the rock's actual microstructure. How this mapping impacts seismic, geophysical and ultrasonic wave velocity data interpretation is discussed. The methodology demonstrated here and the outcomes of this analysis are meant to constitute a quantitative guide for the selection of the most suitable modelling strategy to be employed for prediction and/or interpretation of rocks elastic properties in laboratory-or field-scale applications when information regarding the rock's microstructure is available.
Fracture Characterization in Reactive Fluid-Fractured Rock Systems Using Tracer Transport Data
NASA Astrophysics Data System (ADS)
Mukhopadhyay, S.
2014-12-01
Fractures, whether natural or engineered, exert significant controls over resource exploitation from contemporary energy sources including enhanced geothermal systems and unconventional oil and gas reserves. Consequently, fracture characterization, i.e., estimating the permeability, connectivity, and spacing of the fractures is of critical importance for determining the viability of any energy recovery program. While some progress has recently been made towards estimating these critical fracture parameters, significant uncertainties still remain. A review of tracer technology, which has a long history in fracture characterization, reveals that uncertainties exist in the estimated parameters not only because of paucity of scale-specific data but also because of knowledge gaps in the interpretation methods, particularly in interpretation of tracer data in reactive fluid-rock systems. We have recently demonstrated that the transient tracer evolution signatures in reactive fluid-rock systems are significantly different from those in non-reactive systems (Mukhopadhyay et al., 2013, 2014). For example, the tracer breakthrough curves in reactive fluid-fractured rock systems are expected to exhibit a long pseudo-state condition, during which tracer concentration does not change by any appreciable amount with passage of time. Such a pseudo-steady state condition is not observed in a non-reactive system. In this paper, we show that the presence of this pseudo-steady state condition in tracer breakthrough patterns in reactive fluid-rock systems can have important connotations for fracture characterization. We show that the time of onset of the pseudo-steady state condition and the value of tracer concentration in the pseudo-state condition can be used to reliably estimate fracture spacing and fracture-matrix interface areas.
The 3-dimensional construction of the Rae craton, central Canada
NASA Astrophysics Data System (ADS)
Snyder, David B.; Craven, James A.; Pilkington, Mark; Hillier, Michael J.
2015-10-01
Reconstruction of the 3-dimensional tectonic assembly of early continents, first as Archean cratons and then Proterozoic shields, remains poorly understood. In this paper, all readily available geophysical and geochemical data are assembled in a 3-D model with the most accurate bedrock geology in order to understand better the geometry of major structures within the Rae craton of central Canada. Analysis of geophysical observations of gravity and seismic wave speed variations revealed several lithospheric-scale discontinuities in physical properties. Where these discontinuities project upward to correlate with mapped upper crustal geological structures, the discontinuities can be interpreted as shear zones. Radiometric dating of xenoliths provides estimates of rock types and ages at depth beneath sparse kimberlite occurrences. These ages can also be correlated to surface rocks. The 3.6-2.6 Ga Rae craton comprises at least three smaller continental terranes, which "cratonized" during a granitic bloom. Cratonization probably represents final differentiation of early crust into a relatively homogeneous, uniformly thin (35-42 km), tonalite-trondhjemite-granodiorite crust with pyroxenite layers near the Moho. The peak thermotectonic event at 1.86-1.7 Ga was associated with the Hudsonian orogeny that assembled several cratons and lesser continental blocks into the Canadian Shield using a number of southeast-dipping megathrusts. This orogeny metasomatized, mineralized, and recrystallized mantle and lower crustal rocks, apparently making them more conductive by introducing or concentrating sulfides or graphite. Little evidence exists of thin slabs similar to modern oceanic lithosphere in this Precambrian construction history whereas underthrusting and wedging of continental lithosphere is inferred from multiple dipping discontinuities.
NASA Astrophysics Data System (ADS)
Pimienta, Lucas; Borgomano, Jan V. M.; Fortin, Jérôme; Guéguen, Yves
2017-12-01
Because measuring the frequency dependence of elastic properties in the laboratory is a technical challenge, not enough experimental data exist to test the existing theories. We report measurements of three fluid-saturated sandstones over a broad frequency band: Wilkenson, Berea, and Bentheim sandstones. Those sandstones samples, chosen for their variable porosities and mineral content, are saturated by fluids of varying viscosities. The samples elastic response (Young's modulus and Poisson's ratio) and hydraulic response (fluid flow out of the sample) are measured as a function of frequency. Large dispersion and attenuation phenomena are observed over the investigated frequency range. For all samples, the variation at lowest frequency relates to a large fluid flow directly measured out of the rock samples. These are the cause (i.e., fluid flow) and consequence (i.e., dispersion/attenuation) of the transition between drained and undrained regimes. Consistently, the characteristic frequency correlates with permeability for each sandstone. Beyond this frequency, a second variation is observed for all samples, but the rocks behave differently. For Berea sandstone, an onset of dispersion/attenuation is expected from both Young's modulus and Poisson's ratio at highest frequency. For Bentheim and Wilkenson sandstones, however, only Young's modulus shows dispersion/attenuation phenomena. For Wilkenson sandstone, the viscoelastic-like dispersion/attenuation response is interpreted as squirt flow. For Bentheim sandstone, the second effect does not fully follow such response, which could be due to a lower accuracy in the measured attenuation or to the occurence of another physical effect in this rock sample.
NASA Astrophysics Data System (ADS)
Place, J.; Géraud, Y.; Diraison, M.; Herquel, G.; Edel, J.-B.; Bano, M.; Le Garzic, E.; Walter, B.
2016-03-01
In the latter stages of exhumation processes, rocks undergo weathering. Weathering halos have been described in the vicinity of structures such as faults, veins or dykes, with a lateral size gradually narrowing with depth, symmetrically around the structures. In this paper, we describe the geophysical characterisation of such alteration patterns on two granitoid outcrops of the Catalan Coastal Ranges (Spain), each of which is affected by one major fault, as well as minor faults and fractures. Seismic, electric and ground penetrating radar surveys were carried out to map the spatial distribution of P-wave velocity, electrical resistivity and to identify reflectors of electromagnetic waves. The analysis of this multi-method and complementary dataset revealed that, at shallow depth, geophysical properties of the materials are compartmentalised and asymmetric with respect to major and subsidiary faults affecting the rock mass. This compartmentalisation and asymmetry both tend to attenuate with depth, whereas the effect of weathering is more symmetric with respect to the major structure of the outcrops. We interpret such compartmentalisation as resulting from the role of hydraulic and mechanical boundaries played by subsidiary faults, which tend to govern both the chemical and physical alterations involved in weathering. Thus, the smoothly narrowing halo model is not always accurate, as weathering halos can be strongly asymmetrical and present highly irregular contours delimiting sharp contrasts of geophysical properties. These results should be considered when investigating and modelling fluid storage and transfer in top crystalline rock settings for groundwater applications, hydrocarbon or geothermal reservoirs, as well as mineral deposits.
Ashley, James W.; Golombek, M.P.; Christensen, P.R.; Squyres, S. W.; McCoy, T.J.; Schroder, C.; Fleischer, I.; Johnson, J. R.; Herkenhoff, K. E.; Parker, T.J.
2011-01-01
The weathering of meteorites found on Mars involves chemical and physical processes that can provide clues to climate conditions at the location of their discovery. Beginning on sol 1961, the Opportunity rover encountered three large iron meteorites within a few hundred meters of each other. In order of discovery, these rocks have been assigned the unofficial names Block Island, Shelter Island, and Mackinac Island. Each rock presents a unique but complimentary set of features that increase our understanding of weathering processes at Meridiani Planum. Significant morphologic characteristics interpretable as weathering features include (1) a large pit in Block Island, lined with delicate iron protrusions suggestive of inclusion removal by corrosive interaction; (2) differentially eroded kamacite and taenite lamellae in Block Island and Shelter Island, providing relative timing through crosscutting relationships with deposition of (3) an iron oxide-rich dark coating; (4) regmaglypted surfaces testifying to regions of minimal surface modification, with other regions in the same meteorites exhibiting (5) large-scale, cavernous weathering (in Shelter Island and Mackinac Island). We conclude that the current size of the rocks is approximate to their original postfall contours. Their morphology thus likely results from a combination of atmospheric interaction and postfall weathering effects. Among our specific findings is evidence supporting (1) at least one possible episode of aqueous acidic exposure for Block Island; (2) ripple migration over portions of the meteorites; (3) a minimum of two separate episodes of wind abrasion; alternating with (4) at least one episode of coating-forming chemical alteration, most likely at subzero temperatures. Copyright 2011 by the American Geophysical Union.
Remote Sensing Tropical Coral Reefs: The View from Above
NASA Astrophysics Data System (ADS)
Purkis, Sam J.
2018-01-01
Carbonate precipitation has been a common life strategy for marine organisms for 3.7 billion years, as, therefore, has their construction of reefs. As favored by modern corals, reef-forming organisms have typically adopted a niche in warm, shallow, well-lit, tropical marine waters, where they are capable of building vast carbonate edifices. Because fossil reefs form water aquifers and hydrocarbon reservoirs, considerable effort has been dedicated to understanding their anatomy and morphology. Remote sensing has a particular role to play here. Interpretation of satellite images has done much to reveal the grand spatial and temporal tapestry of tropical reefs. Comparative sedimentology, whereby modern environments are contrasted with the rock record to improve interpretation, has been particularly transformed by observations made from orbit. Satellite mapping has also become a keystone technology to quantify the coral reef crisis—it can be deployed not only directly to quantify the distribution of coral communities, but also indirectly to establish a climatology for their physical environment. This article reviews the application of remote sensing to tropical coralgal reefs in order to communicate how this fast-growing technology might be central to addressing the coral reef crisis and to look ahead at future developments in the science.
Remote Sensing Tropical Coral Reefs: The View from Above.
Purkis, Sam J
2018-01-03
Carbonate precipitation has been a common life strategy for marine organisms for 3.7 billion years, as, therefore, has their construction of reefs. As favored by modern corals, reef-forming organisms have typically adopted a niche in warm, shallow, well-lit, tropical marine waters, where they are capable of building vast carbonate edifices. Because fossil reefs form water aquifers and hydrocarbon reservoirs, considerable effort has been dedicated to understanding their anatomy and morphology. Remote sensing has a particular role to play here. Interpretation of satellite images has done much to reveal the grand spatial and temporal tapestry of tropical reefs. Comparative sedimentology, whereby modern environments are contrasted with the rock record to improve interpretation, has been particularly transformed by observations made from orbit. Satellite mapping has also become a keystone technology to quantify the coral reef crisis-it can be deployed not only directly to quantify the distribution of coral communities, but also indirectly to establish a climatology for their physical environment. This article reviews the application of remote sensing to tropical coralgal reefs in order to communicate how this fast-growing technology might be central to addressing the coral reef crisis and to look ahead at future developments in the science.
The Unconventional Revolution in Exploration Geophysics
NASA Astrophysics Data System (ADS)
House, N. J.
2014-12-01
During the last 25 years, 3D seismic imaging has revolutionized hydrocarbon exploration by delivering an accurate 3 dimensional picture of the subsurface. The image is capable of detecting fluids within the reservoir, and has significantly reduced the risk of locating and developing hydrocarbon deposits. In late 1990s, deregulation of natural gas prices allowed long recognized deposits of natural gas locked in tight rocks be economic. It sparked factory drilling (repeatable high density evenly spaced) wells and hydraulic fracturing that would help unlock the reservoirs. All that was needed was a geologist to determine depths and limits of the reservoir and engineers to drill and complete the wells. If 3D seismic data was available, it might have been used to define both the limits of the field and drilling hazards. Generally the cost and time required to process and interpret 3D Seismic was considered too high to affect the perceived geologic risk of the Factory approach. Completion costs in unconventional reservoirs account for over 50% of the well costs. It's therefore critical to understand the geometry of how the rock is fracturing and determine optimum well spacing to balance the cost of development with the value of the gas or oil being produced. By extending AVO to the pre-stack domain, it's possible to simultaneously invert for Vp, Vs and density. Armed with these three fundamental rock properties that dictate elastic and inelastic rock response, researchers were able to combine those properties to tie directly to how well a rock will respond to hydraulic fracturing, or which rocks contain a higher TOC, or other rock properties that control how a rock responds to seismic waves or hydraulic fracturing. Combining these results allows interpreters to map areas of higher productivity, and identify bypassed reserves. Currently hundreds of different seismic attributes that are generated from 3D seismic data are used to identify the highest productive areas and how to develop them. MicroSeismic mapping has made completion more efficient and safe. While the geophysics involved in unconventional resource development may not be the first thought in the board room, thier data has become an accepted early development tool of successful oil and gas companies.
Numerical simulation of rock fragmentation during cutting by conical picks under confining pressure
NASA Astrophysics Data System (ADS)
Li, Xuefeng; Wang, Shibo; Ge, Shirong; Malekian, Reza; Li, Zhixiong
2017-12-01
In this article, the effect of confining pressure on rock fragmentation process during cutting was investigated by numerical simulation with a discrete element method (DEM). Four kinds of sandstones with different physical properties were simulated in the rock cutting models under different confining pressures. The rock fragmentation process, the cutting force, and the specific energy under different confining pressures were analyzed. With the increase in confining pressure and rock strength, the vertical propagation of cracks was restrained. Rock samples were compacted and strengthened by confining pressure resulting in the increase of the cutting force. The specific energy of rock cutting linearly increased with the increase of the confining pressure ratio.
NASA Astrophysics Data System (ADS)
Xu, Huiru; Yang, Zhenyu; Peng, Peng; Ge, Kunpeng; Jin, Zhenmin; Zhu, Rixiang
2017-08-01
The tectonic background of the Paleoproterozoic Xiong'er volcanic rocks (XVR) is important for understanding the tectonic evolution of the North China Craton (NCC), as well as its paleogeographic position during the assembly of the Nuna/Columbia supercontinent. Here we report the results of the first anisotropy of magnetic susceptibility (AMS) study of the XVR, and use the interpreted flow directions to constrain the emplacement mechanism and to assess its geological significance for the reconstruction of the Nuna/Columbia supercontinent. Thirty lavas were sampled from three sections in western Henan Province. Detailed rock magnetic analyses, including measurements of hysteresis loops, magnetization versus temperature curves and first order reverse curves, were performed to identify the main magnetic phases and grain sizes. The inferred directions from the AMS results reveal a radial flow pattern with an eruption center probably located near Xiong'er Mountain. Our data suggest that the XVR may have been emplaced in a triple-conjugated continental rift on the south margin of the NCC, probably initiated from a paleoplume. Based on this interpretation, a comparison of geological and paleomagnetic results among the proposed crustal blocks in the Nuna/Columbia supercontinent suggests a close linkage of the NCC with São Francisco-Congo, Rio de la Plate and Siberia.
Preliminary Aeromagnetic Map of Joshua Tree National Park and Vicinity, Southern California
Langenheim, V.E.; Hill, P.L.
2010-01-01
This aeromagnetic map of Joshua Tree National Park and vicinity is intended to promote further understanding of the geology and structure in the region by serving as a basis for geophysical interpretations and by supporting geological mapping, water-resource investigations, and various topical studies. Local spatial variations in the Earth's magnetic field (evident as anomalies on aeromagnetic maps) reflect the distribution of magnetic minerals, primarily magnetite, in the underlying rocks. In many cases the volume content of magnetic minerals can be related to rock type, and abrupt spatial changes in the amount of magnetic minerals commonly mark lithologic or structural boundaries. Bodies of mafic and ultramafic rocks tend to produce the most intense magnetic anomalies, but such generalizations must be applied with caution because rocks with more felsic compositions, or even some sedimentary units, also can cause measurable magnetic anomalies. The database includes two ASCII files containing new aeromagnetic data and two ASCII files with point locations of the local maximum horizontal gradient derived from the aeromagnetic data. This metadata file describes the horizontal gradient locations derived from new and existing aeromagnetic data. This aeromagnetic map identifies magnetic features as a basis for geophysical interpretations; the gradients help define the edges of magnetic sources. This database updates geophysical information originally presented in smaller-scale formats and includes detailed aeromagnetic data collected by EON Geosciences, Inc.
Forecasting runout of rock and debris avalanches
Iverson, Richard M.; Evans, S.G.; Mugnozza, G.S.; Strom, A.; Hermanns, R.L.
2006-01-01
Physically based mathematical models and statistically based empirical equations each may provide useful means of forecasting runout of rock and debris avalanches. This paper compares the foundations, strengths, and limitations of a physically based model and a statistically based forecasting method, both of which were developed to predict runout across three-dimensional topography. The chief advantage of the physically based model results from its ties to physical conservation laws and well-tested axioms of soil and rock mechanics, such as the Coulomb friction rule and effective-stress principle. The output of this model provides detailed information about the dynamics of avalanche runout, at the expense of high demands for accurate input data, numerical computation, and experimental testing. In comparison, the statistical method requires relatively modest computation and no input data except identification of prospective avalanche source areas and a range of postulated avalanche volumes. Like the physically based model, the statistical method yields maps of predicted runout, but it provides no information on runout dynamics. Although the two methods differ significantly in their structure and objectives, insights gained from one method can aid refinement of the other.
Trace fossils as environment indicators in the Rocky Mountains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shepard, B.
Throughout time, organisms have left various types of traces while engaged in different activities. The two major types of lebensspuren were made by suspension feeders found in turbulent water where organic matter is held in suspension, and by deposit feeders whose habitat is found in quiet, deeper waters where large quantities of organic matter settle from suspension. The different activities which occur in these two environments are the cause of the traces found in sediments. These include escape structures resulting from degradation or aggradation of sediments, feeding structures, dwelling structures, grazing traces, crawling traces, and resting traces. The use ofmore » trace fossils in hydrocarbon exploration is especially helpful in the Cretaceous sandstones of the Rocky Mountains because of the relative abundance of outcrops and the scarcity of body fossils. By combining the interpretation of physical processes with the biological traces, one more tool is made available in the determination of rock environments as an aid in hydrocarbon exploration. Materials exhibited include 8 x 10 color prints of different Cretaceous lebensspuren, hand-drawn cartoons of the six different trace activities, and a regional cross section of the Eagle sandstone illustrated by photographs of different traces near each location, as well as a variety of rock samples.« less
NASA Astrophysics Data System (ADS)
Magoba, Moses; Opuwari, Mimonitu
2017-04-01
This paper embodies a study carried out to assess the Petrophysical evaluation of upper shallow marine sandstone reservoir of 10 selected wells in the Bredasdorp basin, offshore, South Africa. The studied wells were selected randomly across the upper shallow marine formation with the purpose of conducting a regional study to assess the difference in reservoir properties across the formation. The data sets used in this study were geophysical wireline logs, Conventional core analysis and geological well completion report. The physical rock properties, for example, lithology, fluid type, and hydrocarbon bearing zone were qualitatively characterized while different parameters such as volume of clay, porosity, permeability, water saturation ,hydrocarbon saturation, storage and flow capacity were quantitatively estimated. The quantitative results were calibrated with the core data. The upper shallow marine reservoirs were penetrated at different depth ranging from shallow depth of about 2442m to 3715m. The average volume of clay, average effective porosity, average water saturation, hydrocarbon saturation and permeability range from 8.6%- 43%, 9%- 16%, 12%- 68% , 32%- 87.8% and 0.093mD -151.8mD respectively. The estimated rock properties indicate a good reservoir quality. Storage and flow capacity results presented a fair to good distribution of hydrocarbon flow.
NASA Astrophysics Data System (ADS)
Wu, H.; Kido, Y. N.; Kinoshita, M.; Saito, S.
2013-12-01
Wellbore instability is a major challenge for the engineer evaluating borehole and formation conditions. Instability is especially important to understand in areas with high stress variations, significant structure anisotropy, or pre-existing fracture systems. Borehole (in)stability is influenced by rock strength, structural properties, and near-field principal stresses. During drilling, the borehole conditions also impact borehole integrity. Factors that we can measure in the borehole during with logging while drilling (LWD) to understand these conditions include mud weight, mud loss, ROP (Rate of Penetration), RPM (Rotation Per Minute), WOB (Weight on Bit), and TORQ (Power swivel torque value). We conducted borehole instability analysis for Site C0002 of the Nankai Trough transect based on riser and riserless drilling during IODP Expedition 338. The borehole shape, determined from LWD resistivity images, indicates that most of drilling occurred in stable environments, however, in a few instances the bottom hole assembly became stuck. We used our stress profile model to evaluate the mud weight required to drill a stable borehole for the estimated rock strength and physical properties. Based on our analysis, we interpret that borehole instability during IODP Expedition 338 may have been caused by weak bedding plane and fluid overpressure state. Future work with this model will investigate the roles of these conditions.
Electrical conductivity modeling in fractal non-saturated porous media
NASA Astrophysics Data System (ADS)
Wei, W.; Cai, J.; Hu, X.; Han, Q.
2016-12-01
The variety of electrical conductivity in non-saturated conditions is important to study electric conduction in natural sedimentary rocks. The electrical conductivity in completely saturated porous media is a porosity-function representing the complex connected behavior of single conducting phases (pore fluid). For partially saturated conditions, the electrical conductivity becomes even more complicated since the connectedness of pore. Archie's second law is an empirical electrical conductivity-porosity and -saturation model that has been used to predict the formation factor of non-saturated porous rock. However, the physical interpretation of its parameters, e.g., the cementation exponent m and the saturation exponent n, remains questionable. On basis of our previous work, we combine the pore-solid fractal (PSF) model to build an electrical conductivity model in non-saturated porous media. Our theoretical porosity- and saturation-dependent models contain endmember properties, such as fluid electrical conductivities, pore fractal dimension and tortuosity fractal dimension (representing the complex degree of electrical flowing path). We find the presented model with non-saturation-dependent electrical conductivity datasets indicate excellent match between theory and experiments. This means the value of pore fractal dimension and tortuosity fractal dimension change from medium to medium and depends not only on geometrical properties of pore structure but also characteristics of electrical current flowing in the non-saturated porous media.
Fast-moving dislocations trigger flash weakening in carbonate-bearing faults during earthquakes
Spagnuolo, Elena; Plümper, Oliver; Violay, Marie; Cavallo, Andrea; Di Toro, Giulio
2015-01-01
Rupture fronts can cause fault displacement, reaching speeds up to several ms−1 within a few milliseconds, at any distance away from the earthquake nucleation area. In the case of silicate-bearing rocks the abrupt slip acceleration results in melting at asperity contacts causing a large reduction in fault frictional strength (i.e., flash weakening). Flash weakening is also observed in experiments performed in carbonate-bearing rocks but evidence for melting is lacking. To unravel the micro-physical mechanisms associated with flash weakening in carbonates, experiments were conducted on pre-cut Carrara marble cylinders using a rotary shear apparatus at conditions relevant to earthquakes propagation. In the first 5 mm of slip the shear stress was reduced up to 30% and CO2 was released. Focused ion beam, scanning and transmission electron microscopy investigations of the slipping zones reveal the presence of calcite nanograins and amorphous carbon. We interpret the CO2 release, the formation of nanograins and amorphous carbon to be the result of a shock-like stress release associated with the migration of fast-moving dislocations. Amorphous carbon, given its low friction coefficient, is responsible for flash weakening and promotes the propagation of the seismic rupture in carbonate-bearing fault patches. PMID:26552964
Physical properties of sidewall cores from Decatur, Illinois
Morrow, Carolyn A.; Kaven, Joern; Moore, Diane E.; Lockner, David A.
2017-10-18
To better assess the reservoir conditions influencing the induced seismicity hazard near a carbon dioxide sequestration demonstration site in Decatur, Ill., core samples from three deep drill holes were tested to determine a suite of physical properties including bulk density, porosity, permeability, Young’s modulus, Poisson’s ratio, and failure strength. Representative samples of the shale cap rock, the sandstone reservoir, and the Precambrian basement were selected for comparison. Physical properties were strongly dependent on lithology. Bulk density was inversely related to porosity, with the cap rock and basement samples being both least porous (
Physical and hydraulic properties of volcanic rocks from Yucca Mountain, Nevada
Flint, Lorraine E.
2003-01-01
A database of physical and hydraulic properties was developed for rocks in the unsaturated zone at Yucca Mountain, Nevada, a site under consideration as a geologic repository for high-level radioactive waste. The 5320 core samples were collected from 23 shallow (<100 m) and 10 deep (500-1000 m) vertical boreholes. Hydrogeologic units have been characterized in the unsaturated zone [Flint, 1998] that represent rocks with ranges of welding, lithophysae, and high and low temperature alteration (as a result of the depositional, cooling, and alterational history of the lithostratigraphic layers). Lithostratigraphy, the hydrogeologic unit, and the corresponding properties are described. In addition, the physical properties of bulk density, porosity, and particle density; the hydraulic properties of saturated hydraulic conductivity and moisture retention characteristics; and the field water content were measured and compiled for each core sample.
Inventorying rock glaciers: The relevance of definitions, processes and base data
NASA Astrophysics Data System (ADS)
Kellerer-Pirklbauer, Andreas; Lieb, Gerhard Karl; Wagner, Thomas; Winkler, Gerfried
2017-04-01
Rock glacier inventories have been elaborated for many mountain regions during the last decades. Such inventories have been used for instance to determine the current (using intact rock glaciers) or the past extent (using relict ones) of mountain permafrost and its change over time. However, the recognition and delineation of a rock glacier is not always a trivial task in particular in cases where the "typical" rock glacier surface morphology with longitudinal and transversal ridges and furrows is missing. A further inventorying restriction is based on which genetic model for rock glacier formation is used or favored by the elaborator, i.e. glacier-derived rock glaciers (with massive sedimentary or "glacier" ice), talus-derived rock glaciers (dominated by congelation ice), or a mix thereof. In addition to that, relict rock glaciers are commonly more difficult to recognize and to delineate due to the decay of morphological features or the coverage by vegetation. In this regard the geomorphic concept of equifinality plays an important role because similar looking landforms might have been formed as a result of quite different sets of processes and time periods. Two examples illustrating this problem are as follows: (i) relict embryonal rock glaciers or protalus ramparts look very similar to pronival ramparts although the acting process was substantial different; (ii) multiple ridges at a presumed rock glacier front might have been formed by several phases of glacier advance forming a set of terminal moraines. Therefore, the elaboration of a rock glacier inventory is certainly influenced by subjectivity related to the expertise and field knowledge of the mapping person. A further crucial mapping restriction is based upon the used terrain (digital elevation models/DEM and maps) and optical (airborne, spaceborne) data. Under the assumption that improved data bases help to solve the problems mentioned above the authors of this abstract elaborated three generations of rock glacier inventories for the Federal Province of Styria (16,400 km2), Austria, during the last two decades - each time using the best data sources available. The first Styrian rock glacier inventory (StRGI1) was elaborated in the mid-1990s using official maps, aerial photographs, and field verification. The second Styrian rock glacier inventory (StRG2) was elaborated in 2010-2011 using the StRG1, airborne orthophotographs, and photogrammetrically-derived DEMs with a 10m-grid resolution. Finally, the third Styrian rock glacier inventory (StRG3) was elaborated in 2014-2016 using the StRG2, airborne and spaceborne orthophotographs, and an airborne laser scanning-derived DEM with a 1m-grid resolution. The number of mapped rock glaciers increased from less than 400 listed in StRG1, slightly more than 400 in StRG2 to 710 in StRG3. The substantial increase in the number of rock glaciers in StRG3 is particularly related to the used laser scanning-based DEM because relict rock glaciers located at lower elevations in densely vegetated areas and forests have not been detected earlier. This contribution will present examples of inventoried rock glaciers and how their delineation and interpretation changed during the different inventory generations and hence contributes to the ongoing discussion about how to delineate and interpret rock glaciers.
