Dennen, Kristin O.; Johnson, Craig A.; Otter, Marshall L.; Silva, Steven R.; Wandless, Gregory A.
2006-01-01
Samples of United States Geological Survey (USGS) Certified Reference Materials USGS Devonian Ohio Shale (SDO-1), and USGS Eocene Green River Shale (SGR-1), and National Research Council Canada (NRCC) Certified Marine Sediment Reference Material (PACS-2), were sent for analysis to four separate analytical laboratories as blind controls for organic rich sedimentary rock samples being analyzed from the Red Dog mine area in Alaska. The samples were analyzed for stable isotopes of carbon (delta13Cncc) and nitrogen (delta15N), percent non-carbonate carbon (Wt % Cncc) and percent nitrogen (Wt % N). SDO-1, collected from the Huron Member of the Ohio Shale, near Morehead, Kentucky, and SGR-1, collected from the Mahogany zone of the Green River Formation are petroleum source rocks used as reference materials for chemical analyses of sedimentary rocks. PACS-2 is modern marine sediment collected from the Esquimalt, British Columbia harbor. The results presented in this study are, with the exceptions noted below, the first published for these reference materials. There are published information values for the elemental concentrations of 'organic' carbon (Wt % Corg measured range is 8.98 - 10.4) and nitrogen (Wt % Ntot 0.347 with SD 0.043) only for SDO-1. The suggested values presented here should be considered 'information values' as defined by the NRCC Institute for National Measurement Reference Materials and should be useful for the analysis of 13C, 15N, C and N in organic material in sedimentary rocks.
The Geochemical Databases GEOROC and GeoReM - What's New?
NASA Astrophysics Data System (ADS)
Sarbas, B.; Jochum, K. P.; Nohl, U.; Weis, U.
2017-12-01
The geochemical databases GEOROC (http: georoc.mpch-mainz.gwdg.de) and GeoReM (http: georem.mpch-mainz.gwdg.de) are maintained by the Max Planck Institute for Chemistry in Mainz, Germany. Both online databases became crucial tools for geoscientists from different research areas. They are regularly upgraded by new tools and new data from recent publications obtained from a wide range of international journals. GEOROC is a collection of published analyses of volcanic rocks and mantle xenoliths. Since recently, data for plutonic rocks are added. The analyses include major and trace element concentrations, radiogenic and non-radiogenic isotope ratios as well as analytical ages for whole rocks, glasses, minerals and inclusions. Samples come from eleven geological settings and span the whole geological age scale from Archean to Recent. Metadata include, among others, geographic location, rock class and rock type, geological age, degree of alteration, analytical method, laboratory, and reference. The GEOROC web page allows selection of samples by geological setting, geography, chemical criteria, rock or sample name, and bibliographic criteria. In addition, it provides a large number of precompiled files for individual locations, minerals and rock classes. GeoReM is a database collecting information about reference materials of geological and environmental interest, such as rock powders, synthetic and natural glasses as well as mineral, isotopic, biological, river water and seawater reference materials. It contains published data and compilation values (major and trace element concentrations and mass fractions, radiogenic and stable isotope ratios). Metadata comprise, among others, uncertainty, analytical method and laboratory. Reference materials are important for calibration, method validation, quality control and to establish metrological traceability. GeoReM offers six different search strategies: samples or materials (published values), samples (GeoReM preferred values), chemical criteria, chemical criteria based on bibliography, bibliography, as well as methods and institutions.
The influence of music and stress on musicians' hearing
NASA Astrophysics Data System (ADS)
Kähäri, Kim; Zachau, Gunilla; Eklöf, Mats; Möller, Claes
2004-10-01
Hearing and hearing disorders among classical and rock/jazz musicians was investigated. Pure tone audiometry was done in 140 classical and 139 rock/jazz musicians. The rock/jazz musicians answered a questionnaire concerning hearing disorders and psychosocial exposure. All results were compared to age appropriate reference materials. Hearing thresholds showed a notch configuration in both classical and rock/jazz musicians indicating the inclusion of high sound levels but an overall well-preserved hearing thresholds. Female musicians had significantly better hearing thresholds in the high-frequency area than males. Rock/jazz musicians showed slight worse hearing thresholds as compared to classical musicians. When assessing hearing disorders, a large number of rock/jazz musicians suffered from different hearing disorders (74%). Hearing loss, tinnitus and hyperacusis were the most common disorders and were significantly more frequent in comparison with different reference populations. Among classical musicians, no extended negative progress of the pure tone hearing threshold values was found in spite of the continued 16 years of musical noise exposure. In rock/jazz musicians, there was no relationships between psychosocial factors at work and hearing disorders. The rock/jazz musicians reported low stress and high degree of energy. On the average, the rock/jazz musicians reported higher control, lower stress and higher energy than a reference material of white-collar workers.
NASA Astrophysics Data System (ADS)
Fourny, Anaïs.; Weis, Dominique; Scoates, James S.
2016-03-01
Controlling the accuracy and precision of geochemical analyses requires the use of characterized reference materials with matrices similar to those of the unknown samples being analyzed. We report a comprehensive Pb-Sr-Nd-Hf isotopic and trace element concentration data set, combined with quantitative phase analysis by XRD Rietveld refinement, for a wide range of mafic to ultramafic rock reference materials analyzed at the Pacific Centre for Isotopic and Geochemical Research, University of British Columbia. The samples include a pyroxenite (NIM-P), five basalts (BHVO-2, BIR-1a, JB-3, BE-N, GSR-3), a diabase (W-2), a dolerite (DNC-1), a norite (NIM-N), and an anorthosite (AN-G); results from a leucogabbro (Stillwater) are also reported. Individual isotopic ratios determined by MC-ICP-MS and TIMS, and multielement analyses by HR-ICP-MS are reported with 4-12 complete analytical duplicates for each sample. The basaltic reference materials have coherent Sr and Nd isotopic ratios with external precision below 50 ppm (2SD) and below 100 ppm for Hf isotopes (except BIR-1a). For Pb isotopic reproducibility, several of the basalts (JB-3, BHVO-2) require acid leaching prior to dissolution. The plutonic reference materials also have coherent Sr and Nd isotopic ratios (<50 ppm), however, obtaining good reproducibility for Pb and Hf isotopic ratios is more challenging for NIM-P, NIM-N, and AN-G due to a variety of factors, including postcrystallization Pb mobility and the presence of accessory zircon. Collectively, these results form a comprehensive new database that can be used by the geochemical community for evaluating the radiogenic isotope and trace element compositions of volcanic and plutonic mafic-ultramafic rocks.
SOURCES OF INFORMATION ON ROCK PHYSICS. CURRENT LITERATURE, FEBRUARY 28, 1962
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgin, L.
1962-02-28
A literature review on the field of rock physics, rock mechanics, wave propagation and other related subjects is presented. The 206 references, wtth abstracts, are included under the following categories: physical properties, rock deformation, loading, engineering applications, seismology, wave propagation, and instruments and methods. In each section the articles are arranged alphabetically according to author. The titles are from material which was made available at the Colorado School of Mines, Arthur Lakes Library during February 1962. (M.C.G.)
Asbestos. LC Science Tracer Bullet.
ERIC Educational Resources Information Center
Evans, Joanna, Comp.
Asbestos is a generic term that refers to several silicate materials occurring naturally as fibrous rocks. Insignificant amounts of asbestos fiber can be found in ambient air, but this, and materials containing hard asbestos, usually do not create problems. Soft materials, however, can release high amounts of asbestos fibers into the air, and…
Zhang, Wen; Hu, Zhaochu; Liu, Yongsheng; Yang, Wenwu; Chen, Haihong; Hu, Shenghong; Xiao, Hongyan
2017-08-29
In this paper, we described a NH 4 HF 2 digestion method as sample preparation for the rapid determination of major and trace elements in silicate rocks using laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS). Sample powders digested by NH 4 HF 2 at 230 °C for 3 h form ultrafine powders with a typical grain size d 80 < 8.5 μm, and various silicate rocks have a consistent grain morphology and size, allowing us to produce pressed powder pellets that have excellent cohesion and homogeneity suitable for laser ablation micro-analysis without the addition of binder. The influences of the digestion parameters were investigated and optimized, including the evaporation stage of removing residual NH 4 HF 2 , sample homogenization, selection of the digestion vessel and calibration strategy of quantitative analysis. The optimized NH 4 HF 2 digestion method was applied to dissolve six silicate rock reference materials (BCR-2, BHVO-2, AGV-2, RGM-2, GSP-2, GSR-1) covering a wide range of rock types. Ten major elements and thirty-five trace elements were simultaneously analyzed by LA-ICP-MS. The analytical results of the six reference materials generally agreed with the recommended values, with discrepancies of less than 10% for most elements. The analytical precision is within 5% for most major elements and within 10% for most trace elements. Compared with previous methods of LA-ICP-MS bulk analysis, our method enables the complete dissolution of refractory minerals, such as zircon, in intermediate-acidic intrusive rocks and limits contamination as well as the loss of volatile elements. Moreover, there are many advantages for the new technique, including reducing matrix effects between reference materials and samples, spiking the internal standard simply and feasibly and sample batch processing. The applicability filed of the new technique in this study was focused on the whole-rock analysis of igneous rock samples, which are from basic rocks to acid rocks (45% < SiO 2 < 73%). However, we thought that the NH 4 HF 2 digestion method can be used as a new alternative in LA-ICP-MS for a wider range of geological samples, and will significantly accelerate the application of LA-ICP-MS for the whole-rock analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Thorium and Uranium in the Rock Raw Materials Used For the Production of Building Materials
NASA Astrophysics Data System (ADS)
Pękala, Agnieszka
2017-10-01
Thorium and uranium are constant components of all soils and most minerals thereby rock raw materials. They belong to the particularly dangerous elements because of their natural radioactivity. Evaluation of the content of the radioactive elements in the rock raw materials seems to be necessary in the early stage of the raw material evaluation. The rock formations operated from deposits often are accumulated in landfills and slag heaps where the concentration of the radioactive elements can be many times higher than under natural conditions. In addition, this phenomenon may refer to buildings where rock raw materials are often the main components of the construction materials. The global control system of construction products draws particular attention to the elimination of used construction products containing excessive quantities of the natural radioactive elements. In the presented study were determined the content of thorium and uranium in rock raw materials coming from the Bełachatów lignite deposit. The Bełchatów lignite deposit extracts mainly lignite and secondary numerous accompanying minerals with the raw material importance. In the course of the field works within the framework of the carried out work has been tested 92 samples of rocks of varied petrographic composition. There were carried out analyses of the content of the radioactive elements for 50 samples of limestone of the Jurassic age, 18 samples of kaolinite clays, and 24 samples of siliceous raw materials, represented by opoka-rocks, diatomites, gaizes and clastic rocks. The measurement of content of the natural radioactive elements thorium and uranium based on measuring the frequency counts of gamma quantum, recorded separately in measuring channels. At the same time performed measurements on volume patterns radioactive: thorium and uranium. The studies were carried out in Mazar spectrometer on the powdered material. Standardly performed ten measuring cycles, after which were calculated the concentration of radioactive elements in the sample. The highest concentration of thorium and uranium has been found in the clayey raw material. Their value was respectively from 8 to 12 mg/kg for thorium and from 2.3 to 3.5 mg/kg for uranium. In carbonate sediments the content of thorium was at the level from 0.5 to 2.1 mg/kg and uranium from 0.5-2.2 mg/kg. From a group of the siliceous raw materials the diatomite had a highest concentrations of radioactive elements where the content of thorium was from 1.5 to 1.8 mg/kg and uranium from 1.3 to 1.7 mg/kg.
Compositions of Spherules and Rock Surfaces at Meridiani
NASA Technical Reports Server (NTRS)
Mittlefehldt, David W.; Jolliff, B. L.; Clark, B. C.; Gellert, R.
2007-01-01
The Alpha Particle X-ray Spectrometers (APXS) on the Mars Exploration Rovers (MER) have proven extremely valuable for analyzing rocks and soils on the surface of Mars. The precision of their compositional measurements has been shown to be phenomenal through analyses of the compositionally very uniform Meridiani soils. Through combined use of the rock abrasion tool (RAT) and the analytical instruments on the in-situ deployment device (IDD), analyses of the interiors of fine-grained and texturally uniform rocks with surfaces ground flat have been made under conditions that are nearly ideal for this mode of analysis. The APXS has also been used frequently to analyze materials whose characteristics, surface morphologies, and sample-detector geometries are less than ideal, but the analyses of which are nonetheless very useful for understanding the makeup of the target materials. Such targets include undisturbed rocks with irregular and sometimes coated surfaces and mixed targets such as soils that include fine-grained components as well as coarse grains and pieces of rocks. Such target materials include the well known hematite-rich concretions, referred to as blueberries because of their multispectral color, size, and mode of occurrence. In addition to non-ideal target geometry, such mixed materials also present a heterogeneous target in terms of density. These irregularities violate the assumptions commonly associated with analyses done in the laboratory to achieve the highest possible accuracy. Here we acknowledge the irregularities and we examine the inferences drawn from specific chemical trends obtained on imperfect targets in light of one of the potential pitfalls of natural materials on the surface of Mars, namely thin dust coatings.
Toxic Effects of Man-Made Mineral Fibers with Particular Reference to Ceramic Fibers
1987-09-01
Mineral Wool , Rock Wool, Sarcoma, Slag Wool. BEST AVAILABLE COPY PREFACE This document presents information on the toxic effects of man-made mineral fibers...Naturally Synthetic Occurring Asbestos Others Man-Made OthersMineral Fibers Chrysotile Others Fibrous Ceramic Glass Crocidolite Mineral Wool Rock Slag...In recent years both ceramic fiber and mineral wool have been used to replace asbestos on board many U.S. Navy ships. In particular, material
Thermal model for impact breccia lithification - Manicouagan and the moon
NASA Technical Reports Server (NTRS)
Simonds, C. H.; Warner, J. L.; Phinney, W. C.; Mcgee, P. E.
1976-01-01
The thermal model of Simonds (1975) is extended to the full spectrum of impact-produced rocks ranging from fragmental breccias to impact melts, with reference to the Manicouagan impact structure in Quebec. This is done by relating the basic textural features of impact-lithified rocks to variations in the mixture of superheated impact-fused material originating near the point of impact and much cooler fragmented debris originating farther from the point of impact.
Lidelöw, Sofia; Mácsik, Josef; Carabante, Ivan; Kumpiene, Jurate
2017-12-15
The leaching behaviour of a road construction with fayalitic copper slag, recycled concrete and crushed rock as sub-base materials was monitored over ten years. All studied materials used in the road construction, including crushed rock, contained concentrations of several elements exceeding the guideline values recommended by the Swedish EPA for total element concentrations for waste materials used in constructions. Despite that, leaching from the road construction under field conditions in general was relatively low. The leachates from the recycled materials contained higher concentrations of several constituents than the leachates from the reference section with crushed rock. The leaching of the elements of interest (Cr, Mo, Ni, Zn) reached peak concentrations during the second and fourth (Cu) years and decreased over the observation period to levels below the Swedish recommended values. Carbonation of the concrete aggregates caused a substantial but short-term increase in the leaching of oxyanions such as chromate. The environmental risks related to element leaching are highest at the beginning of the road life. Ageing of materials or pre-treatment through leaching is needed prior to their use in construction to avoid peak concentrations. Also, the design of road constructions should be adjusted so that recycled materials are covered with low-permeability covers, which would minimize the exposure to atmospheric precipitation and weathering. Copyright © 2017 Elsevier Ltd. All rights reserved.
Uranium Mining and Norm in North America-Some Perspectives on Occupational Radiation Exposure.
Brown, Steven H; Chambers, Douglas B
2017-07-01
All soils and rocks contain naturally occurring radioactive materials (NORM). Many ores and raw materials contain relatively elevated levels of natural radionuclides, and processing such materials can further increase the concentrations of naturally occurring radionuclides. In the U.S., these materials are sometimes referred to as technologically-enhanced naturally occurring radioactive materials (TENORM). Examples of NORM minerals include uranium ores, monazite (a source of rare earth minerals), and phosphate rock used to produce phosphate fertilizer. The processing of these materials has the potential to result in above-background radiation exposure to workers. Following a brief review of the sources and potential for worker exposure from NORM in these varied industries, this paper will then present an overview of uranium mining and recovery in North America, including discussion on the mining methods currently being used for both conventional (underground, open pit) and in situ leach (ISL), also referred to as In Situ Recovery (ISR), and the production of NORM materials and wastes associated with these uranium recovery methods. The radiological composition of the NORM products and wastes produced and recent data on radiological exposures received by workers in the North American uranium recovery industry are then described. The paper also identifies the responsible government agencies in the U.S. and Canada assigned the authority to regulate and control occupational exposure from these NORM materials.
Post-impact alteration of the Manson impact structure
NASA Technical Reports Server (NTRS)
Crossey, L. J.; Mccarville, P.
1993-01-01
Core materials from the Manson impact site (Manson, Iowa) are examined in order to evaluate post-impact alteration processes. Diagenetic interpretation of post-impact events is based on petrologic, mineralogic, and geochemical investigation of core materials including the following: target strata, disturbed and disrupted strata, ejecta, breccias, microbreccias, and impact melt. The diagenetic study utilizes research cores obtained by the continental scientific drilling project (CSDP) at the Manson structure, as well as core and cuttings of related materials. Samples include impactites (breccias, microbreccias, and melt material), crater fill material (sedimentary clast breccias), disturbed and disrupted target rocks, and reference target material (Amoco Eisheid No. 1 materials). The study of multiple cores will permit development of a regional picture of post-impact thermal history. The specific objectives are as follows: (1) provide a detailed description of authigenic and alteration mineralogy from diverse lithologies encountered in research drill cores at the Manson impact structure, and (2) identify and relate significant post-impact mineral alteration to post-impact thermal regime (extent and duration). Results will provide mineralogical and geochemical constraints on models for post-impact processes including the following: infilling of the crater depression; cooling and hydrothermal alteration of melt rocks; and subsequent long-term, low-temperature alteration of target rocks, breccias, and melt rocks. Preliminary petrologic and x-ray diffraction examination of fracture linings and void fillings from research core M1 indicate the presence of quartz, chlorite, mixed-layer clays, gypsum/anhydrite, calcite, and minor pyrite.
St. Petersburg Coastal and Marine Science Center's Core Archive Portal
Reich, Chris; Streubert, Matt; Dwyer, Brendan; Godbout, Meg; Muslic, Adis; Umberger, Dan
2012-01-01
This Web site contains information on rock cores archived at the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC). Archived cores consist of 3- to 4-inch-diameter coral cores, 1- to 2-inch-diameter rock cores, and a few unlabeled loose coral and rock samples. This document - and specifically the archive Web site portal - is intended to be a 'living' document that will be updated continually as additional cores are collected and archived. This document may also contain future references and links to a catalog of sediment cores. Sediment cores will include vibracores, pushcores, and other loose sediment samples collected for research purposes. This document will: (1) serve as a database for locating core material currently archived at the USGS SPCMSC facility; (2) provide a protocol for entry of new core material into the archive system; and, (3) set the procedures necessary for checking out core material for scientific purposes. Core material may be loaned to other governmental agencies, academia, or non-governmental organizations at the discretion of the USGS SPCMSC curator.
Winter Roadway Maintenance Material Enhancers (Field) Evaluation
DOT National Transportation Integrated Search
2018-04-06
In this study, the performance and cost analysis of four deicers products, i.e., Aqua Salina (AS), Beet Heet (BH), Green Blast (GB), Magic Minus Zero (MMZ), and two references, Rock Salt (RS) and/or Salt Brine (SB) were evaluated through parking lot ...
NASA Astrophysics Data System (ADS)
Zheng, Yongchun; Wang, Shijie; Feng, Junming; Ouyang, Ziyuan; Li, Xiongyao
2005-12-01
The complex permittivity of dry rocks and minerals varies over a very wide range, even within a sample there are variation at different temperatures and frequencies. Most rocks and minerals are inhomogeneous materials, therefore, most of the present methods of dielectric measurement designed for artificial homogeneous materials are not suitable for rocks and minerals. The resonant cavity perturbation (RCP) method is a reliable and simple technique to determine the complex permittivity of dielectric materials in the GHz range, and this method is also used extensively. However, the traditional RCP method is sensitive to the measurement of low dielectric constant (ɛ') and low loss factor (ɛ'' or tanδ) materials. The complex permittivity of most dry rocks and minerals exceeds the span vibration of the RCP method, and cannot be measured by the RCP method directly. This paper proposes a new method to measure the complex permittivity of dry rocks and minerals with the RCP method incorporated in the application of polythene (PE) dilution method and Lichtenecker's mixture formulae. Dry rocks and minerals were ground into fine powder. The powder of rocks and minerals was mixed with polythene powder in a definite volume per cent. The mixture was heated and pressed into a thin circular slice. The slice was processed into a small rectangular strip sample, the size of which was fitted to the demands of the RCP method. The complex permittivity of the strip was obtained by the RCP method. The relationship between the dielectric properties of the two-phase mixture and those of each phase in the mixture can be expressed by Lichtenecker's mixture formula. Thus the complex permittivity of dry rocks and minerals can be calculated from the complex permittivity of the mixture in case the complex permittivity of polythene is known. The presented method was verified by measurements of reference materials of various known complex permittivity and other reliable dielectric measurement methods. The results of the experiment showed that this new method is of high accuracy, small sample requirement, and convenient application. Moreover, the complex permittivity of rocks and minerals measured by this method is more reliable than the direct dielectric measurement of rocks or minerals without application of the polythene dilution method and Lichtenecker's mixture formulae.
ERIC Educational Resources Information Center
Efthymia, Gourgiotou; Vasiliki, Giannakou; Konstadinos, Christidis
2012-01-01
Land art (or Earth art, or environmental art) refers to an art movement in which landscape and art are linked, and art work is not just placed in nature, but draws from nature. Land art can refer to several interpretations that can be done by anyone and may be combined materials found in nature, such as leaves, fir cones, twigs, pebbles, rocks,…
Natural radionuclides in the rocks of the Valle del Cervo Pluton in Piedmont.
Sesana, Lucia; Fumagalli, Marco; Carnevale, Mauro; Polla, Giancarla; Facchini, Ugo; Colombo, Annita; Tunesi, Annalisa; De Capitani, Luisa; Rusconi, Rosella
2006-01-01
Monitoring of the gamma radiation in Valle del Cervo Pluton was performed by determining U and Th contents in the main rock types cropping out over the entire area and pertaining to the granitic complex, syenitic complex and monzonitic complex. In particular, syenitic rocks were largely used as building and ornamental materials (e.g. Sienite della Balma). All the samples are fresh and do not present joints or fractures filled with U minerals. In the crushed samples the activity of uranium varies from 346 to 764 Bq/kg. Concentration of thorium varies from 202 to 478 Bq/kg. For all the analysed rocks uranium activity is higher than thorium one. The lowest value of radioactive concentration is referred to rocks of the granitic complex. The most active rocks are syenites. The data confirm the high activities of Valle del Cervo rock types, strongly connected with high K content of the source magma (geochemical signature); on the contrary, the activity seems to be not related to the location of the samples.
The Canadian space agency planetary analogue materials suite
NASA Astrophysics Data System (ADS)
Cloutis, Edward A.; Mann, Paul; Izawa, Matthew R. M.; Applin, Daniel M.; Samson, Claire; Kruzelecky, Roman; Glotch, Timothy D.; Mertzman, Stanley A.; Mertzman, Karen R.; Haltigin, Timothy W.; Fry, Christopher
2015-12-01
The Canadian Space Agency (CSA) recently commissioned the development of a suite of over fifty well-characterized planetary analogue materials. These materials are terrestrial rocks and minerals that are similar to those known or suspected to occur on the lunar or martian surfaces. These include: Mars analogue sedimentary, hydrothermal, igneous and low-temperature alteration rock suites; lunar analogue basaltic and anorthositic rock suites; and a generic impactite rock suite from a variety of terrestrial impact structures. Representative thin sections of the materials have been characterized by optical microscopy and electron probe microanalysis (EPMA). Reflectance spectra have been collected in the ultraviolet, visible, near-infrared and mid-infrared, covering 0.2-25 μm. Thermal infrared emission spectra were collected from 5 to 50 μm. Raman spectra with 532 nm excitation, and laser-induced fluorescence spectra with 405 nm excitation were also measured. Bulk chemical analysis was carried out using X-ray fluorescence, with Fe valence determined by wet chemistry. Chemical and mineralogical data were collected using a field-portable Terra XRD-XRF instrument similar to CheMin on the MSL Curiosity rover. Laser-induced breakdown spectroscopy (LIBS) data similar to those measured by ChemCam on MSL were collected for powdered samples, cut slab surfaces, and as depth profiles into weathered surfaces where present. Three-dimensional laser camera images of rock textures were collected for selected samples. The CSA intends to make available sample powders (<45 μm and 45-1000 μm grain sizes), thin sections, and bulk rock samples, and all analytical data collected in the initial characterisation study to the broader planetary science community. Aiming to complement existing planetary analogue rock and mineral libraries, the CSA suite represents a new resource for planetary scientists and engineers. We envision many potential applications for these materials in the definition, development and testing of new analytical instruments for use in planetary missions, as well as possible calibration and ground-truthing of remote sensing data sets. These materials may also be useful as reference materials for cross-calibration between different instruments and laboratories. Comparison of the analytical data for selected samples is useful for highlighting the relative strengths, weaknesses and synergies of different analytical techniques.
ERIC Educational Resources Information Center
Smith, Donna Ridley, Comp.
Over 700 reference materials, songbooks, and recordings on pop, rock, country, folk, blues, and soul music from the 1950s to the present are listed. The bibliography was compiled because the study of popular music is becoming increasingly important to disciplines such as history, communications, and popular culture as well as music. Entries are…
Sen, Indra S; Peucker-Ehrenbrink, Bernhard
2014-03-18
The (187)Os/(188)Os ratio that is based on the β(-)-decay of (187)Re to (187)Os (t1/2 = 41.6 billion years) is widely used to investigate petroleum system processes. Despite its broad applicability to studies of hydrocarbon deposits worldwide, a suitable matrix-matched reference material for Os analysis does not exist. In this study, a method that enables Os isotope measurement of crude oil with in-line Os separation and purification from the sample matrix is proposed. The method to analyze Os concentration and (187)Os/(187)Os involves sample digestion under high pressure and high temperature using a high pressure asher (HPA-S, Anton Paar), sparging of volatile osmium tetroxide from the sample solution, and measurements using multicollector inductively coupled plasma mass spectrometry (MC-ICPMS). This methods significantly reduced the total procedural time compared to conventional Carius tube digestion followed by Os separation and purification using solvent extraction, microdistillation and N-TIMS analysis. The method yields Os concentration (28 ± 4 pg g(-1)) and (187)Os/(188)Os (1.62 ± 0.15) of commercially available crude oil reference material NIST 8505 (1 S.D., n = 6). The reference material NIST 8505 is homogeneous with respect to Os concentration at a test portion size of 0.2 g. Therefore, (187)Os/(188)Os composition and Os concentration of NIST 8505 can serve as a matrix-matched reference material for Os analysis. Data quality was assessed by repeated measurements of the USGS shale reference material SCo-1 (sample matrix similar to petroleum source rock) and the widely used Liquid Os Standard solution (LOsSt). The within-laboratory reproducibility of (187)Os/(188)Os for a 5 pg of LOsSt solution, analyzed with this method over a period of 12 months was ∼1.4% (1 S.D., n = 26), respectively.
NASA Astrophysics Data System (ADS)
Ravisankar, R.; Manikandan, E.; Dheenathayalu, M.; Rao, Brahmaji; Seshadreesan, N. P.; Nair, K. G. M.
2006-10-01
Beach rocks are a peculiar type of formation when compared to other types of rocks. Rare earth element (REE) concentrations in beach rock samples collected from the South East Coast of Tamilnadu, India, have been measured using the instrumental neutron activation analysis (INAA) single comparator K0 method. The irradiations were carried out using a thermal neutron flux of ˜10 11 n cm -2 s -1 at 20 kW power using the Kalpakkam mini reactor (KAMINI), IGCAR, Kalpakkam, Tamilnadu. Accuracy and precision were evaluated by assaying irradiated standard reference material (SRM 1646a estuarine sediment). The results being found to be in good agreement with certified values. REE elements have been determined from 15 samples using high-resolution gamma spectrometry. The geochemical behavior of REE in beach rock, in particular REE (chondrite-normalized) pattern has been studied.
ERIC Educational Resources Information Center
Stivers, Richard
2007-01-01
Rock music, rap, and heavy metal are all forms of vulgar music. Vulgarity refers to actions and communication that are "common, noisy, and gross," and are "untranscendent." A technological society is a vulgar society in its base of materialism and exclusive concern with power. Its excessive rationality produces a need for escape, for ecstasy, for…
Mechanical Characteristics Analysis of Surrounding Rock on Anchor Bar Reinforcement
NASA Astrophysics Data System (ADS)
Gu, Shuan-cheng; Zhou, Pan; Huang, Rong-bin
2018-03-01
Through the homogenization method, the composite of rock and anchor bar is considered as the equivalent material of continuous, homogeneous, isotropic and strength parameter enhancement, which is defined as reinforcement body. On the basis of elasticity, the composite and the reinforcement are analyzed, Based on strengthening theory of surrounding rock and displacement equivalent conditions, the expression of reinforcement body strength parameters and mechanical parameters is deduced. The example calculation shows that the theoretical results are close to the results of the Jia-mei Gao[9], however, closer to the results of FLAC3D numerical simulation, it is proved that the model and surrounding rock reinforcement body theory are reasonable. the model is easy to analyze and calculate, provides a new way for determining reasonable bolt support parameters, can also provides reference for the stability analysis of underground cavern bolting support.
Resources for a lunar base: Rocks, minerals, and soil of the Moon
NASA Technical Reports Server (NTRS)
Taylor, Lawrence A.
1992-01-01
The rocks and minerals of the Moon will be included among the raw materials used to construct a lunar base. The lunar regolith, the fragmental material present on the surface of the Moon, is composed mostly of disaggregated rocks and minerals, but also includes glassy fragments fused together by meteorite impacts. The finer fraction of the regolith (i.e., less than 1 cm) is informally referred to as soil. The soil is probably the most important portion of the regolith for use at a lunar base. For example, soil can be used as insulation against cosmic rays, for lunar ceramics and abodes, or for growing plants. The soil contains abundant solar-wind-implanted elements as well as various minerals, particularly oxide phases, that are of potential economic importance. For example, these components of the soil are sources of oxygen and hydrogen for rocket fuel, helium for nuclear energy, and metals such as Fe, Al, Si, and Ti.
NASA Technical Reports Server (NTRS)
Benafan, Othmane; Noebe, Ronald D.; Halsmer, Timothy J.
2015-01-01
A static rock splitter device based on high-force, high-temperature shape memory alloys (HTSMAs) was developed for space related applications requiring controlled geologic excavation in planetary bodies such as the Moon, Mars, and near-Earth asteroids. The device, hereafter referred to as the shape memory alloy rock splitter (SMARS), consisted of active (expanding) elements made of Ni50.3Ti29.7Hf20 (at.%) that generate extremely large forces in response to thermal input. The preshaping (training) of these elements was accomplished using isothermal, isobaric and cyclic training methods, which resulted in active components capable of generating stresses in excess of 1.5 GPa. The corresponding strains (or displacements) were also evaluated and were found to be 2 to 3 percent, essential to rock fracturing and/or splitting when placed in a borehole. SMARS performance was evaluated using a test bed consisting of a temperature controller, custom heaters and heater holders, and an enclosure for rock placement and breakage. The SMARS system was evaluated using various rock types including igneous rocks (e.g., basalt, quartz, granite) and sedimentary rocks (e.g., sandstone, limestone).
2001-01-01
and erosion of embankment or foundation materials and hydraulic fracturing while using water. The new ER establishes a policy for drilling in earth...Table 5-4 In Situ Tests to Determine Stress Conditions Bibliographic Test Soils Rocks Reference Remarks Hydraulic fracturing X...Leach (1977) Only for normally consolidated or slightly Mitchell, Guzikowski, consolidated soils and Villet (1978) Hydraulic fracturing X RTH 344 Stress
NASA Astrophysics Data System (ADS)
Amosova, Alena A.; Panteeva, Svetlana V.; Chubarov, Victor M.; Finkelshtein, Alexandr L.
2016-08-01
The fusion technique is proposed for simultaneous determination of 35 elements from the same sample. Only 110 mg of rock sample was used to obtain fused glasses for quantitative determination of 10 major elements by wavelength dispersive X-ray fluorescence analysis, 16 rare earth elements and some other trace elements by inductively coupled plasma mass spectrometry analysis. Fusion was performed with 1.1 g of lithium metaborate and LiBr solution as the releasing agent in platinum crucible in electric furnace at 1100 °C. The certified reference materials of ultramafic, mafic, intermediate and felsic igneous rocks have been applied to obtain the calibration curves for rock-forming oxides (Na2O, MgO, Al2O3, SiO2, P2O5, K2O, CaO, TiO2, MnO, Fe2O3) and some trace elements (Ba, Sr, Zr) determination by X-ray fluorescence analysis. The repeatability does not exceed the allowable standard deviation for a wide range of concentrations. In the most cases the relative standard deviation was less than 5%. Obtained glasses were utilized for the further determination of rare earth (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and some other (Ba, Sr, Zr, Rb, Cs, Y, Nb, Hf, Ta, Th and U) trace elements by inductively coupled plasma mass spectrometry analysis with the same certified reference materials employed. The results could mostly be accepted as satisfactory. The proposed procedure essentially reduces the expenses in comparison with separate sample preparation for inductively coupled plasma mass spectrometry and X-ray fluorescence analysis.
Radiometric dates from Alaska: A 1975 compilation
Turner, D.L.; Grybeck, Donald; Wilson, Frederic H.
1975-01-01
The following table of radiometric dates from Alaska includes published material through 1972 as well as some selected later data. The table includes 726 mineral and whole-rock dates determined by the K-Ar, Rb-Sr, fission-track U-Pb, and Pb-alpha techniques.The data are organized in alphabetical order of the 1:250,000 scale quadrangles in which the dated rocks are located. The latitude and longitude of each sample are given. In addition, each sample is located on a 1:250,000 quadrangle map by a grid system. The initial point of the grid is taken as the southwest corner of the quadrangle and the location of the sample is measured in inches east and inches north from that corner, e.g., "156E 126N" indicated 15.6 inches east and 12.6 inches north of the southwest corner of the quadrangle. Zeroes in the location columns for some dates indicate that accurate locations are not available.Rock type, dating method, mineral dated, radiometric age, sample identification number, and reference are also listed where possible. Short comments, mostly geographic locality names, are given for some dates. These comments have been taken from the original references.Sample identification numbers beginning with "AA" or "BB" have been assigned arbitrarily in cases where sample numbers were not assigned in the original references. Abbreviations are explained in the appendix at the end of table 1.
High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS
NASA Astrophysics Data System (ADS)
Weis, Dominique; Kieffer, Bruno; Maerschalk, Claude; Barling, Jane; de Jong, Jeroen; Williams, Gwen A.; Hanano, Diane; Pretorius, Wilma; Mattielli, Nadine; Scoates, James S.; Goolaerts, Arnaud; Friedman, Richard M.; Mahoney, J. Brian
2006-08-01
The Pacific Centre for Isotopic and Geochemical Research (PCIGR) at the University of British Columbia has undertaken a systematic analysis of the isotopic (Sr, Nd, and Pb) compositions and concentrations of a broad compositional range of U.S. Geological Survey (USGS) reference materials, including basalt (BCR-1, 2; BHVO-1, 2), andesite (AGV-1, 2), rhyolite (RGM-1, 2), syenite (STM-1, 2), granodiorite (GSP-2), and granite (G-2, 3). USGS rock reference materials are geochemically well characterized, but there is neither a systematic methodology nor a database for radiogenic isotopic compositions, even for the widely used BCR-1. This investigation represents the first comprehensive, systematic analysis of the isotopic composition and concentration of USGS reference materials and provides an important database for the isotopic community. In addition, the range of equipment at the PCIGR, including a Nu Instruments Plasma MC-ICP-MS, a Thermo Finnigan Triton TIMS, and a Thermo Finnigan Element2 HR-ICP-MS, permits an assessment and comparison of the precision and accuracy of isotopic analyses determined by both the TIMS and MC-ICP-MS methods (e.g., Nd isotopic compositions). For each of the reference materials, 5 to 10 complete replicate analyses provide coherent isotopic results, all with external precision below 30 ppm (2 SD) for Sr and Nd isotopic compositions (27 and 24 ppm for TIMS and MC-ICP-MS, respectively). Our results also show that the first- and second-generation USGS reference materials have homogeneous Sr and Nd isotopic compositions. Nd isotopic compositions by MC-ICP-MS and TIMS agree to within 15 ppm for all reference materials. Interlaboratory MC-ICP-MS comparisons show excellent agreement for Pb isotopic compositions; however, the reproducibility is not as good as for Sr and Nd. A careful, sequential leaching experiment of three first- and second-generation reference materials (BCR, BHVO, AGV) indicates that the heterogeneity in Pb isotopic compositions, and concentrations, could be directly related to contamination by the steel (mortar/pestle) used to process the materials. Contamination also accounts for the high concentrations of certain other trace elements (e.g., Li, Mo, Cd, Sn, Sb, W) in various USGS reference materials.
Iron-Manganese Redox Reactions in Endeavour Crater Rim Apron Rocks
NASA Technical Reports Server (NTRS)
Ming, D. W.; Mittlefehldt, D. W.; Gellert, R.; Peretyazhko, T.; Clark, B. C.; Morris, R. V.; Yen, A. S.; Arvidson, R. E.; Crumpler, L. S.; Farrand, W. H.;
2015-01-01
The Mars Exploration Rover Opportunity has been exploring Noachian age rocks and outcrops on the rim of the 22 km diameter Endeavour crater since August 2011. The Cape York area is a low-lying rim of Endeavour that contains 3 distinct lithologies: 1) the stratigraphically lowest Matijevic fm of pre-impact lithology, 2) Shoemaker fm of impact breccias, and 3) the stratigraphically highest rim lithology Grasberg fm of post-impact sediments that drape the lower slopes of the rim. The sulfate-rich sediment of the Burns fm lies unconformably over the Grasberg fm. Ca-sulfate veins were discovered in Grasberg fm sediments; the sulfates precipitated from aqueous fluids flowing upward through these materials. Opportunity investigated the chemistry and morphology of outcrops in the Matijevic fm that have Fe(sup 3+)-rich smectite detected by orbital signatures returned by CRISM on MRO. Matijevic fm also contains "boxwork" fractures with chemistry consistent with an Al-rich smectite and veins that appear to be rich in Ca-sulfate. More recently on Cape Tribulation, Opportunity has characterized two S-, Mg- and Mn-rich rich rocks overturned and fractured by the rover's wheels on Cook Haven. Those rocks have been dubbed "Pinnacle Island" and "Stuart Island" and will be referred to as the "Island" rocks. The objectives of this study are to characterize the Fe and Mn contents in the Cape York materials, including the two Island rocks, and to provide a model for Mn mobilization and precipitation. Detailed geochemistry of Endeavour rim rocks is presented in a companion paper. Geochemical trends and elemental associations were obtained from data returned by the Alpha Particle X-ray Spectrometer (APXS) on Opportunity.
A new basaltic glass microanalytical reference material for multiple techniques
Wilson, Steve; Koenig, Alan; Lowers, Heather
2012-01-01
The U.S. Geological Survey (USGS) has been producing reference materials since the 1950s. Over 50 materials have been developed to cover bulk rock, sediment, and soils for the geological community. These materials are used globally in geochemistry, environmental, and analytical laboratories that perform bulk chemistry and/or microanalysis for instrument calibration and quality assurance testing. To answer the growing demand for higher spatial resolution and sensitivity, there is a need to create a new generation of microanalytical reference materials suitable for a variety of techniques, such as scanning electron microscopy/X-ray spectrometry (SEM/EDS), electron probe microanalysis (EPMA), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS). As such, the microanalytical reference material (MRM) needs to be stable under the beam, be homogeneous at scales of better than 10–25 micrometers for the major to ultra-trace element level, and contain all of the analytes (elements or isotopes) of interest. Previous development of basaltic glasses intended for LA-ICP-MS has resulted in a synthetic basaltic matrix series of glasses (USGS GS-series) and a natural basalt series of glasses (BCR-1G, BHVO-2G, and NKT-1G). These materials have been useful for the LA-ICP-MS community but were not originally intended for use by the electron or ion beam community. A material developed from start to finish with intended use in multiple microanalytical instruments would be useful for inter-laboratory and inter-instrument platform comparisons. This article summarizes the experiments undertaken to produce a basalt glass reference material suitable for distribution as a multiple-technique round robin material. The goal of the analytical work presented here is to demonstrate that the elemental homogeneity of the new glass is acceptable for its use as a reference material. Because the round robin exercise is still underway, only nominal compositional ranges for each element are given in the article.
Rockwell, Barnaby W.
2004-01-01
Analysis of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data covering the Big Rock Candy Mountain area of the Marysvale volcanic field, west-central Utah, identified abundant rocks and soils bearing jarosite, goethite, and chlorite associated with volcanic rocks altered to propylitic grade during the Miocene (2321 Ma). Propylitically-altered rocks rich in pyrite associated with the relict feeder zones of convecting, shallow hydrothermal systems are currently undergoing supergene oxidation to natrojarosite, kaolinite, and gypsum. Goethite coatings are forming at the expense of jarosite where most pyrite has been consumed through oxidation in alluvium derived from pyrite-bearing zones. Spectral variations in the goethite-bearing rocks that resemble variations found in reference library samples of goethites of varying grain size were observed in the AVIRIS data. Rocks outside of the feeder zones have relatively low pyrite content and are characterized by chlorite, epidote, and calcite, with local copper-bearing quartz-calcite veins. Iron-bearing minerals in these rocks are weathering directly to goethite. Laboratory spectral analyses were applied to samples of iron-bearing rock outcrops and alluvium collected from the area to determine the accuracy of the AVIRIS-based mineral identification. The accuracy of the iron mineral identification results obtained by analysis of the AVIRIS data was confirmed. In general, the AVIRIS analysis results were accurate in identifying medium-grained goethite, coarse-grained goethite, medium- to coarse-grained goethite with trace jarosite, and mixtures of goethite and jarosite. However, rock fragments from alluvial areas identified as thin coatings of goethite with the AVIRIS data were found to consist mainly of medium- to coarse-grained goethite based on spectral characteristics in the visible and near-infrared. To determine if goethite abundance contributed to the spectral variations observed in goethite-bearing rocks with AVIRIS data, a laboratory experiment was performed in which spectra were acquired of a goethite-bearing rock while progressively decreasing the areal abundance of the rock with respect to a background of white, fine-grained quartz sand. This experiment found that, with decreasing material abundance, the crystal field absorption feature of goethite near 1.0 micron decreases in depth and narrows more from the long wavelength side of the feature than from the short wavelength side, as is the case in goethite reference spectra as grain size decreases from coarse to fine. In the Marysvale study area, goethite-bearing alluvium downgradient from source outcrops tends to be identified as finer-grained or thin coatings of goethite due to the minerals presence in lesser abundance. The goethite-bearing alluvium is a closer match to reference spectra of thin coatings of goethite even though the actual grain size of the contained goethite fragments is medium to coarse grained, the same on average as that from the source outcrops. Coarser-grained goethite most likely will be correctly identified in areas of greater goethite abundance proximal to jarosite-bearing source rock where the surface is relatively free of goethite-free soil components and vegetation that corrupt the goethite spectral response. When analysis of imaging spectroscopy data is performed using reference spectra of iron minerals of varying grain sizes and mixed compositions, the results are useful not only for purposes of mineral identification, but also for distinguishing goethite-bearing outcrop from alluvial surfaces with similar mineralogy, providing valuable information for geologic, geomorphologic, mineral exploration, and environmental assessment studies.
NASA Astrophysics Data System (ADS)
Ashley, J. W.; Tait, A. W.; Velbel, M. A.; Boston, P. J.; Carrier, B. L.; Cohen, B. A.; Schröder, C.; Bland, P.
2017-12-01
Exogenic rocks (meteorites) found on Mars 1) have unweathered counterparts on Earth; 2) weather differently than indigenous rocks; and 3) may be ideal habitats for putative microorganisms and subsequent biosignature preservation. These attributes show the potential of meteorites for addressing hypothesis-driven science. They raise the question of whether chondritic meteorites, of sufficient weathering intensity, might be considered as candidates for sample return in a potential future mission. Pursuant to this discussion are the following questions. A) Is there anything to be learned from the laboratory study of a martian chondrite that cannot be learned from indigenous materials; and if so, B) is the science value high enough to justify recovery? If both A and B answer affirmatively, then C) what are the engineering constraints for sample collection for Mars 2020 and potential follow-on missions; and finally D) what is the likelihood of finding a favorable sample? Observations relevant to these questions include: i) Since 2005, 24 candidate and confirmed meteorites have been identified on Mars at three rover landing sites, demonstrating their ubiquity and setting expectations for future finds. All have been heavily altered by a variety of physical and chemical processes. While the majority of these are irons (not suitable for recovery), several are weathered stony meteorites. ii) Exogenic reference materials provide the only chemical/isotope standards on Mars, permitting quantification of alteration rates if residence ages can be attained; and possibly enabling the removal of Late Amazonian weathering overprints from other returned samples. iii) Recent studies have established the habitability of chondritic meteorites with terrestrial microorganisms, recommending their consideration when exploring astrobiological questions. High reactivity, organic content, and permeability show stony meteorites to be more attractive for colonization and subsequent biosignature preservation than Earth rocks. iv) Compressive strengths of most ordinary chondrites are within the range of rocks being tested for the Mars 2020 drill bits, provided that sufficient size, stability, and flatness of a target can be achieved. Alternatively, the regolith collection bit could be employed for unconsolidated material.
NASA Astrophysics Data System (ADS)
Marcon, V.; Gu, X.; Brantley, S. L.
2017-12-01
Life on Earth relies on the breakdown of impermeable bedrock into porous weathered rock to release nutrients and open pathways for gases and fluids to move through the subsurface. Serpentinites, though rare, are found across the globe and often have thin soils. Few studies have evaluated how porosity, a first order control on weathering, evolves from unweathered serpentinite bedrock to the soil. In this study, we evaluated weathering of serpentinites from bedrock to soil along a ridgetop in Nottingham Park, PA. A suite of geochemical analyses were used to determine chemical and physical changes during weathering. We used neutron scattering to measure pores 2nm to 20 microns in size (referred to here as nanoporosity). As this serpentinite weathers, small pores ( 1nm in diameter) are occluded and total nanoporosity and pore connectivity decrease throughout the weathered rock. Specifically, total nanoporosity decreases from 10% in the unweathered parent material to 5% in the weathered rock. However, in the upper meter of the profile, total nanoporosity increases as Fe, Mg, Mn, Si, Ni, Cr, and V are depleted. Additionally, bulk density and strain calculations suggest total volume expansion throughout the weathered rock followed by volume collapse in the upper 0.5m of the profile. We propose that low temperature reactions alter olivine in the parent material to serpentine minerals at the parent-weathered rock interface, resulting in a volume expansion and the loss of nanopores 1-100nm in size in this weathered rock zone. Volume expansion has long been reported to occur during low temperature serpentinization. We also infer that this loss of porosity limits the infiltration of reactive meteoric fluids into the deeper rock material and restricts the depth of regolith development. Following low temperature serpentinization, serpentine minerals (e.g. antigorite and lizardite) dissolve higher in the weathered rock. Because serpentinite rocks lack a non-reactive mineral such as quartz to provide supportive skeleton in the regolith, dissolution ultimately leads to collapse in the upper meter of the profile. The evolution of porosity in this profile can help explain why serpentinite regolith is characteristically thin to non-existent in the Piedmont: thin regolith occurs because of porosity occlusion as well as collapse.
Characterization of Unstable Rock Slopes Through Passive Seismic Measurements
NASA Astrophysics Data System (ADS)
Kleinbrod, Ulrike; Burjánek, Jan; Fäh, Donat
2014-05-01
Catastrophic rock slope failures have high social impact, causing significant damage to infrastructure and many casualties throughout the world each year. Both detection and characterization of rock instabilities are therefore of key importance. Analysing unstable rock slopes by means of ambient vibrations might be a new alternative to the already existing methods as for example geotechnical displacement measurements. A systematic measurement campaign has been initiated recently in Switzerland in order to study the seismic response of potential rockslides concerning a broad class of slope failure mechanisms and material conditions. First results are presented in this contribution. Small aperture seismic arrays were deployed at sites of interest for a short period of time (several hours) in order to record ambient vibrations. During each measurement a reference station was installed on a stable part close to the instability. The total number of stations used varies from 16 down to 2, depending on the site scope and resource availability. Instable rock slopes show a highly directional ground motion which is significantly amplified with respect to stable areas. These effects are strongest at certain frequencies which are identified as eigenfrequencies of the unstable rock mass. The eigenfrequencies and predominant directions have been estimated by frequency dependent polarization analysis. Site-to-reference spectral ratios have been calculated as well in order to estimate the relative amplification of ground motion at unstable parts. The retrieved results were compared with independent in-situ observations and other available data. The directions of maximum amplification are in most cases perpendicular to open cracks mapped on the surface and in good agreement with the deformation directions obtained by geodetic measurements. The interpretation of the observed wave field is done through numerical modelling of seismic wave propagation in fractured media with complex topography. For example, a potential relation between eigenfrequencies and unstable rock mass volume is investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-09-01
The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC {section}7901 et seq.), hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miquel County. Contaminated materials cover an estimated 63 acres of the Union Carbide (UC) processing site and 15 ac of the North Continent (NC) processing site. The sites are within 1 mile of each other and are adjacent to the Dolores River. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown andmore » waterborne radioactive tailings materials. The total estimated volume of contaminated materials is approximately 621,300 cubic yards (yd{sup 3}). In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designing site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi northeast of the sites on land administered by the Bureau of Land Management (BLM).« less
NASA Technical Reports Server (NTRS)
Farrand, W. H.; Johnson, J. R.; Bell, J. F., III; Mittlefehldt, D. W.; Gellert, R.; VanBommel, S.; Arvidson, R. E.; Schroder, C.
2017-01-01
The Mars Exploration Rover Opportunity has concluded its exploration of Marathon Valley, a 100-meter-wide valley in the western rim of the 22-kilometer-diameter Endeavour crater. Orbital observations from CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) indicated the presence of Fe smectites in Marathon Valley. Since leaving the valley, Opportunity has been traversing along the inner rim of the crater, and currently towards the outer rim. This presentation describes the Pancam 430 to 1009 nanometer (VNIR - Visible and Near Infared) multispectral reflectance and APXS (Alpha Particle X-ray Spectrometer) chemical compositions of rock and soil units observed during the latter portions of the Marathon Valley campaign on the Knudson Ridge area and observations of those materi-als along the traverse to the south. Full Pancam spectral coverage of rock targets consists of 13 filter (13f) data collections with 11 spectrally unique channels with data processing. Data were examined using spectral parameters, decorrelation stretch composites, and spectral mixture analysis. Note that color terms used here refer to colors in various false-color renditions, not true colors. The APXS determines major and select trace element compositions of targets.
DMTB: the magnetotactic bacteria database
NASA Astrophysics Data System (ADS)
Pan, Y.; Lin, W.
2012-12-01
Magnetotactic bacteria (MTB) are of interest in biogeomagnetism, rock magnetism, microbiology, biomineralization, and advanced magnetic materials because of their ability to synthesize highly ordered intracellular nano-sized magnetic minerals, magnetite or greigite. Great strides for MTB studies have been made in the past few decades. More than 600 articles concerning MTB have been published. These rapidly growing data are stimulating cross disciplinary studies in such field as biogeomagnetism. We have compiled the first online database for MTB, i.e., Database of Magnestotactic Bacteria (DMTB, http://database.biomnsl.com). It contains useful information of 16S rRNA gene sequences, oligonucleotides, and magnetic properties of MTB, and corresponding ecological metadata of sampling sites. The 16S rRNA gene sequences are collected from the GenBank database, while all other data are collected from the scientific literature. Rock magnetic properties for both uncultivated and cultivated MTB species are also included. In the DMTB database, data are accessible through four main interfaces: Site Sort, Phylo Sort, Oligonucleotides, and Magnetic Properties. References in each entry serve as links to specific pages within public databases. The online comprehensive DMTB will provide a very useful data resource for researchers from various disciplines, e.g., microbiology, rock magnetism and paleomagnetism, biogeomagnetism, magnetic material sciences and others.
The Usability of Rock-Like Materials for Numerical Studies on Rocks
NASA Astrophysics Data System (ADS)
Zengin, Enes; Abiddin Erguler, Zeynal
2017-04-01
The approaches of synthetic rock material and mass are widely used by many researchers for understanding the failure behavior of different rocks. In order to model the failure behavior of rock material, researchers take advantageous of different techniques and software. But, the majority of all these instruments are based on distinct element method (DEM). For modeling the failure behavior of rocks, and so to create a fundamental synthetic rock material model, it is required to perform related laboratory experiments for providing strength parameters. In modelling studies, model calibration processes are performed by using parameters of intact rocks such as porosity, grain size, modulus of elasticity and Poisson ratio. In some cases, it can be difficult or even impossible to acquire representative rock samples for laboratory experiments from heavily jointed rock masses and vuggy rocks. Considering this limitation, in this study, it was aimed to investigate the applicability of rock-like material (e.g. concrete) to understand and model the failure behavior of rock materials having complex inherent structures. For this purpose, concrete samples having a mixture of %65 cement dust and %35 water were utilized. Accordingly, intact concrete samples representing rocks were prepared in laboratory conditions and their physical properties such as porosity, pore size and density etc. were determined. In addition, to acquire the mechanical parameters of concrete samples, uniaxial compressive strength (UCS) tests were also performed by simultaneously measuring strain during testing. The measured physical and mechanical properties of these extracted concrete samples were used to create synthetic material and then uniaxial compressive tests were modeled and performed by using two dimensional discontinuum program known as Particle Flow Code (PFC2D). After modeling studies in PFC2D, approximately similar failure mechanism and testing results were achieved from both experimental and artificial simulations. The results obtained from these laboratory tests and modelling studies were compared with the other researcher's studies in respect to failure mechanism of different type of rocks. It can be concluded that there is similar failure mechanism between concrete and rock materials. Therefore, the results obtained from concrete samples that would be prepared at different porosity and pore sizes can be used in future studies in selection micro-mechanical and physical properties to constitute synthetic rock materials for understanding failure mechanism of rocks having complex inherent structures such as vuggy rocks or heavily jointed rock masses.
Effects of Simple Leaching of Crushed and Powdered Materials on High-precision Pb Isotope Analyses
NASA Astrophysics Data System (ADS)
Todd, E.; Stracke, A.
2013-12-01
We present new results of simple leaching experiments on the Pb isotope composition of USGS standard reference material powders and on ocean island basalt whole rock splits and powders. Rock samples were leached with 6N HCl in two steps, first hot and then in an ultrasonic bath, and washed with ultrapure H2O before conventional sample digestion and chromatographic purification of Pb. Pb isotope analyses were determined with Tl-doped MC-ICP-MS. Intra- and inter-session analytical reproducibility of repeated analyses of both synthetic Pb solutions and Pb from single digests of chemically processed natural samples were generally < 100 ppm (2 S.D.). The comparison of leached and unleached samples shows that leaching reliably removes variable amounts of different contaminants for different starting materials. For repeated digests of a single sample, the leached samples reproduce better than the unleached ones, showing that leaching effectively removes heterogeneously distributed extraneous Pb. However, the reproducibility of repeated digests of variably contaminated natural samples is up to an order of magnitude worse than the analytical reproducibility of ca. 100 ppm. More complex leaching methods (e.g., Nobre Silva et al., 2009) yield Pb isotope ratios within error of and with similar reproducibility to our method, showing that the simple leaching method is reliable. The remaining Pb isotope heterogeneity of natural samples, which typically exceeds 100 ppm, is thus attributed to inherent isotopic sample heterogeneity. Tl-doped MC-ICP-MS Pb ratio determination is therefore a sufficiently precise method for Pb isotope analyses in natural rocks. More precise Pb double- or triple-spike methods (e.g., Galer, 1999; Thirlwall, 2000), may exploit their full potential only in cases where natural isotopic sample heterogeneity is demonstrably negligible. References: Galer, S., 1999, Chem. Geol. 157, 255-274. Nobre Silva, et al. 2009, Geochemistry Geophysics Geosystems 10, Q08012. Thirlwall, M.F., 2000, Chem. Geol. 163, 299-322.
Flameless atomic-absorption determination of gold in geological materials
Meier, A.L.
1980-01-01
Gold in geologic material is dissolved using a solution of hydrobromic acid and bromine, extracted with methyl isobutyl ketone, and determined using an atomic-absorption spectrophotometer equipped with a graphite furnace atomizer. A comparison of results obtained by this flameless atomic-absorption method on U.S. Geological Survey reference rocks and geochemical samples with reported values and with results obtained by flame atomic-absorption shows that reasonable accuracy is achieved with improved precision. The sensitivity, accuracy, and precision of the method allows acquisition of data on the distribution of gold at or below its crustal abundance. ?? 1980.
NASA Astrophysics Data System (ADS)
Bokhari, Syed Nadeem H.; Meisel, Thomas
2014-05-01
Zircon (ZrSiO4) is a common accessory mineral in nature that occurs in a wide variety of sedimentary, igneous, and metamorphic rocks. Zircon has the ability to retain substantial chemical and isotopic information that are used in range of geochemical and geo- chronological investigations. Sample digestion of such rock types is a limiting factor due to the chemical inertness of zircon (ZrSiO4) tourmaline, chromite, barite, monazite, sphene, xenotime etc. as the accuracy of results relies mainly on recovery of analytes from these minerals. Dissolution by wet acid digestions are often incomplete and high blank and total dissolved solids (TDS) contents with alkali fusions lead to an underestimation of analyte concentrations. Hence an effective analytical procedure, that successfully dissolves refractory minerals such as zircon is needed to be employed for reliable analytical results. Na2O2 digestion [1] was applied in characterisation of granite (G-3), rhyolite (MRH), andesite (MGL-AND) and harzburgite (MUH-1) powdered reference material with solution based ICP-MS analysis. In this study we undertake a systematic evaluation of decomposition time and sample:Na2O2 ratio and test portion size after minimising effect of all other constraints that makes homogeneity ambiguous. In recovering zircon and chromite 100 mg test portion was mixed with different amounts of Na2O2 i.e. 100-600 mg. Impact of decomposition time was observed by systematically increasing heating time from 30-45 minutes to 90-120 minutes at 480°C. Different test portion sizes 100-500 mg of samples were digested to control variance of inhomogeneity. An improved recovery of zirconium in zircon in granite (G-3), rhyolite MRH), andesite (MGL-AND) and chromite in harzburgite (MUH-1) was obtained by increasing heating time (2h) at 480°C and by keeping (1:6) ratio of sample:Na2O2. Through this work it has been established that due to presence of zircon and chromite, decomposition time and sample:Na2O2 ratio has to be increased for an accurate content determination and complete release of analytes for geochronological studies. Larger test portion size reduces the heterogeneity issues in granites in particular [2]. No significant blanks issues were observed and interferences were controlled using QQQ MS mode of ICP-MS. References [1] Meisel, T., N. Schöner, et al. (2002). "Determination of Rare Earth Elements, Y, Th, Zr, Hf, Nb and Ta in Geological Reference Materials G-2, G-3, SCo-1 and WGB-1 by Sodium Peroxide Sintering and Inductively Coupled Plasma-Mass Spectrometry." Geostandards Newsletter 26(1): 53-61. [2] Bokhari SNH., Meisel T (2013) "The Determination of Homogeneity of Geological Reference Material" Mineralogical Magazine, 77(5): 731.
Sanzolone, R.F.; Chao, T.T.; Welsch, E.P.
1979-01-01
Rock and soil samples are decomposed with HClO4-HNO3; after further treatment, arsine is generated and absorbed in a dilute silver nitrate solution. Aliquots of this solution are injected into a carbon rod atomizer. Down to 1 ppm As in samples can be determined and there are no significant interferences, even from chromium in soils. Good results were obtained for geochemical reference samples. ?? 1979.
The geomechanical strength of carbonate rock in Kinta valley, Ipoh, Perak Malaysia
NASA Astrophysics Data System (ADS)
Mazlan, Nur Amanina; Lai, Goh Thian; Razib, Ainul Mardhiyah Mohd; Rafek, Abdul Ghani; Serasa, Ailie Sofyiana; Simon, Norbert; Surip, Noraini; Ern, Lee Khai; Mohamed, Tuan Rusli
2018-04-01
The stability of both cut rocks and underground openings were influenced by the geomechanical strength of rock materials, while the strength characteristics are influenced by both material characteristics and the condition of weathering. This paper present a systematic approach to quantify the rock material strength characteristics for material failure and material & discontinuities failure by using uniaxial compressive strength, point load strength index and Brazilian tensile strength for carbonate rocks. Statistical analysis of the results at 95 percent confidence level showed that the mean value of compressive strength, point load strength index and Brazilian tensile strength for with material failure and material & discontinuities failure were 76.8 ± 4.5 and 41.2 ± 4.1 MPa with standard deviation of 15.2 and 6.5 MPa, respectively. The point load strength index for material failure and material & discontinuities failure were 3.1 ± 0.2 MPa and 1.8 ± 0.3 MPa with standard deviation of 0.9 and 0.6 MPa, respectively. The Brazilian tensile strength with material failure and material & discontinuities failure were 7.1 ± 0.3 MPa and 4.1 ± 0.3 MPa with standard deviation of 1.4 and 0.6 MPa, respectively. The results of this research revealed that the geomechanical strengths of rock material of carbonate rocks for material & discontinuities failure deteriorates approximately ½ from material failure.
Evaluation of multiband photography for rock discrimination
NASA Technical Reports Server (NTRS)
Raines, G. L.
1974-01-01
An evaluation is presented of the multiband photography concept that tonal differences between rock formations on aerial photography can be improved through the selection of the appropriate bands. The concept involves: (1) acquiring band reference data for the rocks being considered; (2) selecting the best combination of bands to discriminate the rocks using these reference data; (3) acquiring aerial photography using these selected bands; and (4) extracting the desired geologic information in an optimum manner. The test site geology and rock reflectance are discussed in detail. The evaluation found that the differences in contrast ratios are not statistically significant, and the spectral information in different bands is not advantageous.
Aaron, Jordan; McDougall, Scott; Moore, Jeffrey R.; Coe, Jeffrey A.; Hungr, Oldrich
2017-01-01
BackgroundRock avalanches are flow-like landslides that can travel at extremely rapid velocities and impact surprisingly large areas. The mechanisms that lead to the unexpected mobility of these flows are unknown and debated. Mechanisms proposed in the literature can be broadly classified into those that rely on intrinsic characteristics of the rock avalanche material, and those that rely on extrinsic factors such as path material. In this work a calibration-based numerical model is used to back-analyze three rock avalanche case histories. The results of these back-analyses are then used to infer factors that govern rock avalanche motionResultsOur study has revealed two key insights that must be considered when analyzing rock avalanches. Results from two of the case histories demonstrate the importance of accounting for the initially coherent phase of rock avalanche motion. Additionally, the back-analyzed basal resistance parameters, as well as the best-fit rheology, are different for each case history. This suggests that the governing mechanisms controlling rock avalanche motion are unlikely to be intrinsic. The back-analyzed strength parameters correspond well to those that would be expected by considering the path material that the rock avalanches overran.ConclusionOur results show that accurate simulation of rock avalanche motion must account for the initially coherent phase of movement, and that the mechanisms governing rock avalanche motion are unlikely to be intrinsic to the failed material. Interaction of rock avalanche debris with path materials is the likely mechanism that governs the motion of many rock avalanches.
Radiological protection in North American naturally occurring radioactive material industries.
Chambers, D B
2015-06-01
All soils and rocks contain naturally occurring radioactive material (NORM). Many ores and raw materials contain relatively high levels of natural radionuclides, and processing such materials can further increase the concentrations of natural radionuclides, sometimes referred to as 'technologically enhanced naturally occurring radioactive material' (TENORM). Examples of NORM minerals include uranium ores, monazite (a source of rare earth minerals), and phosphate rock used to produce phosphate fertiliser. Such activities have the potential to result in above background radiation exposure to workers and the public. The objective of this paper is to review the sources and exposure from NORM in North American industries, and provide a perspective on the potential radiological hazards to workers and the environment. Proper consideration of NORM issues is important and needs to be integrated in the assessment of these projects. Concerns over radioactivity and radiation amongst non-governmental organisations and the local public have resulted in the cancellation of NORM mining and mineral extraction projects, as well as inhibition of the safe use of by-product materials from various NORM industries. This paper also briefly comments on the current regulatory framework for NORM (TENORM) in Canada and the USA, as well as the potential implications of the recent activities of the International Commission on Radiological Protection for NORM industries. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
30 CFR 717.15 - Disposal of excess rock and earth materials on surface areas.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Disposal of excess rock and earth materials on surface areas. 717.15 Section 717.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS § 717.15 Disposal of excess rock and earth materials on surface areas. Excess rock and earth...
30 CFR 717.15 - Disposal of excess rock and earth materials on surface areas.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Disposal of excess rock and earth materials on surface areas. 717.15 Section 717.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS § 717.15 Disposal of excess rock and earth materials on surface areas. Excess rock and earth...
30 CFR 717.15 - Disposal of excess rock and earth materials on surface areas.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Disposal of excess rock and earth materials on surface areas. 717.15 Section 717.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS § 717.15 Disposal of excess rock and earth materials on surface areas. Excess rock and earth...
30 CFR 717.15 - Disposal of excess rock and earth materials on surface areas.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Disposal of excess rock and earth materials on surface areas. 717.15 Section 717.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS § 717.15 Disposal of excess rock and earth materials on surface areas. Excess rock and earth...
Characterization of Unstable Rock Slopes Through Passive Seismic Measurements
NASA Astrophysics Data System (ADS)
Kleinbrod, U.; Burjanek, J.; Fäh, D.
2014-12-01
Catastrophic rock slope failures have high social impact, causing significant damage to infrastructure and many casualties throughout the world each year. Both detection and characterization of rock instabilities are therefore of key importance. An analysis of ambient vibrations of unstable rock slopes might be a new alternative to the already existing methods, e.g. geotechnical displacement measurements. Systematic measurements have been performed recently in Switzerland to study the seismic response of potential rockslides concerning a broad class of slope failure mechanisms and material conditions. Small aperture seismic arrays were deployed at sites of interest for a short period of time (several hours) in order to record ambient vibrations. Each measurement setup included a reference station, which was installed on a stable part close to the instability. Recorded ground motion is highly directional in the unstable parts of the rock slope, and significantly amplified with respect to stable areas. These effects are strongest at certain frequencies, which were identified as eigenfrequencies of the unstable rock mass. In most cases the directions of maximum amplification are perpendicular to open cracks and in good agreement with the deformation directions obtained by geodetic measurements. Such unique signatures might improve our understanding of slope structure and stability. Thus we link observed vibration characteristics with available results of detailed geological characterization. This is supported by numerical modeling of seismic wave propagation in fractured media with complex topography.For example, a potential relation between eigenfrequencies and unstable rock mass volume is investigated.