Electromagnetically Inferred Structure of the Caja del Rio Plateau, New Mexico
NASA Astrophysics Data System (ADS)
Layton, M. E.; Speed, C.; Shukla, M.; Vila, A.; Chon, E.; Kitamikado, C.; Feucht, D. W.; Bedrosian, P.; Pellerin, L.
2016-12-01
Magnetotelluric (MT) and transient electromagnetic (TEM) data were acquired by students from the Summer of Applied Geophysical Experience (SAGE) to construct structural models in and around the Caja del Rio Plateau, New Mexico. The Caja del Rio is located on the La Bajada-Jemez constriction that separates the Española and Santa Domingo basins in the Rio Grande Rift. The Rio Grande Rift, the result of tectonic extensional forces, extends approximately north-south across northern New Mexico. MT data collected in 2016 were merged with that from previous years to make up an 11 km north line and a 16 km south line extending from the west side of the Caja Del Rio to the east off the plateau in the Old Buckman Road area. The resistivity distributions revealed in one-dimensional (1-D) and two-dimensional (2-D) inverse models show some robust features. Models of the north are interpreted as a top resistive layer (<500m) of Tertiary volcanoclastic rock, to a central conductive layer (600-200m) of Mesozoic and Paleozoic sediments of the Santa Fe group to crystalline basement rock. Models for the south line show low resistivity for the first 3 to 5 km and then transitions into higher resistivity values consistent with the models for the north line. At a period of 100 seconds induction arrows (Parkinson's convention) point in the northwest direction towards the conductive Valles Caldera. The MT models are consistent with geologic interpretations of the stratigraphic units. In addition, models disclose an additional conductive layer below the basement that we interpret as the mid-crustal conductor. Transient electromagnetic (TEM) data were collected in seven locations atop the Caja del Rio plateau in an attempt to identify the basal contact of the Cerros del Rio volcanic field, which, in turn, allow for the thickness of these basaltic and andesitic deposits to be mapped across the plateau. One-dimensional inverse models produced from the TEM data were aligned and interpreted geologically. A resistive ( 1000 ohm-m) unit, interpreted to represent the Cerros del Rio volcanics, thickens from 70m to 175m from southeast to northwest. The volcanics are overlain by a thin conductor, interpreted as weathered material. The resistive body is underlain by a thicker conductor, interpreted as sedimentary rocks of the Tertiary-aged Santa Fe Group.
A novel design for storage of inner stress by colloidal processing on rock-like materials
NASA Astrophysics Data System (ADS)
Chen, Weichang; Wang, Sijing; Lekan Olatayo, Afolagboye; Fu, Huanran
2018-06-01
Inner stress exists in rocks, affecting rock engineering, yet has received very little attention and quantitative investigation because of uncertainty about its characteristics. Previous studies have suggested that the inner stresses of rock materials are closely related to their physical state variation. In this work, a novel mold was designed to simulate the storage process of inner stress in specimens composed of quartz sands and epoxy. Then, thermal tests were carried out to change the physical state of the specimens, and expansion of the specimens was monitored. The results indicated that inner stress could be partly locked by the mold and it could also be released by heating. It can be inferred from the analysis that one necessary condition of storage and release of inner stress is physical state variation. Additionally, by using an XRD method, the variations in the interplanar spacing of the quartz sands were detected, and the results reflect that inner stress could be locked-in aggregates (quartz sands) by a cement constraint (solid epoxy). The inner stress stored in quartz sands was calculated using height and interplanar spacing variations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scales, John
The broad purpose of CSM's 6-year (3 years plus renewal) DOE project was to develop and apply new experimental physics technology to the material characterization of rocks at the grain scale or smaller. This is motivated by a knowledge that the bulk chemistry and physics of rocks are strongly influenced by processes occurring at the grain scale: the flow of fluids, cation exchange, the state of cementation of grains, and many more. It may also be possible in some cases to ``upscale'' or homogenize the mesoscopic properties of rocks in order to directly infer the large-scale properties of formations, butmore » that is not our central goal. Understanding the physics and chemistry at the small scale is. During the first 3 years, most effort was devoted to developing and validating the near-field scanning technology. During the 3 year renewal phase, most effort was focused on applying the technology in the labs Professors Batzle (now deceased) in Geophysics and Prasad in Petroleum engineering.« less
Distribution of rock fragments and their effects on hillslope soil erosion in purple soil, China
NASA Astrophysics Data System (ADS)
Wang, Xiaoyan
2017-04-01
Purple soil is widely distributed in Sichuan Basin and Three Gorges Reservoir Area. Purple soil region is abundant in soil fertility and hydrothermal resources, playing an important role in the agricultural development of China. Soil erosion has long been recognized as a major environmental problem in the purple soil region where the population is large and slope farming is commonly practiced, and rainstorm is numerous. The existence of rock fragments is one of the most important characteristics of purple soil. Rock fragments at the soil surface or in the soil layer affect soil erosion processes by water in various direct and indirect ways, thus the erosion processes of soil containing rock fragments have unique features. Against the severe soil degradation by erosion of purple soil slope, carrying out the research about the characteristics of purple soil containing rock fragments and understanding the influence of rock fragments on soil erosion processes have important significance, which would promote the rational utilization of purple soil slope land resources and accurate prediction of purple soil loss. Therefore, the aims of this study were to investigate the distribution of rock fragments in purple soil slope and the impact of rock fragment content on soil physical properties and soil erosion. First, field sampling methods were used to survey the spatial variability of rock fragments in soil profiles and along slope and the physical properties of soils containing rock fragments. Secondly, indoor simulated rainfall experiments were used to exam the effect of rock fragments in the soil layer on soil erosion processes and the relationships between rainfall infiltration, change of surface flow velocity, surface runoff volume and sediment on one hand, and rock fragment content (Rv, 0% 30%, which was determined according the results of field investigation for rock fragment distribution) on the other were investigated. Thirdly, systematic analysis about the influence of rock fragment cover on purple soil slope erosion process were carried on, under different conditions with two kind of rock fragment positions (resting on soil surface and embedded into top soil layer), varied rock fragment coverage (Rc, 0% 40%), two kind of soils with textural porosity or structural porosity, and three kind of rainfall intensities (I, 1 mm/min, 1.5 mm/min and 2 mm/min). Simulated rainfall experiments in situ plots in the field, combined with simulated rainfall experiments in soil pans indoor, were used. The main conclusions of this dissertation are as following: 1. The spatial distribution characteristics of rock fragments in purple soil slope and its effects on the soil physical properties were clarified basically. 2. The mechanism of influence of rock fragments within top soil layer on soil erosion processes was understood and a threshold of rock fragment content on the infiltration was figured out. 3. The relationships between surface rock fragment cover and hillslope soil erosion in purple soil under different conditions with varied rock fragment positions, soil structures and rainfall intensities were obtained and the soil and water conservation function of surface rock fragment cover on reducing soil loss was affirmed.
Las Rocas Nos Cuentan (Rocks Tell Their Stories)
ERIC Educational Resources Information Center
Llerandi-Roman, Pablo A.
2012-01-01
Many Earth science lessons today still focus on memorizing the names of rocks and minerals. This led the author to develop a lesson that reveals the fascinating stories told by rocks through the study of their physical properties. He first designed the lesson for Puerto Rican teachers, hence its Spanish title: "Las Rocas Nos Cuentan Su Historia."…
Catalli, Sundberg receive Mineral and Rock Physics Graduate Research Awards
NASA Astrophysics Data System (ADS)
2011-05-01
Krystle Catalli and Marshall Sundberg have been awarded the 2010 Mineral and Rock Physics Graduate Research Award, given annually to one or more promising young scientists for outstanding contributions achieved during their Ph.D. research. Recipients of this award are engaged in experimental and/or theoretical studies of Earth and planetary materials with the purpose of unraveling the physics and chemistry that govern their origin and physical properties. Catalli's thesis is entitled “The effect of trivalent cation substitution on the major lower mantle silicates.” Sundberg's thesis is entitled “Chemical interactions amongst phases during diffusion creep: Applications to the Earth's upper mantle.”
Natural Gas Hydrates Estimation Using Seismic Inversion and Rock Physics
NASA Astrophysics Data System (ADS)
Dutta, N.; Dai, J.; Kleinberg, R.; Xu, H.
2005-05-01
Gas hydrate drilling worldwide indicates that the formation of gas hydrates in shallow sediments tends to increase P- and S-wave velocities of the hosting rocks. Rock physics models of gas hydrates provide the links between velocity anomalies and gas hydrate concentration. In this abstract, we evaluate the numerical predictions of some of the major rock physics models of gas hydrates and validate those with well log data from the Mallik and Blake Ridge wells. We find that a model in which the gas hydrate is a part of the rock framework produces results that are consistent with well log data. To enhance the accuracy of seismic estimation, we adopt a five-step, integrated workflow that enables us to identify and quantify gas hydrates in the deepwater Gulf of Mexico (GOM). It includes: 1) Reprocessing conventional 3D seismic data at high resolution using an amplitude-preserving flow with prestack time migration, 2) A detailed stratigraphic evaluation to identify potential hydrate zones, 3) Seismic attribute analysis to further delineate anomalous zones, 4) Full waveform prestack inversion to characterize acoustic properties of gas hydrates in 1D (Mallick, 1995; Mallick, 1999) and map in 3D using hybrid inversion techniques (Dutta, 2002; Mallick and Dutta, 2002), and 5) Quantitative estimation of gas hydrate saturation using rock property models. We illustrate the procedure using 3D seismic data, and estimate gas hydrate saturation in the study area in the GOM.
K-Ar geochronology of basement rocks on the northern flank of the Huancabama deflection, Ecuador
Feininger, Tomas; Silberman, M.L.
1982-01-01
The Huancabamba deflection, a major Andean orocline located at the Ecuador-Peru border, constitutes an important geologic boundary on the Pacific coast of South America. Crust to the north of the deflection is oceanic and the basement is composed of basic igneous rocks of Cretaceous age, whereas crust to the south is continental and felsic rocks of Precambrian to Cretaceous age make up the basement. The northern flank of the Huancabamba Deflection in El Oro Province, Ecuador, is underlain by Precambrian polymetamorphic basic rocks of the Piedras Group; shale, siltstone, sandstone, and their metamorphosed equivalents in the Tahuin Group (in part of Devonian age); concordant syntectonic granitic rocks; quartz diorite and alaskite of the Maroabeli pluton; a protrusion of serpentinized harzburgite that contains a large inclusion of blueschist-facies metamorphic rocks, the Raspas Formation, and metamorphic rocks north of the La Palma fault. Biotite from gneiss of the Tahuin Group yields a Late Triassic K-Ar age (210 ? 8 m.y.). This is interpreted as an uplift age and is consistent with a regional metamorphism of Paleozoic age. A nearby sample from the Piedras Group that yielded a hornblende K-Ar age of 196 ? 8 m.y. was affected by the same metamorphic event. Biotite from quartz diorite of the mesozonal Maroabeli pluton yields a Late Triassic age (214 ? 6 m.y.) which is interpreted as an uplift age which may be only slightly younger than the age of magmatic crystallization. Emplacement of the pluton may postdate regional metamorphism of the Tahuin Group. Phengite from politic schist of the Raspas Formation yields an Early Cretaceous K-Ar age (132 ? 5 m.y.). This age is believed to date the isostatic rise of the encasing serpentinized harzburgite as movement along a subjacent subduction zone ceased, and it is synchronous with the age of the youngest lavas of a coeval volcanic arc in eastern Ecuador. A Late Cretaceous K-Ar age (74.4 ? 1.1 m.y.) from hornblende in amphibolite north of the La Palma fault shows that rocks there are distinct from the superficially similar rocks of the Tahuin Group to the south. Biotite from schist in the Eastern Andean Cordillera yields an Early Eocene age (56.6 ? 1.6 m.y.). Metamorphic rocks in the northern part of the Eastern Andean Cordillera are Cretaceous in age and were metamorphosed in part in early Tertiary time. They are unrelated to and were metamorphosed later than any of the diverse rocks exposed on the northern flank of the Huancabamba Deflection.
Cenozoic pull-apart basins in southwest Montana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruppel, E.T.
1991-06-01
Faults and fault zones bounding the mountain ranges of southwest Montana commonly have been described as normal faults, and the region has been considered to be a northern extension of the Basin and Range. New geologic mapping suggests, however, that Cenozoic movements along most of the zones of steep faults in southwest Montana and in east-central Idaho have been strike-slip, and the intermontane basins appear to be pull-aparts. The principal fault zones trend about north, northwest, east, and north-northeast; the north-trending zones are Cenozoic in age, but the others are of Archean ancestry and are rooted in basement rocks. Thesemore » faults break the region into rhomboidal mountain blocks separated by broad basins with parallel sides. The basins are as much as 5,000 m deep, and their floors are deeply indented by centers of subsidence wherre they are crossed by major fault zones. The basins are floored by Archean or Proterozoic rocks and are filled with tuffaceous sedimentary rocks of late Oligocene to late Miocene age. The Big Hole basin and the smaller basins in upper Grasshopper Creek and Horse Prairie are interpreted to be pull-aparts between zones of east-trending right-lateral faults. The cratonic basins farther east in southwest Montana are interpreted to be basement-floored openings between mountain blocks that have been separated by subcrustal flow to the northwest. The interpretations suggest that significant accumulations of oil or gas are not likely to be found in this region.« less
A volcanic environment for bedrock diagenesis at Meridiani Planum on Mars.
McCollom, Thomas M; Hynek, Brian M
2005-12-22
Exposed bedrocks at Meridiani Planum on Mars display chemical and mineralogical evidence suggesting interaction with liquid water. On the basis of morphological observations as well as high abundances of haematite and sulphate minerals, the rocks have been interpreted as sediments that were deposited in a shallow body of briny water with subsequent evaporation leaving behind the sulphate minerals. The iron-sulphur mineralization at Meridiani has also been inferred to be analogous to that produced during oxidative weathering of metal sulphide minerals, such as occurs at acid mine drainage sites. Neither of these interpretations, however, is consistent with the chemical composition of the rocks. Here we propose an alternative model for diagenesis of Meridiani bedrock that involves deposition of volcanic ash followed by reaction with condensed sulphur dioxide- and water-bearing vapours emitted from fumaroles. This scenario does not require prolonged interaction with a standing body of surface water and may have occurred at high temperatures. Consequently, the model invokes an environment considerably less favourable for biological activity on Mars than previously proposed interpretations.
NASA Astrophysics Data System (ADS)
Lin, W.; Yang, X.; Tadai, O.; Zeng, X.; Yeh, E. C.; Yu, C.; Hatakeda, K.; Xu, H.; Xu, Z.
2016-12-01
As a result of the earthquake rupture propagation, stress on the earthquake fault and in the hanging wall and in the footwall coseismically drops. Based on the thermo-elasticity theory, the temperature of rocks may change associated with coseismic stress change at the same time as their elastic deformation. This coseismic temperature change is one of the physics of earthquake rupture propagation, however has not been noted and expressly addressed before. To understand this temperature issue, we conducted laboratory experiments to quantitatively investigate temperatures response of rocks to rapid stress change of various typical rocks. Consequently, we developed a hydrostatic compression experimental equipment for rock samples with a high resolution temperature measuring system. This enable us to rapidly load and/or unload the confining pressure. As experimental rock samples, we collected 15 representative rocks from various scientific drilling projects and outcrops of earthquake faults, and quarries in the world. The rock types include sandstone, siltstone, limestone, granite, basalt, tuff etc. Based on the classical thermo-elastic theory, a conventional relationship between the temperature change (dT) of rock samples and the confining pressure change (dP) in the hydrostatic compression system under adiabatic condition can be expressed as a linear function. Therefore, we can measure the adiabatic pressure derivative of temperature (dT/dP) directly by monitoring changes of rock sample temperature and confining pressure during the rapidly loading and unloading processes. As preliminary results of the experiments, the data of 15 rock samples showed that i) the adiabatic pressure derivative of temperature (dT/dP) of most rocks are about 1.5 6.2 mK/MPa; ii) the dT/dP of sedimentary rocks is larger than igneous and metamorphic rocks; iii) a good linear correlation between dT/dP and the rock's bulk modulus was recognized.
Lunar igneous rocks and the nature of the lunar interior
NASA Technical Reports Server (NTRS)
Hays, J. F.; Walker, D.
1974-01-01
Lunar igneous rocks are interpreted, which can give useful information about mineral assemblages and mineral chemistry as a function of depth in the lunar interior. Terra rocks, though intensely brecciated, reveal, in their chemistry, evidence for a magmatic history. Partial melting of feldspathic lunar crustal material occurred in the interval 4.6 to 3.9 gy. Melting of ilmenite-bearing cumulates at depths near 100 km produced parent magmas for Apollo 11 and 17 titaniferous mare basalts in the interval 3.8 to 3.6 gy. Melting of ilmenite-free olivine pyroxenites at depths greater than 200 km produced low-titanium mare basalts in the interval 3.4 to 3.1 gy. No younger igneous rocks have yet been recognized among the lunar samples and present-day melting seems to be limited to depths greater than 1000 km.
Lunar igneous rocks and the nature of the lunar interior
NASA Technical Reports Server (NTRS)
Hays, J. F.; Walker, D.
1977-01-01
Lunar igneous rocks, properly interpreted, can give useful information about mineral assemblages and mineral chemistry as a function of depth in the lunar interior. Though intensely brecciated, terra rocks reveal, in their chemistry, evidence for a magmatic history. Partial melting of feldspathic lunar crustal material occurred in the interval 4.6 to 3.9 Gy. Melting of ilmenite-bearing cumulates at depths near 100 km produced parent magmas for Apollo 11 and 17 titaniferous mare basalts in the interval 3.8 to 3.6 Gy. Melting of ilmenite-free olivine pyroxenites (also cumulates?) at depths greater than 200 km produced low-titanium mare basalts in the interval 3.4 to 3.1 Gy. No younger igneous rocks have yet been recognized among the lunar samples and present-day melting seems to be limited to depths greater than 1000 km.
Alga-like forms in onverwacht series, South Africa: Oldest recognized lifelike forms on earth
Engel, A.E.J.; Nagy, B.; Nagy, L.A.; Engel, C.G.; Kremp, G.O.W.; Drew, C.M.
1968-01-01
Spheroidal and cupshaped, carbonaceous alga-like bodies, as well as filamentous structures and amorphous carbonaceous matter occur in sedimentary rocks of the Onverwacht Series (Swaziland System) in South Africa. The Onverwacht sediments are older than 3.2 eons, and they are probably the oldest, little-altered sedimentary rocks on Earth. The basal Onverwacht sediments lie approximutely 10,000 meters stratigraphically below the Fig Tree sedimentary rocks, from which similar organic microstructures have been interpreted as alga-like micro-fossils. The Onverwacht spheroids and filaments are best preserved in black, carbon-rich cherts and siliceous argillites interlayered with thick sequences of lavas. These lifelike forms and the associated carbonaceous substances are probably biological in origin. If so, the origins of unicellular life on Earth are buried in older rocks now obliterated by igneous and metamorphic events.
NASA Astrophysics Data System (ADS)
Ferraccioli, F.; Bozzo, E.; Damaske, D.
2002-03-01
Aeromagnetic signatures over the Edward VII Peninsula (E7) provide new insight into the largely ice-covered and unexplored eastern flank of the Ross Sea Rift (RSR). Positive anomalies, 10-40 km in wavelength and with amplitudes ranging from 50 to 500 nT could reveal buried Late Devonian(?)-Early Carboniferous Ford Granodiorite plutons. This is suggested by similar magnetic signature over exposed, coeval Admiralty Intrusives of the Transantarctic Mountains (TAM). Geochemical data from mid-Cretaceous Byrd Coast Granite, contact metamorphic effects on Swanson Formation and hornblende-bearing granitoid dredge samples strengthen this magnetic interpretation, making alternative explanations less probable. These magnetic anomalies over formerly adjacent TAM and western Marie Byrd Land (wMBL) terranes resemble signatures typically observed over magnetite-rich magmatic arc plutons. Shorter wavelength (5 km) 150 nT anomalies could speculatively mark mid-Cretaceous mafic dikes of the E7, similar to those exposed over the adjacent Ford Ranges. Anomalies with amplitudes of 100-360 nT over the Sulzberger Bay and at the margin of the Sulzberger Ice Shelf likely reveal mafic Late Cenozoic(?) volcanic rocks emplaced along linear rift fabric trends. Buried volcanic rock at the margin of the interpreted half-graben-like "Sulzberger Ice Shelf Block" is modelled in the Kizer Island area. The volcanic rock is marked by a coincident positive Bouguer gravity anomaly. Late Cenozoic volcanic rocks over the TAM, in the RSR, and beneath the West Antarctic Ice Sheet exhibit comparable magnetic anomaly signature reflecting regional West Antarctic Rift fabric. Interpreted mafic magmatism of the E7 is likely related to mid-Cretaceous and Late Cenozoic regional crustal extension and possible mantle plume activity over wMBL. Magnetic lineaments of the E7 are enhanced in maximum horizontal gradient of pseudo-gravity, vertical derivative and 3D Euler Deconvolution maps. Apparent vertical offsets in magnetic basement at the location of the lineaments and spatially associated mafic dikes and volcanic rocks result from 2.5D magnetic modelling. A rift-related fault origin for the magnetic lineaments, segmenting the E7 region into horst and graben blocks, is proposed by comparison with offshore seismic reflection, marine gravity, on-land gravity, radio-echo sounding, apatite fission track data and structural geology. The NNW magnetic lineament, which we interpret to mark the eastern RSR shoulder, forms the western margin of the "Alexandra Mountains horst". This fundamental aeromagnetic feature lies on strike with the Colbeck Trough, a prominent NNW half-graben linked to Late Cretaceous(?) and Cenozoic(?) faulting in the eastern RSR. East-west and north-north-east to NE magnetic trends are also imaged. Magnetic trends, if interpreted as reflecting the signature of rift-related normal faults, would imply N-S to NE crustal extension followed by later northwest-southeast directed extension. NW-SE extension would be compatible with Cenozoic(?) oblique RSR rifting. Previous structural data from the Ford Ranges have, however, been interpreted to indicate that both Cretaceous and Cenozoic extensions were N-S to NE-SW directed.
NASA Astrophysics Data System (ADS)
Sell, Kathleen; Saenger, Erik H.; Quintal, Beatriz; Enzmann, Frieder; Kersten, Michael
2017-04-01
To date, very little is known about the distribution of natural gas hydrates in sedimentary matrices and its influence on the seismic properties of the host rock, in particular at low hydrate concentration. Digital rock physics offers a unique approach to this issue yet requires good quality, high resolution 3D representations for the accurate modelling of petrophysical and transport properties. Although such models are readily available via in-situ synchrotron radiation X-ray tomography the analysis of such data asks for complex workflows and high computational power to maintain valuable results. More recently digital rock physics took also on data from a fairly new group of techniques focused on in-situ studies recreating complex settings that cannot be easily accessed by conventional means. Here, we present a best-practise procedure complementing high-resolution synchrotron-tomography data of hydrate-bearing sedimentary matrices from Chaouachi et al. (2015) with data post-processing, including image enhancement and segmentation as well as exemplary numerical simulations of acoustic wave propagation in 3D on realistic rock using the derived results. A combination of the tomography and 3D modelling opens a path to a more reliable deduction of properties of gas hydrate bearing sediments without a reliance on idealised and frequently imprecise models (Sell et al. 2016). The advantage of this method over traditional, often oversimplified models lays in a more faithful description of complex pore geometries and microstructures found in natural formations (Andrä et al., 2013b, a). References: Chaouachi, M., Falenty, A., Sell, K., Enzmann, F., Kersten, M., Haberthür, D., and Kuhs, W. F.: Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron x-ray computed tomographic microscopy, Geochem. Geophy. Geosy., 16, 1711-1722, 2015. Sell, K., E. H. Saenger, A. Falenty, M. Chaouachi, D. Haberthür, F. Enzmann, W. F. Kuhs, and M. Kersten: On the path to the digital rock physics of gas hydrate-bearing sediments - processing of in situ synchrotron-tomography data, Solid Earth, 7(4), 1243-1258, 2016. Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E. H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., and Zhan, X.: Digital rock physics benchmarks - Part II: Computing effective properties, Comput. Geosci., 50, 33-43, 2013a. Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E. H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., and Zhan, X.: Digital rock physics benchmarks - Part I: Imaging and segmentation, Comput. Geosci., 50, 25-32, 2013b.
Fiorillo, Anthony R.; Fanti, Federico; Hults, Chad; Hasiotis, Stephen T
2014-01-01
A paleontological reconnaissance survey on Cretaceous and Paleogene terrestrial units along the Yukon River drainage through much of east-central Alaska has provided new chronostratigraphic constraints, paleoclimatological data, and the first information on local biodiversity within an ancient, high-latitude ecosystem. The studied unnamed rock unit is most notable for its historic economic gold placer deposits, but our survey documents its relevance as a source rock for Mesozoic terrestrial vertebrates, invertebrates, and associated flora. Specifically, new U-Pb ages from detrital zircons combined with ichnological data are indicative of a Late Cretaceous age for at least the lower section of the studied rock unit, previously considered to be representative of nearly exclusively Paleogene deposition. Further, the results of our survey show that this sedimentary rock unit preserves the first record of dinosaurs in the vast east-central Alaska region. Lastly, paleobotanical data, when compared to correlative rock units, support previous interpretations that the Late Cretaceous continental ecosystem of Alaska was heterogeneous in nature and seasonal.
NASA Astrophysics Data System (ADS)
Cañón-Tapia, Edgardo; Raposo, M. Irene B.
2018-04-01
The Paraná-Etendeka Large Igneous Province includes acid volcanic rocks that can be found throughout its extension. Several aspects concerning those rocks remain controversial, including their mechanism of emplacement and location of their eruptive sources. Opening of several quarries of dimension stone near the city of Sao Marcos, Rio Grande do Sul, Brazil, offers a unique opportunity to study in detail the acid products. Here, we present the results of a study of the anisotropy of magnetic susceptibility (AMS) completed in some rocks that had been interpreted as the roots of volcanic conduits. Our results, and reexamination of the textural features of the rocks, lead to a reinterpretation that suggests that these rocks were emplaced subaerially, and involved assimilation and remelting of clastic components of previous products. Due to the inferred conditions of emplacement, it is unlikely that the eruptive vents are located far from the area of study, therefore ruling out the long-travelled nature of these products.
NASA Astrophysics Data System (ADS)
Essalhi, Mourad; Sizaret, Stanislas; Barbanson, Luc; Chen, Yan; Branquet, Yannick; Panis, Dominique; Camps, Pierre; Rochette, Pierre; Canals, Angels
2009-01-01
The present study aims to apply the AMS method (Anisotropy of Magnetic Susceptibility) at a regional scale to track the fluid circulation direction that has produced an iron metasomatism within pre-existing dolomite host rock. The Urgonian formations hosting the Zn-Pb mineralizations in La Florida (Cantabria, northern Spain) have been taken as target for this purpose. Sampling was carried out, in addition to ferroan dolomite host rock enclosing the Zn-Pb mineralizations, in dolomite host rock and limestone to make the comparison possible between magnetic signals from mineralized rocks, where fluid circulation occurred, and their surrounding formations. AMS study was coupled with petrofabric analysis carried out by texture goniometry, Scanning Electron Microscopy (SEM) observations and also Shape Preferred Orientation (SPO) statistics. SEM observations of ferroan dolomite host rock illustrate both bright and dark grey ribbons corresponding respectively to Fe enriched and pure dolomites. SPO statistics applied on four images from ferroan dolomite host rock give a well-defined orientation of ribbons related to the intermediate axis of magnetic susceptibility K2. For AMS data, two magnetic fabrics are observed. The first one is observed in ferroan dolomite host rock and characterized by a prolate ellipsoid of magnetic susceptibility with a vertical magnetic lineation. The magnetic susceptibility carrier is Fe-rich dolomite. These features are probably acquired during metasomatic fluid circulations. In Fe-rich dolomite host rock, ‹ c› axes are vertical. As a rule, (0001) planes (i.e. planes perpendicular to ‹ c› axes) are isotropic with respect to crystallographic properties. So, the magnetic anisotropy measured in this plane should reflect crystallographic modification due to fluid circulation. This is confirmed by the texture observed using the SEM. Consequently, AMS results show a dominant NE-SW elongation interpreted as the global circulation direction and a NW-SE secondary elongation that we have considered as sinuosities of the fluid trajectory. The second type of magnetic fabric is essentially observed in the limestone and characterized by an oblate form of the ellipsoid of magnetic susceptibility, a horizontal magnetic foliation and mixed magnetic susceptibility carriers. It is interpreted as a sedimentary fabric.
Recent advances in the use of acoustics across the frequency spectrum in the oil and gas industry
NASA Astrophysics Data System (ADS)
Zeroug, Smaine; Bose, Sandip
2018-04-01
Acoustics enjoys a wide array of applicability in the Oil and Gas industry. Signals with very low-frequencies (tens of Hertz) are routinely used on surface to image the earth subsurface delineating hydrocarbon reservoirs while signals with mid-frequencies (thousands of Hertz) to high-frequencies (hundreds of kilo Hertz) are used in deep boreholes to probe rock mechanical properties and evaluate completion hardware. This article reviews a few recent advances in these applications spanning both measurement concepts and processing and inversion approaches. Three applications are covered, going from high to low frequencies. The first relates to an ultrasonic imager deployed in open boreholes to probe the laminated structure of unconventional shale rock formations at depth of more than 3000 m. The imager yields rock compressional and shear wavespeed images as a function of depth and azimuth revealing a host of geomechanical manifestations of the borehole shape and near-wellbore region at an unprecedented centimetric spatial resolution. The quantitative images have bearing on rock strength and local stresses as they relate to the hydraulic fracturing of these shale formations. The second relates to the interpretation of the complex sonic response in a well cased with double steel strings cemented to the rock formation for the purpose of evaluating the integrity of the cement placed between the outer string and formation. Here, machine learning-based approaches are employed with training on modeling and experimental datasets to develop effective and wellsite diagnosis for the condition of the cement sheath. The third relates to the seismic imaging domain and the deployment of novel accelerometers added to hydrophones on marine seismic cables to capture the subsurface-reflected pressure signals and their spatial gradients. The combination of the two sensors provides the means to deghost the signal from the sea surface reflection, and more importantly, reconstruct the subsurface seismic wavefield that is poorly sampled across cables that are spaced 75m to 150 m apart. Novel compressive-sensing schemes coupled with wave physics are employed for the wavefield reconstruction at virtual sampling rates way beyond Nyquist's criterion.
NASA Astrophysics Data System (ADS)
Kurapov, M. Yu.; Ershova, V. B.; Makariev, A. A.; Makarieva, E. V.; Khudoley, A. K.; Luchitskaya, M. V.; Prokopiev, A. V.
2018-03-01
Data on the petrography, geochemistry, and isotopic geochronology of granites from the northern part of the Taimyr Peninsula are considered. The Early-Middle Carboniferous age of these rocks has been established (U-Pb, SIMS). Judging by the results of 40Ar/39Ar dating, the rocks underwent metamorphism in the Middle Permian. In geochemical and isotopic composition, the granitic rocks have much in common with evolved I-type granites. This makes it possible to specify a suprasubduction marginal continental formation setting. The existence of an active Carboniferous margin along the southern edge of the Kara Block (in presentday coordinates) corroborates the close relationship of the studied region with the continent of Baltia.
Geologic information from satellite images
NASA Technical Reports Server (NTRS)
Lee, K.; Knepper, D. H.; Sawatzky, D. L.
1974-01-01
Extracting geologic information from ERTS and Skylab/EREP images is best done by a geologist trained in photo-interpretation. The information is at a regional scale, and three basic types are available: rock and soil, geologic structures, and landforms. Discrimination between alluvium and sedimentary or crystalline bedrock, and between units in thick sedimentary sequences is best, primarily because of topographic expression and vegetation differences. Discrimination between crystalline rock types is poor. Folds and fractures are the best displayed geologic features. They are recognizable by topographic expression, drainage patterns, and rock or vegetation tonal patterns. Landforms are easily discriminated by their familiar shapes and patterns. Several examples demonstrate the applicability of satellite images to tectonic analysis and petroleum and mineral exploration.
NASA Astrophysics Data System (ADS)
Přikryl, Richard; Vilhelm, Jan; Lokajíček, Tomáš; Pros, Zdeněk; Klíma, Karel
2004-05-01
Multidirectional field seismic refraction data have been combined with 3-D laboratory ultrasonic sounding data in a preliminary exploration of a new dimension stone deposit in the Czech Republic. Rock fabric was interpreted from a detailed laboratory analysis of a 3-D P-wave velocity pattern and can be classified as pronounced orthorhombic due to a complex tectonometamorphic history of the rock. The P-wave velocity pattern recorded from laboratory measurements can be satisfactorily correlated with the anisotropy of P-wave velocity data acquired from field seismic refraction data. Rock fabric anisotropy also contributes to the observed anisotropy of strength and static deformational properties.
NASA Astrophysics Data System (ADS)
Huang, Xin; Yin, Chang-Chun; Cao, Xiao-Yue; Liu, Yun-He; Zhang, Bo; Cai, Jing
2017-09-01
The airborne electromagnetic (AEM) method has a high sampling rate and survey flexibility. However, traditional numerical modeling approaches must use high-resolution physical grids to guarantee modeling accuracy, especially for complex geological structures such as anisotropic earth. This can lead to huge computational costs. To solve this problem, we propose a spectral-element (SE) method for 3D AEM anisotropic modeling, which combines the advantages of spectral and finite-element methods. Thus, the SE method has accuracy as high as that of the spectral method and the ability to model complex geology inherited from the finite-element method. The SE method can improve the modeling accuracy within discrete grids and reduce the dependence of modeling results on the grids. This helps achieve high-accuracy anisotropic AEM modeling. We first introduced a rotating tensor of anisotropic conductivity to Maxwell's equations and described the electrical field via SE basis functions based on GLL interpolation polynomials. We used the Galerkin weighted residual method to establish the linear equation system for the SE method, and we took a vertical magnetic dipole as the transmission source for our AEM modeling. We then applied fourth-order SE calculations with coarse physical grids to check the accuracy of our modeling results against a 1D semi-analytical solution for an anisotropic half-space model and verified the high accuracy of the SE. Moreover, we conducted AEM modeling for different anisotropic 3D abnormal bodies using two physical grid scales and three orders of SE to obtain the convergence conditions for different anisotropic abnormal bodies. Finally, we studied the identification of anisotropy for single anisotropic abnormal bodies, anisotropic surrounding rock, and single anisotropic abnormal body embedded in an anisotropic surrounding rock. This approach will play a key role in the inversion and interpretation of AEM data collected in regions with anisotropic geology.
Venera 13 and venera 14: sedimentary rocks on venus?
Florensky, C P; Basilevsky, A T; Kryuchkov, V P; Kusmin, R O; Nikolaeva, O V; Pronin, A A; Chernaya, I M; Tyuflin, Y S; Selivanov, A S; Naraeva, M K; Ronca, L B
1983-07-01
Venera 13 and Venera 14 transmitted almost complete panoramic views of their landing sites. Analyses of the photographs show the presence of rock formations undergoing geomorphic degradation. The formations display ripple marks, thin layering, differential erosion, and curvilinear fracturings. Some of them are interpreted as lithified clastic sediments. The lithification could have taken place at depth or at the surface, resulting in a type of duricrust. The origin of the sediments is unknown but could be aeolian, volcanic, or related to impacts or to turbidity currents.
NASA Astrophysics Data System (ADS)
Carlson, William D.
1989-09-01
The spatial disposition, compositional zoning profiles, and size distributions of garnet crystals in 11 specimens of pelitic schist from the Picuris Range of New Mexico (USA) demonstrate that the kinetics of intergranular diffusion controlled the nucleation and growth mechanisms of porphyroblasts in these rocks. An ordered disposition of garnet centers and a significant correlation between crystal radius and near-neighbor distances manifest suppressed nucleation of new crystals in diffusionally depleted zones surrounding pre-existing crystals. Compositional zoning profiles require diffusionally controlled growth, the rate of which increases exponentially as temperature increases with time; an acceleration factor for growth rate can be estimated from a comparison of compositional profiles for crystals of different sizes in each specimen. Crystal size distributions are interpreted as the result of nucleation rates that accelerate exponentially with increasing temperature early in the crystallization process, but decline in the later stages because of suppression effects in the vicinity of earlier-formed nuclei. Simulations of porphyroblast crystallization, based upon thermally accelerated diffusionally influenced nucleation kinetics and diffusionally controlled growth kinetics, quantitatively replicate textural relations in the rocks. The simulations employ only two variable parameters, which are evaluated by fitting of crystal size distributions. Both have physical significance. The first is an acceleration factor for nucleation, with a magnitude reflecting the prograde increase during the nucleation interval of the chemical affinity for the reaction in undepleted regions of the rock. The second is a measure of the relative sizes of the porphyroblast and the diffusionally depleted zone surrounding it. Crystal size distributions for the Picuris Range garnets correspond very closely to those in the literature from a variety of other localities for garnet and other minerals. The same kinetic model accounts quantitatively for crystal size distributions of porphyroblastic garnet, phlogopite, sphene, and pyroxene in rocks from both regional and contact metamorphic occurrences. These commonalities indicate that intergranular diffusion may be the dominant kinetic factor in the crystallization of porphyroblasts in a wide variety of metamorphic environments.
Nash, J. Thomas; Frishman, David
1983-01-01
Analytical results for 61 elements in 370 samples from the Ranger Mine area are reported. Most of the rocks come from drill core in the Ranger No. 1 and Ranger No. 3 deposits, but 20 samples are from unmineralized drill core more than 1 km from ore. Statistical tests show that the elements Mg, Fe, F, Be, Co, Li, Ni, Pb, Sc, Th, Ti, V, CI, As, Br, Au, Ce, Dy, La Sc, Eu, Tb, Yb, and Tb have positive association with uranium, and Si, Ca, Na, K, Sr, Ba, Ce, and Cs have negative association. For most lithologic subsets Mg, Fe, Li, Cr, Ni, Pb, V, Y, Sm, Sc, Eu, and Yb are significantly enriched in ore-bearing rocks, whereas Ca, Na, K, Sr, Ba, Mn, Ce, and Cs are significantly depleted. These results are consistent with petrographic observations on altered rocks. Lithogeochemistry can aid exploration, but for these rocks requires methods that are expensive and not amenable to routine use.
Possible emplacement of crustal rocks into the forearc mantle of the Cascadia Subduction Zone
Calvert, A.J.; Fisher, M.A.; Ramachandran, K.; Trehu, A.M.
2003-01-01
Seismic reflection profiles shot across the Cascadia forearc show that a 5-15 km thick band of reflections, previously interpreted as a lower crustal shear zone above the subducting Juan de Fuca plate, extends into the upper mantle of the North American plate, reaching depths of at least 50 km. In the extreme western corner of the mantle wedge, these reflectors occur in rocks with P wave velocities of 6750-7000 ms-1. Elsewhere, the forearc mantle, which is probably partially serpentinized, exhibits velocities of approximately 7500 ms-1. The rocks with velocities of 6750-7000 ms-1 are anomalous with respect to the surrounding mantle, and may represent either: (1) locally high mantle serpentinization, (2) oceanic crust trapped by backstepping of the subduction zone, or (3) rocks from the lower continental crust that have been transported into the uppermost mantle by subduction erosion. The association of subparallel seismic reflectors with these anomalously low velocities favours the tectonic emplacement of crustal rocks. Copyright 2003 by the American Geophysical Union.
Reassessing the Evidence for the Earliest Traces of Life
NASA Technical Reports Server (NTRS)
vanZullen, Mark A.; Lepland, Alve; Arrhenlus, Gustaf
2002-01-01
The isotopic composition of graphite is commonly used as a biomarker in the oldest (>3.5 Gyr ago) highly metamorphosed terrestrial rocks. Earlier studies on isotopic characteristics of graphite occurring in rocks of the approximately 3.8-Gyr-old Isua supracrustal belt (ISB) in southern West Greenland have suggested the presence of a vast microbial ecosystem in the early Archean. This interpretation, however, has to be approached with extreme care. Here we show that graphite occurs abundantly in secondary carbonate veins in the ISB that are formed at depth in the crust by injection of hot fluids reacting with older crustal rocks (metasomatism). During these reactions, graphite forms from the disproportionation of Fe(II)-bearing carbonates at high temperature. These metasomatic rocks, which clearly lack biological relevance, were earlier thought to be of sedimentary origin and their graphite association provided the basis for inferences about early life. The new observations thus call for a reassessment of previously presented evidence for ancient traces of life in the highly metamorphosed Early Archaean rock record.
Jibson, R.W.; Harp, E.L.; Schulz, W.; Keefer, D.K.
2004-01-01
The 2002 M7.9 Denali fault, Alaska, earthquake triggered thousands of landslides, primarily rock falls and rock slides, that ranged in volume from rock falls of a few cubic meters to rock avalanches having volumes as great as 15 ?? 106 m3. The pattern of landsliding was unusual; the number of slides was less than expected for an earthquake of this magnitude, and the landslides were concentrated in a narrow zone 30-km wide that straddled the fault rupture over its entire 300-km length. The large rock avalanches all clustered along the western third of the rupture zone where acceleration levels and ground-shaking frequencies are thought to have been the highest. Inferences about near-field strong shaking characteristics drawn from the interpretation of the landslide distribution are consistent with results of recent inversion modeling that indicate high-frequency energy generation was greatest in the western part of the fault rupture zone and decreased markedly to the east. ?? 2004, Earthquake Engineering Research Institute.
National Uranium Resource Evaluation: Newcastle Quadrangle, Wyoming and South Dakota
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, E S; Robinson, K; Geer, K A
1982-09-01
Uranium resources of the Newcastle 1/sup 0/x2/sup 0/ Quadrangle, Wyoming and South Dakota were evaluated to a depth of 1500 m (5000 ft) using available surface and subsurface geologic information. Many of the uranium occurrences reported in the literature and in reports of the US Atomic Energy Commission were located, sampled and described. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, were outlined. Areas favorable for uranium deposits in the subsurface were evaluated using gamma-ray logs. Based on surface and subsurface data, two areas have been delineated which are underlain by rocks deemed favorable as hosts for uraniummore » deposits. One of these is underlain by rocks that contain fluvial arkosic facies in the Wasatch and Fort Union Formations of Tertiary age; the other is underlain by rocks containing fluvial quartzose sandstone facies of the Inyan Kara Group of Early Cretaceous age. Unfavorable environments characterize all rock units of Tertiary age above the Wasatch Formation, all rock units of Cretaceous age above the Inyan Kara Group, and most rock units of Mesozoic and Paleozoic age below the Inyan Kara Group. Unfavorable environments characterize all rock units of Cretaceous age above the Inyan Kara Group, and all rock units of Mesozoic and Paleozoic age below the Inyan Kara Group.« less
Multiphase flow of carbon dioxide and brine in dual porosity carbonates
NASA Astrophysics Data System (ADS)
Pentland, Christopher; Oedai, Sjaam; Ott, Holger
2014-05-01
The storage of carbon dioxide in subsurface formations presents a challenge in terms of multiphase flow characterisation. Project planning requires an understanding of multiphase flow characteristics such as the relationship between relative permeability and saturation. At present there are only a limited number of relative permeability relations for carbon dioxide-brine fluid systems, most of which are measured on sandstone rocks. In this study coreflood experiments are performed to investigate the relative permeability of carbon dioxide and brine in two dual porosity carbonate systems. Carbon dioxide is injected into the brine saturated rocks in a primary drainage process. The rock fluid system is pre-equilibrated to avoid chemical reactions and physical mass transfer between phases. The pressure drop across the samples, the amount of brine displaced and the saturation distribution within the rocks are measured. The experiments are repeated on the same rocks for the decane-brine fluid system. The experimental data is interpreted by simulating the experiments with a continuum scale Darcy solver. Selected functional representations of relative permeability are investigated, the parameters of which are chosen such that a least squares objective function is minimised (i.e. the difference between experimental observations and simulated response). The match between simulation and measurement is dependent upon the form of the functional representations. The best agreement is achieved with the Corey [Brooks and Corey, 1964] or modified Corey [Masalmeh et al., 2007] functions which best represent the relative permeability of brine at low brine saturations. The relative permeability of carbon dioxide is shown to be lower than the relative permeability of decane over the saturation ranges investigated. The relative permeability of the brine phase is comparable for the two fluid systems. These observations are consistent with the rocks being water-wet. During the experiment only a portion of the full saturation range is investigated, corresponding to carbon dioxide entering the macro pores of the dual porosity systems. Within this pore space the relative permeability behaviour is comparable to that measured in Berea sandstone. Brooks, R. H., and A. T. Corey (1964), Hydraulic properties of porous media, Hydrology Papers 3, Civil Engineering Dept., Colorado State Univ., Fort Collins, CO. Masalmeh, S., I. Abu-Shiekah, and X. Jing (2007), Improved Characterization and Modeling of Capillary Transition Zones in Carbonate Reservoirs, SPE Reserv. Eval. Eng., 10(2), doi:10.2118/109094-PA.
Woodland, M.V.
1959-01-01
While Hutton fortified his convictions by constant appeals to the rocks themselves, his disciple Hall tested their truth in the laboratory. It is the boast of Scotland to have led the way in the application of chemical and physical experiment to the elucidation of geological history. Archibald Geikie, 1882. ?? 1959.
The physics of sliding cylinders and curling rocks
NASA Astrophysics Data System (ADS)
Penner, A. Raymond
2001-03-01
The lateral deflection of a rotating cylindrical shell sliding on one of its ends is considered and both theoretical and experimental results are presented. The coefficient of kinetic friction between a curling rock and an ice surface is then derived and compared with experiment. Current models of the motion of a curling rock are discussed and an alternate hypothesis is presented.
NASA Astrophysics Data System (ADS)
Yamaya, Y.; Alanis, P. K. B.; Takeuchi, A.; Cordon, J. M.; Mogi, T.; Hashimoto, T.; Sasai, Y.; Nagao, T.
2013-07-01
Taal Volcano, located in the southwestern part of Luzon Island, Philippines, has frequently experienced catastrophic eruptions from both the Main Crater on Volcano Island and flank eruptions. These eruptions have been magmatic, phreatomagmatic, and hydrothermal, with the latter implying the existence of a large-scale hydrothermal system beneath the volcano. We conducted an electrical resistivity survey using the magnetotelluric method in order to identify the location and geometry of the hydrothermal reservoir and sealing cap rock. Two-dimensional inversion using the observed data indicates four similar resistivity sections. The structure at shallow depths corresponds to volcanic deposits and an aquifer. Below 1 km, the structure features a relatively resistive zone beneath the main crater surrounded by a conductive shell. We interpreted these to be a large hydrothermal reservoir with an impermeable cap rock sealing it. Recent ground deformation detected by GPS measurements suggests that the hydrothermal reservoir is active. The interpreted cap rock thins just beneath the main crater and could easily be destroyed by an imbalance in the hydrothermal system. We conclude that this hydrothermal reservoir plays a significant role in driving catastrophic eruptions that begin with a hydrothermal explosion at the main crater.
NASA Astrophysics Data System (ADS)
Tampubolon, Togi; Hutahaean, Juniar; Siregar, Suryani N. J.
2018-03-01
Underwater research often uses geomagnets. It is one of the geophysical methods for measuring magnetic field variations. This research was done to identify how the subsurface rock structure is and determine kinds of rock based on its susceptibility value in Siogung-ogung geothermal area, Pangururan, Samosir District. The tool measurement of total magnetic field called Proton Precission Magnetometer, positioning using Global Position System, and north axis determination using geological compass. Data collection was done randomly with total 51 measuring points obtained. Data analysis started with International geomagnetics Reference Field correction to obtain the total magnetic field anomaly. Then, the data analysis of total magnetic anomaly was done by using surfer program 12. To get a magnetic anomaly cross section used Magdc For Windows program. Magnetic measurement results indicated that the variation of magnetic field strength in each point with the lowest magnetic intensity value of 41785.67 nano tesla. The highest magnetic intensity value is 43140, 33. From the results of qualitative interpretation, the magnetic anomaly value is at -200.92 to 1154.45 whereas the quantitative interpretive results of model show the existence of degradation and andesitic rocks, with the value of susceptibility
Fluid flow in deforming media: interpreting stable isotope signatures of marbles
NASA Astrophysics Data System (ADS)
Bond, C. E.
2016-12-01
Fluid flow in the crust is controlled by permeable networks. These networks can be created and destroyed dynamically during rock deformation. Rock deformation is therefore critical in controlling fluid pathways in the crust and hence the location of mineral and other resources. Here, evidence for deformation-enhanced fluid infiltration shows that a range of deformation mechanisms control fluid flow and chemical and isotopic equilibration. The results attest to localised fluid infiltration within a single metamorphic terrain (12km) over a range of metamorphic grades; ecologite- blueschist to greenschist. For fluid infiltrating marbles during ductile deformation, chemical and isotopic signatures are now homogenous; whilst fluid infiltration associated with brittle deformation results in chemical and isotopic heterogeneity at a microscale. The findings demonstrate how ductile deformation enhances equilibration of δ18O at a grain scale whilst brittle deformation does not. The control of deformation mechanisms in equilibrating isotopic and chemical heterogeneities have implications for the understanding of fluid-rock interaction in the crust. Interpretation of bulk stable isotope data, particularly in the use of isotope profiles to determine fluid fluxes into relatively impermeable units that have been deformed need to be used with care when trying to determine fluid fluxes and infiltration mechanisms.
NASA Technical Reports Server (NTRS)
Christensen, P. R.; Edgett, Kenneth S.
1994-01-01
Critical to the assessment of potential sites for the 1997 Pathfinder landing is estimation of general physical properties of the martian surface. Surface properties have been studied using a variety of spacecraft and earth-based remote sensing observations, plus in situ studies at the Viking lander sites. Because of their value in identifying landing hazards and defining scientific objectives, we focus this discussion on thermal inertia and rock abundance derived from middle-infrared (6 to 30 microns) observations. Used in conjunction with other datasets, particularly albedo and Viking orbiter images, thermal inertia and rock abundance provide clues about the properties of potential Mars landing sites.
Recording of Supernovae in Rock Art, A Case Study at the Paint Rock Pictograph Site
NASA Astrophysics Data System (ADS)
Houston, Gordon L.; Simonia, Irakli; NA
2017-01-01
The Paint Rock pictographs in central Texas and their use as solar markers were formally reported for the first time by Dr. R. Robert Robbins at the 1999 AAS meeting #193 in Austin, Texas. He reported the operations of the winter solstice marker and suggested the possibility of more, including a summer solstice solar marker. Since this first report, there have been many informal studies of the Paint Rock site. In 1955, William C. Miller made the first interpretation of rock art as depicting images of the Crab supernova of AD 1054, which has produced many reports at other rock art sites in the American Southwest, including one at Paint Rock. All of these claims have a star and crescent configuration. Recently, these claims have been dismissed. We propose that the second panel at Paint Rock is representative of Tycho Brahe's supernovae SN1572. Miller set up a set of restrictions and criteria to evaluate these potential claims. We discuss Miller's criteria and two additional sets of criteria to evaluate representations of historical records of supernovae sightings. Two sets of characteristics of supernovae are provided, the first being galactic location and the second observational characteristics of naked eye supernovae. Employing astronomical software, we show that the panel at Paint Rock meets the restrictions and criteria discussed, that leads to high confidence in stating it records Tycho Brahe's supernova SN1572.
NASA Astrophysics Data System (ADS)
Whalen, Joseph B.; Wodicka, Natasha; Taylor, Bruce E.; Jackson, Garth D.
2010-06-01
Large volume, plutonic belts, such as the ˜ 221,000 km 2, ca. 1.865-1.845 Ga Cumberland batholith (CB) of the Trans-Hudson Orogen in Canada, are major components of Paleoproterozoic orogenic belts. In many cases, they have been interpreted as continental arc batholiths. The petrogenesis and tectonic context of the CB and implications for crustal growth and recycling are interpreted herein based on a 900 km geochemical-isotopic (Nd-O) transect across it and into granitoid plutons within bounding Archean cratons in central and southern Baffin Island. The mainly granulite grade CB, emplaced over an age span of between 14 and 24 Ma, consists mainly of high-K to shoshonitic monzogranite and granodiorite, but also includes low- and medium-K granitoid rocks. Metaluminous to slightly peraluminous compositions and δ 18O (VSMOW) values (+ 6 to + 10‰) indicate derivation from infracrustal (I-type) sources. ɛ Nd 1.85 Ga signatures (- 12 to - 2) of both mafic and felsic units suggest a dominance of evolved sources. Isotopic signatures in the interior of the CB (- 2 to - 7) are more radiogenic than those within Archean domains in central (- 8 to - 15) and southern (- 5 to - 19) Baffin Island. The isotopic transect is interpreted as 'imaging' an accreted microcontinental block (Meta Incognita) and bounding Archean cratons. The CB includes granites of arc, within-plate (A-type) and post-collisional affinity and volumetrically minor mafic rocks with both arc and non-arc features. (La/Yb) CN and Sr/Y values range from < 1 to 225 and < 1 to 611, respectively. In these respects, some CB granitoid rocks resemble Paleozoic adakitic granites, interpreted as partial melts of greatly thickened crust within post-collisional settings, such as Tibet. Thus, the CB likely encompasses various non-consanguineous magmatic suites generated at deep- to mid-crustal depths. Although CB granitoid rocks undoubtedly had important crustal sources, it is hard to assess the relative contribution of mantle-derived magmas. The CB is best interpreted as a post-accretion batholith resulting from large-scale lithospheric mantle delamination followed by the upwelling of hot asthenospheric mantle leading to voluminous crustal partial melting. Contributors to crustal instability which may have facilitated such delamination included: (a) a collage of recently assembled small cratons underlain by hot, weak lithosphere with mantle-depth structural breaks within this segment of the Trans-Hudson Orogen; (b) the gabbro-eclogite phase transformation, and (c) a greatly thickened crustal section (> 60 km), as evidenced by adakitic granites.