Probing the Depths of Space Weathering: A Cross-sectional View of Lunar Rock 76015
NASA Technical Reports Server (NTRS)
Noble, Sarah K.; Keller, L. P.; Stroud, Rhonda
2007-01-01
The term "space weathering" refers to the cumulative effects of several processes operating at the surface of any solar system body not protected by a thick atmosphere. These processes include cosmic and solar ray irradiation, solar wind implantation and sputtering, as well as melting and vaporization due to micrometeorite bombardment. Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. Rocks have much longer surface lifetimes than an individual soil grain and thus record a longer history of exposure. By studying the weathering products which have built up on a rock surface, we can gain a deeper perspective on the weathering process and better assess the relative importance of various weathering components. The weathered coating, or patina, of the lunar rock 76015 has been previously studied using SEM and TEM. It is a noritic breccia with both "glazed" (smooth glassy) and "classic" (microcratered and pancake-bearing) patina coatings. Previous TEM work on 76015 relied on ultramicrotomy to prepare cross sections of the patina coating, but these sections were limited by the "chatter" and loss of material in these brittle samples. Here we have used a focused ion beam (FIB) instrument to prepare cross sections in which the delicate stratigraphy of the patina coating is beautifully preserved.
Feasibility of Cosmic-Ray Muon Intensity Measurements for Tunnel Detection
1990-06-01
BUR-’TR-3110 TECHNICAL REPORT BRL-TR-3110 mBRL I• FEASIBILITY OF COSMIC - RAY MUON INTENSITY MEASUREMENTS FOR TUNNEL DETECTION AIVARS CELIN. , JUNE...Feasibility of Cosmic - Ray Muon Intensity Measurements f or Tunnel Detection 612786H20001 4.AUTNOR(S) Aivars Celmins 7. PERORMING ORGANIZATION NAMe(S) AND... cosmic - ray muon intensity depends on the amount, of material above the point of reference and is therefore influenced by anomalies in rock density
Barron, Andrew D.; Ramsey, David W.; Smith, James G.
2014-01-01
This digital database contains information used to produce the geologic map published as Sheet 1 in U.S. Geological Survey Miscellaneous Investigations Series Map I-2005. (Sheet 2 of Map I-2005 shows sources of geologic data used in the compilation and is available separately). Sheet 1 of Map I-2005 shows the distribution and relations of volcanic and related rock units in the Cascade Range of Washington at a scale of 1:500,000. This digital release is produced from stable materials originally compiled at 1:250,000 scale that were used to publish Sheet 1. The database therefore contains more detailed geologic information than is portrayed on Sheet 1. This is most noticeable in the database as expanded polygons of surficial units and the presence of additional strands of concealed faults. No stable compilation materials exist for Sheet 1 at 1:500,000 scale. The main component of this digital release is a spatial database prepared using geographic information systems (GIS) applications. This release also contains links to files to view or print the map sheet, main report text, and accompanying mapping reference sheet from Map I-2005. For more information on volcanoes in the Cascade Range in Washington, Oregon, or California, please refer to the U.S. Geological Survey Volcano Hazards Program website.
Till, J.L.; Jackson, M.J.; Rosenbaum, J.G.; Solheid, P.
2011-01-01
The Tiva Canyon Tuff contains dispersed nanoscale Fe-Ti-oxide grains with a narrow magnetic grain size distribution, making it an ideal material in which to identify and study grain-size-sensitive magnetic behavior in rocks. A detailed magnetic characterization was performed on samples from the basal 5 m of the tuff. The magnetic materials in this basal section consist primarily of (low-impurity) magnetite in the form of elongated submicron grains exsolved from volcanic glass. Magnetic properties studied include bulk magnetic susceptibility, frequency-dependent and temperature-dependent magnetic susceptibility, anhysteretic remanence acquisition, and hysteresis properties. The combined data constitute a distinct magnetic signature at each stratigraphic level in the section corresponding to different grain size distributions. The inferred magnetic domain state changes progressively upward from superparamagnetic grains near the base to particles with pseudo-single-domain or metastable single-domain characteristics near the top of the sampled section. Direct observations of magnetic grain size confirm that distinct transitions in room temperature magnetic susceptibility and remanence probably denote the limits of stable single-domain behavior in the section. These results provide a unique example of grain-size-dependent magnetic properties in noninteracting particle assemblages over three decades of grain size, including close approximations of ideal Stoner-Wohlfarth assemblages, and may be considered a useful reference for future rock magnetic studies involving grain-size-sensitive properties.
Rock-fall potential in the Yosemite Valley, California
Wieczorek, G.F.; Morrissey, M.M.; Iovine, Giulio; Godt, Jonathan
1999-01-01
We used two methods of estimating rock-fall potential in the Yosemite Valley, California based on (1) physical evidence of previous rock-fall travel, in which the potential extends to the base of the talus, and (2) theoretical potential energy considerations, in which the potential can extend beyond the base of the talus, herein referred to as the rock-fall shadow. Rock falls in the valley commonly range in size from individual boulders of less than 1 m3 to moderate-sized falls with volumes of about 100,000 m3. Larger rock falls exceeding 100,000 m3, referred to as rock avalanches, are considered to be much less likely to occur based on the relatively few prehistoric rock-fall avalanche deposits in the Yosemite Valley. Because the valley has steep walls and is relatively narrow, there are no areas that are absolutely safe from large rock avalanches. The map shows areas of rock-fall potential, but does not predict when or how frequently a rock fall will occur. Consequently, neither the hazard in terms of probability of a rock fall at any specific location, nor the risk to people or facilities to such events can be assessed from this map.
Squyres, S. W.; Arvidson, R. E.; Blaney, D.L.; Clark, B. C.; Crumpler, L.; Farrand, W. H.; Gorevan, S.; Herkenhoff, K. E.; Hurowitz, J.; Kusack, A.; McSween, H.Y.; Ming, D. W.; Morris, R.V.; Ruff, S.W.; Wang, A.; Yen, A.
2006-01-01
The Mars Exploration Rover Spirit has identified five distinct rock types in the Columbia Hills of Gusev crater. Clovis Class rock is a poorly sorted clastic rock that has undergone substantial aqueous alteration. We interpret it to be aqueously altered ejecta deposits formed by impacts into basaltic materials. Wishstone Class rock is also a poorly sorted clastic rock that has a distinctive chemical composition that is high in Ti and P and low in Cr. Wishstone Class rock may be pyroclastic or impact in origin. Peace Class rock is a sedimentary material composed of ultramafic sand grains cemented by significant quantities of Mg- and Ca-sulfates. Peace Class rock may have formed when water briefly saturated the ultramafic sands and evaporated to allow precipitation of the sulfates. Watchtower Class rocks are similar chemically to Wishstone Class rocks and have undergone widely varying degrees of near-isochemical aqueous alteration. They may also be ejecta deposits, formed by impacts into Wishstone-rich materials and altered by small amounts of water. Backstay Class rocks are basalt/trachybasalt lavas that were emplaced in the Columbia Hills after the other rock classes were, either as impact ejecta or by localized volcanic activity. The geologic record preserved in the rocks of the Columbia Hills reveals a period very early in Martian history in which volcanic materials were widespread, impact was a dominant process, and water was commonly present. Copyright 2006 by the American Geophysical Union.
The Rocks of the Columbia Hills
NASA Technical Reports Server (NTRS)
Squyres, Steven W.; Arvidson, Raymond E.; Blaney, Diana L.; Clark, Benton C.; Crumpler, Larry; Farrand, William H.; Gorevan, Stephen; Herkenhoff, Kenneth; Hurowitz, Joel; Kusack, Alastair;
2006-01-01
The Mars Exploration Rover Spirit has identified five distinct rock types in the Columbia Hills of Gusev crater. Clovis Class rock is a poorly-sorted clastic rock that has undergone substantial aqueous alteration. We interpret it to be aqueously-altered ejecta deposits formed by impacts into basaltic materials. Wishstone Class rock is also a poorly-sorted clastic rock that has a distinctive chemical composition that is high in Ti and P and low in Cr. Wishstone Class rock may be pyroclastic in origin. Peace Class rock is a sedimentary material composed of ultramafic sand grains cemented by significant quantities of Mg- and Ca-sulfates. Peace Class rock may have formed when water briefly saturated the ultramafic sands, and evaporated to allow precipitation of the sulfates. Watchtower Class rocks are similar chemically to Wishstone Class rocks, and have undergone widely varying degrees of near-isochemical aqueous alteration. They may also be ejecta deposits, formed by impacts into Wishstone-rich materials and altered by small amounts of water. Backstay Class rocks are basalt/trachybasalt lavas that were emplaced in the Columbia Hills after the other rock classes were, either as impact ejecta or by localized volcanic activity. The geologic record preserved in the rocks of the Columbia Hills reveals a period very early in martian history in which volcanic materials were widespread, impact was a dominant process, and water was commonly present.
Realistic Expectations for Rock Identification.
ERIC Educational Resources Information Center
Westerback, Mary Elizabeth; Azer, Nazmy
1991-01-01
Presents a rock classification scheme for use by beginning students. The scheme is based on rock textures (glassy, crystalline, clastic, and organic framework) and observable structures (vesicles and graded bedding). Discusses problems in other rock classification schemes which may produce confusion, misidentification, and anxiety. (10 references)…
Zhang, Chenxi; Hu, Zhaochu; Zhang, Wen; Liu, Yongsheng; Zong, Keqing; Li, Ming; Chen, Haihong; Hu, Shenghong
2016-10-18
Sample preparation of whole-rock powders is the major limitation for their accurate and precise elemental analysis by laser ablation inductively-coupled plasma mass spectrometry (ICPMS). In this study, a green, efficient, and simplified fusion technique using a high energy infrared laser was developed for major and trace elemental analysis. Fusion takes only tens of milliseconds for each sample. Compared to the pressed pellet sample preparation, the analytical precision of the developed laser fusion technique is higher by an order of magnitude for most elements in granodiorite GSP-2. Analytical results obtained for five USGS reference materials (ranging from mafic to intermediate to felsic) using the laser fusion technique generally agree with recommended values with discrepancies of less than 10% for most elements. However, high losses (20-70%) of highly volatile elements (Zn and Pb) and the transition metal Cu are observed. The achieved precision is within 5% for major elements and within 15% for most trace elements. Direct laser fusion of rock powders is a green and notably simple method to obtain homogeneous samples, which will significantly accelerate the application of laser ablation ICPMS for whole-rock sample analysis.
Rock Music's Place in the Library.
ERIC Educational Resources Information Center
Politis, John
1983-01-01
Discussion of the importance of rock music as an expression of aural culture includes its history, rock music today, and the development of a rock music collection in the library (placement of collection and books which aid in developing a collection of permanent value). Three references are included. (EJS)
Effect law of Damage Characteristics of Rock Similar Material with Pre-Existing Cracks
NASA Astrophysics Data System (ADS)
Li, S. G.; Cheng, X. Y.; Liu, C.
2017-11-01
In order to further study the failure mechanism for rock similar materials, this study established the damage model based on accumulative AE events, investigated the damage characteristics for rock similar material samples with pre-existing cracks of varying width under uniaxial compression load. The equipment used in this study is the self-developed YYW-II strain controlled unconfined compression apparatus and the PCIE-8 acoustic emission (AE) monitoring system. The influences of the width of the pre-existing cracks to the damage characteristics of rock similar materials are analyzed. Results show that, (1) the damage model can better describe the damage characteristics of rock similar materials; (2) the tested samples have three stages during failure: initial damage stage, stable development of damage stage, and accelerated development of damage stage; (3) with the width of pre-existing cracks vary from 3mm to 5mm, the damage of rock similar materials increases gradually. The outcomes of this study provided additional values to the research of the failure mechanism for geotechnical similar material models.
2012-09-26
format; however, the collective identity and structure of the object are lost. In contrast, XML preserves the structure of the object by using custom...2.1.1 Classes ROCK SOIL MINERAL VEGETATION COATING LIQUID METAL CONSTRUCTION PLASTIC WOOD GLASS FABRIC...2.1.2 Subclasses Subclasses are created using relevant taxonomy from the authority in a particular class. Some examples of subclasses nomenclature in
Stress Wave Propagation in Viscoelastic-Plastic Rock-Like Materials.
Lang, Liu; Song, Ki-Il; Zhai, Yue; Lao, Dezheng; Lee, Hang-Lo
2016-05-17
Rock-like materials are composites that can be regarded as a mixture composed of elastic, plastic, and viscous components. They exhibit viscoelastic-plastic behavior under a high-strain-rate loading according to element model theory. This paper presents an analytical solution for stress wave propagation in viscoelastic-plastic rock-like materials under a high-strain-rate loading and verifies the solution through an experimental test. A constitutive equation of viscoelastic-plastic rock-like materials was first established, and then kinematic and kinetic equations were then solved to derive the analytic solution for stress wave propagation in viscoelastic-plastic rock-like materials. An experimental test using the SHPB (Split Hopkinson Pressure Bar) for a concrete specimen was conducted to obtain a stress-strain curve under a high-strain-rate loading. Inverse analysis based on differential evolution was conducted to estimate undetermined variables for constitutive equations. Finally, the relationship between the attenuation factor and the strain rate in viscoelastic-plastic rock-like materials was investigated. According to the results, the frequency of the stress wave, viscosity coefficient, modulus of elasticity, and density play dominant roles in the attenuation of the stress wave. The attenuation decreases with increasing strain rate, demonstrating strongly strain-dependent attenuation in viscoelastic-plastic rock-like materials.
Stress Wave Propagation in Viscoelastic-Plastic Rock-Like Materials
Lang, Liu; Song, KI-IL; Zhai, Yue; Lao, Dezheng; Lee, Hang-Lo
2016-01-01
Rock-like materials are composites that can be regarded as a mixture composed of elastic, plastic, and viscous components. They exhibit viscoelastic-plastic behavior under a high-strain-rate loading according to element model theory. This paper presents an analytical solution for stress wave propagation in viscoelastic-plastic rock-like materials under a high-strain-rate loading and verifies the solution through an experimental test. A constitutive equation of viscoelastic-plastic rock-like materials was first established, and then kinematic and kinetic equations were then solved to derive the analytic solution for stress wave propagation in viscoelastic-plastic rock-like materials. An experimental test using the SHPB (Split Hopkinson Pressure Bar) for a concrete specimen was conducted to obtain a stress-strain curve under a high-strain-rate loading. Inverse analysis based on differential evolution was conducted to estimate undetermined variables for constitutive equations. Finally, the relationship between the attenuation factor and the strain rate in viscoelastic-plastic rock-like materials was investigated. According to the results, the frequency of the stress wave, viscosity coefficient, modulus of elasticity, and density play dominant roles in the attenuation of the stress wave. The attenuation decreases with increasing strain rate, demonstrating strongly strain-dependent attenuation in viscoelastic-plastic rock-like materials. PMID:28773500
NASA Astrophysics Data System (ADS)
Warren, Sean N.; Kallu, Raj R.; Barnard, Chase K.
2016-11-01
Underground gold mines in Nevada are exploiting increasingly deeper ore bodies comprised of weak to very weak rock masses. The Rock Mass Rating (RMR) classification system is widely used at underground gold mines in Nevada and is applicable in fair to good-quality rock masses, but is difficult to apply and loses reliability in very weak rock mass to soil-like material. Because very weak rock masses are transition materials that border engineering rock mass and soil classification systems, soil classification may sometimes be easier and more appropriate to provide insight into material behavior and properties. The Unified Soil Classification System (USCS) is the most likely choice for the classification of very weak rock mass to soil-like material because of its accepted use in tunnel engineering projects and its ability to predict soil-like material behavior underground. A correlation between the RMR and USCS systems was developed by comparing underground geotechnical RMR mapping to laboratory testing of bulk samples from the same locations, thereby assigning a numeric RMR value to the USCS classification that can be used in spreadsheet calculations and geostatistical analyses. The geotechnical classification system presented in this paper including a USCS-RMR correlation, RMR rating equations, and the Geo-Pick Strike Index is collectively introduced as the Weak Rock Mass Rating System (W-RMR). It is the authors' hope that this system will aid in the classification of weak rock masses and more usable design tools based on the RMR system. More broadly, the RMR-USCS correlation and the W-RMR system help define the transition between engineering soil and rock mass classification systems and may provide insight for geotechnical design in very weak rock masses.
Stewart, John H.
2007-01-01
INTRODUCTION The map was prepared to outline the basic information on where Neoproterozoic rocks are present in the World, and of the lithologic character of these rocks. The information provides a better understanding of major Neoproterozoic tectonic subdivisions useful in paleogeographic and plate tectonic reconstructions. The time frame of the map is within the middle and late Neoproterozoic from approximately 870 to 540 Ma and is after widespread Mesoproterozoic Grenville-age collisional events that are considered to have formed the hypothetical supercontinent of Rodinia. Much of the time represented by the map is interpreted to be during the fragmentation of Rodinia. The recognition of Neoproterozoic rocks is commonly difficult because of limited isotopic or paloeontological dating. Thus, some rocks shown on the map could be older or younger than the age indicated. However, at the scale of the map the the problem may be minor. Enough information seems to be available to indicate the general age of the rocks. Many of the successions contain diamictite deposits considered to be glaciogenic and dated as middle or late Neoproterozoic. These deposits thus show a rough correlation of middle and late Neoproterozoic rocks of the world. The map is a Richardson map projection, except for Antarctica which is a polar projection. The map was prepared from about 650 references, shown in the text linked below under 'Sources of Information', used to outline distribution patterns, determine rock types, and provide information on the regional and local geologic framework of the rocks. The focus of the references is on the geologic information needed to prepare the map. Other information, such as plate tectonic reconstructions or paleomagnetic studies is generally not included. The 'Sources of Information' lists references alphabetically for each of 14 regions. In brackets is a code for each area. These codes provide help in locating the specific regions in the references.
Frictional Behavior of Altered Basement Approaching the Nankai Trough
NASA Astrophysics Data System (ADS)
Saffer, D. M.; Ikari, M.; Rooney, T. O.; Marone, C.
2017-12-01
The frictional behavior of basement rocks plays an important role in subduction zone faulting and seismicity. This includes earthquakes seaward of the trench, large megathrust earthquakes where seamounts are subducting, or where the plate interface steps down to basement. In exhumed subduction zone rocks such as the Shimanto complex in Japan, slivers of basalt are entrained in mélange which is evidence of basement involvement in the fault system. Scientific drilling during the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) recovered basement rock from two reference sites (C0011 and C0012) located seaward of the trench offshore the Kii Peninsula during Integrated Ocean Discovery Program (IODP) Expeditions 322 and 333. The basement rocks are pillow basalts that appear to be heterogeneously altered, resulting in contrasting dense blue material and more vesicular gray material. Major element geochemistry shows differences in silica, calcium oxides and loss-on-ignition between the two types of samples. Minor element geochemistry reveals significant differences in vanadium, chromium, and barium. X-ray diffraction on a bulk sample powder representing an average composition shows a phyllosilicate content of 20%, most of which is expandable clays. We performed laboratory friction experiments in a biaxial testing apparatus as either intact sample blocks, or as gouge powders. We combine these experiments with measurements of Pennsylvania slate for comparison, including a mixed-lithology intact block experiment. Intact Nankai basement blocks exhibit a coefficient of sliding friction of 0.73; for Nankai basement powder, slate powder, slate blocks and slate-on-basement blocks the coefficient of sliding friction ranges from 0.44 to 0.57. At slip rates ranging from 3x10-8 to 3x10-4 m/s we observe predominantly velocity-strengthening frictional behavior, indicating a tendency for stable slip. At rates of < 1x10-6 m/s some velocity-weakening was observed, specifically in intact rock-on-rock experiments. Our results show that basement alteration tends to reduce the tendency for unstable slip, but that the altered Nankai basement may still exhibit seismogenic behavior in the case of localized slip in competent rock.
NASA Technical Reports Server (NTRS)
Dymek, R. F.; Albee, A. L.; Chodos, A. A.; Wasserburg, G. J.
1976-01-01
Results are presented for petrographic and electron microprobe studies of the isotopically dated A, B, C, and rho basaltic rock fragments separated from the howardite Kapoeta. Other lithic clasts and numerous mineral fragments in thin sections of Kapoeta are investigated in order to outline the range in lithology and chemistry of the source materials from which the Kapoeta meteorite is derived. The data obtained are compared to those from other meteorite and lunar samples, with particular reference to the observational consequences for the evolution of the Kapoeta parent body. A major conclusion is that there is no clearcut evidence for young magmatism on the Kapoeta parent body. The observations preclude the interpretation that the Kapoeta is a simple mixture of eucrites and diogenites. In contrast to the moon, a source of anorthositic rocks does not appear to have been present on the Kapoeta parent body which involved chiefly pyroxene. The FeO-MnO relationships suggest that the source of the materials in the Kapoeta parent planet are fundamentally related.
Evaluating slope stability prior to road construction
James L. Clayton
1983-01-01
The usefulness of seismic, resistivity, and vegetation surveys for predicting subsurface strength characteristics of granitic rock was evaluated in the Idaho batholith. Rock strength varies inversely with degree of weathering and fracture density. Rocks that have weathered or altered to the point where they contain lays (referred to here as highly weathered rock) are...
Generic repository design concepts and thermal analysis (FY11).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, Robert; Dupont, Mark; Blink, James A.
2011-08-01
Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced nuclear fuel cycles. The results show significant differences among geologic media considered (clay/shale, crystalline rock, salt), and also that waste package size and waste loading must be limited to meet targeted maximum temperature values. In this study, the UFD R&D Campaign has developed a set of reference geologic disposal concepts for a range of waste types that could potentially be generatedmore » in advanced nuclear FCs. A disposal concept consists of three components: waste inventory, geologic setting, and concept of operations. Mature repository concepts have been developed in other countries for disposal of spent LWR fuel and HLW from reprocessing UNF, and these serve as starting points for developing this set. Additional design details and EBS concepts will be considered as the reference disposal concepts evolve. The waste inventory considered in this study includes: (1) direct disposal of SNF from the LWR fleet, including Gen III+ advanced LWRs being developed through the Nuclear Power 2010 Program, operating in a once-through cycle; (2) waste generated from reprocessing of LWR UOX UNF to recover U and Pu, and subsequent direct disposal of used Pu-MOX fuel (also used in LWRs) in a modified-open cycle; and (3) waste generated by continuous recycling of metal fuel from fast reactors operating in a TRU burner configuration, with additional TRU material input supplied from reprocessing of LWR UOX fuel. The geologic setting provides the natural barriers, and establishes the boundary conditions for performance of engineered barriers. The composition and physical properties of the host medium dictate design and construction approaches, and determine hydrologic and thermal responses of the disposal system. Clay/shale, salt, and crystalline rock media are selected as the basis for reference mined geologic disposal concepts in this study, consistent with advanced international repository programs, and previous investigations in the U.S. The U.S. pursued deep geologic disposal programs in crystalline rock, shale, salt, and volcanic rock in the years leading up to the Nuclear Waste Policy Act, or NWPA (Rechard et al. 2011). The 1987 NWPA amendment act focused the U.S. program on unsaturated, volcanic rock at the Yucca Mountain site, culminating in the 2008 license application. Additional work on unsaturated, crystalline rock settings (e.g., volcanic tuff) is not required to support this generic study. Reference disposal concepts are selected for the media listed above and for deep borehole disposal, drawing from recent work in the U.S. and internationally. The main features of the repository concepts are discussed in Section 4.5 and summarized in Table ES-1. Temperature histories at the waste package surface and a specified distance into the host rock are calculated for combinations of waste types and reference disposal concepts, specifying waste package emplacement modes. Target maximum waste package surface temperatures are identified, enabling a sensitivity study to inform the tradeoff between the quantity of waste per disposal package, and decay storage duration, with respect to peak temperature at the waste package surface. For surface storage duration on the order of 100 years or less, waste package sizes for direct disposal of SNF are effectively limited to 4-PWR configurations (or equivalent size and output). Thermal results are summarized, along with recommendations for follow-on work including adding additional reference concepts, verification and uncertainty analysis for thermal calculations, developing descriptions of surface facilities and other system details, and cost estimation to support system-level evaluations.« less
Bioweathering of a basalt from Etna (Sicily) by the moss Grimmia pulvinata (Hedw.) Sm.
NASA Astrophysics Data System (ADS)
Giordano, S.; Vingiani, S.; Adamo, P.
2012-04-01
Lichens and mosses, as pioneer plants, firstly colonize rocky surfaces enhancing biogeophysical and biogeochemical degradation of their substrates. Indeed, the contact area between the lithological substrates and the cryptogams is considered a simplified environment for studying the mechanisms of bioweathering, which, in many cases, characterize the initial stages of pedogenesis. In this paper we report the results of a study conducted for the recognition and characterization of the bioweathering processes of a basaltic lava present on the slopes of Mt Etna (western Sicily) at an altitude of 1550 m above sea level, associated with the growth of the moss Grimmia pulvinata (Hedw.) Sm. The Etnean rock, characterised by a porphiric structure, is mainly made by a microcrystalline groundmass in which are immersed abundant phenocrysts of plagioclase, augite and rare olivine crystals. The groundmass shows the same mineral assemblage. With the use of X-ray fluorescence spectroscopy, we determined the chemical composition of the fresh rock, of the materials collected at the rock-moss interface and of the plant tissues. The X-ray diffraction has allowed to have detailed information on the mineralogy of the bioaltered rocky and interface materials. Scanning electron microscope observations and microanalytical investigations carried out on fragments of rock colonized by moss showed a significant disintegration of the rock and the presence of crystals with tabular habit, containing Cu and Fe, aligned tangentially to the surface of Grimmia pulvinata rhizoids. The weathered material covered by the moss cushion has the chemical and physical characteristics of low pedogenized soils. The high value of the C/N ratio has to be referred to the presence of plant residues with high resistance to mineralize. The significant amount of plant available phosphorus, as assessed by Olsen extraction, confirmed the possibility that the bryophytes constitute important reserves of phosphorus, playing, in particular environments, a significant role in defining the biogeochemical cycle of the nutrient. With the use of FT-IR spectroscopy the humic acids separated from the organic material present in the "protosoil" and from the moss have been characterized. Limited differences were detected compared to humic acids commonly found in soils. In particular, different is the quantitative contribution of the functional groups that characterize the molecular organization of carbohydrates, organic acids and nitrogen constituents.
Prediction of Fracture Behavior in Rock and Rock-like Materials Using Discrete Element Models
NASA Astrophysics Data System (ADS)
Katsaga, T.; Young, P.
2009-05-01
The study of fracture initiation and propagation in heterogeneous materials such as rock and rock-like materials are of principal interest in the field of rock mechanics and rock engineering. It is crucial to study and investigate failure prediction and safety measures in civil and mining structures. Our work offers a practical approach to predict fracture behaviour using discrete element models. In this approach, the microstructures of materials are presented through the combination of clusters of bonded particles with different inter-cluster particle and bond properties, and intra-cluster bond properties. The geometry of clusters is transferred from information available from thin sections, computed tomography (CT) images and other visual presentation of the modeled material using customized AutoCAD built-in dialog- based Visual Basic Application. Exact microstructures of the tested sample, including fractures, faults, inclusions and void spaces can be duplicated in the discrete element models. Although the microstructural fabrics of rocks and rock-like structures may have different scale, fracture formation and propagation through these materials are alike and will follow similar mechanics. Synthetic material provides an excellent condition for validating the modelling approaches, as fracture behaviours are known with the well-defined composite's properties. Calibration of the macro-properties of matrix material and inclusions (aggregates), were followed with the overall mechanical material responses calibration by adjusting the interfacial properties. The discrete element model predicted similar fracture propagation features and path as that of the real sample material. The path of the fractures and matrix-inclusion interaction was compared using computed tomography images. Initiation and fracture formation in the model and real material were compared using Acoustic Emission data. Analysing the temporal and spatial evolution of AE events, collected during the sample testing, in relation to the CT images allows the precise reconstruction of the failure sequence. Our proposed modelling approach illustrates realistic fracture formation and growth predictions at different loading conditions.
Delimitation of terrestrial impact craters by way of pseudotachylytic rock distribution
NASA Technical Reports Server (NTRS)
Spray, John G.
1993-01-01
The determination of the shape and size of terrestrial impact craters is problematic, yet is critical to understanding cratering mechanics and for scaling bolide mass, volume, and impact velocity with crater size and target response. The problem is particularly difficult in older geological terrains (e.g. Precambrian) which are more likely to have suffered post-impact deformation and hence distortion of the original structure and/or where weathering may have partly removed or obscured its original shape. Traditionally, a number of features are used to assist us in determining the shape and size of an impact structure. These include the following: (1) the occurrence of faults, especially those disposed concentrically relative to the crater--the outermost ring faults being interpreted as indicating a viable minimum diameter; and (2) the development of so-called breccias, some of which are also associated with faults (e.g. the Sudbury Breccia developed within the target rocks of the Sudbury Structure of Onta rio, Canada). 'Breccia' is not a satisfactory term because a number of breccia-types exist at impact sites (e.g. fall-back breccias and in-situ brecciated target material). Of relevance to crater diameter determination is the recognition of discrete zones and fault- and shock-related pseudotachylyte. Pseudotachylyte is a rock type comprising a fine-grained, usually dark matrix containing clasts of minerals and/or rock derived from the country rock target material. It origin is normally attributed to high-speed slip (including vibration) along a slip surface (i.e. fault) or to the passage of a shock wave through the host material. The clasts can occur as angular fragments (i.e. like a breccia), but are more commonly developed as rounded to sub-rounded fragments. Significantly, the scale of these pseudotachylytes can range from sub-millimeter thick veinlets to dyke-like bodies up to 1 km or more thick. It is the latter, larger occurrence which has been referred to as 'breccia.' The smaller-sized occurrence is generally not recognized in the field, nor is it traditionally associated with its larger counterpart.
NASA Astrophysics Data System (ADS)
Cen, Tao; Li, Wu-xian; Wang, Xuan-ce; Pang, Chong-jin; Li, Zheng-xiang; Xing, Guang-fu; Zhao, Xi-lin; Tao, Jihua
2016-07-01
Early Jurassic bimodal volcanic and intrusive rocks in southern South China show distinct associations and distribution patterns in comparison with those of the Middle Jurassic and Cretaceous rocks in the area. It is widely accepted that these rocks formed in an extensional setting, although the timing of the onset and the tectonic driver for extension are debated. Here, we present systematic LA-ICP-MS zircon U-Pb ages, whole-rock geochemistry and Sr-Nd isotope data for bimodal volcanic rocks from the Changpu Formation in the Changpu-Baimianshi and Dongkeng-Linjiang basins in southern Jiangxi Province, South China. Zircon U-Pb ages indicate that the bimodal volcanic rocks erupted at ca. 190 Ma, contemporaneous with the Fankeng basalts ( 183 Ma). A compilation of geochronological results demonstrates that basin-scale basaltic eruptions occurred during the Early Jurassic within a relatively short interval (< 5 Ma). These Early Jurassic basalts have tholeiitic compositions and OIB-like trace element distribution patterns. Geochemical analyses show that the basalts were derived from depleted asthenospheric mantle, dominated by a volatile-free peridotite source. The calculated primary melt compositions suggest that the basalts formed at 1.9-2.1 GPa, with melting temperatures of 1378 °C-1405 °C and a mantle potential temperature (TP) ranging from 1383 °C to 1407 °C. The temperature range is somewhat hotter than normal mid-ocean-basalt (MORB) mantle but similar to an intra-plate continental mantle setting, such as the Basin and Range Province in western North America. This study provides an important constraint on the Early Jurassic mantle thermal state beneath South China. Reference: Raczek, I., Stoll, B., Hofmann, A.W., Jochum, K.P. 2001. High-precision trace element data for the USGS reference materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, AGV-2, DTS-1, DTS-2, GSP-1 and GSP-2 by ID-TIMS and MIC-SSMS. Geostandards Newsletter 25(1), 77-86.
Experimental Characterization of Stress- and Strain-Dependent Stiffness in Grouted Rock Masses.
Kim, Ji-Won; Chong, Song-Hun; Cho, Gye-Chun
2018-03-29
Grouting of fractured rock mass prior to excavation results in grout-filled discontinuities that govern the deformation characteristics of a site. The influence of joint characteristics on the properties of grouted rocks is important in assessing the effects of grouting on jointed rock mass. However, grouting remains a predominantly empirical practice and the effects of grouting on rock joint behavior and material properties have yet to be accurately assessed. Granular materials, including jointed rocks, typically display nonlinear strain-dependent responses that can be characterized by the shear modulus degradation curve. In this study, the effects of grouting on the strain-dependent shear stiffness of jointed rock mass were investigated at the small-strain (below 10 -5 ) and mid-strain (10 -5 to 10 -3 ) ranges using the quasi-static resonant column test and rock mass dynamic test devices. The effects of curing time, axial stress, initial joint roughness, and grouted joint thickness were examined. The results show that (1) grouting of rock joints leads to decreased stress sensitivity and increased small-strain shear stiffness for all tested samples; (2) the grouted rock samples display similar modulus degradation characteristics as the applied grout material; (3) the initial joint roughness determines the stress-dependent behaviors and general stiffness range of the jointed and grouted rocks, but the strain-dependent behaviors are dependent on the properties of the grout material; (4) increased grouted joint thickness results in larger contribution of the grout properties in the overall grouted rock mass.
Experimental Characterization of Stress- and Strain-Dependent Stiffness in Grouted Rock Masses
Cho, Gye-Chun
2018-01-01
Grouting of fractured rock mass prior to excavation results in grout-filled discontinuities that govern the deformation characteristics of a site. The influence of joint characteristics on the properties of grouted rocks is important in assessing the effects of grouting on jointed rock mass. However, grouting remains a predominantly empirical practice and the effects of grouting on rock joint behavior and material properties have yet to be accurately assessed. Granular materials, including jointed rocks, typically display nonlinear strain-dependent responses that can be characterized by the shear modulus degradation curve. In this study, the effects of grouting on the strain-dependent shear stiffness of jointed rock mass were investigated at the small-strain (below 10−5) and mid-strain (10−5 to 10−3) ranges using the quasi-static resonant column test and rock mass dynamic test devices. The effects of curing time, axial stress, initial joint roughness, and grouted joint thickness were examined. The results show that (1) grouting of rock joints leads to decreased stress sensitivity and increased small-strain shear stiffness for all tested samples; (2) the grouted rock samples display similar modulus degradation characteristics as the applied grout material; (3) the initial joint roughness determines the stress-dependent behaviors and general stiffness range of the jointed and grouted rocks, but the strain-dependent behaviors are dependent on the properties of the grout material; (4) increased grouted joint thickness results in larger contribution of the grout properties in the overall grouted rock mass. PMID:29596371
Laboratory investigations into fracture propagation characteristics of rock material
NASA Astrophysics Data System (ADS)
Prasad, B. N. V. Siva; Murthy, V. M. S. R.
2018-04-01
After Industrial Revolution, demand of materials for building up structures have increased enormously. Unfortunately, failures of such structures resulted in loss of life and property. Rock is anisotropic and discontinuous in nature with inherent flaws or so-called discontinuities in it. Rock is apparently used for construction in mining, civil, tunnelling, hydropower, geothermal and nuclear sectors [1]. Therefore, the strength of the structure built up considering rockmass as the construction material needs proper technical evaluation during designing stage itself to prevent and predict the scenarios of catastrophic failures due to these inherent fractures [2]. In this study, samples collected from nine different drilling sites have been investigated in laboratory for understanding the fracture propagation characteristics in rock. Rock material properties, ultrasonic velocities through pulse transmission technique and Mode I Fracture Toughness Testing of different variants of Dolomites and Graywackes are determined in laboratory and the resistance of the rock material to catastrophic crack extension or propagation has been determined. Based on the Fracture Toughness values and the rock properties, critical Energy Release Rates have been estimated. However further studies in this direction is to be carried out to understand the fracture propagation characteristics in three-dimensional space.
Returning from the deep: Archean atmospheric fingerprints in modern hotspot lavas (Invited)
NASA Astrophysics Data System (ADS)
Jackson, M. G.; Cabral, R. A.; Rose-Koga, E. F.; Koga, K. T.; Whitehouse, M. J.; Antonelli, M. A.; Farquhar, J.; Day, J. M.; Hauri, E. H.
2013-12-01
Ocean plates transport surface materials, including oceanic crust and sediment, into the mantle at subduction zones. However, the fate of the subducted package--oceanic crust and sediment--in the mantle is poorly understood. A long-standing hypothesis maintains that subducted materials reside in the mantle for an extended, but unknown, period of time and are then recycled back to the Earth's surface in regions of buoyantly upwelling mantle and melted beneath hotspots. Sulfur isotopes provide an important new tool to evaluate the presence of ancient recycled materials in hotspot lavas. Widespread terrestrial mass independently fractionated sulfur (MIF-S) isotope signatures were generated exclusively through atmospheric photochemical reactions until ~2.45 Ga. In fact, the only significant reservoirs of MIF-S containing rocks documented so far are sediments and hydrothermal rocks older than ~2.45 Ga. Armed with this insight, we examined sulfur isotopes in olivine phenocrysts and olivine-hosted sulfides in lavas from the island of Mangaia, Cook Islands. Lavas from this location host unusually radiogenic Pb-isotopic compositions--referred to as a HIMU (high U/Pb) component--and this has been attributed to ancient recycled oceanic crust in the mantle source. In Cabral et al. (2013), we report MIF-S in olivine phenocrysts and olivine-hosted sulfides. The discovery of MIF-S isotopic signatures in young hotspot lavas appears to provide a "timestamp" and "signature" for preservation of subducted Archean surface materials in the mantle sourcing Mangaia lavas. We report new sulfur isotope data on olivine-hosted sulfides from the Mangaia lavas that reinforce our discovery of MIF-S anomalies reported in Cabral et al. (2013). We also report new sulfur isotopic data on Mangaia whole rock powders, and we find no evidence of MIF-S signatures. It is not yet clear why the individual Mangaia sulfides and the olivine separates have more extreme MIF-S than the whole rocks. We consider it likely that the MIF-S anomaly measured in the olivine separates was diminished relative to the olivine-hosted sulfides by incorporation of modern sulfur into the olivine separates by low-temperature processes operating on the rocks during the 20 Ma since eruption: The absence of a MIF-S anomaly in the whole rock that has olivine-hosted sulfides with MIF-S anomalies may be a result of near-complete replacement of the magmatic sulfur (with a MIF-S anomaly) with modern sulfur (with no MIF-S anomaly) during surficial weathering over 20 Ma. The sulfur in the olivine-hosted sulfides with the largest MIF-S anomalies represents a very small proportion of the sulfur in a bulk basaltic rock and therefore do not impart a clear MIF-S anomaly on the bulk rock analysis. Very few data are available to evaluate this hypothesis. Therefore, pairing sulfur isotope measurements with whole rocks, mineral separates and olivine-hosted sulfides with careful petrographic and electron probe analyses of the samples will be critical for evaluating the origin of the sulfides--primary magmatic or secondary--and the origin and distribution of the sulfur-isotopic signatures in OIB.
Take a Tumble: Weathering and Erosion Using a Rock Tumbler
ERIC Educational Resources Information Center
Coffey, Patrick; Mattox, Steve
2006-01-01
Weathering--the physical and chemical breakdown of geologic materials--and erosion--the transport of materials by wind, water, or ice--can be subtle, yet powerful forces. For example, shale, a rock made of mud-sized particles, is by far the most common sedimentary rock, a testament to the ability of weathering and erosion to take a rock and reduce…
30 CFR 75.400 - Accumulation of combustible materials.
Code of Federal Regulations, 2014 CFR
2014-07-01
... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock... rock-dusted surfaces, loose coal, and other combustible materials, shall be cleaned up and not be...
30 CFR 75.400 - Accumulation of combustible materials.
Code of Federal Regulations, 2011 CFR
2011-07-01
... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock... rock-dusted surfaces, loose coal, and other combustible materials, shall be cleaned up and not be...
30 CFR 75.400 - Accumulation of combustible materials.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock... rock-dusted surfaces, loose coal, and other combustible materials, shall be cleaned up and not be...
30 CFR 75.400 - Accumulation of combustible materials.
Code of Federal Regulations, 2012 CFR
2012-07-01
... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock... rock-dusted surfaces, loose coal, and other combustible materials, shall be cleaned up and not be...
30 CFR 75.400 - Accumulation of combustible materials.
Code of Federal Regulations, 2013 CFR
2013-07-01
... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock... rock-dusted surfaces, loose coal, and other combustible materials, shall be cleaned up and not be...
Assessing rare earth elements in quartz rich geological samples.
Santoro, A; Thoss, V; Ribeiro Guevara, S; Urgast, D; Raab, A; Mastrolitti, S; Feldmann, J
2016-01-01
Sodium peroxide (Na2O2) fusion coupled to Inductively Coupled Plasma Tandem Mass Spectrometry (ICP-MS/MS) measurements was used to rapidly screen quartz-rich geological samples for rare earth element (REE) content. The method accuracy was checked with a geological reference material and Instrumental Neutron Activation Analysis (INAA) measurements. The used mass-mode combinations presented accurate results (only exception being (157)Gd in He gas mode) with recovery of the geological reference material QLO-1 between 80% and 98% (lower values for Lu, Nd and Sm) and in general comparable to INAA measurements. Low limits of detection for all elements were achieved, generally below 10 pg g(-1), as well as measurement repeatability below 15%. Overall, the Na2O2/ICP-MS/MS method proved to be a suitable lab-based method to quickly and accurately screen rock samples originating from quartz-rich geological areas for rare earth element content; particularly useful if checking commercial viability. Copyright © 2015 Elsevier Ltd. All rights reserved.
A new design concept of fully grouted rock bolts in underground construction
NASA Astrophysics Data System (ADS)
Phich Nguyen, Quang; Nguyen, Van Manh; Tuong Nguyen, Ke
2018-04-01
The main problem after excavating an underground excavation is to maintain the stability of the excavation for a certain period of time. Failure in meeting this demand is a threat to safety of men and equipment. Support and reinforcement are different instruments with different mechanisms. Among the common support systems in tunnelling and mining, rock bolts have been widely used to reinforce rock mass and also to reduce geological hazards. Furthermore rock bolts can be applied under varying different geological conditions with cost-effectiveness. Although different methods are developed for grouted rock bolts design until now, the interaction mechanism of the rock bolts and rock mass is still very complicated issue. The paper addresses an analytical model for the analysis and design of fully grouted rock bolts based on the reinforcement principle. According to this concept the jointed rock mass reinforced by grouted rock bolts is considered as composite material which includes rock mass, the grout material and the bolt shank. The mechanical properties of this composite material depend on the ratio of the components. The closed-form solution was developed based on the assumption that the rock mass arround a circular tunnel remained elastic after installing fully grouted rock bolts. The main parameters of the rock-bolt system (the diameter and length of bolt shank, the space between the bolts) are then easily estimated from the obtained solution.
High Strain Rate Testing of Rocks using a Split-Hopkinson-Pressure Bar
NASA Astrophysics Data System (ADS)
Zwiessler, Ruprecht; Kenkmann, Thomas; Poelchau, Michael; Nau, Siegfried; Hess, Sebastian
2016-04-01
Dynamic mechanical testing of rocks is important to define the onset of rate dependency of brittle failure. The strain rate dependency occurs through the propagation velocity limit (Rayleigh wave speed) of cracks and their reduced ability to coalesce, which, in turn, significantly increases the strength of the rock. We use a newly developed pressurized air driven Split-Hopkinson-Pressure Bar (SHPB), that is specifically designed for the investigation of high strain rate testing of rocks, consisting of several 10 to 50 cm long strikers and bar components of 50 mm in diameter and 2.5 meters in length each. The whole set up, composed of striker, incident- and transmission bar is available in aluminum, titanium and maraging steel to minimize the acoustic impedance contrast, determined by the change of density and speed of sound, to the specific rock of investigation. Dynamic mechanical parameters are obtained in compression as well as in spallation configuration, covering a wide spectrum from intermediate to high strain rates (100-103 s-1). In SHPB experiments [1] one-dimensional longitudinal compressive pulses of diverse shapes and lengths - formed with pulse shapers - are used to generate a variety of loading histories under 1D states of stress in cylindrical rock samples, in order to measure the respective stress-strain response at specific strain rates. Subsequent microstructural analysis of the deformed samples is aimed at quantification fracture orientation, fracture pattern, fracture density, and fracture surface properties as a function of the loading rate. Linking mechanical and microstructural data to natural dynamic deformation processes has relevance for the understanding of earthquakes, landslides, impacts, and has several rock engineering applications. For instance, experiments on dynamic fragmentation help to unravel super-shear rupture events that pervasively pulverize rocks up to several hundred meters from the fault core [2, 3, 4]. The dynamic, strain rate dependent behavior with strongly increasing strength and changing fracturing process has not been consequently considered in modeling of geo-hazards such as earthquakes, rock falls, landslides or even meteorite impacts [5]. Incorporation of dynamic material data therefore will contribute to improvements of forecast models and the understanding of fast geodynamic processes. References [1] Zhang, Q. B. & Zhao, J. (2013). A Review of Dynamic Experimental Techniques and Mechanical Behaviour of Rock Materials. Rock Mech Rock Eng. DOI 10.1007/s00603-013-0463-y [2] Doan, M. L., & Gary, G. (2009). Rock pulverization at high strain rate near the San Andreas fault. Nature Geosci., 2, 709-712. [3] Reches, Z. E., & Dewers, T. A. (2005). Gouge formation by dynamic pulverization during earthquake rupture. Earth Planet. Sci. Lett., 235, 361-374. [4] Fondriest, M., Aretusini, S., Di Toro, G., & Smith, S. A. (2015). Fracturing and rock pulverization along an exhumed seismogenic fault zone in dolostones: The Foiana Fault Zone (Southern Alps, Italy). Tectonophys.654, 56-74. [5] Kenkmann, T., Poelchau, M. H., & Wulf, G. (2014). Structural Geology of impact craters. J. .Struct. Geol., 62, 156-182.
Martian soil stratigraphy and rock coatings observed in color-enhanced Viking Lander images
NASA Technical Reports Server (NTRS)
Strickland, E. L., III
1979-01-01
Subtle color variations of martian surface materials were enhanced in eight Viking Lander (VL) color images. Well-defined soil units recognized at each site (six at VL-1 and four at VL-2), are identified on the basis of color, texture, morphology, and contact relations. The soil units at the Viking 2 site form a well-defined stratigraphic sequence, whereas the sequence at the Viking 1 site is only partially defined. The same relative soil colors occur at the two sites, suggesting that similar soil units are widespread on Mars. Several types of rock surface materials can be recognized at the two sites; dark, relatively 'blue' rock surfaces are probably minimally weathered igneous rock, whereas bright rock surfaces, with a green/(blue + red) ratio higher than that of any other surface material, are interpreted as a weathering product formed in situ on the rock. These rock surface types are common at both sites. Soil adhering to rocks is common at VL-2, but rare at VL-1. The mechanism that produces the weathering coating on rocks probably operates planet-wide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-05-01
Volume V of the five-volume report consists of appendices, which provide supplementary information, with emphasis on characteristics of geologic formations that might be used for final storage or disposal. Appendix titles are: selected glossary; conversion factors; geologic isolation, including, (a) site selection factors for repositories of wastes in geologic media, (b) rock types--geologic occurrence, (c) glossary of geohydrologic terms, and (d) 217 references; the ocean floor; and, government regulations pertaining to the management of radioactive materials. (JGB)
1989-09-01
flathead sole, rex sole, and rock sole all showed indications of blood worm infestations. One liver tumor was found in a rex sole during spring in the ZSF...concentrations Hainly in invertebrates; some trations (.01 ppb) in waters (from lOx to 42Ox reference) in fish livers ; rarely in fish of Puget Sound central...Eagle Harbor, and Sinclair fish livers , and birds in Inlet. Highest elevation industrialized ’-ban areas. along Ruston-Point Defiance Copper is a natural
Chemical, Mineralogical, and Physical Properties of Martian Dust and Soil
NASA Technical Reports Server (NTRS)
Ming, D. W.; Morris, R. V.
2017-01-01
Global and regional dust storms on Mars have been observed from Earth-based telescopes, Mars orbiters, and surface rovers and landers. Dust storms can be global and regional. Dust is material that is suspended into the atmosphere by winds and has a particle size of 1-3 micrometer. Planetary scientist refer to loose unconsolidated materials at the surface as "soil." The term ''soil'' is used here to denote any loose, unconsolidated material that can be distinguished from rocks, bedrock, or strongly cohesive sediments. No implication for the presence or absence of organic materials or living matter is intended. Soil contains local and regional materials mixed with the globally distributed dust by aeolian processes. Loose, unconsolidated surface materials (dust and soil) may pose challenges for human exploration on Mars. Dust will no doubt adhere to spacesuits, vehicles, habitats, and other surface systems. What will be the impacts on human activity? The objective of this paper is to review the chemical, mineralogical, and physical properties of the martian dust and soil.
Low-Temperature Thermochronology for Unraveling Thermal Processes and Dating of Fault Zones
NASA Astrophysics Data System (ADS)
Tagami, T.
2016-12-01
Thermal signatures as well as timing of fault motions can be constrained by thermochronological analyses of fault-zone rocks (e.g., Tagami, 2012). Fault-zone materials suitable for such analyses are produced by tectocic and geochemical processes, such as (1) mechanical fragmentation of host rocks, grain-size reduction of fragments and recrystallization of grains to form mica and clay minerals, (2) secondary heating/melting of host rocks by frictional fault motions, and (3) mineral vein formation as a consequence of fluid advection associated with fault motions. The geothermal structure of fault zones are primarily controlled by the following three factors: (a) regional geothermal structure around the fault zone that reflect background thermo-tectonic history of studied province, (b) frictional heating of wall rocks by fault motions and resultant heat transfer into surrounding rocks, and (c) thermal influences by hot fluid advection in and around the fault zone. Thermochronological methods widely applied in fault zones are K-Ar (40Ar/39Ar), fission-track (FT), and U-Th methods. In addition, OSL, TL, ESR and (U-Th)/He methods are applied in some fault zones, in order to extract temporal imformation related to low temperature and/or very recent fault activities. Here I briefly review the thermal sensitivity of individual thermochronological systems, which basically controls the response of each method against faulting processes. Then, the thermal sensitivity of FTs is highlighted, with a particular focus on the thermal processes characteristic to fault zones, i.e., flash and hydrothermal heating. On these basis, representative examples as well as key issues, including sampling strategy, are presented to make thermochronologic analysis of fault-zone materials, such as fault gouges, pseudotachylytes and mylonites, along with geological, geomorphological and seismological implications. Finally, the thermochronologic analyses of the Nojima fault are overviewed, as an example of multidisciplinary investigations of an active seismogenic fault system. References: T. Tagami, 2012. Thermochronological investigation of fault zones. Tectonophys., 538-540, 67-85, doi:10.1016/j.tecto.2012.01.032.
Simulation of quasi-static hydraulic fracture propagation in porous media with XFEM
NASA Astrophysics Data System (ADS)
Juan-Lien Ramirez, Alina; Neuweiler, Insa; Löhnert, Stefan
2015-04-01
Hydraulic fracturing is the injection of a fracking fluid at high pressures into the underground. Its goal is to create and expand fracture networks to increase the rock permeability. It is a technique used, for example, for oil and gas recovery and for geothermal energy extraction, since higher rock permeability improves production. Many physical processes take place when it comes to fracking; rock deformation, fluid flow within the fractures, as well as into and through the porous rock. All these processes are strongly coupled, what makes its numerical simulation rather challenging. We present a 2D numerical model that simulates the hydraulic propagation of an embedded fracture quasi-statically in a poroelastic, fully saturated material. Fluid flow within the porous rock is described by Darcy's law and the flow within the fracture is approximated by a parallel plate model. Additionally, the effect of leak-off is taken into consideration. The solid component of the porous medium is assumed to be linear elastic and the propagation criteria are given by the energy release rate and the stress intensity factors [1]. The used numerical method for the spatial discretization is the eXtended Finite Element Method (XFEM) [2]. It is based on the standard Finite Element Method, but introduces additional degrees of freedom and enrichment functions to describe discontinuities locally in a system. Through them the geometry of the discontinuity (e.g. a fracture) becomes independent of the mesh allowing it to move freely through the domain without a mesh-adapting step. With this numerical model we are able to simulate hydraulic fracture propagation with different initial fracture geometries and material parameters. Results from these simulations will also be presented. References [1] D. Gross and T. Seelig. Fracture Mechanics with an Introduction to Micromechanics. Springer, 2nd edition, (2011) [2] T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Meth. Engng. 45, 601-620, (1999)
Modeling rock specimens through 3D printing: Tentative experiments and prospects
NASA Astrophysics Data System (ADS)
Jiang, Quan; Feng, Xiating; Song, Lvbo; Gong, Yahua; Zheng, Hong; Cui, Jie
2016-02-01
Current developments in 3D printing (3DP) technology provide the opportunity to produce rock-like specimens and geotechnical models through additive manufacturing, that is, from a file viewed with a computer to a real object. This study investigated the serviceability of 3DP products as substitutes for rock specimens and rock-type materials in experimental analysis of deformation and failure in the laboratory. These experiments were performed on two types of materials as follows: (1) compressive experiments on printed sand-powder specimens in different shapes and structures, including intact cylinders, cylinders with small holes, and cuboids with pre-existing cracks, and (2) compressive and shearing experiments on printed polylactic acid cylinders and molded shearing blocks. These tentative tests for 3DP technology have exposed its advantages in producing complicated specimens with special external forms and internal structures, the mechanical similarity of its product to rock-type material in terms of deformation and failure, and its precision in mapping shapes from the original body to the trial sample (such as a natural rock joint). These experiments and analyses also successfully demonstrate the potential and prospects of 3DP technology to assist in the deformation and failure analysis of rock-type materials, as well as in the simulation of similar material modeling experiments.
Publications - GMC 13 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 13 Publication Details Title: Total organic carbon, rock-eval pyrolysis and vitrinite information. Bibliographic Reference Phillips Petroleum Company, 1983, Total organic carbon, rock-eval K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite Reflectance Top of Page
Publications - GMC 127 | Alaska Division of Geological & Geophysical
DGGS GMC 127 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite information. Bibliographic Reference Unknown, 1989, Total organic carbon, rock-eval pyrolysis, and vitrinite ) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite Reflectance Top of Page Department
NASA Astrophysics Data System (ADS)
Bulakh, Andrey
2016-04-01
Soap stone represents soft Proterozoic rock type from the deposit Nunnalahti situated on the western shore of the big Lake Pielinen in Eastern Finland. It consists of talc (40 - 50 %), magnesite MgCO3 (40 - 50 %), chlorite (5 - 8 %), dolomite, calcite, etc. The colour of the stone is very spectacular and varies from yellow and brownish-yellow to grey, greenish grey. The soft stone is a highly workable material for a sculptor's chisel. It was one of the most popular ornamental rocks used architecture of the Modern style in St Petersburg, Helsinki, Turku, Tampere and other North European cities lately in the XIX-th centuries. Examples are given and discussed. References: Bulakh, A.G., Abakumova, N.B., and Romanovsky, J.V. St Petersburg: a History in Stone. 2010. Print House of St Petersburg State University. 173 p. (In English).
Aqueous Alteration of Endeavour Crater Rim Apron Rocks
NASA Technical Reports Server (NTRS)
Mittlefehldt, David W.; Ming, Douglas W.; Gellert, Ralf; Clark, Benton C.; Morris, Richard V.; Yen, Albert S.; Arvidson, Raymond E.; Crumpler, Larry S.; Farrand, William H.; Grant, John A.;
2014-01-01
Mars Exploration Rover Opportunity is exploring Noachian age rocks of the rim of 22 km diameter Endeavour crater. Overlying the pre-impact lithologies and rim breccias is a thin apron of fine-grained sediments, the Grasberg fm, forming annuli on the lower slopes of rim segments. Hesperian Burns fm sandstones overly the Grasberg fm. Grasberg rocks have major element compositions that are distinct from Burns fm sandstones, especially when comparing interior compositions exposed by the Rock Abrasion Tool. Grasberg rocks are also different from Endeavour rim breccias, but have general compositional similarities to them. Grasberg sediments are plausibly fine-grained materials derived from the impact breccias. Veins of CaSO4 transect Grasberg fm rocks demonstrating post-formation aqueous alteration. Minor/trace elements show variations consistent with mobilization by aqueous fluids. Grasberg fm rocks have low Mn and high Fe/Mn ratios compared to the other lithologies. Manganese likely was mobilized and removed from the Grasberg host rock by redox reactions. We posit that Fe2+ from acidic solutions associated with formation of the Burns sulfate-rich sandstones acted as an electron donor to reduce more oxidized Mn to Mn2+. The Fe contents of Grasberg rocks are slightly higher than in other rocks suggesting precipitation of Fe phases in Grasberg materials. Pancam spectra show that Grasberg rocks have a higher fraction of ferric oxide minerals than other Endeavour rim rocks. Solutions transported Mn2+ into the Endeavour rim materials and oxidized and/or precipitated it in them. Grasberg has higher contents of the mobile elements K, Zn, Cl, and Br compared to the rim materials. Similar enrichments of mobile elements were measured by the Spirit APXS on West Spur and around Home Plate in Gusev crater. Enhancements in these elements are attributed to interactions of hydrothermal acidic fluids with the host rocks. Interactions of fluids with the Grasberg fm postdate the genesis of the Endeavour rim phyllosilicates. The aqueous alteration history of Endeavour rim rocks is complicated by different styles of alteration that have spanned the Noachian and Hesperian. Late stage acidic aqueous alteration of Grasberg fm materials is likely penecontemporaneous with the diagenesis of the sulfate-rich sediments of Meridiani Planum.
Aqueous Alteration of Endeavour Crater Rim Apron Rocks
NASA Astrophysics Data System (ADS)
Ming, D. W.; Mittlefehldt, D. W.; Gellert, R.; Clark, B. C.; Morris, R. V.; Yen, A. S.; Arvidson, R. E.; Crumpler, L. S.; Farrand, W. H.; Grant, J. A., III; Jolliff, B. L.; Parker, T. J.; Peretyazhko, T.
2014-12-01
Mars Exploration Rover Opportunity is exploring Noachian age rocks of the rim of 22 km diameter Endeavour crater. Overlying the pre-impact lithologies and rim breccias is a thin apron of fine-grained sediments, the Grasberg fm, forming annuli on the lower slopes of rim segments. Hesperian Burns fm sandstones overly the Grasberg fm. Grasberg rocks have major element compositions that are distinct from Burns fm sandstones, especially when comparing interior compositions exposed by the Rock Abrasion Tool. Grasberg rocks are also different from Endeavour rim breccias, but have general compositional similarities to them. Grasberg sediments are plausibly fine-grained materials derived from the impact breccias. Veins of CaSO4 transect Grasberg fm rocks demonstrating post-formation aqueous alteration. Minor/trace elements show variations consistent with mobilization by aqueous fluids. Grasberg fm rocks have low Mn and high Fe/Mn ratios compared to the other lithologies. Manganese likely was mobilized and removed from the Grasberg host rock by redox reactions. We posit that Fe2+ from acidic solutions associated with formation of the Burns sulfate-rich sandstones acted as an electron donor to reduce more oxidized Mn to Mn2+. The Fe contents of Grasberg rocks are slightly higher than in other rocks suggesting precipitation of Fe phases in Grasberg materials. Pancam spectra show that Grasberg rocks have a higher fraction of ferric oxide minerals than other Endeavour rim rocks. Solutions transported Mn2+ into the Endeavour rim materials and oxidized and/or precipitated it in them. Grasberg has higher contents of the mobile elements K, Zn, Cl, and Br compared to the rim materials. Similar enrichments of mobile elements were measured by the Spirit APXS on West Spur and around Home Plate in Gusev crater. Enhancements in these elements are attributed to interactions of hydrothermal acidic fluids with the host rocks. Interactions of fluids with the Grasberg fm postdate the genesis of the Endeavour rim phyllosilicates. The aqueous alteration history of Endeavour rim rocks is complicated by different styles of alteration that have spanned the Noachian and Hesperian. Late stage acidic aqueous alteration of Grasberg fm materials is likely penecontemporaneous with the diagenesis of the sulfate-rich sediments of Meridiani Planum.
Host rocks and their alterations as related to uranium-bearing veins in the United States
Walker, George W.
1956-01-01
This paper, dealing with the different kinds of host rocks and their alterations associated with uranium-bearing veins in the United States, is a chapter of a comprehensive report entitled , "Geology of uranium-bearing vein deposits in the United States," in preparation by George W. Walker, Frank W. Osterwald, and others. The comprehensive report will include detailed information on tectonic and structural setting, kinds of host rocks, wall-rock alteration, mineralogy, physical characteristics, processes of deposition, and concepts of origin of uraniferous veins; but, because it will not be completed until sometime in the future, some chapters of the report are being transmitted as they are finished. Part of an introductory chapter to the comprehensive report entitled, "Classification and distribution of uranium-bearing veins in the United States" (Walker and Osterwald, 1956) has already been transmitted; several of the terms used herein are defined in the introductory chapter. Data included in this chapter demonstrate that uranium-bearing veins are: 1) in rocks of nearly all textural, chemical, and mineralogic types; 2) most abundant in holocrystalline, commonly equigranular, igeneous and metamorphic rocks characterized by a moderate to high silica content and and by similar physical properties. Although some of the physiochemical properties of the host rocks are discussed in terms of favorability or nonfavoribility for uranium deposition, the principal purpose of this chapter is to establish the petroloic environment in which uranium-bearing veins have been found. Because favorability or nonfavorability of host rocks is related complexly to the chemistry of ore solutions and to methods or uranium transport and deposition, several hypothetical processes of transport and deposition have been referred to briefly; these and other hypotheses will be outlines and discussed in greater detail in a subsequent chapter. The compilation of data leading to this report and its preparation by a member of the Uranium Research and Resource Section, U.S. Geological Survey, was done on behalf of the Division of Raw Materials, U.S. Atomic Energy Commission. The report is based on both published and unpublished information collected principally by personnel of the U.S. Geological Survey, the U.S. Atomic Energy Commission or its predecessor organization, the Manhattan Engineer District, and to a lesser extent by staff members of other Federal or State agencies and by geologists in private industry. Information concerning foreign uranium-bearing vein deposits has been extracted almost exclusively from published reports; references to these and other data are included at appropriate places.
Rho-associated coiled-coil containing kinases (ROCK)
Julian, Linda; Olson, Michael F
2014-01-01
Rho-associated coiled-coil containing kinases (ROCK) were originally identified as effectors of the RhoA small GTPase.1–5 They belong to the AGC family of serine/threonine kinases6 and play vital roles in facilitating actomyosin cytoskeleton contractility downstream of RhoA and RhoC activation. Since their discovery, ROCK kinases have been extensively studied, unveiling their manifold functions in processes including cell contraction, migration, apoptosis, survival, and proliferation. Two mammalian ROCK homologs have been identified, ROCK1 (also called ROCK I, ROKβ, Rho-kinase β, or p160ROCK) and ROCK2 (also known as ROCK II, ROKα, or Rho kinase), hereafter collectively referred to as ROCK. In this review, we will focus on the structure, regulation, and functions of ROCK. PMID:25010901
Earth Science: Rocks. Grade 4. Anchorage School District Elementary Science Program.
ERIC Educational Resources Information Center
Anchorage School District, AK.
This unit contains six lessons on rocks for fourth graders. It describes materials, supplementary materials (including films, units, and books) schedule, unit introduction, and background information for teachers. Lessons include: (1) "Rocks Are Everywhere"; (2) "Chart Making"; (3) "Things Are Breaking Up"; (4)…
Areally Extensive Surface Bedrock Exposures on Mars: Many Are Clastic Rocks, Not Lavas
NASA Astrophysics Data System (ADS)
Rogers, A. Deanne; Warner, Nicholas H.; Golombek, Matthew P.; Head, James W.; Cowart, Justin C.
2018-02-01
Areally extensive exposures of intact olivine/pyroxene-enriched rock, as well as feldspar-enriched rock, are found in isolated locations throughout the Martian highlands. The petrogenetic origin(s) of these rock units are not well understood, but some previous studies favored an effusive volcanic origin partly on the basis of distinctive composition and relatively high thermal inertia. Here we show that the regolith development, crater retention, and morphological characteristics for many of these "bedrock plains" are not consistent with competent lavas and reinterpret the high thermal inertia orbital signatures to represent friable materials that are more easily kept free of comminution products through eolian activity. Candidate origins include pyroclastic rocks, impact-generated materials, or detrital sedimentary rocks. Olivine/pyroxene enrichments in bedrock plains relative to surrounding materials could have potentially formed through deflation and preferential removal of plagioclase.
An experimental method to quantify the impact fatigue behavior of rocks
NASA Astrophysics Data System (ADS)
Wu, Bangbiao; Kanopoulos, Patrick; Luo, Xuedong; Xia, Kaiwen
2014-07-01
Fatigue failure is an important failure mode of engineering materials. The fatigue behavior of both ductile and brittle materials has been under investigation for many years. While the fatigue failure of ductile materials is well established, only a few studies have been carried out on brittle materials. In addition, most fatigue studies on rocks are conducted under quasi-static loading conditions. To address engineering applications involving repeated blasting, this paper proposes a method to quantify the impact fatigue properties of rocks. In this method, a split Hopkinson pressure bar system is adopted to exert impact load on the sample, which is placed in a specially designed steel sleeve to limit the displacement of the sample and thus to enable the recovery of the rock after each impact. The method is then applied to Laurentian granite, which is fine-grained and isotropic material. The results demonstrate that this is a practicable means to conduct impact fatigue tests on rocks and other brittle solids.
Space Weathering of Lunar Rocks and Regolith Grains
NASA Technical Reports Server (NTRS)
Keller, L. P.
2013-01-01
The exposed surfaces of lunar soil grains and lunar rocks become modified and coated over time with a thin rind of material (patina) through complex interactions with the space environment. These interactions encompass many processes including micrometeorite impacts, vapor and melt deposition, and solar wind implantation/sputtering effects that collectively are referred to as "space weathering". Studies of space weathering effects in lunar soils and rocks provide important clues to understanding the origin and evolution of the lunar regolith as well as aiding in the interpretation of global chemical and mineralogical datasets obtained by remote-sensing missions. The interpretation of reflectance spectra obtained by these missions is complicated because the patina coatings obscure the underlying rock mineralogy and compositions. Much of our understanding of these processes and products comes from decades of work on remote-sensing observations of the Moon, the analysis of lunar samples, and laboratory experiments. Space weathering effects collectively result in a reddened continuum slope, lowered albedo, and attenuated absorption features in reflectance spectra of lunar soils as compared to finely comminuted rocks from the same Apollo sites. Space weathering effects are largely surface-correlated, concentrated in the fine size fractions, and occur as amorphous rims on individual soil grains. Rims on lunar soil grains are highly complex and span the range between erosional surfaces modified by solar wind irradiation to depositional surfaces modified by the condensation of sputtered ions and impact-generated vapors. The optical effects of space weathering effects are directly linked to the production of nanophase Fe metal in lunar materials]. The size of distribution of nanophase inclusions in the rims directly affect optical properties given that large Fe(sup o) grains (approx 10 nm and larger) darken the sample (lower albedo) while the tiny Fe(sup o) grains (<5nm) are the primary agent in spectral "reddening". More recent work has focused on the nature and abundance of OH/H2O in the lunar regolith using orbital data and samples analyses. Advances in sample preparation techniques have made possible detailed analyses of patina-coated rock surfaces. Major advances are occurring in quantifying the rates and efficiency of space weathering processes through laboratory experimentation.
Publications - RI 2005-1 | Alaska Division of Geological & Geophysical
; Solomon Bibliographic Reference Werdon, M.B., Stevens, D.S.P., Newberry, R.J., Szumigala, D.J., Athey, J.E ; Geochronology; Geology; Igneous Rocks; Mesozoic; Metamorphic Rocks; Nome; Nome Group; Ordovician; Paleozoic ; Plutonic Rocks; Proterozoic; Quaternary; Rb-Sr; STATEMAP Project; Seward Peninsula; Solomon Schist
Publications - GMC 137 | Alaska Division of Geological & Geophysical
DGGS GMC 137 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Reference Unknown, 1989, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance data of Report Report Information gmc137.pdf (47.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic
Publications - GMC 144 | Alaska Division of Geological & Geophysical
DGGS GMC 144 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite for more information. Bibliographic Reference Unknown, 1989, Total organic carbon, rock-eval pyrolysis gmc144.pdf (104.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite Reflectance
Publications - GMC 141 | Alaska Division of Geological & Geophysical
DGGS GMC 141 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Reference Unknown, 1989, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance data of Report Report Information gmc141.pdf (70.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic
Publications - GMC 27 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 27 Publication Details Title: Geochemical analysis (total organic carbon, rock-eval pyrolysis . Bibliographic Reference Unknown, 1995, Geochemical analysis (total organic carbon, rock-eval pyrolysis, and ; Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite Reflectance Top of Page Department of
Publications - GMC 124 | Alaska Division of Geological & Geophysical
DGGS GMC 124 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Reference Unknown, 1989, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance data from the Report Information gmc124.pdf (278.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon
Publications - GMC 68 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 68 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Reference Unknown, 1987, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance geochemical Report Report Information gmc068.pdf (48.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-03
... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-155; 72-43 and NRC-2013-0218] Entergy Nuclear Operations, Inc.; Big Rock Point; Independent Spent Fuel Storage Installation AGENCY: Nuclear Regulatory... the Big Rock Point (BRP) Independent Spent Fuel Storage Installation (ISFSI). ADDRESSES: Please refer...
Evolution of Friction, Wear, and Seismic Radiation Along Experimental Bi-material Faults
NASA Astrophysics Data System (ADS)
Carpenter, B. M.; Zu, X.; Shadoan, T.; Self, A.; Reches, Z.
2017-12-01
Faults are commonly composed by rocks of different lithologies and mechanical properties that are positioned against one another by fault slip; such faults are referred to as bimaterial-faults (BF). We investigate the mechanical behavior, wear production, and seismic radiation of BF via laboratory experiments on a rotary shear apparatus. In the experiments, two rock blocks of dissimilar or similar lithology are sheared against each other. We used contrasting rock pairs of a stiff, igneous block (diorite, granite, or gabbro) against a more compliant, sedimentary block (sandstone, limestone, or dolomite). The cylindrical blocks have a ring-shaped contact, and are loaded under conditions of constant normal stress and shear velocity. Fault behavior was monitored with stress, velocity and dilation sensors. Acoustic activity is monitored with four 3D accelerometers mounted at 2 cm distance from the experimental fault. These sensors can measure accelerations up to 500 g, and their full waveform output is recorded at 1MHz for periods up to 14 sec. Our preliminary results indicate that the bi-material nature of the fault has a strong affect on slip initiation, wear evolution, and acoustic emission activity. In terms of wear, we observe enhanced wear in experiments with a sandstone block sheared against a gabbro or limestone block. Experiments with a limestone or sandstone block produced distinct slickenline striations. Further, significant differences appeared in the number and amplitude of acoustic events depending on the bi-material setting and slip-distance. A gabbro-gabbro fault showed a decrease in both amplitude and number of acoustic events with increasing slip. Conversely, a gabbro-limestone fault showed a decrease in the number of events, but an increase in average event amplitude. Ongoing work focuses on advanced characterization of mechanical, dynamic weakening, and acoustic, frequency content, parameters.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the globe, in distinction from the firm rock, and including the soil and subsoil, as well as finely divided rock and other soil formation materials down to the rock layer. Europe. The continent of Europe... stead has been or may hereafter be delegated. Soil. The loose surface material of the earth in which...
Preliminary examination of lunar samples from apollo 14.
1971-08-20
The major findings of the preliminary examination of the lunar samples are as follows: 1) The samples from Fra Mauro base may be contrasted with those from Tranquillity base and the Ocean of Storms in that about half the Apollo 11 samples consist of basaltic rocks, and all but three Apollo 12 rocks are basaltic, whereas in the Apollo 14 samples only two rocks of the 33 rocks over 50 grams have basaltic textures. The samples from Fra Mauro base consist largely of fragmental rocks containing clasts of diverse lithologies and histories. Generally the rocks differ modally from earlier lunar samples in that they contain more plagioclase and contain orthopyroxene. 2) The Apollo 14 samples differ chemically from earlier lunar rocks and from their closest meteorite and terrestrial analogs. The lunar material closest in composition is the KREEP component (potassium, rare earth elements, phosphorus), "norite," "mottled gray fragments" (9) from the soil samples (in particular, sample 12033) from the Apollo 12 site, and the dark portion of rock 12013 (10). The Apollo 14 material is richer in titanium, iron, magnesium, and silicon than the Surveyor 7 material, the only lunar highlands material directly analyzed (11). The rocks also differ from the mare basalts, having much lower contents of iron, titanium, manganese, chromium, and scandium and higher contents of silicon, aluminum, zirconium, potassium, uranium, thorium, barium, rubidium, sodium, niobium, lithium, and lanthanum. The ratios of potassium to uranium are lower than those of terrestrial rocks and similar to those of earlier lunar samples. 3) The chemical composition of the soil closely resembles that of the fragmental rocks and the large basaltic rock (sample 14310) except that some elements (potassium, lanthanum, ytterbium, and barium) may be somewhat depleted in the soil with respect to the average rock composition. 4) Rocks display characteristic surface features of lunar material (impact microcraters, rounding) and shock effects similar to those observed in rocks and soil from the Apollo 11 and Apollo 12 missions. The rocks show no evidence of exposure to water, and their content of metallic iron suggests that they, like the Apollo 11 and Apollo 12 material, were formed and have remained in an environment with low oxygen activity. 5) The concentration of solar windimplanted material in the soil is large, as was the case for Apollo 11 and Apollo 12 soil. However, unlike previous fragmental rocks, Apollo 14 fragmental rocks possess solar wind contents ranging from approximately that of the soil to essentially zero, with most rocks investigated falling toward one extreme of this range. A positive correlation appears to exist between the solar wind components, carbon, and (20)Ne, of fragmental rocks and their friability (Fig. 12). 6) Carbon contents lie within the range of carbon contents for Apollo 11 and Apollo 12 samples. 7) Four fragmental rocks show surface exposure times (10 x 10(6) to 20 x 10(6) years) about an order of magnitude less than typical exposure times of Apollo 11 and Apollo 12 rocks. 8) A much broader range of soil mechanics properties was encountered at the Apollo 14 site than has been observed at the Apollo 11, Apollo 12, and Surveyor landing sites. At different points along the traverses of the Apollo 14 mission, lesser cohesion, coarser grain size, and greater resistance to penetration was found than at the Apollo 11 and Apollo 12 sites. These variations are indicative of a very complex, heterogeneous deposit. The soils are more poorly sorted, but the range of grain size is similar to those of the Apollo 11 and Apollo 12 soils. 9) No evidence of biological material has been found in the samples to date.
30 CFR 56.9310 - Chute hazards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... tools to free material. (c) When broken rock or material is dumped into an empty chute, the chute shall be equipped with a guard or all persons shall be isolated from the hazard of flying rock or material. ...
30 CFR 56.9310 - Chute hazards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... tools to free material. (c) When broken rock or material is dumped into an empty chute, the chute shall be equipped with a guard or all persons shall be isolated from the hazard of flying rock or material. ...
NASA Astrophysics Data System (ADS)
Ersöz, Timur; Topal, Tamer
2017-04-01
Rocks containing pore spaces, fractures, joints, bedding planes and faults are prone to weathering due to temperature differences, wetting-drying, chemistry of solutions absorbed, and other physical and chemical agents. Especially cut slopes are very sensitive to weathering activities because of disturbed rock mass and topographical condition by excavation. During and right after an excavation process of a cut slope, weathering and erosion may act on this newly exposed rock material. These acting on the material may degrade and change its properties and the stability of the cut slope in its engineering lifetime. In this study, the effect of physical and chemical weathering agents on shear strength parameters of the rocks are investigated in order to observe the differences between weathered and unweathered rocks. Also, slope stability assessment of cut slopes affected by these weathering agents which may disturb the parameters like strength, cohesion, internal friction angle, unit weight, water absorption and porosity are studied. In order to compare the condition of the rock materials and analyze the slope stability, the parameters of weathered and fresh rock materials are found with in-situ tests such as Schmidt hammer and laboratory tests like uniaxial compressive strength, point load and direct shear. Moreover, slake durability and methylene blue tests are applied to investigate the response of the rock to weathering and presence of clays in rock materials, respectively. In addition to these studies, both rock strength parameters and any kind of failure mechanism are determined by probabilistic approach with the help of SSPC system. With these observations, the performances of the weathered and fresh zones of the cut slopes are evaluated and 2-D slope stability analysis are modeled with further recommendations for the cut slopes. Keywords: 2-D Modeling, Rock Strength, Slope Stability, SSPC, Weathering
NASA Astrophysics Data System (ADS)
Huang, Yan-Hua; Yang, Sheng-Qi; Tian, Wen-Ling; Zeng, Wei; Yu, Li-Yuan
2016-06-01
Strength and deformability characteristics of rock with pre-existing fissures are governed by cracking behavior. To further research the effects of pre-existing fissures on the mechanical properties and crack coalescence process, a series of uniaxial compression tests were carried out for rock-like material with two unparallel fissures. In the present study, cement, quartz sand, and water were used to fabricate a kind of brittle rock-like material cylindrical model specimen. The mechanical properties of rock-like material specimen used in this research were all in good agreement with the brittle rock materials. Two unparallel fissures (a horizontal fissure and an inclined fissure) were created by inserting steel during molding the model specimen. Then all the pre-fissured rock-like specimens were tested under uniaxial compression by a rock mechanics servo-controlled testing system. The peak strength and Young's modulus of pre-fissured specimen all first decreased and then increased when the fissure angle increased from 0° to 75°. In order to investigate the crack initiation, propagation and coalescence process, photographic monitoring was adopted to capture images during the entire deformation process. Moreover, acoustic emission (AE) monitoring technique was also used to obtain the AE evolution characteristic of pre-fissured specimen. The relationship between axial stress, AE events, and the crack coalescence process was set up: when a new crack was initiated or a crack coalescence occurred, the corresponding axial stress dropped in the axial stress-time curve and a big AE event could be observed simultaneously. Finally, the mechanism of crack propagation under microscopic observation was discussed. These experimental results are expected to increase the understanding of the strength failure behavior and the cracking mechanism of rock containing unparallel fissures.
Publications - PDF 96-18 | Alaska Division of Geological & Geophysical
content DGGS PDF 96-18 Publication Details Title: Major and trace element analyses of Cretaceous plutonic Bibliographic Reference Newberry, R.J., 1996, Major and trace element analyses of Cretaceous plutonic rocks in pdf1996_018.pdf (571.0 K) Keywords Geochemistry; Geology; Igneous Rocks; Major Oxides; Plutonic Rocks
Publications - GMC 99 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 99 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Reference Unknown, 1988, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance data of ditch Report Report Information gmc099.pdf (383.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic
Publications - GMC 72 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 72 Publication Details Title: Organic carbon, rock-eval pyrolysis, kerogen type, maturation , and vitrinite reflectance geochemical data, and a source rock evaluation for the Exxon OCS-Y-0280-1 publication sales page for more information. Bibliographic Reference Texaco, Inc., 1987, Organic carbon, rock
Publications - GMC 284 | Alaska Division of Geological & Geophysical
DGGS GMC 284 Publication Details Title: TOC/rock-eval pyrolysis geochemical data for 26 Alaska North for more information. Bibliographic Reference Unknown, 1999, TOC/rock-eval pyrolysis geochemical data Information gmc284.pdf (1.8 M) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon Top of Page
Wanko, Adrien; Laurent, Julien; Bois, Paul; Mosé, Robert; Wagner-Kocher, Christiane; Bahlouli, Nadia; Tiffay, Serge; Braun, Bouke; Provo kluit, Pieter-Willem
2016-01-01
This study proposes mechanical and hydrodynamic characterization of rock wool used as support material in compact filter. A double-pronged approach, based on experimental simulation of various physical states of this material was done. First of all a scanning electron microscopy observation allows to highlight the fibrous network structure, the fibres sizing distribution and the atomic absorption spectrum. The material was essentially lacunar with 97 ± 2% of void space. Static compression tests on variably saturated rock wool samples provide the fact that the strain/stress behaviours depend on both the sample conditioning and the saturation level. Results showed that water exerts plastifying effect on mechanical behaviour of rock wool. The load-displacement curves and drainage evolution under different water saturation levels allowed exhibiting hydraulic retention capacities under stress. Finally, several tracer experiments on rock wool column considering continuous and batch feeding flow regime allowed: (i) to determine the flow model for each test case and the implications for water dynamic in rock wool medium, (ii) to assess the rock wool double porosity and discuss its advantages for wastewater treatment, (iii) to analyse the benefits effect for water treatment when the high level of rock wool hydric retention was associated with the plug-flow effect, and (iv) to discuss the practical contributions for compact filter conception and management.
1994-09-01
materials. Also, available data from drilling rates in the mining and tunneling industries (Howarth and Rowlands 1987, Somerton 1959) indicate a...selected uniform natural rock materials and several man -made rock simulants were used to obtain drilling parameter records for materials of known...Dredging Seminar, Atlantic City, NJ, May 1993. Western Dredging Association (WEDA) and Texas A&M University. Somerton , W. H. (1959). "A laboratory study of
Design and development of a dust dispersion chamber to quantify the dispersibility of rock dust.
Perera, Inoka E; Sapko, Michael J; Harris, Marcia L; Zlochower, Isaac A; Weiss, Eric S
2016-01-01
Dispersible rock dust must be applied to the surfaces of entries in underground coal mines in order to inert the coal dust entrained or made airborne during an explosion and prevent propagating explosions. 30 CFR. 75.2 states that "… [rock dust particles] when wetted and dried will not cohere to form a cake which will not be dispersed into separate particles by a light blast of air …" However, a proper definition or quantification of "light blast of air" is not provided. The National Institute for Occupational Safety and Health (NIOSH) has, consequently, designed a dust dispersion chamber to conduct quantitative laboratory-scale dispersibility experiments as a screening tool for candidate rock dusts. A reproducible pulse of air is injected into the chamber and across a shallow tray of rock dust. The dust dispersed and carried downwind is monitored. The mass loss of the dust tray and the airborne dust measurements determine the relative dispersibility of the dust with respect to a Reference rock dust. This report describes the design and the methodology to evaluate the relative dispersibility of rock dusts with and without anti-caking agents. Further, the results of this study indicate that the dispersibility of rock dusts varies with particle size, type of anti-caking agent used, and with the untapped bulk density. Untreated rock dusts, when wetted and dried forming a cake that was much less dispersible than the reference rock dust used in supporting the 80% total incombustible content rule.
NASA Astrophysics Data System (ADS)
Pulfrich, Andrea; Branch, George M.
2014-10-01
Extensive terrestrial diamond mining occurs on the southern coast of Namibia, and at Elizabeth Bay near Lüderitz sediment tailings totalling about 2 million tons.yr-1, have been discharged onto the beach. We report here on monitoring spanning 2004-2012 to assess (1) the impacts of increased tailings discharges following an expansion of the mine in 2005, and (2) recovery after discharges halted in 2009. Sampling covered three levels of wave exposure, and compared impacted sites with comparable unmined reference sites. Benthic communities were quantified on both intertidal and subtidal reefs, and kelp densities and rock-lobster abundances, lengths and sex ratios on subtidal reefs. Prior to intensification of mining, deposition of tailings significantly influenced intertidal communities only at sheltered localities where wave action was insufficient to disperse them. Following the mine expansion, effects spread to both semi-exposed and exposed sites. After mining was suspended, recovery of the biota was limited, even three years later. Reductions of intertidal diversity and grazers, proliferation of macroalgae, and increased dominance by filter feeders were recorded at the impacted sites and were persistent, but the affects of wave exposure on community composition generally exceeded those of mining discharges. On subtidal reefs, tailings deposition reduced predators and grazers, increased filter feeders and ephemeral green algae, and decreased all other algae, possibly driven by light reduction due to plumes of suspended fine sediments. Increased discharges post-2005 also substantially influenced bathymetry, wave and current regimes, transforming 2 km of previously wave-exposed rocky coastline into a semi-exposed sandy beach. Tailings discharge appeared to influence community composition in four ways: (1) inundation and blanketing; (2) increased suspended particulate materials; (3) indirect top-down ripple effects, and (4) light reduction. Throughout the period 2004-2007, tailings-deposition had no detectable effects on the sex ratio, sizes or density of rock lobsters, but following suspension of mining activities, densities in 2010-2012 at impact sites exceeded those at reference sites. High natural variability in the abundance of rock lobsters may mask mining impacts, but the data strongly indicate an absence of any negative effects on rock lobsters.
Lahmira, Belkacem; Lefebvre, René; Aubertin, Michel; Bussière, Bruno
2016-01-01
Waste rock piles producing acid mine drainage (AMD) are partially saturated systems involving multiphase (gas and liquid) flow and coupled transfer processes. Their internal structure and heterogeneous properties are inherited from their wide-ranging material grain sizes, their modes of deposition, and the underlying topography. This paper aims at assessing the effect of physical heterogeneity and anisotropy of waste rock piles on the physical processes involved in the generation of AMD. Generic waste rock pile conditions were represented with the numerical simulator TOUGH AMD based on those found at the Doyon mine waste rock pile (Canada). Models included four randomly distributed material types (coarse, intermediate, fine and very fine-grained). The term "randomly" as used in this study means that the vertical profile and spatial distribution of materials in waste rock piles (internal structure) defy stratigraphy principles applicable to natural sediments (superposition and continuity). The materials have different permeability and capillary properties, covering the typical range of materials found in waste rock piles. Anisotropy with a larger horizontal than vertical permeability was used to represent the effect of pile construction by benches, while the construction by end-dumping was presumed to induce a higher vertical than horizontal permeability. Results show that infiltrated precipitation preferentially flows in fine-grained materials, which remain almost saturated, whereas gas flows preferentially through the most permeable coarse materials, which have higher volumetric gas saturation. Anisotropy, which depends on pile construction methods, often controls global gas flow paths. Construction by benches favours lateral air entry close to the pile slope, whereas end-dumping leads to air entry from the surface to the interior of the pile by secondary gas convection cells. These results can be useful to construct and rehabilitate waste rock piles to minimize AMD, while controlling gas flow and oxygen supply. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Traub, David; Nguyen, Jason
The Slick Rock, Colorado, Processing Sites are referred to as the Slick Rock West Processing Site (SRK05) and the Slick Rock East Processing Site (SRK06). This annual event involved sampling both sites for a total of 16 monitoring wells and 6 surface water locations as required by the 2006 Draft Final Ground Water Compliance Action Plan for the Slick Rock, Colorado, Processing Sites (GCAP). A domestic well was also sampled at a property adjacent to the Slick Rock East site at the request of the landowner.
Evaluation of Used Fuel Disposition in Clay-Bearing Rock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jove-Colon, Carlos F.; Weck, Philippe F.; Hammond, Glenn Edward
Deep geological disposal of nuclear waste in clay/shale/argillaceous rock formations has received much consideration given its desirable attributes such as isolation properties (low permeability), geochemically reduced conditions, slow diffusion, sorbtive mineralogy, and geologically widespread (Jové Colón et al., 2014). There is a wealth of gained scientific expertise on the behavior of clay/shale/ argillaceous rock given its focus in international nuclear waste repository programs that includes underground research laboratories (URLs) in Switzerland, France, Belgium, and Japan. Jové Colón et al. (2014) have described some of these investigative efforts in clay rock ranging from site characterization to research on the engineered barriermore » system (EBS). Evaluations of disposal options that include nuclear waste disposition in clay/shale/argillaceous rock have determined that this host media can accommodate a wide range of waste types. R&D work within the Used Fuel Disposition Campaign (UFDC) assessing thermal effects and fluid-mineral interactions for the disposition of heat-generating waste have so far demonstrated the feasibility for the EBS and clay host rock to withstand high thermal loads. This report represents the continuation of disposal R&D efforts on the advancement and refinement of coupled Thermal-Hydrological-Mechanical-Chemical (THMC), hydrothermal experiments on clay interactions, used fuel degradation (source term), and thermodynamic modeling and database development. The development and implementation of a clay/shale/argillite reference case described in Jové Colón et al. (2014) for FY15 will be documented in another report (Mariner et al. 2015) – only a brief description will be given here. This clay reference case implementation is the result of integration efforts between the GDSA PA and disposal in argillite work packages. The assessment of sacrificial zones in the EBS is being addressed through experimental work along with 1D reactive-transport and reaction path modeling. The focus of these investigations into the nature of sacrificial zones is to evaluate the chemical effects of heterogeneous chemical reactions at EBS interfaces. The difference in barrier material types and the extent of chemical reactions within these interfacial domains generates changes in mineral abundances. These mineralogical alterations also result in volume changes that, although small, could affect the interface bulk porosity. As in previous deliverables, this report is structured according to various national laboratory contributions describing R&D activities applicable to clay/shale/argillite media.« less
NASA Astrophysics Data System (ADS)
Al-Mishwat, Ali T.
2016-05-01
PHASS99 is a FORTRAN program designed to retrieve and decode radiometric and other physical age information of igneous rocks contained in the international database IGBADAT (Igneous Base Data File). In the database, ages are stored in a proprietary format using mnemonic representations. The program can handle up to 99 ages in an igneous rock specimen and caters to forty radiometric age systems. The radiometric age alphanumeric strings assigned to each specimen description in the database consist of four components: the numeric age and its exponential modifier, a four-character mnemonic method identification, a two-character mnemonic name of analysed material, and the reference number in the rock group bibliography vector. For each specimen, the program searches for radiometric age strings, extracts them, parses them, decodes the different age components, and converts them to high-level English equivalents. IGBADAT and similarly-structured files are used for input. The output includes three files: a flat raw ASCII text file containing retrieved radiometric age information, a generic spreadsheet-compatible file for data import to spreadsheets, and an error file. PHASS99 builds on the old program TSTPHA (Test Physical Age) decoder program and expands greatly its capabilities. PHASS99 is simple, user friendly, fast, efficient, and does not require users to have knowledge of programing.
The importance of stress percolation patterns in rocks and other polycrystalline materials.
Burnley, P C
2013-01-01
A new framework for thinking about the deformation behavior of rocks and other heterogeneous polycrystalline materials is proposed, based on understanding the patterns of stress transmission through these materials. Here, using finite element models, I show that stress percolates through polycrystalline materials that have heterogeneous elastic and plastic properties of the same order as those found in rocks. The pattern of stress percolation is related to the degree of heterogeneity in and statistical distribution of the elastic and plastic properties of the constituent grains in the aggregate. The development of these stress patterns leads directly to shear localization, and their existence provides insight into the formation of rhythmic features such as compositional banding and foliation in rocks that are reacting or dissolving while being deformed. In addition, this framework provides a foundation for understanding and predicting the macroscopic rheology of polycrystalline materials based on single-crystal elastic and plastic mechanical properties.
The importance of stress percolation patterns in rocks and other polycrystalline materials
Burnley, P.C.
2013-01-01
A new framework for thinking about the deformation behavior of rocks and other heterogeneous polycrystalline materials is proposed, based on understanding the patterns of stress transmission through these materials. Here, using finite element models, I show that stress percolates through polycrystalline materials that have heterogeneous elastic and plastic properties of the same order as those found in rocks. The pattern of stress percolation is related to the degree of heterogeneity in and statistical distribution of the elastic and plastic properties of the constituent grains in the aggregate. The development of these stress patterns leads directly to shear localization, and their existence provides insight into the formation of rhythmic features such as compositional banding and foliation in rocks that are reacting or dissolving while being deformed. In addition, this framework provides a foundation for understanding and predicting the macroscopic rheology of polycrystalline materials based on single-crystal elastic and plastic mechanical properties. PMID:23823992
NASA Astrophysics Data System (ADS)
Carey, S. K.; Shatilla, N. J.; Szmudrowska, B.; Rastelli, J.; Wellen, C.
2014-12-01
Surface mining is a common method of accessing coal. Blasting of overburden rock allows access to mineable ore. In high-elevation environments, the removed overburden rock is deposited in adjacent valleys as waste rock spoils. As part of a multi-year R&D program examining the influence of surface mining on watershed hydrological and water quality responses in the Elk Valley, British Columbia, this study reports on how surface mining affects streamflow hydrological and geochemical response at four reference and four mine-influenced catchments. The hydrology of this environment is dominated by snowmelt and steep topographic gradients. Flows were attenuated in mine-influenced catchments, with spring freshet delayed and more muted responses to precipitation events observed. Dissolved ions were an order of magnitude greater in mine-influenced streams, with more dilution-based responses to flows compared with chemostatic behavior observed in reference streams. Stable isotope signatures in stream water suggested that in both mine-influenced and reference watersheds, stream water was derived from well mixed groundwater as annual variability of stream isotope signatures was dampened compared with precipitation signatures. However, deflection of stream isotopes in response to precipitation were more apparent in reference watersheds. As a group, mine influenced catchments had a heavier isotope signature than reference watersheds, suggesting an enhanced influence of rainfall on recharge. Transit time distributions indicate existing waste rock spoils increase the average time water takes to move through the catchment.
First Photograph Taken On Mars Surface
1996-12-12
This is the first photograph ever taken on the surface of the planet Mars. It was obtained by Viking 1 just minutes after the spacecraft landed successfully early today [July 20, 1976]. The center of the image is about 1.4 meters (five feet) from Viking Lander camera #2. We see both rocks and finely granulated material--sand or dust. Many of the small foreground rocks are flat with angular facets. Several larger rocks exhibit irregular surfaces with pits and the large rock at top left shows intersecting linear cracks. Extending from that rock toward the camera is a vertical linear dark band which may be due to a one-minute partial obscuration of the landscape due to clouds or dust intervening between the sun and the surface. Associated with several of the rocks are apparent signs of wind transport of granular material. The large rock in the center is about 10 centimeters (4 inches) across and shows three rough facets. To its lower right is a rock near a smooth portion of the Martian surface probably composed of very fine-grained material. It is possible that the rock was moved during Viking 1 descent maneuvers, revealing the finer-grained basement substratum; or that the fine-grained material has accumulated adjacent to the rock. There are a number of other furrows and depressions and places with fine-grained material elsewhere in the picture. At right is a portion of footpad #2. Small quantities of fine grained sand and dust are seen at the center of the footpad near the strut and were deposited at landing. The shadow to the left of the footpad clearly exhibits detail, due to scattering of light either from the Martian atmosphere or from the spacecraft, observable because the Martian sky scatters light into shadowed areas. http://photojournal.jpl.nasa.gov/catalog/PIA00381
NASA Astrophysics Data System (ADS)
Morbidelli, L.; Gomes, C. B.; Beccaluva, L.; Brotzu, P.; Conte, A. M.; Ruberti, E.; Traversa, G.
1995-12-01
A general description of Mesozoic and Tertiary (Fortaleza) Brazilian alkaline and alkaline-carbonatite districts is presented with reference to mineralogy, petrology, geochemistry and geochronology. It mainly refers to scientific results obtained during the last decade by an Italo-Brazilian research team. Alkaline occurrences are distributed across Brazilian territory from the southern (Piratini, Rio Grande do Sul State) to the northeastern (Fortaleza, Ceará State) regions and are mainly concentrated along the borders of the Paraná Basin generally coinciding with important tectonic lineaments. The most noteworthy characteristics of these alkaline and alkaline-carbonatite suites are: (i) prevalence of intrusive forms; (ii) abundance of cumulate assemblages (minor dunites, frequent clinopyroxenites and members of the ijolite series) and (iii) abundance of evolved rock-types. Many data demonstrate that crystal fractionation was the main process responsible for magma evolution of all Brazilian alkaline rocks. A hypothesis is proposed for the genesis of carbonatite liquids by immiscibility processes. The incidence of REE and trace elements for different major groups of lithotypes, belonging both to carbonatite-bearing and carbonatite-free districts, are documented. Sr and preliminary Nd isotopic data are indicative of a mantle origin for the least evolved magmas of all the studied occurrences. Mantle source material and melting models for the generation of the Brazilian alkaline magma types are also discussed.
Planetary Differentiation by Aerial Metasomatism
NASA Astrophysics Data System (ADS)
Baker, D. R.
2018-05-01
Dissolution of surficial rocks will occur on planetary bodies with steam atmospheres. Although the amount of dissolved material is small, metasomatism of chondritic compositions produces siliceous crustal materials and enriches residual rocks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eppich, Gary R.; Williams, Ross W.; Gaffney, Amy M.
Here, age dating of nuclear material can provide insight into source and suspected use in nuclear forensic investigations. We report here a method for the determination of the date of most recent chemical purification for uranium materials using the 235U- 231Pa chronometer. Protactinium is separated from uranium and neptunium matrices using anion exchange resin, followed by sorption of Pa to an SiO 2 medium. The concentration of 231Pa is measured by isotope dilution mass spectrometry using 233Pa spikes prepared from an aliquot of 237Np and calibrated in-house using the rock standard Table Mountain Latite and the uranium isotopic standard U100.more » Combined uncertainties of age dates using this method are 1.5 to 3.5 %, an improvement over alpha spectrometry measurement methods. Model ages of five uranium standard reference materials are presented; all standards have concordant 235U- 231Pa and 234U- 230Th model ages.« less
Map Database for Surficial Materials in the Conterminous United States
Soller, David R.; Reheis, Marith C.; Garrity, Christopher P.; Van Sistine, D. R.
2009-01-01
The Earth's bedrock is overlain in many places by a loosely compacted and mostly unconsolidated blanket of sediments in which soils commonly are developed. These sediments generally were eroded from underlying rock, and then were transported and deposited. In places, they exceed 1000 ft (330 m) in thickness. Where the sediment blanket is absent, bedrock is either exposed or has been weathered to produce a residual soil. For the conterminous United States, a map by Soller and Reheis (2004, scale 1:5,000,000; http://pubs.usgs.gov/of/2003/of03-275/) shows these sediments and the weathered, residual material; for ease of discussion, these are referred to as 'surficial materials'. That map was produced as a PDF file, from an Adobe Illustrator-formatted version of the provisional GIS database. The provisional GIS files were further processed without modifying the content of the published map, and are here published.
Publications - GMC 290 | Alaska Division of Geological & Geophysical
DGGS GMC 290 Publication Details Title: Organic carbon and rock-eval pyrolysis data of cuttings from Reference Unknown, 1999, Organic carbon and rock-eval pyrolysis data of cuttings from the Husky Oil NPR Products Report Report Information gmc290.pdf (177.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis Top of Page
Publications - GMC 130 | Alaska Division of Geological & Geophysical
DGGS GMC 130 Publication Details Title: Total organic carbon and rock-eval pyrolysis data of cuttings Reference Unknown, 1989, Total organic carbon and rock-eval pyrolysis data of cuttings and core from the Report Report Information gmc130.pdf (208.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis Top of Page
The Impact of Developmental Factors on Stereotypic Rocking of Children with Visual Impairment.
ERIC Educational Resources Information Center
McHugh, Elaine; Lieberman, Lauren
2003-01-01
Of 52 children (ages 9-19) with visual impairments who attended a sports camp, 15 demonstrated stereotypic rocking currently or in the past. Children most likely to rock were those with retinopathy of prematurity who underwent lengthy hospital stays and multiple surgeries early in life and who were blind from birth. (Contains references.)…
Ultrasonically assisted drilling of rocks
NASA Astrophysics Data System (ADS)
Mikhailova, N. V.; Onawumi, P. Y.; Roy, A.; Silberschmidt, V. V.
2018-05-01
Conventional drilling of rocks can generate significant damage in the drilled material; a material layer is often split off a back surface of a sample during drilling, negatively affecting its strength. To improve finish quality, ultrasonically assisted drilling (UAD) was employed in two rocks - sandstone and marble. Damage areas in both materials were reduced in UAD when compared to conventional drilling. Reductions in a thrust force and a torque reduction were observed only for UAD in marble; ultrasonic assistance in sandstone drilling did not result in improvements in this regard.
Agyeman, Stephen; Ampadu, Samuel I K
2016-02-01
Mine rock waste, which is the rock material removed in order to access and mine ore, is free from gold processing chemical contaminants but presents a significant environmental challenge owing to the large volumes involved. One way of mitigating the environmental and safety challenges posed by the large volume of mine rock waste stockpiled in mining communities is to find uses of this material as a substitute for rock aggregates in construction. This article reports on a study conducted to evaluate the engineering properties of such a mine deposit to determine its suitability for use as road pavement material. Samples of mine rock waste, derived from the granitic and granodioritic intrusive units overlying the gold-bearing metavolcanic rock and volcano-clastic sediments of a gold mining area in Ghana, were obtained from three mine rock waste disposal facilities and subjected to a battery of laboratory tests to determine their physical, mechanical, geotechnical, geometrical and durability properties. The overall conclusion was that the mine rock waste met all the requirements of the Ghana Ministry of Transportation specification for use as aggregates for crushed rock subbase, base and surface dressing chippings for road pavements. The recommendation is to process it into the required sizes for the various applications. © The Author(s) 2015.
NASA Technical Reports Server (NTRS)
Weinstock, K. J.; Morrissey, L. A.
1984-01-01
Rock type identification may be assisted by the use of remote sensing of associated vegetation, particularly in areas of dense vegetative cover where surface materials are not imaged directly by the sensor. The geobotanical discrimination of ultramafic parent materials was investigated and analytical techniques for lithologic mapping and mineral exploration were developed. The utility of remotely sensed data to discriminate vegetation types associated with ultramafic parent materials in a study area in southwest Oregon were evaluated. A number of specific objectives were identified, which include: (1) establishment of the association between vegetation and rock types; (2) examination of the spectral separability of vegetation types associated with rock types; (3) determination of the contribution of each TMS band for discriminating vegetation associated with rock types and (4) comparison of analytical techniques for spectrally classifying vegetation.
Reuse of ornamental rock-cutting waste in aluminous porcelain.
Silva, M A; Paes, H R; Holanda, J N F
2011-03-01
Large amounts of solid wastes are discarded in the ornamental rocks industry. This work investigates the incorporation of ornamental rock-cutting waste as a raw material into an aluminous porcelain body, replacing natural feldspar material by up to 35 wt.%. Formulations containing rock-cutting waste were pressed and sintered at 1350 °C. The porcelain pieces were tested to determine their properties (linear shrinkage, water absorption, apparent density, mechanical strength, and electrical resistivity). Development of the microstructure was followed by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses. The results showed that ornamental rock-cutting waste could be used in aluminous porcelains, in the range up to 10 wt.%, as a partial replacement for traditional flux material, resulting in a valid route for management of this abundant waste. Copyright © 2010 Elsevier Ltd. All rights reserved.
Publications - GMC 209 | Alaska Division of Geological & Geophysical
DGGS GMC 209 Publication Details Title: Source rock potential and geochemical characterization of OCS Y Reference DGSI, Inc., 1993, Source rock potential and geochemical characterization of OCS Y-0943-1 (Aurora
Publications - GMC 251 | Alaska Division of Geological & Geophysical
DGGS GMC 251 Publication Details Title: Whole rock vitrinite reflectance data from NPRA wells Authors . Bibliographic Reference Unknown, 1995, Whole rock vitrinite reflectance data from NPRA wells: Alaska Division of
Relating rock avalanche morphology to emplacement processes
NASA Astrophysics Data System (ADS)
Dufresne, Anja; Prager, Christoph; Bösmeier, Annette
2015-04-01
The morphology, structure and sedimentological characteristics of rock avalanche deposits reflect both internal emplacement processes and external influences, such as runout path characteristics. The latter is mainly predisposed by topography, substrate types, and hydrogeological conditions. Additionally, the geological setting at the source slope controls, e.g. the spatial distribution of accumulated lithologies and hence material property-related changes in morphology, or the maximum clast size and amount of fines of different lithological units. The Holocene Tschirgant rock avalanche (Tyrol, Austria) resulted from failure of an intensely deformed carbonate rock mass on the southeast face of a 2,370-m-high mountain ridge. The initially sliding rock mass rapidly fragmented as it moved towards the floor of the Inn River valley. Part of the 200-250 x 106 m3 (Patzelt 2012) rock avalanche debris collided with and moved around an opposing bedrock ridge and flowed into the Ötz valley, reaching up to 6.3 km from source. Where the Tschirgant rock avalanche spread freely it formed longitudinal ridges aligned along motion direction as well as smaller hummocks. Encountering high topography, it left runup ridges, fallback patterns (i.e. secondary collapse), and compressional morphology (successively elevated, transverse ridges). Further evidence for the mechanical landslide behaviour is given by large volumes of mobilized valley-fill sediments (polymict gravels and sands). These sediments indicate both shearing and compressional faulting within the rock avalanche mass (forming their own morphological units through, e.g. in situ bulldozing or as distinctly different hummocky terrain), but also indicate extension of the spreading landslide mass (i.e. intercalated/injected gravels encountered mainly in morphological depressions between hummocks). Further influences on its morphology are given by the different lithological units. E.g. the transition from massive dolomite/limestone sequences to weaker siliciclastic and evaporitic beds (sand-/siltstones, rauhwacken) can be pinpointed on LiDAR shaded relief images of the rock avalanche deposit. Hence, several morphological signatures are clearly related to differences in mechanical behaviour of the involved lithologies, whereas others reflect particular emplacement modes of the same rock unit: e.g. rockslide motion versus rock avalanche spreading. Reference Patzelt G. 2012. The rock avalanches of Tschirgant and Haiming (Upper Inn Valley, Tyrol, Austria), comment on the map supply. (German language only). Jahrbuch der Geologischen Bundesanstalt 152(1-4): 13-24.
30 CFR 75.403 - Maintenance of incombustible content of rock dust.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Maintenance of incombustible content of rock... Materials and Rock Dusting § 75.403 Maintenance of incombustible content of rock dust. Where rock dust is... dust, rock dust, and other dust shall be not less than 80 percent. Where methane is present in any...
30 CFR 75.403 - Maintenance of incombustible content of rock dust.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Maintenance of incombustible content of rock... Materials and Rock Dusting § 75.403 Maintenance of incombustible content of rock dust. Where rock dust is... dust, rock dust, and other dust shall be not less than 80 percent. Where methane is present in any...
30 CFR 75.403 - Maintenance of incombustible content of rock dust.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Maintenance of incombustible content of rock... Materials and Rock Dusting § 75.403 Maintenance of incombustible content of rock dust. Where rock dust is... dust, rock dust, and other dust shall be not less than 80 percent. Where methane is present in any...
30 CFR 75.403 - Maintenance of incombustible content of rock dust.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Maintenance of incombustible content of rock... Materials and Rock Dusting § 75.403 Maintenance of incombustible content of rock dust. Where rock dust is... dust, rock dust, and other dust shall be not less than 80 percent. Where methane is present in any...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Rock dusting. 75.402 Section 75.402 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.402 Rock dusting... or too high in incombustible content to propagate an explosion, shall be rock dusted to within 40...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Rock dusting. 75.402 Section 75.402 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.402 Rock dusting... or too high in incombustible content to propagate an explosion, shall be rock dusted to within 40...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Rock dusting. 75.402 Section 75.402 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.402 Rock dusting... or too high in incombustible content to propagate an explosion, shall be rock dusted to within 40...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Rock dusting. 75.402 Section 75.402 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.402 Rock dusting... or too high in incombustible content to propagate an explosion, shall be rock dusted to within 40...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Rock dusting. 75.402 Section 75.402 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.402 Rock dusting... or too high in incombustible content to propagate an explosion, shall be rock dusted to within 40...
NASA Technical Reports Server (NTRS)
Lindsay, John F.; McKay, David S.; Allen, Carlton C.
2003-01-01
The discovery of evidence indicative of life in a Martian meteorite has led to an increase in interest in astrobiology. As a result of this discovery, and the ensuing controversy, it has become apparent that our knowledge of the early development of life on Earth is limited. Archean stratigraphic successions containing evidence of Earth's early biosphere are well preserved in the Pilbara Craton of Western Australia. The craton includes part of a protocontinent consisting of granitoid complexes that were emplaced into, and overlain by, a 3.51-2.94 Ga volcanigenic carapace - the Pilbara Supergroup. The craton is overlain by younger supracrustal basins that form a time series recording Earth history from approximately 2.8 Ga to approximately 1.9 Ga. It is proposed that a well-documented suite of these ancient rocks be collected as reference material for Archean and astrobiological research. All samples would be collected in a well-defined geological context in order to build a framework to test models for the early evolution of life on Earth and to develop protocols for the search for life on other planets.
Taylor, Vivien F; Toms, Andrew; Longerich, Henry P
2002-01-01
The application of open vessel focused microwave acid digestion is described for the preparation of geological and environmental samples for analysis using inductively coupled plasma-mass spectrometry (ICP-MS). The method is compared to conventional closed-vessel high pressure methods which are limited in the use of HF to break down silicates. Open-vessel acid digestion more conveniently enables the use of HF to remove Si from geological and plant samples as volatile SiF4, as well as evaporation-to-dryness and sequential acid addition during the procedure. Rock reference materials (G-2 granite, MRG-1 gabbros, SY-2 syenite, JA-1 andesite, and JB-2 and SRM-688 basalts) and plant reference materials (BCR and IAEA lichens, peach leaves, apple leaves, Durham wheat flour, and pine needles) were digested with results comparable to conventional hotplate digestion. The microwave digestion method gave poor results for granitic samples containing refractory minerals, however fusion was the preferred method of preparation for these samples. Sample preparation time was reduced from several days, using conventional hotplate digestion method, to one hour per sample using our microwave method.
Schreiber, E; Anderson, O L; Sogat, N; Warren, N; Scholz, C
1970-01-30
Four experiments on lunar materials are reported: (i) resonance on glass spheres from the soil; (ii) compressibility of rock 10017; (iii) sound velocities of rocks 10046 and 10017; (iv) sound velocity of the lunar fines. The data overlap and are mutually consistent. The glass beads and rock 10017 have mechanical properties which correspond to terrestrial materials. Results of (iv) are consistent with low seismic travel times in the lunar maria. Results of analysis of the microbreccia (10046) agreed with the soil during the first pressure cycle, but after overpressure the rock changed, and it then resembled rock 10017. Three models of the lunar surface were constructed giving density and velocity profiles.
Geochemical prospecting for rare earth elements using termite mound materials
NASA Astrophysics Data System (ADS)
Horiuchi, Yu; Ohno, Tetsuji; Hoshino, Mihoko; Shin, Ki-Cheol; Murakami, Hiroyasu; Tsunematsu, Maiko; Watanabe, Yasushi
2014-12-01
The Blockspruit fluorite prospect, located in North West State of the Republic of South Africa, occurs within an actinolite rock zone that was emplaced into the Kenkelbos-type granite of Proterozoic age. There are a large number of termite mounds in the prospect. For geochemical prospecting for rare earth elements (REEs), in total, 200 samples of termite mound material were collected from actinolite rock and granite zones in the prospect. Geochemical analyses of these termite mound materials were conducted by two methods: portable X-ray fluorescence (XRF) spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS). Comparison of the two methods broadly indicates positive correlations of REEs (La, Ce, Pr, Nd, and Y), in particular Y and La having a strong correlation. As the result of modal abundance analyses, the actinolite rock at surface mainly consists of ferro-actinolite (89.89 wt%) and includes xenotime (0.26 wt%) and monazite (0.21 wt%) grains as REE minerals. Termite mound materials from actinolite rock also contain xenotime (0.27 wt%) and monazite (0.41 wt%) grains. In addition, termite mound materials from the actinolite rock zone have high hematite and Fe silicate contents compared to those from granite zone. These relationships suggest that REE minerals in termite mound materials originate form actinolite rock. Geochemical anomaly maps of Y, La, and Fe concentrations drawn based on the result of the portable XRF analyses show that high concentrations of these elements trend from SW to NE which broadly correspond to occurrences of actinolite body. These results indicate that termite mounds are an effective tool for REE geochemical prospection in the study area for both light REEs and Y, but a more detailed survey is required to establish the distribution of the actinolite rock body.
U.S. Geological Survey silicate rock standards
Flanagan, F.J.
1967-01-01
The U.S. Geological Survey has processed six silicate rocks to provide new reference samples to supplement G-1 and W-1. Complete conventional, rapid rock, and spectrochemical analyses by the U.S. Geological Survey are reported for a granite (replacement for G-1), a granodiorite, an andesite, a peridotite, a dunite, and a basalt. Analyses of variance for nickel, chromium, copper, and zirconium in each rock sample showed that for these elements, the rocks can be considered homogeneous. Spectrochemical estimates are given for the nickel, chromium, copper, and zirconium contents of the samples. The petrography of five of the six rocks is described and CIPW norms are presented. ?? 1967.
Publications - GMC 54 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 54 Publication Details Title: Source rock evaluation/TAI for ARCO Itkillik River Unit #1 information. Bibliographic Reference Texaco, Inc., [n.d.], Source rock evaluation/TAI for ARCO Itkillik River
Publications - GMC 249 | Alaska Division of Geological & Geophysical
DGGS GMC 249 Publication Details Title: Source rock geochemical and visual kerogen data from cuttings Reference Unknown, 1995, Source rock geochemical and visual kerogen data from cuttings (2,520-8,837') of the
Publications - GMC 281 | Alaska Division of Geological & Geophysical
DGGS GMC 281 Publication Details Title: TOC and rock-eval data from washed cuttings of North Slope information. Bibliographic Reference Unknown, 1998, TOC and rock-eval data from washed cuttings of North Slope
Waibel-Duncan, Mary Katherine; Benner, Eleanor; Weeks, Meghan
2012-05-01
Y.O.O. Rock Columbia County Youth Outreach Opportunities for Families Children, and Youth (Waibel-Duncan & Gillam, 2009) represents our nonurban county's first organized effort to systematically identify and promote awareness of volunteer and outreach opportunities for families, children, and youth. In addition to describing Y.O.O. Rock's development, this article summarizes feedback from parents, professionals, and paraprofessionals and outlines their recommendations for the second edition of the guide. Issue briefs from the Corporation for National & Community Service (2005, 2006, 2008) suggest the need for reference guides like Y.O.O. Rock insofar as they document limited volunteer and outreach opportunities for young children as well as the family's role in engaging children in service to others. This article will inform others who seek to increase families', children's, and youth's awareness of volunteer activities and outreach opportunities in their communities. © 2012 Wiley Periodicals, Inc.
Theoretical backgrounds of non-tempered materials production based on new raw materials
NASA Astrophysics Data System (ADS)
Lesovik, V. S.; Volodchenko, A. A.; Glagolev, E. S.; Chernysheva, N. V.; Lashina, I. V.; Feduk, R. S.
2018-03-01
One of the trends in construction material science is development and implementation of highly effective finish materials which improve architectural exterior of cities. Silicate materials widely-used in the construction today have rather low decorative properties. Different coloring agents are used in order to produce competitive materials, but due to the peculiarities of the production, process very strict specifications are applied to them. The use of industrial wastes or variety of rock materials as coloring agents is of great interest nowadays. The article shows that clay rock can be used as raw material in production of finish materials of non-autoclaved solidification. This raw material due to its material composition actively interacts with cementing component in steam treatment at 90–95 °C with formation of cementing joints that form a firm coagulative-cristalized and crystallization structure of material providing high physic-mechanical properties of silicate goods. It is determined that energy-saving, colored finish materials with compression strength up to 16 MPa can be produced from clay rocks.
Emplacement of rock avalanche material across saturated sediments, Southern Alp, New Zealand
NASA Astrophysics Data System (ADS)
Dufresne, A.; Davies, T. R.; McSaveney, M. J.
2012-04-01
The spreading of material from slope failure events is not only influenced by the volume and nature of the source material and the local topography, but also by the materials encountered in the runout path. In this study, evidence of complex interactions between rock avalanche and sedimentary runout path material were investigated at the 45 x 106 m3 long-runout (L: 4.8 km) Round Top rock avalanche deposit, New Zealand. It was sourced within myolinitic schists of the active strike-slip Alpine Fault. The narrow and in-failure-direction elongate source scarp is deep-seated, indicating slope failure was triggered by strong seismic activity. The most striking morphological deposit features are longitudinal ridges aligned radially to source. Trenching and geophysical surveys show bulldozed and sheared substrate material at ridge termini and laterally displaced sedimentary strata. The substrate failed at a minimum depth of 3 m indicating a ploughing motion of the ridges into the saturated material below. Internal avalanche compression features suggest deceleration behind the bulldozed substrate obstacle. Contorted fabric in material ahead of the ridge document substrate disruption by the overriding avalanche material deposited as the next down-motion hummock. Comparison with rock avalanches of similar volume but different emplacement environments places Round Top between longer runout avalanches emplaced over e.g. playa lake sediments and those with shorter travel distances, whose runout was apparently retarded by topographic obstacles or that entrained high-friction debris. These empirical observations indicate the importance of runout path materials on tentative trends in rock avalanche emplacement dynamics and runout behaviour.
Farrand, W. H.; Bell, J.F.; Johnson, J. R.; Jolliff, B.L.; Knoll, A.H.; McLennan, S.M.; Squyres, S. W.; Calvin, W.M.; Grotzinger, J.P.; Morris, R.V.; Soderblom, J.; Thompson, S.D.; Watters, W.A.; Yen, A. S.
2007-01-01
Multispectral measurements in the visible and near infrared of rocks at Meridiani Planum by the Mars Exploration Rover Opportunity's Pancam are described. The Pancam multispectral data show that the outcrops of the Burns formation consist of two main spectral units which in stretched 673, 535, 432 nm color composites appear buff- and purple-colored. These units are referred to as the HFS and LFS spectral units based on higher and lower values of 482 to 535 nm slope. Spectral characteristics are consistent with the LFS outcrop consisting of less oxidized, and the HFS outcrop consisting of more oxidized, iron-bearing minerals. The LFS surfaces are not as common and appear, primarily, at the distal ends of outcrop layers and on steep, more massive surfaces, locations that are subject to greater eolian erosion. Consequently, the HFS surfaces are interpreted as a weathering rind. Further inherent spectral differences between layer's and between different outcrop map units, both untouched and patches abraded by the rover's Rock Abrasion Tool, are also described. Comparisons of the spectral parameters of the Meridiani outcrop with a set of laboratory reflectance measurements of Fe3+-bearing minerals show that the field of outcrop measurements plots near the fields of hematite, ferrihydrite, poorly crystalline goethite, and schwertmannite. Rind and fracture fill materials, observed intermittently at outcrop exposures, are intermediate in their spectral character between both the HFS and LFS spectral classes and other, less oxidized, surface materials (basaltic sands, spherules, and cobbles). Copyright 2007 by the American Geophysical Union.
Synthetic vitreous fibers--inhalation studies.
McConnell, E E
1994-12-01
Synthetic vitreous fibers (SVFs), often referred to as "man-made vitreous fibers," are a class of materials that have their major uses for insulation against heat and sound. The original fibers are produced by melting various types of rock, clay, etc. and then blowing or extruding them into fibers of particular properties. During production and use small fractions of airborne fibers can be generated. Because of this a series of state-of-the-art inhalation studies was initiated to study the possible health hazards presented by the four major types of vitreous materials [two types of insulation glass wool, rock wool, slag wool, and four types of refractory ceramic fibers (RCF)] found in the workplace or to which the general public may be exposed. Rats and hamsters (30 mg/m3 kaolin-based RCF only) were exposed by nose-only inhalation to 3, 16, or 30 mg/m3 for 6 hr/day, 5 days/week, for 18 (hamsters) or 24 (rats) months and were held for lifetime observation (until approximately 20% survival) to study the chronic toxicity and potential carcinogenic activity of these classes of SVFs. Chrysotile or crocidolite asbestos served as positive controls. All of the fibers stimulated an inflammatory response characterized by an increase in the number of pulmonary macrophages at the level of the terminal bronchioles and proximal alveoli. RCF produced interstitial fibrosis in the walls of the proximal alveoli as early as 3 months and rock wool by 12 months. The only fiber which showed carcinogenic activity was RCF which produced a dose-related increase in both primary lung neoplasms (rats only) and mesotheliomas (rats and hamsters).
Wanniarachchi, W. A. M.; Perera, M. S. A.; Rathnaweera, T. D.; Lyu, Q.; Mahanta, B.
2017-01-01
The mechanical properties of any substance are essential facts to understand its behaviour and make the maximum use of the particular substance. Rocks are indeed an important substance, as they are of significant use in the energy industry, specifically for fossil fuels and geothermal energy. Attenuation of seismic waves is a non-destructive technique to investigate mechanical properties of reservoir rocks under different conditions. The attenuation characteristics of five different rock types, siltstone, shale, Australian sandstone, Indian sandstone and granite, were investigated in the laboratory using ultrasonic and acoustic emission instruments in a frequency range of 0.1–1 MHz. The pulse transmission technique and spectral ratios were used to calculate the attenuation coefficient (α) and quality factor (Q) values for the five selected rock types for both primary (P) and secondary (S) waves, relative to the reference steel sample. For all the rock types, the attenuation coefficient was linearly proportional to the frequency of both the P and S waves. Interestingly, the attenuation coefficient of granite is more than 22% higher than that of siltstone, sandstone and shale for both P and S waves. The P and S wave velocities were calculated based on their recorded travel time, and these velocities were then used to calculate the dynamic mechanical properties including elastic modulus (E), bulk modulus (K), shear modulus (µ) and Poisson's ratio (ν). The P and S wave velocities for the selected rock types varied in the ranges of 2.43–4.61 km s−1 and 1.43–2.41 km h−1, respectively. Furthermore, it was observed that the P wave velocity was always greater than the S wave velocity, and this confirmed the first arrival of P waves to the sensor. According to the experimental results, the dynamic E value is generally higher than the static E value obtained by unconfined compressive strength tests. PMID:29134090
Wanniarachchi, W A M; Ranjith, P G; Perera, M S A; Rathnaweera, T D; Lyu, Q; Mahanta, B
2017-10-01
The mechanical properties of any substance are essential facts to understand its behaviour and make the maximum use of the particular substance. Rocks are indeed an important substance, as they are of significant use in the energy industry, specifically for fossil fuels and geothermal energy. Attenuation of seismic waves is a non-destructive technique to investigate mechanical properties of reservoir rocks under different conditions. The attenuation characteristics of five different rock types, siltstone, shale, Australian sandstone, Indian sandstone and granite, were investigated in the laboratory using ultrasonic and acoustic emission instruments in a frequency range of 0.1-1 MHz. The pulse transmission technique and spectral ratios were used to calculate the attenuation coefficient ( α ) and quality factor ( Q ) values for the five selected rock types for both primary ( P ) and secondary ( S ) waves, relative to the reference steel sample. For all the rock types, the attenuation coefficient was linearly proportional to the frequency of both the P and S waves. Interestingly, the attenuation coefficient of granite is more than 22% higher than that of siltstone, sandstone and shale for both P and S waves. The P and S wave velocities were calculated based on their recorded travel time, and these velocities were then used to calculate the dynamic mechanical properties including elastic modulus ( E ), bulk modulus ( K ), shear modulus ( µ ) and Poisson's ratio ( ν ). The P and S wave velocities for the selected rock types varied in the ranges of 2.43-4.61 km s -1 and 1.43-2.41 km h -1 , respectively. Furthermore, it was observed that the P wave velocity was always greater than the S wave velocity, and this confirmed the first arrival of P waves to the sensor. According to the experimental results, the dynamic E value is generally higher than the static E value obtained by unconfined compressive strength tests.
NASA Astrophysics Data System (ADS)
Wanniarachchi, W. A. M.; Ranjith, P. G.; Perera, M. S. A.; Rathnaweera, T. D.; Lyu, Q.; Mahanta, B.
2017-10-01
The mechanical properties of any substance are essential facts to understand its behaviour and make the maximum use of the particular substance. Rocks are indeed an important substance, as they are of significant use in the energy industry, specifically for fossil fuels and geothermal energy. Attenuation of seismic waves is a non-destructive technique to investigate mechanical properties of reservoir rocks under different conditions. The attenuation characteristics of five different rock types, siltstone, shale, Australian sandstone, Indian sandstone and granite, were investigated in the laboratory using ultrasonic and acoustic emission instruments in a frequency range of 0.1-1 MHz. The pulse transmission technique and spectral ratios were used to calculate the attenuation coefficient (α) and quality factor (Q) values for the five selected rock types for both primary (P) and secondary (S) waves, relative to the reference steel sample. For all the rock types, the attenuation coefficient was linearly proportional to the frequency of both the P and S waves. Interestingly, the attenuation coefficient of granite is more than 22% higher than that of siltstone, sandstone and shale for both P and S waves. The P and S wave velocities were calculated based on their recorded travel time, and these velocities were then used to calculate the dynamic mechanical properties including elastic modulus (E), bulk modulus (K), shear modulus (µ) and Poisson's ratio (ν). The P and S wave velocities for the selected rock types varied in the ranges of 2.43-4.61 km s-1 and 1.43-2.41 km h-1, respectively. Furthermore, it was observed that the P wave velocity was always greater than the S wave velocity, and this confirmed the first arrival of P waves to the sensor. According to the experimental results, the dynamic E value is generally higher than the static E value obtained by unconfined compressive strength tests.
Uranium in NIMROC standard igneous rock samples
NASA Technical Reports Server (NTRS)
Rowe, M. W.; Herndon, J. M.
1976-01-01
Results are reported for analysis of the uranium in multiple samples of each of six igneous-rock standards (dunite, granite, lujavrite, norite, pyroxenite, and syenite) prepared as geochemical reference standards for elemental and isotopic compositions. Powdered rock samples were examined by measuring delayed neutron emission after irradiation with a flux of the order of 10 to the 13th power neutrons/sq cm per sec in a nuclear reactor. The measurements are shown to compare quite favorably with previous uranium determinations for other standard rock samples.
Publications - GMC 347 | Alaska Division of Geological & Geophysical
DGGS GMC 347 Publication Details Title: Rock strength test on cores (4464.4', 4464.5', 4560', and 4570 Statewide Bibliographic Reference Levinson, R.A., 2007, Rock strength test on cores (4464.4', 4464.5', 4560
Spirit Discovers New Class of Igneous Rocks
NASA Technical Reports Server (NTRS)
2006-01-01
During the past two-and-a-half years of traversing the central part of Gusev Crater, NASA's Mars Exploration Rover Spirit has analyzed the brushed and ground-into surfaces of multiple rocks using the alpha particle X-ray spectrometer, which measures the abundance of major chemical elements. In the process, Spirit has documented the first example of a particular kind of volcanic region on Mars known as an alkaline igneous province. The word alkaline refers to the abundance of sodium and potassium, two major rock-forming elements from the alkali metals on the left-hand side of the periodic table. All of the relatively unaltered rocks -- those least changed by wind, water, freezing, or other weathering agents -- examined by Spirit have been igneous, meaning that they crystallized from molten magmas. One way geologists classify igneous rocks is by looking at the amount of potassium and sodium relative to the amount of silica, the most abundant rock-forming mineral on Earth. In the case of volcanic rocks, the amount of silica present gives scientists clues to the kind of volcanism that occurred, while the amounts of potassium and sodium provide clues about the history of the rock. Rocks with more silica tend to erupt explosively. Higher contents of potassium and sodium, as seen in alkaline rocks like those at Gusev, may indicate partial melting of magma at higher pressure, that is, deeper in the Martian mantle. The abundance of potassium and sodium determines the kinds of minerals that make up igneous rocks. If igneous rocks have enough silica, potassium and sodium always bond with the silica to form certain minerals. The Gusev rocks define a new chemical category not previously seen on Mars, as shown in this diagram plotting alkalis versus silica, compiled by University of Tennessee geologist Harry McSween. The abbreviations 'Na2O' and 'K2O' refer to oxides of sodium and potassium. The abbreviation 'SiO2' refers to silica. The abbreviation 'wt. %' indicates that the numbers tell what percentage of the total weight of each rock is silica (on the horizontal scale) and what percentage is oxides of sodium and potassium (on the vertical scale). The thin lines separate volcanic rock types identified on Earth by different scientific names such as foidite and picrobasalt. Various classes of Gusev rocks (see box in upper right) all plot either on or to the left of the green lines, which define 'alkaline' and 'subalkaline' categories (subalkaline rocks have more silica than alkaline rocks). Members of the rover team have named different classes of rocks after specimens examined by Spirit that represent their overall character. During the rover's travels, Spirit discovered that Adirondack-class rocks littered the Gusev plains; that Backstay, Irvine, and Wishstone-class rocks occurred as loose blocks on the northwest slope of 'Husband Hill'; and that outcrops of Algonquin-class rocks protruded in several places on the southeast face. These rocks have less silica than all previously analyzed Mars samples, which are subalkaline. The previously analyzed Mars samples include Martian meteorites found on Earth and rocks analyzed by the Mars Pathfinder rover in 1997. Gusev is the first documented example of an alkaline igneous province on Mars.NASA Astrophysics Data System (ADS)
Yierpan, Aierken; König, Stephan; Labidi, Jabrane; Kurzawa, Timon; Babechuk, Michael G.; Schoenberg, Ronny
2018-02-01
The redox-sensitive, chalcophile, and volatile Se stable isotope system offers new perspectives to investigate the origin and evolution of terrestrial volatiles and the roles of magmatic and recycling processes in the development of the redox contrast between Earth's reservoirs. Selenium isotope systematics become more robust in a well-constrained petrogenetic context as can be inferred from Se-Te elemental signatures of sulfides and igneous rocks. In this study, we present a high-yield chemical sample processing method that allows the determination of Se-Te concentrations and Se isotope composition from the same sample digest of silicate rocks by hydride generation isotope dilution (ID) quadrupole inductively coupled plasma mass spectrometry (ICP-MS) and double spike (DS) multicollector (MC)-ICP-MS, respectively. Our procedure yields ˜80% Se-Te recoveries with quantitative separation of relevant interfering elements such as Ge and HG-buffering metals. Replicate analyses of selected international reference materials yield uncertainties better than 0.11‰ (2 s.d.) on δ82/76Se and 3% (r.s.d.) on Se concentration for DS MC-ICP-MS determinations for as low as ˜10 ng sample Se. The precision of Se-Te concentration measurements by ID ICP-MS is better than 3% and 5% (r.s.d.) for total amounts of ˜0.5-1 ng Se and ˜0.2-0.5 ng Te, respectively. The basaltic reference materials have variable Se-Te contents, but their δ82/76Se values are rather uniform (on average 0.23 ± 0.14‰; 2 s.d.) and different from the chondritic value. This altogether provides the methodology and potential to extend the limited data set of coupled Se isotope and Se-Te elemental systematics of samples relevant to study the terrestrial igneous inventory.
Chu, Zhu-Yin; Li, Chao-Feng; Chen, Zhi; Xu, Jun-Jie; Di, Yan-Kun; Guo, Jing-Hui
2015-09-01
We present a novel method for high precision measurement of (186)Os/(188)Os and (187)Os/(188)Os ratios, applying isobaric oxide interference correction based on in-run measurements of oxygen isotopic ratios. For this purpose, we set up a static data collection routine to measure the main Os(16)O3(-) ion beams with Faraday cups connected to conventional 10(11) amplifiers, and (192)Os(16)O2(17)O(-) and (192)Os(16)O2(18)O(-) ion beams with Faraday cups connected to 10(12) amplifiers. Because of the limited number of Faraday cups, we did not measure (184)Os(16)O3(-) and (189)Os(16)O3(-) simultaneously in-run, but the analytical setup had no significant influence on final (186)Os/(188)Os and (187)Os/(188)Os data. By analyzing UMd, DROsS, an in-house Os solution standard, and several rock reference materials, including WPR-1, WMS-1a, and Gpt-5, the in-run measured oxygen isotopic ratios were proven to present accurate Os isotopic data. However, (186)Os/(188)Os and (187)Os/(188)Os data obtained with in-run O isotopic compositions for the solution standards and rock reference materials show minimal improvement in internal and external precision, compared to the conventional oxygen correction method. We concluded that, the small variations of oxygen isotopes during OsO3(-) analytical sessions are probably not the main source of error for high precision Os isotopic analysis. Nevertheless, use of run-specific O isotopic compositions is still a better choice for Os isotopic data reduction and eliminates the requirement of extra measurements of the oxygen isotopic ratios.
Choi, Jae-Jun; Choi, Soo-Jin; Yoh, Jack J
2016-09-01
Categorized certified reference materials simulating metal, rock, soils, or dusts are used to demonstrate the standoff detection capability of laser-induced breakdown spectroscopy (LIBS) at severely low pressure conditions. A Q-switched Nd:YAG laser operating at 1064 nm with 17.2-50 mJ energy per pulse was used to obtain sample signals from a distance of 5.5 m; the detection sensitivity at pressures down to 0.01 torr was also analyzed. The signal intensity response to pressure changes is explained by the ionization energy and electronegativity of elements, and from the estimated full width half-maximum (FWHM) and electron density, the decrease in both background noise and line broadening makes it suitable for low pressure detection using the current standoff LIBS configuration. The univariate analyses further showed high correlation coefficients for geological samples. Therefore, the present work has extended the current state-of-the-art of standoff LIBS aimed at harsh environment detection. © The Author(s) 2016.
NASA Technical Reports Server (NTRS)
Bell, J. F., III; Calvin, W. M.; Farrand, W.; Greeley, R.; Johnson, J. R.; Jolliff, B.; Morris, R. V.; Sullivan, R. J.; Thompson, S.; Wang, A.;
2007-01-01
Multispectral imaging from the Panoramic Camera (Pancam) instruments on the Mars Exploration Rovers Spirit and Opportunity has provided important new insights about the geology and geologic history of the rover landing sites and traverse locations in Gusev crater and Meridiani Planum. Pancam observations from near-UV to near-IR wavelengths provide limited compositional and mineralogic constraints on the presence abundance, and physical properties of ferric- and ferrous-iron bearing minerals in rocks, soils, and dust at both sites. High resolution and stereo morphologic observations have also helped to infer some aspects of the composition of these materials at both sites. Perhaps most importantly, Pancam observations were often efficiently and effectively used to discover and select the relatively small number of places where in situ measurements were performed by the rover instruments, thus supporting and enabling the much more quantitative mineralogic discoveries made using elemental chemistry and mineralogy data. This chapter summarizes the major compositionally- and mineralogically-relevant results at Gusev and Meridiani derived from Pancam observations. Classes of materials encountered in Gusev crater include outcrop rocks, float rocks, cobbles, clasts, soils, dust, rock grindings, rock coatings, windblown drift deposits, and exhumed whitish/yellowish salty soils. Materials studied in Meridiani Planum include sedimentary outcrop rocks, rock rinds, fracture fills, hematite spherules, cobbles, rock fragments, meteorites, soils, and windblown drift deposits. This chapter also previews the results of a number of coordinated observations between Pancam and other rover-based and Mars-orbital instruments that were designed to provide complementary new information and constraints on the mineralogy and physical properties of martian surface materials.