NASA Astrophysics Data System (ADS)
Imaizumi, Fumitoshi; Nishiguchi, Takaki; Matsuoka, Norikazu; Trappmann, Daniel; Stoffel, Markus
2018-06-01
Alpine landscapes are typically characterized by inherited features of past glaciations and, for the more recent past, by the interplay of a multitude of types of geomorphic processes, including permafrost creep, rockfalls, debris flows, and landslides. These different processes usually exhibit large spatial and temporal variations in activity and velocity. The understanding of these processes in a wide alpine area is often hindered by difficulties in their surveying. In this study, we attempt to disentangle recent changes in an alpine landscape system using geomorphic mapping and L-band DInSAR analyses (ALOS-PALSAR) in the Zermatt Valley, Swiss Alps. Geomorphic mapping points to a preferential distribution of rock glaciers on north-facing slopes, whereas talus slopes are concentrated on south-facing slopes. Field-based interpretation of ground deformation in rock glaciers and movements in talus slopes correlates well with the ratio of InSAR images showing potential ground deformation. Moraines formed during the Little Ice Age, rock glaciers, and talus slopes on north-facing slopes are more active than landforms on south-facing slopes, implying that the presence of permafrost facilitates the deformation of these geomorphic units. Such deformations of geomorphic units prevail also at the elevation of glacier termini. For rock cliffs, the ratio of images indicating retreat is affected by slope orientation and elevation. Linkages between sediment supply from rock cliffs and sediment transport in torrents are different among tributaries, affected by relative locations between sediment supply areas and the channel network. We conclude that the combined use of field surveys and L-band DInSAR analyses can substantially improve process understanding in steep, high-mountain terrain.
Style of Cenozoic extensional deformation in the central Beaverhead Mountains, Idaho-Montana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kellogg, K.S.
1993-04-01
Cenozoic extension in the upper Medicine Lodge Creek area in the Beaverhead Mountains was accommodated along numerous low- to high-angle, west-facing normal faults. These faults have repeated moderately east-dipping (by 20--40[degree]) Tertiary rocks that are as old as the Eocene Medicine Lodge Volcanics and that include conformably overlying Miocene and Oligocene conglomerate, tuffaceous sandstone, siltstone, and limestone; a reasonable restoration of Tertiary faulting suggests that the region has extended about 20 percent. At least one normal fault soles into the Late Cretaceous Cabin thrust, one of at least four major Cordilleran thrusts in the Beaverhead Mountains and the Tendoy Mountainsmore » immediately to the east. The Cabin thrust places enigmatic quartzite (age is between Middle Proterozoic and Lower Cambrian) and Archean gneiss above Mississippian to Ordovician rocks. The formation of the north-northwest-trending upper Medicine Lodge Valley was controlled mostly by low-angle normal faults along its east side, where Eocene volcanics and overlying sedimentary rocks dip about 25[degree] eastward against Archean rocks. Faceted spurs are prominent but no scarps are visible, suggesting that last movement is pre-Holocene. Other large-displacement normal faults at higher elevations show relatively little topographic expression. The Late Proterozoic or Cambrian Beaverhead impact structure, defined by wide-spread shatter-coning, pseudotachylite formation, and localized brecciation, make interpretation of some extensive breccia zones in Archean rocks along the east side of Medicine Lodge Valley problematic. The proximity of the breccias to Tertiary normal faults makes a Tertiary age attractive, yet the breccias are older than pseudotachylite interpreted to have been produced by the impact.« less
NASA Astrophysics Data System (ADS)
Collins, D. S.; Pettitt, W. S.; Young, R. P.
2003-04-01
Permanent changes to rock mass properties can occur due to the application of excavation or thermal induced stresses. This project involves the design of hardware and software for the long term monitoring of a rock volume, and the real time analysis and interpretation of induced microcracks and their properties. A set of borehole sondes have been designed with each sonde containing up to 6 sensor modules. Each piezoelectric sensor is dual mode allowing it to either transmit an ultrasonic pulse through a rock mass, or receive ultrasonic waveform data. Good coupling of the sensors with the borehole wall is achieved through a motorized clamping mechanism. The borehole sondes are connected to a surface interface box and digital acquisition system and controlled by a laptop computer. The system allows acoustic emission (AE) data to be recorded at all times using programmable trigger logic. The AE data is processed in real time for 3D source location and magnitude, with further analysis such as mechanism type available offline. Additionally the system allows velocity surveys to be automatically performed at pre-defined times. A modelling component of the project, using a 3D dynamic finite difference code, is investigating the effect that different microcrack distributions have on velocity waveform data in terms of time and frequency amplitude. The modelling codes will be validated using data recorded from laboratory tests on rocks with known crack fabrics, and then used in insitu experimental tests. This modelling information will be used to help interpret, in real time, microcrack characteristics such as crack density, size, and fluid content. The technology has applications in a number of branches of geotechnical and civil engineering including radioactive waste storage, mining, dams, bridges, and oil reservoir monitoring.
Comparison between PGAA and ID-AMS analysis for determining chlorine content in whole rock basalt
NASA Astrophysics Data System (ADS)
di Nicola, L.; Schnabel, C.; Wilcken, K. M.; Gméling, K.
2009-04-01
Accurate determination of chlorine concentrations in terrestrial rocks is of importance for the interpretation of terrestrial in-situ cosmogenic 36Cl. Neutron capture by 35Cl, together with production from Ca and K, is one of the three major production pathways of 36Cl in rocks. Here, we present an inter-comparison of chlorine determinations by two procedures. The first approach is an independent Cl determination by prompt gamma (neutron) activation analysis (PGAA). The second method is isotope dilution based on isotopically-enriched stable chlorine carrier added during chemical sample preparation for accelerator mass spectrometry (ID-AMS). Twenty six (26) whole rock samples have been processed for PGAA and ID-AMS analyses. Elemental analysis by PGAA provides concentrations of major, minor and trace elements including the target elements for 36Cl production (K, Ca, Ti, and Fe), as well as of neutron absorbers and neutron moderators (H, B, Cl, Sm and Gd). The Cl concentrations determined during this study constitute the first inter-comparison for concentrations below 100 μCl/g. Our results show no significant difference in Cl concentrations between methods, and comparable uncertainties. This agreement guarantees that during the procedure we employ for whole rock sample no significant loss of stable chlorine from either the spike or the sample occurs before isotopic equilibration, prior to AgCl precipitation. Furthermore, we show that the elemental analysis by PGAA offers anadvance for the interpretation of 36Cl measurements. It allows simultaneous measurement of major and most trace element concentrations with a precision necessary for calculating the relative contributions to 36Cl production rates of the different mechanisms. Finally, the Cl concentration can be used to optimize the amount of isotopically-enriched spike for AMS-ID sample preparation for 36Cl.
The reduction, verification and interpretation of MAGSAT magnetic data over Canada
NASA Technical Reports Server (NTRS)
Coles, R. L. (Principal Investigator); Haines, G. V.; Vanbeek, G. J.; Walker, J. K.; Newitt, L. R.; Nandi, A.
1982-01-01
Correlations between the MAGSAT scalar anomaly map produced at the Earth Physics ranch and other geophysical and geological data reveal relationships between high magnetic field and some metamorphic grade shields, as well as between low magnetic field and shield regions of lower metamorphic grade. An intriguing contrast exists between the broad low anomaly field over the Nasen-Gakkel Ridge (a spreading plate margin) and the high anomaly field over Iceland (part of a spreading margin). Both regions have high heat flow, and presumably thin magnetic crust. This indicates that Iceland is quite anomalous in its magnetic character, and possible similarities with the Alpha Ridge are suggested. Interesting correlations exist between MAGSAT anomalies around the North Atlantic, after reconstructing the fit of continents into a prerifting configuration. These correlations suggest that several orogenies in that region have not completely destroyed an ancient magnetization formed in high grade Precambrian rocks.
Georadar and geoelectricity method to identify the determine zone of sliding landslide
NASA Astrophysics Data System (ADS)
Dalimunthe, Y. K.; Hamid, A.
2018-01-01
The aim of this research is to determine the contrast between the sliding plane by observing the parameters of rock types, fractures, and faults that could potentially land slides in Bandar Baru, Lampung Barat, Indonesia by both methods of georadar and geoelectricity. This research uses radar reflection profiling configuration for georadar and dipole-dipole configuration for geoelectricity. For georadar data processing has been done with Reflexwave software and for geoelectricity, data processing has been done with Earthimager 2DINV software to interpret subsurface section. Results of research by both methods of georadar and geoelectricity shows the area of contact between the sand stone with resistivity value of 200-1449 Ωm and clay stone with a resistivity value of 32-100 Ωm at the limit depth of 9 m as a potential zone of sliding landslides where the physical properties of clay stone easily derail massive material on it.
NASA Astrophysics Data System (ADS)
Akip Tan, S. N. Mohd; Dan, M. F. Md; Edy Tonnizam, M.; Saad, R.; Madun, A.; Hazreek, Z. A. M.
2018-04-01
2-D resistivity technique and pole-dipole array with spacing of 2 m electrode and total spacing of 80 m were adopted to map and characterize the shallow subsurface in a sedimentary area at Nusajaya, Johor. Geological field mapping and laboratory testing were conducted to determine weathering grades. Res2Dinv software was used to generate the inversion model resistivity. The result shows sandstone contains iron mineral (30-1000ohm-m) and weathered sandstone (500-1000 ohm-m). The lowest layer represents sandstone and siltstone with the highest range from 1500 through 5000 ohm-m. The weathering grade IV and V of sandstone in the actual profile indicates the range from 30 to 1000 ohm-m, whereas grade II and III in ground mass matched the higest range. Overall, the increase of weathering grade influenced both the physical properties and strength of rocks.
Large impacts in the Baltic shield with special attention to the Uppland structure
NASA Technical Reports Server (NTRS)
Henkel, H.; Lilljequist, R.
1992-01-01
Within the Baltic Shield several very large structures have been identified and are suspected to be of meteorite impact origin. Some of these deeply eroded circular features are presented with special attention to the Uppland structure, where several indications point toward an impact origin in the mid-Proterozoic. The structures exceed 100 km in diameter and the topographic expression is inferior or absent. An arcuate arrangement of lithologies occurs around the margin of the structures and the central regions show conform magnetic and positive gravity anomalies. The Uppland structure is approximately 320 km in diameter as expressed by morphological, geological, and geophysical concentric patterns. The central part is topographically remarkably flat and is characterized by an unusual irregular fracture pattern. A subcircular central tonalite with density of 2.81 Mg(sup -3) gives a positive gravity anomaly of 35 mgal and the gravimetric profile is very similar to that of Manicouagan and Vredefort. The tonalite constitutes a huge antiform, 80 km in diameter, probably representing a 12-km structural uplift of infracrustal rocks. The flancs of the tonalite are characterized by recrystallized pseudotachylitic breccia dykes and breccia zones. Around the central parts amphibolite-grade metamorphic rocks appear as large fragments within a fine-grained granite interpreted as a thermally annealed melt rock. Several occurrences of breccia dykes and breccia-bearing melts have been identified about 100 km from the gravimetric center of the structure. Impact-related ore deposits are located around the margin of the structure and are interpreted as preexisting downfaulted iron formations, and deposits formed from remobilization of these preimpact occurrences. The so-called ball ores are interpreted to have formed by fluid injection similar to the formation of breccia dykes. The extensive hydrothermal alteration along the outer margin of the structure have created extreme soda and K-enriched rocks ('leptites') from preexisting gneiss granites and supracrustal sedimentary gneisses.
NASA Astrophysics Data System (ADS)
Porter, M.; Speece, M. A.; Rutherford, B. S.; Constenius, K. N.
2014-12-01
In 1983 Techno, Inc. collected five seismic reflection profiles in the region between Whitefish, Montana and the United States-Canada border. The poulter method was used to gather four of these profiles and one profile was collected using a vibroseis source. We are currently reprocessing these data in order to construct a regional geological interpretation. The profiles cover a key position in the hinterland of the Cordillera in the lee of the Lewis thrust salient where the east-northeast verging Lewis thrust fault system translated (horizontal displacement >100 km) and inverted a thick, strong slab of primarily Belt-Purcell rocks out of a deep Precambrian depositional basin onto a cratonic platform. In this event, Belt-Purcell rocks were thrust over complexly imbricated Phanerozoic strata in the foreland. Late Mesozoic compressional deformation was followed by Cenozoic extensional collapse of the over-thickened Cordillera and subsequent basin and range style deformation that produced an array of northwest trending grabens. Three of the seismic profiles cross the Rocky Mountain Trench; the Trench is a linear structure of regional dimension that is an expression of the extensional fragmentation of the Cordillera. Strong reflections, interpreted as sills encased within Lower Belt rocks (encountered in the Arco-Marathon 1 Paul Gibbs borehole), outline the complexly folded and faulted structure of the eastern limb of the Purcell anticlinorium. East of the Rocky Mountain Trench stratified reflections within Belt rocks clearly outline the Wigwam Thrust. Beneath the Whitefish Range, an apparent inflection in the strongly reflective basal Cambrian veneer marks the westerly increase in dip of the Rocky Mountain Basal Detachment. The dip contrast between the foreland and hinterland might be a manifestation of the tectonic loading of the Belt basin margin and the loading might have localized extension across the Rocky Mountain Trench.
Interpretation of hydraulic tests performed at a carbonate rock site for CO2 storage
NASA Astrophysics Data System (ADS)
María Gómez Castro, Berta; Fernández López, Sheila; Carrera, Jesús; de Simone, Silvia; Martínez, Lurdes; Roetting, Tobias; Soler, Joaquim; Ortiz, Gema; de Dios, Carlos; Huber, Christophe
2014-05-01
Interpretation of hydraulic tests performed at a carbonate rock site for CO2 storage Berta Gómez, Sheila Fernández, Tobias Roetting, Lurdes Martínez, Silvia de Simone, Joaquim Soler, Jesus Carrera, Gema Ortiz, Christophe Huber, Carlos de Dios Proper design of CO2 geological storage facilities requires knowledge of the reservoir hydraulic parameters. Specifically, permeability controls the flux of CO2, the rate at which it dissolves, local and regional pressure buildup and the likelihood of induced seismicity. Permeability is obtained from hydraulic tests, which may yield local permeability, which controls injectivity, and large scale permeability, which controls pressure buildup at the large scale. If pressure response measurements are obtained at different elevations, hydraulic tests may also yield vertical permeability, which controls the rate at which CO2 dissolves. The objective of this work is to discuss the interpretation of hydraulic tests at deep reservoirs and the conditions under which these permeabilities can be obtained. To achieve this objective, we have built a radially symmetric model, including a skin and radial as well as vertical heterogeneity. We use this model to simulate hydraulic tests with increasing degrees of complexity about the medium response. We start by assuming Darcy flow, then add coupled mechanical effects (fractures opening) and, finally, we add thermal effects. We discuss how these affect the conventional interpretation of the tests and how to identify their presence. We apply these findings to the interpretation of hydraulic tests at Hontomin.
NASA Astrophysics Data System (ADS)
Harvey, A. S.; Fotopoulos, G.; Hall, B.; Amolins, K.
2017-06-01
Geological observations can be made on multiple scales, including micro- (e.g. thin section), meso- (e.g. hand-sized to outcrop) and macro- (e.g. outcrop and larger) scales. Types of meso-scale samples include, but are not limited to, rocks (including drill cores), minerals, and fossils. The spatial relationship among samples paired with physical (e.g. granulometric composition, density, roughness) and chemical (e.g. mineralogical and isotopic composition) properties can aid in interpreting geological settings, such as paleo-environmental and formational conditions as well as geomorphological history. Field samples are collected along traverses in the area of interest based on characteristic representativeness of a region, predetermined rate of sampling, and/or uniqueness. The location of a sample can provide relative context in seeking out additional key samples. Beyond labelling and recording of geospatial coordinates for samples, further analysis of physical and chemical properties may be conducted in the field and laboratory. The main motivation for this paper is to present a workflow for the digital preservation of samples (via 3D laser scanning) paired with the development of cyber infrastructure, which offers geoscientists and engineers the opportunity to access an increasingly diverse worldwide collection of digital Earth materials. This paper describes a Web-based graphical user interface developed using Web AppBuilder for ArcGIS for digitized meso-scale 3D scans of geological samples to be viewed alongside the macro-scale environment. Over 100 samples of virtual rocks, minerals and fossils populate the developed geological database and are linked explicitly with their associated attributes, characteristic properties, and location. Applications of this new Web-based geological visualization paradigm in the geosciences demonstrate the utility of such a tool in an age of increasing global data sharing.
NASA Astrophysics Data System (ADS)
Wei, Youqing; Zhao, Zhidan; Niu, Yaoling; Zhu, Di-Cheng; Liu, Dong; Wang, Qing; Hou, Zengqian; Mo, Xuanxue; Wei, Jiuchuan
2017-05-01
Understanding the geological history of the Lhasa Terrane prior to the India-Asia collision ( 55 ± 10 Ma) is essential for improved models of syn-collisional and post-collisional processes in the southern Lhasa Terrane. The Miocene ( 18-10 Ma) adakitic magmatism with economically significant porphyry-type mineralization has been interpreted as resulting from partial melting of the Jurassic juvenile crust, but how this juvenile crust was accreted remains poorly known. For this reason, we carried out a detailed study on the volcanic rocks of the Yeba Formation (YF) with the results offering insights into the ways in which the juvenile crust may be accreted in the southern Lhasa Terrane in the Jurassic. The YF volcanic rocks are compositionally bimodal, comprising basalt/basaltic andesite and dacite/rhyolite dated at 183-174 Ma. All these rocks have an arc-like signature with enriched large ion lithophile elements (LILEs; e.g., Rb, Ba and U) and light rare earth elements (LREEs) and depleted high field strength elements (HFSEs; e.g., Nb, Ta, Ti). They also have depleted whole-rock Sr-Nd and zircon Hf isotopic compositions, pointing to significant mantle isotopic contributions. Modeling results of trace elements and isotopes are most consistent with the basalts being derived from a mantle source metasomatized by varying enrichment of subduction components. The silicic volcanic rocks show the characteristics of transitional I-S type granites, and are best interpreted as resulting from re-melting of a mixed source of juvenile amphibole-rich lower crust with reworked crustal materials resembling metagraywackes. Importantly, our results indicate northward Neo-Tethyan seafloor subduction beneath the Lhasa Terrane with the YF volcanism being caused by the initiation of back-arc rifting. The back-arc setting is a likely site for juvenile crustal accretion in the southern Lhasa Terrane.
NASA Astrophysics Data System (ADS)
Dellinger, Mathieu; Gaillardet, Jérôme; Bouchez, Julien; Calmels, Damien; Galy, Valier; Hilton, Robert G.; Louvat, Pascale; France-Lanord, Christian
2014-09-01
The erosion of major mountain ranges is thought to be largely cannibalistic, recycling sediments that were deposited in the ocean or on the continents prior to mountain uplift. Despite this recognition, it has not yet been possible to quantify the amount of recycled material that is presently transported by rivers to the ocean. Here, we have analyzed the Li content and isotope composition (δLi7) of suspended sediments sampled along river depth profiles and bed sands in three of the largest Earth's river systems (Amazon, Mackenzie and Ganga-Brahmaputra rivers). The δLi7 values of river-sediments transported by these rivers range from +5.3 to -3.6‰ and decrease with sediment grain size. We interpret these variations as reflecting a mixture of unweathered rock fragments (preferentially transported at depth in the coarse fraction) and present-day weathering products (preferentially transported at the surface in the finest fraction). Only the finest surface sediments contain the complementary reservoir of Li solubilized by water-rock interactions within the watersheds. Li isotopes also show that river bed sands can be interpreted as a mixture between unweathered fragments of igneous and sedimentary rocks. A mass budget approach, based on Li isotopes, Li/Al and Na/Al ratios, solved by an inverse method allows us to estimate that, for the large rivers analyzed here, the part of solid weathering products formed by present-day weathering reactions and transported to the ocean do not exceed 35%. Li isotopes also show that the sediments transported by the Amazon, Mackenzie and Ganga-Brahmaputra river systems are mostly sourced from sedimentary rocks (>60%) rather than igneous rocks. This study shows that Li isotopes in the river particulate load are a good proxy for quantifying both the erosional rock sources and the fingerprint of present-day weathering processes. Overall, Li isotopes in river sediments confirm the cannibalistic nature of erosion and weathering.
NASA Astrophysics Data System (ADS)
Schmidberger, Stefanie S.; Simonetti, Antonio; Heaman, Larry M.; Creaser, Robert A.; Whiteford, Sean
2007-02-01
Lu-Hf, Sm-Nd and in-situ clinopyroxene Sr and Pb isotope systematics, and mineral major and in-situ trace element compositions were obtained for a suite of non-diamond and diamond-bearing eclogites from the Diavik kimberlites (A154; 55 Ma old), Slave craton (Canada). Temperature estimates of last equilibration in the lithosphere for the non-diamond-bearing Diavik eclogites define two groups; low-temperature (800-1050 °C) and high-temperature eclogites (1100-1300 °C). Most diamond-eclogites indicate temperatures similar to those of the high-temperature eclogites. Isotopic and major and trace element systematics for the non-diamond- and diamond-bearing eclogites indicate overlapping chemical compositions suggesting similar rock formational histories. Calculated whole rock major and trace element abundances using chemical and modal abundances for constituent minerals exhibit broad similarities with mafic cumulates from ophiolite sequences. Most importantly the calculated whole rock eclogite compositions display positive Sr and Eu anomalies, typically interpreted as the result of plagioclase accumulation in cumulate rocks of oceanic crust sequences. Initial whole rock Hf isotopic values and in-situ Sr isotope data from clinopyroxene grains provide evidence that the eclogites were derived from precursor rocks with depleted mantle isotope characteristics. These combined results support the interpretation that the eclogites from Diavik represent remnants of subducted oceanic crust. Lu-Hf isotope systematics indicate that the oceanic protolith for the eclogites formed in the Paleoproterozoic at ˜ 2.1 Ga, which is in agreement with the in-situ Pb isotope data from clinopyroxene. This result also corroborates the ˜ 2.1 Ga Lu-Hf model ages recorded by mantle zircons from eclogite found within the Jericho kimberlite in the northern Slave Province (˜ 200 km northwest of Diavik). The results from both studies indicate a link between eclogite formation and Paleoproterozoic subduction of oceanic lithosphere along the present-day western margin of the Archean Slave craton.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novikov, I.S.; Sokol, E.V.; Travin, A.V.
Cenozoic combustion metamorphic (CM) complexes produced by fossil natural coal fires are widespread at range-basin junctions worldwide. Large-scale fires accompany the initial orogenic phases as fresh coal-bearing strata become drawn into the aeration zone as a result of crustal deformation. In combustion metamorphism, the protolith melts to different degrees either into ferrous basic paralava or in glassy clinker. The melt rocks have a phase composition favorable for Ar-40/Ar-39 dating of ignition coeval with the onset of each episode in Late Cenozoic orogenic events. We suggest an algorithm providing correct Ar-40/Ar-39 age determination of CM rocks followed by well-grounded geological interpretationmore » and test the new approach on melt rocks from the Kuznetsk Coal Basin. Paralava samples were dated by Ar-40/Ar-39 incremental heating and the isotope ratios were corrected for Ca-, Cl-, and K-derived Ar isotopic interferences. The interpretation of age-spectrum results was checked against internal and external criteria. The former were plateau and isochrone ages and the latter included the so-called 'couple criterion' and conventional relative ages inferred from geological and stratigraphic evidence. As a result, we distinguished two groups of dates for combustion metamorphic events bracketed between 1.2 {+-} 0.4 and 0.2 {+-} 0.3 Ma. The older ages represent rocks in the western edge of the Prokopievsk-Kiselevsk block of the Salair zone and the younger dates correspond to those in its eastern edge. The reported dates record the time when the fault boundaries of the blocks were rejuvenated during recent activity and the block accreted to the Salair orogenic area as a submontane step. The suggested approach to the choice of objects, classification of rocks, and interpretation of Ar-40/Ar-39 spectra is universal and can be practiced in any area of combustion metamorphism.« less
NASA Astrophysics Data System (ADS)
Hazelton, Garrett Blaine
Furnace and laser spot methods of obtaining 40Ar/ 39Ar ages from fine-grained cataclasite and pseudotachylyte are compared and evaluated in terms of protolith, faulting, and cooling age components. These methods are applied to fault rocks from outcrop-scale, small-displacement, brittle detachment faults (minidetachments or MDF's) that cut mid-crustal rocks from the footwalls of brittle, large-displacement (>20 km), top-to-the-NE, low-angle normal (i.e., detachment) faults in the Whipple (WM) and Chemehuevi Mountains (CM), SE California. Mid-Tertiary extension affected both areas from ˜26 Ma to ˜11--8 Ma. Rapid footwall cooling began at ˜22 Ma. WM-CM furnace ages range from 22.0 +/- 1.3 to 14.6 +/- 0.6 Ma, CM laser ages from 29.9 +/- 3.7 to 15.7 +/- 1.2 Ma. These ages are younger than host protolith formation and record detachment faulting or footwall cooling. At least 50 MDF's were mapped; they typically cut all basement fabrics. Brittle MDFand detacriment-generated fault rocks are texturally similar, but some in the WM are plastically deformed. Fault rock matrix was mechanically extracted, optically studied, probed to characterize bulk mineralogy. K-feldspar grains are the primary source of fault rock-derived Ar. The laser provides high spatial resolution and the furnace method yields the Ar diffusion properties of fault rock matrix. Both methods yield reproducible results, but ages are difficult to interpret without an established geothermochronologic context. Fault rock 40Ar/39Ar measurements reveal: (1) closure temperatures of 140--280°C (at 100°C/Myr); (2) activation energies ranging from 33--50 kcal/mol; (3) individual K-feldspar grain ages of 55--5 Ma; (4) unanticipated and poorly understood low-temperature diffusion behavior; (5) little difference between pseudotachylyte and cataclasite matrix diffusion and age results; (6) that pre-analysis sample characterization is requisite. The diffusion properties of prepared glasses (47--84% SiO2) were also measured. Those with fault rock-like compositions yield activation energies of 25--39 kca/mol and average diffusivity of 4.63 · 10-3 cm2/sec. Network-forming Ca, Fe, and Mg partly cause certain low-temperature diffusion behaviors that, if unaccounted for, could allow an underestimation of Ar diffusion rates in some glass-bearing materials. Numerical models show that ambient temperature, grain size, and cooling rate strongly influence the Ar retention rate and interpretability of fault rock 40Ar/39Ar ages.