Towards the development of rapid screening techniques for shale gas core properties
NASA Astrophysics Data System (ADS)
Cave, Mark R.; Vane, Christopher; Kemp, Simon; Harrington, Jon; Cuss, Robert
2013-04-01
Shale gas has been produced for many years in the U.S.A. and forms around 8% of total their natural gas production. Recent testing for gas on the Fylde Coast in Lancashire UK suggests there are potentially large reserves which could be exploited. The increasing significance of shale gas has lead to the need for deeper understanding of shale behaviour. There are many factors which govern whether a particular shale will become a shale gas resource and these include: i) Organic matter abundance, type and thermal maturity; ii) Porosity-permeability relationships and pore size distribution; iii) Brittleness and its relationship to mineralogy and rock fabric. Measurements of these properties require sophisticated and time consuming laboratory techniques (Josh et al 2012), whereas rapid screening techniques could provide timely results which could improve the efficiency and cost effectiveness of exploration. In this study, techniques which are portable and provide rapid on-site measurements (X-ray Fluorescence (XRF) and Infra-red (IR) spectroscopy) have been calibrated against standard laboratory techniques (Rock-Eval 6 analyser-Vinci Technologies) and Powder whole-rock XRD analysis was carried out using a PANalytical X'Pert Pro series diffractometer equipped with a cobalt-target tube, X'Celerator detector and operated at 45kV and 40mA, to predict properties of potential shale gas material from core material from the Bowland shale Roosecote, south Cumbria. Preliminary work showed that, amongst various mineralogical and organic matter properties of the core, regression models could be used so that the total organic carbon content could be predicted from the IR spectra with a 95 percentile confidence prediction error of 0.6% organic carbon, the free hydrocarbons could be predicted with a 95 percentile confidence prediction error of 0.6 mgHC/g rock, the bound hydrocarbons could be predicted with a 95 percentile confidence prediction error of 2.4 mgHC/g rock, mica content with a 95 percentile confidence prediction error of 14% and quartz content with a 95 percentile confidence prediction error of 14% . References M. Josh *, L. Esteban, C. Delle Piane, J. Sarout, D.N. Dewhurst, M.B. Clennell 2012. Journal of Petroleum Science and Engineering , 88-89, 107-124.
NASA Astrophysics Data System (ADS)
Bezaeva, N. S.; Swanson-Hysell, N.; Tikoo, S.; Badyukov, D. D.; Kars, M. A. C.; Egli, R.; Chareev, D. A.; Fairchild, L. M.
2016-12-01
Understanding how shock waves generated during hypervelocity impacts affect rock magnetic properties is key for interpreting the paleomagnetic records of lunar rocks, meteorites, and cratered planetary surfaces. Laboratory simulations of impacts show that ultra-high shocks may induce substantial post-shock heating of the target material. At high pressures (>10 GPa), shock heating occurs in tandem with mechanical effects, such as grain fracturing and creation of crystallographic defects and dislocations within magnetic grains. This makes it difficult to conclude whether shock-induced changes in the rock magnetic properties of target materials are primarily associated with mechanical or thermal effects. Here we present novel experimental methods to discriminate between mechanical and thermal effects of shock on magnetic properties and illustrate it with two examples of spherically shocked terrestrial basalt and diabase [1], which were shocked to pressures of 10 to >160 GPa, and investigate possible explanations for the observed shock-induced magnetic hardening (i.e., increase in remanent coercivity Bcr). The methods consist of i) conducting extra heating experiments at temperatures resembling those experienced during high-pressure shock events on untreated equivalents of shocked rocks (with further comparison of Bcr of shocked and heated samples) and ii) quantitative comparison of high-resolution first-order reversal curve (FORC) diagrams (field step: 0.5-0.7 mT) for shocked, heated and untreated specimens. Using this approach, we demonstrated that the shock-induced coercivity hardening in our samples is predominantly due to solid-state, mechanical effects of shock rather than alteration associated with shock heating. Indeed, heating-induced changes in Bcr in the post-shock temperature range were minor. Visual inspection of FORC contours (in addition to detailed analyses) reveals a stretching of the FORC distribution of shocked sample towards higher coercivities, consistent with shock-induced hardening. However, shock does not alter the intrinsic shape of coercivity and the shape of FORC contours (apart from field scaling) while heating does, which is seen as a significant alteration of FORC contours. Reference: [1] Swanson-Hysell N. L. et al. 2014. G3 15:2039-2047.
ERIC Educational Resources Information Center
Singh, Raman J.; Bushee, Jonathan
1977-01-01
Presents a rock cycle diagram suitable for use at the secondary or introductory college levels which separates rocks formed on and below the surface, includes organic materials, and separates products from processes. (SL)
30 CFR 57.9310 - Chute hazards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the proper tools to free material. (c) When broken rock or material is dumped into an empty chute, the chute shall be equipped with a guard or all persons shall be isolated from the hazard of flying rock or...
30 CFR 57.9310 - Chute hazards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the proper tools to free material. (c) When broken rock or material is dumped into an empty chute, the chute shall be equipped with a guard or all persons shall be isolated from the hazard of flying rock or...
Lunar mineral feedstocks from rocks and soils: X-ray digital imaging in resource evaluation
NASA Technical Reports Server (NTRS)
Chambers, John G.; Patchen, Allan; Taylor, Lawrence A.; Higgins, Stefan J.; Mckay, David S.
1994-01-01
The rocks and soils of the Moon provide raw materials essential to the successful establishment of a lunar base. Efficient exploitation of these resources requires accurate characterization of mineral abundances, sizes/shapes, and association of 'ore' and 'gangue' phases, as well as the technology to generate high-yield/high-grade feedstocks. Only recently have x-ray mapping and digital imaging techniques been applied to lunar resource evaluation. The topics covered include inherent differences between lunar basalts and soils and quantitative comparison of rock-derived and soil-derived ilmenite concentrates. It is concluded that x-ray digital-imaging characterization of lunar raw materials provides a quantitative comparison that is unattainable by traditional petrographic techniques. These data are necessary for accurately determining mineral distributions of soil and crushed rock material. Application of these techniques will provide an important link to choosing the best raw material for mineral beneficiation.
30 CFR 56.9310 - Chute hazards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Chute hazards. 56.9310 Section 56.9310 Mineral... tools to free material. (c) When broken rock or material is dumped into an empty chute, the chute shall be equipped with a guard or all persons shall be isolated from the hazard of flying rock or material. ...
30 CFR 56.9310 - Chute hazards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Chute hazards. 56.9310 Section 56.9310 Mineral... tools to free material. (c) When broken rock or material is dumped into an empty chute, the chute shall be equipped with a guard or all persons shall be isolated from the hazard of flying rock or material. ...
30 CFR 56.9310 - Chute hazards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Chute hazards. 56.9310 Section 56.9310 Mineral... tools to free material. (c) When broken rock or material is dumped into an empty chute, the chute shall be equipped with a guard or all persons shall be isolated from the hazard of flying rock or material. ...
Crock, J.G.; Lichte, F.E.; Wildeman, T.R.
1984-01-01
Demand is increasing for the determination of the rare-earth elements (REE) and yttrium in geologic materials. Due to their low natural abundance in many materials and the interferences that occur in many methods of determination, a separation procedure utilizing gradient strong-acid cation-exchange chromatography is often used to preconcentrate and isolate these elements from the host-rock matrix. Two separate gradient strong-acid cation-exchange procedures were characterized and the major elements as well as those elements thought to provide the greatest interference for the determination of the REE in geologic materials were tested for separation from the REE. Simultaneous inductively coupled argon plasma-atomic emission spectroscopy (ICAP-AES) measurements were used to construct the chromatograms for the elution studies, allowing the elution patterns of all the elements of interest to be determined in a single fraction of eluent. As a rock matrix, U.S. Geological Survey standard reference BCR-1 basalt was digested using both an acid decomposition procedure and a lithium metaborate fusion. Hydrochloric and nitric acids were tested as eluents and chromatograms were plotted using the ICAP-AES data; and we observed substantial differences in the elution patterns of the REE and as well as in the solution patterns of Ba, Ca, Fe and Sr. The nitric acid elution required substantially less eluent to elute the REE and Y as a group when compared to the hydrochloric acid elution, and provided a clearer separation of the REE from interfering and matrix elements. ?? 1984.
Pseudoimpactites in anthropocenically overprinted quaternary sediments
NASA Astrophysics Data System (ADS)
Huber, Robert; Darga, Robert; Lauterbach, Hans
2017-04-01
Whereas typical anthropogenic materials such as plastics can easily be identified in the anthropocene record, other materials such as building materials or industrial waste often closely resemble natural rocks or minerals. Especially transported and weathered anthropocenic matter is hard to distinguish from natural rocks. Whereas most rock samples may easily be distinguished by visual inspection, definite identification of exotic and small sized matter is not always an easy exercise which has been shown during the controversial discussion on the cosmic origin of carbon spherules found in Younger Dryas sediments. Similarly, a variety of exotic materials and lithological phenomena reported from quaternary sediments in Upper Bavaria have been associated to a cosmic impact in the area. Findings of carbonatic regmaglypts, glass coated and fragmented rocks, glassy carbon or pumice like carbon have been proposed to represent impact related rocks, an hypothesis which has further been supported by findings of iron silicides and the postulated detection of nanodiamonds and Carbine. Many of these findings have been strongly doubted within the geoscientific community, however a systematic, independent investigation of these phenomena has not yet been conducted. We present the results of our examinations which have been carried out to critically test the impact related origin of the mentioned strange materials and rocks. We could identify some key sites and independently collected samples of several of the materials and analysed these thoroughly. We found that the majority of these impact related materials is of anthropogenic or biogenic origin, thus they are pseudoimpactites partly originating from old fireplaces and waste pits. The claimed cosmic origin of this matter is an illusion caused by the anthropocene overprint of the original sedimentary record.
NASA Astrophysics Data System (ADS)
Luo, Junhui; Mi, Decai; Ye, Qiongyao; Deng, Shengqiang; Zeng, Fuquan; Zeng, Yongjun
2018-01-01
Carbonaceous rock has the characteristics of easy disintegration, softening, swelling and environmental sensitivity, which belongs to soft surrounding rock, and the deformation during excavation and long-term stability of the surrounding rock of carbonaceous rock tunnel are common problems in the construction of carbonaceous rock tunnel. According to the above, the Monitor and measure the displacement, temperature and osmotic pressure of the surrounding carbonaceous rock of the tunnel of Guangxi Hebai highway. Then it based on the obtaining data to study the creep mechanism of surrounding rock using Singh-Mitchell model and predict the deformation of surrounding rock before the tunnel is operation. The results show that the Singh-Mitchell creep model can effectively analyse and predict the deformation development law of surrounding rock of tunnel without considering temperature and osmotic pressure, it can provide reference for the construction of carbonaceous rock tunnel and the measures to prevent and reinforce it..
Lindsey, David A.; Tysdal, Russell G.; Taggart, Joseph E.
2002-01-01
The principal purpose of this report is to provide a reference archive for results of a statistical analysis of geochemical data for metasedimentary rocks of Mesoproterozoic age of the Salmon River Mountains and Lemhi Range, central Idaho. Descriptions of geochemical data sets, statistical methods, rationale for interpretations, and references to the literature are provided. Three methods of analysis are used: R-mode factor analysis of major oxide and trace element data for identifying petrochemical processes, analysis of variance for effects of rock type and stratigraphic position on chemical composition, and major-oxide ratio plots for comparison with the chemical composition of common clastic sedimentary rocks.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Phosphate Rock Plants § 60.401 Definitions. (a) Phosphate rock plant means any plant which produces or prepares phosphate rock product by any or..., calcining, and grinding. (b) Phosphate rock feed means all material entering the process unit, including...
Code of Federal Regulations, 2012 CFR
2012-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Phosphate Rock Plants § 60.401 Definitions. (a) Phosphate rock plant means any plant which produces or prepares phosphate rock product by any or..., calcining, and grinding. (b) Phosphate rock feed means all material entering the process unit, including...
Code of Federal Regulations, 2013 CFR
2013-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Phosphate Rock Plants § 60.401 Definitions. (a) Phosphate rock plant means any plant which produces or prepares phosphate rock product by any or..., calcining, and grinding. (b) Phosphate rock feed means all material entering the process unit, including...
Code of Federal Regulations, 2014 CFR
2014-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Phosphate Rock Plants § 60.401 Definitions. (a) Phosphate rock plant means any plant which produces or prepares phosphate rock product by any or..., calcining, and grinding. (b) Phosphate rock feed means all material entering the process unit, including...
Daoudi, Jordan; Betelu, Stephanie; Tzedakis, Theodore; Bertrand, Johan; Ignatiadis, Ioannis
2017-01-01
We present an innovative electrochemical probe for the monitoring of pH, redox potential and conductivity in near-field rocks of deep geological radioactive waste repositories. The probe is composed of a monocrystalline antimony electrode for pH sensing, four AgCl/Ag-based reference or Cl− selective electrodes, one Ag2S/Ag-based reference or S2− selective electrode, as well as four platinum electrodes, a gold electrode and a glassy-carbon electrode for redox potential measurements. Galvanostatic electrochemistry impedance spectroscopy using AgCl/Ag-based and platinum electrodes measure conductivity. The use of such a multi-parameter probe provides redundant information, based as it is on the simultaneous behaviour under identical conditions of different electrodes of the same material, as well as on that of electrodes made of different materials. This identifies the changes in physical and chemical parameters in a solution, as well as the redox reactions controlling the measured potential, both in the solution and/or at the electrode/solution interface. Understanding the electrochemical behaviour of selected materials thus is a key point of our research, as provides the basis for constructing the abacuses needed for developing robust and reliable field sensors. PMID:28608820
Daoudi, Jordan; Betelu, Stephanie; Tzedakis, Theodore; Bertrand, Johan; Ignatiadis, Ioannis
2017-06-13
We present an innovative electrochemical probe for the monitoring of pH, redox potential and conductivity in near-field rocks of deep geological radioactive waste repositories. The probe is composed of a monocrystalline antimony electrode for pH sensing, four AgCl/Ag-based reference or Cl - selective electrodes, one Ag₂S/Ag-based reference or S 2- selective electrode, as well as four platinum electrodes, a gold electrode and a glassy-carbon electrode for redox potential measurements. Galvanostatic electrochemistry impedance spectroscopy using AgCl/Ag-based and platinum electrodes measure conductivity. The use of such a multi-parameter probe provides redundant information, based as it is on the simultaneous behaviour under identical conditions of different electrodes of the same material, as well as on that of electrodes made of different materials. This identifies the changes in physical and chemical parameters in a solution, as well as the redox reactions controlling the measured potential, both in the solution and/or at the electrode/solution interface. Understanding the electrochemical behaviour of selected materials thus is a key point of our research, as provides the basis for constructing the abacuses needed for developing robust and reliable field sensors.
Publications - GMC 269 | Alaska Division of Geological & Geophysical
DGGS GMC 269 Publication Details Title: TOC and rock-eval analyses from the following NPRA wells: Husky Reference Jarvie, D.M., and Elsinger, J.R., 1996, TOC and rock-eval analyses from the following NPRA wells
30 CFR 75.403 - Maintenance of incombustible content of rock dust.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maintenance of incombustible content of rock... Materials and Rock Dusting § 75.403 Maintenance of incombustible content of rock dust. [Statutory Provision] Where rock dust is required to be applied, it shall be distributed upon the top, floor, and sides of all...
NASA Astrophysics Data System (ADS)
Lollino, Piernicola; Andriani, Gioacchino Francesco; Fazio, Nunzio Luciano; Perrotti, Michele
2016-04-01
Strain-softening under low confinement stress, i.e. the drop of strength that occurs in the post-failure stage, represents a key factor of the stress-strain behavior of rocks. However, this feature of the rock behavior is generally underestimated or even neglected in the assessment of boundary value problems of intact soft rock masses. This is typically the case when the stability of intact rock masses is treated by means of limit equilibrium or finite element analyses, for which rigid-plastic or elastic perfectly-plastic constitutive models, generally implementing peak strength conditions of the rock, are respectively used. In fact, the aforementioned numerical techniques are characterized by intrinsic limitations that do not allow to account for material brittleness, either for the method assumptions or due to numerical stability problems, as for the case of the finite element method, unless sophisticated regularization techniques are implemented. However, for those problems that concern the stability of intact soft rock masses at low stress levels, as for example the stability of shallow underground caves or that of rock slopes, the brittle stress-strain response of rock in the post-failure stage cannot be disregarded due to the risk of overestimation of the stability factor. This work is aimed at highlighting the role of post-peak brittleness of soft rocks in the analysis of specific ideal problems by means of the use of a hybrid finite-discrete element technique (FDEM) that allows for the simulation of the rock stress-strain brittle behavior in a proper way. In particular, the stability of two ideal cases, represented by a shallow underground rectangular cave and a vertical cliff, has been analyzed by implementing a post-peak brittle behavior of the rock and the comparison with a non-brittle response of the rock mass is also explored. To this purpose, the mechanical behavior of a soft calcarenite belonging to the Calcarenite di Gravina formation, extensively outcropping in Puglia (Southern Italy), and the corresponding features of the post-peak behavior as measured in the laboratory, have been used as a reference in this work, as well as the typical geometrical features of underground cavities and rock cliffs, as observed in Southern Italy, have been adopted for the simulations. The numerical results indicate the strong impact for the assessment of stability when rock post-peak brittleness is accounted for, if compared with perfectly plastic assumptions, and the need for adopting numerical techniques, as the FDEM approach, to take properly into account this important aspect of the rock behavior is highlighted.
Combined estimation of kappa and shear-wave velocity profile of the Japanese rock reference
NASA Astrophysics Data System (ADS)
Poggi, Valerio; Edwards, Benjamin; Fäh, Donat
2013-04-01
The definition of a common soil or rock reference is a key issue in probabilistic seismic hazard analysis (PSHA), microzonation studies, local site-response analysis and, more generally, when predicted or observed ground motion is compared for sites of different characteristics. A scaling procedure, which accounts for a common reference, is then necessary to avoid bias induced by the differences in the local geology. Nowadays methods requiring the definition of a reference condition generally prescribe the characteristic of a rock reference, calibrated using indirect estimation methods based on geology or on surface proxies. In most cases, a unique average shear-wave velocity value is prescribed (e.g. Vs30 = 800m/s as for class A of the EUROCODE8). Some attempts at defining the whole shape of a reference rock velocity profile have been described, often without a clear physical justification of how such a selection was performed. Moreover, in spite of its relevance in affecting the high-frequency part of the spectrum, the definition of the associated reference attenuation is in most cases missing or, when present, still remains quite uncertain. In this study we propose an approach that is based on the comparison between empirical anelastic amplification functions from spectral modeling of earthquakes and average S-wave velocities computed using the quarter-wavelength approach. The method is an extension of the approach originally proposed by Poggi et al. (2011) for Switzerland, and is here applied to Japan. For the analysis we make use of a selection of 36 stiff-soil and rock sites from the Japanese KiK-net network, for which a measured velocity profile is available. With respect to the previous study, however, we now analyze separately the elastic and anelastic contributions of the estimated empirical amplification. In a first step - which is consistent with the original work - only the elastic part of the amplification spectrum is considered. This procedure allows the retrieval of the shape of the velocity profile that is characterized by no relative amplification within the network. Subsequently, the contribution of intrinsic attenuation is analyzed, disaggregated from the anelastic function by using the frequency independent (and site-dependent) attenuation operator kappa (κ). By comparing the dependency of κ with the quarter-wavelength velocity at selected sites, a frequency-dependent predictive equation is established to model the attenuation characteristics of an arbitrary rock or stiff-soil velocity model, such as the reference model obtained in the first step. The result of this application can be used to model the site-dependent attenuation for any rock and stiff-soil site for which an estimation of the velocity profile or its corresponding quarter-wavelength velocity representation is available. As an additional output of the present study, we also propose a simplified method to estimate kappa from the average velocity estimates over the first 30m (Vs30). We provide an example of such predictions for a range of Vs30 velocities up to 2000m/s.
NASA Technical Reports Server (NTRS)
Ming, D. W.; Gellert, R.; Morris, R. V.; Yen, A. S.; Arvidson, E.; Brueckner, J.; Clark, B. C.; Cohen, B. A.; Fleischer, I.; Klingelhoefer, G.;
2008-01-01
The Mars Exploration Rover Spirit landed in Gusev crater on Jan. 4, 2004. Spirit has traversed the Gusev crater plains, ascended to the top of Husband Hill, and entered into the Inner Basin of the Columbia Hills. The Athena science payload onboard Spirit has recorded numerous measurements on the chemistry and mineralogy of materials encountered during nearly 2 Mars years of operation within the crater. Rocks and soils have been grouped into classes based upon their unique differences in mineralogy and chemistry [1-3]. Some of the most significant chemical discoveries include the composition of Adirondack class flood basalts [4-6]; high sulfur in Clovis and Peace Class rocks [7,2]; high P and Ti in Wishstone Class rocks [7,2]; composition of alkalic basalts [2,6]; very high S in Paso Robles class soils [7,2], and the possible occurrence of a smectite-like chemical composition in Independence class rocks [8]. Water has played a significant role in the alteration of rocks and soils in the Columbia Hills. The occurrence of goethite and ferric sulfate alone suggests that liquid water was involved in their formation [3]. The pervasively altered materials in Husband Hill outcrops and rocks may have formed by the aqueous alteration of basaltic rocks, volcaniclastic materials, and/or impact ejecta by solutions that were rich in acid-volatile elements [2]. The objective of this paper is to provide an update on the health of the Alpha Particle X-ray Spectrometer (APXS) and to expand the geochemical dataset from sol 470 to sol 1368. Specific objectives are to (1) update the rock and soil classifications, (2) characterize elemental relationships among the major rock and soil classes, and (3) evaluate the involvement of water in the formation or alteration of the materials in these classes.
Geological constraints for muon tomography: The world beyond standard rock
NASA Astrophysics Data System (ADS)
Lechmann, Alessandro; Mair, David; Ariga, Akitaka; Ariga, Tomoko; Ereditato, Antonio; Käser, Samuel; Nishiyama, Ryuichi; Scampoli, Paola; Vladymyrov, Mykhailo; Schlunegger, Fritz
2017-04-01
In present day muon tomography practice, one often encounters an experimental setup in which muons propagate several tens to a few hundreds of meters through a material to the detector. The goal of such an undertaking is usually centred on an attempt to make inferences from the measured muon flux to an anticipated subsurface structure. This can either be an underground interface geometry or a spatial material distribution. Inferences in this direction have until now mostly been done, thereby using the so called "standard rock" approximation. This includes a set of empirically determined parameters from several rocks found in the vicinity of physicist's laboratories. While this approach is reasonable to account for the effects of the tens of meters of soil/rock around a particle accelerator, we show, that for material thicknesses beyond that dimension, the elementary composition of the material (average atomic weight and atomic number) has a noticeable effect on the measured muon flux. Accordingly, the consecutive use of this approximation could potentially lead into a serious model bias, which in turn, might invalidate any tomographic inference, that base on this standard rock approximation. The parameters for standard rock are naturally close to a granitic (SiO2-rich) composition and thus can be safely used in such environments. As geophysical surveys are not restricted to any particular lithology, we investigated the effect of alternative rock compositions (carbonatic, basaltic and even ultramafic) and consequentially prefer to replace the standard rock approach with a dedicated geological investigation. Structural field data and laboratory measurements of density (He-Pycnometer) and composition (XRD) can be merged into an integrative geological model that can be used as an a priori constraint for the rock parameters of interest (density & composition) in the geophysical inversion. Modelling results show that when facing a non-granitic lithology the measured muon flux can vary up to 20-30%, in the case of carbonates and up to 100% for peridotites, compared to standard rock data.
NASA Astrophysics Data System (ADS)
Zhou, T.; Zhu, J. B.
2018-03-01
Three-dimensional printing (3DP) is a computer-controlled additive manufacturing technique which is able to repeatedly and accurately fabricate objects with complicated geometry and internal structures. After 30 years of fast development, 3DP has become a mainstream manufacturing process in various fields. This study focuses on identifying the most suitable 3DP material from five targeted available 3DP materials, i.e. ceramics, gypsum, PMMA (poly(methyl methacrylate)), SR20 (acrylic copolymer) and resin (Accura® 60), to simulate brittle and hard rocks. Firstly, uniaxial compression tests were performed to determine the mechanical properties and failure patterns of the 3DP samples fabricated by those five materials. Experimental results indicate that among current 3DP techniques, the resin produced via stereolithography (SLA) is the most suitable 3DP material for mimicking brittle and hard rocks, although its brittleness needs to be improved. Subsequently, three methods including freezing, incorporation of internal macro-crack and addition of micro-defects were adopted to enhance the brittleness of the 3DP resin, followed by uniaxial compression tests on the treated samples. Experimental results reveal that 3DP resin samples with the suggested treatments exhibited brittle properties and behaved similarly to natural rocks. Finally, some prospective improvements which can be used to facilitate the application of 3DP techniques to rock mechanics were also discussed. The findings of this paper could contribute to promoting the application of 3DP technique in rock mechanics.
NASA Astrophysics Data System (ADS)
Coskun, Aycan; Sonmez, Harun; Ercin Kasapoglu, K.; Ozge Dinc, S.; Celal Tunusluoglu, M.
2010-05-01
The uniaxial compressive strength (UCS) of rock material is a crucial parameter to be used for design stages of slopes, tunnels and foundations to be constructed in/on geological medium. However, preparation of high quality cores from geological mixtures or fragmented rocks such as melanges, fault rocks, coarse pyroclastic rocks, breccias and sheared serpentinites is often extremely difficult. According to the studies performed in literature, this type of geological materials may be grouped as welded and unwelded birmocks. Success of preparation of core samples from welded bimrocks is slightly better than unwelded ones. Therefore, some studies performed on the welded bimrocks to understand the mechanical behavior of geological mixture materials composed of stronger and weaker components (Gokceoglu, 2002; Sonmez et al., 2004; Sonmez et al., 2006; Kahraman, et al., 2008). The overall strength of bimrocks are generally depends on strength contrast between blocks and matrix; types and strength of matrix; type, size, strength, shape and orientation of blocks and volumetric block proportion. In previously proposed prediction models, while UCS of unwelded bimrocks may be determined by decreasing the UCS of matrix considering the volumetric block proportion, the welded ones can be predicted by considering both UCS of matrix and blocks together (Lindquist, 1994; Lindquist and Goodman, 1994; Sonmez et al., 2006 and Sonmez et al., 2009). However, there is a few attempts were performed about the effect of blocks shape and orientation on the strength of bimrock (Linqduist, 1994 and Kahraman, et al., 2008). In this study, Ankara agglomerate, which is composed of andesite blocks and surrounded weak tuff matrix, was selected as study material. Image analyses were performed on bottom, top and side faces of cores to identify volumetric block portions. In addition to the image analyses, andesite blocks on bottom, top and side faces were digitized for determination of fractal dimensions. To determine fractal dimensions of more than hundred andesite blocks in cores, a computer program namely FRACRUN were developed. Fractal geometry has been used as practical and popular tool to define particularly irregular shaped bodies in literature since the theory of fractal was developed by Mandelbrot (1967) (Hyslip and Vallejo, 1997; Kruhl and Nega, 1996; Bagde etal., 2002; Gulbin and Evangulova, 2003; Pardini, 2003; Kolay and Kayabali, 2006; Hamdi, 2008; Zorlu, 2009 and Sezer, 2009). Although there are some methods to determine fractal dimensions, square grid-cell count method for 2D and segment count method for 1D were followed in the algorithm of FRACRUN. FRACRUN has capable of determine fractal dimensions of many closed polygons on a single surface. In the study, a database composed of uniaxial compressive strength, volumetric block proportion, fractal dimensions and number of blocks for each core was established. Finally, prediction models were developed by regression analyses and compared with the empirical equations proposed by Sonmez et al. (2006). Acknowledgement This study is a product of ongoing project supported by TUBITAK (The Scientific and Technological Research Council of Turkey - Project No: 108Y002). References Bagde, M.N., Raina, A.K., Chakraborty, A.K., Jethwa, J.L., 2002. Rock mass characterization by fractal dimension. Engineering Geology 63, 141-155. Gokceoglu, C., 2002. A fuzzy triangular chart to predict the uniaxial compressive strength of the Ankara agglomerates from their petrographic composition. Engineering Geology, 66 (1-2), 39-51. Gulbin, Y.L., Evangulova, E.B., 2003. Morphometry of quartz aggregates in granites: fractal images referring to nucleation and growth processes. Mathematical Geology 35 (7), 819-833 Hamdi, E., 2008. A fractal description of simulated 3D discontinuity networks. Rock Mechanics and Rock Engineering 41, 587-599. Hyslip, J.P., Vallejo, L.E., 1997. Fractals analysis of the roughness and size distribution of granular materials. Engineering Geology 48, 231-244. Kahraman, S., Alber, M., Fener, M. and Gunaydin, O. 2008. Evaluating the geomechanical properties of Misis fault breccia (Turkey). Int. J. Rock Mech. Min. Sci, 45, (8), 1469-1479. Kolay, E., Kayabali, K., 2006. Investigation of the effect of aggregate shape and surface roughness on the slake durability index using the fractal dimension approach. Engineering Geology 86, 271-294. Kruhl, J.H., Nega, M., 1996. The fractal shape of sutured quartz grain boundaries: application as a geothermometer. Geologische Rundschau 85, 38-43. Lindquist E.S. 1994. The strength, deformation properties of melange. PhD thesis, University of California, Berkeley, 1994. 264p. Lindquist E.S. and Goodman R.E. 1994. The strength and deformation properties of the physical model m!elange. In: Nelson PP, Laubach SE, editors. Proceedings of the First North American Rock Mechanics Conference (NARMS), Austin, Texas. Rotterdam: AA Balkema; 1994. Pardini, G., 2003. Fractal scaling of surface roughness in artificially weathered smectite rich soil regoliths. Geoderma 117, 157-167. Sezer E., 2009. A computer program for fractal dimension (FRACEK) with application on type of mass movement characterization. Computers and Geosciences (doi:10.1016/j.cageo.2009.04.006). Sonmez H, Tuncay E, and Gokceoglu C., 2004. Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara Agglomerate. Int. J. Rock Mech. Min. Sci., 41 (5), 717-729. Sonmez, H., Gokceoglu, C., Medley, E.W., Tuncay, E., and Nefeslioglu, H.A., 2006. Estimating the uniaxial compressive strength of a volcanic bimrock. Int. J. Rock Mech. Min. Sci., 43 (4), 554-561. Zorlu K., 2008. Description of the weathering states of building stones by fractal geometry and fuzzy inference system in the Olba ancient city (Southern Turkey). Engineering Geology 101 (2008) 124-133.
NASA Technical Reports Server (NTRS)
Nie, N. X.; Dauphas, N.; Morris, R. V
2017-01-01
The Mars Exploration Rover mission revealed the presence of rocks and minerals indicative of water-rock interactions on Mars. A range of mineralogies have been identified, including hematite spherules (i.e., blueberries), jarosite, Mg-, Ca-sulfates, silica-rich materials and silicate relics from basaltic rocks. The mineral assemblages have been interpreted to be derived from acid-sulfate alteration of basaltic materials. Indeed, the chemical compositions of rocks and soils at Home Plate in Gusev Crater follow the trends expected for acid-sulfate alteration.
Material Evidence for Ocean Impact from Shock-Metamorphic Experiments
NASA Astrophysics Data System (ADS)
Miura, Y.; Takayama, K.; Iancu, O. G.
1993-07-01
Continental impact reveals an excavated crater that has few fresh fine ejecta showing major high shock metamorphism due to weathering [1]. A giant ocean impact rarely remains as an excavated crater mainly due to crushing by dynamic plate-tectonic movements on the crust [2]. However, all impact materials, including fine-grained ejecta, can be obtained with artificial impact experiments [3]. The purpose of this study is to discuss material evidence for ocean impact based on shock-metamorphic experiments. Artificial impact experiments indicate that fine shocked quartz (SQ) aggregates can be formed on several target rocks (Table 1) [1]. It is found in Table 1 that (1) the largest-density deviation of SQ grain is found not at the wall-rock or the impact crater but at fine-grained ejecta, and (2) silica-poor rocks of basalt, gabbro, and anorthosite can also make fine SQ aggregates by impact. Table 1, which appears here in the hard copy, shows formations of fine shocked quartz aggregates from ocean-floor rocks of basalt, gabbroic anorthosite, and granite [3]. An asteroid (about 10 km across) hits the Earth ~65 m.y. ago [4] to result in global catastrophe by titanic explosion and climate change. But shocked quartz grains found in the K/T boundary layer were considered to come from crystalline continental rocks [5]. The present result as listed in Table 1 indicates that fine SQ aggregates can also be formed at sea-floor basaltic and gabbroic rocks [3]. The present result of formation of the SQ grains from sea- floor target rocks is nearly consistent with the finding of a sea-impact crater at the K/T boundary near the Caribbean [6]. Impact-induced volcanism at the K/T boundary can explained by the penetration from thin ocean crust to upper mantle reservoirs, if giant impact of a 10-km- diameter asteroid hit the ocean [2,7]. The present result can explain "phreatomagmatic (magmatic vapor) explosion," which is created by abrupt boiling between high-temperature magma and cold sea water to produce a titanic explosion of the asteroid disintegrated in a mass of exploding steam and vaporizing soil, including the SQ aggregates, and to create the Atlantic Ocean floor by the continental drift [8]. References: [1] Miura Y. (1991) Shock Waves, 1, 35-41. [2] Miura Y. and Takayama K. (1993) Symp. Shock Waves (Japan), 2, 193-196. [3] Miura Y. et al. (1992) Proc. Shock Waves, 18, 403-408, Springer-Verlag. [4] Alvarez L. W. et al. (1980) Science, 208, 1095-1107. [5] Bohor B. F. et al. (1984) Science, 224, 867-869. [6] Hildebrand A. R. et al. (1991) Geology, 19, 867-871. [7] Barlow N. G. (1990) Geol. Soc. Am. Spec. Pap. 247, 181-187. [8] Hartmann W. K. and Miller R. (1991) The History of Earth, 165, Workman.
Sound and Vision: Using Progressive Rock To Teach Social Theory.
ERIC Educational Resources Information Center
Ahlkvist, Jarl A.
2001-01-01
Describes a teaching technique that utilizes progressive rock music to educate students about sociological theories in introductory sociology courses. Discusses the use of music when teaching about classical social theory and offers an evaluation of this teaching strategy. Includes references. (CMK)
Publications - GMC 304 | Alaska Division of Geological & Geophysical
DGGS GMC 304 Publication Details Title: Hard-rock geochemical data of core from the FL-001, FL-003, and . Bibliographic Reference Unknown, 2002, Hard-rock geochemical data of core from the FL-001, FL-003, and FL-004
Rock fragment movement in shallow rill flow - A laboratory study
NASA Astrophysics Data System (ADS)
Becker, Kerstin; Wirtz, Stefan; Seeger, Manuel; Gronz, Oliver; Remke, Alexander; Iserloh, Thomas; Brings, Christine; Casper, Markus; Ries, Johannes B.
2014-05-01
Studies concerning rill erosion mainly deal with the erosion and transport of fine material. The transport of rock fragments is examined mostly for mountain rivers. But there are important differences between the conditions and processes in rivers and in rills: (1) In most cases, the river cuts into a coarse substrate, where fine material is sparse, whereas rill erosion occurs on arable land. So the main part of the substrate is fine material and only single rock fragments influence the processes. (2) In rivers, the water depth is relatively high. There are a lot of studies about hydraulic parameters in such flows, but there is almost nothing known about hydraulic conditions in surface runoff events of a few centimeters. Additionally, little information exists about the rock fragment movement as a part of rill erosion processes on arable land. This knowledge should be increased because rock fragments cause non-stationary water turbulences in rills, which enhance the erosive force of flowing water. Field experiments can only show the fact that a certain rock fragment has moved: The starting point and the final position can be estimated. But the moving path and especially the initiation of the movement is not detectable under field conditions. Hence, we developed a laboratory setup to analyze the movement of rock fragments depending on rock fragment properties (size, form), slope gradient, flow velocity and surface roughness. By observing the rock fragments with cameras from two different angles we are able (1) to measure the rotation angles of a rock fragment during the experiment and (2) to deduce different rock fragment movement patterns. On this poster we want to present the experimental setup, developed within the scope of a master thesis, and the results of these experiments.
Kane, J.S.
1988-01-01
A study is described that identifies the optimum operating conditions for the accurate determination of Co, Cu, Mn, Ni, Pb, Zn, Ag, Bi and Cd using simultaneous multi-element atomic absorption spectrometry. Accuracy was measured in terms of the percentage recoveries of the analytes based on certified values in nine standard reference materials. In addition to identifying optimum operating conditions for accurate analysis, conditions resulting in serious matrix interferences and the magnitude of the interferences were determined. The listed elements can be measured with acceptable accuracy in a lean to stoicheiometric flame at measurement heights ???5-10 mm above the burner.
'Pot of Gold' and 'Rotten Rocks'
NASA Technical Reports Server (NTRS)
2004-01-01
This false-color image taken by the panoramic camera on the Mars Exploration Rover Spirit shows the rock dubbed 'Pot of Gold' (upper left), located near the base of the 'Columbia Hills' in Gusev Crater. Scientists are intrigued by this unusual-looking, nodule-covered rock and plan to investigate its detailed chemistry in coming sols. This picture was taken on sol 159 (June 14, 2004). To the right is a set of rocks referred to as 'Rotten Rocks' for their resemblance to rotting loaves of bread. The insides of these rocks appear to have been eroded, while their outer rinds remain more intact. These outer rinds are reminiscent of those found on rocks at Meridiani Planum's 'Eagle Crater.' This image was captured on sol 158 (June 13, 2004).Using Rocks: A Discovery Approach to Multi-faceted Learning.
ERIC Educational Resources Information Center
Thomas, John I.
Pupils' natural questioning attitudes lead them to discovery in a learning center, in contrast to the lecture method, by which information is forced on students regardless of their interests. This paper describes learning experiences built around rocks. Materials placed in a rock center (rocks, stones, pebbles, magnifying glasses hammers, and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.P. Nicot
The objective of this calculation is to estimate the quantity of fissile material that could accumulate in fractures in the rock beneath plutonium-ceramic (Pu-ceramic) and Mixed-Oxide (MOX) waste packages (WPs) as they degrade in the potential monitored geologic repository at Yucca Mountain. This calculation is to feed another calculation (Ref. 31) computing the probability of criticality in the systems described in Section 6 and then ultimately to a more general report on the impact of plutonium on the performance of the proposed repository (Ref. 32), both developed concurrently to this work. This calculation is done in accordance with the developmentmore » plan TDP-DDC-MD-000001 (Ref. 9), item 5. The original document described in item 5 has been split into two documents: this calculation and Ref. 4. The scope of the calculation is limited to only very low flow rates because they lead to the most conservative cases for Pu accumulation and more generally are consistent with the way the effluent from the WP (called source term in this calculation) was calculated (Ref. 4). Ref. 4 (''In-Drift Accumulation of Fissile Material from WPs Containing Plutonium Disposition Waste Forms'') details the evolution through time (breach time is initial time) of the chemical composition of the solution inside the WP as degradation of the fuel and other materials proceed. It is the chemical solution used as a source term in this calculation. Ref. 4 takes that same source term and reacts it with the invert; this calculation reacts it with the rock. In addition to reactions with the rock minerals (that release Si and Ca), the basic mechanisms for actinide precipitation are dilution and mixing with resident water as explained in Section 2.1.4. No other potential mechanism such as flow through a reducing zone is investigated in this calculation. No attempt was made to use the effluent water from the bottom of the invert instead of using directly the effluent water from the WP. This calculation supports disposal criticality analysis and has been prepared in accordance with AP-3.12Q, Calculations (Ref. 49). This calculation uses results from Ref. 4 on actinide accumulation in the invert and more generally does reference heavily the cited calculation. In addition to the information provided in this calculation, the reader is referred to the cited calculation for a more thorough treatment of items applying to both the invert and fracture system such as the choice of the thermodynamic database, the composition of J-13 well water, tuff composition, dissolution rate laws, Pu(OH){sub 4} solubility and also for details on the source term composition. The flow conditions (seepage rate, water velocity in fractures) in the drift and the fracture system beneath initially referred to the TSPA-VA because this work was prepared before the release of the work feeding the TSPA-SR. Some new information feeding the TSPA-SR has since been included. Similarly, the soon-to-be-qualified thermodynamic database data0.ymp has not been released yet.« less
Steady evolution of hillslopes in layered landscapes: self-organization of a numerical hogback
NASA Astrophysics Data System (ADS)
Glade, R.; Anderson, R. S.
2017-12-01
Landscapes developed in layered sedimentary or igneous rocks are common across Earth, as well as on other planets. Features such as hogbacks, exposed dikes, escarpments and mesas exhibit resistant rock layers in tilted, vertical, or horizontal orientations adjoining more erodible rock. Hillslopes developed in the erodible rock are typically characterized by steep, linear-to-concave slopes or "ramps" mantled with material derived from the resistant layers, often in the form of large blocks. Our previous work on hogbacks has shown that feedbacks between weathering and transport of the blocks and underlying soft rock are fundamental to their formation; our numerical model incorporating these feedbacks explain the development of commonly observed concave-up slope profiles in the absence of rilling processes. Here we employ an analytic approach to describe the steady behavior of our model, in which hillslope form and erosion rates remain constant in the reference frame of the retreating feature. We first revisit a simple geometric analysis that relates structural dip to erosion rates. We then explore the mechanisms by which our numerical model of hogback evolution self-organizes to meet these geometric expectations. Autogenic adjustment of soil depth, slope and erosion rates enables efficient transport of resistant blocks; this allows erosion of the resistant layer to keep up with base level fall rate, leading to steady evolution of the feature. Analytic solutions relate easily measurable field quantities such as ramp length, slope, block size and resistant layer dip angle to local incision rate, block velocity, and block weathering rate. These equations provide a framework for exploring the evolution of layered landscapes, and pinpoint the processes for which we require a more thorough understanding to predict the evolution of such signature landscapes over time.
Rock sample brought to earth from the Apollo 12 lunar landing mission
NASA Technical Reports Server (NTRS)
1969-01-01
A scientist's gloved hand holds one of the numerous rock samples brought back to Earth from the Apollo 12 lunar landing mission. This sample is a highly shattered basaltic rock with a thin black-glass coating on five of its six sides. Glass fills fractures and cements the rock together. The rock appears to have been shattered and thrown out by a meteorite impact explosion and coated with molten rock material before the rock fell to the surface.
Accuracy of Non-Destructive Testing of PBRs to Estimate Fragilities
NASA Astrophysics Data System (ADS)
Brune, J. N.; Brune, R.; Biasi, G. P.; Anooshehpoor, R.; Purvance, M.
2011-12-01
Prior studies of Precariously Balanced Rocks (PBRs) have involved various methods of documenting rock shapes and fragilities. These have included non-destructive testing (NDT) methods such as photomodeling, and potentially destructive testing (PDT) such as forced tilt tests. PDT methods usually have the potential of damaging or disturbing the rock or its pedestal so that the PBR usefulness for future generations is compromised. To date we have force-tilt tested approximately 28 PBRs, and of these we believe 7 have been compromised. We suggest here that given other inherent uncertainties in the current methodologies, NDT methods are now sufficiently advanced as to be adequate for the current state of the art use for comparison with Ground Motion Prediction Equations (GMPEs) and seismic hazard maps (SHMs). Here we compare tilt-test static toppling estimates to three non-destructive methods: (1) 3-D photographic modeling (2) profile analysis assuming the rock is 2-D, and (3) expert judgments from photographs. 3-D modeling uses the commercial Photomodeler program and photographs in the field taken from numerous directions around the rock. The output polyhedral shape is analyzed in Matlab determine the center of mass and in Autocad to estimate the static overturning angle alpha. For the 2-D method we chose the photograph in profile looking perpendicular to the estimated direction of toppling. The rock is outlined as a 2-D object in Matlab. Rock dimensions, rocking points, and a vertical reference are supplied by the photo analyst to estimate the center of gravity and static force overturning angles. For the expert opinion method we used additional photographs taken from different directions to improve the estimates of the center of mass and the rocking points. We used 7 rocks for comparisons. The error in estimating tan alpha from 3-D modeling is about 0.05. For 2-D estimates an average error is about 0.1 (?). For expert opinion estimates the error is about 0.06. For individual rocks the uncertainties may be reduced with more extensive study. The one case (*) where tilt-testing differs materially from 3-D is because an irregular base on the rock allowed the rock to begin to tilt at a lower angle onto a second rocking point with higher alpha. 2-D methods perform well enough to use as a screening method for the larger archive, and reserve the more accurate photographic analyses for the rocks deemed most important. The table below gives a list of the tan alpha data:
Tilt vs. NDT Tan(alpha) values
Geophysical aspects of underground fluid dynamics and mineral transformation process
NASA Astrophysics Data System (ADS)
Khramchenkov, Maxim; Khramchenkov, Eduard
2014-05-01
The description of processes of mass exchange between fluid and poly-minerals material in porous media from various kinds of rocks (primarily, sedimentary rocks) have been examined. It was shown that in some important cases there is a storage equation of non-linear diffusion equation type. In addition, process of filtration in un-swelling soils, swelling porous rocks and coupled process of consolidation and chemical interaction between fluid and particles material were considered. In the latter case equations of physical-chemical mechanics of conservation of mass for fluid and particles material were used. As it is well known, the mechanics of porous media is theoretical basis of such branches of science as rock mechanics, soil physics and so on. But at the same moment some complex processes in the geosystems lacks full theoretical description. The example of such processes is metamorphosis of rocks and correspondent variations of stress-strain state. In such processes chemical transformation of solid and fluid components, heat release and absorption, phase transitions, rock destruction occurs. Extensive usage of computational resources in limits of traditional models of the mechanics of porous media cannot guarantee full correctness of obtained models and results. The process of rocks consolidation which happens due to filtration of underground fluids is described from the position of rock mechanics. As an additional impact, let us consider the porous media consolidating under the weight of overlying rock with coupled complex geological processes, as a continuous porous medium of variable mass. Problems of obtaining of correct storage equations for coupled processes of consolidation and mass exchange between underground fluid and skeleton material are often met in catagenesi processes description. The example of such processes is metamorphosis of rocks and correspondent variations of stress-strain state. In such processes chemical transformation of solid and fluid components, heat release and absorption, phase transitions, rock destruction occurs. Extensive usage of computational resources in limits of traditional models of the mechanics of porous media cannot guarantee full correctness of obtained models and results. The present work is dedicated to the retrieval of new ways to formulate and construct such models. It was shown that in some important cases there is a governing equation of non-linear diffusion equation type (well-known Fisher equation). In addition, some geophysical aspects of filtration process in usual non-swelling soils, swelling porous rocks and coupled process of consolidation and chemical interaction between fluid and skeleton material, including earth quakes, are considered.
Ashley, Roger P.; Goetz, A.F.H.; Rowan, L.C.; Abrams, M.J.
1979-01-01
The Virginia Range, immediately southeast of Reno, Nev., consists mainly of flows, breccias, and turfs of Miocene age. Most of these volcanic rocks are of intermediate composition; rhyodacite is the most common rock type. Basalt, rhyolite and rhyolite tuff, and tuffaceous sedimentary rocks of Miocene and Pliocene age also cover substantial areas in the range. Pre-Tertiary metasedimentary, metavolcanic, and granitic rocks are exposed in scattered inliers, mostly along the southern and eastern margins of the range. Several large areas and many small areas within the volcanic pile were subjected to hydrothermal alteration during and after the period of intermediate volcanic activity. Economic precious metal mineralization is spatially and temporally associated with the hydrothermal alteration in several areas. The most important deposit is the Comstock Lode, which produced 192 million troy ounces of silver and 8.3 million troy ounces of gold from epithermal veins (Bonham, 1969). The hydrothermally altered rocks include silicified, advanced argillic, montmorillonite-bearing argillic, and propylitic types. The first three types typically contain pyrite, and some propylitic rocks contain pyrite as well. Supergene oxidation of these pyritic rocks produces limonitic bleached rocks. The term 'limonite,' as used here, refers to any combination of the minerals hematite, goethite, and Jarosite. Where vegetation cover is sparse to moderate, these limonitic rocks are readily identified on Landsat images enhanced by the color-ratio composite technique developed by Rowan and others (1974), so the altered areas can be mapped. About 30 percent tree cover (here mainly pinyon pine) is sufficient to change the spectral signature of individual picture elements (pixels) enough so that limonitic materials can no longer be uniquely identified. As in all other areas where this technique has been applied, limonitic unaltered rocks with intermediate to high albedos have the same appearance on the color-ratio composite as limonitic altered rocks. This problem represents the most important limitation to the use of enhanced Landsat images for detection and mapping of hydrothermally altered rocks. Reflectance spectra of altered and unaltered rocks taken in the field in the Virginia Range show that most altered rocks have a conspicuous absorption band near 2.2 ?m produced by clay minerals or alunite, whereas unaltered rocks have no features in this spectral region. Thus spectral information for selected bands in the 1.1-2.5 ?m region may allow discrimination between limonitic altered and limonitic unaltered rocks (Rowan and others, 1977; Abrams and others, 1977; Rowan and Abrams, 1978). Another potential limitation is loss of spectral information on slopes with low effective sun angle. Although a minor problem in the Virginia Range, loss of information sufficient to preclude identification of limonitic altered rocks occurs with effective sun angle lower than 20-25 degrees. Thus, even at moderate latitudes substantial parts of areas with high topographic relief may be lost to observation.
Quantifying rock mass strength degradation in coastal rock cliffs
NASA Astrophysics Data System (ADS)
Brain, Matthew; Lim, Michael; Rosser, Nick; Petley, David; Norman, Emma; Barlow, John
2010-05-01
Although rock cliffs are generally perceived to evolve through undercutting and cantilever collapse of material, the recent application of high-resolution three-dimensional monitoring techniques has suggested that the volumetric losses recorded from layers above the intertidal zone produce an equally significant contribution to cliff behaviour. It is therefore important to understand the controls on rockfalls in such layers. Here we investigate the progressive influence of subaerial exposure and weathering on the geotechnical properties of the rocks encountered within the geologically complex coastal cliffs of the northeast coast of England, UK. Through a program of continuous in situ monitoring of local environmental and tidal conditions and laboratory rock strength testing, we aim to better quantify the relationships between environmental processes and the geotechnical response of the cliff materials. We have cut fresh (not previously exposed) samples from the three main rock types (sandstone, mudstone and shale) found within the cliff to uniform size, shape and volume, thus minimizing variability and removing previous surface weathering effects. In order to characterise the intact strength of the rocks, we have undertaken unconfined compressive strength and triaxial strength tests using high pressure (400 kN maximum axial load; 64 MPa maximum cell pressure) triaxial testing apparatus. The results outline the peak strength characteristics of the unweathered materials. We then divided the samples of each lithology into different experimental groups. The first set of samples remained in the laboratory at constant temperature and humidity; this group provides our control. Samples from each of the three rock types were located at heights on the cliff face corresponding with the different lithologies: at the base (mudstone), in the mid cliff (shale) and at the top of the cliff (sandstone). This subjected them to the same conditions experienced by the in situ cliff forming materials, which were also monitored using an array of environmental sensors. This experiment forms the basis of a long term investigation into the effects of varying environmental conditions on rock mass strength degradation over time. Ultimately, we aim to develop rock mass strength degradation curves to build a quantitative understanding of the interaction between coastal rock cliff behaviour and environmental processes.
Jinpeng, Zhang; Limin, Liu; Futao, Zhang; Junzhi, Cao
2018-04-04
With cement, bentonite, water glass, J85 accelerator, retarder and water as raw materials, a new composite grouting material used to seal groundwater inflow and reinforce wall rock in deep fractured rock mass was developed in this paper. Based on the reaction mechanism of raw material, the pumpable time, stone rate, initial setting time, plastic strength and unconfined compressive strength of multi-group proportion grouts were tested by orthogonal experiment. Then, the optimum proportion of composite grouting material was selected and applied to the grouting engineering for sealing groundwater inflow and reinforcing wall rock in mine shaft lining. The results show the mixing proportion of the maximum pumpable time, maximum stone rate and minimum initial setting time of grout are A K4 B K1 C K4 D K2 , A K3 B K1 C K1 D K4 and A K3 B K3 C K4 D K1 , respectively. The mixing proportion of the maximum plastic strength and unconfined compressive strength of grouts concretion bodies are A K1 B K1 C K1 D K3 and A K1 B K1 C K1 D K1 , respectively. Balanced the above 5 indicators overall and determined the optimum proportion of grouts: bentonite-cement ratio of 1.0, water-solid ratio of 3.5, accelerator content of 2.9% and retarder content of 1.45%. This new composite grouting material had good effect on the grouting engineering for sealing groundwater inflow and reinforcing wall rock in deep fractured rock mass.
Intrusive Rock Database for the Digital Geologic Map of Utah
Nutt, C.J.; Ludington, Steve
2003-01-01
Digital geologic maps offer the promise of rapid and powerful answers to geologic questions using Geographic Information System software (GIS). Using modern GIS and database methods, a specialized derivative map can be easily prepared. An important limitation can be shortcomings in the information provided in the database associated with the digital map, a database which is often based on the legend of the original map. The purpose of this report is to show how the compilation of additional information can, when prepared as a database that can be used with the digital map, be used to create some types of derivative maps that are not possible with the original digital map and database. This Open-file Report consists of computer files with information about intrusive rocks in Utah that can be linked to the Digital Geologic Map of Utah (Hintze et al., 2000), an explanation of how to link the databases and map, and a list of references for the databases. The digital map, which represents the 1:500,000-scale Geologic Map of Utah (Hintze, 1980), can be obtained from the Utah Geological Survey (Map 179DM). Each polygon in the map has a unique identification number. We selected the polygons identified on the geologic map as intrusive rock, and constructed a database (UT_PLUT.xls) that classifies the polygons into plutonic map units (see tables). These plutonic map units are the key information that is used to relate the compiled information to the polygons on the map. The map includes a few polygons that were coded as intrusive on the state map but are largely volcanic rock; in these cases we note the volcanic rock names (rhyolite and latite) as used in the original sources Some polygons identified on the digital state map as intrusive rock were misidentified; these polygons are noted in a separate table of the database, along with some information about their true character. Fields may be empty because of lack of information from references used or difficulty in finding information. The information in the database is from a variety of sources, including geologic maps at scales ranging from 1:500,000 to 1:24,000, and thesis monographs. The references are shown twice: alphabetically and by region. The digital geologic map of Utah (Hintze and others, 2000) classifies intrusive rocks into only 3 categories, distinguished by age. They are: Ti, Tertiary intrusive rock; Ji, Upper to Middle Jurassic granite to quartz monzonite; and pCi, Early Proterozoic to Late Archean intrusive rock. Use of the tables provided in this report will permit selection and classification of those rocks by lithology and age. This database is a pilot study by the Survey and Analysis Project of the U.S. Geological Survey to characterize igneous rocks and link them to a digital map. The database, and others like it, will evolve as the project continues and other states are completed. We release this version now as an example, as a reference, and for those interested in Utah plutonic rocks.
Detector-unit-dependent calibration for polychromatic projections of rock core CT.
Li, Mengfei; Zhao, Yunsong; Zhang, Peng
2017-01-01
Computed tomography (CT) plays an important role in digital rock analysis, which is a new prospective technique for oil and gas industry. But the artifacts in CT images will influence the accuracy of the digital rock model. In this study, we proposed and demonstrated a novel method to restore detector-unit-dependent functions for polychromatic projection calibration by scanning some simple shaped reference samples. As long as the attenuation coefficients of the reference samples are similar to the scanned object, the size or position is not needed to be exactly known. Both simulated and real data were used to verify the proposed method. The results showed that the new method reduced both beam hardening artifacts and ring artifacts effectively. Moreover, the method appeared to be quite robust.
1981-10-26
areas of non- rippable materials may be encountered throughout the northwestern portion of the valley. Laboratory test results and field observations...non- rippable at shallow depths, thereby classifying them in this instance as areas of rock and/or shallow rock. When this occurs, these areas may...OCCUR- Rock is defined as any earth material which is not rippable RING WITHIN 50 FEET 015m) AND by conventional excavation methods. Where available
Geology of the Alaska-Juneau lode system, Alaska
Twenhofel, William Stephens
1952-01-01
The Alaska-Juneau lode system for many years was one of the worlds leading gold-producing areas. Total production from the years 1893 to 1946 has amounted to about 94 million dollars, with principal values in contained gold but with some silver and lead values. The principal mine is the Alaska-Juneau mine, from which the lode system takes its name. The lode system is a part of a larger gold-bearing belt, generally referred to as the Juneau gold belt, along the western border of the Coast Range batholith. The rocks of the Alaska-Juneau lode system consist of a monoclinal sequence of steeply northeasterly dipping volcanic, state, and schist rocks, all of which have been metamorphosed by dynamic and thermal processes attendant with the intrusion of the Coast Range batholith. The rocks form a series of belts that trend northwest parallel to the Coast Range. In addition to the Coast Range batholith lying a mile to the east of the lode system, there are numerous smaller intrusives, all of which are sill-like in form and are thus conformable to the regional structure. The bedded rocks are Mesozoic in age; the Coast Range batholith is Upper Jurassic and Lower Cretaceous in age. Some of the smaller intrusives pre-date the batholith, others post-date it. All of the rocks are cut by steeply dipping faults. The Alaska-Juneau lode system is confined exclusively to the footwall portion of the Perseverance slate band. The slate band is composed of black slate and black phyllite with lesser amounts of thin-bedded quartzite. Intrusive into the slate band are many sill-like bodies of rocks generally referred to as meta-gabbro. The gold deposits of the lode system are found both within the slate rocks and the meta-gabbro rocks, and particularly in those places where meta-gabbro bodies interfinger with slate. Thus the ore bodies are found in and near the terminations of meta-gabbro bodies. The ore bodies are quartz stringer-lodes composed of a great number of quartz veins from 6 inches to 3 feet wide and extending along their strike and dip for several tens to hundreds of feet. In addition to quartz, the only other vein gangue mineral is ankerite. It occurs in small amounts along the borders of the quartz veins. Metallic vein minerals, in addition to native gold, are, in order of decreasing abundance, pyrrhotite, galena, sphalerite, and arsenopyrite. In the aggregate the metallic minerals comprise only 1 to 2 percent of the total amount of vein material. The wall rock, particularly the meta-gabbro, was profoundly altered by the vein-forming processes. The principal effects on the meta-gabbro were the addition of large amounts of soda, potash, titanium, carbon dioxide, and phosphorous, and the removal of considerable quantities of iron, magnesia, lime, and combined water. Silica also may have been decreased. The mineralogical changes involved in the alteration were the development of biotite and ankerite at the expense of original hornblende and feldspar, resulting in a brown-colored biotite- and ankerite-rich rock. The slates are relatively unaffected by the vein-forming processes. Because of their small size, relatively low grade, and discontinuity, no attempt has been made to mine any individual vein. The prevailing practice has been to mine large blocks of ground by a system of modified block-caving, followed by hand sorting to remove the barren country rock from the gold-bearing quartz prior to milling.
Luna 16 - Some Li, K, Rb, Sr, Ba, rare-earth, Zr, and Hf concentrations.
NASA Technical Reports Server (NTRS)
Philpotts, J. A.; Schnetzler, C. C.; Schuhmann, S.; Thomas , H. H.; Bottino, M. L.
1972-01-01
Concentrations of Li, K, Rb, Sr, Na, rare-earths, Zr and Hf have been determined for some Luna 16 core materials by mass-spectrometric isotope-dilution. Two regolith fines samples from different depths in the core, and four rock-chips, including both igneous rocks and breccias, have similar trace-element concentrations. The Luna 16 materials have general lunar trace-element characteristics but differ from other returned lunar samples in a manner that suggests the presence of excess feldspar. Unless the Luna 16 igneous rocks are fused soils, they appear to represent either partial plagioclase cumulates or the least differentiated igneous material yet returned from the moon. The similarity in trace-element concentrations of the igneous rocks and the fines would then suggest largely local derivation of the Luna 16 regolith.
NASA Astrophysics Data System (ADS)
Oguchi, Chiaki T.; Kodama, Shogo; Mohammad, Rajib; Tharanga Udagedara, Dashan
2016-04-01
Artificial cave walls in Yoshimi Hyakuana Historic Site have been suffering from salt weathering since 1945 when the caves were made. To consider the processes of weathering and subsequent crystallization of secondary minerals, water-rock experiment using tuff from this area was performed. Rocks, surface altered materials, groundwater and rainwater were collected, and chemical and mineralogical characteristics of those samples were investigated. The XRD and SEM-EDS analyses were carried out for the solid samples and ICP-OES analysis was performed for the solution generated from the experiment, groundwater and rainwater. Gypsum is detected in original tuff, and on grey and whiter coloured altered materials. General chemical changes were observed on this rock. However, it is found that purple and black altered materials were mainly made due to microbiological processes.
30 CFR 57.9202 - Loading and hauling large rocks.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Loading and hauling large rocks. 57.9202..., Hauling, and Dumping Transportation of Persons and Materials § 57.9202 Loading and hauling large rocks. Large rocks shall be broken before loading if they could endanger persons or affect the stability of...
30 CFR 57.9202 - Loading and hauling large rocks.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Loading and hauling large rocks. 57.9202..., Hauling, and Dumping Transportation of Persons and Materials § 57.9202 Loading and hauling large rocks. Large rocks shall be broken before loading if they could endanger persons or affect the stability of...
30 CFR 56.9202 - Loading and hauling large rocks.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Loading and hauling large rocks. 56.9202..., Hauling, and Dumping Transportation of Persons and Materials § 56.9202 Loading and hauling large rocks. Large rocks shall be broken before loading if they could endanger persons or affect the stability of...
30 CFR 56.9202 - Loading and hauling large rocks.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Loading and hauling large rocks. 56.9202..., Hauling, and Dumping Transportation of Persons and Materials § 56.9202 Loading and hauling large rocks. Large rocks shall be broken before loading if they could endanger persons or affect the stability of...
30 CFR 57.9202 - Loading and hauling large rocks.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Loading and hauling large rocks. 57.9202..., Hauling, and Dumping Transportation of Persons and Materials § 57.9202 Loading and hauling large rocks. Large rocks shall be broken before loading if they could endanger persons or affect the stability of...
30 CFR 56.9202 - Loading and hauling large rocks.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Loading and hauling large rocks. 56.9202..., Hauling, and Dumping Transportation of Persons and Materials § 56.9202 Loading and hauling large rocks. Large rocks shall be broken before loading if they could endanger persons or affect the stability of...
30 CFR 56.9202 - Loading and hauling large rocks.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Loading and hauling large rocks. 56.9202..., Hauling, and Dumping Transportation of Persons and Materials § 56.9202 Loading and hauling large rocks. Large rocks shall be broken before loading if they could endanger persons or affect the stability of...
30 CFR 57.9202 - Loading and hauling large rocks.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Loading and hauling large rocks. 57.9202..., Hauling, and Dumping Transportation of Persons and Materials § 57.9202 Loading and hauling large rocks. Large rocks shall be broken before loading if they could endanger persons or affect the stability of...
30 CFR 57.9202 - Loading and hauling large rocks.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Loading and hauling large rocks. 57.9202..., Hauling, and Dumping Transportation of Persons and Materials § 57.9202 Loading and hauling large rocks. Large rocks shall be broken before loading if they could endanger persons or affect the stability of...
30 CFR 56.9202 - Loading and hauling large rocks.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Loading and hauling large rocks. 56.9202..., Hauling, and Dumping Transportation of Persons and Materials § 56.9202 Loading and hauling large rocks. Large rocks shall be broken before loading if they could endanger persons or affect the stability of...
ERIC Educational Resources Information Center
Lee, Alice
This science unit is designed for limited- and non-English speaking students in a Chinese bilingual education program. The unit covers rock material, classification, characteristics of types of rocks, and rock cycles. It is written in Chinese and simple English. At the end of the unit there is a list of main terms in both English and Chinese, and…
Evaluation of Used Fuel Disposition in Clay-Bearing Rock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jové Colón, Carlos F.; Weck, Philippe F.; Sassani, David H.
2014-08-01
Radioactive waste disposal in shale/argillite rock formations has been widely considered given its desirable isolation properties (low permeability), geochemically reduced conditions, anomalous groundwater pressures, and widespread geologic occurrence. Clay/shale rock formations are characterized by their high content of clay minerals such as smectites and illites where diffusive transport and chemisorption phenomena predominate. These, in addition to low permeability, are key attributes of shale to impede radionuclide mobility. Shale host-media has been comprehensively studied in international nuclear waste repository programs as part of underground research laboratories (URLs) programs in Switzerland, France, Belgium, and Japan. These investigations, in some cases a decademore » or more long, have produced a large but fundamental body of information spanning from site characterization data (geological, hydrogeological, geochemical, geomechanical) to controlled experiments on the engineered barrier system (EBS) (barrier clay and seals materials). Evaluation of nuclear waste disposal in shale formations in the USA was conducted in the late 70’s and mid 80’s. Most of these studies evaluated the potential for shale to host a nuclear waste repository but not at the programmatic level of URLs in international repository programs. This report covers various R&D work and capabilities relevant to disposal of heat-generating nuclear waste in shale/argillite media. Integration and cross-fertilization of these capabilities will be utilized in the development and implementation of the shale/argillite reference case planned for FY15. Disposal R&D activities under the UFDC in the past few years have produced state-of-the-art modeling capabilities for coupled Thermal-Hydrological-Mechanical-Chemical (THMC), used fuel degradation (source term), and thermodynamic modeling and database development to evaluate generic disposal concepts. The THMC models have been developed for shale repository leveraging in large part on the information garnered in URLs and laboratory data to test and demonstrate model prediction capability and to accurately represent behavior of the EBS and the natural (barrier) system (NS). In addition, experimental work to improve our understanding of clay barrier interactions and TM couplings at high temperatures are key to evaluate thermal effects as a result of relatively high heat loads from waste and the extent of sacrificial zones in the EBS. To assess the latter, experiments and modeling approaches have provided important information on the stability and fate of barrier materials under high heat loads. This information is central to the assessment of thermal limits and the implementation of the reference case when constraining EBS properties and the repository layout (e.g., waste package and drift spacing). This report is comprised of various parts, each one describing various R&D activities applicable to shale/argillite media. For example, progress made on modeling and experimental approaches to analyze physical and chemical interactions affecting clay in the EBS, NS, and used nuclear fuel (source term) in support of R&D objectives. It also describes the development of a reference case for shale/argillite media. The accomplishments of these activities are summarized as follows: Development of a reference case for shale/argillite; Investigation of Reactive Transport and Coupled THM Processes in EBS: FY14; Update on Experimental Activities on Buffer/Backfill Interactions at elevated Pressure and Temperature; and Thermodynamic Database Development: Evaluation Strategy, Modeling Tools, First-Principles Modeling of Clay, and Sorption Database Assessment;ANL Mixed Potential Model For Used Fuel Degradation: Application to Argillite and Crystalline Rock Environments.« less
Jiang, D.-X.; Wang, Y.-D.; Robbins, E.I.; Wei, J.; Tian, N.