Watts, K.C.
1986-01-01
This report discusses and interprets geochemical results as they are seen at the reconnaissance stage. Analytical results for all samples collected are released in a U.S. Geological Survey Open-File Report (Adrian and others, 1985). A statistical summary of the data from heavy-mineral concentrates and sieved stream sediments is shown in table 1. The analytical results for selected elements in rock samples are shown in table 2.
Mapping of the Ronda peridotite massif (Spain) from AVIRIS spectro-imaging survey: A first attempt
NASA Technical Reports Server (NTRS)
Pinet, P. C.; Chabrillat, S.; Ceuleneer, G.
1993-01-01
In both AVIRIS and ISM data, through the use of mixing models, geological boundaries of the Ronda massif are identified with respect to the surrounding rocks. We can also yield first-order vegetation maps. ISM and AVIRIS instruments give consistent results. On the basis of endmember fraction images, it is then possible to discard areas highly vegetated or not belonging to the peridotite massif. Within the remaining part of the mosaic, spectro-mixing analysis reveals spectral variations in the peridotite massif between the well-exposed areas. Spatially organized units are depicted, related to differences in the relative depth of the absorption band at 1 micron, and it may be due to a different pyroxene content. At this stage, it is worth noting that, although mineralogical variations observed in the rocks are at a sub-pixel scale for the airborne analysis, we see an emerging spatial pattern in the distribution of spectral variations across the massif which might be prevailingly related to mineralogy. Although it is known from fieldwork that the Ronda peridotite massif exhibits mineralogical variations at local scale in the content of pyroxene, and at regional scale in different mineral facies, ranging from garnet-, to spinel- to plagioclase-lherzolites, no attempt has been done yet to produce a synoptic map relating the two scales of analysis. The present work is a first attempt to reach this objective, though a lot more work is still required. In particular, for the purpose of mineralogical interpretation, it is critical to relate the airborne observation to field work and laboratory spectra of Ronda rocks already obtained, with the use of image endmembers and associated reference endmembers. Also, the pretty rough linear mixing model used here is taken as a 'black-box' process which does not necessarily apply correctly to the physical situation at the sub-pixel level. One may think of using the ground-truth observations bearing on the sub-pixel statistical characteristics (texture, structural pattern, surface distribution and vegetation contribution (grass,..)) to produce a more advanced mixing model, physically appropriate to the geologic and environmental contexts.
Methodology of the interpretation of remote sensing data and applications in geology
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Veneziani, P.; Dosanjos, C. E.
1981-01-01
Methods used for interpreting orbital (LANDSAT) data for regional geological mapping in Brazil are examined. Particular attention is given to the levels of analysis used for studying geomorphology, structural geology, lithology, stratigraphy, surface geology, and dynamic processes. Examples of regional mapping described include: (1) rock intrusions in SE Sao Paulo, the southern parts of Minas Gerais, and the states of Rio de Janeiro, and Espiritu Santo; (2) a preliminary survey of Pre-Cambrian geology in the State of Piaui; and (3) the Gondwana Project - surveying Jaguaribe plants. Mineral exploration in Rio Grande do Sul, and the geology of the Alcalino complex of Itatiaia are discussed as well as the use of automatic classifications of rock intrusions and of ilmenite deposits in the Floresta Region. Aerial photography, side looking radar, and thermal infrared scanning are other types of remote sensors also used in prospecting for geothermal anomalies in the city of Caldas Novas-Goias.
Community living long before man: fossil and living microbial mats and early life
NASA Technical Reports Server (NTRS)
Margulis, L.; Lopez Baluja, L.; Awramik, S. M.; Sagan, D.
1986-01-01
Microbial mats are layered communities of bacteria that form cohesive structures, some of which are preserved in sedimentary rocks as stromatolites. Certain rocks, approximately three and a half thousand million years old and representing the oldest known fossils, are interpreted to derive from microbial mats and to contain fossils of microorganisms. Modern microbial mats (such as the one described here from Matanzas, Cuba) and their fossil counterparts are of great interest in the interpretation of early life on Earth. Since examination of microbial mats and stromatolites increases our understanding of long-term stability and change, within the global environment, such structures should be protected wherever possible as natural science preserves. Furthermore, since they have existed virtually from the time of life's origin, microbial mats have developed exemplary mechanisms of local community persistence and may even play roles in the larger global environment that we do not understand.
Magnetic and mineralogical properties of salt rocks from the Zechstein of the Northern German Basin
NASA Astrophysics Data System (ADS)
Heinrich, Frances C.; Schmidt, Volkmar; Schramm, Michael; Mertineit, Michael
2017-03-01
Magnetic properties of rocks are often studied to characterize composition and fabric of rocks. For salt rocks, the basic relationships between their magnetic properties and composition, which are necessary to interpret rock magnetic data, are not yet established. Therefore, we studied different types of natural salt rock and pure salt minerals. We measured their magnetic properties (magnetic susceptibility, isothermal remanent magnetization acquisition curves, first-order reversal curve diagrams and temperature-dependent magnetic susceptibility) and used analytical methods such as microscopy, X-ray diffraction and inductively coupled plasma atomic emission spectroscopy to understand the relationship between magnetic properties and mineralogy. Salt rocks mainly consist of the diamagnetic minerals halite, carnallite, sylvine and anhydrite with negative magnetic susceptibilities. The magnetic susceptibilities of pure synthetic NaCl and KCl single crystals, show values of -14.5 × 10-6 and -13.5 × 10-6 SI, respectively. In contrast, in natural salt rocks higher magnetic susceptibility values were measured. The magnetic susceptibility of the samples investigated in this study shows a general increase from light rock salt (maximum -10 × 10-6 SI) over carnallitite (maximum 134 × 10-6 SI) to red sylvinite (maximum 270 × 10-6 SI). Whole rock analyses suggest that increased magnetic susceptibility can be attributed to paramagnetic and ferromagnetic minerals that are contained within the insoluble residue. The magnetic susceptibility is mainly controlled by magnetite and phyllosilicates. Its measurement can therefore be used to detect subtle changes in the content of these minerals.
The Pore-scale modeling of multiphase flows in reservoir rocks using the lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Mu, Y.; Baldwin, C. H.; Toelke, J.; Grader, A.
2011-12-01
Digital rock physics (DRP) is a new technology to compute the physical and fluid flow properties of reservoir rocks. In this approach, pore scale images of the porous rock are obtained and processed to create highly accurate 3D digital rock sample, and then the rock properties are evaluated by advanced numerical methods at the pore scale. Ingrain's DRP technology is a breakthrough for oil and gas companies that need large volumes of accurate results faster than the current special core analysis (SCAL) laboratories can normally deliver. In this work, we compute the multiphase fluid flow properties of 3D digital rocks using D3Q19 immiscible LBM with two relaxation times (TRT). For efficient implementation on GPU, we improved and reformulated color-gradient model proposed by Gunstensen and Rothmann. Furthermore, we only use one-lattice with the sparse data structure: only allocate memory for pore nodes on GPU. We achieved more than 100 million fluid lattice updates per second (MFLUPS) for two-phase LBM on single Fermi-GPU and high parallel efficiency on Multi-GPUs. We present and discuss our simulation results of important two-phase fluid flow properties, such as capillary pressure and relative permeabilities. We also investigate the effects of resolution and wettability on multiphase flows. Comparison of direct measurement results with the LBM-based simulations shows practical ability of DRP to predict two-phase flow properties of reservoir rock.
NASA Technical Reports Server (NTRS)
Taranik, J. V.; Noble, D. C.; Hsu, L. C.; Hutsinpiller, A.; Spatz, D.
1986-01-01
Surface coatings on volcanic rock assemblages that occur at select tertiary volcanic centers in southern Nevada were investigated using LANDSAT 5 Thematic Mapper imagery. Three project sites comprise the subject of this study: the Kane Springs Wash, Black Mountain, and Stonewall Mountain volcanic centers. LANDSAT 5 TM work scenes selected for each area are outlined along with local area geology. The nature and composition of surface coatings on the rock types within the subproject areas are determined, along with the origin of the coatings and their genetic link to host rocks, geologic interpretations are related to remote sensing units discriminated on TM imagery. Image processing was done using an ESL VAX/IDIMS image processing system, field sampling, and observation. Aerial photographs were acquired to facilitate location on the ground and to aid stratigraphic differentiation.
Lombard, Marlize
2016-01-01
It has been suggested that technological variations associated with Still Bay assemblages of southern Africa have not been addressed adequately. Here we present a study developed to explore regional and temporal variations in Still Bay point-production strategies. We applied our approach in a regional context to compare the Still Bay point assemblages from Hollow Rock Shelter (Western Cape) and Umhlatuzana Rock Shelter (KwaZulu-Natal). Our interpretation of the point-production strategies implies inter-regional point-production conventions, but also highlights variability and intra-regional knapping strategies used for the production of Still Bay points. These strategies probably reflect flexibility in the organisation of knowledge-transfer systems at work during the later stages of the Middle Stone Age between about 80 ka and 70 ka in South Africa. PMID:27942012
Högberg, Anders; Lombard, Marlize
2016-01-01
It has been suggested that technological variations associated with Still Bay assemblages of southern Africa have not been addressed adequately. Here we present a study developed to explore regional and temporal variations in Still Bay point-production strategies. We applied our approach in a regional context to compare the Still Bay point assemblages from Hollow Rock Shelter (Western Cape) and Umhlatuzana Rock Shelter (KwaZulu-Natal). Our interpretation of the point-production strategies implies inter-regional point-production conventions, but also highlights variability and intra-regional knapping strategies used for the production of Still Bay points. These strategies probably reflect flexibility in the organisation of knowledge-transfer systems at work during the later stages of the Middle Stone Age between about 80 ka and 70 ka in South Africa.
Kunk, Michael J.; McAleer, Ryan J.
2008-01-01
This report contains reduced 40Ar/39Ar data of white mica and K-feldspar mineral separates and matrix of a whole rock phyllite, all from low-grade metamorphic rocks of the Westminster terrane and adjacent strata in central Maryland. This report presents these data in a preliminary form, but in more detail than can be accommodated in todays professional journals. Also included in this report is information on the location of the samples and a brief description of the samples. The data contained herein are not interpreted in a geological context, and care should be taken by readers unfamiliar with argon isotopic data in the use of these results; many of the individual apparent ages are not geologically meaningful. This report is primarily a detailed source document for subsequent publications that will integrate these data into a geological context.
Isotope Geochemistry of Possible Terrestrial Analogue for Martian Meteorite ALH84001
NASA Technical Reports Server (NTRS)
Mojzsis, Stephen J.
2000-01-01
We have studied the microdomain oxygen and carbon isotopic compositions by SIMS of complex carbonate rosettes from spinel therzolite xenoliths, hosted by nepheline basanite, from the island of Spitsbergen (Norway). The Quaternary volcanic rocks containing the xenoliths erupted into a high Arctic environment and through relatively thick continental crust containing carbonate rocks. We have attempted to constrain the sources of the carbonates in these rocks by combined O-18/O-16 and C-13/C-12 ratio measurements in 25 micron diameter spots of the carbonate and compare them to previous work based primarily on trace-element distributions. The origin of these carbonates can be interpreted in terms of either contamination by carbonate country rock during ascent of the xenoliths in the host basalt, or more probably by hydrothermal processes after emplacement. The isotopic composition of these carbonates from a combined delta.18O(sub SMOW) and delta.13C(sub PDB) standpoint precludes a primary origin of these minerals from the mantle. Here a description is given of the analysis procedure, standardization of the carbonates, major element compositions of the carbonates measured by electron microprobe, and their correlated C and O isotope compositions as measured by ion microprobe. Since these carbonate rosettes may represent a terrestrial analogue to the carbonate "globules" found in the martian meteorite ALH84001 interpretations for the origin of the features found in the Spitsbergen may be of interest in constraining the origin of these carbonate minerals on Mars.
Incipient Melt Formation and Devitrification at the Wanapitei Impact Structure, Ontario, Canada
NASA Technical Reports Server (NTRS)
Dressler, B. O.; Schuraytz, B. C.; Crabtree, D.
1997-01-01
The Wanapitei impact structure is approximately 8 km in diameter and lies within Wanapitei Lake, approximately 34 km northeast of the city of Sudbury. Rocks related to the 37 Ma impact event are found only in Pleistocene glacial deposits south of the lake. Most of the target rocks are metasedimentary rocks of the Proterozoic Huronian Supergroup. An almost completely vitrified, inclusion-bearing sample investigated here represents either an impact melt or a strongly shock metamorphosed, pebbly wacke. In the second, preferred interpretation, a number of partially melted and devitrified clasts are enclosed in an equally highly shock metamorphosed arkosic wacke matrix (i.e., the sample is a shocked pebbly wacke), which records the onset of shock melting. This interpretation is based on the glass composition, mineral relicts in the glass, relict rock textures, and the similar degree of shock metamorphism and incipient melting of all sample components. Boulder matrix and clasts are largely vitrified and preserve various degrees of fluidization, vesiculation, and devitrification. Peak shock pressure of approximately 50-60 GPa and stress experienced by the sample were somewhat below those required for complete melting and development of a homogeneous melt. The rapid cooling and devitrification history of the analyzed sample is comparable to that reported recently from glasses in the suevite of the Ries impact structure in Germany and may indicate that the analyzed sample experienced an annealing temperature after deposition of somewhere between 650 C and 800 C.
Metabasalts as sources of metals in orogenic gold deposits
NASA Astrophysics Data System (ADS)
Pitcairn, Iain K.; Craw, Dave; Teagle, Damon A. H.
2015-03-01
Although metabasaltic rocks have been suggested to be important source rocks for orogenic gold deposits, the mobility of Au and related elements (As, Sb, Se, and Hg) from these rocks during alteration and metamorphism is poorly constrained. We investigate the effects of increasing metamorphic grade on the concentrations of Au and related elements in a suite of metabasaltic rocks from the Otago and Alpine Schists, New Zealand. The metabasaltic rocks in the Otago and Alpine Schists are of MORB and WPB affinity and are interpreted to be fragments accreted from subducting oceanic crust. Gold concentrations are systematically lower in the higher metamorphic grade rocks. Average Au concentrations vary little between sub-greenschist (0.9 ± 0.5 ppb) and upper greenschist facies (1.0 ± 0.5 ppb), but decrease significantly in amphibolite facies samples (0.21 ± 0.07 ppb). The amount of Au depleted from metabasaltic rocks during metamorphism is on a similar scale to that removed from metasedimentary rocks in Otago. Arsenic concentrations increase with metamorphic grade with the metabasaltic rocks acting as a sink rather than a source of this element. The concentrations of Sb and Hg decrease between sub-greenschist and amphibolite facies but concentration in amphibolite facies rocks are similar to those in unaltered MORB protoliths and therefore unaltered oceanic crust cannot be a net source of Sb and Hg in a metamorphic environment. The concentrations of Au, As, Sb, and Hg in oceanic basalts that have become integrated into the metamorphic environment may be heavily influenced by the degree of seafloor alteration that occurred prior to metamorphism. We suggest that metasedimentary rocks are much more suitable source rocks for fluids and metals in orogenic gold deposits than metabasaltic rocks as they show mobility during metamorphism of all elements commonly enriched in this style of deposit.
NASA Astrophysics Data System (ADS)
Leslie, A.; Gorman, A. R.
2004-12-01
The interpretation of seismic reflection data in non-sedimentary environments is problematic. In the Macraes Flat region near Dunedin (South Island, New Zealand), ongoing mining of mineralized schist has prompted the development of a seismic interpretation scheme that is capable of imaging a gold-bearing shear zone and associated mineralized structures accurately to the meter scale. The anisotropic and complex structural nature of this geological environment necessitates a cost-effective computer-based modeling technique that can provide information on the physical characteristics of the schist. Such a method has been tested on seismic data acquired in 1993 over a region that has since been excavated and logged. Correlation to measured structural data permits a direct comparison between the seismic data and the actual geology. Synthetic modeling utilizes a 2D visco-elastic finite difference routine to constrain the interpretation of observed seismic characteristics, including the velocity, anisotropy, and contrast, of the shear zone structures. Iterative refinements of the model result in a more representative synthetic model that most closely matches the seismic response. The comparison between the actual and synthetic seismic sections provides promising results that will be tested by new data acquisition over the summer of 2004/2005 to identify structures and zones of potential mineralization. As a downstream benefit, this research could also contribute to earthquake risk assessment analyses at active faults with similar characteristics.
Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy
NASA Astrophysics Data System (ADS)
Wyatt, Michael Bruce
2002-11-01
This dissertation comprises four separate parts that address the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) investigation objective of determining and mapping the composition and distribution of surface minerals and rocks on Mars from orbit. In Part 1, laboratory thermal infrared spectra (5 25 μm, at 2 cm-1 spectral sampling), deconvolved modal mineralogies, and derived mineral and bulk rock chemistries of basalt, basaltic andesite, andesite, and dacite were used to evaluate and revise volcanic rock classification schemes. Multiple steps of classification were required to distinguish volcanic rocks, reflecting the mineralogic diversity and continuum of compositions that exists in volcanic rock types. In Part 2, laboratory spectral data were convolved to TES 10 cm-1 sampling to ascertain whether adequate results for volcanic rock classification can be obtained with lower spectral resolution, comparable to that obtained from Mars orbit. Modeled spectra, modeled modal mineralogies, and derived bulk rock chemistries at low (10 cm-1) spectral sampling provide good matches to measured and high (2 cm-1) spectral sampling modeled values. These results demonstrate the feasibility of using similar techniques and classification schemes for the interpretation of terrestrial laboratory samples and TES-resolution data. In Part 3, new deconvolved mineral abundances from TES data and terrestrial basalts using a spectral end-member set representing minerals common in unaltered and low-temperature aqueously altered basalts were used to reclassify martian surface lithologies. The new formulations maintain the dominance of unaltered basalt in the southern highlands, but indicate the northern lowlands can be interpreted as weathered basalt. The coincidence between locations of altered basalt and a previously suggested northern ocean basin implies that lowland plains materials may be basalts altered under submarine conditions and/or weathered basaltic sediment transported into this depocenter. In Part 4, results from the previous parts are applied to examine the distribution of TES-derived surface compositions in the Oxia Palus region on Mars through high-spatial resolution mapping. Features of interest within Oxia Palus include volcanic/sedimentary materials in southern Acidalia Planitia, low-albedo crater floors and wind streaks in western Arabia Terra, and channel outflow deposits of the Mars Pathfinder (MP) landing site.
Against the grain: The physical properties of anisotropic partially molten rocks
NASA Astrophysics Data System (ADS)
Ghanbarzadeh, S.; Hesse, M. A.; Prodanovic, M.
2014-12-01
Partially molten rocks commonly develop textures that appear close to textural equilibrium, where the melt network evolves to minimize the energy of the melt-solid interfaces, while maintaining the dihedral angle θ at solid-solid-melt contact lines. Textural equilibrium provides a powerful model for the melt distribution that controls the petro-physical properties of partially molten rocks, e.g., permeability, elastic moduli, and electrical resistivity. We present the first level-set computations of three-dimensional texturally equilibrated melt networks in rocks with an anisotropic fabric. Our results show that anisotropy induces wetting of smaller grain boundary faces for θ > 0 at realistic porosities ϕ < 3%. This was previously not thought to be possible at textural equilibrium and reconciles the theory with experimental observations. Wetting of the grain boundary faces leads to a dramatic redistribution of the melt from the edges to the faces that introduces strong anisotropy in the petro-physical properties such as permeability, effective electrical conductivity and mechanical properties. Figure, on left, shows that smaller grain boundaries become wetted at relatively low melt fractions of 3% in stretched polyhedral grains with elongation factor 1.5. Right plot represents the ratio of melt electrical conductivity to effective conductivity of medium (known as formation factor) as an example of anisotropy in physical properties. The plot shows that even slight anisotropy in grains induces considerable anisotropy in electrical properties.
NASA Astrophysics Data System (ADS)
Flinchum, B. A.; Holbrook, W. S.; Grana, D.; Parsekian, A.; Carr, B.; Jiao, J.
2017-12-01
Porosity is generated by chemical, physical and biological processes that work to transform bedrock into soil. The resulting porosity structure can provide specifics about these processes and can improve understanding groundwater storage in the deep critical zone. Near-surface geophysical methods, when combined with rock physics and drilling, can be a tool used to map porosity over large spatial scales. In this study, we estimate porosity in three-dimensions (3D) across a 58 Ha granite catchment. Observations focus on seismic refraction, downhole nuclear magnetic resonance logs, downhole sonic logs, and samples of core acquired by push coring. We use a novel petrophysical approach integrating two rock physics models, a porous medium for the saprolite and a differential effective medium for the fractured rock, that drive a Bayesian inversion to calculate porosity from seismic velocities. The inverted geophysical porosities are within about 0.05 m3/m3 of lab measured values. We extrapolate the porosity estimates below seismic refraction lines to a 3D volume using ordinary kriging to map the distribution of porosity in 3D up to depths of 80 m. This study provides a unique map of porosity on scale never-before-seen in critical zone science. Estimating porosity on these large spatial scales opens the door for improving and understanding the processes that shape the deep critical zone.
NASA Astrophysics Data System (ADS)
Tarasov, Boris G.
2014-05-01
Today, frictional shear resistance along pre-existing faults is considered to be the lower limit on rock shear strength for confined conditions corresponding to the seismogenic layer. This paper introduces a recently identified shear rupture mechanism providing a paradoxical feature of hard rocks - the possibility of shear rupture propagation through the highly confined intact rock mass at shear stress levels significantly less than frictional strength. In the new mechanism, the rock failure associated with consecutive creation of small slabs (known as ‘domino-blocks') from the intact rock in the rupture tip is driven by a fan-shaped domino structure representing the rupture head. The fan-head combines such unique features as: extremely low shear resistance, self-sustaining stress intensification, and self-unbalancing conditions. Due to this the failure process caused by the mechanism is very dynamic and violent. This makes it impossible to directly observe and study the mechanism and can explain why the mechanism has not been detected before. This paper provides physical motivation for the mechanism, based upon side effects accompanying the failure process. Physical and mathematical models of the mechanism presented in the paper explain unique and paradoxical features of the mechanism. The new shear rupture mechanism allows a novel point of view for understanding the nature of spontaneous failure processes in hard rocks including earthquakes.
Principal Components Analysis of Reflectance Spectra from the Mars Exploration Rover Opportunity
NASA Technical Reports Server (NTRS)
Mercer, C. M.; Cohen, B. A.
2010-01-01
In the summer of 2007 a global dust storm on Mars effectively disabled Opportunity's Miniature Thermal Emission Spectrometer (Mini-TES), the primary instrument used by the Athena Science Team to identify locally unique rocks on the Martian surface. The science team needs another way to distinguish interesting rocks from their surroundings on a tactical timescale. This study was designed to develop the ability to identify locally unique rocks on the Martian surface remotely using the Mars Exploration Rovers' Panoramica Camera (PanCam) instrument. Meridiani bedrock observed by Opportunity is largely characterized by sulfate-rich sandstones and hematite spherules. Additionally, loose fragments of bedrock and "cobbles" of foreign origin collet on the surface, some of which are interpreted as meteorites.
Lindsey, David A.; Tysdal, Russell G.; Taggart, Joseph E.
2002-01-01
The principal purpose of this report is to provide a reference archive for results of a statistical analysis of geochemical data for metasedimentary rocks of Mesoproterozoic age of the Salmon River Mountains and Lemhi Range, central Idaho. Descriptions of geochemical data sets, statistical methods, rationale for interpretations, and references to the literature are provided. Three methods of analysis are used: R-mode factor analysis of major oxide and trace element data for identifying petrochemical processes, analysis of variance for effects of rock type and stratigraphic position on chemical composition, and major-oxide ratio plots for comparison with the chemical composition of common clastic sedimentary rocks.
Page, W.R.; Harris, A.G.; Poole, F.G.; Repetski, J.E.
2003-01-01
New geologic mapping and fossil data in the vicinity of Rancho Las Norias, 30 km east of Hermosillo, Sonora, Mexico, show that rocks previously mapped as Precambrian instead are Paleozoic. Previous geologic maps of the Rancho Las Norias area show northeast-directed, southwest-dipping reverse or thrust faults deforming both Precambrian and Paleozoic rocks. The revised stratigraphy requires reinterpretation of some of these faults as high-angle normal or oblique-slip faults and the elimination of other faults. We agree with earlier geologic map interpretations that compressional structures have affected the Paleozoic rocks in the area, but our mapping suggests that the direction of compression is from southeast to northwest. Published by Elsevier Ltd.
Statistical models of lunar rocks and regolith
NASA Technical Reports Server (NTRS)
Marcus, A. H.
1973-01-01
The mathematical, statistical, and computational approaches used in the investigation of the interrelationship of lunar fragmental material, regolith, lunar rocks, and lunar craters are described. The first two phases of the work explored the sensitivity of the production model of fragmental material to mathematical assumptions, and then completed earlier studies on the survival of lunar surface rocks with respect to competing processes. The third phase combined earlier work into a detailed statistical analysis and probabilistic model of regolith formation by lithologically distinct layers, interpreted as modified crater ejecta blankets. The fourth phase of the work dealt with problems encountered in combining the results of the entire project into a comprehensive, multipurpose computer simulation model for the craters and regolith. Highlights of each phase of research are given.
Mineral compositions of plutonic rocks from the Lewis Hills massif, Bay of Islands ophiolite
NASA Technical Reports Server (NTRS)
Smith, Susan E.; Elthon, Don
1988-01-01
Mineral compositions of residual and cumulate rocks from the Lewis Hills massif of the Bay of Islands ophiolite complex are reported and interpreted in the context of magnetic processes involved in the geochemical evolution of spatially associated diabase dikes. The mineral compositions reflect greater degrees of partial melting than most abyssal peridotites do and appear to represent the most depleted end of abyssal peridotite compositions. Subsolidus equilibration between Cr-Al spinal and olivine generally has occurred at temperatures of 700 to 900 C. The spinel variations agree with the overall fractionation of basaltic magmas producing spinels with progressively lower Cr numbers. The compositions of clinopyroxenes suggest that the fractionation of two different magma series produced the various cumulate rocks.
Procedures for Identifying Rocks with Similar Features.
ERIC Educational Resources Information Center
Powell, William E.
1984-01-01
The purpose of this article is to provide college level physical geography and geology teachers with practical and simple techniques to help students classify and understand igneous, sedimentary, and metamorphic rocks. Essential equipment is also discussed, and recommended readings are listed. (RM)
The Mapping X-Ray Fluorescence Spectrometer (MAPX)
NASA Technical Reports Server (NTRS)
Blake, David; Sarrazin, Philippe; Bristow, Thomas; Downs, Robert; Gailhanou, Marc; Marchis, Franck; Ming, Douglas; Morris, Richard; Sole, Vincente Armando; Thompson, Kathleen;
2016-01-01
MapX will provide elemental imaging at =100 micron spatial resolution over 2.5 X 2.5 centimeter areas, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks. MapX is a full-frame spectroscopic imager positioned on soil or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample surface with X-rays or alpha-particles / gamma rays, resulting in sample X-ray Fluorescence (XRF). Fluoresced X-rays pass through an X-ray lens (X-ray µ-Pore Optic, "MPO") that projects a spatially resolved image of the X-rays onto a CCD. The CCD is operated in single photon counting mode so that the positions and energies of individual photons are retained. In a single analysis, several thousand frames are stored and processed. A MapX experiment provides elemental maps having a spatial resolution of =100 micron and quantitative XRF spectra from Regions of Interest (ROI) 2 centimers = x = 100 micron. ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. The MapX geometry is being refined with ray-tracing simulations and with synchrotron experiments at SLAC. Source requirements are being determined through Monte Carlo modeling and experiment using XMIMSIM [1], GEANT4 [2] and PyMca [3] and a dedicated XRF test fixture. A flow-down of requirements for both tube and radioisotope sources is being developed from these experiments. In addition to Mars lander and rover missions, MapX could be used for landed science on other airless bodies (Phobos/Deimos, Comet nucleus, asteroids, the Earth's moon, and the icy satellites of the outer planets, including Europa.
Effect of the crushing process on Raman analyses: consequences for the Mars 2018 mission
NASA Astrophysics Data System (ADS)
Foucher, Frédéric; Westall, Frances; Bost, Nicolas; Rull, Fernando; Lopez-Reyes, Guillermo; Rüßmann, Philipp
2012-07-01
The payload of the 2018 Mars mission will comprise a Raman spectrometer as part of its instrument suite. Analyses with this instrument will be made on crushed samples. The crushing process will cause loss of important structural context and could change the physical properties of the studied materials resulting in misinterpretation of the data. We therefore investigated the influence of granulometry on the Raman spectrum of various minerals and rocks using laboratory equipment and the RLS Raman instrument being developed for the Pasteur payload of the ExoMars mission. The aim was to determine what influence the crushing process could have on the correct identification of rocks and minerals and the detection of possible traces of life. Whatever the sample type, our study shows that the crushing process leads to a strong increase in the background level and to a decrease in the signal/noise ratio. Moreover, for certain minerals, the Raman spectra can be significantly modified: the peaks are shifted and broadened and new peaks can appear. Since mineral identification using Raman spectroscopy is made by comparison with database spectra, this kind of change could lead to misinterpretation of the spectra and thus must be taken into account during the in situ investigation. However, the results obtained with the ExoMars instrument showed that, probably due to its irradiance and resolution characteristics, these effects are relatively limited and most of the time not observed with the RLS instrument. Finally, the loss of texture associated with the crushing process is shown to complicate identification of rocks with subsequent consequences for the eventual detection and interpretation of past traces of life. But, on the other hand, it is shown that the mixing of the components in the powder could facilitate the detection of minor phases.
Effect of the crushing process on Raman analyses: consequences for the Mars 2018 mission
NASA Astrophysics Data System (ADS)
Foucher, F.; López Reyes, G.; Bost, N.; Rull, F.; Rüßmann, P.; Westall, F.
2012-04-01
The Pasteur payload of the international 2018 Mars mission comprises a Raman spectrometer as part of its instrument suite. Analyses with this instrument will be made on crushed samples. The crushing process will cause loss of important structural context and could change the physical properties of the studied materials resulting in misinterpretation of the data. We therefore investigated the influence of granulometry on the Raman spectrum of various minerals and rocks using laboratory equipment and the Raman instrument being developed for the Pasteur payload. The aim was to determine what influence the crushing process could have on the correct identification of rocks and minerals and the detection of possible traces of life. Whatever the sample type, our study shows that the crushing process leads to a strong increase in the background level and to a decrease in the signal/noise ratio. This effect is all the more important when the grain size is small. Moreover, for certain minerals, the Raman spectra can be significantly modified: the peaks are shifted and broadened and new peaks can appear, implying a change in the crystal structure of the material. This effect is mainly due to the decrease of the thermal diffusion in the powder which leads to an increase in the heat induced by the laser. Since mineral identification using Raman spectroscopy is made by comparison with database spectra, this kind of change could lead to misinterpretation of the spectra and thus must be taken into account during the in situ investigation. The loss of texture is also shown to complicate identification of rocks with subsequent consequences for the eventual detection and interpretation of past traces of life. On the other hand, mixing of the components in the powder facilitates the detection of minor phases.
Variety and complexity in the mound of sedimentary rock in Gale Crater, Mars
NASA Astrophysics Data System (ADS)
Edgett, K. S.; Malin, M. C.
2011-12-01
NASA's Mars Science Laboratory rover, Curiosity, will be used to explore a portion of the lower stratigraphic record of the northwest side of a mound of layered rock ˜5 km thick in the 155 km-diameter Gale Crater. The rock materials are of a sedimentary origin, though the proportions of clastic sediment, tephra, and chemical precipitates are presently unknown. The mound is usually described as having lower and upper units separated by an erosional unconformity. However, some investigators recognize that it is considerably more complex. The stratigraphy displays vertical and lateral complexity; multiple erosional unconformities; filled, buried, interbedded, and exhumed or partly exhumed impact craters; evidence for deposition along the base of the mound followed by retreat of less-resistant rocks and abandonment of erosion-resistant materials shed from the mound; lithified sediments deposited at the mouths of streams that cut mound rock; inversion of intra-canyon stream channel sediment; and widening of canyons. On the northeast side of the mound there are landslide deposits, shed from the mound, that contain large blocks (10s to 100s of m) of layered rock in various orientations. The mound's highest feature does not exhibit layering and has been interpreted by some as being Gale's impact-generated central peak. However, its highest elevation exceeds that of most of the crater rim, an observation inconsistent with central peaks (where they occur at all) in martian craters of diameters similar to Gale. The layered materials that occur highest in the mound are also at elevations that exceed most of the crater rim; these exhibit repeated stratal packages that drape previously-eroded mound topography; they produce boulders as they erode, attesting to their lithified nature and requiring that a lithification process occurred in materials located ≥ 5 km above the deepest part of Gale. The lower mound strata, including the Curiosity field site, are diverse materials; they include strata of differing thickness, erosional expression, and tone. Resistant rocks form cliffs that shed boulders, less resistant rocks form shallow slopes. One relatively thin, dark unit, interpreted to be a marker bed that outcrops at various places across the lower mound (doi:10.1029/2009GL041870), is more resistant to erosion than sub- and superjacent beds and retains many small impact craters. Some of the lower mound rocks are cross-cut by channel or cavern fills; others are cut by reticulated patterns of filled cracks or ridges formed by inversion of these cracks. These reticulated features might be evidence of interaction between the lower mound rocks and groundwater; we anticipate the Curiosity team will find abundant evidence for dissolution and precipitation of minerals in these rock outcrops.
NASA Technical Reports Server (NTRS)
Stewart, H. E.; Blom, R.; Abrams, M.; Daily, M.
1980-01-01
Satellite synthetic aperture radar (SAR) images is evaluated in terms of its geologic applications. The benchmark to which the SAR images are compared is LANDSAT, used both for structural and lithologic interpretations.
SW New Mexico Oil Well Formation Tops
Shari Kelley
2015-10-21
Rock formation top picks from oil wells from southwestern New Mexico from scout cards and other sources. There are differing formation tops interpretations for some wells, so for those wells duplicate formation top data are presented in this file.
Niemelä, Kristiina; Väänänen, Ilkka; Leinonen, Raija; Laukkanen, Pia
2011-08-01
Home-based exercise is a viable alternative for older adults with difficulties in exercise opportunities outside the home. The aim of this study was to investigate the benefits of home-based rocking-chair training, and its effects on the physical performance of elderly women. Community- dwelling women (n=51) aged 73-87 years were randomly assigned to the rocking-chair group (RCG, n=26) or control group (CG, n=25) by drawing lots. Baseline and outcome measurements were hand grip strength, maximal isometric knee extension, maximal walking speed over 10 meters, rising from a chair five times, and the Berg Balance Scale (BBS). The RCG carried out a six-week rocking-chair training program at home, involving ten sessions per week, twice a day for 15 minutes per session, and ten different movements. The CG continued their usual daily lives. After three months, the RCG responded to a mail questionnaire. After the intervention, the RCG improved and the CG declined. The data showed significant interactions of group by time in the BBS score (p=0.001), maximal knee extension strength (p=0.006) and maximal walking speed (p=0.046), which indicates that the change between groups during the follow-up period was significant. Adherence to the training protocol was high (96%). After three months, the exercise program had become a regular home exercise habit for 88.5% of the subjects. Results indicate that home-based elderly women benefit from this easily implemented rocking-chair exercise program. The subjects became motivated to participate in training and continued the exercises. This is a promising alternative exercise method for maintaining physical activity and leads to improvements in physical performance.
NASA Astrophysics Data System (ADS)
Ali, Sarmad A.; Ismail, Sabah A.; Nutman, Allen P.; Bennett, Vickie C.; Jones, Brian G.; Buckman, Solomon
2016-09-01
The Kata-Rash arc fragment is an allochthonous thrust-bound body situated near Penjween, 100 km northeast of Sulymannia city, Kurdistan Region, within the Iraqi portion of the Zagros suture zone. It forms part of the suprasubduction zone 'Upper Allochthon' terranes (designated as the Gimo-Qandil Group), which is dominated by calc-alkaline andesite and basaltic-andesite, rhyodacite to rhyolite, crosscut by granitic, granodioritic, and dioritic dykes. Previously, rocks of the Kata-Rash arc fragment were interpreted as a part of the Eocene Walash volcanic group. However, SHRIMP zircon U-Pb dates on them of 108.1 ± 2.9 Ma (Harbar volcanic rocks) and 107.7 ± 1.9 Ma (Aulan intrusion) indicate an Albian-Cenomanian age, which is interpreted as the time of igneous crystallisation. The Aulan intrusion zircons have initial εHf values of + 8.6 ± 0.2. On a Nb/Yb-Th/Yb diagram, all Kata-Rash samples fall within the compositional field of arc-related rocks, i.e. above the mid-ocean-ridge basalt (MORB)-ocean island basalt (OIB) mantle array. Primitive-mantle-normalised trace-element patterns for the Kata-Rash samples show enrichment in the large ion lithophile elements and depletion in the high-field-strength elements supporting their subduction-related character. Low Ba/La coupled with low La/Yb and Hf/Hf* < 1 for the Aulan sample with initial εHf of + 8.6 ± 0.2 is interpreted as the magma dominated by contributions from fluid fluxing of the mantle wedge and lesser contributions of low temperature melt from subducted slab sediment, in an oceanic setting. This mechanism can explain the sub-DM initial εHf value, without the need to invoke melting of significantly older (continental) crust in an Andean setting. We interpret the Kata-Rash igneous rocks as a fragment of the Late Cretaceous suprasubduction zone system (named here the Kata-Rash arc) that most likely developed within the Neotethys Ocean rather than at a continental margin. Subsequently during the latest Cretaceous to Paleocene, the arc was accreted to the northern margin of the Arabian plate. The results indicate a > 3000 km continuity of Cretaceous arc activity (Oman to Cyprus), that consumed Neotethyian oceanic crust between Eurasia and the Gondwanan fragment Arabia.
NASA Astrophysics Data System (ADS)
Ali, Moamen; Darwish, M.; Essa, Mahmoud A.; Abdelhady, A.
2018-03-01
Komombo Basin is located in Upper Egypt about 570 km southeast of Cairo; it is an asymmetrical half graben and the first oil producing basin in Upper Egypt. The Six Hills Formation is of Early Cretaceous age and subdivided into seven members from base to top (A-G); meanwhile the B member is of Hauterivian-Early Barremian and it is the only source rock of Komombo Basin. Therefore, a detailed study of the SR should be carried out, which includes the determination of the main structural elements, thickness, facies distribution and characterization of the B member SR which has not been conducted previously in the study area. Twenty 2D seismic lines were interpreted with three vertical seismic profiles (VSP) to construct the depth structure-tectonic map on the top of the B member and to highlight the major structural elements. The interpretation of depth structure contour map shows two main fault trends directed towards the NW-SE and NE to ENE directions. The NW-SE trend is the dominant one, creating a major half-graben system. Also the depth values range from -8400 ft at the depocenter in the eastern part to -4800 ft at the shoulder of the basin in the northwestern part of the study area. Meanwhile the Isopach contour map of the B member shows a variable thickness ranging between 300 ft to 750 ft. The facies model shows that the B member SR is composed mainly of shale with some sandstone streaks. The B member rock samples were collected from Al Baraka-1 and Al Baraka SE-1 in the eastern part of Komombo Basin. The results indicate that the organic matter content (TOC) has mainly good to very good (1-3.36 wt %), The B member samples have HI values in the range 157-365 (mg HC/g TOC) and dominated by Type II/III kerogen, and is thus considered to be oil-gas prone based on Rock-Eval pyrolysis, Tmax values between 442° and 456° C therefore interpreted to be mature for hydrocarbon generation. Based on the measured vitrinite equivalent reflectance values, the B member SR samples have a range 0.7-1.14%Ro, in the oil generation window.
The ophiolitic North Fork terrane in the Salmon River region, central Klamath Mountains, California
Ando, C.J.; Irwin, W.P.; Jones, D.L.; Saleeby, J.B.
1983-01-01
The North Fork terrane is an assemblage of ophiolitic and other oceanic volcanic and sedimentary rocks that has been internally imbricated and folded. The ophiolitic rocks form a north-trending belt through the central part of the region and consist of a disrupted sequence of homogeneous gabbro, diabase, massive to pillowed basalt, and interleaved tectonitic harzburgite. U-Pb zircon age data on a plagiogranite pod from the gabbroic unit indicate that at least this part of the igneous sequence is late Paleozoic in age.The ophiolitic belt is flanked on either side by mafic volcanic and volcaniclastic rocks, limestone, bedded chert, and argillite. Most of the chert is Triassic, including much of Late Triassic age, but chert with uncertain stratigraphic relations at one locality is Permian. The strata flanking the east side of the ophiolitic belt face eastward, and depositional contacts between units are for the most part preserved. The strata on the west side of the ophiolitic belt are more highly disrupted than those on the east side, contain chert-argillite melange, and have unproven stratigraphic relation to either the ophiolitic rocks or the eastern strata.Rocks of the North Fork terrane do not show widespread evidence of penetrative deformation at elevated temperatures, except an early tectonitic fabric in the harzburgite. Slip-fiber foliation in serpentinite, phacoidal foliation in chert and mafic rocks, scaly foliation in argillite, and mesoscopic folds in bedded chert are consistent with an interpretation of large-scale anti-formal folding of the terrane about a north-south hinge found along the ophiolitic belt, but other structural interpretations are tenable. The age of folding of North Fork rocks is constrained by the involvement of Triassic and younger cherts and crosscutting Late Jurassic plutons. Deformation in the North Fork terrane must have spanned a short period of time because the terrane is bounded structurally above and below by Middle or Late Jurassic thrust faults.The North Fork terrane appears to contain no arc volcanic rocks or arc-derived detritus, suggesting that it neither constituted the base for an arc nor was in a basinal setting adjacent to an arc sediment source. Details of the progressive accretion and evolutionary relationship of the North Fork to other terranes of the Klamath Mountains are not yet clear.
Undergraduate Student Construction and Interpretation of Graphs in Physics Lab Activities
ERIC Educational Resources Information Center
Nixon, Ryan S.; Godfrey, T. J.; Mayhew, Nicholas T.; Wiegert, Craig C.
2016-01-01
Lab activities are an important element of an undergraduate physics course. In these lab activities, students construct and interpret graphs in order to connect the procedures of the lab with an understanding of the related physics concepts. This study investigated undergraduate students' construction and interpretation of graphs with best-fit…
Gravity, aeromagnetic and rock-property data of the central California Coast Ranges
Langenheim, V.E.
2014-01-01
Gravity, aeromagnetic, and rock-property data were collected to support geologic-mapping, water-resource, and seismic-hazard studies for the central California Coast Ranges. These data are combined with existing data to provide gravity, aeromagnetic, and physical-property datasets for this region. The gravity dataset consists of approximately 18,000 measurements. The aeromagnetic dataset consists of total-field anomaly values from several detailed surveys that have been merged and gridded at an interval of 200 m. The physical property dataset consists of approximately 800 density measurements and 1,100 magnetic-susceptibility measurements from rock samples, in addition to previously published borehole gravity surveys from Santa Maria Basin, density logs from Salinas Valley, and intensities of natural remanent magnetization.
Testing the concept of drift shadow at Yucca Mountain, Nevada
Paces, J.B.; Neymark, L.A.; Ghezzehei, T.; Dobson, P.F.
2006-01-01
If proven, the concept of drift shadow, a zone of reduced water content and slower ground-water travel time beneath openings in fractured rock of the unsaturated zone, may increase performance of a proposed geologic repository for high-level radioactive waste at Yucca Mountain, To test this concept under natural-flow conditions present in the proposed repository horizon, isotopes within the uranium-series decay chain (uranium-238, uranium-234, and thorium-230, or 238U-234U-230Th) have been analyzed in samples of rock from beneath four naturally occurring lithophysal cavities. All rock samples show 234U depletion relative to parent 238U indicating varying degrees of water-rock interaction over the past million years. Variations in 234U/238U activity ratios indicate that depletion of 234U relative to 238U can be either smaller or greater in rock beneath cavity floors relative to rock near cavity margins. These results are consistent with the concept of drift shadow and with numerical simulations of meter-scale spherical cavities in fractured tuff. Differences in distribution patterns of 234U/ 238U activity ratios in rock beneath the cavity floors are interpreted to reflect differences in the amount of past seepage into lithophysal cavities, as indicated by the abundance of secondary mineral deposits present on the cavity floors.
Patterson, C.J.; Boerboom, Terrence
1999-01-01
Minnesota is largely underlain by Precambrian crystalline bedrock that was weathered to an average depth of 30 m prior to Late Cretaceous time. The fresh-rock-weathered-rock interface is irregular, with as much as 45 m of relief. Weathering exploited joints, locally isolating meter-sized volumes of rock known as corestones. Variable amounts of residuum were removed through glaciation to leave (1) saprolite overlain by an in-situ Late Cretaceous soil profile; (2) partially eroded saprolite; and (3) undulating fresh rock surfaces (commonly mantled by rounded boulders) that display striae and glacial or fluvial polish. Significant subglacial erosion of fresh bedrock is not required to form smoothly undulating bedrock surfaces with closed depressions; they may also form through removal of weathered bedrock and exposure of the weathering front. Large rounded boulders are not always shaped during transport; they may represent chemically rounded corestones resting at or near the bedrock source. Unambiguous evidence for glacial erosion includes striae and streamlining of bedrock parallel to striae. Polish on rock can be created fluvially, and smoothed grooves and ridges in the rock may be chemically produced. Many rounded boulders found in glacial till and strewn on bedrock surfaces probably originated as corestones.
Sweetkind, D.S.; Dickerson, R.P.; Blakely, R.J.; Denning, Paul
2001-01-01
This report presents a network of 28 geologic cross sections that portray subsurface geologic relations within the Death Valley regional ground-water system, a ground-water basin that encompasses a 3? x 3? area (approximately 70,000 km2) in southern Nevada and eastern California. The cross sections transect that part of the southern Great Basin that includes Death Valley, the Nevada Test Site, and the potential high-level nuclear waste underground repository at Yucca Mountain. The specific geometric relationships portrayed on the cross sections are discussed in the context of four general sub-regions that have stratigraphic similarities and general consistency of structural style: (1) the Nevada Test Site vicinity; (2) the Spring Mountains, Pahrump Valley and Amargosa Desert region; (3) the Death Valley region; and (4) the area east of the Nevada Test Site. The subsurface geologic interpretations portrayed on the cross sections are based on an integration of existing geologic maps, measured stratigraphic sections, published cross sections, well data, and geophysical data and interpretations. The estimated top of pre-Cenozoic rocks in the cross sections is based on inversion of gravity data, but the deeper parts of the sections are based on geologic conceptual models and are more speculative. The region transected by the cross sections includes part of the southern Basin and Range Province, the northwest-trending Walker Lane belt, the Death Valley region, and the northern Mojave Desert. The region is structurally complex, where a locally thick Tertiary volcanic and sedimentary section unconformably overlies previously deformed Proterozoic through Paleozoic rocks. All of these rocks have been deformed by complex Neogene ex-tensional normal and strike-slip faults. These cross sections form a three-dimensional network that portrays the interpreted stratigraphic and structural relations in the region; the sections form part of the geologic framework that will be incorporated in a complex numerical model of ground-water flow in the Death Valley region.
Geophysical characterization of Range-Front Faults, Snake Valley, Nevada
Asch, Theodore H.; Sweetkind, Donald S.
2010-01-01
In September 2009, the U.S. Geological Survey, in cooperation with the National Park Service, collected audiomagnetotelluric (AMT) data along two profiles on the eastern flank of the Snake Range near Great Basin National Park to refine understanding of the subsurface geology. Line 1 was collected along Baker Creek, was approximately 6.7-km long, and recorded subsurface geologic conditions to approximately 800-m deep. Line 2, collected farther to the southeast in the vicinity of Kious Spring, was 2.8-km long, and imaged to depths of approximately 600 m. The two AMT lines are similar in their electrical response and are interpreted to show generally similar subsurface geologic conditions. The geophysical response seen on both lines may be described by three general domains of electrical response: (1) a shallow (mostly less than 100-200-m deep) domain of highly variable resistivity, (2) a deep domain characterized by generally high resistivity that gradually declines eastward to lower resistivity with a steeply dipping grain or fabric, and (3) an eastern domain in which the resistivity character changes abruptly at all depths from that in the western domain. The shallow, highly variable domain is interpreted to be the result of a heterogeneous assemblage of Miocene conglomerate and incorporated megabreccia blocks overlying a shallowly eastward-dipping southern Snake Range detachment fault. The deep domain of generally higher resistivity is interpreted as Paleozoic sedimentary rocks (Pole Canyon limestone and Prospect Mountain Quartzite) and Mesozoic and Cenozoic plutonic rocks occurring beneath the detachment surface. The range of resistivity values within this deep domain may result from fracturing adjacent to the detachment, the presence of Paleozoic rock units of variable resistivities that do not crop out in the vicinity of the lines, or both. The eastern geophysical domain is interpreted to be a section of Miocene strata at depth, overlain by Quaternary alluvial fill. These deposits lie east of a steeply east-dipping normal fault that cuts all units and has about 100 m of east-side-down offset.
Granulite-facies rocks in the Whatley Mill gneiss, Pine Mountain basement massif, Eastern Alabama
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniell, N.; Salpas, P.A.
1993-03-01
The Pine Mountain basement massif is a granulite terrane exposed in a tectonic window through the Inner Piedmont of western Georgia and eastern Alabama. Investigations of the westernmost extent of the massif, the Whatley Mill Gneiss, have revealed four distinct lithologies: (1) an augen gneiss, the type lithology; (2) mylonite that develops in the shear zones cutting the unit; (3) a phaneritic rock showing weak to no foliation; (4) enclaves of biotite gneiss within the weakly-foliated rock. Additionally, the weakly-foliated rock comprises two distinct phases which are in sharp contact along curved and undulating boundaries: phase 1 is a coarser-grainedmore » rock; phase 2 is a finer-grained rock of the same mineralogy as phase 1 except it contains rare hypersthene. This first recorded observation of hypersthene unequivocally confirms the granulite-facies origin of the unit. Major and trace element compositions of the phase 1 rock are identical to those of the augen gneiss. The phase 2 rock, has a distinct composition with higher SiO[sub 2] and lower incompatible trace elements than the phase 1 rock. The enclaves display a range in major elements but higher incompatible elements than the other lithologies. Geochemical and petrologic relationships leads one to interpret: (1) the weakly-foliated rock retains many of its primary igneous features including its two phases and enclaves; (2) the two phases of the weakly-foliated rock arose as a result of injection of one magma (phase 2) into a cooler, crystal mush solidifying from another magma (phase 1); (3) the enclaves represent either autoliths of xenoliths; (4) the augen gneiss arose by isochemical deformation of the phase 1 rock.« less
Dusel-Bacon, Cynthia; Day, Warren C.; Aleinikoff, John N.
2013-01-01
We report the results of new mapping, whole-rock major, minor, and trace-element geochemistry, and petrography for metaigneous rocks from the Mount Veta area in the westernmost part of the allochthonous Yukon–Tanana terrane (YTT) in east-central Alaska. These rocks include tonalitic mylonite gneiss and mafic metaigneous rocks from the Chicken metamorphic complex and the Nasina and Fortymile River assemblages. Whole-rock trace-element data from the tonalitic gneiss, whose igneous protolith was dated by SHRIMP U–Pb zircon geochronology at 332.6 ± 5.6 Ma, indicate derivation from tholeiitic arc basalt. Whole-rock analyses of the mafic rocks suggest that greenschist-facies rocks from the Chicken metamorphic complex, a mafic metavolcanic rock from the Nasina assemblage, and an amphibolite from the Fortymile River assemblage formed as island-arc tholeiite in a back-arc setting; another Nasina assemblage greenschist has MORB geochemical characteristics, and another mafic metaigneous rock from the Fortymile River assemblage has geochemical characteristics of calc-alkaline basalt. Our geochemical results imply derivation in an arc and back-arc spreading region within the allochthonous YTT crustal fragment, as previously proposed for correlative units in other parts of the terrane. We also describe the petrography and geochemistry of a newly discovered tectonic lens of Alpine-type metaharzburgite. The metaharzburgite is interpreted to be a sliver of lithospheric mantle from beneath the Seventymile ocean basin or from sub-continental mantle lithosphere of the allochthonous YTT or the western margin of Laurentia that was tectonically emplaced within crustal rocks during closure of the Seventymile ocean basin and subsequently displaced and fragmented by faults.
Abnormally high formation pressures, Potwar Plateau, Pakistan
Law, B.E.; Shah, S.H.A.; Malik, M.A.
1998-01-01
Abnormally high formation pressures in the Potwar Plateau of north-central Pakistan are major obstacles to oil and gas exploration. Severe drilling problems associated with high pressures have, in some cases, prevented adequate evaluation of reservoirs and significantly increased drilling costs. Previous investigations of abnormal pressure in the Potwar Plateau have only identified abnormal pressures in Neogene rocks. We have identified two distinct pressure regimes in this Himalayan foreland fold and thrust belt basin: one in Neogene rocks and another in pre-Neogene rocks. Pore pressures in Neogene rocks are as high as lithostatic and are interpreted to be due to tectonic compression and compaction disequilibrium associated with high rates of sedimentation. Pore pressure gradients in pre-Neogene rocks are generally less than those in Neogene rocks, commonly ranging from 0.5 to 0.7 psi/ft (11.3 to 15.8 kPa/m) and are most likely due to a combination of tectonic compression and hydrocarbon generation. The top of abnormally high pressure is highly variable and doesn't appear to be related to any specific lithologic seal. Consequently, attempts to predict the depth to the top of overpressure prior to drilling are precluded.