2008-01-01
The Tarim Basin in Northwest China hosts petroleum reservoirs of Cambrian, Ordovician, Carboniferous, Triassic, Jurassic, Cretaceous and Tertiary ages. The sedimentary thickness in the basin reaches about 15 km and with an area of 560000 km2, the basin is expected to contain giant oil and gas fields. It is therefore important to determine the ages and depositional environments of the petroleum source rocks. For prospective evaluation and exploration of petroleum, palynological investigations were carried out on 38 crude oil samples collected from 22 petroleum reservoirs in the Tarim Basin and on additionally 56 potential source rock samples from the same basin. In total, 173 species of spores and pollen referred to 80 genera, and 27 species of algae and fungi referred to 16 genera were identified from the non-marine Mesozoic sources. By correlating the palynormorph assemblages in the crude oil samples with those in the potential source rocks, the Triassic and Jurassic petroleum source rocks were identified. Furthermore, the palynofloras in the petroleum provide evidence for interpretation of the depositional environments of the petroleum source rocks. The affinity of the miospores indicates that the petroleum source rocks were formed in swamps in brackish to lacustrine depositional environments under warm and humid climatic conditions. The palynomorphs in the crude oils provide further information about passage and route of petroleum migration, which is significant for interpreting petroleum migration mechanisms. Additionally, the thermal alternation index (TAI) based on miospores indicates that the Triassic and Jurassic deposits in the Tarim Basin are mature petroleum source rocks. ?? Cambridge University Press 2008.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moed, B.A.; Nazaroff, W.W.; Nero, A.V.
1984-04-01
Radon-222 is an important indoor air pollutant which, through the inhalation of its radioactive decay products, accounts for nearly half of the effective dose equivalent to the public from natural ionizing radiation. Indoor radon concentrations vary widely, largely because of local and regional differences in the rate of entry from sources. The major sources are soil and rock near building foundations, earth-based building materials, and domestic water; of these, soil and rock are thought to be predominant in many buildings with higher-than-average concentrations. Thus, one key factor in determining radon source potential is the concentration of radium, the progenitor ofmore » radon, in surficial rocks and soils. Aerial radiometric data were analyzed, collected for the National Uranium Resource Evaluation Program, for seven Western states to: (1) provide information on the spatial distribution of radium contents in surficial geologic materials for those states; and (2) investigate approaches for using the aerial data, which have been collected throughout the contiguous United States and Alaska, to identify areas where high indoor radon levels may be common. Radium concentrations were found to be relatively low in central and western portions of Washington, Oregon, and northern California; they were found to be relatively high in central and southern California. A field validation study, conducted along two flight-line segments near Spokane, Washington, showed close correspondence between the aerial data, in situ measurements of both radium content and radon flux from soil, and laboratory measurements of both radium content of and radon emanation rate from soil samples. 99 references, 11 figures, 3 tables.« less
Evaluation of Different Mineral Filler Aggregates for Asphalt Mixtures
NASA Astrophysics Data System (ADS)
Wasilewska, Marta; Małaszkiewicz, Dorota; Ignatiuk, Natalia
2017-10-01
Mineral filler aggregates play an important role in asphalt mixtures because they fill voids in paving mix and improve the cohesion of asphalt binder. Limestone powder containing over 90% of CaCO3 is the most frequently used type of filler. Waste material from the production of coarse aggregate can be successfully used as a mineral filler aggregate for hot asphalt concrete mixtures as the limestone powder replacement. This paper presents the experimental results of selected properties of filler aggregates which were obtained from rocks with different mineral composition and origin. Five types of rocks were used as a source of the mineral filler aggregate: granite, gabbro, trachybasalt, quartz sandstone and rocks from postglacial deposits. Limestone filler was used in this study as the reference material. The following tests were performed: grading (air jet sieving), quality of fines according to methylene blue test, water content by drying in a ventilated oven, particle density using pyknometer method, Delta ring and ball test, Bitumen Number, fineness determined as Blaine specific surface area. Mineral filler aggregates showed significant differences when they were mixed with bitumen and stiffening effect in Delta ring and ball test was evaluated. The highest values were achieved when gabbro and granite fillers were used. Additionally, Scanning Electron Microscopy (SEM) analysis of grain shape and size was carried out. Significant differences in grain size and shape were observed. The highest non-homogeneity in size was determined for quartz sandstone, gabbro and granite filler. Their Blaine specific surface area was lower than 2800 cm2/g, while for limestone and postglacial fillers with regular and round grains it exceeded 3000 cm2/g. All examined mineral filler aggregates met requirements of Polish National Specification WT-1: 2014 and could be used in asphalt mixtures.
NASA Astrophysics Data System (ADS)
Wollner, U.; Vanorio, T.; Kiss, A. M.
2017-12-01
Materials with a negative Poisson's Ratio (PR), known as auxetics, exhibit the counterintuitive behavior of becoming wider when uniaxially stretched and thinner when compressed. Though negative PR is characteristic of polymer foams or cellular solids, tight as well as highly porous rocks have also been reported to exhibit a negative Poisson's ratio, both from dynamic (PRd) and static measurements. We propose a novel auxetic structure based on pore-space configuration observed in rocks. First, we performed 2D and 3D imaging of a pumice and tight basalt to analyze their rock microstructure as well as similarities to natural structures of auxetic materials - e.g., cork. Based on these analyses, we developed a theoretical auxetic 3D model consisting of rotating rigid bodies having pore configurations similar to those observed in rocks. To alleviate the mechanical assumption of rotating bodies, the theoretical model was modified to include crack-like features being represented by intersecting, elliptic cylinders. We then used a 3D printer to create a physical version of the modified model, whose PRd was tested. We also numerically explored how the compressibility of fluids located in the pore-space of the modified model as well as how the elastic properties of the material from which the model is made of affect its auxetic behavior. We conclude that for a porous medium composed of a single material saturated with a single fluid (a) the more compliant the fluid is and (b) the lower the PR of the solid material, the lower the PR value of the composite material.
Molecular Beam Epitaxy Growth of High Crystalline Quality LiNbO3
NASA Astrophysics Data System (ADS)
Tellekamp, M. Brooks; Shank, Joshua C.; Goorsky, Mark S.; Doolittle, W. Alan
2016-12-01
Lithium niobate is a multi-functional material with wide reaching applications in acoustics, optics, and electronics. Commercial applications for lithium niobate require high crystalline quality currently limited to bulk and ion sliced material. Thin film lithium niobate is an attractive option for a variety of integrated devices, but the research effort has been stagnant due to poor material quality. Both lattice matched and mismatched lithium niobate are grown by molecular beam epitaxy and studied to understand the role of substrate and temperature on nucleation conditions and material quality. Growth on sapphire produces partially coalesced columnar grains with atomically flat plateaus and no twin planes. A symmetric rocking curve shows a narrow linewidth with a full width at half-maximum (FWHM) of 8.6 arcsec (0.0024°), which is comparable to the 5.8 arcsec rocking curve FWHM of the substrate, while the film asymmetric rocking curve is 510 arcsec FWHM. These values indicate that the individual grains are relatively free of long-range disorder detectable by x-ray diffraction with minimal measurable tilt and twist and represents the highest structural quality epitaxial material grown on lattice mismatched sapphire without twin planes. Lithium niobate is also grown on lithium tantalate producing high quality coalesced material without twin planes and with a symmetric rocking curve of 193 arcsec, which is nearly equal to the substrate rocking curve of 194 arcsec. The surface morphology of lithium niobate on lithium tantalate is shown to be atomically flat by atomic force microscopy.
NASA Astrophysics Data System (ADS)
Meng, Qingbin; Zhang, Mingwei; Han, Lijun; Pu, Hai; Chen, Yanlong
2018-04-01
To explore the acoustic emission (AE) characteristics of rock materials during the deformation and failure process under periodic loads, a uniaxial cyclic loading and unloading compression experiment was conducted based on an MTS 815 rock mechanics test system and an AE21C acoustic emissions test system. The relationships among stress, strain, AE activity, accumulated AE activity and duration for 180 rock specimens under 36 loading and unloading rates were established. The cyclic AE evolutionary laws with rock stress-strain variation at loading and unloading stages were analyzed. The Kaiser and Felicity effects of rock AE activity were disclosed, and the impact of the significant increase in the scale of AE events on the Felicity effect was discussed. It was observed that the AE characteristics are closely related to the stress-strain properties of rock materials and that they are affected by the developmental state and degree of internal microcracks. AE events occur in either the loading or unloading stages if the strain is greater than zero. Evolutionary laws of AE activity agree with changes in rock strain. Strain deformation is accompanied by AE activity, and the density and intensity of AE events directly reflect the damage degree of the rock mass. The Kaiser effect exists in the linear elastic stage of rock material, and the Felicity effect is effective in the plastic yield and post-peak failure stages, which are divided by the elastic yield strength. This study suggests that the stress level needed to determine a significant increase in AE activity was 70% of the i + 1 peak stress. The Felicity ratio of rock specimens decreases with the growth of loading-unloading cycles. The cycle magnitude and variation of the Felicity effect, in which loading and unloading rates play a weak role, are almost consistent.
NASA Technical Reports Server (NTRS)
Noble, Sarah
2009-01-01
A thick layer of regolith, fragmental and unconsolidated rock material, covers the entire lunar surface. This layer is the result of the continuous impact of meteoroids large and small and the steady bombardment of charged particles from the sun and stars. The regolith is generally about 4-5 m thick in mare regions and 10-15 m in highland areas (McKay et al., 1991) and contains all sizes of material from large boulders to sub-micron dust particles. Below the regolith is a region of large blocks of material, large-scale ejecta and brecciated bedrock, often referred to as the "megaregolith". Lunar soil is a term often used interchangeably with regolith, however, soil is defined as the subcentimeter fraction of the regolith (in practice though, soil generally refers to the submillimeter fraction of the regolith). Lunar dust has been defined in many ways by different researchers, but generally refers to only the very finest fractions of the soil, less than approx.10 or 20 microns. Lunar soil can be a misleading term, as lunar "soil" bears little in common with terrestrial soils. Lunar soil contains no organic matter and is not formed through biologic or chemical means as terrestrial soils are, but strictly through mechanical comminution from meteoroids and interaction with the solar wind and other energetic particles. Lunar soils are also not exposed to the wind and water that shapes the Earth. As a consequence, in contrast to terrestrial soils, lunar soils are not sorted in any way, by size, shape, or chemistry. Finally, without wind and water to wear down the edges, lunar soil grains tend to be sharp with fresh fractured surfaces.
Possibilities of rock constitutive modelling and simulations
NASA Astrophysics Data System (ADS)
Baranowski, Paweł; Małachowski, Jerzy
2018-01-01
The paper deals with a problem of rock finite element modelling and simulation. The main intention of authors was to present possibilities of different approaches in case of rock constitutive modelling. For this purpose granite rock was selected, due to its wide mechanical properties recognition and prevalence in literature. Two significantly different constitutive material models were implemented to simulate the granite fracture in various configurations: Johnson - Holmquist ceramic model which is very often used for predicting rock and other brittle materials behavior, and a simple linear elastic model with a brittle failure which can be used for simulating glass fracturing. Four cases with different loading conditions were chosen to compare the aforementioned constitutive models: uniaxial compression test, notched three-point-bending test, copper ball impacting a block test and small scale blasting test.
Pancam multispectral imaging results from the opportunity Rover at Meridiani Planum
Bell, J.F.; Squyres, S. W.; Arvidson, R. E.; Arneson, H.M.; Bass, D.; Calvin, W.; Farrand, W. H.; Goetz, W.; Golombek, M.; Greeley, R.; Grotzinger, J.; Guinness, E.; Hayes, A.G.; Hubbard, M.Y.H.; Herkenhoff, K. E.; Johnson, M.J.; Johnson, J. R.; Joseph, J.; Kinch, K.M.; Lemmon, M.T.; Li, R.; Madsen, M.B.; Maki, J.N.; Malin, M.; McCartney, E.; McLennan, S.; McSween, H.Y.; Ming, D. W.; Morris, R.V.; Noe Dobrea, E.Z.; Parker, T.J.; Proton, J.; Rice, J. W.; Seelos, F.; Soderblom, J.M.; Soderblom, L.A.; Sohl-Dickstein, J. N.; Sullivan, R.J.; Weitz, C.M.; Wolff, M.J.
2004-01-01
Panoramic Camera (Pancam) images from Meridiani Planum reveal a low-albedo, generally flat, and relatively rock-free surface. Within and around impact craters and fractures, laminated outcrop rocks with higher albedo are observed. Fine-grained materials include dark sand, bright ferric iron-rich dust, angular rock clasts, and millimeter-size spheroidal granules that are eroding out of the laminated rocks. Spectra of sand, clasts, and one dark plains rock are consistent with mafic silicates such as pyroxene and olivine. Spectra of both the spherules and the laminated outcrop materials indicate the presence of crystalline ferric oxides or oxyhydroxides. Atmospheric observations show a steady decline in dust opacity during the mission. Astronomical observations captured solar transits by Phobos and Deimos and time-lapse observations of sunsets.
Pancam multispectral imaging results from the Opportunity Rover at Meridiani Planum.
Bell, J F; Squyres, S W; Arvidson, R E; Arneson, H M; Bass, D; Calvin, W; Farrand, W H; Goetz, W; Golombek, M; Greeley, R; Grotzinger, J; Guinness, E; Hayes, A G; Hubbard, M Y H; Herkenhoff, K E; Johnson, M J; Johnson, J R; Joseph, J; Kinch, K M; Lemmon, M T; Li, R; Madsen, M B; Maki, J N; Malin, M; McCartney, E; McLennan, S; McSween, H Y; Ming, D W; Morris, R V; Dobrea, E Z Noe; Parker, T J; Proton, J; Rice, J W; Seelos, F; Soderblom, J M; Soderblom, L A; Sohl-Dickstein, J N; Sullivan, R J; Weitz, C M; Wolff, M J
2004-12-03
Panoramic Camera (Pancam) images from Meridiani Planum reveal a low-albedo, generally flat, and relatively rock-free surface. Within and around impact craters and fractures, laminated outcrop rocks with higher albedo are observed. Fine-grained materials include dark sand, bright ferric iron-rich dust, angular rock clasts, and millimeter-size spheroidal granules that are eroding out of the laminated rocks. Spectra of sand, clasts, and one dark plains rock are consistent with mafic silicates such as pyroxene and olivine. Spectra of both the spherules and the laminated outcrop materials indicate the presence of crystalline ferric oxides or oxyhydroxides. Atmospheric observations show a steady decline in dust opacity during the mission. Astronomical observations captured solar transits by Phobos and Deimos and time-lapse observations of sunsets.
Pancam multispectral imaging results from the Opportunity Rover at Meridiani Planum
NASA Technical Reports Server (NTRS)
Bell, J. F., III; Squyres, S. W.; Arvidson, R. E.; Arneson, H. M.; Bass, D.; Calvin, W.; Farrand, W. H.; Goetz, W.; Golombek, M.; Greeley, R.;
2004-01-01
Panoramic Camera (Pancam) images from Meridiani Planum reveal a low-albedo, generally flat, and relatively rock-free surface. Within and around impact craters and fractures, laminated outcrop rocks with higher albedo are observed. Fine-grained materials include dark sand, bright ferric iron-rich dust, angular rock clasts, and millimeter-size spheroidal granules that are eroding out of the laminated rocks. Spectra of sand, clasts, and one dark plains rock are consistent with mafic silicates such as pyroxene and olivine. Spectra of both the spherules and the laminated outcrop materials indicate the presence of crystalline ferric oxides or oxyhydroxides. Atmospheric observations show a steady decline in dust opacity during the mission. Astronomical observations captured solar transits by Phobos and Deimos and time-lapse observations of sunsets.
Monte Carlo simulations of the gamma-ray exposure rates of common rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haber, Daniel A.; Malchow, Russell L.; Burnley, Pamela C.
Monte Carlo simulations have been performed to model the gamma ray emission and attenuation properties of common rocks. In geologic materials, 40K, 238U, and 232Th are responsible for most gamma ray production. If the concentration of these radioelements and attenuation factors such as degree of water saturation are known, an estimate of the gamma-ray exposure rate can be made. The results show that there are no significant differences in gamma-ray screening between major rock types. If the total number of radionuclide atoms are held constant then the major controlling factor is density of the rock. Finally, the thickness of regolithmore » or soil overlying rock can be estimated by modeling the exposure rate if the radionuclide contents of both materials are known.« less
Monte Carlo simulations of the gamma-ray exposure rates of common rocks
Haber, Daniel A.; Malchow, Russell L.; Burnley, Pamela C.
2016-11-24
Monte Carlo simulations have been performed to model the gamma ray emission and attenuation properties of common rocks. In geologic materials, 40K, 238U, and 232Th are responsible for most gamma ray production. If the concentration of these radioelements and attenuation factors such as degree of water saturation are known, an estimate of the gamma-ray exposure rate can be made. The results show that there are no significant differences in gamma-ray screening between major rock types. If the total number of radionuclide atoms are held constant then the major controlling factor is density of the rock. Lastly, the thickness of regolithmore » or soil overlying rock can be estimated by modeling the exposure rate if the radionuclide contents of both materials are known.« less
Monte Carlo simulations of the gamma-ray exposure rates of common rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haber, Daniel A.; Malchow, Russell L.; Burnley, Pamela C.
Monte Carlo simulations have been performed to model the gamma ray emission and attenuation properties of common rocks. In geologic materials, 40K, 238U, and 232Th are responsible for most gamma ray production. If the concentration of these radioelements and attenuation factors such as degree of water saturation are known, an estimate of the gamma-ray exposure rate can be made. The results show that there are no significant differences in gamma-ray screening between major rock types. If the total number of radionuclide atoms are held constant then the major controlling factor is density of the rock. Lastly, the thickness of regolithmore » or soil overlying rock can be estimated by modeling the exposure rate if the radionuclide contents of both materials are known.« less
DOT National Transportation Integrated Search
2017-09-05
The Alaska Department of Transportation and Public Facilities (AKDOT&PF) has developed the nations first Geotechnical Asset Management Program. The program encompasses rock slopes, unstable slopes and embankments, retaining walls, and material sou...
NASA Technical Reports Server (NTRS)
Taylor, Lawrence A.; Chambers, John G.; Patchen, Allan; Jerde, Eric A.; Mckay, David S.; Graf, John; Oder, Robin R.
1993-01-01
The rocks and soils of the Moon will be the raw materials for fuels and construction needs at a lunar base. This includes sources of materials for the generation of hydrogen, oxygen, metals, and other potential construction materials. For most of the bulk material needs, the regolith, and its less than 1 cm fraction, the soil, will suffice. But for specific mineral resources, it may be necessary to concentrate minerals from rocks or soils, and it is not always obvious which is the more appropriate feedstock. Besides an appreciation of site geology, the mineralogy and petrography of local rocks and soils is important for consideration of the resources which can provide feedstocks of ilmenite, glass, agglutinates, anorthite, etc. In such studies, it is very time-consuming and practically impossible to correlate particle counts (the traditional method of characterizing lunar soil petrography) with accurate modal analyses and with mineral associations in multi-mineralic grains. But x ray digital imaging, using x rays characteristic of each element, makes all this possible and much more (e.g., size and shape analysis). An application of beneficiation image analysis, in use in our lab (Oxford Instr. EDS and Cameca SX-50 EMP), was demonstrated to study mineral liberation from lunar rocks and soils. Results of x ray image analysis are presented.
Simulation of Anisotropic Rock Damage for Geologic Fracturing
NASA Astrophysics Data System (ADS)
Busetti, S.; Xu, H.; Arson, C. F.
2014-12-01
A continuum damage model for differential stress-induced anisotropic crack formation and stiffness degradation is used to study geologic fracturing in rocks. The finite element-based model solves for deformation in the quasi-linear elastic domain and determines the six component damage tensor at each deformation increment. The model permits an isotropic or anisotropic intact or pre-damaged reference state, and the elasticity tensor evolves depending on the stress path. The damage variable, similar to Oda's fabric tensor, grows when the surface energy dissipated by three-dimensional opened cracks exceeds a threshold defined at the appropriate scale of the representative elementary volume (REV). At the laboratory or wellbore scale (<1m) brittle continuum damage reflects microcracking, grain boundary separation, grain crushing, or fine delamination, such as in shale. At outcrop (1m-100m), seismic (10m-1000m), and tectonic (>1000m) scales the damaged REV reflects early natural fracturing (background or tectonic fracturing) or shear strain localization (fault process zone, fault-tip damage, etc.). The numerical model was recently benchmarked against triaxial stress-strain data from laboratory rock mechanics tests. However, the utility of the model to predict geologic fabric such as natural fracturing in hydrocarbon reservoirs was not fully explored. To test the ability of the model to predict geological fracturing, finite element simulations (Abaqus) of common geologic scenarios with known fracture patterns (borehole pressurization, folding, faulting) are simulated and the modeled damage tensor is compared against physical fracture observations. Simulated damage anisotropy is similar to that derived using fractured rock-mass upscaling techniques for pre-determined fracture patterns. This suggests that if model parameters are constrained with local data (e.g., lab, wellbore, or reservoir domain), forward modeling could be used to predict mechanical fabric at the relevant REV scale. This reference fabric also can be used as the starting material property to pre-condition subsequent deformation or fluid flow. Continuing efforts are to expand the present damage model to couple damage evolution with plasticity and with permeability for more geologically realistic simulation.
Publications - RDF 2005-2 | Alaska Division of Geological & Geophysical
, and non-carbonate carbon data from rocks collected in the Solomon, Bendeleben, and Nome quadrangles for more information. Quadrangle(s): Bendeleben; Nome; Solomon Bibliographic Reference Werdon, M.B , geochemical, and non-carbonate carbon data from rocks collected in the Solomon, Bendeleben, and Nome
Publications - GMC 26 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 26 Publication Details Title: Geochemical data (total organic carbon, rock-eval pyrolysis, and Reference Unknown, 1984, Geochemical data (total organic carbon, rock-eval pyrolysis, and vitrinite ; Total Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources, Division of
Publications - GMC 29 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 29 Publication Details Title: Geochemical analysis (total organic carbon, rock-eval pyrolysis Reference Minder, Michael, and Shell Oil Company, 1985, Geochemical analysis (total organic carbon, rock ; Total Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources, Division of
Publications - GMC 56 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 56 Publication Details Title: Total organic carbon, extractable organic matter, rock-eval publication sales page for more information. Bibliographic Reference Mobil Oil Coporation, 1986, Total organic carbon, extractable organic matter, rock-eval parameters, isoprenoid ratios, carbon preference index, and
Publications - GMC 25 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 25 Publication Details Title: Geochemical analysis (total organic carbon, rock-eval pyrolysis Reference Unknown, 1984, Geochemical analysis (total organic carbon, rock-eval pyrolysis, kerogen type ; Total Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources, Division of
Publications - GMC 125 | Alaska Division of Geological & Geophysical
DGGS GMC 125 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Reference Cunningham, K., and Shell Oil Company, 1989, Total organic carbon, rock-eval pyrolysis, and Pyrolysis; Total Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources, Division
Publications - GMC 28 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 28 Publication Details Title: Geochemical analysis (total organic carbon, rock-eval pyrolysis Reference Brown and Ruth Laboratories, Inc., 1985, Geochemical analysis (total organic carbon, rock-eval Organic Carbon Top of Page Department of Natural Resources, Division of Geological & Geophysical
Publications - GMC 126 | Alaska Division of Geological & Geophysical
DGGS GMC 126 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Reference Unknown, 1989, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance data of Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources, Division of Geological
Publications - GMC 143 | Alaska Division of Geological & Geophysical
DGGS GMC 143 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Reference Unknown, 1989, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance data of Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources, Division of Geological
Publications - GMC 122 | Alaska Division of Geological & Geophysical
DGGS GMC 122 Publication Details Title: Total organic carbon, rock-eval pyrolysis, vitrinite for more information. Bibliographic Reference Exxon, and Geo-Strat, Inc., 1989, Total organic carbon Information gmc122.pdf (1.4 M) Keywords Kerogen; Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon
Publications - GMC 207 | Alaska Division of Geological & Geophysical
DGGS GMC 207 Publication Details Title: Total organic carbon, rock-eval, and vitrinite reflectance data for more information. Bibliographic Reference Unknown, 1993, Total organic carbon, rock-eval, and Report Information gmc207.pdf (165.0 K) Keywords Total Organic Carbon; Vitrinite Reflectance Top of Page
Publications - GMC 19 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 19 Publication Details Title: Geochemical analysis (total organic carbon-rock-eval, vitrinite information. Bibliographic Reference Unknown, [n.d.], Geochemical analysis (total organic carbon-rock-eval K) Keywords Total Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources
Publications - GMC 91 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 91 Publication Details Title: Organic geochemical analyses, which include rock-eval pyrolysis , total organic carbon, and vitrinite reflectance, of ditch cuttings from the Marathon OCS Y-0086-1 well information. Bibliographic Reference Unknown, 1988, Organic geochemical analyses, which include rock-eval
Publications - GMC 62 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 62 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite . Bibliographic Reference Unknown, 1985, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance Pyrolysis; Total Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources, Division
Publications - GMC 66 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 66 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Reference Unknown, 1987, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance geochemical Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources, Division of Geological
Publications - GMC 142 | Alaska Division of Geological & Geophysical
DGGS GMC 142 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Reference Unknown, 1989, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance data of Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources, Division of Geological
Publications - GMC 59 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 59 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite . Bibliographic Reference Unknown, 1985, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance -Eval Pyrolysis; Total Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources
Physical properties of the surface materials at the Viking landing sites on Mars
Moore, H.J.; Hutton, R.E.; Clow, G.D.; Spitzer, C.R.
1987-01-01
This report summarizes the results of the Physical Properties Investigation of the Viking '75 Project, activities of the surface samplers, and relevant results from other investigations. The two Viking Landers operated for nearly four martian years after landing on July 20 (Lander 1) and Sept. 3 (Lander 2), 1976; Lander 1 acquired its last pictures on or about Nov. 5, 1982. Lander 1 rests on a smooth, cratered plain at the west edge of Chryse Planitia (22.5 ? N, 48.0? W), and Lander 2 rests 200 km west of the crater Mie in Utopia Planitia (48.0? N, 225.7? W). Lander 1 views showed that dune-like deposits of drift material were superposed on rock-strewn surfaces. Soil-like material from the rock-strewn areas was called blocky material. Lander 2 views also showed a rock-strewn surface. Polygonal to irregular features, etched by the wind, revealed crusty to cloddy material among rocks. Both landers descended to the surface along nearly vertical trajectories. Velocities at touchdown were about 2 m/s for both landers. Footpad 2 of Lander 1 penetrated drift material 0.165 m, and footpad 3 penetrated blocky material 0.036 m. The two visible footpads of Lander 2 struck rocks. Erosion by exhausts from the forward engines produced craters with rims of mixed fine-grained material and platy to equidimensional clods, crusts, and fragments. Comparison of engine-exhaust erosion on Mars with terrestrial data suggested that drift material behaved like a weakly cohesive material with a grain size less than 3-9 /-lm. Although not sand, blocky and crusty to cloddy materials eroded like sand-with grain sizes of 0.01 or 0.2 cm. The surface samplers accomplished an impressive number of tasks. All experiments that required samples received samples. Deep holes, as much as 0.22 m deep, were excavated by both landers. Lander 2 successfully pushed rocks and collected samples from areas originally beneath the rocks. Tasks specifically accomplished for the Physical Properties Investigation include: (1) acquiring motor-current data while excavating trenches, (2) performing surface-bearing tests, (3) performing backhoe touchdowns, (4) attempting to chip or scratch rocks, (5) comminuting samples, (6) measuring subsurface diurnal temperatures, and (7) constructing conical piles of materials on and among rocks. Sample trenches in the three major types of soil-like materials were different from one another. Trenches in drift material, which were typically 0.06 m deep, had steep walls along much of their lengths, lumpy tailings and floors, and smooth domed surfaces with sparse fine fractures around their tips. Trenches in blocky material, which were typically 0.03-0.04 m deep, had steep walls near their tips, and surfaces around their tips were displaced upward and some appeared blocky. Trenches in crusty to cloddy material, which were typically 0.04-0.05 m deep, had steep and often irregular slopes near their tips, clods and slabs of crust in their tailings, and disrupted areas around their tips composed of mixed fine-grained material and slabs of crust or thick polygonal clods that had been displaced upwards. Data acquired during landing, trenching, surface-bearing tests, backhoe touchdowns, and from other science experiments were used to determine the mechanical properties of drift, blocky, and crusty to cloddy materials. Drift material appeared to be very fine grained, with local planes of weakness; in general, the drift material was consistent with a material having an angle of internal friction about 18?, a cohesion ranging from 0.7 to 3.0 kPa, and a bulk density of 1,200 kg/m 3 . Blocky material was consistent with a material having an angle of internal friction about 30?, cohesions from 1.5 to 16 kPa, and a bulk density of 1,600 kg/m 3 . Crusty to cloddy material had variable properties. For chiefly crusty to cloddy material, angles of internal friction were about 35 ? , and cohesions were from 0.5 to 5.2 kPa. For mixed fines and crusts, a
UThPb age of Apollo 12 rock 12013
Tatsumoto, M.
1970-01-01
A UThPb isotopic study of three chips from lunar rock 12013 indicates that parental material of the intrusion breccia formed quite early in the moon's history, possibly 3.9 to 4.3 by ago. The UThPb characteristics of the rock are distinctly different from those of other Apollo 12 igneous rocks and suggest a different origin. ?? 1970.
From Rocks to Cement. What We Make. Science and Technology Education in Philippine Society.
ERIC Educational Resources Information Center
Philippines Univ., Quezon City. Science Education Center.
This module deals with the materials used in making concrete hollow blocks. Topics discussed include: (1) igneous, metamorphic, and sedimentary rocks; (2) weathering (the process of breaking down rocks) and its effects on rocks; (3) cement; (4) stages in the manufacturing of Portland cement; and (5) the transformation of cement into concrete…
Multi-element analysis of emeralds and associated rocks by k(o) neutron activation analysis
Acharya; Mondal; Burte; Nair; Reddy; Reddy; Reddy; Manohar
2000-12-01
Multi-element analysis was carried out in natural emeralds, their associated rocks and one sample of beryl obtained from Rajasthan, India. The concentrations of 21 elements were assayed by Instrumental Neutron Activation Analysis using the k0 method (k0 INAA method) and high-resolution gamma ray spectrometry. The data reveal the segregation of some elements from associated (trapped and host) rocks to the mineral beryl forming the gemstones. A reference rock standard of the US Geological Survey (USGS BCR-1) was also analysed as a control of the method.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-06
... safety standards related to ventilation, methane, roof control, combustible materials, rock dust, other... standards related to ventilation, methane, roof control, combustible materials, rock dust, other safeguards... and unsafe conditions, such as methane accumulations, water accumulations, and adverse roof conditions...
Code of Federal Regulations, 2012 CFR
2012-01-01
... including the soil and subsoil, as well as finely divided rock and other soil formation materials down to the rock layer. Europe. The continent of Europe, the British Isles, Iceland, the Azores, and the... authority to act in his/her stead has been or may hereafter be delegated. Soil. The loose surface material...
Code of Federal Regulations, 2013 CFR
2013-01-01
... including the soil and subsoil, as well as finely divided rock and other soil formation materials down to the rock layer. Europe. The continent of Europe, the British Isles, Iceland, the Azores, and the... authority to act in his/her stead has been or may hereafter be delegated. Soil. The loose surface material...
Physical Modeling of Shear Behavior of Infilled Rock Joints Under CNL and CNS Boundary Conditions
NASA Astrophysics Data System (ADS)
Shrivastava, Amit Kumar; Rao, K. Seshagiri
2018-01-01
Despite their frequent natural occurrence, filled discontinuities under constant normal stiffness (CNS) boundary conditions have been studied much less systematically, perhaps because of the difficulties arising from the increased number of variable parameters. Because of the lack of reliable and realistic theoretical or empirical relations and the difficulties in obtaining and testing representative samples, engineers rely on judgment and often consider the shear strength of the infilled material itself as shear strength of rock joints. This assumption leads to uneconomical and also sometimes the unsafe design of underground structures, slopes, rock-socketed piles and foundations. To study the effect of infill on the shear behavior of rock joints, tests were performed on the modeled infilled rock joint having different joint roughness under constant normal load (CNL) and CNS boundary conditions at various initial normal stress and varying thickness of the infilled material. The test results indicate that shear strength decreases with an increase in t/ a ratio for both CNL and CNS conditions, but the reduction in shear strength is more for CNL than for CNS condition for a given initial normal stress. The detailed account of the effect of thickness of infilled material on shear and deformation behavior of infilled rock joint is discussed in this paper, and a model is proposed to predict shear strength of infilled rock joint.
The Analysis of Weak Rock Using the Pressuremeter
NASA Astrophysics Data System (ADS)
Dafni, Jacob
The pressuremeter is a versatile in situ testing instrument capable of testing a large range of materials from very soft clay to weak rock. Due to limitations of other testing devices, the pressuremeter is one of the few instruments capable of capturing stiffness and strength properties of weak rock. However, data collected is only useful if the material tested is properly modeled and desirable material properties can be obtained. While constitutive models with various flows rules have been developed for pressuremeter analysis in soil, less research has been directed at model development for pressuremeter tests in weak rock. The result is pressuremeter data collected in rock is typically analyzed using models designed for soil. The aim of this study was to explore constitutive rock models for development into a pressuremeter framework. Three models were considered, with two of those three implemented for pressuremeter analysis. A Mohr-Coulomb model with a tensile cutoff developed by Haberfield (1987) and a Hoek-Brown model initiated by Yang et al (2011) and further developed by the author were implemented and calibrated against a data set of pressuremeter tests from 5 project test sites including a total of 115 pressuremeter tests in a number of different rock formations. Development of a multiscale damage model established by Kondo et al (2008) was explored. However, this model requires further development to be used for pressuremeter data analysis.
Petrologic variations in Apollo 16 surface soils
NASA Technical Reports Server (NTRS)
Houck, K. J.
1982-01-01
Source rock, maturation history and intrasite variation data are derived for the Apollo 16 regolith by comparing modal analyses of 15 surface soils with rake and rock sample data. Triangular source rock component plots show that Apollo 16 soils have similar source rocks that are well homogenized throughout the site. The site can be divided into three soil petrographic provinces. Central site soils are mature, well homogenized, and enriched in glass. They are probably the most typical Cayley Plains materials present. North Ray soils are immature to submature, containing North Ray ejecta. South Ray soils are mature, but contain small amounts of fresh impact melts and plagioclase, due perhaps to the breakdown of blocky South Ray ejecta. The different compositions and physical properties of North and South Ray ejecta support the hypothesis that the latter event excavated Cayley material, while the former excavated Descartes materials.
Operational features of decorative concrete
NASA Astrophysics Data System (ADS)
Bazhenova, Olga; Kotelnikov, Maxim
2018-03-01
This article deals with the questions of creation and use of decorative and finishing concrete and mortar. It has been revealed that the most effective artificial rock-imitating stone materials are those made of decorative concrete with the opened internal structure of material. At the same time it is important that the particles of decorative aggregate should be distributed evenly in the concrete volume. It can be reached only at a continuous grain-size analysis of the aggregate from the given rock. The article tackles the necessity of natural stone materials imitation for the cement stone color to correspond to the color of the rock. The possibility of creation of the decorative concrete imitating rocks in the high-speed turbulent mixer is considered. Dependences of durability and frost resistance of the studied concrete on the pore size and character and also parameters characterizing crack resistance of concrete are received.
Astronaut David Scott - Sample - "Genesis Rock" - MSC
1971-08-12
S71-43477 (12 Aug. 1971) --- Astronaut David R. Scott, right, commander of the Apollo 15 mission, gets a close look at the sample referred to as "Genesis rock" in the Non-Sterile Nitrogen Processing Line (NNPL) in the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center (MSC). Scientist-astronaut Joseph P. Allen IV, left, an Apollo 15 spacecraft communicator, looks on with interest. The white-colored rock has been given the permanent identification of 15415.
Rock sample brought to earth from the Apollo 12 lunar landing mission
NASA Technical Reports Server (NTRS)
1969-01-01
Close-up view of Apollo 12 sample 12,065 under observation in the Manned Spacecraft Center's Lunar Receiving Laboratory. This sample, collected during the second Apollo 12 extravehicular activity (EVA-2) of Astronauts Charles Conrad Jr., and Alan L. Bean, is a fine-grained rock. Note the glass-lined pits. An idea of the size of the rock can be gained by reference to the gauge on the bottom portion of the number meter.
NASA Astrophysics Data System (ADS)
Pękala, Agnieszka
2017-10-01
As part of an integrated system of environmental protection at every stage of the product life cycle such as: raw material extraction, its transportation and processing as well the subsequent use and development is required to carry out actions towards reducing or completely eliminating products that contain harmful substances to the environment. The purpose of the presented paper is an analysis of the toxic element concentrations in the extracted siliceous minerals at the initial stage of the raw material recognition. The research material is constituted by rocks collected from the Mesozoic bedrock from the Bełchatów lignite deposit. A group of the studied rocks is represented by diatomites, gaizes, opoka-rocks and light opoka-rocks, enriched with minerals from the group of SiO2. Most of the recognized petrographic sediments have a real possibility of potential applications in the building material industry, but it needs to carry out a detailed and thorough research. The studies of the chemical composition were determined by atomic absorption spectroscopy (AAS) using Philips PU 9100Xi Camera SX-100 spectrometer and an atomic emission spectroscopy with inductively coupled plasma (ICP AES) using PLASMA 40 spectrometer. There were carried out a chemical analyses and determined the content of some toxic elements: Pb, Cr, Cd, Ni, Zn, Cu, Co, As, Sr, Ba, Zr. in the studied sedimentary rocks. The analysis of the results draws attention to the high content of cadmium in the case of the studied sediments. The concentration of this element in the described rocks is an average of 0.22 mg/kg -the diatomites, 0.05 mg/kg -the gaizes, 0.4 mg/kg -the opoka-rocks, 2.23 mg/kg -the light opoka-rocks. It was moreover registered varied concentration of arsenic in diatomites, that is formed in the range of 0.05 - 9.6 mg/kg, an average of 6.3 mg/kg. The content of the other designated elements with toxic properties in the analysed groups of rocks does not exceed the limit values. An increased concentration of cadmium and arsenic should be considered as an important information in resource research of the studied rocks. The both elements belong to the easily soluble elements as a result of weathering processes. Cadmium is one of the most dangerous toxicological environmental elements. It is easily absorbed and relatively long stopped in humans and animal’s organism. It also seems that the increased concentration in the siliceous rocks results from the nature of the lignite from the Bełchatów lignite deposit, outstanding higher cadmium content in relation to the observed lignite of the world.
NASA Technical Reports Server (NTRS)
Bishop, J. L.; Murchie, S.; Pieters, C.; Zent, A.
1999-01-01
This model is one of many possible scenarios to explain the generation of the current surface material on Mars using chemical, magnetic and spectroscopic data from Mars and geologic analogs from terrestrial sites. One basic premise is that there are physical and chemical interactions of the atmospheric dust particles and that these two processes create distinctly different results. Physical processes distribute dust particles on rocks, forming physical rock coatings, and on the surface between rocks forming soil units; these are reversible processes. Chemical reactions of the dust/soil particles create alteration rinds on rock surfaces or duricrust surface units, both of which are relatively permanent materials. According to this model the mineral components of the dust/soil particles are derived from a combination of "typical" palagonitic weathering of volcanic ash and hydrothermally altered components, primarily from steam vents or fumeroles. Both of these altered materials are composed of tiny particles, about 1 micron or smaller, that are aggregates of silicates and iron oxide/oxyhydroxide/sulfate phases. Additional information is contained in the original extended abstract.
Specific yield: compilation of specific yields for various materials
Johnson, A.I.
1967-01-01
Specific yield is defined as the ratio of (1) the volume of water that a saturated rock or soil will yield by gravity to (2) the total volume of the rock or soft. Specific yield is usually expressed as a percentage. The value is not definitive, because the quantity of water that will drain by gravity depends on variables such as duration of drainage, temperature, mineral composition of the water, and various physical characteristics of the rock or soil under consideration. Values of specific yields nevertheless offer a convenient means by which hydrologists can estimate the water-yielding capacities of earth materials and, as such, are very useful in hydrologic studies. The present report consists mostly of direct or modified quotations from many selected reports that present and evaluate methods for determining specific yield, limitations of those methods, and results of the determinations made on a wide variety of rock and soil materials. Although no particular values are recommended in this report, a table summarizes values of specific yield, and their averages, determined for 10 rock textures. The following is an abstract of the table. [Table
Barton, H.N.
1986-01-01
Trace levels of chalcophile elements that form volatile sulfide minerals are determined in stream sediments and in the nonmagnetic fraction of a heavy-mineral concentrate of stream sediments by a carrier distillation emission spectrographic method. Photographically recorded spectra of samples are visually compared with those of synthetic standards for the two sample types. Rock and soil samples may also be analyzed by comparison with the stream-sediment standards. A gallium oxide spectrochemical carrier/buffer enhances the early emission of the volatile elements. Detection limits in parts per million attained are: Sb 5, As 20, Bi 0.1, Cd 1, Cu 1, Pb 2, Ag 0.1, Zn 2, and Sn 0.1. A comparison with other methods of analysis, total-burn emission and atomic absorption spectroscopy, shows good correlation for standard reference for materials and samples from a variety of geologic terranes. ?? 1986.
Rock sampling. [apparatus for controlling particle size
NASA Technical Reports Server (NTRS)
Blum, P. (Inventor)
1971-01-01
An apparatus for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The device includes grinding means for cutting grooves in the rock surface and to provide a grouping of thin, shallow, parallel ridges and cutter means to reduce these ridges to a powder specimen. Collection means is provided for the powder. The invention relates to rock grinding and particularly to the sampling of rock specimens with good size control.
Shocked Quartz Aggregates of the Cretaceous-Tertiary Boundary at Colorado, USA
NASA Astrophysics Data System (ADS)
Miura, Y.; Okamoto, M.; Iancu, O. G.
1993-07-01
Shock-metamorphosed quartz (i.e., shocked quartz) at the Cretaceous-Tertiary boundary (K/T) at Colorado [1,2] reveals the following mineralogical data by X-ray diffractometry and high-resolution electron micrograph with energy- dispersive spectrometry. 1. Shocked quartz is not normal (perfect crystalline) quartz mineral but various quartz aggregates that show relatively low X-ray intensity (i.e., imperfect crystalline) and shock lamellae with crystalline quartz and amorphous glass [3]. 2. Analytical electron micrographs indicate that crystalline quartz silica with spotty dislocation features is included in dendritic amorphous glasses of potassium (K) feldspar composition. Various compositions of glassy materials are found in shocked quartz aggregates as matrix or alternate shock lamellae, which is important to estimate the target rock of impact. The composition of glassy matrix is dendritic K-feldspar in the K/T boundary at Clear Creak North (CCN), Colorado, whereas that in the Barringer Crater is quartz-rich composition from the target rock of sandstone (or some mixture with iron meteorite), and that in artificial impact rock [3] is dendritic silica composition. It is found in this study that shocked quartz aggregates from the CCN K/T boundary samples are supplied from quartz and K-feldspar-bearing target rock at impact event (Table 1). Table 1, which appears here in the hard copy, shows the compositions, texture, and origin of shocked quartz aggregates. References: [1] Alvarez L. W. et al. (1980) Science, 208, 1095-1107. [2] Izett G. (1989) GSA Spec. Pap. 249, 1-194. [3] Miura Y. (1991) Shock Waves, 1, 35-41, Springer-Verlag.
Basic features of waste material storage in underground space in relation to geomechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konecny, P.
1994-12-31
It is logical to consider utilizing underground cavities for waste material disposal because, during mining, great volumes of rock materials are extracted, and underground hollow areas and communicating workings are created that can, in general, be utilized for waste disposal. Additionally, in many cases, underground waste disposal favorably supports mining process technology (for instance, application of power plant fly ash and preparation plant tailings as hardened backfill). However, it is necessary to give particular attention to the preparation, operation, and isolation of underground tip areas; errors and, in extreme cases, emergencies in underground tips are generally more difficult to dealmore » with than those in surface tips. A tip place constructed underground becomes part of the rock massif; therefore, all natural laws that rule the rock massif must be respected. Of course, such an approach requires knowledge of processes and natural regularities that will occur in rock strata where tip places have been constructed. Such knowledge is gained through familiarity with contemporary geomechanical science. The paper discusses basic geomechanical principles of underground waste disposal; geomechanical aspects of rock massif evaluation in view of waste material storage in mine workings; and plans for an experimental project for waste disposal in the Dul Ostrava underground mine.« less
Comparison of Martian Meteorites and Martian Regolith as Shield Materials for Galactic Cosmic Rays
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Thibeault, Sheila A.; Simonsen, Lisa C.; Wilson, John W.
1998-01-01
Theoretical calculations of radiation attenuation due to energetic galactic cosmic rays behind Martian rock and Martian regolith material have been made to compare their utilization as shields for advanced manned missions to Mars because the detailed chemical signature of Mars is distinctly different from Earth. The modified radiation fields behind the Martian rocks and the soil model were generated by solving the Boltzmann equation using a HZETRN system with the 1977 Solar Minimum environmental model. For the comparison of the attenuation characteristics, dose and dose equivalent are calculated for the five different subgroups of Martian rocks and the Martian regolith. The results indicate that changes in composition of subgroups of Martian rocks have negligible effects on the overall shielding properties because of the similarity of their constituents. The differences for dose and dose equivalent of these materials relative to those of Martian regolith are within 0.5 and 1 percent, respectively. Therefore, the analysis of Martian habitat construction options using in situ materials according to the Martian regolith model composition is reasonably accurate. Adding an epoxy to Martian regolith, which changes the major constituents of the material, enhances shielding properties because of the added hydrogenous constituents.
Indicators: Shallow Water Habitat/In-stream Fish Habitat
Shallow water habitat, also referred to as in-stream fish habitat, refers to areas that fish and other aquatic organisms need for concealment, breeding and feeding. This includes large woody snags, boulders, rock ledges, and undercut banks.
Using Muons to Image the Subsurface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonal, Nedra; Cashion, Avery Ted; Cieslewski, Grzegorz
Muons are subatomic particles that can penetrate the earth 's crust several kilometers and may be useful for subsurface characterization . The absorption rate of muons depends on the density of the materials through which they pass. Muons are more sensitive to density variation than other phenomena, including gravity, making them beneficial for subsurface investigation . Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and the detector, much like a CAT scan. Currently, muon tomography can resolve features to the sub-meter scale. This work consistsmore » of three parts to address the use of muons for subsurface characterization : 1) assess the use of muon scattering for estimating density differences of common rock types, 2 ) using muon flux to detect a void in rock, 3) measure muon direction by designing a new detector. Results from this project lay the groundwork for future directions in this field. Low-density objects can be detected by muons even when enclosed in high-density material like lead, and even small changes in density (e.g. changes due to fracturing of material) can be detected. Rock density has a linear relationship with muon scattering density per rock volume when this ratio is greater than 0.10 . Limitations on using muon scattering to assess density changes among common rock types have been identified. However, other analysis methods may show improved results for these relatively low density materials. Simulations show that muons can be used to image void space (e.g. tunnels) within rock but experimental results have been ambiguous. Improvements are suggested to improve imaging voids such as tunnels through rocks. Finally, a muon detector has been designed and tested to measure muon direction, which will improve signal-to-noise ratio and help address fundamental questions about the source of upgoing muons .« less
NASA Astrophysics Data System (ADS)
Hancock, W.; Weatherley, D.; Wruck, B.; Chitombo, G. P.
2012-04-01
The flow dynamics of granular materials is of broad interest in both the geosciences (e.g. landslides, fault zone evolution, and brecchia pipe formation) and many engineering disciplines (e.g chemical engineering, food sciences, pharmaceuticals and materials science). At the interface between natural and human-induced granular media flow, current underground mass-mining methods are trending towards the induced failure and subsequent gravitational flow of large volumes of broken rock, a method known as cave mining. Cave mining relies upon the undercutting of a large ore body, inducement of fragmentation of the rock and subsequent extraction of ore from below, via hopper-like outlets. Design of such mines currently relies upon a simplified kinematic theory of granular flow in hoppers, known as the ellipsoid theory of mass movement. This theory assumes that the zone of moving material grows as an ellipsoid above the outlet of the silo. The boundary of the movement zone is a shear band and internal to the movement zone, the granular material is assumed to have a uniformly high bulk porosity compared with surrounding stagnant regions. There is however, increasing anecdotal evidence and field measurements suggesting this theory fails to capture the full complexity of granular material flow within cave mines. Given the practical challenges obstructing direct measurement of movement both in laboratory experiments and in-situ, the Discrete Element Method (DEM [1]) is a popular alternative to investigate granular media flow. Small-scale DEM studies (c.f. [3] and references therein) have confirmed that movement within DEM silo flow models matches that predicted by ellipsoid theory, at least for mono-disperse granular material freely outflowing at a constant rate. A major draw-back of these small-scale DEM studies is that the initial bulk porosity of the simulated granular material is significantly higher than that of broken, prismatic rock. In this investigation, more realistic granular material geometries are simulated using the ESyS-Particle [2] DEM simulation software on cluster supercomputers. Individual grains of the granular material are represented as convex polyhedra. Initially the polyhedra are packed in a low bulk porosity configuration prior to commencing silo flow simulations. The resultant flow dynamics are markedly different to that predicted by ellipsoid theory. Initially shearing occurs around the silo outlet however rapidly shear localization in a particular direction dominates other directions, causing preferential movement in that direction. Within the shear band itself, the granular material becomes hgihly dilated however elsewhere the bulk porosity remains low. The low porosity within these regions promotes entrainment whereby large volumes of granular material interlock and begin to rotate and translate as a single rigid body. In some cases, entrainment may result in complete overturning of a large volume of material. The consequences of preferential shear localization and in particular, entrainment, for granular media flow in cave mines and natural settings (such as brecchia pipes) is a topic of ongoing research to be presented at the meeting.
Subcritical crack growth and other time- and environment-dependent behavior in crustal rocks
NASA Technical Reports Server (NTRS)
Swanson, P. L.
1984-01-01
Stable crack growth strongly influences both the fracture strength of brittle rocks and some of the phenomena precursory to catastrophic failure. Quantification of the time and environment dependence of fracture propagation is attempted with the use of a fracture mechanics technique. Some of the difficulties encountered when applying techniques originally developed for simple synthetic materials to complex materials like rocks are examined. A picture of subcritical fracture propagation is developed that embraces the essential ingredients of the microstructure, a microcrack process zone, and the different roles that the environment plays. To do this, the results of (1) fracture mechanics experiments on five rock types, (2) optical and scanning electron microscopy, (3) studies of microstructural aspects of fracture in ceramics, and (4) exploratory tests examining the time-dependent response of rock to the application of water are examined.
1969-11-28
S69-60354 (29 Nov. 1969) --- A scientist's gloved hand holds one of the numerous rock samples brought back to Earth from the Apollo 12 lunar landing mission. The rocks are under thorough examination in the Manned Spacecraft Center's (MSC) Lunar Receiving Laboratory (LRL). This sample is a highly shattered basaltic rock with a thin black-glass coating on five of its six sides. Glass fills fractures and cements the rock together. The rock appears to have been shattered and thrown out by a meteorite impact explosion and coated with molten rock material before the rock fell to the surface.
Production of polyhydroxybutyrate in switchgrass
Somleva, Mariya N.; Snell, Kristi D.; Beaulieu, Julie; Peoples, Oliver P.; Garrison, Bradley; Patterson, Nii
2013-07-16
Transgenic plants, plant material, and plant cells for synthesis of polyhydroxyalkanoates, preferably poly(3-hydroxybutyrate) (also referred to a as PHB) are provided. Preferred plants that can be genetically engineered to produce PHB include plants that do not normally produce storage products such as oils and carbohydrates, and plants that have a C.sub.4 NAD-malic enzyme photosynthetic pathway. Such plants also advantageously produce lignocellulosic biomass that can be converted into biofuels. An exemplary plant that can be genetically engineered to produce PHB and produce lignocellulosic biomass is switchgrass, Panicum virgatum L. A preferred cultivar of switchgrass is Alamo. Other suitable cultivars of switchgrass include but are not limited to Blackwell, Kanlow, Nebraska 28, Pathfinder, Cave-in-Rock, Shelter and Trailblazer.
The Influence of Specimen Type on Tensile Fracture Toughness of Rock Materials
NASA Astrophysics Data System (ADS)
Aliha, Mohammad Reza Mohammad; Mahdavi, Eqlima; Ayatollahi, Majid Reza
2017-03-01
Up to now, several methods have been proposed to determine the mode I fracture toughness of rocks. In this research, different cylindrical and disc shape samples, namely: chevron bend (CB), short rod (SR), cracked chevron notched Brazilian disc (CCNBD), and semi-circular bend (SCB) specimens were considered for investigating mode I fracture behavior of a marble rock. It is shown experimentally that the fracture toughness values of the tested rock material obtained from different test specimens are not consistent. Indeed, depending on the geometry and loading type of the specimen, noticeable discrepancies can be observed for the fracture toughness of a same rock material. The difference between the experimental mode I fracture resistance results is related to the magnitude and sign of T-stress that is dependent on the geometry and loading configuration of the specimen. For the chevron-notched samples, the critical value of T-stress corresponding to the critical crack length was determined using the finite element method. The CCNBD and SR specimens had the most negative and positive T-stress values, respectively. The dependency of mode I fracture resistance to the T-stress was shown using the extended maximum tangential strain (EMTSN) criterion and the obtained experimental rock fracture toughness data were predicted successfully with this criterion.
Athena Mars rover science investigation
NASA Astrophysics Data System (ADS)
Squyres, Steven W.; Arvidson, Raymond E.; Baumgartner, Eric T.; Bell, James F.; Christensen, Philip R.; Gorevan, Stephen; Herkenhoff, Kenneth E.; Klingelhöfer, Göstar; Madsen, Morten Bo; Morris, Richard V.; Rieder, Rudolf; Romero, Raul A.
2003-12-01
Each Mars Exploration Rover carries an integrated suite of scientific instruments and tools called the Athena science payload. The primary objective of the Athena science investigation is to explore two sites on the Martian surface where water may once have been present, and to assess past environmental conditions at those sites and their suitability for life. The remote sensing portion of the payload uses a mast called the Pancam Mast Assembly (PMA) that provides pointing for two instruments: the Panoramic Camera (Pancam), and the Miniature Thermal Emission Spectrometer (Mini-TES). Pancam provides high-resolution, color, stereo imaging, while Mini-TES provides spectral cubes at mid-infrared wavelengths. For in-situ study, a five degree-of-freedom arm called the Instrument Deployment Device (IDD) carries four more tools: a Microscopic Imager (MI) for close-up imaging, an Alpha Particle X-Ray Spectrometer (APXS) for elemental chemistry, a Mössbauer Spectrometer (MB) for the mineralogy of Fe-bearing materials, and a Rock Abrasion Tool (RAT) for removing dusty and weathered surfaces and exposing fresh rock underneath. The payload also includes magnets that allow the instruments to study the composition of magnetic Martian materials. All of the Athena instruments have undergone extensive calibration, both individually and using a set of geologic reference materials that are being measured with all the instruments. Using a MER-like rover and payload in a number of field settings, we have devised operations processes that will enable us to use the MER rovers to formulate and test scientific hypotheses concerning past environmental conditions and habitability at the landing sites.
Athena Mars rover science investigation
Squyres, S. W.; Arvidson, R. E.; Baumgartner, E.T.; Bell, J.F.; Christensen, P.R.; Gorevan, S.; Herkenhoff, K. E.; Klingelhofer, G.; Madsen, M.B.; Morris, R.V.; Rieder, R.; Romero, R.A.
2003-01-01
Each Mars Exploration Rover carries an integrated suite of scientific instruments and tools called the Athena science payload. The primary objective of the Athena science investigation is to explore two sites on the Martian surface where water may once have been present, and to assess past environmental conditions at those sites and their suitability for life. The remote sensing portion of the payload uses a mast called the Pancam Mast Assembly (PMA) that provides pointing for two instruments: the Panoramic Camera (Pancam), and the Miniature Thermal Emission Spectrometer (Mini-TES). Pancam provides high-resolution, color, stereo imaging, while Mini-TES provides spectral cubes at mid-infrared wavelengths. For in-situ study, a five degree-of-freedom arm called the Instrument Deployment Device (IDD) carries four more tools: a Microscopic Imager (MI) for close-up imaging, an Alpha Particle X-Ray Spectrometer (APXS) for elemental chemistry, a Mo??ssbauer Spectrometer (MB) for the mineralogy of Fe-bearing materials, and a Rock Abrasion Tool (RAT) for removing dusty and weathered surfaces and exposing fresh rock underneath. The payload also includes magnets that allow the instruments to study the composition of magnetic Martian materials. All of the Athena instruments have undergone extensive calibration, both individually and using a set of geologic reference materials that are being measured with all the instruments. Using a MER-like rover and payload in a number of field settings, we have devised operations processes that will enable us to use the MER rovers to formulate and test scientific hypotheses concerning past environmental conditions and habitability at the landing sites. Copyright 2003 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Shczepetov, S. V.; Herman, A. B.
2017-07-01
The stratigraphic position of layers containing plant and animal remains in the Koryak Highlands (Northeast Asia) is under discussion. Their age is defined as late Campanian-early Maastrichtian. Plant-bearing and bone-bearing rocks represent cemented basaltic tephra. The former contain a small amount of xenogenic material and slightly rounded volcaniclastic material, which indicates its insignificant transportation. Ash particles in bone-bearing rocks are even less rounded. Among them, there are no rock fragments of other composition. Large bones and their fragments, as xenoliths, are chaotically distributed in the rock matrix as if floating in mass of ash material. This burial site was probably formed in a continental environment as a result of the gravitational and eolian transportation of the terrigenous material. The burial of small dinosaur bones and teeth occurred during the deposition of a small stream of a semiliquid water-ash mixture. This work presents a possible mechanism of the formation of burial sites, taking into consideration proposed conditions of the life and reproduction of dinosaurs in the Late Mesozoic Arctic.
Rock Cutting Depth Model Based on Kinetic Energy of Abrasive Waterjet
NASA Astrophysics Data System (ADS)
Oh, Tae-Min; Cho, Gye-Chun
2016-03-01
Abrasive waterjets are widely used in the fields of civil and mechanical engineering for cutting a great variety of hard materials including rocks, metals, and other materials. Cutting depth is an important index to estimate operating time and cost, but it is very difficult to predict because there are a number of influential variables (e.g., energy, geometry, material, and nozzle system parameters). In this study, the cutting depth is correlated to the maximum kinetic energy expressed in terms of energy (i.e., water pressure, water flow rate, abrasive feed rate, and traverse speed), geometry (i.e., standoff distance), material (i.e., α and β), and nozzle system parameters (i.e., nozzle size, shape, and jet diffusion level). The maximum kinetic energy cutting depth model is verified with experimental test data that are obtained using one type of hard granite specimen for various parameters. The results show a unique curve for a specific rock type in a power function between cutting depth and maximum kinetic energy. The cutting depth model developed here can be very useful for estimating the process time when cutting rock using an abrasive waterjet.
NASA Astrophysics Data System (ADS)
Guo, Kun; Zhai, Shikui; Yu, Zenghui; Wang, Shujie; Zhang, Xia; Wang, Xiaoyuan
2018-04-01
The Okinawa Trough is an infant back-arc basin developed along the Ryukyu arc. This paper provides new major and trace element and Sr-Nd-Pb-Li isotope data of volcanic rocks in the Okinawa Trough and combines the published geochemical data to discuss the composition of magma source, the influence of subduction component, and the contamination of crustal materials, and calculate the contribution between subduction sediment and altered oceanic crust in the subduction component. The results showed that there are 97% DM and 3% EMI component in the mantle source in middle trough (MS), which have been influenced by subduction sediment. The Li-Nd isotopes indicate that the contribution of subduction sediment and altered oceanic crust in subduction component are 4 and 96%, respectively. The intermediate-acidic rocks suffer from contamination of continental crust material in shallow magma chamber during fractional crystallization. The acidic rocks in south trough have experienced more contamination of crustal material than those from the middle and north trough segments.
MANAGEMENT AND TREATMENT OF WATER FROM HARD-ROCK MINES {ENGINEERING ISSUE}
This Engineering Issue document on treatment of mining waters is a practical guide to understanding and selecting technologies for the environmental management of waste materials and effluents at hard-rock mines. For the purposes of this discussion, hard-rock mining primarily ref...
Publications - RDF 2007-4 | Alaska Division of Geological & Geophysical
, and non-carbonate carbon data from rocks collected in the Solomon and Nome quadrangles, Seward information. Quadrangle(s): Nome; Solomon Bibliographic Reference Werdon, M.B., Newberry, R.J., Szumigala, D.J -carbonate carbon data from rocks collected in the Solomon and Nome quadrangles, Seward Peninsula, Alaska in
Publications - GMC 205 | Alaska Division of Geological & Geophysical
DGGS GMC 205 Publication Details Title: Total organic carbon, rock-eval, and gas chromatograms from for more information. Bibliographic Reference Unknown, 1992, Total organic carbon, rock-eval, and gas Information gmc205.pdf (272.0 K) Keywords Total Organic Carbon Top of Page Department of Natural Resources
The Impact of Rock Videos and Music with Suicidal Content on Thoughts and Attitudes about Suicide.
ERIC Educational Resources Information Center
Rustad, Robin A.; Small, Jacob E.; Jobes, David A.; Safer, Martin A.; Peterson, Rebecca J.
2003-01-01
Two experiments exposed college student volunteers to rock music with or without suicidal content. Music and videos with suicide content appeared to prime implicit cognitions related to suicide but did not affect variables associated with increased suicide risk. (Contains 60 references and 3 tables.) (Author/JBJ)
76 FR 1148 - CRD Hydroelectric LLC, Iowa; Notice of Availability of Environmental Assessment
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-07
... reviewed the application for an original license for the Red Rock Hydroelectric Project (FERC Project No... Engineers' Red Rock Dam. Staff prepared an environmental assessment (EA), which analyzes the potential... the Public Reference Room or may be viewed on the Commission's Web site at http://www.ferc.gov using...
Field Guide to Rock Weathering. Earth Science Curriculum Project Pamphlet Series PS-1.
ERIC Educational Resources Information Center
Boyer, Robert E.
Highlighted are the effects of weathering through field investigations of the environment, both natural rocks, and the urban environment's pavements, buildings, and cemeteries. Both physical weathering and chemical weathering are discussed. Questions are presented for post-field trip discussion. References and a glossary are provided. (Author/RE)
Compositional changes of reservoir rocks through the injection of supercritical CO2
NASA Astrophysics Data System (ADS)
Scherf, Ann-Kathrin; Schulz, Hans-Martin; Zetzl, Carsten; Smirnova, Irina; Andersen, Jenica; Vieth, Andrea
2010-05-01
The European project CO2SINK is the first project on the on-shore underground storage of carbon dioxide in Europe. CO2SINK is part of the ongoing efforts to understand the impact, problems, and likelihood of using deep saline aquifers for long term storage of CO2. In Ketzin (north-east Germany, 40 km west of Berlin) a saline sandstone aquifer of the younger Triassic (Stuttgart Formation) has been chosen as a reservoir for the long-term storage of carbon dioxide. Our monitoring focuses on the composition and mobility of the organic carbon pools within the saline aquifer and their changes due to the storage of carbon dioxide. Supercritical carbon dioxide is known as an excellent solvent of non- to moderately polar organic compounds, depending on temperature and pressure (Hawthorne, 1990). The extraction of organic matter (OM) from reservoir rock, using multiple extraction methods, allows insight into the composition of the OM and the biomarker inventory of the deep biosphere. The extraction of reservoir rock using supercritical CO2 may additionally simulate the impact of CO2 storage on the deep biosphere by the possible mobilisation of OM. We will present compound specific results from laboratory CO2 extraction experiments on reservoir rocks from the CO2 storage site in Ketzin, Germany. A total of five rock samples (silt and sandstones) from the injection well and two observation wells were applied to supercritical CO2 extraction. In the experimental setup, a supercritical fluid extractor is used to simulate the conditions within the saline aquifer. The results show distinct quantitative and qualitative differences in extraction yields between the rock samples. This may be due to differences in mineralogy and porosity (12 - 27%; Norden et al., 2007a, b, c), which seem to be extraction-controlling key factors. Furthermore, the results illustrate that the amount of extracted materials depends on the length of the time interval in which CO2 flows through the rock, rather than saturation of extracted compounds in the solvent when CO2 is stationary. Total extraction yields seem to be low compared to the OM present in the reservoir rock, but yields still have to be extrapolated to the large volumes of reservoir rock that are in contact with supercritical CO2 at the test site. In the future, our lab results may be combined with models to determine how much of the mobilised organic acids and non organic material will occupy the entire reservoir (pore space) or could be used by organisms and induce growth. Additionally, the rock samples were analysed after the extraction with supercritical CO2, using a variety of organic and inorganic geochemical techniques. Thus, changes in the composition of the rocks were also observed. Here, amongst others, scanning electron microscopy was done and indicated corrosion effects on mineral surfaces due to exposure to supercritical CO2. References Hawthorne, S.B. (1990) Analytical Chemistry 62, 633-642. Norden, B. (2007a) Geologischer Abschlussbericht der Bohrung CO2 Ktzi 200/2007. Norden, B. (2007b) Geologischer Abschlussbericht der Bohrung CO2 Ktzi 201/2007. Norden, B. (2007c) Geologischer Abschlussbericht der Bohrung CO2 Ktzi 202/2007.
Shallow near-fault material self organizes so it is just nonlinear in typical strong shaking
NASA Astrophysics Data System (ADS)
Sleep, N. H.
2011-12-01
Cracking within shallow compliant fault zones self-organizes so that strong dynamic stresses marginally exceed the elastic limit. To the first order, the compliant material experiences strain boundary conditions imposed by underlying stiffer rock. A major strike-slip fault yields simple dimensional relations. The near-field velocity pulse is essentially a Love wave. The dynamic strain is the ratio of the measured particle velocity over the deep S-wave velocity. The shallow dynamic stress is this quantity times the local shear modulus. I obtain the equilibrium shear modulus by starting a sequence of earthquakes with intact stiff rock surrounding the shallow fault zone. The imposed dynamic strain in stiff rock causes Coulomb failure and leaves cracks in it wake. Cracked rock is more compliant than the original intact rock. Each subsequent event causes more cracking until the rock becomes compliant enough that it just reaches its elastic limit. Further events maintain the material at the shear modulus where it just fails. Analogously, shallow damaged regolith forms with its shear modulus and S-wave velocity increasing with depth so it just reaches failure during typical strong shaking. The general conclusion is that shallow rocks in seismically active areas just become nonlinear during typical shaking. This process causes transient changes in S-wave velocity, but not strong nonlinear attenuation of seismic waves. Wave amplitudes significantly larger than typical ones would strongly attenuate and strongly damage the rock. The equilibrium shear modulus and S-wave velocity depend only modestly on the effective coefficient of internal friction.
1980-12-22
surface (Simpson, 1876:87; Wheat, 1967:115; Heizer and Baumhoff, 1962:48). Similar medicine rocks are found today on the Walker River Indian...addition, Heizer and Baumhoff (1962:60) refer to a Medicine Rock (site Pe-27) in the Humboldt Range, Pershing County (see Figure 2.3-1). Northern...1929) and Heizer and Baumhoff (1962). The distribution of known rock art sites in Nevada and western Utah is seen in Figures 2.3-1 and 2.3-2. Since
Geomechanical Anisotropy and Rock Fabric in Shales
NASA Astrophysics Data System (ADS)
Huffman, K. A.; Connolly, P.; Thornton, D. A.