Large rock avalanches triggered by the M 7.9 Denali Fault, Alaska, earthquake of 3 November 2002
Jibson, R.W.; Harp, E.L.; Schulz, W.; Keefer, D.K.
2006-01-01
The moment magnitude (M) 7.9 Denali Fault, Alaska, earthquake of 3 November 2002 triggered thousands of landslides, primarily rock falls and rock slides, that ranged in volume from rock falls of a few cubic meters to rock avalanches having volumes as great as 20 ?? 106 m3. The pattern of landsliding was unusual: the number and concentration of triggered slides was much less than expected for an earthquake of this magnitude, and the landslides were concentrated in a narrow zone about 30-km wide that straddled the fault-rupture zone over its entire 300-km length. Despite the overall sparse landslide concentration, the earthquake triggered several large rock avalanches that clustered along the western third of the rupture zone where acceleration levels and ground-shaking frequencies are thought to have been the highest. Inferences about near-field strong-shaking characteristics drawn from interpretation of the landslide distribution are strikingly consistent with results of recent inversion modeling that indicate that high-frequency energy generation was greatest in the western part of the fault-rupture zone and decreased markedly to the east. ?? 2005 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiao, Xin; Liu, Yiqun; Yang, Wan; Zhou, Dingwu; Li, Hong; Nan, Yun; Jin, Mengqi
2018-05-01
Shales in the middle Permian Lucaogou Formation in the intracontinental Santanghu rift basin have been considered as "typical" organic-rich profundal shales for decades. Our study of well cores using petrographic microscope and scanning electron microscopy suggests an otherwise complex hydrovolcanic and hydrothermal origin. This paper describes characteristics of a particular type of the shales, composed of fine-grained detrital minerals and lithic grains. Some of them are orthopyroxene, calcite, peralkaline feldspars, and analcime that are interpreted as derived from peralkaline-alkaline carbonatite, pyroxenite, analcime phonolite, and andesite, whereas others are quartz, dolomite, ankerite, serpentine, and calcite that were precipitated from syndepositional or penecontemporary hydrothermal fluids. Grain size ranges from 0.001 to 2 mm, mostly 0.01-0.1 mm. Well-developed laminae are mostly 0.5-3 mm thick and alternate with tuffaceous dolomicrite. The rocks are interpreted as sublacustrine hydrovolcanic deposits, which had been altered by syndepositional hydrothermal fluids. The interpretation is substantiated by abundant cone-shaped stratigraphic buildups on seismic sections in the basin. This study shows an ancient example of volcanic-hydrothermal deposits in a rift basin.
Rosenbaum, J.G.
1993-01-01
Rock magnetic studies of tuffs are essential to the interpretation of paleomagnetic data derived from such rocks, provide a basis for interpretation of aeromagnetic data over volcanic terranes, and yield insights into the depositional and cooling histories of ash flow sheets. A rhyolitic ash flow sheet, the Miocene-aged Tiva Canyon Member of the Paintbrush Tuff, contains both titanomagnetite phenocrysts, present in the magma prior to eruption, and cubic Fe-oxide microcrystals that grew after emplacement. Systematic variations in the quantity and magnetic grain size of the microcrystals produce large variations in magnetic properties through a section of the ash flow sheet penetrated in a borehole on the Nevada Test Site. Microcrystals are important contributors to remanent magnetization and magnetic susceptibility in two 15-m-thick zones at the top and bottom. Within these zones the size of microcrystals decreases both toward the quenched margins and toward the interior of the sheet. The decrease in microcrystal size toward the interior of the sheet is interpreted to indicate the presence of a cooling break; possibly represented by a concentration of pumice. -from Author
NASA Astrophysics Data System (ADS)
Kernan, Nicholas Devereux
The Niobrara Formation is a fine-grained marine rock deposited in the Western Interior Seaway during the Late Cretaceous. It is composed of fossil-rich interlayered shale, marls, and chalks. Recent interest in the Niobrara has grown due to the advent of lateral drilling and multi-stage hydraulic fracturing. This technology allows operators to economically extract hydrocarbons from chalkier Niobrara facies. Yet two aspects of the Niobrara Formation have remained enigmatic. The first is the occurrence of abundant, randomly oriented, layer-bound, normal faults. The second is the large degree of vertical heterogeneity. This research aimed to increase understanding in both these aspects of the Niobrara Formation. Randomly oriented normal faults have been observed in Niobrara outcrops for nearly a hundred years. Recent high resolution 3D seismic in the Denver Basin has allowed investigators to interpret these faults as part of a polygonal fault system (PFS). PFS are layer bound extensional structures that typically occur in fine-grained marine sediments. Though their genesis and development is still poorly understood, their almost exclusive occurrence in fine-grained rocks indicates their origin is linked to lithology. Interpretation of a 3D seismic cube in Southeast Wyoming found a tier of polygonal faulting within the Greenhorn-Carlile formations and another tier of polygonal faulting within the Niobrara and Pierre formations. This research also found that underlying structural highs influence fault growth and geometries within both these tiers. Core data and thin sections best describe vertical heterogeneity in fine-grained rocks. This investigation interpreted core data and thin sections in a well in Southeast Wyoming and identified 10 different facies. Most of these facies fall within a carbonate/clay spectrum with clay-rich facies deposited during periods of lower sea level and carbonate-rich facies deposited during periods of higher sea level. Because the average operator will typically have little core but abundant well logs, this investigation used three different methods of describing facies variability with logs. Facies interpreted with these methods are referred to as electrofacies. First, a conventional interpretation of Niobrara sub-units was done using gamma ray and resistivity logs. Then a cluster analysis was conducted on an extensive petrophysical log suite. Finally, a neural network was trained with the previous core interpretation so that it learned to identify facies from logs. The research found that when little core is available a cluster analysis method can capture significant amounts of vertical heterogeneity within the Niobrara Formation. But if core is available then a neural network method provides more meaningful and higher resolution interpretations.
Introduction to physical properties and elasticity models: Chapter 20
Dvorkin, Jack; Helgerud, Michael B.; Waite, William F.; Kirby, Stephen H.; Nur, Amos
2003-01-01
Estimating the in situ methane hydrate volume from seismic surveys requires knowledge of the rock physics relations between wave speeds and elastic moduli in hydrate/sediment mixtures. The elastic moduli of hydrate/sediment mixtures depend on the elastic properties of the individual sedimentary particles and the manner in which they are arranged. In this chapter, we present some rock physics data currently available from literature. The unreferenced values in Table I were not measured directly, but were derived from other values in Tables I and II using standard relationships between elastic properties for homogeneous, isotropic material. These derivations allow us to extend the list of physical property estimates, but at the expense of introducing uncertainties due to combining property values measured under different physical conditions. This is most apparent in the case of structure II (sII) hydrate for which very few physical properties have been measured under identical conditions.
Teaching and Understanding of Quantum Interpretations in Modern Physics Courses
ERIC Educational Resources Information Center
Baily, Charles; Finkelstein, Noah D.
2010-01-01
Just as expert physicists vary in their personal stances on interpretation in quantum mechanics, instructors vary on whether and how to teach interpretations of quantum phenomena in introductory modern physics courses. In this paper, we document variations in instructional approaches with respect to interpretation in two similar modern physics…
Classification Scheme for Diverse Sedimentary and Igneous Rocks Encountered by MSL in Gale Crater
NASA Technical Reports Server (NTRS)
Schmidt, M. E.; Mangold, N.; Fisk, M.; Forni, O.; McLennan, S.; Ming, D. W.; Sumner, D.; Sautter, V.; Williams, A. J.; Gellert, R.
2015-01-01
The Curiosity Rover landed in a lithologically and geochemically diverse region of Mars. We present a recommended rock classification framework based on terrestrial schemes, and adapted for the imaging and analytical capabilities of MSL as well as for rock types distinctive to Mars (e.g., high Fe sediments). After interpreting rock origin from textures, i.e., sedimentary (clastic, bedded), igneous (porphyritic, glassy), or unknown, the overall classification procedure (Fig 1) involves: (1) the characterization of rock type according to grain size and texture; (2) the assignment of geochemical modifiers according to Figs 3 and 4; and if applicable, in depth study of (3) mineralogy and (4) geologic/stratigraphic context. Sedimentary rock types are assigned by measuring grains in the best available resolution image (Table 1) and classifying according to the coarsest resolvable grains as conglomerate/breccia, (coarse, medium, or fine) sandstone, silt-stone, or mudstone. If grains are not resolvable in MAHLI images, grains in the rock are assumed to be silt sized or smaller than surface dust particles. Rocks with low color contrast contrast between grains (e.g., Dismal Lakes, sol 304) are classified according to minimum size of apparent grains from surface roughness or shadows outlining apparent grains. Igneous rocks are described as intrusive or extrusive depending on crystal size and fabric. Igneous textures may be described as granular, porphyritic, phaneritic, aphyric, or glassy depending on crystal size. Further descriptors may include terms such as vesicular or cumulate textures.
Influence of High Temperature Treatment on Mechanical Behavior of a Coarse-grained Marble
NASA Astrophysics Data System (ADS)
Rong, G.; Peng, J.; Jiang, M.
2017-12-01
High temperature has a significant influence on the physical and mechanical behavior of rocks. With increasing geotechnical engineering structures concerning with high temperature problems such as boreholes for oil or gas production, underground caverns for storage of radioactive waste, and deep wells for injection of carbon dioxides, etc., it is important to study the influence of temperature on the physical and mechanical properties of rocks. This paper experimentally investigates the triaxial compressive properties of a coarse-grained marble after exposure to different high temperatures. The rock specimens were first heated to a predetermined temperature (200, 400, and 600 oC) and then cooled down to room temperature. Triaxial compression tests on these heat-treated specimens subjected to different confining pressures (i.e., 0, 5, 10, 15, 20, 25, 30, 35, and 40 MPa) were then conducted. Triaxial compression tests on rock specimens with no heat treatment were also conducted for comparison. The results show that the high temperature treatment has a significant influence on the microstructure, porosity, P-wave velocity, stress-strain relation, strength and deformation parameters, and failure mode of the tested rock. As the treatment temperature gradually increases, the porosity slightly increases and the P-wave velocity dramatically decreases. Microscopic observation on thin sections reveals that many micro-cracks will be generated inside the rock specimen after high temperature treatment. The rock strength and Young's modulus show a decreasing trend with increase of the treatment temperature. The ductility of the rock is generally enhanced as the treatment temperature increases. In general, the high temperature treatment weakens the performance of the tested rock. Finally, a degradation parameter is defined and a strength degradation model is proposed to characterize the strength behavior of heat-treated rocks. The results in this study provide useful data for evaluation of rock properties in high temperature condition.
NASA Astrophysics Data System (ADS)
Ersöz, Timur; Topal, Tamer
2017-04-01
Rocks containing pore spaces, fractures, joints, bedding planes and faults are prone to weathering due to temperature differences, wetting-drying, chemistry of solutions absorbed, and other physical and chemical agents. Especially cut slopes are very sensitive to weathering activities because of disturbed rock mass and topographical condition by excavation. During and right after an excavation process of a cut slope, weathering and erosion may act on this newly exposed rock material. These acting on the material may degrade and change its properties and the stability of the cut slope in its engineering lifetime. In this study, the effect of physical and chemical weathering agents on shear strength parameters of the rocks are investigated in order to observe the differences between weathered and unweathered rocks. Also, slope stability assessment of cut slopes affected by these weathering agents which may disturb the parameters like strength, cohesion, internal friction angle, unit weight, water absorption and porosity are studied. In order to compare the condition of the rock materials and analyze the slope stability, the parameters of weathered and fresh rock materials are found with in-situ tests such as Schmidt hammer and laboratory tests like uniaxial compressive strength, point load and direct shear. Moreover, slake durability and methylene blue tests are applied to investigate the response of the rock to weathering and presence of clays in rock materials, respectively. In addition to these studies, both rock strength parameters and any kind of failure mechanism are determined by probabilistic approach with the help of SSPC system. With these observations, the performances of the weathered and fresh zones of the cut slopes are evaluated and 2-D slope stability analysis are modeled with further recommendations for the cut slopes. Keywords: 2-D Modeling, Rock Strength, Slope Stability, SSPC, Weathering
NASA Astrophysics Data System (ADS)
Saxena, Nishank; Hows, Amie; Hofmann, Ronny; Alpak, Faruk O.; Freeman, Justin; Hunter, Sander; Appel, Matthias
2018-06-01
This study defines the optimal operating envelope of the Digital Rock technology from the perspective of imaging and numerical simulations of transport properties. Imaging larger volumes of rocks for Digital Rock Physics (DRP) analysis improves the chances of achieving a Representative Elementary Volume (REV) at which flow-based simulations (1) do not vary with change in rock volume, and (2) is insensitive to the choice of boundary conditions. However, this often comes at the expense of image resolution. This trade-off exists due to the finiteness of current state-of-the-art imaging detectors. Imaging and analyzing digital rocks that sample the REV and still sufficiently resolve pore throats is critical to ensure simulation quality and robustness of rock property trends for further analysis. We find that at least 10 voxels are needed to sufficiently resolve pore throats for single phase fluid flow simulations. If this condition is not met, additional analyses and corrections may allow for meaningful comparisons between simulation results and laboratory measurements of permeability, but some cases may fall outside the current technical feasibility of DRP. On the other hand, we find that the ratio of field of view and effective grain size provides a reliable measure of the REV for siliciclastic rocks. If this ratio is greater than 5, the coefficient of variation for single-phase permeability simulations drops below 15%. These imaging considerations are crucial when comparing digitally computed rock flow properties with those measured in the laboratory. We find that the current imaging methods are sufficient to achieve both REV (with respect to numerical boundary conditions) and required image resolution to perform digital core analysis for coarse to fine-grained sandstones.
Beeler, N.M.; Tullis, T.E.; Kronenberg, A.K.; Reinen, L.A.
2007-01-01
Earthquake occurrence probabilities that account for stress transfer and time-dependent failure depend on the product of the effective normal stress and a lab-derived dimensionless coefficient a. This coefficient describes the instantaneous dependence of fault strength on deformation rate, and determines the duration of precursory slip. Although an instantaneous rate dependence is observed for fracture, friction, crack growth, and low temperature plasticity in laboratory experiments, the physical origin of this effect during earthquake faulting is obscure. We examine this rate dependence in laboratory experiments on different rock types using a normalization scheme modified from one proposed by Tullis and Weeks [1987]. We compare the instantaneous rate dependence in rock friction with rate dependence measurements from higher temperature dislocation glide experiments. The same normalization scheme is used to compare rate dependence in friction to rock fracture and to low-temperature crack growth tests. For particular weak phyllosilicate minerals, the instantaneous friction rate dependence is consistent with dislocation glide. In intact rock failure tests, for each rock type considered, the instantaneous rate dependence is the same size as for friction, suggesting a common physical origin. During subcritical crack growth in strong quartzofeldspathic and carbonate rock where glide is not possible, the instantaneous rate dependence measured during failure or creep tests at high stress has long been thought to be due to crack growth; however, direct comparison between crack growth and friction tests shows poor agreement. The crack growth rate dependence appears to be higher than the rate dependence of friction and fracture by a factor of two to three for all rock types considered. Copyright 2007 by the American Geophysical Union.
NASA Technical Reports Server (NTRS)
Bell, J. F., III; Calvin, W. M.; Farrand, W.; Greeley, R.; Johnson, J. R.; Jolliff, B.; Morris, R. V.; Sullivan, R. J.; Thompson, S.; Wang, A.;
2007-01-01
Multispectral imaging from the Panoramic Camera (Pancam) instruments on the Mars Exploration Rovers Spirit and Opportunity has provided important new insights about the geology and geologic history of the rover landing sites and traverse locations in Gusev crater and Meridiani Planum. Pancam observations from near-UV to near-IR wavelengths provide limited compositional and mineralogic constraints on the presence abundance, and physical properties of ferric- and ferrous-iron bearing minerals in rocks, soils, and dust at both sites. High resolution and stereo morphologic observations have also helped to infer some aspects of the composition of these materials at both sites. Perhaps most importantly, Pancam observations were often efficiently and effectively used to discover and select the relatively small number of places where in situ measurements were performed by the rover instruments, thus supporting and enabling the much more quantitative mineralogic discoveries made using elemental chemistry and mineralogy data. This chapter summarizes the major compositionally- and mineralogically-relevant results at Gusev and Meridiani derived from Pancam observations. Classes of materials encountered in Gusev crater include outcrop rocks, float rocks, cobbles, clasts, soils, dust, rock grindings, rock coatings, windblown drift deposits, and exhumed whitish/yellowish salty soils. Materials studied in Meridiani Planum include sedimentary outcrop rocks, rock rinds, fracture fills, hematite spherules, cobbles, rock fragments, meteorites, soils, and windblown drift deposits. This chapter also previews the results of a number of coordinated observations between Pancam and other rover-based and Mars-orbital instruments that were designed to provide complementary new information and constraints on the mineralogy and physical properties of martian surface materials.
NASA Astrophysics Data System (ADS)
Pound, K. S.
2013-12-01
Re-evaluation of field and lab data indicates that the Cambrian portion of the Takaka Terrane in the Cobb Valley area of NW Nelson, New Zealand preserves the remnants of an accretionary prism complex, across which the Lockett Conglomerate fan-delta was deposited as a consequence of extension. Previous work has recognized that the structurally disrupted lower Takaka Terrane rocks present an amalgam of sedimentary and igneous rocks generated prior to convergence (Junction Formation) or during convergence (Devil River Volcanics Group, Haupiri Group), including arc-related and MORB components. Portions of the sequence have in the past been loosely described as an accretionary prism. Reevaluation of the detailed mapping, sedimentological and provenance studies shows that remnants of a stratigraphic sequence (Junction Formation, Devil River Volcanics Group, Haupiri Group) can be traced through 10 fault-bounded slices, which include a mélange-dominated slice (Balloon Mélange). These slices are the remnants of the accretionary prism; the stratigraphy within each slice generally youngs to the east, and the overall pattern of aging (based on relative age from provenance studies, sparse fossils, stratigraphic relations, and limited isotopic data) indicates that the older rocks generally dominate fault slices to the east, and younger rocks dominate fault slices to the west, delineating imbricate slices within an eastward-dipping subduction zone, in which the faults record a complex history of multi-phase reactivation. The Lockett Conglomerate is a ~500-m thick fan-delta conglomerate that is the preserved within one of the fault slices, where it is stratigraphically and structurally highest unit in the lower Takaka Terrane; it is also present as blocks within the Balloon Melange. The Lockett Conglomerate is marine at its base and transitions upwards to fluvial facies. The Lockett Conglomerate has previously been interpreted to result from erosion consequent on continued convergence, but is reinterpreted here as a ';true' fan-delta deposit, sedimentologically similar to deposits associated with extension. Textural and compositional data for the Lockett Conglomerate indicates rapid supply of new material (including quartzite, granite, gabbro, and amphibolitic metavolcanics). The Lockett Conglomerate is proposed here to record the initiation of extension, during which basement faults in the hinterland exposed previously buried source rocks. This new interpretation of the Lockett Conglomerate places that initiation of extension and subsequent passive margin sedimentation (Mt. Ellis and Mt. Arthur Groups) earlier (late Middle Cambrian) than previous work has suggested (Late Cambrian or Early Ordovician). These new interpretations provide input useful for correlations and interpretations of the complex mosaic that preserves a record of tectonic activity and processes at the Antarctic, Tasmanian and SE Australian portions of the Cambrian Gondwana margin.
NASA Astrophysics Data System (ADS)
Choi, J.; Chae, B.; Chon, C.; Jeong, J.
2013-12-01
Abstract : In order to understand the progress of the physical weathering of rock sample, we managed freeze-thawing experiment at temperature of up to 40C from -20C taking into account of South Korea. In this study, the time was held by two hours the temperature of the maximum (40C) and minimum (-20C) and the experiments were carried out at intervals of one hour rising and falling. We have run the experiment about 120 cycle with the cycle of -20C from 40C experiment. We measured the physical properties of rock samples after each 20 cycle has elapsed by using confocal laser scanning microscope (CLSM) and observed changes in roughness of rock samples surface. We also analyzed the mineral of rock sample using the XRD analysis and observing the change in chemical composition of solution used in the experiment by using ICP analysis. Through the above process, we observed physico-chemical changes in the rock sample due to freeze-thaw cycles. To analysis of the line roughness parameter we used set by the 10 vertical and horizontal cross section line on the surface and surface roughness parameter was analyzed by using the area on the surface. Through such a process, while the freeze-thawing experiment is advanced, it was studied how the physical roughness and chemical composition were changed. As a result, it was possible to observe a change in the mineral component of the particular dissolved in the solution and it was able to observe the characteristic changes of the parameters of the roughness of the lines and surfaces.
Lithologic Controls on Critical Zone Processes in a Variably Metamorphosed Shale-Hosted Watershed
NASA Astrophysics Data System (ADS)
Eldam Pommer, R.; Navarre-Sitchler, A.
2017-12-01
Local and regional shifts in thermal maturity within sedimentary shale systems impart significant variation in chemical and physical rock properties, such as pore-network morphology, mineralogy, organic carbon content, and solute release potential. Even slight variations in these properties on a watershed scale can strongly impact surface and shallow subsurface processes that drive soil formation, landscape evolution, and bioavailability of nutrients. Our ability to map and quantify the effects of this heterogeneity on critical zone processes is hindered by the complex coupling of the multi-scale nature of rock properties, geochemical signatures, and hydrological processes. This study addresses each of these complexities by synthesizing chemical and physical characteristics of variably metamorphosed shales in order to link rock heterogeneity with modern earth surface and shallow subsurface processes. More than 80 samples of variably metamorphosed Mancos Shale were collected in the East River Valley, Colorado, a headwater catchment of the Upper Colorado River Basin. Chemical and physical analyses of the samples show that metamorphism decreases overall rock porosity, pore anisotropy, and surface area, and introduces unique chemical signatures. All of these changes result in lower overall solute release from the Mancos Shale in laboratory dissolution experiments and a change in rock-derived solute chemistry with decreasing organic carbon and cation exchange capacity (Ca, Na, Mg, and K). The increase in rock competency and decrease in reactivity of the more thermally mature shales appear to subsequently control river morphology, with lower channel sinuosity associated with areas of the catchment underlain by metamorphosed Mancos Shale. This work illustrates the formative role of the geologic template on critical zone processes and landscape development within and across watersheds.
TEM prospection on quaternary faults: the case of San Ramón Fault (SRF), Central Chile
NASA Astrophysics Data System (ADS)
Estay, N. P.; Yanez, G. A.; Maringue, J. I.
2016-12-01
Quaternary faults are relevant study objects in geosciences to better estimation of seismic risk. Nowadays main efforts are focused on the improvement of paleoseismology and geophysics techniques. At this regard, we present here a TEM prospection of the San Ramón quaternary fault in the southern Andes. This fault has no record of historic activation, however, given its proximity to the Chilean capital, hazardous estimate is mandatory. Evidences of the SRF are restricted to geomorphologic features, and associated secondary faults on the hanging wall block, but any outcrop of the main fault have been identified. To observe the main fault in the basement rock, cover by a 30-100 m sedimentary basin, we carried out a TEM experiment. The best advantage of the TEM methodology compared to other near-surface electrical methods is it capacity to reach greater penetration depth compared to its spatial sampling rate. Taking this advantage, we define a 25x25 m transmitter loop (Tx) and 5x5 m receiver loop (Rx), allowing the suitable resolution to observe the fault core. To reach a deeper penetration depth but keeping high resolution of the shallow parts, we made two complementary measurements, the first with one-turn transmitter loop, and the second with 4-turn transmitter loops, to resolve the early and late times properly. As result we define vertical profiles of 100-150m depth, and including 48 measures (24 of one-turn transmitter loop, and 24 of four-turn transmitter loop), the resulting pseudo 2D image is a 500m profile with depth extent of 150m. In this section we can observe different resistivity domain, with a horizontal continuity in many measures. The experiment allows to cross the sedimentary cover, and observe the top of the basement rock. In the rock domain, it can be observed a high resistivity body, interpreted as a pristine rock, and some extremely low resistivity bodies, that are interpreted as a fractured rock saturated with water, and eventually mapping a fossil/actual hydrothermal flow. These fractured zone is interpreted as the main trace of the fault. Finally, this TEM experiment allow to estimate the associated cumulative slip, as well as the fault geometry of the first 150m, useful for BEM or FEM seismic modeling.
Physiological responses to rock climbing in young climbers
Morrison, Audry Birute; Schöffl, Volker Rainer
2007-01-01
Key questions regarding the training and physiological qualities required to produce an elite rock climber remain inadequately defined. Little research has been done on young climbers. The aim of this paper was to review literature on climbing alongside relevant literature characterising physiological adaptations in young athletes. Evidence‐based recommendations were sought to inform the training of young climbers. Of 200 studies on climbing, 50 were selected as being appropriate to this review, and were interpreted alongside physiological studies highlighting specific common development growth variables in young climbers. Based on injury data, climbers younger than 16 years should not participate in international bouldering competitions and intensive finger strength training is not recommended. The majority of climbing foot injuries result from wearing too small or unnaturally shaped climbing shoes. Isometric and explosive strength improvements are strongly associated with the latter stages of sexual maturation and specific ontogenetic development, while improvement in motor abilities declines. Somatotyping that might identify common physical attributes in elite climbers of any age is incomplete. Accomplished adolescent climbers can now climb identical grades and compete against elite adult climbers aged up to and >40 years. High‐intensity sports training requiring leanness in a youngster can result in altered and delayed pubertal and skeletal development, metabolic and neuroendocrine aberrations and trigger eating disorders. This should be sensitively and regularly monitored. Training should reflect efficacious exercises for a given sex and biological age. PMID:18037632
Instruments and methods acoustic televiewer logging in glacier boreholes
Morin, R.H.; Descamps, G.E.; Cecil, L.D.
2000-01-01
The acoustic televiewer is a geophysical logging instrument that is deployed in a water-filled borehole and operated while trolling. It generates a digital, magnetically oriented image of the borehole wall that is developed from the amplitudes and transit times of acoustic waves emitted from the tool and reflected at the water-wall interface. The transit-time data are also converted to radial distances, from which cross-sectional views of the borehole shape can be constructed. Because the televiewer is equipped with both a three-component magnetometer and a two-component inclinometer, the borehole's trajectory in space is continuously recorded as well. This instrument is routinely used in mining and hydrogeologic applications, but in this investigation it was deployed in two boreholes drilled into Upper Fremont Glacier, Wyoming, U.S.A. The acoustic images recorded in this glacial setting are not as clear as those typically obtained in rocks, due to a lower reflection coefficient for water and ice than for water and rock. Results indicate that the depth and orientation of features intersecting the boreholes can be determined, but that interpreting their physical nature is problematic and requires corroborating information from inspection of cores. Nevertheless, these data can provide some insight into englacial structural characteristics. Additional information derived from the cross-sectional geometry of the borehole, as well as from its trajectory, may also be useful in studies concerned with stress patterns and deformation processes.
Treated and untreated rock dust: Quartz content and physical characterization.
Soo, Jhy-Charm; Lee, Taekhee; Chisholm, William P; Farcas, Daniel; Schwegler-Berry, Diane; Harper, Martin
2016-11-01
Rock dusting is used to prevent secondary explosions in coal mines, but inhalation of rock dusts can be hazardous if the crystalline silica (e.g., quartz) content in the respirable fraction is high. The objective of this study is to assess the quartz content and physical characteristics of four selected rock dusts, consisting of limestone or marble in both treated (such as treatment with stearic acid or stearates) and untreated forms. Four selected rock dusts (an untreated and treated limestone and an untreated and treated marble) were aerosolized in an aerosol chamber. Respirable size-selective sampling was conducted along with particle size-segregated sampling using a Micro-Orifice Uniform Deposit Impactor. Fourier Transform Infrared spectroscopy and scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) analyses were used to determine quartz mass and particle morphology, respectively. Quartz percentage in the respirable dust fraction of untreated and treated forms of the limestone dust was significantly higher than in bulk samples, but since the bulk percentage was low the enrichment factor would not have resulted in any major change to conclusions regarding the contribution of respirable rock dust to the overall airborne quartz concentration. The quartz percentage in the marble dust (untreated and treated) was very low and the respirable fractions showed no enrichment. The spectra from SEM-EDX analysis for all materials were predominantly from calcium carbonate, clay, and gypsum particles. No free quartz particles were observed. The four rock dusts used in this study are representative of those presented for use in rock dusting, but the conclusions may not be applicable to all available materials.
NASA Astrophysics Data System (ADS)
Lisabeth, H. P.; Zhu, W.
2016-12-01
Carbon dioxide interacts with mafic and ultramafic rocks on the ocean floor at fracture zones and detachment faults, and within ophiolite complexes. Steatized olivine-pyroxene or serpentinite rocks become talc-carbonate rocks, i.e., soapstones. If the fluids are extremely carbon-rich, the process can continue to completion, binding all the magnesium from olivine and pyroxene in magnesium carbonate, resulting in magnesite-quartz rocks known as listvenites. The structural, mechanical and mineralogical characteristics of these rocks can be long-lived and affect later tectonic deformation over the course of the supercontinent cycle, influencing the obduction of ophiolites and possibly the initiation of subduction. To ascertain the changes in physical and geomechanical characteristics of these rocks as they undergo carbonic alteration, we measure ultrasonic velocity, electrical resistivity and shear strength in a series of laboratory tests on samples collected from northern Norway, where the Linnajavrre Ophiolite contains representative samples of serpentinite, soapstone and listvenite. We discover that the rocks tend to become denser, more porous, weaker, and more electrically and acoustically impeditive as carbonation proceeds. Samples fail by highly localized brittle faulting with little dilatancy. Shear strength appears to correlate with talc abundance, with a steep drop-off from 5 to 20% talc. Deformed samples are examined under petrographic microscope to explore deformation micromechanisms. Our data suggest that the weakening observed in soapstones and listvenites compared to serpentinites is attributed to interconnected talc grains. Such carbonic alteration of oceanic serpentinites may help facilitate oceanic spreading, particularly along slow and ultraslow segments of mid-ocean ridges.
Evaluating the effect of lithology on porosity development in ridgetops in the Appalachian Piedmont
NASA Astrophysics Data System (ADS)
Marcon, V.; Gu, X.; Fisher, B.; Brantley, S. L.
2016-12-01
Together, chemical and physical processes transform fresh bedrock into friable weathered material. Even in systems where lithology, tectonic history, and climatic history are all known, it is challenging to predict the depth of weathering because the mechanisms that control the rate of regolith formation are not understood. In the Appalachian Piedmont, where rates of regolith formation and erosion are thought to be in a rough steady state, the depth of weathering varies with lithology. The Piedmont provides a controlled natural environment to isolate the effects of lithology on weathering processes so we can start to understand the mechanisms that initiate and drive weathering. Weathering is deepest over feldspathic rocks (schist/granite) with regolith 20-30m thick and thinnest over mafic and ultramafic rocks (diabase/serpentinite) with regolith <5m thick (Pavich et al., 1989). We are exploring both chemical and physical controls on weathering. For example, when regolith thickness is plotted versus fracture toughness of each lithology, regolith thickness generally increases with decreasing fracture toughness. However, serpentinite, a rheologically weak rock, does not follow this trend with thin soils. To understand this observation, physical weathering parameters (porosity, connectivity, and surface area) were evaluated using neutron scattering on Piedmont rocks at different degrees of weathering. Samples of both weathered diabase and serpentinite are dominated by small pores (<0.1micron), whereas pores in schist are characteristically larger (1-10microns). As serpentinite weathers, porosity is created by serpentinization reactions and lost from collapse during weathering. Serpentinite consists of easily weathered hydrous minerals with little quartz. Comparatively, rocks with more quartz (e.g. schist) have a supportive skeleton as the rock weathers. This quartz skeleton could prevent the collapse of pores and result in isovolumetric weathering. Non-isovolumetric weathering limits infiltration of reactive fluids deeper into the rock, minimizing regolith formation in serpentinite due to its lack of a quartz skeleton. Given this, fracture toughness may be an important parameter to consider in terms of predicting regolith thickness.
Evaluation of hydrocarbon potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cashman, P.H.; Trexler, J.H. Jr.
1992-09-30
Task 8 is responsible for assessing the hydrocarbon potential of the Yucca Mountain vincinity. Our main focus is source rock stratigraphy in the NTS area in southern Nevada. (In addition, Trexler continues to work on a parallel study of source rock stratigraphy in the oil-producing region of east central Nevada, but this work is not funded by Task 8.) As a supplement to the stratigraphic studies, we are studying the geometry and kinematics of deformation at NTS, particularly as these pertain to reconstructing Paleozoic stratigraphy and to predicting the nature of the Late Paleozoic rocks under Yucca Mountain. Our stratigraphicmore » studies continue to support the interpretation that rocks mapped as the {open_quotes}Eleana Formation{close_quotes} are in fact parts of two different Mississippian units. We have made significant progress in determining the basin histories of both units. These place important constraints on regional paleogeographic and tectonic reconstructions. In addition to continued work on the Eleana, we plan to look at the overlying Tippipah Limestone. Preliminary TOC and maturation data indicate that this may be another potential source rock.« less
Bed load tracer mobility in a mixed bedrock/alluvial channel
NASA Astrophysics Data System (ADS)
Ferguson, R. I.; Sharma, B. P.; Hodge, R. A.; Hardy, R. J.; Warburton, J.
2017-04-01
The presence of bare or partially covered rock in an otherwise alluvial river implies a downstream change in transport capacity relative to supply. Field investigations of this change and what causes it are lacking. We used two sets of magnet-tagged tracer clasts to investigate bed load transport during the same sequence of floods in fully alluvial, bare rock, and partial-cover reaches of an upland stream. High-flow shear stresses in different reaches were calculated by using stage loggers. Tracers seeded in the upstream alluvial channel moved more slowly than elsewhere until the frontrunners reached bare rock and sped up. Tracers seeded on bare rock moved rapidly off it and accumulated just upstream from, and later in, a partial-cover zone with many boulders. The backwater effect of the boulder-rich zone is significant in reducing tracer mobility. Tracer movement over full or partial sediment cover was size selective but dispersion over bare rock was not. Along-channel changes in tracer mobility are interpreted in terms of measured differences in shear stress and estimated differences in threshold stress.
NASA Astrophysics Data System (ADS)
Canon-Tapia, E.; Raposo, M. I. B.
2017-12-01
The Paraná-Etendeka Large Igneous Province includes felsic volcanic rocks whose mechanism of emplacement and location of their eruptive sources are controversial. Opening of several quarries of dimension stone near the city of Sao Marcos, Rio Grande do Sul, Brazil, offers a unique opportunity to study in detail some of those products. Here, we present the results of a study of the anisotropy of magnetic susceptibility (AMS) completed in some rocks that had been interpreted as the roots of volcanic conduits. Our results, and reexamination of the textural features of the rocks, lead to a reinterpretation that suggests that these rocks were emplaced subaerially, and involved assimilation and remelting of clastic components of previous lavas. The extremely high eruption temperatures of the lavas promoted the development of peperite-like textures and mixing patterns similar to those observed in plutonic environments. Due to the inferred conditions of emplacement, it is unlikely that the eruptive vents are located far from the area of study, therefore ruling out the long-travelled nature of these products.
NASA Astrophysics Data System (ADS)
Gill, J. D.; Elmore, R. D.; Engel, M. H.
Although the migration of fluids is a likely agent of remagnetization for some chemical remanent magnetizations (CRMs), widespread CRMs, which occur in rocks that have not been altered by externally derived fluids, need to explained by another mechanism. We are testing clay diagenesis as a remagnetization mechanism for such CRMs by comparing results from Mesozoic strata in the disturbed belt of Montana where the rocks contain ordered illite/smectite that formed by moderate heating as a result of thrust loading, with equivalent strata on the adjacent Sweetgrass Arch which contain unaltered smectite-rich clay mineral assemblages. The results indicate that the magnetization in the rocks in the Sweetgrass Arch is weak and dominated by a modern viscous component. In contrast, the disturbed belt rocks have higher magnetic intensities and contain a prefolding or early synfolding, reversed tertiary magnetization that is interpreted to be a CRM residing in magnetite and perhaps pyrrhotite. A presence-absence test and the timing of acquisition for the CRM suggest that magnetite authigenesis could be related to the smectite-to-illite conversion.
Geology and origin of the late Proterozoic Darb Zubaydah ophiolite, Kingdom of Saudi Arabia
Quick, J.E.
1990-01-01
The Darb Zubaydah ophiolite, north-central Arabian Shield, preserves a largely intact section consisting of ultramafic rocks, gabbro, diabase, granodiorite, and interbedded volcanic and sedimentary rocks. Formation of these rocks within or near an island arc is indicated by the absence of pelagic sediments and the abundance of pillow basalt, turbiditic sediments, lahar deposits, and basaltic to rhyolitic tuff. The oldest extrusive rocks formed in a young, relatively unevolved island arc or in a back-arc basin sufficiently close to an arc to receive calc-alkaline lava flows and coarse-grained, arc-derived detritus. Overlying turbidites and lahar deposits of the Kaffan sandstone point to the initiation of a rifting event. High-Ti basalts, which erupted above the Kaffan sandstone, and related diabase are interpreted to be magmatic products of incipient intra-arc rifting. Renewed arc volcanism produced calc-alkaline volcanic rocks that interfingered with the high-Ti basalt and later dominated the section as the volcanic apron of the arc prograded basinward. Extrusion of voluminous calc-alkaline tuff may have been contemporaneous with intrusion of granodiorite and gravity-driven landsliding. -from Author
McCafferty, Anne E.; Yager, Douglas B.; Horton, Radley M.; Diehl, Sharon F.
2006-01-01
Federal land managers along with local stakeholders in the Upper Animas River watershed near Silverton, Colorado are actively designing and implementing mine waste remediation projects to mitigate the effects of acid mine drainage from several abandoned hard rock metal mines and mills. Local source rocks with high acid neutralization capacity (ANC) within the watershed are of interest to land managers for use in these remediation projects. A suite of representative samples was collected from propylitic to weakly sericitic-altered volcanic and plutonic rocks exposed in outcrops throughout the watershed. Acid-base accounting laboratory methods coupled with mineralogic and geochemical characterization provide insight into lithologies that have a range of ANC and net acid production (NAP). Petrophysical lab determinations of magnetic susceptibility converted to estimates for percent magnetite show correlation with the environmental properties of ANC and NAP for many of the lithologies. A goal of our study is to interpret watershed-scale airborne magnetic data for regional mapping of rocks that have varying degrees of ANC and NAP. Results of our preliminary work are presented here.
Soil variability in engineering applications
NASA Astrophysics Data System (ADS)
Vessia, Giovanna
2014-05-01
Natural geomaterials, as soils and rocks, show spatial variability and heterogeneity of physical and mechanical properties. They can be measured by in field and laboratory testing. The heterogeneity concerns different values of litho-technical parameters pertaining similar lithological units placed close to each other. On the contrary, the variability is inherent to the formation and evolution processes experienced by each geological units (homogeneous geomaterials on average) and captured as a spatial structure of fluctuation of physical property values about their mean trend, e.g. the unit weight, the hydraulic permeability, the friction angle, the cohesion, among others. The preceding spatial variations shall be managed by engineering models to accomplish reliable designing of structures and infrastructures. Materon (1962) introduced the Geostatistics as the most comprehensive tool to manage spatial correlation of parameter measures used in a wide range of earth science applications. In the field of the engineering geology, Vanmarcke (1977) developed the first pioneering attempts to describe and manage the inherent variability in geomaterials although Terzaghi (1943) already highlighted that spatial fluctuations of physical and mechanical parameters used in geotechnical designing cannot be neglected. A few years later, Mandelbrot (1983) and Turcotte (1986) interpreted the internal arrangement of geomaterial according to Fractal Theory. In the same years, Vanmarcke (1983) proposed the Random Field Theory providing mathematical tools to deal with inherent variability of each geological units or stratigraphic succession that can be resembled as one material. In this approach, measurement fluctuations of physical parameters are interpreted through the spatial variability structure consisting in the correlation function and the scale of fluctuation. Fenton and Griffiths (1992) combined random field simulation with the finite element method to produce the Random Finite Element Method (RFEM). This method has been used to investigate the random behavior of soils in the context of a variety of classical geotechnical problems. Afterward, some following studies collected the worldwide variability values of many technical parameters of soils (Phoon and Kulhawy 1999a) and their spatial correlation functions (Phoon and Kulhawy 1999b). In Italy, Cherubini et al. (2007) calculated the spatial variability structure of sandy and clayey soils from the standard cone penetration test readings. The large extent of the worldwide measured spatial variability of soils and rocks heavily affects the reliability of geotechnical designing as well as other uncertainties introduced by testing devices and engineering models. So far, several methods have been provided to deal with the preceding sources of uncertainties in engineering designing models (e.g. First Order Reliability Method, Second Order Reliability Method, Response Surface Method, High Dimensional Model Representation, etc.). Nowadays, the efforts in this field have been focusing on (1) measuring spatial variability of different rocks and soils and (2) developing numerical models that take into account the spatial variability as additional physical variable. References Cherubini C., Vessia G. and Pula W. 2007. Statistical soil characterization of Italian sites for reliability analyses. Proc. 2nd Int. Workshop. on Characterization and Engineering Properties of Natural Soils, 3-4: 2681-2706. Griffiths D.V. and Fenton G.A. 1993. Seepage beneath water retaining structures founded on spatially random soil, Géotechnique, 43(6): 577-587. Mandelbrot B.B. 1983. The Fractal Geometry of Nature. San Francisco: W H Freeman. Matheron G. 1962. Traité de Géostatistique appliquée. Tome 1, Editions Technip, Paris, 334 p. Phoon K.K. and Kulhawy F.H. 1999a. Characterization of geotechnical variability. Can Geotech J, 36(4): 612-624. Phoon K.K. and Kulhawy F.H. 1999b. Evaluation of geotechnical property variability. Can Geotech J, 36(4): 625-639. Terzaghi K. 1943. Theoretical Soil Mechanics. New York: John Wiley and Sons. Turcotte D.L. 1986. Fractals and fragmentation. J Geophys Res, 91: 1921-1926. Vanmarcke E.H. 1977. Probabilistic modeling of soil profiles. J Geotech Eng Div, ASCE, 103: 1227-1246. Vanmarcke E.H. 1983. Random fields: analysis and synthesis. MIT Press, Cambridge.
NASA Astrophysics Data System (ADS)
Lu, Kunquan; Cao, Zexian; Hou, Meiying; Jiang, Zehui; Shen, Rong; Wang, Qiang; Sun, Gang; Liu, Jixing
2018-03-01
The physical mechanism of earthquake remains a challenging issue to be clarified. Seismologists used to attribute shallow earthquake to the elastic rebound of crustal rocks. The seismic energy calculated following the elastic rebound theory and with the data of experimental results upon rocks, however, shows a large discrepancy with measurement — a fact that has been dubbed as “the heat flow paradox”. For the intermediate-focus and deep-focus earthquakes, both occurring in the region of the mantle, there is not reasonable explanation either. This paper will discuss the physical mechanism of earthquake from a new perspective, starting from the fact that both the crust and the mantle are discrete collective system of matters with slow dynamics, as well as from the basic principles of physics, especially some new concepts of condensed matter physics emerged in the recent years. (1) Stress distribution in earth’s crust: Without taking the tectonic force into account, according to the rheological principle of “everything flows”, the normal stress and transverse stress must be balanced due to the effect of gravitational pressure over a long period of time, thus no differential stress in the original crustal rocks is to be expected. The tectonic force is successively transferred and accumulated via stick-slip motions of rock blocks to squeeze the fault gouge and then exerted upon other rock blocks. The superposition of such additional lateral tectonic force and the original stress gives rise to the real-time stress in crustal rocks. The mechanical characteristics of fault gouge are different from rocks as it consists of granular matters. The elastic moduli of the fault gouges are much less than those of rocks, and they become larger with increasing pressure. This peculiarity of the fault gouge leads to a tectonic force increasing with depth in a nonlinear fashion. The distribution and variation of the tectonic stress in the crust are specified. (2) The strength of crust rocks: The gravitational pressure can initiate the elasticity-plasticity transition in crust rocks. By calculating the depth dependence of elasticity-plasticity transition and according to the actual situation analysis, the behaviors of crust rocks can be categorized in three typical zones: elastic, partially plastic and fully plastic. As the proportion of plastic portion reaches about 10% in the partially plastic zone, plastic interconnection may occur and the variation of shear strength in rocks is mainly characterized by plastic behavior. The equivalent coefficient of friction for the plastic slip is smaller by an order of magnitude, or even less than that for brittle fracture, thus the shear strength of rocks by plastic sliding is much less than that by brittle breaking. Moreover, with increasing depth a number of other factors can further reduce the shear yield strength of rocks. On the other hand, since earthquake is a large-scale damage, the rock breaking must occur along the weakest path. Therefore, the actual fracture strength of rocks in a shallow earthquake is assuredly lower than the average shear strength of rocks as generally observed. The typical distributions of the average strength and actual fracture strength in crustal rocks varying with depth are schematically illustrated. (3) The conditions for earthquake occurrence and mechanisms of earthquake: An earthquake will lead to volume expansion, and volume expansion must break through the obstacle. The condition for an earthquake to occur is as follows: the tectonic force exceeds the sum of the fracture strength of rock, the friction force of fault boundary and the resistance from obstacles. Therefore, the shallow earthquake is characterized by plastic sliding of rocks that break through the obstacles. Accordingly, four possible patterns for shallow earthquakes are put forward. Deep-focus earthquakes are believed to result from a wide-range rock flow that breaks the jam. Both shallow earthquakes and deep-focus earthquakes are the energy release caused by the slip or flow of rocks following a jamming-unjamming transition. (4) The energetics and impending precursors of earthquake: The energy of earthquake is the kinetic energy released from the jamming-unjamming transition. Calculation shows that the kinetic energy of seismic rock sliding is comparable with the total work demanded for rocks’ shear failure and overcoming of frictional resistance. There will be no heat flow paradox. Meanwhile, some valuable seismic precursors are likely to be identified by observing the accumulation of additional tectonic forces, local geological changes, as well as the effect of rock state changes, etc.
Grauch, V.J.S.; Drenth, Benjamin J.
2009-01-01
High-resolution aeromagnetic data were acquired over the town of Poncha Springs and areas to the northwest to image faults, especially where they are concealed. Because this area has known hot springs, faults or fault intersections at depth can provide pathways for upward migration of geothermal fluids or concentrate fracturing that enhances permeability. Thus, mapping concealed faults provides a focus for follow-up geothermal studies. Fault interpretation was accomplished by synthesizing interpretative maps derived from several different analytical methods, along with preliminary depth estimates. Faults were interpreted along linear aeromagnetic anomalies and breaks in anomaly patterns. Many linear features correspond to topographic features, such as drainages. A few of these are inferred to be fault-related. The interpreted faults show an overall pattern of criss-crossing fault zones, some of which appear to step over where they cross. Faults mapped by geologists suggest similar crossing patterns in exposed rocks along the mountain front. In low-lying areas, interpreted faults show zones of west-northwest-, north-, and northwest-striking faults that cross ~3 km (~2 mi) west-northwest of the town of Poncha Springs. More easterly striking faults extend east from this juncture. The associated aeromagnetic anomalies are likely caused by magnetic contrasts associated with faulted sediments that are concealed less than 200 m (656 ft) below the valley floor. The faults may involve basement rocks at greater depth as well. A relatively shallow (<300 m or <984 ft), faulted basement block is indicated under basin-fill sediments just north of the hot springs and south of the town of Poncha Springs.
Modeling the mesozoic-cenozoic structural evolution of east texas
Pearson, Ofori N.; Rowan, Elisabeth L.; Miller, John J.
2012-01-01
The U.S. Geological Survey (USGS) recently assessed the undiscovered technically recoverable oil and gas resources within Jurassic and Cretaceous strata of the onshore coastal plain and State waters of the U.S. Gulf Coast. Regional 2D seismic lines for key parts of the Gulf Coast basin were interpreted in order to examine the evolution of structural traps and the burial history of petroleum source rocks. Interpretation and structural modeling of seismic lines from eastern Texas provide insights into the structural evolution of this part of the Gulf of Mexico basin. Since completing the assessment, the USGS has acquired additional regional seismic lines in east Texas; interpretation of these new lines, which extend from the Texas-Oklahoma state line to the Gulf Coast shoreline, show how some of the region's prominent structural elements (e.g., the Talco and Mount Enterprise fault zones, the East Texas salt basin, and the Houston diapir province) vary along strike. The interpretations also indicate that unexplored structures may lie beneath the current drilling floor. Structural restorations based upon interpretation of these lines illustrate the evolution of key structures and show the genetic relation between structural growth and movement of the Jurassic Louann Salt. 1D thermal models that integrate kinetics and burial histories were also created for the region's two primary petroleum source rocks, the Oxfordian Smackover Formation and the Cenomanian-Turonian Eagle Ford Shale. Integrating results from the thermal models with the structural restorations provides insights into the distribution and timing of petroleum expulsion from the Smackover Formation and Eagle Ford Shale in eastern Texas.
Gravity modeling finds a large magma body in the deep crust below the Gulf of Naples, Italy.
Fedi, M; Cella, F; D'Antonio, M; Florio, G; Paoletti, V; Morra, V
2018-05-29
We analyze a wide gravity low in the Campania Active Volcanic Area and interpret it by a large and deep source distribution of partially molten, low-density material from about 8 to 30 km depth. Given the complex spatial-temporal distribution of explosive volcanism in the area, we model the gravity data consistently with several volcanological and petrological constraints. We propose two possible models: one accounts for the coexistence, within the lower/intermediate crust, of large amounts of melts and cumulates besides country rocks. It implies a layered distribution of densities and, thus, a variation with depth of percentages of silicate liquids, cumulates and country rocks. The other reflects a fractal density distribution, based on the scaling exponent estimated from the gravity data. According to this model, the gravity low would be related to a distribution of melt pockets within solid rocks. Both density distributions account for the available volcanological and seismic constraints and can be considered as end-members of possible models compatible with gravity data. Such results agree with the general views about the roots of large areas of ignimbritic volcanism worldwide. Given the prolonged history of magmatism in the Campania area since Pliocene times, we interpret the detected low-density body as a developing batholith.
Electrical structure of Newberry Volcano, Oregon
Fitterman, D.V.; Stanley, W.D.; Bisdorf, R.J.
1988-01-01
From the interpretation of magnetotelluric, transient electromagnetic, and Schlumberger resistivity soundings, the electrical structure of Newberry Volcano in central Oregon is found to consist of four units. From the surface downward, the geoelectrical units are 1) very resistive, young, unaltered volcanic rock, (2) a conductive layer of older volcanic material composed of altered tuffs, 3) a thick resistive layer thought to be in part intrusive rocks, and 4) a lower-crustal conductor. This model is similar to the regional geoelectrical structure found throughout the Cascade Range. Inside the caldera, the conductive second layer corresponds to the steep temperature gradient and alteration minerals observed in the USGS Newberry 2 test-hole. Drill hole information on the south and north flanks of the volcano (test holes GEO N-1 and GEO N-3, respectively) indicates that outside the caldera the conductor is due to alteration minerals (primarily smectite) and not high-temperature pore fluids. On the flanks of Newberry the conductor is generally deeper than inside the caldera, and it deepens with distance from the summit. A notable exception to this pattern is seen just west of the caldera rim, where the conductive zone is shallower than at other flank locations. The volcano sits atop a rise in the resistive layer, interpreted to be due to intrusive rocks. -from Authors
NASA Astrophysics Data System (ADS)
Pratama Wahyu Hidayat, Putra; Hary Murti, Antonius; Sudarmaji; Shirly, Agung; Tiofan, Bani; Damayanti, Shinta
2018-03-01
Geometry is an important parameter for the field of hydrocarbon exploration and exploitation, it has significant effect to the amount of resources or reserves, rock spreading, and risk analysis. The existence of geological structure or fault becomes one factor affecting geometry. This study is conducted as an effort to enhance seismic image quality in faults dominated area namely offshore Madura Strait. For the past 10 years, Oligo-Miocene carbonate rock has been slightly explored on Madura Strait area, the main reason because migration and trap geometry still became risks to be concern. This study tries to determine the boundary of each fault zone as subsurface image generated by converting seismic data into variance attribute. Variance attribute is a multitrace seismic attribute as the derivative result from amplitude seismic data. The result of this study shows variance section of Madura Strait area having zero (0) value for seismic continuity and one (1) value for discontinuity of seismic data. Variance section shows the boundary of RMKS fault zone with Kendeng zone distinctly. Geological structure and subsurface geometry for Oligo-Miocene carbonate rock could be identified perfectly using this method. Generally structure interpretation to identify the boundary of fault zones could be good determined by variance attribute.
The distribution of particulate material on Mars
NASA Technical Reports Server (NTRS)
Christensen, Philip R.
1991-01-01
The surface materials on Mars were extensively studied using a variety of spacecraft and Earth-based remote sensing observations. These measurements include: (1) diurnal thermal measurements, used to determine average particle size, rock abundance, and the presence of crusts; (2) radar observations, used to estimate the surface slope distributions, wavelength scale roughness, and density; (3) radio emission observations, used to estimate subsurface density; (4) broadband albedo measurements, used to study the time variation of surface brightness and dust deposition and removal; and (5) color observations, used to infer composition, mixing, and the presence of crusts. Remote sensing observations generally require some degree of modeling to interpret, making them more difficult to interpret than direct observations from the surface. They do, however, provide a means for examining the surface properties over the entire planet and a means of sampling varying depths within the regolith. Albedo and color observations only indicate the properties of the upper-most few microns, but are very sensitive to thin, sometimes emphemeral dust coatings. Thermal observations sample the upper skin depth, generally 2 to 10 cm. Rock abundance measurements give an indirect indication of surface mantling, where the absence of rocks suggests mantles of several meters. Finally, radar and radio emission data can penetrate several meters into the surface, providing an estimate of subsurface density and roughness.