2017-12-01
Digital rock physics (DRP) is an emerging area of qualitative and quantitative scientific analysis that has been employed on a variety of rock types at various scales to characterize petrophysical, mechanical, and hydraulic rock properties. This contribution presents a generic geomechanically focused DRP workflow involving image segmentation by geomechanical constituents, generation of finite element (FE) meshes, and application of various boundary conditions (i.e. at the edge of the domain and at boundaries of various components such as edges of individual grains). The generic workflow enables use of constituent geological objects and relationships in a computational based approach to address specific questions in a variety of rock types at various scales. Two examples are 1) modeling stress dependent permeability, where it occurs and why it occurs at the grain scale; 2) simulating the path and complexity of primary fractures and matrix damage in materials with minerals or intervals of different mechanical behavior. Geomechanical properties and fabric characterization obtained from 100 micron shale SEM images using the generic DRP workflow are presented. Image segmentation and development of FE simulation composed of relatively simple components (elastic materials, frictional contacts) and boundary conditions enable the determination of bulk static elastic properties. The procedure is repeated for co-located images at pertinent orientations to determine mechanical anisotropy. The static moduli obtained are benchmarked against lab derived measurements since material properties (esp. frictional ones) are poorly constrained at the scale of investigation. Once confidence in the input material parameters is gained, the procedure can be used to characterize more samples (i.e. images) than is possible from rock samples alone. Integration of static elastic properties with grain statistics and geologic (facies) conceptual models derived from core and geophysical logs enables quantification of the impact that variations in rock fabric and grain interactions have on bulk mechanical rock behavior. When considered in terms of the stratigraphic framework of two different shale reservoirs it is found that silica distribution, clay content and orientation play a first order role in mechanical anisotropy.
Rock sample brought to earth from the Apollo 12 lunar landing mission
NASA Technical Reports Server (NTRS)
1969-01-01
Close-up view of Apollo 12 sample 12,052 under observation in the Manned Spacecraft Center's Lunar Receiving Laboratory. This sample, collected during the second Apollo 12 extravehicular activity (EVA-2) of Astronauts Charles Conrad Jr., and Alan L. Bean, is a typical fine-grained crystalline rock with a concentration of holes on the left part of the exposed side. These holes are called vesicles and have been labeled as gas bubbles formed during the crystallization of the rock. Several glass-lined pits can be seen on the surface of the rock. An idea of the size of the rock can be gained by reference to the gauge on the bottom portion of the number meter.
Lichen-rock interaction in volcanic environments: evidences of soil-precursor formation
NASA Astrophysics Data System (ADS)
Vingiani, S.; Adamo, P.; Terribile, F.
2012-04-01
The weathering action of the lichens Lecidea fuscoatra (L.) Ach. and Stereocaulon vesuvianum Pers. on basaltic rock collected on the slopes of Mt. Etna (Sicily) at 1550 m a.s.l. has been studied using optical (OM) and electron (SEM) microscopy equipped with microanalytical device (EDS). Biological factors associated with lichen growth play a major role in the weathering of minerals on bare rocks and contribute to the preliminary phases of soil formation. The present work investigates the biogeophysical and biogeochemical weathering associated to the growth of epilithic lichens on lava flows from Mt. Etna (Sicily) and Mt. Vesuvius (Campania). The chosen lichen species were the crustose Lecidea fuscoatra (L.) Ach., the foliose Xanthoparmelia conspersa and the fructicose Stereocaulon vesuvianum Pers. An integrated approach based on the study of both disturbed and undisturbed samples of lichenized rock was applied in order to appreciate the complexity of the rock-lichen interface environment in terms of micromorphological, mineralogical and chemical properties. XRD and XRF analyses coupled to microscopical (OM), submicroscopical (SEM) and microanalitical (EDS) observations were the used techniques. In both study environments, the chemical, mineralogical and micromorphological properties of the uncoherent materials found at the lichen-rock interface suggest they consist of rock fragments eroded from the surroundings and accumulated in cavities and fissures of the rough lava flows. According to the thallus morphology, the lichens colonizing the lava preserve the interface materials from further aeolic and water erosion, provide these materials of organic matter and moisture, entrap allochtonous quartz and clay minerals. The calcium oxalate production by L. fuscoatra and X. conspersa, the Al enrichment around S. vesuvianum hyphae and the occurrence of Fe-oxide phases at the rock-lichen interface are evidences of lichens interaction with the underlying sediments. Indeed, according to the young age of the basaltic lava the recent lichen colonization results in a physical reorganization and chemical modification of the interface materials, which are not necessarily produced by the lichen action on the rock substrate. In volcanic environment, the ability of lichens to retain considerable amount of unconsolidated material, which becomes mixed with organic matter, produced by decomposition of the thallus, and trap atmospheric dust may contribute to the andosolization process. Accumulation of Al and Fe, found at the rock-lichen interface likely as organo-metal complexes, can be considered initial stage of Al and Fe active phases formation, distinguishing features of Andosols development. The simple chelating oxalic acid, produced by the lichens, may be involved in the formation of organo-metal complexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sano, Naoko, E-mail: naoko.sano@ncl.ac.uk; Barlow, Anders J.; Cumpson, Peter J.
The solar system contains large quantities of organic compounds that can form complex molecular structures. The processing of organic compounds by biological systems leads to molecules with distinctive structural characteristics; thus, the detection and characterization of organic materials could lead to a high degree of confidence in the existence of extra-terrestrial life. Given the nature of the surface of most planetary bodies in the solar system, evidence of life is more likely to be found in the subsurface where conditions are more hospitable. Basalt is a common rock throughout the solar system and the primary rock type on Mars andmore » Earth. Basalt is therefore a rock type that subsurface life might exploit and as such a suitable material for the study of methods required to detect and analyze organic material in rock. Telluric basalts from Earth represent an analog for extra-terrestrial rocks where the indigenous organic matter could be analyzed for molecular biosignatures. This study focuses on organic matter in the basalt with the use of surface analysis techniques utilizing Ar gas cluster ion beams (GCIB); time of flight secondary ion mass spectrometry (ToF-SIMS), and x-ray photoelectron spectroscopy (XPS), to characterize organic molecules. Tetramethylammonium hydroxide (TMAH) thermochemolysis was also used to support the data obtained using the surface analysis techniques. The authors demonstrate that organic molecules were found to be heterogeneously distributed within rock textures. A positive correlation was observed to exist between the presence of microtubule textures in the basalt and the organic compounds detected. From the results herein, the authors propose that ToF-SIMS with an Ar GCIB is effective at detecting organic materials in such geological samples, and ToF-SIMS combined with XPS and TMAH thermochemolysis may be a useful approach in the study of extra-terrestrial organic material and life.« less
Experimental Determination of the Fracture Toughness and Brittleness of the Mancos Shale, Utah.
NASA Astrophysics Data System (ADS)
Chandler, Mike; Meredith, Phil; Crawford, Brian
2013-04-01
The hydraulic fracturing of Gas-Shales has become a topic of interest since the US Shale Gas Revolution, and is increasingly being investigated across Europe. A significant issue during hydraulic fracturing is the risk of fractures propagating further than desired into aquifers or faults. This occured at Preese Hall, UK in April and May 2011 when hydraulic fractures propagated into an adjacent fault causing 2.3ML and 1.7ML earthquakes [1]. A rigorous understanding of how hydraulic fractures propagate under in-situ conditions is therefore important for treatment design, both to maximise gas accessed, and to minimise risks due to fracture overextension. Fractures will always propagate along the path of least resistance, but the direction and extent of this path is a complex relationship between the in-situ stress-field, the anisotropic mechanical properties of the rock, and the pore and fracturing pressures [2]. It is possible to estimate the anisotropic in-situ stress field using an isolated-section hydraulic fracture test, and the pore-pressure using well logs. However, the anisotropic mechanical properties of gas-shales remain poorly constrained, with a wide range of reported values. In particular, there is an extreme paucity of published data on the Fracture Toughness of soft sediments such as shales. Mode-I Fracture Toughness is a measure of a material's resistance to dynamic tensile fracture propagation. Defects such as pre-existing microcracks and pores in a material can induce high local stress concentrations, causing fracture propagation and material failure under substantially lower stress than its bulk strength. The mode-I stress intensity factor, KI, quantifies the concentration of stress at the crack tip. For linear elastic materials the Fracture Toughness is defined by the critical value of this stress intensity factor; KIc, beyond which rapid catastrophic crack growth occurs. However, rocks such as shales are relatively ductile and display significant non-linearity. This produces hysteresis during cyclic loading, allowing for the calculation of a brittleness coefficient using the residual displacement after successive loading cycles. This can then be used to define a brittleness corrected Fracture Toughness, KIcc. We report anisotropic KIcc values and a variety of supporting measurements made on the Mancos Shale in the three principle Mode-I crack orientations (Arrester, Divider and Short-Transverse) using a modified Short-Rod sample geometry. The Mancos is an Upper Cretaceous shale from western Colorado and eastern Utah with a relatively high siliclastic content for a gas target formation. The Short-Rod methodology involves the propagation of a crack through a triangular ligament in a chevron-notched cylindrical sample [3]. A very substantial anisotropy is observed in the loading curves and KIcc values for the three crack orientations, with the Divider orientation having KIcc values 25% higher than the other orientations. The measured brittleness for these Mancos shales is in the range 1.5-2.1; higher than for any other rocks we have found in the literature. This implies that the material is extremely non-linear. Increases in KIcc with increasing confining pressure are also investigated, as Shale Gas reservoirs occur at depths where confining pressure may be as high as 35MPa and temperature as high as 100oC. References [1] C.A. Green, P. Styles & B.J. Baptie, "Preese Hall Shale Gas Fracturing", Review & Recommendations for Induced Seismic Mitigation, 2012. [2] N.R. Warpinski & M.B. Smith, "Rock Mechanics and Fracture Geometry", Recent advances in Hydraulic Fracturing, SPE Monograms, Vol. 12, pp. 57-80, 1990. [3] F. Ouchterlony, "International Society for Rock Mechanics Commision on Testing Methods: Suggested Methods for Determining the Fracture Toughness of Rock", International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, Vol. 25, 1988.
Multispectral Imaging from Mars PATHFINDER
NASA Technical Reports Server (NTRS)
Ferrand, William H.; Bell, James F., III; Johnson, Jeffrey R.; Bishop, Janice L.; Morris, Richard V.
2007-01-01
The Imager for Mars Pathfinder (IMP) was a mast-mounted instrument on the Mars Pathfinder lander which landed on Mars Ares Vallis floodplain on July 4, 1997. During the 83 sols of Mars Pathfinders landed operations, the IMP collected over 16,600 images. Multispectral images were collected using twelve narrowband filters at wavelengths between 400 and 1000 nm in the visible and near infrared (VNIR) range. The IMP provided VNIR spectra of the materials surrounding the lander including rocks, bright soils, dark soils, and atmospheric observations. During the primary mission, only a single primary rock spectral class, Gray Rock, was recognized; since then, Black Rock, has been identified. The Black Rock spectra have a stronger absorption at longer wavelengths than do Gray Rock spectra. A number of coated rocks have also been described, the Red and Maroon Rock classes, and perhaps indurated soils in the form of the Pink Rock class. A number of different soil types were also recognized with the primary ones being Bright Red Drift, Dark Soil, Brown Soil, and Disturbed Soil. Examination of spectral parameter plots indicated two trends which were interpreted as representing alteration products formed in at least two different environmental epochs of the Ares Vallis area. Subsequent analysis of the data and comparison with terrestrial analogs have supported the interpretation that the rock coatings provide evidence of earlier martian environments. However, the presence of relatively uncoated examples of the Gray and Black rock classes indicate that relatively unweathered materials can persist on the martian surface.
Making "Rock Hounds" of "City Slickers."
ERIC Educational Resources Information Center
Fazio, Rosario P.; Nye, Osborne
1980-01-01
Described are ways in which urban "rocks" (building stones, curbstones, sidewalks, etc.) can be used as resources for earth science teachers. Discussed are such activities as: classifying buildings according to rock type and mineral composition, extrapolating geologic history by examining common building materials, economics of stone industry, and…
Petrographic and petrological study of lunar rock materials
NASA Technical Reports Server (NTRS)
Winzer, S. R.
1977-01-01
Impact melts and breccias from the Apollo 15 and 16 landing sites were examined optically and by electron microscope/microprobe. Major and trace element abundances were determined for selected samples. Apollo 16 breccias contained impact melts, metamorphic and primary igneous rocks. Metamorphic rocks may be the equivalents of the impact melts. Apollo 15 breccias studied were fragment-laden melts derived from gabbro and more basalt target rocks.
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site] Figure 1 (Click on image for larger view)
This image, acquired by the Mars Exploration Rover Spirit's panoramic camera on the 53rd martian day, or sol, of the rover's mission, struck science and engineering teams as not only scientifically interesting but remarkably beautiful. The large, shadowed rock in the foreground is nicknamed 'Sandia' for a mountain range in New Mexico. An imposing rock, 'Sandia' is about 33 centimeters high (1 foot) and about 1.7 meters (5.5 feet) long.Figure 1 above is a lightened version of the more artistic image above.The combination of the rover's high-resolution cameras with software tools used by scientists allows the minute details on martian targets to be visualized. When lightened, this image reveals much about the pictured rocks, which the science team believes are ejected material, or ejecta, from the nearby crater called 'Bonneville.' Scientists believe 'Sandia' is a basaltic rock that landed on its side after being ejected from the crater. The vertical lines on the side of the rock facing the camera are known by geologists as 'flow banding' and typically run horizontally, indicating that 'Sandia' is on its side. What look like small holes on the two visible sides of the rock are called vesicles; they were probably once gas bubbles within the lava.The lighting not only makes for an artistic image, it helps scientists get a virtual three-dimensional feel for target rocks. Observations taken at different times of day, as shadows move and surface texture details on target rocks are revealed, are entered into modeling software that turns a two-dimensional image into a three-dimensional research tool.Many smaller rocks can be seen in the background of the image. Some rocks are completely exposed, while others are only peeking out of the surface. Scientists believe that two processes might be at work here: accretion, which occurs when winds deposit material that slowly buries many of the rocks; and deflation, which occurs when surface material is removed by wind, exposing more and more of the rocks.Rock glaciers originating from mass movements: A new model based on field data
NASA Astrophysics Data System (ADS)
Reitner, J. M.; Gruber, A.
2009-04-01
The morphological and geological conditions for the formation of rock glaciers in Alpine environments seem to be clear according to our present knowledge (BARSCH, 1996; HAEBERLI et al. 2006). All known examples derive from porous more or less coarse grained sedimentary bodies, either from moraines or, in most cases, from talus fans. In the latter case the debris accumulation originates overwhelmingly from physical weathering, rock falls or rock avalanches in proximity to rockwalls. However, in the course of geological mapping in the crystalline areas of Eastern and Northern Tyrol (Schober Gruppe, Tuxer Alpen) we found an additional setting. Some relict rock glaciers occur directly at the bulging toe of bedrock slopes, which had been affected by deep-seated gravitational slope deformations (REITNER, 2003; GRUBER, 2005). Furthermore rock glaciers are also present in ridge-top depressions and similar graben-like features that originated from gravitational processes in jointed bedrock. In all these cases talus fans with debris accumulation are missing in the source area of those rock glaciers. According to our model the disintegration of jointed rocks by creeping mass movements resulted in an increased volume of joint space. This enabled the formation of interstitial ice under permafrost conditions. Increased ice saturation led to the reduction of the angle of internal friction and finally to the initial formation of a rock glacier. Abundant material was provided for the further movement and thus for formation of quite large rock glaciers due to the previous and maybe still ongoing slope deformation. Most rock glaciers of this type originated from mass movements of sagging -type (Sackung sensu ZISCHINSKY, 1966), which illustrates the continuous transition from gravitational to periglacial creep process in high Alpine areas. All studied examples are of Lateglacial age according to the altitude in correspondence to the known amount of permafrost depression compared to modern time. Thus, on the one hand such rock glaciers postdate the formation of the mass movements, which enable a chronological constraint of this phenomenon on the base of our knowledge of climate history. On the other hand, those examples with rock glaciers linked at various altitudes with mass movements also mirror former stepwise permafrost degradation, where rock glacier formation moved to higher altitudes. In this respect, and envisaging a rising permafrost boundary, rock glacier formation on slopes affected by mass movements should be anticipated for the future. References: BARSCH, D. (1996): Rockglaciers. - Springer Verlag, Berlin. GRUBER, A. (2005) Bericht 2004 über geologische Aufnahmen im Quartär der Nördlichen Tuxer Alpen auf Blatt 148 Brenner.- Jahrbuch der Geologischen Bundesanstalt, 145, 337-343, Wien. HAEBERLI, W. et al. (2006): Permafrost Creep and Rock Glacier Dynamics.- Permafrost and Periglac. Process., 17, 189-214 (2006), Wiley Interscience, New York REITNER, J. M. (2003a): Bericht 1998-99 über geologische Aufnahmen im Quartär und Kristallin auf Blatt 179 Lienz.- Jahrbuch der Geologischen Bundesanstalt., 143, 514-522, Wien. ZISCHINSKY, U. (1966): On the deformation of high slopes. Proc.-1st Int. Conf.Soc.Rock Mech. Lisbon, 179-185.
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site] Figure 1
This image shows the area inside 'Endurance Crater' that the Mars Exploration Rover Opportunity has been examining. The rover is investigating the distinct layers of rock that make up this region. Each layer is defined by subtle color and texture variations and represents a separate chapter in Mars' history. The deeper the layer, the further back in time the rocks were formed. Scientists are 'reading' this history book by systematically studying each layer with the rover's scientific instruments. So far, data from the rover indicate that the top layers are sulfate-rich, like the rocks observed in 'Eagle Crater.' This implies that water processes were involved in forming the materials that make up these rocks. In figure 1, the layer labeled 'A' in this picture contains broken-up rocks that most closely resemble those of 'Eagle Crater.' Layers 'B,C and D' appear less broken up and more finely laminated. Layer 'E,' on the other hand, looks more like 'A.' At present, the rover is examining layer 'D.' So far, data from the rover indicates that the first four layers consist of sulfate-rich, jarosite-containing rocks like those observed in Eagle Crater. This implies that water processes were involved in forming the materials that make up these rocks, though the materials themselves may have been laid down by wind. This image was taken by Opportunity's navigation camera on sol 134 (June 9, 2004).Variety and complexity in the mound of sedimentary rock in Gale Crater, Mars
NASA Astrophysics Data System (ADS)
Edgett, K. S.; Malin, M. C.
2011-12-01
NASA's Mars Science Laboratory rover, Curiosity, will be used to explore a portion of the lower stratigraphic record of the northwest side of a mound of layered rock ˜5 km thick in the 155 km-diameter Gale Crater. The rock materials are of a sedimentary origin, though the proportions of clastic sediment, tephra, and chemical precipitates are presently unknown. The mound is usually described as having lower and upper units separated by an erosional unconformity. However, some investigators recognize that it is considerably more complex. The stratigraphy displays vertical and lateral complexity; multiple erosional unconformities; filled, buried, interbedded, and exhumed or partly exhumed impact craters; evidence for deposition along the base of the mound followed by retreat of less-resistant rocks and abandonment of erosion-resistant materials shed from the mound; lithified sediments deposited at the mouths of streams that cut mound rock; inversion of intra-canyon stream channel sediment; and widening of canyons. On the northeast side of the mound there are landslide deposits, shed from the mound, that contain large blocks (10s to 100s of m) of layered rock in various orientations. The mound's highest feature does not exhibit layering and has been interpreted by some as being Gale's impact-generated central peak. However, its highest elevation exceeds that of most of the crater rim, an observation inconsistent with central peaks (where they occur at all) in martian craters of diameters similar to Gale. The layered materials that occur highest in the mound are also at elevations that exceed most of the crater rim; these exhibit repeated stratal packages that drape previously-eroded mound topography; they produce boulders as they erode, attesting to their lithified nature and requiring that a lithification process occurred in materials located ≥ 5 km above the deepest part of Gale. The lower mound strata, including the Curiosity field site, are diverse materials; they include strata of differing thickness, erosional expression, and tone. Resistant rocks form cliffs that shed boulders, less resistant rocks form shallow slopes. One relatively thin, dark unit, interpreted to be a marker bed that outcrops at various places across the lower mound (doi:10.1029/2009GL041870), is more resistant to erosion than sub- and superjacent beds and retains many small impact craters. Some of the lower mound rocks are cross-cut by channel or cavern fills; others are cut by reticulated patterns of filled cracks or ridges formed by inversion of these cracks. These reticulated features might be evidence of interaction between the lower mound rocks and groundwater; we anticipate the Curiosity team will find abundant evidence for dissolution and precipitation of minerals in these rock outcrops.
NASA Astrophysics Data System (ADS)
Saxena, Nishank; Hofmann, Ronny; Alpak, Faruk O.; Berg, Steffen; Dietderich, Jesse; Agarwal, Umang; Tandon, Kunj; Hunter, Sander; Freeman, Justin; Wilson, Ove Bjorn
2017-11-01
We generate a novel reference dataset to quantify the impact of numerical solvers, boundary conditions, and simulation platforms. We consider a variety of microstructures ranging from idealized pipes to digital rocks. Pore throats of the digital rocks considered are large enough to be well resolved with state-of-the-art micro-computerized tomography technology. Permeability is computed using multiple numerical engines, 12 in total, including, Lattice-Boltzmann, computational fluid dynamics, voxel based, fast semi-analytical, and known empirical models. Thus, we provide a measure of uncertainty associated with flow computations of digital media. Moreover, the reference and standards dataset generated is the first of its kind and can be used to test and improve new fluid flow algorithms. We find that there is an overall good agreement between solvers for idealized cross-section shape pipes. As expected, the disagreement increases with increase in complexity of the pore space. Numerical solutions for pipes with sinusoidal variation of cross section show larger variability compared to pipes of constant cross-section shapes. We notice relatively larger variability in computed permeability of digital rocks with coefficient of variation (of up to 25%) in computed values between various solvers. Still, these differences are small given other subsurface uncertainties. The observed differences between solvers can be attributed to several causes including, differences in boundary conditions, numerical convergence criteria, and parameterization of fundamental physics equations. Solvers that perform additional meshing of irregular pore shapes require an additional step in practical workflows which involves skill and can introduce further uncertainty. Computation times for digital rocks vary from minutes to several days depending on the algorithm and available computational resources. We find that more stringent convergence criteria can improve solver accuracy but at the expense of longer computation time.
NASA Astrophysics Data System (ADS)
Verma, Surendra P.; Rivera-Gómez, M. Abdelaly; Díaz-González, Lorena; Pandarinath, Kailasa; Amezcua-Valdez, Alejandra; Rosales-Rivera, Mauricio; Verma, Sanjeet K.; Quiroz-Ruiz, Alfredo; Armstrong-Altrin, John S.
2017-05-01
A new multidimensional scheme consistent with the International Union of Geological Sciences (IUGS) is proposed for the classification of igneous rocks in terms of four magma types: ultrabasic, basic, intermediate, and acid. Our procedure is based on an extensive database of major element composition of a total of 33,868 relatively fresh rock samples having a multinormal distribution (initial database with 37,215 samples). Multinormally distributed database in terms of log-ratios of samples was ascertained by a new computer program DOMuDaF, in which the discordancy test was applied at the 99.9% confidence level. Isometric log-ratio (ilr) transformation was used to provide overall percent correct classification of 88.7%, 75.8%, 88.0%, and 80.9% for ultrabasic, basic, intermediate, and acid rocks, respectively. Given the known mathematical and uncertainty propagation properties, this transformation could be adopted for routine applications. The incorrect classification was mainly for the "neighbour" magma types, e.g., basic for ultrabasic and vice versa. Some of these misclassifications do not have any effect on multidimensional tectonic discrimination. For an efficient application of this multidimensional scheme, a new computer program MagClaMSys_ilr (MagClaMSys-Magma Classification Major-element based System) was written, which is available for on-line processing on http://tlaloc.ier.unam.mx/index.html. This classification scheme was tested from newly compiled data for relatively fresh Neogene igneous rocks and was found to be consistent with the conventional IUGS procedure. The new scheme was successfully applied to inter-laboratory data for three geochemical reference materials (basalts JB-1 and JB-1a, and andesite JA-3) from Japan and showed that the inferred magma types are consistent with the rock name (basic for basalts JB-1 and JB-1a and intermediate for andesite JA-3). The scheme was also successfully applied to five case studies of older Archaean to Mesozoic igneous rocks. Similar or more reliable results were obtained from existing tectonomagmatic discrimination diagrams when used in conjunction with the new computer program as compared to the IUGS scheme. The application to three case studies of igneous provenance of sedimentary rocks was demonstrated as a novel approach. Finally, we show that the new scheme is more robust for post-emplacement compositional changes than the conventional IUGS procedure.
Failure Mechanisms of Brittle Rocks under Uniaxial Compression
NASA Astrophysics Data System (ADS)
Liu, Taoying; Cao, Ping
2017-09-01
The behaviour of a rock mass is determined not only by the properties of the rock matrix, but mostly by the presence and properties of discontinuities or fractures within the mass. The compression test on rock-like specimens with two prefabricated transfixion fissures, made by pulling out the embedded metal inserts in the pre-cured period was carried out on the servo control uniaxial loading tester. The influence of the geometry of pre-existing cracks on the cracking processes was analysed with reference to the experimental observation of crack initiation and propagation from pre-existing flaws. Based on the rock fracture mechanics and the stress-strain curves, the evolution failure mechanism of the fissure body was also analyzed on the basis of exploring the law of the compression-shear crack initiation, wing crack growth and rock bridge connection. Meanwhile, damage fracture mechanical models of a compression-shear rock mass are established when the rock bridge axial transfixion failure, tension-shear combined failure, or wing crack shear connection failure occurs on the specimen under axial compression. This research was of significance in studying the failure mechanism of fractured rock mass.
30 CFR 57.9310 - Chute hazards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Chute hazards. 57.9310 Section 57.9310 Mineral... the proper tools to free material. (c) When broken rock or material is dumped into an empty chute, the chute shall be equipped with a guard or all persons shall be isolated from the hazard of flying rock or...
30 CFR 57.9310 - Chute hazards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Chute hazards. 57.9310 Section 57.9310 Mineral... the proper tools to free material. (c) When broken rock or material is dumped into an empty chute, the chute shall be equipped with a guard or all persons shall be isolated from the hazard of flying rock or...
30 CFR 57.9310 - Chute hazards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Chute hazards. 57.9310 Section 57.9310 Mineral... the proper tools to free material. (c) When broken rock or material is dumped into an empty chute, the chute shall be equipped with a guard or all persons shall be isolated from the hazard of flying rock or...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., DEPARTMENT OF AGRICULTURE FEDERAL PLANT PEST REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY... composing part of the surface of the globe, in distinction from the firm rock, and including the soil and subsoil, as well as finely divided rock and other soil formation materials down to the rock layer. Garbage...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., DEPARTMENT OF AGRICULTURE FEDERAL PLANT PEST REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY... composing part of the surface of the globe, in distinction from the firm rock, and including the soil and subsoil, as well as finely divided rock and other soil formation materials down to the rock layer. Garbage...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., DEPARTMENT OF AGRICULTURE FEDERAL PLANT PEST REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY... composing part of the surface of the globe, in distinction from the firm rock, and including the soil and subsoil, as well as finely divided rock and other soil formation materials down to the rock layer. Garbage...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., DEPARTMENT OF AGRICULTURE FEDERAL PLANT PEST REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY... composing part of the surface of the globe, in distinction from the firm rock, and including the soil and subsoil, as well as finely divided rock and other soil formation materials down to the rock layer. Garbage...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., DEPARTMENT OF AGRICULTURE FEDERAL PLANT PEST REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY... composing part of the surface of the globe, in distinction from the firm rock, and including the soil and subsoil, as well as finely divided rock and other soil formation materials down to the rock layer. Garbage...
Unit: Rocks from Sediments, Inspection Set, First Trial Materials.
ERIC Educational Resources Information Center
Australian Science Education Project, Toorak, Victoria.
Four compulsory introductory activities involving learning to use a stream tray, observing the relationship between water speed and entraining, transporting and depositing sediments, studying the formation of sedimentary rocks, and examining several types of sedimentary rocks are completed by all students using the unit prepared for Australian…
ERIC Educational Resources Information Center
Schmidt, Stan M.; Palmer, Courtney
2000-01-01
Introduces an activity on the rock cycle. Sets 11 stages representing the transitions of an earth material in the rock cycle. Builds six-sided die for each station, and students move to the stations depending on the rolling side of the die. Evaluates students by discussing several questions in the classroom. Provides instructional information for…
TENORM: Fertilizer and Fertilizer Production Wastes
Phosphate rock is used in the production of phosphate fertilizers. Due to its chemical properties, phosphate rock may contain significant quantities of naturally occurring radioactive materials (NORM).
Mineralization of atmospheric CO2 via fluid reaction with mafic/ultramafic rocks
NASA Astrophysics Data System (ADS)
Westfield, I. T.; Kendall, T. A.; Ries, J. B.
2011-12-01
Atmospheric CO2 has increased nearly 50% since the Industrial Revolution, due primarily to increased fossil fuel combustion, cement production, and deforestation. Although subterranean reservoirs are presently considered the most viable sink for anthropogenically liberated CO2, concerns exist over the stability of these systems and their impacts on regional tectonics, aquifers, and subterranean microbial ecosystems. Direct mineralization of CO2 at the Earth's surface provides an alternative capable of generating useful carbon-negative mineral byproducts that may be used to supplement or replace conventional carbon-positive building materials, like cement. However, mineralization of anthropogenic CO2 requires large sources of alkalinity to convert CO2 to CO32-, and divalent cations (e.g., Mg2+, Ca2+, Fe2+, etc.) to bond with the aqueous CO32-. Ultramafic and mafic rocks, such as peridotites, serpentinites, and basalts, are globally abundant, naturally occurring sources of the divalent cations, and alkalinity required for CO2 mineralization. Here, we present the results of accelerated reactions between ultramafic/mafic rocks, water, and CO2/N2 gases, aimed at quantifying the carbonation potential of mafic/ultramafic rocks. Rock-fluid-gas batch reactions were carried out in vented 4 L borosilicate glass flasks filled with 3 L DI water and 200 g acetone-washed, 49-180μm-diameter grains of four ultramafic/mafic rock types: peridotite, dunite, websterite and basalt. Each of the four rock-water mixtures was reacted under pure CO2 and pure N2 and at 25 and 200 °C, for a total of 16 reactions. Mixtures were continuously heated and stirred for 14 days. Samples (330 mL) were obtained at 0, 1, 6, 24, 48, 96, 168, and 336 hrs and filtered at 0.4 μm. The pH of filtered samples was measured with a single-junction Ag/AgCl glass electrode, salinity was determined with a conductivity probe, total alkalinity (TA) was determined by closed-cell potentiometric Gran titration, and DIC was determined by coulometry (all calibrated with certified reference materials). [CO32-], [HCO3-], and [OH-] were calculated from TA and DIC. For all reactions, pH (range: 5.5 - 9.7), TA, DIC, [CO32-], and [HCO3-] increased dramatically within the first several hours of the experiment, and then either steadily increased, plateaued, or declined, in some cases increasing again after the decline. After the initial spike, DIC increased with time under 25 °C, but decreased under 200 °C. Salinity and [OH-] increased steadily throughout most reactions. Lack of correlation of abrupt, short-lived declines in pH, TA, DIC, [CO32-], and [HCO3-] with [OH-] between 24 and 48 hrs at 200 °C suggests sudden precipitation of carbonate minerals, rather than production of silicic acid. Temperature generally increased reaction rates to a greater extent under CO2 than under N2, and substantially more OH- ions were liberated from rocks at 200 °C than at 25 °C. Reaction kinetics will be further constrained from mineralogy, elemental composition, and carbonate content of reaction products, enabling more precise quantification of the carbonation potential of the ultramafic/mafic rock types.
Spirit View of 'Wishstone' (False Color)
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Figure 1 Scientists working with NASA's Mars Exploration Rover Spirit decided to examine this rock, dubbed 'Wishstone,' based on data from the miniature thermal emission spectrometer. That instrument's data indicated that the mineralogy of the rocks in this area is different from that of rocks encountered either on the plains of Gusev Crater or in bedrock outcrops examined so far in the 'Columbia Hills' inside the crater. Spirit used its rock abrasion tool first to scour a patch of the rock's surface with a wire brush, then to grind away the surface to reveal interior material. Placement of the rover's alpha particle X-ray spectrometer on the exposed circle of interior material revealed that the rock is rich in phosphorus. Spirit used its panoramic camera during the rover's 342nd martian day, or sol, (Dec. 18, 2004) to take the three individual images that were combined to produce this false-color view emphasizing the freshly ground dust around the hole cut by the rock abrasion tool. Unusually Rich in Phosophorus The graph in figure 1 compares the elemental makeup of a rock dubbed 'Wishstone' with the average composition of rocks that Spirit examined on the western spur of the 'Columbia Hills.' Wishstone lies farther into the hills than that spur. It is richer in phosphorus than any other Mars rock ever examined. Scientists plan to examine other rocks near Wishstone to help explain the significance of the high phosphorus concentration. The vertical scale is the ratio of the concentration of an element in the hills rocks to the concentration of the same element in a typical volcanic rock from the plains that Spirit crossed to reach the hills.Publications - RDF 2001-1 | Alaska Division of Geological & Geophysical
geochemical data from rocks collected in the Salcha River-Pogo area in 2000, Big Delta and northwestern Eagle more information. Quadrangle(s): Big Delta; Eagle Bibliographic Reference Werdon, M.B., Athey, J.E , and geochemical data from rocks collected in the Salcha River-Pogo area in 2000, Big Delta and
Publications - RDF 2003-2 | Alaska Division of Geological & Geophysical
geochemical data from rocks collected in the Big Delta Quadrangle, Alaska in 2002 Authors: Werdon, M.B . Quadrangle(s): Big Delta Bibliographic Reference Werdon, M.B., Newberry, R.J., Athey, J.E., Szumigala, D.J -element, and geochemical data from rocks collected in the Big Delta Quadrangle, Alaska in 2002: Alaska
ERIC Educational Resources Information Center
Jordan, Cathie
1995-01-01
Discusses the collaborative efforts of the Hawaiian Kamehameha Early Education Program (KEEP) and the Navajo Rough Rock Community School in Arizona to develop educational practices and strategies that would help minority-language children succeed in school. Examines the modification of KEEP strategies for use with Navajo children. (16 references)…
Plant growth in amended molybdenum mine waste rock.
Burney, Owen T; Redente, Edward F; Lambert, Charles E
2017-04-01
This greenhouse study examined the use of organic and inorganic soil amendments in waste rock material from the former Questa Molybdenum Mine in northern New Mexico to promote beneficial soil properties. Waste rock material was amended with 11 soil amendment treatments that included municipal composted biosolids, Biosol®, inorganic fertilizer, and two controls (pure waste rock and sand). Elymus trachycaulus and Robinia neomexicana growth performance and plant chemistry were assessed across all treatments over a period of 99 and 141 days, respectively. Even though waste rock material had more than 200 times the molybdenum concentration of native soils, adverse effects were not observed for either species. The two main limiting factors in this study were soil nutritional status and soil water retention. The biosolid amendment was found to provide the greatest buffer against these limiting factors due to significant increases in both nutrition and soil water retention. As a result, both species responded with the highest levels of biomass production and the least amount of required water demands. Use of organic amendments such as biosolids, even though short lived in the soil, may provide plants the necessary growth stimulus to become more resilient to the harsh conditions found on many mine reclamation sites.
Impact of ductility on hydraulic fracturing in shales
NASA Astrophysics Data System (ADS)
Auton, Lucy; MacMinn, Chris
2015-11-01
Hydraulic fracturing is a method for extracting natural gas and oil from low-permeability rocks such as shale via the injection of fluid at high pressure. This creates fractures in the rock, providing hydraulic access deeper into the reservoir and enabling gas to be collected from a larger region of the rock. Fracture is the tensile failure of a brittle material upon reaching a threshold tensile stress, but some shales have a high clay content and may yield plastically before fracturing. Plastic deformation is the shear failure of a ductile material, during which stress relaxes through irreversible rearrangements of the particles of the material. Here, we investigate the impact of the ductility of shales on hydraulic fracturing. We consider a simple, axisymmetric model for radially outward fluid injection from a wellbore into a ductile porous rock. We solve the model semi-analytically at steady state, and numerically in general. We find that plastic deformation greatly reduces the maximum tensile stress, and that this maximum stress does not always occur at the wellbore. These results imply that hydraulic fracturing may fail in ductile rocks, or that the required injection rate for fracking may be much larger than the rate predicted from purely elastic models.
NASA Astrophysics Data System (ADS)
Lollino, Piernicola; Andriani, Gioacchino Francesco
2017-07-01
The strength decay that occurs in the post-peak stage, under low confinement stress, represents a key factor of the stress-strain behaviour of rocks. However, for soft rocks this issue is generally underestimated or even neglected in the solution of boundary value problems, as for example those concerning the stability of underground cavities or rocky cliffs. In these cases, the constitutive models frequently used in limit equilibrium analyses or more sophisticated numerical calculations are, respectively, rigid-plastic or elastic-perfectly plastic. In particular, most of commercial continuum-based numerical codes propose a variety of constitutive models, including elasticity, elasto-plasticity, strain-softening and elasto-viscoplasticity, which are not exhaustive in simulating the progressive failure mechanisms affecting brittle rock materials, these being characterized by material detachment and crack opening and propagation. As a consequence, a numerical coupling with mechanical joint propagation is needed to cope with fracture mechanics. Therefore, continuum-based applications that treat the simulation of the failure processes of intact rock masses at low stress levels may need the adoption of numerical techniques capable of implementing fracture mechanics and rock brittleness concepts, as it is shown in this paper. This work is aimed at highlighting, for some applications of rock mechanics, the essential role of post-peak brittleness of soft rocks by means of the application of a hybrid finite-discrete element method. This method allows for a proper simulation of the brittle rock behaviour and the related mechanism of fracture propagation. In particular, the paper presents two ideal problems, represented by a shallow underground cave and a vertical cliff, for which the evolution of the stability conditions is investigated by comparing the solutions obtained implementing different brittle material responses with those resulting from the assumption of perfectly plastic behaviour. To this purpose, a series of petrophysical and mechanical tests were conducted on samples of soft calcarenite belonging to the Calcarenite di Gravina Fm. (Apulia, Southern Italy), focusing specific attention on the post-peak behaviour of the material under three types of loading (compression, indirect tension and shear). Typical geometrical features representative of real rock engineering problems observed in Southern Italy were assumed in the problems examined. The numerical results indicate the impact of soft rock brittleness in the assessment of stability and highlight the need for the adoption of innovative numerical techniques to analyse these types of problems properly.
ERIC Educational Resources Information Center
Birdd, Donald L.
1990-01-01
Described are five activities using crayons to demonstrate the rock cycle including weathering, erosion and sedimentation, and sedimentary, metamorphic, and igneous rock formation. Discussed are materials, procedures, and probable results. (CW)
Crock, J.G.; Severson, R.C.
1980-01-01
Attaining acceptable precision in extractable element determinations is more difficult than in total element determinations. In total element determinations, dissolution of the sample is qualitatively checked by the clarity of the solution and the absence of residues. These criteria cannot be used for extracts. Possibilities for error are introduced in virtually every step in soil extractions. Therefore, the use of reference materials whose homogeneity and element content are reasonably well known is essential for determination of extractable elements. In this report, estimates of homogeneity and element content are presented for four reference samples. Bulk samples of about 100 kilograms of each sample were ground to pass an 80-mesh sieve. The samples were homogenized and split using a Jones-type splitter. Fourteen splits of each reference sample were analyzed for total content of Ca, Co, Cu, Fe, K, Mg, Mn, Na, and Zn; DTPA-extractable Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn; exchangeable Ca, Mg, K, and Na; cation exchange capacity water-saturation-extractable Ca, Mg, K, Na, C1, and SO4; soil pH; and hot-water-extractable boron. Error measured between splits was small, indicating that the samples were homogenized adequately and that the laboratory procedure provided reproducible results.
Compositions of Bedrock Containing Craters on Mars as Viewed by TES, THEMIS, and CRISM
NASA Astrophysics Data System (ADS)
Edwards, C. S.; Rogers, D.; Bandfield, J. L.; Christensen, P. R.
2009-12-01
An investigation of Martian high thermal inertia crater surfaces has been made using derived THEMIS thermal inertia data. High thermal inertia surfaces or interpreted bedrock are defined as any pixel in a THEMIS image with a thermal inertia over 1200 J K-1m-2s-1/2 and may refer to in situ rock exposures or rock-dominated surfaces. While three different surface morphologies (valley and crater walls, crater floors, and plains surface) were originally identified [Edwards et al., in press], the focus of this study is to better characterize the compositional, thermophysical, and geological characteristics of the crater floors surface. These surfaces may be related to impact-associated volcanism that often occurs in conjunction with large energetic impacts. These craters are commonly modified, lack a central peak, have shallow sloped walls, and little to no visible ejecta, indicating the relatively old ages of these impacts. They are generally large, ranging in size from 18.5 to 179km in diameter, with an average of ~52km [Edwards et al., in press]. Boulders are also observed in high-resolution imagery (e.g. HiRISE) along with fine scale randomly oriented cracks and fractures. TES spectra for ~60 of the 92 originally identified sites have been examined in detail and can be broken down into two distinctive spectral groups, olivine bearing (~80%, with >10% olivine and often >20%) and non-olivine bearing craters (~20%, with <10% olivine). Additionally, the use of THEMIS and CRISM data provide context and additional compositional information for these exposures. While these locations often occur in low albedo regions on Mars, a clear global spatial correlation between the olivine and non-olivine bearing craters is not observed. The compositional data presented here further support inflationary volcanism associated with large, energetic impacts as the geologic process that formed high thermal inertia crater floors. In this case, magma is likely derived from decompression melting of the mantle due to the removal of overlying material. This magma reaches the surface through fractures and cracks in the basement rock likely caused by the impact event. This is consistent with the observed compositions, as material derived directly from the Martian mantle is expected to be significantly more mafic than the surrounding country rock. These sites are likely locations where the some of the most primitive material on Mars is observed and can be used to illustrate an interesting aspect of alteration processes on the surface. Two possibilities for the observed distributions and compositions are proposed: 1) the types of events where mantle materials erupt onto the surface are rare and occur infrequently, likely early in Mars history; or 2) these surfaces are common but not preserved. They may be the primary source material for the Martian regolith, where olivine-rich materials are readily weathered and altered to other olivine-poor materials commonly observed on Mars. Edwards, C. S., J. L. Bandfield, P. R. Christensen, R. L. Fergason (in press), Journal of Geophys. Res.
NASA Astrophysics Data System (ADS)
Zhan, Weiwei; Fan, Xuanmei; Huang, Runqiu; Pei, Xiangjun; Xu, Qiang; Li, Weile
2017-06-01
Rock avalanches are extremely rapid, massive flow-like movements of fragmented rock. The travel path of the rock avalanches may be confined by channels in some cases, which are referred to as channelized rock avalanches. Channelized rock avalanches are potentially dangerous due to their difficult-to-predict travel distance. In this study, we constructed a dataset with detailed characteristic parameters of 38 channelized rock avalanches triggered by the 2008 Wenchuan earthquake using the visual interpretation of remote sensing imagery, field investigation and literature review. Based on this dataset, we assessed the influence of different factors on the runout distance and developed prediction models of the channelized rock avalanches using the multivariate regression method. The results suggested that the movement of channelized rock avalanche was dominated by the landslide volume, total relief and channel gradient. The performance of both models was then tested with an independent validation dataset of eight rock avalanches that were induced by the 2008 Wenchuan earthquake, the Ms 7.0 Lushan earthquake and heavy rainfall in 2013, showing acceptable good prediction results. Therefore, the travel-distance prediction models for channelized rock avalanches constructed in this study are applicable and reliable for predicting the runout of similar rock avalanches in other regions.
Mooney, David M.; Holmquist-Johnson, Christopher L.; Broderick, Susan
2007-01-01
Rock ramps or roughened channels consist of steep reaches stabilized by large immobile material (riprap). Primary objectives for rock ramps include: Create adequate head for diversionMaintain fish passage during low-flow conditionsMaintain hydraulic conveyance during high-flow conditionsSecondary objectives for rock ramp design include:Emulate natural systemsMinimize costsThe rock ramp consists of a low-flow channel designed to maintain biologically adequate depth and velocity conditions during periods of small discharges. The remainder of the ramp is designed to withstand and pass large flows with minimal structural damage. The following chapters outline a process for designing rock ramps.
Qualitative evaluation of rock weir field performance and failure mechanisms
Mooney, David M.; Holmquist-Johnson, Christopher L.; Holburn, Elaina
2007-01-01
River spanning loose-rock structures provide sufficient head for irrigation diversion, permit fish passage over barriers, protect banks, stabilize degrading channels, activate side channels, reconnect floodplains, and create in-channel habitat. These structures are called by a variety of names including rock weirs, alphabet (U-, A-, V-, W-) weirs, Jhooks, and rock ramps. These structures share the common characteristics of:Loose rock construction materials (individually placed or dumped rocks with little or no concrete);Extents spanning the width of the river channel; andAn abrupt change in the water surface elevation at low flows.
NASA Astrophysics Data System (ADS)
Asrat, Asfawossen; Ayallew, Yodit
2011-01-01
Lalibela is a medieval settlement in Northern Ethiopia famous for its 11 beautifully carved rock hewn churches, registered as World Heritage Site in 1978. The rock hewn churches are grouped into three based on their proximity: the Bete Medhane Alem (Church of the Holy Saviour), Bete Gabriel-Rufael (Church of St. Gabriel-Rafael) and Bete Giorgis (Church of St. George) groups. The churches are carved out of a single, massive scoriaceous basalt hill which was deposited along an East-West extending palaeovalley in the Oligo-Miocene Trap basalt of the northwestern Ethiopian plateau. The Rock Mass Rating (RMR) classification scheme was used to classify the rock mass (assuming each church as a separate rock mass) based on their uniaxial compressive strength and the spacing and conditions of discontinuities. Though most of the churches are hewn from medium to high strength rock mass, discontinuities make them vulnerable to other deteriorating agents mainly weathering, and water infiltration. Most of the rock hewn churches are affected by pre-carving cooling joints and bedding plane discontinuities, and by mostly but not necessarily post-carving tectonic and seismic induced cracks and fractures. Material loss due to deep weathering triggered by rain water infiltration and uncontrolled groundwater seepage affects most of the churches, particularly the Bete Merqorios (Church of St. Mark) and Bete Aba Libanos (Church of Father Libanos) churches. The scoriaceous basalt which is porous and permeable allows easy passage of water while the underlying basalt is impermeable, increasing the residence time of water in the porous material, causing deep weathering and subsequent loss of material in some of the churches and adjoining courtyards.
The apollo 16 lunar samples: petrographic and chemical description.
1973-01-05
The preliminary characterization of the rocks and soils returned from the Apollo 16 site has substantiated the inference that the lunar terra are commonly underlain by plagioclase-rich or anorthositic rocks. No evidence has been found for volcanic rocks underlying the regolith in the Apollo 16 region. In their place, we have found anorthositic rocks that are thoroughly modified by crushing and partial melting. The textural and chemical variations in these rocks provide some evidence for the existence of anorthositic complexes that have differentiated on a scale of tens to hundreds of meters. The occurrence of deep-seated or plutonic rocks in place of volcanic or pyroclastic materials at this site suggests that the inference from physiographic evidence that the latter materials are widespread in terra regions may be incorrect. Several additional, more specific conclusions derived from this preliminary examination are: 1) The combination of data from the Descartes region with data from the orbital x-ray fluorescence experiment indicates that some backside, highland regions are underlain by materials that consist of more than 80 percent plagioclase. 2) The soil or upper regolith between North Ray and South Ray has not been completely homogenized since the time of formation of these craters. 3) The chemistry of the soil indicates that rocks rich in potassium, uranium, and thorium, similar to those that prevail at the Fra Mauro site, are relatively abundant (10 to 20 percent) in the Descartes region. 4) The K/U ratio of the lunar crust is similar to that of the KREEP basalts. 5) The carbon content of the premare lunar crust is even lower than that of the mare volcanic rocks.
The composition of the Martian dark regions: Observations and analysis. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Singer, R. B.
1980-01-01
Near infrared telescopic spectrophotometry for dark regions is present and interpreted using laboratory studies of iron bearing mineral mixtures and terrestrial oxidized and unoxidized basalts. Upon closer inspection (by spacecraft) the telescopic dark regions were found to consist of large scale intermixtures of bright soil (aeolian dust) and dark materials. The dark materials themselves consist of an intimate physical association of very fine grained ferric oxide bearing material with relatively high near infrared reflectance and darker, relatively unoxidized rocks or rock fragments. While these two components could exist finely intermixed in a soil, a number of lines of evidence indicate that the usual occurrence is probably a thin coating of physically bound oxidized material. The coated rocks are dark and generally clinopyroxene bearing. The shallow band depths and low overall reflectances indicate that opaque minerals such as magnetite are probably abundant.
Surface-material maps of Viking landing sites on Mars
NASA Technical Reports Server (NTRS)
Moore, H. J.; Keller, J. M.
1991-01-01
Researchers mapped the surface materials at the Viking landing sites on Mars to gain a better understanding of the materials and rock populations at the sites and to provide information for future exploration. The maps extent to about 9 m in front of each lander and are about 15 m wide - an area comparable to the area of a pixel in high resolution Viking Orbiter images. The maps are divided into the near and far fields. Data for the near fields are from 1/10 scale maps, umpublished maps, and lander images. Data for the far fields are from 1/20 scale contour maps, contoured lander camera mosaics, and lander images. Rocks are located on these maps using stereometric measurements and the contour maps. Frequency size distribution of rocks and the responses of soil-like materials to erosion by engine exhausts during landings are discussed.
Apollo 17 materials viewed from 2 to 4 mm soil particles: Pre-serenitatis highlands components
NASA Technical Reports Server (NTRS)
Jolliff, Bradley L.; Bishop, Kaylynn M.
1993-01-01
Among the highland lithologies of 2-4 mm rock fragments in North Massif soil 76503, we have found a compositional group, low in incompatible element concentrations, that we interpret as representing the pre-Serenitatis surface. A component of these materials is an igneous-textured lithology that we believe formed in large impact melts. These are compositionally similar to, and possibly precursors of, many of the granulitic breccias that appear to be mixtures of ferroan and magnesian-suite rocks. The polymict, or old, upper-crustal breccias, along with granulitic breccias and the endogenous igneous lithologies found particularly at the North Massif stations, constitute the poorly consolidated portions of North Massif. Highland samples from the South Massif, on the other hand, are enriched in materials of the competent, impact-melt breccias formed by the Serenitatis impact. The competent melt-breccias contain clasts of most of the pre-existing surface materials, but they also contain components not found in the rocks of the poorly consolidated massif materials.
Improved Genome Assembly and Annotation for the Rock Pigeon (Columba livia)
Holt, Carson; Campbell, Michael; Keays, David A.; Edelman, Nathaniel; Kapusta, Aurélie; Maclary, Emily; T. Domyan, Eric; Suh, Alexander; Warren, Wesley C.; Yandell, Mark; Gilbert, M. Thomas P.; Shapiro, Michael D.
2018-01-01
The domestic rock pigeon (Columba livia) is among the most widely distributed and phenotypically diverse avian species. C. livia is broadly studied in ecology, genetics, physiology, behavior, and evolutionary biology, and has recently emerged as a model for understanding the molecular basis of anatomical diversity, the magnetic sense, and other key aspects of avian biology. Here we report an update to the C. livia genome reference assembly and gene annotation dataset. Greatly increased scaffold lengths in the updated reference assembly, along with an updated annotation set, provide improved tools for evolutionary and functional genetic studies of the pigeon, and for comparative avian genomics in general. PMID:29519939
In Situ Observation of Hard Surrounding Rock Displacement at 2400-m-Deep Tunnels
NASA Astrophysics Data System (ADS)
Feng, Xia-Ting; Yao, Zhi-Bin; Li, Shao-Jun; Wu, Shi-Yong; Yang, Cheng-Xiang; Guo, Hao-Sen; Zhong, Shan
2018-03-01
This paper presents the results of in situ investigation of the internal displacement of hard surrounding rock masses within deep tunnels at China's Jinping Underground Laboratory Phase II. The displacement evolution of the surrounding rock during the entire excavation processes was monitored continuously using pre-installed continuous-recording multi-point extensometers. The evolution of excavation-damaged zones and fractures in rock masses were also observed using acoustic velocity testing and digital borehole cameras, respectively. The results show four kinds of displacement behaviours of the hard surrounding rock masses during the excavation process. The displacement in the inner region of the surrounding rock was found to be greater than that of the rock masses near the tunnel's side walls in some excavation stages. This leads to a multi-modal distribution characteristic of internal displacement for hard surrounding rock masses within deep tunnels. A further analysis of the evolution information on the damages and fractures inside the surrounding rock masses reveals the effects of excavation disturbances and local geological conditions. This recognition can be used as the reference for excavation and supporting design and stability evaluations of hard-rock tunnels under high-stress conditions.
NASA Technical Reports Server (NTRS)
Beauchamp, R. H.; Williford, J. F.; Gafford, E. L.
1972-01-01
Development of improved procedures is reported for three classes of lunar materials: dense rocks, breccias, and particulates. High quality ultrathin sections of these materials are obtained. Lists of equipment and supplies, procedures, photomicrographic documentation, and training are provided. Advantages of ultrathin polished sections for conventional and unconventional optical microscopy methods are described. Recommendations are provided for use of ultrathin sections in lunar rock studies, for further refinement of ultrathinning procedures, and for additional training efforts to establish a capability at the Manned Space Center. For Part 2, See N72-50754.
Deep Boreholes Seals Subjected to High P,T conditions - Proposed Experimental Studies
NASA Astrophysics Data System (ADS)
Caporuscio, F.
2015-12-01
Deep borehole experimental work will constrain the P,T conditions which "seal" material will experience in deep borehole crystalline rock repositories. The rocks of interest to this study include mafic (amphibolites) and silicic (granitic gneiss) end members. The experiments will systematically add components to capture discrete changes in both water and EBS component chemistries. Experiments in the system wall rock-clay-concrete-groundwater will evaluate interactions among components, including: mineral phase stability, metal corrosion rates and thermal limits. Based on engineered barrier studies, experimental investigations will move forward with three focusses. First, evaluation of interaction between "seal" materials and repository wall rock (crystalline) under fluid-saturated conditions over long-term (i.e., six-month) experiments; which reproduces the thermal pulse event of a repository. Second, perform experiments to determine the stability of zeolite minerals (analcime-wairakitess) under repository conditions. Both sets of experiments are critically important for understanding mineral paragenesis (zeolites and/or clay transformations) associated with "seals" in contact with wall rock at elevated temperatures. Third, mineral growth at the metal interface is a principal control on the survivability (i.e. corrosion) of waste canisters in a repository. The objective of this planned experimental work is to evaluate physio-chemical processes for 'seal' components and materials relevant to deep borehole disposal. These evaluations will encompass multi-laboratory efforts for the development of seals concepts and application of Thermal-Mechanical-Chemical (TMC) modeling work to assess barrier material interactions with subsurface fluids and other barrier materials, their stability at high temperatures, and the implications of these processes to the evaluation of thermal limits.
Smith, Kathleen S.; Hageman, Philip L.; Briggs, Paul H.; Sutley, Stephen J.; McCleskey, R. Blaine; Livo, K. Eric; Verplanck, Philip L.; Adams, Monique G.; Gemery-Hill, Pamela A.
2007-01-01
The goal of this study is to compare and contrast the leachability of metals and the acidity from individual mine waste-rock piles and natural erosional scars in the study area near Questa, New Mexico. Surficial multi-increment (composite) samples less than 2 millimeters in diameter from five waste-rock piles, nine erosional-scar areas, a less-altered site, and a tailings slurry-pipe sample were analyzed for bulk chemistry and mineralogy and subjected to two back-to-back leaching procedures. The first leaching procedure, the U.S. Geological Survey Field Leach Test (FLT), is a short-duration leach (5-minute shaking and 10-minute settling) and is intended to leach readily soluble materials. The FLT was immediately followed by an 18-hour, end-over-end rotation leaching procedure. Comparison of results from the back-to-back leaching procedures can provide information about reactions that may take place upon migration of leachates through changing geochemical conditions (for example, pH changes), both within the waste-rock and scar materials and away from the source materials. For the scar leachates, the concentrations of leachable metals varied substantially between the scar areas sampled. The scar leachates have low pH (pH 3.2-4.1). Under these low-pH conditions, cationic metals are solubilized and mobile, but anionic species, such as molybdenum, are less soluble and less mobile. Generally, metal concentrations in the waste-rock leachates did not exceed the upper range of those metal concentrations in the erosional-scar leachates. One exception is molybdenum, which is notably higher in the waste-rock leachates compared with the scar leachates. Most of the waste-rock leachates were at least mildly acidic (pH 3.0-6.2). The pH values in the waste-rock leachates span a large pH range that includes some pH-dependent solubility and metal-attenuation reactions. An increase in pH with leaching time and agitation indicates that there is pH-buffering capacity in some of the waste-rock piles. As pH increased in the waste-pile leachates, concentrations of several metals decreased with increasing time and agitation. Similar pH-dependent reactions may take place upon migration of the leachates in the waste-rock piles. Bulk chemistry, mineralogy, and leachate sulfur-isotope data indicate that the Capulin and Sugar Shack West waste-rock piles are compositionally different from the younger Sugar Shack South, Sugar Shack Middle, and Old Sulphur Gulch piles. The Capulin and Sugar Shack West piles have the lowest-pH leachates (pH 3.0-4.1) of the waste-pile samples, and the source material for the Capulin and Sugar Shack West piles appears to be similar to the source material for the erosional-scar areas. Calcite dissolution, in addition to gypsum dissolution, appears to produce the calcium and sulfate concentrations in leachates from the Sugar Shack South, Sugar Shack Middle, and Old Sulphur Gulch piles.
Comparison of Crack Initiation, Propagation and Coalescence Behavior of Concrete and Rock Materials
NASA Astrophysics Data System (ADS)
Zengin, Enes; Abiddin Erguler, Zeynal
2017-04-01
There are many previously studies carried out to identify crack initiation, propagation and coalescence behavior of different type of rocks. Most of these studies aimed to understand and predict the probable instabilities on different engineering structures such as mining galleries or tunnels. For this purpose, in these studies relatively smaller natural rock and synthetic rock-like models were prepared and then the required laboratory tests were performed to obtain their strength parameters. By using results provided from these models, researchers predicted the rock mass behavior under different conditions. However, in the most of these studies, rock materials and models were considered as contains none or very few discontinuities and structural flaws. It is well known that rock masses naturally are extremely complex with respect to their discontinuities conditions and thus it is sometimes very difficult to understand and model their physical and mechanical behavior. In addition, some vuggy rock materials such as basalts and limestones also contain voids and gaps having various geometric properties. Providing that the failure behavior of these type of rocks controlled by the crack initiation, propagation and coalescence formed from their natural voids and gaps, the effect of these voids and gaps over failure behavior of rocks should be investigated. Intact rocks are generally preferred due to relatively easy side of their homogeneous characteristics in numerical modelling phases. However, it is very hard to extract intact samples from vuggy rocks because of their complex pore sizes and distributions. In this study, the feasibility of concrete samples to model and mimic the failure behavior vuggy rocks was investigated. For this purpose, concrete samples were prepared at a mixture of %65 cement dust and %35 water and their physical and mechanical properties were determined by laboratory experiments. The obtained physical and mechanical properties were used to constitute numerical models, and then uniaxial compressive strength (UCS) tests were performed on these models by using a commercial software called as Particle Flow Code (PFC2D). When the crack behavior of concrete samples obtained from both laboratory tests and numerical models are compared with the results of previous studies, a significant similarity was found. As a result, due to the observed similarity crack behavior between concretes and rocks, it can be concluded that intact concrete samples can be used for modelling purposes to understand the effect of voids and gaps on failure characteristics of vuggy rocks.
The Rock Climbing Teaching Guide.
ERIC Educational Resources Information Center
Kudlas, John
The product of 10 years of rock climbing instruction, this guide provides material from which an instructor can teach basic climbing concepts and safety skills as well as conduct a safe, enjoyable rock climbing class in a high school setting. It is designed for an instructor with limited experience in climbing; however, the need for teacher…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-04
... and Licensing Board; AREVA Enrichment Services, LLC (Eagle Rock Enrichment Facility) December 17, 2010... construction and operation of a gas centrifuge uranium enrichment facility--denoted as the Eagle Rock... site at http://www.nrc.gov/materials/fuel-cycle-fac/arevanc.html . These and other documents relating...
Mass balance of a highly active rock glacier during the period 1954 and 2016
NASA Astrophysics Data System (ADS)
Kellerer-Pirklbauer, Andreas; Kaufmann, Viktor; Rieckh, Matthias
2017-04-01
Active rock glaciers are creep phenomena of permafrost in high-relief terrain moving slowly downwards and are often characterised by distinct flow structures with ridges and furrows. Active rock glaciers consist of ice and rock material. The ice component might be either congelation (refreezing of liquid water) or sedimentary ('glacier') ice whereas the rock material might be either of periglacial or glacial origin. The formation period of rock glaciers lasts for centuries to millennia as judged from relative or absolute dating approaches. The input of ice and debris onto the rock glacier mass transport system over such long periods might change substantially over time. Long-term monitoring of mass transport, mass changes and nourishment processes of rock glaciers are rare. In this study we analysed on a decadal-scale mass transport (based on photogrammetric and geodetic data; series 1969-2016), mass changes (geodetically-based mass balance quantification; series 1954-2012), and mass input (based on optical data from an automatic digital camera; series 2006-2016) onto the Hinteres Langtal Rock Glacier. This rock glacier is 900 m long, up to 300 m wide, covers an area of 0.17 km2 and is one of the most active ones in the Eastern European Alps. Mass transport rates at the surface indicate relatively low mean annual surface velocities until the beginning of this millennium. A first peak in the horizontal surface velocity was reached in 2003/04 followed by a period of deceleration until 2007/08. Afterwards the rates increased again substantially from year to year with maximum values in 2014/15 (exceeding 6 m/a). This increase in surface velocities during the last decades was accompanied by crevasse formation and landslide activities at its front. Mass changes show for all six analysed periods between 1954 and 2012 a clear negative surface elevation change with mean annual values ranging from -0.016 to -0.058 m/a. This implies a total volume decrease of -435,895 m3 (averaging to -7515 m3/a) over the 58-year period at the rock glacier system. The only area of substantial surface elevation gain was during all periods the rock glacier front indicating a rock glacier advance. Mass input onto the rock glacier transport system was assessed analysing 2044 terrestrial images taken automatically between September 2006 and August 2016 from the main rooting zone of the rock glacier. Results indicate that neither snow and ice nor rock material have been transported in large quantities to the rock glacier system during the 10 year monitoring period. Notable mass movement events have been detected only six times. Perennial snow patches in the rooting zone of the rock glacier only survived on average every second summer. We conclude that the rates of rock glacier mass transport and volumetric losses of the rock glacier are far higher than debris and ice input. This rock glacier is clearly in a state of detachment from its nourishment area and prone to starvation which will eventually lead to rock glacier inactivation. This is a feasible fate for many currently active rock glaciers in the European Alps.
Thermal-infrared spectral observations of geologic materials in emission
NASA Technical Reports Server (NTRS)
Christensen, Philip R.; Luth, Sharon J.
1987-01-01
The thermal-infrared spectra of geologic materials in emission were studied using the prototype Thermal Emission Spectrometer (TES). A variety of of processes and surface modifications that may influence or alter the spectra of primary rock materials were studied. It was confirmed that thermal emission spectra contain the same absorption features as those observed in transmission and reflection spectra. It was confirmed that the TES instrument can be used to obtain relevant spectra for analysis of rock and mineral composition.
Long distance transport of eclogite and blueschist during early Pacific Ocean subduction rollback
NASA Astrophysics Data System (ADS)
Tamblyn, Renee; Hand, Martin; Kelsey, David; Phillips, Glen; Anczkiewicz, Robert
2017-04-01
The Tasmanides in eastern Australia represent a period of continental crustal growth on the western margin of the Pacific Ocean associated with slab rollback from the Cambrian until the Triassic. During rollback numerical models predict that subduction products can become trapped in the forearc (Geyra et al., 2002), and can migrate with the trench as it retreats. In a long-lived subduction controlled regime such as the Tasmanides, this should result in an accumulation of subduction products with protracted geochronological and metamorphic histories. U-Pb, Lu-Hf, Sm-Nd and Ar-Ar geochronology and phase equilibria modelling of lawsonite-eclogite and garnet blueschist in the Southern New England Fold Belt in Australia demonstrate that high-P low-T rocks remained within a subduction setting for c. 40 Ma, from c. 500 to 460 Ma. High-P metamorphic rocks initially formed close to the Australian cratonic margin during the late Cambrian, and were subsequently transported over 1500 Ma oceanward, during which time subducted material continued to accumulate, resulting in the development of complex mélange which records eclogite and blueschist metamorphism and partial exhumation over 40 Ma. The duration of refrigerated metamorphism approximates the extensional evolution of the upper plate which culminated in the development of the Lachlan Fold Belt. The protracted record of eclogite and blueschist metamorphism indicates that rapid exhumation is not necessarily required for preservation of high-pressure metamorphic rocks from subduction systems. Reference: Gerya, T. V., Stockhert, B., & Perchuk, A. L. (2002). Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics, 21(6), 6-1-6-19. doi:10.1029/2002tc001406
Twin Dimples Intrigue Scientists
NASA Technical Reports Server (NTRS)
2004-01-01
This image from the Mars Exploration Rover Opportunity is part of the first set of pictures that was returned to Earth after the rover exited 'Eagle Crater.' Scientists are busy analyzing Opportunity's new view of the plains of Meridiani Planum. The plentiful ripples are a clear indication that wind is the primary geologic process currently in effect on the plains. On the left of the image are two depressions--each about a meter (about 3.3 feet) across--that feature bright spots in their centers. One possibility is that the bright material is similar in composition to the rocks in Eagle Crater's outcrop and the surrounding darker material is what's referred to as 'lag deposit,' or erosional remnants that are much harder and more difficult to wear away. These twin dimples might be revealing pieces of a larger outcrop that lies beneath. The depression closest to Opportunity is whimsically referred to as 'Homeplate' and the one behind it as 'First Base.' The rover's panoramic camera is set to take detailed images of the depressions today, on Opportunity's 58th sol. The backshell and parachute that helped protect the rover and deliver it safely to the surface of Mars are also visible near the horizon, in the center of the image. This image was taken by the rover's navigation camera.
Preliminary results on photometric properties of materials at the Sagan Memorial Station, Mars
Johnson, J. R.; Kirk, R.; Soderblom, L.A.; Gaddis, L.; Reid, R.J.; Britt, D.T.; Smith, P.; Lemmon, M.; Thomas, N.; Bell, J.F.; Bridges, N.T.; Anderson, R.; Herkenhoff, K. E.; Maki, J.; Murchie, S.; Dummel, A.; Jaumann, R.; Trauthan, F.; Arnold, G.
1999-01-01
Reflectance measurements of selected rocks and soils over a wide range of illumination geometries obtained by the Imager for Mars Pathfinder (IMP) camera provide constraints on interpretations of the physical and mineralogical nature of geologic materials at the landing site. The data sets consist of (1) three small "photometric spot" subframed scenes, covering phase angles from 20?? to 150??; (2) two image strips composed of three subframed images each, located along the antisunrise and antisunset lines (photometric equator), covering phase angles from ???0?? to 155??; and (3) full-image scenes of the rock "Yogi," covering phase angles from 48?? to 100??. Phase functions extracted from calibrated data exhibit a dominantly backscattering photometric function, consistent with the results from the Viking lander cameras. However, forward scattering behavior does appear at phase angles >140??, particularly for the darker gray rock surfaces. Preliminary efforts using a Hapke scattering model are useful in comparing surface properties of different rock and soil types but are not well constrained, possibly due to the incomplete phase angle availability, uncertainties related to the photometric function of the calibration targets, and/or the competing effects of diffuse and direct lighting. Preliminary interpretations of the derived Hapke parameters suggest that (1) red rocks can be modeled as a mixture of gray rocks with a coating of bright and dark soil or dust, and (2) gray rocks have macroscopically smoother surfaces composed of microscopically homogeneous, clear materials with little internal scattering, which may imply a glass-like or varnished surface. Copyright 1999 by the American Geophysical Union.
Elastic and viscoelastic model of the stress history of sedimentary rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warpinski, N.R.
A model has been developed to calculate the elastic and viscoelastic stresses which develop in rocks at depth due to burial, uplift and diagenesis. This model includes the effect of the overburden load, tectonic or geometric strains, thermal strains, varying material properties, pore pressure variations, and viscoeleastic relaxation. Calculations for some simple examples are given to show the contributions of the individual stress components due to gravity, tectonics, thermal effects and pore pressure. A complete stress history for Mesaverde rocks in the Piceance basin is calculated based on available burial history, thermal history and expected pore pressure, material property andmore » tectonic strain variations through time. These calculations show the importance of including material property changes and viscoelastic effects. 15 refs., 48 figs.« less
2014-08-01
northern Minnesota, Wisconsin, and Michigan. This region is dominated by igneous and metamorphic rock , with some sedimentary units and a generally...faulted igneous and metamorphic rocks and folded sediments in the Appalachians and flat-lying sedimentary rocks in the Plateau and Catskills. Streams...mixture of igneous, metamorphic , and sedimentary rocks . High relief and coarse materials are typical. Riffle and pool development is largely
Processes and controls in swelling anhydritic clay rocks
NASA Astrophysics Data System (ADS)
Mutschler, Thomas; Blum, Philipp; Butscher, Christoph
2015-04-01
Referring to the swelling of anhydritic clay rocks in tunneling, Leopold Müller-Salzburg noted in the third volume on tunneling of his fundamental text book on rock engineering that "a truly coherent explanation of these phenomena is still owing" (Müller-Salzburg 1978, p. 306). This valuation is still true after more than three decades of research in the field of swelling anhydritic clay rocks. One of the reasons is our limited knowledge of the processes involved in the swelling of such rocks, and of the geological, mineralogical, hydraulic, chemical and mechanical controls of the swelling. In this contribution, a review of processes in swelling anhydritic clay rocks and of associated controls is presented. Also numerical models that aim at simulating the swelling processes and controls are included in this review, and some of the remaining open questions are pointed out. By focusing on process-oriented work in this review, the presentation intends to stimulate further research across disciplines in the field of swelling anhydritic clay rocks to finally get a step further in managing the swelling problem in geotechnical engineering projects. Keywords: swelling; anhydritic clay rocks; review
Don't Throw the Rocks!: Cultivating Care with a Pedagogy Called Rocks-in-the-Basket
ERIC Educational Resources Information Center
Rabin, Colette
2014-01-01
Due to the current focus on individual achievement in education, relational ethical stances, such as care ethics, are particularly important. To be prepared to teach care ethics, teachers need exposure to pedagogies that cultivate students' capacity to care. "Care" refers to the capacity to become aware of and attend to others'…
Rock Failure Analysis Based on a Coupled Elastoplastic-Logarithmic Damage Model
NASA Astrophysics Data System (ADS)
Abdia, M.; Molladavoodi, H.; Salarirad, H.
2017-12-01
The rock materials surrounding the underground excavations typically demonstrate nonlinear mechanical response and irreversible behavior in particular under high in-situ stress states. The dominant causes of irreversible behavior are plastic flow and damage process. The plastic flow is controlled by the presence of local shear stresses which cause the frictional sliding. During this process, the net number of bonds remains unchanged practically. The overall macroscopic consequence of plastic flow is that the elastic properties (e.g. the stiffness of the material) are insensitive to this type of irreversible change. The main cause of irreversible changes in quasi-brittle materials such as rock is the damage process occurring within the material. From a microscopic viewpoint, damage initiates with the nucleation and growth of microcracks. When the microcracks length reaches a critical value, the coalescence of them occurs and finally, the localized meso-cracks appear. The macroscopic and phenomenological consequence of damage process is stiffness degradation, dilatation and softening response. In this paper, a coupled elastoplastic-logarithmic damage model was used to simulate the irreversible deformations and stiffness degradation of rock materials under loading. In this model, damage evolution & plastic flow rules were formulated in the framework of irreversible thermodynamics principles. To take into account the stiffness degradation and softening on post-peak region, logarithmic damage variable was implemented. Also, a plastic model with Drucker-Prager yield function was used to model plastic strains. Then, an algorithm was proposed to calculate the numerical steps based on the proposed coupled plastic and damage constitutive model. The developed model has been programmed in VC++ environment. Then, it was used as a separate and new constitutive model in DEM code (UDEC). Finally, the experimental Oolitic limestone rock behavior was simulated based on the developed model. The irreversible strains, softening and stiffness degradation were reproduced in the numerical results. Furthermore, the confinement pressure dependency of rock behavior was simulated in according to experimental observations.
NASA Astrophysics Data System (ADS)
Kleinbrod, Ulrike; Burjánek, Jan; Hugentobler, Marc; Amann, Florian; Fäh, Donat
2017-12-01
In this study, the seismic response of two slope instabilities is investigated with seismic ambient vibration analysis. Two similar sites have been chosen: an active deep-seated slope instability at Cuolm da Vi and the geologically, structurally and morphologically similar, but presently not moving Alp Caschlè slope. Both slopes are located at the upper Vorderrheintal (Canton Graubünden, Switzerland). Ambient vibrations were recorded on both slopes and processed by time-frequency polarization and site-to-reference spectral ratio analysis. The data interpretation shows correlations between degree of disintegration of the rock mass and amplification. However, the ambient vibration analysis conducted, does not allow retrieving a resonance frequency that can be related to the total depth of the instability of Cuolm da Vi. Even though seismic waves can be hardly traced in rock instabilities containing open fractures, it was possible to retrieve a dispersion curve and a velocity profile from the array measurement at Cuolm da Vi due to the high level of disintegration of the rock material down to a depth of about 100 m. From the similar amplification pattern at the two sites, we expect a similar structure, indicating that also the slope at Alp Caschlè was active in the past in a similar manner as Cuolm da Vi. However, a smoother increase of amplification with frequency is observed at Alp Caschlè, which might indicate less disintegration of the rock mass in a particular depth range at this site, when comparing to Cuolm da Vi where a high level of disintegration is observed, resulting from the high activity at the slope. From the frequency-dependent amplification, we can distinguish between two parts within both instabilities, one part showing decreasing disintegration of the rock mass with increasing depth, for the other parts less-fractured blocks are observed. Since the block structures are found in the lower part of the instabilities, they might contribute to the stability of the slopes. Using the velocity profiles, it was possible to estimate the depth of the two largest open fractures (i.e. tension cracks) at Cuolm da Vi.
NASA Astrophysics Data System (ADS)
Kløve Keiding, Jakob; Erichsen, Eyolf; Heldal, Tom; Aslaksen Aasly, Kari
2017-04-01
Good access to construction materials is crucial for future infrastructure development and continued economic growth. In Norway >80 % of construction materials come from crushed aggregates and represent an growing share of the consumption. Although recycling to some extend can cover the need for construction materials, economic growth, increasing population and urbanization necessitates exploitation of new rock resources in Norway as well as many other parts of the world. Aggregates must fulfill a number of technical requirements to ensure high quality and long life expectancy of new roads, buildings and structures. Aggregates also have to be extracted near the consumer market. Particularly for road construction strict criteria are in place for wearing course for roads with high traffic density. Thus knowledge of mechanical rock quality is paramount for both exploitation as well as future resource and land-use planning but is often not assessed or mapped beyond the quarry scale. The Geological survey of Norway runs a database with information about crushed aggregate deposits from >1500 Norwegian quarries and sample sites. Here we use mechanical test analyses from the database to assess the aggregate quality in the Nordland county, Norway. Maps have been produced linking bed rock geology with rock quality parameters. The survey documents that the county is challenged in meeting the requirements for roads with high traffic density and especially in the middle parts of the county many samples have weak mechanical properties. This to some degree reflect that weak Cambro-Silurian rocks like phyllite, schist, carbonate and greenstone are abundant in Nordland. Typically mechanically stronger rock types such as gabbro, monzonite and granite are also exposed in large parts of the county, but are also characterized by relative poor or very variable mechanical test quality. Preliminary results indicate that many intrinsic parameters influence the mechanical rock strength, but variable degrees of deformation in the different tectonostratigraphic units exposed in Nordland affects the rock mechanical properties and is a prominent feature of our mapping. Unsurprisingly rock type, mineralogy, grain size and rock texture are all important factors that have a major control on the mechanical behaviour of the rocks. However, this assessment shows that there is an intricate interaction between these parameters and the resulting mechanical properties at present making it difficult to assess mechanical quality accurately only based on petrographic examination.
NASA Astrophysics Data System (ADS)
Wang, Xiao; Wen, Zhijie; Jiang, Yujing; Huang, Hao
2018-03-01
The mechanical and acoustic emission characteristics of rock-like materials under non-uniform loads were investigated by means of a self-developed mining-induced stress testing system and acoustic emission monitoring system. In the experiments, the specimens were divided into three regions and different initial vertical stresses and stress loading rates were used to simulate different mining conditions. The mechanical and acoustic emission characteristics between regions were compared, and the effects of different initial vertical stresses and different stress loading rates were analysed. The results showed that the mechanical properties and acoustic emission characteristics of rock-like materials can be notably localized. When the initial vertical stress and stress loading rate are fixed, the peak strength of region B is approximately two times that of region A, and the maximum acoustic emission hit value of region A is approximately 1-2 times that of region B. The effects of the initial vertical stress and stress loading rate on the peck strain, maximum hit value, and occurrence time of the maximum hit are similar in that when either of the former increase, the latter all decrease. However, peck strength will increase with the increase in loading rate and decrease with the increase in initial vertical stress. The acoustic emission hits can be used to analyse the damage in rock material, but the number of acoustic emission hits cannot be used alone to determine the degree of rock damage directly.
Retention capacity of bio-films formed on the surface of nuclear and basaltic glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crovisier, Jean Louis
2007-07-01
Available in abstract form only. Full text of publication follows: The role of the bacteria in the various compartments of a repository site was still not extensively studied. It is likely that most known bacteria cannot develop on the surface of radioactive materials but one must consider that 10% only of the bacteria species are known. As an example, a research group has recently discovered an isolated community of bacteria nearly two miles underground that derives all of its energy from the decay of radioactive rocks (LIN et al., 2006). It is generally accepted that alterations of rocks and anthropogenicmore » products are not exclusively driven by the interaction with water or mineral aqueous solutions. Organic compounds as well as microorganisms are important in mineral degradation processes, and secondary mineralization. However, the exact role of bio-films in these processes remains unclear. The study of (AOUAD, 2006) will be presented as an example. Two materials were tested: the reference French nuclear glass SON68 17 LIDC2A2Z1 and a tholeiitic basaltic glass (natural analogue). Experiments were carried out for 19 weeks at 25 deg. C. A specific growth medium were developed which allows both the growth of Pseudomonas bacterium and a precise measurement, using ICP-MS, of trace elements solubilized from both glasses (AOUAD et al., 2005) The thickness of bio-films, analyzed by confocal laser microscopy was 40 {mu}m for both materials. These bio-films are able to efficiently trap most of the glass constituents. They also form a protective barrier at the solid/solution interface. (authors)« less
Solar wind radiation damage effects in lunar material
NASA Technical Reports Server (NTRS)
Hapke, B.; Cohen, A. J.; Cassidy, W. A.
1971-01-01
The research on solar wind radiation damage and other effects in lunar samples which was conducted to understand the optical properties of lunar materials is reported. Papers presented include: solar radiation effects in lunar samples, albedo of the moon, radiation effects in lunar crystalline rocks, valence states of 3rd transition elements in Apollo 11 and 12 rocks, and trace ferric iron in lunar and meteoritic titanaugites.
NASA Astrophysics Data System (ADS)
Ferdousi, A.
2017-06-01
The present study set out to investigate the nonlinear seismic response of the dam-reservoir-rock foundation system, taking into consideration the effects of change in the material properties of discontinuous foundation. To this end, it is important to provide the proper modeling of truncated boundary conditions at the far-end of rock foundation and reservoir fluid domain and to correctly apply the in situ stresses for rock foundation. The nonlinear seismic response of an arch dam mainly depends on the opening and sliding of the dam body's contraction joints and foundation discontinuities, failure of the jointed rock and concrete materials, etc. In this paper, a time domain dynamic analysis of the 3D dam-reservoir-foundation interaction problem was performed by developing a nonlinear Finite Element program. The results of the analysis of Karun-4 Dam revealed the essential role of modeling discontinuities and boundary conditions of rock foundation under seismic excitation.
NASA Astrophysics Data System (ADS)
Ayzenshtadt, A. M.; Frolova, M. A.; Makhova, T. A.; Danilov, V. E.; Gupta, Piyush K.; Verma, Rama S.
2018-01-01
Minerals samples of mixed-genesis rocks in a finely dispersed state were obtained and studied, namely sand deposit (Kholmogory district) and basalt (Myandukha deposit, Plesetsk district) in Arkhangelsk region. The paper provides the chemical composition data used to calculate the specific mass atomization energy of rocks. The energy parameters of the micro and nano systems of the rock samples - free surface energy and surface activity - were calculated. For toxicological evaluation of the materials obtained, next-generation sequencing (NGS) was used to perform metagenomic analysis which allowed determining the species diversity of microorganisms in the samples under study. It was shown that the sequencing method and metagenomic analysis are applicable and provide good reproducibility for the analysis of the toxicological properties of selected rock samples. The correlation of the surface activity of finely dispersed rock systems and the species diversity of cultivated microorganisms on the raw material was observed.
NASA Technical Reports Server (NTRS)
Merril, R. B.
1977-01-01
Solar system processes are considered along with the origin and evolution of the moon, planetary geophysics, lunar basins and crustal layering, lunar magnetism, the lunar surface as a planetary probe, remote observations of lunar and planetary surfaces, earth-based measurements, integrated studies, physical properties of lunar materials, and asteroids, meteorites, and the early solar system. Attention is also given to studies of mare basalts, the kinetics of basalt crystallization, topical studies of mare basalts, highland rocks, experimental studies of highland rocks, geochemical studies of highland rocks, studies of materials of KREEP composition, a consortium study of lunar breccia 73215, topical studies on highland rocks, Venus, and regional studies of the moon. Studies of surface processes, are reported, taking into account cratering mechanics and fresh crater morphology, crater statistics and surface dating, effects of exposure and gardening, and the chemistry of surfaces.
Spirit Examines Light-Toned 'Halley' (False Color)
NASA Technical Reports Server (NTRS)
2006-01-01
Stretching along 'Low Ridge' in front of the winter haven for NASA's Mars Exploration Rover Spirit are several continuous rock layers that make up the ridge. Some of these layers form fins that stick out from the other rocks in a way that suggests that they are resistant to erosion. Spirit is currently straddling one of these fin-like layers and can reach a small bit of light-toned material that might be a broken bit of it. Informally named 'Halley,' this rock was broken by Spirit's wheels when the rover drove over it. The first analyses of Halley showed it to be unusual in composition, containing a lot of the minor element zinc relative to the soil around it and having much of its iron tied up in the mineral hematite. When scientists again placed the scientific instruments on Spirit's robotic arm on a particularly bright-looking part of Halley, they found that the chemical composition of the bright spots was suggestive of a calcium sulfate mineral. Bright soils that Spirit has examined earlier in the mission contain iron sulfate. This discovery raises new questions for the science team: Why is the sulfate mineralogy here different? Did Halley and the fin material form by water percolating through the layered rocks of Low Ridge? When did the chemical alteration of this rock occur? Spirit will continue to work on Halley and other light-toned materials along Low Ridge in the coming months to try to answer these questions. Spirit took this red-green-blue composite image with the panoramic camera on the rover's 820th sol, or Martian day, of exploring Mars (April 24, 2006). The image is presented in false color to emphasize differences among materials in the rocks and soil. It combines frames taken through the camera's 750-nanometer, 530-nanometer, and 430-nanometer filters. The middle of the imaged area has dark basaltic sand. Spirit's wheel track is at the left edge of the frame. Just to the right of the wheel track in the lower left are two types of brighter material examined by Spirit at the Halley target. The bluer material yielded the evidence for a calcium sulfate mineral.El-Naggar, Hesham M
2010-01-01
The main activity in Siwa Oasis society is the agriculture, it depends on the groundwater. The agricultural drainage water and the unused saline water of naturally flowing springs are poured into four main salty lakes. This leads to an increase in the surface area of the saltwater lakes, marshes and rise in water table levels. to investigate some environmental engineering interventions to control the expansion of saltwater surface area in Siwa Oasis. Field visits, observation sheets and questionnaire survey with farmers were carried out to find out the main environmental problems in the Oasis. Environmental survey was carried out to collect different rocks and stones samples as natural construction materials from the desert that surrounds Siwa Oasis. Physical analyses, chemical composition and principal mechanical parameters were conducted on the collected samples. After the analysis, the safa rocks were the best natural construction materials in the Siwa Oasis. So, it could be used to build a construction wall around the salty lakes and marshes. Walls could convert the lakes into basins. The water will be evaporated at high rate during summer season by solar energy. After evaporation, the remaining salty rock named "karshef" can be easily collected from the lakes to be used as a low cost construction material for traditional building houses in Siwa Oasis. Therefore, the water level of lakes will be reduced to dryness and land could be reused as agricultural land. Among different rocks, safa rocks proved to be the best natural construction materials to construct a defense wall around the lakes and marshes. They will save about 80% of the concrete cost. The formed karshef rocks from the lakes will be used in the construction of the traditional building houses which will save about 90% of the concrete buildings. This intervention will save energy as it exchanges fuel consuming man-made material such as cement with naturally made material. This can reduce the green house gases generated from the cement industry. Economical feasibility study should be carried out to estimate the capital cost for the retaining wall.
A generalized garnet-forming reaction for metaigneous rocks in the Adirondacks
McLelland, J.M.; Whitney, P.R.
1980-01-01
A generalized reaction is presented to account for garnet formation in a variety of Adirondack metaigneous rocks. This reaction, which is the sum of five partial reactions written in aluminum-fixed frames of reference, is given by: 4(y+1+w)Anorthite+4 k(y+1+2 w)Olivine +4(1-k)(y+1+2 w)Fe-oxide+(8(y+1) -4 k(y+1+2 w))Orthopyroxene = 2(y+1)Garnet +2(y+1+2 w)Clinopyroxene+4 wSpinel where y is a function of plagioclase composition, k refers to the relative amounts of olivine and Fe-oxide participating in the reaction, and w is a measure of silicon mobility. When mass balanced for Mg and Fe, this reaction is found to be consistent with analyzed mineral compositions in a wide range of Adirondack metaigneous rocks. The reaction applies equally well whether the garnets were formed directly from the rectants given above or went through an intermadiate stage involving the formation of spinel, orthopyroxene, and clinopyroxene. The actual reactions which have produced garnet in both undersaturated and quartz-bearing rocks are special cases of the above general reaction. The most important special cases appear to be those in which the reactants include either olivine alone (k=1) or Fe-oxide alone (k=0). Silicon is relatively immobile (w =2) in olivine bearing, magnesium-rich rocks (k???1), and this correlates with the increased intensity in spinel clouding of plagioclase in these rocks. Silicon mobility apparently increases in the more iron-rich rocks, which also tend to contain clear or lightly clouded plagioclase. In all the rocks studied the most common composition of metamorphic plagioclase is close to An33 (i.e., y=1). Plagioclase of lower anorthite content may be too sodic to participate in garnet formation at the P-T conditions involved. ?? 1980 Springer-Verlag.
Prediction and control of slender-wing rock
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Salman, Ahmed A.
1992-01-01
The unsteady Euler equations and the Euler equations of rigid-body dynamics, both written in the moving frame of reference, are sequentially solved to simulate the limit-cycle rock motion of slender delta wings. The governing equations of the fluid flow and the dynamics of the present multidisciplinary problem are solved using an implicit, approximately-factored, central-difference-like, finite-volume scheme and a four-stage Runge-Kutta scheme, respectively. For the control of wing-rock motion, leading-edge flaps are forced to oscillate anti-symmetrically at prescribed frequency and amplitude, which are tuned in order to suppress the rock motion. Since the computational grid deforms due to the leading-edge flaps motion, the grid is dynamically deformed using the Navier-displacement equations. Computational applications cover locally-conical and three-dimensional solutions for the wing-rock simulation and its control.
Rock fragment distributions and regolith evolution in the Ouachita Mountains, Arkansas, USA
Jonathan D. Phillips; Ken Luckow; Daniel A. Marion; Kristin R. Adams
2005-01-01
Rock fragments in the regolith are a persistent property that reflects the combined influences of geologic controls, erosion, deposition, bioturbation, and weathering. The distribution of rock fragments in regoliths of the Ouachita Mountains, Arkansas, shows that sandstone fragments are common in all layers, even if sandstone is absent in parent material. Shale and...
ERIC Educational Resources Information Center
Frack, Susan; Blanchard, Scott Alan
2005-01-01
In this activity students will simulate how sedimentary rocks can be changed into metamorphic rocks by intense pressure. The materials needed are two small pieces of white bread, one piece of wheat bread, and one piece of a dark bread (such as pumpernickel or dark rye) per student, two pieces of waxed paper, scissors, a ruler, and heavy books.…
NASA Astrophysics Data System (ADS)
Qi, Yue; Gou, Guo-Ning; Wang, Qiang; Wyman, Derek A.; Jiang, Zi-Qi; Li, Qiu-Li; Zhang, Le
2018-03-01
The question of whether continental subduction processes in collisional orogenic belts can trigger wide-spread mantle metesomatism and crustal material recycling remains unresolved. Miocene (25-8 Ma) ultrapotassic rocks in southern Tibet are the only mantle-derived magmatic rocks emplaced after the collision between India and Asia and they have been linked to the onset of east-west extensional stresses as the surface uplift of the Tibetan Plateau reached near-maximum elevation. However, their petrogenesis remains highly controversial, particularly the issue of whether their extremely enriched Sr-Nd isotopic characteristics were related to metasomatism derived from subducted Indian continental materials during the Cenozoic. Here we report on a Paleocene silicate-unsaturated, pseudoleucite phonolitic dike, in the Rongniduo area of central Lhasa terrane. In-situ SIMS (secondary ion mass spectrometry) apatite U-Pb age indicates the dike was generated at 64.1 ± 4.2 Ma, which slightly predates the age of initial India and Asia collision (about 55-50 Ma). This is the oldest age yet reported for ultrapotassic rocks in southern Tibet. Samples from this dike have distinctly more depleted Sr-Nd (whole rock: (87Sr/86Sr)i = 0.7064 to 0.7062, εNd(t) = - 1.5 to 0.4; in situ apitite: (87Sr/86Sr)i = 0.7059 to 0.7060, εNd(t) = - 2.0 to 0.4) isotopic compositions, than those of Miocene (25-8 Ma) ultrapotassic rocks in the central Lhasa terrane ((87Sr/86Sr)i = 0.7106 to 0.7399, εNd(t) = - 10.6 to - 18.5). Our new data provides important constraints on pre-collisional mantle characteristics beneath the Lhasa terrane. We suggest that these 64 Ma pseudoleucite phonolitic rocks were derived from the enriched lithospheric mantle metasomatized by subducted Tethyan oceanic materials in response to Neo-Tethyan slab roll-back. As a consequence, the younger Miocene ultrapotassic rocks, which display different geochemical compositions from the pre-collisional ultrapotassic rocks, were most probably derived from a mantle source metasomatized by subducted Indian continental materials after 64 Ma. Our results indicate that the addition of subducted continental components plays an important role in changing mantle constituents beneath collisional orogenic belts.
NASA Astrophysics Data System (ADS)
Pearson, David M.; MacLeod, Douglas R.; Ducea, Mihai N.; Gehrels, George E.; Jonathan Patchett, P.
2017-10-01
Though continental magmatic arcs are factories for new continental crust, a significant proportion of continental arc magmas are recycled from supracrustal material. To evaluate the relative contributions of retroarc underthrusting and trench side partial sediment subduction for introducing supracrustal rocks to the middle and lower crust of continental magmatic arcs, we present results from the deeply exposed country rocks of the Coast Mountains batholith of western British Columbia. Prior work demonstrates that these rocks underwent widespread partial melting that contributed to the Coast Mountains batholith. We utilize U-Pb zircon geochronology, Sm-Nd thermochronology, and field-based studies to document the protoliths and early burial history of amphibolite and granulite-facies metasedimentary rocks in the Central Gneiss Complex. U-Pb detrital zircon data from the structurally highest sample localities yielded 190 Ma unimodal age peaks and suggest that retroarc rocks of the Stikine terrane constitute a substantial portion of the Central Gneiss Complex. These supracrustal rocks underwent thrust-related burial and metamorphism at >25 km depths prior to 80 Ma. These rocks may also be underlain at the deepest exposed structural levels by Upper Cretaceous metasedimentary rocks, which may have been emplaced as a result of trench side underplating or intraarc burial. These results further our understanding of the mechanisms of material transport within the continental lithosphere along Cordilleran subduction margins.
Martian aeolian features and deposits - Comparisons with general circulation model results
NASA Astrophysics Data System (ADS)
Greeley, R.; Skypeck, A.; Pollack, J. B.
1993-02-01
The relationships between near-surface winds and the distribution of wind-related features are investigated by means of a general circulation model of Mars' atmosphere. Predictions of wind surface stress as a function of season and dust optical depth are used to investigate the distribution and orientation of wind streaks, yardangs, and rock abundance on the surface. The global distribution of rocks on the surface correlates well with predicted wind stress, particularly during the dust storm season. The rocky areas are sites of strong winds, suggesting that fine material is swept away by the wind, leaving rocks and coarser material behind.
Rippability Assessment of Weathered Sedimentary Rock Mass using Seismic Refraction Methods
NASA Astrophysics Data System (ADS)
Ismail, M. A. M.; Kumar, N. S.; Abidin, M. H. Z.; Madun, A.
2018-04-01
Rippability or ease of excavation in sedimentary rocks is a significant aspect of the preliminary work of any civil engineering project. Rippability assessment was performed in this study to select an available ripping machine to rip off earth materials using the seismic velocity chart provided by Caterpillar. The research area is located at the proposed construction site for the development of a water reservoir and related infrastructure in Kampus Pauh Putra, Universiti Malaysia Perlis. The research was aimed at obtaining seismic velocity, P-wave (Vp) using a seismic refraction method to produce a 2D tomography model. A 2D seismic model was used to delineate the layers into the velocity profile. The conventional geotechnical method of using a borehole was integrated with the seismic velocity method to provide appropriate correlation. The correlated data can be used to categorize machineries for excavation activities based on the available systematic analysis procedure to predict rock rippability. The seismic velocity profile obtained was used to interpret rock layers within the ranges labelled as rippable, marginal, and non-rippable. Based on the seismic velocity method the site can be classified into loose sand stone to moderately weathered rock. Laboratory test results shows that the site’s rock material falls between low strength and high strength. Results suggest that Caterpillar’s smallest ripper, namely, D8R, can successfully excavate materials based on the test results integration from seismic velocity method and laboratory test.
NASA Astrophysics Data System (ADS)
Jeong, Sueng-Won; Lee, Choonoh; Cho, Yong-Chan; Wu, Ying-Hsin
2015-04-01
In Korea, approximately 5,000 metal mines are spread, but 50% of them are still abandoned without any proper remediation and cleanup. Summer heavy rainfall can result in the physicochemical modification of waste rock materials in the mountainous. From the geotechnical monitoring and field investigation, there are visible traces of mass movements every year. Soil erosion is one of severe phenomena in the study area. In particular, study area is located in the upper part of the Busan Metropolitan City and near the city's water supply. With respect to the supply of drinking water and maintenance of ecological balance, proper disposal of waste rock materials is required. For this reason, we examine the rheological properties of waste rock materials as a function of solid content using a ball- and vane-penetrated rheometer. In the flow curves, which are the relationship between the shear stress and shear rate of waste rock materials, we found that the soil samples exhibited a shear thinning beahivor regardless of solid content. The Bingham, Herschel-Bulkley, Power-law, and Papanastasiou models are used to determine the rheological properties. Assuming that the soil samples behaved as the viscoplastic behavior, the yield stress and viscosity are determined for different water contents. As a result, there are clear relationships between the solid content and rheological values (i.e., Bingham yield stress and plastic viscosity). From these relationships, the maximum and minimum of Bingham yield stresses are ranged from 100 to 2000 Pa. The debris flow mobilization is analysed using a 1D BING and 2D Debris flow models. In addition, the effect of wall slip and test apparatus are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearson, F.J. Jr.; Fisher, D.W.
Data from sampling stations in the Northeastern United States show that atmosperic precipitation in this region is composed of a dilute calcium-hydrogen sulfate water having additional sodium and chloride near the coast. In the inland and coastal sections, excepting only the highly industrialized areas, variations among the precipitation chemical loads measured at various sites show no systematic differences that suggest sectional changes in precipitation chemistry. In the rural inland section, the average loads of all measured constitutents except sulfate and hydrogen ion are independent of precipitation amount. In the coastal section, sodium and chloride loads vary with precipitation, presumably owingmore » to the effects of sea spray. Limited data show that industrial regions are marked by the presence of higher calcium, sulfate, and nitrate loads. Atmospheric precipitation contributes substantially to the chemical loads of streams, particularly those draining basins underlain by unreactive rock. Essentially all the sulfate- and nitrogen-bearing ions and much of the chloride and potassium in such streams are supplied by precipitation. Even in areas of more chemically reactive rock, the stream loads of the nitrogenous species may still be largely from precipitation. Most ground water contains enough material dissolved from its containing rock to mask the effect of precipitation on its recharge. However, because the Magothy aquifer on Long Island is so unreactive, the chemistry of its water appears to be controlled in large part by the chemistry of the atmospheric precipitation recharging it. 17 references, 7 figures, 3 tables.« less
NASA Technical Reports Server (NTRS)
Sutter, Brat; Ming, Douglas W.; Niles, P. B.; Golden, D. C.
2012-01-01
The West Spur Clovis class rocks in Gusev Crater are some of the most altered rocks in Gusev Crater and likely contain a mixed sulfate and phyllosilicate mineralogy [1,2]. The high S and Cl content of the Clovis rocks suggests that acidic vapors or fluids of H2SO4 and HCl reacted with the Clovis parent rock to form Ca, Mg,- sulfates, iron-oxyhydroxides and secondary aluminosilicates (approx.60 wt.%) of a poorly crystalline nature (e.g., allophane) [1]. Up to 14-17 wt.% phyllosilicates (e.g., kaolinite, chlorite, serpentine) are hypothesized to exist in the Clovis materials suggesting that Clovis parent materials while possibly exposed to acidic pHs were likely neutralized by basalt dissolution which resulted in mildly acidic pHs (4-6) [1, 2]. This work proposes that subsequent to the alteration of the Clovis rocks, alteration fluids became concentrated in ions resulting in the addition of silicate and salts. The objective of this work is to utilize Ti-normalized mass balance analysis to evaluate (1) mineral gains and losses and (2) elemental gains and losses in the Clovis rocks. Results of this work will be used evaluate the nature of geochemical conditions that affect phyllosilicate and sulfate formation at Gusev crater.
Improved Genome Assembly and Annotation for the Rock Pigeon (Columba livia).
Holt, Carson; Campbell, Michael; Keays, David A; Edelman, Nathaniel; Kapusta, Aurélie; Maclary, Emily; T Domyan, Eric; Suh, Alexander; Warren, Wesley C; Yandell, Mark; Gilbert, M Thomas P; Shapiro, Michael D
2018-05-04
The domestic rock pigeon ( Columba livia ) is among the most widely distributed and phenotypically diverse avian species. C. livia is broadly studied in ecology, genetics, physiology, behavior, and evolutionary biology, and has recently emerged as a model for understanding the molecular basis of anatomical diversity, the magnetic sense, and other key aspects of avian biology. Here we report an update to the C. livia genome reference assembly and gene annotation dataset. Greatly increased scaffold lengths in the updated reference assembly, along with an updated annotation set, provide improved tools for evolutionary and functional genetic studies of the pigeon, and for comparative avian genomics in general. Copyright © 2018 Holt et al.
Isotopic and trace element variability in altered and unaltered tuffs at Yucca Mountain, Nevada
Peterman, Z.E.; Spengler, R.W.; Singer, F.R.; Dickerson, R.P.
1993-01-01
Reference stratigraphic sections near Yucca Mountain, Nevada were established and sampled in outcrop areas where the volcanic rocks have been minimally altered. Isotopic and trace element analyses obtained for these reference sections are baseline data for assessing the degree and extent of element mobility attendant with past zonal alteration of the rock mass. In agreement with earlier studies, zeolitization is shown to have occurred under wholesale open-system conditions. Calcium was increased by two three times the baseline values and strontium up to twenty times. In contrast, barium displays less variability, and the high-field strength elements zirconium and titanium were the least mobile during zeolitization. The data reported here establish the usefulness of reference sections of assessing past elements mobility. The information gained will be helpful in predicting possible future element mobility induced by thermally activated fluids in the near field of a potential repository.
NASA Technical Reports Server (NTRS)
Cassinis, R. (Principal Investigator); Tosi, N.
1980-01-01
The possibility of identifying ground surface material by measuring the surface temperature at two different and significant times of the day was investigated for the case of hypothetical island whose rocky surface contained no vegetation and consisted of dolomite, clay, and granite. The thermal dynamics of the soil surface during a day in which atmospheric conditions were average for a latitude of about 40 deg to 50 deg were numerically simulated. The line of separation between zones of different materials was delineated by the range of temperature variation. Results show that the difference between maximum and minimum value of the temperature of ground surface during the day is linked to the thermal inertia value of the material of which the rock is formed.
Iron-nickel alloys as canister material for radioactive waste disposal in underground repositories
NASA Astrophysics Data System (ADS)
Apps, J. A.
1982-09-01
Canisters containing high-level radioactive waste must retain their integrity in an underground waste repository for at least one thousand years after burial (Nuclear Regulatory Commission, 1981). Since no direct means of verifying canister integrity is plausible over such a long period, indirect methods must be chosen. A persuasive approach is to examine the natural environment and find a suitable material which is thermodynamically compatible with the host rock under the environmental conditions with the host rock under the environmental conditions expected in a waste repository. Several candidates have been proposed, among them being iron-nickel alloys that are known to occur naturally in altered ultramafic rocks. The following review of stability relations among iron-nickel alloys below 3500 C is the initial phase of a more detailed evaluation of these alloys as suitable canister materials.
Manufactured caverns in carbonate rock
Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.
2007-01-02
Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.
NASA Astrophysics Data System (ADS)
Hangx, S. J. T.; Bakker, E.; Spiers, C. J.
2012-04-01
In an attempt to reduce CO2 emissions, CO2 capture and storage in depleted oil and gas reservoirs is seen as one of the most important mitigation strategies. However, in order to achieve safe storage on geological timescales, it is key to maintain integrity of the caprock and any faults penetrating the seal. One of the largest uncertainties lies in the prediction of the effects of fluid-rock interaction on the mechanical integrity and sealing capacity of the reservoir-seal system in the very long term, i.e. on timescales of the order of 103 or 104 years. As chemical interactions in the rock/CO2/brine system are slow, their long-term effects on rock composition, microstructure, mechanical properties and transport properties cannot be properly reproduced in laboratory experiments. One way of addressing this issue is to conduct experiments on reservoir, caprock and fault rock samples taken from natural CO2 reservoir-seal systems, which can serve as natural analogues for CO2 storage fields. The transport and mechanical properties of these rock samples, which have reacted with CO2 over geological timescales, can then be compared with data obtained for laterally equivalent materials that are unaffected by CO2. The observed changes in rock properties can subsequently be used as input for numerical models aimed at assessing the long-term effects of CO2 on reservoir compaction, caprock damage, fault reactivation and fault permeability. We assessed the mechanical behaviour and transport properties of fault rocks. To this end, we performed triaxial direct shear experiments at room temperature under nominally dry conditions, at normal stresses up to 90 MPa and shear velocities of 0.22 -10.9 μm/s. Simulated fault rocks were prepared by crushing material obtained from surface outcrops of the Entrada Sandstone, one of the CO2-bearing formations from an analogue field under the Colorado Plateau, Utah, USA. Three types of starting material were obtained: 1) red-coloured samples consisting mainly of quartz and feldspar, some minor clay minerals and hematite/goethite grain coatings, 2) yellow-coloured, (so-called) bleached samples additionally containing various amounts of kaolinite, calcite and dolomite, and 3) heavily cemented samples from the surface outcrop of the fault core of the Little Grand Wash Fault, containing a high percentage of carbonates (> 40 wt%). Previous work demonstrates that the bleached samples and the material from the fault were altered as a result of interaction with CO2-rich fluids. Over the experimental range investigated, we measured friction coefficients of 0.55-0.85 for unbleached material and 0.55-0.80 for bleached material, while the fault core material showed higher friction coefficients (0.60-0.95), all showing a minor decrease with decreasing shear velocity and normal stress. Almost all samples showed velocity-strengthening slip behaviour. Overall, the frictional behaviour of Entrada Sandstone does not seem to be strongly influenced by CO2/brine/rock interactions.
The facts on file. Dictionary of geology and geophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapidus, D.F.; Coates, D.R.
1987-01-01
This reference to the basic vocabulary of geology and geophysics has more than 3,000 clear and concise entries defining the entire range of geological phenomena. This book covers such areas as types of rocks and rock formations, deformation processes such as erosion and plate tectonics, volcanoes, glaciers and their effects on topography, geodesy and survey methods, earthquakes and seismology, fuels and mineral deposits.
NASA Technical Reports Server (NTRS)
Morris, R. V.; Achilles, C. N.; Chipera, S. J.; Ming, D. W.; Rampe, E. B.
2013-01-01
The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity is an X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of providing the mineralogical and chemical compositions of rocks and soils on the surface of Mars. CheMin uses a microfocus X-ray tube with a Co target, transmission geometry, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. Piezoelectric vibration of the cell is used to randomize the sample to reduce preferred orientation effects. Instrument details are provided in [1, 2, 3]. Analyses of rock and soil samples by the Mars Exploration Rovers (MER) show nanophase ferric oxide (npOx) is a significant component of the Martian global soil [4] and is thought to be one of the major contributing phases that the Curiosity rover will encounter if a soil sample is analyzed in Gale Crater. Because of the nature of this material, npOx will likely contribute to an X-ray amorphous or short-order component of a XRD pattern measured by the CheMin instrument.
Lee, S.R.; Horton, J. Wright; Walker, R.J.
2006-01-01
The osmium isotope ratios and platinum-group element (PGE) concentrations of impact-melt rocks in the Chesapeake Bay impact structure were determined. The impact-melt rocks come from the cored part of a lower-crater section of suevitic crystalline-clast breccia in an 823 m scientific test hole over the central uplift at Cape Charles, Virginia. The 187Os/188Os ratios of impact-melt rocks range from 0.151 to 0.518. The rhenium and platinum-group element (PGE) concentrations of these rocks are 30-270?? higher than concentrations in basement gneiss, and together with the osmium isotopes indicate a substantial meteoritic component in some impact-melt rocks. Because the PGE abundances in the impact-melt rocks are dominated by the target materials, interelemental ratios of the impact-melt rocks are highly variable and nonchondritic. The chemical nature of the projectile for the Chesapeake Bay impact structure cannot be constrained at this time. Model mixing calculations between chondritic and crustal components suggest that most impact-melt rocks include a bulk meteoritic component of 0.01-0.1% by mass. Several impact-melt rocks with lowest initial 187Os/188Os ratios and the highest osmium concentrations could have been produced by additions of 0.1%-0.2% of a meteoritic component. In these samples, as much as 70% of the total Os may be of meteoritic origin. At the calculated proportions of a meteoritic component (0.01-0.1% by mass), no mixtures of the investigated target rocks and sediments can reproduce the observed PGE abundances of the impact-melt rocks, suggesting that other PGE enrichment processes operated along with the meteoritic contamination. Possible explanations are 1) participation of unsampled target materials with high PGE abundances in the impact-melt rocks, and 2) variable fractionations of PGE during syn- to post-impact events. ?? The Meteoritical Society, 2006.
Geomechanical rock properties of a basaltic volcano
NASA Astrophysics Data System (ADS)
Schaefer, Lauren; Kendrick, Jackie; Lavallée, Yan; Oommen, Thomas; Chigna, Gustavo
2015-06-01
In volcanic regions, reliable estimates of mechanical properties for specific volcanic events such as cyclic inflation-deflation cycles by magmatic intrusions, thermal stressing, and high temperatures are crucial for building accurate models of volcanic phenomena. This study focuses on the challenge of characterizing volcanic materials for the numerical analyses of such events. To do this, we evaluated the physical (porosity, permeability) and mechanical (strength) properties of basaltic rocks at Pacaya Volcano (Guatemala) through a variety of laboratory experiments, including: room temperature, high temperature (935 °C), and cyclically-loaded uniaxial compressive strength tests on as-collected and thermally-treated rock samples. Knowledge of the material response to such varied stressing conditions is necessary to analyze potential hazards at Pacaya, whose persistent activity has led to 13 evacuations of towns near the volcano since 1987. The rocks show a non-linear relationship between permeability and porosity, which relates to the importance of the crack network connecting the vesicles in these rocks. Here we show that strength not only decreases with porosity and permeability, but also with prolonged stressing (i.e., at lower strain rates) and upon cooling. Complimentary tests in which cyclic episodes of thermal or load stressing showed no systematic weakening of the material on the scale of our experiments. Most importantly, we show the extremely heterogeneous nature of volcanic edifices that arise from differences in porosity and permeability of the local lithologies, the limited lateral extent of lava flows, and the scars of previous collapse events. Input of these process-specific rock behaviors into slope stability and deformation models can change the resultant hazard analysis. We anticipate that an increased parameterization of rock properties will improve mitigation power.
Relationship between the parent material and the soil, in plain and mountainous areas
NASA Astrophysics Data System (ADS)
Kerek, Barbara; Kuti, Laszlo; Dobos, Timea; Vatai, Jozsef; Szentpetery, Ildiko
2013-04-01
One of the most important tasks of the soil is the nutrition of plants. This function is determinated by those parts of the geological media on what is the soil situated and from what the soil was formed (those two can be different). Soil can be formed definitely just from sediment, so it is more proper to speak about parent material than parent rock. Soil forming sediment is defined as the loose sediment on the surface, which is the upper layer of near-surface rocks in flat and hilly regions, and it is the upper layer of the sediment-ensemble situated on the undisturbed bedrock in mountainous areas. Considering its origin, these sediments could be autochthon or allochton. Soil forming is determinated, besides other factors (climate, elevation, vegetation, etc.), by the parent material, which has a crucial influence on the type, quality and fertility of soils through its mineral composition, physical and chemical characteristics. Agrogeological processes happen in the superficial loose sediments in mountainous areas, but the underlying solid rock (where on the surface or close to it, there is solid rock), has an effect on them. The plain and hilly regions covered by thick loose sediment and the areas build up by solid rock and covered with thinner loose sediment in mountainous areas should be searched separately. In plain areas the near-surface formations have to be studied as a whole down to the saturated zone, but at least to 10 m. In regions of mountain and mountain fronts, the thickness, the composition and genetics of the young unconsolidated sediments situated above the older solid rocks have a vital importance, and also the relations among the soils, soil forming sediments and the base rocks have to be understood.
Zhang, Bao-cun; Sun, Li; Xiao, Zhi-zhong; Hu, Yong-hua
2014-06-01
Rock bream Oplegnathus fasciatus is an important economic fish species. In this study, we evaluated the appropriateness of six housekeeping genes as internal controls for quantitative real-time PCR (RT-qPCR) analysis of gene expression in rock bream before and after pathogen infection. The expression of the selected genes in eight tissues infected with Vibrio alginolyticus or megalocytivirus was determined by RT-qPCR, and the PCR data were analyzed with geNorm and NormFinder algorithms. The results showed that before pathogen infection, mediator of RNA polymerase II transcription subunit 8 and β-actin were ranked as the most stable genes across the examined tissues. After bacterial or viral infection, the stabilities of the housekeeping genes varied to significant extents in tissue-dependent manners, and no single pair of genes was identified as suitable references for all tissues for either of the pathogen stimuli. In addition, for the majority of tissues, the most stable genes during bacterial infection differed from those during viral infection. Nevertheless, optimum reference genes were identified for each tissue under different conditions. Taken together, these results indicate that tissue type and the nature of the infectious agent used in the study can all influence the choice of normalization factors, and that the optimum reference genes identified in this study will provide a useful guidance for the selection of internal controls in future RT-PCR study of gene expression in rock bream. Copyright © 2014 Elsevier B.V. All rights reserved.
1979-02-15
fracture along which there has been displacement. FAULT BLOCK MOUNTAINS - Mountains that are formed by normal faulting in which the surface crust is...sized particles. Psa. Pm, S2 Limestone and Dolomite . Composed predominantly of carbonate material. Ph, Cau, S3 Shale. Composed predominantly of clay...METAMORPHIC (UNDIFFERENTIATED). Rocks formed through alteration of igneous orgn sedimentary rock material by pressure , heat, or chemical changes below the
Rock sample brought to earth from the Apollo 12 lunar landing mission
NASA Technical Reports Server (NTRS)
1969-01-01
Close-up view of Apollo 12 sample 12,062 under observation in the Manned Spacecraft Center's Lunar Receiving Laboratory. This sample, collected during the second Apollo 12 extravehicular activity (EVA-2) of Astronauts Charles Conrad Jr., and Alan L. Bean, is a medium-grained rock with lath-shaped crystals of feldspar and pyroxene It contains vugs-holes-with crystals growing in them (note right side of exposed portion). An idea of the size of the rock can be gained by reference to the gauge on the bottom portion of the number meter.
Meng, Long; Bao, Mutai; Sun, Peiyan
2017-09-15
This study, adsorption behaviors of dispersed oil in seawaters by granular materials were explored in simulation environment. We quantitatively demonstrated the dispersed oil adsorbed by granular materials were both dissolved petroleum hydrocarbons (DPHs) and oil droplets. Furthermore, DPHs were accounted for 42.5%, 63.4%, and 85.2% (35.5% was emulsion adsorption) in the adsorption of dispersed oil by coastal rocks, sediments, and bacterial strain particles respectively. Effects of controlling parameters, such as temperature, particle size and concentration on adsorption of petroleum hydrocarbons were described in detail. Most strikingly, adsorption concentration was followed a decreasing order of bacterial strain (0.5-2μm)>sediments (0.005-0.625mm)>coastal rocks (0.2-1cm). With particle concentration or temperature increased, adsorption concentration increased for coastal rocks particle but decreased for sediments particle. Besides, particle adsorption rate of petroleum hydrocarbons (n-alkanes and PAHs) was different among granular materials during 60 days. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mössbauer spectroscopy on Mars: goethite in the Columbia Hills at Gusev crater
NASA Astrophysics Data System (ADS)
Klingelhöfer, G.; Degrave, E.; Morris, R. V.; van Alboom, A.; de Resende, V. G.; de Souza, P. A.; Rodionov, D.; Schröder, C.; Ming, D. W.; Yen, A.
2005-11-01
In January 2004 the USA space agency NASA landed two rovers on the surface of Mars, both carrying the Mainz Mössbauer spectrometer MIMOS II. The instrument on the Mars-Exploration-Rover (MER) Spirit analyzed soils and rocks on the plains and in the Columbia Hills of Gusev crater landing site on Mars. The surface material in the plains have an olivine basaltic signature [1, 5] suggesting physical rather than chemical weathering processes present in the plains. The Mössbauer signature for the Columbia Hills surface material is very different ranging from nearly unaltered material to highly altered material. Some of the rocks, in particular a rock named Clovis, contain a significant amount of the Fe oxyhydroxide goethite, α-FeOOH, which is mineralogical evidence for aqueous processes because it is formed only under aqueous conditions. In this paper we describe the analysis of these data using hyperfine field distributions (HFD) and discuss the results in comparison to terrestrial analogues.
The emerging Medical and Geological Association.
Finkelman, R.B.; Centeno, J.A.; Selinus, O.
2005-01-01
The impact on human health by natural materials such as water, rocks, and minerals has been known for thousands of years but there have been few systematic, multidisciplinary studies on the relationship between geologic materials and processes and human health (the field of study commonly referred to as medical geology). In the past few years, however, there has been a resurgence of interest in medical geology. Geoscientists working with medical researchers and public health scientists have made important contributions to understanding novel exposure pathways and causes of a wide range of environmental health problems such as: exposure to toxic levels of trace essential and non-essential elements such as arsenic and mercury; trace element deficiencies; exposure to natural dusts and to radioactivity; naturally occurring organic compounds in drinking water; volcanic emissions, etc. By linking with biomedical/public health researchers geoscientists are finally taking advantage of this age-old opportunity to help mitigate environmental health problems. The International Medical Geology Association has recently been formed to support this effort.
The Emerging Medical and Geological Association
Finkelman, Robert B; Centeno, Jose A; Selinus, Olle
2005-01-01
The impact on human health by natural materials such as water, rocks, and minerals has been known for thousands of years but there have been few systematic, multidisciplinary studies on the relationship between geologic materials and processes and human health (the field of study commonly referred to as medical geology). In the past few years, however, there has been a resurgence of interest in medical geology. Geoscientists working with medical researchers and public health scientists have made important contributions to understanding novel exposure pathways and causes of a wide range of environmental health problems such as: exposure to toxic levels of trace essential and non-essential elements such as arsenic and mercury; trace element deficiencies; exposure to natural dusts and to radioactivity; naturally occurring organic compounds in drinking water; volcanic emissions, etc. By linking with biomedical/public health researchers geoscientists are finally taking advantage of this age-old opportunity to help mitigate environmental health problems. The International Medical Geology Association has recently been formed to support this effort. PMID:16555612
City Rocks and National Standards.
ERIC Educational Resources Information Center
Becker, Martin; Slattery, William; Finegan-Stoll, Colleen
1998-01-01
Presents a weeklong earth science module that allows students to explore the relationships between natural and manufactured materials. Relates rocks and minerals in the earth science curriculum to observations students make in their urban and suburban travels. (DDR)
Cumberland Target Drilled by Curiosity
2013-05-20
NASA Mars rover Curiosity drilled into this rock target, Cumberland, during the 279th Martian day, or sol, of the rover work on Mars May 19, 2013 and collected a powdered sample of material from the rock interior.
Compaction bands in porous rocks: localization analysis using breakage mechanics
NASA Astrophysics Data System (ADS)
Das, Arghya; Nguyen, Giang; Einav, Itai
2010-05-01
It has been observed in fields and laboratory studies that compaction bands are formed within porous rocks and crushable granular materials (Mollema and Antonellini, 1996; Wong et al., 2001). These localization zones are oriented at high angles to the compressive maximum principal stress direction. Grain crushing and pore collapse are the integral parts of the compaction band formation; the lower porosity and increased tortuosity within such bands tend to reduce their permeability compared to the outer rock mass. Compaction bands may thereafter act as flow barriers, which can hamper the extraction or injection of fluid into the rocks. The study of compaction bands is therefore not only interesting from a geological viewpoint but has great economic importance to the extraction of oil or natural gas in the industry. In this paper, we study the formation of pure compaction bands (i.e. purely perpendicular to the principal stress direction) or shear-enhanced compaction bands (i.e. with angles close to the perpendicular) in high-porosity rocks using both numerical and analytical methods. A model based on the breakage mechanics theory (Einav, 2007a, b) is employed for the present analysis. The main aspect of this theory is that it enables to take into account the effect that changes in grain size distribution has on the constitutive stress-strain behaviour of granular materials at the microscopic level due to grain crushing. This microscopic phenomenon of grain crushing is explicitly linked with a macroscopic internal variable, called Breakage, so that the evolving grain size distribution can be continuously monitored at macro scale during the process of deformation. Through the inclusion of an appropriate parameter the model is also able to capture the effects of pore collapse on the macroscopic response. Its possession of few physically identifiable parameters is another important feature which minimises the effort of their recalibration, since those become less sensitive to the state of the matter (e.g. the initial porosity and grain size distribution). In our previous work (Nguyen and Einav, 2009) we showed that the breakage mechanics model is capable of capturing the experimentally observed stress-strain behaviour of sandstones under conventional triaxial loading, along with the associated evolving grain size distribution. Here, these predictions are further improved through the inclusion of the additional pore-collapse parameter. Furthermore, localization analysis that is based on the loss of positive definiteness of the determinant of the acoustic tensor (Issen and Rudnicki, 2000) is performed to determine the onset of compaction localization, as an indication of material failure. This analysis results in the prediction of the possible range of compaction band orientations. The behaviour and onset of compaction localization of different sandstones are numerically predicted in well accordance with published experimental observations. A parametric study is also carried out to emphasize the complementary effects of grain crushing and pore-collapse on the formation of compaction bands. References Einav, I. (2007a), Breakage mechanics-Part I: Theory, J. Mechan. Phys. Sol. 55(6), 1274-1297. Einav, I. (2007b), Breakage mechanics-Part II: Modelling granular materials, J. Mech. Phys. Sol. 55(6), 1298- 1320. Issen, K.A., Rudnicki, J.W. (2000), Conditions for compaction bands in porous rocks, J. Geophys. Res. Lett., 105, 21,529-21,536. Mollema, P.N., Antonellini, M.A. (1996), Compaction bands: a structural analog for anti-mode I cracks in aeolian sandstone, Tectonophysics 267:209-228. Nguyen, G.D., Einav, I. (2009), The energetics of cataclasis based on breakage mechanics, Pure Appl. Geophys., 166(10), 1693 - 1724. Wong, T-F, Baud, P., Klein, E. (2001), Localized failure modes in a compactant porous rock, J. Geophys. Res. Lett., 28, 2521-2524.
NASA Technical Reports Server (NTRS)
Nelson, M. J.; Newsom, H. E.
2003-01-01
The martian regolith is a globally homogenized product of chemical and aeolian weathering processes. The soil is thought to consist of a rock component, with lesser amounts of mobile elements (Ca, Na, and K) than a presumed protolith, and a salt or mobile element component enriched in sulfur and chlorine. In this study we consider the contributions of hydrothermal processes to the origin of the rock component of the martian soil.
NASA Astrophysics Data System (ADS)
Gallen, Sean; Clark, Marin; Godt, Jonathan; Lowe, Katherine
2016-04-01
The material strength of rock is known to be a fundamental property in setting landscape form and geomorphic process rates as it acts to modulate feedbacks between earth surface processes, tectonics, and climate. Despite the long recognition of its importance in landscape evolution, a quantitative understanding of the role of rock strength in affecting geomorphic processes lags our knowledge of the influence of tectonics and climate. This gap stems largely from the fact that it remains challenging to quantify rock strength at the hillslope scale. Rock strength is strongly scale dependent because the number, size, spacing, and aperture of fractures sets the upper limit on rock strength, making it difficult to extrapolate laboratory measurements to landscape-scale interpretations. Here we present a method to determine near-surface rock strength at the hillslope-scale, relying on earthquake-triggered landslides as a regional-scale "shear strength" test. We define near-surface strength as the average strength of rock sample by the landslides, which is typically < 10 m. Based on a Newmark sliding block model, which approximates slope stability during an earthquake assuming a material with frictional and cohesive strength, we developed a coseismic landslide model that is capable of reproducing statistical characteristics of the distribution of earthquake-triggered landslides. We present results from two well-documented case-studies of earthquakes that caused widespread mass-wasting; the 2008 Mw 7.9 Wenchuan Earthquake, Sichuan Province, China and the 1994 Mw. 6.8 Northridge Earthquake, CA, USA. We show how this model can be used to determine near-surface rock strength and reproduce mapped landslide patterns provided the spatial distribution of local hillslope gradient, earthquake peak ground acceleration (PGA), and coseismic landsliding are well constrained. Results suggest that near-surface rock strength in these tectonically active settings is much lower than that obtained using typical laboratory shear strength measurements on intact rock samples. Furthermore, the near-surface material strength is similar between the study areas despite differences in tectonic, climatic, and lithologic conditions. Variations in near-surface strength within each setting appear to be more strongly associated with factors contributing to the weakening rock through chemical or physical weathering, such as mean annual precipitation and distance to active faults (a proxy for rock shattering intensity), rather than intrinsic lithologic properties. We hypothesize that the shattering of rock through long-term permanent strain accumulation and by repeated earthquakes is an important mechanism that can explain low rock strength values among the different study sites and the spatial pattern of rock strength within each location. These findings emphasize the potential role of factors other than lithology in controlling the spatial distribution of near-surface rock strength in high-relief, tectonically active settings, which has important implications for understanding the evolution of landscapes, interpreting tectonic and climatic signals from topography, critical zone processes, and natural hazard assessment.
Geology and Our Environment. Environmental Education Curriculum. Revised.
ERIC Educational Resources Information Center
Topeka Public Schools, KS.
Rocks, and the soil formed from rock, play a major role in determining such particulars as the type of crops that can be grown in a specific area and the type of housing that can be constructed. Also, rocks may supply fuel and building materials, and provide information about the history of an area. This unit is constructed to expose secondary…
Release of radiogenic noble gases as a new signal of rock deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Stephen J.; Gardner, W. Payton; Lee, Hyunwoo
In this paper we investigate the release of radiogenic noble gas isotopes during mechanical deformation. We developed an analytical system for dynamic mass spectrometry of noble gas composition and helium release rate of gas produced during mechanical deformation of rocks. Our results indicate that rocks release accumulated radiogenic helium and argon from mineral grains as they undergo deformation. We found that the release of accumulated 4He and 40Ar from rocks follows a reproducible pattern and can provide insight into the deformation process. Increased gas release can be observed before dilation, and macroscopic failure is observed during high-pressure triaxial rock deformationmore » experiments. Accumulated radiogenic noble gases can be released due to fracturing of mineral grains during small-scale strain in Earth materials. Helium and argon are highly mobile, conservative species and could be used to provide information on changes in the state of stress and strain in Earth materials, and as an early warning signal of macroscopic failure. These results pave the way for the use of noble gases to trace and monitor rock deformation for earthquake prediction and a variety of other subsurface engineering projects.« less
Release of radiogenic noble gases as a new signal of rock deformation
Bauer, Stephen J.; Gardner, W. Payton; Lee, Hyunwoo
2016-10-09
In this paper we investigate the release of radiogenic noble gas isotopes during mechanical deformation. We developed an analytical system for dynamic mass spectrometry of noble gas composition and helium release rate of gas produced during mechanical deformation of rocks. Our results indicate that rocks release accumulated radiogenic helium and argon from mineral grains as they undergo deformation. We found that the release of accumulated 4He and 40Ar from rocks follows a reproducible pattern and can provide insight into the deformation process. Increased gas release can be observed before dilation, and macroscopic failure is observed during high-pressure triaxial rock deformationmore » experiments. Accumulated radiogenic noble gases can be released due to fracturing of mineral grains during small-scale strain in Earth materials. Helium and argon are highly mobile, conservative species and could be used to provide information on changes in the state of stress and strain in Earth materials, and as an early warning signal of macroscopic failure. These results pave the way for the use of noble gases to trace and monitor rock deformation for earthquake prediction and a variety of other subsurface engineering projects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shemyakin, E.I.; Fisenko, G.L.; Kurlenya, M.V.
1987-05-01
For a detailed testing of the effects discovered in situ, analysis of the patterns and origination conditions of fractured rock zones inside the bed around workings, and ways explosions affect the surrounding rocks, a program and a method of study on models of equivalent materials have been developed. The method of simulation on two- and three-dimensional models involved building in a solid or fissured medium a tunnel of a circular or arched cross section. The tests were done for elongate adit-type workings. At the first stage, three models were tested with different working support systems: anchor supports, concrete-spray supports andmore » no supports. Zone formation is shown and described. Tests were continued on two groups of three-dimensional models to bring the model closer to in situ conditions. The presence of gaping cracks and heavily fractured zones deep in the interior of the bed with a quasicylindrical symmetry indicates that the common views concerning the stressed-strained state of rocks around underground workings are at variance with the actual patterns of deformation and destruction of rocks near the workings in deep horizons.« less
Spirit's First Grinding of a Rock on Mars
NASA Technical Reports Server (NTRS)
2004-01-01
The round, shallow depression in this image resulted from history's first grinding of a rock on Mars. The rock abrasion tool on NASA's Spirit rover ground off the surface of a patch 45.5 millimeters (1.8 inches) in diameter on a rock called Adirondack. The hole is 2.65 millimeters (0.1 inch) deep, exposing fresh interior material of the rock for close inspection with the rover's microscopic imager and two spectrometers on the robotic arm. This image was taken by Spirit's panoramic camera, providing a quick visual check of the success of the grinding. The rock abrasion tools on both Mars Exploration Rovers were supplied by Honeybee Robotics, New York, N.Y.
Hard-rock jetting. Part 2. Rock type decides jetting economics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pols, A.C.
1977-02-07
In Part 2, Koninklijke Shell Exploratie en Produktie Laboratorium presents the results of jet-drilling laminated formations. Shell concludes that (1) hard, laminated rock cannot be jet-drilled satisfactorily without additional mechanical cutting aids, (2) the increase in penetration rate with bit-pressure drop is much lower for impermeable rock than it is for permeable rock, (3) drilling mud can have either a positive or a negative effect on penetration rate in comparison with water, depending on the material drilled, and (4) hard, isotropic, sedimentary, impermeable rock can be drilled using jets at higher rates than with conventional means. However, jetting becomes profitablemore » only in the case of expensive rigs.« less
Bright Summer Afternoon on the Mars Utopian Planitia
NASA Technical Reports Server (NTRS)
1976-01-01
A UTOPIAN BRIGHT SUMMER AFTERNOON ON MARS--Looking south from Viking 2 on September 6, the orange-red surface of the nearly level plain upon which the spacecraft sits is seen strewn with rocks as large as three feet across. Many of these rocks are porous and sponge-like, similar to some of Earth's volcanic rocks. Other rocks are coarse-grained such as the large rock at lower left. Between the rocks, the surface is blanketed with fine-grained material that, in places, is piled into small drifts and banked against some of the larger blocks. The cylindrical mast with the orange cable is the low-gain antenna used to receive commands from Earth.
The historical and cultural heritage from Brazil: rocks and deterioration patterns
NASA Astrophysics Data System (ADS)
Costa, Antônio
2014-05-01
This summary provides information on the results of a research in progress, which focuses on the investigation of stone materials, as steatites, serpentinites, quartzites and schists, widely used in construction of buildings belonging to the cultural heritage of Brazil, especially in those that are in the state of Minas Gerais. These historic buildings, some of those with more than three hundred years of existence and constructed with the use of different rocks, function as open-air laboratories and because of that assists on the study of the deterioration of these materials. In its early stages, the research has focused on macroscopic characterization of the employed materials, following with the lifting of their respective areas of occurrence. Then samples for the survey of other features, such as its chemical and physical-mechanical properties were collected. The investigated physical-mechanical properties were as follows: thermal dilatation coefficient, compressive and flexural strength, abrasion resistance, water absorption coefficient by capillarity, real and apparent density, total and open porosity. Currently, the research focuses on issues such as: evidence of degradation and extent of deterioration in these monuments, as a result of the performance of different processes of alteration and decay. In this investigation it is understood that the first processes are associated with modifications of stone materials, which do not necessarily imply in worsening of the characteristics of these materials from the point of view of conservation and seconds are related to chemical and physical changes of intrinsic properties of rocks used in the construction of this heritage, which can lead to a loss of value, or some impediment of use, according to the indications of the illustrated glossary on patterns of deterioration of rocks proposed by ICOMOS. For this purpose macroscopic descriptions of monuments and its applied rocks, accompanied by detailed photographic record and sampling, this last whenever possible, were made. Through macroscopic descriptions was possible to identify the presence of numerous cracks, elevations and detachments of outer layers from some rocks, separation of layers, disaggregation of individual grains or aggregates of grains, loss of original surface due to mechanical action or not, resulting in the presence of smoothed shapes, loss of parts of sculptures, so as the presence of cavities or alveoli formed on the surface of the rock. Were also observed: the presence of crusts by accumulation of exogenous materials and rock itself, color changes, eflorescences, incrustations with surface morphology and color different from those of stone, patinas, graffiti as a result of vandalism and different degrees of biological colonization, involving the presence of mold, lichen, algae and plants. It is hoped that the data obtained may contribute to the indication of preservation methods most recommended for each case of observed deterioration. Considering that the majority of these materials remains exposed to external areas, these efforts will be sufficient only to delay the actions and minimize the effects of these processes of deterioration.
Guo, Songfeng; Qi, Shengwen; Zou, Yu; Zheng, Bowen
2017-01-01
In rocks or rock-like materials, the constituents, e.g. quartz, calcite and biotite, as well as the microdefects have considerably different mechanical properties that make such materials heterogeneous at different degrees. The failure of materials subjected to external loads is a cracking process accompanied with stress redistribution due to material heterogeneity. However, the latter cannot be observed from the experiments in laboratory directly. In this study, the cracking and stress features during uniaxial compression process are numerically studied based on a presented approach. A plastic strain dependent strength model is implemented into the continuous numerical tool—Fast Lagrangian Analysis of Continua in three Dimensions (FLAC3D), and the Gaussian statistical function is adopted to depict the heterogeneity of mechanical parameters including elastic modulus, friction angle, cohesion and tensile strength. The mean parameter μ and the coefficient of variance (hcv, the ratio of mean parameter to standard deviation) in the function are used to define the mean value and heterogeneity degree of the parameters, respectively. The results show that this numerical approach can perfectly capture the general features of brittle materials including fracturing process, AE events as well as stress-strain curves. Furthermore, the local stress disturbance is analyzed and the crack initiation stress threshold is identified based on the AE events process and stress-strain curves. It is shown that the stress concentration always appears in the undamaged elements near the boundary of damaged sites. The peak stress and crack initiation stress are both heterogeneity dependent, i.e., a linear relation exists between the two stress thresholds and hcv. The range of hcv is suggested as 0.12 to 0.21 for most rocks. The stress concentration degree is represented by a stress concentration factor and found also heterogeneity dominant. Finally, it is found that there exists a consistent tendency between the local stress difference and the AE events process. PMID:28772738
Guo, Songfeng; Qi, Shengwen; Zou, Yu; Zheng, Bowen
2017-04-01
In rocks or rock-like materials, the constituents, e.g. quartz, calcite and biotite, as well as the microdefects have considerably different mechanical properties that make such materials heterogeneous at different degrees. The failure of materials subjected to external loads is a cracking process accompanied with stress redistribution due to material heterogeneity. However, the latter cannot be observed from the experiments in laboratory directly. In this study, the cracking and stress features during uniaxial compression process are numerically studied based on a presented approach. A plastic strain dependent strength model is implemented into the continuous numerical tool-Fast Lagrangian Analysis of Continua in three Dimensions (FLAC 3D ), and the Gaussian statistical function is adopted to depict the heterogeneity of mechanical parameters including elastic modulus, friction angle, cohesion and tensile strength. The mean parameter μ and the coefficient of variance ( h cv , the ratio of mean parameter to standard deviation) in the function are used to define the mean value and heterogeneity degree of the parameters, respectively. The results show that this numerical approach can perfectly capture the general features of brittle materials including fracturing process, AE events as well as stress-strain curves. Furthermore, the local stress disturbance is analyzed and the crack initiation stress threshold is identified based on the AE events process and stress-strain curves. It is shown that the stress concentration always appears in the undamaged elements near the boundary of damaged sites. The peak stress and crack initiation stress are both heterogeneity dependent, i.e., a linear relation exists between the two stress thresholds and h cv . The range of h cv is suggested as 0.12 to 0.21 for most rocks. The stress concentration degree is represented by a stress concentration factor and found also heterogeneity dominant. Finally, it is found that there exists a consistent tendency between the local stress difference and the AE events process.
Generic Argillite/Shale Disposal Reference Case
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Liange; Colon, Carlos Jové; Bianchi, Marco
Radioactive waste disposal in a deep subsurface repository hosted in clay/shale/argillite is a subject of widespread interest given the desirable isolation properties, geochemically reduced conditions, and widespread geologic occurrence of this rock type (Hansen 2010; Bianchi et al. 2013). Bianchi et al. (2013) provides a description of diffusion in a clay-hosted repository based on single-phase flow and full saturation using parametric data from documented studies in Europe (e.g., ANDRA 2005). The predominance of diffusive transport and sorption phenomena in this clay media are key attributes to impede radionuclide mobility making clay rock formations target sites for disposal of high-level radioactivemore » waste. The reports by Hansen et al. (2010) and those from numerous studies in clay-hosted underground research laboratories (URLs) in Belgium, France and Switzerland outline the extensive scientific knowledge obtained to assess long-term clay/shale/argillite repository isolation performance of nuclear waste. In the past several years under the UFDC, various kinds of models have been developed for argillite repository to demonstrate the model capability, understand the spatial and temporal alteration of the repository, and evaluate different scenarios. These models include the coupled Thermal-Hydrological-Mechanical (THM) and Thermal-Hydrological-Mechanical-Chemical (THMC) models (e.g. Liu et al. 2013; Rutqvist et al. 2014a, Zheng et al. 2014a) that focus on THMC processes in the Engineered Barrier System (EBS) bentonite and argillite host hock, the large scale hydrogeologic model (Bianchi et al. 2014) that investigates the hydraulic connection between an emplacement drift and surrounding hydrogeological units, and Disposal Systems Evaluation Framework (DSEF) models (Greenberg et al. 2013) that evaluate thermal evolution in the host rock approximated as a thermal conduction process to facilitate the analysis of design options. However, the assumptions and the properties (parameters) used in these models are different, which not only make inter-model comparisons difficult, but also compromise the applicability of the lessons learned from one model to another model. The establishment of a reference case would therefore be helpful to set up a baseline for model development. A generic salt repository reference case was developed in Freeze et al. (2013) and the generic argillite repository reference case is presented in this report. The definition of a reference case requires the characterization of the waste inventory, waste form, waste package, repository layout, EBS backfill, host rock, and biosphere. This report mainly documents the processes in EBS bentonite and host rock that are potentially important for performance assessment and properties that are needed to describe these processes, with brief description other components such as waste inventory, waste form, waste package, repository layout, aquifer, and biosphere. A thorough description of the generic argillite repository reference case will be given in Jové Colon et al. (2014).« less
NASA Technical Reports Server (NTRS)
2002-01-01
(Released 19 April 2002) The Science 'White Rock' is the unofficial name for this unusual landform which was first observed during the Mariner 9 mission in the early 1970's. As later analysis of additional data sets would show, White Rock is neither white nor dense rock. Its apparent brightness arises from the fact that the material surrounding it is so dark. Images from the Mars Global Surveyor MOC camera revealed dark sand dunes surrounding White Rock and on the floor of the troughs within it. Some of these dunes are just apparent in the THEMIS image. Although there was speculation that the material composing White Rock could be salts from an ancient dry lakebed, spectral data from the MGS TES instrument did not support this claim. Instead, the White Rock deposit may be the erosional remnant of a previously more continuous occurrence of air fall sediments, either volcanic ash or windblown dust. The THEMIS image offers new evidence for the idea that the original deposit covered a larger area. Approximately 10 kilometers to the southeast of the main deposit are some tiny knobs of similarly bright material preserved on the floor of a small crater. Given that the eolian erosion of the main White Rock deposit has produced isolated knobs at its edges, it is reasonable to suspect that the more distant outliers are the remnants of a once continuous deposit that stretched at least to this location. The fact that so little remains of the larger deposit suggests that the material is very easily eroded and simply blows away. The Story Fingers of hard, white rock seem to jut out like icy daggers across a moody Martian surface, but appearances can be deceiving. These bright, jagged features are neither white, nor icy, nor even hard and rocky! So what are they, and why are they so different from the surrounding terrain? Scientists know that you can't always trust what your eyes see alone. You have to use other kinds of science instruments to measure things that our eyes can't see . . . things like information about what kinds of minerals make up the landforms. Mars scientists once thought, for instance, that these unusual features might be vast hills of salt, the dried up remains of a long-ago, evaporated lake. Not so, said an instrument on the Mars Global Surveyor spacecraft, which revealed that the bright material is probably made up of volcanic ash or windblown dust instead. And talk about a cyclical 'ashes to ashes, dust to dust' story! Particles of this material fell and fell until they built up quite a sedimentary deposit, which was then only eroded away again by the wind over time, leaving the spiky terrain seen today. It looks white, but its apparent brightness arises from the fact that the surrounding material is so dark. Of course, good eyesight always helps in understanding. A camera on Mars Global Surveyor with close-up capabilities revealed that sand dunes are responsible for the smudgy dark material in the bright sediment and around it. But that's not all. The THEMIS camera on the Mars Odyssey spacecraft that took this image reveals that this ashy or dusty deposit once covered a much larger area than it does today. Look yourself for two small dots of white material on the floor of a small crater nearby (center right in this image). They preserve a record that this bright deposit once reached much farther. Since so little of it remains, you can figure that the material probably isn't very hard, and simply blows away. One thing's for sure. No one looking at this image could ever think that Mars is a boring place. With all of its bright and dark contrasts, this picture would be perfect for anyone who loves Ansel Adams and his black-and-white photography.
43 CFR 15.2 - Removal or destruction of natural features and marine life.
Code of Federal Regulations, 2012 CFR
2012-10-01
... marine invertebrates, seaweeds, grasses, or any soil, rock, artifacts, stones or other materials. No... this Preserve. No rope, wire or other contrivance shall be attached to any coral, rock or other...
Shape Memory Alloy Rock Splitters (SMARS)
NASA Technical Reports Server (NTRS)
Benafan, Othmane (Inventor); Noebe, Ronald D. (Inventor)
2017-01-01
Shape memory alloys (SMAs) may be used for static rock splitting. The SMAs may be used as high-energy multifunctional materials, which have a unique ability to recover large deformations and generate high stresses in response to thermal loads.
Is the Rock Cycle an Outdated Idea, or a Unifying Concept?
ERIC Educational Resources Information Center
Eves, Robert Leo; Davis, Larry Eugene
1988-01-01
Discusses how rock-cycle diagrams can graphically illustrate the interrelationship between materials and processes in physical geology courses. Reviews nine contemporary physical geology textbooks with regard to their use of such diagrams. (TW)
Study of Experiment on Rock-like Material Consist of fly-ash, Cement and Mortar
NASA Astrophysics Data System (ADS)
Nan, Qin; Hongwei, Wang; Yongyan, Wang
2018-03-01
Study the uniaxial compression test of rock-like material consist of coal ash, cement and mortar by changing the sand cement ratio, replace of fine coal, grain diameter, water-binder ratio and height-diameter ratio. We get the law of four factors above to rock-like material’s uniaxial compression characteristics and the quantitative relation. The effect law can be sum up as below: sample’s uniaxial compressive strength and elasticity modulus tend to decrease with the increase of sand cement ratio, replace of fine coal and water-binder ratio, and it satisfies with power function relation. With high ratio increases gradually, the uniaxial compressive strength and elastic modulus is lower, and presents the inverse function curve; Specimen tensile strength decreases gradually with the increase of fly ash. By contrast, uniaxial compression failure phenomenon is consistent with the real rock common failure pattern.
A chemical model for lunar non-mare rocks
NASA Technical Reports Server (NTRS)
Hubbard, N. J.; Rhodes, J. M.
1974-01-01
Nearly all rocks returned from the moon are readily divided into three broad categories on the basis of their chemical compositions: (1) mare basalts, (2) non-mare rocks of basaltic composition (KREEP, VHA), and (3) anorthositic rocks. Only mare basalts may unambiguously be considered to have original igneous textures and are widely understood to have an igneous origin. Nearly all other lunar rocks have lost their original textures during metamorphic and impact processes. It is shown that for these rocks one must work primarily with chemical data in order to recognize and define rock groups and their possible modes of origin. Non-mare rocks of basaltic composition have chemical compositions consistent with an origin by partial melting of the lunar interior. The simplest origin for rocks of anorthositic chemical composition is the crystallization and removal of ferromagnesian minerals. It is proposed that the rock groups of anorthositic and non-mare basaltic chemical composition could have been generated from a single series of original but not necessarily primitive lunar materials.
A chemical model for lunar non-mare rocks
NASA Technical Reports Server (NTRS)
Hubbard, N. J.; Rhodes, J. M.
1977-01-01
Nearly all rocks returned from the moon are readily divided into three broad categories on the basis of their chemical compositions: (1) mare basalts, (2) non-mare rocks of basaltic composition (KREEP, VHA), and (3) anorthositic rocks. Only mare basalts may unambiguously be considered to have original igneous textures and are widely understood to have an igneous origin. Nearly all other lunar rocks have lost their original textures during metamorphic and impact processes. For these rocks one must work primarily with chemical data in order to recognize and define rock groups and their possible modes of origin. Non-mare rocks of basaltic composition have chemical compositions consistent with an origin by partial melting of the lunar interior. The simplest origin for rocks of anorthositic chemical composition is the crystallization and removal of ferromagnesian minerals. It is proposed that the rock groups of anorthositic and non-mare basaltic chemical composition could have been generated from a single series of original, but not necessarily primitive, lunar materials.
Rock-Magnetic Method for Post Nuclear Detonation Diagnostics
NASA Astrophysics Data System (ADS)
Englert, J.; Petrosky, J.; Bailey, W.; Watts, D. R.; Tauxe, L.; Heger, A. S.
2011-12-01
A magnetic signature characteristic of a Nuclear Electromagnetic Pulse (NEMP) may still be detectable near the sites of atmospheric nuclear tests conducted at what is now the Nevada National Security Site. This signature is due to a secondary magnetization component of the natural remanent magnetization of material containing traces of ferromagnetic particles that have been exposed to a strong pulse of magnetic field. We apply a rock-magnetic method introduced by Verrier et al. (2002), and tested on samples exposed to artificial lightning, to samples of rock and building materials (e.g. bricks, concrete) retrieved from several above ground nuclear test sites. The results of magnetization measurements are compared to NEMP simulations and historic test measurements.
The Alpha Particle X-Ray Spectrometer (APXS): Results from Gusev Crater and Calibration Report
NASA Technical Reports Server (NTRS)
Gellert, R.; Rieder, R.; Brueckner, J.; Clark, B.; Dreibus, G.; Klingelhoefer, G.; Lugmair, G.; Ming, D.; Waenke, H.; Yen, A.;
2006-01-01
The chemical composition of rocks and soils on Mars analyzed during the Mars Exploration Rover Spirit Mission was determined by X-ray analyses with the Alpha Particle X-Ray Spectrometer (APXS). Details of the data analysis method and the instrument calibration are presented. Measurements performed on Mars to address geometry effects and background contributions are shown. Cross calibration measurements among several instrument sensors and sources are discussed. An unintentional swap of the two flight instruments is evaluated. New concentration data acquired during the first 470 sols of rover Spirit in Gusev Crater are presented. There are two geological regions, the Gusev plains and the Columbia Hills. The plains contain soils that are very similar to previous landing sites on Mars. A meteoritic component in the soil is identified. Rocks in the plains revealed thin weathering rinds. The underlying abraded rock was classified as primitive basalt. One of these rocks contained significant Br that is probably associated with vein-filling material of different composition. One of the trenches showed large subsurface enrichments of Mg, S, and Br. Disturbed soils and rocks in the Columbia Hills revealed different elemental compositions. These rocks are significantly weathered and enriched in mobile elements, such as P, S, Cl, or Br. Even abraded rock surfaces have high Br concentrations. Thus, in contrast to the rocks and soils in the Gusev Plains, the Columbia Hills material shows more significant evidence of ancient aqueous alteration.
Ti-in-zircon thermometry: applications and limitations
NASA Astrophysics Data System (ADS)
Fu, Bin; Page, F. Zeb; Cavosie, Aaron J.; Fournelle, John; Kita, Noriko T.; Lackey, Jade Star; Wilde, Simon A.; Valley, John W.
2008-08-01
The titanium concentrations of 484 zircons with U-Pb ages of ˜1 Ma to 4.4 Ga were measured by ion microprobe. Samples come from 45 different igneous rocks (365 zircons), as well as zircon megacrysts (84) from kimberlite, Early Archean detrital zircons (32), and zircon reference materials (3). Samples were chosen to represent a large range of igneous rock compositions. Most of the zircons contain less than 20 ppm Ti. Apparent temperatures for zircon crystallization were calculated using the Ti-in-zircon thermometer (Watson et al. 2006, Contrib Mineral Petrol 151:413-433) without making corrections for reduced oxide activities (e.g., TiO2 or SiO2), or variable pressure. Average apparent Ti-in-zircon temperatures range from 500° to 850°C, and are lower than either zircon saturation temperatures (for granitic rocks) or predicted crystallization temperatures of evolved melts (˜15% melt residue for mafic rocks). Temperatures average: 653 ± 124°C (2 standard deviations, 60 zircons) for felsic to intermediate igneous rocks, 758 ± 111°C (261 zircons) for mafic rocks, and 758 ± 98°C (84 zircons) for mantle megacrysts from kimberlite. Individually, the effects of reduced a_{TiO2} or a_{SiO2}, variable pressure, deviations from Henry’s Law, and subsolidus Ti exchange are insufficient to explain the seemingly low temperatures for zircon crystallization in igneous rocks. MELTs calculations show that mafic magmas can evolve to hydrous melts with significantly lower crystallization temperature for the last 10-15% melt residue than that of the main rock. While some magmatic zircons surely form in such late hydrous melts, low apparent temperatures are found in zircons that are included within phenocrysts or glass showing that those zircons are not from evolved residue melts. Intracrystalline variability in Ti concentration, in excess of analytical precision, is observed for nearly all zircons that were analyzed more than once. However, there is no systematic change in Ti content from core to rim, or correlation with zoning, age, U content, Th/U ratio, or concordance in U-Pb age. Thus, it is likely that other variables, in addition to temperature and a_{TiO2}, are important in controlling the Ti content of zircon. The Ti contents of igneous zircons from different rock types worldwide overlap significantly. However, on a more restricted regional scale, apparent Ti-in-zircon temperatures correlate with whole-rock SiO2 and HfO2 for plutonic rocks of the Sierra Nevada batholith, averaging 750°C at 50 wt.% SiO2 and 600°C at 75 wt.%. Among felsic plutons in the Sierra, peraluminous granites average 610 ± 88°C, while metaluminous rocks average 694 ± 94°C. Detrital zircons from the Jack Hills, Western Australia with ages from 4.4 to 4.0 Ga have apparent temperatures of 717 ± 108°C, which are intermediate between values for felsic rocks and those for mafic rocks. Although some mafic zircons have higher Ti content, values for Early Archean detrital zircons from a proposed granitic provenance are similar to zircons from many mafic rocks, including anorthosites from the Adirondack Mts (709 ± 76°C). Furthermore, the Jack Hills zircon apparent Ti-temperatures are significantly higher than measured values for peraluminous granites (610 ± 88°C). Thus the Ti concentration in detrital zircons and apparent Ti-in-zircon temperatures are not sufficient to independently identify parent melt composition.
Cheng, Liang; Zhang, Yidong; Ji, Ming; Zhang, Kai; Zhang, Minglei
2016-01-01
Roadways supported by bolts contain support structures that are built into the rock surrounding the roadway, referred to as reinforced rocks in this paper. Using physical model simulation, the paper investigates the bearing characteristics of the reinforced rock under different bolt parameters with incrementally increased load. The experimental results show that the stress at the measurement point inside the structure varies with the kinetic pressure. The stress increases slowly as the load is initially applied, displays accelerated growth in the middle of the loading application, and decreases or remains constant in the later stage of the loading application. The change in displacement of the surrounding rock exhibits the following characteristics: a slow increase when the load is first applied, accelerated growth in the middle stage, and violent growth in the later stage. There is a good correlation between the change in the measured stress and the change in the surrounding rock displacement. Increasing the density of the bolt support and the length and diameter of the bolt improves the load-bearing performance of the reinforced rock, including its strength, internal peak stress, and residual stress. Bolting improves the internal structure of the surrounding rocks, and the deterioration of the surrounding rock decreases with the distance between the bolt supports.
Building Insulation Materials Compilation.
1979-09-01
Fiber Rock or slag wool mineral fiber or mineral wool insulation is produced in a manner similar to that of fiberglass. In the U.S.A. the material most...commonly used to manufacture mineral wool is slag - from the production of steel, copper or lead. Rock wool and fiberglass are similar forms of...Insulation, Inc. Edina, Minnesota 55435 P.O. Box 188 (612) 835-3717 2705 West Highway 55 Hamel, Minnesota 55340 Casco Mineral Wool Division (612) 478-6614
Light Material Ripped Up Older Dark Vein Material
2015-11-11
This view from the Mars Hand Lens Imager (MAHLI) on the arm of NASA's Curiosity Mars rover shows a combination of dark and light material within a mineral vein at a site called "Garden City" on lower Mount Sharp. The image was taken on April 4, 2015, during the 946th Martian day, or sol, of Curiosity's work on Mars. The area shown is roughly 1 inch (2.5 centimeters) wide. Differences in textures of light-toned veins in the Garden City complex of crisscrossing mineral veins are clues that these veins may result from distinct fluid events. This example shows where a later addition of light-toned material into a vein ripped up prior dark material, suggesting both high fluid pressure and potentially explosive release of high pressures. Different examples are at PIA19925 and PIA19926. Mineral veins often form where fluids move through fractured rocks, depositing minerals in the fractures and affecting chemistry of the surrounding rock. At Garden City, the veins have been more resistant to erosion than the surrounding host rock. The fluid movement through fractures at Garden City occurred later than wet environmental conditions in which the host rock formed, before it hardened and cracked. Malin Space Science Systems, San Diego, built and operates MAHLI. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover. http://photojournal.jpl.nasa.gov/catalog/PIA19927
The Rock Cycle or It's Hard When You're a Rock.
ERIC Educational Resources Information Center
Pugsley, David C.
Produced for primary grades, this booklet provides study of the mineral or rock cycle in nature. Line drawings, a minimum amount of narrative, and a glossary of terms make up its content. The booklet is designed to be used as reading material, a coloring book, or for dramatic arts with students acting out parts of the cycle. This work was prepared…
NASA Astrophysics Data System (ADS)
Hjelle, Kari Loe; Lødøen, Trond Klungseth
2017-07-01
One of the main aims of Scandinavian rock art research in recent years has been to identify the culture or society responsible for the imagery. This is of mutual importance, as studies of material culture can shed light on the rock art, while the iconography can be used to understand the contemporary material remains. A major challenge however, has been to determine the exact age of the images, as there are no direct dating materials. In order to overcome this challenge archaeological excavations and palynological analyses have been carried out at Vingen in Western Norway, one of Scandinavia's largest rock art areas. The archaeological and palynological data achieved, as well as loss-on-ignition are independent means for the dating of human activity. Since these methods provided similar results, an indirect connection to the rock art production activity may be inferred. Dates from archaeological contexts indicate a peak of activity between 6900 and 6300 cal. BP, with a potential start 7350 cal. BP and a culmination 6100 cal. BP. Palynological data from three different types of basins have documented forest disturbance in the same time period. Local vegetation reconstructions using the Landscape Reconstruction Algorithm has proved useful to identify anthropogenic-induced land cover changes in the Mesolithic period and a marked reforestation at the transition to the Neolithic period. The applied methods have helped to considerably improve our understanding of past activity and the environment, and demonstrates the potential of archaeological excavations and palynological studies for dating of rock art.
Thermo-mechanical modelling of salt caverns due to fluctuating loading conditions.
NASA Astrophysics Data System (ADS)
Böttcher, N.
2015-12-01
This work summarizes the development and application of a numerical model for the thermo-mechanical behaviour of salt caverns during cyclic gas storage. Artificial salt caverns are used for short term energy storage, such as power-to-gas or compressed air energy storage. Those applications are characterized by highly fluctuating operation pressures due to the unsteady power levels of power plants based on renewable energy. Compression and expansion of the storage gases during loading and unloading stages lead to rapidly changing temperatures in the host rock of the caverns. This affects the material behaviour of the host rock within a zone that extends several meters into the rock mass adjacent to the cavern wall, and induces thermo-mechanical stresses and alters the creep response.The proposed model features the thermodynamic behaviour of the storage medium, conductive heat transport in the host rock, as well as temperature dependent material properties of rock salt using different thermo-viscoplastic material models. The utilized constitutive models are well known and state-of-the-art in various salt mechanics applications. The model has been implemented into the open-source software platform OpenGeoSys. Thermal and mechanical processes are solved using a finite element approach, coupled via a staggered coupling scheme. The simulation results allow the conclusion, that the cavern convergence rate (and thus the efficiency of the cavern) is highly influenced by the loading cycle frequency and the resulting gas temperatures. The model therefore allows to analyse the influence of operation modes on the cavern host rock or on neighbouring facilities.
Design of Raft Foundations for High-Rise Buildings on Jointed Rock
NASA Astrophysics Data System (ADS)
Justo, J. L.; García-Núñez, J.-C.; Vázquez-Boza, M.; Justo, E.; Durand, P.; Azañón, J. M.
2014-07-01
This paper presents calculations of displacements and bending moments in a 2-m-thick reinforced-concrete foundation slab using three-dimensional finite-element software. A preliminary paper was presented by Justo et al. (Rock Mech Rock Eng 43:287-304, 2010). The slab is the base of a tower of 137 m height above foundation, supported on jointed and partly weathered basalt and scoria. Installation of rod extensometers at different depths below foundation allowed comparison between measured displacements and displacements calculated using moduli obtained from rock classification systems and three material models: elastic, Mohr-Coulomb and hardening (H). Although all three material models can provide acceptable results, the H model is preferable when there are unloading processes. Acceptable values of settlement may be achieved with medium meshing and an approximate distribution of loads. The absolute values of negative bending moments (tensions below) increase as the rock mass modulus decreases or when the mesh is refined. The paper stresses the importance of adequately representing the details of the distribution of loads and the necessity for fine meshing to obtain acceptable values of bending moments.
Sensing Biosignatures Within Rocks of the Atacama Desert — An Analog for Mars Environments
NASA Astrophysics Data System (ADS)
Gnanaprakasa, T. J.; Domanik, K.; DiRuggiero, J.; Zega, T. J.
2016-05-01
We have been investigating potential biosignatures and mineral microstructure alteration of rocks from the Atacama desert in Chile. These materials represent martian analogs and are known to contain colonizing bacteria, to establish biosignatures.
Wynoochee Dam Foundation Report
1988-01-01
schists and in propylitized andesite volcanic rocks. Tests on chlorite-bearing graywackes (Lumni Island and Robe Quarry, Seattle District) and... propylitized chlorite-bearing andesites (Blue River and Lookout Point Dams, Portland District) have shown these rocks to be durable materials with only minor
Excess europium content in Precambrian sedimentary rocks and continental evolution
NASA Technical Reports Server (NTRS)
Jakes, P.; Taylor, S. R.
1974-01-01
It is proposed that the europium excess in Precambrian sedimentary rocks, relative to those of younger age, is derived from volcanic rocks of ancient island arcs, which were the source materials for the sediments. Precambrian sedimentary rocks and present-day volcanic rocks of island arcs have similar REE patterns, total REE abundances, and excess Eu, relative to the North American shale composite. The present upper crustal REE pattern, as exemplified by that of sediments, is depleted in Eu, relative to chondrites. This depletion is considered to be a consequence of development of a granodioritic upper crust by partial melting in the lower crust, which selectively retains europium.
Rowan, L.C.; Mars, J.C.
2003-01-01
Evaluation of an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of the Mountain Pass, California area indicates that several important lithologic groups can be mapped in areas with good exposure by using spectral-matching techniques. The three visible and six near-infrared bands, which have 15-m and 30-m resolution, respectively, were calibrated by using in situ measurements of spectral reflectance. Calcitic rocks were distinguished from dolomitic rocks by using matched-filter processing in which image spectra were used as references for selected spectral categories. Skarn deposits and associated bright coarse marble were mapped in contact metamorphic zones related to intrusion of Mesozoic and Tertiary granodioritic rocks. Fe-muscovite, which is common in these intrusive rocks, was distinguished from Al-muscovite present in granitic gneisses and Mesozoic granite. Quartzose rocks were readily discriminated, and carbonate rocks were mapped as a single broad unit through analysis of the 90-m resolution, five-band surface emissivity data, which is produced as a standard product at the EROS Data Center. Three additional classes resulting from spectral-angle mapper processing ranged from (1) a broad granitic rock class (2) to predominately granodioritic rocks and (3) a more mafic class consisting mainly of mafic gneiss, amphibolite and variable mixtures of carbonate rocks and silicate rocks. ?? 2002 Elsevier Science Inc. All rights reserved.
Rocky coast processes: with special reference to the recession of soft rock cliffs.
Sunamura, Tsuguo
2015-01-01
Substantial progress in research on the recession of coastal cliffs composed of soft materials has been made in recent years and data with higher accuracy have been accumulated. This paper provides the state of the art review in the recession studies and highlights two new findings obtained from the reanalysis of existing data. The review topics are: episodic and localized nature of cliff recession; the development of cliffline; the relationship between cliff height and recession rate; mechanisms of cliff toe erosion by waves; a fundamental equation for wave-induced toe erosion; factors controlling toe erosion; and slope instabilities and mass movements. The findings are presented on (1) the temporal change in cliffline recession mode and (2) the effect of beach sediment at the cliff base on the cliff erosion.
NASA Technical Reports Server (NTRS)
Wagner, Jeffrey K.; Hapke, Bruce W.; Wells, Eddie N.
1987-01-01
The spectra of samples of several powder and frost materials are presented to serve in a reference database for future far-UV scans of solar system bodies. The spectra cover in the 92-1800 nm wavelengths, i.e., wavenumbers 110,000-5600/cm and photon energies from 13.5-1.5 eV. Preparation procedures for the particulates are delineated. The survey includes feldspars, orthopyroxenes, clinopyroxenes, olivines, assorted minerals, achondrites, carbonaceous chondrites and ordinary chondrites, lunar soils and rocks. Frosts of H2O, CO2, NH3 and SO2 gases were also examined. The data are expected to aid in obtaining spectral matches for asteroids and meteoroids when far-UV telescopy of solar system bodies is performed.
Peculiarities of non-autoclaved lime wall materials production using clays
NASA Astrophysics Data System (ADS)
Volodchenko, A. A.; Lesovik, V. S.; Cherepanova, I. A.; Volodchenko, A. N.; Zagorodnjuk, L. H.; Elistratkin, M. Y.
2018-03-01
At present, the development and implementation of energy saving technologies for building materials production, which correspond to modern trends of «green» technologies, become ever more popular. One of the most widely spread wall materials today is a lime brick and stones. The primary raw goods used in production of such materials are quarziferous rocks. However, they have some disadvantages, including low strength index at the intermediate phase of their production, especially in case with a raw brick, which is an issue in the production of high-hollow goods due to low strength index of raw materials and the nonoptimal matrix structure. The conducted experiments confirmed the possibility to control structurization of building composites due to application of nonconventional argillous raw materials. Besides, the material and mineral composition of nonconventional clay rocks ensures the optimal microstructure thus providing for the production of efficient wall building materials via energy saving technology.
NASA Astrophysics Data System (ADS)
Brideau, Marc-André; Yan, Ming; Stead, Doug
2009-01-01
Rock slope failures are frequently controlled by a complex combination of discontinuities that facilitate kinematic release. These discontinuities are often associated with discrete folds, faults, and shear zones, and/or related tectonic damage. The authors, through detailed case studies, illustrate the importance of considering the influence of tectonic structures not only on three-dimensional kinematic release but also in the reduction of rock mass properties due to induced damage. The case studies selected reflect a wide range of rock mass conditions. In addition to active rock slope failures they include two major historic failures, the Hope Slide, which occurred in British Columbia in 1965 and the Randa rockslides which occurred in Switzerland in 1991. Detailed engineering geological mapping combined with rock testing, GIS data analysis and for selected case numerical modelling, have shown that specific rock slope failure mechanisms may be conveniently related to rock mass classifications such as the Geological Strength Index (GSI). The importance of brittle intact rock fracture in association with pre-existing rock mass damage is emphasized though a consideration of the processes involved in the progressive-time dependent development not only of though-going failure surfaces but also lateral and rear-release mechanisms. Preliminary modelling data are presented to illustrate the importance of intact rock fracture and step-path failure mechanisms; and the results are discussed with reference to selected field observations. The authors emphasize the importance of considering all forms of pre-existing rock mass damage when assessing potential or operative failure mechanisms. It is suggested that a rock slope rock mass damage assessment can provide an improved understanding of the potential failure mode, the likely hazard presented, and appropriate methods of both analysis and remedial treatment.
NASA Astrophysics Data System (ADS)
Cao, An-ye; Dou, Lin-ming; Wang, Chang-bin; Yao, Xiao-xiao; Dong, Jing-yuan; Gu, Yu
2016-11-01
Identification of precursory characteristics is a key issue for rock burst prevention. The aim of this research is to provide a reference for assessing rock burst risk and determining potential rock burst risk areas in coal mining. In this work, the microseismic multidimensional information for the identification of rock bursts and spatial-temporal pre-warning was investigated in a specific coalface which suffered high rock burst risk in a mining area near a large residual coal pillar. Firstly, microseismicity evolution prior to a disastrous rock burst was qualitatively analysed, and the abnormal clustering of seismic sources, abnormal variations in daily total energy release, and event counts can be regarded as precursors to rock burst. Secondly, passive tomographic imaging has been used to locate high seismic activity zones and assess rock burst hazard when the coalface passes through residual pillar areas. The results show that high-velocity or velocity anomaly regions correlated well with strong seismic activities in future mining periods and that passive tomography has the potential to describe, both quantitatively and periodically, hazardous regions and assess rock burst risk. Finally, the bursting strain energy index was further used for short-term spatial-temporal pre-warning of rock bursts. The temporal sequence curve and spatial contour nephograms indicate that the status of the danger and the specific hazardous zones, and levels of rock burst risk can be quantitatively and rapidly analysed in short time and in space. The multidimensional precursory characteristic identification of rock bursts, including qualitative analysis, intermediate and short-time quantitative predictions, can guide the choice of measures implemented to control rock bursts in the field, and provides a new approach to monitor and forecast rock bursts in space and time.
First Grinding of a Rock on Mars
NASA Technical Reports Server (NTRS)
2004-01-01
The round, shallow depression in this image resulted from history's first grinding of a rock on Mars. The rock abrasion tool on NASA's Spirit rover ground off the surface of a patch 45.5 millimeters (1.8 inches) in diameter on a rock called Adirondack during Spirit's 34th sol on Mars, Feb. 6, 2004. The hole is 2.65 millimeters (0.1 inch) deep, exposing fresh interior material of the rock for close inspection with the rover's microscopic imager and two spectrometers on the robotic arm. This image was taken by Spirit's panoramic camera, providing a quick visual check of the success of the grinding. The rock abrasion tools on both Mars Exploration Rovers were supplied by Honeybee Robotics, New York, N.Y.
Catalog of Apollo 17 rocks. Volume 1: Stations 2 and 3 (South Massif)
NASA Technical Reports Server (NTRS)
Ryder, Graham
1993-01-01
The Catalog of Apollo 17 Rocks is a set of volumes that characterize each of 334 individually numbered rock samples (79 larger than 100 g) in the Apollo 17 collection, showing what each sample is and what is known about it. Unconsolidated regolith samples are not included. The catalog is intended to be used by both researchers requiring sample allocations and a broad audience interested in Apollo 17 rocks. The volumes are arranged geographically, with separate volumes for the South Massif and Light Mantle, the North Massif, and two volumes for the mare plains. Within each volume, the samples are arranged in numerical order, closely corresponding with the sample collection stations. The present volume, for the South Massif and Light Mantle, describes the 55 individual rock fragments collected at Stations two, two-A, three, and LRV-five. Some were chipped from boulders, others collected as individual rocks, some by raking, and a few by picking from the soil in the processing laboratory. Information on sample collection, petrography, chemistry, stable and radiogenic isotopes, rock surface characteristics, physical properties, and curatorial processing is summarized and referenced as far as it is known up to early 1992. The intention has been to be comprehensive: to include all published studies of any kind that provide information on the sample, as well as some unpublished information. References which are primarily bulk interpretations of existing data or mere lists of samples are not generally included. Foreign language journals were not scrutinized, but little data appears to have been published only in such journals. We have attempted to be consistent in format across all of the volumes, and have used a common reference list that appears in all volumes. Where possible, ages based on Sr and Ar isotopes have been recalculated using the 'new' decay constants recommended by Steiger and Jager; however, in many of the reproduced diagrams the ages correspond with the 'old' decay constants. In this volume, mg' or Mg' = atomic Mg/(Mg +Fe).
Huang, Huibin; Guo, Qiuxuan; Qiu, Changsheng; Huang, Baoying; Fu, Xianguo; Yao, Jin; Liang, Jixing; Li, Liantao; Chen, Ling; Tang, Kaka; Lin, Lixiang; Lu, Jieli; Bi, Yufang; Ning, Guang; Wen, Junping; Lin, Caijing; Chen, Gang
2013-01-01
To explore the associations of green tea and rock tea consumption with risk of impaired fasting glucose (IFG) and impaired glucose tolerance (IGT). A multistage, stratified, cluster, random-sampling method was used to select a representative sample from Fujian Province in China. In total, 4808 subjects without cardiovascular disease, hypertension, cancer, or pancreatic, liver, kidney, or gastrointestinal diseases were enrolled in the study. A standard questionnaire was used to gather data on tea (green, rock, and black) consumption and other relevant factors. The assessment of impaired glucose regulation (IGR) was using 75-g oral glucose tolerance test (OGTT), the diagnostic criteria of normal glucose tolerance was according to American Diabetes Association. Green tea consumption was associated with a lower risk of IFG, while rock tea consumption was associated with a lower risk of IGT. The adjusted odds ratios for IFG for green tea consumption of <1, 1-15, 16-30, and >30 cups per week were 1.0 (reference), 0.42 (95% confidence intervals (CI) 0.27-0.65), 0.23 (95% CI, 0.12-0.46), and 0.41 (95% CI, 0.17-0.93), respectively. The adjusted odds ratios for IGT for rock tea consumption of <1, 1-15, 16-30, and >30 cups per week were 1.0 (reference), 0.69 (95% CI, 0.48-0.98), 0.59 (95% CI, 0.39-0.90), and 0.64 (95% CI, 0.43-0.97), respectively. A U-shaped association was observed, subjects who consumed 16-30 cups of green or rock tea per week having the lowest odds ratios for IFG or IGT. Consumption of green or rock tea may protect against the development of type 2 diabetes mellitus in Chinese men and women, particularly in those who drink 16-30 cups per week.
Huang, Huibin; Guo, Qiuxuan; Qiu, Changsheng; Huang, Baoying; Fu, Xianguo; Yao, Jin; Liang, Jixing; Li, Liantao; Chen, Ling; Tang, Kaka; Lin, Lixiang; Lu, Jieli; Bi, Yufang; Ning, Guang; Wen, Junping; Lin, Caijing; Chen, Gang
2013-01-01
Objective To explore the associations of green tea and rock tea consumption with risk of impaired fasting glucose (IFG) and impaired glucose tolerance (IGT). Methods A multistage, stratified, cluster, random-sampling method was used to select a representative sample from Fujian Province in China. In total, 4808 subjects without cardiovascular disease, hypertension, cancer, or pancreatic, liver, kidney, or gastrointestinal diseases were enrolled in the study. A standard questionnaire was used to gather data on tea (green, rock, and black) consumption and other relevant factors. The assessment of impaired glucose regulation (IGR) was using 75-g oral glucose tolerance test (OGTT), the diagnostic criteria of normal glucose tolerance was according to American Diabetes Association. Results Green tea consumption was associated with a lower risk of IFG, while rock tea consumption was associated with a lower risk of IGT. The adjusted odds ratios for IFG for green tea consumption of <1, 1–15, 16–30, and >30 cups per week were 1.0 (reference), 0.42 (95% confidence intervals (CI) 0.27–0.65), 0.23 (95% CI, 0.12–0.46), and 0.41 (95% CI, 0.17–0.93), respectively. The adjusted odds ratios for IGT for rock tea consumption of <1, 1–15, 16–30, and >30 cups per week were 1.0 (reference), 0.69 (95% CI, 0.48–0.98), 0.59 (95% CI, 0.39–0.90), and 0.64 (95% CI, 0.43–0.97), respectively. A U-shaped association was observed, subjects who consumed 16–30 cups of green or rock tea per week having the lowest odds ratios for IFG or IGT. Conclusions Consumption of green or rock tea may protect against the development of type 2 diabetes mellitus in Chinese men and women, particularly in those who drink 16–30 cups per week. PMID:24260170
Estimating small-scale roughness of a rock joint using TLS data
NASA Astrophysics Data System (ADS)
Bitenc, Maja; Kieffer, D. Scott; Khoshelham, Kourosh
2016-04-01
Roughness of a rock joint is an important parameter influencing rock mass stability. Besides the surface amplitude, also the roughness direction- and scale-dependency should be observed (i.e. 3D roughness). Up to now most of roughness measurements and parameters rely on point or profile data obtained on small samples, mostly in a laboratory. State-of-the-art remote sensing technologies supply 3D measurements of an in-situ rock surface and therefore enable a 3D roughness parameterization. Detailed morphology of a remote large-scale vertical structure can be best observed by Terrestrial Laser Scanning (TLS). In a short time and from distances of a few hundred meters, TLS provides relatively dense and precise point cloud. Sturzenegger and Stead [2009] showed that the TLS technology and careful fieldwork allow the extraction of first-order roughness profiles, i.e. the surface irregularities with a wavelength greater than about 10 cm. Our goal is to find the lower limit; this is, to define the smallest discernible detail, and appropriate measuring and processing steps to extract this detail from the TLS data. The smallest observable roughness amplitude depends on the TLS data precision, which is limited mostly by an inherent range error (noise). An influence of the TLS noise on the rock joint roughness was analyzed using highly precise reference data acquired by Advanced TOpometric Sensor (ATOS) on a 20x30 cm rock joint sample. ATOS data were interpolated into 1 mm grid, to which five levels (0.5, 1, 1.5, 2, 2.5 mm) of normally distributed noise were added. The 3D surfaces entered direction-dependent roughness parameter computation after Grasselli [2001]. Average roughness of noisy surfaces logarithmically increase with the noise level and is already doubled for 1 mm noise. Performing Monte Carlo simulation roughness parameter noise sensitivity was investigated. Distribution of roughness differences (roughness of noisy surfaces minus roughness of reference ATOS surface) is approximately normal. Standard deviation of differences on average slightly increases with the noise level, but is strongly dependent on the analysis direction. As proved by different researches within the field of signal, image and also TLS data processing, noise can be, to a certain extent, removed by a post-processing step called denoising. In this research, four denoising methods, namely discrete WT (DWT) and stationary WT (SWT), and classic NLM (NLM) and probabilistic NLM (PNLM), were used on noisy ATOS data. Results were compared based on the (i) height and (ii) roughness differences between denoised surfaces and reference ATOS surface, (iii) the peak signal-to-noise ratio (PSNR) and (iv) the visual check of denoised surface. Increased PSNRs and reduced roughness differences prove the importance of the TLS data denoising procedure. In case of SWT, NLM and PNLM the surface is mostly over smoothed, whereas in case of DWT some noise remains. References: - Grasselli, G. (2001). Shear strength of rock joints based on quantified surface description. École Polytechnique Fédérale de Lausanne. Lausanne, EPFL. - Sturzenegger, M. and D. Stead (2009). "Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts." Engineering Geology 106(3-4): 163-182.
Powder-Collection System for Ultrasonic/Sonic Drill/Corer
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Chang, Zensheu; Blake, David; Bryson, Charles
2005-01-01
A system for collecting samples of powdered rock has been devised for use in conjunction with an ultrasonic/sonic drill/corer (USDC) -- a lightweight, lowpower apparatus designed to cut into, and acquire samples of, rock or other hard material for scientific analysis. The USDC includes a drill bit, corer, or other tool bit, in which ultrasonic and sonic vibrations are excited by an electronically driven piezoelectric actuator. The USDC advances into the rock or other material of interest by means of a hammering action and a resulting chiseling action at the tip of the tool bit. The hammering and chiseling actions are so effective that unlike in conventional twist drilling, a negligible amount of axial force is needed to make the USDC advance into the material. Also unlike a conventional twist drill, the USDC operates without need for torsional restraint, lubricant, or a sharp bit. The USDC generates powder as a byproduct of the drilling or coring process. The purpose served by the present samplecollection system is to remove the powder from the tool-bit/rock interface and deliver the powder to one or more designated location(s) for analysis or storage
Looking Back at 'Eagle Crater'(Left-eye)
NASA Technical Reports Server (NTRS)
2004-01-01
This is the left-eye version of the first 360-degree view from the Mars Exploration Rover Opportunity's new position outside 'Eagle Crater,' the small crater where the rover landed about two months ago. Scientists are busy analyzing Opportunity's new view of the plains of Meridiani Planum. The plentiful ripples are a clear indication that wind is the primary geologic process currently in effect on the plains. The rover's tracks can be seen leading away from Eagle Crater. At the far left are two depressions--each about a meter (about 3.3 feet) across---that feature bright spots in their centers. One possibility is that the bright material is similar in composition to the rocks in Eagle Crater's outcrop and the surrounding darker material is what's referred to as 'lag deposit,' or erosional remnants, which are much harder and more difficult to wear away. These twin dimples might be revealing pieces of a larger outcrop that lies beneath. The depression closest to Opportunity is whimsically referred to as 'Homeplate' and the one behind it as 'First Base.' The rover's panoramic camera is set to take detailed images of the depressions today, on Opportunity's 58th sol. The backshell and parachute that helped protect the rover and deliver it safely to the surface of Mars are also visible near the horizon, at the left of the image. This image was taken by the rover's navigation camera.
Superficial Deposits at Gusev Crater Along Spirit Rover Traverses
NASA Technical Reports Server (NTRS)
Grant, J. A.; Arvidson, R.; Bell, J. F., III; Cabrol, N. A.; Carr, M. H.; Christensen, P.; Crumpler, L.; DesMarsais, D.; Ehlmann, B. L.; Ming, Douglas W.
2004-01-01
The Mars Exploration Rover Spirit has traversed a fairly flat, rock-strewn terrain whose surface is shaped primarily by impact events, although some of the landscape has been altered by eolian processes.Impacts ejected basaltic rocks that probably were part of locally formed lava flows from at least 10 meters depth.Some rocks have been textured and/or partially buried by windblown sediments less than 2 millimeters in diameter that concentrate within shallow, partially filled, circular impact depressions referred to as hollows.The terrain traversed during the 90-sol (martian solar day) nominal mission shows no evidence for an ancient lake in Gusev crater.
Determination of chlorine in silicate rocks
Peck, L.C.
1959-01-01
In a rapid accurate method for the determination of chlorine in silicate rocks, the rock powder is sintered with a sodium carbonate flux containing zinc oxide and magnesium carbonate. The sinter cake is leached with water, the resulting solution is filtered, and the filtrate is acidified with nitric acid. Chlorine is determined by titrating this solution with mercuric nitrate solution using sodium nitroprusside as the indicator. The titration is made in the dark with a beam of light shining through the solution. The end point of the titration is found by visually comparing the intensity of this beam of light with that of a similar beam of light in a reference solution.
Surficial deposits at Gusev crater along Spirit Rover traverses
Grant, J. A.; Arvidson, R.; Bell, J.F.; Cabrol, N.A.; Carr, M.H.; Christensen, P.; Crumpler, L.; Des Marais, D.J.; Ehlmann, B.L.; Farmer, J.; Golombek, M.; Grant, F.D.; Greeley, R.; Herkenhoff, K.; Li, R.; McSween, H.Y.; Ming, D. W.; Moersch, J.; Rice, J. W.; Ruff, S.; Richter, L.; Squyres, S.; Sullivan, R.; Weitz, C.
2004-01-01
The Mars Exploration Rover Spirit has traversed a fairly flat, rock-strewn terrain whose surface is shaped primarily by impact events, although some of the landscape has been altered by eolian processes. Impacts ejected basaltic rocks that probably were part of locally formed lava flows from at least 10 meters depth. Some rocks have been textured and/or partially buried by windblown sediments less than 2 millimeters in diameter that concentrate within shallow, partially filled, circular impact depressions referred to as hollows. The terrain traversed during the 90-sol (martian solar day) nominal mission shows no evidence for an ancient lake in Gusev crater.
Relative scale and the strength and deformability of rock masses
NASA Astrophysics Data System (ADS)
Schultz, Richard A.
1996-09-01
The strength and deformation of rocks depend strongly on the degree of fracturing, which can be assessed in the field and related systematically to these properties. Appropriate Mohr envelopes obtained from the Rock Mass Rating (RMR) classification system and the Hoek-Brown criterion for outcrops and other large-scale exposures of fractured rocks show that rock-mass cohesive strength, tensile strength, and unconfined compressive strength can be reduced by as much as a factor often relative to values for the unfractured material. The rock-mass deformation modulus is also reduced relative to Young's modulus. A "cook-book" example illustrates the use of RMR in field applications. The smaller values of rock-mass strength and deformability imply that there is a particular scale of observation whose identification is critical to applying laboratory measurements and associated failure criteria to geologic structures.
NASA Astrophysics Data System (ADS)
Parrish, R. R.; Bracciali, L.; Condon, D. J.; Horstwood, M. S.; Najman, Y.
2012-12-01
While rutile (TiO2) occurs in the heavy mineral suite of detrital sediments and originates mainly in medium- to high-grade metamorphic and some igneous rocks, there are very few applications of U-Pb dating of rutile to provenance studies; this is due to an overreliance on zircon, low U content of rutile limiting measurement quality by in situ methods, a higher proportion of common Pb relative to zircon, and a lack of widely available good quality reference materials. We have addressed these issues and characterized two ~ 1.8 Ga rutile reference materials by SEM, trace elements, U-Pb ID-TIMS, and intra-grain and inter-grain U-Pb LA-MC-ICP-MS analysis using mixed faraday and multiple ion counting detectors with high sensitivity. We have assessed U-Pb discordance and in situ variations in relative common Pb and age and their bearing on the quality of the reference materials for in situ U-Pb dating. The rutiles (Sugluk-4 and PCA-S207) come from granulite facies belts of the Canadian Shield, namely the northern Cape Smith Belt of Quebec and the Snowbird Tectonic Zone (Sasatchewan). The ID-TIMS data are slightly discordant due to variable common Pb and limited Pb loss; the variation in 6 single grains of Sugluk-4, that we use as the primary reference material, is <1% in 206Pb/238U, and <2% for 207Pb/206Pb (95 % conf.); after common Pb correction these variations are <1%. The measured variations are smaller than in existing reference materials (i.e. R10) in current use. LA-ICP-MC-MS data (n ~ 500 for each) have a reproducibility of 206Pb/238U and 207Pb/206Pb of ~2-4% (at the 2S level), which is only modestly worse than long-term data for multiple zircon standards, this being due to the real variation in measured values arising from limited Pb loss, age variation, and common Pb variability [1]. We have applied our refined method to the provenance of rutile from drainages from British Columbia, Bhutan, and the Brahmaputra River of NE India (predominant rutile ages ~ 50, 15, and 2 Ma, respectively; Bracciali et al., this meeting). Our method successfully dates >75% of all rutile grains in a sediment; unsuccessful analyses are due to poor quality rutiles with massive common Pb and/or U contents < ~1ppm. While some analyses are therefore unusable, unlike zircon age zoning is rare to absent in rutile and there is little need to image grains to identify 'inheritance' to arrive at a correct interpretation of measured ages. Rutile has a ~ 500°C closure temperature and thus records mainly the time of cooling; it is therefore a sensitive recorder of metamorphic thermochronological information, and an excellent complement to detrital zircon analysis. There appears to be huge scope of in situ application of U-Pb dating to detrital rutile in provenance studies in the future. [1] Bracciali L., Parrish R.R., Condon D., Horstwood M.S.A., Najman,Y., Two new rutile reference materials for in situ U-Pb LA-MC-ICP-MS dating and applications to sedimentary provenance, submitted to Chem. Geol.
Modelling Technique for Demonstrating Gravity Collapse Structures in Jointed Rock.
ERIC Educational Resources Information Center
Stimpson, B.
1979-01-01
Described is a base-friction modeling technique for studying the development of collapse structures in jointed rocks. A moving belt beneath weak material is designed to simulate gravity. A description is given of the model frame construction. (Author/SA)
Code of Federal Regulations, 2010 CFR
2010-07-01
... limitations or prohibitions under section 307(a), and applicable water quality standards. Discharge of dredged..., infrastructure, or impoundment requiring rock, sand, dirt, or other material for its construction; site... include, but are not limited to: rock, sand, soil, clay, plastics, construction debris, wood chips...
An Oblique View of Uplifted Rocks
2017-05-24
This image from NASA's Mars Reconnaissance Orbiter shows part of the central uplifted region of an impact crater more than 50 kilometers wide. That means that the bedrock has been raised from a depth of about 5 kilometers, exposing ancient materials. The warm (yellowish-reddish) colors mark the presence of minerals altered by water, whereas the bluish and greenish rocks have escaped alteration. Sharp-crested ridges and smooth areas are young windblown materials. https://photojournal.jpl.nasa.gov/catalog/PIA21640
Architecture for coated conductors
Foltyn, Stephen R.; Arendt, Paul N.; Wang, Haiyan; Stan, Liliana
2010-06-01
Articles are provided including a base substrate having a layer of an oriented cubic oxide material with a rock-salt-like structure layer thereon, and, a layer of epitaxial titanium nitride upon the layer of an oriented cubic oxide material having a rock-salt-like structure. Such articles can further include thin films of high temperature superconductive oxides such as YBCO upon the layer of epitaxial titanium nitride or upon a intermediate buffer layer upon the layer of epitaxial titanium nitride.
Thermal and range fusion for a planetary rover
NASA Technical Reports Server (NTRS)
Caillas, Claude
1992-01-01
This paper describes how fusion between thermal and range imaging allows us to discriminate different types of materials in outdoor scenes. First, we analyze how pure vision segmentation algorithms applied to thermal images allow discriminating materials such as rock and sand. Second, we show how combining thermal and range information allows us to better discriminate rocks from sand. Third, as an application, we examine how an autonomous legged robot can use these techniques to explore other planets.
1988-05-01
include poly- chlorinated biphenyls (PCBs) and related chlorinated pesticides of similar polarity in addition to the petroleum hydrocarbons . The...Ui It tILL (JV: FIELD VERIFICATION PROGRAM (AQUATIC DISPOSAL).’Wh TECHNICAL REPORT D-87-6 COMPARISON OF FIELD AND LABORATORY BIOACCUMULATION OF...Laboratory Bioaccumulation of Organic and Inorganic Contaminants from Black Rock Harbor Dredged Material 12 PERSONAL AUTHOR(S) Lake, James L.; Galloway
Scale dependence of rock friction at high work rate.
Yamashita, Futoshi; Fukuyama, Eiichi; Mizoguchi, Kazuo; Takizawa, Shigeru; Xu, Shiqing; Kawakata, Hironori
2015-12-10
Determination of the frictional properties of rocks is crucial for an understanding of earthquake mechanics, because most earthquakes are caused by frictional sliding along faults. Prior studies using rotary shear apparatus revealed a marked decrease in frictional strength, which can cause a large stress drop and strong shaking, with increasing slip rate and increasing work rate. (The mechanical work rate per unit area equals the product of the shear stress and the slip rate.) However, those important findings were obtained in experiments using rock specimens with dimensions of only several centimetres, which are much smaller than the dimensions of a natural fault (of the order of 1,000 metres). Here we use a large-scale biaxial friction apparatus with metre-sized rock specimens to investigate scale-dependent rock friction. The experiments show that rock friction in metre-sized rock specimens starts to decrease at a work rate that is one order of magnitude smaller than that in centimetre-sized rock specimens. Mechanical, visual and material observations suggest that slip-evolved stress heterogeneity on the fault accounts for the difference. On the basis of these observations, we propose that stress-concentrated areas exist in which frictional slip produces more wear materials (gouge) than in areas outside, resulting in further stress concentrations at these areas. Shear stress on the fault is primarily sustained by stress-concentrated areas that undergo a high work rate, so those areas should weaken rapidly and cause the macroscopic frictional strength to decrease abruptly. To verify this idea, we conducted numerical simulations assuming that local friction follows the frictional properties observed on centimetre-sized rock specimens. The simulations reproduced the macroscopic frictional properties observed on the metre-sized rock specimens. Given that localized stress concentrations commonly occur naturally, our results suggest that a natural fault may lose its strength faster than would be expected from the properties estimated from centimetre-sized rock samples.
NASA Astrophysics Data System (ADS)
Li, Xibing; Du, Kun; Li, Diyuan
2015-11-01
True triaxial tests have been carried out on granite, sandstone and cement mortar using cubic specimens with the process of unloading the minor principal stress. The strengths and failure modes of the three rock materials are studied in the processes of unloading σ 3 and loading σ 1 by the newly developed true triaxial test system under different σ 2, aiming to study the mechanical responses of the rock in underground excavation at depth. It shows that the rock strength increases with the raising of the intermediate principal stress σ 2 when σ 3 is unloaded to zero. The true triaxial strength criterion by the power-law relationship can be used to fit the testing data. The "best-fitting" material parameters A and n ( A > 1.4 and n < 1.0) are almost located in the same range as expected by Al-Ajmi and Zimmerman (Int J Rock Mech Min Sci 563 42(3):431-439, 2005). It indicates that the end effect caused by the height-to-width ratio of the cubic specimens will not significantly affect the testing results under true triaxial tests. Both the strength and failure modes of cubic rock specimens under true triaxial unloading condition are affected by the intermediate principal stress. When σ 2 increases to a critical value for the strong and hard rocks (R4, R5 and R6), the rock failure mode may change from shear to slabbing. However, for medium strong and weak rocks (R3 and R2), even with a relatively high intermediate principal stress, they tend to fail in shear after a large amount of plastic deformation. The maximum extension strain criterion Stacey (Int J Rock Mech Min Sci Geomech Abstr 651 18(6):469-474, 1981) can be used to explain the change of failure mode from shear to slabbing for strong and hard rocks under true triaxial unloading test condition.
Geo-material microfluidics at reservoir conditions for subsurface energy resource applications.
Porter, Mark L; Jiménez-Martínez, Joaquín; Martinez, Ricardo; McCulloch, Quinn; Carey, J William; Viswanathan, Hari S
2015-10-21
Microfluidic investigations of flow and transport in porous and fractured media have the potential to play a significant role in the development of future subsurface energy resource technologies. However, the majority of experimental systems to date are limited in applicability due to operating conditions and/or the use of engineered material micromodels. We have developed a high pressure and temperature microfluidic experimental system that allows for direct observations of flow and transport within geo-material micromodels (e.g. rock, cement) at reservoir conditions. In this manuscript, we describe the experimental system, including our novel micromodel fabrication method that works in both geo- and engineered materials and utilizes 3-D tomography images of real fractures as micromodel templates to better represent the pore space and fracture geometries expected in subsurface formations. We present experimental results that highlight the advantages of using real-rock micromodels and discuss potential areas of research that could benefit from geo-material microfluidic investigations. The experiments include fracture-matrix interaction in which water imbibes into the shale rock matrix from etched fractures, supercritical CO2 (scCO2) displacing brine in idealized and realistic fracture patterns, and three-phase flow involving scCO2-brine-oil.
Relocation of net-acid-generating waste to improve post-mining water chemistry.
Morin, K A; Hutt, N M
2001-01-01
Acidic drainage and metal leaching are long-term environmental liabilities that can persist for many decades to millennia. One technique to improve the water chemistry and ecology of post-mining landscapes is to relocate and submerge net-acid-generating mine materials in a lake or water-retaining impoundment. One example of a carefully executed relocation of waste rock took place at the Eskay Creek Mine in Canada. Pre-relocation studies included an empirical relationship that related (1) the amount of acidity retained by the waste rock during past oxidation to (2) the amount of lime needed in each truckload for neutralization of the acidity and for suppression of metal release. During relocation, thousands of rinse pH measurements indicated net acidity varied significantly over short distances within the waste rock and that acidic rock could not be reliably segregated from near-netural rock. After relocation, water from the watershed continued to be acidic for a few years, then returned to near-neutral pH and near-background concentrations of metals. The chemistry of the lake where the waste rock was submerged remains near background conditions. Therefore, with careful planning and implementation, the relocation and submergence of net-acid-generating materials can greatly improve post-mining water chemistry.
Viewpoint-Specific Representations in Three-Dimensional Object Recognition
1990-08-01
for useful suggestions and illuminating discuc- sions, and Ellen Hildreth for her comments on a draft of this repcrt. References [1] 1. Biederman ...1982. [24] I. Rock and J. DiVita. A case of viewer-centered object perception. Cognitive Psychology, 19:280-293, 1987 . [25] I. Rock, D. Wheeler, and...Raleigh, NC, 1987 . [30] S. Ullman. Aligning pictorial descriptions: an approach to object recognition. Cognition, 32:193-254, 1989. [31] S. UUman and R
Wollner, U.; Vanorio, T.; Kiss, A. M.
2017-09-30
Materials with a negative Poisson's Ratio (PR), known as auxetics, exhibit the counterintuitive behavior of becoming wider when uniaxially stretched and thinner when compressed. Though negative PR is characteristic of polymer foams or cellular solids, tight as well as highly porous rocks have also been reported to exhibit negative PR. The paper proposes a novel auxetic structure based on pore-space configuration observed in rocks. We developed a theoretical auxetic 3D model consisting of rotating rigid bodies. To alleviate the mechanical assumption of rotating bodies, the theoretical model was modified to include crack-like features being represented by intersecting, elliptic cylinders. Wemore » then used a 3D printer to create a physical version of the modified model, whose PR was tested. We also numerically explored how the compressibility of fluids located in the pore-space of the modified model as well as how the elastic properties of the material from which the model is made of affect its auxetic behavior. Here, we conclude that for a porous medium composed of a single material saturated with a single fluid (a) the more compliant the fluid is and (b) the lower the PR of the solid material, the lower the PR value of the composite material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wollner, U.; Vanorio, T.; Kiss, A. M.
Materials with a negative Poisson's Ratio (PR), known as auxetics, exhibit the counterintuitive behavior of becoming wider when uniaxially stretched and thinner when compressed. Though negative PR is characteristic of polymer foams or cellular solids, tight as well as highly porous rocks have also been reported to exhibit negative PR. The paper proposes a novel auxetic structure based on pore-space configuration observed in rocks. We developed a theoretical auxetic 3D model consisting of rotating rigid bodies. To alleviate the mechanical assumption of rotating bodies, the theoretical model was modified to include crack-like features being represented by intersecting, elliptic cylinders. Wemore » then used a 3D printer to create a physical version of the modified model, whose PR was tested. We also numerically explored how the compressibility of fluids located in the pore-space of the modified model as well as how the elastic properties of the material from which the model is made of affect its auxetic behavior. Here, we conclude that for a porous medium composed of a single material saturated with a single fluid (a) the more compliant the fluid is and (b) the lower the PR of the solid material, the lower the PR value of the composite material.« less
NASA Astrophysics Data System (ADS)
Boulyga, Sergei F.; Heumann, Klaus G.
2005-04-01
Laser ablation inductively coupled plasma isotope dilution mass spectrometry (LA-ICP-IDMS) with a special laser ablation system for bulk analyses (LINA-Spark(TM)-Atomiser) was applied for direct determinations of chlorine, bromine, and iodine in rock and sediment samples. Special attention was focused on possible inter-halogen fractionations and analyte/spike isotope fractionations by using LA-ICP-MS and LA-ICP-IDMS, respectively. A variation of Br/Cl and I/Cl element intensity ratios by a factor of 1.3-3 was observed when changing the nebulizer gas flow rate in the range of 0.84-1.0 L min-1 and the laser power density in the range of 2-10 GW cm-2, respectively. When using an internal standard for halogen quantification in LA-ICP-MS, this inter-element fractionation can cause systematic errors, which can be avoided by applying the isotope dilution technique. However, at high laser power densities (>5.7 GW cm-2 for iodine and >4.0 GW cm-2 for bromine and chlorine) the corresponding measured isotope ratio of the isotope-diluted sample deviates significantly from the target value. Under optimised conditions concentrations in the range of 30 [mu]g g-1-16 × 103 [mu]g g-1 for chlorine, <2-140 [mu]g g-1 for bromine, and <0.1-31 [mu]g g-1 for iodine were determined by LA-ICP-IDMS in two sediment reference materials (SRM 1646, SRM 2704) and three rock reference samples (GS-N, Granite; BX-N, Bauxite; DT-N, Disthene), which have not been certified for these halogens. The sediment results agree well within the given uncertainties with indicative values by different methods and the results of the rock samples with those obtained by negative thermal ionisation isotope dilution mass spectrometry. The detection limits of LA-ICP-IDMS are 8 [mu]g g-1 for chlorine, 1.7 [mu]g g-1 for bromine, and 0.1 [mu]g g-1 for iodine.
Method of measuring material properties of rock in the wall of a borehole
Overmier, David K.
1985-01-01
To measure the modulus of elasticity of the rock in the wall of a borehole, a plug is cut in the borehole wall. The plug, its base attached to the surrounding rock, acts as a short column in response to applied forces. A loading piston is applied to the top of the plug and compression of the plug is measured as load is increased. Measurement of piston load and plug longitudinal deformation are made to determine the elastic modulus of the plug material. Poisson's ratio can be determined by simultaneous measurements of longitudinal and lateral deformation of the plug in response to loading. To determine shear modulus, the top of the plug is twisted while measurements are taken of torsional deformation.
Method of measuring material properties of rock in the wall of a borehole
Overmier, D.K.
1984-01-01
To measure the modulus of elasticity of the rock in the wall of a borehole, a plug is cut in the borehole wall. The plug, its base attached to the surrounding rock, acts as a short column in response to applied forces. A loading piston is applied to the top of the plug and compression of the plug is measured as load is increased. Measurements of piston load and plug longitudinal deformation are made to determine the elastic modulus of the plug material. Poisson's ratio can be determined by simultaneous measurements of longitudinal and lateral deformation of the plug in response to loading. To determine shear modulus, the top of the plug is twisted while measurements are taken of torsional deformation.
Statistical models of lunar rocks and regolith
NASA Technical Reports Server (NTRS)
Marcus, A. H.
1973-01-01
The mathematical, statistical, and computational approaches used in the investigation of the interrelationship of lunar fragmental material, regolith, lunar rocks, and lunar craters are described. The first two phases of the work explored the sensitivity of the production model of fragmental material to mathematical assumptions, and then completed earlier studies on the survival of lunar surface rocks with respect to competing processes. The third phase combined earlier work into a detailed statistical analysis and probabilistic model of regolith formation by lithologically distinct layers, interpreted as modified crater ejecta blankets. The fourth phase of the work dealt with problems encountered in combining the results of the entire project into a comprehensive, multipurpose computer simulation model for the craters and regolith. Highlights of each phase of research are given.
Shape and Reinforcement Optimization of Underground Tunnels
NASA Astrophysics Data System (ADS)
Ghabraie, Kazem; Xie, Yi Min; Huang, Xiaodong; Ren, Gang
Design of support system and selecting an optimum shape for the opening are two important steps in designing excavations in rock masses. Currently selecting the shape and support design are mainly based on designer's judgment and experience. Both of these problems can be viewed as material distribution problems where one needs to find the optimum distribution of a material in a domain. Topology optimization techniques have proved to be useful in solving these kinds of problems in structural design. Recently the application of topology optimization techniques in reinforcement design around underground excavations has been studied by some researchers. In this paper a three-phase material model will be introduced changing between normal rock, reinforced rock, and void. Using such a material model both problems of shape and reinforcement design can be solved together. A well-known topology optimization technique used in structural design is bi-directional evolutionary structural optimization (BESO). In this paper the BESO technique has been extended to simultaneously optimize the shape of the opening and the distribution of reinforcements. Validity and capability of the proposed approach have been investigated through some examples.
Acid Sulfate Weathering on Mars: Results from the Mars Exploration Rover Mission
NASA Technical Reports Server (NTRS)
Ming, Douglas W.; Morris, R. V.; Golden, D. C.
2006-01-01
Sulfur has played a major role in the formation and alteration of outcrops, rocks, and soils at the Mars Exploration Rover landing sites on Meridiani Planum and in Gusev crater. Jarosite, hematite, and evaporite sulfates (e.g., Mg and Ca sulfates) occur along with siliciclastic sediments in outcrops at Meridiani Planum. The occurrence of jarosite is a strong indicator for an acid sulfate weathering environment at Meridiani Planum. Some outcrops and rocks in the Columbia Hills in Gusev crater appear to be extensively altered as suggested by their relative softness as compared to crater floor basalts, high Fe(3+)/FeT, iron mineralogy dominated by nanophase Fe(3+) oxides, hematite and/or goethite, corundum-normative mineralogies, and the presence of Mg- and Casulfates. One scenario for aqueous alteration of these rocks and outcrops is that vapors and/or fluids rich in SO2 (volcanic source) and water interacted with rocks that were basaltic in bulk composition. Ferric-, Mg-, and Ca-sulfates, phosphates, and amorphous Si occur in several high albedo soils disturbed by the rover's wheels in the Columbia Hills. The mineralogy of these materials suggests the movement of liquid water within the host material and the subsequent evaporation of solutions rich in Fe, Mg, Ca, S, P, and Si. The presence of ferric sulfates suggests that these phases precipitated from highly oxidized, low-pH solutions. Several hypotheses that invoke acid sulfate weathering environments have been suggested for the aqueous formation of sulfate-bearing phases on the surface of Mars including (1) the oxidative weathering of ultramafic igneous rocks containing sulfides; (2) sulfuric acid weathering of basaltic materials by solutions enriched by volcanic gases (e.g., SO2); and (3) acid fog (i.e., vapors rich in H2SO4) weathering of basaltic or basaltic-derived materials.
Bore, Thierry; Wagner, Norman; Delepine Lesoille, Sylvie; Taillade, Frederic; Six, Gonzague; Daout, Franck; Placko, Dominique
2016-01-01
Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock) and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM) to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling. PMID:27096865
Bore, Thierry; Wagner, Norman; Lesoille, Sylvie Delepine; Taillade, Frederic; Six, Gonzague; Daout, Franck; Placko, Dominique
2016-04-18
Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock) and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM) to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling.