Sample records for rock samples studied

  1. Core Cutting Test with Vertical Rock Cutting Rig (VRCR)

    NASA Astrophysics Data System (ADS)

    Yasar, Serdar; Osman Yilmaz, Ali

    2017-12-01

    Roadheaders are frequently used machines in mining and tunnelling, and performance prediction of roadheaders is important for project economics and stability. Several methods were proposed so far for this purpose and, rock cutting tests are the best choice. Rock cutting tests are generally divided into two groups which are namely, full scale rock cutting tests and small scale rock cutting tests. These two tests have some superiorities and deficiencies over themselves. However, in many cases, where rock sampling becomes problematic, small scale rock cutting test (core cutting test) is preferred for performance prediction, since small block samples and core samples can be conducted to rock cutting testing. Common problem for rock cutting tests are that they can be found in very limited research centres. In this study, a new mobile rock cutting testing equipment, vertical rock cutting rig (VRCR) was introduced. Standard testing procedure was conducted on seven rock samples which were the part of a former study on cutting rocks with another small scale rock cutting test. Results showed that core cutting test can be realized successfully with VRCR with the validation of paired samples t-test.

  2. The Usability of Rock-Like Materials for Numerical Studies on Rocks

    NASA Astrophysics Data System (ADS)

    Zengin, Enes; Abiddin Erguler, Zeynal

    2017-04-01

    The approaches of synthetic rock material and mass are widely used by many researchers for understanding the failure behavior of different rocks. In order to model the failure behavior of rock material, researchers take advantageous of different techniques and software. But, the majority of all these instruments are based on distinct element method (DEM). For modeling the failure behavior of rocks, and so to create a fundamental synthetic rock material model, it is required to perform related laboratory experiments for providing strength parameters. In modelling studies, model calibration processes are performed by using parameters of intact rocks such as porosity, grain size, modulus of elasticity and Poisson ratio. In some cases, it can be difficult or even impossible to acquire representative rock samples for laboratory experiments from heavily jointed rock masses and vuggy rocks. Considering this limitation, in this study, it was aimed to investigate the applicability of rock-like material (e.g. concrete) to understand and model the failure behavior of rock materials having complex inherent structures. For this purpose, concrete samples having a mixture of %65 cement dust and %35 water were utilized. Accordingly, intact concrete samples representing rocks were prepared in laboratory conditions and their physical properties such as porosity, pore size and density etc. were determined. In addition, to acquire the mechanical parameters of concrete samples, uniaxial compressive strength (UCS) tests were also performed by simultaneously measuring strain during testing. The measured physical and mechanical properties of these extracted concrete samples were used to create synthetic material and then uniaxial compressive tests were modeled and performed by using two dimensional discontinuum program known as Particle Flow Code (PFC2D). After modeling studies in PFC2D, approximately similar failure mechanism and testing results were achieved from both experimental and artificial simulations. The results obtained from these laboratory tests and modelling studies were compared with the other researcher's studies in respect to failure mechanism of different type of rocks. It can be concluded that there is similar failure mechanism between concrete and rock materials. Therefore, the results obtained from concrete samples that would be prepared at different porosity and pore sizes can be used in future studies in selection micro-mechanical and physical properties to constitute synthetic rock materials for understanding failure mechanism of rocks having complex inherent structures such as vuggy rocks or heavily jointed rock masses.

  3. Isotope analysis of crystalline impact melt rocks from Apollo 16 stations 11 and 13, North Ray Crater

    NASA Technical Reports Server (NTRS)

    Reimold, W. U.; Nyquist, L. E.; Bansal, B. M.; Shih, C.-Y.; Weismann, H.; Wooden, J. L.; Mackinnon, I. D. R.

    1985-01-01

    The North Ray Crater Target Rock Consortium was formed to study a large number of rake samples collected at Apollo 16 stations 11 and 13 with comparative chemical, mineralogical, and chronological techniques in order to provide a larger data base for the discussion of lunar highland evolution in the vicinity of the Apollo 16 landing region. The present investigation is concerned with Rb-Sr and Sm-Nd isotopic analyses of a number of whole-rock samples of feldspathic microporhyritic (FM) impact melt, a sample type especially abundant among the North Ray crater (station 11) sample collection. Aspects of sample mineralogy and analytical procedures are discussed, taking into account FM impact melt rocks 6715 and 63538, intergranular impact melt rock 67775, subophitic impact melt rock 67747, subophitic impact melt rock 67559, and studies based on the utilization of electron microscopy and mass spectroscopy.

  4. Cooperative investigation of precision and accuracy: In chemical analysis of silicate rocks

    USGS Publications Warehouse

    Schlecht, W.G.

    1951-01-01

    This is the preliminary report of the first extensive program ever organized to study the analysis of igneous rocks, a study sponsored by the United States Geological Survey, the Massachusetts Institute of Technology, and the Geophysical Laboratory of the Carnegie Institution of Washington. Large samples of two typical igneous rocks, a granite and a diabase, were carefully prepared and divided. Small samples (about 70 grams) of each were sent to 25 rock-analysis laboratories throughout the world; analyses of one or both samples were reported by 34 analysts in these laboratories. The results, which showed rather large discrepancies, are presented in histograms. The great discordance in results reflects the present unsatisfactory state of rock analysis. It is hoped that the ultimate establishment of standard samples and procedures will contribute to the improvement of quality of analyses. The two rock samples have also been thoroughly studied spectrographically and petrographically. Detailed reports of all the studies will be published.

  5. Microstructural controls on the macroscopic behavior of geo-architected rock samples

    NASA Astrophysics Data System (ADS)

    Mitchell, C. A.; Pyrak-Nolte, L. J.

    2017-12-01

    Reservoir caprocks, are known to span a range of mechanical behavior from elastic granitic units to visco-elastic shale units. Whether a rock will behave elastically, visco-elastically or plastically depends on both the compositional and textural or microsctructural components of the rock, and how these components are spatially distributed. In this study, geo-architected caprock fabrication was performed to develop synthetic rock to study the role of rock rheology on fracture deformations, fluid flow and geochemical alterations. Samples were geo-architected with Portland Type II cement, Ottawa sand, and different clays (kaolinite, illite, and Montmorillonite). The relative percentages of these mineral components are manipulated to generate different rock types. With set protocols, the mineralogical content, texture, and certain structural aspects of the rock were controlled. These protocols ensure that identical samples with the same morphological and mechanical characteristics are constructed, thus overcoming issues that may arise in the presence of heterogeneity and high anisotropy from natural rock samples. Several types of homogeneous geo-architected rock samples were created, and in some cases the methods were varied to manipulate the physical parameters of the rocks. Characterization of rocks that the samples exhibit good repeatability. Rocks with the same mineralogical content generally yielded similar compressional and shear wave velocities, UCS and densities. Geo-architected rocks with 10% clay in the matrix had lower moisture content and effective porosities than rocks with no clay. The process by which clay is added to the matrix can strongly affect the resulting compressive strength and physical properties of the geo-architected sample. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022).

  6. Effect of Particle Shape on Mechanical Behaviors of Rocks: A Numerical Study Using Clumped Particle Model

    PubMed Central

    Rong, Guan; Liu, Guang; Zhou, Chuang-bing

    2013-01-01

    Since rocks are aggregates of mineral particles, the effect of mineral microstructure on macroscopic mechanical behaviors of rocks is inneglectable. Rock samples of four different particle shapes are established in this study based on clumped particle model, and a sphericity index is used to quantify particle shape. Model parameters for simulation in PFC are obtained by triaxial compression test of quartz sandstone, and simulation of triaxial compression test is then conducted on four rock samples with different particle shapes. It is seen from the results that stress thresholds of rock samples such as crack initiation stress, crack damage stress, and peak stress decrease with the increasing of the sphericity index. The increase of sphericity leads to a drop of elastic modulus and a rise in Poisson ratio, while the decreasing sphericity usually results in the increase of cohesion and internal friction angle. Based on volume change of rock samples during simulation of triaxial compression test, variation of dilation angle with plastic strain is also studied. PMID:23997677

  7. Effect of particle shape on mechanical behaviors of rocks: a numerical study using clumped particle model.

    PubMed

    Rong, Guan; Liu, Guang; Hou, Di; Zhou, Chuang-Bing

    2013-01-01

    Since rocks are aggregates of mineral particles, the effect of mineral microstructure on macroscopic mechanical behaviors of rocks is inneglectable. Rock samples of four different particle shapes are established in this study based on clumped particle model, and a sphericity index is used to quantify particle shape. Model parameters for simulation in PFC are obtained by triaxial compression test of quartz sandstone, and simulation of triaxial compression test is then conducted on four rock samples with different particle shapes. It is seen from the results that stress thresholds of rock samples such as crack initiation stress, crack damage stress, and peak stress decrease with the increasing of the sphericity index. The increase of sphericity leads to a drop of elastic modulus and a rise in Poisson ratio, while the decreasing sphericity usually results in the increase of cohesion and internal friction angle. Based on volume change of rock samples during simulation of triaxial compression test, variation of dilation angle with plastic strain is also studied.

  8. Analyses and description of geochemical samples, Mill Creek Wilderness Study Area, Giles County, Virginia

    USGS Publications Warehouse

    Mei, Leung; Lesure, Frank Gardner

    1978-01-01

    Semiquantitative emission spectrographic analyses for 64 elements on 62 stream sediment and 71 rock samples from Mill Creek Wilderness Study area, Giles County, Virginia, are reported here in detail. Locations for all samples are given in Universal Transverse Mercator (UTM) coordinates. Brief descriptions of rock samples are also included. Rocks analysed are mostly sandstone. Samples of hematitic sandstone of the Rose Hill Formation and limonite-cemented sandstone of the Rocky Gap Sandstone contain high values of iron; these rocks are submarginal iron resources. Some of the same iron-rich samples have a little more barium, copper, cobalt, lead, silver, and/or zinc then is in average sandstone, but they do not suggest the presence of economic deposits of these metals. No other obviously anomalous values related to mineralized rock are present in the data.

  9. Analyses and description of geochemical samples, Peters Mountain Wilderness Study Area, Giles County, Virginia

    USGS Publications Warehouse

    Rait, Norma; Lesure, Frank Gardner

    1978-01-01

    Semiquantitative emission spectrographic analyses for 64 elements on 43 stream sediment and 73 rock samples from Peters Mountain Wilderness Study area, Giles County, Virginia, are reported here in detail. Locations for all samples are in Universal Transverse Mercator (UTM) coordinates. Brie[ descriptions of rock samples are also included. Rocks analysed are mostly sandstone. Samples of hematitic sandstone of the Rose Hill Formation and limonite-cemented sandstone of the Rocky Gap Sandstone contain high values of iron; these rocks are submarginal iron resources. Some of the same iron-rich samples have a little more barium, copper, cobalt, lead, silver, and/or zinc then average sandstone, but they do not suggest the presence of economic deposits of these metals. No other obviously anomalous values related to mineralized rock are present in the data.

  10. Cosmogenic nuclides in football-sized rocks.

    NASA Technical Reports Server (NTRS)

    Wahlen, M.; Honda, M.; Imamura, M.; Fruchter, J. S.; Finkel, R. C.; Kohl, C. P.; Arnold, J. R.; Reedy, R. C.

    1972-01-01

    The activity of long- and short-lived isotopes in a series of samples from a vertical column through the center of rock 14321 was measured. Rock 14321 is a 9 kg fragmental rock whose orientation was photographically documented on the lunar surface. Also investigated was a sample from the lower portion of rock 14310, where, in order to study target effects, two different density fractions (mineral separates) were analyzed. A few nuclides in a sample from the comprehensive fines 14259 were measured. This material has been collected largely from the top centimeter of the lunar soil. The study of the deep samples of 14321 and 14310 provided values for the activity of isotopes at points where only effects produced by galactic cosmic rays are significant.

  11. Study of sample drilling techniques for Mars sample return missions

    NASA Technical Reports Server (NTRS)

    Mitchell, D. C.; Harris, P. T.

    1980-01-01

    To demonstrate the feasibility of acquiring various surface samples for a Mars sample return mission the following tasks were performed: (1) design of a Mars rover-mounted drill system capable of acquiring crystalline rock cores; prediction of performance, mass, and power requirements for various size systems, and the generation of engineering drawings; (2) performance of simulated permafrost coring tests using a residual Apollo lunar surface drill, (3) design of a rock breaker system which can be used to produce small samples of rock chips from rocks which are too large to return to Earth, but too small to be cored with the Rover-mounted drill; (4)design of sample containers for the selected regolith cores, rock cores, and small particulate or rock samples; and (5) design of sample handling and transfer techniques which will be required through all phase of sample acquisition, processing, and stowage on-board the Earth return vehicle. A preliminary design of a light-weight Rover-mounted sampling scoop was also developed.

  12. Mineralogy and Geochemistry of Granitic rocks within Lichen Hills, Outback Nunatak, Northern Victoria Land, Antarctica

    NASA Astrophysics Data System (ADS)

    KIM, T.; KIM, Y.; Lee, I.; Lee, J.; Woo, J.

    2015-12-01

    The study areas, Lichen Hills and Outback Nunatak are located in the Northern Victoria Land which is close to Pacific Ocean side of Transantarctic Mountain (TAM), Antarctica. According to the study of Zeller and Dreschoff (1990), the radioactivity values of Lichen hills and Frontier Mt. area in the Victoria Land were very high. To identify the geochemical characteristics of granitic rocks in these areas, 13 samples of Lichen Hills rocks and 4 samples of Outback Nunatak rocks are analyzed. For mineralogical study, samples were observed in macroscale as well as microscale including microscope electron probe analysis. Rock samples of Lichen Hills, Outback Nunatak are mainly leucogranite and granitic pegmatite. These rock samples are composed of quartz, k-feldspar, plagioclase, muscovite, garnet, tourmaline like granite. In SEM-EDS analysis, the observed light colored minerals show relatively high Th, U, Dy, Ce, Nb concentration. This suggests that rock samples may contain minerals such as fergusonite, monazite, thorite, allanite, karnasurtite which are considered to be REE-bearing minerals. Samples of related rocks have been analyzed in terms of major, trace and rare earth element (REE) concentrations using X-ray fluorescence (XRF) spectrometer and Inductively Coupled Plasma Mass Spectrometer (ICP-MS). As concentration of SiO2 increase, Al2O3, TiO2, Fe2O3, MgO, P2O5 concentration decrease and Na2O, K2O, MnO concentration increase. Analyzed trace elements and REE are normalized using CI Chondrite, Primitive mantle. The normalized data show that LREE are enriched compared to HREE. The distinct negative anomalies of Eu, Sr are observed, indicating that rock-forming melts are fairly processed state of fractional crystallization. It means that Th, U, Nb, Ta are much enriched in the melts.

  13. Analyses and descriptions of geochemical samples, Mountain Lake Wilderness Study Area, Virginia and West Virginia

    USGS Publications Warehouse

    Mei, Leung; Fletcher, J.D.; Rait, Norma; Lesure, F.G.

    1978-01-01

    Semiquantitative emission spectrographic analyses for 64 elements on 95 stream sediment and 122 rock samples from Mountain Lake Wilderness Study Area, Giles and Craig Counties, Virginia and Monroe County, West Virginia, are reported here in detail. Locations for all samples are in Universal Transverse Mercator (UTM) coordinates. Brief descriptions of rock samples are also included. Rocks analysed are mostly sandstone. Samples of hematitic sandstone of the Rose Hill Formation and limonite-cemented sandstone of the Rocky Gap Sandstone contain high values of iron; these rocks are submarginal iron resources. Some of these iron-rich samples have a little more barium, copper, cobalt, lead, silver, and/or zinc than in average sandstone, but they do not suggest the presence of economic deposits of these metals. A few samples of Tuscarora Quartzite contain moderate amounts of manganese. These are from a submarginal manganese resource. No other obviously anomalous-values related to mineralized rock are present in the data.

  14. Petrology of lunar rocks and implication to lunar evolution

    NASA Technical Reports Server (NTRS)

    Ridley, W. I.

    1976-01-01

    Recent advances in lunar petrology, based on studies of lunar rock samples available through the Apollo program, are reviewed. Samples of bedrock from both maria and terra have been collected where micrometeorite impact penetrated the regolith and brought bedrock to the surface, but no in situ cores have been taken. Lunar petrogenesis and lunar thermal history supported by studies of the rock sample are discussed and a tentative evolutionary scenario is constructed. Mare basalts, terra assemblages of breccias, soils, rocks, and regolith are subjected to elemental analysis, mineralogical analysis, trace content analysis, with studies of texture, ages and isotopic composition. Probable sources of mare basalts are indicated.

  15. Frictional behaviour of sandstone: A sample-size dependent triaxial investigation

    NASA Astrophysics Data System (ADS)

    Roshan, Hamid; Masoumi, Hossein; Regenauer-Lieb, Klaus

    2017-01-01

    Frictional behaviour of rocks from the initial stage of loading to final shear displacement along the formed shear plane has been widely investigated in the past. However the effect of sample size on such frictional behaviour has not attracted much attention. This is mainly related to the limitations in rock testing facilities as well as the complex mechanisms involved in sample-size dependent frictional behaviour of rocks. In this study, a suite of advanced triaxial experiments was performed on Gosford sandstone samples at different sizes and confining pressures. The post-peak response of the rock along the formed shear plane has been captured for the analysis with particular interest in sample-size dependency. Several important phenomena have been observed from the results of this study: a) the rate of transition from brittleness to ductility in rock is sample-size dependent where the relatively smaller samples showed faster transition toward ductility at any confining pressure; b) the sample size influences the angle of formed shear band and c) the friction coefficient of the formed shear plane is sample-size dependent where the relatively smaller sample exhibits lower friction coefficient compared to larger samples. We interpret our results in terms of a thermodynamics approach in which the frictional properties for finite deformation are viewed as encompassing a multitude of ephemeral slipping surfaces prior to the formation of the through going fracture. The final fracture itself is seen as a result of the self-organisation of a sufficiently large ensemble of micro-slip surfaces and therefore consistent in terms of the theory of thermodynamics. This assumption vindicates the use of classical rock mechanics experiments to constrain failure of pressure sensitive rocks and the future imaging of these micro-slips opens an exciting path for research in rock failure mechanisms.

  16. Melting behavior and phase relations of lunar samples. [Apollo 12 rock samples

    NASA Technical Reports Server (NTRS)

    Hays, J. F.

    1975-01-01

    Cooling rate studies of 12002 were conducted and the results interpreted in terms of the crystallization history of this rock and certain other picritic Apollo 12 samples. Calculations of liquid densities and viscosities during crystallization, crystal settling velocities, and heat loss by the parent rock body are discussed, as are petrographic studies of other Apollo 12 samples. The process of magmatic differentiation that must have accompanied the early melting and chemical fractionation of the moon's outer layers was investigated. The source of regions of both high- and low-titanium mare basalts were also studied.

  17. [Spectral characteristics and implications of quartz from Heliao lead-zinc polymetallic ore district in the south of Qinzhou-Hangzhou joint belt].

    PubMed

    Lü, Wen-Chao; Yang, Zhi-Jun; Zhou, Yong-Zhang; Li, Hong-Zhong; Zeng, Xiang-Qing; Chen, Qing; Liang, Jin; Zeng, Chang-Yu

    2013-05-01

    The XRD, FTIR and Raman spectrum were employed to study the characters of quartz from three types of rock samples, which are mineralized rock sample, near ore body rock sample and far away from ore body rock sample in Heliao lead-zinc polymetallic ore district. The research shows that the quartz in the mineralized rock and far away from ore body rock is pure, while the quartz in near ore body rock contains a small amount of impurities. But such small amounts of impurities did not cause apparent change in the quartz lattice parameters. From far away from ore body rock-->near ore body rock-->mineralized rock, the crystallinity and order degree of quartz are higher and higher. And the quartz in the mineralized rock has a trend to change into low symmetry quartz. It's a unique to mineralized rock that the quartz's absorption peak at 1 050 cm(-1) was split into two strongest ones. It can be used as the signs of whether exists mineralization. The cause for the quartz microstructure changes may be related to the activities of late mineralized hydrothermal fluids. Late hydrothermal influence was very weak to the quartz far away from ore body rock. And through the impact of the multi-stage hydrothermal effect, the quartz in mineralized rock may be purified by recrystallization and structural adjustment. However the quartz in near ore body rock didn't have enough hydrothermal influence, so it's not pure. Genealogy research technology is a useful technique for in-depth exploration of study area mineralization process and metallogenic regularity.

  18. Reconnaissance studies of potential petroleum source rocks in the Middle Jurassic Tuxedni Group near Red Glacier, eastern slope of Iliamna Volcano

    USGS Publications Warehouse

    Stanley, Richard G.; Herriott, Trystan M.; LePain, David L.; Helmold, Kenneth P.; Peterson, C. Shaun

    2013-01-01

    Previous geological and organic geochemical studies have concluded that organic-rich marine shale in the Middle Jurassic Tuxedni Group is the principal source rock of oil and associated gas in Cook Inlet (Magoon and Anders, 1992; Magoon, 1994; Lillis and Stanley, 2011; LePain and others, 2012; LePain and others, submitted). During May 2009 helicopter-assisted field studies, 19 samples of dark-colored, fine-grained rocks were collected from exposures of the Red Glacier Formation of the Tuxedni Group near Red Glacier, about 70 km west of Ninilchik on the eastern flank of Iliamna Volcano (figs. 1 and 3). The rock samples were submitted to a commercial laboratory for analysis by Rock-Eval pyrolysis and to the U.S. Geological Survey organic geochemical laboratory in Denver, Colorado, for analysis of vitrinite reflectance. The results show that values of vitrinite reflectance (percent Ro) in our samples average about 2 percent, much higher than the oil window range of 0.6–1.3 percent (Johnsson and others, 1993). The high vitrinite reflectance values indicate that the rock samples experienced significant heating and furthermore suggest that these rocks may have generated oil and gas in the past but no longer have any hydrocarbon source potential. The high thermal maturity of the rock samples may have resulted from (1) the thermaleffects of igneous activity (including intrusion by igneous rocks), (2) deep burial beneath Jurassic, Cretaceous, and Tertiary strata that were subsequently removed by uplift and erosion, or (3) the combined effects of igneous activity and burial.

  19. Characterization of rock thermal conductivity by high-resolution optical scanning

    USGS Publications Warehouse

    Popov, Y.A.; Pribnow, D.F.C.; Sass, J.H.; Williams, C.F.; Burkhardt, H.

    1999-01-01

    We compared thress laboratory methods for thermal conductivity measurements: divided-bar, line-source and optical scanning. These methods are widely used in geothermal and petrophysical studies, particularly as applied to research on cores from deep scientific boreholes. The relatively new optical scanning method has recently been perfected and applied to geophysical problems. A comparison among these methods for determining the thermal conductivity tensor for anisotropic rocks is based on a representative collection of 80 crystalline rock samples from the KTB continental deep borehole (Germany). Despite substantial thermal inhomogeneity of rock thermal conductivity (up to 40-50% variation) and high anisotropy (with ratios of principal values attaining 2 and more), the results of measurements agree very well among the different methods. The discrepancy for measurements along the foliation is negligible (<1%). The component of thermal conductivity normal to the foliation reveals somewhat larger differences (3-4%). Optical scanning allowed us to characterize the thermal inhomogeneity of rocks and to identify a three-dimensional anisotropy in thermal conductivity of some gneiss samples. The merits of optical scanning include minor random errors (1.6%), the ability to record the variation of thermal conductivity along the sample, the ability to sample deeply using a slow scanning rate, freedom from constraints for sample size and shape, and quality of mechanical treatment of the sample surface, a contactless mode of measurement, high speed of operation, and the ability to measure on a cylindrical sample surface. More traditional methods remain superior for characterizing bulk conductivity at elevated temperature.Three laboratory methods including divided-bar, line-source and optical scanning are widely applied in geothermal and petrophysical studies. In this study, these three methods were compared for determining the thermal conductivity tensor for anisotropic rocks. For this study, a representative collection of 80 crystalline rock samples from the KTB continental deep borehole was used. Despite substantial thermal inhomogeneity of rock thermal conductivity and high anisotropy, measurement results were in excellent agreement among the three methods.

  20. Comparison of Crack Initiation, Propagation and Coalescence Behavior of Concrete and Rock Materials

    NASA Astrophysics Data System (ADS)

    Zengin, Enes; Abiddin Erguler, Zeynal

    2017-04-01

    There are many previously studies carried out to identify crack initiation, propagation and coalescence behavior of different type of rocks. Most of these studies aimed to understand and predict the probable instabilities on different engineering structures such as mining galleries or tunnels. For this purpose, in these studies relatively smaller natural rock and synthetic rock-like models were prepared and then the required laboratory tests were performed to obtain their strength parameters. By using results provided from these models, researchers predicted the rock mass behavior under different conditions. However, in the most of these studies, rock materials and models were considered as contains none or very few discontinuities and structural flaws. It is well known that rock masses naturally are extremely complex with respect to their discontinuities conditions and thus it is sometimes very difficult to understand and model their physical and mechanical behavior. In addition, some vuggy rock materials such as basalts and limestones also contain voids and gaps having various geometric properties. Providing that the failure behavior of these type of rocks controlled by the crack initiation, propagation and coalescence formed from their natural voids and gaps, the effect of these voids and gaps over failure behavior of rocks should be investigated. Intact rocks are generally preferred due to relatively easy side of their homogeneous characteristics in numerical modelling phases. However, it is very hard to extract intact samples from vuggy rocks because of their complex pore sizes and distributions. In this study, the feasibility of concrete samples to model and mimic the failure behavior vuggy rocks was investigated. For this purpose, concrete samples were prepared at a mixture of %65 cement dust and %35 water and their physical and mechanical properties were determined by laboratory experiments. The obtained physical and mechanical properties were used to constitute numerical models, and then uniaxial compressive strength (UCS) tests were performed on these models by using a commercial software called as Particle Flow Code (PFC2D). When the crack behavior of concrete samples obtained from both laboratory tests and numerical models are compared with the results of previous studies, a significant similarity was found. As a result, due to the observed similarity crack behavior between concretes and rocks, it can be concluded that intact concrete samples can be used for modelling purposes to understand the effect of voids and gaps on failure characteristics of vuggy rocks.

  1. Brittleness Effect on Rock Fatigue Damage Evolution

    NASA Astrophysics Data System (ADS)

    Nejati, Hamid Reza; Ghazvinian, Abdolhadi

    2014-09-01

    The damage evolution mechanism of rocks is one of the most important aspects in studying of rock fatigue behavior. Fatigue damage evolution of three rock types (onyx marble, sandstone and soft limestone) with different brittleness were considered in the present study. Intensive experimental tests were conducted on the chosen rock samples and acoustic emission (AE) sensors were used in some of them to monitor the fracturing process. Experimental tests indicated that brittleness strongly influences damage evolution of rocks in the course of static and dynamic loading. AE monitoring revealed that micro-crack density induced by the applied loads during different stages of the failure processes increases as rock brittleness increases. Also, results of fatigue tests on the three rock types indicated that the rock with the most induced micro-cracks during loading cycles has the least fatigue life. Furthermore, the condition of failure surfaces of the studied rocks samples, subjected to dynamic and static loading, were evaluated and it was concluded that the roughness of failure surfaces is influenced by loading types and rock brittleness. Dynamic failure surfaces were rougher than static ones and low brittle rock demonstrate a smoother failure surface compared to high brittle rock.

  2. Specifics of the methodological approach to the study of nanoparticle impact on human health in the production of non-metallic nanomaterials for construction purposes

    NASA Astrophysics Data System (ADS)

    Ayzenshtadt, A. M.; Frolova, M. A.; Makhova, T. A.; Danilov, V. E.; Gupta, Piyush K.; Verma, Rama S.

    2018-01-01

    Minerals samples of mixed-genesis rocks in a finely dispersed state were obtained and studied, namely sand deposit (Kholmogory district) and basalt (Myandukha deposit, Plesetsk district) in Arkhangelsk region. The paper provides the chemical composition data used to calculate the specific mass atomization energy of rocks. The energy parameters of the micro and nano systems of the rock samples - free surface energy and surface activity - were calculated. For toxicological evaluation of the materials obtained, next-generation sequencing (NGS) was used to perform metagenomic analysis which allowed determining the species diversity of microorganisms in the samples under study. It was shown that the sequencing method and metagenomic analysis are applicable and provide good reproducibility for the analysis of the toxicological properties of selected rock samples. The correlation of the surface activity of finely dispersed rock systems and the species diversity of cultivated microorganisms on the raw material was observed.

  3. Net Acid Production, Acid Neutralizing Capacity, and Associated Mineralogical and Geochemical Characteristics of Animas River Watershed Igneous Rocks Near Silverton, Colorado

    USGS Publications Warehouse

    Yager, Douglas B.; Choate, LaDonna; Stanton, Mark R.

    2008-01-01

    This report presents results from laboratory and field studies involving the net acid production (NAP), acid neutralizing capacity (ANC), and magnetic mineralogy of 27 samples collected in altered volcanic terrain in the upper Animas River watershed near Silverton, Colo., during the summer of 2005. Sampling focused mainly on the volumetrically important, Tertiary-age volcanic and plutonic rocks that host base- and precious-metal mineralization in the study area. These rocks were analyzed to determine their potential for neutralization of acid-rock drainage. Rocks in the study area have been subjected to a regional propylitic alteration event, which introduced calcite, chlorite (clinochlore), and epidote that have varying amounts and rates of acid neutralizing capacity (ANC). Locally, hydrothermal alteration has consumed any ANC and introduced minerals, mainly pyrite, that have a high net acid production (NAP). Laboratory studies included hydrogen pyroxide (H2O2) acid digestion and subsequent sodium hydroxide (NaOH) titration to determine NAP, and sulfuric acid (H2SO4) acid titration experiments to determine ANC. In addition to these environmental rock-property determinations, mineralogical, chemical, and petrographic characteristics of each sample were determined through semiquantitative X-ray diffractometry (Rietveld method), optical mineralogy, wavelength dispersive X-ray fluorescence, total carbon-carbonate, and inductively coupled plasma?mass spectrometric analysis. An ANC ranking was assigned to rock samples based on calculated ANC quantity in kilograms/ton (kg/t) calcium carbonate equivalent and ratios of ANC to NAP. Results show that talus near the southeast Silverton caldera margin, composed of andesite clasts of the Burns Member of the Silverton Volcanics, has the highest ANC (>100 kg/t calcium carbonate equivalent) with little to no NAP. The other units found to have moderate to high ANC include (a) andesite lavas and volcaniclastic rocks of the San Juan Formation, west and northwest of the Silverton caldera, and (b) the Picayune Megabreccia Member of Sapinero Mesa Tuff along the western San Juan caldera margin. Sultan Mountain stock, composed of granitoid intrusive rocks, was shown to have low ANC and moderate NAP. Sequential leachate analyses on a suite of whole-rock samples from the current and a previous study indicate that host rock composition and mineralogy control leachate compositions. The most mafic volcanic samples had high leachate concentrations for Mg, Fe, and Ca, whereas silicic volcanic samples had lower ferromagnesiun compositions. Samples with high chlorite abundance also had high leachable Mg concentrations. Trace-element substitution, such as Sr for Ca in plagioclase, controls high Sr concentrations in those samples with high plagioclase abundance. High Ti abundance in leachate was observed in those samples with high magnetite concentrations. This is likely due to samples containing intergrown magnetite-ilmenite. Whole rocks having high trace-element concentrations have relatively high leachate trace-element abundances. Some lavas of the San Juan Formation and Burns Member of the Silverton Volcanics had elevated Zn-, Cd-, and Pb-leachate concentrations. Manganese was also elevated in one San Juan Formation sample. Other San Juan Formation and Burns Member lavas had low to moderate trace-element abundances. One sample of the pyroxene andesite member of the Silverton Volcanics had elevated concentrations for As and Mo. Most other pyroxene andesite member samples had low leachate trace-element abundances. Mine-waste-leachate analyses indicated that one mine-waste sample had elevated concentrations of Cu (1.5 orders of magnitude), Zn (1 order of magnitude), As (1 order of magnitude), Mo (1.5 to 2 orders of magnitude), Cd (1 to 2 orders of magnitude), and Pb (2 to 3 orders of magnitude) compared to whole rocks. These data indicate the importance of whole-rock geochemistry or leachate analys

  4. Isotopes and ages in the northern Peninsular Ranges batholith, southern California

    USGS Publications Warehouse

    Kistler, Ronald W.; Wooden, Joseph L.; Morton, Douglas M.

    2003-01-01

    Strontium, oxygen and lead isotopic and rubidium-strontium geochronologic studies have been completed on Cretaceous and Jurassic (?) granitic rock samples from the northern Peninsular Ranges batholith in southern California. Many of these samples were collected systematically and studied chemically by A. K. Baird and colleagues (Baird and others, 1979). The distribution of these granitic rocks is shown in the Santa Ana, Perris, and San Jacinto Blocks, bounded by the Malibu Coast-Cucamonga, Banning, and San Andreas fault zones, and the Pacific Ocean on the map of the Peninsular Ranges batholith and surrounding area, southern California. The granitic rock names are by Baird and Miesch (1984) who used a modal mineral classification that Bateman and others (1963) used for granitic rocks in the Sierra Nevada batholith. In this classification, granitic rocks have at least 10% quartz. Boundaries between rock types are in terms of the ratio of alkali-feldspar to total feldspar: quartz diorite, 0-10%; granodiorite, 10-35%; quartz monzonite 35-65%; granite >65%. Gabbros have 0-10% quartz. Data for samples investigated are giv in three tables: samples, longitude, latitude, specific gravity and rock type (Table 1); rubidium and strontium data for granitic rocks of the northern Peninsular Ranges batholith, southern California (Table 2); U, Th, Pb concentrations, Pb and Sr initial isotopic compositions, and δ18O permil values for granitic rocks of the northern Peninsular Ranges batholith (table 3).

  5. Maps showing abundance and distribution of mercury in rock samples, Medford 1 degree by 2 degrees Quadrangle, Oregon-California

    USGS Publications Warehouse

    Whittington, Charles L.; Grimes, David J.; Leinz, Reinhard W.

    1985-01-01

    This map presents data on the abundance and distribution of mercury in 3,146 rock samples from the Medford quadrangle. Most of the rock samples were collected incidental to geologic, geochemical, and mineral resources studies in the period from 1974 to 1980, but about 6 percent date from earlier investigations (Wells, 1940; 1956; Wells and others 1949). 

  6. An Examination of the Space Weathering Patina of Lunar Rock 76015

    NASA Technical Reports Server (NTRS)

    Noble, S.; Chrisoffersen, R.; Rahman, Z.

    2011-01-01

    Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. Rocks have much longer surface lifetimes than an individual soil grain and thus record a longer history of exposure. By studying the weathering products which have built up on a rock surface, we can gain a deeper perspective on the weathering process and better assess the relative importance of various weathering components. The weathered coating, or patina, of the lunar rock 76015 has been previously studied under SEM and also by TEM using ultramicrotome sample preparation methods. However, to really understand the products involved in creating these coatings, it is helpful to examine the patina in cross section, something which is now possible though the use of Focused Ion Beam (FIB) sample prep techniques, which allows us to preserve intact the delicate stratigraphy of the patina coating and provides a unique cross-sectional view of the space weathering process. Several samples have been prepared from the rock and the coatings are found to be quite variable in thickness and composition from one sample to the next.

  7. Assessment of hydrocarbon source rock potential of Polish bituminous coals and carbonaceous shales

    USGS Publications Warehouse

    Kotarba, M.J.; Clayton, J.L.; Rice, D.D.; Wagner, M.

    2002-01-01

    We analyzed 40 coal samples and 45 carbonaceous shale samples of varying thermal maturity (vitrinite reflectance 0.59% to 4.28%) from the Upper Carboniferous coal-bearing strata of the Upper Silesian, Lower Silesian, and Lublin basins, Poland, to evaluate their potential for generation and expulsion of gaseous and liquid hydrocarbons. We evaluated source rock potential based on Rock-Eval pyrolysis yield, elemental composition (atomic H/C and O/C), and solvent extraction yields of bitumen. An attempt was made to relate maceral composition to these source rock parameters and to composition of the organic matter and likely biological precursors. A few carbonaceous shale samples contain sufficient generation potential (pyrolysis assay and elemental composition) to be considered potential source rocks, although the extractable hydrocarbon and bitumen yields are lower than those reported in previous studies for effective Type III source rocks. Most samples analysed contain insufficient capacity for generation of hydrocarbons to reach thresholds required for expulsion (primary migration) to occur. In view of these findings, it is improbable that any of the coals or carbonaceous shales at the sites sampled in our study would be capable of expelling commercial amounts of oil. Inasmuch as a few samples contained sufficient generation capacity to be considered potential source rocks, it is possible that some locations or stratigraphic zones within the coals and shales could have favourable potential, but could not be clearly delimited with the number of samples analysed in our study. Because of their high heteroatomic content and high amount of asphaltenes, the bitumens contained in the coals are less capable of generating hydrocarbons even under optimal thermal conditions than their counterpart bitumens in the shales which have a lower heteroatomic content. Published by Elsevier Science B.V.

  8. Astronaut Neil Armstrong - Rock Sample Study - Geological Field Trip - TX

    NASA Image and Video Library

    1969-03-03

    S69-25198 (25 Feb. 1969) --- Astronaut Neil A. Armstrong, commander of the Apollo 11 prime crew, studies rock sample during a geological field trip to the Quitman Mountains area near the Fort Quitman ruins in far west Texas.

  9. Integrated approach for quantification of fractured tight reservoir rocks: Porosity, permeability analyses and 3D fracture network characterisation on fractured dolomite samples

    NASA Astrophysics Data System (ADS)

    Voorn, Maarten; Barnhoorn, Auke; Exner, Ulrike; Baud, Patrick; Reuschlé, Thierry

    2015-04-01

    Fractured reservoir rocks make up an important part of the hydrocarbon reservoirs worldwide. A detailed analysis of fractures and fracture networks in reservoir rock samples is thus essential to determine the potential of these fractured reservoirs. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this study, we therefore explore the use of an additional method - non-destructive 3D X-ray micro-Computed Tomography (μCT) - to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna Basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. 3D μCT data is used to extract porosity, fracture aperture, fracture density and fracture orientations - in bulk as well as locally. The 3D analyses are complemented with thin sections made to provide some 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) of the µCT results towards more realistic reservoir conditions. Our results show that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and other methods can therefore be a powerful approach in microstructural analysis of reservoir rocks, especially when applying the concepts that we present (on a small set of samples) in a larger study, in an automated and standardised manner.

  10. Geochemical studies of rocks from North Ray Crater, Apollo 16

    NASA Technical Reports Server (NTRS)

    Lindstrom, M. M.; Salpas, P. A.

    1982-01-01

    The samples included in the study were all collected as individual specimens from Station 11 near the rim of North Ray Crater. Samples were selected to cover the entire range of rock types from anorthosites to subophitic impact melts, giving particular attention to the feldspathic breccias which predominate at the site. The chemical composition of North Ray Crater rocks is discussed along with the compositional variations among North Ray Crater samples, and the relationships between North Ray Crater and other Apollo 16 stations. It is pointed out that the primary objective in sampling the Apollo 16 site was to characterize materials from the Cayley Plains and Descartes Highlands.

  11. Lunar and Meteorite Thin Sections for Undergraduate and Graduate Studies

    NASA Technical Reports Server (NTRS)

    Allen, J.; Galindo, C.; Luckey, M.; Reustle, J.; Todd, N.; Allen, C.

    2012-01-01

    The Johnson Space Center (JSC) has the unique responsibility to curate NASA's extraterrestrial samples from past and future missions. Curation includes documentation, preservation, preparation, and distribution of samples for research, education, and public outreach. Between 1969 and 1972 six Apollo missions brought back 382 kilograms of lunar rocks, core samples, pebbles, sand and dust from the lunar surface. JSC also curates meteorites collected on US expeditions to Antarctica including rocks from Moon, Mars, and many asteroids including Vesta. Studies of rock and soil samples from the Moon and meteorites continue to yield useful information about the early history of the Moon, the Earth, and the inner solar system.

  12. Heterogeneities of mechanical properties in potential geothermal reservoir rocks of the North German Basin

    NASA Astrophysics Data System (ADS)

    Reyer, D.; Philipp, S. L.

    2012-04-01

    Heterogeneous rock properties in terms of layering and complex infrastructure of fault zones are typical phenomena in sedimentary basins such as the North German Basin. To be able to model reservoir stimulation in layered stratifications and to better adapt the drilling strategy to the rock mechanical conditions it is important to have knowledge about the effects of heterogeneous rock properties on fracture propagation and fault zone infrastructure for typical sedimentary reservoir rocks in the North German Basin. Therefore we aim at quantifying these properties by performing structural geological field studies in outcrop analogues combined with laboratory analyses. The field studies in Rotliegend sandstones (Lower Permian), the sandstones of the Middle Bunter (Lower Triassic) and the sandstones of the Upper Keuper (Upper Triassic) focus on 1) host rock fracture systems and 2) fault zone infrastructure. We analyse quantitatively the dimension, geometry, persistence and connectivity of fracture systems separately for host rocks and fault damage zones. The results show that in rocks with distinctive layering (sandstones and shales) natural fractures are often restricted to individual layers, that is, they are stratabound. The probability of fracture arrest seems to depend on the stiffness contrast between the two layers and on the thickness of the softer layer. The field studies are complemented by systematic sampling to obtain mechanical property variations caused by the layering. For the samples we measure the parameters Young's modulus, compressive and tensile strengths, elastic strain energy, density and porosity. The results show that the mechanical properties vary considerably and many samples are clearly anisotropic. That is, samples taken perpendicular to layering commonly have higher strengths but lower stiffnesses than those taken parallel to layering. We combine the results of laboratory analyses and field measurements to specify the mechanical heterogeneities of the sedimentary reservoir rocks of the North German Basin and of the mechanical units of fault zones therein. To estimate the in situ rock properties at different depths it is further important to understand how rocks from outcrops differ from rocks at depth (for example due to alteration and removal of the overburden load). To answer these questions we analyse samples from drill cores from depths relevant for the use as geothermal reservoirs which are stratigraphically and lithologically equivalent to those taken in outcrop analogues. The results from drill-core sample analyses are then compared with the results from the outcrop samples. Another approach is to analyse how rock mechanical properties correlate with petrographic properties (e.g., mineral content, cementation, fabric, porosity) to use this knowledge to extrapolate the data to depth. Altogether these results will be very useful to make better assumptions on natural reservoir permeabilities and to better adapt the drilling and reservoir stimulation strategy to the rock mechanical conditions.

  13. The United States Polar Rock Repository: A geological resource for the Earth science community

    USGS Publications Warehouse

    Grunow, Annie M.; Elliot, David H.; Codispoti, Julie E.

    2007-01-01

    The United States Polar Rock Repository (USPRR) is a U. S. national facility designed for the permanent curatorial preservation of rock samples, along with associated materials such as field notes, annotated air photos and maps, raw analytic data, paleomagnetic cores, ground rock and mineral residues, thin sections, and microfossil mounts, microslides and residues from Polar areas. This facility was established by the Office of Polar Programs at the U. S. National Science Foundation (NSF) to minimize redundant sample collecting, and also because the extreme cold and hazardous field conditions make fieldwork costly and difficult. The repository provides, along with an on-line database of sample information, an essential resource for proposal preparation, pilot studies and other sample based research that should make fieldwork more efficient and effective. This latter aspect should reduce the environmental impact of conducting research in sensitive Polar Regions. The USPRR also provides samples for educational outreach. Rock samples may be borrowed for research or educational purposes as well as for museum exhibits.

  14. Reappraisal of hydrocarbon biomarkers in Archean rocks

    PubMed Central

    French, Katherine L.; Hallmann, Christian; Hope, Janet M.; Schoon, Petra L.; Zumberge, J. Alex; Hoshino, Yosuke; Peters, Carl A.; George, Simon C.; Love, Gordon D.; Brocks, Jochen J.; Buick, Roger; Summons, Roger E.

    2015-01-01

    Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (<37.9 pg per gram of rock) and total sterane (<32.9 pg per gram of rock) concentrations comparable to those measured in blanks and negative control samples. In contrast, hopanes and steranes measured in the exteriors of conventionally drilled and curated rocks of stratigraphic equivalence reach concentrations of 389.5 pg per gram of rock and 1,039 pg per gram of rock, respectively. Polycyclic aromatic hydrocarbons and diamondoids, which exceed blank concentrations, exhibit individual concentrations up to 80 ng per gram of rock in rock extracts and up to 1,000 ng per gram of rock in hydropyrolysates from the ultraclean cores. These results demonstrate that previously studied Archean samples host mixtures of biomarker contaminants and indigenous overmature hydrocarbons. Therefore, existing lipid biomarker evidence cannot be invoked to support the emergence of oxygenic photosynthesis and eukaryotes by ∼2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories. PMID:25918387

  15. A multi-particle crushing apparatus for studying rock fragmentation due to repeated impacts

    NASA Astrophysics Data System (ADS)

    Huang, S.; Mohanty, B.; Xia, K.

    2017-12-01

    Rock crushing is a common process in mining and related operations. Although a number of particle crushing tests have been proposed in the literature, most of them are concerned with single-particle crushing, i.e., a single rock sample is crushed in each test. Considering the realistic scenario in crushers where many fragments are involved, a laboratory crushing apparatus is developed in this study. This device consists of a Hopkinson pressure bar system and a piston-holder system. The Hopkinson pressure bar system is used to apply calibrated dynamic loads to the piston-holder system, and the piston-holder system is used to hold rock samples and to recover fragments for subsequent particle size analysis. The rock samples are subjected to three to seven impacts under three impact velocities (2.2, 3.8, and 5.0 m/s), with the feed size of the rock particle samples limited between 9.5 and 12.7 mm. Several key parameters are determined from this test, including particle size distribution parameters, impact velocity, loading pressure, and total work. The results show that the total work correlates well with resulting fragmentation size distribution, and the apparatus provides a useful tool for studying the mechanism of crushing, which further provides guidelines for the design of commercial crushers.

  16. The determination of the acoustic parameters of volcanic rocks from compressional velocity measurements

    USGS Publications Warehouse

    Carroll, R.D.

    1969-01-01

    A statistical analysis was made of the relationship of various acoustic parameters of volcanic rocks to compressional wave velocities for data obtained in a volcanic region in Nevada. Some additional samples, chiefly granitic rocks, were also included in the study to extend the range of parameters and the variety of siliceous rock types sampled. Laboratory acoustic measurements obtained on 62 dry core samples were grouped with similar measurements obtained from geophysical logging devices at several depth intervals in a hole from which 15 of the core samples had been obtained. The effects of lithostatic and hydrostatic load on changing the rock acoustic parameters measured in the hole were noticeable when compared with the laboratory measurements on the same core. The results of the analyses determined by grouping all of the data, however, indicate that dynamic Young's, shear and bulk modulus, shear velocity, shear and compressional characteristic impedance, as well as amplitude and energy reflection coefficients may be reliably estimated on the basis of the compressional wave velocities of the rocks investigated. Less precise estimates can be made of density based on the rock compressional velocity. The possible extension of these relationships to include many siliceous rocks is suggested. ?? 1969.

  17. Location-Related Differences in Weathering Behaviors and Populations of Culturable Rock-Weathering Bacteria Along a Hillside of a Rock Mountain.

    PubMed

    Wang, Qi; Wang, Rongrong; He, Linyan; Sheng, Xiafang

    2017-05-01

    Bacteria play important roles in rock weathering, elemental cycling, and soil formation. However, little is known about the weathering potential and population of bacteria inhabiting surfaces of rocks. In this study, we isolated bacteria from the top, middle, and bottom rock samples along a hillside of a rock (trachyte) mountain as well as adjacent soils and characterized rock-weathering behaviors and populations of the bacteria. Per gram of rock or surface soil, 10 6 -10 7 colony forming units were obtained and total 192 bacteria were isolated. Laboratory rock dissolution experiments indicated that the proportions of the highly effective Fe (ranging from 67 to 92 %), Al (ranging from 40 to 48 %), and Cu (ranging from 54 to 81 %) solubilizers were significantly higher in the top rock and soil samples, while the proportion of the highly effective Si (56 %) solubilizers was significantly higher in the middle rock samples. Furthermore, 78, 96, and 6 % of bacteria from the top rocks, soils, and middle rocks, respectively, significantly acidified the culture medium (pH < 4.0) in the rock dissolution process. Most rock-weathering bacteria (79 %) from the rocks were different to those from the soils and most of them (species level) have not been previously reported. Furthermore, location-specific rock-weathering bacterial populations were found and Bacillus species were the most (66 %) frequently isolated rock-weathering bacteria in the rocks based on cultivation methods. Notably, the top rocks and soils had the highest and lowest diversity of rock-weathering bacterial populations, respectively. The results suggested location-related differences in element (Si, Al, Fe, and Cu) releasing effectiveness and communities of rock-weathering bacteria along the hillside of the rock mountain.

  18. Porosity, permeability and 3D fracture network characterisation of dolomite reservoir rock samples

    PubMed Central

    Voorn, Maarten; Exner, Ulrike; Barnhoorn, Auke; Baud, Patrick; Reuschlé, Thierry

    2015-01-01

    With fractured rocks making up an important part of hydrocarbon reservoirs worldwide, detailed analysis of fractures and fracture networks is essential. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) however suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this paper, we therefore explore the use of an additional method – non-destructive 3D X-ray micro-Computed Tomography (μCT) – to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. We process the 3D μCT data in this study by a Hessian-based fracture filtering routine and can successfully extract porosity, fracture aperture, fracture density and fracture orientations – in bulk as well as locally. Additionally, thin sections made from selected plug samples provide 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) towards more realistic reservoir conditions. This study shows that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that although there are limitations, several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and other methods can therefore be a powerful approach in microstructural analysis of reservoir rocks, especially when applying the concepts that we present (on a small set of samples) in a larger study, in an automated and standardised manner. PMID:26549935

  19. Porosity, permeability and 3D fracture network characterisation of dolomite reservoir rock samples.

    PubMed

    Voorn, Maarten; Exner, Ulrike; Barnhoorn, Auke; Baud, Patrick; Reuschlé, Thierry

    2015-03-01

    With fractured rocks making up an important part of hydrocarbon reservoirs worldwide, detailed analysis of fractures and fracture networks is essential. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) however suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this paper, we therefore explore the use of an additional method - non-destructive 3D X-ray micro-Computed Tomography (μCT) - to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. We process the 3D μCT data in this study by a Hessian-based fracture filtering routine and can successfully extract porosity, fracture aperture, fracture density and fracture orientations - in bulk as well as locally. Additionally, thin sections made from selected plug samples provide 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) towards more realistic reservoir conditions. This study shows that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that although there are limitations, several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and other methods can therefore be a powerful approach in microstructural analysis of reservoir rocks, especially when applying the concepts that we present (on a small set of samples) in a larger study, in an automated and standardised manner.

  20. Geochemistry of Rock Samples Collected from the Iron Hill Carbonatite Complex, Gunnison County, Colorado

    USGS Publications Warehouse

    Van Gosen, Bradley S.

    2008-01-01

    A study conducted in 2006 by the U.S. Geological Survey collected 57 surface rock samples from nine types of intrusive rock in the Iron Hill carbonatite complex. This intrusive complex, located in Gunnison County of southwestern Colorado, is known for its classic carbonatite-alkaline igneous geology and petrology. The Iron Hill complex is also noteworthy for its diverse mineral resources, including enrichments in titanium, rare earth elements, thorium, niobium (columbium), and vanadium. This study was performed to reexamine the chemistry and metallic content of the major rock units of the Iron Hill complex by using modern analytical techniques, while providing a broader suite of elements than the earlier published studies. The report contains the geochemical analyses of the samples in tabular and digital spreadsheet format, providing the analytical results for 55 major and trace elements.

  1. A Mars Sample Return Sample Handling System

    NASA Technical Reports Server (NTRS)

    Wilson, David; Stroker, Carol

    2013-01-01

    We present a sample handling system, a subsystem of the proposed Dragon landed Mars Sample Return (MSR) mission [1], that can return to Earth orbit a significant mass of frozen Mars samples potentially consisting of: rock cores, subsurface drilled rock and ice cuttings, pebble sized rocks, and soil scoops. The sample collection, storage, retrieval and packaging assumptions and concepts in this study are applicable for the NASA's MPPG MSR mission architecture options [2]. Our study assumes a predecessor rover mission collects samples for return to Earth to address questions on: past life, climate change, water history, age dating, understanding Mars interior evolution [3], and, human safety and in-situ resource utilization. Hence the rover will have "integrated priorities for rock sampling" [3] that cover collection of subaqueous or hydrothermal sediments, low-temperature fluidaltered rocks, unaltered igneous rocks, regolith and atmosphere samples. Samples could include: drilled rock cores, alluvial and fluvial deposits, subsurface ice and soils, clays, sulfates, salts including perchlorates, aeolian deposits, and concretions. Thus samples will have a broad range of bulk densities, and require for Earth based analysis where practical: in-situ characterization, management of degradation such as perchlorate deliquescence and volatile release, and contamination management. We propose to adopt a sample container with a set of cups each with a sample from a specific location. We considered two sample cups sizes: (1) a small cup sized for samples matching those submitted to in-situ characterization instruments, and, (2) a larger cup for 100 mm rock cores [4] and pebble sized rocks, thus providing diverse samples and optimizing the MSR sample mass payload fraction for a given payload volume. We minimize sample degradation by keeping them frozen in the MSR payload sample canister using Peltier chip cooling. The cups are sealed by interference fitted heat activated memory alloy caps [5] if the heating does not affect the sample, or by crimping caps similar to bottle capping. We prefer cap sealing surfaces be external to the cup rim to prevent sample dust inside the cups interfering with sealing, or, contamination of the sample by Teflon seal elements (if adopted). Finally the sample collection rover, or a Fetch rover, selects cups with best choice samples and loads them into a sample tray, before delivering it to the Earth Return Vehicle (ERV) in the MSR Dragon capsule as described in [1] (Fig 1). This ensures best use of the MSR payload mass allowance. A 3 meter long jointed robot arm is extended from the Dragon capsule's crew hatch, retrieves the sample tray and inserts it into the sample canister payload located on the ERV stage. The robot arm has capacity to obtain grab samples in the event of a rover failure. The sample canister has a robot arm capture casting to enable capture by crewed or robot spacecraft when it returns to Earth orbit

  2. [High Precision Identification of Igneous Rock Lithology by Laser Induced Breakdown Spectroscopy].

    PubMed

    Wang, Chao; Zhang, Wei-gang; Yan, Zhi-quan

    2015-09-01

    In the field of petroleum exploration, lithology identification of finely cuttings sample, especially high precision identification of igneous rock with similar property, has become one of the geological problems. In order to solve this problem, a new method is proposed based on element analysis of Laser-Induced Breakdown Spectroscopy (LIBS) and Total Alkali versus Silica (TAS) diagram. Using independent LIBS system, factors influencing spectral signal, such as pulse energy, acquisition time delay, spectrum acquisition method and pre-ablation are researched through contrast experiments systematically. The best analysis conditions of igneous rock are determined: pulse energy is 50 mJ, acquisition time delay is 2 μs, the analysis result is integral average of 20 different points of sample's surface, and pre-ablation has been proved not suitable for igneous rock sample by experiment. The repeatability of spectral data is improved effectively. Characteristic lines of 7 elements (Na, Mg, Al, Si, K, Ca, Fe) commonly used for lithology identification of igneous rock are determined, and igneous rock samples of different lithology are analyzed and compared. Calibration curves of Na, K, Si are generated by using national standard series of rock samples, and all the linearly dependent coefficients are greater than 0.9. The accuracy of quantitative analysis is investigated by national standard samples. Element content of igneous rock is analyzed quantitatively by calibration curve, and its lithology is identified accurately by the method of TAS diagram, whose accuracy rate is 90.7%. The study indicates that LIBS can effectively achieve the high precision identification of the lithology of igneous rock.

  3. A new method for automatic discontinuity traces sampling on rock mass 3D model

    NASA Astrophysics Data System (ADS)

    Umili, G.; Ferrero, A.; Einstein, H. H.

    2013-02-01

    A new automatic method for discontinuity traces mapping and sampling on a rock mass digital model is described in this work. The implemented procedure allows one to automatically identify discontinuity traces on a Digital Surface Model: traces are detected directly as surface breaklines, by means of maximum and minimum principal curvature values of the vertices that constitute the model surface. Color influence and user errors, that usually characterize the trace mapping on images, are eliminated. Also trace sampling procedures based on circular windows and circular scanlines have been implemented: they are used to infer trace data and to calculate values of mean trace length, expected discontinuity diameter and intensity of rock discontinuities. The method is tested on a case study: results obtained applying the automatic procedure on the DSM of a rock face are compared to those obtained performing a manual sampling on the orthophotograph of the same rock face.

  4. Study on the characteristics of coal rock electromagnetic radiation (EMR) and the main influencing factors

    NASA Astrophysics Data System (ADS)

    Song, Xiaoyan; Li, Xuelong; Li, Zhonghui; Zhang, Zhibo; Cheng, Fuqi; Chen, Peng; Liu, Yongjie

    2018-01-01

    Coal rock would produce electromagnetic radiation (EMR) in the loading process, but study on the influence factors influence on the coal rock EMR characteristics in the mesoscopic level is not insufficient. In the paper, the EMR characteristics of coal and rock samples under uniaxial loading are studied. Several typical microcosmic mechanisms affecting the characteristics of EMR are discussed, such as strength, composition and microstructure of the samples. Results show that the macroscopic structure of the outburst coal is soft, the corresponding EMR signal increases slowly with the loading increase and the EMR peak is smaller. The rockburst coal has a strong brittleness, the EMR signal increases quickly and EMR peak appears while the coal breaks is larger than the outburst coal. The EMR characteristics of rock samples are similar to the rockburst coal, but the EMR peak is the largest. When the coal rock microstructure is complete, the coal rock block is larger and the brittleness is stronger, then the corresponding strength would be larger. And the free charge generated by thermal excitation, field emission and intergranular chemical bond breakage would also be more. In the meantime, the crack propagation rate becomes greater, therefore the EMR is more stronger. The piezoelectric effect is mainly caused by the linear elastic stage of the specimen deformation and rupture, which contributes less to the EMR signals. This study is of great theoretical and practical value for assessing the mechanical state of coal rock through EMR technology, and accurately monitoring and predicting the coal rock dynamic disasters.

  5. Geologic reconnaissance and geochemical sampling survey of molybdenum mineralization near Schiestler Peak, Temple Peak Quadrangle, Sublette County, Wyoming

    USGS Publications Warehouse

    Lee, G.K.; Antweiler, J.C.; Love, J.D.; Benedict, J.F.

    1982-01-01

    A brief geologic reconnaissance and geochemical survey of molybdenum mineralization near Schiestler Peak, Sublette County, Wyo., indicates that molybdenite occurs in this area as disseminations and blebs in granitic or quartz monzonitic rocks intruded by felsic dikes of similar composition. Samples of stream sediments, panned concentrates from stream sediments, soils, rocks, and water were collected in the geochemical survey. Analytical results show that in reconnaissance, panned concentrates are the best of the sample types used in this study to detect molybdenum mineralization. More detailed analysis of the distribution of the molybdenum is best achieved through the collection of rock samples. Hydrothermal alteration is generally not conspicuous in the study area; however, rock samples that contain molybdenite are usually slightly enriched in silver, copper, lead, and in several instances, gold. Conversely, there appear to be negative associations between molybdenum and zinc and between molybdenum and several of the rare-earth elements. Mo concentrations in the rock samples with no visible molybdenite range from undetectable at a sensitivity of 5 parts per million (ppm) to 700 ppm. Mo content in rock samples containing visible molybdenite ranges from 10 ppm to greater than 2,000 ppm. Stream-sediment values range from undetected to 15 ppm; panned concentrates from undetected to 15 ppm; soils from undetected to 20 ppm. Analyses of the water samples indicate Mo concentrations from 0.8 parts per billion (ppb) to 4.8 ppb. As currently understood, this deposit is not extensive or continuous, but drilling to provide information on the vertical extent of mineralization may alter this opinion.

  6. The Polar Rock Repository: Rescuing Polar Collections for New Research

    NASA Astrophysics Data System (ADS)

    Grunow, A.

    2016-12-01

    Geological field expeditions in polar regions are logistically difficult, financially expensive and can have a significant environmental impact on pristine regions. The scarcity of outcrop in Antarctica (98% ice-covered) makes previously collected rock samples very valuable to the science community. NSF recognized the need for preserving rock, dredge, and terrestrial core samples from polar areas and created the Polar Rock Repository (PRR). The PRR collection allows for full and open access to both samples and metadata via the PRR website. In addition to the physical samples and their basic metadata, the PRR archives supporting materials from the collector, field notebooks, images of the samples, field maps, air photos, thin sections and any associated bibliography/DOI's. Many of these supporting materials are unique. More than 40,000 samples are available from the PRR for scientific analysis to researchers around the globe. Most of the samples cataloged at the PRR were collected more than 30 years ago, some more than 100 years ago. The rock samples and metadata are made available online through an advanced search engine for the PRR website. This allows scientists to "drill down" into search results using categories and look-up object fields similar to websites like Amazon. Results can be viewed in a table, downloaded as a spreadsheet, or plotted on an interactive map that supports display of satellite imagery and bathymetry layers. Samples can be requested by placing them in the `shopping cart'. These old sample collections have been repeatedly used by scientists from around the world. One data request involved locating coal deposits in Antarctica for a global compilation and another for looking at the redox state of batholithic rocks from the Antarctic Peninsula using magnetic susceptibilities of PRR rocks. Sample usage has also included non-traditional geologic studies, such as a search for monopoles in Cenozoic volcanic samples, and remote sensing/spectral imaging of Transantarctic Mountains rocks. Rescuing these collections from universities that no longer want to store the rocks or from researchers who no longer need the samples has resulted in many new publications, new proposals and enormous cost and environmental savings to the U.S. Antarctic science program.

  7. Characterization of rock samples and mineralogical controls on leachates

    USGS Publications Warehouse

    Hammarstrom, Jane M.; Cravotta, Charles A.; Galeone, Daniel G.; Jackson, John C.; Dulong, Frank T.; Hornberger, Roger J.; Brady, Keith B.C.

    2009-01-01

    Rocks associated with coal beds typically include shale, sandstone, and (or) limestone. In addition to common rock-forming minerals, all of these rock types may contain sulfide and sulfate minerals, various carbonate minerals, and organic material. These different minerals have inherently different solubility characteristics, as well as different acid-generating or acid-neutralizing potentials. The abundance and composition of sulfur- and carbonate-bearing minerals are of particular interest in interpreting the leaching column data because (1) pyrite and carbonate minerals are the primary controls on the acid-base account of a sample, (2) these minerals incorporate trace metals that can be released during weathering, and (3) these minerals readily react during weathering due to mineral dissolution and oxidation of iron.Rock samples were collected by the Pennsylvania Department of Environmental Protection (PaDEP) from five different sites to assess the draft standardized leaching column method (ADTI-WP2) for the prediction of weathering rates and water quality at coal mines. Samples were sent to USGS laboratories for mineralogical characterization and to ActLabs for chemical analysis. The samples represent a variety of rock types (shales, sandstones, and coal refuse) that are typical of coal overburden in the eastern United States. These particular samples were chosen for testing the weathering protocols because they represent a range of geochemical and lithologic characteristics, sulfur contents, and acid-base accounting characteristics (Hornberger et al., 2003). The rocks contain variable amounts of pyrite and carbonate minerals and vary in texture.This chapter includes bulk rock chemical data and detailed mineralogical and textural data for unweathered starting materials used in the interlaboratory validation study, and for two samples used in the early phases of leaching column tests (Wadesville Sandstone, Leechburg Coal Refuse). We also characterize some of the post-weathering rock samples, report trace-element content in leachate, and discuss mineralogical controls on leachate quality based on data from one of the participating laboratories. Table 5.1 lists the samples described in this chapter, the sample numbers, and comments on the characteristics of each lithology. Sample locations are plotted in Figure 5.1. Chapters 2 and 3 describe the sample locations, sample preparation protocols, ABA characteristics, and rationale for selection of rock samples for testing. Microprobe data for pyrite and carbonate minerals are tabulated in Appendix 5.1. Leachate data, along with a series of graphs showing concentration and cumulative transport trends, for the laboratory data discussed in this chapter are included as Excel spreadsheets in Appendices 5.2 and 5.3. Leach column data for the interlaboratory study are evaluated and interpreted in Chapters 7 -11.

  8. Weathering process in Sør Rondane Mountains, East Antarctica

    NASA Astrophysics Data System (ADS)

    Kanamaru, T.; Suganuma, Y.; Oiwane, H.; Miura, M.; Okuno, J.; Hayakawa, H.

    2016-12-01

    Weathering process under the hyper-arid and hypothermal environment is a key to understand the geomorphogic process and landscape evolution in Antarctica and on Mars. A nunber of studies have focused on weathering process of basaltic rocks in Antarctica, however, the nature of the weathering process of plutonic type rock, a common rock type on the Earth, have been less focused and remain unclear. Here, we report the physical/chemical weathering process of the granitic rocks obtained from Dronning Maud Land in East Antarctica based on a multiplicity of petrological approaches. Loss on Ignition (LOI) and major element composition of the crust and core of the rock samples indicate that chemical weathering process in this area seems to be very limited. The microscopic observations and laser-Raman micro spectroscopy for thin sections from the crust and core indicate that goethite grains are formed mainly in the vein around the crust, which is consistent with the higher Fe3+/Fe2+ contrast from the core to crust. A negative correlation between the rock hardness and color strength index (CSI) values also indicate that crust of rock samples tend to less hard than core due to cracking of the rock samples and following goethite formation. On the other hand, EPMA analysis indicates that original Fe-Ti oxide grains in the core of rock samples are damaged by weathering, and altered to hematite, and to non-stoichiometric Fe-Ti compound associated with ilmenite grans in case of the higher relative height samples. These reveal that the weathering process of the plutonic rocks under the hyper-cold and hypothermal environment are mainly controlled by oxidation, including iron hydroxide formation in the veins formed by mechanical distraction, and Fe-Ti oxide alteration in rock interior.

  9. 3-D study of texture and elastic anisotropy on rocks from NW Italy Ivrea zone

    NASA Astrophysics Data System (ADS)

    Pros, Z.; Lokajicek, T.; Prikryl, R.; Klima, K.; Nikitin, A. N.; Ivankina, T. I.; Martinkova, M.

    2003-04-01

    The direct measurement of physical properties of lower crustal and upper mantle rocks, which can be found on the Earth's surface, could be used for the improving of our knowledge of deep rocks. These results could be used mainly for the correction of geological and geophysical models based on the indirect data. Elastic properties of rocks are one of the most important parameters studied and could be applied in many fields of Earth sciences. In this study several quite different methods were applied to determine elastic properties. P-wave ultrasonic sounding of mafic and ultrabasic rock samples in 132 independent directions at several levels of confining pressure enable to determine elastic anisotropy of P-wave velocity. The samples were collected in nearby of Balmuccia ultra basic massif (Ivrea zone, southern Alps, NW Italy). This method revealed large directional variance of maximum P-wave velocity and different symmetric (orthorhombic vs. transversal isotropic) of elastic waves 3-D distribution, that has not been found on these rocks before. Identical samples were studied by means of neutron diffraction. Neutron diffraction provide data on CPO orientation in identical spherical samples, on which was measured P-wave velocity. Laboratory 3-D measurement of P-wave velocity thus present powerful method for detection of magmatic fabric features not visible by naked eye. One dunite sample exhibits P-wave velocity approaching to that of olivine crystal 9.8 km/s due to the strong CPO of olivine in this sample. Such observation was not done before on the natural olivine-rich rocks. It follows from the comparison of measured and calculated P-wave velocities, that these values are more reliable than data obtained from measurement in few directions only. This project was supported by Grant Agency of the Czech Republic No.: 205/01/1430.

  10. Geochemical evaluation of Niger Delta sedimentary organic rocks: a new insight

    NASA Astrophysics Data System (ADS)

    Akinlua, Akinsehinwa; Torto, Nelson

    2011-09-01

    A geochemical evaluation of Niger Delta organic matter was carried out using supercritical fluid extraction (SFE) sample preparation procedure. Comparison of geochemical significance of gas chromatographic data of rock extracts of SFE with those of Soxhlet extraction method from previous studies was made in order to establish the usefulness of SFE in geochemical exploration. The assessment of geochemical character of the rock samples from the comparison and interpretation of other geochemical parameters were used to give more insights into understanding the source rocks characteristics of onshore and shelf portions of the Niger Delta Basin. The results of the gas chromatographic (GC) analysis of the rock extracts across the lithostratigraphic units show that Pr/Ph, Pr/nC17, Pr/nC18, CPI and odd/even preference ranged from 0.07 to 12.39, 0.04 to 6.66, 0.05 to 13.80, 0.12 to 8.4 and 0.06 to 8.12, respectively. The Rock-Eval pyrolysis data and geochemical ratios and parameters calculated from the GC data showed that most of the samples are mature and have strong terrestrial provenance while a few samples have strong marine provenance. The few marine source rocks are located in the deeper depth horizon. Pr/Ph and standard geochemical plots indicate that most of samples were derived from organic matter deposited in less reducing conditions, i.e. more of oxidizing conditions while a few samples have predominantly influence of reducing conditions. The results of trace metal analysis of older samples from Agbada Formation also indicate marine and mixed organic matter input deposited in less reducing conditions. The results obtained in this study are comparable with those obtained from previous studies when Soxhlet extraction method was used and also indicated the presence of more than one petroleum systems in the Niger Delta.

  11. Dissolution and secondary mineral precipitation in basalts due to reactions with carbonic acid

    NASA Astrophysics Data System (ADS)

    Kanakiya, Shreya; Adam, Ludmila; Esteban, Lionel; Rowe, Michael C.; Shane, Phil

    2017-06-01

    One of the leading hydrothermal alteration processes in volcanic environments is when rock-forming minerals with high concentrations of iron, magnesium, and calcium react with CO2 and water to form carbonate minerals. This is used to the advantage of geologic sequestration of anthropogenic CO2. Here we experimentally investigate how mineral carbonation processes alter the rock microstructure due to CO2-water-rock interactions. In order to characterize these changes, CO2-water-rock alteration in Auckland Volcanic Field young basalts (less than 0.3 Ma) is studied before and after a 140 day reaction period. We investigate how whole core basalts with similar geochemistry but different porosity, permeability, pore geometry, and volcanic glass content alter due to CO2-water-rock reactions. Ankerite and aluminosilicate minerals precipitate as secondary phases in the pore space. However, rock dissolution mechanisms are found to dominate this secondary mineral precipitation resulting in an increase in porosity and decrease in rigidity of all samples. The basalt with the highest initial porosity and volcanic glass volume shows the most secondary mineral precipitation. At the same time, this sample exhibits the greatest increase in porosity and permeability, and a decrease in rock rigidity post reaction. For the measured samples, we observe a correlation between volcanic glass volume and rock porosity increase due to rock-fluid reactions. We believe this study can help understand the dynamic rock-fluid interactions when monitoring field scale CO2 sequestration projects in basalts.

  12. Studying the impact of air/brine displacement on acoustic velocities in carbonates. El Amin Mokhtar and Sandra Vega

    NASA Astrophysics Data System (ADS)

    Mokhtar, E.; Vega, D.

    2012-12-01

    The impact of air/brine displacement on acoustic velocities of carbonate rocks is not fully comprehended yet. In order to improve our understanding of this effect, we conducted laboratory measurements of porosity and acoustic velocities (Vp and Vs) under both dry and brine saturated conditions at ambient pressure and temperature. The core plug samples in this study were collected from a hydrocarbon reservoir in the Middle East. A petrographic analysis was also performed on thin sections taken from the core plugs using a microscope and a digital camera. The aim of this analysis was to study depositional facies and the extent of diagenetic overprint that caused the observed variations in rock fabrics. Cross-plots were generated to analyze the trends of behavior between acoustic velocities and porosities taking into account the influence of different rock fabrics, in both dry and brine saturated samples. Acoustic velocities of brine saturated samples were higher than velocities of dry samples, as expected. However, their differences also respond to both, total porosity and carbonate rock fabrics. This result can be attributed to the different carbonate pore structures and rock frames formed during deposition and diagenesis. Similarly, the Vp/Vs ratio cross-plots display an increase in Vp/Vs ratios for the brine saturated samples compared to the dry ones. In conclusion, differences in acoustic velocities between dry and brine saturated carbonate rocks seem to be highly effected by porosity, rock fabric, and fluid content. This information can help to better understand the differences in acoustic response between gas and brine saturated zones in well logs and seismic.

  13. Petrographic and petrological study of lunar rock materials

    NASA Technical Reports Server (NTRS)

    Winzer, S. R.

    1977-01-01

    Impact melts and breccias from the Apollo 15 and 16 landing sites were examined optically and by electron microscope/microprobe. Major and trace element abundances were determined for selected samples. Apollo 16 breccias contained impact melts, metamorphic and primary igneous rocks. Metamorphic rocks may be the equivalents of the impact melts. Apollo 15 breccias studied were fragment-laden melts derived from gabbro and more basalt target rocks.

  14. Rock pushing and sampling under rocks on Mars

    USGS Publications Warehouse

    Moore, H.J.; Liebes, S.; Crouch, D.S.; Clark, L.V.

    1978-01-01

    Viking Lander 2 acquired samples on Mars from beneath two rocks, where living organisms and organic molecules would be protected from ultraviolet radiation. Selection of rocks to be moved was based on scientific and engineering considerations, including rock size, rock shape, burial depth, and location in a sample field. Rock locations and topography were established using the computerized interactive video-stereophotogrammetric system and plotted on vertical profiles and in plan view. Sampler commands were developed and tested on Earth using a full-size lander and surface mock-up. The use of power by the sampler motor correlates with rock movements, which were by plowing, skidding, and rolling. Provenance of the samples was determined by measurements and interpretation of pictures and positions of the sampler arm. Analytical results demonstrate that the samples were, in fact, from beneath the rocks. Results from the Gas Chromatograph-Mass Spectrometer of the Molecular Analysis experiment and the Gas Exchange instrument of the Biology experiment indicate that more adsorbed(?) water occurs in samples under rocks than in samples exposed to the sun. This is consistent with terrestrial arid environments, where more moisture occurs in near-surface soil un- der rocks than in surrounding soil because the net heat flow is toward the soil beneath the rock and the rock cap inhibits evaporation. Inorganic analyses show that samples of soil from under the rocks have significantly less iron than soil exposed to the sun. The scientific significance of analyses of samples under the rocks is only partly evaluated, but some facts are clear. Detectable quantities of martian organic molecules were not found in the sample from under a rock by the Molecular Analysis experiment. The Biology experiments did not find definitive evidence for Earth-like living organisms in their sample. Significant amounts of adsorbed water may be present in the martian regolith. The response of the soil from under a rock to the aqueous nutrient in the Gas Exchange instrument indicates that adsorbed water and hydrates play an important role in the oxidation potential of the soil. The rock surfaces are strong, because they did not scratch, chip or spall when the sampler pushed them. Fresh surfaces of soil and the undersides of rocks were exposed so that they could be imaged in color. A ledge of soil adhered to one rock that tilted, showing that a crust forms near the surface of Mars. The reason for low amounts of iron in the sampIes from under the rocks is not known at this time.

  15. On the origin of nonlinear elasticity in disparate rocks

    DOE PAGES

    Riviere, Jacques Vincent; Shokouhi, Parisa; Guyer, Robert A.; ...

    2015-03-31

    Dynamic acousto-elastic (DAE) studies are performed on a set of 6 rock samples (four sandstones, one soapstone, and one granite). From these studies, at 20 strain levels 10 -7 < ϵ < 10 -5, four measures characterizing the nonlinear elastic response of each sample are found. Additionally, each sample is tested with nonlinear resonant ultrasonic spectroscopy (NRUS) and a fth measure of nonlinear elastic response is found. The ve measures of the nonlinear elastic response of the samples (approximately 3 x 6 x 20 x 5 numbers as each measurement is repeated 3 times) are subjected to careful analysis usingmore » model independent statistical methods, principal component analysis and fuzzy clustering. This analysis reveals di erences among the samples and di erences among the nonlinear measures. Four of the nonlinear measures are sensing much the same physical mechanism in the samples. The fth is seeing something di erent. This is the case for all samples. Although the same physical mechanisms (two) are operating in all samples there are distinctive features in the way the physical mechanisms present themselves from sample to sample. This suggests classi cation of the samples into two groups. The numbers in this study and the classi cation of the measures/samples constitute an empirical characterization of rock nonlinear elastic properties that can serve as a valuable testing ground for physically based theories that relate rock nonlinear elastic properties to microscopic elastic features.« less

  16. Analytical results and sample locality maps of stream-sediment, heavy-mineral-concentrate, and rock samples from the Little Jacks Creek (ID-111-006), Big Jacks Creek (ID-111-007C), Duncan Creek (ID-111-0007B), and Upper Deep Creek (ID-111-044) Wilderness Study Areas, Owyhee County, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, M.S.; Gent, C.A.; Bradley, L.A.

    1989-01-01

    A U.S. Geological Survey report detailing the analytical results and sample locality maps of stream-sediment, heavy-mineral-concentrate, and rock samples from the Little Jacks Creek, Big Jacks Creek, Duncan Creek, and Upper Deep Creek Wilderness Study Areas, Owyhee County, Idaho

  17. Apollo rocks, fines and soil cores

    NASA Astrophysics Data System (ADS)

    Allton, J.; Bevill, T.

    Apollo rocks and soils not only established basic lunar properties and ground truth for global remote sensing, they also provided important lessons for planetary protection (Adv. Space Res ., 1998, v. 22, no. 3 pp. 373-382). The six Apollo missions returned 2196 samples weighing 381.7 kg, comprised of rocks, fines, soil cores and 2 gas samples. By examining which samples were allocated for scientific investigations, information was obtained on usefulness of sampling strategy, sampling devices and containers, sample types and diversity, and on size of sample needed by various disciplines. Diversity was increased by using rakes to gather small rocks on the Moon and by removing fragments >1 mm from soils by sieving in the laboratory. Breccias and soil cores are diverse internally. Per unit weight these samples were more often allocated for research. Apollo investigators became adept at wringing information from very small sample sizes. By pushing the analytical limits, the main concern was adequate size for representative sampling. Typical allocations for trace element analyses were 750 mg for rocks, 300 mg for fines and 70 mg for core subsamples. Age-dating and isotope systematics allocations were typically 1 g for rocks and fines, but only 10% of that amount for core depth subsamples. Historically, allocations for organics and microbiology were 4 g (10% for cores). Modern allocations for biomarker detection are 100mg. Other disciplines supported have been cosmogenic nuclides, rock and soil petrology, sedimentary volatiles, reflectance, magnetics, and biohazard studies . Highly applicable to future sample return missions was the Apollo experience with organic contamination, estimated to be from 1 to 5 ng/g sample for Apollo 11 (Simonheit &Flory, 1970; Apollo 11, 12 &13 Organic contamination Monitoring History, U.C. Berkeley; Burlingame et al., 1970, Apollo 11 LSC , pp. 1779-1792). Eleven sources of contaminants, of which 7 are applicable to robotic missions, were identified and reduced; thus, improving Apollo 12 samples to 0.1 ng/g. Apollo sample documentation preserves the parentage, orientation, and location, packaging, handling and environmental histories of each of the 90,000 subsamples currently curated. Active research on Apollo samples continues today, and because 80% by weight of the Apollo collection remains pristine, researchers have a reservoir of material to support studies well into the future.

  18. Composition of the crust beneath the Kenya rift

    USGS Publications Warehouse

    Mooney, W.D.; Christensen, N.I.

    1994-01-01

    We infer the composition of the crust beneath and on the flanks of the Kenya rift based on a comparison of the KRISP-90 crustal velocity structure with laboratory measurements of compressional-wave velocities of rock samples from Kenya. The rock samples studied, which are representative of the major lithologies exposed in Kenya, include volcanic tuffs and flows (primarily basalts and phonolites), and felsic to intermediate composition gneisses. This comparison indicates that the upper crust (5-12 km depth) consists primarily of quartzo-feldspathic gneisses and schists similar to rocks exposed on the flanks of the rift, whereas the middle crust (12-22 km depth) consists of more mafic, hornblende-rich metamorphic rocks, probably intruded by mafic rocks beneath the rift axis. The lower crust on the flanks of the rift may consist of mafic granulite facies rocks. Along the rift axis, the lower crust varies in thickness from 9 km in the southern rift to only 2-3 km in the north, and has a seismic velocity substantially higher than the samples investigated in this study. The lower crust of the rift probably consists of a crust/mantle mix of high-grade metamorphic rocks, mafic intrusives, and an igneous mafic residuum accreted to the base of the crust during differentiation of a melt derived from the upper mantle. ?? 1994.

  19. Studying physical properties of deformed intact and fractured rocks by micro-scale hydro-mechanical-seismicity model

    NASA Astrophysics Data System (ADS)

    Raziperchikolaee, Samin

    The pore pressure variation in an underground formation during hydraulic stimulation of low permeability formations or CO2 sequestration into saline aquifers can induce microseismicity due to fracture generation or pre-existing fracture activation. While the analysis of microseismic data mainly focuses on mapping the location of fractures, the seismic waves generated by the microseismic events also contain information for understanding of fracture mechanisms based on microseismic source analysis. We developed a micro-scale geomechanics, fluid-flow and seismic model that can predict transport and seismic source behavior during rock failure. This model features the incorporation of microseismic source analysis in fractured and intact rock transport properties during possible rock damage and failure. The modeling method considers comprehensive grains and cements interaction through a bonded-particle-model. As a result of grain deformation and microcrack development in the rock sample, forces and displacements in the grains involved in the bond breakage are measured to determine seismic moment tensor. In addition, geometric description of the complex pore structure is regenerated to predict fluid flow behavior of fractured samples. Numerical experiments are conducted for different intact and fractured digital rock samples, representing various mechanical behaviors of rocks and fracture surface properties, to consider their roles on seismic and transport properties of rocks during deformation. Studying rock deformation in detail provides an opportunity to understand the relationship between source mechanism of microseismic events and transport properties of damaged rocks to have a better characterizing of fluid flow behavior in subsurface formations.

  20. Radon-222 and its parent radionuclides in groundwater from two study areas in New Jersey and Maryland, U.S.A.

    USGS Publications Warehouse

    Wanty, R.B.; Johnson, S.L.; Briggs, P.H.

    1991-01-01

    A study of groundwater chemistry and radionuclide mobility in New Jersey and Maryland was conducted to investigate natural processes that control the mobility of radionuclides in the water-rock system. Groundwater was sampled from two geological units in New Jersey and from six in Maryland. The water sampled was from aquifiers in fractured metamorphic rocks of varying composition and metamorphic grade. In both areas, groundwater chemistry was affected most by aquifier mineralogy and lithology; concentrations of total dissolved U, 226Ra and 222Rn were similarly affected. In evey sample for which measurements were made, dissolved Utotal and 226Ra were present in much lower concentrations than 222Rn when expressed in terms of their radioactivity. On the other hand, the total amount of 222Rn that could be produced in these rocks, given their U contents, is much higher than the concentrations observed in groundwater. Thus, the emanating efficiencies of the aquifer rocks studied must be near 10% or less. Such low emanating efficiencies require that a fraction of the 226Ra in the rock be located close to the water-rock interface so that 222Rn, when produced, can be rapidly and efficiently transferred to the aqueous phase. This condition is established when a similar fraction of the U is in a readily leachable position. No known U or Ra solids were supersaturated in any of the samples. Thus, adsorption processes probably play a role in limiting mobilities of Utotal and 226Ra. Concentrations of Utotal and 226Ra found in the water samples are comparable to those found in experimental studies of adsorption onto mineral surfaces. ?? 1991.

  1. The First Results of Study of Hydrocarbon Biomarkers and Hydrocarbons of a Diamond-like Structure in the Riphean, Vendian, and Lower Cambrian Rocks of the Katanga Saddle

    NASA Astrophysics Data System (ADS)

    Gordadze, G. N.; Kerimov, V. Yu.; Gaiduk, A. V.; Giruts, M. V.; Lobusev, M. A.; Serov, S. G.; Kuznetsov, N. B.; Romanyuk, T. V.

    2018-02-01

    The results of geochemical study of samples from Riphean-Lower Paleozoic rocks enriched in organic matter (the rocks most likely parental for oil) from the southern part of the Siberian Platform are reported.

  2. Geological and geomechanical properties of the carbonate rocks at the eastern Black Sea Region (NE Turkey)

    NASA Astrophysics Data System (ADS)

    Ersoy, Hakan; Yalçinalp, Bülent; Arslan, Mehmet; Babacan, Ali Erden; Çetiner, Gözde

    2016-11-01

    Turkey located in the Alpine-Himalayan Mountain Belt has 35% of the natural stone reserves of the world and has good quality marble, limestone, travertine and onyx reserves especially in the western regions of the country. The eastern Black Sea Region with a 1.4 million meters cubes reserve has a little role on the natural stone production in the country. For this reason, this paper deals with investigation on the potential of carbonate stone in the region and determination of the geological and geo-mechanical properties of these rocks in order to provide economic contribution to the national economy. While the study sites are selected among the all carbonate rock sites, the importance as well as the representative of the sites were carefully considered for the region. After representative samples were analyzed for major oxide and trace element compositions to find out petrochemical variations, the experimental program conducted on rock samples for determination of both physical and strength properties of the carbonate rocks. The results of the tests showed that there are significant variations in the geo-mechanical properties of the studied rock groups. The density values vary from 2.48 to 2.70 gr/cm3, water absorption by weight values range from 0.07 to 1.15% and the apparent porosity of the carbonate rocks are between 0.19 and 3.29%. However, the values of the UCS shows variation from 36 to 80 MPa. Tensile and bending strength values range from 3.2 to 7.5 MPa and 6.0-9.2 MPa respectively. Although the onyx samples have the lowest values of apparent porosity and water absorption by weight, these samples do not have the highest values of UCS values owing to occurrence of the micro-cracks. The UCS values of the rock samples were also found after cycling tests However, the limestone samples have less than 5% deterioration after freezing-thawing and wetting-drying tests, but travertine and onyx samples have more than 15% deterioration. Exception of the apparent porosity values of travertine samples, all geo-mechanical properties of the studied carbonate rocks were determined in the acceptance values given by Turkish Standards Institute (TSE) for using as a natural dimension stone. After these investigations, it is anticipated that in the near future the number of quarries and factories will increase and more types of natural stones will be discovered in the eastern Black Sea Region and thus this will provide economic contribution to the economy of the country.

  3. Effect law of Damage Characteristics of Rock Similar Material with Pre-Existing Cracks

    NASA Astrophysics Data System (ADS)

    Li, S. G.; Cheng, X. Y.; Liu, C.

    2017-11-01

    In order to further study the failure mechanism for rock similar materials, this study established the damage model based on accumulative AE events, investigated the damage characteristics for rock similar material samples with pre-existing cracks of varying width under uniaxial compression load. The equipment used in this study is the self-developed YYW-II strain controlled unconfined compression apparatus and the PCIE-8 acoustic emission (AE) monitoring system. The influences of the width of the pre-existing cracks to the damage characteristics of rock similar materials are analyzed. Results show that, (1) the damage model can better describe the damage characteristics of rock similar materials; (2) the tested samples have three stages during failure: initial damage stage, stable development of damage stage, and accelerated development of damage stage; (3) with the width of pre-existing cracks vary from 3mm to 5mm, the damage of rock similar materials increases gradually. The outcomes of this study provided additional values to the research of the failure mechanism for geotechnical similar material models.

  4. Scanning SQUID microscope with an in-situ magnetization/demagnetization field for geological samples

    NASA Astrophysics Data System (ADS)

    Du, Junwei; Liu, Xiaohong; Qin, Huafeng; Wei, Zhao; Kong, Xiangyang; Liu, Qingsong; Song, Tao

    2018-04-01

    Magnetic properties of rocks are crucial for paleo-, rock-, environmental-magnetism, and magnetic material sciences. Conventional rock magnetometers deal with bulk properties of samples, whereas scanning microscope can map the distribution of remanent magnetization. In this study, a new scanning microscope based on a low-temperature DC superconducting quantum interference device (SQUID) equipped with an in-situ magnetization/demagnetization device was developed. To realize the combination of sensitive instrument as SQUID with high magnetizing/demagnetizing fields, the pick-up coil, the magnetization/demagnetization coils and the measurement mode of the system were optimized. The new microscope has a field sensitivity of 250 pT/√Hz at a coil-to-sample spacing of ∼350 μm, and high magnetization (0-1 T)/ demagnetization (0-300 mT, 400 Hz) functions. With this microscope, isothermal remanent magnetization (IRM) acquisition and the according alternating field (AF) demagnetization curves can be obtained for each point without transferring samples between different procedures, which could result in position deviation, waste of time, and other interferences. The newly-designed SQUID microscope, thus, can be used to investigate the rock magnetic properties of samples at a micro-area scale, and has a great potential to be an efficient tool in paleomagnetism, rock magnetism, and magnetic material studies.

  5. Rock property measurements and analysis of selected igneous, sedimentary, and metamorphic rocks from worldwide localities

    USGS Publications Warehouse

    Johnson, Gordon R.

    1983-01-01

    Dry bulk density and grain density measurements were made on 182 samples of igneous, sedimentary, and metamorphic rocks from various world-wide localities. Total porosity values and both water-accessible and helium-accessible porosities were calculated from the density data. Magnetic susceptibility measurements were made on the solid samples and permeability and streaming potentials were concurrently measured on most samples. Dry bulk densities obtained using two methods of volume determination, namely direct measurement and Archlmedes principle, were nearly equivalent for most samples. Grain densities obtained on powdered samples were typically greater than grain densities obtained on solid samples, but differences were usually small. Sedimentary rocks had the highest percentage of occluded porosity per rock volume whereas metamorphic rocks had the highest percentage of occluded porosity per total porosity. There was no apparent direct relationship between permeability and streaming potential for most samples, although there were indications of such a relationship in the rock group consisting of granites, aplites, and syenites. Most rock types or groups of similar rock types of low permeability had, when averaged, comparable levels of streaming potential per unit of permeability. Three calcite samples had negative streaming potentials.

  6. Microwave dielectric spectrum of rocks

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Bengal, T.; East, J.; Dobson, M. C.; Garvin, J.; Evans, D.

    1988-01-01

    A combination of several measurement techniques was used to investigate the dielectric properties of 80 rock samples in the microwave region. The real part of the dielectric constant, epsilon', was measured in 0.1 GHz steps from 0.5 to 18 GHz, and the imaginary part, epsilon'', was measured at five frequencies extending between 1.6 and 16 GHz. In addition to the dielectric measurements, the bulk density was measured for all the samples and the bulk chemical composition was determined for 56 of the samples. The study shows that epsilon' is frequency-dependent over the 0.5 to 18 GHz range for all rock samples, and that the bulk density rho accounts for about 50 percent of the observed variance of epsilon'. For individual rock types (by genesis), about 90 percent of the observed variance may be explained by the combination of density and the fractional contents of SiO2, Fe2O3, MgO, and TiO2. For the loss factor epsilon'', it was not possible to establish statistically significant relationships between it and the measured properties of the rock samples (density and chemical composition).

  7. Rock sample brought to earth from the Apollo 12 lunar landing mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A scientist's gloved hand holds one of the numerous rock samples brought back to Earth from the Apollo 12 lunar landing mission. This sample is a highly shattered basaltic rock with a thin black-glass coating on five of its six sides. Glass fills fractures and cements the rock together. The rock appears to have been shattered and thrown out by a meteorite impact explosion and coated with molten rock material before the rock fell to the surface.

  8. Heterogeneity in small aliquots of Apolllo 15 olivine-normative basalt: Implications for breccia clast studies

    NASA Astrophysics Data System (ADS)

    Lindstrom, Marilyn M.; Shervais, John W.; Vetter, Scott K.

    1993-05-01

    Most of the recent advances in lunar petrology are the direct result of breccia pull-apart studies, which have identified a wide array of new highland and mare basalt rock types that occur only as clasts within the breccias. These rocks show that the lunar crust is far more complex than suspected previously, and that processes such as magma mixing and wall-rock assimilation were important in its petrogenesis. These studies are based on the implicit assumption that the breccia clasts, which range in size from a few mm to several cm across, are representative of the parent rock from which they were derived. In many cases, the aliquot allocated for analysis may be only a few grain diameters across. While this problem is most acute for coarse-grained highland rocks, it can also cause considerable uncertainty in the analysis of mare basalt clasts. Similar problems arise with small aliquots of individual hand samples. Our study of sample heterogeneity in 9 samples of Apollo 15 olivine normative basalt (ONB) which exhibit a range in average grain size from coarse to fine are reported. Seven of these samples have not been analyzed previously, one has been analyzed by INAA only, and one has been analyzed by XRF+INAA. Our goal is to assess the effects of small aliquot size on the bulk chemistry of large mare basalt samples, and to extend this assessment to analyses of small breccia clasts.

  9. Heterogeneity in small aliquots of Apolllo 15 olivine-normative basalt: Implications for breccia clast studies

    NASA Technical Reports Server (NTRS)

    Lindstrom, Marilyn M.; Shervais, John W.; Vetter, Scott K.

    1993-01-01

    Most of the recent advances in lunar petrology are the direct result of breccia pull-apart studies, which have identified a wide array of new highland and mare basalt rock types that occur only as clasts within the breccias. These rocks show that the lunar crust is far more complex than suspected previously, and that processes such as magma mixing and wall-rock assimilation were important in its petrogenesis. These studies are based on the implicit assumption that the breccia clasts, which range in size from a few mm to several cm across, are representative of the parent rock from which they were derived. In many cases, the aliquot allocated for analysis may be only a few grain diameters across. While this problem is most acute for coarse-grained highland rocks, it can also cause considerable uncertainty in the analysis of mare basalt clasts. Similar problems arise with small aliquots of individual hand samples. Our study of sample heterogeneity in 9 samples of Apollo 15 olivine normative basalt (ONB) which exhibit a range in average grain size from coarse to fine are reported. Seven of these samples have not been analyzed previously, one has been analyzed by INAA only, and one has been analyzed by XRF+INAA. Our goal is to assess the effects of small aliquot size on the bulk chemistry of large mare basalt samples, and to extend this assessment to analyses of small breccia clasts.

  10. Qualitative and quantitative changes in detrital reservoir rocks caused by CO2-brine-rock interactions during first injection phases (Utrillas sandstones, northern Spain)

    NASA Astrophysics Data System (ADS)

    Berrezueta, E.; Ordóñez-Casado, B.; Quintana, L.

    2016-01-01

    The aim of this article is to describe and interpret qualitative and quantitative changes at rock matrix scale of lower-upper Cretaceous sandstones exposed to supercritical (SC) CO2 and brine. The effects of experimental injection of CO2-rich brine during the first injection phases were studied at rock matrix scale, in a potential deep sedimentary reservoir in northern Spain (Utrillas unit, at the base of the Cenozoic Duero Basin).

    Experimental CO2-rich brine was exposed to sandstone in a reactor chamber under realistic conditions of deep saline formations (P ≈ 7.8 MPa, T ≈ 38 °C and 24 h exposure time). After the experiment, exposed and non-exposed equivalent sample sets were compared with the aim of assessing possible changes due to the effect of the CO2-rich brine exposure. Optical microscopy (OpM) and scanning electron microscopy (SEM) aided by optical image analysis (OIA) were used to compare the rock samples and get qualitative and quantitative information about mineralogy, texture and pore network distribution. Complementary chemical analyses were performed to refine the mineralogical information and to obtain whole rock geochemical data. Brine composition was also analyzed before and after the experiment.

    The petrographic study of contiguous sandstone samples (more external area of sample blocks) before and after CO2-rich brine injection indicates an evolution of the pore network (porosity increase ≈ 2 %). It is probable that these measured pore changes could be due to intergranular quartz matrix detachment and partial removal from the rock sample, considering them as the early features produced by the CO2-rich brine. Nevertheless, the whole rock and brine chemical analyses after interaction with CO2-rich brine do not present important changes in the mineralogical and chemical configuration of the rock with respect to initial conditions, ruling out relevant precipitation or dissolution at these early stages to rock-block scale. These results, simulating the CO2 injection near the injection well during the first phases (24 h) indicate that, in this environment where CO2 enriches the brine, the mixture principally generates local mineralogical/textural re-adjustments on the external area of the samples studied.

    The application of OpM, SEM and optical image analysis have allowed an exhaustive characterization of the sandstones studied. The procedure followed, the porosity characterization and the chemical analysis allowed a preliminary approximation of the CO2-brine-rock interactions and could be applied to similar experimental injection tests.

  11. Energy dispersive X-ray fluorescence (EDXRF) equipment calibration for multielement analysis of soil and rock samples

    NASA Astrophysics Data System (ADS)

    de Moraes, Alex Silva; Tech, Lohane; Melquíades, Fábio Luiz; Bastos, Rodrigo Oliveira

    2014-11-01

    Considering the importance to understand the behavior of the elements on different natural and/or anthropic processes, this study had as objective to verify the accuracy of a multielement analysis method for rocks characterization by using soil standards as calibration reference. An EDXRF equipment was used. The analyses were made on samples doped with known concentration of Mn, Zn, Rb, Sr and Zr, for the obtainment of the calibration curves, and on a certified rock sample to check the accuracy of the analytical curves. Then, a set of rock samples from Rio Bonito, located in Figueira city, Paraná State, Brazil, were analyzed. The concentration values obtained, in ppm, for Mn, Rb, Sr and Zr varied, respectively, from 175 to 1084, 7.4 to 268, 28 to 2247 and 15 to 761.

  12. Device Acquires and Retains Rock or Ice Samples

    NASA Technical Reports Server (NTRS)

    Giersch, Louis R.; Backes, Paul G.

    2009-01-01

    The Rock Baller is a sample acquisition tool that improves sample retention. The basic elements of the Rock Baller are the tool rotation axis, the hub, the two jaws, and the cutting blades, which are located on each of the jaws. The entire device rotates about the tool rotation axis, which is aligned parallel to the nominal normal direction of the parent rock surface. Both jaws also rotate about the jaw axis, which is perpendicular to the tool rotation axis, at a rate much slower than the rotation about the tool rotation axis. This movement gradually closes the jaws into a nearly continuous hemispherical shell that encloses the sample as it is cut from the parent rock. When required the jaws are opened to release the sample. The hemispherical cutting method eliminates the sample retention problems associated with existing sample acquisition methods that employ conventional cylindrical cutting. The resulting samples are hemispherical, or nearly hemispherical, and as a result the aspect ratio (sample depth relative to sample radius) is essentially fixed. This fixed sample aspect ratio may be considered a drawback of the Rock Baller method, as samples with a higher aspect ratio (more depth, less width) may be considered more scientifically valuable because such samples would allow for a broader inspection of the geological record. This aspect ratio issue can be ameliorated if the Rock Baller is paired with a device similar to the Rock Abrasion Tool (RAT) used on the Mars Exploration Rovers. The RAT could be used to first grind into the surface of the parent rock, after which the Rock Baller would extract a sample from a depth inside the rock that would not have been possible without first using the RAT. Other potential applications for this technology include medical applications such as the removal of tissue samples or tumors from the body, particularly during endoscopic, laparoscopic, or thoracoscopic surgeries.

  13. Determination and distribution of rare earth elements in beach rock samples using instrumental neutron activation analysis (INAA)

    NASA Astrophysics Data System (ADS)

    Ravisankar, R.; Manikandan, E.; Dheenathayalu, M.; Rao, Brahmaji; Seshadreesan, N. P.; Nair, K. G. M.

    2006-10-01

    Beach rocks are a peculiar type of formation when compared to other types of rocks. Rare earth element (REE) concentrations in beach rock samples collected from the South East Coast of Tamilnadu, India, have been measured using the instrumental neutron activation analysis (INAA) single comparator K0 method. The irradiations were carried out using a thermal neutron flux of ˜10 11 n cm -2 s -1 at 20 kW power using the Kalpakkam mini reactor (KAMINI), IGCAR, Kalpakkam, Tamilnadu. Accuracy and precision were evaluated by assaying irradiated standard reference material (SRM 1646a estuarine sediment). The results being found to be in good agreement with certified values. REE elements have been determined from 15 samples using high-resolution gamma spectrometry. The geochemical behavior of REE in beach rock, in particular REE (chondrite-normalized) pattern has been studied.

  14. Sulfur species in source rock bitumen before and after hydrous pyrolysis determined by X-ray absorption near-edge structure

    USGS Publications Warehouse

    Bolin, Trudy B.; Birdwell, Justin E.; Lewan, Michael; Hill, Ronald J.; Grayson, Michael B.; Mitra-Kirtley, Sudipa; Bake, Kyle D.; Craddock, Paul R.; Abdallah, Wael; Pomerantz, Andrew E.

    2016-01-01

    The sulfur speciation of source rock bitumen (chloroform-extractable organic matter in sedimentary rocks) was examined using sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy for a suite of 11 source rocks from around the world. Sulfur speciation was determined for both the native bitumen in thermally immature rocks and the bitumen produced by thermal maturation of kerogen via hydrous pyrolysis (360 °C for 72 h) and retained within the rock matrix. In this study, the immature bitumens had higher sulfur concentrations than those extracted from samples after hydrous pyrolysis. In addition, dramatic and systematic evolution of the bitumen sulfur moiety distributions following artificial thermal maturation was observed consistently for all samples. Specifically, sulfoxide sulfur (sulfur double bonded to oxygen) is abundant in all immature bitumen samples but decreases substantially following hydrous pyrolysis. The loss in sulfoxide sulfur is associated with a relative increase in the fraction of thiophene sulfur (sulfur bonded to aromatic carbon) to the extent that thiophene is the dominant sulfur form in all post-pyrolysis bitumen samples. This suggests that sulfur moiety distributions might be used for estimating thermal maturity in source rocks based on the character of the extractable organic matter.

  15. Lunar highland meteorite Dhofar 026 and Apollo sample 15418: Two strongly shocked, partially melted, granulitic breccias

    USGS Publications Warehouse

    Cohen, B. A.; James, O.B.; Taylor, L.A.; Nazarov, M.A.; Barsukova, L.D.

    2004-01-01

    Studies of lunar meteorite Dhofar 026, and comparison to Apollo sample 15418, indicate that Dhofar 026 is a strongly shocked granulitic breccia (or a fragmental breccia consisting almost entirely of granulitic breccia clasts) that experienced considerable post-shock heating, probably as a result of diffusion of heat into the rock from an external, hotter source. The shock converted plagioclase to maskelynite, indicating that the shock pressure was between 30 and 45 GPa. The post-shock heating raised the rock's temperature to about 1200 ??C; as a result, the maskelynite devitrified, and extensive partial melting took place. The melting was concentrated in pyroxene-rich areas; all pyroxene melted. As the rock cooled, the partial melts crystallized with fine-grained, subophitic-poikilitic textures. Sample 15418 is a strongly shocked granulitic breccia that had a similar history, but evidence for this history is better preserved than in Dhofar 026. The fact that Dhofar 026 was previously interpreted as an impact melt breccia underscores the importance of detailed petrographic study in interpretation of lunar rocks that have complex textures. The name "impact melt" has, in past studies, been applied only to rocks in which the melt fraction formed by shock-induced total fusion. Recently, however, this name has also been applied to rocks containing melt formed by heating of the rocks by conductive heat transfer, assuming that impact is the ultimate source of the heat. We urge that the name "impact melt" be restricted to rocks in which the bulk of the melt formed by shock-induced fusion to avoid confusion engendered by applying the same name to rocks melted by different processes. ?? Meteoritical Society, 2004.

  16. Empirical relations of rock properties of outcrop and core samples from the Northwest German Basin for geothermal drilling

    NASA Astrophysics Data System (ADS)

    Reyer, D.; Philipp, S. L.

    2014-09-01

    Information about geomechanical and physical rock properties, particularly uniaxial compressive strength (UCS), are needed for geomechanical model development and updating with logging-while-drilling methods to minimise costs and risks of the drilling process. The following parameters with importance at different stages of geothermal exploitation and drilling are presented for typical sedimentary and volcanic rocks of the Northwest German Basin (NWGB): physical (P wave velocities, porosity, and bulk and grain density) and geomechanical parameters (UCS, static Young's modulus, destruction work and indirect tensile strength both perpendicular and parallel to bedding) for 35 rock samples from quarries and 14 core samples of sandstones and carbonate rocks. With regression analyses (linear- and non-linear) empirical relations are developed to predict UCS values from all other parameters. Analyses focus on sedimentary rocks and were repeated separately for clastic rock samples or carbonate rock samples as well as for outcrop samples or core samples. Empirical relations have high statistical significance for Young's modulus, tensile strength and destruction work; for physical properties, there is a wider scatter of data and prediction of UCS is less precise. For most relations, properties of core samples plot within the scatter of outcrop samples and lie within the 90% prediction bands of developed regression functions. The results indicate the applicability of empirical relations that are based on outcrop data on questions related to drilling operations when the database contains a sufficient number of samples with varying rock properties. The presented equations may help to predict UCS values for sedimentary rocks at depth, and thus develop suitable geomechanical models for the adaptation of the drilling strategy on rock mechanical conditions in the NWGB.

  17. PDS Archive Release of Apollo 11, Apollo 12, and Apollo 17 Lunar Rock Sample Images

    NASA Technical Reports Server (NTRS)

    Garcia, P. A.; Stefanov, W. L.; Lofgren, G. E.; Todd, N. S.; Gaddis, L. R.

    2013-01-01

    Scientists at the Johnson Space Center (JSC) Lunar Sample Laboratory, Information Resources Directorate, and Image Science & Analysis Laboratory have been working to digitize (scan) the original film negatives of Apollo Lunar Rock Sample photographs [1, 2]. The rock samples, and associated regolith and lunar core samples, were obtained during the Apollo 11, 12, 14, 15, 16 and 17 missions. The images allow scientists to view the individual rock samples in their original or subdivided state prior to requesting physical samples for their research. In cases where access to the actual physical samples is not practical, the images provide an alternate mechanism for study of the subject samples. As the negatives are being scanned, they have been formatted and documented for permanent archive in the NASA Planetary Data System (PDS). The Astromaterials Research and Exploration Science Directorate (which includes the Lunar Sample Laboratory and Image Science & Analysis Laboratory) at JSC is working collaboratively with the Imaging Node of the PDS on the archiving of these valuable data. The PDS Imaging Node is now pleased to announce the release of the image archives for Apollo missions 11, 12, and 17.

  18. Impact of Micro-to Meso-scale Fractures on Sealing Behavior of Argillaceous Cap Rocks For CO 2 Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, James

    This multi-disciplinary project evaluated seal lithologies for the safety and security of long-term geosequestration of CO 2. We used integrated studies to provide qualitative risk for potential seal failure; we integrated data sets from outcrop, core, geochemical analysis, rock failure properties from mechanical testing, geophysical wireline log analysis, and geomechanical modeling to understand the effects of lithologic heterogeneity and changing mechanical properties have on the mechanical properties of the seal. The objectives of this study were to characterize cap rock seals using natural field analogs, available drillhole logging data and whole-rock core, geochemical and isotopic analyses. Rock deformation experiments weremore » carried out on collected samples to develop better models of risk estimation for potential cap rock seal failure. We also sampled variably faulted and fractured cap rocks to examine the impacts of mineralization and/or alteration on the mechanical properties. We compared CO 2 reacted systems to non-CO 2 reacted seal rock types to determine response of each to increased pore fluid pressures and potential for the creation of unintentional hydrofractures at depth.« less

  19. Individual Rocks Segmentation in Terrestrial Laser Scanning Point Cloud Using Iterative Dbscan Algorithm

    NASA Astrophysics Data System (ADS)

    Walicka, A.; Jóźków, G.; Borkowski, A.

    2018-05-01

    The fluvial transport is an important aspect of hydrological and geomorphologic studies. The knowledge about the movement parameters of different-size fractions is essential in many applications, such as the exploration of the watercourse changes, the calculation of the river bed parameters or the investigation of the frequency and the nature of the weather events. Traditional techniques used for the fluvial transport investigations do not provide any information about the long-term horizontal movement of the rocks. This information can be gained by means of terrestrial laser scanning (TLS). However, this is a complex issue consisting of several stages of data processing. In this study the methodology for individual rocks segmentation from TLS point cloud has been proposed, which is the first step for the semi-automatic algorithm for movement detection of individual rocks. The proposed algorithm is executed in two steps. Firstly, the point cloud is classified as rocks or background using only geometrical information. Secondly, the DBSCAN algorithm is executed iteratively on points classified as rocks until only one stone is detected in each segment. The number of rocks in each segment is determined using principal component analysis (PCA) and simple derivative method for peak detection. As a result, several segments that correspond to individual rocks are formed. Numerical tests were executed on two test samples. The results of the semi-automatic segmentation were compared to results acquired by manual segmentation. The proposed methodology enabled to successfully segment 76 % and 72 % of rocks in the test sample 1 and test sample 2, respectively.

  20. A reconnaissance for signs of a Mississippi Valley-type lead-zinc mineralizing system on the eastern flank of the Rutbah Uplift, Anbar Province, Iraq

    USGS Publications Warehouse

    Hayes, Timothy S.; Mustafa, Mazin; Bennet, Thair

    2014-01-01

    Reconnaissance field visits and rock sampling were conducted at eight geologically selected locations within Mesozoic rocks on the eastern flank of the Rutbah Uplift, Anbar Province, western Iraq, in an attempt to determine if these rocks have been affected by a Mississippi Valley-Type (MVT) lead-zinc mineralizing system. Samples subsequently were studied by carbonate mineral staining, transmitted and reflected light petrology, and scanning electron microscopy with semi-quantitative energy dispersive elemental analyses. Single samples were studied by each, inductively coupled plasma mass spectrometry analyses of trace elements and fluid inclusion microthermometry. Permissive evidence indicates that there has been a MVT system present, but none of the evidence is considered definitive.

  1. Lunar Samples - Apollo 12

    NASA Image and Video Library

    1969-11-28

    S69-60354 (29 Nov. 1969) --- A scientist's gloved hand holds one of the numerous rock samples brought back to Earth from the Apollo 12 lunar landing mission. The rocks are under thorough examination in the Manned Spacecraft Center's (MSC) Lunar Receiving Laboratory (LRL). This sample is a highly shattered basaltic rock with a thin black-glass coating on five of its six sides. Glass fills fractures and cements the rock together. The rock appears to have been shattered and thrown out by a meteorite impact explosion and coated with molten rock material before the rock fell to the surface.

  2. Studying of shale organic matter structure and pore space transformations during hydrocarbon generation

    NASA Astrophysics Data System (ADS)

    Giliazetdinova, Dina; Korost, Dmitry; Gerke, Kirill

    2016-04-01

    Due to the increased interest in the study of the structure, composition, and oil and gas potential of unconventional hydrocarbon resources, investigations of the transformation of the pore space of rocks and organic matter alterations during the generation of hydrocarbon fluids are getting attention again. Due to the conventional hydrocarbon resources decreasing, there will be a necessity to develop new unconventional hydrocarbon resources. Study of the conditions and processes of hydrocarbon generation, formation and transformation of the pore space in these rocks is pivotal to understand the mechanisms of oil formation and determine the optimal and cost effective ways for their industrial exploration. In this study, we focus on organic matter structure and its interaction with the pore space of shales during hydrocarbon generation and report some new results. Collected rock samples from Domanic horizon of South-Tatar arch were heated in the pyrolyzer to temperatures closely corresponding to different catagenesis stages. X-ray microtomography method and SEM were used to monitor changes in the morphology of the pore space and organic matter structure within studied shale rocks. By routine measurements we made sure that all samples (10 in total) had similar composition of organic and mineral phases. All samples in the collection were grouped according to initial structure and amount of organics and processed separately to: 1) study the influence of organic matter content on the changing morphology of the rock under thermal effects; 2) study the effect of initial structure on the primary migration processes for samples with similar organic matter content. An additional experiment was conducted to study the dynamics of changes in the structure of the pore space and prove the validity of our approach. At each stage of heating the morphology of altered rocks was characterized by formation of new pores and channels connecting primary voids. However, it was noted that the samples with a relatively low content of the organic matter had less changes in pore space morphology, in contrast to rocks with a high organic content. Second part of the study also revealed significant differences in resulting pore structures depending on initial structure of the unaltered rocks and connectivity of original organics. Significant changes in the structure of the pore space were observed during the sequential heating in the range from 260 C to 430 C, which corresponds to the most intense stage of the hydrocarbons formation. This work was partially supported by RSF grant 14-17-00658.

  3. Metamorphism of brecciated ANT rocks - Anorthositic troctolite 72559 and norite 78527. [Anorthositic-Noritic-Troctolitic

    NASA Technical Reports Server (NTRS)

    Nehru, C. E.; Warner, R. D.; Keil, K.; Taylor, G. J.

    1978-01-01

    Rake samples 72559 and 78527 are annealed rocks of ANT-suite mineralogy and bulk composition. The rocks were presumably derived from ancient lunar highland ANT rocks of cumulate origin. Sample 72559 is polymict and its precursors were anorthositic-troctolitic in composition. Sample 78527 is monomict and of noritic derivation. The precursors were brecciated due to impact processes; 72559 shows evidence of some impact melting. The samples were thermally metamorphosed forming rocks with granoblastic matrix textures. Coexisting matrix pyroxenes indicate equilibration temperatures of 950-1000 C for both rocks. Accessory opaque oxide minerals in the rocks show rather wide compositional variations. These probably primarily reflect compositional ranges inherited from the precursor/s with little integranular equilibration among them during metamorphism.

  4. Multifractal magnetic susceptibility distribution models of hydrothermally altered rocks in the Needle Creek Igneous Center of the Absaroka Mountains, Wyoming

    USGS Publications Warehouse

    Gettings, M.E.

    2005-01-01

    Magnetic susceptibility was measured for 700 samples of drill core from thirteen drill holes in the porphyry copper-molybdenum deposit of the Stinkingwater mining district in the Absaroka Mountains, Wyoming. The magnetic susceptibility measurements, chemical analyses, and alteration class provided a database for study of magnetic susceptibility in these altered rocks. The distribution of the magnetic susceptibilities for all samples is multi-modal, with overlapping peaked distributions for samples in the propylitic and phyllic alteration class, a tail of higher susceptibilities for potassic alteration, and an approximately uniform distribution over a narrow range at the highest susceptibilities for unaltered rocks. Samples from all alteration and mineralization classes show susceptibilities across a wide range of values. Samples with secondary (supergene) alteration due to oxidation or enrichment show lower susceptibilities than primary (hypogene) alteration rock. Observed magnetic susceptibility variations and the monolithological character of the host rock suggest that the variations are due to varying degrees of alteration of blocks of rock between fractures that conducted hydrothermal fluids. Alteration of rock from the fractures inward progressively reduces the bulk magnetic susceptibility of the rock. The model introduced in this paper consists of a simulation of the fracture pattern and a simulation of the alteration of the rock between fractures. A multifractal model generated from multiplicative cascades with unequal ratios produces distributions statistically similar to the observed distributions. The reduction in susceptibility in the altered rocks was modelled as a diffusion process operating on the fracture distribution support. The average magnetic susceptibility was then computed for each block. For the purpose of comparing the model results with observation, the simulated magnetic susceptibilities were then averaged over the same interval as the measured data. Comparisons of the model and data from drillholes show good but not perfect agreement. ?? 2005 Author(s). This work is licensed under a Creative Commons License.

  5. Numerical Simulation of Electrical Properties of Carbonate Reservoir Rocks Using µCT Images

    NASA Astrophysics Data System (ADS)

    Colgin, J.; Niu, Q.; Zhang, C.; Zhang, F.

    2017-12-01

    Digital rock physics involves the modern microscopic imaging of geomaterials, digitalization of the microstructure, and numerical simulation of physical properties of rocks. This physics-based approach can give important insight into understanding properties of reservoir rocks, and help reveal the link between intrinsic rock properties and macroscopic geophysical responses. The focus of this study is the simulation of the complex conductivity of carbonate reservoir rocks using reconstructed 3D rock structures from high-resolution X-ray micro computed tomography (µCT). Carbonate core samples with varying lithofacies and pore structures from the Cambro-Ordovician Arbuckle Group and the Upper Pennsylvanian Lansing-Kansas City Group in Kansas are used in this study. The wide variations in pore geometry and connectivity of these samples were imaged using µCT. A two-phase segmentation method was used to reconstruct a digital rock of solid particles and pores. We then calculate the effective electrical conductivity of the digital rock volume using a pore-scale numerical approach. The complex conductivity of geomaterials is influenced by the electrical properties and geometry of each phase, i.e., the solid and fluid phases. In addition, the electrical double layer that forms between the solid and fluid phases can also affect the effective conductivity of the material. In the numerical modeling, the influence of the electrical double layer is quantified by a complex surface conductance and converted to an apparent volumetric complex conductivity of either solid particles or pore fluid. The effective complex conductivity resulting from numerical simulations based on µCT images will be compared to results from laboratory experiments on equivalent rock samples. The imaging and digital segmentation method, assumptions in the numerical simulation, and trends as compared to laboratory results will be discussed. This study will help us understand how microscale physics affects macroscale electrical conductivity in porous media.

  6. TEMPORAL VARIATION IN OHIO RIVER MACROINVERTEBRATES: A HISTORICAL ROCK BASKET COMPARISON (1965-1971 AND 2002)

    EPA Science Inventory

    The U.S. Environmental Protection Agency (USEPA) used rock basket artificial substrates to sample benthic macroinvertebrates of the Ohio River from 1965-1971. The objective of this study was to repeat the rock basket surveys in 2002 to evaluate changes in the benthic assemblage ...

  7. Physical property measurements on analog granites related to the joint verification experiment

    NASA Astrophysics Data System (ADS)

    Martin, Randolph J., III; Coyner, Karl B.; Haupt, Robert W.

    1990-08-01

    A key element in JVE (Joint Verification Experiment) conducted jointly between the United States and the USSR is the analysis of the geology and physical properties of the rocks in the respective test sites. A study was initiated to examine unclassified crystalline rock specimens obtained from areas near the Soviet site, Semipalatinsk and appropriate analog samples selected from Mt. Katadin, Maine. These rocks were also compared to Sierra White and Westerly Granite which have been studied in great detail. Measurements performed to characterize these rocks were: (1) Uniaxial strain with simultaneous compressional and shear wave velocities; (2) Hydrostatic compression to 150 MPa with simultaneous compressional and shear wave velocities; (3) Attenuation measurements as a function of frequency and strain amplitude for both dry and water saturated conditions. Elastic moduli determined from the hydrostatic compression and uniaxial strain test show that the rock matrix/mineral properties were comparable in magnitudes which vary within 25 percent from sample to sample. These properties appear to be approximately isotropic, especially at high pressures. However, anisotropy evident for certain samples at pressures below 35 MPa is attributed to dominant pre-existing microcrack populations and their alignments. Dependence of extensional attenuation and Young's modulus on strain amplitude were experimentally determined for intact Sierra White granite using the hysteresis loop technique.

  8. Assessment of fluoride contaminations in groundwater of hard rock aquifers in Madurai district, Tamil Nadu (India)

    NASA Astrophysics Data System (ADS)

    Thivya, C.; Chidambaram, S.; Rao, M. S.; Thilagavathi, R.; Prasanna, M. V.; Manikandan, S.

    2017-05-01

    The fluoride contamination in drinking water is already gone to the alarming level and it needs the immediate involvement and attention of all people to solve this problem. Fluoride problem is higher in hard rock terrains in worldwide and Madurai is such type of hard rock region. Totally 54 samples were collected from the Madurai district of Tamilnadu with respect to lithology. The samples collected were analysed for major cations and anions using standard procedures. The higher concentration of fluoride is noted in the Charnockite rock types of northern part of the study area. 20 % of samples are below 0.5 ppm and 6 % of samples are above 1.5 ppm exceeding the permissible limit. The affinity between the pH and fluoride ions in groundwater suggests that dissolution of fluoride bearing minerals in groundwater. The higher concentration of fluoride ions are observed in the lower EC concentration. The isotopic study suggests that fluoride is geogenic in nature. In factor scores, fluoride is noted in association with pH which indicates the dissolution process.

  9. Catalog of Apollo 17 rocks. Volume 1: Stations 2 and 3 (South Massif)

    NASA Technical Reports Server (NTRS)

    Ryder, Graham

    1993-01-01

    The Catalog of Apollo 17 Rocks is a set of volumes that characterize each of 334 individually numbered rock samples (79 larger than 100 g) in the Apollo 17 collection, showing what each sample is and what is known about it. Unconsolidated regolith samples are not included. The catalog is intended to be used by both researchers requiring sample allocations and a broad audience interested in Apollo 17 rocks. The volumes are arranged geographically, with separate volumes for the South Massif and Light Mantle, the North Massif, and two volumes for the mare plains. Within each volume, the samples are arranged in numerical order, closely corresponding with the sample collection stations. The present volume, for the South Massif and Light Mantle, describes the 55 individual rock fragments collected at Stations two, two-A, three, and LRV-five. Some were chipped from boulders, others collected as individual rocks, some by raking, and a few by picking from the soil in the processing laboratory. Information on sample collection, petrography, chemistry, stable and radiogenic isotopes, rock surface characteristics, physical properties, and curatorial processing is summarized and referenced as far as it is known up to early 1992. The intention has been to be comprehensive: to include all published studies of any kind that provide information on the sample, as well as some unpublished information. References which are primarily bulk interpretations of existing data or mere lists of samples are not generally included. Foreign language journals were not scrutinized, but little data appears to have been published only in such journals. We have attempted to be consistent in format across all of the volumes, and have used a common reference list that appears in all volumes. Where possible, ages based on Sr and Ar isotopes have been recalculated using the 'new' decay constants recommended by Steiger and Jager; however, in many of the reproduced diagrams the ages correspond with the 'old' decay constants. In this volume, mg' or Mg' = atomic Mg/(Mg +Fe).

  10. Integration of NASA/GSFC and USGS Rock Magnetic Databases.

    NASA Astrophysics Data System (ADS)

    Nazarova, K. A.; Glen, J. M.

    2004-05-01

    A global Magnetic Petrology Database (MPDB) was developed and continues to be updated at NASA/Goddard Space Flight Center. The purpose of this database is to provide the geomagnetic community with a comprehensive and user-friendly method of accessing magnetic petrology data via the Internet for a more realistic interpretation of satellite (as well as aeromagnetic and ground) lithospheric magnetic anomalies. The MPDB contains data on rocks from localities around the world (about 19,000 samples) including the Ukranian and Baltic Shields, Kamchatka, Iceland, Urals Mountains, etc. The MPDB is designed, managed and presented on the web as a research oriented database. Several database applications have been specifically developed for data manipulation and analysis of the MPDB. The geophysics unit at the USGS in Menlo Park has over 17,000 rock-property data, largely from sites within the western U.S. This database contains rock-density and rock-magnetic parameters collected for use in gravity and magnetic field modeling, and paleomagnetic studies. Most of these data were taken from surface outcrops and together they span a broad range of rock types. Measurements were made either in-situ at the outcrop, or in the laboratory on hand samples and paleomagnetic cores acquired in the field. The USGS and NASA/GSFC data will be integrated as part of an effort to provide public access to a single, uniformly maintained database. Due to the large number of data and the very large area sampled, the database can yield rock-property statistics on a broad range of rock types; it is thus applicable to study areas beyond the geographic scope of the database. The intent of this effort is to provide incentive for others to further contribute to the database, and a tool with which the geophysical community can entertain studies formerly precluded.

  11. Finite strain analysis of metavolcanics and metapyroclastics in gold-bearing shear zone of the Dungash area, Central Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Kassem, Osama M. K.; Abd El Rahim, Said H.

    2014-11-01

    The Dungash gold mine area is situated in an EW-trending quartz vein along a shear zone in metavolcanic and metasedimentary host rocks in the Eastern Desert of Egypt. These rocks are associated with the major geologic structures, which are attributed to various deformational stages of the Neoproterozoic basement rocks. Field geology, finite strain and microstructural analyses were carried out and the relation-ships between the lithological contacts and major/minor structures have been studied. The R f/ϕ and Fry methods were applied on the metavolcano-sedimentary and metapyroclastic samples from 5 quartz veins samples, 7 metavolcanics samples, 3 metasedimentary samples and 4 metapyroclastic samples in Dungash area. Finite-strain data show that a low to moderate range of deformation of the metavolcano-sedimentary samples and axial ratios in the XZ section range from 1.70 to 4.80 for the R f/ϕ method and from 1.65 to 4.50 for the Fry method. We conclude that finite strain in the deformed rocks is of the same order of magnitude for all units of metavolcano-sedimentary rocks. Furthermore, the contact between principal rock units is sheared in the Dungash area under brittle to semi-ductile deformation conditions. In this case, the accumulated finite strain is associated with the deformation during thrusting to assemble nappe structure. It indicates that the sheared contacts have been formed during the accumulation of finite strain.

  12. LUNAR SAMPLES - APOLLO 17 - #7605500

    NASA Image and Video Library

    1973-01-01

    S73-15713 (January 1973) --- A close-up view of Apollo 17 lunar rock sample No. 76055 being studied and analyzed in the Lunar Receiving Laboratory at the Manned Spacecraft Center. This tan-gray irregular, rounded breccia was among many lunar samples brought back from the Taurus-Littrow landing site by the Apollo 17 crew. The rock measures 18 x 20 x 25 centimeters (7.09 x 7.87 x 9.84 inches) and weighs 6,389 grams (14.2554 pounds). The rock was collected from the south side of the lunar roving vehicle while the Apollo 17 astronauts were at Station 7 (base of North Massif).

  13. Rock sampling. [apparatus for controlling particle size

    NASA Technical Reports Server (NTRS)

    Blum, P. (Inventor)

    1971-01-01

    An apparatus for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The device includes grinding means for cutting grooves in the rock surface and to provide a grouping of thin, shallow, parallel ridges and cutter means to reduce these ridges to a powder specimen. Collection means is provided for the powder. The invention relates to rock grinding and particularly to the sampling of rock specimens with good size control.

  14. Pore-scale Simulation and Imaging of Multi-phase Flow and Transport in Porous Media (Invited)

    NASA Astrophysics Data System (ADS)

    Crawshaw, J.; Welch, N.; Daher, I.; Yang, J.; Shah, S.; Grey, F.; Boek, E.

    2013-12-01

    We combine multi-scale imaging and computer simulation of multi-phase flow and reactive transport in rock samples to enhance our fundamental understanding of long term CO2 storage in rock formations. The imaging techniques include Confocal Laser Scanning Microscopy (CLSM), micro-CT and medical CT scanning, with spatial resolutions ranging from sub-micron to mm respectively. First, we report a new sample preparation technique to study micro-porosity in carbonates using CLSM in 3 dimensions. Second, we use micro-CT scanning to generate high resolution 3D pore space images of carbonate and cap rock samples. In addition, we employ micro-CT to image the processes of evaporation in fractures and cap rock degradation due to exposure to CO2 flow. Third, we use medical CT scanning to image spontaneous imbibition in carbonate rock samples. Our imaging studies are complemented by computer simulations of multi-phase flow and transport, using the 3D pore space images obtained from the scanning experiments. We have developed a massively parallel lattice-Boltzmann (LB) code to calculate the single phase flow field in these pore space images. The resulting flow fields are then used to calculate hydrodynamic dispersion using a novel scheme to predict probability distributions for molecular displacements using the LB method and a streamline algorithm, modified for optimal solid boundary conditions. We calculate solute transport on pore-space images of rock cores with increasing degree of heterogeneity: a bead pack, Bentheimer sandstone and Portland carbonate. We observe that for homogeneous rock samples, such as bead packs, the displacement distribution remains Gaussian with time increasing. In the more heterogeneous rocks, on the other hand, the displacement distribution develops a stagnant part. We observe that the fraction of trapped solute increases from the beadpack (0 %) to Bentheimer sandstone (1.5 %) to Portland carbonate (8.1 %), in excellent agreement with PFG-NMR experiments. We then use our preferred multi-phase model to directly calculate flow in pore space images of two different sandstones and observe excellent agreement with experimental relative permeabilities. Also we calculate cluster size distributions in good agreement with experimental studies. Our analysis shows that the simulations are able to predict both multi-phase flow and transport properties directly on large 3D pore space images of real rocks. Pore space images, left and velocity distributions, right (Yang and Boek, 2013)

  15. Permeability measurements on rock samples from Unzen Scientific Drilling Project Drill Hole 4 (USDP-4)

    NASA Astrophysics Data System (ADS)

    Watanabe, Tohru; Shimizu, Yuhta; Noguchi, Satoshi; Nakada, Setsuya

    2008-07-01

    Permeability measurement was made on five rock samples from USDP-4 cores. Rock samples were collected from the conduit zone and its country rock. One sample (C14-1-1) is considered as a part of the feeder dyke for the 1991-1995 eruption. The transient pulse method was employed under confining pressure up to 50 MPa. Compressional wave velocity was measured along with permeability. The measured permeability ranges from 10 - 19 to 10 - 17 m 2 at the atmospheric pressure, and is as low as that reported for tight rocks such as granite. The permeability decreases with increasing confining pressure, while the compressional wave velocity increases. Assuming that pores are parallel elliptical tubes, the pressure dependence of permeability requires aspect ratio of 10 - 4 -10 - 2 at the atmospheric pressure. The pore aperture is estimated to be less than 1 μm. The estimated aspect ratio and pore aperture suggest that connectivity of pores is maintained by narrow cracks. The existence of cracks is supported by the pressure dependence of compressional wave velocity. Narrow cracks (< 1 μm) are observed in dyke samples, and they must have been created after solidification. Dyke samples do not provide us information of pore structures during degassing, since exsolved gas has mostly escaped and pores governing the gas permeable flow should have been lost. Both dyke and country rock samples provide us information of materials around ascending magma. Although the measured small-scale permeability cannot be directly applied to geological-scale processes, it gives constrains on studies of large-scale permeability.

  16. Rock surface roughness measurement using CSI technique and analysis of surface characterization by qualitative and quantitative results

    NASA Astrophysics Data System (ADS)

    Mukhtar, Husneni; Montgomery, Paul; Gianto; Susanto, K.

    2016-01-01

    In order to develop image processing that is widely used in geo-processing and analysis, we introduce an alternative technique for the characterization of rock samples. The technique that we have used for characterizing inhomogeneous surfaces is based on Coherence Scanning Interferometry (CSI). An optical probe is first used to scan over the depth of the surface roughness of the sample. Then, to analyse the measured fringe data, we use the Five Sample Adaptive method to obtain quantitative results of the surface shape. To analyse the surface roughness parameters, Hmm and Rq, a new window resizing analysis technique is employed. The results of the morphology and surface roughness analysis show micron and nano-scale information which is characteristic of each rock type and its history. These could be used for mineral identification and studies in rock movement on different surfaces. Image processing is thus used to define the physical parameters of the rock surface.

  17. Preliminary source rock evaluation and hydrocarbon generation potential of the early Cretaceous subsurface shales from Shabwah sub-basin in the Sabatayn Basin, Western Yemen

    NASA Astrophysics Data System (ADS)

    Al-Matary, Adel M.; Hakimi, Mohammed Hail; Al Sofi, Sadam; Al-Nehmi, Yousif A.; Al-haj, Mohammed Ail; Al-Hmdani, Yousif A.; Al-Sarhi, Ahmed A.

    2018-06-01

    A conventional organic geochemical study has been performed on the shale samples collected from the early Cretaceous Saar Formation from the Shabwah oilfields in the Sabatayn Basin, Western Yemen. The results of this study were used to preliminary evaluate the potential source-rock of the shales in the Saar Formation. Organic matter richness, type, and petroleum generation potential of the analysed shales were assessed. Total organic carbon content and Rock- Eval pyrolysis results indicate that the shale intervals within the early Cretaceous Saar Formation have a wide variation in source rock generative potential and quality. The analysed shale samples have TOC content in the range of 0.50 and 5.12 wt% and generally can be considered as fair to good source rocks. The geochemical results of this study also indicate that the analysed shales in the Saar Formation are both oil- and gas-prone source rocks, containing Type II kerogen and mixed Types II-III gradient to Type III kerogen. This is consistent with Hydrogen Index (HI) values between 66 and 552 mg HC/g TOC. The temperature-sensitive parameters such as vitrinite reflectance (%VRo), Rock-Eval pyrolysis Tmax and PI reveal that the analysed shale samples are generally immature to early-mature for oil-window. Therefore, the organic matter has not been altered by thermal maturity thus petroleum has not yet generated. Therefore, exploration strategies should focus on the known deeper location of the Saar Formation in the Shabwah-sub-basin for predicting the kitchen area.

  18. U–Pb, Rb–Sr, and U-series isotope geochemistry of rocks and fracture minerals from the Chalk River Laboratories site, Grenville Province, Ontario, Canada

    USGS Publications Warehouse

    Neymark, Leonid; Peterman, Zell E.; Moscati, Richard J.; Thivierge, R. H.

    2013-01-01

    As part of the Geologic Waste Management Facility feasibility study, Atomic Energy of Canada Ltd. (AECL) is evaluating the suitability of the Chalk River Laboratories (CRL) site in Ontario, situated in crystalline rock of the southwestern Grenville Province, for the possible development of an underground repository for low- and intermediate-level nuclear waste. This paper presents petrographic and trace element analyses, U–Pb zircon dating results, and Rb–Sr, U–Pb and U-series isotopic analyses of gneissic drill core samples from the deep CRG-series characterization boreholes at the CRL site. The main rock types intersected in the boreholes include hornblende–biotite (±pyroxene) gneisses of granitic to granodioritic composition, leucocratic granitic gneisses with sparse mafic minerals, and garnet-bearing gneisses with variable amounts of biotite and/or hornblende. The trace element data for whole-rock samples plot in the fields of within-plate, syn-collision, and volcanic arc-type granites in discrimination diagrams used for the tectonic interpretation of granitic rocks.Zircons separated from biotite gneiss and metagranite samples yielded SHRIMP-RG U–Pb ages of 1472 ± 14 (2σ) and 1045 ± 6 Ma, respectively, in very good agreement with widespread Early Mesoproterozoic plutonic ages and Ottawan orogeny ages in the Central Gneiss Belt. The Rb–Sr, U–Pb, and Pb–Pb whole-rock errorchron apparent ages of most of the CRL gneiss samples are consistent with zircon U–Pb age and do not indicate substantial large-scale preferential element mobility during superimposed metamorphic and water/rock interaction processes. This may confirm the integrity of the rock mass, which is a positive attribute for a potential nuclear waste repository. Most 234U/238U activity ratios (AR) in whole rock samples are within errors of the secular equilibrium value of one, indicating that the rocks have not experienced any appreciable U loss or gain within the past 1 Ma. However, 234U/238U AR in fracture mineral samples collected down to borehole lengths of about 740 m deviate from the secular equilibrium value and 234U/238U model ages calculated for fracture mineral samples showing excess 234U range from 593 to 1415 ka, thus providing evidence of fracture flow in the associated bedrock during the past 1.5 Ma. Rare earth element patterns are variable in fracture-filling calcites and Fe oxides/hydroxides but are similar to those observed in associated whole-rock samples. The observed Ce anomalies are very small (CeN/CeN∗≈1">CeN/CeN∗≈1), do not vary with depth, and, therefore, do not contain evidence that the studied fracture minerals precipitated from oxidizing waters at the conceptual depth of a repository.

  19. Naturally occurring contaminants in the Piedmont and Blue Ridge crystalline-rock aquifers and Piedmont Early Mesozoic basin siliciclastic-rock aquifers, eastern United States, 1994–2008

    USGS Publications Warehouse

    Chapman, Melinda J.; Cravotta, Charles A.; Szabo, Zoltan; Lindsay, Bruce D.

    2013-01-01

    Groundwater quality and aquifer lithologies in the Piedmont and Blue Ridge Physiographic Provinces in the eastern United States vary widely as a result of complex geologic history. Bedrock composition (mineralogy) and geochemical conditions in the aquifer directly affect the occurrence (presence in rock and groundwater) and distribution (concentration and mobility) of potential naturally occurring contaminants, such as arsenic and radionuclides, in drinking water. To evaluate potential relations between aquifer lithology and the spatial distribution of naturally occurring contaminants, the crystalline-rock aquifers of the Piedmont and Blue Ridge Physiographic Provinces and the siliciclastic-rock aquifers of the Early Mesozoic basin of the Piedmont Physiographic Province were divided into 14 lithologic groups, each having from 1 to 16 lithochemical subgroups, based on primary rock type, mineralogy, and weathering potential. Groundwater-quality data collected by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program from 1994 through 2008 from 346 wells and springs in various hydrogeologic and land-use settings from Georgia through New Jersey were compiled and analyzed for this study. Analyses for most constituents were for filtered samples, and, thus, the compiled data consist largely of dissolved concentrations. Concentrations were compared to criteria for protection of human health, such as U.S. Environmental Protection Agency (USEPA) drinking water maximum contaminant levels and secondary maximum contaminant levels or health-based screening levels developed by the USGS NAWQA Program in cooperation with the USEPA, the New Jersey Department of Environmental Protection, and Oregon Health & Science University. Correlations among constituent concentrations, pH, and oxidation-reduction (redox) conditions were used to infer geochemical controls on constituent mobility within the aquifers. Of the 23 trace-element constituents evaluated, arsenic, manganese, and zinc were detected in one or more water samples at concentrations greater than established human health-based criteria. Arsenic concentrations typically were less than 1 microgram per liter (µg/L) in most groundwater samples; however, concentrations of arsenic greater than 1 µg/L frequently were detected in groundwater from clastic lacustrine sedimentary rocks of the Early Mesozoic basin aquifers and from metamorphosed clastic sedimentary rocks of the Piedmont and Blue Ridge crystalline rock aquifers. Groundwater from these rock units had elevated pH compared to other rock units evaluated in this study. Of the nine samples for which arsenic concentration was greater than 10 µg/L, six were classified as oxic and three as anoxic, and seven had pH of 7.2 or greater. Manganese concentrations typically were less than 10 µg/L in most samples; however, 8.3 percent of samples from the Piedmont and Blue Ridge crystalline-rock aquifers and 3.0 percent of samples from the Early Mesozoic basin siliciclastic rock aquifers had manganese concentrations greater than the 300-µg/L health-based screening level. The positive correlation of manganese with iron and ammonia and the negative correlation of manganese with dissolved oxygen and nitrate are consistent with the reductive dissolution of manganese oxides in the aquifer. Zinc concentrations typically were less than 10 µg/L in the groundwater samples considered in the study, but 0.4 percent and 5.5 percent of the samples had concentrations greater than the health-based screening level of 2,000 µg/L and one-tenth of the health-based screening level, respectively. The mean rank concentration of zinc in groundwater from the quartz-rich sedimentary rock lithologic group was greater than that for other lithologic groups even after eliminating samples collected from wells constructed with galvanized casing. Approximately 90 percent of 275 groundwater samples had radon-222 concentrations that were greater than the proposed alternative maximum contaminant level of 300 picocuries per liter. In contrast, only 2.0 percent of 98 samples had combined radium (radium-226 plus radium-228) concentrations greater than the maximum contaminant level of 5.0 picocuries per liter, and 0.6 percent of 310 samples had uranium concentrations greater than the maximum contaminant level of 30 µg/L. Radon concentrations were highest in the Piedmont and Blue Ridge crystalline-rock aquifers, especially in granite, and elevated median concentrations were noted in the Piedmont Early Mesozoic basin aquifers, but without the extreme maximum concentrations found in the crystalline rocks (granites). Although the siliciclastic lithologies had a greater frequency of elevated uranium concentrations, radon and radium were commonly detected in water from both siliciclastic and crystalline lithologies. Uranium concentrations in groundwater from clastic sedimentary and clastic lacustrine/evaporite sedimentary lithologic groups within the Early Mesozoic basin aquifers, which had median concentrations of 3.6 and 3.1 µg/L, respectively, generally were higher than concentrations for other siliciclastic lithologic groups, which had median concentrations less than 1 µg/L. Although 89 percent of the 260 samples from crystalline-rock aquifers had uranium concentrations less than 1 µg/L, 0.8 percent had uranium concentrations greater than the 30-µg/L maximum contaminant level, and 6.5 percent had concentrations greater than 3 µg/L.

  20. Northwest Africa 8535 and Northwest Africa 10463: New Insights into the Angrite Parent Body

    NASA Technical Reports Server (NTRS)

    Santos, A. R.; Agee, C. B.; Shearer, C. K.; McCubbin, F. M.

    2016-01-01

    The angrite meteorites are valuable samples of igneous rocks formed early in Solar System history (approx.4.56 Ga, summarized in [1]). This small meteorite group (approx.24 individually named specimens) consists of rocks with somewhat exotic mineral compositions (e.g., high Ca olivine, Al-Ti-bearing diopside-hedenbergite, calcium silico-phosphates), resulting in exotic bulk rock compositions. These mineral assemblages remain fairly consistent among angrite samples, which suggests they formed due to similar processes from a single mantle source. There is still debate over the formation process for these rocks (see summary in [1]), and analysis of additional angrite samples may help to address this debate. Toward this end, we have begun to study two new angrites, Northwest Africa 8535, a dunite, and Northwest Africa 10463, a basaltic angrite.

  1. Effects of atmospheric moisture on rock resistivity.

    NASA Technical Reports Server (NTRS)

    Alvarez, R.

    1973-01-01

    This study examines the changes in resistivity of rock samples as induced by atmospheric moisture. Experiments were performed on samples of hematitic sandstone, pyrite, and galena. The sandstone underwent a change in resistivity of four orders of magnitude when it was measured in a vacuum of 500 ntorr and in air of 37% relative humidity. Pyrite and galena showed no variations in resistivity when they were measured under the same conditions. These results, plus others obtained elsewhere, indicate that rocks of the resistive type are affected in their electrical properties by atmospheric moisture, whereas rocks of the conductive type are not. The experimental evidence obtained is difficult to reconcile with a model of aqueous electrolytic conduction on the sample surface. It is instead suggested that adsorbed water molecules alter the surface resistivity in a manner similar to that observed in semiconductors and insulators.

  2. Preliminary examination of lunar samples from apollo 14.

    PubMed

    1971-08-20

    The major findings of the preliminary examination of the lunar samples are as follows: 1) The samples from Fra Mauro base may be contrasted with those from Tranquillity base and the Ocean of Storms in that about half the Apollo 11 samples consist of basaltic rocks, and all but three Apollo 12 rocks are basaltic, whereas in the Apollo 14 samples only two rocks of the 33 rocks over 50 grams have basaltic textures. The samples from Fra Mauro base consist largely of fragmental rocks containing clasts of diverse lithologies and histories. Generally the rocks differ modally from earlier lunar samples in that they contain more plagioclase and contain orthopyroxene. 2) The Apollo 14 samples differ chemically from earlier lunar rocks and from their closest meteorite and terrestrial analogs. The lunar material closest in composition is the KREEP component (potassium, rare earth elements, phosphorus), "norite," "mottled gray fragments" (9) from the soil samples (in particular, sample 12033) from the Apollo 12 site, and the dark portion of rock 12013 (10). The Apollo 14 material is richer in titanium, iron, magnesium, and silicon than the Surveyor 7 material, the only lunar highlands material directly analyzed (11). The rocks also differ from the mare basalts, having much lower contents of iron, titanium, manganese, chromium, and scandium and higher contents of silicon, aluminum, zirconium, potassium, uranium, thorium, barium, rubidium, sodium, niobium, lithium, and lanthanum. The ratios of potassium to uranium are lower than those of terrestrial rocks and similar to those of earlier lunar samples. 3) The chemical composition of the soil closely resembles that of the fragmental rocks and the large basaltic rock (sample 14310) except that some elements (potassium, lanthanum, ytterbium, and barium) may be somewhat depleted in the soil with respect to the average rock composition. 4) Rocks display characteristic surface features of lunar material (impact microcraters, rounding) and shock effects similar to those observed in rocks and soil from the Apollo 11 and Apollo 12 missions. The rocks show no evidence of exposure to water, and their content of metallic iron suggests that they, like the Apollo 11 and Apollo 12 material, were formed and have remained in an environment with low oxygen activity. 5) The concentration of solar windimplanted material in the soil is large, as was the case for Apollo 11 and Apollo 12 soil. However, unlike previous fragmental rocks, Apollo 14 fragmental rocks possess solar wind contents ranging from approximately that of the soil to essentially zero, with most rocks investigated falling toward one extreme of this range. A positive correlation appears to exist between the solar wind components, carbon, and (20)Ne, of fragmental rocks and their friability (Fig. 12). 6) Carbon contents lie within the range of carbon contents for Apollo 11 and Apollo 12 samples. 7) Four fragmental rocks show surface exposure times (10 x 10(6) to 20 x 10(6) years) about an order of magnitude less than typical exposure times of Apollo 11 and Apollo 12 rocks. 8) A much broader range of soil mechanics properties was encountered at the Apollo 14 site than has been observed at the Apollo 11, Apollo 12, and Surveyor landing sites. At different points along the traverses of the Apollo 14 mission, lesser cohesion, coarser grain size, and greater resistance to penetration was found than at the Apollo 11 and Apollo 12 sites. These variations are indicative of a very complex, heterogeneous deposit. The soils are more poorly sorted, but the range of grain size is similar to those of the Apollo 11 and Apollo 12 soils. 9) No evidence of biological material has been found in the samples to date.

  3. Treated and untreated rock dust: Quartz content and physical characterization.

    PubMed

    Soo, Jhy-Charm; Lee, Taekhee; Chisholm, William P; Farcas, Daniel; Schwegler-Berry, Diane; Harper, Martin

    2016-11-01

    Rock dusting is used to prevent secondary explosions in coal mines, but inhalation of rock dusts can be hazardous if the crystalline silica (e.g., quartz) content in the respirable fraction is high. The objective of this study is to assess the quartz content and physical characteristics of four selected rock dusts, consisting of limestone or marble in both treated (such as treatment with stearic acid or stearates) and untreated forms. Four selected rock dusts (an untreated and treated limestone and an untreated and treated marble) were aerosolized in an aerosol chamber. Respirable size-selective sampling was conducted along with particle size-segregated sampling using a Micro-Orifice Uniform Deposit Impactor. Fourier Transform Infrared spectroscopy and scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) analyses were used to determine quartz mass and particle morphology, respectively. Quartz percentage in the respirable dust fraction of untreated and treated forms of the limestone dust was significantly higher than in bulk samples, but since the bulk percentage was low the enrichment factor would not have resulted in any major change to conclusions regarding the contribution of respirable rock dust to the overall airborne quartz concentration. The quartz percentage in the marble dust (untreated and treated) was very low and the respirable fractions showed no enrichment. The spectra from SEM-EDX analysis for all materials were predominantly from calcium carbonate, clay, and gypsum particles. No free quartz particles were observed. The four rock dusts used in this study are representative of those presented for use in rock dusting, but the conclusions may not be applicable to all available materials.

  4. Lunar Rocks: Available for Year of the Solar System Events

    NASA Astrophysics Data System (ADS)

    Allen, J. S.

    2010-12-01

    NASA is actively exploring the moon with our Lunar Reconnaissance Orbiter, the Grail Discovery Mission will launch next year, and each year there is an International Observe the Moon Night providing many events and lunar science focus opportunities to share rocks from the moon with students and the public. In our laboratories, we have Apollo rocks and soil from six different places on the moon, and their continued study provides incredibly valuable ground truth to complement space exploration missions. Extensive information and actual lunar samples are available for public display and education. The Johnson Space Center (JSC) has the unique responsibility to curate NASA's extraterrestrial samples from past and future missions. Curation includes documentation, preservation, preparation, and distribution of samples for research, education, and public outreach. The lunar rocks and soils continue to be studied intensively by scientists around the world. Descriptions of the samples, research results, thousands of photographs, and information on how to request research samples are on the JSC Curation website: http://curator.jsc.nasa.gov/ NASA is eager for scientists and the public to have access to these exciting Apollo samples through our various loan procedures. NASA provides a limited number of Moon rock samples for either short-term or long-term displays at museums, planetariums, expositions, and professional events that are open to the public. The JSC Public Affairs Office handles requests for such display samples. Requestors should apply in writing to Mr. Louis Parker, JSC Exhibits Manager. Mr. Parker will advise successful applicants regarding provisions for receipt, display, and return of the samples. All loans will be preceded by a signed loan agreement executed between NASA and the requestor's organization. Email address: louis.a.parker@nasa.gov Sets of twelve thin sections of Apollo lunar samples are available for short-term loan from JSC Curation. The thin sections may be use requested for college and university courses where petrographic microscopes are available for viewing. Requestors should contact Ms. Mary Luckey, Education Sample Curator. Email address: mary.k.luckey@nasa.gov NASA also loans sets of Moon rocks for use in classrooms, libraries, museums, and planetariums through the Lunar Sample Education Program. Lunar samples (three soils and three rocks) are encapsulated in a six-inch diameter clear plastic disk. A CD with PowerPoint presentations, analogue samples from Earth, a classroom activity guide, and additional printed material accompany the disks. Educators may qualify for the use of these disks by attending a content and security certification workshop sponsored by NASA's Aerospace Education Services Program (AESP). Contact Ms. Margaret Maher, AESP Director. Email address: mjm67@psu.edu NASA makes these precious samples available for the public and encourages the use of lunar rocks to highlight Year of the Solar System events. Surely these interesting specimens of another world will enhance the experience of all YSS participants so please take advantage of these lunar samples and borrow them for events and classes.

  5. Long-term migration of iodine in sedimentary rocks based on iodine speciation and 129I/127I ratio

    NASA Astrophysics Data System (ADS)

    Togo, Y.; Takahashi, Y.; Amano, Y.; Matsuzaki, H.; Suzuki, Y.; Muramatsu, Y.; Iwatsuki, T.

    2012-12-01

    [Introduction] 129I is one of the available indexes of long-term migration of groundwater solutes, because of its long half-life (15.7 million years) and low sorption characteristics. The Horonobe underground research center (Japan Atomic Energy Agency), at which are conducted research and development of fundamental techniques on geological disposal of high-level radioactive waste, is an appropriate site for natural analogue studies, because iodine concentration in groundwater is high in this area. To predict iodine behavior in natural systems, speciation of iodine is essential because of different mobility among each species. In this study, we determined iodine speciation and129I/127I isotope ratios of rock and groundwater samples to investigate long term migration of iodine. [Methods] All rock and groundwater samples were collected at Horonobe underground research center. The region is underlain mainly by Neogene to Quaternary marine sedimentary rocks, the Wakkanai Formation (Wk Fm, siliceous mudstones), and the overlying Koetoi Formation (Kt Fm, diatomaceous mudstones). Iodine species in rock samples were determined by iodine K-edge X-ray absorption near edge structure (SPring-8 BL01B1). Thin sections of rock samples were prepared, and iodine mapping were obtained by micro-XRF analysis (SPring-8 BL37XU). Iodine species (IO3-, I-, and organic I) in groundwater were separately detected by high performance liquid chromatography connected to ICP-MS. The 129I/127I ratios in groundwater and rock samples were measured by accelerator mass spectrometry (MALT, Univ. of Tokyo). Iodine in rock samples were separated by pyrohydrolysis and water extraction. [Results and discussion] Concentration of iodine in groundwater varied widely and was much higher than that of seawater showing a high correlation with that of chlorine (R2 = 0.90). Species of iodine in groundwater was mainly I-. Iodine in rock samples decreased near the boundary between Wk and Kt Fms. Iodine K-edge XANES showed that iodine in rock was a mixture of organic and inorganic iodine. According to iodine and carbon mapping in micrometer scale, iodine was accumulated locally and correlated with carbon, suggesting that iodine existed as organic iodine. The 129I/127I isotope ratios in groundwater were lower than those in rocks and almost constant at various depths, demonstrating that iodine in groundwater was released from layers deeper than co-existing rocks. According to these results, migration of iodine in this area can be expected as follows. (i) During sedimentation of Wk and Kt Fms, iodine was accumulated as organic iodine in siliceous sediments. (ii) Iodine was released as I- from the layers deeper than Wk Fm during diagenetic processes. Subsequently, iodine rich groundwater was distributed to Wk and Kt Fms due to the compaction of the layers. (iii) During uplift and denudation processes, both iodine and chlorine were diluted by meteoric water from the surface. Iodine distribution coefficient (Kd = [I concentration in rock]/[I concentration in groundwater]) of Kt Fm is higher than that in Wk Fm. Diatomaceous mudstones might be more effective than siliceous mudstones as natural barrier for 129I released from deep underground radioactive waste repository. This suggestion should be reinforced by laboratory experiments in future studies.

  6. Major element chemistry of Apollo 14 mare basalt clasts and highland plutonic clasts from lunar breccia 14321: Comparison with neutron activation results

    NASA Technical Reports Server (NTRS)

    Shervais, John W.; Vetter, Scott K.

    1993-01-01

    Studies of lithic components in lunar breccias have documented a wide variety of rock types and magma suites which are not found among large, discrete lunar samples. Rock types found exclusively or dominantly as clasts in breccias include KREEP basalts, VHK mare basalts, high-alumina mare basalts, olivine vitrophyres, alkali anorthosites, and magnesian anorthosites and troctolites. These miniature samples are crucial in petrogenetic studies of ancient mare basalts and the highlands crust of the western nearside, both of which have been battered by basin-forming impacts and no longer exist as distinct rock units.

  7. Evolution of strength and physical properties of carbonate and ultramafic rocks under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Lisabeth, Harrison Paul

    Interaction of rocks with fluids can significantly change mineral assemblage and structure. This so-called hydrothermal alteration is ubiquitous in the Earth's crust. Though the behavior of hydrothermally altered rocks can have planet-scale consequences, such as facilitating oceanic spreading along slow ridge segments and recycling volatiles into the mantle at subduction zones, the mechanisms involved in the hydrothermal alteration are often microscopic. Fluid-rock interactions take place where the fluid and rock meet. Fluid distribution, flux rate and reactive surface area control the efficiency and extent of hydrothermal alteration. Fluid-rock interactions, such as dissolution, precipitation and fluid mediated fracture and frictional sliding lead to changes in porosity and pore structure that feed back into the hydraulic and mechanical behavior of the bulk rock. Examining the nature of this highly coupled system involves coordinating observations of the mineralogy and structure of naturally altered rocks and laboratory investigation of the fine scale mechanisms of transformation under controlled conditions. In this study, I focus on fluid-rock interactions involving two common lithologies, carbonates and ultramafics, in order to elucidate the coupling between mechanical, hydraulic and chemical processes in these rocks. I perform constant strain-rate triaxial deformation and constant-stress creep tests on several suites of samples while monitoring the evolution of sample strain, permeability and physical properties. Subsequent microstructures are analyzed using optical and scanning electron microscopy. This work yields laboratory-based constraints on the extent and mechanisms of water weakening in carbonates and carbonation reactions in ultramafic rocks. I find that inundation with pore fluid thereby reducing permeability. This effect is sensitive to pore fluid saturation with respect to calcium carbonate. Fluid inundation weakens dunites as well. The addition of carbon dioxide to pore fluid enhances compaction and partial recovery of strength compared to pure water samples. Enhanced compaction in CO2-rich fluid samples is not accompanied by enhanced permeability reduction. Analysis of sample microstructures indicates that precipitation of carbonates along fracture surfaces is responsible for the partial restrengthening and channelized dissolution of olivine is responsible for permeability maintenance.

  8. Rockbursting Potential of Kimberlite: A Case Study of Diavik Diamond Mine

    NASA Astrophysics Data System (ADS)

    Leveille, Paul; Sepehri, Mohammadali; Apel, Derek B.

    2017-12-01

    The research described in this paper provides information about the rockbursting potential of kimberlite. Kimberlite is a diamond-bearing rock found in deposits around the world including northern Canada. This paper outlines three methods for the prediction of rockbursts based on the properties of a rock. The methods include the: strain energy index, strain energy density, and rock brittleness. Kimberlite samples collected from Diavik, a diamond mine in northern Canada, were tested to define the rock's uniaxial compressive strength, tensile strength, and hysteresis loop. The samples were separated into sub-rock types based on their descriptions from the mine geologists. The results indicate that it is possible to produce rockbursts in kimberlite. It was also observed that the sub-rock types had a range of rockbursting properties. Some types of kimberlite exhibited little to no potential for producing bursts, while other types potentially could produce violent bursts. The diverse nature of kimberlite indicates that the rockbursting properties of the rock should not be generalized and are dependent on the sub-rock type being encountered.

  9. Prediction of carbonate rock type from NMR responses using data mining techniques

    NASA Astrophysics Data System (ADS)

    Gonçalves, Eduardo Corrêa; da Silva, Pablo Nascimento; Silveira, Carla Semiramis; Carneiro, Giovanna; Domingues, Ana Beatriz; Moss, Adam; Pritchard, Tim; Plastino, Alexandre; Azeredo, Rodrigo Bagueira de Vasconcellos

    2017-05-01

    Recent studies have indicated that the accurate identification of carbonate rock types in a reservoir can be employed as a preliminary step to enhance the effectiveness of petrophysical property modeling. Furthermore, rock typing activity has been shown to be of key importance in several steps of formation evaluation, such as the study of sedimentary series, reservoir zonation and well-to-well correlation. In this paper, a methodology based exclusively on the analysis of 1H-NMR (Nuclear Magnetic Resonance) relaxation responses - using data mining algorithms - is evaluated to perform the automatic classification of carbonate samples according to their rock type. We analyze the effectiveness of six different classification algorithms (k-NN, Naïve Bayes, C4.5, Random Forest, SMO and Multilayer Perceptron) and two data preprocessing strategies (discretization and feature selection). The dataset used in this evaluation is formed by 78 1H-NMR T2 distributions of fully brine-saturated rock samples from six different rock type classes. The experiments reveal that the combination of preprocessing strategies with classification algorithms is able to achieve a prediction accuracy of 97.4%.

  10. MicroRNA-300 inhibited glioblastoma progression through ROCK1.

    PubMed

    Zhou, Fucheng; Li, Yang; Hao, Zhen; Liu, Xuanxi; Chen, Liang; Cao, Yu; Liang, Zuobin; Yuan, Fei; Liu, Jie; Wang, Jianjiao; Zheng, Yongri; Dong, Deli; Bian, Shan; Yang, Baofeng; Jiang, Chuanlu; Li, Qingsong

    2016-06-14

    Glioblastoma is a common type of brain aggressive tumors and has a poor prognosis. MicroRNAs (miRNAs) are a class of small, endogenous and non-coding RNAs that play crucial roles in cell proliferation, survival and invasion. Deregulated expression of miR-300 has been studied in a lot of cancers. However, the role of miR-300 in glioblastoma is still unknown. In this study, we demonstrated that miR-300 expression was downregulated in glioblastoma tissues compared with the normal tissues. Lower expression level of miR-300 was observed in thirty cases (75 %, 30/40) of glioblastoma samples compared with the normal samples. Moreover, the overall survival of glioblastoma patients with lower miR-300 expression level was shorter than those with higher miR-300 expression level. In addition, miR-300 expression was also downregulated in glioblastoma cell lines. Overexpression of miR-300 inhibited cell proliferation, cell cycle and invasion in glioblastoma cell line U87 and U251. Moreover, we identified ROCK1 as a direct target of miR-300 in U87 and U251 cells. Overexpression of ROCK1 partially rescued the miR-300-mediated cell growth. ROCK1 expression levels in glioblastoma tissues were higher than that in normal tissues. ROCK1 expression levels were higher in thirty-one cases of glioblastoma samples than their normal samples. Furthermore, the expression level ROCK1 was inversely correlated with the expression level of miR-300. Importantly, overexpression of miR-300 suppressed glioblastoma progression in an established xenograft model. In conclusion, we revealed that miR-300 might act as a tumor suppressor gene through inhibiting ROCK1 in glioblastoma.

  11. MicroRNA-300 inhibited glioblastoma progression through ROCK1

    PubMed Central

    Hao, Zhen; Liu, Xuanxi; Chen, Liang; Cao, Yu; Liang, Zuobin; Yuan, Fei; Liu, Jie; Wang, Jianjiao; Zheng, Yongri; Dong, Deli; Bian, Shan; Yang, Baofeng; Jiang, Chuanlu; Li, Qingsong

    2016-01-01

    Glioblastoma is a common type of brain aggressive tumors and has a poor prognosis. MicroRNAs (miRNAs) are a class of small, endogenous and non-coding RNAs that play crucial roles in cell proliferation, survival and invasion. Deregulated expression of miR-300 has been studied in a lot of cancers. However, the role of miR-300 in glioblastoma is still unknown. In this study, we demonstrated that miR-300 expression was downregulated in glioblastoma tissues compared with the normal tissues. Lower expression level of miR-300 was observed in thirty cases (75 %, 30/40) of glioblastoma samples compared with the normal samples. Moreover, the overall survival of glioblastoma patients with lower miR-300 expression level was shorter than those with higher miR-300 expression level. In addition, miR-300 expression was also downregulated in glioblastoma cell lines. Overexpression of miR-300 inhibited cell proliferation, cell cycle and invasion in glioblastoma cell line U87 and U251. Moreover, we identified ROCK1 as a direct target of miR-300 in U87 and U251 cells. Overexpression of ROCK1 partially rescued the miR-300-mediated cell growth. ROCK1 expression levels in glioblastoma tissues were higher than that in normal tissues. ROCK1 expression levels were higher in thirty-one cases of glioblastoma samples than their normal samples. Furthermore, the expression level ROCK1 was inversely correlated with the expression level of miR-300. Importantly, overexpression of miR-300 suppressed glioblastoma progression in an established xenograft model. In conclusion, we revealed that miR-300 might act as a tumor suppressor gene through inhibiting ROCK1 in glioblastoma. PMID:27145462

  12. Source-rock evaluation of outcrop samples from Vanuatu (Malakula, Espiritu Santo, Maewo, and Pentecost)

    USGS Publications Warehouse

    Buchbinder, Binyamin; Halley, Robert B.

    1988-01-01

    The samples collected for the present study represent only a portion of the sedimentary column in the various sedimentary basins of Vanuatu.  The characterize only the outer margins of the sedimentary basins and do not necessarily reflect the source-rock potential of the deeper (offshore) parts of the basins.

  13. Introduction to the Apollo collections. Part 1: Lunar igneous rocks

    NASA Technical Reports Server (NTRS)

    Mcgee, P. E.; Warner, J. L.; Simonds, C. H.

    1977-01-01

    The basic petrographic, chemical, and age data is presented for a representative suite of igneous rocks gathered during the six Apollo missions. Tables are given for 69 samples: 32 igneous rocks and 37 impactites (breccias). A description is given of 26 basalts, four plutonic rocks, and two pyroclastic samples. The textural-mineralogic name assigned each sample is included.

  14. The observation of the physicochemical change of rock under freeze-thawing experiment: CLSM, XRD and ICP analysis

    NASA Astrophysics Data System (ADS)

    Choi, J.; Chae, B.; Chon, C.; Jeong, J.

    2013-12-01

    Abstract : In order to understand the progress of the physical weathering of rock sample, we managed freeze-thawing experiment at temperature of up to 40C from -20C taking into account of South Korea. In this study, the time was held by two hours the temperature of the maximum (40C) and minimum (-20C) and the experiments were carried out at intervals of one hour rising and falling. We have run the experiment about 120 cycle with the cycle of -20C from 40C experiment. We measured the physical properties of rock samples after each 20 cycle has elapsed by using confocal laser scanning microscope (CLSM) and observed changes in roughness of rock samples surface. We also analyzed the mineral of rock sample using the XRD analysis and observing the change in chemical composition of solution used in the experiment by using ICP analysis. Through the above process, we observed physico-chemical changes in the rock sample due to freeze-thaw cycles. To analysis of the line roughness parameter we used set by the 10 vertical and horizontal cross section line on the surface and surface roughness parameter was analyzed by using the area on the surface. Through such a process, while the freeze-thawing experiment is advanced, it was studied how the physical roughness and chemical composition were changed. As a result, it was possible to observe a change in the mineral component of the particular dissolved in the solution and it was able to observe the characteristic changes of the parameters of the roughness of the lines and surfaces.

  15. Data Validation Package September 2016 Groundwater and Surface Water Sampling at the Slick Rock, Colorado, Processing Sites January 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traub, David; Nguyen, Jason

    The Slick Rock, Colorado, Processing Sites are referred to as the Slick Rock West Processing Site (SRK05) and the Slick Rock East Processing Site (SRK06). This annual event involved sampling both sites for a total of 16 monitoring wells and 6 surface water locations as required by the 2006 Draft Final Ground Water Compliance Action Plan for the Slick Rock, Colorado, Processing Sites (GCAP). A domestic well was also sampled at a property adjacent to the Slick Rock East site at the request of the landowner.

  16. Evaluation of kinetic uncertainty in numerical models of petroleum generation

    USGS Publications Warehouse

    Peters, K.E.; Walters, C.C.; Mankiewicz, P.J.

    2006-01-01

    Oil-prone marine petroleum source rocks contain type I or type II kerogen having Rock-Eval pyrolysis hydrogen indices greater than 600 or 300-600 mg hydrocarbon/g total organic carbon (HI, mg HC/g TOC), respectively. Samples from 29 marine source rocks worldwide that contain mainly type II kerogen (HI = 230-786 mg HC/g TOC) were subjected to open-system programmed pyrolysis to determine the activation energy distributions for petroleum generation. Assuming a burial heating rate of 1??C/m.y. for each measured activation energy distribution, the calculated average temperature for 50% fractional conversion of the kerogen in the samples to petroleum is approximately 136 ?? 7??C, but the range spans about 30??C (???121-151??C). Fifty-two outcrop samples of thermally immature Jurassic Oxford Clay Formation were collected from five locations in the United Kingdom to determine the variations of kinetic response for one source rock unit. The samples contain mainly type I or type II kerogens (HI = 230-774 mg HC/g TOC). At a heating rate of 1??C/m.y., the calculated temperatures for 50% fractional conversion of the Oxford Clay kerogens to petroleum differ by as much as 23??C (127-150??C). The data indicate that kerogen type, as defined by hydrogen index, is not systematically linked to kinetic response, and that default kinetics for the thermal decomposition of type I or type II kerogen can introduce unacceptable errors into numerical simulations. Furthermore, custom kinetics based on one or a few samples may be inadequate to account for variations in organofacies within a source rock. We propose three methods to evaluate the uncertainty contributed by kerogen kinetics to numerical simulations: (1) use the average kinetic distribution for multiple samples of source rock and the standard deviation for each activation energy in that distribution; (2) use source rock kinetics determined at several locations to describe different parts of the study area; and (3) use a weighted-average method that combines kinetics for samples from different locations in the source rock unit by giving the activation energy distribution for each sample a weight proportional to its Rock-Eval pyrolysis S2 yield (hydrocarbons generated by pyrolytic degradation of organic matter). Copyright ?? 2006. The American Association of Petroleum Geologists. All rights reserved.

  17. Lightweight Low Force Rotary Percussive Coring Tool for Planetary Applications

    NASA Technical Reports Server (NTRS)

    Hironaka, Ross; Stanley, Scott

    2010-01-01

    A prototype low-force rotary-percussive rock coring tool for use in acquiring samples for geological surveys in future planetary missions was developed. The coring tool could eventually enable a lightweight robotic system to operate from a relatively small (less than 200 kg) mobile or fixed platform to acquire and cache Mars or other planetary rock samples for eventual return to Earth for analysis. To gain insight needed to design an integrated coring tool, the coring ability of commercially available coring bits was evaluated for effectiveness of varying key parameters: weight-on-bit, rotation speed, percussive rate and force. Trade studies were performed for different methods of breaking a core at its base and for retaining the core in a sleeve to facilitate sample transfer. This led to a custom coring tool design which incorporated coring, core breakage, core retention, and core extraction functions. The coring tool was tested on several types of rock and demonstrated the overall feasibility of this approach for robotic rock sample acquisition.

  18. An experimental method to quantify the impact fatigue behavior of rocks

    NASA Astrophysics Data System (ADS)

    Wu, Bangbiao; Kanopoulos, Patrick; Luo, Xuedong; Xia, Kaiwen

    2014-07-01

    Fatigue failure is an important failure mode of engineering materials. The fatigue behavior of both ductile and brittle materials has been under investigation for many years. While the fatigue failure of ductile materials is well established, only a few studies have been carried out on brittle materials. In addition, most fatigue studies on rocks are conducted under quasi-static loading conditions. To address engineering applications involving repeated blasting, this paper proposes a method to quantify the impact fatigue properties of rocks. In this method, a split Hopkinson pressure bar system is adopted to exert impact load on the sample, which is placed in a specially designed steel sleeve to limit the displacement of the sample and thus to enable the recovery of the rock after each impact. The method is then applied to Laurentian granite, which is fine-grained and isotropic material. The results demonstrate that this is a practicable means to conduct impact fatigue tests on rocks and other brittle solids.

  19. The Use of Infrared Thermography for Porosity Assessment of Intact Rock

    NASA Astrophysics Data System (ADS)

    Mineo, S.; Pappalardo, G.

    2016-08-01

    Preliminary results on a new test for the indirect assessment of porosity through infrared thermography are presented. The study of the cooling behavior of rock samples in laboratory, through the analysis of thermograms, proved an innovative tool for the estimation of such an important property, which is one of the main features affecting the mechanical behavior of rocks. A detailed experimentation was performed on artificially heated volcanic rock samples characterized by different porosity values. The cooling trend was described both graphically and numerically, with the help of cooling curves and Cooling Rate Index. The latter, which proved strictly linked to porosity, was employed to find reliable equations for its indirect estimation. Simple and multiple regression analyses returned satisfactory outcomes, highlighting the great match between predicted and measured porosity values, thus confirming the goodness of the proposed model. This study brings a novelty in rock mechanics, laying the foundation for future researches aimed at refining achieved results for the validation of the model in a larger scale.

  20. Rock Around the World: International Outreach for Scientific Education Using Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rogers, L. D.; Klug, S. L.; Christensen, P. R.; Rogers, T. A.; Daub, G.

    2005-12-01

    Since the creation of the Rock Around the World (RATW) program in January 2004, we have received 6,861 (to date) rocks from children and adults alike from around the world. RATW is an educational outreach device to inspire and teach children about science. In addition, the accumulation of almost 7,000 rock samples has exponentially expanded the Arizona State University earth-based rock library into a large collection of samples useful for scientific investigation of Earth and Mars. This library currently supports research that is being conducted by the Mars Global Surveyor Thermal Emission Spectrometer (TES), the Mars Odyssey Thermal Emission Imaging System (THEMIS) and the two Mini-Thermal Emission Spectrometer (Mini-TES) instruments that are onboard the Mars Exploration Rovers. Currently, we have 3 undergraduate students working on the RATW project. As each rock sample arrives, appropriate information that was received with the sample is entered into our web-based RATW database. The information received with the rock sample is directly input into the RATW website. The information is publicly available for each sample at http://ratw.asu.edu. The sample is photographed, and then sent to the spectrometer for analysis. Once the spectrum is taken, calibration is performed. Then the sample is filed away in our rock archive room. Our website has several interactive tools which enhance the learning process. These tools include an interactive world map where the visitor can click on a rock location and preview all of the rocks sent from that geographical area of the world. In addition RATW has also put four virtual mineral libraries online. This enables any visitor to the RATW website to deconvolve or "unmix" their spectrum to see the mineral composition, using the same techniques that scientists use on the TES, THEMIS, and mini-TES data. The 6,861 rock samples we have received have been very geographically widespread. Participants have sent rocks from such places as Greenland, India, Switzerland and the Falkland Islands. We have received submissions that have included maps, drawings, pictures, stories, GPS readings and scientific literature and research about their rock sample and collection area. The number of RATW participants, and the enthusiasm with which they have participated, has shown that educational and scientific programs in Earth and Planetary Science draw worldwide interest among students and adults alike.

  1. Quantitative analysis of major and trace elements in NH4HF2-modified silicate rock powders by laser ablation - inductively coupled plasma mass spectrometry.

    PubMed

    Zhang, Wen; Hu, Zhaochu; Liu, Yongsheng; Yang, Wenwu; Chen, Haihong; Hu, Shenghong; Xiao, Hongyan

    2017-08-29

    In this paper, we described a NH 4 HF 2 digestion method as sample preparation for the rapid determination of major and trace elements in silicate rocks using laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS). Sample powders digested by NH 4 HF 2 at 230 °C for 3 h form ultrafine powders with a typical grain size d 80  < 8.5 μm, and various silicate rocks have a consistent grain morphology and size, allowing us to produce pressed powder pellets that have excellent cohesion and homogeneity suitable for laser ablation micro-analysis without the addition of binder. The influences of the digestion parameters were investigated and optimized, including the evaporation stage of removing residual NH 4 HF 2 , sample homogenization, selection of the digestion vessel and calibration strategy of quantitative analysis. The optimized NH 4 HF 2 digestion method was applied to dissolve six silicate rock reference materials (BCR-2, BHVO-2, AGV-2, RGM-2, GSP-2, GSR-1) covering a wide range of rock types. Ten major elements and thirty-five trace elements were simultaneously analyzed by LA-ICP-MS. The analytical results of the six reference materials generally agreed with the recommended values, with discrepancies of less than 10% for most elements. The analytical precision is within 5% for most major elements and within 10% for most trace elements. Compared with previous methods of LA-ICP-MS bulk analysis, our method enables the complete dissolution of refractory minerals, such as zircon, in intermediate-acidic intrusive rocks and limits contamination as well as the loss of volatile elements. Moreover, there are many advantages for the new technique, including reducing matrix effects between reference materials and samples, spiking the internal standard simply and feasibly and sample batch processing. The applicability filed of the new technique in this study was focused on the whole-rock analysis of igneous rock samples, which are from basic rocks to acid rocks (45% < SiO 2  < 73%). However, we thought that the NH 4 HF 2 digestion method can be used as a new alternative in LA-ICP-MS for a wider range of geological samples, and will significantly accelerate the application of LA-ICP-MS for the whole-rock analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Diversity of endolithic fungal communities in dolomite and limestone rocks from Nanjiang Canyon in Guizhou karst area, China.

    PubMed

    Tang, Yuan; Lian, Bin

    2012-06-01

    The endolithic environment, the tiny pores and cracks in rocks, buffer microbial communities from a number of physical stresses, such as desiccation, rapid temperature variations, and UV radiation. Considerable knowledge has been acquired about the diversity of microorganisms in these ecosystems, but few culture-independent studies have been carried out on the diversity of fungi to date. Scanning electron microscopy of carbonate rock fragments has revealed that the rock samples contain certain kinds of filamentous fungi. We evaluated endolithic fungal communities from bare dolomite and limestone rocks collected from Nanjiang Canyon (a typical karst canyon in China) using culture-independent methods. Results showed that Ascomycota was absolutely dominant both in the dolomite and limestone fungal clone libraries. Basidiomycota and other eukaryotic groups (Bryophyta and Chlorophyta) were only detected occasionally or at low frequencies. The most common genus in the investigated carbonate rocks was Verrucaria. Some other lichen-forming fungi (e.g., Caloplaca, Exophiala, and Botryolepraria), Aspergillus, and Penicillium were also identified from the rock samples. The results provide a cross-section of the endolithic fungal communities in carbonate rocks and help us understand more about the role of microbes (fungi and other rock-inhabiting microorganisms) in rock weathering and pedogenesis.

  3. Microseismic Analysis of Fracture of an Intact Rock Asperity Traversing a Sawcut Fault

    NASA Astrophysics Data System (ADS)

    Mclaskey, G.; Lockner, D. A.

    2017-12-01

    Microseismic events carry information related to stress state, fault geometry, and other subsurface properties, but their relationship to large and potentially damaging earthquakes is not well defined. We conducted laboratory rock mechanics experiments that highlight the interaction between a sawcut fault and an asperity composed of an intact rock "pin". The sample is a 76 mm diameter cylinder of Westerly granite with a 21 mm diameter cylinder (the pin) of intact Westerly granite that crosses the sawcut fault. Upon loading to 80 MPa in a triaxial machine, we first observed a slip event that ruptured the sawcut fault, slipped about 35 mm, but was halted by the rock pin. With continued loading, the rock pin failed in a swarm of thousands of M -7 seismic events similar to the localized microcracking that occurs during the final fracture nucleation phase in an intact rock sample. Once the pin was fractured to a critical point, it permitted complete rupture events on the sawcut fault (stick-slip instabilities). No seismicity was detected on the sawcut fault plane until the pin was sheared. Subsequent slip events were preceded by 10s of foreshocks, all located on the fault plane. We also identified an aseismic zone on the fault plane surrounding the fractured rock pin. A post-mortem analysis of the sample showed a thick gouge layer where the pin intersected the fault, suggesting that this gouge propped open the fault and prevented microseismic events in its vicinity. This experiment is an excellent case study in microseismicity since the events separate neatly into three categories: slip on the sawcut fault, fracture of the intact rock pin, and off-fault seismicity associated with pin-related rock joints. The distinct locations, timing, and focal mechanisms of the different categories of microseismic events allow us to study how their occurrence is related to the mechanics of the deforming rock.

  4. Uranium in NIMROC standard igneous rock samples

    NASA Technical Reports Server (NTRS)

    Rowe, M. W.; Herndon, J. M.

    1976-01-01

    Results are reported for analysis of the uranium in multiple samples of each of six igneous-rock standards (dunite, granite, lujavrite, norite, pyroxenite, and syenite) prepared as geochemical reference standards for elemental and isotopic compositions. Powdered rock samples were examined by measuring delayed neutron emission after irradiation with a flux of the order of 10 to the 13th power neutrons/sq cm per sec in a nuclear reactor. The measurements are shown to compare quite favorably with previous uranium determinations for other standard rock samples.

  5. Plagioclase mineralogy of olivine alkaline basalt

    NASA Technical Reports Server (NTRS)

    Hoffer, J. M.

    1973-01-01

    A geological and mineralogical study of the Potrillo volcanics is reported. The investigation consisted first of field mapping to establish and identify the different rock types and volcanic features in order to determine the geological history. Next, samples were collected and analyzed petrographically to determine suitable rocks from the various stratigraphic units for study of plagioclase. Samples selected for further study were crushed and the plagioclase extracted for the determination of composition and structural state. These results were then related to the petrology and crystallization of the basalt.

  6. Applications of UThPb isotope systematics to the problems of radioactive waste disposal

    USGS Publications Warehouse

    Stuckless, J.S.

    1986-01-01

    Concentrations of U, Th and Pb, and the isotopic composition of Pb for whole-rock samples of granitoids show: (1) that open-system behavior is nearly universal in the surface and near-surface environment; and (2) that elemental mobility is possible to depths of several hundred meters. Several identified or at least postulated factors that control U and/or Pb mobility include: (1) the mineralogical sites for U and its daughter products; (2) access of groundwater to these sites; (3) the volume of circulating water; and (4) the chemistry of the groundwater. Studies of granitic samples from peralkaline complexes in the Arabian Shield have shown that most samples lost less than 20% of their U during recent exposure to the near-surface environment. Most of the U in these samples appears to be firmly bound in zircons. In contrast, most surface and shallow drill-core samples of the granite of Lankin Dome (Granite Mountains, Wyoming) have lost ??? 70% of their U. Most of the U in these samples is weakly bound in biotite and epidote-family minerals. The granite recovered during the Illinois Deep Drill Hole Project (Stephenson County, Illinois) is mineralogically similar to the granite of Lankin Dome, but this granite lost radiogenic Pb rather than U, probably as a result of exposure to groundwater that had a markedly different chemistry from that in the Granite Mountains. Studies of the Sherman Granite (Wyoming) and the Go??temar Granite (southeastern Sweden) have shown that U and/or Pb mobility is greatest in and near fractured rock. The greater mobility is interpreted to be the result of both a larger water/rock ratio in the fractured rock and exposure to water over an increased surface area (and consequently a greater number of uranium sites). Several types of geochemical and mineralogic data can be used to identify rock-water interaction in granites; however, if rock samples have favorable radiogenic to common Pb ratios, both the amount and approximate timing of U or Pb mobility can be obtained through the use of isotopic studies. Such information can be extremely important in the search for favorable hosts for containment of radioactive waste. Rocks such as the Go??temar Granite have undergone considerable rock-water interaction, most of which occurred ??? 400 Myr. ago and little in recent times. Thus a search for zones that have experienced only a little interaction with water may provide a misleading prediction as to the ability of such zones to shield radioactive wastes from the modern biosphere. From an isotopic point of view, an ideal candidate for evaluation as a host rock for radioactive wastes would have the following characteristics: (1) a high ratio (> 2) of radiogenic to common Pb in order to optimize precision of the results; (2) a simple two-stage geologic history so that results could be interpreted without multiple working hypotheses; and (3) an originally high percentage (> 50%) of labile U so that the results would be highly sensitive to even small amount of rock-water interaction. These characteristics should produce rocks with marked radioactive disequilibrium in surface samples. The disequilibrium should grade to radioactive equilibrium with increasing depth until zones in which water has not circulated are found. Extensive regions of such zones must exist because UThPb systematics of most analyzed granitoids demonstrate closed-system behavior for almost all of their history except for their recent history in the near-surface environment. ?? 1986.

  7. U.S. Geological Survey silicate rock standards

    USGS Publications Warehouse

    Flanagan, F.J.

    1967-01-01

    The U.S. Geological Survey has processed six silicate rocks to provide new reference samples to supplement G-1 and W-1. Complete conventional, rapid rock, and spectrochemical analyses by the U.S. Geological Survey are reported for a granite (replacement for G-1), a granodiorite, an andesite, a peridotite, a dunite, and a basalt. Analyses of variance for nickel, chromium, copper, and zirconium in each rock sample showed that for these elements, the rocks can be considered homogeneous. Spectrochemical estimates are given for the nickel, chromium, copper, and zirconium contents of the samples. The petrography of five of the six rocks is described and CIPW norms are presented. ?? 1967.

  8. Numerical modeling of the divided bar measurements

    NASA Astrophysics Data System (ADS)

    LEE, Y.; Keehm, Y.

    2011-12-01

    The divided-bar technique has been used to measure thermal conductivity of rocks and fragments in heat flow studies. Though widely used, divided-bar measurements can have errors, which are not systematically quantified yet. We used an FEM and performed a series of numerical studies to evaluate various errors in divided-bar measurements and to suggest more reliable measurement techniques. A divided-bar measurement should be corrected against lateral heat loss on the sides of rock samples, and the thermal resistance at the contacts between the rock sample and the bar. We first investigated how the amount of these corrections would change by the thickness and thermal conductivity of rock samples through numerical modeling. When we fixed the sample thickness as 10 mm and varied thermal conductivity, errors in the measured thermal conductivity ranges from 2.02% for 1.0 W/m/K to 7.95% for 4.0 W/m/K. While we fixed thermal conductivity as 1.38 W/m/K and varied the sample thickness, we found that the error ranges from 2.03% for the 30 mm-thick sample to 11.43% for the 5 mm-thick sample. After corrections, a variety of error analyses for divided-bar measurements were conducted numerically. Thermal conductivity of two thin standard disks (2 mm in thickness) located at the top and the bottom of the rock sample slightly affects the accuracy of thermal conductivity measurements. When the thermal conductivity of a sample is 3.0 W/m/K and that of two standard disks is 0.2 W/m/K, the relative error in measured thermal conductivity is very small (~0.01%). However, the relative error would reach up to -2.29% for the same sample when thermal conductivity of two disks is 0.5 W/m/K. The accuracy of thermal conductivity measurements strongly depends on thermal conductivity and the thickness of thermal compound that is applied to reduce thermal resistance at contacts between the rock sample and the bar. When the thickness of thermal compound (0.29 W/m/K) is 0.03 mm, we found that the relative error in measured thermal conductivity is 4.01%, while the relative error can be very significant (~12.2%) if the thickness increases to 0.1 mm. Then, we fixed the thickness (0.03 mm) and varied thermal conductivity of the thermal compound. We found that the relative error with an 1.0 W/m/K compound is 1.28%, and the relative error with a 0.29 W/m/K is 4.06%. When we repeated this test with a different thickness of the thermal compound (0.1 mm), the relative error with an 1.0 W/m/K compound is 3.93%, and that with a 0.29 W/m/K is 12.2%. In addition, the cell technique by Sass et al.(1971), which is widely used to measure thermal conductivity of rock fragments, was evaluated using the FEM modeling. A total of 483 isotropic and homogeneous spherical rock fragments in the sample holder were used to test numerically the accuracy of the cell technique. The result shows the relative error of -9.61% for rock fragments with the thermal conductivity of 2.5 W/m/K. In conclusion, we report quantified errors in the divided-bar and the cell technique for thermal conductivity measurements for rocks and fragments. We found that the FEM modeling can accurately mimic these measurement techniques and can help us to estimate measurement errors quantitatively.

  9. Lightning-induced remanent magnetization—the Vredefort impact structure, South Africa

    NASA Astrophysics Data System (ADS)

    Salminen, Johanna; Pesonen, Lauri J.; Lahti, Kari; Kannus, Kari

    2013-10-01

    Earlier studies at the large Vredefort impact structure since 1960 have shown that values of natural remanent magnetizations (NRMs) and, hence, Koenigsberger's Q values (ratio of remanent over induced magnetization), for different rock lithologies are elevated compared to the values for similar rock types around the world. Three origins for the high Q values have been suggested, namely shock by meteorite impact, enhanced plasma field and lightning strikes. We have studied whether laboratory lightning experiments can produce enhanced NRMs in the Vredefort target rocks. For comparison, we also included rocks from the Johannesburg dome, which is not a meteorite impact site. The results revealed increased NRMs, susceptibility and Q values of the rocks from both Vredefort and Johannesburg domes. Rock magnetic measurements and scanning electron microscope analyses of lightning pulsed and unpulsed samples showed that the lightning included changes in magnetic properties of the rocks. We suggest that in some samples lightning have changed magnetic mineralogy by oxidizing magnetite to maghemite. Indication of this oxidation came from the low-temperature variation of the remanent magnetization where we observed several hallmarks of maghemitization in samples treated by lightning strikes. Further indications of mineralogical changes include increased Curie points above the magnetite's Curie point (580 °C) and appearance of pronounced lower temperature (200-400 °C) phases in susceptibility versus temperature curves. These changes are interpreted to indicate partially oxidized magnetite (maghemitization) coupled with grain fragmentations and by this way grain size reduction. High-temperature hysteresis and REM (= NRM/saturation isothermal remanent magnetization) studies support these conclusions. Our results were analogous with the ones for lodestones and protolodestones where partially oxidized magnetite is thought to make magnetization more intense.

  10. K-Ca and Rb-Sr Dating of Lunar Granite 14321 Revisited

    NASA Technical Reports Server (NTRS)

    Simon, Justin I.; Shih, C.-Y.; Nyquist, L. E.

    2011-01-01

    K-Ca and Rb-Sr age determinations were made for a bulk feldspar-rich portion of an Apollo rock fragment of the pristine lunar granite clast (14321,1062), an acid-leached split of the sample, and the leachate. K-Ca and Rb-Sr data were also obtained for a whole rock sample of Apollo ferroan anorthosite (FAN, 15415). The recent detection [1] of widespread intermediate composition plagioclase indicates that the generation of a diversity of evolved lunar magmas maybe more common and therefore more important to our understanding of crust formation than previously believed. Our new data strengthen the K-Ca and Rb-Sr internal isochrons of the well-studied Apollo sample 14321 [2], which along with a renewed effort to study evolved lunar magmas will provide an improved understanding of the petrogenetic history of evolved rocks on the Moon.

  11. Elastic Parameters of West Bohemian Granites under Hydrostatic Pressure

    NASA Astrophysics Data System (ADS)

    Pros, Z.; Lokajíček, T.; Přikryl, R.; Špičák, A.; Vajdová, V.; Klíma, K.

    The West Bohemian seismoactive region is situated near the contact of the Moldanu bian, Bohemian and Saxothuringian units in which a large volume is occupied by granitoid massifs. The spatial distribution of P-wave velocities and the rock fabric of five representative samples from these massifs were studied. The P-wave velocities were measured on spherical samples in 132 independent directions under hydrostatic pressure up to 400 MPa, using the pulse-transmission method. The pressure of 400 MPa corresponds to a depth of about 15 km in the area under study. The changes of P-wave velocity were correlated with the preferred orientations of the main rock fabric elements, i.e., rock forming minerals and microcracks. The values of the P-wave velocity from laboratory measurements on granite samples fit the velocity model used by seismologists in the West Bohemian seismoactive region.

  12. Origin of heavy Fe isotope compositions in high-silica igneous rocks: A rhyolite perspective

    NASA Astrophysics Data System (ADS)

    Du, De-Hong; Wang, Xiao-Lei; Yang, Tao; Chen, Xin; Li, Jun-Yong; Li, Weiqiang

    2017-12-01

    The origin of heavy Fe isotope compositions in high-silica (>70 wt% SiO2) igneous rocks remains a highly controversial topic. Considering that fluid exsolution in eruptive rocks is more straight-forward to constrain than in plutonic rocks, this study addresses the problem of Fe isotope fractionation in high-silica igneous rocks by measuring Fe isotope compositions of representative rhyolitic samples from the Neoproterozoic volcanic-sedimentary basins in southern China and the Triassic Tu Le Basin in northern Vietnam. The samples show remarkably varied δ56FeIRMM014 values ranging from 0.05 ± 0.05‰ to 0.55 ± 0.05‰, which is among the highest values reported from felsic rocks. The extensional tectonic setting and short melt residence time in magma chambers for the studied rhyolites rule out Soret diffusion and thermal migration processes as causes of the high δ56Fe values. Effects of volcanic degassing and fluid exsolution on bulk rock δ56Fe values for the rhyolites are also assessed using bulk rock geochemical indicators and Rayleigh fractionation models, and these processes are found to be insufficient to produce resolvable changes in Fe isotope compositions of the residual melt. The most probable mechanism accounting for heavy Fe isotope compositions in the high-silica rhyolites is narrowed down to fractional crystallization processes in the magma before rhyolite eruption. Removal of isotopically light Fe-bearing minerals (i.e. ulvöspinel-rich titanomagnetite, ilmenite and biotite) is proposed as the main cause of Fe isotope variation in silicic melts during magmatic evolution. This study implies that crystal fractionation is the dominant mechanism that controls Fe isotope fractionation in eruptive rocks and Fe isotopes could be used to study magmatic differentiation of high-silica magmas.

  13. A method for development of a system of identification for Appalachian coal-bearing rocks

    USGS Publications Warehouse

    Ferm, J.C.; Weisenfluh, G.A.; Smith, G.C.

    2002-01-01

    The number of observable properties of sedimentary rocks is large and numerous classifications have been proposed for describing them. Some rock classifications, however, may be disadvantageous in situations such as logging rock core during coal exploration programs, where speed and simplicity are the essence. After experimenting with a number of formats for logging rock core in the Appalachian coal fields, a method of using color photographs accompanied by a rock name and numeric code was selected. In order to generate a representative collection of rocks to be photographed, sample methods were devised to produce a representative collection, and empirically based techniques were devised to identify repeatedly recognizable rock types. A number of cores representing the stratigraphic and geographic range of the region were sampled so that every megascopically recognizable variety was included in the collection; the frequency of samples of any variety reflects the frequency with which it would be encountered during logging. In order to generate repeatedly recognizable rock classes, the samples were sorted to display variation in grain size, mineral composition, color, and sedimentary structures. Class boundaries for each property were selected on the basis of existing, widely accepted limits and the precision with which these limits could be recognized. The process of sorting the core samples demonstrated relationships between rock properties and indicated that similar methods, applied to other groups of rocks, could yield more widely applicable field classifications. ?? 2002 Elsevier Science B.V. All rights reserved.

  14. Further foraging for pristine nonmare rocks - Correlations between geochemistry and longitude

    NASA Technical Reports Server (NTRS)

    Warren, P. H.; Wasson, J. T.

    1980-01-01

    The most recent results from a project to find and describe pristine (that is, compositionally endogenous) nonmare rocks are reported. Sixteen nonmare samples are characterized petrographically and by composition, among them numerous key trace elements (siderophiles, incompatibles). Current knowledge about nonmare lunar rocks is surveyed, with emphasis placed on correlations between geochemistry and longitude. Several systematic differences between western ANT (that is, nonKREEPy, nonmare) rocks and the much more thoroughly studied eastern ANT rocks are noted. It is noted that western ANT rocks, whether pristine or nonpristine, tend to have higher Eu/Sm than their eastern counterparts. Pristine western ANT rocks, however, tend to have lower Sc/Sm and Ti/Sm than pristine eastern ANT rocks.

  15. Experimental research on rock fracture failure characteristics under liquid nitrogen cooling conditions

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Cai, Chengzheng; Yang, Yugui

    2018-06-01

    As liquid nitrogen is injected into a wellbore as fracturing fluid, it can rapidly absorb heat from warmer rock and generate cryogenic condition in downhole region. This will alter the physical conditions of reservoir rocks and further affect rock failure characteristics. To investigate rock fracture failure characteristics under liquid nitrogen cooling conditions, the fracture features of four types of sandstones and one type of marble were tested on original samples (the sample without any treatment) and cryogenic samples (the samples just taken out from the liquid nitrogen), respectively. The differences between original samples and cryogenic samples in load-displacement curves, fracture toughness, energy evolution and the crack density of ruptured samples were compared and analyzed. The results showed that at elastic deformation stage, cryogenic samples presented less plastic deformation and more obvious brittle failure characteristics than original ones. The average fracture toughness of cryogenic samples was 10.47%-158.33% greater than that of original ones, indicating that the mechanical strength of rocks used were enhanced under cooling conditions. When the samples ruptured, the cryogenic ones were required to absorb more energy and reserve more elastic energy. In general, the fracture degree of cryogenic samples was higher than that of original ones. As the samples were entirely fractured, the crack density of cryogenic samples was about 536.67% at most larger than that of original ones. This indicated that under liquid nitrogen cooling conditions, the stimulation reservoir volume is expected to be improved during fracturing. This work could provide a reference to the research on the mechanical properties and fracture failure of rock during liquid nitrogen fracturing.

  16. Sm-Nd and Rb-Sr isotopic systematics of the Pea Ridge Fe-P deposit and related rocks, southeast Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marikos, M.A.; Barton, M.D.

    1993-03-01

    Pea ridge is a discordant Middle Proterozoic Fe-P deposit hosted in rhyolite tuffs and flows of the 1.4--1.5 Ga St. Francois terrane. Host rocks and the deposit are cut by basalt and aplite/pegmatite dikes. The deposit overlies a blind pluton which is partially surrounded by a trachytic ring complex. In the deposit, which is mined for Fe, early Qtz+Amph+Mag+Ap rock is cut by Mag+Ap+Qtz rock. Subsequently, portions of the deposit and host rocks were brecciated, oxidized and silicified to produce a complex suite of rocks enriched in Hem+Qtz+Ksp+Mu. Late breccia pipes/dikes cut the complex and were mineralized with Bar+Ksp+Flu+Chl+Cc+REE-phosphates. Sm/Ndmore » and Rb/Sr isotopic systematics have been studied to: (1) constrain source(s) of igneous rocks and deposit components, (2) refine ages of magmatism, mineralization, and later hydrothermal activity, (3) begin regional comparison of isotopic systematics in SE Missouri Fe deposits, and (4) complement ongoing Missouri DGLS/USGS studies. Fourteen combined Sm-Nd and Rb-Sr analyses were done on materials including two host rhyolites, two nearby trachytes, two gneiss samples representing plausible basement, two intramineral dikes, and six samples of mineralization.« less

  17. Geochemical characteristics and reservoir continuity of Silurian Acacus in Ghadames Basin, Southern Tunisia

    NASA Astrophysics Data System (ADS)

    Mahmoudi, S.; Mohamed, A. Belhaj; Saidi, M.; Rezgui, F.

    2017-11-01

    The present work is dealing with the study of lateral and vertical continuity of the multi-layers Acacus reservoir (Ghadames Basin-Southern Tunisia) using the distribution of hydrocarbon fraction. For this purpose, oil-oil and source rock-oil correlations as well as the composition of the light fractions and a number of saturate and aromatic biomarkers parameters, including C35/C34 hopanes and DBT/P, have been investigated. Based on the ratios of light fraction and their fingerprints, the Acacus reservoir from Well1 and Well2 have found to be laterally non-connected although the hydrocarbons they contain have the same source rock. Moreover, the two oil samples from two different Acacus reservoir layers crossed by Well3-A3 and A9, display a similar hydrocarbons distribution, suggesting vertical reservoir continuity. On the other hand, the biomarker distributions of the oils samples and source rocks assess a Silurian ;Hot shale; that is the source rock feeding the Acacus reservoir. The biomarker distribution is characterized by high tricyclic terpanes contents compared to hopanes for the Silurian source rock and the two crude oils. This result is also confirmed by the dendrogram that precludes the Devonian source rocks as a source rock in the study area.

  18. Digitally available interval-specific rock-sample data compiled from historical records, Nevada National Security Site and vicinity, Nye County, Nevada

    USGS Publications Warehouse

    Wood, David B.

    2007-11-01

    Between 1951 and 1992, 828 underground tests were conducted on the Nevada National Security Site, Nye County, Nevada. Prior to and following these nuclear tests, holes were drilled and mined to collect rock samples. These samples are organized and stored by depth of borehole or drift at the U.S. Geological Survey Core Library and Data Center at Mercury, Nevada, on the Nevada National Security Site. From these rock samples, rock properties were analyzed and interpreted and compiled into project files and in published reports that are maintained at the Core Library and at the U.S. Geological Survey office in Henderson, Nevada. These rock-sample data include lithologic descriptions, physical and mechanical properties, and fracture characteristics. Hydraulic properties also were compiled from holes completed in the water table. Rock samples are irreplaceable because pre-test, in-place conditions cannot be recreated and samples can not be recollected from the many holes destroyed by testing. Documenting these data in a published report will ensure availability for future investigators.

  19. No evidence of extraterrestrial noble metal and helium anomalies at Marinoan glacial termination

    NASA Astrophysics Data System (ADS)

    Peucker-Ehrenbrink, Bernhard; Waters, Christine A.; Kurz, Mark D.; Hoffman, Paul F.

    2016-03-01

    High concentrations of extraterrestrial iridium have been reported in terminal Sturtian and Marinoan glacial marine sediments and are used to argue for long (likely 3-12 Myr) durations of these Cryogenian glaciations. Reanalysis of the Marinoan sedimentary rocks used in the original study, supplemented by sedimentary rocks from additional terminal Marinoan sections, however, does not confirm the initial report. New platinum group element concentrations, and 187Os/188Os and 3He/4He signatures are consistent with crustal origin and minimal extraterrestrial contributions. The discrepancy is likely caused by different sample masses used in the two studies, with this study being based on much larger samples that better capture the stochastic distribution of extraterrestrial particles in marine sediments. Strong enrichment of redox-sensitive elements, particularly rhenium, up-section in the basal postglacial cap carbonates, may indicate a return to more fully oxygenated seawater in the aftermath of the Marinoan snowball earth. Sections dominated by hydrogenous osmium indicate increasing submarine hydrothermal sources and/or continental inputs that are increasingly dominated by young mantle-derived rocks after deglaciation. Sedimentation rate estimates for the basal cap carbonates yield surprisingly slow rates of a few centimeters per thousand years. This study highlights the importance of using sedimentary rock samples that represent sufficiently large area-time products to properly sample extraterrestrial particles representatively, and demonstrates the value of using multiple tracers of extraterrestrial matter.

  20. Geochemistry and origin of metamorphosed mafic rocks from the Lower Paleozoic Moretown and Cram Hill Formations of North-Central Vermont: Delamination magmatism in the western New England appalachians

    USGS Publications Warehouse

    Coish, Raymond; Kim, Jonathan; Twelker, Evan; Zolkos, Scott P.; Walsh, Gregory J.

    2015-01-01

    The Moretown Formation, exposed as a north-trending unit that extends from northern Vermont to Connecticut, is located along a critical Appalachian litho-tectonic zone between the paleomargin of Laurentia and accreted oceanic terranes. Remnants of magmatic activity, in part preserved as metamorphosed mafic rocks in the Moretown Formation and the overlying Cram Hill Formation, are a key to further understanding the tectonic history of the northern Appalachians. Field relationships suggest that the metamorphosed mafic rocks might have formed during and after Taconian deformation, which occurred at ca. 470 to 460 Ma. Geochemistry indicates that the sampled metamorphosed mafic rocks were mostly basalts or basaltic andesites. The rocks have moderate TiO2 contents (1–2.5 wt %), are slightly enriched in the light-rare earth elements relative to the heavy rare earths, and have negative Nb-Ta anomalies in MORB-normalized extended rare earth element diagrams. Their chemistry is similar to compositions of basalts from western Pacific extensional basins near volcanic arcs. The metamorphosed mafic rocks of this study are similar in chemistry to both the pre-Silurian Mount Norris Intrusive Suite of northern Vermont, and also to some of Late Silurian rocks within the Lake Memphremagog Intrusive Suite, particularly the Comerford Intrusive Complex of Vermont and New Hampshire. Both suites may be represented among the samples of this study. The geochemistry of all samples indicates that parental magmas were generated in supra-subduction extensional environments during lithospheric delamination.

  1. Effect of ground control mesh on dust sampling and explosion mitigation.

    PubMed

    Alexander, D W; Chasko, L L

    2015-07-01

    Researchers from the National Institute for Occupational Safety and Health's Office of Mine Safety and Health Research conducted an assessment of the effects that ground control mesh might have on rock and float coal dust distribution in a coal mine. The increased use of mesh to control roof and rib spall introduces additional elevated surfaces on which rock or coal dust can collect. It is possible to increase the potential for dust explosion propagation if any float coal dust is not adequately inerted. In addition, the mesh may interfere with the collection of representative dust samples when using the pan-and-brush sampling method developed by the U.S. Bureau of Mines and used by the Mine Safety and Health Administration for band sampling. This study estimates the additional coal or rock dust that could accumulate on mesh and develops a means to collect representative dust samples from meshed entries.

  2. Effect of ground control mesh on dust sampling and explosion mitigation

    PubMed Central

    Alexander, D.W.; Chasko, L.L.

    2017-01-01

    Researchers from the National Institute for Occupational Safety and Health’s Office of Mine Safety and Health Research conducted an assessment of the effects that ground control mesh might have on rock and float coal dust distribution in a coal mine. The increased use of mesh to control roof and rib spall introduces additional elevated surfaces on which rock or coal dust can collect. It is possible to increase the potential for dust explosion propagation if any float coal dust is not adequately inerted. In addition, the mesh may interfere with the collection of representative dust samples when using the pan-and-brush sampling method developed by the U.S. Bureau of Mines and used by the Mine Safety and Health Administration for band sampling. This study estimates the additional coal or rock dust that could accumulate on mesh and develops a means to collect representative dust samples from meshed entries. PMID:28936000

  3. Uranium-Lead Zircon Ages and Sr, Nd, and Pb Isotope Geochemistry of Selected Plutonic Rocks from Western Idaho

    USGS Publications Warehouse

    Unruh, Daniel M.; Lund, Karen; Kuntz, Mel A.; Snee, Lawrence W.

    2008-01-01

    Across the Salmon River suture in western Idaho, where allochthonous Permian to Cretaceous oceanic rocks are juxtaposed against Proterozoic North American rocks, a wide variety of plutonic rocks are exposed. Available data indicate much variation in composition, source, and structural state of these plutons. The plutonic rocks were long described as the western border zone of the Cretaceous Idaho batholith but limited pre-existing age data indicate more complicated origins. Because the affinity and age of the plutonic rocks cannot be reliably determined from field relations, TIMS U-Pb dating in conjunction with Sr, Nd, and Pb isotopic studies of selected plutons across the suture in western Idaho were undertaken. The data indicate three general groups of plutons including (1) those that intruded the island arc terranes during the Triassic and Jurassic, those that intruded near the western edge of oceanic rocks along the suture in the Early Cretaceous, and the plutons of the Idaho batholith that intruded Proterozoic North American rocks in the Late Cretaceous. Plutons that intruded Proterozoic North American rocks commonly include xenocrystic zircons and in several cases, ages could not be determined. The least radiogenic Sr and most radiogenic Nd are found among the Blue Mountains superterrane island arc samples. Suture-zone plutons have isotopic characteristics that span the range between Idaho batholith and island arc samples but mostly follow island arc signatures. Plutons of the Idaho batholith have the most radiogenic initial Pb and Sr ratios and the least radiogenic Nd of the samples analyzed.

  4. Volatile Concentrations in Pyroclastic Obsidian: Two Case Studies

    NASA Astrophysics Data System (ADS)

    Wearn, K. M.; Cashman, K. V.; Wallace, P. J.

    2002-12-01

    Pyroclastic obsidian is abundant in fall deposits associated with Mt. Mazama's Cleetwood eruption and South Sister's Rock Mesa eruption. Measured concentrations of H2Ototal and CO2 in >300 obsidian samples from these two eruptions provide important information about both the style of degassing (open- vs. closed-system) and changes in eruptive conditions through the course of both eruptions. Obsidian clasts preserve a range of total H2O contents, with samples from lower stratigraphic levels displaying a wider range of water concentrations than those from the uppermost tephra layer sampled. All samples from the Cleetwood section contain <=1 wt% water, with those from the top of that deposit containing <0.4 wt%. Obsidian from the basal ash layer of the subsequent climactic eruption contains 0.1 - 0.8 wt% water. Obsidian fragments from the Rock Mesa eruption show a broader range in H2Ototal contents (from 0.1 to >3 wt%) than those from the Cleetwood eruption. At Rock Mesa, maximum total water contents generally decrease with increased stratigraphic height. However, this decrease is not strictly monotonic: fluctuations in maximum total water contents correspond to stratigraphic unit boundaries. In addition, the Rock Mesa event produced abundant obsidian with very low H2Ototal concentrations throughout the eruption. Dissolved molecular CO2 levels are below the detection limit in all of the Cleetwood and Mazama samples. This is not surprising, given the low initial CO2 measured in Cleetwood and Mazama melt inclusions by Bacon et al. (1992). CO2 concentrations in the Rock Mesa clasts range from <5 ppm to ~44 ppm, and are positively correlated with H2Ototal concentrations. Fluorine concentrations in Cleetwood and Mazama climactic obsidian clasts vary between ~510 and ~695 ppm, with climactic samples averaging slightly lower concentrations than Cleetwood samples. Fluorine concentrations in Rock Mesa obsidians are uniformly low (~300 to ~510 ppm). Chlorine contents of Cleetwood and Mazama climactic samples range from ~1400 ppm to ~1610 ppm. The Rock Mesa samples all contain less chlorine (~510 to ~1120 ppm) than the Cleetwood and climactic samples, and in the Rock Mesa obsidian, chlorine and total water are positively correlated. Stratigraphic variations in the volatile contents of pyroclastic obsidian support previous work suggesting that obsidian forms along the margins of the volcanic conduit and is eroded from the conduit walls by fragmenting magma. Both the Cleetwood and the Rock Mesa deposits indicate initial evacuation of shallow vanguard magma followed by a rapid increase in fragmentation depth. Both deposits also show a gradual decrease in the fragmentation depth through time, consistent with subsequent effusive activity in both cases. More puzzling is the apparent closed-system degassing trend defined by the H2O-CO2-Cl relations in the Rock Mesa obsidian samples, despite the loss of volatiles required for obsidian formation. This suggests that volatile data may also provide information on the relative time scales of volatile exsolution and loss and obsidian formation.

  5. Study of gamma spectrometry laboratory measurement in various sediment and vulcanic rocks

    NASA Astrophysics Data System (ADS)

    Nurhandoko, Bagus Endar B.; Kurniadi, Rizal; Rizka Asmara Hadi, Muhammad; Rizal Komara, Insan

    2017-01-01

    Gamma-ray spectroscopy is the quantitative study of the energy spectra of gamma-ray sources. This method is powerful to characterize some minerals, especially to differentiate rocks which contains among Potassium, Uranium, dan Thorium. Rock contains radioactive material which produce gamma rays in various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be used as indicator for mineral content of rock. Some sediment and vulcanic rock have been collected from East Java Basin. Samples are ranging from Andesite vulcanics, Tuff, Shale, various vulcanic clay and Alluvial clay. We present some unique characteristics of gamma spectrometry in various sedimentar and vulcanic rocks of East Java Basins. Details contents of gamma ray spectra give enrichments to characterize sample of sediment and vulcanic in East Java. Weathered vulcanic clay has lower counting rate of gamma ray than alluvial deltaic clay counting rate. Therefore, gamma spectrometrometry can be used as tool for characterizing the enviroment of clay whether vulcanic or alluvial-deltaic. This phenomena indicates that gamma ray spectrometry can be as tool for characterizing the clay whether it tends to Smectite or Illite

  6. An experimental investigation of the effect of impact generated micro-deformations in Moenkopi and Coconino Sandstone from Meteor Crater, Arizona on subsequent weathering

    NASA Astrophysics Data System (ADS)

    Verma, A.; Bourke, M. C.; Osinski, G.; Viles, H. A.; Blanco, J. D. R.

    2017-12-01

    Impact cratering is an important geological process that affects all planetary bodies in our solar system. As rock breakdown plays an important role in the evolution of landforms and sediments, it is important to assess the role of inheritance in the subsequent breakdown of impacted rocks.The shock pressure of several gigapascals generated during the impact can exceed the effective strength of target lithology by three to four orders of magnitude and is responsible for melting, vaporisation, shock metamorphism, fracturing and fragmentation of rocks. Environmental conditions and heterogeneities in rock properties exert an important control in rock breakdown. Similar to other subaerial rocks, impacted rocks are affected by a range of rock breakdown processes. In order to better understand the role of inheritance of the impact on rock breakdown, a rock breakdown experiment was conducted in a simulated environmental cabinet under conditions similar to the arid conditions found at the Meteor Crater site. We sampled Moenkopi and Coconino Sandstone from the Meteor Crater impact site in Arizona. For comparison, samples were also collected at control sites close by that have similar rock formations but did not undergo impact. Several established techniques (X-ray CT, SEM, Equotip, SfM) were used to characterise the rock samples before the environmental cabinet experiments. Our laboratory analysis (XRD, SEM, optical microscopy, X-ray CT) on impacted rock samples from Meteor Crater, show that rock porosity and permeability changes due to compaction and fracturing during impact. There were no high-pressure polymorphs of quartz or glass detected in XRD analysis. We ran the experiments on a total of 28 petrophysically characterised 5x5x5 cm sample blocks of Coconino and Moenkopi Sandstone (24 impacted rocks and 4 non-impacted). The results will be presented at the AGU Fall meeting 2017.

  7. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2002-11-18

    During the sixth quarter of this research project the research team developed a method and the experimental procedures for acquiring the data needed for ultrasonic tomography of rock core samples under triaxial stress conditions as outlined in Task 10. Traditional triaxial compression experiments, where compressional and shear wave velocities are measured, provide little or no information about the internal spatial distribution of mechanical damage within the sample. The velocities measured between platen-to-platen or sensor-to-sensor reflects an averaging of all the velocities occurring along that particular raypath across the boundaries of the rock. The research team is attempting to develop andmore » refine a laboratory equivalent of seismic tomography for use on rock samples deformed under triaxial stress conditions. Seismic tomography, utilized for example in crosswell tomography, allows an imaging of the velocities within a discrete zone within the rock. Ultrasonic or acoustic tomography is essentially the extension of that field technology applied to rock samples deforming in the laboratory at high pressures. This report outlines the technical steps and procedures for developing this technology for use on weak, soft chalk samples. Laboratory tests indicate that the chalk samples exhibit major changes in compressional and shear wave velocities during compaction. Since chalk is the rock type responsible for the severe subsidence and compaction in the North Sea it was selected for the first efforts at tomographic imaging of soft rocks. Field evidence from the North Sea suggests that compaction, which has resulted in over 30 feet of subsidence to date, is heterogeneously distributed within the reservoir. The research team will attempt to image this very process in chalk samples. The initial tomographic studies (Scott et al., 1994a,b; 1998) were accomplished on well cemented, competent rocks such as Berea sandstone. The extension of the technology to weaker samples is more difficult but potentially much more rewarding. The chalk, since it is a weak material, also attenuates wave propagation more than other rock types. Three different types of sensors were considered (and tested) for the tomographic imaging project: 600 KHz PZT, 1 MHz PZT, and PVDF film sensors. 600 KHz PZT crystals were selected because they generated a sufficiently high amplitude pulse to propagate across the damaged chalk. A number of different configurations were considered for placement of the acoustic arrays. It was decided after preliminary testing that the most optimum arrangement of the acoustic sensors was to place three arrays of sensors, with each array containing twenty sensors, around the sample. There would be two horizontal arrays to tomographically image two circular cross-sectional planes through the rock core sample. A third array would be vertically oriented to provide a vertical cross-sectional view of the sample. A total of 260 acoustic raypaths would be shot and acquired in the horizontal acoustic array to create each horizontal tomographic image. The sensors can be used as both acoustic sources or as acoustic each of the 10 pulsers to the 10 receivers.« less

  8. Ground-water quality in the carbonate-rock aquifer of the Great Basin, Nevada and Utah, 2003

    USGS Publications Warehouse

    Schaefer, Donald H.; Thiros, Susan A.; Rosen, Michael R.

    2005-01-01

    The carbonate-rock aquifer of the Great Basin is named for the thick sequence of Paleozoic limestone and dolomite with lesser amounts of shale, sandstone, and quartzite. It lies primarily in the eastern half of the Great Basin and includes areas of eastern Nevada and western Utah as well as the Death Valley area of California and small parts of Arizona and Idaho. The carbonate-rock aquifer is contained within the Basin and Range Principal Aquifer, one of 16 principal aquifers selected for study by the U.S. Geological Survey’s National Water- Quality Assessment Program.Water samples from 30 ground-water sites (20 in Nevada and 10 in Utah) were collected in the summer of 2003 and analyzed for major anions and cations, nutrients, trace elements, dissolved organic carbon, volatile organic compounds (VOCs), pesticides, radon, and microbiology. Water samples from selected sites also were analyzed for the isotopes oxygen-18, deuterium, and tritium to determine recharge sources and the occurrence of water recharged since the early 1950s.Primary drinking-water standards were exceeded for several inorganic constituents in 30 water samples from the carbonate-rock aquifer. The maximum contaminant level was exceeded for concentrations of dissolved antimony (6 μg/L) in one sample, arsenic (10 μg/L) in eleven samples, and thallium (2 μg/L) in one sample. Secondary drinking-water regulations were exceeded for several inorganic constituents in water samples: chloride (250 mg/L) in five samples, fluoride (2 mg/L) in two samples, iron (0.3 mg/L) in four samples, manganese (0.05 mg/L) in one sample, sulfate (250 mg/L) in three samples, and total dissolved solids (500 mg/L) in seven samples.Six different pesticides or metabolites were detected at very low concentrations in the 30 water samples. The lack of VOC detections in water sampled from most of the sites is evidence thatVOCs are not common in the carbonate-rock aquifer. Arsenic values for water range from 0.7 to 45.7 μg/L, with a median value of 9.6 μg/L. Factors affecting arsenic concentration in the carbonate-rock aquifer in addition to geothermal heating are its natural occurrence in the aquifer material and time of travel along the flow path.Most of the chemical analyses, especially for VOCs and nutrients, indicate little, if any, effect of overlying land-use patterns on ground-water quality. The water quality in recharge areas for the aquifer where human activities are more intense may be affected by urban and/or agricultural land uses as evidenced by pesticide detections. The proximity of the carbonate-rock aquifer at these sites to the land surface and the potential for local recharge to occur through the fractured rock likely results in the occurrence of these and other land-surface related contaminants in the ground water. Water from sites sampled near outcrops of carbonate-rock aquifer likely has a much shorter residence time resulting in a potential for detection of anthropogenic or land-surface related compounds. Sites located in discharge areas of the flow systems or wells that are completed at a great depth below the land surface generally show no effects of land-use activities on water quality. Flow times within the carbonate-rock aquifer, away from recharge areas, are on the order of thousands of years, so any contaminants introduced at the land surface that will not degrade along the flow path have not reached the sampled sites in these areas.

  9. Carbonate Minerals with Magnesium in Triassic Terebratula Limestone in the Term of Limestone with Magnesium Application as a Sorbent in Desulfurization of Flue Gases

    NASA Astrophysics Data System (ADS)

    Stanienda-Pilecki, Katarzyna

    2017-09-01

    This article presents the results of studies of Triassic (Muschelkalk) carbonate rock samples of the Terebratula Beds taken from the area of the Polish part of the Germanic Basin. It is the area of Opole Silesia. The rocks were studied in the term of possibility of limestone with magnesium application in desulfurization of flue gases executed in power plants. Characteristic features of especially carbonate phases including magnesium-low-Mg calcite, high-Mg calcite, dolomite and huntite were presented in the article. They were studied to show that the presence of carbonate phases with magnesium, especially high-Mg calcite makes the desulfurization process more effective. Selected rock samples were examined using a microscope with polarized, transmitted light, X-ray diffraction, microprobe measurements and FTIR spectroscopy. The results of studies show a domination of low magnesium calcite in the limestones of the Terebratula Beds. In some samples dolomite and lower amounts of high-Mg calcite occurred. Moreover, huntite was identified. The studies were very important, because carbonate phases like high-Mg calcite and huntite which occurred in rocks of the Triassic Terebratula Beds were not investigated in details by other scientists but they presence in limestone sorbent could influence the effectiveness of desulfurization process.

  10. Nuclear chemistry of returned lunar samples: Nuclide analysis by gamma-ray spectrometry

    NASA Technical Reports Server (NTRS)

    Kelley, G. D.; Eldridge, J. S.

    1972-01-01

    Concentrations of primordial radioelements and of cosmogenic radionuclides in crystalline rocks, breccias, and soils from the Ocean of Storms were determined. Concentrations of K, Th, U, Al-26, and Na-22 were determined for seven clastic or brecciated rocks, three sieved samples of fines, and one composite sample of sawdust from the cutting of a fragmental rock, all from samples obtained on the Apollo 14 mission. The K, Th, and U concentrations and cogmogenic radionuclide abundances in rocks and soils from Apollo 15 are also discussed.

  11. Organic geochemical analysis of sedimentary organic matter associated with uranium

    USGS Publications Warehouse

    Leventhal, J.S.; Daws, T.A.; Frye, J.S.

    1986-01-01

    Samples of sedimentary organic matter from several geologic environments and ages which are enriched in uranium (56 ppm to 12%) have been characterized. The three analytical techniqyes used to study the samples were Rock-Eval pyrolysis, pyrolysis-gas chromatography-mass spectrometry, and solid-state C-13 nuclear magnetic resonance (NMR) spectroscopy. In samples with low uranium content, the pyrolysis-gas chromatography products contain oxygenated functional groups (as hydroxyl) and molecules with both aliphatic and aromatic carbon atoms. These samples with low uranium content give measurable Rock-Eval hydrocarbon and organic-CO2 yields, and C-13 NMR values of > 30% aliphatic carbon. In contrast, uranium-rich samples have few hydrocarbon pyrolysis products, increased Rock-Eval organic-CO2 contents and > 70% aromatic carbon contents from C-13 NMR. The increase in aromaticity and decrease in hydrocarbon pyrolysis yield are related to the amount of uranium and the age of the uranium minerals, which correspond to the degree of radiation damage. The three analytical techniques give complementary results. Increase in Rock-Eval organic-CO2 yield correlates with uranium content for samples from the Grants uranium region. Calculations show that the amount of organic-CO2 corresponds to the quantity of uranium chemically reduced by the organic matter for the Grants uranium region samples. ?? 1986.

  12. Pristine Igneous Rocks and the Early Differentiation of Planetary Materials

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.

    1998-01-01

    Our studies are highly interdisciplinary, but are focused on the processes and products of early planetary and asteroidal differentiation, especially the genesis of the ancient lunar crust. Most of the accessible lunar crust consists of materials hybridized by impact-mixing. Rare pristine (unmixed) samples reflect the original genetic diversity of the early crust. We studied the relative importance of internally generated melt (including the putative magma ocean) versus large impact melts in early lunar magmatism, through both sample analysis and physical modeling. Other topics under investigation included: lunar and SNC (martian?) meteorites; igneous meteorites in general; impact breccias, especially metal-rich Apollo samples and polymict eucrites; effects of regolith/megaregolith insulation on thermal evolution and geochronology; and planetary bulk compositions and origins. We investigated the theoretical petrology of impact melts, especially those formed in large masses, such as the unejected parts of the melts of the largest lunar and terrestrial impact basins. We developed constraints on several key effects that variations in melting/displacement ratio (a strong function of both crater size and planetary g) have on impact melt petrology. Modeling results indicate that the impact melt-derived rock in the sampled, megaregolith part of the Moon is probably material that was ejected from deeper average levels than the non-impact-melted material (fragmental breccias and unbrecciated pristine rocks). In the largest lunar impacts, most of the impact melt is of mantle origin and avoids ejection from the crater, while most of the crust, and virtually all of the impact-melted crust, in the area of the crater is ejected. We investigated numerous extraordinary meteorites and Apollo rocks, emphasizing pristine rocks, siderophile and volatile trace elements, and the identification of primary partial melts, as opposed to partial cumulates. Apollo 15 sample 15434,28 is an extraodinarily large glass spherule, nearly if not entirely free of meteoritic contamination, and provides insight into the diversity of mare basalts in the Hadley-Apennine region. Apollo 14 sample 14434 is in many respects a new rock type, intermediate between nonmare gabbronorites and mare basalts. We helped to both plan and implement a consortium to study the Yamato-793605 SNC/martian meteorite.

  13. Experimental Characterization of Stress- and Strain-Dependent Stiffness in Grouted Rock Masses.

    PubMed

    Kim, Ji-Won; Chong, Song-Hun; Cho, Gye-Chun

    2018-03-29

    Grouting of fractured rock mass prior to excavation results in grout-filled discontinuities that govern the deformation characteristics of a site. The influence of joint characteristics on the properties of grouted rocks is important in assessing the effects of grouting on jointed rock mass. However, grouting remains a predominantly empirical practice and the effects of grouting on rock joint behavior and material properties have yet to be accurately assessed. Granular materials, including jointed rocks, typically display nonlinear strain-dependent responses that can be characterized by the shear modulus degradation curve. In this study, the effects of grouting on the strain-dependent shear stiffness of jointed rock mass were investigated at the small-strain (below 10 -5 ) and mid-strain (10 -5 to 10 -3 ) ranges using the quasi-static resonant column test and rock mass dynamic test devices. The effects of curing time, axial stress, initial joint roughness, and grouted joint thickness were examined. The results show that (1) grouting of rock joints leads to decreased stress sensitivity and increased small-strain shear stiffness for all tested samples; (2) the grouted rock samples display similar modulus degradation characteristics as the applied grout material; (3) the initial joint roughness determines the stress-dependent behaviors and general stiffness range of the jointed and grouted rocks, but the strain-dependent behaviors are dependent on the properties of the grout material; (4) increased grouted joint thickness results in larger contribution of the grout properties in the overall grouted rock mass.

  14. Experimental Characterization of Stress- and Strain-Dependent Stiffness in Grouted Rock Masses

    PubMed Central

    Cho, Gye-Chun

    2018-01-01

    Grouting of fractured rock mass prior to excavation results in grout-filled discontinuities that govern the deformation characteristics of a site. The influence of joint characteristics on the properties of grouted rocks is important in assessing the effects of grouting on jointed rock mass. However, grouting remains a predominantly empirical practice and the effects of grouting on rock joint behavior and material properties have yet to be accurately assessed. Granular materials, including jointed rocks, typically display nonlinear strain-dependent responses that can be characterized by the shear modulus degradation curve. In this study, the effects of grouting on the strain-dependent shear stiffness of jointed rock mass were investigated at the small-strain (below 10−5) and mid-strain (10−5 to 10−3) ranges using the quasi-static resonant column test and rock mass dynamic test devices. The effects of curing time, axial stress, initial joint roughness, and grouted joint thickness were examined. The results show that (1) grouting of rock joints leads to decreased stress sensitivity and increased small-strain shear stiffness for all tested samples; (2) the grouted rock samples display similar modulus degradation characteristics as the applied grout material; (3) the initial joint roughness determines the stress-dependent behaviors and general stiffness range of the jointed and grouted rocks, but the strain-dependent behaviors are dependent on the properties of the grout material; (4) increased grouted joint thickness results in larger contribution of the grout properties in the overall grouted rock mass. PMID:29596371

  15. Distribution of gold, tellurium, silver, and mercury in part of the Cripple Creek district, Colorado

    USGS Publications Warehouse

    Gott, Garland Bayard; McCarthy, J.H.; Van Sickle, G.H.; McHugh, J.B.

    1967-01-01

    Geochemical exploration studies were undertaken in the Cripple Creek district to test the possibility that large low-grade gold deposits might be found. Surface rock samples taken throughout the district indicate that the volcanic rocks between the productive veins contain an average of about 0.6 ppm (part per million) gold. In an area above 3,800 feet long and 500 feet wide near the Cresson mine in the south-central part of the district, scattered surface samples show that the rocks contain an average of 2.5 ppm gold, equivalent to $2.50 per ton. Inasmuch as veins that contain more than 2.5 ppm may also exist in the area, systematic sampling by trenching and drilling is warranted.

  16. Apennine Front revisited - Diversity of Apollo 15 highland rock types

    NASA Technical Reports Server (NTRS)

    Lindstrom, Marilyn M.; Marvin, Ursula B.; Vetter, Scott K.; Shervais, John W.

    1988-01-01

    The Apollo 15 landing site is geologically the most complex of the Apollo sites, situated at a mare-highland interface within the rings of two of the last major basin-forming impacts. Few of the Apollo 15 samples are ancient highland rocks derived from the early differentiation of the moon, or impact melts from major basin impacts. Most of the samples are regolith breccias containing abundant clasts of younger volcanic mare and KREEP basalts. The early geologic evolution of the region can be understood only by examining the small fragments of highland rocks found in regolith breccias and soils. Geochemical and petrologic studies of clasts and matrices of three impact melt breccias and four regolith breccias are presented. Twelve igneous and metamorphic rocks show extreme diversity and include a new type of ferroan norite. Twenty-five samples of highland impact melt are divided into groups based on composition. These impact melts form nearly a continuum over more than an order of magnitude in REE concentrations. This continuum may result from both major basin impacts and younger local events. Highland rocks from the Apennine Front include most of the highland rock types found at all of the other sites. An extreme diversity of highland rocks is a fundamental characteristic of the Apennine Front and is a natural result of its complex geologic evolution.

  17. In Situ Dating Experiments of Igneous Rocks Using the KArLE Instrument: A Case Study for Approximately 380 Ma Basaltic Rocks

    NASA Technical Reports Server (NTRS)

    Cho, Yuichiro; Cohen, Barbara A.

    2018-01-01

    We report new K-Ar isochron data for two approximately 380 Ma basaltic rocks, using an updated version of the Potassium-Argon Laser Experiment (KArLE). These basalts have K contents comparable to lunar KREEP basalts or igneous lithologies found by Mars rovers, whereas previous proof-of-concept studies focused primarily on more K-rich rocks. We continue to measure these analogue samples to show the advancing capability of in situ K-Ar geochronology. KArLE is applicable to other bodies including the Moon or asteroids.

  18. Laboratory Approach to the Study of Elastic Anisotropy on Rock Samples

    NASA Astrophysics Data System (ADS)

    Pros, Z.; Lokajíček, T.; Klíma, K.

    The experimental approach (hardware and software) to the study of the elastic an isotropy of rocks on spherical samples under hydrostatic pressure up to 400 MPa is discussed. A substantial innovation of the existing measuring system and processing methods enabled us to make a detailed investigation and evaluation of the kinematic as well as dynamic parameters of elastic waves propagating through anisotropic media. The innovation is based on digital recording of the wave pattern with a high sampling density of both time and amplitude. Several options and results obtained with the innovated laboratory equipment are presented.

  19. Estimation of reactive surface area using a combined method of laboratory analyses and digital image processing

    NASA Astrophysics Data System (ADS)

    Ma, Jin; Kong, Xiang-Zhao; Saar, Martin O.

    2017-04-01

    Fluid-rock interactions play an important role in the engineering processes such as chemical stimulation of enhanced geothermal systems and carbon capture, utilization, and storage. However, these interactions highly depend on the accessible reactive surface area of the minerals that are generally poorly constrained for natural geologic samples. In particular, quantifying surface area of each reacting mineral within whole rock samples is challenging due to the heterogeneous distribution of minerals and pore space. In this study, detailed laboratory analyses were performed on sandstone samples from deep geothermal sites in Lithuania. We measure specific surface area of whole rock samples using a gas adsorption method (so-called B.E.T.) with N2 at a temperature of 77.3K. We also quantify their porosity and pore size distribution by a Helium gas pycnometer and a Hg porosimetry, respectively. Rock compositions are determined by a combination of X-ray fluorescence (XRF) and quantitative scanning electron microscopy (SEM) - Energy-dispersive X-ray spectroscopy (EDS), which are later geometrically mapped on images of two-dimensional SEM- Backscattered electrons (BSE) with a resolution of 1.2 μm and three-dimensional micro-CT with a resolution of 10.3 μm to produce a digital mineral map for further constraining the accessibility of reactive minerals. Moreover, we attempt to link the whole rock porosity, pore size distribution, and B.E.T. specific surface area with the digital mineral maps. We anticipate these necessary analyses to provide in-depth understanding of fluid sample chemistry from later hydrothermal reactive flow-through experiments on whole rock samples at elevated pressure and temperature.

  20. Overexpression of ROCK1 and ROCK2 inhibits human laryngeal squamous cell carcinoma

    PubMed Central

    Zhang, Junbo; He, Xue; Ma, Yueying; Liu, Yanli; Shi, Huaiyin; Guo, Weiwei; Liu, Liangfa

    2015-01-01

    Rho-associated coiled-coil containing protein kinase (ROCK) over-expression has been implicated in the progression of many tumor types. The aim of this study was to explore the roles of ROCK1 and ROCK2 in human laryngeal squamous cell carcinoma (LSCC). ROCK1 and ROCK2 expression levels were examined in 50 cases of human LSCC samples by immunohistochemistry. Effects of ROCK1 and ROCK2 on LSCC cell proliferation and motility were investigated in the presence of the ROCK inhibitor Y-27632. The results showed that ROCK1 expression was positively correlated with tumor size and lymph node metastasis (P < 0.05); ROCK2 positively correlated with tumor size (P < 0.05). Inhibition of ROCK1 and ROCK2 by Y-27632 significantly inhibits proliferation, migration, and invasion of LSCC cells. Our data indicate that expression of ROCK1 and ROCK2 are closely associated with tumor growth and lymph node metastasis of LSCC. Thus, these two ROCK isoforms may be useful as molecular makers for LSCC diagnosis and may be useful therapeutic targets as well. PMID:25755711

  1. A novel high-pressure vessel for simultaneous observations of seismic velocity and in situ CO2 distribution in a porous rock using a medical X-ray CT scanner

    NASA Astrophysics Data System (ADS)

    Jiang, Lanlan; Nishizawa, Osamu; Zhang, Yi; Park, Hyuck; Xue, Ziqiu

    2016-12-01

    Understanding the relationship between seismic wave velocity or attenuation and CO2 saturation is essential for CO2 storage in deep saline formations. In the present study, we describe a novel upright high-pressure vessel that is designed to keep a rock sample under reservoir conditions and simultaneously image the entire sample using a medical X-ray CT scanner. The pressure vessel is composed of low X-ray absorption materials: a carbon-fibre-enhanced polyetheretherketone (PEEK) cylinder and PEEK vessel closures supported by carbon-fibre-reinforced plastic (CFRP) joists. The temperature was controlled by a carbon-coated film heater and an aramid fibre thermal insulator. The assembled sample cell allows us to obtain high-resolution images of rock samples during CO2 drainage and brine imbibition under reservoir conditions. The rock sample was oriented vertical to the rotation axis of the CT scanner, and seismic wave paths were aligned parallel to the rotation axis to avoid shadows from the acoustic transducers. The reconstructed CO2 distribution images allow us to calculate the CO2 saturation in the first Fresnel zone along the ray path between transducers. A robust relationship between the seismic wave velocity or attenuation and the CO2 saturation in porous rock was obtained from experiments using this pressure vessel.

  2. Petrological and geochemical compositions of beach sands of the Barton and Weaver peninsulas of King George Island, West Antarctica: implications for provenance and deglacial history

    NASA Astrophysics Data System (ADS)

    Lee, Y. I.; Lim, H. S.; Choi, T.

    2017-12-01

    We studied the provenance of beach sediments of the Baton and Weaver peninsulas of King George Island, the South Shetland Islands of West Antarctica. The studied beach sand sediments of the both peninsulas are predominantly composed of volcanic-rock fragment, followed by altered grain and plutonic rock fragment in that order. In rock fragments, the volcanic rock fragments are about four times more than the plutonic rock fragments. The median quartz-feldspar-rock fragment (Q-F-R) ratios of the beach sands of the Weaver and Barton peninsulas are Q3.4-F5.5-R99.1 and Q0.5-F2.7-R96.8, respectively. These beach sands may have been originated from basaltic andesite-andesite distributed in the ice-free areas of the Barton and Weaver peninsulas and granodiorite of the Barton Peninsula. According to the geochemistry of the beach sand sediments of the two peninsulas, most of the sand samples are interpreted as originating from intermediate rocks that have experienced little chemical weathering. Taking together the modal composition and geochemical composition of the beach sand samples, the tectonic setting of the source area is interpreted as a magmatic arc setting. This interpretation is consistent with geology of the ice-free areas of the Barton and Weaver peninsulas and the tectonic setting of King George Island. However, the sand samples of the Barton Peninsula southern beach and the Weaver Peninsula beach were not derived from basement rocks currently exposed in the ice-free areas of the corresponding peninsula, but were formerly glaciomarine sediments derived from erosion of ice-covered subglacial basement rocks and transported to the submerged glacier grounding line prior to deglaciation. Sand sediments derived from wave erosion of basement rocks of paleoshoreline might have been mixed with these glaciomarine sediments. King George Island became uplifted due to deglaciation 6,000 years ago. The studied beach sediments might have been reworked after the uplift of the King George Island to the present level. Accordingly, the studied beach sand sediments of the Barton and Weaver peninsulas are interpreted to be a palimpsest deposit comprising a mixture of originally glaciomarine sediments accumulated in the shallow fjord post the Last Glacial Maximum and some detritus supplied to the beaches since deglaciation.

  3. Hayward Fault rocks: porosity, density, and strength measurements

    USGS Publications Warehouse

    Morrow, C.A.; Lockner, D.A.

    2001-01-01

    Porosity, density and strength measurements were conducted on rock samples collected from the Hayward Fault region in Northern California as part of the Hayward Fault Working Group’s efforts to create a working model of the Hayward Fault. The rocks included in this study were both fine and coarse grained gabbros, altered keratophyre, basalt, sandstone, and serpentinite from various rock formations adjacent to the Hayward Fault. Densities ranged from a low of 2.25 gm/cc (altered keratophyre) to 3.05 gm/cc (fine gabbro), with an average of 2.6 gm/cc, typical of many other rocks. Porosities were generally around 1% or less, with the exception of the sandstone (7.6%) and altered keratophyre (13.5%). Failure and frictional sliding tests were conducted on intact rock cylinders at room temperature under effective pressure conditions of up to 192 MPa, simulating depths of burial to 12 km. Axial shortening of the samples progressed at a rate of 0.1 µm/sec (fine samples) or 0.2 µm/sec (porous samples) for 6 mm of displacement. Velocity stepping tests were then conducted for an additional 2 mm of displacement, for a total of 8 mm. Both peak strength (usually failure strength) and frictional strength, determined at 8 mm of displacement, increased systematically with effective pressure. Coefficients of friction, based on the observed fracture angles, ranged from 0.6 to 0.85, consistent with Byerlee’s Law. Possible secondary influences on the strength of the Hayward rock samples may be surface weathering, or a larger number of pre-existing fractures due to the proximity to the Hayward Fault. All samples showed velocity strengthening, so that the average a-b values were all strongly positive. There was no systematic relation between a-b values and effective pressure. Velocity strengthening behavior is associated with stable sliding (creep), as observed in the shallow portions of the Hayward Fault.

  4. A rock physics and seismic reservoir characterization study of the Rock Springs Uplift, a carbon dioxide sequestration site in Southwestern Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grana, Dario; Verma, Sumit; Pafeng, Josiane

    We present a reservoir geophysics study, including rock physics modeling and seismic inversion, of a carbon dioxide sequestration site in Southwestern Wyoming, namely the Rock Springs Uplift, and build a petrophysical model for the potential injection reservoirs for carbon dioxide sequestration. Our objectives include the facies classification and the estimation of the spatial model of porosity and permeability for two sequestration targets of interest, the Madison Limestone and the Weber Sandstone. The available dataset includes a complete set of well logs at the location of the borehole available in the area, a set of 110 core samples, and a seismicmore » survey acquired in the area around the well. The proposed study includes a formation evaluation analysis and facies classification at the well location, the calibration of a rock physics model to link petrophysical properties and elastic attributes using well log data and core samples, the elastic inversion of the pre-stack seismic data, and the estimation of the reservoir model of facies, porosity and permeability conditioned by seismic inverted elastic attributes and well log data. In particular, the rock physics relations are facies-dependent and include granular media equations for clean and shaley sandstone, and inclusion models for the dolomitized limestone. The permeability model has been computed by applying a facies-dependent porosity-permeability relation calibrated using core sample measurements. Finally, the study shows that both formations show good storage capabilities. The Madison Limestone includes a homogeneous layer of high-porosity high-permeability dolomite; the Weber Sandstone is characterized by a lower average porosity but the layer is thicker than the Madison Limestone.« less

  5. A rock physics and seismic reservoir characterization study of the Rock Springs Uplift, a carbon dioxide sequestration site in Southwestern Wyoming

    DOE PAGES

    Grana, Dario; Verma, Sumit; Pafeng, Josiane; ...

    2017-06-20

    We present a reservoir geophysics study, including rock physics modeling and seismic inversion, of a carbon dioxide sequestration site in Southwestern Wyoming, namely the Rock Springs Uplift, and build a petrophysical model for the potential injection reservoirs for carbon dioxide sequestration. Our objectives include the facies classification and the estimation of the spatial model of porosity and permeability for two sequestration targets of interest, the Madison Limestone and the Weber Sandstone. The available dataset includes a complete set of well logs at the location of the borehole available in the area, a set of 110 core samples, and a seismicmore » survey acquired in the area around the well. The proposed study includes a formation evaluation analysis and facies classification at the well location, the calibration of a rock physics model to link petrophysical properties and elastic attributes using well log data and core samples, the elastic inversion of the pre-stack seismic data, and the estimation of the reservoir model of facies, porosity and permeability conditioned by seismic inverted elastic attributes and well log data. In particular, the rock physics relations are facies-dependent and include granular media equations for clean and shaley sandstone, and inclusion models for the dolomitized limestone. The permeability model has been computed by applying a facies-dependent porosity-permeability relation calibrated using core sample measurements. Finally, the study shows that both formations show good storage capabilities. The Madison Limestone includes a homogeneous layer of high-porosity high-permeability dolomite; the Weber Sandstone is characterized by a lower average porosity but the layer is thicker than the Madison Limestone.« less

  6. Variation of rock-forming metals in sub-annual increments of modern Greenland snow

    USGS Publications Warehouse

    Hinkley, T.K.

    1992-01-01

    Modern snowpack from central south Greenland was sampled in sub-seasonal increments and analysed for a suite of major, minor and trace rock-forming metals (K, Rb, Cs, Ca, Sr, Ba). There is a sharp seasonal concentration maximum for all six metals that comes in summer, later than mid-June. Metal concentrations in all other parts of the year's snowpack are up to 10 or more times smaller. The concentration maximum is preceded by low values in autumn-winter, very low values in early-mid-spring, and moderate-to-high values in late spring early summer; this pattern is seen consistently in three separate time stratigraphic intervals representing the same seasonal periods, spanning the time interval 1981-1984. The absolute concentration values of the snow strata representing the low-concentration portion of the year, autumn-winter-spring, may vary substantially from year to year, by a factor of two, or more. The finding that all rock-forming metals are at a sharp concentration maximum in late summer contrasts with the interpretations of several other studies in high-latitude northern regions. Those studies have reported a broad maximum of continental dust-associated metals in late winter and spring. However samples of the other studies have mostly come from regions farther to the north, and the analyses have emphasized industrial pollutant metals rather than the matched rock-forming suite of the present study. The metals measured were chosen to give information about the origin and identity of the rock and soil dusts, and sea salts, present as impurities in the snow. Metal ratios indicate that the dusts in the snowpacks are of continental origin and from ferromagnesian rocks. Source rock types for dusts in central south Greenland snow contrast with the felsic rock dusts of the Sierra Nevada, CA, annual snowpacks, and with the very felsic rock dusts in large south central Alaskan mountain glaciers. Samples in which masses of sea salt are much larger than those of rock dusts may be identified by small changes in metal ratios caused by moderate increases of K and Ca from marine sources, nearly unaccompanied by the minor and trace metals Rb, Cs and Ba, that are very rare in the oceans. A sampling frequency, such as that of the present study, that divides a year's accumulation into 8-10 subsamples is sufficient to reveal details of the time pattern of variation in proportions and concentrations of metals that give information about atmospheric deposition of important types of earth materials.Modern snowpack from central south Greenland was sampled in sub-seasonal increments and analyzed for a suite of major, minor and trace rock-forming metals (K, Rb, Cs, Ca, Sr, Ba). There is a sharp seasonal concentration maximum for all six metals that comes in summer, later than mid-June. Metal concentrations in all other parts of the year's snowpack are up to 10 or more times smaller. The concentration maximum is preceded by low values in autumn-winter, very low values in early-mid-spring, and moderate-to-high values in late spring-early summer; this pattern is seen consistently in three separate time stratigraphic intervals representing the same seasonal periods, spanning the time interval 1981-1984. The absolute concentration values of the snow strata representing the low-concentration portion of the year, autumn-winter-spring, may vary substantially from year to year, by a factor of two, or more. The finding that all rock-forming metals are at a sharp concentration maximum in late summer contrasts with the interpretations of several other studies in high-latitude northern regions. Those studies have reported a broad maximum of continental dust-associated metals in late winter and spring. However, samples of the other studies have mostly come from regions farther to the north, and the analyses have emphasized industrial pollutant metals rather than the matched rock-forming suite of the present study. The metals measured were chosen to give informati

  7. High resolution study of petroleum source rock variation, Lower Cretaceous (Hauterivian and Barremian) of Mikkelsen Bay, North Slope, Alaska

    USGS Publications Warehouse

    Keller, Margaret A.; Macquaker, Joe H.S.; Lillis, Paul G.

    2001-01-01

    Open File Report 01-480 was designed as a large format poster for the Annual Meeting of the American Association of Petroleum Geologists and the Society for Sedimentary Geology in Denver Colorado in June 2001. It is reproduced here in digital format to make widely available some unique images of mudstones. The images include description, interpretation, and Rock-Eval data that resulted from a high-resolution study of petroleum source rock variation of the Lower Cretaceous succession of the Mobil-Phillips Mikkelsen Bay State #1 well on the North Slope of Alaska. Our mudstone samples with Rock-Eval data plus color images are significant because they come from one of the few continuously cored and complete intervals of the Lower Cretaceous succession on the North Slope. This succession, which is rarely preserved in outcrop and very rarely cored in the subsurface, is considered to include important petroleum source rocks that have not previously been described nor explained Another reason these images are unique is that the lithofacies variability within mudstone dominated successions is relatively poorly known in comparison with that observed in coarser clastic and carbonate successions. They are also among the first published scans of thin sections of mudstone, and are of excellent quality because the sections are well made, cut perpendicular to bedding, and unusually thin, 20 microns. For each of 15 samples, we show a thin section scan (cm scale) and an optical photomicrograph (mm scale) that illustrates the variability present. Several backscattered SEM images are also shown. Rock-Eval data for the samples can be compared with the textures and mineralogy present by correlating sample numbers and core depth.

  8. Experimental results of temperature response to stress change: An indication of the physics of earthquake rupture propagation

    NASA Astrophysics Data System (ADS)

    Lin, W.; Yang, X.; Tadai, O.; Zeng, X.; Yeh, E. C.; Yu, C.; Hatakeda, K.; Xu, H.; Xu, Z.

    2016-12-01

    As a result of the earthquake rupture propagation, stress on the earthquake fault and in the hanging wall and in the footwall coseismically drops. Based on the thermo-elasticity theory, the temperature of rocks may change associated with coseismic stress change at the same time as their elastic deformation. This coseismic temperature change is one of the physics of earthquake rupture propagation, however has not been noted and expressly addressed before. To understand this temperature issue, we conducted laboratory experiments to quantitatively investigate temperatures response of rocks to rapid stress change of various typical rocks. Consequently, we developed a hydrostatic compression experimental equipment for rock samples with a high resolution temperature measuring system. This enable us to rapidly load and/or unload the confining pressure. As experimental rock samples, we collected 15 representative rocks from various scientific drilling projects and outcrops of earthquake faults, and quarries in the world. The rock types include sandstone, siltstone, limestone, granite, basalt, tuff etc. Based on the classical thermo-elastic theory, a conventional relationship between the temperature change (dT) of rock samples and the confining pressure change (dP) in the hydrostatic compression system under adiabatic condition can be expressed as a linear function. Therefore, we can measure the adiabatic pressure derivative of temperature (dT/dP) directly by monitoring changes of rock sample temperature and confining pressure during the rapidly loading and unloading processes. As preliminary results of the experiments, the data of 15 rock samples showed that i) the adiabatic pressure derivative of temperature (dT/dP) of most rocks are about 1.5 6.2 mK/MPa; ii) the dT/dP of sedimentary rocks is larger than igneous and metamorphic rocks; iii) a good linear correlation between dT/dP and the rock's bulk modulus was recognized.

  9. Changes in bacteria recoverable from subsurface volcanic rock samples during storage at 4{degrees}C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haldeman, D.L.; Amy, P.S.; White, D.C.

    1994-08-01

    The abundance of viable microorganisms recovered from deep subsurface volcanic rock samples increased after rock perturbation and storage for 1 week at 4{degrees}C, while the diversity and evenness of recoverable heterotrophic bacterial communities generally decreased. One sample of each morphologically distinct colony type, recovered both before and after storage of U12n rock samples, was purified and characterized by fatty acid methyl ester (MIDI) and API rapid NFT strips. As determined by MIDI cluster analysis, the composition of the recoverable microbial communities changed with storage of rock samples; some groups of organisms were recovered only before, only after, or at bothmore » sample times. In general, the isolates recovered only after storage of rock samples had a greater ability to utilize the carbohydrates included in API test strips and had faster generation times than isolates recovered only on initial plating. The nutritional versatility and faster growth rates of organisms recovered in higher proportions after sample storage provide evidence that some microbial community changes may be due to the proliferation of a few bacterial types. However, because some new genera are recovered only after storage, the possibility also exists that dormant bacterial types are resuscitated during sample perturbation and storage. 30 refs., 1 fig., 5 tabs.« less

  10. Characterization and utilization potential of basalt rock from East-Lampung district

    NASA Astrophysics Data System (ADS)

    Isnugroho, K.; Hendronursito, Y.; Birawidha, D. C.

    2018-01-01

    The aim of this research was to study the petrography and chemical properties of basalt rock from East Lampung district, Lampung province. Petrography analysis was performed using a polarization microscope, and analysis of chemical composition using X-RF method. From the analysis of basalt rock samples, the mineral composition consists of pyroxene, plagioclase, olivine, and opaque minerals. Basic mass of basalt rock samples is, composed of plagioclase and pyroxene with subhedral-anhedral shape, forming intergranular texture, and uniform distribution. Mineral plagioclase is colorless and blade shape, transformed into opaque minerals with a size of <0.2 mm, whereas pyroxene present among the blades of plagioclase, with a greenish tint looked and a size of <0.006 mm. Mineral opaque has a rectangular shape to irregular, with a size of <0.16 mm. The chemical composition of basalt rock samples, consisting of 37.76-59.64 SiO2; 10.10-20.93 Fe2O3; 11.77-14.32 Al2O3; 5.57-14.75 CaO; 5.37-9.15 MgO; 1.40-3.34 Na2O. From the calculation, obtained the value of acidity ratio (Ma) = 3.81. With these values, indicate that the basalt rock from East Lampung district has the potential to be utilized as stone wool fiber.

  11. Adjusting stream-sediment geochemical maps in the Austrian Bohemian Massif by analysis of variance

    USGS Publications Warehouse

    Davis, J.C.; Hausberger, G.; Schermann, O.; Bohling, G.

    1995-01-01

    The Austrian portion of the Bohemian Massif is a Precambrian terrane composed mostly of highly metamorphosed rocks intruded by a series of granitoids that are petrographically similar. Rocks are exposed poorly and the subtle variations in rock type are difficult to map in the field. A detailed geochemical survey of stream sediments in this region has been conducted and included as part of the Geochemischer Atlas der Republik O??sterreich, and the variations in stream sediment composition may help refine the geological interpretation. In an earlier study, multivariate analysis of variance (MANOVA) was applied to the stream-sediment data in order to minimize unwanted sampling variation and emphasize relationships between stream sediments and rock types in sample catchment areas. The estimated coefficients were used successfully to correct for the sampling effects throughout most of the region, but also introduced an overcorrection in some areas that seems to result from consistent but subtle differences in composition of specific rock types. By expanding the model to include an additional factor reflecting the presence of a major tectonic unit, the Rohrbach block, the overcorrection is removed. This iterative process simultaneously refines both the geochemical map by removing extraneous variation and the geological map by suggesting a more detailed classification of rock types. ?? 1995 International Association for Mathematical Geology.

  12. Positive anomalous concentrations of Pb in some gabbroic rocks of Afikpo basin southeastern Nigeria.

    PubMed

    Onwualu-John, J N

    2016-08-01

    Gabbroic rocks have intruded the sedimentary sequence at Ameta in Afikpo basin southeastern Nigeria. Petrographic and geochemical features of the rocks were studied in order to evaluate their genetic and geotectonic history. The petrographic results show that the rocks contain plagioclase, olivine, pyroxene, biotite, iron oxide, and traces of quartz in three samples. Major element characteristics show that the rocks are subalkaline. In addition, the rocks have geochemical characteristics similar to basaltic andesites. The trace elements results show inconsistent concentrations of high field strength elements (Zr, Nb, Th, Ta), moderate enrichment of large-ion lithophile elements (Rb, Sr, Ba) and low concentrations of Ni and Cr. Rare earth element results show that the rocks are characterized by enrichment of light rare earth elements, middle rare earth elements enrichment, and depletion of heavy rare earth elements with slight positive europium anomalies. Zinc concentrations are within the normal range in basaltic rocks. There are extremely high concentrations of Pb in three of the rock samples. The high Pb concentrations in some of these rocks could be as a result of last episodes of magmatic crystallization. The rocks intruded the Asu River Group; organic components in the sedimentary sequence probably contain Pb which has been assimilated into the magma at the evolutionary stage of the magma. Weathering of some rocks that contain galena could lead to an increase in the concentration of lead in the gabbroic rocks, especially when the migration and crystallization of magma take place in an aqueous environment. Nevertheless, high concentration of lead is hazardous to health and environment.

  13. Green and Fast Laser Fusion Technique for Bulk Silicate Rock Analysis by Laser Ablation-Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Zhang, Chenxi; Hu, Zhaochu; Zhang, Wen; Liu, Yongsheng; Zong, Keqing; Li, Ming; Chen, Haihong; Hu, Shenghong

    2016-10-18

    Sample preparation of whole-rock powders is the major limitation for their accurate and precise elemental analysis by laser ablation inductively-coupled plasma mass spectrometry (ICPMS). In this study, a green, efficient, and simplified fusion technique using a high energy infrared laser was developed for major and trace elemental analysis. Fusion takes only tens of milliseconds for each sample. Compared to the pressed pellet sample preparation, the analytical precision of the developed laser fusion technique is higher by an order of magnitude for most elements in granodiorite GSP-2. Analytical results obtained for five USGS reference materials (ranging from mafic to intermediate to felsic) using the laser fusion technique generally agree with recommended values with discrepancies of less than 10% for most elements. However, high losses (20-70%) of highly volatile elements (Zn and Pb) and the transition metal Cu are observed. The achieved precision is within 5% for major elements and within 15% for most trace elements. Direct laser fusion of rock powders is a green and notably simple method to obtain homogeneous samples, which will significantly accelerate the application of laser ablation ICPMS for whole-rock sample analysis.

  14. Wanted: Lunar detectives to unravel the mysteries of the Moon! Crime to be solved: Mass extinctions on the Moon by meteorite impact!

    NASA Technical Reports Server (NTRS)

    Neal, Clive R.; Taylor, Lawrence A.

    1991-01-01

    The criteria and clues for identifying meteorite contamination are outlined to aid in the quest for more knowledge regarding the evolution of the Moon and the early Earth. The Warren and Wasson seven criteria for establishing the pristine nature of highland rocks are presented. Other topics covered include iron/nickel metals, monomict nature, and lunar glasses. The major conclusion is that pristinity should not be the primary consideration in the study of lunar rocks. The most important criterion to establish is whether or not the lunar sample contains more than one lunar rock type. Even if a sample is non-pristine, as long as only one lunar rock type is present, petrogenetic interpretation can still be carried out.

  15. Shock Magnetization and Demagnetization of Rocks: What we Have Learnt From Experimental Studies

    NASA Astrophysics Data System (ADS)

    Gattacceca, J.; Rochette, P.; Boustie, M.; Berthe, L.; Natalia, B.; de Resseguier, T.

    2008-12-01

    We will present new results of simultaneous shock magnetization and shock demagnetization experiments performed on titanomagnetite-bearing basalt samples with a pulsed laser in controlled magnetic field. These new results provide the opportunity to discuss the main properties of the these two phenomena. What is the efficiency of the acquisition of shock remanent magnetization (SRM) acquisition with respect to thermoremanent magnetization? Is shock demagnetization equivalent to shock magnetization in zero field? Do we observe scattered SRM direction in shocked samples? Can we predict the shock demagnetization/remagnetization behavior of a rock knowing its rock magnetic properties? Eventually we will discuss the implications of these results for the understanding of the paleomagnetic signal of shocked rocks (meteorites in paticular) and of the magnetic anomalies above impact basins.

  16. Rock sample brought to earth from the Apollo 12 lunar landing mission

    NASA Image and Video Library

    1969-12-04

    S69-60909 (November 1969) --- A close-up view of lunar sample 12,052 under observation in the Manned Spacecraft Center's Lunar Receiving Laboratory (LRL). Astronauts Charles Conrad Jr., and Alan L. Bean collected several rocks and samples of finer lunar matter during their Apollo 12 lunar landing mission extravehicular activity (EVA). This particular sample was picked up during the second space walk (EVA) on Nov. 20, 1969. It is a typically fine-grained crystalline rock with a concentration of holes on the left part of the exposed side. These holes are called vesicles and have been identified as gas bubbles formed during the crystallization of the rock. Several glass-lined pits can be seen on the surface of the rock.

  17. Rockballer Sample Acquisition Tool

    NASA Technical Reports Server (NTRS)

    Giersch, Louis R.; Cook, Brant T.

    2013-01-01

    It would be desirable to acquire rock and/or ice samples that extend below the surface of the parent rock or ice in extraterrestrial environments such as the Moon, Mars, comets, and asteroids. Such samples would allow measurements to be made further back into the geologic history of the rock, providing critical insight into the history of the local environment and the solar system. Such samples could also be necessary for sample return mission architectures that would acquire samples from extraterrestrial environments for return to Earth for more detailed scientific investigation.

  18. The Apollo 17 samples: The Massifs and landslide

    NASA Technical Reports Server (NTRS)

    Ryder, Graham

    1992-01-01

    More than 50 kg of rock and regolith samples, a little less than half the total Apollo 17 sample mass, was collected from the highland stations at Taurus-Littrow. Twice as much material was collected from the North Massif as from the South Massif and its landslide (the apparent disproportionate collecting at the mare sites is mainly a reflection of the large size of a few individual basalt samples). Descriptions of the collection, documentation, and nature of the samples are given. A comprehensive catalog is currently being produced. Many of the samples have been intensely studied over the last 20 years and some of the rocks have become very familiar and depicted in popular works, particularly the dunite clast (72415), the troctolite sample (76535), and the station 6 boulder samples. Most of the boulder samples have been studied in Consortium mode, and many of the rake samples have received a basic petrological/geochemical characterization.

  19. A Future Moon Mission: Curatorial Statistics on Regolith Fragments Applicable to Sample Collection by Raking

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Bevill, T. J.

    2003-01-01

    The strategy of raking rock fragments from the lunar regolith as a means of acquiring representative samples has wide support due to science return, spacecraft simplicity (reliability) and economy [3, 4, 5]. While there exists widespread agreement that raking or sieving the bulk regolith is good strategy, there is lively discussion about the minimum sample size. Advocates of consor-tium studies desire fragments large enough to support petrologic and isotopic studies. Fragments from 5 to 10 mm are thought adequate [4, 5]. Yet, Jolliff et al. [6] demonstrated use of 2-4 mm fragments as repre-sentative of larger rocks. Here we make use of cura-torial records and sample catalogs to give a different perspective on minimum sample size for a robotic sample collector.

  20. 40 CFR 98.264 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements. (a) You must obtain a monthly grab sample of phosphate rock directly from the rock being fed to... Methods Used and Adopted by the Association of Fertilizer and Phosphate Chemists (AFPC). If phosphate rock is obtained from more than one origin in a month, you must obtain a sample from each origin of rock...

  1. 40 CFR 98.264 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements. (a) You must obtain a monthly grab sample of phosphate rock directly from the rock being fed to..., Bartow, Florida 33831, (863) 534-9755, http://afpc.net, [email protected]). If phosphate rock is obtained from more than one origin in a month, you must obtain a sample from each origin of rock or obtain...

  2. 40 CFR 98.264 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements. (a) You must obtain a monthly grab sample of phosphate rock directly from the rock being fed to..., Bartow, Florida 33831, (863) 534-9755, http://afpc.net, [email protected]). If phosphate rock is obtained from more than one origin in a month, you must obtain a sample from each origin of rock or obtain...

  3. 40 CFR 98.264 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements. (a) You must obtain a monthly grab sample of phosphate rock directly from the rock being fed to..., Bartow, Florida 33831, (863) 534-9755, http://afpc.net, [email protected]). If phosphate rock is obtained from more than one origin in a month, you must obtain a sample from each origin of rock or obtain...

  4. X-ray diffraction studies of shocked lunar analogs

    NASA Technical Reports Server (NTRS)

    Hanss, R. E.

    1979-01-01

    The X-ray diffraction experiments on shocked rock and mineral analogs of particular significance to lunar geology are described. Materials naturally shocked by meteorite impact, nuclear-shocked, or artificially shocked in a flat plate accelerator were utilized. Four areas were outlined for investigation: powder diffractometer studies of shocked single crystal silicate minerals (quartz, orthoclase, oligoclase, pyroxene), powder diffractometer studies of shocked polycrystalline monomineralic samples (dunite), Debye-Scherrer studies of single grains of shocked granodiorite, and powder diffractometer studies of shocked whole rock samples. Quantitative interpretation of peak shock pressures experienced by materials found in lunar or terrestrial impact structures is presented.

  5. LUNAR SAMPLES - APOLLO 11 - MSC

    NASA Image and Video Library

    1969-07-28

    S69-45025 (27 July 1969) --- This is the first lunar sample that was photographed in detail in the Lunar Receiving Laboratory at the Manned Spacecraft Center. The photograph shows a granular, fine-grained, mafic (iron magnesium rich) rock. At this early stage of the examination, this rock appears similar to several igneous rock types found on Earth. The scale is printed backwards due to the photographic configuration in the Vacuum Chamber. The sample number is 10003. This rock was among the samples collected by astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. during their lunar surface extravehicular activity on July 20, 1969.

  6. Effect of Small Numbers of Test Results on Accuracy of Hoek-Brown Strength Parameter Estimations: A Statistical Simulation Study

    NASA Astrophysics Data System (ADS)

    Bozorgzadeh, Nezam; Yanagimura, Yoko; Harrison, John P.

    2017-12-01

    The Hoek-Brown empirical strength criterion for intact rock is widely used as the basis for estimating the strength of rock masses. Estimations of the intact rock H-B parameters, namely the empirical constant m and the uniaxial compressive strength σc, are commonly obtained by fitting the criterion to triaxial strength data sets of small sample size. This paper investigates how such small sample sizes affect the uncertainty associated with the H-B parameter estimations. We use Monte Carlo (MC) simulation to generate data sets of different sizes and different combinations of H-B parameters, and then investigate the uncertainty in H-B parameters estimated from these limited data sets. We show that the uncertainties depend not only on the level of variability but also on the particular combination of parameters being investigated. As particular combinations of H-B parameters can informally be considered to represent specific rock types, we discuss that as the minimum number of required samples depends on rock type it should correspond to some acceptable level of uncertainty in the estimations. Also, a comparison of the results from our analysis with actual rock strength data shows that the probability of obtaining reliable strength parameter estimations using small samples may be very low. We further discuss the impact of this on ongoing implementation of reliability-based design protocols and conclude with suggestions for improvements in this respect.

  7. The search for the cause of the low albedo of the moon

    NASA Technical Reports Server (NTRS)

    Gold, T.; Bilson, E.; Baron, R. L.

    1975-01-01

    Experimentation concerning lunar weathering and its effect on the albedo of the surface cover consisted of: (1) determination of the surface chemical composition of lunar soil and ground-up rock samples by Auger electron spectroscopy, (2) measurement of the optical albedo of these samples, and (3) proton or alpha-particle irradiation of terrestrial rock chips and rock powders and of ground-up lunar rock samples in order to determine the optical and surface chemical effect of simulated solar wind.

  8. Molecular diversity of bacterial communities from subseafloor rock samples in a deep-water production basin in Brazil.

    PubMed

    von der Weid, Irene; Korenblum, Elisa; Jurelevicius, Diogo; Rosado, Alexandre Soares; Dino, Rodolfo; Sebastian, Gina Vasquez; Seldin, Lucy

    2008-01-01

    The deep subseafloor rock in oil reservoirs represents a unique environment in which a high oilcontamination and very low biomass can be observed. Sampling this environment has been a challenge owing to the techniques used for drilling and coring. In this study, the facilities developed by the Brazilian oil company PETROBRAS for accessing deep subsurface oil reservoirs were used to obtain rock samples at 2,822-2,828 m below the ocean floor surface from a virgin field located in the Atlantic Ocean, Rio de Janeiro. To address the bacterial diversity of these rock samples, PCR amplicons were obtained using the DNA from four core sections and universal primers for 16S rRNA and for APS reductase (aps) genes. Clone libraries were generated from these PCR fragments and 87 clones were sequenced. The phylogenetic analyses of the 16S rDNA clone libraries showed a wide distribution of types in the domain bacteria in the four core samples, and the majority of the clones were identified as belonging to Betaproteobacteria. The sulfate-reducing bacteria community could only be amplified by PCR in one sample, and all clones were identified as belonging to Gammaproteobacteria. For the first time, the bacterial community was assessed in such deep subsurface environment.

  9. Quantifying porosity and permeability of fractured carbonates and fault rocks in natural groundwater reservoirs

    NASA Astrophysics Data System (ADS)

    Pirmoradi, Reza; Wolfmayr, Mariella; Bauer, Helene; Decker, Kurt

    2017-04-01

    This study presents porosity and permeability data for a suite of different carbonate rocks from two major groundwater reservoirs in eastern Austria that supply more than 60% of Vienna`s drinking water. Data includes a set of lithologically different, unfractured host rocks, fractured rocks with variable fracture intensities, and fault rocks such as dilation breccias, different cataclasites and dissolution-precipitation fault rocks. Fault rock properties are of particular importance, since fault zones play an important role in the hydrogeology of the reservoirs. The reservoir rocks are exposed at two major alpine karst plateaus in the Northern Calcareous Alps. They comprise of various Triassic calcareous strata of more than 2 km total thickness that reflect facies differentiation since Anisian times. Rocks are multiply deformed resulting in a partly dense network of fractures and faults. Faults differ in scale, fault rock content, and fault rock volumes. Methods used to quantify the porosity and permeability of samples include a standard industry procedure that uses the weight of water saturated samples under hydrostatic uplift and in air to determine the total effective (matrix and fracture) porosity of rocks, measurements on plugs with a fully automated gas porosity- and permeameter using N2 gas infiltrating plugs under a defined confining pressure (Coreval Poro 700 by Vinci technologies), and percolation tests. The latter were conducted in the field along well known fault zones in order to test the differences in fractured rock permeability in situ and on a representative volume, which is not ensured with plug measurements. To calculate hydraulic conductivity by the Darcy equation the measured elapsed time for infiltrating a standard volume of water into a small borehole has been used. In general, undisturbed host rock samples are all of low porosity (average around 1%). The open porosity of the undisturbed rocks belonging to diverse formations vary from 0.18% to 2.35%. Klinkenberg permeabilities of plugs range from 0.001mD to about 0.6mD thus spreading over three orders of magnitude. Fractured rocks show significantly higher porosities (3% average) with respect to the undeformed country rocks. Plug measurements reveal quite low permeabilities (< 1mD) for this type of rock, which is owed to the measuring technique, where fractures are closed under confining pressure. A second important point is that intensely fractured rocks are underrepresented in the data as they cannot be plugged adequately. Percolation tests give better information for fractured rock permeabilities and revealed hydraulic conductivities of 10-6 m/sec for little fractured to 5x10-5 m/sec for intensely fractured rocks. Plug and rock sample data show that cataclastic fault rocks can have quite high porosities (up to 4.1%). However, plug permeabilities down to 0.03mD demonstrate that pores are too small to result in any significant permeability. Breccias show high porosities of 4% in average and very variable permeabilities between 2.2mD and 2214mD depending mainly on the degree of cementation.

  10. Hearing loss and tinnitus in rock musicians: A Norwegian survey.

    PubMed

    Størmer, Carl Christian Lein; Laukli, Einar; Høydal, Erik Harry; Stenklev, Niels Christian

    2015-01-01

    Our focus in this study was to assess hearing thresholds and the prevalence and characteristics of tinnitus in a large group of rock musicians based in Norway. A further objective was to assess related factors such as exposure, instrument category, and the preventive effect of hearing protection. The study was a cross-sectional survey of rock musicians selected at random from a defined cohort of musicians. A random control group was included for comparison. We recruited 111 active musicians from the Oslo region, and a control group of 40 nonmusicians from the student population at the University of TromsØ. The subjects were investigated using clinical examination, pure tone audiometry, tympanometry, and a questionnaire. We observed a hearing loss in 37.8% of the rock musicians. Significantly poorer hearing thresholds were seen at most pure-tone frequencies in musicians than controls, with the most pronounced threshold shift at 6 kHz. The use of hearing protection, in particular custom-fitted earplugs, has a preventive effect but a minority of rock musicians apply them consistently. The degree of musical performance exposure was inversely related to the degree of hearing loss in our sample. Bass and guitar players had higher hearing thresholds than vocalists. We observed a 20% prevalence of chronic tinnitus but none of the affected musicians had severe tinnitus symptomatology. There was no statistical association between permanent tinnitus and hearing loss in our sample. We observed an increased prevalence of hearing loss and tinnitus in our sample of Norwegian rock musicians but the causal relationship between musical exposure and hearing loss or tinnitus is ambiguous. We recommend the use of hearing protection in rock musicians.

  11. Hearing loss and tinnitus in rock musicians: A Norwegian survey

    PubMed Central

    Størmer, Carl Christian Lein; Laukli, Einar; Høydal, Erik Harry; Stenklev, Niels Christian

    2015-01-01

    Our focus in this study was to assess hearing thresholds and the prevalence and characteristics of tinnitus in a large group of rock musicians based in Norway. A further objective was to assess related factors such as exposure, instrument category, and the preventive effect of hearing protection. The study was a cross-sectional survey of rock musicians selected at random from a defined cohort of musicians. A random control group was included for comparison. We recruited 111 active musicians from the Oslo region, and a control group of 40 nonmusicians from the student population at the University of Tromsø. The subjects were investigated using clinical examination, pure tone audiometry, tympanometry, and a questionnaire. We observed a hearing loss in 37.8% of the rock musicians. Significantly poorer hearing thresholds were seen at most pure-tone frequencies in musicians than controls, with the most pronounced threshold shift at 6 kHz. The use of hearing protection, in particular custom-fitted earplugs, has a preventive effect but a minority of rock musicians apply them consistently. The degree of musical performance exposure was inversely related to the degree of hearing loss in our sample. Bass and guitar players had higher hearing thresholds than vocalists. We observed a 20% prevalence of chronic tinnitus but none of the affected musicians had severe tinnitus symptomatology. There was no statistical association between permanent tinnitus and hearing loss in our sample. We observed an increased prevalence of hearing loss and tinnitus in our sample of Norwegian rock musicians but the causal relationship between musical exposure and hearing loss or tinnitus is ambiguous. We recommend the use of hearing protection in rock musicians. PMID:26572701

  12. PYRAMID ROADLESS AREA, CALIFORNIA.

    USGS Publications Warehouse

    Armstrong, Augustus K.; Scott, Douglas F.

    1984-01-01

    A geologic and mineral survey was conducted in the Pyramid Roadless Area, California. The area contains mineral showings, but no mineral-resource potential was identified during our studies. Three granodiorite samples on the west side of the roadless area contained weakly anomalous concentrations of uranium. Two samples of roof-pendant rocks, one metasedimentary rock and one metavolcanic rock, contain low concentrations of copper, and of copper and molybdenum, respectively. Although none was identified, the geologic terrane is permissive for mineral occurrences and large-scale, detailed geologic mapping of the areas of metasedimentary and metavolcanic roof pendants in the Pyramid Roadless Area could define a mineral-resource potential for tungsten and precious metals.

  13. FIELD-SCALE STUDIES: HOW DOES SOIL SAMPLE PRETREATMENT AFFECT REPRESENTATIVENESS ? (ABSTRACT)

    EPA Science Inventory

    Samples from field-scale studies are very heterogeneous and can contain large soil and rock particles. Oversize materials are often removed before chemical analysis of the soil samples because it is not practical to include these materials. Is the extracted sample representativ...

  14. FIELD-SCALE STUDIES: HOW DOES SOIL SAMPLE PRETREATMENT AFFECT REPRESENTATIVENESS?

    EPA Science Inventory

    Samples from field-scale studies are very heterogeneous and can contain large soil and rock particles. Oversize materials are often removed before chemical analysis of the soil samples because it is not practical to include these materials. Is the extracted sample representativ...

  15. The Classification Ability with Naked Eyes According to the Understanding Level about Rocks of Pre-service Science Teachers

    NASA Astrophysics Data System (ADS)

    Seong, Cho Kyu; Ho, Chung Duk; Pyo, Hong Deok; Kyeong Jin, Park

    2016-04-01

    This study aimed to investigate the classification ability with naked eyes according to the understanding level about rocks of pre-service science teachers. We developed a questionnaire concerning misconception about minerals and rocks. The participant were 132 pre-service science teachers. Data were analyzed using Rasch model. Participants were divided into a master group and a novice group according to their understanding level. Seventeen rocks samples (6 igneous, 5 sedimentary, and 6 metamorphic rocks) were presented to pre-service science teachers to examine their classification ability, and they classified the rocks according to the criteria we provided. The study revealed three major findings. First, the pre-service science teachers mainly classified rocks according to textures, color, and grain size. Second, while they relatively easily classified igneous rocks, participants were confused when distinguishing sedimentary and metamorphic rocks from one another by using the same classification criteria. On the other hand, the understanding level of rocks has shown a statistically significant correlation with the classification ability in terms of the formation mechanism of rocks, whereas there was no statically significant relationship found with determination of correct name of rocks. However, this study found that there was a statistically significant relationship between the classification ability with regard the formation mechanism of rocks and the determination of correct name of rocks Keywords : Pre-service science teacher, Understanding level, Rock classification ability, Formation mechanism, Criterion of classification

  16. The effect of rock fabric on P-wave velocity distribution in amphibolites

    NASA Astrophysics Data System (ADS)

    Vajdová, V.; Přikryl, R.; Pros, Z.; Klíma, K.

    1999-07-01

    This study presents contribution to the laboratory investigation of elastic properties and rock fabric of amphibolites. P-wave velocity was determined on four spherical samples prepared from a shallow borehole core. The measurement was conducted in 132 directions under various conditions of hydrostatic pressure (up to 400 MPa). The rock fabric was investigated by image analysis of thin sections that enabled precise determination of grain size, modal composition and shape parameters of rock-forming minerals. Laboratory measurement of P-waves revealed pseudoorthorhombic symmetry of rock fabric in amphibolites studied. This symmetry reflects rocks' macro- and microfabric. Maximum P-wave velocity corresponds to the macroscopically visible stretching lineation. Minimum P-wave velocity is oriented perpendicular to the foliation plane. The average grain size is the main microstructural factor controlling mean P-wave velocity.

  17. Estimation of the radon production rate in granite rocks and evaluation of the implications for geogenic radon potential maps: A case study in Central Portugal.

    PubMed

    Pereira, A; Lamas, R; Miranda, M; Domingos, F; Neves, L; Ferreira, N; Costa, L

    2017-01-01

    The goal of this study was to estimate radon gas production rate in granitic rocks and identify the factors responsible for the observed variability. For this purpose, 180 samples were collected from pre-Hercynian and Hercynian rocks in north and central Portugal and analysed for a) 226 Ra activity, b) radon ( 222 Rn) per unit mass activity, and c) radon gas emanation coefficient. On a subset of representative samples from the same rock types were also measured d) apparent porosity and e) apparent density. For each of these variables, the values ranged as follows: a) 15 to 587 Bq kg -1 , b) 2 to 73 Bq kg -1 , c) 0.01 to 0.80, d) 0.3 to 11.4 % and e) 2530 to 2850 kg m -3 . Radon production rate varied between 40 to 1386 Bq m -3  h -1 . The variability observed was associated with geologically late processes of low and high temperature which led to the alteration of the granitic rock with mobilization of U and increase in radon 222 Rn gas emanation. It is suggested that, when developing geogenic radon potential maps, data on uranium concentration in soils/altered rock should be used, rather than data obtained from unaltered rock. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Geochemistry of Eagle Ford group source rocks and oils from the first shot field area, Texas

    USGS Publications Warehouse

    Edman, Janell D.; Pitman, Janet K.; Hammes, Ursula

    2010-01-01

    Total organic carbon, Rock-Eval pyrolysis, and vitrinite reflectance analyses performed on Eagle Ford Group core and cuttings samples from the First Shot field area, Texas demonstrate these samples have sufficient quantity, quality, and maturity of organic matter to have generated oil. Furthermore, gas chromatography and biomarker analyses performed on Eagle Ford Group oils and source rock extracts as well as weight percent sulfur analyses on the oils indicate the source rock facies for most of the oils are fairly similar. Specifically, these source rock facies vary in lithology from shales to marls, contain elevated levels of sulfur, and were deposited in a marine environment under anoxic conditions. It is these First Shot Eagle Ford source facies that have generated the oils in the First Shot Field. However, in contrast to the generally similar source rock facies and organic matter, maturity varies from early oil window to late oil window in the study area, and these maturity variations have a pronounced effect on both the source rock and oil characteristics. Finally, most of the oils appear to have been generated locally and have not experienced long distance migration. 

  19. Verifying the new luminescence surface-exposure dating technique--rock falls in Canyonlands National Park, Utah

    NASA Astrophysics Data System (ADS)

    Pederson, J. L.; Sohbati, R.; Murray, A. S.; Jain, M.

    2015-12-01

    Recent studies have helped develop the optically stimulated luminescence (OSL) dating of rock surfaces, as applied to the age of the famous Great Gallery rock art panel in Canyonlands National Park. Chapot et al. (2012) dated a key rock fall to ~900 yrs ago by applying OSL to the outer 1-mm buried surface of a sandstone talus boulder, an age confirmed by independent radiocarbon dating. Later, in a novel approach and with the use of a local known-age calibration sample, Sohbati et al. (2012) modelled the millimeter-scale OSL-depth profile to determine a pre-burial exposure duration of ~700 years for the same rock fall. This combination of rock-fall dating and exposure dating--an approach with broad potential to date Holocene mass movements--constrains the creation of the Great Gallery rock art to a time window of 900 to ~1600 years ago (Pederson et al., 2014), a result met with some controversy. Here we report on a new phase of research to verify these results and further refine OSL-profile exposure dating for mass movements. New analyses from within and near the Great Gallery alcove include: i) exposure dating of the same alcove surface upon which the rock art is painted with a predicted exposure age of ~1600 years; ii) exposure dating of the top (light-exposed) side of the same rock-fall boulder whose buried side was previously dated to test for reproduction of the known age; and iii) an improved calibration sample from a nearby trail/road-cut for verification. The residual OSL signal is measured with depth in millimeter-thick increments of all samples. We first determine the site-specific luminescence reduction rate at the rock surface by fitting the OSL surface-exposure dating model to the calibration profile from the trail/road-cut. This parameterized model then provides exposure ages for the bleaching profiles observed in the other samples. Results have implications for the application of OSL rock-surface and exposure-profile dating in other settings where quartz-rich rock is available. We discuss how the light-exposed top and buried underside of clasts can be used in tandem for calibration. The technique has particular relevance to younger timescales over which cosmogenic nuclides are of limited application.

  20. Sm-Nd isotopic systematics of the ancient Gneiss complex, southern Africa

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Hunter, D. R.; Barker, F.

    1983-01-01

    In order to shed some new light on the question of the absolute and relative ages of the Ancient Gneiss Complex and Onverwacht Group, a Sm-Nd whole-rock and mineral isochron study of the AGC was begun. At this point, the whole-rock study of samples from the Bimodal Suite selected from those studied for their geochemical characteristics by Hunter et al., is completed. These results and their implications for the chronologic evolution of the Kaapvaal craton and the sources of these ancient rocks are discussed.

  1. LUNAR SAMPLES - APOLLO XVI - JSC

    NASA Image and Video Library

    1975-03-18

    S75-23543 (April 1972) --- This Apollo 16 lunar sample (moon rock) was collected by astronaut John W. Young, commander of the mission, about 15 meters southwest of the landing site. This rock weighs 128 grams when returned to Earth. The sample is a polymict breccia. This rock, like all lunar highland breccias, is very old, about 3,900,000,000 years older than 99.99% of all Earth surface rocks, according to scientists. Scientific research is being conducted on the balance of this sample at NASA's Johnson Space Center and at other research centers in the United States and certain foreign nations under a continuing program of investigation involving lunar samples collected during the Apollo program.

  2. Sampling and modeling of rock discontinuities by terrestrial laser scanning and photogrammetry in railway environment

    NASA Astrophysics Data System (ADS)

    Assali, P.; Grussenmeyer, P.; Pollet, N.; Viguier, F.; Villemin, T.

    2012-04-01

    In order to increase its knowledge of rock slope stability along the French national rail network, the SNCF Engineering Management is developing a new approach for sampling and modeling rock discontinuities. The rock face diagnosis is a follow-up and check operation of the field works. This operation allowed to optimize the rock risk treatment at the best price in respect with safety requirements. These operations require the measurement of orientation and location of rock discontinuities at the surface of the rock mass and is followed by a structural modeling in order to extrapolate the data collected at the surface to the inner part of the massif. At present, this work is completed manually with a compass-clinometer, in a simplified way mainly based on the specialist's experience. The analysis remains empirical, and most of the time restricted to the most fractured zone, whereas safety requirements ask for an exhaustive study on the whole of the site. Filling these gaps, the combined use of dense three-dimensional measurement techniques, associating both terrestrial laser scanning and optical imaging, makes it possible to obtain a more complete structural statement. The data acquisition and processing need protocols adapted to the railway environment for obtaining suitable 3D models. Then the exploitation of these models requires the development of semi-automatic process, with an aim of, to support the geologist's on-site expertise with a digital model exploitation. The geometrical characterization of the rock mass is undertaken thanks to a classification of the model in several subsets corresponding to the main directional families. The data on these planar discontinuities, traditionally acquired manually in certain points necessarily accessible of the rock face, result now from dense 3D models covering the whole of the work. Therefore, statistical sampling is stronger, while the time of the on-site survey is reduced. By these means, the diagnosis should be made reliable and the recommendations optimized with the unfavourable sectors. Then, risk analysis can be targeted on the potential disorders zones and not on the whole of the studied sector. Keywords : Discontinuities, fractures, railway exploitation, terrestrial laser-scanner, dense image matching, rock mass characterization, directional families, data processing

  3. Rock-Eval pyrolysis and vitrinite reflectance results from the Sheep Creek 1 well, Susitna basin, south-central Alaska

    USGS Publications Warehouse

    Stanley, Richard G.; Lillis, Paul G.; Pawlewicz, Mark J.; Haeussler, Peter J.

    2014-01-01

    We used Rock-Eval pyrolysis and vitrinite reflectance to examine the petroleum source potential of rock samples from the Sheep Creek 1 well in the Susitna basin of south-central Alaska. The results show that Miocene nonmarine coal, carbonaceous shale, and mudstone are potential sources of hydrocarbons and are thermally immature with respect to the oil window. In the samples that we studied, coals are more organic-rich and more oil-prone than carbonaceous shales and silty mudstones, which appear to be potential sources of natural gas. Lithologically similar rocks may be present in the deeper parts of the subsurface Susitna basin located west of the Sheep Creek 1 well, where they may have been buried deeply enough to generate oil and (or) gas. The Susitna basin is sparsely drilled and mostly unexplored, and no commercial production of hydrocarbons has been obtained. However, the existence of potential source rocks of oil and gas, as shown by our Rock-Eval results, suggests that undiscovered petroleum accumulations may be present in the Susitna basin.

  4. Rapid Active Sampling Package

    NASA Technical Reports Server (NTRS)

    Peters, Gregory

    2010-01-01

    A field-deployable, battery-powered Rapid Active Sampling Package (RASP), originally designed for sampling strong materials during lunar and planetary missions, shows strong utility for terrestrial geological use. The technology is proving to be simple and effective for sampling and processing materials of strength. Although this originally was intended for planetary and lunar applications, the RASP is very useful as a powered hand tool for geologists and the mining industry to quickly sample and process rocks in the field on Earth. The RASP allows geologists to surgically acquire samples of rock for later laboratory analysis. This tool, roughly the size of a wrench, allows the user to cut away swaths of weathering rinds, revealing pristine rock surfaces for observation and subsequent sampling with the same tool. RASPing deeper (.3.5 cm) exposes single rock strata in-situ. Where a geologist fs hammer can only expose unweathered layers of rock, the RASP can do the same, and then has the added ability to capture and process samples into powder with particle sizes less than 150 microns, making it easier for XRD/XRF (x-ray diffraction/x-ray fluorescence). The tool uses a rotating rasp bit (or two counter-rotating bits) that resides inside or above the catch container. The container has an open slot to allow the bit to extend outside the container and to allow cuttings to enter and be caught. When the slot and rasp bit are in contact with a substrate, the bit is plunged into it in a matter of seconds to reach pristine rock. A user in the field may sample a rock multiple times at multiple depths in minutes, instead of having to cut out huge, heavy rock samples for transport back to a lab for analysis. Because of the speed and accuracy of the RASP, hundreds of samples can be taken in one day. RASP-acquired samples are small and easily carried. A user can characterize more area in less time than by using conventional methods. The field-deployable RASP used a Ni/Cad rechargeable battery. Power usage was less than 1 Wh/ cm3 even when sampling strong basalts, so many samples could be taken on a single battery charge.

  5. Dating Melt Rock 63545 By Rb-Sr and Sm-Nd: Age of Imbrium; Spa Dress Rehearsal

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C. Y.; Reese, Y. D.

    2011-01-01

    Apollo 16 sample 63545 was initially described as one of a group of 19 generally rounded, fine-grained, crystalline rocks that were collected as rake samples [1]. This 16 g "rocklet" was collected at Station 13 on the ejecta blanket of North Ray Crater at the foot of Smoky Mountain [2]. Originally classified as a Very High Alumina (VHA) basalt on geochemical grounds [3], it was later argued to be an impact melt rock [4]. Here we report a Rb-Sr and Sm-Nd isotopic study that shows that some portions of the rock failed to reach isotopic equilibrium on last melting in agreement with the impact melt rock interpretation. Nevertheless, by omitting mineral fractions that are discordant with the majority of the data, we arrive at the time of last melting as 3.88 plus or minus 0.05 Ga ago. This age is in agreement with the Ar-39/Ar-40 plateau age of 3839 plus or minus 23 Ma [5], if the latter is adjusted for the 1.4-1.8% revision in the age of the hornblende monitor [6]. This investigation was undertaken in part as proof-of-concept for SPA-basin sample return.

  6. Geochronology and petrogenesis of the western highlands alkali suite: Radiogenic isotopic evidence from Apollo 14

    NASA Astrophysics Data System (ADS)

    Snyder, Gregory A.; Taylor, Lawrence A.; Halliday, Alex N.

    1993-03-01

    Several rocks of alkalic affinity, from the western highlands of the Moon, have been analyzed for their Nd and Sr isotopic compositions. One sample yields a Sm-Nd mineral isochron of 4110 = 41 Ma. This age, in conjunction with U-Pb zircon ages on two other alkalic rocks from the Apollo 14 landing site suggests a distinct western highlands 'event' which was approximately 100 Ma in duration. Since the last dregs of the lunar magma ocean likely crystallized prior to 4.3 Ga, this alkalic 'event' may have included the re-melting of evolved plutons or the remobilization of urKREEP trapped liquid from upper mantle cumulates. Alkalic lithologies such as granites and felsites have been known from the Moon since the earliest days of the Apollo lunar sample returns. However, not until 1977 were alkali-rich rocks recognized from typical highlands suites such as ferroan anorthosites (FAN) and norites and Mg-suite rocks. In the intervening years, several other alkali suite samples have been discovered and characterized, mostly through labor-intesive breccia pull-apart studies of clasts and analyses of coarse-fine fractions of soils. We will speculate on the origins of this suite of lunar highlands rocks.

  7. Geochronology and petrogenesis of the western highlands alkali suite: Radiogenic isotopic evidence from Apollo 14

    NASA Technical Reports Server (NTRS)

    Snyder, Gregory A.; Taylor, Lawrence A.; Halliday, Alex N.

    1993-01-01

    Several rocks of alkalic affinity, from the western highlands of the Moon, have been analyzed for their Nd and Sr isotopic compositions. One sample yields a Sm-Nd mineral isochron of 4110 = 41 Ma. This age, in conjunction with U-Pb zircon ages on two other alkalic rocks from the Apollo 14 landing site suggests a distinct western highlands 'event' which was approximately 100 Ma in duration. Since the last dregs of the lunar magma ocean likely crystallized prior to 4.3 Ga, this alkalic 'event' may have included the re-melting of evolved plutons or the remobilization of urKREEP trapped liquid from upper mantle cumulates. Alkalic lithologies such as granites and felsites have been known from the Moon since the earliest days of the Apollo lunar sample returns. However, not until 1977 were alkali-rich rocks recognized from typical highlands suites such as ferroan anorthosites (FAN) and norites and Mg-suite rocks. In the intervening years, several other alkali suite samples have been discovered and characterized, mostly through labor-intesive breccia pull-apart studies of clasts and analyses of coarse-fine fractions of soils. We will speculate on the origins of this suite of lunar highlands rocks.

  8. Inception and Early Evolution of the Aleutian Arc

    NASA Astrophysics Data System (ADS)

    Bezard, R.; Hoernle, K.; Hauff, F.; Portnyagin, M.; Werner, R.; Yogodzinski, G.; Jicha, B.; Garbe-Schönberg, D.; Turner, S.; Schaefer, B. F.

    2017-12-01

    Constraining the timing and style of subduction initiation in the Aleutian system is critical to model the Cenozoic geodynamic evolution of the Pacific. Until now, the oldest ages for the Aleutian arc suggest a subduction inception at c.a. 46-47 Ma. However, the compositions of these samples (arc tholeiites and calc-alkaline rocks) are different from those of typical early-arc sequences found at extensively studied subduction systems (Izu-Bonin-Mariana), dominated by FABs and boninites. Thus, if the FAB/boninite model applies to the Aleutian, the oldest units might not have been recovered yet and the arc inception could have occurred earlier than 47 Ma. To test this hypothesis, we have sampled the lowermost submarine Aleutian sequences at ten forearc and rear-arc localities during the R/V SONNE Cruise 249. We present preliminary whole-rock major and trace element concentrations, Sr-Nd-Hf-Pb isotopes as well as U-Pb zircon dating on the recovered igneous rocks. The sample compositions range from tholeiitic to calc-alkaline. No boninites were found. Most of the samples show strong subduction signatures. However, the remaining rocks present no or minor arc-type trace element features. These samples are either depleted tholeiites with similar trace element characteristics to FABs or enriched calc-alkaline rocks. Preliminary zircon dating suggests an age of 47.2 ± 1.2 Ma for one of the samples with strong arc signatures, consistent with the oldest published ages for the Aleutian so far. However, based on their compositional similarities to FABs, the depleted tholeiites should be older than the arc-type rocks, suggesting that subduction initiation could have occurred earlier than the above-mentioned age. The absence of boninite could either reflect an incomplete sampling of the early-arc sequences or a different initiation style compared to other Pacific subduction zones. Further ages and radiogenic isotope data should refine these interpretations.

  9. Spatial Distribution of Stony Desertification and Key Influencing Factors on Different Sampling Scales in Small Karst Watersheds

    PubMed Central

    Zhang, Zhenming; Zhou, Yunchao; Wang, Shijie

    2018-01-01

    Karst areas are typical ecologically fragile areas, and stony desertification has become the most serious ecological and economic problems in these areas worldwide as well as a source of disasters and poverty. A reasonable sampling scale is of great importance for research on soil science in karst areas. In this paper, the spatial distribution of stony desertification characteristics and its influencing factors in karst areas are studied at different sampling scales using a grid sampling method based on geographic information system (GIS) technology and geo-statistics. The rock exposure obtained through sampling over a 150 m × 150 m grid in the Houzhai River Basin was utilized as the original data, and five grid scales (300 m × 300 m, 450 m × 450 m, 600 m × 600 m, 750 m × 750 m, and 900 m × 900 m) were used as the subsample sets. The results show that the rock exposure does not vary substantially from one sampling scale to another, while the average values of the five subsamples all fluctuate around the average value of the entire set. As the sampling scale increases, the maximum value and the average value of the rock exposure gradually decrease, and there is a gradual increase in the coefficient of variability. At the scale of 150 m × 150 m, the areas of minor stony desertification, medium stony desertification, and major stony desertification in the Houzhai River Basin are 7.81 km2, 4.50 km2, and 1.87 km2, respectively. The spatial variability of stony desertification at small scales is influenced by many factors, and the variability at medium scales is jointly influenced by gradient, rock content, and rock exposure. At large scales, the spatial variability of stony desertification is mainly influenced by soil thickness and rock content. PMID:29652811

  10. Spatial Distribution of Stony Desertification and Key Influencing Factors on Different Sampling Scales in Small Karst Watersheds.

    PubMed

    Zhang, Zhenming; Zhou, Yunchao; Wang, Shijie; Huang, Xianfei

    2018-04-13

    Karst areas are typical ecologically fragile areas, and stony desertification has become the most serious ecological and economic problems in these areas worldwide as well as a source of disasters and poverty. A reasonable sampling scale is of great importance for research on soil science in karst areas. In this paper, the spatial distribution of stony desertification characteristics and its influencing factors in karst areas are studied at different sampling scales using a grid sampling method based on geographic information system (GIS) technology and geo-statistics. The rock exposure obtained through sampling over a 150 m × 150 m grid in the Houzhai River Basin was utilized as the original data, and five grid scales (300 m × 300 m, 450 m × 450 m, 600 m × 600 m, 750 m × 750 m, and 900 m × 900 m) were used as the subsample sets. The results show that the rock exposure does not vary substantially from one sampling scale to another, while the average values of the five subsamples all fluctuate around the average value of the entire set. As the sampling scale increases, the maximum value and the average value of the rock exposure gradually decrease, and there is a gradual increase in the coefficient of variability. At the scale of 150 m × 150 m, the areas of minor stony desertification, medium stony desertification, and major stony desertification in the Houzhai River Basin are 7.81 km², 4.50 km², and 1.87 km², respectively. The spatial variability of stony desertification at small scales is influenced by many factors, and the variability at medium scales is jointly influenced by gradient, rock content, and rock exposure. At large scales, the spatial variability of stony desertification is mainly influenced by soil thickness and rock content.

  11. Numerical Investigation of the Dynamic Properties of Intermittent Jointed Rock Models Subjected to Cyclic Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Dai, Feng; Zhao, Tao; Xu, Nu-wen

    2017-01-01

    Intermittent jointed rocks, which exist in a myriad of engineering projects, are extraordinarily susceptible to cyclic loadings. Understanding the dynamic fatigue properties of jointed rocks is necessary for evaluating the stability of rock engineering structures. This study numerically investigated the influences of cyclic loading conditions (i.e., frequency, maximum stress and amplitude) and joint geometric configurations (i.e., dip angle, persistency and interspace) on the dynamic fatigue mechanisms of jointed rock models. A reduction model of stiffness and strength was first proposed, and then, sixteen cyclic uniaxial loading tests with distinct loading parameters and joint geometries were simulated. Our results indicate that the reduction model can effectively reproduce the hysteresis loops and the accumulative plastic deformation of jointed rocks in the cyclic process. Both the loading parameters and the joint geometries significantly affect the dynamic properties, including the irreversible strain, damage evolution, dynamic residual strength and fatigue life. Three failure modes of jointed rocks, which are principally controlled by joint geometries, occur in the simulations: splitting failure through the entire rock sample, sliding failure along joint planes and mixed failure, which are principally controlled by joint geometries. Furthermore, the progressive failure processes of the jointed rock samples are numerically observed, and the different loading stages can be distinguished by the relationship between the number of broken bonds and the axial stress.

  12. A combined microstructural and petrophysical study to analyse the mechanical behaviour of shales in the Flysch units, Glarus Alps, Switzerland

    NASA Astrophysics Data System (ADS)

    Akker, Vénice; Kaufmann, Josef; Berger, Alfons; Herwegh, Marco

    2017-04-01

    Crustal scale deformation is strongly controlled by the rheological behaviour of sheet-silicate-rich rock types. As these rocks have low rock strength, facilitated by the strong crystallographically controlled mechanical anisotropy and interstitial pore fluid in the aggregate, they are able to accommodate considerable amounts of strain. A close relationship is expected between microstructure, porosity and permeability as function of metamorphic conditions and strain gradients. Thereby, fluids set free by compaction, mineral reactions or deformation play an important role. Rising industries in underground storage such as nuclear waste disposal, shale gas exploration or geological carbon sequestration make use of the advantageous properties of such rock types. Therefore, there is a great demand for research on the interaction of these processes. This study uses samples from Flysch-units of the Glarus Alps (Switzerland) collected along a metamorphic gradient (150-400°C) to unravel the link between the mechanical behaviour of these sheet-silicate-rich rocks at geological conditions and their present-day physical parameters. Investigations include two topics: (1) characterization of such rock types in terms of mineralogy, microstructure and petrophysical properties; and (2) possible reconstruction of deformation processes from microstructures. Quantitative information on the porosity, i.e. the pore sizes, distribution and their interconnectivity is crucial for both topics. Porosity is therefore estimated by: (1) image analysis of high resolution SEM images, (2) He-pycnometry, and (3) Hg-porosimetry. In a first step, differences in their present day physical parameters between low and high temperature sampling sites are shown. The variations inside and between the investigated samples is partly due to initial sedimentological heterogeneity and partly to the changes along the metamorphic gradient. This study will demonstrate how the characterized present day porosity evolved owing to these two prerequisites.

  13. Thorium and Uranium in the Rock Raw Materials Used For the Production of Building Materials

    NASA Astrophysics Data System (ADS)

    Pękala, Agnieszka

    2017-10-01

    Thorium and uranium are constant components of all soils and most minerals thereby rock raw materials. They belong to the particularly dangerous elements because of their natural radioactivity. Evaluation of the content of the radioactive elements in the rock raw materials seems to be necessary in the early stage of the raw material evaluation. The rock formations operated from deposits often are accumulated in landfills and slag heaps where the concentration of the radioactive elements can be many times higher than under natural conditions. In addition, this phenomenon may refer to buildings where rock raw materials are often the main components of the construction materials. The global control system of construction products draws particular attention to the elimination of used construction products containing excessive quantities of the natural radioactive elements. In the presented study were determined the content of thorium and uranium in rock raw materials coming from the Bełachatów lignite deposit. The Bełchatów lignite deposit extracts mainly lignite and secondary numerous accompanying minerals with the raw material importance. In the course of the field works within the framework of the carried out work has been tested 92 samples of rocks of varied petrographic composition. There were carried out analyses of the content of the radioactive elements for 50 samples of limestone of the Jurassic age, 18 samples of kaolinite clays, and 24 samples of siliceous raw materials, represented by opoka-rocks, diatomites, gaizes and clastic rocks. The measurement of content of the natural radioactive elements thorium and uranium based on measuring the frequency counts of gamma quantum, recorded separately in measuring channels. At the same time performed measurements on volume patterns radioactive: thorium and uranium. The studies were carried out in Mazar spectrometer on the powdered material. Standardly performed ten measuring cycles, after which were calculated the concentration of radioactive elements in the sample. The highest concentration of thorium and uranium has been found in the clayey raw material. Their value was respectively from 8 to 12 mg/kg for thorium and from 2.3 to 3.5 mg/kg for uranium. In carbonate sediments the content of thorium was at the level from 0.5 to 2.1 mg/kg and uranium from 0.5-2.2 mg/kg. From a group of the siliceous raw materials the diatomite had a highest concentrations of radioactive elements where the content of thorium was from 1.5 to 1.8 mg/kg and uranium from 1.3 to 1.7 mg/kg.

  14. Detailed description of oil shale organic and mineralogical heterogeneity via fourier transform infrared mircoscopy

    USGS Publications Warehouse

    Washburn, Kathryn E.; Birdwell, Justin E.; Foster, Michael; Gutierrez, Fernando

    2015-01-01

    Mineralogical and geochemical information on reservoir and source rocks is necessary to assess and produce from petroleum systems. The standard methods in the petroleum industry for obtaining these properties are bulk measurements on homogenized, generally crushed, and pulverized rock samples and can take from hours to days to perform. New methods using Fourier transform infrared (FTIR) spectroscopy have been developed to more rapidly obtain information on mineralogy and geochemistry. However, these methods are also typically performed on bulk, homogenized samples. We present a new approach to rock sample characterization incorporating multivariate analysis and FTIR microscopy to provide non-destructive, spatially resolved mineralogy and geochemistry on whole rock samples. We are able to predict bulk mineralogy and organic carbon content within the same margin of error as standard characterization techniques, including X-ray diffraction (XRD) and total organic carbon (TOC) analysis. Validation of the method was performed using two oil shale samples from the Green River Formation in the Piceance Basin with differing sedimentary structures. One sample represents laminated Green River oil shales, and the other is representative of oil shale breccia. The FTIR microscopy results on the oil shales agree with XRD and LECO TOC data from the homogenized samples but also give additional detail regarding sample heterogeneity by providing information on the distribution of mineral phases and organic content. While measurements for this study were performed on oil shales, the method could also be applied to other geological samples, such as other mudrocks, complex carbonates, and soils.

  15. Rietveld analysis of X-ray powder diffraction patterns as a potential tool for the identification of impact-deformed carbonate rocks

    NASA Astrophysics Data System (ADS)

    Huson, S. A.; Foit, F. F.; Watkinson, A. J.; Pope, M. C.

    2009-12-01

    Previous X-ray powder diffraction (XRD) studies revealed that shock deformed carbonates and quartz have broader XRD patterns than those of unshocked samples. Entire XRD patterns, single peak profiles and Rietveld refined parameters of carbonate samples from the Sierra Madera impact crater, west Texas, unshocked equivalent samples from 95 miles north of the crater and the Mission Canyon Formation of southwest Montana and western Wyoming were used to evaluate the use of X-ray powder diffraction as a potential tool for distinguishing impact deformed rocks from unshocked and tectonically deformed rocks. At Sierra Madera dolostone and limestone samples were collected from the crater rim (lower shock intensity) and the central uplift (higher shock intensity). Unshocked equivalent dolostone samples were collected from well cores drilled outside of the impact crater. Carbonate rocks of the Mission Canyon Formation were sampled along a transect across the tectonic front of the Sevier and Laramide orogenic belts. Whereas calcite subjected to significant shock intensities at the Sierra Madera impact crater can be differentiated from tectonically deformed calcite from the Mission Canyon Formation using Rietveld refined peak profiles, weakly shocked calcite from the crater rim appears to be indistinguishable from the tectonically deformed calcite. In contrast, Rietveld analysis readily distinguishes shocked Sierra Madera dolomite from unshocked equivalent dolostone samples from outside the crater and tectonically deformed Mission Canyon Formation dolomite.

  16. Distribution and evolution of Zn, Cd, and Pb in Apollo 16 regolith samples and the average U-Pb ages of the parent rocks

    NASA Technical Reports Server (NTRS)

    Cirlin, E. H.; Housley, R. M.

    1982-01-01

    The concentration of surface (low temperature site) and interior (high temperature site) Cd, Zn, and Pb in 13 Apollo 16 highland fines samples, pristine rock 65325, and mare fines sample 75081 were analyzed directly from the thermal release profiles obtained by flameless atomic absorption technique (FLAA). Cd and Zn in pristine ferroan anothosite 65325, anorthositic grains of the most mature fines 65701, and basaltic rock fragments of mare fines 75081 were almost all surface Cd and Zn indicating that most volatiles were deposited on the surfaces of vugs, vesicles and microcracks during the initial cooling process. A considerable amount of interior Cd and Zn was observed in agglutinates. This result suggests that high temperature site interior volatiles originate from entrapment during the lunar maturation processes. Interior Cd found in the most mature fines sample 65701 was only about 15% of the total Cd in the sample. Interior Pb present in Apollo 16 fines samples went up to 60%. From our Cd studies we can assume that this interior Pb in highland fines samples is largely due to the radiogenic decay which occurred after the redistribution of the volatiles took place. We obtained an average age of 4.0 b.y. for the parent rocks of Apollo 16 highland regolith from our interior Pb analyses.

  17. The influence of shale depositional fabric on the kinetics of hydrocarbon generation through control of mineral surface contact area on clay catalysis

    NASA Astrophysics Data System (ADS)

    Rahman, Habibur M.; Kennedy, Martin; Löhr, Stefan; Dewhurst, David N.; Sherwood, Neil; Yang, Shengyu; Horsfield, Brian

    2018-01-01

    Accurately assessing the temperature and hence the depth and timing of hydrocarbon generation is a critical step in the characterization of a petroleum system. Clay catalysis is a potentially significant modifier of hydrocarbon generation temperature, but experimental studies of clay catalysis show inconsistent or contradictory results. This study tests the hypothesis that source rock fabric itself is an influence on clay mineral catalysis as it controls the extent to which organic matter and clay minerals are physically associated. Two endmember clay-organic fabrics distinguish the source rocks studied: (1) a particulate fabric where organic matter is present as discrete, >5 μm particles and (2) a nanocomposite fabric in which amorphous organic matter is associated with clay mineral surfaces at sub-micron scale. High-resolution electron imaging and bulk geochemical characterisation confirm that samples of the Miocene Monterey Formation (California) are representative of the nanocomposite source rock endmember, whereas samples from the Permian Stuart Range Formation (South Australia) represent the particulate source rock endmember. Kinetic experiments are performed on paired whole rock and kerogen isolate samples from these two formations using open system, non-isothermal pyrolysis at three different heating rates (0.7, 2 and 5 K/min) to determine the effects of the different shale fabrics on hydrocarbon generation kinetics. Extrapolation to a modelled geological heating rate shows a 20 °C reduction in the onset temperature of hydrocarbon generation in Monterey Formation whole rock samples relative to paired kerogen isolates. This result is consistent with the Monterey Formations's nanocomposite fabric where clay catalysis can proceed because reactive clay minerals are intimately associated with organic matter. By contrast, there is no significant difference in the modelled hydrocarbon generation temperature of paired whole rock and kerogen isolates from the Stuart Range Formation. This is consistent with its particulate fabric, where relatively large, discrete organic particles have limited contact with the mineral matrix and the clay minerals are mainly diagenetic and physically segregated within pores. While heating rate may have a control on mineral matrix effects, this result shows that the extent to which organic matter and clay minerals are physically associated could have a significant effect on the timing of hydrocarbon generation, and is a function of the depositional environment and detrital vs diagenetic origin of clay minerals in source rocks.

  18. The apollo 15 lunar samples: A preliminary description

    USGS Publications Warehouse

    Gast, P.W.; Phinney, W.C.; Duke, M.B.; Silver, L.T.; Hubbard, N.J.; Heiken, G.H.; Butler, P.; McKay, D.S.; Warner, J.L.; Morrison, D.A.; Horz, F.; Head, J.; Lofgren, G.E.; Ridley, W.I.; Reid, A.M.; Wilshire, H.; Lindsay, J.F.; Carrier, W.D.; Jakes, P.; Bass, M.N.; Brett, P.R.; Jackson, E.D.; Rhodes, J.M.; Bansal, B.M.; Wainwright, J.E.; Parker, K.A.; Rodgers, K.V.; Keith, J.E.; Clark, R.S.; Schonfeld, E.; Bennett, L.; Robbins, Martha M.; Portenier, W.; Bogard, D.D.; Hart, W.R.; Hirsch, W.C.; Wilkin, R.B.; Gibson, E.K.; Moore, C.B.; Lewis, C.F.

    1972-01-01

    Samples returned from the Apollo 15 site consist of mare basalts and breccias with a variety of premare igneous rocks. The mare basalts are from at least two different lava flows. The bulk chemical compositions and textures of these rocks confirm the previous conclusion that the lunar maria consist of a series of extrusive volcanic rocks that are rich in iron and poor in sodium. The breccias contain abundant clasts of anorthositic fragments along with clasts of basaltic rocks much richer in plagioclase than the mare basalts. These two rock types also occur as common components in soil samples from this site. The rocks and soils from both the front and mare region exhibit a variety of shock characteristics that can best be ascribed to ray material from the craters Aristillus or Autolycus.

  19. High Spatial Resolution 40Ar/39Ar Geochronology of Lunar Impact Melt Rocks

    NASA Astrophysics Data System (ADS)

    Mercer, Cameron Mark

    Impact cratering has played a key role in the evolution of the solid surfaces of Solar System bodies. While much of Earth’s impact record has been erased, its Moon preserves an extensive history of bombardment. Quantifying the timing of lunar impact events is crucial to understanding how impacts have shaped the evolution of early Earth, and provides the basis for estimating the ages of other cratered surfaces in the Solar System. Many lunar impact melt rocks are complex mixtures of glassy and crystalline “melt” materials and inherited clasts of pre-impact minerals and rocks. If analyzed in bulk, these samples can yield complicated incremental release 40Ar/39Ar spectra, making it challenging to uniquely interpret impact ages. Here, I have used a combination of high-spatial resolution 40Ar/39Ar geochronology and thermal-kinetic modeling to gain new insights into the impact histories recorded by such lunar samples. To compare my data to those of previous studies, I developed a software tool to account for differences in the decay, isotopic, and monitor age parameters used for different published 40Ar/39Ar datasets. Using an ultraviolet laser ablation microprobe (UVLAMP) system I selectively dated melt and clast components of impact melt rocks collected during the Apollo 16 and 17 missions. UVLAMP 40Ar/39Ar data for samples 77135, 60315, 61015, and 63355 show evidence of open-system behavior, and provide new insights into how to interpret some complexities of published incremental heating 40Ar/39Ar spectra. Samples 77115, 63525, 63549, and 65015 have relatively simple thermal histories, and UVLAMP 40Ar/39Ar data for the melt components of these rocks indicate the timing of impact events—spanning hundreds of millions of years—that influenced the Apollo 16 and 17 sites. My modeling and UVLAMP 40Ar/39Ar data for sample 73217 indicate that some impact melt rocks can quantitatively retain evidence for multiple melt-producing impact events, and imply that such polygenetic rocks should be regarded as high-value sampling opportunities during future exploration missions to cratered planetary surfaces. Collectively, my results complement previous incremental heating 40Ar/39Ar studies, and support interpretations that the Moon experienced a prolonged period of heavy bombardment early in its history.

  20. Rock-magnetic properties of single zircon crystals sampled from the Tanzawa tonalitic pluton, central Japan

    NASA Astrophysics Data System (ADS)

    Sato, Masahiko; Yamamoto, Shinji; Yamamoto, Yuhji; Okada, Yoshihiro; Ohno, Masao; Tsunakawa, Hideo; Maruyama, Shigenori

    2015-09-01

    This paper reports on the rock-magnetic properties of single zircon crystals, which are essential for future work establishing the reliable paleointensity method using single zircon crystals. Zircon crystals used in this study were sampled from the Nakagawa River, which crosses the Tanzawa tonalitic pluton in central Japan. Rock-magnetic measurements were conducted on 1037 grains of zircons, but many of these measurements are below the limits of the sensitivity of the magnetometers employed. Isothermal remanent magnetizations (IRMs) of 876 zircon crystal are below the practical resolution of this study; we infer that these crystals contain no or only minute quantities of ferromagnetic minerals. The other zircon crystals contain enough magnetic minerals to be measured in the DC SQUID magnetometer. For 81 zircon crystals, IRM intensities ( M IRM) are larger than 4 × 10-12 Am2, while natural remanent magnetization (NRM) intensities ( M NRM) are below 4 × 10-12 Am2, indicating that these crystals are inappropriate for the paleomagnetic study. For the samples that had values of M NRM ≥ 4 × 10-12 Am2 and M IRM ≥ 4 × 10-12 Am2 (80 zircons), combining the rock-magnetic parameter, we proposed the sample-selection criteria for future study of paleointensity experiments using single zircon crystals. In the case that the samples had high coercivity ( B c) values (>10 mT) or high M NRM/ M IRM values (>~0.1), main remanence carriers are probably pyrrhotite and these samples are inappropriate for the paleointensity study. In the case that the samples had low B c values (<10 mT) and low M NRM/ M IRM values (<~0.1), main remanence carriers seem to be nearly pure magnetite with pseudo-single-domain grain sizes, and these samples are expected to appropriate for the paleointensity study. Total thermoremanent magnetization (TRM) acquisition experiments were also carried out for 12 samples satisfying the above criteria. The TRM intensity was comparable with that of NRM, and a rough estimation of the paleointensity using NRM/TRM ratios shows field intensities consistent with the average geomagnetic field intensity at the Tanzawa tonalitic pluton for last 5 Myr.

  1. Distribution and variation of the inorganic fraction of Devonian to Bashkirian black shales in the north-western part of the Dniepr-Donets Basin, Ukraine

    NASA Astrophysics Data System (ADS)

    Wegerer, Eva; Sachsenhofer, Reinhard; Misch, David; Aust, Nicolai

    2016-04-01

    Mineralogical data of 112 core samples from 12 wells are used to investigate lateral and vertical variations in the lithofacies of Devonian to Bashkirian black shales in the north-western part of the Dniepr-Donets-Basin. Sulphur and carbonate contents as well as organic geochemical parameters, including TOC and Hydrogen Index have been determined on the same sample set within the frame of an earlier study (Sachsenhofer et al. 2010). This allows the correlation of inorganic and organic composition of the black shales. Aims of the study are to distinguish between detrital and authigenic minerals, to relate the lithofacies of the black shales with the tectono-stratigraphic sequences of the Dniepr-Donets Basin, to contribute to the reconstruction of the depositional environment and to relate diagenetic processes with the thermal history of the basin. Mineral compositions were determined primarily using XRD-measurements applying several measurement procedures, e.g. chemical and temperature treatment, and specific standards. Major differences exist in the mineralogical composition of the black shales. For example, clay mineral contents range from less than 20 to more than 80 Vol%. Kaolinite contents are significantly higher in rocks with a Tournaisian or Early Visean age than in any other stratigraphic unit. This is also true for two Lower Visean coal samples from the shallow north-westernmost part of the basin. Chlorite contents reach maxima in uppermost Visean and overlying rocks. Quartz contents are often high in Upper Visean rocks and reach maxima in Bashkirian units. Feldspar-rich rocks are observed in Devonian sediments from the north-western part of the study area and may reflect the proximity to a sediment source. Carbonate contents are typically low, but reach very high values in some Tournaisian, Lower Visean and Serpukhovian samples. Pyrite contents reach maxima along the basin axis in Tournaisian and Visean rocks reflecting anoxic conditions. Mixed layer minerals are dominated by illite. Their presence in samples from depth exceeding 5 km reflects the low thermal overprint of Paleozoic rocks in the north-western Dniepr-Donets-Basin.

  2. Lunar Sample Compendium

    NASA Technical Reports Server (NTRS)

    Meyer, Charles

    2005-01-01

    The purpose of the Lunar Sample Compendium will be to inform scientists, astronauts and the public about the various lunar samples that have been returned from the Moon. This Compendium will be organized rock by rock in the manor of a catalog, but will not be as comprehensive, nor as complete, as the various lunar sample catalogs that are available. Likewise, this Compendium will not duplicate the various excellent books and reviews on the subject of lunar samples (Cadogen 1981, Heiken et al. 1991, Papike et al. 1998, Warren 2003, Eugster 2003). However, it is thought that an online Compendium, such as this, will prove useful to scientists proposing to study individual lunar samples and should help provide backup information for lunar sample displays. This Compendium will allow easy access to the scientific literature by briefly summarizing the significant findings of each rock along with the documentation of where the detailed scientific data are to be found. In general, discussion and interpretation of the results is left to the formal reviews found in the scientific literature. An advantage of this Compendium will be that it can be updated, expanded and corrected as need be.

  3. Hydrocarbon source potential of the Tanezzuft Formation, Murzuq Basin, south-west Libya: An organic geochemical approach

    NASA Astrophysics Data System (ADS)

    El Diasty, W. Sh.; El Beialy, S. Y.; Anwari, T. A.; Batten, D. J.

    2017-06-01

    A detailed organic geochemical study of 20 core and cuttings samples collected from the Silurian Tanezzuft Formation, Murzuq Basin, in the south-western part of Libya has demonstrated the advantages of pyrolysis geochemical methods for evaluating the source-rock potential of this geological unit. Rock-Eval pyrolysis results indicate a wide variation in source richness and quality. The basal Hot Shale samples proved to contain abundant immature to early mature kerogen type II/III (oil-gas prone) that had been deposited in a marine environment under terrigenous influence, implying good to excellent source rocks. Strata above the Hot Shale yielded a mixture of terrigenous and marine type III/II kerogen (gas-oil prone) at the same maturity level as the Hot Shale, indicating the presence of only poor to fair source rocks.

  4. LUNAR SAMPLES - APOLLO XI - MSC

    NASA Image and Video Library

    1969-07-28

    S69-45009 (27 July 1969) --- This is the first lunar sample that was photographed in detail in the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center (MSC). The photograph shows a granular, fine-grained, mafic (iron magnesium rich) rock. At this early stage of the examination, this rock appears similar to several igneous rock types found on Earth. The scale is printed backwards due to the photographic configuration in the Vacuum Chamber. The sample number is 10003. This rock was among the samples collected by astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. during their lunar surface extravehicular activity (EVA) on July 20, 1969.

  5. Lead isotopes and trace metals in dust at Yucca Mountain

    USGS Publications Warehouse

    Kwak, Loretta; Neymark, Leonid A.; Peterman, Zell E.

    2008-01-01

    Lead (Pb)-isotope compositions and trace-metal concentrations were determined for samples of dust collected from underground and surface locations at and near the proposed radioactive waste repository at Yucca Mountain, Nevada. Rare earth element concentrations in the dust samples from the underground tunnels are similar to those in wholerock samples of the repository host rocks (Miocene Tiva Canyon Tuff and Topopah Spring Tuff), supporting interpretation that the subsurface dust is mainly composed of rock comminuted during tunnel construction. Other trace metals (arsenic, cadmium, cobalt, chromium, copper, manganese, nickel, lead, antimony, thallium, and zinc) are variably enriched in the subsurface dust samples relative to the average concentrations in the host rocks. Average concentrations of arsenic and lead in dust samples, high concentrations of which can cause corrosion of waste canisters, have enrichment factors from 1.2 to 1.6 and are insignificant relative to the range of concentrations for these metals observed in the host rock samples. Most dust samples from surface sites also are enriched in many of these trace metals relative to average repository host rocks. At least some of these enrichments may be artifacts of sampling. Plotted on a 208Pb/206Pb-207Pb/206Pb graph, Pb-isotope compositions of dust samples from underground sites form a mixing line extending from host-rock Pb-isotope compositions towards compositions of many of the dust samples from surface sites; however, combined Pb concentration and isotope data indicate the presence of a Pbenriched component in the subsurface dust that is not derived from host rock or surface dust and may derive from anthropogenic materials introduced into the underground environment.

  6. Lunar Samples - Apollo 12

    NASA Image and Video Library

    1969-11-26

    S69-60294 (26 Nov. 1969) --- One of the first views of the Apollo 12 lunar rocks is this photograph of the open sample return container. The large rock is approximately 7 1/2 inches across and is larger than any rock brought back to Earth by the crew of the Apollo 11 lunar landing mission. Two of the rocks in the first container are crystalline and generally lighter in color than those returned on the first lunar landing. The rocks in this box are medium charcoal brown/gray in color.

  7. Investigation of rock samples by neutron diffraction and ultrasonic sounding

    NASA Astrophysics Data System (ADS)

    Burilichev, D. E.; Ivankina, T. I.; Klima, K.; Locajicek, T.; Nikitin, A. N.; Pros, Z.

    2000-03-01

    The interpretation of large-scale geophysical anisotropies largely depends upon the knowledge of rock anisotropies of any kind (compositions, foliations, grain shape, physical properties). Almost all physical rock properties (e.g. elastic, thermal, magnetic properties) are related to the textures of the rock constituents since they are anisotropic for the single crystal. Although anisotropy determinations are numerous, systematic investigations are scarce. Therefore, several rock samples with different microfabrics were selected for texture analysis and to determine its P-wave distributions at various confining pressures.

  8. Hydrology, Water Quality, and Aquatic Communities of Selected Springs in the St. Johns River Water Management District, Florida

    USGS Publications Warehouse

    Walsh, Stephen J.; Knowles, Leel; Katz, Brian G.; Strom, Douglas G.

    2009-01-01

    Hydrologic, physicochemical, and aquatic community data were collected and compiled by the U.S. Geological Survey for selected springs within the St. Johns River Water Management District from January 2004 to October 2007. Nine springs were included in this study: Alexander, Apopka, Bugg, De Leon, Gemini, Green, Rock, Silver Glen, and Wekiwa. Urban lands increased in Alexander, Apopka, De Leon, Gemini, Green, and Wekiwa springsheds between 1973 and 2004, accompanied by a loss of forested and/or agricultural lands in most springsheds. Forested cover increased and open surface waters and wetlands decreased in the Bugg and Rock springsheds. Although rainfall did not change significantly over time in each springshed, spring discharge decreased significantly in De Leon, Fern Hammock, Rock, Silver, and Wekiwa Springs. Nitrate concentrations increased significantly with time in Apopka, Fern Hammock, Gemini Springs run, and Juniper Springs, and decreased significantly in Alexander Spring, Bugg Spring run, Rock Springs, and Wekiwa Springs. Phosphorus increased significantly with time in Juniper Springs and decreased significantly in Apopka, De Leon, Rock, Silver Glen, and Wekiwa Springs. Benthic macroinvertebrate communities ranged from relatively low diversity assemblages (Green Spring) to assemblages with high taxonomic richness, diversity, and dominance (Rock and De Leon Springs). Shannon-Wiener diversity index averages among samples pooled by spring were lowest for Apopka Spring and greatest for Rock, Bugg, and Silver Glen Springs. Mean Stream Condition Index for pooled samples per spring was lowest for De Leon and Gemini Springs and highest for Rock and Wekiwa Springs. Mean percentages of very tolerant taxa were lowest for Alexander Spring and highest for Bugg and Green Springs. Fish community richness was lowest for Green Spring, and greatest for Alexander Spring run and Silver Glen Springs. Forty five fish species representing 35 genera and 23 families were collected or observed from all springs in this study. Samples were dominated by centrarchids, cyprinids, fundulids, atherinopsids, and poeciliids.

  9. Prediction of Fracture Behavior in Rock and Rock-like Materials Using Discrete Element Models

    NASA Astrophysics Data System (ADS)

    Katsaga, T.; Young, P.

    2009-05-01

    The study of fracture initiation and propagation in heterogeneous materials such as rock and rock-like materials are of principal interest in the field of rock mechanics and rock engineering. It is crucial to study and investigate failure prediction and safety measures in civil and mining structures. Our work offers a practical approach to predict fracture behaviour using discrete element models. In this approach, the microstructures of materials are presented through the combination of clusters of bonded particles with different inter-cluster particle and bond properties, and intra-cluster bond properties. The geometry of clusters is transferred from information available from thin sections, computed tomography (CT) images and other visual presentation of the modeled material using customized AutoCAD built-in dialog- based Visual Basic Application. Exact microstructures of the tested sample, including fractures, faults, inclusions and void spaces can be duplicated in the discrete element models. Although the microstructural fabrics of rocks and rock-like structures may have different scale, fracture formation and propagation through these materials are alike and will follow similar mechanics. Synthetic material provides an excellent condition for validating the modelling approaches, as fracture behaviours are known with the well-defined composite's properties. Calibration of the macro-properties of matrix material and inclusions (aggregates), were followed with the overall mechanical material responses calibration by adjusting the interfacial properties. The discrete element model predicted similar fracture propagation features and path as that of the real sample material. The path of the fractures and matrix-inclusion interaction was compared using computed tomography images. Initiation and fracture formation in the model and real material were compared using Acoustic Emission data. Analysing the temporal and spatial evolution of AE events, collected during the sample testing, in relation to the CT images allows the precise reconstruction of the failure sequence. Our proposed modelling approach illustrates realistic fracture formation and growth predictions at different loading conditions.

  10. Textural and Mineralogical Analysis of Volcanic Rocks by µ-XRF Mapping.

    PubMed

    Germinario, Luigi; Cossio, Roberto; Maritan, Lara; Borghi, Alessandro; Mazzoli, Claudio

    2016-06-01

    In this study, µ-XRF was applied as a novel surface technique for quick acquisition of elemental X-ray maps of rocks, image analysis of which provides quantitative information on texture and rock-forming minerals. Bench-top µ-XRF is cost-effective, fast, and non-destructive, can be applied to both large (up to a few tens of cm) and fragile samples, and yields major and trace element analysis with good sensitivity. Here, X-ray mapping was performed with a resolution of 103.5 µm and spot size of 30 µm over sample areas of about 5×4 cm of Euganean trachyte, a volcanic porphyritic rock from the Euganean Hills (NE Italy) traditionally used in cultural heritage. The relative abundance of phenocrysts and groundmass, as well as the size and shape of the various mineral phases, were obtained from image analysis of the elemental maps. The quantified petrographic features allowed identification of various extraction sites, revealing an objective method for archaeometric provenance studies exploiting µ-XRF imaging.

  11. Application LANDSAT imagery to geologic mapping in the ice-free valleys of Antarctica

    NASA Technical Reports Server (NTRS)

    Houston, R. S. (Principal Investigator); Marrs, R. W.; Smithson, S. B.

    1976-01-01

    The author has identified the following significant results. Studies in the Ice-Free Valleys are resulted in the compilation of a sizeable library of maps and publications. Rock reflectance measurements were taken during the Antarctic summer of 1973. Spectral reflectance of rocks (mostly mafic lava flows) in the McMurdo and Ice-Free Valleys areas were measured using a filter wheel photometer equipped to measure reflectances in the four Landsat bands. A series of samples were collected at regular intervals across a large differentiated, mafic sill near Lake Vida. Chemical analyses of the sample suggest that the tonal variations in this sill are controlled by changes in the iron content of the rock. False color images were prepared for a number of areas by the diazo method and with an optical multispectral biviewer. These images were useful in defining boundaries of sea ice, snow cover, and in the study of ablating glaciers, but were not very useful for rock discrimination.

  12. Optimum thermal infrared bands for mapping general rock type and temperature from space

    NASA Technical Reports Server (NTRS)

    Holmes, Q. A.; Nueesch, D. R.; Vincent, R. K.

    1980-01-01

    A study was carried out to determine quantitatively the number and location of spectral bands required to perform general rock type discrimination from spaceborne imaging sensors using only thermal infrared measurements. Beginning with laboratory spectra collected under idealized conditions from relatively well-characterized homogeneous samples, a radiative transfer model was used to transform ground exitance values into the corresponding spectral radiance at the top of the atmosphere. Taking sensor noise into account, analysis of these data revealed that three 1 micron wide spectral bands would permit independent estimations of rock type and sample temperature from a satellite infrared multispectral scanner. This study, which ignores the mixing of terrain elements within the instantaneous field of view of a satellite scanner, indicates that the location of three spectral bands at 8.1-9.1, 9.5-10.5, and 11.0-12.0 microns, and the employment of appropriate preprocessing to minimize atmospheric effects makes it possible to predict general rock type and temperature for a variety of atmospheric states and temperatures.

  13. Optimum thermal infrared bands for mapping general rock type and temperature from space

    NASA Technical Reports Server (NTRS)

    Holmes, Q. A.; Nuesch, D. R.

    1978-01-01

    A study was carried out to determine quantitatively the number and locations of spectral bands required to perform general rock-type discrimination from spaceborne imaging sensors using only thermal infrared measurements. Beginning with laboratory spectra collected under idealized conditions from relatively well characterized, homogeneous samples, a radiative transfer model was employed to transform ground exitance values into the corresponding spectral radiance at the top of the atmosphere. Taking sensor noise into account analysis of these data revealed that three 1 micrometer wide spectral bands would permit independent estimators of rock-type and sample temperature from a satellite infrared multispectral scanner. This study, indicates that the location of three spectral bands at 8.1-9.1 micrometers, 9.5-10.5 micrometers and 11.0-12.0 micrometers, and the employment of appropriate preprocessing to minimize atmospheric effects makes it possible to predict general rock-type and temperature for a variety of atmospheric states and temperatures.

  14. Distribution of elements in the Salt Wash member of the Morrison Formation in the Jo Dandy area, Montrose County, Colorado

    USGS Publications Warehouse

    Newman, William L.; Elston, Donald P.

    1957-01-01

    A study of the distribution of elements in the Salt Wash member of the Morrison formation of Jurassic age from samples taken in the Jo Dandy area, Montrose County, Colo., was made to determine average chemical composition of mudstone and sandstone and to determine the magnitude of variations in concentrations of elements within similar rock types. Analytical data were obtained by semiquantitative spectrographic and radiometric methods. Results of the study show that variations in concentrations of about 20 elements commonly detected by semiquantititive spectrographic analyses of sedimentary rocks are small for a specific rock type; therefore, considerable confidence may be placed upon the average chemical appears to be no significant relation between chemical composition of mudstone or sandstone and distance from known uranium-vanadium ore or mineralization rock. Mudstone generally contains greater concentrations of the elements studied than sandstone. The chemical composition of red mudstone is similar to the chemical composition of green mudstone except that red mudstone was found to contain almost twice as much calcium as green mudstone in the Jo Dandy area. Samples of the unoxidized sandstone from the Jo Dandy area contain about twice as much calcium, three times as much strontium, but only about one-half as much as zirconium as oxidized sandstone; except for these elements the chemical compositions of both categories of sandstone are similar. Samples of sandstone of the Salt Wash member in the Jo Dandy area contain more potassium, magnesium, vanadium, and nickel than “average sandstone” of the Salt Wash member. The distribution of bismuth in rocks of the Jo Dandy area suggests that bismuth and perhaps part of the potassium and magnesium found in rocks of the Salk Wash member were either derived from solutions which ascended from the underlying salt- and gypsum-bearing Paradox member that was incorporated with rocks of the Salt Wash during sedimentation.

  15. Internal friction in rocks and its relationship to volatiles on the moon

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.; Housley, R. M.; Alers, G. A.; Cirlin, E. H.

    1974-01-01

    The physical properties of lunar rocks were measured using the vibrating bar technique in order to provide data for interpretation of geophysical results such as those from seismic measurements. The effect of volatiles on the mechanical Q in lunar rocks was studied in addition to the effect of exposing a sample to controlled amounts of those gases most likely to be present in the lunar environment or likely to have been outgassed from the lunar interior. The moderate temperatures to which the sample was exposed during the thermal treatment and the small drop in resonant frequency during the course of the outgassing suggests that there was little change in microfracture density. The frequency, composition and texture dependence of the damping were investigated, to study the loss mechanism.

  16. Microbial life associated with low-temperature alteration of ultramafic rocks in the Leka ophiolite complex.

    PubMed

    Daae, F L; Økland, I; Dahle, H; Jørgensen, S L; Thorseth, I H; Pedersen, R B

    2013-07-01

    Water-rock interactions in ultramafic lithosphere generate reduced chemical species such as hydrogen that can fuel subsurface microbial communities. Sampling of this environment is expensive and technically demanding. However, highly accessible, uplifted oceanic lithospheres emplaced onto continental margins (ophiolites) are potential model systems for studies of the subsurface biosphere in ultramafic rocks. Here, we describe a microbiological investigation of partially serpentinized dunite from the Leka ophiolite (Norway). We analysed samples of mineral coatings on subsurface fracture surfaces from different depths (10-160 cm) and groundwater from a 50-m-deep borehole that penetrates several major fracture zones in the rock. The samples are suggested to represent subsurface habitats ranging from highly anaerobic to aerobic conditions. Water from a surface pond was analysed for comparison. To explore the microbial diversity and to make assessments about potential metabolisms, the samples were analysed by microscopy, construction of small subunit ribosomal RNA gene clone libraries, culturing and quantitative-PCR. Different microbial communities were observed in the groundwater, the fracture-coating material and the surface water, indicating that distinct microbial ecosystems exist in the rock. Close relatives of hydrogen-oxidizing Hydrogenophaga dominated (30% of the bacterial clones) in the oxic groundwater, indicating that microbial communities in ultramafic rocks at Leka could partially be driven by H2 produced by low-temperature water-rock reactions. Heterotrophic organisms, including close relatives of hydrocarbon degraders possibly feeding on products from Fischer-Tropsch-type reactions, dominated in the fracture-coating material. Putative hydrogen-, ammonia-, manganese- and iron-oxidizers were also detected in fracture coatings and the groundwater. The microbial communities reflect the existence of different subsurface redox conditions generated by differences in fracture size and distribution, and mixing of fluids. The particularly dense microbial communities in the shallow fracture coatings seem to be fuelled by both photosynthesis and oxidation of reduced chemical species produced by water-rock reactions. © 2013 John Wiley & Sons Ltd.

  17. A Radioelement Analysis of the Northern Black Hills, South Dakota, U.S.A

    NASA Astrophysics Data System (ADS)

    Young, Dylan Wade

    The uranium, thorium, and potassium contents from 736 samples, within a 15-km radius of the Homestake Gold Mine and Sanford Underground Research Facility in the Northern Black Hills indicate the geoneutrino background may be higher than average for the continental crust. The radioactive element contents of igneous, metamorphic, and sedimentary rocks were determined by gamma ray spectrometry. Many rocks show hydrothermal and metamorphic alteration within the last ten Ma of the Tertiary period. Young alkali rich igneous rocks, such as rhyolite, phonolite and other volcanic rocks, have lower than average Th:U ratios. The radioelement content of 215 igneous rocks were determined. The radioelement contents of 143 metamorphic rocks were determined. This study also shows that metamorphic rocks were found to have low variable U:Th content when compared to content in igneous rocks. Sedimentary rocks, in general, have low U, Th, and K content. The radioelement content of 236 sedimentary rocks were determined. Rocks present within the Homestake Gold Mine, are highly altered by hydrothermal and metamorphic activity, enriching U, and in some areas, Th content. The Homestake Gold Mine lies almost entirely within metamorphic rocks. Igneous rocks occur in the mine as veins and dikes. The dominant igneous rock present is rhyolite. Metamorphic rocks present inside the HGM, were divided by formation; Ellison Fm, Poorman Fm, Yates Unit [lower Poorman Fm], Homestake Fm, and Flagrock Fm. The finding of high radioelement content in the rocks suggests that the antineutrinos background at the HGM will need to be considered and calibrated for, in future experiments conducted at the Sanford Underground Research Facility. A geoneutrino luminosity of 1.26x105 (mg-1s -1) was calculated from the samples analyzed within the Homestake Gold Mine. A total geoneutrino luminosity of 4.44x105 (mg -1s=1) was calculated from the sum of all analyses conducted in the Northern Black Hills.

  18. Rock physics properties of some lunar samples

    NASA Technical Reports Server (NTRS)

    Warren, N.; Trice, R.; Anderson, O. L.; Soga, N.

    1973-01-01

    Linear strains and acoustic velocity data for lunar samples under uniaxial and hydrostatic loading are presented. Elastic properties are presented for 60335,20; 15555,68; 15498,23; and 12063,97. Internal friction data are summarized for a number of artificial lunar glasses with compositions similar to lunar rocks 12009, 12012, 14305, 15021, and 15555. Zero porosity model-rock moduli are calculated for a number of lunar model-rocks, with mineralogies similar to Apollo 12, 14, and 16 rocks. Model-rock calculations indicate that rock types in the troctolitic composition range may provide reasonable modeling of the lunar upper mantle. Model calculations involving pore crack effects are compatible with a strong dependence of rock moduli on pore strain, and therefore of rock velocities on nonhydrostatic loading. The high velocity of rocks under uniaxial loading appears to be compatible with, and may aid in, interpretation of near-surface velocity profiles observed in the active seismic experiment.

  19. Photoacoustic monitoring of water transport process in calcareous stone coated with biopolymers

    NASA Astrophysics Data System (ADS)

    May-Crespo, J.; Ortega-Morales, B. O.; Camacho-Chab, J. C.; Quintana, P.; Alvarado-Gil, J. J.; Gonzalez-García, G.; Reyes-Estebanez, M.; Chan-Bacab, M. J.

    2016-12-01

    Moisture is a critical control of chemical and physical processes leading to stone deterioration. These processes can be enhanced by microbial biofilms and associated exopolymers (EPS). There is limited current understanding of the water transport process across rocks covered by EPS. In the present work, we employed the photoacoustic technique to study the influence of three biopolymers (xanthan, microbactan and arabic gum) in the water transport process of two types of limestone rock of similar mineralogy but contrasting porosity. Both controls of RL (low porosity) and RP (high porosity) presented the higher values of water diffusion coefficient ( D) than biopolymer-coated samples, indicating that biopolymer layers slowed down the transport of water. This trend was steeper for RP samples as water was transported seven times faster than in the more porous rock. Important differences of D values were observed among samples coated by different biopolymers. Scanning electron microscopy and optical microscopy showed that surface topography was different between both types of rocks; adherence of coatings was seen predominantly in the less porous rocks samples. FTIR and NMR analysis showed the presence of pyruvate and acetate in microbactan and xanthan gum, suggesting their participation on adherence to the calcareous surfaces, sealing surface pores. These results indicate that water transport at rock interfaces is dependent on the chemistry of biopolymer and surface porosity. The implications for reduced water transport in stone conservation under the influence of biopolymers include both enhanced and lower deterioration rates along with altered efficiency of biocide treatment of epilithic biofilms.

  20. Evaluation of the effects of alteration and leaching on Sm Nd and Lu Hf systematics in submarine mafic rocks

    NASA Astrophysics Data System (ADS)

    Thompson, Patricia M. E.; Kempton, Pamela D.; Kerr, Andrew C.

    2008-08-01

    Nd and Hf isotope systematics of oceanic basaltic rocks are often assumed to be largely immune to the effects of hydrothermal alteration. We have tested this assumption by comparing Nd and Hf isotope data for acid-leached Cretaceous oceanic basalts from Gorgona and DSDP Leg 15 with unleached data on the same rocks. Hf isotope values and Lu/Hf ratios are relatively unaffected by leaching, but 143Nd/ 144Nd values of leached samples are significantly higher than those of unleached fractions of the same sample in most cases. Furthermore, the Sm/Nd ratios of the majority of leached samples are 10-40% greater than those of unleached samples. X-ray diffraction studies indicate that selective removal of secondary minerals, such as smectite, during the acid leaching process is responsible for the fractionation of Sm/Nd ratios. These results have implications for interpretation of the Hf-Nd isotope systematics of ancient submarine rocks (older than ~ 50 Ma), as (1) the age-corrected 143Nd/ 144Nd ratio may not be representative of the primary magmatic signature and (2) the uncertainty of the age-corrected ɛNd value may exceed the assumed analytical precision.

  1. Mars Rock Analysis Briefing

    NASA Image and Video Library

    2013-03-12

    Paul Mahaffy (right), principal investigator for Curiosity's Sample Analysis at Mars (SAM) investigation at NASA's Goddard Space Flight Center in Maryland, demonstrates how the SAM instrument drilled and captured rock samples on the surface of Mars at a news conference, Tuesday, March 12, 2013 at NASA Headquarters in Washington. The analysis of the rock sample collected shows ancient Mars could have supported living microbes. Photo Credit: (NASA/Carla Cioffi)

  2. Lithium, boron and chlorine as tracers for metasomatism in high-pressure metamorphic rocks: a case study from Syros (Greece)

    NASA Astrophysics Data System (ADS)

    Marschall, Horst R.; Altherr, Rainer; Gméling, Katalin; Kasztovszky, Zsolt

    2009-03-01

    High-pressure metamorphic (HPM) rocks (derived from igneous protoliths) and their metasomatised rinds from the island of Syros (Greece) were analysed for their B and Cl whole-rock abundances and their H2O content by prompt-gamma neutron-activation analysis (PGNAA) and for their Li and Be whole-rock abundances by ICP-OES. In the HPM rocks, B /Be and Cl /Be ratios correlate with H2O contents and appear to be controlled by extraction of B and Cl during dehydration and prograde metamorphism. In contrast, samples of the metasomatised rinds show no such correlation. B /Be ratios in the rinds are solely governed by the presence or absence of tourmaline, and Cl /Be ratios vary significantly, possibly related to fluid inclusions. Li/Be ratios do not correlate with H2O contents in the HPM rocks, which may in part be explained by a conservative behaviour of Li during dehydration. However, Li abundances exceed the vast majority of published values for Li abundances in fresh, altered, or differentiated oceanic igneous rocks and presumably result from metasomatic enrichment of Li. High Li concentrations and highly elevated Li/Be ratios in most metasomatised samples demonstrate an enrichment of Li in the Syros HP mélange during fluid infiltration. This study suggests that B and Cl abundances of HPM meta-igneous rocks can be used to trace prograde dehydration, while Li concentrations seem to be more sensitive for retrograde metasomatic processes in such lithologies.

  3. A Novel Mobile Testing Equipment for Rock Cuttability Assessment: Vertical Rock Cutting Rig (VRCR)

    NASA Astrophysics Data System (ADS)

    Yasar, Serdar; Yilmaz, Ali Osman

    2017-04-01

    In this study, a new mobile rock cutting testing apparatus was designed and produced for rock cuttability assessment called vertical rock cutting rig (VRCR) which was designed specially to fit into hydraulic press testing equipment which are available in almost every rock mechanics laboratory. Rock cutting trials were initiated just after the production of VRCR along with calibration of the measuring load cell with an external load cell to validate the recorded force data. Then, controlled rock cutting tests with both relieved and unrelieved cutting modes were implemented on five different volcanic rock samples with a standard simple-shaped wedge tool. Additionally, core cutting test which is an important approach for roadheader performance prediction was simulated with VRCR. Mini disc cutters and point attack tools were used for execution of experimental trials. Results clearly showed that rock cutting tests were successfully realized and measuring system is delicate to rock strength, cutting depth and other variables. Core cutting test was successfully simulated, and it was also shown that rock cutting tests with mini disc cutters and point attack tools are also successful with VRCR.

  4. Sample locality map and analytical data for potassium-argon ages in the Port Moller, Stepovak Bay, and Simeonof Island quadrangles, Alaska Peninsula

    USGS Publications Warehouse

    Wilson, Frederic H.; Shew, Nora B.; DuBois, Gregory D.; Bie, Scott W.

    1994-01-01

    Potassium-argon age determinations for 84 volcanic, intrusive, and hydrothermally altered rocks from the Port Moller, Stepovak Bay, and Simeonof Island quadrangles are reported here. Of these age determinations, 78 samples were analyzed as part of Alaska Mineral Resource Assessment Program (AMRAP) studies in the Port Moller, Stepovak Bay, and Simeonof Island quadrangles. Age deter- minations for 6 of the samples have been previously published (Burk, 1965; Kienle and Turner, 1976; Wilson and others, 1981). This report consists of a sample location map, analytical data (table 1), and rock descriptions (table 2).

  5. Organic metamorphism in the California petroleum basins; Chapter B, Insights from extractable bitumen and saturated hydrocarbons

    USGS Publications Warehouse

    Price, Leigh C.

    2000-01-01

    Seventy-five shales from the Los Angeles, Ventura, and Southern San Joaquin Valley Basins were extracted and analyzed. Samples were chosen on the basis of ROCK-EVAL analyses of a much larger sample base. The samples ranged in burial temperatures from 40 ? to 220 ? C, and contained hydrogen-poor to hydrogen-rich organic matter (OM), based on OM visual typing and a correlation of elemental kerogen hydrogen to carbon ratios with ROCK-EVAL hydrogen indices. By extractable bitumen measurements, rocks with hydrogen- poor OM in the Los Angeles Basin began mainstage hydrocarbon (HC) generation by 90 ? C. The HC concentrations maximized by 165 ? C, and beyond 165 ? C, HC and bitumen concentrations and ROCK-EVAL hydrogen indices all began decreasing to low values reached by 220 ? C, where HC generation was largely complete. Rocks with hydrogen-poor OM in the Southern San Joaquin Valley Basin commenced mainstage HC generation at 135 ? C and HC concentrations maximized by 180 ? C. Above 180 ? C, HC and bitumen concentrations and ROCK-EVAL hydrogen indices all decreased to low values reached by 214 ? C, again the process of HC generation being largely complete. In both cases, bell-shaped HC-generation curves were present versus depth (burial temperature). Mainstage HC generation had not yet begun in Ventura Basin rocks with hydrogen-poor OM by 140 ? C. The apparent lower temperature for initiation of mainstage generation in the Los Angeles Basin is attributed to very recent cooling in that basin from meteoric-water flow. Thus, HC generation there most probably occurred at higher burial temperatures. In contrast, mainstage HC generation, and all aspects of organic metamorphism, were strongly suppressed in rocks with hydrogen-rich OM at temperatures as high as 198 ? C. For example, shales from the Wilmington field (Los Angeles Basin) from 180 ? to 198 ? C retained ROCK-EVAL hydrogen indices of 550- 700 and had saturated-HC coefficients of only 4-15 mg/g organic carbon. The rocks with hydrogen-rich OM were subjected to the same burial conditions as the rocks with hydrogenpoor OM. We attribute this suppression of organic metamorphism in this study primarily to much stronger bonds in the hydrogen-rich OM compared to the bonds in hydrogen-poor OM. Trends in bitumen compositions (qualitative characteristics) versus burial temperature were also very different for rocks with hydrogen-poor OM compared to that in rocks with hydrogen- rich OM. This observation demonstrated that the two OM types also had significantly different reaction pathways, in addition to different reaction kinetics. Strong exploration implications arise from these observations. Above 40?C, but before mainstage HC generation, a lowtemperature (pre-mainstage) HC generation occurred in all rocks, and all OM types, studied. This low-temperature generation resulted in significant qualitative changes in the bitumen and HCS (hydrocarbons) from rocks of all OM types, especially in rocks with hydrogen-rich OM, from 40 ? to 70 ? C. This, and previous studies, document that very high carbon-normalized concentrations of indigenous bitumen and HCS occur in late Neogene immature rocks of any OM type in all southern California basins. This characteristic is attributed to the low-temperature generation occurring in both sulfur-poor and sulfur-rich kerogens, which originally had unusually high concentrations of weak (15-40 Kcal/mole) bonds. These observations and considerations have marked relevance to exploration regarding the possible formation of commercial oil deposits at immature ranks in these basins. Other significant geochemical observations also result from this study.

  6. The use of the durometer to measure rock hardness in geomorphology. Advantages and limitations.

    NASA Astrophysics Data System (ADS)

    Feal-Pérez, Alejandra; Blanco-Chao, Ramón; Valcarcel-Díaz, Marcos; Combes, Martín. A.

    2010-05-01

    The durometer is a hardness tester developed to measure hardness of metallic materials that has been recently introduced to measure rock hardness in weathering studies. Aoki & Matsukura (2007) highlight some advantages of the durometer compared with the Schmidt Rock Test Hammer: the smaller plunge allows measurements in small surfaces such as taffoni or rock carvings, the wider measurement range and the lower impact energy. This last makes it a non destructive method that can be used on relatively soft rocks. In this work the durometer Equotip (©) has been tested in different environments in the field and in the laboratory to explore its applicability and limitations. We applied the device on small rock samples of granite and limestone and a T-test showed that smaller sample size gave smaller hardness values (p < 0.01). Testing the effects of water content, there were no statistically significant differences between water saturated and dry samples. The influence of rock surface roughness was evaluated applying the durometer in ancient rock carvings in medium to coarse grain granites. We compared the values obtained inside and outside the grooves of the carvings using two different support rings, one flat and one concave. The flat ring was not able to reach the bottom of the groove, meanwhile the concave ring adjusts fairly well given its semi spherical section. A t-test confirmed the difference (p < 0.01) between lower rebound values obtained in the grooves using the flat ring and the higher and less scattered values obtained when the concave ring is used. As a very sensitive device, there are some problems in the use related with rock roughness and rock grain size. In weathered medium to coarse grained rocks, with very irregular surfaces, is not easy to get a good contact between the plunge and the rock surface. A poor contact caused by surface roughness causes the scattering and lowering of rebound values. On the contrary, in homogeneous fine grained rocks and in uniform rock surfaces the device gave very good results. The data obtained in glacial, nival and rock coastal environments showed the potential of the device in the identification of changes in rock hardness. We were able to asses the changes in the weathering degree of glacial striations and marked differences in the rock surfaces subjected or not to abrasion. A. Feal-Pérez is supported by the grant AP2006-03854 (Spanish Ministry of Education)

  7. Titrimetric Determination of Carbon Dioxide in a Heterogeneous Sample ("Pop Rocks")

    NASA Astrophysics Data System (ADS)

    Davis, Craig M.; Mauck, Matthew C.

    2003-05-01

    A traditional exercise in quantitative analysis is the titration of mixtures of sodium hydroxide, sodium carbonate, and sodium bicarbonate. Often, consumer products are studied. A procedure to analyze the total volume of carbon dioxide bubbles in the candy "Pop Rocks" is presented. The popularity of the sample and the simplicity of the procedure make this exercise suitable for a wide variety of students: from non-science majors to chemistry majors in a quantitative analysis course.

  8. Industrial Application of Valuable Materials Generated from PLK Rock-A Bauxite Mining Waste

    NASA Astrophysics Data System (ADS)

    Swain, Ranjita; Routray, Sunita; Mohapatra, Abhisek; Ranjan Patra, Biswa

    2018-03-01

    PLK rock classified in to two products after a selective grinding to a particular size fraction. PLK rocks ground to below 45-micron size which is followed by a classifier i.e. hydrocyclone. The ground product classified in to different sizes of apex and vortex finder. The pressure gauge was attached for the measurement of the pressure. The production of fines is also increasing with increase in the vortex finder diameter. In order to increase in the feed capacity of the hydrocyclone, the vortex finder 11.1 mm diameter and the spigot diameter 8.0 mm has been considered as the best optimum condition for recovery of fines from PLK rock sample. The overflow sample contains 5.39% iron oxide (Fe2O3) with 0.97% of TiO2 and underflow sample contains 1.87% Fe2O3 with 2.39% of TiO2. The cut point or separation size of overflow sample is 25 μm. The efficiency of separation, or the so-called imperfection I, is at 6 μm size. In this study, the iron oxide content in underflow sample is less than 2% which is suitable for making of refractory application. The overflow sample is very fine which can also be a raw material for ceramic industry as well as a cosmetic product.

  9. Geological sources of fluoride and acceptable intake of fluoride in an endemic fluorosis area, southern Iran.

    PubMed

    Battaleb-Looie, Sedigheh; Moore, Farid; Jacks, Gunnar; Ketabdari, Mohammad Reza

    2012-10-01

    The present study is the first attempt to put forward possible source(s) of fluoride in the Dashtestan area, Bushehr Province, southern Iran. In response to reports on the high incidence of dental fluorosis, 35 surface and groundwater samples were collected and analysed for fluoride. The results indicate that dissolved fluoride in the study area is above the maximum permissible limit recommended by the World Health Organization (WHO). An additional 35 soil and rock samples were also collected and analysed for fluoride, and rock samples were subjected to petrographic investigations and X-ray diffraction. The results of these analyses show that the most likely source for fluoride in the groundwater is from clay minerals (chlorite) and micas (muscovite, sericite, and biotite) in the soils and rocks in the area. We also note that due to the high average temperatures all year round and excessive water consumption in the area, the optimum fluoride dose level should be lower than that recommended by the WHO.

  10. The temporal variation of Mesoarchaean volcanism in the Suomussalmi greenstone belt, Karelia Province, Eastern Finland

    NASA Astrophysics Data System (ADS)

    Lehtonen, E.; Heilimo, E.; Halkoaho, T.; Hölttä, P.; Huhma, H.

    2017-03-01

    This study concentrates in the Kiannanniemi area, situated in the Archaean Suomussalmi greenstone belt, the Karelia Province, Fennoscandian Shield. A zircon U-Pb geochronological study from this area shows that ages of the volcanic rocks are between ca. 2.94 and 2.82 Ga. The results indicate multiphase felsic and intermediate volcanism in three episodes at ca. 2.94, 2.84 and 2.82 Ga, of which the 2.84 Ga event has not been reported earlier from the Suomussalmi greenstone belt. The youngest zircon population in a sedimentary rock sample suggests a depositional age of ≤2.82-2.81 Ga, and the sample contains also ≥2.96 Ga old zircon grains. Based on both new and previously published geochronological data from the volcanic rocks, we propose a chronostratigraphic model for the whole Suomussalmi greenstone belt, dividing it into four units based on their age: Luoma, Tormua, Ahvenlahti, and Mesa-aho. The youngest volcanic rocks in the Suomussalmi greenstone belt are contemporaneous with some of the volcanic rocks recorded from the Kuhmo and Tipasjärvi greenstone belts of the Karelia Province, Finland. The age group ca. 2.94 Ga, however, has not been so far recorded elsewhere. Conversely, in the Suomussalmi greenstone belt, volcanic rocks with an age of ca. 2.80 Ga and sedimentary rocks with depositional ages of <2.75 Ga, frequently found from the Kuhmo and Tipasjärvi greenstone belts, are unknown.

  11. Permeability and microstructural changes due to weathering of pyroclastic rocks in Cappadocia, central Turkey

    NASA Astrophysics Data System (ADS)

    Sato, M.; Takahashi, M.; Anma, R.; Shiomi, K.

    2014-12-01

    Studies of permeability changes of rocks during weathering are important to understand the processes of geomorphological development and how they are influenced by cyclic climatic conditions. Especially volcanic tuffs and pyroclastic flow deposits are easily affected by water absorption and freezing-thawing cycle (Erguler. 2009, Çelik and Ergül 2014). Peculiar erosional landscapes of Cappadocia, central Turkey, with numerous underground cities and carved churches, that made this area a world heritage site, are consists of volcanic tuffs and pyroclastic flow deposits. Understanding permeability changes of such rocks under different conditions are thus important not only to understand fundamental processes of weathering, but also to protect the landscapes of the world heritage sites and archaeological remains. In this study, we aim to evaluate internal void structures and bulk permeability of intact and weathered pyroclastic rocks from Cappadocia using X-ray CT, mercury intrusion porosimetry data and permeability measurement method of flow pump test. Samples of pyroclastic deposits that comprise the landscapes of Rose Valley and Ihlara Valley, were collected from the corresponding strata outside of the preservation areas. Porosity and pore-size distribution for the same samples measured by mercury intrusion porosimetry, indicate that the intact samples have lower porosity than weathered samples and pore sizes were dominantly 1-10μm in calculated radii, whereas weathered samples have more micropores (smaller than 1 μm). X-ray CT images were acquired to observe internal structure of samples. Micro-fractures, probably caused by repeated expansion and contraction due to temperature changes, were observed around clast grains. The higher micropore ratio in weathered samples could be attributed to the development of the micro-farctures. We will discuss fundamental processes of weathering and geomorphological development models using these data.

  12. Popping Rocks from the Mid-Atlantic Ridge at 13.77° N

    NASA Astrophysics Data System (ADS)

    Kurz, M. D.; Mittelstaedt, E. L.; Wanless, V. D.; Soule, S. A.; Fornari, D. J.; Jones, M.; Curtice, J.; Péron, S.; Klein, F.; Schwartz, D. M.; Kaminski, K.; Escartin, J.

    2016-12-01

    Popping rocks are extremely gas-rich mid ocean ridge basalts that have been found at only a few locations, mainly on the slow spreading Mid-Atlantic Ridge (MAR). In an effort to understand the origin and distribution of popping rocks, we used R/V Atlantis (cruise AT33-03), HOV Alvin and AUV Sentry to study the MAR axis near 14° N. We recovered twelve popping rock samples with Alvin, which is the first time popping rocks have been recovered in situ. They were found on lightly sediment-covered pillows close to the original R/V Akademik Boris Petrov dredge location, reported by Bougault et al. (1988). The popping rock sites are located on the east side of the rift valley near 13.77° N, at depths ranging from 3600 to 3800 meters, on a tectonically active section of the ridge roughly 8 km southwest of an oceanic core complex. Based on lithological variations, spatial distribution, and bathymetry across a region approximately 2 km^2, we infer that the new popping rock samples are derived from more than one lava flow, but this will require confirmation from geochemical data. Preliminary measurements show that the popping rocks all have high vesicularity (> 10 %), coupled with extremely high total CO2 and helium concentrations (up to 5.1 cc/gram and 67 micro-cc/gram, respectively); the average 3He/4He is 8.17 ± .1 times atmosphere (Ra). Preliminary measurements from nearby samples, including the magmatic segment near 14.08° N, reveal lower gas concentrations (e.g., < 20 micro-cc helium/gram)and slightly lower and more variable 3He/4He. The goal of this project is to relate the geological context to the volatile abundances and geochemistry; the analytical program is underway and a status report will be given at the meeting. (See also abstract by M.R. Jones et al.). One preliminary conclusion is that popping rocks are found in limited exposures of the ridge axis, possibly related to interactions between the neovolcanic zone and the oceanic core complex, but this is based on limited sampling coverage.

  13. Magnetic behaviors of cataclasites within Wenchuan earthquake fault zone in heating experiments

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Li, H.; Sun, Z.; Chou, Y. M.; Cao, Y., Jr.; Huan, W.; Ye, X.; He, X.

    2017-12-01

    Previous rock magnetism of fault rocks were used to trace the frictional heating temperature, however, few studies are focus on different temperatures effect of rock magnetic properties. To investigate rock magnetic response to different temperature, we conducted heating experiments on cataclasites from the Wenchuan earthquake Fault Scientific Drilling borehole 2 (WFSD-2) cores. Samples of cataclasites were obtained using an electric drill with a 1 cm-diameter drill pipe from 580.65 m-depth. Experiments were performed by a Thermal-optical measurement system under argon atmosphere and elevated temperatures. Both microstructural observations and powder X-ray diffraction analyses show that feldspar and quartz start to melt at 1100 ° and 1300 ° respectively. Magnetic susceptibility values of samples after heating are higher than that before heating. Samples after heating at 700 and 1750 ° have the highest values of magnetic susceptibility. Rock magnetic measurements show that the main ferromagnetic minerals within samples heated below 1100 ° (400, 700, 900 and 1100 °) are magnetite, which is new-formed by transformation of paramagnetic minerals. The χferri results show that the quantity of magnetite is bigger at sample heated by 700° experiment than by 400, 900 and 1100° experiments. Based on the FORC diagrams, we consider that magnetite grains are getting finer from 400 to 900°, and growing coarser when heated from 900 to 1100 °. SEM-EDX results indicate that the pure iron are formed in higher temperature (1300, 1500 and 1750 °), which present as framboids with size <10 μm. Rock magnetic measurements imply pure iron is the main ferromagnetic materials in these heated samples. The amount and size of iron framboids increase with increasing temperature. Therefore, we conclude that the paramagnetic minerals are decomposed into fine magnetite, then to coarse-grained magnetite, finally to pure iron at super high temperature. New-formed magnetite contributes to the higher magnetic susceptibility values of samples when heated at 400, 700, 900 and 1100°, while the neoformed pure iron is responsible to the higher magnetic susceptibility values of samples when heated at 1300, 1500 and 1750°.

  14. Assessment of rock wool as support material for on-site sanitation: hydrodynamic and mechanical characterization.

    PubMed

    Wanko, Adrien; Laurent, Julien; Bois, Paul; Mosé, Robert; Wagner-Kocher, Christiane; Bahlouli, Nadia; Tiffay, Serge; Braun, Bouke; Provo kluit, Pieter-Willem

    2016-01-01

    This study proposes mechanical and hydrodynamic characterization of rock wool used as support material in compact filter. A double-pronged approach, based on experimental simulation of various physical states of this material was done. First of all a scanning electron microscopy observation allows to highlight the fibrous network structure, the fibres sizing distribution and the atomic absorption spectrum. The material was essentially lacunar with 97 ± 2% of void space. Static compression tests on variably saturated rock wool samples provide the fact that the strain/stress behaviours depend on both the sample conditioning and the saturation level. Results showed that water exerts plastifying effect on mechanical behaviour of rock wool. The load-displacement curves and drainage evolution under different water saturation levels allowed exhibiting hydraulic retention capacities under stress. Finally, several tracer experiments on rock wool column considering continuous and batch feeding flow regime allowed: (i) to determine the flow model for each test case and the implications for water dynamic in rock wool medium, (ii) to assess the rock wool double porosity and discuss its advantages for wastewater treatment, (iii) to analyse the benefits effect for water treatment when the high level of rock wool hydric retention was associated with the plug-flow effect, and (iv) to discuss the practical contributions for compact filter conception and management.

  15. Preparing rock powder specimens of controlled size distribution

    NASA Technical Reports Server (NTRS)

    Blum, P.

    1968-01-01

    Apparatus produces rock powder specimens of the size distribution needed in geological sampling. By cutting grooves in the surface of the rock sample and then by milling these shallow, parallel ridges, the powder specimen is produced. Particle size distribution is controlled by changing the height and width of ridges.

  16. Apollo Lunar Sample Integration into Google Moon: A New Approach to Digitization

    NASA Technical Reports Server (NTRS)

    Dawson, Melissa D.; Todd, nancy S.; Lofgren, Gary E.

    2011-01-01

    The Google Moon Apollo Lunar Sample Data Integration project is part of a larger, LASER-funded 4-year lunar rock photo restoration project by NASA s Acquisition and Curation Office [1]. The objective of this project is to enhance the Apollo mission data already available on Google Moon with information about the lunar samples collected during the Apollo missions. To this end, we have combined rock sample data from various sources, including Curation databases, mission documentation and lunar sample catalogs, with newly available digital photography of rock samples to create a user-friendly, interactive tool for learning about the Apollo Moon samples

  17. Natural radionuclides in the rocks of the Valle del Cervo Pluton in Piedmont.

    PubMed

    Sesana, Lucia; Fumagalli, Marco; Carnevale, Mauro; Polla, Giancarla; Facchini, Ugo; Colombo, Annita; Tunesi, Annalisa; De Capitani, Luisa; Rusconi, Rosella

    2006-01-01

    Monitoring of the gamma radiation in Valle del Cervo Pluton was performed by determining U and Th contents in the main rock types cropping out over the entire area and pertaining to the granitic complex, syenitic complex and monzonitic complex. In particular, syenitic rocks were largely used as building and ornamental materials (e.g. Sienite della Balma). All the samples are fresh and do not present joints or fractures filled with U minerals. In the crushed samples the activity of uranium varies from 346 to 764 Bq/kg. Concentration of thorium varies from 202 to 478 Bq/kg. For all the analysed rocks uranium activity is higher than thorium one. The lowest value of radioactive concentration is referred to rocks of the granitic complex. The most active rocks are syenites. The data confirm the high activities of Valle del Cervo rock types, strongly connected with high K content of the source magma (geochemical signature); on the contrary, the activity seems to be not related to the location of the samples.

  18. Stress-Induced Fracturing of Reservoir Rocks: Acoustic Monitoring and μCT Image Analysis

    NASA Astrophysics Data System (ADS)

    Pradhan, Srutarshi; Stroisz, Anna M.; Fjær, Erling; Stenebråten, Jørn F.; Lund, Hans K.; Sønstebø, Eyvind F.

    2015-11-01

    Stress-induced fracturing in reservoir rocks is an important issue for the petroleum industry. While productivity can be enhanced by a controlled fracturing operation, it can trigger borehole instability problems by reactivating existing fractures/faults in a reservoir. However, safe fracturing can improve the quality of operations during CO2 storage, geothermal installation and gas production at and from the reservoir rocks. Therefore, understanding the fracturing behavior of different types of reservoir rocks is a basic need for planning field operations toward these activities. In our study, stress-induced fracturing of rock samples has been monitored by acoustic emission (AE) and post-experiment computer tomography (CT) scans. We have used hollow cylinder cores of sandstones and chalks, which are representatives of reservoir rocks. The fracture-triggering stress has been measured for different rocks and compared with theoretical estimates. The population of AE events shows the location of main fracture arms which is in a good agreement with post-test CT image analysis, and the fracture patterns inside the samples are visualized through 3D image reconstructions. The amplitudes and energies of acoustic events clearly indicate initiation and propagation of the main fractures. Time evolution of the radial strain measured in the fracturing tests will later be compared to model predictions of fracture size.

  19. Results of mineral, chemical, and sulfate isotopic analyses of water, soil, rocks, and soil extracts from the Pariette Draw Watershed, Uinta Basin, Utah

    USGS Publications Warehouse

    Morrison, Jean M.; Tuttle, Michele L.W.; Fahy, Juli W.

    2015-08-06

    The goal of this study was to establish a process-based understanding of salt, Se, and B behavior to address whether these contaminants can be better managed, or if uncontrollable natural processes will overwhelm any attempts to bring Pariette Draw into compliance with respect to recently established total maximum daily limits (TMDLs). We collected data to refine our knowledge about the role of rock weathering and soil formation in the transport and storage of salt in the watershed and to show how salt is cycled under irrigated and natural conditions. Our approach was to sample rock, soils, and sediment on irrigated and natural terrain for mineralogical analysis to determine the residence of salt and associated Se and B, classify minerals as primary (related to rock formation) or secondary weathering products, and characterize mineral dissolution kinetics. Mineral and chemical analyses and selective extractions of rocks and soils provide useful information in understanding solute movement and mineral dissolution/ formation. The resulting data are critical in determining residence of salt, Se, and B in weathered rock and soil and understanding the mobility during water-rock-soil interactions. This report summarizes our methods for sample and data collection and tabulates the mineral, chemical, and isotopic data collected.

  20. Rock sample brought to earth from the Apollo 12 lunar landing mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Close-up view of Apollo 12 sample 12,052 under observation in the Manned Spacecraft Center's Lunar Receiving Laboratory. This sample, collected during the second Apollo 12 extravehicular activity (EVA-2) of Astronauts Charles Conrad Jr., and Alan L. Bean, is a typical fine-grained crystalline rock with a concentration of holes on the left part of the exposed side. These holes are called vesicles and have been labeled as gas bubbles formed during the crystallization of the rock. Several glass-lined pits can be seen on the surface of the rock. An idea of the size of the rock can be gained by reference to the gauge on the bottom portion of the number meter.

  1. Organic geochemistry and petrology of oil source rocks, Carpathian Overthrust region, southeastern Poland - Implications for petroleum generation

    USGS Publications Warehouse

    Kruge, M.A.; Mastalerz, Maria; Solecki, A.; Stankiewicz, B.A.

    1996-01-01

    The organic mailer rich Oligocene Menilite black shales and mudstones are widely distributed in the Carpathian Overthrust region of southeastern Poland and have excellent hydrocarbon generation potential, according to TOC, Rock-Eval, and petrographic data. Extractable organic matter was characterized by an equable distribution of steranes by carbon number, by varying amounts of 28,30-dinor-hopane, 18??(H)-oleanane and by a distinctive group of C24 ring-A degraded triterpanes. The Menilite samples ranged in maturity from pre-generative to mid-oil window levels, with the most mature in the southeastern portion of the study area. Carpathian petroleum samples from Campanian Oligocene sandstone reservoirs were similar in biomarker composition to the Menilite rock extracts. Similarities in aliphatic and aromatic hydrocarbon distributions between petroleum asphaltene and source rock pyrolyzates provided further evidence genetically linking Menilite kerogens with Carpathian oils.

  2. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes: Update

    NASA Technical Reports Server (NTRS)

    Lindstrom, M. M.; Tobola, K. W.; Stocco, K.; Henry, M.; Allen, J. S.; McReynolds, Julie; Porter, T. Todd; Veile, Jeri

    2004-01-01

    As the scientific community studies Mars remotely for signs of life and uses Martian meteorites as its only available samples, teachers, students, and the general public continue to ask, How do we know these meteorites are from Mars? This question sets the stage for a six-lesson instructional package Space Rocks Tell Their Secrets. Expanding on the short answer It s the chemistry of the rock , students are introduced to the research that reveals the true identities of the rocks. Since few high school or beginning college students have the opportunity to participate in this level of research, a slide presentation introduces them to the labs, samples, and people involved with the research. As they work through the lessons and interpret authentic data, students realize that the research is an application of two basic science concepts taught in the classroom, the electromagnetic spectrum and isotopes.

  3. Investigation of Usability as Aggregate of Different Originated Rocks

    NASA Astrophysics Data System (ADS)

    Başpinar Tuncay, Ebru; Kilinçarslan, Şemsettin; Yağmurlu, Fuzuli

    2016-10-01

    The general properties of aggregate can determine the performance and durability of the concrete. In this study, mineralogical, petrographic, mechanical, physical and chemical properties of the rock samples of different origin (limestone, recrystallized limestone, dolomite, sand and gravel, tephra-phonolite, trachybasalt) were determined. Samples were obtained from different origin rocks units and they have been classified in three different sizes of aggregate with crushing and screening method. Grading, classification of particle, loose bulk density, water absorption ratio, flakiness index, coefficient of Los Angeles, resistance to freeze-loosening and alkali-silica reaction of aggregates and organic matter determination has been determined. The rocks have been investigated in compliance with the relevant standards. Trachybasalt and dolomite have higher particle density than other rocks. In addition, strength and flexural strength of these rocks are higher than other rocks. Tephra-phonolite has the lowest water absorption rate. At the same time resistance to freeze loosening of Tephra- phonolite is lower than the other rocks. Resistance to fragmentation and the resistance to wear of all of rocks are quite high. Sand and gravel, tephra-phonolite and trachybasalt are evaluated in terms of alkali-silica reaction. Sand and gravel are more reactive than the other aggregates. Organic matter content of the aggregates is low for the quality of aggregate. Also high correlation between some properties of aggregates was observed. For example, high correlation between compressive strength and flexural strength, water absorption and porosity, resistance to fragmentation and the resistance to ware (Micro-Deval).

  4. Lunar sample analysis

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.

    1975-01-01

    Previous studies have shown that very small amounts of absorbed volatiles only removed by outgassing in high vacuum and elevated temperatures-drastically increase the internal friction in terrestrial analogs of lunar basalt. Recently room temperature Q values as high as 2000 were achieved by thorough outgassing procedures in 10 to the 8th power torr. Results are presented on Q measurements for lunar rock 70215.85, along with some data on the effect on Q of a variety of gases. Data show that substantially greater increases in Q are obtainable in a lunar rock sample than in the terrestrial analog samples studied, and that in addition to H2O other gases also can make non-negligible contributions to the internal friction.

  5. Goechemical and Hydrogeochemical Properties of Cappadocia Geothermal Province

    NASA Astrophysics Data System (ADS)

    Furkan Sener, Mehmet; Sener, Mehmet; Uysal, Tonguc

    2016-04-01

    In order to determine the geothermal resource potential of Niǧde, Nevşehir and Aksaray provinces in Central Anatolian Volcanic Province (CAVP), geothermal fluids, surface water, and alteration rock samples from the Cappadocia volcanic zone in Turkey were investigated for their geochemical and stable isotopic characteristics in light of published geological and tectonic studies. Accordingly, the Cappadocia Geothermal Province (CGP) has two different geothermal systems located along tectonic zones including five active and two potential geothermal fields, which are located between Tuzgölü Fault Zone and Keçiboyduran-Melendiz Fault and north of Keçiboyduran-Melendiz Fault. Based on water chemistry and isotope compositions, samples from the first area are characterized by Ca-Mg-HCO3 ve Ca-HCO3 type mineral poor waters and Ca-Na-SO4 and Ca-Mg-SO4 type for the cold waters and the hot waters, respectively, whereas hot waters from the second area are Na-Cl-HCO3 and Ca-Na-HCO3 type mineral poor waters. According to δ18O and δ2H isotope studies, the geothermal waters are fed from meteoric waters. Results of silica geothermometer indicate that the reservoir temperature of Dertalan, Melendiz Mount, Keçiboyduran Mount, Hasan Mount (Keçikalesi), Ziga, Acıgöl, and Derinkuyu geothermal waters are 150-173 oC, 88-117 oC, 91-120 oC, 94-122 oC, 131-156 oC, 157-179 oC; 152-174 oC and 102-130 oC, respectively. The REE composition of geothermal fluids, surface water, and mineral precipitates indicate that temperature has a strong effect on REE fractionation of the sampled fluids. Eu- and Ce- anomalies (Eu/Eu*, Ce/Ce*) are visible in several samples, which are related to the inheritance from the host reservoir rocks and redox-controlled fractionation of these elements during water-rock interactions. REE and Yttrium geochemistry results of altered rock samples and water samples, which were taken from same locations exhibited quite similar features in each system. Hence, it was conclude that the same hydrothermal fluid in geothermal system was reached to the surface and interacted with the surface rocks. Our conceptual geothermal model for Cappadocia Geothermal Province based on our geochemical and hydrogeochemical data in combination with geological and geophysical information suggest that the geothermal resources in this region are controlled by primary (active fault) and secondary (buried fault) tectonic belts. Further, our geochemical data indicate the Paleozoic-Mesozoic marble and gneiss being the reservoir rocks. Geogradient and impending heat fluxes to the surface with a possible crustal thinning, which was developed after regional tectonic activities during the Late Pliocene-Quaternary period, constitutes the heat sources. In addition, our study suggest that the Quaternary tuff and ignimbrites of Cappadocia Volcanics represent the seal rock of the geothermal system. In conclusion this study provide evidence for a significant geothermal potential in the Cappadocia region with well-defined seal rocks. However, further studies are needed to resolve the geothermal fluid source problem. Keywords: Cappadocia, geothermal systems, geochemistry, rare earth elements, hydrogeochemistry, hydrothermal alteration.

  6. Density and magnetic suseptibility values for rocks in the Talkeetna Mountains and adjacent region, south-central Alaska

    USGS Publications Warehouse

    Sanger, Elizabeth A.; Glen, Jonathan M.G.

    2003-01-01

    This report presents a compilation and statistical analysis of 306 density and 706 magnetic susceptibility measurements of rocks from south-central Alaska that were collected by U.S. Geological Survey (USGS) and Alaska Division of Geological and Geophysical Surveys (ADGGS) scientists between the summers of 1999 and 2002. This work is a product of the USGS Talkeetna Mountains Transect Project and was supported by USGS projects in the Talkeetna Mountains and Iron Creek region, and by Bureau of Land Management (BLM) projects in the Delta River Mining District that aim to characterize the subsurface structures of the region. These data were collected to constrain potential field models (i.e., gravity and magnetic) that are combined with other geophysical methods to identify and model major faults, terrane boundaries, and potential mineral resources of the study area. Because gravity and magnetic field anomalies reflect variations in the density and magnetic susceptibility of the underlying lithology, these rock properties are essential components of potential field modeling. In general, the average grain density of rocks in the study region increases from sedimentary, felsic, and intermediate igneous rocks, to mafic igneous and metamorphic rocks. Magnetic susceptibility measurements performed on rock outcrops and hand samples from the study area also reveal lower magnetic susceptibilities for sedimentary and felsic intrusive rocks, moderate susceptibility values for metamorphic, felsic extrusive, and intermediate igneous rocks, and higher susceptibility values for mafic igneous rocks. The density and magnetic properties of rocks in the study area are generally consistent with general trends expected for certain rock types.

  7. Detrital zircon analysis of Mesoproterozoic and neoproterozoic metasedimentary rocks of northcentral idaho: Implications for development of the Belt-Purcell basin

    USGS Publications Warehouse

    Lewis, R.S.; Vervoort, J.D.; Burmester, R.F.; Oswald, P.J.

    2010-01-01

    The authors analyzed detrital zircon grains from 10 metasedimentary rock samples of the Priest River complex and three other amphibolite-facies metamorphic sequences in north-central Idaho to test the previous assignment of these rocks to the Mesoproterozoic Belt-Purcell Supergroup. Zircon grains from two samples of the Prichard Formation (lower Belt) and one sample of Cambrian quartzite were also analyzed as controls with known depositional ages. U-Pb zircon analysis by laser ablation - inductively coupled plasma - mass spectrometry reveals that 6 of the 10 samples contain multiple age populations between 1900 and 1400 Ma and a scatter of older ages, similar to results reported from the Belt- Purcell Supergroup to the north and east. Results from the Priest River metamorphic complex confirm previous correlations with the Prichard Formation. Samples from the Golden and Elk City sequences have significant numbers of 1500-1380 Ma grains, which indicates that they do not predate the Belt. Rather, they are probably from a relatively young, southwestern part of the Belt Supergroup (Lemhi subbasin). Non-North American (1610-1490 Ma) grains are rare in these rocks. Three samples of quartzite from the Syringa metamorphic sequence northwest of the Idaho batholith contain zircon grains younger than the Belt Supergroup and support a Neoproterozoic age. A single Cambrian sample has abundant 1780 Ma grains and none younger than ~1750 Ma. These results indicate that the likely protoliths of many high-grade metamorphic rocks in northern Idaho were strata of the Belt-Purcell Supergroup or overlying rocks of the Neoproterozoic Windermere Supergroup and not basement rocks.

  8. Source rock potential of middle cretaceous rocks in Southwestern Montana

    USGS Publications Warehouse

    Dyman, T.S.; Palacas, J.G.; Tysdal, R.G.; Perry, W.J.; Pawlewicz, M.J.

    1996-01-01

    The middle Cretaceous in southwestern Montana is composed of a marine and nonmarine succession of predominantly clastic rocks that were deposited along the western margin of the Western Interior Seaway. In places, middle Cretaceous rocks contain appreciable total organic carbon (TOC), such as 5.59% for the Mowry Shale and 8.11% for the Frontier Formation in the Madison Range. Most samples, however, exhibit less than 1.0% TOC. The genetic or hydrocarbon potential (S1+S2) of all the samples analyzed, except one, yield less than 1 mg HC/g rock, strongly indicating poor potential for generating commercial amounts of hydrocarbons. Out of 51 samples analyzed, only one (a Thermopolis Shale sample from the Snowcrest Range) showed a moderate petroleum potential of 3.1 mg HC/g rock. Most of the middle Cretaceous samples are thermally immature to marginally mature, with vitrinite reflectance ranging from about 0.4 to 0.6% Ro. Maturity is high in the Pioneer Mountains, where vitrinite reflectance averages 3.4% Ro, and at Big Sky Montana, where vitrinite reflectance averages 2.5% Ro. At both localities, high Ro values are due to local heat sources, such as the Pioneer batholith in the Pioneer Mountains.

  9. Brittle strength of basaltic rock masses with applications to Venus

    NASA Astrophysics Data System (ADS)

    Schultz, R. A.

    1993-06-01

    Spacecraft images of surfaces with known or suspected basaltic composition on Venus (as well as on moon and Mars) indicate that these rocks have been deformed in the brittle regime to form faults and perhaps joints, in addition to folding and more distributed types of deformation. This paper presents results of detailed examinations and interpretations of Venus surface materials which show that the strengths of basaltic rocks on planetary surfaces and in the shallow subsurface are significantly different from strength values commonly used in tectonic modeling studies which assume properties of either intact rock samples or single planar shear surface.

  10. Quantifying Rock Weakening Due to Decreasing Calcite Mineral Content by Numerical Simulations

    PubMed Central

    2018-01-01

    The quantification of changes in geomechanical properties due to chemical reactions is of paramount importance for geological subsurface utilisation, since mineral dissolution generally reduces rock stiffness. In the present study, the effective elastic moduli of two digital rock samples, the Fontainebleau and Bentheim sandstones, are numerically determined based on micro-CT images. Reduction in rock stiffness due to the dissolution of 10% calcite cement by volume out of the pore network is quantified for three synthetic spatial calcite distributions (coating, partial filling and random) using representative sub-cubes derived from the digital rock samples. Due to the reduced calcite content, bulk and shear moduli decrease by 34% and 38% in maximum, respectively. Total porosity is clearly the dominant parameter, while spatial calcite distribution has a minor impact, except for a randomly chosen cement distribution within the pore network. Moreover, applying an initial stiffness reduced by 47% for the calcite cement results only in a slightly weaker mechanical behaviour. Using the quantitative approach introduced here substantially improves the accuracy of predictions in elastic rock properties compared to general analytical methods, and further enables quantification of uncertainties related to spatial variations in porosity and mineral distribution. PMID:29614776

  11. Quantifying Rock Weakening Due to Decreasing Calcite Mineral Content by Numerical Simulations.

    PubMed

    Wetzel, Maria; Kempka, Thomas; Kühn, Michael

    2018-04-01

    The quantification of changes in geomechanical properties due to chemical reactions is of paramount importance for geological subsurface utilisation, since mineral dissolution generally reduces rock stiffness. In the present study, the effective elastic moduli of two digital rock samples, the Fontainebleau and Bentheim sandstones, are numerically determined based on micro-CT images. Reduction in rock stiffness due to the dissolution of 10% calcite cement by volume out of the pore network is quantified for three synthetic spatial calcite distributions (coating, partial filling and random) using representative sub-cubes derived from the digital rock samples. Due to the reduced calcite content, bulk and shear moduli decrease by 34% and 38% in maximum, respectively. Total porosity is clearly the dominant parameter, while spatial calcite distribution has a minor impact, except for a randomly chosen cement distribution within the pore network. Moreover, applying an initial stiffness reduced by 47% for the calcite cement results only in a slightly weaker mechanical behaviour. Using the quantitative approach introduced here substantially improves the accuracy of predictions in elastic rock properties compared to general analytical methods, and further enables quantification of uncertainties related to spatial variations in porosity and mineral distribution.

  12. Paleomagnetism of the Miocene intrusive suite of Kidd Creek: Timing of deformation in the Cascade arc, southern Washington

    USGS Publications Warehouse

    Hagstrum, J.T.; Swanson, D.A.; Snee, L.W.

    1998-01-01

    Paleomagnetic study of the intrusive suite of Kidd Creek in the southern Washington Cascades (23 sites in dikes and sills) was undertaken to help determine if these rocks are comagmatic and whether they postdate regional folding of the volcanic arc. Fission track and 40Ar-39Ar age determinations indicate an age of ???12.7 Ma (middle Miocene) for these rocks. The similarity of normal-polarity characteristic directions for most samples corroborate the available geochemical data indicating that these rocks are most likely comagmatic. Reversed-polarity directions for samples from four sites, however, show that emplacement of Kidd Creek intrusions spanned at least one reversal of the geomagnetic field. The paleomagnetic directions for the dikes and sills fail a fold test at the 99% confidence level indicating that the Kidd Creek rocks postdate regional folding. The mean in situ direction also indicates that the Kidd Creek and older rocks have been rotated 22?? ?? 6?? clockwise about a vertical or near-vertical axis from the expected Miocene direction. Compression and regional folding of the Cascade arc in southern Washington therefore had ended by ???12 Ma prior to the onset of deformation resulting in rotation of these rocks.

  13. Thermochronology of Cretaceous batholithic rocks in the northern Peninsular Ranges batholith, southern California: Implications for the Late Cretaceous tectonic evolution of southern California

    USGS Publications Warehouse

    Miggins, Daniel P.; Premo, Wayne R.; Snee, Lawrence W; Yeoman, Ross; Naeaer, Nancy D.; Naeser, Charles W.; Morton, Douglas M.

    2014-01-01

    The thermochronology for several suites of Mesozoic metamorphic and plutonic rocks collected throughout the northern Peninsular Ranges batholith (PRB) was studied as part of a collaborative isotopic study to further our understanding of the magmatic and tectonic history of southern California. These sample suites include: a traverse through the plutonic rocks across the northern PRB (N = 29), a traverse across a central structural and metamorphic transition zone of mainly metasedimentary rocks at Searl ridge (N = 20), plutonic samples from several drill cores (N = 7) and surface samples (N = 2) from the Los Angeles Basin, a traverse across the Eastern Peninsular Ranges mylonite zone (N = 6), and a suite of plutonic samples collected across the northern PRB (N = 13) from which only biotite 40Ar/39Ar ages were obtained. These geochronologic data help to characterize five major petrologic, geochemical, and isotopic zonations of the PRB (western zone, WZ; western transition zone, WTZ; eastern transition zone, ETZ; eastern zone, EZ; and upper-plate zone, UPZ).Apparent cooling rates were calculated using U-Pb zircon (zr) and titanite (sphene) ages; 40Ar/39Ar ages from hornblende (hbl), biotite (bi), and K-feldspar (Kf); and apatite fission-track (AFT) ages from the same samples. The apparent cooling rates across the northern PRB vary from relatively rapid in the west (zr-hbl ~210 °C/m.y.; zr-bio ~160 °C/m.y.; zr-Kf ~80 °C/m.y.) to less rapid in the central (zr-hb ~280 °C/m.y.; zr-bio ~90 °C/m.y.; zr-Kf ~60 °C/m.y.) and eastern (zr-hbl ~185 °C/m.y.; zr-bio ~180 °C/m.y.; zr-Kf ~60 °C/m.y.) zones. An exception in the eastern zone, the massive San Jacinto pluton, appears to have cooled very rapidly (zr-bio ~385 °C/m.y.). Apparent cooling rates for the UPZ samples are consistently slower in comparison (~25–45 °C/m.y.), regardless of which geochronometers are used.Notable characteristics of the various ages from different dating methods include: (1) Zircon ages indicate a progressive younging of magmatic activity from west to east between ca. 125 and 90 Ma. (2) Various geochronometers were apparently affected by emplacement of the voluminous (ETZ and EZ) La Posta–type plutons emplaced between 99 and 91 Ma. Those minerals affected include K-feldspar in the western zone rocks, biotite and K-feldspar in the WTZ rocks, and white mica and K-feldspar in rocks from Searl ridge. (3) The AFT ages record the time the rocks cooled through the AFT closure temperature (~100 °C in these rocks), likely due to exhumation. Throughout most of the northern traverse, the apatite data indicate the rocks cooled relatively quickly through the apatite partial annealing zone (PAZ; from ~110 °C to 60 °C) and remained at temperatures less than 60 °C as continued exhumation cooled them to present-day surface temperatures. The ages indicate that the western “arc” terrane of the WZ was being uplifted and cooled at ca. 91 Ma, during or shortly after intrusion of the 99–91 Ma La Posta–type plutons to the east. Uplift and cooling occurred later, between ca. 70 Ma and ca. 55 Ma, in the central WTZ, ETZ, and EZ rocks, possibly as upwarping in response to events in the UPZ. The UPZ experienced differential exhumation at ca. 50–35 Ma: Cooling on the western edge was taking place at about the same time or shortly after cooling in the younger samples in the ETZ and EZ, whereas on the east side of the UPZ, the rocks cooled later (ca. 35 Ma) and spent a prolonged time in the apatite PAZ compared to most northern traverse samples.Apparent cooling rates from Los Angeles Basin drill core samples of plutonic rocks show that four are similar to the WTZ thermal histories, and two are similar to the WTZ histories, indicating that the eastern part of the Los Angeles Basin area is underlain by mainly western zone PRB rocks.Thermal histories revealed by samples from Searl ridge indicate that the WTZ magmatism intruded the metasedimentary rocks prior to their deformation and metamorphism at ca. 97 Ma. Both low-grade schists and metasandstones of the western side of the ridge and high-grade gneisses of the eastern side of the ridge have thermal histories consistent with eastern zone rocks—suggesting a temporal/thermal relationship between the western transition zone and the eastern zones.Limited ages from six samples across the Eastern Peninsular Ranges mylonite zone (EPRMZ) indicate that this zone underwent cooling after emplacement of the youngest UPZ rocks at 85 Ma, suggesting that thrusting along the EPRMZ was either coeval with emplacement of the UPZ plutonic rocks or occurred shortly afterwards (~10–15 m.y.). Alternatively, the EPRMZ thrusting may have occurred at temperatures under ~180 °C at yet a later date.The geochronology presented here differs slightly from previous studies for similar rocks exposed across the middle and southern portions of the PRB, in that our data define a relatively smooth progression of magmatism from west to east, and the transition from western, oceanic-arc plutonism to eastern, continental arc plutonism is interpreted to have occurred at ca. 99–97 Ma and not at ca. 105 Ma.

  14. Geophysical Signatures to Monitor Fluids and Mineralization for CO2 Sequestration in Basalts

    NASA Astrophysics Data System (ADS)

    Otheim, L. T.; Adam, L.; Van Wijk, K.; Batzle, M. L.; Mcling, T. L.; Podgorney, R. K.

    2011-12-01

    Carbon dioxide sequestration in large reservoirs can reduce emissions of this green house gas into the atmosphere. Basalts are promising host rocks due to their volumetric extend, worldwide distribution, and recent observations that CO2-water mixtures react with basalt minerals to precipitate as carbonate minerals, trapping the CO2. The chemical reaction between carbonic acid and minerals rich in calcium, magnesium and iron precipitates carbonates in the pore space. This process would increase the elastic modulus and velocity of the rock. At the same time, the higher compressibility of CO2 over water changes the elastic properties of the rock, decreasing the saturated rock bulk modulus and the P-wave velocity. Reservoirs where the rock properties change as a result of fluid or pressure changes are commonly monitored with seismic methods. Here we present experiments to study the feasibility of monitoring CO2 migration in a reservoir and CO2-rock reactions for a sequestration scenario in basalts. Our goal is to measure the rock's elastic response to mineralization with non-contacting ultrasonic lasers, and the effect of fluid substitution at reservoir conditions at seismic and ultrasonic frequencies. For the fluid substitution experiment we observe changes in the P- and S-wave velocities when saturating the sample with super-critical (sc) CO2, CO2-water mixtures and water alone for different pore and confining pressures. The bulk modulus of the rock is significantly dependent on frequency in the 2~to 106~Hz range, for CO2-water mixtures and pure water saturations. Dry and pure CO2 (sc or gas) do not show a frequency dependence on the modulus. Moreover, the shear wave modulus is not dispersive for either fluid. The frequency dependence of the elastic parameters is related to the attenuation (1/Q) of the rock. We will show the correlation between frequency dependent moduli and attenuation data for the different elastic moduli of the rocks. Three other basalt samples were stored in a pressure chamber with a sc CO2-water solution to study the effect of mineralization on the elastic properties of the rock. The rock elastic properties are recorded with non-contacting ultrasonic lasers at room conditions. After 15 weeks the first post-mineralization scan showed differences in the rock velocities with respect to the pre-mineralization scan. The analysis is done through coda wave interferometry and direct arrivals. The samples were inserted back into the pressure vessel for continuing mineralization and subsequent scans. Finally, we will discuss the applicability of Gassmann's equation and how the combination of mineralization together with CO2-water mixture affects the velocity of waves in basalt rocks.

  15. Modeling and comparative study of fluid velocities in heterogeneous rocks

    NASA Astrophysics Data System (ADS)

    Hingerl, Ferdinand F.; Romanenko, Konstantin; Pini, Ronny; Balcom, Bruce; Benson, Sally

    2013-04-01

    Detailed knowledge of the distribution of effective porosity and fluid velocities in heterogeneous rock samples is crucial for understanding and predicting spatially resolved fluid residence times and kinetic reaction rates of fluid-rock interactions. The applicability of conventional MRI techniques to sedimentary rocks is limited by internal magnetic field gradients and short spin relaxation times. The approach developed at the UNB MRI Centre combines the 13-interval Alternating-Pulsed-Gradient Stimulated-Echo (APGSTE) scheme and three-dimensional Single Point Ramped Imaging with T1 Enhancement (SPRITE). These methods were designed to reduce the errors due to effects of background gradients and fast transverse relaxation. SPRITE is largely immune to time-evolution effects resulting from background gradients, paramagnetic impurities and chemical shift. Using these techniques quantitative 3D porosity maps as well as single-phase fluid velocity fields in sandstone core samples were measured. Using a new Magnetic Resonance Imaging technique developed at the MRI Centre at UNB, we created 3D maps of porosity distributions as well as single-phase fluid velocity distributions of sandstone rock samples. Then, we evaluated the applicability of the Kozeny-Carman relationship for modeling measured fluid velocity distributions in sandstones samples showing meso-scale heterogeneities using two different modeling approaches. The MRI maps were used as reference points for the modeling approaches. For the first modeling approach, we applied the Kozeny-Carman relationship to the porosity distributions and computed respective permeability maps, which in turn provided input for a CFD simulation - using the Stanford CFD code GPRS - to compute averaged velocity maps. The latter were then compared to the measured velocity maps. For the second approach, the measured velocity distributions were used as input for inversely computing permeabilities using the GPRS CFD code. The computed permeabilities were then correlated with the ones based on the porosity maps and the Kozeny-Carman relationship. The findings of the comparative modeling study are discussed and its potential impact on the modeling of fluid residence times and kinetic reaction rates of fluid-rock interactions in rocks containing meso-scale heterogeneities are reviewed.

  16. The effect of rock particles and D2O replacement on the flow behaviour of ice.

    PubMed

    Middleton, Ceri A; Grindrod, Peter M; Sammonds, Peter R

    2017-02-13

    Ice-rock mixtures are found in a range of natural terrestrial and planetary environments. To understand how flow processes occur in these environments, laboratory-derived properties can be extrapolated to natural conditions through flow laws. Here, deformation experiments have been carried out on polycrystalline samples of pure ice, ice-rock and D 2 O-ice-rock mixtures at temperatures of 263, 253 and 233 K, confining pressure of 0 and 48 MPa, rock fraction of 0-50 vol.% and strain-rates of 5 × 10 -7 to 5 × 10 -5  s -1 Both the presence of rock particles and replacement of H 2 O by D 2 O increase bulk strength. Calculated flow law parameters for ice and H 2 O-ice-rock are similar to literature values at equivalent conditions, except for the value of the rock fraction exponent, here found to be 1. D 2 O samples are 1.8 times stronger than H 2 O samples, probably due to the higher mass of deuterons when compared with protons. A gradual transition between dislocation creep and grain-size-sensitive deformation at the lowest strain-rates in ice and ice-rock samples is suggested. These results demonstrate that flow laws can be found to describe ice-rock behaviour, and should be used in modelling of natural processes, but that further work is required to constrain parameters and mechanisms for the observed strength enhancement.This article is part of the themed issue 'Microdynamics of ice'. © 2016 The Author(s).

  17. The effect of rock particles and D2O replacement on the flow behaviour of ice

    PubMed Central

    Grindrod, Peter M.

    2017-01-01

    Ice–rock mixtures are found in a range of natural terrestrial and planetary environments. To understand how flow processes occur in these environments, laboratory-derived properties can be extrapolated to natural conditions through flow laws. Here, deformation experiments have been carried out on polycrystalline samples of pure ice, ice–rock and D2O-ice–rock mixtures at temperatures of 263, 253 and 233 K, confining pressure of 0 and 48 MPa, rock fraction of 0–50 vol.% and strain-rates of 5 × 10−7 to 5 × 10−5 s−1. Both the presence of rock particles and replacement of H2O by D2O increase bulk strength. Calculated flow law parameters for ice and H2O-ice–rock are similar to literature values at equivalent conditions, except for the value of the rock fraction exponent, here found to be 1. D2O samples are 1.8 times stronger than H2O samples, probably due to the higher mass of deuterons when compared with protons. A gradual transition between dislocation creep and grain-size-sensitive deformation at the lowest strain-rates in ice and ice–rock samples is suggested. These results demonstrate that flow laws can be found to describe ice–rock behaviour, and should be used in modelling of natural processes, but that further work is required to constrain parameters and mechanisms for the observed strength enhancement. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025298

  18. Image analysis for quantification of bacterial rock weathering.

    PubMed

    Puente, M Esther; Rodriguez-Jaramillo, M Carmen; Li, Ching Y; Bashan, Yoav

    2006-02-01

    A fast, quantitative image analysis technique was developed to assess potential rock weathering by bacteria. The technique is based on reduction in the surface area of rock particles and counting the relative increase in the number of small particles in ground rock slurries. This was done by recording changes in ground rock samples with an electronic image analyzing process. The slurries were previously amended with three carbon sources, ground to a uniform particle size and incubated with rock weathering bacteria for 28 days. The technique was developed and tested, using two rock-weathering bacteria Pseudomonas putida R-20 and Azospirillum brasilense Cd on marble, granite, apatite, quartz, limestone, and volcanic rock as substrates. The image analyzer processed large number of particles (10(7)-10(8) per sample), so that the weathering capacity of bacteria can be detected.

  19. Influence of porosity and groundmass crystallinity on dome rock strength: a case study from Mt. Taranaki, New Zealand

    NASA Astrophysics Data System (ADS)

    Zorn, Edgar U.; Rowe, Michael C.; Cronin, Shane J.; Ryan, Amy G.; Kennedy, Lori A.; Russell, James K.

    2018-04-01

    Lava domes pose a significant hazard to infrastructure, human lives and the environment when they collapse. Their stability is partly dictated by internal mechanical properties. Here, we present a detailed investigation into the lithology and composition of a < 250-year-old lava dome exposed at the summit of Mt. Taranaki in the western North Island of New Zealand. We also examined samples from 400 to 600-year-old block-and-ash flow deposits, formed by the collapse of earlier, short-lived domes extruded at the same vent. Rocks with variable porosity and groundmass crystallinity were compared using measured compressive and tensile strength, derived from deformation experiments performed at room temperature and low (3 MPa) confining pressures. Based on data obtained, porosity exerts the main control on rock strength and mode of failure. High porosity (> 23%) rocks show low rock strength (< 41 MPa) and dominantly ductile failure, whereas lower porosity rocks (5-23%) exhibit higher measured rock strengths (up to 278 MPa) and brittle failure. Groundmass crystallinity, porosity and rock strength are intercorrelated. High groundmass crystal content is inversely related to low porosity, implying crystallisation and degassing of a slowly undercooled magma that experienced rheological stiffening under high pressures deeper within the conduit. This is linked to a slow magma ascent rate and results in a lava dome with higher rock strength. Samples with low groundmass crystallinity are associated with higher porosity and lower rock strength, and represent magma that ascended more rapidly, with faster undercooling, and solidification in the upper conduit at low pressures. Our experimental results show that the inherent strength of rocks within a growing dome may vary considerably depending on ascent/emplacement rates, thus significantly affecting dome stability and collapse hazards.

  20. Mechanical and physical properties of hydrothermally altered rocks, Taupo Volcanic Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Wyering, L. D.; Villeneuve, M. C.; Wallis, I. C.; Siratovich, P. A.; Kennedy, B. M.; Gravley, D. M.; Cant, J. L.

    2014-11-01

    Mechanical characterization of hydrothermally altered rocks from geothermal reservoirs will lead to an improved understanding of rock mechanics in a geothermal environment. To characterize rock properties of the selected formations, we prepared samples from intact core for non-destructive (porosity, density and ultrasonic wave velocities) and destructive laboratory testing (uniaxial compressive strength). We characterised the hydrothermal alteration assemblage using optical mineralogy and existing petrography reports and showed that lithologies had a spread of secondary mineralisation that occurred across the smectite, argillic and propylitic alteration zones. The results from the three geothermal fields show a wide variety of physical rock properties. The testing results for the non-destructive testing shows that samples that originated from the shallow and low temperature section of the geothermal field had higher porosity (15 - 56%), lower density (1222 - 2114 kg/m3) and slower ultrasonic waves (1925 - 3512 m/s (vp) and 818 - 1980 m/s (vs)), than the samples from a deeper and higher temperature section of the field (1.5 - 20%, 2072 - 2837 kg/m3, 2639 - 4593 m/s (vp) and 1476 - 2752 m/s (vs), respectively). The shallow lithologies had uniaxial compressive strengths of 2 - 75 MPa, and the deep lithologies had strengths of 16 - 211 MPa. Typically samples of the same lithologies that originate from multiple wells across a field have variable rock properties because of the different alteration zones from which each sample originates. However, in addition to the alteration zones, the primary rock properties and burial depth of the samples also have an impact on the physical and mechanical properties of the rock. Where this data spread exists, we have been able to derive trends for this specific dataset and subsequently have gained an improved understanding of how hydrothermal alteration affects physical and mechanical properties.

  1. The Surface Chemical Composition of Lunar Samples and Its Significance for Optical Properties

    NASA Technical Reports Server (NTRS)

    Gold, T.; Bilson, E.; Baron, R. L.

    1976-01-01

    The surface iron, titanium, calcium, and silicon concentration in numerous lunar soil and rock samples was determined by Auger electron spectroscopy. All soil samples show a large increase in the iron to oxygen ratio compared with samples of pulverized rock or with results of the bulk chemical analysis. A solar wind simulation experiment using 2 keV energy alpha -particles showed that an ion dose corresponding to approximately 30,000 years of solar wind increased the iron concentration on the surface of the pulverized Apollo 14 rock sample 14310 to the concentration measured in the Apollo 14 soil sample 14163, and the albedo of the pulverized rock decreased from 0.36 to 0.07. The low albedo of the lunar soil is related to the iron + titanium concentration on its surface. A solar wind sputter reduction mechanism is discussed as a possible cause for both the surface chemical and optical properties of the soil.

  2. Study on acoustic-electric-heat effect of coal and rock failure processes under uniaxial compression

    NASA Astrophysics Data System (ADS)

    Li, Zhong-Hui; Lou, Quan; Wang, En-Yuan; Liu, Shuai-Jie; Niu, Yue

    2018-02-01

    In recent years, coal and rock dynamic disasters are becoming more and more severe, which seriously threatens the safety of coal mining. It is necessary to carry out an depth study on the various geophysical precursor information in the process of coal and rock failure. In this paper, with the established acoustic-electric-heat multi-parameter experimental system of coal and rock, the acoustic emission (AE), surface potential and thermal infrared radiation (TIR) signals were tested and analyzed in the failure processes of coal and rock under the uniaxial compression. The results show that: (1) AE, surface potential and TIR have different response characteristics to the failure process of the sample. AE and surface potential signals have the obvious responses to the occurrence, extension and coalescence of cracks. The abnormal TIR signals occur at the peak and valley points of the TIR temperature curve, and are coincident with the abnormities of AE and surface potential to a certain extent. (2) The damage precursor points and the critical precursor points were defined to analyze the precursor characteristics reflected by AE, surface potential and TIR signals, and the different signals have the different precursor characteristics. (3) The increment of the maximum TIR temperature after the main rupture of the sample is significantly higher than that of the average TIR temperature. Compared with the maximum TIR temperature, the average TIR temperature has significant hysteresis in reaching the first peak value after the main rapture. (4) The TIR temperature contour plots at different times well show the evolution process of the surface temperature field of the sample, and indicate that the sample failure originates from the local destruction.

  3. [X-ray diffraction (XRD) and near infrared spectrum (NIR) analysis of the soil overlying the Bairendaba deposit of the Inner Mongolia Grassland].

    PubMed

    Luo, Song-ying; Cao, Jian-jin; Wu, Zheng-quan

    2014-08-01

    The soil samples uniformly overlying the Bairendaba deposit of the Inner Mongolia grassland were collected, and ana- lyzed with X-ray diffraction (XRD) and near infrared spectrum (NIR), for exploring the origins of the soil from the, grassland mining area and the relationship with the underground rock. The results show that the samp]s consist of quartz, graphite, carbonate, hornblende, mica, chlorite, montmorillonite, illite, berlinite, diaspore, azurite, hen tite, etc. These indicate that the soil samples were not only from the weathering products of the surface rock, but also from the underground rock mass and the alteration of the wall rock. The azurite and the hematite contained in the soil, mainly coming from the oxidation zone of the orebodies, can be used as the prospecting marks. The alteration mineral assemblage is mainly chlorite-illite-montmorillonite and it experienced the alteration process of potassic alteration-->silicification-->carbonatization-->silk greisenization-->clayization. Also, the wall rock alteration and the physical weathering processes can be accurately restored by analyzing the combination of the alteration minerals, which can provide important reference information for the deep ore prospecting and the ore deposit genesis study, improving the rate of the prospecting. The XRD and NIR with the characteristics of the economy and quickness can be used for the identification of mineral composition of soil, and in the study of mineral and mineral deposits. Especially, NIR has its unique superiority, that is, its sample request is low, and it can analyze a batch of samples quickly. With the development of INR, it will be more and more widely applied in geological field, and can play an important role in the ore exploration.

  4. Structural characterization and numerical simulations of flow properties of standard and reservoir carbonate rocks using micro-tomography

    NASA Astrophysics Data System (ADS)

    Islam, Amina; Chevalier, Sylvie; Sassi, Mohamed

    2018-04-01

    With advances in imaging techniques and computational power, Digital Rock Physics (DRP) is becoming an increasingly popular tool to characterize reservoir samples and determine their internal structure and flow properties. In this work, we present the details for imaging, segmentation, as well as numerical simulation of single-phase flow through a standard homogenous Silurian dolomite core plug sample as well as a heterogeneous sample from a carbonate reservoir. We develop a procedure that integrates experimental results into the segmentation step to calibrate the porosity. We also look into using two different numerical tools for the simulation; namely Avizo Fire Xlab Hydro that solves the Stokes' equations via the finite volume method and Palabos that solves the same equations using the Lattice Boltzmann Method. Representative Elementary Volume (REV) and isotropy studies are conducted on the two samples and we show how DRP can be a useful tool to characterize rock properties that are time consuming and costly to obtain experimentally.

  5. Developing a thermal characteristic index for lithology identification using thermal infrared remote sensing data

    NASA Astrophysics Data System (ADS)

    Wei, Jiali; Liu, Xiangnan; Ding, Chao; Liu, Meiling; Jin, Ming; Li, Dongdong

    2017-01-01

    In remote sensing petrology fields, studies have mainly concentrated on spectroscopy remote sensing research, and methods to identify minerals and rocks are mainly based on the analysis and enhancement of spectral features. Few studies have reported the application of thermodynamics for lithology identification. This paper aims to establish a thermal characteristic index (TCI) to explore rock thermal behavior responding to defined environmental systems. The study area is located in the northern Qinghai Province, China, on the northern edge of the Qinghai-Tibet Plateau, where mafic-ultramafic rock, quartz-rich rock, alkali granite rock and carbonate rock are well exposed; the pixel samples of these rocks and vegetation were obtained based on relevant indices and geological maps. The scatter plots of TCI indicate that mafic-ultramafic rock and quartz-rich rock can be well extracted from other surface objects when interference from vegetation is lower. On account of the complexity of environmental systems, three periods of TCI were used to construct a three-dimensional scatter plot, named the multi-temporal thermal feature space (MTTFS) model. Then, the Bayes discriminant analysis algorithm was applied to the MTTFS model to extract rocks quantitatively. The classification accuracy of mafic-ultramafic rock is more than 75% in both training data and test data, which suggests TCI can act as a sensitive indicator to distinguish rocks and the MTTFS model can accurately extract mafic-ultramafic rock from other surface objects. We deduce that the use of thermodynamics is promising in lithology identification when an effective index is constructed and an appropriated model is selected.

  6. He, Ne and Ar systematics in single vesicles: Mantle isotopic ratios and origin of the air component in basaltic glasses

    NASA Astrophysics Data System (ADS)

    Raquin, Aude; Moreira, Manuel Alexis; Guillon, Fabien

    2008-09-01

    An outstanding problem in understanding the origin of the gaseous phase, particularly the rare gas compositions in magmatic rocks, is the ubiquitous atmospheric component in bulk rock samples, and whether this atmospheric component is a late stage contamination of the sample, or a recycled component though sediments or altered oceanic crust. In the present study we address this problem by analyzing single vesicles from the "popping rock 2∏D43" sample from the Mid-Atlantic Ridge using a UV laser ablation system. We have determined both elemental and isotopic compositions of He, Ne and Ar in single vesicles as well as Kr and Xe abundances. All vesicles analyzed have an isotopic composition identical to the referred degassed mantle value estimated from this same sample, despite analyzing vesicles from a wide size distribution. The atmospheric component, which is always detected in bulk samples by crushing or heating, was not detected in the single vesicles. This implies that the recycling of atmospheric noble gases in the mantle cannot explain the air-like component of this sample. The addition of the atmospheric component must occur either during the eruption, or after sample recovery.

  7. Direct measurement of 3D elastic anisotropy on rocks from the Ivrea zone (Southern Alps, NW Italy)

    NASA Astrophysics Data System (ADS)

    Pros, Z.; Lokajíček, T.; Přikryl, R.; Klíma, K.

    2003-07-01

    Lower crustal and upper mantle rocks exposed at the earth's surface present direct possibility to measure their physical properties that must be, in other cases, interpreted using indirect methods. The results of these direct measurements can be then used for the corrections of models based on the indirect data. Elastic properties are among the most important parameters studied in geophysics and employed in many fields of earth sciences. In laboratory, dynamic elastic properties are commonly tested in three mutually perpendicular directions. The spatial distribution of P- and S-wave velocities are then computed using textural data, modal composition, density and elastic constants. During such computation, it is virtually impossible to involve all microfabric parameters like different types of microcracking, micropores, mineral alteration or quality of grain boundaries. In this study, complete 3D ultrasonic transmission of spherical samples in 132 independent directions at several levels of confining pressure up to 400 MPa has been employed for study of selected mafic and ultrabasic rocks sampled in and nearby Balmuccia ultrabasic massif (Ivrea zone, Southern Alps, NW Italy). This method revealed large directional variance of maximum P-wave velocity and different symmetries (orthorhombic vs. transversal isotropic) of elastic waves 3D distribution that has not been recorded on these rocks before. Moreover, one dunite sample exhibits P-wave velocity approaching to that of olivine single crystal being interpreted as influence of CPO.

  8. Effect of concentration of dispersed organic matter on optical maturity parameters: Interlaboratory results of the organic matter concentration working group of the ICCP.

    USGS Publications Warehouse

    Mendonca, Filho J.G.; Araujo, C.V.; Borrego, A.G.; Cook, A.; Flores, D.; Hackley, P.; Hower, J.C.; Kern, M.L.; Kommeren, K.; Kus, J.; Mastalerz, Maria; Mendonca, J.O.; Menezes, T.R.; Newman, J.; Ranasinghe, P.; Souza, I.V.A.F.; Suarez-Ruiz, I.; Ujiie, Y.

    2010-01-01

    The main objective of this work was to study the effect of the kerogen isolation procedures on maturity parameters of organic matter using optical microscopes. This work represents the results of the Organic Matter Concentration Working Group (OMCWG) of the International Committee for Coal and Organic Petrology (ICCP) during the years 2008 and 2009. Four samples have been analysed covering a range of maturity (low and moderate) and terrestrial and marine geological settings. The analyses comprise random vitrinite reflectance measured on both kerogen concentrate and whole rock mounts and fluorescence spectra taken on alginite. Eighteen participants from twelve laboratories from all over the world performed the analyses. Samples of continental settings contained enough vitrinite for participants to record around 50 measurements whereas fewer readings were taken on samples from marine setting. The scatter of results was also larger in the samples of marine origin. Similar vitrinite reflectance values were in general recorded in the whole rock and in the kerogen concentrate. The small deviations of the trend cannot be attributed to the acid treatment involved in kerogen isolation but to reasons related to components identification or to the difficulty to achieve a good polish of samples with high mineral matter content. In samples difficult to polish, vitrinite reflectance was measured on whole rock tended to be lower. The presence or absence of rock fabric affected the selection of the vitrinite population for measurement and this also had an influence in the average value reported and in the scatter of the results. Slightly lower standard deviations were reported for the analyses run on kerogen concentrates. Considering the spectral fluorescence results, it was observed that the ??max presents a shift to higher wavelengths in the kerogen concentrate sample in comparison to the whole-rock sample, thus revealing an influence of preparation methods (acid treatment) on fluorescence properties. ?? 2010 Elsevier B.V.

  9. Rock Physical Interpretation of the Relationship between Dynamic and Static Young's Moduli of Sedimentary Rocks

    NASA Astrophysics Data System (ADS)

    Takahashi, T.

    2017-12-01

    The static Young's modulus (deformability) of a rock is indispensable for designing and constructing tunnels, dams and underground caverns in civil engineering. Static Young's modulus which is an elastic modulus at large strain level is usually obtained with the laboratory tests of rock cores sampled in boreholes drilled in a rock mass. A deformability model of the entire rock mass is then built by extrapolating the measurements based on a rock mass classification obtained in geological site characterization. However, model-building using data obtained from a limited number of boreholes in the rock mass, especially a complex rock mass, may cause problems in the accuracy and reliability of the model. On the other hand, dynamic Young's modulus which is the modulus at small strain level can be obtained from seismic velocity. If dynamic Young's modulus can be rationally converted to static one, a seismic velocity model by the seismic method can be effectively used to build a deformability model of the rock mass. In this study, we have, therefore, developed a rock physics model (Mavko et al., 2009) to estimate static Young's modulus from dynamic one for sedimentary rocks. The rock physics model has been generally applied to seismic properties at small strain level. In the proposed model, however, the sandy shale model, one of rock physics models, is extended for modeling the static Young's modulus at large strain level by incorporating the mixture of frictional and frictionless grain contacts into the Hertz-Mindlin model. The proposed model is verified through its application to the dynamic Young's moduli derived from well log velocities and static Young's moduli measured in the tri-axial compression tests of rock cores sampled in the same borehole as the logs were acquired. This application proves that the proposed rock physics model can be possibly used to estimate static Young's modulus (deformability) which is required in many types of civil engineering applications from seismically derived dynamic Young's modulus. References:Mavko, G., Mukerji, T. and Dvorkin, J., 2009, The Rock Physics Handbook, 2nd Edition, Cambridge University Press, Cambridge.

  10. A compilation of K-Ar-ages for southern California

    USGS Publications Warehouse

    Miller, Fred K.; Morton, Douglas M.; Morton, Janet L.; Miller, David M.

    2014-01-01

    The purpose of this report is to make available a large body of conventional K-Ar ages for granitic, volcanic, and metamorphic rocks collected in southern California. Although one interpretive map is included, the report consists primarily of a systematic listing, without discussion or interpretation, of published and unpublished ages that may be of value in future regional and other geologic studies. From 1973 to 1979, 468 rock samples from southern California were collected for conventional K-Ar dating under a regional geologic mapping project of Southern California (predecessor of the Southern California Areal Mapping Project). Most samples were collected and dated between 1974 and 1977. For 61 samples (13 percent of those collected), either they were discarded for varying reasons, or the original collection data were lost. For the remaining samples, 518 conventional K-Ar ages are reported here; coexisting mineral pairs were dated from many samples. Of these K-Ar ages, 225 are previously unpublished, and identified as such in table 1. All K-Ar ages are by conventional K-Ar analysis; no 40Ar/39Ar dating was done. Subsequent to the rock samples collected in the 1970s and reported here, 33 samples were collected and 38 conventional K-Ar ages determined under projects directed at (1) characterization of the Mesozoic and Cenozoic igneous rocks in and on both sides of the Transverse Ranges and (2) clarifying the Mesozoic and Cenozoic tectonics of the eastern Mojave Desert. Although previously published (Beckerman et al., 1982), another eight samples and 11 conventional K-Ar ages are included here, because they augment those completed under the previous two projects.

  11. Petrophysics Features of the Hydrocarbon Reservoirs in the Precambrian Crystalline Basement

    NASA Astrophysics Data System (ADS)

    Plotnikova, Irina

    2014-05-01

    A prerequisite for determining the distribution patterns of reservoir zones on the section of crystalline basement (CB) is the solution of a number of problems connected with the study of the nature and structure of empty spaces of reservoirs with crystalline basement (CB) and the impact of petrological, and tectonic factors and the intensity of the secondary transformation of rocks. We decided to choose the Novoelhovskaya well # 20009 as an object of our research because of the following factors. Firstly, the depth of the drilling of the Precambrian crystalline rocks was 4077 m ( advance heading - 5881 m) and it is a maximum for the Volga-Urals region. Secondly, petrographic cut of the well is made on core and waste water, and the latter was sampled regularly and studied macroscopically. Thirdly, a wide range of geophysical studies were performed for this well, which allowed to identify promising areas of collector with high probability. Fourth, along with geological and technical studies that were carried out continuously (including washing and bore hole redressing periods), the studies of the gaseous component of deep samples of clay wash were also carried out, which indirectly helped us estimate reservoir properties and fluid saturation permeable zones. As a result of comprehensive analysis of the stone material and the results of the geophysical studies we could confidently distinguish 5 with strata different composition and structure in the cut of the well. The dominating role in each of them is performed by rocks belonging to one of the structural-material complexes of Archean, and local variations in composition and properties are caused by later processes of granitization on different stages and high temperature diaphthoresis imposed on them. Total capacity of reservoir zones identified according to geophysical studies reached 1034.2 m, which corresponds to 25.8% of the total capacity of 5 rock masses. However, the distribution of reservoirs within the cut is uneven. The manifestation of reservoir properties of crystalline rocks and their gas content is to a high degree connected with those parts of the cut of the well that are represented by Bolshecheremshanskaya series of rocks. The analysis of the distribution of reservoir intervals that were identified in the well section # 20009 according to the geophysical studies showed that they tend to coincide with the intervals of intensive secondary changes and rock breaking, or with contacts of series of rocks or thick layers of rocks that differ greatly in physical and mechanical properties. About half of the potential reservoir zones are characterized by explicit, well-defined fractures, which was determined according to core and wastewater samples, as well as with the help of caliper gauge. The rocks of a Bolshecheremshanskaya series were more exposed to the repeated impact of the parallel processes (mylonitization, diaphtoresis, migmatization, etc.), or they were simply more affected by these processes, and that led to the characteristic distribution of collector areas, temperature and gas anomalies along the borehole cut. The presence of Bolshecheremshanskaya quartz series in the material composition of the rocks caused, firstly, increased amount of fractures, and secondly, the preservation of the porous-cavernous space frame within the superimposed secondary processes.

  12. Identification of a Suitable 3D Printing Material for Mimicking Brittle and Hard Rocks and Its Brittleness Enhancements

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Zhu, J. B.

    2018-03-01

    Three-dimensional printing (3DP) is a computer-controlled additive manufacturing technique which is able to repeatedly and accurately fabricate objects with complicated geometry and internal structures. After 30 years of fast development, 3DP has become a mainstream manufacturing process in various fields. This study focuses on identifying the most suitable 3DP material from five targeted available 3DP materials, i.e. ceramics, gypsum, PMMA (poly(methyl methacrylate)), SR20 (acrylic copolymer) and resin (Accura® 60), to simulate brittle and hard rocks. Firstly, uniaxial compression tests were performed to determine the mechanical properties and failure patterns of the 3DP samples fabricated by those five materials. Experimental results indicate that among current 3DP techniques, the resin produced via stereolithography (SLA) is the most suitable 3DP material for mimicking brittle and hard rocks, although its brittleness needs to be improved. Subsequently, three methods including freezing, incorporation of internal macro-crack and addition of micro-defects were adopted to enhance the brittleness of the 3DP resin, followed by uniaxial compression tests on the treated samples. Experimental results reveal that 3DP resin samples with the suggested treatments exhibited brittle properties and behaved similarly to natural rocks. Finally, some prospective improvements which can be used to facilitate the application of 3DP techniques to rock mechanics were also discussed. The findings of this paper could contribute to promoting the application of 3DP technique in rock mechanics.

  13. Geometrical properties of a discontinuity network in gneissic rock, a case study in high alpine terrain

    NASA Astrophysics Data System (ADS)

    Koppensteiner, Matthias; Zangerl, Christian

    2017-04-01

    For the purposes of estimating slope stability and investigating landslide formation processes, it is indispensable to obtain information about the discontinuity properties of the rock mass. These properties control failure processes, deformation behaviour and groundwater flow. Scanline measurements represent a systematic surveying method, however they make certain demands in case of natural outcorps in a high alpine terrain. The performance of the scanline method is tested and the thereby obtained and evaluated data is compared to findings from other studies. An area of a well exposed, fractured rock mass composed of granodioritic gneisses in the Oetztal-Stubai crytalline basement of the Alps (Austria) has been chosen to perform the investigations. Eight scanlines have been measured on a single hillside with varying lengths between 8 and 30 meters. The orientations of the scanlines have been varied in order to minimize the sampling bias associated with the angle between the scanlines and the intersected discontinuities. For every intersecting discontinuity at a certain tape length, the orientation, the trace length and the terminations of the trace have been recorded. Primarily, the discontinuity data from all scanlines have been analyzed with the software package Dips (Rocscience, 1989) in order to determine their allocation in sets. For the evaluation of the spacing and trace length properties, two scripts have been developed in the language Matlab (The MathWorks, 1984) to faciliate setwise processing of the entire dataset. Variation of the scanline directions and lengths returned homogeneous sample sizes for the individual discontinuity sets. Both, normal spacings and trace lengths show negative exponential distributions for all sets. A comparison of four different methods to estimate trace lengths show that the result is highly dependent on the chosen method itself. However, when the relation of the results for the respective sets within one of the methods is considered, the consistency is obvious. Scanline measurements and analyses provide siginificant results for discontinuity properties under the described circumstances. Considering sampling biases, the obtained dataset is even benefiting from the randomized sampling process, due to the natural terrain. The scanline survey provides a statistical database which can be used for rock mass characterization. Geometrical rock mass characterization is essential to model the in-situ block size distribution, to estimate the degree of fracturing and rock mass anisotropy for quarry oder tunnelling projects or define the mechanical rock mass properties based on classifications systems. The study should contribute a reference for the development and application of other methods for investigating discontinuity properties in instable rock masses.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broxton, D.E.

    A total of 338 water and 1877 sediment samples were collected over a 20,700-km/sup 2/ area from 2125 locations at a nominal density of one sample per 10 km/sup 2/. Water samples were collected from wells, streams, springs, and artificial ponds. Sediment samples were collected from streams, springs, natural ponds, and artificial ponds. Arbitrary anomaly thresholds of two standard deviations above the mean were chosen for both water and sediment sample populations. The U concentrations in waters collected in the Tularosa quadrangle range from below the detection limit of 0.2 parts per billion (ppB) to 57.8 ppB. Most clusters ofmore » water samples containing anomalously high uranium concentrations were collected from locations in uplifts underlain either by volcanic rocks of the mid-Tertiary Datil group or by sedimentary rocks of late Paleozoic and Mesozoic age. Other groups of anomalous waters are from wells that tap Cenozoic aquifers in the intermontane basins. In those areas where the water-sample location coverage is adequate, the known U occurrences are generally associated with high or anomalous U concentrations in water samples. With the exception of one sample with a U concentration of 67.7 ppM, sediments collected in this study have U concentrations that range between 0.2 and 15.2 ppM. Most sediments with U concentrations above the arbitrary anomaly threshold value are from locations which occur in or parallel outcrops of Precambrian crystalline rock exposed in the San Andres and Oscura Mountains. Other anomalous sediments occur as more discreet groups in areas underlain by mid-Tertiary volcanic rocks of the Datil group. Several anomalous samples from the Mogollon-Datil volcanic field were collected along ring fracture systems that surround large volcanic cauldrons.« less

  15. Occurrence and Distribution of Organic Wastewater Compounds in Rock Creek Park, Washington, D.C., 2007-08

    USGS Publications Warehouse

    Phelan, Daniel J.; Miller, Cherie V.

    2010-01-01

    The U.S. Geological Survey, and the National Park Service Police Aviation Group, conducted a high-resolution, low-altitude aerial thermal infrared survey of the Washington, D.C. section of Rock Creek Basin within the Park boundaries to identify specific locations where warm water was discharging from seeps or pipes to the creek. Twenty-three stream sites in Rock Creek Park were selected based on the thermal infrared images. Sites were sampled during the summers of 2007 and 2008 for the analysis of organic wastewater compounds to verify potential sources of sewage and other anthropogenic wastewater. Two sets of stormwater samples were collected, on June 27-28 and September 6, 2008, at the Rock Creek at Joyce Road water-quality station using an automated sampler that began sampling when a specified stage threshold value was exceeded. Passive-sampler devices that accumulate organic chemicals over the duration of deployment were placed in July 2008 at the five locations that had the greatest number of detections of organic wastewater compounds from the June 2007 base-flow sampling. During the 2007 base-flow synoptic sampling, there were ubiquitous low-level detections of dissolved organic wastewater indicator compounds such as DEET, caffeine, HHCB, and organophosphate flame retardants at more than half of the 23 sites sampled in Rock Creek Park. Concentrations of DEET and caffeine in the tributaries to Rock Creek were variable, but in the main stem of Rock Creek, the concentrations were constant throughout the length of the creek, which likely reflects a distributed source. Organophosphate flame retardants in the main stem of Rock Creek were detected at estimated concentrations of 0.2 micrograms per liter or less, and generally did not increase with distance downstream. Overall, concentrations of most wastewater indicators in whole-water samples in the Park were similar to the concentrations found at the upstream sampling station at the Maryland/District of Columbia boundary. Polycyclic aromatic hydrocarbons were the dominant organic compounds found in the stormwater samples at the Joyce Road station. Polycyclic aromatic hydrocarbons were consistently found in higher concentrations either in sediment or in whole-water samples than in the dissolved samples collected during base-flow conditions at the 23 synoptic sites, or in the Joyce Road station stormwater samples.

  16. Microbial taxonomic diversity and adaptation mechanisms in lithic ecosystems of the northern Victoria Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, O. S.; Lee, J.; Cho, J. H.; Kwon, M.; Cho, A.; Kim, M.; Woo, J.; Hong, S. G.; Lee, J.

    2016-12-01

    Rock is one of the best habitat for microorganisms in Antarctica, providing the good condition to avoid strong sunlight and wind. Furthermore, geochemistry in rock can provide as nutrients for microorganisms. Barren rock can be considered as an ecosystem by fouling, which is defined as the settlement of organisms and their growth. These life forms have the specialized mechanism to adapt the harsh environmental conditions such as a below subzero temperature, a unique annual light/dark cycle, wind chill and limited water availability and nutrient supply. However, little is known about the microbial communities and their adaptation mechanisms in this harsh environments. In this study, we focus on the microbial ecology in order to understand what kind of microorganisms are present based on culture-dependent and -independent methods collected barren rock samples from the northern Victoria Land, Antarctica. Additionally, we present the complete genome sequence of Cryobacterium arcticum PAMC 27867, one of the isolates from these rock samples, in order to understand the microbial adaptation strategies in lithic ecosystems, Antarctica.

  17. Lattice Boltzmann heat transfer model for permeable voxels

    NASA Astrophysics Data System (ADS)

    Pereira, Gerald G.; Wu, Bisheng; Ahmed, Shakil

    2017-12-01

    We develop a gray-scale lattice Boltzmann (LB) model to study fluid flow combined with heat transfer for flow through porous media where voxels may be partially solid (or void). Heat transfer in rocks may lead to deformation, which in turn can modulate the fluid flow and so has significant contribution to rock permeability. The LB temperature field is compared to a finite difference solution of the continuum partial differential equations for fluid flow in a channel. Excellent quantitative agreement is found for both Poiseuille channel flow and Brinkman flow. The LB model is then applied to sample porous media such as packed beds and also more realistic sandstone rock sample, and both the convective and diffusive regimes are recovered when varying the thermal diffusivity. It is found that while the rock permeability can be comparatively small (order milli-Darcy), the temperature field can show significant variation depending on the thermal convection of the fluid. This LB method has significant advantages over other numerical methods such as finite and boundary element methods in dealing with coupled fluid flow and heat transfer in rocks which have irregular and nonsmooth pore spaces.

  18. Factors affecting occurrence and distribution of selected contaminants in ground water from selected areas in the Piedmont Aquifer System, Eastern United States, 1993-2003

    USGS Publications Warehouse

    Lindsey, Bruce D.; Falls, W. Fred; Ferrari, Matthew J.; Zimmerman, Tammy M.; Harned, Douglas A.; Sadorf, Eric M.; Chapman, Melinda J.

    2006-01-01

    Results of ground-water sampling from 255 wells and 19 springs in 11 studies done by the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program within the Piedmont Aquifer System (PAS) were analyzed to determine the factors affecting occurrence and distribution of selected contaminants. The contaminants, which were selected on the basis of potential human-health effects, included nitrate, pesticides, volatile organic compounds (VOCs), and radon.The PAS was subdivided on the basis of the general rock type of the aquifers into three areas for the study—crystalline, carbonate, and siliciclastic. The 11 studies were designed to areally represent an individual aquifer rock type and overall are representative of the PAS in their distribution; 7 studies are in the crystalline-rock aquifers, 3 studies are in the siliciclasticrock aquifers, and 1 study is in the carbonate-rock aquifers. Four of the studies were focused on land use, 1 in an agricultural area and 3 in urban areas. The remaining studies had wells representing a range of land-use types.Analysis of results of nitrate sampling indicated that in 8 of the 10 areas where nitrate concentrations were measured, median concentrations of nitrate were below 3 mg/L (milligrams per liter); 2 of the 10 areas had statistically significant higher median concentrations when compared to the other 8 areas. The agricultural land-use study in the carbonate-rock aquifer in the Lower Susquehanna River Basin had the highest median nitrate concentration (11 mg/L), and 60 percent of the wells sampled exceeded the U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL) of 10 mg/L. The major aquifer study in the crystalline-rock aquifer of the Lower Susquehanna River Basin Study Unit had the second-highest median nitrate concentration. Nitrate concentrations were positively correlated to the percentage of agricultural land use around the well, the total input of nitrogen from all sources, dissolved oxygen concentration, lithology, depth to water, and soil-matrix characteristics. A linear regression model was used to determine that increases in the percentage of agricultural land use, the input of nitrogen from all sources, and dissolved oxygen were the most significant variables affecting increased concentration of nitrate. A logistic regression model was used to determine that those same factors were the most significant variables affecting whether or not the nitrate concentration would exceed 4 mg/L.Of the analysis of samples from 253 wells and 19 springs for 47 pesticides, no sample had a pesticide concentration that exceeded any USEPA MCL. The most frequently detected pesticide was desethyl atrazine, a degradation product of atrazine; the detection frequency was 47 percent. Other frequently detected pesticides included atrazine, metolachlor, simazine, alachlor, prometon, and dieldrin. Detection frequency was affected by the analytical reporting limits; the frequency of detection was somewhat lower when all pesticides were censored to the highest common detection limit. Source factors such as agricultural land use (for agricultural herbicides), urban land use (for insecticides), and the application rate were found to have positive statistical correlations with pesticide concentration. Transport factors such as depth to water and percentage of well-drained soils, sand, or silt typically were positively correlated with higher pesticide concentrations.Sampling for VOCs was conducted in 187 wells and 19 springs that were sampled for 59 VOCs. There were 137 detections of VOCs above the common censoring limit of 0.2 µg/L. The most frequently detected VOCs were chloroform, a trihalomethane, and methyl-tert butyl ether (MTBE), a fuel oxygenate. Seventy-nine wells had at least one VOC detected. The detections were related to land use and well depth. Kendall’s tau correlations indicated a significant positive correlation between chloroform concentration and urban land use, leaking underground storage tanks, population density, and well depth. MTBE concentrations also were positively correlated to urban land use, leaking underground storage tanks, population density, and well depth.Radon was sampled at 205 sites. The subdivisions used for analysis of other contaminants were not adequate for analysis of radon because radon varies on the basis of variations in mineralogy that are not reflected by the general lithologic categories used for the rest of the studies. Concentrations of radon were highest in areas where the crystalline-rock aquifers had felsic mineralogy, and the lowest concentrations of radon were in areas where the crystalline-rocks aquifer had mafic mineralogy. Water from wells in siliciclastic-rock aquifers had concentrations of radon lower than that in the felsic crystalline-rock aquifers. More than 90 percent of the wells sampled for radon exceeded the proposed MCL of 300 pCi/L (picoCuries per liter); however, only 13 percent of those wells had concentrations in water that exceeded the alternative maximum contaminant level (AMCL), a higher level that can be used by municipalities addressing other sources of radon exposure.Overall, concentrations of constituents were related to land-use factors for nitrate, pesticides, VOCs, and to aquifer lithology for radon. None of the 47 pesticides or 59 VOCs analyzed exceeded the MCLs where those constituents were sampled. Concentrations exceeded the MCL for nitrate in 11 percent of the wells sampled. Nearly 91 percent of the wells sampled exceeded the proposed MCL for radon. Additional sampling in selected areas would improve overall understanding of the PAS and increase the possibility of creating predictive models of ground-water quality in this area.

  19. X-Ray Fluorescence (XRF) to identify chemical analysis of minerals in Buton island, SE Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Jamaluddin; Darwis, A.; Massinai, M. A.

    2018-02-01

    Asbuton as natural rock asphalt consists of a granular material; usually limestone or sandstone. In its natural state, it contains bitumen intimately dispersed throughout its mass, while the remainder of the material is a solid mineral matter. This research was conducted in Sorowalio, Buton Regency, Southeast Sulawesi province, Indonesia. This study aims to determine the content and the percentage of minerals contained in the rocks by using X-Ray Fluorescence (XRF). The method of research is a preliminary survey, sampling and laboratory analysis. XRF reports chemical composition, including Si (quartz) and Ca (calcite). The results indicate the content and the percentage of element dominate the rock sample is Fe2O3, MgO, CaO, and SiO2. Research results using XRF show that there are four metal oxide dominant elements. Hematite (Fe2O3) is dominant in all locations of sampling. Magnesium oxide (MgO) has the highest levels found in sample number six and the lowest is in sample number five. Silicates (SiO) has the highest levels at sample number six and the lowest in sample number seven. Calcium oxide (CaO) is dominant in all sampling locations. The sample of asbuton contains 37.90% asphalt, 43.28% carbonate, and18.82% other minerals.

  20. The ammonium content in the Malayer igneous and metamorphic rocks (Sanandaj-Sirjan Zone, Western Iran)

    NASA Astrophysics Data System (ADS)

    Ahadnejad, Vahid; Hirt, Ann Marie; Valizadeh, Mohammad-Vali; Bokani, Saeed Jabbari

    2011-04-01

    The ammonium (NH4+) contents of the Malayer area (Western Iran) have been determined by using the colorimetric method on 26 samples from igneous and metamorphic rocks. This is the first analysis of the ammonium contents of Iranian metamorphic and igneous rocks. The average ammonium content of metamorphic rocks decreases from low-grade to high-grade metamorphic rocks (in ppm): slate 580, phyllite 515, andalusite schist 242. In the case of igneous rocks, it decreases from felsic to mafic igneous types (in ppm): granites 39, monzonite 20, diorite 17, gabbro 10. Altered granitic rocks show enrichment in NH4+ (mean 61 ppm). The high concentration of ammonium in Malayer granites may indicate metasedimentary rocks as protoliths rather than meta-igneous rocks. These granitic rocks (S-types) have high K-bearing rock-forming minerals such as biotite, muscovite and K-feldspar which their potassium could substitute with ammonium. In addition, the high ammonium content of metasediments is probably due to inheritance of nitrogen from organic matter in the original sediments. The hydrothermally altered samples of granitic rocks show highly enrichment of ammonium suggesting external sources which intruded additional content by either interaction with metasedimentary country rocks or meteoritic solutions.

  1. Continuous Monitoring of Pin Tip Wear and Penetration into Rock Surface Using a New Cerchar Abrasivity Testing Device

    NASA Astrophysics Data System (ADS)

    Hamzaban, Mohammad-Taghi; Memarian, Hossein; Rostami, Jamal

    2014-03-01

    Evaluation of rock abrasivity is important when utilizing mechanized excavation in various mining and civil projects in hard rock. This is due to the need for proper selection of the rock cutting tools, estimation of the tool wear, machine downtime for cutter change, and costs. The Cerchar Abrasion Index (CAI) test is one of the simplest and most widely used methods for evaluating rock abrasivity. In this study, a new device for the determination of frictional forces and depth of pin penetration into the rock surface during a Cerchar test is discussed. The measured parameters were used to develop an analytical model for calculation of the size of the wear flat (and hence a continuous measure of CAI as the pin moves over the sample) and pin tip penetration into the rock during the test. Based on this model, continuous curves of CAI changes and pin tip penetration into the rock were plotted. Results of the model were used for introduction of a new parameter describing rock-pin interaction and classification of rock abrasion.

  2. Evolved-Lithology Clasts in Lunar Breccias: Relating Petrogenetic Diversity to Measured Water Content

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Simon, J. J.; Ross, D. K.

    2017-01-01

    Studies of the inventory and distribution of water in lunar rocks have recently begun to focus on alkali suite samples as possible water repositories, particularly the most highly evolved granitoid lithologies. Although H analyses of feldspars in these rocks have so far pointed to 'low' (less than 20 ppm) H2O contents, there is sufficient variability in the dataset (e.g., 2-20 ppm) to warrant consideration of the petrogenetic factors that may have caused some granitoid-to-intermediate rocks to be dryer or wetter than others. Given that all examples of these rocks occur as clasts in complex impact breccias, the role of impact and other factors in altering water contents established by primary igneous processes becomes a major factor. We are supporting our ongoing SIMS studies of water in evolved lunar lithologies with systematic SEM and EPMA observations. Here we report a synthesis of the observations as part of developing discriminating factors for reconstructing the thermal, crystallization and shock history of these samples as compared with their water contents.

  3. Arsenic behavior in newly drilled wells.

    PubMed

    Kim, Myoung-Jin; Nriagu, Jerome; Haack, Sheridan

    2003-07-01

    In the present paper, inorganic arsenic species and chemical parameters in groundwater were determined to investigate the factors related to the distribution of arsenic species and their dissolution from rock into groundwater. For the study, groundwater and core samples were taken at different depths of two newly drilled wells in Huron and Lapeer Counties, Michigan. Results show that total arsenic concentrations in the core samples varied, ranging from 0.8 to 70.7 mg/kg. Iron concentration in rock was about 1800 times higher than that of arsenic, and there was no correlation between arsenic and iron occurrences in the rock samples. Arsenic concentrations in groundwater ranged from <1 to 171 microg/l. The arsenic concentration in groundwater depended on the amount of arsenic in aquifer rocks, and as well decreased with increasing depth. Over 90% of arsenic existed in the form of As(III), implying that the groundwater systems were in the reduced condition. The results such as high ferrous ion, low redox potential and low dissolved oxygen supported the observed arsenic species distribution. There was no noticeable difference in the total arsenic concentration and arsenic species ratio between unfiltered and filtered (0.45 microm) waters, indicating that the particulate form of arsenic was negligible in the groundwater samples. There were correlations between water sampling depth and chemical parameters, and between arsenic concentration and chemical parameters, however, the trends were not always consistent in both wells.

  4. Deformation associated with the denudation of mantle-derived rocks at the Mid-Atlantic Ridge 13°-15°N: The role of magmatic injections and hydrothermal alteration

    NASA Astrophysics Data System (ADS)

    Picazo, Suzanne; Cannat, Mathilde; Delacour, AdéLie; EscartíN, Javier; RouméJon, StéPhane; Silantyev, Sergei

    2012-09-01

    Outcrops of deeply derived ultramafic rocks and gabbros are widespread along slow spreading ridges where they are exposed in the footwall of detachment faults. We report on the microstructural and petrological characteristics of a large number of samples from ultramafic exposures in the walls of the Mid-Atlantic Ridge (MAR) axial valley at three distinct locations at lat. 13°N and 14°45'N. One of these locations corresponds to the footwall beneath a corrugated paleo-fault surface. Bearing in mind that dredging and ROV sampling may not preserve the most fragile lithologies (fault gouges), this study allows us to document a sequence of deformation, and the magmatic and hydrothermal history recorded in the footwall within a few hundred meters of the axial detachment fault. At the three sampled locations, we find that tremolitic amphiboles have localized deformation in the ultramafic rocks prior to the onset of serpentinization. We interpret these tremolites as hydrothermal alteration products after evolved gabbroic rocks intruded into the peridotites. We also document two types of brittle deformation in the ultramafic rocks, which we infer could produce the sustained low magnitude seismicity recorded at ridge axis detachment faults. The first type of brittle deformation affects fresh peridotite and is associated with the injection of the evolved gabbroic melts, and the second type affects serpentinized peridotites and is associated with the injection of Si-rich hydrothermal fluids that promote talc crystallization, leading to strain localization in thin talc shear zones. We also observed chlorite + serpentine shear zones but did not identify samples with serpentine-only shear zones. Although the proportion of magmatic injections in the ultramafic rocks is variable, these characteristics are found at each investigated location and are therefore proposed as fundamental components of the deformation in the footwall of the detachment faults associated with denudation of mantle-derived rocks at the MAR.

  5. First attempt to study rock glaciers in New Zealand using the Schmidt-hammer - framework and preliminary results

    NASA Astrophysics Data System (ADS)

    Winkler, Stefan; Lambiel, Christophe; Sattler, Katrin; Büche, Thomas; Springer, Johanna

    2016-04-01

    Although not uncommon within the dryer eastern parts of the Southern Alps, New Zealand, comparatively few previous studies have previously focused on rock glacier dynamics and spatial distribution. Neither investigations of their chronological constraints nor any studies on actual rock glacier velocities have yet been carried out. Rock glaciers and periglacial processes still largely constitute a largely unexplored albeit potentially valuable field of research in the Southern Alps. The high-altitude valley head of Irishman Stream in the Ben Ohau Range between Lakes Ohau and Pukaki, roughly 30 km southeast of the Main Divide, contains a few morphologically intact rock glaciers and some appear to be active features (Sattler et al. 2016). Previous work focusing on the Late-glacial and early Holocene moraines in the valley head below the rock glaciers (Kaplan et al. 2010) provided 10Be-ages that could be utilised as fixed points for SHD (Schmidt-hammer exposure-age dating). Apart from detailed Schmidt-hammer sampling on the Late-glacial and early Holocene moraines, two altitudinal transects from the toe to their apex have been measured in detail on selected rock glaciers. On each of the multiple ridges of the rock glacier surface three sites of 50 boulders have been sampled with one impact each by the hammer (an N-type electronic SilverSchmidt by Proceq). Apart from getting some age constraints of these periglacial features in comparison to the well-dated moraines, the Schmidt-hammer measurements also had the aim to provide some insight into their genetic development resulting in a quite complex morphology of the rock glaciers and partial interaction with some of the moraines. Both altitudinal transects reveal a clear and continuous trend of increasing means (i.e. less weathered/younger exposure ages) towards their apex. The values for the individual ridges show, however, a transitional character with adjacent ridges albeit the abovementioned trend not statistically significant different in age, a phenomena known from similar studies on rock glaciers elsewhere. Already during sampling it became obvious that with increasing altitude and decreasing distance to the valley headwall the percentage of freshly appearing boulders vs. weathered boulders with a distinct micro-relief is getting higher. The means of the lowermost ridges of the rock glaciers show, however, no significant difference to the early Holocene moraines dated to c. 11.5 10Be ka ago. This may indicate that rock glacier formation initiated shortly after Termination 1 during the early Holocene and partly overrode some parts of the early Holocene moraines. During the field work, a network of 46 differential GPS points has been established to start future monitoring of any potential rock glacier movement. It will allow exploring the climatological control on rock glacier behaviour in in the Southern Alps, as well as comparisons with current velocities measured in the European Alps. References: Kaplan, M.R., Schaefer, J., Denton, G.H., Barrell, D.J.A., Chinn, T.J.H., Putnam, A.E., Anderson, B.G., Finkel, R.C., Schwartz, R. & Doughty, A.M. (2010): Glacier retreat in New Zealand during the Younger DryasStadial. Nature 467, 194-197. Sattler, K., Anderson, B., Mackintosh, A., Norton, K., de Róiste, M. (2016): Estimating permafrost distribution in the maritime SouthernAlps, New Zealand, based on climatic conditions at rock glacier sites. Frontiers in Earth Science - Section Cryospheric Sciences. doi: 10.3389/feart.2016.00004.

  6. Geochemistry of groundwater in the Beaver and Camas Creek drainage basins, eastern Idaho

    USGS Publications Warehouse

    Rattray, Gordon W.; Ginsbach, Michael L.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, is studying the fate and transport of waste solutes in the eastern Snake River Plain (ESRP) aquifer at the Idaho National Laboratory (INL) in eastern Idaho. This effort requires an understanding of the natural and anthropogenic geochemistry of groundwater at the INL and of the important physical and chemical processes controlling the geochemistry. In this study, the USGS applied geochemical modeling to investigate the geochemistry of groundwater in the Beaver and Camas Creek drainage basins, which provide groundwater recharge to the ESRP aquifer underlying the northeastern part of the INL. Data used in this study include petrology and mineralogy from 2 sediment and 3 rock samples, and water-quality analyses from 4 surface-water and 18 groundwater samples. The mineralogy of the sediment and rock samples was analyzed with X-ray diffraction, and the mineralogy and petrology of the rock samples were examined in thin sections. The water samples were analyzed for field parameters, major ions, silica, nutrients, dissolved organic carbon, trace elements, tritium, and the stable isotope ratios of hydrogen, oxygen, carbon, sulfur, and nitrogen. Groundwater geochemistry was influenced by reactions with rocks of the geologic terranes—carbonate rocks, rhyolite, basalt, evaporite deposits, and sediment comprised of all of these rocks. Agricultural practices near and south of Dubois and application of road anti-icing liquids on U.S. Interstate Highway 15 were likely sources of nitrate, chloride, calcium, and magnesium to groundwater. Groundwater geochemistry was successfully modeled in the alluvial aquifer in Camas Meadows and the ESRP fractured basalt aquifer using the geochemical modeling code PHREEQC. The primary geochemical processes appear to be precipitation or dissolution of calcite and dissolution of silicate minerals. Dissolution of evaporite minerals, associated with Pleistocene Lake Terreton, is an important contributor of solutes in the Mud Lake-Dubois area. Oxidation-reduction reactions are important influences on the chemistry of groundwater at Camas Meadows and the Camas National Wildlife Refuge. In addition, mixing of different groundwaters or surface water with groundwater appears to be an important physical process influencing groundwater geochemistry in much of the study area, and evaporation may be an important physical process influencing the groundwater geochemistry of the Camas National Wildlife Refuge. The mass-balance modeling results from this study provide an explanation of the natural geochemistry of groundwater in the ESRP aquifer northeast of the INL, and thus provide a starting point for evaluating the natural and anthropogenic geochemistry of groundwater at the INL.

  7. Restoration and PDS Archive of Apollo Lunar Rock Sample Data

    NASA Technical Reports Server (NTRS)

    Garcia, P. A.; Todd, N. S.; Lofgren, G. E.; Stefanov, W. L.; Runco, S. K.; LaBasse, D.; Gaddis, L. R.

    2011-01-01

    In 2008, scientists at the Johnson Space Center (JSC) Lunar Sample Laboratory and Image Science & Analysis Laboratory (under the auspices of the Astromaterials Research and Exploration Science Directorate or ARES) began work on a 4-year project to digitize the original film negatives of Apollo Lunar Rock Sample photographs. These rock samples together with lunar regolith and core samples were collected as part of the lander missions for Apollos 11, 12, 14, 15, 16 and 17. The original film negatives are stored at JSC under cryogenic conditions. This effort is data restoration in the truest sense. The images represent the only record available to scientists which allows them to view the rock samples when making a sample request. As the negatives are being scanned, they are also being formatted and documented for permanent archive in the NASA Planetary Data System (PDS) archive. The ARES group is working collaboratively with the Imaging Node of the PDS on the archiving.

  8. Distribution and Multivariate Pollution Risks Assessment of Heavy Metals and Natural Radionuclides Around Abandoned Iron-Ore Mines in North Central Nigeria

    NASA Astrophysics Data System (ADS)

    Isinkaye, Omoniyi Matthew

    2018-02-01

    The Itakpe abandoned iron-ore mines constitute the largest iron-ore deposits in Nigeria with an estimated reserve of about three million metric tons of ore. The present effort is a part of a comprehensive study to estimate the environmental and radiological health hazards associated with previous mining operations in the study area. In this regard, heavy metals (Fe, Zn, Cu, Cd, Cr, Mn, Pb, Ni, Co and As) and natural radionuclides (U, Th and K) were measured in rock, soil and water samples collected at different locations within the mining sites. Atomic absorption and gamma-ray spectrometry were utilized for the measurements. Fe, Mn, Zn, Cu, Ni, Cd, Cr, Co Pb and As were detected at varying concentrations in rock and soil samples. Cd, Cr, Pb and As were not detected in water samples. The concentrations of heavy metals vary according to the following pattern; rock ˃ soil ˃ water. The mean elemental concentrations of K, U and Th are 2.9%, 0.8 and 1.2 ppm and 1.3%, 0.7 and 1.7 ppm, respectively, for rock and soil samples. Pearson correlation analyses of the results indicate that the heavy metals are mostly negatively correlated with natural radionuclides in the study area. Cancer and non-cancer risks due to heavy metals and radiological hazards due to natural radionuclides to the population living within the vicinity of the abandoned mines are lower than acceptable limits. It can, therefore, be concluded that no significant environmental or radiological health hazard is envisaged.

  9. Visible and near-infrared spectral survey of lunar meteorites recovered by the National Institute of Polar Research

    NASA Astrophysics Data System (ADS)

    Hiroi, T.; Kaiden, H.; Yamaguchi, A.; Kojima, H.; Uemoto, K.; Ohtake, M.; Arai, T.; Sasaki, S.

    2016-12-01

    Lunar meteorite chip samples recovered by the National Institute of Polar Research (NIPR) have been studied by a UV-visible-near-infrared spectrometer, targeting small areas of about 3 × 2 mm in size. Rock types and approximate mineral compositions of studied meteorites have been identified or obtained through this spectral survey with no sample preparation required. A linear deconvolution method was used to derive end-member mineral spectra from spectra of multiple clasts whenever possible. In addition, the modified Gaussian model was used in an attempt of deriving their major pyroxene compositions. This study demonstrates that a visible-near-infrared spectrometer on a lunar rover would be useful for identifying these kinds of unaltered (non-space-weathered) lunar rocks. In order to prepare for such a future mission, further studies which utilize a smaller spot size are desired for improving the accuracy of identifying the clasts and mineral phases of the rocks.

  10. Petrophysical, Lithological and Mineralogical Characteristics of the Shale Strata of the Volga- Ural Region

    NASA Astrophysics Data System (ADS)

    Morozov, Vladimir P.; Plotnikova, Irina N.; Pronin, Nikita V.; Nosova, Fidania F.; Pronina, Nailya R.

    2014-05-01

    The objects of the study are Upper Devonian carbonate rocks in the territory of South-Tatar arch and Melekess basin in the Volga- Urals region. We studied core material of Domanicoid facies from the sediments of Mendymski and Domanik horizons of middle substage of Frasnian stage of the Upper Devonian. Basic analytical research methods included the following: study of the composition, structural and textural features of the rocks, the structure of their voids, filter and reservoir properties and composition of the fluid. The complex research consisted of macroscopic description of the core material, optical microscopy analysis, radiographical analysis, thermal analysis, x-ray tomography, electron microscopy, gas-liquid chromatography, chromate-mass spectrometry, light hydrocarbons analysis using paraphase assay, adsorbed gases analysis, and thermal vacuum degassing method. In addition, we performed isotopic studies of hydrocarbons saturating shale rocks. Shale strata are mainly represented by carbonate-chert rocks. They consist mainly of calcite and quartz. The ratio of these rock-forming minerals varies widely - from 25 to 75 percent. Pyrite, muscovite, albite, and microcline are the most common inclusions. Calcareous and ferruginous dolomite (ankerite), as well as magnesian calcite are tracked down as secondary minerals. While performing the tests we found out that the walls of open fractures filled with oil are stacked by secondary dolomite, which should be considered as an indication moveable oil presence in the open-cut. Electron microscopy data indicate that all the studied samples have porosity - both carbonates and carbonate-siliceous rocks. Idiomorphism of the rock-forming grains and pores that are visible under a microscope bring us to that conclusion. The analysis of the images indicates that the type of reservoir is either porous or granular. The pores are distributed evenly in the volume of rock. Their size is very unstable and varies from 0.5 microns to 100 microns. The lowest value are observed in long carbonate-siliceous rocks, the highest values are found in carbonate rocks. The latter is caused by the fact that there is a very strong recrystallization of calcite and its dolomite substitution in carbonates. Open porosity ranges from 0.65 to 7.98 percent, average value is 4.1percent . Effective porosity has an average value of 0.44 percent, ranging from 0.22 to 1.97. Permeability varies from 0.043 to 1.49 mD, average value is 0,191 mD. Organic matter was found in all samples. Its content varies within the section. The fluctuation range of from 1.0 to 20 percent. The lowest content of carbonates is found in carbonates, while the highest is observed in carbonate-siliceous rocks with a high content of chalcedony. Average organic matter content is 5-7 percent. According to Rock-Eval studies of the core, the catagenetic maturity of organic matter corresponds to MK1 - MK2 degree. We found a connection between the type of organic matter and the composition of adsorbed gas. We also could see that the samples with humic organics present in their organic matter and can be characterized by a fair dominance of methane over other gases. There is a clear relationship between organic matter content and the intensity of the gas saturation of the rock. Organic matter is characteristic mainly of the most siliceous formations. In "pure" carbonates, which are represented by micro-layers with different capacities, OM is not observed at all or its content is quite low.

  11. Microbial communities in carbonate rocks-from soil via groundwater to rocks.

    PubMed

    Meier, Aileen; Singh, Manu K; Kastner, Anne; Merten, Dirk; Büchel, Georg; Kothe, Erika

    2017-09-01

    Microbial communities in soil, groundwater, and rock of two sites in limestone were investigated to determine community parameters differentiating habitats in two lithostratigraphic untis. Lower Muschelkalk and Middle Muschelkalk associated soils, groundwater, and rock samples showed different, but overlapping microbial communities linked to carbon fluxes. The microbial diversities in soil were highest, groundwater revealed overlapping taxa but lower diversity, and rock samples were predominantly characterized by endospore forming bacteria and few archaea. Physiological profiles could establish a differentiation between habitats (soil, groundwater, rock). From community analyses and physiological profiles, different element cycles in limestone could be identified for the three habitats. While in soil, nitrogen cycling was identified as specific determinant, in rock methanogenesis linked carbonate rock to atmospheric methane cycles. These patterns specifically allowed for delineation of lithostratigraphic connections to physiological parameters. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Laboratory measurements of P- and S-wave anisotropy in synthetic rocks by 3D printing

    NASA Astrophysics Data System (ADS)

    Kong, L.; Ostadhassan, M.; Tamimi, N.; Li, C.; Alexeyev, A.

    2017-12-01

    Synthetic rocks have been widely used to realize the models with controlled factors in rock physics and geomechanics experiments. Additive manufacturing technology, known as 3D printing, is becoming a popular method to produce the synthetic rocks as the advantages of timesaving, economics, and control. In terms of mechanical properties, the duplicability of 3D printed rock towards a natural rock has been studied whereas the seismic anisotropy still remains unknown as being the key factor in conducting rock physics experiments. This study utilized a 3D printer with gypsum as the ink to manufacture a series of synthetic rocks that have the shapes of octagonal prisms, with half of them printed from lateral and another half from the bottom. An ultrasonic investigation system was set up to measure the P- and S- wave velocities at different frequencies while samples were under dry conditions. The results show the impact of layered property on the P- and S- wave velocities. The measurement results were compared with the predicted results of Hudson model, demonstrating that the synthetic rock from 3D printing is a transverse isotropic model. The seismic anisotropy indicates that the availability of using 3D printed rocks to duplicate natural rocks for the purpose of recreating the experiments of rock physics. Future experiments will be performed on the dependence of seismic anisotropy on fracture geometry and density in 3D printed synthetic rocks.

  13. Rock sample brought to earth from the Apollo 12 lunar landing mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Close-up view of Apollo 12 sample 12,065 under observation in the Manned Spacecraft Center's Lunar Receiving Laboratory. This sample, collected during the second Apollo 12 extravehicular activity (EVA-2) of Astronauts Charles Conrad Jr., and Alan L. Bean, is a fine-grained rock. Note the glass-lined pits. An idea of the size of the rock can be gained by reference to the gauge on the bottom portion of the number meter.

  14. Age and isotopic systematics of Cretaceous borehole and surface samples from the greater Los Angeles Basin region: Implications for the types of crust that might underlie Los Angeles and their distribution along late Cenozoic fault systems

    USGS Publications Warehouse

    Premo, Wayne R.; Morton, Douglas M.; Kistler, Ronald W.

    2014-01-01

    Nine U-Pb zircon ages were determined on plutonic rocks sampled from surface outcrops and rock chips of drill core from boreholes within the greater Los Angeles Basin region. In addition, lead-strontium-neodymium (Pb-Sr-Nd) whole-rock isotopic data were obtained for eight of these samples. These results help to characterize the crystalline basement rocks hidden in the subsurface and provide information that bears on the tectonic history of the myriad of fault systems that have dissected the Los Angeles region over the past 15 m.y. Seven of the nine samples have U-Pb ages ranging from 115 to 103 Ma and whole-rock Pb-Sr-Nd isotopic characteristics that indicate the crystalline basement underneath the greater Los Angeles Basin region is mostly part of the Peninsular Ranges batholith. Furthermore, these data are interpreted as evidence for (1) the juxtaposition of mid-Cretaceous, northern Peninsular Ranges batholith plutonic rocks against Late Cretaceous plutonic rocks of the Transverse Ranges in the San Fernando Valley, probably along the Verdugo fault; (2) the juxtaposition of older northwestern Peninsular Ranges batholith rocks against younger northeastern Peninsular Ranges batholith rocks in the northern Puente Hills, implying transposition of northeastern Peninsular Ranges batholith rocks to the west along unrecognized faults beneath the Chino Basin; and (3) juxtaposition of northern Peninsular Ranges batholith plutonic rocks against Late Cretaceous plutonic rocks of the Transverse Ranges along the San Jose fault in the northern San Jose Hills at Ganesha Park. These mainly left-lateral strike-slip faults of the eastern part of the greater Los Angeles Basin region could be the result of block rotation within the adjacent orthogonal, right-lateral, Elsinore-Whittier fault zone to the west and the subparallel San Jacinto fault zone to the east. The San Andreas fault system is the larger, subparallel, driving force further to the east.

  15. Elemental Geochemistry of Samples From Fault Segments of the San Andreas Fault Observatory at Depth (SAFOD) Drill Hole

    NASA Astrophysics Data System (ADS)

    Tourscher, S. N.; Schleicher, A. M.; van der Pluijm, B. A.; Warr, L. N.

    2006-12-01

    Elemental geochemistry of mudrock samples from phase 2 drilling of the San Andreas Fault Observatory at Depth (SAFOD) is presented from bore hole depths of 3066 m to 3169 m and from 3292 m to 3368 m, which contain a creeping section and main trace of the fault, respectively. In addition to preparation and analysis of whole rock sample, fault grains with neomineralized, polished surfaces were hand picked from well-washed whole rock samples, minimizing the potential contamination from drilling mud and steel shavings. The separated fractions were washed in deionized water, powdered using a mortar and pestle, and analyzed using an Inductively Coupled Plasma- Optical Emission Spectrometer for major and minor elements. Based on oxide data results, systematic differences in element concentrations are observed between the whole rock and fault rock. Two groupings of data points are distinguishable in the regions containing the main trace of the fault, a shallow part (3292- 3316 m) and a deeper section (3320-3368 m). Applying the isocon method, assuming Zr and Ti to be immobile elements in these samples, indicates a volume loss of more than 30 percent in the shallow part and about 23 percent in the deep part of the main trace. These changes are minimum estimates of fault-related volume loss, because the whole rock from drilling samples contains variable amount of fault rock as well. Minimum estimates for volume loss in the creeping section of the fault are more than 50 percent when using the isocon method, comparing whole rock to plucked fault rock. The majority of the volume loss in the fault rocks is due to the dissolution and loss of silica, potassium, aluminum, sodium and calcium, whereas (based on oxide data) the mineralized surfaces of fractures appear to be enriched in Fe and Mg. The large amount of element mobility within these fault traces suggests extensive circulation of hydrous fluids along fractures that was responsible for progressive dissolution and leaching of the wall rock during faulting.

  16. Physical and chemical properties of submarine basaltic rocks from the submarine flanks of the Hawaiian Islands

    USGS Publications Warehouse

    Yokose, H.; Lipman, P.W.; Kanamatsu, T.

    2005-01-01

    To evaluate physical and chemical diversity in submarine basaltic rocks, approximately 280 deep submarine samples recovered by submersibles from the underwater flanks of the Hawaiian Islands were analyzed and compared. Based on observations from the submersibles and hand specimens, these samples were classified into three main occurrence types (lavas, coarse-grained volcaniclastic rocks, and fine-grained sediments), each with several subtypes. The whole-rock sulfur content and porosity in submarine basaltic rocks, recovered from depths greater than 2000 m, range from < 10 ppm and 2 vol.% to 2200 ppm and 47 vol.%, respectively. These wide variations cannot be due just to different ambient pressures at the collection depths, as inferred previously for submarine erupted lavas. The physical and chemical properties of the recovered samples, especially a combination of three whole-rock parameters (Fe-oxidation state, Sulfur content, and Porosity), are closely related to the occurrence type. The FSP triangular diagram is a valuable indicator of the source location of basaltic fragments deposited in deep submarine areas. This diagram can be applied to basaltic rocks such as clasts in debris-flow deposits, submarine-emplaced lava flows that may have crossed the shoreline, and slightly altered geological samples. ?? 2005 Elsevier B.V. All rights reserved.

  17. Exploring the relative contribution of mineralogy and CPO to the seismic velocity anisotropy of evaporites

    NASA Astrophysics Data System (ADS)

    Vargas-Meleza, Liliana; Healy, David; Alsop, G. Ian; Timms, Nicholas E.

    2015-01-01

    We present the influence of mineralogy and microstructure on the seismic velocity anisotropy of evaporites. Bulk elastic properties and seismic velocities are calculated for a suite of 20 natural evaporite samples, which consist mainly of halite, anhydrite, and gypsum. They exhibit strong fabrics as a result of tectonic and diagenetic processes. Sample mineralogy and crystallographic preferred orientation (CPO) were obtained with the electron backscatter diffraction (EBSD) technique and the data used for seismic velocity calculations. Bulk seismic properties for polymineralic evaporites were evaluated with a rock recipe approach. Ultrasonic velocity measurements were also taken on cube shaped samples to assess the contribution of grain-scale shape preferred orientation (SPO) to the total seismic anisotropy. The sample results suggest that CPO is responsible for a significant fraction of the bulk seismic properties, in agreement with observations from previous studies. Results from the rock recipe indicate that increasing modal proportion of anhydrite grains can lead to a greater seismic anisotropy of a halite-dominated rock. Conversely, it can lead to a smaller seismic anisotropy degree of a gypsum-dominated rock until an estimated threshold proportion after which anisotropy increases again. The difference between the predicted anisotropy due to CPO and the anisotropy measured with ultrasonic velocities is attributed to the SPO and grain boundary effects in these evaporites.

  18. Reverse polarity magnetized melt rocks from the Chicxulub impact structure, Yucatan Peninsula, Mexico

    NASA Astrophysics Data System (ADS)

    Urrutia-Fucugauchi, Jaime; Marin, Luis E.; Sharpton, Virgil L.; Quezada, Juan Manuel

    1993-03-01

    Further paleomagnetic data for core samples of melt rock recovered in the Petroleos Mexicanos (PEMEX) exploratory wells within the Chicxulub structure, northern Yucatan peninsula, Mexico are reported. A previous report by Sharpton showed that the rocks studied contain high iridium levels and shocked breccia clasts, and an Ar-40/Ar-39 age of 65.2 plus or minus 0.4 Ma. The geomagnetic polarity determined for two samples is reverse (R) and was correlated with chron 29R that includes the K/T boundary. Our present analysis is based on two samples from each of three clasts of the melt rock from PEMEX well Y6-N17 (1295 to 1299 m b.s.l.). This study concentrates on the vectorial nature and stability of the remanence (NRM), the magnetic mineralogy and remanence carriers (i.e., the reliability and origin of the record), and on the implications (correlation with expected paleolatitude and polarity). The relative orientation of the drill core samples with respect to the horizontal is known. Samples were stable under alternating field (AF) and thermal treatments, and after removal of a small component they exhibited single-vectorial behavior. The characteristic remanence inclinations show small dispersion and a mean value (-43 deg) in close agreement with the expected inclination and paleolatitude (derived from the North American apparent polar wander path). Isothermal remenence (IRM) acquisition experiments, Lowrie-Fuller tests, coercivity and unblocking temperature spectra of NRM and saturation IRM, susceptibility and Q-coefficient analyses, and the single-component nature indicate a dominant mineralogy of iron-rich titanomagnetites with single or pseduo-single domain states. The stable characteristic magnetization may be interpreted as a result of shock heating of the rock at the time of formation of the inpact structure and its polarity, age, and paleolatitude are consistent with a time about the K/T boundary.

  19. Reverse polarity magnetized melt rocks from the Chicxulub impact structure, Yucatan Peninsula, Mexico

    NASA Technical Reports Server (NTRS)

    Urrutia-Fucugauchi, Jaime; Marin, Luis E.; Sharpton, Virgil L.; Quezada, Juan Manuel

    1993-01-01

    Further paleomagnetic data for core samples of melt rock recovered in the Petroleos Mexicanos (PEMEX) exploratory wells within the Chicxulub structure, northern Yucatan peninsula, Mexico are reported. A previous report by Sharpton showed that the rocks studied contain high iridium levels and shocked breccia clasts, and an Ar-40/Ar-39 age of 65.2 plus or minus 0.4 Ma. The geomagnetic polarity determined for two samples is reverse (R) and was correlated with chron 29R that includes the K/T boundary. Our present analysis is based on two samples from each of three clasts of the melt rock from PEMEX well Y6-N17 (1295 to 1299 m b.s.l.). This study concentrates on the vectorial nature and stability of the remanence (NRM), the magnetic mineralogy and remanence carriers (i.e., the reliability and origin of the record), and on the implications (correlation with expected paleolatitude and polarity). The relative orientation of the drill core samples with respect to the horizontal is known. Samples were stable under alternating field (AF) and thermal treatments, and after removal of a small component they exhibited single-vectorial behavior. The characteristic remanence inclinations show small dispersion and a mean value (-43 deg) in close agreement with the expected inclination and paleolatitude (derived from the North American apparent polar wander path). Isothermal remenence (IRM) acquisition experiments, Lowrie-Fuller tests, coercivity and unblocking temperature spectra of NRM and saturation IRM, susceptibility and Q-coefficient analyses, and the single-component nature indicate a dominant mineralogy of iron-rich titanomagnetites with single or pseduo-single domain states. The stable characteristic magnetization may be interpreted as a result of shock heating of the rock at the time of formation of the inpact structure and its polarity, age, and paleolatitude are consistent with a time about the K/T boundary.

  20. Mars Rock Analysis Briefing

    NASA Image and Video Library

    2013-03-12

    David Blake, principal investigator for Curiosity's Chemistry and Mineralogy investigation at NASA's Ames Research Center in Calif., speaks at a news conference presenting findings of the Curiosity rover's analysis of the first sample of rock powder collected on Mars, Tuesday, March 12, 2013 in Washington. The rock sample collected shows ancient Mars could have supported living microbes. Photo Credit: (NASA/Carla Cioffi)

  1. Alteration of Lunar Rock Surfaces through Interaction with the Space Environment

    NASA Technical Reports Server (NTRS)

    Frushour, A. M.; Noble, S. K; Christoffersen, R.; Keller, L P.

    2014-01-01

    Space weathering occurs on all ex-posed surfaces of lunar rocks, as well as on the surfaces of smaller grains in the lunar regolith. Space weather-ing alters these exposed surfaces primarily through the action of solar wind ions and micrometeorite impact processes. On lunar rocks specifically, the alteration products produced by space weathering form surface coatings known as patina. Patinas can have spectral reflectance properties different than the underlying rock. An understanding of patina composition and thickness is therefore important for interpreting re-motely sensed data from airless solar system bodies. The purpose of this study is to try to understand the physical and chemical properties of patina by expanding the number of patinas known and characterized in the lunar rock sample collection.

  2. Effects of strain rate and surface cracks on the mechanical behaviour of Balmoral Red granite.

    PubMed

    Mardoukhi, Ahmad; Mardoukhi, Yousof; Hokka, Mikko; Kuokkala, Veli-Tapani

    2017-01-28

    This work presents a systematic study on the effects of strain rate and surface cracks on the mechanical properties and behaviour of Balmoral Red granite. The tensile behaviour of the rock was studied at low and high strain rates using Brazilian disc samples. Heat shocks were used to produce samples with different amounts of surface cracks. The surface crack patterns were analysed using optical microscopy, and the complexity of the patterns was quantified by calculating the fractal dimensions of the patterns. The strength of the rock clearly drops as a function of increasing fractal dimensions in the studied strain rate range. However, the dynamic strength of the rock drops significantly faster than the quasi-static strength, and, because of this, also the strain rate sensitivity of the rock decreases with increasing fractal dimensions. This can be explained by the fracture behaviour and fragmentation during the dynamic loading, which is more strongly affected by the heat shock than the fragmentation at low strain rates.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).

  3. Effects of strain rate and surface cracks on the mechanical behaviour of Balmoral Red granite

    PubMed Central

    Kuokkala, Veli-Tapani

    2017-01-01

    This work presents a systematic study on the effects of strain rate and surface cracks on the mechanical properties and behaviour of Balmoral Red granite. The tensile behaviour of the rock was studied at low and high strain rates using Brazilian disc samples. Heat shocks were used to produce samples with different amounts of surface cracks. The surface crack patterns were analysed using optical microscopy, and the complexity of the patterns was quantified by calculating the fractal dimensions of the patterns. The strength of the rock clearly drops as a function of increasing fractal dimensions in the studied strain rate range. However, the dynamic strength of the rock drops significantly faster than the quasi-static strength, and, because of this, also the strain rate sensitivity of the rock decreases with increasing fractal dimensions. This can be explained by the fracture behaviour and fragmentation during the dynamic loading, which is more strongly affected by the heat shock than the fragmentation at low strain rates. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956513

  4. The Canadian space agency planetary analogue materials suite

    NASA Astrophysics Data System (ADS)

    Cloutis, Edward A.; Mann, Paul; Izawa, Matthew R. M.; Applin, Daniel M.; Samson, Claire; Kruzelecky, Roman; Glotch, Timothy D.; Mertzman, Stanley A.; Mertzman, Karen R.; Haltigin, Timothy W.; Fry, Christopher

    2015-12-01

    The Canadian Space Agency (CSA) recently commissioned the development of a suite of over fifty well-characterized planetary analogue materials. These materials are terrestrial rocks and minerals that are similar to those known or suspected to occur on the lunar or martian surfaces. These include: Mars analogue sedimentary, hydrothermal, igneous and low-temperature alteration rock suites; lunar analogue basaltic and anorthositic rock suites; and a generic impactite rock suite from a variety of terrestrial impact structures. Representative thin sections of the materials have been characterized by optical microscopy and electron probe microanalysis (EPMA). Reflectance spectra have been collected in the ultraviolet, visible, near-infrared and mid-infrared, covering 0.2-25 μm. Thermal infrared emission spectra were collected from 5 to 50 μm. Raman spectra with 532 nm excitation, and laser-induced fluorescence spectra with 405 nm excitation were also measured. Bulk chemical analysis was carried out using X-ray fluorescence, with Fe valence determined by wet chemistry. Chemical and mineralogical data were collected using a field-portable Terra XRD-XRF instrument similar to CheMin on the MSL Curiosity rover. Laser-induced breakdown spectroscopy (LIBS) data similar to those measured by ChemCam on MSL were collected for powdered samples, cut slab surfaces, and as depth profiles into weathered surfaces where present. Three-dimensional laser camera images of rock textures were collected for selected samples. The CSA intends to make available sample powders (<45 μm and 45-1000 μm grain sizes), thin sections, and bulk rock samples, and all analytical data collected in the initial characterisation study to the broader planetary science community. Aiming to complement existing planetary analogue rock and mineral libraries, the CSA suite represents a new resource for planetary scientists and engineers. We envision many potential applications for these materials in the definition, development and testing of new analytical instruments for use in planetary missions, as well as possible calibration and ground-truthing of remote sensing data sets. These materials may also be useful as reference materials for cross-calibration between different instruments and laboratories. Comparison of the analytical data for selected samples is useful for highlighting the relative strengths, weaknesses and synergies of different analytical techniques.

  5. Time-lapse ultrasonic imaging of elastic anisotropy in saturated sandstone under polyaxial stress state

    NASA Astrophysics Data System (ADS)

    Tabari, Mehdi Sherveen Ghofrani

    Although true-triaxial test (TTT) of rocks is now more extensive worldwide, stress-induced heterogeneity is not accounted for and usually simplified anisotropic models are used. Data from a TTT on a cubic sample of Fontainebleau sandstone is used in this study to evaluate our velocity imaging methodology. An anisotropic P wave velocity tomography method was developed using a geometrical approach based on an ellipsoidal P wavefront surface. During the two non-damaging phases of the experiment, saturation of the rock sample with water resulted in inaccurate tomographic images; however, during the final elasto-plastic phase of the experiment comprising major AE activities, tomographic images demonstrated reasonable anomalies. Thus, the P-S1-S2 velocity survey was utilized to obtain an accurate and reliable velocity image of the sample during the two non-damaging phases. This was accomplished using a numerical investigation by FLAC3D on the non-uniform distribution of stress over the sample to estimate the compaction pseudo-boundary surfaces within the rock. Thus, the problem of breakdown in the expected symmetry of shear wave velocities was resolved. It was discovered that a homogeneous anisotropic core in the center of the sample is formed under the standard polyaxial setup where elastic parameters could be computed. Off-diagonal elastic tensor parameters were obtained by a combination of various velocity survey data and justified the ellipsoidal model as being the most appropriate and facilitated the calculation of Thomsen parameters. The ellipsoidal heterogeneous velocity model was also verified by AE event location of transducer shots through the cubic rock specimen especially at the final phase of the experiment consisting lower-velocity zones bearing partially saturated fractures. AE of the rock during the whole experiment recorded by the surrounding transducers were investigated by location methods developed for anisotropic heterogeneous medium. AE events occurred in the vicinity of the dilation pseudo-boundaries where, a relatively large velocity gradient was formed and along parallel fractures in the sigma1/sigma2 plane. This research facilitated the computation of anisotropic parameters for rock during polyaxial tests contributing to enhanced AE interpretation of fracture growth processes in the rock under laboratory true-triaxial stress conditions.

  6. Chemical composition of sedimentary rocks in California and Hawaii

    USGS Publications Warehouse

    Hill, Thelma P.

    1981-01-01

    A compilation of published chemical analyses of sedimentary rocks of the United States was undertaken by the U.S. Geological Survey in 1952 to make available scattered data that are needed for a wide range of economic and scientific uses. About 20,000-25,000 chemical analyses of sedimentary rocks in the United States have been published. This report brings together 2,312 of these analyses from California and Hawaii. The samples are arranged by general lithologic characteristics and locality. Indexes of stratigraphy, rock name, commercial uses, and minor elements are provided. The sedimentary rocks are classified into groups and into categories according to the chemical analyses. The groups (A through F2) are defined by a system similar to that proposed by Brian Mason in 1952, in which the main parameters are the three major components of sedimentary rocks: (1) uncombined silica, (2) clay (R203 ? 3Si02 ? nH20), and (3) calcium-magnesium carbonate. The categories are based on the degree of admixture of these three major components with other components, such as sulfate, phos- phate, and iron oxide. Common-rock, mixed-rock, and special-rock categories apply to rocks consisting of 85 percent or more, 50-84 percent, and less than 49 percent, respectively, of the three major components combined. Maps show distribution of sample localities by States; triangular diagrams show the lithologic characteristics and classification groups. Cumulative-frequency curves of each constituent in each classification group of the common-rock and mixed-rock categories are also included. The numerous analyses may not adequately represent the geochemical nature of the rock types and formations of the region because of sampling bias. Maps showing distribution of sample localities indicate that many of the localities are in areas where, for economic or other reasons, special problems attracted interest. Most of the analyzed rocks tended to be fairly simple in composition - mainly mixtures of just two of the three major components or a mixture of these and a fourth component such as phosphate, gypsum, or iron oxide.

  7. Manson impact structure, Iowa: First geochemical results for drill core M-1

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Anderson, Raymond R.; Hartung, Jack B.; Reimold, Wolf Uwe

    1993-01-01

    The Manson Impact Structure is a large complex impact crater centered ca. S km north of the town of Manson, Iowa. It is the largest intact impact structure recognized in the United States (35 km in diameter). Its Ar-40/Ar-39 age is indistinguishable from that of the Cretaceous-Tertiary (K-T) boundary. The Manson structure may be one element of the events at the K-T boundary. The crater is completely covered by Quaternary glacial sedimentary deposits that are normally underlain by Cretaceous clastic sediments and flat-lying carbonate sediments of Phanerozoic age, as well as Proterozoic red clastic, metamorphic, volcanic, and plutonic rock sequences. The study of a reflection seismic profile, provided by Amoco, was critical in interpreting the structure. In the 35 km diameter zone that marks the extension of the crater the normal rock sequence is disturbed due to the impact, and at the center of the structure granitic basement rocks are present that have been uplifted from about 4 km depth. Our studies consist of detailed petrological and geochemical characterization of all cores, with emphasis on a detailed description of all rock types found in the core samples and their relationship to target rocks. Geochemical data on samples from the Manson M-1 core are presented.

  8. Manson impact structure, Iowa: First geochemical results for drill core M-1

    NASA Astrophysics Data System (ADS)

    Koeberl, Christian; Anderson, Raymond R.; Hartung, Jack B.; Reimold, Wolf Uwe

    1993-03-01

    The Manson Impact Structure is a large complex impact crater centered ca. S km north of the town of Manson, Iowa. It is the largest intact impact structure recognized in the United States (35 km in diameter). Its Ar-40/Ar-39 age is indistinguishable from that of the Cretaceous-Tertiary (K-T) boundary. The Manson structure may be one element of the events at the K-T boundary. The crater is completely covered by Quaternary glacial sedimentary deposits that are normally underlain by Cretaceous clastic sediments and flat-lying carbonate sediments of Phanerozoic age, as well as Proterozoic red clastic, metamorphic, volcanic, and plutonic rock sequences. The study of a reflection seismic profile, provided by Amoco, was critical in interpreting the structure. In the 35 km diameter zone that marks the extension of the crater the normal rock sequence is disturbed due to the impact, and at the center of the structure granitic basement rocks are present that have been uplifted from about 4 km depth. Our studies consist of detailed petrological and geochemical characterization of all cores, with emphasis on a detailed description of all rock types found in the core samples and their relationship to target rocks. Geochemical data on samples from the Manson M-1 core are presented.

  9. Studies of Minerals, Organic and Biogenic Materials through Time-Resolved Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Garcia, Christopher S.; Abedin, M. Nurul; Ismail, Syed; Sharma, Shiv K.; Misra, Anupam K.; Nyugen, Trac; Elsayed-Ali, hani

    2009-01-01

    A compact remote Raman spectroscopy system was developed at NASA Langley Research center and was previously demonstrated for its ability to identify chemical composition of various rocks and minerals. In this study, the Raman sensor was utilized to perform time-resolved Raman studies of various samples such as minerals and rocks, Azalea leaves and a few fossil samples. The Raman sensor utilizes a pulsed 532 nm Nd:YAG laser as excitation source, a 4-inch telescope to collect the Raman-scattered signal from a sample several meters away, a spectrograph equipped with a holographic grating, and a gated intensified CCD (ICCD) camera system. Time resolved Raman measurements were carried out by varying the gate delay with fixed short gate width of the ICCD camera, allowing measurement of both Raman signals and fluorescence signals. Rocks and mineral samples were characterized including marble, which contain CaCO3. Analysis of the results reveals the short (approx.10-13 s) lifetime of the Raman process, and shows that Raman spectra of some mineral samples contain fluorescence emission due to organic impurities. Also analyzed were a green (pristine) and a yellow (decayed) sample of Gardenia leaves. It was observed that the fluorescence signals from the green and yellow leaf samples showed stronger signals compared to the Raman lines. Moreover, it was also observed that the fluorescence of the green leaf was more intense and had a shorter lifetime than that of the yellow leaf. For the fossil samples, Raman shifted lines could not be observed due the presence of very strong short-lived fluorescence.

  10. Radioactivites in returned lunar materials and in meteorites

    NASA Technical Reports Server (NTRS)

    Fireman, E. L.

    1983-01-01

    The cosmic-ray, solar-flare, and solar-wind bombardments of lunar rocks and soils and meteorites were studied by measurements of tritium, carbon-14 and argon radioactivity. The radioactivity integrates the bombardment for a time period equal to several half-lines. H-3, Ar-37, Ar-39, C-14. For the interior samples of lunar rocks and for deep lunar soil samples, the amounts of the radioactivities were equal to those calculated for galactic cosmic-ray interactions. The top near-surface samples of lunar rocks and the shallow lunar soil samples show excess amounts of the radioactivities attributable to solar flares. Lunar soil fines contain a large amount of hydrogen due to implanted solar wind. Studies of the H-3 in lunar soils and in recovered Surveyor-3 materials gave an upper limit for the H-3/H ratio in the solar wind of 10 to the -11th power. Solar wind carbon is also implanted on lunar soil fines. Lunar soils collected on the surface contained a 0.14 component attributable to implanted solar wind C-14. The C-14/H ratio attributed to the solar wind from this C-14 excess is approximately 4 x 10 to the -11th power.

  11. Effect of the specimen length on ultrasonic P-wave velocity in some volcanic rocks and limestones

    NASA Astrophysics Data System (ADS)

    Karaman, Kadir; Kaya, Ayberk; Kesimal, Ayhan

    2015-12-01

    Ultrasonic P-wave velocity (UPV) is commonly used in different fields such as civil, mining, geotechnical, and rock engineering. One of the significant parameters which affect the UPV of rock materials is likely to be the length of test cores although it is not mentioned in the literature. In this study, in order to explore the influence of the specimen length on the UPV, rock samples were collected from eight different locations in Turkey. The NX-sized core specimens having different length of 50, 75, 100, 125, and 150 mm were prepared. Before the analyses, rocks were divided into two groups in terms of their geological origins such as volcanic and chemical sedimentary (limestone) rocks. The UPV tests were carried out under dry and saturated conditions for each 200 core specimens. By evaluating the test results, it was shown that the length of the specimens significantly affects the UPV values. Based on the regression analyses, a method was developed to determine the threshold specimen length of studied rocks. Fluctuations in UPVdry and UPVsat values were generally observed for cores smaller than the threshold specimen length. In this study, the threshold specimen length was determined as 79 mm for volcanic rocks and 109 mm for limestones.

  12. Relationship of oil seep in Kudat Peninsula with surrounding rocks based on geochemical analysis

    NASA Astrophysics Data System (ADS)

    Izzati Azman, Nurul; Nur Fathiyah Jamaludin, Siti

    2017-10-01

    This study aims to investigate the relation of oil seepage at Sikuati area with the structural and petroleum system of Kudat Peninsula. The abundance of highly carbonaceous rocks with presence of lamination in the Sikuati Member outcrop at Kudat Peninsula may give an idea on the presence of oil seepage in this area. A detailed geochemical analysis of source rock sample and oil seepage from Sikuati area was carried out for their characterization and correlation. Hydrocarbon propectivity of Sikuati Member source rock is poor to good with Total Organic Carbon (TOC) value of 0.11% to 1.48%. and also categorized as immature to early mature oil window with Vitrinite Reflectance (VRo) value of 0.43% to 0.50 %Ro. Based on biomarker distribution, from Gas Chromatography (GC) and Gas Chromatography-Mass Spectrometry (GC-MS) analysis, source rock sample shows Pr/Ph, CPI and WI of 2.22 to 2.68, 2.17 to 2.19 and 2.46 to 2.74 respectively indicates the source rock is immature and coming from terrestrial environment. The source rock might be rich in carbonaceous material organic matter resulting from planktonic/bacterial activity which occurs at fluvial to fluvio-deltaic environment. Overall, the source rock from outcrop level of Kudat Peninsula is moderately prolific in term of prospectivity and maturity. However, as go far deeper beneath the surface, we can expect more activity of mature source rock that generate and expulse hydrocarbon from the subsurface then migrating through deep-seated fault beneath the Sikuati area.

  13. Cerium and Neodymium Isotope Fractionation in Geochemical Samples

    NASA Astrophysics Data System (ADS)

    Ohno, T.; Ishibashi, T.

    2014-12-01

    The study of naturally occurring isotopic variations of rare earth elements (REE) has a potentially significant influence in geochemical research fields with other traditional studies of REE. One of the key features of REE are their chemical similarities and gradual changes of ionic radius, which may make the isotopic variation of REE a potential tool to understand the mechanisms of isotopic fractionation in nature. Among the REE, geochemical and physicochemical features of Ce could be anomalous, because Ce could be present as the tetravalent (+IV) state as well as the common trivalent (+III) state of other REE. Since the oxidation state of Ce can change by reflecting the redox conditions of the environment, the measured differences in the degree of isotopic fractionation between Ce and other REE can provide unique information about the redox conditions. In this study, we developed a new analytical method to determine the mass-dependent isotopic fractionations of Ce and Nd in geochemical samples. The reproducibility of the isotopic ratio measurements on 142Ce/140Ce, 146Nd/144Nd and 148Nd/144Nd were 0.08‰ (2SD, n=25), 0.06‰ (2SD, n=39) and 0.12‰ (2SD, n=39), respectively. The present technique was applied to determine the variations of the Ce and Nd isotopic ratios for five geochemical reference materials (igneous rocks, JB-1a and JA-2; sedimentary rocks, JMn-1, JCh-1 and JDo-1). The resulting ratios for two igneous rocks (JB-1a and JA-2) and two sedimentary rocks (JMn-1 and JCh-1) did not vary significantly among the samples, whereas the Ce and Nd isotope ratios for the carbonate samples (JDo-1) were significantly higher than those for igneous and sedimentary rock samples. The 1:1 simple correlation between δ142Ce and δ146Nd indicates that there were no significant difference in the degree of isotopic fractionation between the Ce and Nd. This suggests that the isotopic fractionation for Ce found in the JDo-1 could be induced by physicochemical processes without changing the oxidation status of Ce, since the redox-reaction can produce larger isotopic fractionation than the reactions without changing the oxidation state. The variations in the Ce and Nd isotope ratios for geochemical samples could provide new information concerning the physico-chemical processes of the sample formation.

  14. Volcanic glass in Cretaceous dacites and rhyolites of the Paraná Magmatic Province, southern Brazil: Characterization and quantification by XRD-Rietveld

    NASA Astrophysics Data System (ADS)

    Andrade, Fábio Ramos Dias de; Polo, Liza Angélica; Janasi, Valdecir de Assis; Carvalho, Flávio Machado de Souza

    2018-04-01

    Acidic rocks are a significant component of the Cretaceous Paraná Magmatic Province, occurring in different stratigraphic positions, and often forming deposits of complex and as yet poorly defined architecture. Vitrophyric varieties are surprisingly abundant for a volcanic sequence of this age, and are composed of predominant glass plus plagioclase (labradorite-andesine), pyroxenes (augite ± pigeonite and orthopyroxene), Ti-rich magnetite, and traces of apatite. Hypocrystalline rocks, largely derived from devitrification, additionally contain sanidine, cristobalite, and quartz. The negative correlation between the abundance of these minerals and the amount of glass suggests that these latter phases formed by devitrification. Modal analysis using a combined XRD Rietveld-RIR method detected glass contents between 0 and 85 wt% % in a set of representative samples of Palmas-type acidic rocks from southern Brazil with dacite to rhyolite composition. Modal compositions determined by XRD and by scanning electron microscope are in good agreement with each other, and were checked against whole-rock XRF chemical data. Water contents up to 4 wt% show a positive linear correlation with the amount of glass, and are inferred to be mostly secondary, as original (pre-eruptive) H2O dissolved in melts is inferred to have been < 1.5 wt% in all rocks. Glass is the only water bearing phase in the studied samples, which lack low temperature hydrated phases. Water loss during devitrification appears to have occurred along fractures, and was accompanied by Na loss and, in some samples, also Ca, Rb and Sr loss. The rapid and inexpensive method of modal analyses of glassy rocks developed here may be a useful tool for mapping acidic volcanic rocks in southern Paraná Magmatic Province, and also to identify the architecture of these deposits.

  15. Thermal diffusivity of four Apollo 17 rock samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horai, K.; Winkler, J.L. Jr.

    1976-01-01

    The thermal diffusivities of four Apollo 17 rock samples (70017,77; 70215,18; 72395,14; and 77035,44) are measured in the temperature range between 180/sup 0/K and 460/sup 0/K at interstitial gaseous pressures of 1 atm and 10/sup -6/ torr of air. The thermal diffusivities at 1 atm are decreasing functions of temperature. Basalt samples (70017,77 and 70215,18) show higher thermal diffusivities than breccias (72395,14 and 77035,44), indicating that the thermal contact between mineral grains is better in crystalline rocks than in breccias. The magnitude of thermal diffusivities of the Apollo 17 basalt samples is intermediate between published diffusivities of Apollo 11 andmore » 12 basalts, suggesting that the intergranular cohesion of Apollo 17 basalts is weaker than that of Apollo 11 basalts but is stronger than that of Apollo 12 basalt. The thermal diffusivities measured at 10/sup -6/ torr are less temperature dependent. The basalt samples still show higher thermal diffusivities than the breccias, however. The low thermal diffusivity of the porous breccia sample (72395,14) is comparable to the lunar anorthositic gabbro (77017,24) studied by Mizutani and Osako (1974) that has the lowest thermal diffusivity of lunar rock samples ever reported. The difference between the thermal diffusivities the samples exhibit under atmospheric and vacuum conditions cannot be explained by the effect of thermal conduction through the gas medium filling the interstices of the samples that are absent under vacuum condition. A hypothesis is presented that the thermal conduction across the intergranular contact surfaces is strongly influenced by the adsorption of gas molecules on the surfaces of mineral grains. Measurements are also made in carbon dioxide atmosphere, in the temperature range between 200/sup 0/K and 460/sup 0/K.« less

  16. MEPAG Recommendations for a 2018 Mars Sample Return Caching Lander - Sample Types, Number, and Sizes

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.

    2011-01-01

    The return to Earth of geological and atmospheric samples from the surface of Mars is among the highest priority objectives of planetary science. The MEPAG Mars Sample Return (MSR) End-to-End International Science Analysis Group (MEPAG E2E-iSAG) was chartered to propose scientific objectives and priorities for returned sample science, and to map out the implications of these priorities, including for the proposed joint ESA-NASA 2018 mission that would be tasked with the crucial job of collecting and caching the samples. The E2E-iSAG identified four overarching scientific aims that relate to understanding: (A) the potential for life and its pre-biotic context, (B) the geologic processes that have affected the martian surface, (C) planetary evolution of Mars and its atmosphere, (D) potential for future human exploration. The types of samples deemed most likely to achieve the science objectives are, in priority order: (1A). Subaqueous or hydrothermal sediments (1B). Hydrothermally altered rocks or low temperature fluid-altered rocks (equal priority) (2). Unaltered igneous rocks (3). Regolith, including airfall dust (4). Present-day atmosphere and samples of sedimentary-igneous rocks containing ancient trapped atmosphere Collection of geologically well-characterized sample suites would add considerable value to interpretations of all collected rocks. To achieve this, the total number of rock samples should be about 30-40. In order to evaluate the size of individual samples required to meet the science objectives, the E2E-iSAG reviewed the analytical methods that would likely be applied to the returned samples by preliminary examination teams, for planetary protection (i.e., life detection, biohazard assessment) and, after distribution, by individual investigators. It was concluded that sample size should be sufficient to perform all high-priority analyses in triplicate. In keeping with long-established curatorial practice of extraterrestrial material, at least 40% by mass of each sample should be preserved to support future scientific investigations. Samples of 15-16 grams are considered optimal. The total mass of returned rocks, soils, blanks and standards should be approximately 500 grams. Atmospheric gas samples should be the equivalent of 50 cubic cm at 20 times Mars ambient atmospheric pressure.

  17. NASA's Mars 2020 Rover Artist's Concept #2

    NASA Image and Video Library

    2017-11-17

    This artist's rendition depicts NASA's Mars 2020 rover studying a Mars rock outrcrop. The mission will not only seek out and study an area likely to have been habitable in the distant past, but it will take the next, bold step in robotic exploration of the Red Planet by seeking signs of past microbial life itself. Mars 2020 will use powerful instruments to investigate rocks on Mars down to the microscopic scale of variations in texture and composition. It will also acquire and store samples of the most promising rocks and soils that it encounters, and set them aside on the surface of Mars. A future mission could potentially return these samples to Earth. Mars 2020 is targeted for launch in July/August 2020 aboard an Atlas V-541 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. https://photojournal.jpl.nasa.gov/catalog/PIA22105

  18. NASA's Mars 2020 Rover Artist's Concept #3

    NASA Image and Video Library

    2017-11-17

    This artist's rendition depicts NASA's Mars 2020 rover studying rocks with its robotic arm. The mission will not only seek out and study an area likely to have been habitable in the distant past, but it will take the next, bold step in robotic exploration of the Red Planet by seeking signs of past microbial life itself. Mars 2020 will use powerful instruments to investigate rocks on Mars down to the microscopic scale of variations in texture and composition. It will also acquire and store samples of the most promising rocks and soils that it encounters, and set them aside on the surface of Mars. A future mission could potentially return these samples to Earth. Mars 2020 is targeted for launch in July/August 2020 aboard an Atlas V-541 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. https://photojournal.jpl.nasa.gov/catalog/PIA22106

  19. Restoration of Circum-Arctic Upper Jurassic source rock paleolatitude based on crude oil geochemistry

    USGS Publications Warehouse

    Peters, K.E.; Ramos, L.S.; Zumberge, J.E.; Valin, Z.C.; Scotese, C.R.

    2008-01-01

    Tectonic geochemical paleolatitude (TGP) models were developed to predict the paleolatitude of petroleum source rock from the geochemical composition of crude oil. The results validate studies designed to reconstruct ancient source rock depositional environments using oil chemistry and tectonic reconstruction of paleogeography from coordinates of the present day collection site. TGP models can also be used to corroborate tectonic paleolatitude in cases where the predicted paleogeography conflicts with the depositional setting predicted by the oil chemistry, or to predict paleolatitude when the present day collection locality is far removed from the source rock, as might occur due to long distance subsurface migration or transport of tarballs by ocean currents. Biomarker and stable carbon isotope ratios were measured for 496 crude oil samples inferred to originate from Upper Jurassic source rock in West Siberia, the North Sea and offshore Labrador. First, a unique, multi-tiered chemometric (multivariate statistics) decision tree was used to classify these samples into seven oil families and infer the type of organic matter, lithology and depositional environment of each organofacies of source rock [Peters, K.E., Ramos, L.S., Zumberge, J.E., Valin, Z.C., Scotese, C.R., Gautier, D.L., 2007. Circum-Arctic petroleum systems identified using decision-tree chemometrics. American Association of Petroleum Geologists Bulletin 91, 877-913]. Second, present day geographic locations for each sample were used to restore the tectonic paleolatitude of the source rock during Late Jurassic time (???150 Ma). Third, partial least squares regression (PLSR) was used to construct linear TGP models that relate tectonic and geochemical paleolatitude, where the latter is based on 19 source-related biomarker and isotope ratios for each oil family. The TGP models were calibrated using 70% of the samples in each family and the remaining 30% of samples were used for model validation. Positive relationships exist between tectonic and geochemical paleolatitude for each family. Standard error of prediction for geochemical paleolatitude ranges from 0.9?? to 2.6?? of tectonic paleolatitude, which translates to a relative standard error of prediction in the range 1.5-4.8%. The results suggest that the observed effect of source rock paleolatitude on crude oil composition is caused by (i) stable carbon isotope fractionation during photosynthetic fixation of carbon and (ii) species diversity at different latitudes during Late Jurassic time. ?? 2008 Elsevier Ltd. All rights reserved.

  20. 'Mister Badger' Pushing Mars Rock

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Viking's soil sampler collector arm successfully pushed a rock on the surface of Mars during the afternoon of Friday, October 8. The irregular-shaped rock was pushed several inches by the Lander's collector arm, which displaced the rock to the left of its original position, leaving it cocked slightly upward. Photographs and other information verified the successful rock push. Photo at left shows the soil sampler's collector head pushing against the rock, named 'Mister Badger' by flight controllers. Photo at right shows the displaced rock and the depression whence it came. Part of the soil displacement was caused by the collector s backhoe. A soil sample will be taken from the site Monday night, October 11. It will then be delivered to Viking s organic chemistry instrument for a series of analyses during the next few weeks. The sample is being sought from beneath a rock because scientists believe that, if there are life forms on Mars, they may seek rocks as shelter from the Sun s intense ultraviolet radiation.

  1. Phosphine from rocks: mechanically driven phosphate reduction?

    PubMed

    Glindemann, Dietmar; Edwards, Marc; Morgenstern, Peter

    2005-11-01

    Natural rock and mineral samples released trace amounts of phosphine during dissolution in mineral acid. An order of magnitude more phosphine (average 1982 ng PH3 kg rock and maximum 6673 ng PH3/kg rock) is released from pulverized rock samples (basalt, gneiss, granite, clay, quartzitic pebbles, or marble). Phosphine was correlated to hardness and mechanical pulverization energy of the rocks. The yield of PH3 ranged from 0 to 0.01% of the total P content of the dissolved rock. Strong circumstantial evidence was gathered for reduction of phosphate in the rock via mechanochemical or "tribochemical" weathering at quartz and calcite/marble inclusions. Artificial reproduction of this mechanism by rubbing quartz rods coated with apatite-phosphate to the point of visible triboluminescence, led to detection of more than 70 000 ng/kg PH3 in the apatite. This reaction pathway may be considered a mechano-chemical analogue of phosphate reduction from lightning or electrical discharges and may contribute to phosphine production via tectonic forces and processing of rocks.

  2. Improved RMR Rock Mass Classification Using Artificial Intelligence Algorithms

    NASA Astrophysics Data System (ADS)

    Gholami, Raoof; Rasouli, Vamegh; Alimoradi, Andisheh

    2013-09-01

    Rock mass classification systems such as rock mass rating (RMR) are very reliable means to provide information about the quality of rocks surrounding a structure as well as to propose suitable support systems for unstable regions. Many correlations have been proposed to relate measured quantities such as wave velocity to rock mass classification systems to limit the associated time and cost of conducting the sampling and mechanical tests conventionally used to calculate RMR values. However, these empirical correlations have been found to be unreliable, as they usually overestimate or underestimate the RMR value. The aim of this paper is to compare the results of RMR classification obtained from the use of empirical correlations versus machine-learning methodologies based on artificial intelligence algorithms. The proposed methods were verified based on two case studies located in northern Iran. Relevance vector regression (RVR) and support vector regression (SVR), as two robust machine-learning methodologies, were used to predict the RMR for tunnel host rocks. RMR values already obtained by sampling and site investigation at one tunnel were taken into account as the output of the artificial networks during training and testing phases. The results reveal that use of empirical correlations overestimates the predicted RMR values. RVR and SVR, however, showed more reliable results, and are therefore suggested for use in RMR classification for design purposes of rock structures.

  3. Spatial variation of radon and helium in soil gas vis-à-vis geology of area, NW Himalayas, India

    NASA Astrophysics Data System (ADS)

    Mahajan, S.; Bajwa, B.; Kumar, A.; Singh, S.; Walia, V.; Yang, T. F.

    2009-12-01

    In an effort to quantify the geological/lithological control on radon, helium soil gas potential and appraise the use of soil gas technique as a geological mapping tool, soil gas measurements were made, in some parts of Himachal Himalayas of NW Himalayan range, using soil gas grab sampling technique. More than 360 soil gas samples were collected from four different geological/lithologic rock units of the area under consideration. The collected soil gas samples were analyzed for radon and helium using RTM-2100 (SARAD) and Helium leak detector (ALCATEL) respectively. The observed values were then correlated with the geology/lithology of the study area. The study area is broadly divided into four different units on the basis of geology/lithology i.e. (A) Upper Shiwaliks (B) Middle & Lower Shiwaliks (C) Lesser Himalayan rocks (D) Higher Himalayan rocks. Significant differences in the soil gas concentrations among the geologic units were observed, where Lesser Himalayan rocks showing maximum concentrations of both radon (254 KBq/m3) and helium (5.46 ppm). Lesser Himalayan zone lies mainly between two major thrusts MBT and MCT running along the Himalayan trend, which still are tectonically active. It can be concluded from the present study that soil gases (radon and helium) can be used as a productive tool for geological mapping. These findings may have very important connation for health risk assessment of the area, since it has been shown that radon soil gas found in soils overlying basement rocks are the main source for indoor radon concentrations. Radioactive isotopes attach rapidly to atmospheric aerosols and can enter into a human body thus constitute significant hazard to human health.

  4. Fault rock texture and porosity type in Triassic dolostones

    NASA Astrophysics Data System (ADS)

    Agosta, Fabrizio; Grieco, Donato; Bardi, Alessandro; Prosser, Giacomo

    2015-04-01

    Preliminary results of an ongoing project aimed at deciphering the micromechanics and porosity evolution associated to brittle deformation of Triassic dolostones are presented. Samples collected from high-angle, oblique-slip, 10's to 100's m-throw normal faults crosscutting Mesozoic carbonates of the Neo Tethys (Campanian-Lucanian Platform) are investigated by mean of field geological mapping, optical microscopy, SEM and image analyses. The goal is to characterize in detail composition, texture and porosity of cataclastic rocks in order to assess the structural architecture of dolomitic fault cores. Moreover, the present study addresses the time-space control exerted by several micro-mechanisms such as intragranular extensional fracturing, chipping and shear fracturing, which took place during grain rolling and crushing within the evolving faults, on type, amount, dimensions and distribution of micropores present within the cataclastic fault cores. Study samples are representative of well-exposed dolomitic fault cores of oblique-slip normal faults trending either NW-SE or NE-SW. The high-angle normal faults crosscut the Mesozoic carbonates of the Campanian-Lucanian Platform, which overrode the Lagonegro succession by mean of low-angle thrust faults. Fault throws are measured by considering the displaced thrust faults as key markers after large scale field mapping (1:10,000 scale) of the study areas. In the field, hand samples were selected according to their distance from main slip surfaces and, in some case, along secondary slip surfaces. Microscopy analysis of about 100 oriented fault rock samples shows that, mostly, the study cataclastic rocks are made up of dolomite and sparse, minute survivor silicate grains deriving from the Lagonegro succession. In order to quantitatively assess the main textural classes, a great attention is paid to the grain-matrix ratio, grain sphericity, grain roundness, and grain sorting. By employing an automatic box-counting technique, the fractal dimension of representative samples is also computed. Results of such a work shows that five main textural types are present: 1) fractured and fragmented dolomites; 2) protocataclasites characterized by intense intragranular extensional fracturing; 3) cataclasites due to a chipping-dominated mechanism; 4) cataclasites and ultracataclasites with pronounced shear fracturing; 5) cemented fault rocks, which localize along the main slip surfaces. The first four textural types are therefore indicative to the fault rock maturity within individual cataclastic fault cores. A negative correlation among grain-matrix ratio and grain sphericity, roundness and sorting is computed, which implies that ultracataclasites are made up of more spherical and rounded smaller grains relative to cataclasites and protocataclasites. Each textural type shows distinct D0-values (box-counting dimension). As expected, a good correlation between the D0-value and fault rock maturity is computed. Ongoing analysis of selected images obtained from representative samples of the five textural classes will shed lights on the relative role played by the aforementioned micro-mechanisms on the porosity evolution within the cataclastic fault cores.

  5. Geochemical Evolution of Groundwater in the Medicine Lodge Creek Drainage Basin with Implications for the Eastern Snake River Plain Aquifer, Eastern Idaho

    NASA Astrophysics Data System (ADS)

    Ginsbach, M. L.; Rattray, G. W.; McCurry, M. O.; Welhan, J. A.

    2012-12-01

    The eastern Snake River Plain aquifer (ESRPA) is an unconfined, continuous aquifer located in a northeast-trending structural basin filled with basaltic lava flows and sedimentary interbeds in eastern Idaho. The ESPRA is not an inert transport system, as it acts as both a sink and source for solutes found in the water. More than 90% of the water recharged naturally to the ESRPA is from the surrounding mountain drainage basins. Consequently, in order to understand the natural geochemistry of water within the ESRPA, the chemistry of the groundwater from the mountain drainage basins must be characterized and the processes that control the chemistry need to be understood. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy and Idaho State University, has been studying these mountain drainage basins to help understand the movement of waste solutes in the ESRPA at the Idaho National Laboratory (INL) in eastern Idaho. This study focuses on the Medicine Lodge Creek drainage basin, which originates in the Beaverhead Mountains, extends onto the eastern Snake River Plain, and contributes recharge to the ESRPA beneath the INL as underflow along the northeastern INL boundary. Water and rock samples taken from the Medicine Lodge Creek drainage basin were analyzed to better understand water/rock interactions occurring in this system and to define the groundwater geochemistry of this drainage basin. Water samples were collected at 10 locations in the drainage basin during June 2012: 6 groundwater wells used for agricultural irrigation or domestic use and 4 springs. These water samples were analyzed for major ions, nutrients, trace metals, isotopes, and dissolved gasses. Samples of rock representative of the basalt, rhyolite, and sediments that occur within the drainage basin also were collected. These samples were analyzed using x-ray diffraction and petrographic study to determine the mineralogical constituents of the rock and the presence and composition of alteration products. The lithologic variability in this area leads to differing water-rock interactions occurring in different parts of the drainage basin. Anthropogenic influences also affect the water; at the far downgradient end of the drainage basin, increased levels of chloride and sulfate in the groundwater suggest an increased influence of irrigation recharge. Results from both water and rock analyses are combined in geochemical modeling software to determine plausible reactions that occur in groundwater collected at the sampling sites.

  6. Origin of middle rare earth element enrichments in acid waters of a Canadian high Arctic lake.

    NASA Astrophysics Data System (ADS)

    Johannesson, Kevin H.; Zhou, Xiaoping

    1999-01-01

    -Middle rare earth element (MREE) enriched rock-normalized rare earth element (REE) patterns of a dilute acidic lake (Colour Lake) in the Canadian High Arctic, were investigated by quantifying whole-rock REE concentrations of rock samples collected from the catchment basin, as well as determining the acid leachable REE fraction of these rocks. An aliquot of each rock sample was leached with 1 N HNO 3 to examine the readily leachable REE fraction of each rock, and an additional aliquot was leached with a 0.04 M NH 2OH · HCl in 25% (v/v) CH 3COOH solution, designed specifically to reduce Fe-Mn oxides/oxyhydroxides. Rare earth elements associated with the leachates that reacted with clastic sedimentary rock samples containing petrographically identifiable Fe-Mn oxide/oxyhydroxide cements and/or minerals/amorphous phases, exhibited whole-rock-normalized REE patterns similar to the lake waters, whereas whole-rock-normalized leachates from mafic igneous rocks and other clastic sedimentary rocks from the catchment basin differed substantially from the lake waters. The whole-rock, leachates, and lake water REE data support acid leaching or dissolution of MREE enriched Fe-Mn oxides/oxyhydroxides contained and identified within some of the catchment basin sedimentary rocks as the likely source of the unique lake water REE patterns. Solution complexation modelling of the REEs in the inflow streams and lake waters indicate that free metal ions (e.g., Ln 3+, where Ln = any REE) and sulfate complexes (LnSO 4+) are the dominant forms of dissolved REEs. Consequently, solution complexation reactions involving the REEs during weathering, transport to the lake, or within the lake, cannot be invoked to explain the MREE enrichments observed in the lake waters.

  7. Ultra sound absorption measurements in rock samples at low temperatures

    NASA Technical Reports Server (NTRS)

    Herminghaus, C.; Berckhemer, H.

    1974-01-01

    A new technique, comparable with the reverberation method in room acoustics, is described. It allows Q-measurements at rock samples of arbitrary shape in the frequency range of 50 to 600 kHz in vacuum (.1 mtorr) and at low temperatures (+20 to -180 C). The method was developed in particular to investigate rock samples under lunar conditions. Ultrasound absorption has been measured at volcanics, breccia, gabbros, feldspar and quartz of different grain size and texture yielding the following results: evacuation raises Q mainly through lowering the humidity in the rock. In a dry compact rock, the effect of evacuation is small. With decreasing temperature, Q generally increases. Between +20 and -30 C, Q does not change much. With further decrease of temperature in many cases distinct anomalies appear, where Q becomes frequency dependent.

  8. Semimicro chemical and x-ray fluorescence analysis of lunar samples

    USGS Publications Warehouse

    Rose, H.J.; Cuttitta, F.; Dwornik, E.J.; Carron, M.K.; Christian, R.P.; Lindsay, J.R.; Ligon, D.T.; Larson, R.R.

    1970-01-01

    Major and selected minor elements were determined in seven whole rock fragments, five portions of pulverized lunar rock, and the lunar soil. Three different rock types were represented: vesicular, fine-grained basaltic rocks; medium-to coarse-grained, vuggy gabbroic rocks; and breccia. The ranges (in percent) for the major constituents of the lunar samples are: SiO2, 38 to 42; Al2O3, 8 to 14; total iron as FeO, 15 to 20; MgO, 6 to 8; CaO, 10 to 12; Na2O, 0.5 to 1; K2O, 0.05 to 0.4; TiO2, 8 to 13; MnO, 0.2 to 0.3; and Cr2O3, 0.2 to 0.4. The high reducing capacity of the samples strongly suggests the presence of Ti(III).

  9. Use of a probabilistic neural network to reduce costs of selecting construction rock

    USGS Publications Warehouse

    Singer, Donald A.; Bliss, James D.

    2003-01-01

    Rocks used as construction aggregate in temperate climates deteriorate to differing degrees because of repeated freezing and thawing. The magnitude of the deterioration depends on the rock's properties. Aggregate, including crushed carbonate rock, is required to have minimum geotechnical qualities before it can be used in asphalt and concrete. In order to reduce chances of premature and expensive repairs, extensive freeze-thaw tests are conducted on potential construction rocks. These tests typically involve 300 freeze-thaw cycles and can take four to five months to complete. Less time consuming tests that (1) predict durability as well as the extended freeze-thaw test or that (2) reduce the number of rocks subject to the extended test, could save considerable amounts of money. Here we use a probabilistic neural network to try and predict durability as determined by the freeze-thaw test using four rock properties measured on 843 limestone samples from the Kansas Department of Transportation. Modified freeze-thaw tests and less time consuming specific gravity (dry), specific gravity (saturated), and modified absorption tests were conducted on each sample. Durability factors of 95 or more as determined from the extensive freeze-thaw tests are viewed as acceptable—rocks with values below 95 are rejected. If only the modified freeze-thaw test is used to predict which rocks are acceptable, about 45% are misclassified. When 421 randomly selected samples and all four standardized and scaled variables were used to train aprobabilistic neural network, the rate of misclassification of 422 independent validation samples dropped to 28%. The network was trained so that each class (group) and each variable had its own coefficient (sigma). In an attempt to reduce errors further, an additional class was added to the training data to predict durability values greater than 84 and less than 98, resulting in only 11% of the samples misclassified. About 43% of the test data was classed by the neural net into the middle group—these rocks should be subject to full freeze-thaw tests. Thus, use of the probabilistic neural network would meanthat the extended test would only need be applied to 43% of the samples, and 11% of the rocks classed as acceptable would fail early.

  10. Whole rock and discrete pyrite geochemistry as complementary tracers of ancient ocean chemistry: An example from the Neoproterozoic Doushantuo Formation, China

    NASA Astrophysics Data System (ADS)

    Gregory, Daniel D.; Lyons, Timothy W.; Large, Ross R.; Jiang, Ganqing; Stepanov, Aleksandr S.; Diamond, Charles W.; Figueroa, Maria C.; Olin, Paul

    2017-11-01

    The trace element content of pyrite is a recently developed proxy for metal abundance in paleo-oceans. Previous studies have shown that the results broadly match those of whole rock studies through geologic time. However, no detailed study has evaluated the more traditional proxies for ocean chemistry for comparison to pyrite trace element data from the same samples. In this study we compare pyrite trace element data from 14 samples from the Wuhe section of the Ediacaran-age Doushantuo Formation, south China, measured by laser ablation inductively coupled plasma mass spectrometry with new and existing whole rock trace element concentrations; total organic carbon; Fe mineral speciation; S isotope ratios; and pyrite textural relationships. This approach allows for comparison of data for individual trace elements within the broader environmental context defined by the other chemical parameters. The results for discrete pyrite analyses show that several chalcophile and siderophile elements (Ag, Sb, Se, Pb, Cd, Te, Bi, Mo, Ni, and Au) vary among the samples with patterns that mirror those of the independent whole rock data. A comparison with existing databases for sedimentary and hydrothermal pyrite allows us to discriminate between signatures of changing ocean conditions and those of known hydrothermal sources. In the case of the Wuhe samples, the observed patterns for trace element variation point to primary marine controls rather than higher temperature processes. Specifically, our new data are consistent with previous arguments for pulses of redox sensitive trace elements interpreted to be due to marine oxygenation against a backdrop of mostly O2-poor conditions in the Ediacaran ocean-with important implications for the availability of bioessential elements. The agreement between the pyrite and whole rock data supports the use of trace element content of pyrite as a tracer of ocean chemistry in ways that complement existing approaches, while also opening additional windows of opportunity. For example, unlike the potential vulnerability of whole rock data to secondary alteration, the pyrite record may survive greenschist facies metamorphism. Furthermore, early-formed pyrite can be identified through textural relationships as a proxy of primary marine chemistry even in the presence of hydrothermal overprints on whole rock chemistry via secondary fluids. Finally, pyrite analyses may allow for the possibility of more quantitative interpretations of the ancient ocean once the elemental partitioning between the mineral and host fluids are better constrained. Collectively, these advances can greatly increase the number of basins that may be investigated for early ocean chemistry, especially those of Precambrian age.

  11. Hydrogeochemical processes controlling changes in fluoride ion concentration within alluvial and hard rock aquifers in a part of a semi-arid region of Northern India

    NASA Astrophysics Data System (ADS)

    Singh, Priyadarshini; Ashthana, Harshita; Rena, Vikas; Kumar, Pardeep; Mukherjee, Saumitra

    2017-04-01

    Geochemical signatures from alluvial and hard rock aquifers in a part of Northern India elucidate the chemical processes controlling fluctuations in fluoride ion concentration linked to changes in major ion groundwater chemistry. Majority of samples from the hard rock and the alluvial aquifers for pre-monsoon show both carbonate and silicate weathering, ion exchange, evaporation and rock water interaction as the processes controlling major ion chemistry whereas for post monsoon samples, contribution of silicate weathering and ion exchange process were observed. Evaporative processes causing the increase in Na+ ion concentration in premonsoon enhance the reverse ion exchange processes causing increase in Ca2+ ions which impedes fluorite mineral dissolution in the premonsoon groundwater samples within the study area. Alternately, it is observed that the removal of Ca2+ ion from solution plays a key role in increase in fluorite mineral dissolution despite its saturation in groundwater in the postmonsoon samples. Also, ion exchange process on clay surfaces is more pronounced in the postmonsoon samples leading to the uptake of Ca2+ ion upon release of Na+ and K+ ion in solution. Ca2+ ion concentration is inversely correlated with F- ion concentration in both the aquifers in the postmonsoon season validating the role of calcite precipitation as a major reason for the fluoride ion increase. Moreover, increase in silicate weathering in the postmonsoon samples leads to increase in clay particles acting as suitable sites for ion exchange enhancing Ca2+ removal from groundwater. Cationic dominance of Na+ ion in the post monsoon samples also validates the occurrence of this process. Collectively, these processes set the ideal conditions for increase in the fluoride ion concentration particularly in the alluvium aquifer waters in the postmonsoon season Keywords: geochemistry, ion-exchange, rock-water interaction, mineral dissolution, weathering.

  12. On thermal properties of hard rocks as a host environment of an underground thermal energy storage

    NASA Astrophysics Data System (ADS)

    Novakova, L.; Hladky, R.; Broz, M.; Novak, P.; Lachman, V.; Sosna, K.; Zaruba, J.; Metelkova, Z.; Najser, J.

    2013-12-01

    With increasing focus on environmentally friendly technologies waste heat recycling became an important issue. Under certain circumstances subsurface environment could be utilized to accommodate relatively large quantity of heat. Industrial waste heat produced during warm months can be stored in an underground thermal energy storage (UTES) and used when needed. It is however a complex task to set up a sustainable UTES for industrial scale. Number of parameters has to be studied and evaluated by means of thermohydromechanical and chemical coupling (THMC) before any UTES construction. Thermal characteristics of various rocks and its stability under thermal loading are amongst the most essential. In the Czech Republic study two complementary projects THMC processes during an UTES operation. The RESEN project (www.resen.cz) employs laboratory tests and experiments to characterise thermal properties of hard rocks in the Bohemian Massif. Aim of the project is to point out the most suitable rock environment in the Bohemian Massif for moderate to ultra-high temperature UTES construction (Sanyal, 2005). The VITA project (www.geology.cz/mokrsko) studies THM coupling in non-electrical temperature UTES using long term in-situ experiment. In both projects thermal properties of rocks were studied. Thermal conductivity and capacity were measured on rock samples. In addition an influence of increasing temperature and moisture content was considered. Ten hard rocks were investigated. The set included two sandstones, two ignibrites, a melaphyr, a syenite, two granites, a gneiss and a serpentinite. For each rock there were measured thermal conductivity and capacity of at least 54 dried samples. Subsequently, the samples were heated up to 380°C in 8 hours and left to cool down. Thermal characteristics were measured during the heating period and after the sample reached room temperature. Heating and cooling cycle was repeated 7 to 10 times to evaluate possible UTES-like degradation of the studied rocks. The studies revealed thermal loading caused rapid decrease of thermal conductivity of a rock. The decrease of up to 30.6% was observed in sandstones. Reduction up to 16% was found in the granite, 12.3% in the syenite, 12.1% in the gneiss, 10.1% in the serpentinite, 8.1% in the melaphyr and 5.9 - 6.5% in ignimbites. Thermal loading initiated insignificant decrement of the thermal capacity. The capacity loss was usually less than 2%. Increasing content of water caused increase in the measured thermal characteristics. Saturated melaphyr showed 29% higher conductivity and 17.8% higher capacity comparing to the dried one. In the ignibrites there was found growth up to 23.5% in the thermal conductivity and 14.9% in the capacity, 12.1-17.6% and 4.5-5.9% in granites, 9.1% and 11.1% in the serpetinite, 7.9% and 7.9% in the gneiss and 1.2% and 3.4% in the syenite. This work was funded by the Technology Agency of the CR (TA01020348) and Ministry of Industry and trade of the CR (FR-TI3/325). Reference Sanyal, S.K., 2005. Classification of geothermal systems - a possible scheme, Proceedings, 30th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, p. 85-88.

  13. Comparison between PGAA and ID-AMS analysis for determining chlorine content in whole rock basalt

    NASA Astrophysics Data System (ADS)

    di Nicola, L.; Schnabel, C.; Wilcken, K. M.; Gméling, K.

    2009-04-01

    Accurate determination of chlorine concentrations in terrestrial rocks is of importance for the interpretation of terrestrial in-situ cosmogenic 36Cl. Neutron capture by 35Cl, together with production from Ca and K, is one of the three major production pathways of 36Cl in rocks. Here, we present an inter-comparison of chlorine determinations by two procedures. The first approach is an independent Cl determination by prompt gamma (neutron) activation analysis (PGAA). The second method is isotope dilution based on isotopically-enriched stable chlorine carrier added during chemical sample preparation for accelerator mass spectrometry (ID-AMS). Twenty six (26) whole rock samples have been processed for PGAA and ID-AMS analyses. Elemental analysis by PGAA provides concentrations of major, minor and trace elements including the target elements for 36Cl production (K, Ca, Ti, and Fe), as well as of neutron absorbers and neutron moderators (H, B, Cl, Sm and Gd). The Cl concentrations determined during this study constitute the first inter-comparison for concentrations below 100 μCl/g. Our results show no significant difference in Cl concentrations between methods, and comparable uncertainties. This agreement guarantees that during the procedure we employ for whole rock sample no significant loss of stable chlorine from either the spike or the sample occurs before isotopic equilibration, prior to AgCl precipitation. Furthermore, we show that the elemental analysis by PGAA offers anadvance for the interpretation of 36Cl measurements. It allows simultaneous measurement of major and most trace element concentrations with a precision necessary for calculating the relative contributions to 36Cl production rates of the different mechanisms. Finally, the Cl concentration can be used to optimize the amount of isotopically-enriched spike for AMS-ID sample preparation for 36Cl.

  14. Understanding the signature of rock coatings in laser-induced breakdown spectroscopy data

    USGS Publications Warehouse

    Lanza, Nina L.; Ollila, Ann M.; Cousin, Agnes; Wiens, Roger C.; Clegg, Samuel M.; Mangold, Nicolas; Bridges, Nathan; Cooper, Daniel; Schmidt, Mariek E.; Berger, Jeffrey; Arvidson, Raymond E.; Melikechi, Noureddine; Newsom, Horton E.; Tokar, Robert; Hardgrove, Craig; Mezzacappa, Alissa; Jackson, Ryan S.; Clark, Benton C.; Forni, Olivier; Maurice, Sylvestre; Nachon, Marion; Anderson, Ryan B.; Blank, Jennifer; Deans, Matthew; Delapp, Dorothea; Léveillé, Richard; McInroy, Rhonda; Martinez, Ronald; Meslin, Pierre-Yves; Pinet, Patrick

    2015-01-01

    Surface compositional features on rocks such as coatings and weathering rinds provide important information about past aqueous environments and water–rock interactions. The search for these features represents an important aspect of the Curiosity rover mission. With its unique ability to do fine-scale chemical depth profiling, the ChemCam laser-induced breakdown spectroscopy instrument (LIBS) onboard Curiosity can be used to both identify and analyze rock surface alteration features. In this study we analyze a terrestrial manganese-rich rock varnish coating on a basalt rock in the laboratory with the ChemCam engineering model to determine the LIBS signature of a natural rock coating. Results show that there is a systematic decrease in peak heights for elements such as Mn that are abundant in the coating but not the rock. There is significant spatial variation in the relative abundance of coating elements detected by LIBS depending on where on the rock surface sampled; this is due to the variability in thickness and spatial discontinuities in the coating. Similar trends have been identified in some martian rock targets in ChemCam data, suggesting that these rocks may have coatings or weathering rinds on their surfaces.

  15. A sampling study on rock properties affecting drilling rate index (DRI)

    NASA Astrophysics Data System (ADS)

    Yenice, Hayati; Özdoğan, Mehmet V.; Özfırat, M. Kemal

    2018-05-01

    Drilling rate index (DRI) developed in Norway is a very useful index in determining the drillability of rocks and even in performance prediction of hard rock TBMs and it requires special laboratory test equipment. Drillability is one of the most important subjects in rock excavation. However, determining drillability index from physical and mechanical properties of rocks is very important for practicing engineers such as underground excavation, drilling operations in open pit mining, underground mining and natural stone production. That is why many researchers have studied concerned with drillability to find the correlations between drilling rate index (DRI) and penetration rate, influence of geological properties on drillability prediction in tunneling, correlations between rock properties and drillability. In this study, the relationships between drilling rate index (DRI) and some physico-mechanical properties (Density, Shore hardness, uniaxial compressive strength (UCS, σc), Indirect tensile strength (ITS, σt)) of three different rock groups including magmatic, sedimentary and metamorphic were evaluated using both simple and multiple regression analysis. This study reveals the effects of rock properties on DRI according to different types of rocks. In simple regression, quite high correlations were found between DRI and uniaxial compressive strength (UCS) and also between DRI and indirect tensile strength (ITS) values. Multiple regression analyses revealed even higher correlations when compared to simple regression. Especially, UCS, ITS, Shore hardness (SH) and the interactions between them were found to be very effective on DRI values.

  16. Magnetic and mineralogical properties of salt rocks from the Zechstein of the Northern German Basin

    NASA Astrophysics Data System (ADS)

    Heinrich, Frances C.; Schmidt, Volkmar; Schramm, Michael; Mertineit, Michael

    2017-03-01

    Magnetic properties of rocks are often studied to characterize composition and fabric of rocks. For salt rocks, the basic relationships between their magnetic properties and composition, which are necessary to interpret rock magnetic data, are not yet established. Therefore, we studied different types of natural salt rock and pure salt minerals. We measured their magnetic properties (magnetic susceptibility, isothermal remanent magnetization acquisition curves, first-order reversal curve diagrams and temperature-dependent magnetic susceptibility) and used analytical methods such as microscopy, X-ray diffraction and inductively coupled plasma atomic emission spectroscopy to understand the relationship between magnetic properties and mineralogy. Salt rocks mainly consist of the diamagnetic minerals halite, carnallite, sylvine and anhydrite with negative magnetic susceptibilities. The magnetic susceptibilities of pure synthetic NaCl and KCl single crystals, show values of -14.5 × 10-6 and -13.5 × 10-6 SI, respectively. In contrast, in natural salt rocks higher magnetic susceptibility values were measured. The magnetic susceptibility of the samples investigated in this study shows a general increase from light rock salt (maximum -10 × 10-6 SI) over carnallitite (maximum 134 × 10-6 SI) to red sylvinite (maximum 270 × 10-6 SI). Whole rock analyses suggest that increased magnetic susceptibility can be attributed to paramagnetic and ferromagnetic minerals that are contained within the insoluble residue. The magnetic susceptibility is mainly controlled by magnetite and phyllosilicates. Its measurement can therefore be used to detect subtle changes in the content of these minerals.

  17. Implications of meso- to micro-scale deformation for fault sealing capacity: Insights from the Lenghu5 fold-and-thrust belt, Qaidam Basin, NE Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xie, Liujuan; Pei, Yangwen; Li, Anren; Wu, Kongyou

    2018-06-01

    As faults can be barriers to or conduits for fluid flow, it is critical to understand fault seal processes and their effects on the sealing capacity of a fault zone. Apart from the stratigraphic juxtaposition between the hanging wall and footwall, the development of fault rocks is of great importance in changing the sealing capacity of a fault zone. Therefore, field-based structural analysis has been employed to identify the meso-scale and micro-scale deformation features and to understand their effects on modifying the porosity of fault rocks. In this study, the Lenghu5 fold-and-thrust belt (northern Qaidam Basin, NE Tibetan Plateau), with well-exposed outcrops, was selected as an example for meso-scale outcrop mapping and SEM (Scanning Electron Microscope) micro-scale structural analysis. The detailed outcrop maps enabled us to link the samples with meso-scale fault architecture. The representative rock samples, collected in both the fault zones and the undeformed hanging walls/footwalls, were studied by SEM micro-structural analysis to identify the deformation features at the micro-scale and evaluate their influences on the fluid flow properties of the fault rocks. Based on the multi-scale structural analyses, the deformation mechanisms accounting for porosity reduction in the fault rocks have been identified, which are clay smearing, phyllosilicate-framework networking and cataclasis. The sealing capacity is highly dependent on the clay content: high concentrations of clay minerals in fault rocks are likely to form continuous clay smears or micro- clay smears between framework silicates, which can significantly decrease the porosity of the fault rocks. However, there is no direct link between the fault rocks and host rocks. Similar stratigraphic juxtapositions can generate fault rocks with very different magnitudes of porosity reduction. The resultant fault rocks can only be predicted only when the fault throw is smaller than the thickness of a faulted bed, in which scenario self-juxtaposition forms between the hanging wall and footwall.

  18. Drilling and Caching Architecture for the Mars2020 Mission

    NASA Astrophysics Data System (ADS)

    Zacny, K.

    2013-12-01

    We present a Sample Acquisition and Caching (SAC) architecture for the Mars2020 mission and detail how the architecture meets the sampling requirements described in the Mars2020 Science Definition Team (SDT) report. The architecture uses 'One Bit per Core' approach. Having dedicated bit for each rock core allows a reduction in the number of core transfer steps and actuators and this reduces overall mission risk. It also alleviates the bit life problem, eliminates cross contamination, and aids in hermetic sealing. An added advantage is faster drilling time, lower power, lower energy, and lower Weight on Bit (which reduces Arm preload requirements). To enable replacing of core samples, the drill bits are based on the BigTooth bit design. The BigTooth bit cuts a core diameter slightly smaller than the imaginary hole inscribed by the inner surfaces of the bits. Hence the rock core could be much easier ejected along the gravity vector. The architecture also has three additional types of bits that allow analysis of rocks. Rock Abrasion and Brushing Bit (RABBit) allows brushing and grinding of rocks in the same was as Rock Abrasion Tool does on MER. PreView bit allows viewing and analysis of rock core surfaces. Powder and Regolith Acquisition Bit (PRABit) captures regolith and rock powder either for in situ analysis or sample return. PRABit also allows sieving capabilities. The architecture can be viewed here: http://www.youtube.com/watch?v=_-hOO4-zDtE

  19. Preliminary reconnaissance survey for thorium, uranium, and rare-earth oxides, Bear Lodge Mountains, Crook County, Wyoming

    USGS Publications Warehouse

    Wilmarth, V.R.; Johnson, D.H.

    1953-01-01

    An area about 6 miles north of Sundance, in the Bear Lodge Mountains, in Crook County, Wyo., was examined during August 1950 for thorium, uranium, and rare-earth oxides and samples were collected. Uranium is known to occur in fluorite veins and iron-manganese veins and in the igneous rocks of Tertiary age that compose the core of the Bear Lodge Mountains. The uranium content of the samples ranges from 0.001 to 0.015 percent in those from the fluorite veins, from 0.005 to 0.018 percent in those from the iron-manganese veins, and from 0.001 to 0.017 percent in those from the igneous rocks. The radioactivity of the samples is more than that expected from the uranium content. Thorium accounts for most of this discrepancy. The thorium oxide content of samples ranges from 0.07 to 0.25 percent in those from the iron-manganese veins and from 0.07 to 0.39 percent in those from the sedimentary rocks, and from0.04 to 0.30 in those from the igneous rocks. Rare-earth oxides occur in iron-manganese veins and in zones of altered igneous rocks. The veins contain from 0.16 to 12.99 percent rare-earth oxides, and the igneous rocks, except for two localities, contain from 0.01 to 0.42 percent rare-earth oxides. Inclusions of metamorphosed sedimentary rocks in the intrusive rocks contain from 0.07 to 2.01 percent rare-earth oxides.

  20. Geoconservation and scientific rock sampling: Call for geoethical education strategies

    NASA Astrophysics Data System (ADS)

    Druguet, Elena; Passchier, Cees W.; Pennacchioni, Giorgio; Carreras, Jordi

    2013-04-01

    Some geological outcrops have a special scientific or educational value, represent a geological type locality and/or have a considerable aesthetical/photographic value. Such important outcrops require appropriate management to safeguard them from potentially damaging and destructive activities. Damage done to such rock exposures can include drill sampling by geologist undertaken in the name of scientific advancement. In order to illustrate the serious damage scientific sampling can do, we give some examples of outcrops from Western Europe, North America and South Africa, important to structural geology and petrology, where sampling was undertaken by means of drilling methods without any protective measures. After the rock coring, the aesthetic and photographic value of these delicate outcrops has decreased considerably. Unfortunately, regulation and protection mechanisms and codes of conduct can be ineffective. The many resources of geological information available to the geoscientist community (e.g. via Internet, such as outcrops stored in websites like "Outcropedia") promote access to sites of geological interest, but can also have a negative effect on their conservation. Geoethical education on rock sampling is therefore critical for conservation of the geological heritage. Geoethical principles and educational actions are aimed to be promoted at different levels to improve geological sciences development and to enhance conservation of important geological sites. Ethical protocols and codes of conduct should include geoconservation issues, being explicit about responsible sampling. Guided and inspired by the UK Geologists's Association "Code of Conduct for Rock Coring" (MacFadyen, 2010), we present a tentative outline requesting responsible behaviour: » Drill sampling is particularly threatening because it has a negative visual impact, whilst it is often unnecessary. Before sampling, geologists should think about the question "is drill sampling necessary for the study being carried on?" » Do not take samples from the centre of a geological type locality or a site of especial scientific, didactic interest or aesthetical/photographic value. If an outcrop is spectacular enough to be photographed, then you should not core or sample the rock face that has been recorded. The same applies to outstanding outcrops stored in websites. » Sample other parts of the same or a neighbouring outcrop where there is less impact. Core samples must be discrete in location; take cores from the least exposed, least spectacular part of an outcrop and try to plug the holes using the outer end of the core, if possible. » Before sampling ask experts and authorities (e.g. Natural Reserve or National Park managers if the area is protected) for advise and permission. References: MacFadyen, C.C.J., 2010. The vandalizing effects of irresponsible core sampling: a call for a new code of conduct: Geology Today 26, 146-151. Outcropedia: http://www.outcropedia.org/

  1. Biological Communities in Desert Varnish and Potential Implications for Varnish Formation Mechanisms

    NASA Astrophysics Data System (ADS)

    Lang-Yona, Naama; Maier, Stefanie; Macholdt, Dorothea; Rodriguez-Caballero, Emilio; Müller-Germann, Isabell; Yordanova, Petya; Jochum, Klaus-Peter; Andreae, Meinrat O.; Pöschl, Ulrich; Weber, Bettina; Fröhlich-Nowoisky, Janine

    2017-04-01

    Desert varnishes are thin, orange to black coatings found on rocks in arid and semi-arid environments on Earth. The formation mechanisms of rock varnish are still under debate and the involvement of microorganisms in this process remains unclear. In this work we aimed to identify the microbial community occurring in rock varnish to potentially gain insights into the varnish formation mechanism. For this purpose, rocks coated with desert varnish were collected from the Anza-Borrego Desert, California, USA, as well as soils from underneath the rocks. DNA from both varnish coatings and soil samples was extracted and subsequently used for metagenomic analysis, as well as for q-PCR analyses for specific species quantification. The element composition of the varnish coatings was analyzed and compared to the soil samples. Rock varnish shows similar depleted elements, compared to soil, but Mn and Pb are 50-60 times enriched compared to the soil samples, and about 100 times enriched compared to the upper continental crust. Our genomic analyses suggest unique populations and different protein functional groups occurring in the varnish compared to soil samples. We discuss these differences and try to shed light on the mechanism of Mn oxyhydroxide production in desert varnish formation.

  2. Modeling of carbonate reservoir variable secondary pore space based on CT images

    NASA Astrophysics Data System (ADS)

    Nie, X.; Nie, S.; Zhang, J.; Zhang, C.; Zhang, Z.

    2017-12-01

    Digital core technology has brought convenience to us, and X-ray CT scanning is one of the most common way to obtain 3D digital cores. However, it can only provide the original information of the only samples being scanned, and we can't modify the porosity of the scanned cores. For numerical rock physical simulations, a series of cores with variable porosities are needed to determine the relationship between the physical properties and porosity. In carbonate rocks, the secondary pore space including dissolution pores, caves and natural fractures is the key reservoir space, which makes the study of carbonate secondary porosity very important. To achieve the variation of porosities in one rock sample, based on CT scanned digital cores, according to the physical and chemical properties of carbonate rocks, several mathematical methods are chosen to simulate the variation of secondary pore space. We use the erosion and dilation operations of mathematical morphology method to simulate the pore space changes of dissolution pores and caves. We also use the Fractional Brownian Motion model to generate natural fractures with different widths and angles in digital cores to simulate fractured carbonate rocks. The morphological opening-and-closing operations in mathematical morphology method are used to simulate distribution of fluid in the pore space. The established 3D digital core models with different secondary porosities and water saturation status can be used in the study of the physical property numerical simulations of carbonate reservoir rocks.

  3. Groundwater monitoring of an open-pit limestone quarry: groundwater characteristics, evolution and their connections to rock slopes.

    PubMed

    Eang, Khy Eam; Igarashi, Toshifumi; Fujinaga, Ryota; Kondo, Megumi; Tabelin, Carlito Baltazar

    2018-03-06

    Groundwater flow and its geochemical evolution in mines are important not only in the study of contaminant migration but also in the effective planning of excavation. The effects of groundwater on the stability of rock slopes and other mine constructions especially in limestone quarries are crucial because calcite, the major mineral component of limestone, is moderately soluble in water. In this study, evolution of groundwater in a limestone quarry located in Chichibu city was monitored to understand the geochemical processes occurring within the rock strata of the quarry and changes in the chemistry of groundwater, which suggests zones of deformations that may affect the stability of rock slopes. There are three distinct geological formations in the quarry: limestone layer, interbedded layer of limestone and slaty greenstone, and slaty greenstone layer as basement rock. Although the hydrochemical facies of all groundwater samples were Ca-HCO 3 type water, changes in the geochemical properties of groundwater from the three geological formations were observed. In particular, significant changes in the chemical properties of several groundwater samples along the interbedded layer were observed, which could be attributed to the mixing of groundwater from the limestone and slaty greenstone layers. On the rainy day, the concentrations of Ca 2+ and HCO 3 - in the groundwater fluctuated notably, and the groundwater flowing along the interbedded layer was dominated by groundwater from the limestone layer. These suggest that groundwater along the interbedded layer may affect the stability of rock slopes.

  4. Evidence for a Meteoritic Component in Impact Melt Rock from the Chicxulub Structure

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Sharpton, Virgil L.; Schuraytz, Benjamin C.; Shirey, Steven B.; Blum, Joel D.; Marin, Luis E.

    1994-01-01

    The Chicxulub structure in Yucatan, Mexico, has recently been recognized as a greater then 200-km-diameter multi-ring impact crater of K-T boundary age. Crystalline impact melt rocks and breccias from within the crater, which have compositions similar to those of normal continental crustal rocks and which show shock metamorphic effects, have been studied for trace element and Re-Os isotope compositions. Re-Os isotope systematics allow the sensitive and selective determination of an extraterrestrial component in impact-derived rocks. A melt rock sample shows elevated iridium concentrations, an osmium concentration of 25 ppb, and a low Os-187/Os-188 ratio of 0.113, which are incompatible with derivation from the continental crust. Even though the Os-187/Os-188 ratio is slightly lower than the range so far measured in meteorites, a mantle origin seems unlikely for mass balance reasons and because the cratering event is unlikely to have excavated mantle material. The data support the hypothesis of a heterogeneously distributed meteoritic component in the Chicxulub melt rock. A sample of impact glass from the Haitian K-T boundary at Beloc yielded about 0.1 ppb osmium and an Os-187/0s-188 ratio of 0.251, indicating the presence of a small meteoritic component in the impact ejecta as well.

  5. Changes in crack shape and saturation during water penetration into stressed rock

    NASA Astrophysics Data System (ADS)

    Masuda, K.; Nishizawa, O.

    2012-12-01

    Open cracks and cavities in rocks play important roles in fluid transport. Water penetration induced microcrack activities and caused the failure of rocks. Fluids in cracks affect earthquake generation mechanism through physical and physicochemical effects. Methods of characterizing crack shape and water saturation of rocks underground are needed for many scientific and industrial applications. It would be desirable to estimate the status of cracks using readily observable data such as elastic-wave velocities. We demonstrate a laboratory method for estimating crack status inside a cylindrical rock sample based on least-squares fitting of a cracked solid model to measured P- and S-wave velocities, and porosity derived from strain data. We used a cylinder (50 mm in diameter and 100 mm in length) of medium-grained granite. We applied a differential stress of 370 MPa, which corresponds to about 70% of fracture strength, to the rock sample under 30 MPa confining pressure and held it constant throughout the experiment. When the primary creep stage and acoustic emission (AE) caused by the initial loading had ceased, we injected distilled water into the bottom end of the sample at a constant pressure of 25 MPa until macroscopic fracture occurred. During water migration, we measured P waves and S waves (Sv and Sh), in five directions parallel to the top and bottom surfaces of the sample. We also measured strains of the sample surface and monitored AE. We created X-ray computer tomography (CT) images of the rock sample after the experiment in order to recognize the location and shape of fractured surfaces. We observed the different patterns of velocity changes in the upper and lower portions of the rock sample. Changes in P-wave velocities can be interpreted based on the crack density. S-waves showed the splitting with Vsv being faster than Vsh, corresponding to the second kind of anisotropy. We estimated two crack characteristics, crack shape and the degree of water saturation, and their changes during the loading and water migration into a granitic rock subjected to confining pressure and differential stress. We found that during injection of water to induce failure of a stressed rock sample, the aspect ratio of cracks increased and the degree of water saturation increased to about 70%. Laboratory derived method can be applicable for the well-planned observation in the field experiments. Monitoring in situ crack situations with seismic waves are useful for industrial and scientific applications such as sequestrations of carbon dioxide and waste, and measuring the regional stress field.

  6. Factor analysis of rock, soil and water geochemical data from Salem magnesite mines and surrounding area, Salem, southern India

    NASA Astrophysics Data System (ADS)

    Satyanarayanan, M.; Eswaramoorthi, S.; Subramanian, S.; Periakali, P.

    2017-09-01

    Geochemical analytical data of 15 representative rock samples, 34 soil samples and 55 groundwater samples collected from Salem magnesite mines and surrounding area in Salem, southern India, were subjected to R-mode factor analysis. A maximum of three factors account for 93.8 % variance in rock data, six factors for 84 % variance in soil data, five factors for 71.2 % in groundwater data during summer and six factors for 73.7 % during winter. Total dissolved solids are predominantly contributed by Mg, Na, Cl and SO4 ions in both seasons and are derived from the country rock and mining waste by dissolution of minerals like magnesite, gypsum, halite. The results also show that groundwater is enriched in considerable amount of minor and trace elements (Fe, Mn, Ni, Cr and Co). Nickel, chromium and cobalt in groundwater and soil are derived from leaching of huge mine dumps deposited by selective magnesite mining activity. The factor analysis on trivalent, hexavalent and total Cr in groundwater indicates that most of the Cr in summer is trivalent and in winter hexavalent. The gradational decrease in topographical elevation from northern mine area to the southern residential area, combined regional hydrogeological factors and distribution of ultramafic rocks in the northern part of the study area indicate that these toxic trace elements in water were derived from mine dumps.

  7. Impact of hydrothermal alteration on time-dependent tunnel deformation in Neogene volcanic rock sequence in Japan: Petrology, Geochemistry and Geophysical investigation

    NASA Astrophysics Data System (ADS)

    Yamazaki, S.; Okazaki, K.; Niwa, H.; Arai, T.; Murayama, H.; Kurahashi, T.; Ito, Y.

    2017-12-01

    Time-dependent tunnel deformation is one of remaining geological problems for mountain tunneling. As a case study of time-dependent tunnel deformation, we investigated petrographical, mineral and chemical compositions of boring core samples and seismic exploration along a tunnel that constructed into Neogene volcanic rock sequence of andesite to dacite pyroclastic rocks and massive lavas with mafic enclaves. The tunnel has two zones of floor heaving that deformed time-dependently about 2 month after the tunnel excavation. The core samples around the deformed zones are characterized secondary mineral assemblages of smectite, cristobalite, tridymite, sulfides (pyrite and marcasite) and partially or completely reacted carbonates (calcite and siderite), which were formed by hydrothermal alteration under neutral to acidic condition below about 100 °C. The core samples also showed localized deterioration, such as crack formation and expansion, which occurred from few days to months after the drilling. The deterioration could be explained as a result of the cyclic physical and chemical weathering process with the oxidation of sulfide minerals, dissolution of carbonate mineral cementation and volumetric expantion of smectite. This weathering process is considered as a key factor for time-dependent tunnel deformation in the hydrothermally altered volcanic rocks. The zones of time-dependent deformation along a tunnel route can be predicted by the variations of whole-rock chemical compositions such as Na, Ca, Sr, Ba and S.

  8. The Geochemical Databases GEOROC and GeoReM - What's New?

    NASA Astrophysics Data System (ADS)

    Sarbas, B.; Jochum, K. P.; Nohl, U.; Weis, U.

    2017-12-01

    The geochemical databases GEOROC (http: georoc.mpch-mainz.gwdg.de) and GeoReM (http: georem.mpch-mainz.gwdg.de) are maintained by the Max Planck Institute for Chemistry in Mainz, Germany. Both online databases became crucial tools for geoscientists from different research areas. They are regularly upgraded by new tools and new data from recent publications obtained from a wide range of international journals. GEOROC is a collection of published analyses of volcanic rocks and mantle xenoliths. Since recently, data for plutonic rocks are added. The analyses include major and trace element concentrations, radiogenic and non-radiogenic isotope ratios as well as analytical ages for whole rocks, glasses, minerals and inclusions. Samples come from eleven geological settings and span the whole geological age scale from Archean to Recent. Metadata include, among others, geographic location, rock class and rock type, geological age, degree of alteration, analytical method, laboratory, and reference. The GEOROC web page allows selection of samples by geological setting, geography, chemical criteria, rock or sample name, and bibliographic criteria. In addition, it provides a large number of precompiled files for individual locations, minerals and rock classes. GeoReM is a database collecting information about reference materials of geological and environmental interest, such as rock powders, synthetic and natural glasses as well as mineral, isotopic, biological, river water and seawater reference materials. It contains published data and compilation values (major and trace element concentrations and mass fractions, radiogenic and stable isotope ratios). Metadata comprise, among others, uncertainty, analytical method and laboratory. Reference materials are important for calibration, method validation, quality control and to establish metrological traceability. GeoReM offers six different search strategies: samples or materials (published values), samples (GeoReM preferred values), chemical criteria, chemical criteria based on bibliography, bibliography, as well as methods and institutions.

  9. Evaluation of stress and saturation effects on seismic velocity and electrical resistivity - laboratory testing of rock samples

    NASA Astrophysics Data System (ADS)

    Vilhelm, Jan; Jirků, Jaroslav; Slavík, Lubomír; Bárta, Jaroslav

    2016-04-01

    Repository, located in a deep geological formation, is today considered the most suitable solution for disposal of spent nuclear fuel and high-level waste. The geological formations, in combination with an engineered barrier system, should ensure isolation of the waste from the environment for thousands of years. For long-term monitoring of such underground excavations special monitoring systems are developed. In our research we developed and tested monitoring system based on repeated ultrasonic time of flight measurement and electrical resistivity tomography (ERT). As a test site Bedřichov gallery in the northern Bohemia was selected. This underground gallery in granitic rock was excavated using Tunnel Boring Machine (TBM). The seismic high-frequency measurements are performed by pulse-transmission technique directly on the rock wall using one seismic source and three receivers in the distances of 1, 2 and 3 m. The ERT measurement is performed also on the rock wall using 48 electrodes. The spacing between electrodes is 20 centimeters. An analysis of relation of seismic velocity and electrical resistivity on water saturation and stress state of the granitic rock is necessary for the interpretation of both seismic monitoring and ERT. Laboratory seismic and resistivity measurements were performed. One series of experiments was based on uniaxial loading of dry and saturated granitic samples. The relation between stress state and ultrasonic wave velocities was tested separately for dry and saturated rock samples. Other experiments were focused on the relation between electrical resistivity of the rock sample and its saturation level. Rock samples with different porosities were tested. Acknowledgments: This work was partially supported by the Technology Agency of the Czech Republic, project No. TA 0302408

  10. Ultra-high sensitivity moment magnetometry of geological samples using magnetic microscopy

    NASA Astrophysics Data System (ADS)

    Lima, Eduardo A.; Weiss, Benjamin P.

    2016-09-01

    Useful paleomagnetic information is expected to be recorded by samples with moments up to three orders of magnitude below the detection limit of standard superconducting rock magnetometers. Such samples are now detectable using recently developed magnetic microscopes, which map the magnetic fields above room-temperature samples with unprecedented spatial resolutions and field sensitivities. However, realizing this potential requires the development of techniques for retrieving sample moments from magnetic microscopy data. With this goal, we developed a technique for uniquely obtaining the net magnetic moment of geological samples from magnetic microscopy maps of unresolved or nearly unresolved magnetization. This technique is particularly powerful for analyzing small, weakly magnetized samples such as meteoritic chondrules and terrestrial silicate crystals like zircons. We validated this technique by applying it to field maps generated from synthetic sources and also to field maps measured using a superconducting quantum interference device (SQUID) microscope above geological samples with moments down to 10-15 Am2. For the most magnetic rock samples, the net moments estimated from the SQUID microscope data are within error of independent moment measurements acquired using lower sensitivity standard rock magnetometers. In addition to its superior moment sensitivity, SQUID microscope net moment magnetometry also enables the identification and isolation of magnetic contamination and background sources, which is critical for improving accuracy in paleomagnetic studies of weakly magnetic samples.

  11. Geochemistry

    NASA Technical Reports Server (NTRS)

    Carr, M. H.; Toulmin, P., III

    1976-01-01

    The most effective strategy for the geochemical study of a planet is to proceed systematically with the mineralogical and chemical characterization of its materials in accordance with geologically determined priorities. It is insufficient merely to analyze chemically the surface rocks. To appreciate the meaning of a chemical analysis, some assessment must be made of the geologic history of the sample - what its source and mode of origin are and what processes have operated upon the sample to cause chemical fractionation. Determination of mineralogy, texture, lithology, and other properties of the rock that might be relevant to origin is, therefore, necessary.

  12. Detector-unit-dependent calibration for polychromatic projections of rock core CT.

    PubMed

    Li, Mengfei; Zhao, Yunsong; Zhang, Peng

    2017-01-01

    Computed tomography (CT) plays an important role in digital rock analysis, which is a new prospective technique for oil and gas industry. But the artifacts in CT images will influence the accuracy of the digital rock model. In this study, we proposed and demonstrated a novel method to restore detector-unit-dependent functions for polychromatic projection calibration by scanning some simple shaped reference samples. As long as the attenuation coefficients of the reference samples are similar to the scanned object, the size or position is not needed to be exactly known. Both simulated and real data were used to verify the proposed method. The results showed that the new method reduced both beam hardening artifacts and ring artifacts effectively. Moreover, the method appeared to be quite robust.

  13. Âge 40K/ 40Ar, Carbonifère inférieur, du magmatisme basique filonien du synclinal paléozoïque de Tin Serririne, Sud-Est du Hoggar (Algérie)

    NASA Astrophysics Data System (ADS)

    Djellit, Hamou; Bellon, Hervé; Ouabadi, Aziouz; Derder, Mohamed E. M.; Henry, Bernard; Bayou, Boualem; Khaldi, Allaoua; Baziz, Kamal; Merahi, Mounir K.

    2006-07-01

    Palaeozoic formations of the Tassilis Oua-n-Ahaggar (southeastern Hoggar) include magmatic rocks in the Tin Serririne syncline. Slight contact metamorphism of the overlying bed and studies of anisotropy of magnetic susceptibility of these rocks show that the latter correspond to sills and NW-SE or north-south dykes. 40K/ 40Ar dating of separated feldspars and whole rock for one sample and of whole rock for two other samples give a mean age of 347.6±16.2Ma (at the 2- σ level), thus corresponding to a Lower Carboniferous (Tournaisian) age. Taking into account both the age of this magmatism and the stratigraphic and structural data for this region suggests that dolerites were emplaced within distensive zones that are related to the reactivation of Panafrican faults. To cite this article: H. Djellit et al., C. R. Geoscience 338 (2006).

  14. Pristine moon rocks - A 'large' felsite and a metal-rich ferroan anorthosite

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.; Jerde, Eric A.; Kallemeyn, Gregory W.

    1987-01-01

    Results of elemental analyses, performed either by instrumental neutron activation analysis (NAA) or radiochemical NAA, of 19 lunar rock samples obtained by the Apollo 15, 17, and 12 missions are presented. Two of the samples are most extraordinary: 'large' (1 g) felsite from Apollo 12 and a pristine ferroan anorthosite from Apollo 15. The felsite is mainly a graphic intergrowth of K-feldspar and a silica phase, with about 6 pct plagioclase and 1 pct each of ferroaugite, ilmenite, and fayalitic olivine. The Fe-metal content of ferroan anorthosite is 1.2 wt pct in the thin section studied (but, based on mass balance for Co and Ni, must have been lower in the chip used for bulk-rock analysis); the measured bulk-rock concentrations of siderophile elements Re, Os, and Ir are far higher than previously observed among pristine lunar anorthosites. These results underscore the uncertainty associated with any attempt to estimate the overall siderophile element contents of the moon's crust.

  15. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes. Update.

    NASA Technical Reports Server (NTRS)

    Lindstrom, M. M.; Tobola, K. W.; Allen, J. S.; Stocco, K.; Henry, M.; Allen, J. S.; McReynolds, Julie; Porter, T. Todd; Veile, Jeri

    2005-01-01

    As the scientific community studies Mars remotely for signs of life and uses Martian meteorites as its only available samples, teachers, students, and the general public continue to ask, "How do we know these meteorites are from Mars?" This question sets the stage for a six-lesson instructional package Space Rocks Tell Their Secrets. Expanding on the short answer "It's the chemistry of the rock", students are introduced to the research that reveals the true identities of the rocks. Since few high school or beginning college students have the opportunity to participate in this level of research, a slide presentation introduces them to the labs, samples, and people involved with the research. As they work through the lessons and interpret authentic data, students realize that the research is an application of two basic science concepts taught in the classroom, the electromagnetic spectrum and isotopes. Additional information is included in the original extended abstract.

  16. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes

    NASA Technical Reports Server (NTRS)

    Lindstrom, M. M.; Tobola, K. W.; Stocco, K.; Henry, M.; Allen, J. S.

    2003-01-01

    As the scientific community studies Mars remotely for signs of life and uses Martian meteorites as its only available samples, teachers, students, and the general public continue to ask, "How do we know these meteorites are from Mars?" This question sets the stage for a three-lesson instructional package Space Rocks Tell Their Secrets. Expanding on the short answer "It's the chemistry of the rock", students are introduced to the research that reveals the true identities of the rocks. Since few high school or beginning college students have the opportunity to participate in this level of research, a slide presentation introduces them to the labs, samples, and people involved with the research. As they work through the lessons and interpret real data, students realize that the research is an application of basic science concepts they should know, the electromagnetic spectrum and isotopes. They can understand the results without knowing how to do the research or operate the instruments.

  17. Microbiology of Low Temperature Seafloor Deposits Along a Geochemical Gradient in Lau Basin

    NASA Astrophysics Data System (ADS)

    sylvan, J. B.; Sia, T. Y.; Haddad, A.; Briscoe, L. J.; Girguis, P. R.; Edwards, K. J.

    2011-12-01

    The East Lau Spreading Center (ELSC) and Valu Fa Ridge comprise a ridge segment in the southwest Pacific Ocean where rapid transitions in the underlying mantle lenses manifest themselves by gradients in seafloor rock geochemistry. At the spreading center in the north, basaltic host rock extrudes while the influence of subduction in the south creates mainly basaltic andesite host rock. A contuous gradient between these two end members exists along the spreading center. We studied the geology and microbial diversity of three silicate rock samples and three inactive sulfide chimney samples collected along the ELSC and Valu Fa Ridge by X-ray diffraction, elemental analysis, thin section analysis and construction of bacterial 16S rRNA clone libraries. Here, we discuss the geological and biological differences between the collected rocks. We found that the bacterial community composition changed as the host rock mineralogy and chemistry changed from north to south. Also, the bacterial community composition on the silicates is distinct from those on the inactive chimneys, and the interior conduit of an inactive chimney hosts a very different community from the exterior. Basalt from the northern end of the ELSC had high proportions of Alphaproteobacteria and Bacteroidetes. These proportions decreased on the silicates collected further south. Epsilonproteobacteria were also present on the basalt, decreased further south and were absent on the basaltic andesite. Conversely, basaltic andesite rocks from the southern end had high proportions of Chloroflexi, which decreased further north and were absent on basalt. The exterior of inactive sulfide structures were dominated by lineages of sulfur oxidizing Gammaproteobacteria and Epsilonproteobacteria and were less diverse than those on the silicates. The interior of one chimney was dominated by sulfate-reducing Deltaproteobacteria and was the least diverse of all samples. These results support the Mantle to Microbe hypothesis in that different types of Bacteria are selected by the composition of the host rock as determined by the melt lens underlying the hydrothermal vent field.

  18. Effect of ultramafic intrusions and associated mineralized rocks on the aqueous geochemistry of the Tangle Lakes Area, Alaska: Chapter C in Studies by the U.S. Geological Survey in Alaska, 2011

    USGS Publications Warehouse

    Wang, Bronwen; Gough, Larry P.; Wanty, Richard B.; Lee, Gregory K.; Vohden, James; O’Neill, J. Michael; Kerin, L. Jack

    2013-01-01

    Stream water was collected at 30 sites within the Tangle Lakes area of the Delta mineral belt in Alaska. Sampling focused on streams near the ultramafic rocks of the Fish Lake intrusive complex south of Eureka Creek and the Tangle Complex area east of Fourteen Mile Lake, as well as on those within the deformed metasedimentary, metavolcanic, and intrusive rocks of the Specimen Creek drainage and drainages east of Eureka Glacier. Major, minor, and trace elements were analyzed in aqueous samples for this reconnaissance aqueous geochemistry effort. The lithologic differences within the study area are reflected in the major-ion chemistry of the water. The dominant major cation in streams draining mafic and ultramafic rocks is Mg2+; abundant Mg and low Ca in these streams reflect the abundance of Mg-rich minerals in these intrusions. Nickel and Cu are detected in 84 percent and 87 percent of the filtered samples, respectively. Nickel and Cu concentrations ranged from Ni <0.4 to 10.1 micrograms per liter (mg/L), with a median of 4.2 mg/L, and Cu <0.5 to 27 mg/L, with a median of 1.2 mg/L. Trace-element concentrations in water are generally low relative to U.S. Environmental Protection Agency freshwater aquatic-life criteria; however, Cu concentrations exceed the hardness-based criteria for both chronic and acute exposure at some sites. The entire rare earth element (REE) suite is found in samples from the Specimen Creek sites MH5, MH4, and MH6 and, with the exception of Tb and Tm, at site MH14. These samples were all collected within drainages containing or downstream from Tertiary gabbro, diabase, and metagabbro (Trgb) exposures. Chondrite and source rock fractionation profiles for the aqueous samples were light rare earth element depleted, with negative Ce and Eu anomalies, indicating fractionation of the REE during weathering. Fractionation patterns indicate that the REE are primarily in the dissolved, as opposed to colloidal, phase.

  19. High strain rate behavior of saturated and non-saturated sandstone: implications for earthquake mechanisms.

    NASA Astrophysics Data System (ADS)

    Aben, F. M.; Doan, M. L.; Gratier, J. P.; Renard, F.

    2015-12-01

    Damage zones of active faults control their resistance to rupture and transport properties. Hence, knowing the damage's origin is crucial to shed light on the (paleo)seismic behavior of the fault. Coseismic damage in the damage zone occurs by stress-wave loading of a passing earthquake rupture tip, resulting in dynamic (high strain rate) loading and subsequent dynamic fracturing or pulverization. Recently, interest in this type of damage has increased and several experimental studies were performed on dry rock specimens to search for pulverization-controlling parameters. However, the influence of fluids in during dynamic loading needs to be constrained. Hence, we have performed compressional dynamic loading experiments on water saturated and oven dried Vosges sandstone samples using a Split Hopkinson Pressure Bar apparatus. Due to the high porosity in these rocks, close to 20%, the effect of fluids should be clear. Afterwards, microstructural analyses have been applied on thin sections. Water saturated samples reveal dynamic mechanical behavior that follows linear poro-elasticity for undrained conditions: the peak strength of the sample decreases by 30-50% and the accumulated strain increases relative to the dry samples that were tested under similar conditions. The mechanical behavior of partially saturated samples falls in between. Microstructural studies on thin section show that fractures are restricted to some quartz grains while other quartz grains remain intact, similar to co-seismically damaged sandstones observed in the field. Most deformation is accommodated by inter-granular processes, thereby appointing an important role to the cement matrix in between grains. Intra-granular fracture damage is highest for the saturated samples. The presence of pore fluids in the rocks lower the dynamic peak strength, especially since fast dynamic loading does not allow for time-dependent fluid dissipation. Thus, fluid-saturated rocks would show undrained mechanical behavior, creating local overpressure in the pore that breaks the inter-granular cement. This strength-decreasing effect provides an explanation for the presence of pulverized and coseismically damaged rocks at depth and extends the range of dynamic stress where dynamic damage can occur in fault zones.

  20. Factors controlling the regional distribution of vanadium in ground water

    USGS Publications Warehouse

    Wright, Michael T.; Belitz, Kenneth

    2010-01-01

    Although the ingestion of vanadium (V) in drinking water may have possible adverse health effects, there have been relatively few studies of V in groundwater. Given the importance of groundwater as a source of drinking water in many areas of the world, this study examines the potential sources and geochemical processes that control the distribution of V in groundwater on a regional scale. Potential sources of V to groundwater include dissolution of V rich rocks, and waste streams from industrial processes. Geochemical processes such as adsorption/desorption, precipitation/dissolution, and chemical transformations control V concentrations in groundwater. Based on thermodynamic data and laboratory studies, V concentrations are expected to be highest in samples collected from oxic and alkaline groundwater. However, the extent to which thermodynamic data and laboratory results apply to the actual distribution of V in groundwater is not well understood. More than 8400 groundwater samples collected in California were used in this study. Of these samples, high (> or = 50 μg/L) and moderate (25 to 49 μg/L) V concentrations were most frequently detected in regions where both source rock and favorable geochemical conditions occurred. The distribution of V concentrations in groundwater samples suggests that significant sources of V are mafic and andesitic rock. Anthropogenic activities do not appear to be a significant contributor of V to groundwater in this study. High V concentrations in groundwater samples analyzed in this study were almost always associated with oxic and alkaline groundwater conditions, which is consistent with predictions based on thermodynamic data.

  1. Pressure-Temperature Studies and Structural Setting of Amphibolite-Grade Rocks Within the Easternmost Indus-Ysangpo Suture Zone and Forearc Complex (Tidding Formation), N. Indo-Burma Ranges of N.E. India

    NASA Astrophysics Data System (ADS)

    Braza, M.; Haproff, P. J.

    2016-12-01

    The easternmost extension of the Indus-Ysangpo suture (IYS) and Xigaze forearc complex, the Tidding Formation of northeastern India, remains the least-studied sequence representing closure of the Neotethys ocean and syn-tectonic sedimentation. In this study, we present P-T determinations coupled with detrital zircon U-Pb geochronology and detailed geologic mapping to uncover the depositional and metamorphic history of Tidding suture and forearc rocks during Himalayan orogenesis. Four mica schists were sampled from successive NW-SE-striking thrust sheets within the Dibang Valley of Arunachal Pradesh (N.E. India), southwest of the easternmost L. Cretaceous Gangdese batholith. Use of the garnet-muscovite-biotite-plagioclase (GMBP) thermobarometer and Ti-in-biotite thermometer on schist sample PH-1-8-13-26 yield peak conditions of 627 ± 28°C and 10.4 ± 1.1 kbar. Similarly, use of the garnet-biotite Fe-Mg exchange thermometer and garnet-aluminosilicate-silica-plagioclase (GASP) barometer yield 644 ± 50°C and 12 ± 1 kbar for schist sample PH-11-14-15-24 within the same thrust sheet. Both samples contain recrystallized quartz along grain boundaries and garnets contain no significant compositional zoning. At structurally lower levels, garnet chlorite schist (PH-1-8-13-8) sampled from the Mayodia klippe records peak temperatures below 650°C. Garnets display growth zoning, with increasing Mn and decreasing Fe and Mg from rim to core. Application of the Ti-in-biotite thermometer to a mafic schist (PH-1-3-13-1B) within the Mayodia klippe near a southwestward-directed thrust yields a peak temperature of 679 ± 24°C. Our study reveals metamorphism of IYS rocks occurred at deep crustal levels (>30 km) during northward Neotethys subduction. Suture rocks were subsequently exhumed by orogen-scale N-dipping thrusts during growth of the easternmost Himalayan orogen.

  2. Distribution of Apollo 15 lunar samples: News release

    NASA Technical Reports Server (NTRS)

    Dick, L.

    1971-01-01

    More than 2200 Apollo 15 samples and polished thin sections weighing a total of about three kilograms will be distributed to 201 principal investigators for study during the next year. The scientific investigations will provide detailed information on the samples' mineralogy, petrology, chemistry, age, and history and on the effects of micrometeorite impacts, solar radiation, and cosmic ray bombardment. Preliminary examination of samples show the Apollo 15 material to be of three types: dark colored iron-rich basalts associated with mare and rille formation; a few basalts enriched in feldspar collected near the Apennine front; and light colored fragmental rocks or breccias consisting of soil-like materials which were cemented together or of rock fragments which were welded together by partial remelting.

  3. Overall voice and strain level analysis in rock singers.

    PubMed

    Gonsalves, Aline; Amin, Elisabeth; Behlau, Mara

    2010-01-01

    overall voice and strain level analysis in rock singers. to analyze the voice o rock singers according to two specific parameters: overall level of vocal deviation (OLVD) and strain level (SL); to compare these parameters in three different music samples. participants were 26 male rock singers, ranging in age from 17 to 46 years (mean = 29.8 years). All of the participants answered a questionnaire for sample characterization and were submitted to the recording of three voice samples: Brazilian National Anthem (BNA), Satisfaction and self-selected repertoire song (RS). Voice samples were analyzed by five speech-language pathologists according to OLVD and SL. Statistical analysis was done using the software SPSS, version 13.0. statistically significant differences were observed for the mean values of OLVD and SL during the performance of Satisfaction (OLVD = 32.8 and SL = 0.024 / p=0.024) and during the RS performance (OLVD = 38.4 and SL = 55.8 / p=0.010). The values of OLVD and SL are directly proportional to the samples of the BNA* and RS**, i.e. the higher the strain the higher the OLVD (p,0.001*; p=0.010**). When individually analyzing the three song samples, it is observed that the OLVD does not vary significantly among them. However, the mean values present a trend to increase from non-rock to rock performances (24.0 BNA / 32.8 Satisfaction / 38.4 RS). The level of strain found during the BNA performance presents statistically significant difference when compared to the rock performances (Satisfaction and RS, p=0.008 and p=0.001). the obtained data suggest that rock style is related to the greater use of vocal strain and that this strain does not necessarily impose a negative impression to the voice, but corresponds to a common interpretative factor related to this style of music.

  4. Geochemical and geochronological constrains on the Chiang Khong volcanic rocks (northwestern Thailand) and its tectonic implications

    NASA Astrophysics Data System (ADS)

    Qian, Xin; Feng, Qinglai; Chonglakmani, Chongpan; Monjai, Denchok

    2013-12-01

    Volcanic rocks in northwestern Thailand exposed dominantly in the Chiang Khong area, are commonly considered to be genetically linked to the tectonic evolution of the Paleo-Tethyan Ocean. The volcanic rocks consist mainly of andesitic to rhyolitic rocks and are traditionally mapped as Permian-Triassic sequences. Our zircon U-Pb geochronological results show that two andesitic samples (TL-1-B and TL-31-B), are representative of the Doi Yao volcanic zone, and give a mean weighted age of 241.2±4.6 Ma and 241.7±2.9 Ma, respectively. The rhyolitic sample (TL-32-B1) from the Doi Khun Ta Khuan volcanic zone erupted at 238.3±3.8 Ma. Such ages indicate that Chiang Khong volcanic rocks erputed during the early Middle Triassic period. Seven samples from the Doi Yao and Doi Khun Ta Khuan zones exhibit an affinity to arc volcanics. Three rhyolitic samples from the Chiang Khong area have a geochemical affinity to both arc and syn-collisional volcanic rocks. The Chiang Khong arc volcanic rocks can be geochemically compared with those in the Lampang area in northern Thailand, also consistent with those in Jinghong area of southwestern Yunnan. This indicates that the Chiang Rai arc-volcanic zone might northwardly link to the Lancangjiang volcanic zone in southwestern China.

  5. Comparative Analysis of Fluoride Concentrations in Groundwaters in Northern and Southern Ghana: Implications for the Contaminant Sources

    NASA Astrophysics Data System (ADS)

    Sunkari, Emmanuel Daanoba; Zango, Musah Saeed; Korboe, Harriet Mateko

    2018-04-01

    Bongo and Sekyere South districts, both in the northern and southern parts of Ghana, respectively, have high populations living in rural areas and most of them use groundwater for drinking purposes. The groundwater in these areas is prone to contamination from natural and/or artificial sources. Therefore this study aims; (1) to present a comparative analysis of the fluoride concentration in groundwater samples from Bongo and Sekyere South districts and the associated groundwater-rock interaction that may be the cause for the varied fluoride concentrations, (2) to determine the leaching potential of fluoride from the host rocks as the possible mechanism for groundwater contamination. Sixty (60) groundwater samples from active pumping wells and twelve (12) rock samples from outcrops were collected from various communities in the two districts for fluoride concentration and mineralogical analysis. Based on the variations in fluoride concentration, fluoride spatial distribution maps were prepared using empirical Bayesian kriging interpolation method and analysed by means of hierarchical cluster analysis. The fluoride concentration in Bongo district varies between 1.71 and 4.0 mg/L, whereas that in Sekyere South district changes from 0.3 to 0.8 mg/L. From the mineralogical studies, biotite has the highest percentage in the Bongo district and has positive correlation with fluoride concentration in the analysed water samples than in the Sekyere South district. The elevated fluoride concentration in the Bongo district relative to the Sekyere South district is due to the dissolution of biotite in the groundwater and the sufficient groundwater-rock interaction since the water samples are mainly sourced from deeper boreholes. This high fluoride concentration has resulted in a plethora of reported cases of dental fluorosis and other health-related issues in Bongo.

  6. Comparative Analysis of Fluoride Concentrations in Groundwaters in Northern and Southern Ghana: Implications for the Contaminant Sources

    NASA Astrophysics Data System (ADS)

    Sunkari, Emmanuel Daanoba; Zango, Musah Saeed; Korboe, Harriet Mateko

    2018-05-01

    Bongo and Sekyere South districts, both in the northern and southern parts of Ghana, respectively, have high populations living in rural areas and most of them use groundwater for drinking purposes. The groundwater in these areas is prone to contamination from natural and/or artificial sources. Therefore this study aims; (1) to present a comparative analysis of the fluoride concentration in groundwater samples from Bongo and Sekyere South districts and the associated groundwater-rock interaction that may be the cause for the varied fluoride concentrations, (2) to determine the leaching potential of fluoride from the host rocks as the possible mechanism for groundwater contamination. Sixty (60) groundwater samples from active pumping wells and twelve (12) rock samples from outcrops were collected from various communities in the two districts for fluoride concentration and mineralogical analysis. Based on the variations in fluoride concentration, fluoride spatial distribution maps were prepared using empirical Bayesian kriging interpolation method and analysed by means of hierarchical cluster analysis. The fluoride concentration in Bongo district varies between 1.71 and 4.0 mg/L, whereas that in Sekyere South district changes from 0.3 to 0.8 mg/L. From the mineralogical studies, biotite has the highest percentage in the Bongo district and has positive correlation with fluoride concentration in the analysed water samples than in the Sekyere South district. The elevated fluoride concentration in the Bongo district relative to the Sekyere South district is due to the dissolution of biotite in the groundwater and the sufficient groundwater-rock interaction since the water samples are mainly sourced from deeper boreholes. This high fluoride concentration has resulted in a plethora of reported cases of dental fluorosis and other health-related issues in Bongo.

  7. Rollerjaw Rock Crusher

    NASA Technical Reports Server (NTRS)

    Peters, Gregory; Brown, Kyle; Fuerstenau, Stephen

    2009-01-01

    The rollerjaw rock crusher melds the concepts of jaw crushing and roll crushing long employed in the mining and rock-crushing industries. Rollerjaw rock crushers have been proposed for inclusion in geological exploration missions on Mars, where they would be used to pulverize rock samples into powders in the tens of micrometer particle size range required for analysis by scientific instruments.

  8. Seismic anisotropy in the lower crust: The link between rock composition, microstructure, texture and seismic properties.

    NASA Astrophysics Data System (ADS)

    Czaplinska, Daria; Piazolo, Sandra; Almqvist, Bjarne

    2015-04-01

    Seismic anisotropy observed in Earth's interior is caused by the presence of aligned anisotropic minerals (crystallographic and shape preferred orientation; CPO and SPO respectively), and fluid and/or melt inclusions related to deformation. Therefore, the variations in seismic anisotropy carry valuable information about the structure of the mantle and crust. For example, anisotropy observed in the upper mantle is mainly attributed to the CPO of olivine, and provides strong evidence for the flow within the upper mantle. Seismic anisotropy in the crust is still poorly constrained, mostly due to the much larger heterogeneity of the crustal rocks in comparison with the more homogenous mantle. Anisotropy in the crust will be affected by the variations in rock composition, microstructure, texture (presence or lack of CPO), brittle structures (e.g. fracture systems) and chemical composition of the minerals. However, once the relationships between those variables and seismic properties of the crustal rocks are established, seismic anisotropy can be used to derive characteristics of rocks otherwise out of reach. Our study focuses on two sets of samples of middle to lower crustal rocks collected in Fiordland (New Zealand) and in Sweden. Samples from Fiordland represent a root of a thick (ca. 80 km) magmatic arc and comprise igneous rocks, which crystallized at high P and T conditions and were subsequently metamorphosed and deformed. Samples from Sweden are derived from a metasedimentary nappe in the Caledonian orogenic belt, which is mostly composed of gneisses, amphibolites and calc-silicates that have experienced different amounts of strain. We use large area EBSD mapping to measure the CPO of the constituent phases and record the geometric relationships of the rock microstructure. Data is then used to calculate the elastic properties of the rock from single-crystal stiffnesses. Here, we utilize the EBSD GUI software (Cook et al., 2013), which offers varied homogenization techniques, including Voigt, Reuss, Hill, geometric mean and self-consistent and Asymptotic Expansion Homogenization (AEH) methods. To test the advantages and disadvantages of the method, results are compared to measured geophysical properties of equivalent rocks. Such comparison, allows refinement of seismic data interpretation for mid to lower crustal rocks. References: Cook, A., Vel., S., Johnson, S.E., Gerbi, C., Song, W.J., 2013. Elastic and Seismic Properties (ESP) Toolbox (beta version); http://umaine.edu/mecheng/faculty-and-staff/senthil-vel/software/ESP_Toolbox/

  9. Evaluating Core Quality for a Mars Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Weiss, D. K.; Budney, C.; Shiraishi, L.; Klein, K.

    2012-01-01

    Sample return missions, including the proposed Mars Sample Return (MSR) mission, propose to collect core samples from scientifically valuable sites on Mars. These core samples would undergo extreme forces during the drilling process, and during the reentry process if the EEV (Earth Entry Vehicle) performed a hard landing on Earth. Because of the foreseen damage to the stratigraphy of the cores, it is important to evaluate each core for rock quality. However, because no core sample return mission has yet been conducted to another planetary body, it remains unclear as to how to assess the cores for rock quality. In this report, we describe the development of a metric designed to quantitatively assess the mechanical quality of any rock cores returned from Mars (or other planetary bodies). We report on the process by which we tested the metric on core samples of Mars analogue materials, and the effectiveness of the core assessment metric (CAM) in assessing rock core quality before and after the cores were subjected to shocking (g forces representative of an EEV landing).

  10. NASA Lunar Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers and Libraries

    NASA Astrophysics Data System (ADS)

    Allen, J. S.

    2009-12-01

    NASA is eager for students and the public to experience lunar Apollo rocks and regolith soils first hand. Lunar samples embedded in plastic are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks has revealed the early history of our Earth-Moon system. The rocks help educators make the connections to this ancient history of our planet as well as connections to the basic lunar surface processes - impact and volcanism. With these samples educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by missions to Moon. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections of the rocks to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the violent impact history of the Moon. The disks also include two regolith soils and orange glass from a pyroclastic deposit. The loan program also includes Meteorite Disks containing six meteorites that will help educators share the early history of the solar system with students and the public. Educators may borrow either lunar or meteorite disks through Johnson Space Center Curatorial Office. In trainings provided by the NASA Aerospace Education Services Program specialists, educators certified to borrow the disk learn about education resources, the proper use of the samples, and the special security for care and shipping of the disks. The Lunar and Meteorite Sample Education Disk Program is set up to bridge to new education programs that will carry NASA exploration to more people. Getting Space Rocks out to the public and connecting the public to the current space exploration missions is the focus the NASA disk loan program.

  11. Igneous rocks formed by hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Osinski, Gordon R.; Grieve, Richard A. F.; Bleacher, Jacob E.; Neish, Catherine D.; Pilles, Eric A.; Tornabene, Livio L.

    2018-03-01

    Igneous rocks are the primary building blocks of planetary crusts. Most igneous rocks originate via decompression melting and/or wet melting of protolith lithologies within planetary interiors and their classification and compositional, petrographic, and textural characteristics, are well-studied. As our exploration of the Solar System continues, so too does the inventory of intrusive and extrusive igneous rocks, settings, and processes. The results of planetary exploration have also clearly demonstrated that impact cratering is a ubiquitous geological process that has affected, and will continue to affect, all planetary objects with a solid surface, whether that be rock or ice. It is now recognized that the production of igneous rocks is a fundamental outcome of hypervelocity impact. The goal of this review is to provide an up-to-date synthesis of our knowledge and understanding of igneous rocks formed by hypervelocity impact. Following a brief overview of the basics of the impact process, we describe how and why melts are generated during impact events and how impact melting differs from endogenic igneous processes. While the process may differ, we show that the products of hypervelocity impact can share close similarities with volcanic and shallow intrusive igneous rocks of endogenic origin. Such impact melt rocks, as they are termed, can display lobate margins and cooling cracks, columnar joints and at the hand specimen and microscopic scale, such rocks can display mineral textures that are typical of volcanic rocks, such as quench crystallites, ophitic, porphyritic, as well as features such as vesicles, flow textures, and so on. Historically, these similarities led to the misidentification of some igneous rocks now known to be impact melt rocks as being of endogenic origin. This raises the question as to how to distinguish between an impact versus an endogenic origin for igneous-like rocks on other planetary bodies where fieldwork and sample analysis may not be possible and all that may be available is remote sensing data. While the interpretation of some impact melt rocks may be relatively straightforward (e.g., for clast-rich varieties and those with clear projectile contamination) we conclude that distinguishing between impact and endogenic igneous rocks is a non-trivial task that ultimately may require sample investigation and analysis to be conducted. Caution is, therefore, urged in the interpretation of igneous rocks on planetary surfaces.

  12. Effective Porosity Measurements by Wet- and Dry-type Vacuum Saturations using Process-Programmable Vacuum Saturation System

    NASA Astrophysics Data System (ADS)

    Lee, T. J.; Lee, K. S., , Dr; Lee, S. K.

    2017-12-01

    One of the most important factors in measuring effective porosity by vacuum saturation method is that the air in the pore space can be fully substituted by water during the vacuum saturation process. International Society of Rock Mechanics (ISRM) suggests vacuuming a rock sample submerged in the water, while American Society of Test and Materials (ASTM) vacuuming the sample and water separately and then pour the water to the sample. In this study, we call the former wet-type vacuum saturation (WVS) method and the latter dry-type vacuum saturation (DVS) method, and compare the effective porosity measured by the two different vacuum saturation processes. For that purpose, a vacuum saturation system has been developed, which can support both WVS and DVS by only changing the process by programming. Comparison of effective porosity has been made for a cement mortar and rock samples. As a result, DVS can substitute more void volume to water than WVS, which in turn insists that DVS can provide more exact value of effective porosity than WVS.

  13. Amino acids and hydrocarbons approximately 3,800-Myr old in the Isua rocks, southwestern Greenland

    NASA Technical Reports Server (NTRS)

    Nagy, B.; Engel, M. H.; Zumberge, J. E.; Ogino, H.; Chang, S. Y.

    1981-01-01

    Results of an analysis of amino acids and hydrocarbons found in the Isua banded iron formation, which contains the oldest known rocks on earth, are discussed. Similarities are pointed out between the relative amino acid abundances of the Isua rocks and those of lichens found on their surfaces, and a lack of substantial racemization indicated by the low D/L ratios in the 3800-million year old rock samples is noted. Experimental results showing the possibility of amino acid diffusion from lichens into the rocks are presented. Comparisons of the Isua rock amino acid D/L ratios with those reported for samples from other regions indicates that none of the Isua amino acids are older than a few tens of thousands to a few hundred thousand years. Analyses of the saturated hydrocarbons of the Isua samples reveals no odd carbon number preference, which may indicate antiquity, however laboratory experiments have shown that amino acids and aromatic and saturated aliphatic hydrocarbons could not have survived the metamorphic history of the Isua rocks. The evidence presented thus suggests that the amino acids and hydrocarbons found are not of the age of the sediments.

  14. Using earthquake-triggered landslides as a hillslope-scale shear strength test: Insights into rock strength properties at geomorphically relevant spatial scales in high-relief, tectonically active settings

    NASA Astrophysics Data System (ADS)

    Gallen, Sean; Clark, Marin; Godt, Jonathan; Lowe, Katherine

    2016-04-01

    The material strength of rock is known to be a fundamental property in setting landscape form and geomorphic process rates as it acts to modulate feedbacks between earth surface processes, tectonics, and climate. Despite the long recognition of its importance in landscape evolution, a quantitative understanding of the role of rock strength in affecting geomorphic processes lags our knowledge of the influence of tectonics and climate. This gap stems largely from the fact that it remains challenging to quantify rock strength at the hillslope scale. Rock strength is strongly scale dependent because the number, size, spacing, and aperture of fractures sets the upper limit on rock strength, making it difficult to extrapolate laboratory measurements to landscape-scale interpretations. Here we present a method to determine near-surface rock strength at the hillslope-scale, relying on earthquake-triggered landslides as a regional-scale "shear strength" test. We define near-surface strength as the average strength of rock sample by the landslides, which is typically < 10 m. Based on a Newmark sliding block model, which approximates slope stability during an earthquake assuming a material with frictional and cohesive strength, we developed a coseismic landslide model that is capable of reproducing statistical characteristics of the distribution of earthquake-triggered landslides. We present results from two well-documented case-studies of earthquakes that caused widespread mass-wasting; the 2008 Mw 7.9 Wenchuan Earthquake, Sichuan Province, China and the 1994 Mw. 6.8 Northridge Earthquake, CA, USA. We show how this model can be used to determine near-surface rock strength and reproduce mapped landslide patterns provided the spatial distribution of local hillslope gradient, earthquake peak ground acceleration (PGA), and coseismic landsliding are well constrained. Results suggest that near-surface rock strength in these tectonically active settings is much lower than that obtained using typical laboratory shear strength measurements on intact rock samples. Furthermore, the near-surface material strength is similar between the study areas despite differences in tectonic, climatic, and lithologic conditions. Variations in near-surface strength within each setting appear to be more strongly associated with factors contributing to the weakening rock through chemical or physical weathering, such as mean annual precipitation and distance to active faults (a proxy for rock shattering intensity), rather than intrinsic lithologic properties. We hypothesize that the shattering of rock through long-term permanent strain accumulation and by repeated earthquakes is an important mechanism that can explain low rock strength values among the different study sites and the spatial pattern of rock strength within each location. These findings emphasize the potential role of factors other than lithology in controlling the spatial distribution of near-surface rock strength in high-relief, tectonically active settings, which has important implications for understanding the evolution of landscapes, interpreting tectonic and climatic signals from topography, critical zone processes, and natural hazard assessment.

  15. Long-term effects of CO2 on the mechanical behaviour of faults - a study of samples from a natural CO2 analogue (Entrada Sandstone, Utah, USA)

    NASA Astrophysics Data System (ADS)

    Hangx, S. J. T.; Bakker, E.; Spiers, C. J.

    2012-04-01

    In an attempt to reduce CO2 emissions, CO2 capture and storage in depleted oil and gas reservoirs is seen as one of the most important mitigation strategies. However, in order to achieve safe storage on geological timescales, it is key to maintain integrity of the caprock and any faults penetrating the seal. One of the largest uncertainties lies in the prediction of the effects of fluid-rock interaction on the mechanical integrity and sealing capacity of the reservoir-seal system in the very long term, i.e. on timescales of the order of 103 or 104 years. As chemical interactions in the rock/CO2/brine system are slow, their long-term effects on rock composition, microstructure, mechanical properties and transport properties cannot be properly reproduced in laboratory experiments. One way of addressing this issue is to conduct experiments on reservoir, caprock and fault rock samples taken from natural CO2 reservoir-seal systems, which can serve as natural analogues for CO2 storage fields. The transport and mechanical properties of these rock samples, which have reacted with CO2 over geological timescales, can then be compared with data obtained for laterally equivalent materials that are unaffected by CO2. The observed changes in rock properties can subsequently be used as input for numerical models aimed at assessing the long-term effects of CO2 on reservoir compaction, caprock damage, fault reactivation and fault permeability. We assessed the mechanical behaviour and transport properties of fault rocks. To this end, we performed triaxial direct shear experiments at room temperature under nominally dry conditions, at normal stresses up to 90 MPa and shear velocities of 0.22 -10.9 μm/s. Simulated fault rocks were prepared by crushing material obtained from surface outcrops of the Entrada Sandstone, one of the CO2-bearing formations from an analogue field under the Colorado Plateau, Utah, USA. Three types of starting material were obtained: 1) red-coloured samples consisting mainly of quartz and feldspar, some minor clay minerals and hematite/goethite grain coatings, 2) yellow-coloured, (so-called) bleached samples additionally containing various amounts of kaolinite, calcite and dolomite, and 3) heavily cemented samples from the surface outcrop of the fault core of the Little Grand Wash Fault, containing a high percentage of carbonates (> 40 wt%). Previous work demonstrates that the bleached samples and the material from the fault were altered as a result of interaction with CO2-rich fluids. Over the experimental range investigated, we measured friction coefficients of 0.55-0.85 for unbleached material and 0.55-0.80 for bleached material, while the fault core material showed higher friction coefficients (0.60-0.95), all showing a minor decrease with decreasing shear velocity and normal stress. Almost all samples showed velocity-strengthening slip behaviour. Overall, the frictional behaviour of Entrada Sandstone does not seem to be strongly influenced by CO2/brine/rock interactions.

  16. Effects of smectite on the oil-expulsion efficiency of the Kreyenhagen Shale, San Joaquin Basin, California, based on hydrous-pyrolysis experiments

    USGS Publications Warehouse

    Lewan, Michael D.; Dolan, Michael P.; Curtis, John B.

    2014-01-01

    The amount of oil that maturing source rocks expel is expressed as their expulsion efficiency, which is usually stated in milligrams of expelled oil per gram of original total organic carbon (TOCO). Oil-expulsion efficiency can be determined by heating thermally immature source rocks in the presence of liquid water (i.e., hydrous pyrolysis) at temperatures between 350°C and 365°C for 72 hr. This pyrolysis method generates oil that is compositionally similar to natural crude oil and expels it by processes operative in the subsurface. Consequently, hydrous pyrolysis provides a means to determine oil-expulsion efficiencies and the rock properties that influence them. Smectite in source rocks has previously been considered to promote oil generation and expulsion and is the focus of this hydrous-pyrolysis study involving a representative sample of smectite-rich source rock from the Eocene Kreyenhagen Shale in the San Joaquin Basin of California. Smectite is the major clay mineral (31 wt. %) in this thermally immature sample, which contains 9.4 wt. % total organic carbon (TOC) comprised of type II kerogen. Compared to other immature source rocks that lack smectite as their major clay mineral, the expulsion efficiency of the Kreyenhagen Shale was significantly lower. The expulsion efficiency of the Kreyenhagen whole rock was reduced 88% compared to that of its isolated kerogen. This significant reduction is attributed to bitumen impregnating the smectite interlayers in addition to the rock matrix. Within the interlayers, much of the bitumen is converted to pyrobitumen through crosslinking instead of oil through thermal cracking. As a result, smectite does not promote oil generation but inhibits it. Bitumen impregnation of the rock matrix and smectite interlayers results in the rock pore system changing from water wet to bitumen wet. This change prevents potassium ion (K+) transfer and dissolution and precipitation reactions needed for the conversion of smectite to illite. As a result, illitization only reaches 35% to 40% at 310°C for 72 hr and remains unchanged to 365°C for 72 hr. Bitumen generation before or during early illitization in these experiments emphasizes the importance of knowing when and to what degree illitization occurs in natural maturation of a smectite-rich source rock to determine its expulsion efficiency. Complete illitization prior to bitumen generation is common for Paleozoic source rocks (e.g., Woodford Shale and Retort Phosphatic Shale Member of the Phosphoria Formation), and expulsion efficiencies can be determined on immature samples by hydrous pyrolysis. Conversely, smectite is more common in Cenozoic source rocks like the Kreyenhagen Shale, and expulsion efficiencies determined by hydrous pyrolysis need to be made on samples that reflect the level of illitization at or near bitumen generation in the subsurface.

  17. Hydrocarbon source potential and maturation in eocene New Zealand vitrinite-rich coals: Insights from traditional coal analyses, and Rock-Eval and biomarker studies

    USGS Publications Warehouse

    Newman, J.; Price, L.C.; Johnston, J.H.

    1997-01-01

    The results of traditional methods of coal characterisation (proximate, specific energy, and ultimate analyses) for 28 Eocene coal samples from the West Coast of New Zealand correspond well with biomarker ratios and Rock-Eval analyses. Isorank variations in vitrinite fluorescence and reflectance recorded for these samples are closely related to their volatile-matter content, and therefore indicate that the original vitrinite chemistry is a key controlling factor. By contrast, the mineral-matter content and the proportion of coal macerals present appear to have had only a minor influence on the coal samples' properties. Our analyses indicate that a number of triterpane biomarker ratios show peak maturities by high volatile bituminous A rank; apparent maturities are then reversed and decline at the higher medium volatile bituminous rank. The Rock-Eval S1 +S2 yield also maximizes by high volatile bituminous A rank, and then declines; however, this decline is retarded in samples with the most hydrogen-rich (perhydrous) vitrinites. These Rock-Eval and biomarker trends, as well as trends in traditional coal analyses, are used to define the rank at which expulsion of gas and oil occurs from the majority of the coals. This expulsion commences at high volatile A bituminous rank, and persists up to the threshold of medium volatile bituminous rank (c. 1.1% Ro ran. or 1.2% Ro max in this sample set), where marked hydrocarbon expulsion from perhydrous vitrinites begins to take place.

  18. Geodynamic evolution of the Sabzevar zone, northern central Iranian micro-continent

    NASA Astrophysics Data System (ADS)

    Omrani, Hadi; Moazzen, Mohssen; Oberhänsli, Roland

    2018-02-01

    The Northern Central Iranian Micro-continent (CIM) represents Neotethys-related oceanic crust remnants, emplaced due to convergence between CIM and Eurasia plates during Eocene. Mafic and ultramafic units are exposed along the northern part of the CIM in the Sabzevar area. The geology and field relation of Sabzevar ophiolite indicate northward subduction of the Sabzevar basin. The average whole rock chemistry of mafic (gabbros) and ultramafic samples (lherzolite, harzburgite and dunite) is characterized by a range of MgO of 11.16-31.88, CaO 5.22-11.53 and Al2O3 2.77-14.57, respectively. Low LREE/HREE ratio of ultramafic samples is accompanied by enrichment of large ion lithophile elements (LILE) such as Sr, Pb and K. Mafic samples show two distinct groups with low and high LREE/HREE ratios. The spider diagram of mafic samples indicates enrichment in Sr, Pb and K and depletion in REE. Petrological and geochemical evidence and field relations show that the mafic rocks formed in a supra-subduction zone setting. Petrological studies reveal the role of fractional crystallization and assimilation effect by released fluids during subduction related generation of the Sabzevar mafic rocks. We suggest that the studied mafic rocks likely represent the basement of an initial island arc, which was generated in a supra-subduction zone setting within the Neotethys branch of the Sabzevar Ocean at the north of CIM. Copper, gold and chromite mineralizations are studied in relation to island arc setting and supra-subduction environment. Similarities in lithology, ophiolite age and mineralization between Sabzevar ophiolite and Bardaskan-Torbat Heydariyeh ophiolites testify for their separation due to rotation (or faulting) of the Central Iranian Micro-continent.

  19. Log-ratio transformed major element based multidimensional classification for altered High-Mg igneous rocks

    NASA Astrophysics Data System (ADS)

    Verma, Surendra P.; Rivera-Gómez, M. Abdelaly; Díaz-González, Lorena; Quiroz-Ruiz, Alfredo

    2016-12-01

    A new multidimensional classification scheme consistent with the chemical classification of the International Union of Geological Sciences (IUGS) is proposed for the nomenclature of High-Mg altered rocks. Our procedure is based on an extensive database of major element (SiO2, TiO2, Al2O3, Fe2O3t, MnO, MgO, CaO, Na2O, K2O, and P2O5) compositions of a total of 33,868 (920 High-Mg and 32,948 "Common") relatively fresh igneous rock samples. The database consisting of these multinormally distributed samples in terms of their isometric log-ratios was used to propose a set of 11 discriminant functions and 6 diagrams to facilitate High-Mg rock classification. The multinormality required by linear discriminant and canonical analysis was ascertained by a new computer program DOMuDaF. One multidimensional function can distinguish the High-Mg and Common igneous rocks with high percent success values of about 86.4% and 98.9%, respectively. Similarly, from 10 discriminant functions the High-Mg rocks can also be classified as one of the four rock types (komatiite, meimechite, picrite, and boninite), with high success values of about 88%-100%. Satisfactory functioning of this new classification scheme was confirmed by seven independent tests. Five further case studies involving application to highly altered rocks illustrate the usefulness of our proposal. A computer program HMgClaMSys was written to efficiently apply the proposed classification scheme, which will be available for online processing of igneous rock compositional data. Monte Carlo simulation modeling and mass-balance computations confirmed the robustness of our classification with respect to analytical errors and postemplacement compositional changes.

  20. Reverse Polarity Magnetized Melt Rocks from the Cretaceous/Tertiary Chicxulub Structure, Yucatan Peninsula, Mexico

    NASA Technical Reports Server (NTRS)

    Urrutia-Fucugauchi, J.; Marin, Luis; Sharpton, Virgil L.

    1994-01-01

    We report paleomagnetic results for core samples of the breccia and andesitic rocks recovered from the Yucatan-6 Petrolcos Mexicanos exploratory well within the Chicxulub structure (about 60 km SSW from its center), northern Yucatan, Mexico. A previous study has shown that the rocks studied contain high iridium levels and shocked breccia clasts and an Ar/Ar date of 65.2 +/- 0.4 Ma. Andesitic rocks are characterized by stable single-component magnetizations with a mean inclination of -42.6 deg +/- 2.4 deg. Breccias present a complex paleomagnetic record characterized by multivectorial magnetizations with widely different initial NRM inclinations. However, after alternating field demagnetization, well defined characteristic components with upward inclinations are defined. IRM acquisition experiments, comparison of IRM and NRM coercivity spectra and the single component magnetization of the andesitic rocks indicate the occurrence of iron-rich titanomagnetites of single or pseudo-single domain states as the dominant magnetic carriers. Mean inclinations from the andesitic rocks and most of the breccia samples give a mean inclination of about -40 deg to -45 deg, indicating a reverse polarity for the characteristic magnetization that is consistent with geomagnetic chron 29R, which spans the Cretaceous/Tertiary (K/T) boundary. The inclination is also consistent with the expected value (and corresponding paleolatitude) for the site estimated from the reference polar wander curve for North America. We suggest that the characteristic magnetizations for the andesitic and breccia rocks are the result of shock heating at the time of formation of the impact structure and that the age, polarity and pateolatitude are consistent with a time at the K/T boundary.

  1. Reservoir transport and poroelastic properties from oscillating pore pressure experiments

    NASA Astrophysics Data System (ADS)

    Hasanov, Azar K.

    Hydraulic transport properties of reservoir rocks, permeability and storage capacity are traditionally defined as rock properties, responsible for the passage of fluids through the porous rock sample, as well as their storage. The evaluation of both is an important part of any reservoir characterization workflow. Moreover, permeability and storage capacity are main inputs into any reservoir simulation study, routinely performed by reservoir engineers on almost any major oil and gas field in the world. An accurate reservoir simulation is essential for production forecast and economic analysis, hence the transport properties directly control the profitability of the petroleum reservoir and their estimation is vital for oil and gas industry. This thesis is devoted to an integrated study of reservoir rocks' hydraulic, streaming potential and poroelastic properties as measured with the oscillating pore pressure experiment. The oscillating pore pressure method is traditionally used to measure hydraulic transport properties. We modified the method and built an experimental setup, capable of measuring all aforementioned rock properties simultaneously. The measurements were carried out for four conventional reservoir-rock quality samples at a range of oscillation frequencies and effective stresses. An apparent frequency dependence of permeability and streaming potential coupling coefficient was observed. Measured frequency dispersion of drained poroelastic properties indicates an intrinsically inelastic nature of the porous mineral rock frame. Standard Linear Model demonstrated the best fit to the experimental dispersion data. Pore collapse and grain crushing effects took place during hydrostatic loading of the dolomitic sample and were observed in permeability, coupling coefficient and poroelastic measurements simultaneously. I established that hydraulically-measured storage capacities are overestimated by almost one order of magnitude when compared to elastically-derived ones. The fact that the values of storage capacities as estimated from the hydraulic component of the oscillating pore pressure experiment are unreliable was also demonstrated by comparing poroelastic Biot and Skempton coefficients. These coefficients were estimated both from hydraulic and strain measurements and the comparison of two datasets points out ambiguity of hydraulic measurements. I also introduce a novel method, which allowed us to estimate the permeability from the full range of acquired frequency data by utilizing a nonlinear least-squares regression. I additionally performed numerical simulation of oscillatory fluid flow. The simulated frequency-dependent results displayed an excellent agreement with both analytical solution and experimental data. This agreement proves that numerical simulation is a powerful tool in predicting frequency response of a porous rock sample to harmonic pore pressure excitations.

  2. Rock sample brought to earth from the Apollo 12 lunar landing mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Charles Conrad Jr., commander of the Apollo 12 lunar landing mission, holds two lunar rocks which were among the samples brought back from the Moon by the Apollo 12 astronauts. The samples are under scientific examination in the Manned Spacecraft Center's Lunar Receiving Laboratory.

  3. Reconnaissance for radioactive materials in the southern part of Brazil

    USGS Publications Warehouse

    Pierson, Charles T.; Haynes, Donald D.; Filho, Evaristo Ribeiro

    1957-01-01

    During 1954-1956 a reconnaissance for radioactive minerals was made with carborne, airborne and handborne scintillation equipment in the southern Brazilian states of Rio de Janeiro, Sao Paulo, Parana, Santa Catarina and Rio Grande do Sul. During the traverse covering more than 5,000 kilometers the authors checked the radioactivity of Precambrian igneous and metamorphic rocks, Paleozoic, Mesozoic and Cenozoic sedimentary rocks, and Mesozoic alkalic intrusive and basaltic extrusive rocks. The 22 samples collected contained from 0.003 to 0.029 percent equivalent uranium oxide and from 0.10 to 0.91 percent equivalent thorimn; two samples were taken from radioactive pegmati tes for mineralogic studies. None of the localities is at present a commercial source of uranium or thorium; however, additional work should be done near the alkalic stock at Lages in the State of Santa Catarina and at the Passo das Tropas fossil plant locality near Santa Maria in the state of Rio Grande do Sul. Near Lages highly altered alkalic rock from a dike contained 0.026 percent uranium oxide. At Passo das Tropas highly altered, limonite-impregnated sandstone from the Rio do Rasto group of sedimentary rocks contained 0.029 percent uranium oxide.

  4. Permeability of volcanic rocks to gas and water

    NASA Astrophysics Data System (ADS)

    Heap, M. J.; Reuschlé, T.; Farquharson, J. I.; Baud, P.

    2018-04-01

    The phase (gas or liquid) of the fluids within a porous volcanic system varies in both time and space. Laboratory experiments have shown that gas and water permeabilities can differ for the same rock sample, but experiments are biased towards rocks that contain minerals that are expected react with the pore fluid (such as the reaction between liquid water and clay). We present here the first study that systematically compares the gas and water permeability of volcanic rocks. Our data show that permeabilities to argon gas and deionised water can differ by a factor between two and five in two volcanic rocks (basalt and andesite) over a confining pressure range from 2 to 50 MPa. We suggest here that the microstructural elements that offer the shortest route through the sample-estimated to have an average radius 0.1-0.5 μm using the Klinkenberg slip factor-are accessible to gas, but restricted or inaccessible to water. We speculate that water adsorption on the surface of these thin microstructural elements, assumed here to be tortuous/rough microcracks, reduces their effective radius and/or prevents access. These data have important implications for fluid flow and therefore the distribution and build-up of pore pressure within volcanic systems.

  5. Comparison of lunar rocks and meteorites: Implications to histories of the moon and parent meteorite bodies

    NASA Technical Reports Server (NTRS)

    Prinz, M.; Fodor, R. V.; Keil, K.

    1977-01-01

    There are many similarities between lunar samples and stone meteorites. Lunar samples, especially from the highlands, indicate that they have been affected by complex and repeated impact processes. Similar complex and repeated impact processes have also been operative on the achondritic and chondritic meteorites. Similarities between lunar and meteoritic rocks are discussed as follows: (1) Monomict and polymict breccias occur in lunar rocks, as well as in achondritic and chondritic meteorites, having resulted from complex and repeated impact processes; (2) Chondrules are present in lunar meteorites, as well as in a few achondritic and most chondritic meteorites. They apparently crystallized spontaneously from molten highly supercooled droplets which may have formed from impact melts or, perhaps, volcanic processes (as well as from the solar nebula, in the case of meteoritic chondrites); (3) Lithic fragments vary from little modified (relative to the apparent original texture) to partly or completely melted and recrystallized lithic fragments. Their detailed study allows conclusions to be drawn about their parent rock types and their origin, thereby gaining insight into preimpact histories of lunar and meteoritic breccias. There is evidence that cumulate rocks were involved in the early history of both moon and parent meteorite bodies.

  6. The evolution of the Cappadocia Geothermal Province, Anatolia (Turkey): geochemical and geochronological evidence

    NASA Astrophysics Data System (ADS)

    Şener, M. Furkan; Şener, Mehmet; Uysal, I. Tonguç

    2017-12-01

    Cappadocia Geothermal Province (CGP), central Turkey, consists of nine individual geothermal regions controlled by active regional fault systems. This paper examines the age dating of alteration minerals and the geochemistry (trace elements and isotopes) of the alteration minerals and geothermal waters, to assess the evolution of CGP in relation to regional tectonics. Ar-Ar age data of jarosite and alunite show that the host rocks were exposed to oxidizing conditions near the Earth's surface at about 5.30 Ma. Based on the δ18O-δD relationhip, water samples had a high altitude meteoric origin. The δ34S values of jarosite and alunite indicate that water samples from the southern part of the study area reached the surface after circulation through volcanic rocks, while northern samples had traveled to the surface after interacting with evaporates at greater depths. REY (rare earth elements and yttrium) diagrams of alteration minerals (especially illite, jarosite and alunite) from rock samples, taken from the same locations as the water samples, display a similar REY pattern to water samples. This suggests that thermal fluids, which reached the surface along a fault zone and caused the mineral alteration in the past, had similar chemical composition to the current geothermal water. The geothermal conceptual model, which defines a volcanically heated reservoir and cap rocks, suggests there are no structural drawbacks to the use of the CGP geothermal system as a resource. However, fluid is insufficient to drive the geothermal system as a result of scanty supply of meteoric water due to evaporation significantly exceeding rainfall.

  7. Electrical properties of dry rocks

    NASA Technical Reports Server (NTRS)

    Morrison, H.

    1973-01-01

    The mechanism by which atmospheric moisture affects the conductivity and dielectric constant of rock specimens was studied in time and frequency domains. It is suggested that adsorbed water molecules alter the surface conductivity in a manner similar to that observed in semiconductors and insulators. Powdered basalts show a low-frequency dispersion produced by the atmospheric moisture remaining in the pore system of the sample in a high vacuum; this effect is attributed to isolated adsorption centers. Simulated lunar permafrost at 100 K and a vacuum of 10 to the -8th power torr together with data on lunar samples contaminated with atmospheric moisture and the dielectric properties of ice at various temperatures indicate that, if permafrost exists in the moon it should present a relaxation peak at approximately 300 Hz; for temperatures up to 263 K it may go up to 20 KHz. It is concluded that in order to have electrical steady state conditions in rock samples it is necessary to have volume charge accumulations at interfaces within the sample and at the electrode sample interface. A method for measuring heterogeneous dielectrics with non-negligible ohmic and dielectric conductivities is proposed and experimentally verified.

  8. Chemical composition of crystalline rock fragments from Luna 16 and Luna 20 fines

    NASA Technical Reports Server (NTRS)

    Cimbalnikova, A.; Palivcova, M.; Frana, J.; Mastalka, A.

    1977-01-01

    The chemical composition (bulk, rare earth, and trace elements) of the Luna 16 mare regolith and luna 20 highland regolith is discussed. The rock samples considered are 14 basaltic rock fragments (Luna 16) and 13 rock fragments of the ANT suite (Luna 20). On the basis of bulk composition, two types of basaltic rocks have been differentiated and defined in the Luna 16 regolith: mare basalts (fundamental crystalline rocks of Mare Fecunditatis) and high-alumina basalts. The bulk analyses of rock fragments of the ANT suite also enabled distinction of two rock types: anorthositic norites and troctolites and/or spinal-troctolites (the most abundant crystalline rocks of the highland region, the landing site of luna 20), and anorthosites. The chemical compositions of Luna 16 and Luna 20 regolith samples are compared. Differences in the chemistry of the Luna 16 mare regolith and that of mare basalts are discussed. The chemical affinity between the Luna 20 highland regolith and (a) anorthositic norites and (b) troctolites and/or spinel-troctolites has been ascertained.

  9. Acid-neutralizing potential of minerals in intrusive rocks of the Boulder batholith in northern Jefferson County, Montana

    USGS Publications Warehouse

    Desborough, George A.; Briggs, Paul H.; Mazza, Nilah; Driscoll, Rhonda

    1998-01-01

    Experimental studies show that fresh granitic rocks of the Boulder batholith in the Boulder River headwaters near Basin, Montana have significant acid-neutralizing potential and are capable of neutralizing acidic water derived from metal-mining related wastes or mine workings. Laboratory studies show that in addition to the acidneutralizing potential (ANP) of minor amounts of calcite in these rocks, biotite, tremolite, and feldspars will contribute significantly to long-term ANP. We produced 0.45 micrometer-filtered acidic (pH = 2.95) leachate for use in these ANP experiments by exposing metal-mining related wastes to deionized water in a waste:leachate ratio of 1:20. We then exposed these leachates to finely-ground and sized fractions of batholith rocks, and some of their mineral fractions for extended and repeated periods, for which results are reported here. The intent was to understand what reactions of metal-rich acidic water and fresh igneous rocks would produce. The reactions between the acidic leachates and the bulk rocks and mineral fractions are complex. Factors such as precipitation of phases like Fe-hydroxides and Alhydroxides and the balance between dissolved cations and anions that are sulfate dominated complicate analysis of the results. Research by others of acid neutralization by biotite and tremolite attributed a rise in pH to proton (H+) adsorption in sites vacated by K, Mg, and Ca. Destruction of the silicate framework and liberation of associated structural hydroxyl ions may contribute to ANP. Studies by others have indicated that the conversion of biotite to a vermiculite-type structure by removal of K at a pH of 4 consumes about six protons for every mole of biotite, but at a pH of 3 there is pronounced dissolution of the tetrahedral lattice. The ANP of fresh granitic rocks is much higher than anticipated. The three bulk Boulder igneous rock samples studied have minimum ANP equivalent to about 10-14 weight percent calcite. This ANP is in addition to that provided by the 0.36-1.4 weight percent calcite present in these samples. The total rock ANP is thus equivalent to that of many sedimentary rocks that are generally believed to be among the most efficient for attenuation of acidic waters. The long-term ANP contributed by biotite, tremolite, feldspars, and possibly unidentified minerals in these rocks, as well as calcite, are all important with regard to their natural remediation of degraded water quality originating from Fe-sulfide rich mineral deposits and the associated mine wastes and acid-mine drainage water.

  10. A new setup for studying thermal microcracking through acoustic emission monitoring

    NASA Astrophysics Data System (ADS)

    Griffiths, Luke; Heap, Michael; Baud, Patrick; Schmittbuhl, Jean

    2016-04-01

    Thermal stressing is common in geothermal environments and has been shown in the laboratory to induce changes in the physical and mechanical properties of rocks. These changes are generally considered to be a consequence of the generation of thermal microcracks and debilitating chemical reactions. Thermal microcracks form as a result of the build-up of internal stresses due to: (1) the thermal expansion mismatch between the different phases present in the material, (2) thermal expansion anisotropy within individual minerals, and (3) thermal gradients. The generation of cracks during thermal stressing has been monitored in previous studies using the output of acoustic emissions (AE), a common proxy for microcrack damage, and through microstructural observations. Here we present a new experimental setup which is optimised to record AE from a rock sample at high temperatures and under a servo-controlled uniaxial stress. The design is such that the AE transducer is embedded in the top of the piston, which acts as a continuous wave guide to the sample. In this way, we simplify the ray path geometry whilst minimising the number of interfaces between the microcrack and the transducer, maximising the quality of the signal. This allows for an in-depth study of waveform attributes such as energy, amplitude, counts and duration. Furthermore, the capability of this device to apply a servo-controlled load on the sample, whilst measuring strain in real time, leads to a spectrum of possible tests combining mechanical and thermal stress. It is also an essential feature to eliminate the build-up of stresses through thermal expansion of the pistons and the sample. We plan a systematic experimental study of the AE of thermally stressed rock during heating and cooling cycles. We present results from pilot tests performed on Darley Dale sandstone and Westerly granite. Understanding the effects of thermal stressing in rock is of particular interest at a geothermal site, where circulating fluids influence the temperature field in the surrounding rock mass. These stresses can, for example, provoke thermal borehole breakouts due to cooling-induced tensile microcracking or may be actively used to enhance the injectivity of geothermal wells.

  11. Rare Earth Element and Trace Element Data Associated with Hydrothermal Spring Reservoir Rock, Idaho

    DOE Data Explorer

    Quillinan, Scott; Bagdonas, Davin

    2017-06-22

    These data represent rock samples collected in Idaho that correspond with naturally occurring hydrothermal samples that were collected and analyzed by INL (Idaho Falls, ID). Representative samples of type rocks were selected to best represent the various regions of Idaho in which naturally occurring hydrothermal waters occur. This includes the Snake River Plain (SRP), Basin and Range type structures east of the SRP, and large scale/deep seated orogenic uplift of the Sawtooth Mountains, ID. Analysis includes ICP-OES and ICP-MS methods for Major, Trace, and REE concentrations.

  12. Raman spectroscopy as a tool to understand Kerogen production potential

    NASA Astrophysics Data System (ADS)

    Khatibi, S.; Ostadhassan, M.; Mohammed, R. A.; Alexeyev, A.

    2017-12-01

    A lot attention has given to unconventional reservoirs specifically oil shale in North America during the last decades. Understanding Kerogen properties in terms of maturity and production potential are crucial for unconventional reservoir. Since, the amount of hydrocarbon generation is a function of kerogen type and content in the formation, and the magnitude and duration in which heat and pressure were applied. This study presents a non-destructive and fast method to determine Kerogen properties in terms of Rock-Eval parameters by means of Raman Spectroscopy. Samples were gathered from upper and lower Bakken formation, with different maturities at different depth. Raman spectroscopy as a powerful nondestructive analytical tool for molecular reconstruction was employed to find Raman spectra of different samples. In the next step, Rock-Eval was performed for each sample and different measurements were made. Then in an original approach, correlation between Rock-Eval parameters with Raman Spectroscopy results was established to fully understand how kerogen productivity potentials can be reflected on the Raman response. Results showed, maturity related parameters (RO, Tmax), S1 (already generated oil in the rock), S2 (potential hydrocarbon) and OSI (oil saturation index as indication of potential oil flow zones) can be correlated to band separation, D band intensity, G band intensity and G/D intensity, respectively. Proposed method provide a fast nondestructive method to evaluate Kerogen quality even at field without any special sample preparation.

  13. Full-field Measurements of Strain Localisation in Sandstone by Neutron Tomography and 3D-Volumetric Digital Image Correlation

    NASA Astrophysics Data System (ADS)

    Tudisco, E.; Hall, S. A.; Charalampidou, E. M.; Kardjilov, N.; Hilger, A.; Sone, H.

    Recent studies have demonstrated that the combination of x-ray tomography during triaxial tests (;in-situ; tests) and 3D- volumetric Digital Image Correlation (3D-DIC) can provide important insight into the mechanical behaviour and deformation processes of granular materials such as sand. The application of these tools to investigate the mechanisms of failure in rocks is also of obvious interest. However, the relevant applied confining pressures for triaxial testing on rocks are higher than those on sands and therefore stronger pressure containment vessels, i.e., made of thick metal walls, are required. This makes in-situ x-ray imaging of rock deformation during triaxial tests a challenge. One possible solution to overcome this problem is to use neutrons, which should better penetrate the metal-walls of the pressure vessels. In this perspective, this work assesses the capability of neutron tomography with 3D-DIC to measure deformation fields in rock samples. Results from pre- and post-deformation neutron tomography of a Bentheim sandstone sample deformed ex-situ at 40 MPa show that clear images of the internal structure can be achieved and utilised for 3D-DIC analysis to reveal the details of the 3D strain field. From these results the character of the localised deformation in the study sample can thus be described. Furthermore, comparison with analyses based on equivalent x-ray tomography imaging of the same sample confirms the effectiveness of the method in relation to the more established x-ray based approach.

  14. The effect of carbon-rich fluid alteration on the mechanical and physical properties of ultramafic rocks from Linnejavrre, Norway

    NASA Astrophysics Data System (ADS)

    Lisabeth, H. P.; Zhu, W.

    2016-12-01

    Carbon dioxide interacts with mafic and ultramafic rocks on the ocean floor at fracture zones and detachment faults, and within ophiolite complexes. Steatized olivine-pyroxene or serpentinite rocks become talc-carbonate rocks, i.e., soapstones. If the fluids are extremely carbon-rich, the process can continue to completion, binding all the magnesium from olivine and pyroxene in magnesium carbonate, resulting in magnesite-quartz rocks known as listvenites. The structural, mechanical and mineralogical characteristics of these rocks can be long-lived and affect later tectonic deformation over the course of the supercontinent cycle, influencing the obduction of ophiolites and possibly the initiation of subduction. To ascertain the changes in physical and geomechanical characteristics of these rocks as they undergo carbonic alteration, we measure ultrasonic velocity, electrical resistivity and shear strength in a series of laboratory tests on samples collected from northern Norway, where the Linnajavrre Ophiolite contains representative samples of serpentinite, soapstone and listvenite. We discover that the rocks tend to become denser, more porous, weaker, and more electrically and acoustically impeditive as carbonation proceeds. Samples fail by highly localized brittle faulting with little dilatancy. Shear strength appears to correlate with talc abundance, with a steep drop-off from 5 to 20% talc. Deformed samples are examined under petrographic microscope to explore deformation micromechanisms. Our data suggest that the weakening observed in soapstones and listvenites compared to serpentinites is attributed to interconnected talc grains. Such carbonic alteration of oceanic serpentinites may help facilitate oceanic spreading, particularly along slow and ultraslow segments of mid-ocean ridges.

  15. New Individuals from the Almahata Sitta Strewn Field: Old Friends and Brand-New Fellows

    NASA Astrophysics Data System (ADS)

    Bischoff, A.; Ebert, S.; Patzek, M.; Horstmann, M.; Pack, A.; Barrat, J.-A.; Decker, S.

    2015-07-01

    Nine new samples (MS-MU-012-MS-MU-020) from the Almahata Sitta strewn field were studied including ureilitic samples, chondrites, and a unique sample (MS-MU-019). Among these MS-MU-012 is an unbrecciated, ureilitic feldspar-olivine-pyroxene rock.

  16. CITICO CREEK WILDERNESS STUDY AREA, TENNESSEE.

    USGS Publications Warehouse

    Slack, John F.; Behum, Paul T.

    1984-01-01

    A mineral-resource survey of the Citico Creek Wilderness Study Area, in easternmost Tennessee, indicated that the area offers little promise for the occurrence of metallic mineral resources. Geochemical sampling found traces of gold, copper, cobalt, barium, arsenic, lead, zinc, and thorium in rocks, stream sediments, and panned concentrates, but not in sufficient quantities to indicate the presence of metallic mineral deposits. The only apparent resources are nonmetallic commodities including rock suitable for construction materials, and small amounts of sand and gravel; however, these commodities are found in abundance outside the study area. The potential for oil and natural gas at great depths could not be evaluated by this study. Deep drilling would test the potential for hydrocarbon resources underlying the metamorphic rocks.

  17. Geophysical, geochemical, mineralogical, and enivronmental data for rock samples collected in a mineralized volcanic environment, upper Animas River watershed, Colorado

    USGS Publications Warehouse

    McCafferty, A.E.; Horton, R.J.; Stanton, M.R.; McDougal, R.R.; Fey, D.L.

    2011-01-01

    * provide measurements to study the geochemical, mineralogical, and geophysical characteristics of rocks having weak to extreme degrees of alteration and to develop an understanding of how these characteristics change with alteration type. Data are provided in two digital formats: an Arc/Info geodatabase and a Microsoft Excel spreadsheet.

  18. Microbial Remains in Middle Proterozoic Rocks of Northern Australia

    NASA Technical Reports Server (NTRS)

    Astafieva, Marina; Rozanov, Alexei Yu.; Hoover, Richard B.; Vickers-Rich, P.; Wilde, A.

    2004-01-01

    Investigation of the samples of the McArthur River complex ore deposit, one of the most zinc-lead m i n d provinces in the world, brings us to conclusion about the possibility of the biogenic origin of sulfides in McArthur River ore deposit and to make suppositions about the formation of the studied rocks in the photic zone of sea.

  19. ROPEC - ROtary PErcussive Coring Drill for Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Chu, Philip; Spring, Justin; Zacny, Kris

    2014-01-01

    The ROtary Percussive Coring Drill is a light weight, flight-like, five-actuator drilling system prototype designed to acquire core material from rock targets for the purposes of Mars Sample Return. In addition to producing rock cores for sample caching, the ROPEC drill can be integrated with a number of end effectors to perform functions such as rock surface abrasion, dust and debris removal, powder and regolith acquisition, and viewing of potential cores prior to caching. The ROPEC drill and its suite of end effectors have been demonstrated with a five degree of freedom Robotic Arm mounted to a mobility system with a prototype sample cache and bit storage station.

  20. Electron microprobe evaluation of terrestrial basalts for whole-rock K-Ar dating

    USGS Publications Warehouse

    Mankinen, E.A.; Brent, Dalrymple G.

    1972-01-01

    Four basalt samples for whole-rock K-Ar dating were analyzed with an electron microprobe to locate potassium concentrations. Highest concentrations of potassium were found in those mineral phases which were the last to crystallize. The two reliable samples had potassium concentrated in fine-grained interstitial feldspar and along grain boundaries of earlier formed plagioclase crystals. The two unreliable samples had potassium concentrated in the glassy matrix, demonstrating the ineffectiveness of basaltic glass as a retainer of radiogenic argon. In selecting basalt samples for whole-rock K-Ar dating, particular emphasis should be placed on determining the nature and condition of the fine-grained interstitial phases. ?? 1972.

  1. A laboratory study of supercritical CO2 adsorption on cap rocks in the geological storage conditions

    NASA Astrophysics Data System (ADS)

    Jedli, Hedi; Jbara, Abdessalem; Hedfi, Hachem; Bouzgarrou, Souhail; Slimi, Khalifa

    2017-04-01

    In the present study, various cap rocks have been experimentally reacted in water with supercritical CO2 in geological storage conditions ( P = 8 × 106 Pa and T = 80 °C) for 25 days. To characterize the potential CO2-water-rock interactions, an experimental setup has been built to provide additional information concerning the effects of structure, thermal and surface characteristics changes due to CO2 injection with cap rocks. In addition, CO2 adsorption capacities of different materials (i.e., clay evaporate and sandstone) are measured. These samples were characterized by XRD technique. The BET specific surface area was determined by nitrogen isotherms. In addition, thermal characteristics of untreated adsorbents were analyzed via TGA method and topography surfaces are identified by Scanning Electron Microscope (SEM). Taking into account pressure and temperature, the physical as well as chemical mechanisms of CO2 retention were determined. Isotherm change profiles of samples for relative pressure range indicate clearly that CO2 was adsorbed in different quantities. In accordance with the X-ray diffraction, a crystalline phase was formed due to the carbonic acid attack and precipitation of some carbonate.

  2. Laboratory investigations into fracture propagation characteristics of rock material

    NASA Astrophysics Data System (ADS)

    Prasad, B. N. V. Siva; Murthy, V. M. S. R.

    2018-04-01

    After Industrial Revolution, demand of materials for building up structures have increased enormously. Unfortunately, failures of such structures resulted in loss of life and property. Rock is anisotropic and discontinuous in nature with inherent flaws or so-called discontinuities in it. Rock is apparently used for construction in mining, civil, tunnelling, hydropower, geothermal and nuclear sectors [1]. Therefore, the strength of the structure built up considering rockmass as the construction material needs proper technical evaluation during designing stage itself to prevent and predict the scenarios of catastrophic failures due to these inherent fractures [2]. In this study, samples collected from nine different drilling sites have been investigated in laboratory for understanding the fracture propagation characteristics in rock. Rock material properties, ultrasonic velocities through pulse transmission technique and Mode I Fracture Toughness Testing of different variants of Dolomites and Graywackes are determined in laboratory and the resistance of the rock material to catastrophic crack extension or propagation has been determined. Based on the Fracture Toughness values and the rock properties, critical Energy Release Rates have been estimated. However further studies in this direction is to be carried out to understand the fracture propagation characteristics in three-dimensional space.

  3. Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications

    NASA Astrophysics Data System (ADS)

    Obaid, Shamsan S.; Sayyed, M. I.; Gaikwad, D. K.; Pawar, Pravina. P.

    2018-07-01

    In the present work, the mass attenuation coefficient μ/ρ is investigated experimentally and theoretically for seven rocks (olivine basalt, green marble, jet black granite, telphone black granite, cuddapah limestone, white marble and pink marble). The rock samples were collected from different places of India. The mass attenuation coefficients of the samples were measured experimentally at photon energies of radioisotopes Co57 (122 keV), Ba133 (356 keV), 22Na (511 and 1275 keV), Cs137 (662 keV), Mn54 (840 keV), and Co60 (1330 keV). Theoretically, the simulation results of μ/ρ using both XCOM and MCNP5 codes were compared with experimental results and a satisfactory agreement was observed. Total atomic cross sections (σt,a) electronic cross sections (σt,e), effective atomic number (Zeff), electron density (Ne) and half value layer (HVL) were evaluated using the obtained μ/ρ values for investigated rocks. The HVL values for the selected rocks were compared with some common shielding concretes. Moreover, by Geometric Progression method (G-P) exposure buildup factor (EBF) and energy absorption buildup factor (EABF) values were calculated for incident photon energy 0.015-15 MeV up to penetration depths of 40 mean free paths. The results show that among the studied rocks pink marble possesses superior shielding properties for γ-ray. This work was carried out to explore the advantage of utilizing the selected rocks in engineering structures and building construction to shield gamma-rays.

  4. Durability of building stones against artificial salt crystallization

    NASA Astrophysics Data System (ADS)

    Min, K.; Park, J.; Han, D.

    2005-12-01

    Salts have been known as the most powerful weathering agents, especially when combined with frost action. Salt crystallization test along with freezing-thawing test and acid immersion test was carried out to assess the durability of building stones against weathering. Granite, limestone, marble and basalt were sampled from different quarries in south Korea for this study. One cycle of artificial salt crystallization test was composed of immersion of cored rock specimens in oversaturated solutions of CaCl2, KCl, NaCl and Na2SO4, respectively for 15 hours and successive drying in an oven of 105°C for 3 hours and cooling at room temperature. Tests were performed up to 30 cycles, and specific gravity and ultrasonic velocity were measured after experiencing every 10 cycles and uniaxial compressive strength was measured only after 30 cycles. During the repeated Na2SO4 salt crystallization, some rock samples were gradually deformed excessively and burst after 20 to 30 cycles of test. The variation patterns of physical properties during the salt crystallization tests are too variable to generalize the effect of salt weathering on physical properties but limestone, marble and basalt samples showed relatively greater change of physical properties than granite samples. The recrystallized salts were well observed in the cracks of rock samples through the scanning electron microscope. In the all salt crystallization tests, apparent specific gravities for all tested samples increased generally but not so significantly due to recrystallization of salts. It can be inferred that filling the pores with salt crystals cause the increase of ultrasonic velocity during the early stage of salt crystallization and then in later stages the repeated cycles of salt crystallization result in development of cracks leading decrease of ultrasonic velocity for some rock samples.

  5. Chrysotile asbestos quantification in serpentinite quarries: a case study in Valmalenco, central Alps, northern Italy

    NASA Astrophysics Data System (ADS)

    Cavallo, Alessandro

    2013-04-01

    Outcrops of serpentinites are usually strongly fractured and cataclastic, and the rock can only be used as ballast. However, in rare cases, like in Valmalenco (Central Alps, Northern Italy), fractures are regular and well spaced, and the rock mass has good geotechnical quality, ideal conditions for the extraction of dimension stone blocks. The Valmalenco Serpentinite is marketed worldwide as dimension and decorative stone, with remarkable mechanical properties and pleasing colours and textures. However, the same area was once subject to chrysotile asbestos mining, in the form of discrete veins along the main discontinuities of the rock mass. For this reason, airborne asbestos contamination can occur during the extraction and processing cycle of the rocks, therefore it is essential to locate and quantify asbestos in the rock mass, to reduce as much as possible the exposure risk. The first step was a detailed geostructural survey of each quarry, in order to characterize the main discontinuities (orientation, spacing, linear persistence, opening, filling), with special attention to the identification of fibrous minerals. The surveys was followed by extensive sampling of massive rocks, mineralized veins and fillings of fractures, and the cutting sludge derived from diamond wire cutting. Preliminary qualitative XRPD was performed on all samples, while quantitative analysis was carried out on the most representative samples of the main rock mass discontinuities. On the other hand, XRPD is not effective in the identification of asbestos percentages of less than 2% by weight, and the accurate distinction among the various serpentine polymorphs (antigorite, lizardite, chrysotile) is very difficult (if not impossible) when they are simultaneously present, due to their very similar basic structure and the strong structural disorder. The same samples were then analyzed by SEM-EDS (fiber counting after filtration on a polycarbonate filter), for a better distinction between fibrous and lamellar polymorphs. A lot of minerals were identified in the mineralized veins: chrysotile, carbonates, talc, forsterite, brucite, chlorite, garnet (andradite), magnetite and sulphides. The quantitative XRPD and SEM-EDS analyses proved chrysotile percentages comprised between 11 and 100% by weight. On the other hand, chrysotile was never detected in the commercial massive rock. Considering the geostructural properties of the rock mass, the total asbestos content of the quarries is comprised between 0.23% and 0.02% by weight, very low percentages of no mining interest, classifiable as naturally occurring asbestos (NOA) occurrence. The SEM-EDS analyses also showed a slight chrysotile contamination close to the salvages of mineralized veins (in the form of chrysotile filled micro-fractures), for a thickness up to 5-6 cm. This study shows that the airborne asbestos exposure risk can be easily reduced by avoiding diamond wire or explosive cutting along the main mineralized veins, and by squaring off the blocks in the quarry (instead of processing plants). However, this study does not consider the possible asbestos occurrence in the form of micro-veins and micro-fractures, outside of the main discontinuities, and cannot be fully applied to highly fractured rock masses.

  6. Bacterial Presence in Layered Rock Varnish-Possible Mars Analog?

    NASA Astrophysics Data System (ADS)

    Krinsley, D.; Rusk, B. G.

    2000-08-01

    Rock varnish from locations in Death Valley, California; Peru; Antarctica; and Hawaii reveal nanometer scale layering (less than 1 nm to about 75 nm) when studied with transmission electron microscopy (TEM). Parallel layers of clay minerals containing evidence of presumed bacteria were present in all samples. Samples range in age from a few thousand years to perhaps a million years. Diagenesis is relatively limited, as chemical composition is variable, both from top to bottom and along layers in these varnish samples. Also, occasional exotic minerals occur randomly in most varnish sections, and vary in size and hardness, again suggesting relative lack of diagenetic alteration. Additional information can be found in the original extended abstract.

  7. Structural and mineralogical studies of the Tso Morari Dome: Insight into the deformation kinematics of the eclogitic gneiss, Ladakh Himalaya, India

    NASA Astrophysics Data System (ADS)

    Dutta, D.; Mukherjee, S.

    2017-12-01

    Coesite-bearing eclogites from the Tso Morari Dome (TMD) and the Kaghan valley (Pakistan) are two examples from the Himalayan orogen that attained UHP conditions within 5 Ma, by subducting the frontal part of the advancing Indian plate through a subduction channel, and subsequently extruded rapidly ( 17 mm yr-1). This study focuses on the deformation of the gneissic rock that hosts the UHP eclogites. 25 rock samples were collected from two transects viz. (A) Sumdo-Karzok and (B) Sumdo-Debring. Preliminary thin-section studies reveal differences in microstructural characters between the rocks of A and B. Although dynamically recrystallised quartz grains are present in all these samples, grain boundary migration recyrstallisation ( 530-650 °C) are better preserved in the rocks of A. Similarly, intra-granular fractures in both quartz and feldspars, the latter being dominant, are more prominent in the samples along A. Chessboard extinction patterns (> 700 °C) in quartz, micro-faults in plagioclase grains and undulatory extinction in micas are also present. Samples close to the Zildat shear zone (ZSZ; N margin of the TMD) exhibit medium-sized, lenticular quartzo-feldspathic grains. Their abundance wanes away from the fault possibly due to decreasing deformation intensity. XRD studies reveal a decline in the ratio of modal percentage K-feldspar to that of muscovite towards the N margin: the fall being more gradual along B. Biotites are less abundant (< 1%) in the samples near the ZSZ, but the total content of phyllosilicates (Ms+Bt+Chl) show a rise of > 14 % towards the ZSZ. Previous workers reported similar increase in micaceous minerals in ductile- and brittle shear zones from other terrains, and suggested higher fluid activity as the key factor. Subduction of the Indian continental crust and subsequent exhumation, along the subduction channel, followed Coutte- and Poiseuille flows, respectively. Hence, rocks near the ZSZ should exhibit opposing shear senses, which we encounter both at micro- and meso-scales. Besides, Google Earth images show geomorphologic features viz. displaced NW trending ridges, linear lake margins etc., which probably indicate regional scale (neotectonic?) NNW trending strike-slip. This can also explain the origin of the nearby major lakes viz. Tso Moriri, Tso Kar and Kiagar Tso.

  8. Experimental Study and Numerical Modeling of Fracture Propagation in Shale Rocks During Brazilian Disk Test

    NASA Astrophysics Data System (ADS)

    Mousavi Nezhad, Mohaddeseh; Fisher, Quentin J.; Gironacci, Elia; Rezania, Mohammad

    2018-06-01

    Reliable prediction of fracture process in shale-gas rocks remains one of the most significant challenges for establishing sustained economic oil and gas production. This paper presents a modeling framework for simulation of crack propagation in heterogeneous shale rocks. The framework is on the basis of a variational approach, consistent with Griffith's theory. The modeling framework is used to reproduce the fracture propagation process in shale rock samples under standard Brazilian disk test conditions. Data collected from the experiments are employed to determine the testing specimens' tensile strength and fracture toughness. To incorporate the effects of shale formation heterogeneity in the simulation of crack paths, fracture properties of the specimens are defined as spatially random fields. A computational strategy on the basis of stochastic finite element theory is developed that allows to incorporate the effects of heterogeneity of shale rocks on the fracture evolution. A parametric study has been carried out to better understand how anisotropy and heterogeneity of the mechanical properties affect both direction of cracks and rock strength.

  9. Preliminary report of the uranium favorability of shear zones in the crystalline rocks of the southern Appalachians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penley, H.M.; Schot, E.H.; Sewell, J.M.

    1978-11-01

    Three sheared areas in the crystalline Piedmont and Blue Ridge provinces, from which uranium occurrences or anomalous radioactivity have been reported, were studied to determine their favorability for uranium mineralization. The study, which involved a literature review, geologic reconnaissance, ground radiometric surveys, and sampling of rock outcrops for petrographic and chemical analyses, indicates that more-detailed investigations of these and similar areas are warranted. In each area, surface leaching and deep residual cover make it difficult to assess the potential for uranium mineralization on the basis of results from chemical analyses for U/sub 3/O/sub 8/ and the radiometric surveys. Although anomalousmore » radioactivity and anomalous chemical uranium values were noted in only a few rock exposures and samples from the shear zones, the potential for uranium mineralization at depth could be much greater than indicated by these surface data. The study indicates that shear zones within Precambiran granitic basement complexes (such as the Wilson Creek Gneiss of western North Carolina, the Cranberry Gneiss of eastern Tennessee, and the Toxaway Gneiss of western South Carolina) are favorable as hosts for uranium and may contain subsurface deposits. Mylonitized graphitic schists immediately north of the Towaliga fault in Alabama and Georgia may be favorable host rocks for uranium.« less

  10. Features of Changing Microwave Radiation from Loaded Rock in Elastic Phase

    NASA Astrophysics Data System (ADS)

    Wu, Lixin; Mao, Wenfei; Huang, Jianwei; Liu, Shanjun; Xu, Zhongying

    2017-04-01

    Since the discovery of satellite infrared anomaly occurred before some earthquake by Russian geo-scientists in 1980's, both satellite remote sensing on seismic activities and experimental infrared detection on rock physics in process of rock loading were undertaken in many counties including China, Japan, Europe nations and United States. Infrared imager and spectrum instruments were applied to detect the changed infrared radiation from loaded rock to fracturing, which lead to the development of Remote Sensing Rock Mechanics. However, the change of microwave radiation from loaded rock was not so much studied, even if abnormal changes of microwave brightness temperature (MBT) preceding some large earthquakes were observed by satellite sensors such as AMSR-E on boarded Aqua. To monitor rock hazards, seismic activities, and to make earthquake precautions by via of microwave detection or microwave remote sensing, it is fairly demanded to explore the laws of microwave radiation variation with changed stress and to uncover the rock physics. We developed a large scale rock loading system with capability of 500 tons and 10 tons of load, respectively, at two horizontal loading head, and designed a group of microwave detectors in C, K, and Ka bands. To investigate the changed microwave radiation from loaded granite and sandstone in its elastics deformation phase, the first horizontal stress was circularly applied on rock samples of size 10×30×60cm3 at a constant second horizontal stress, and the changes microwave radiation was detected by the detectors hanged overhead the rock sample. The experiments were conducted outdoor at nighttime to keep off environmental radiation and to simulate the satellite observation conditions in background of cool sky. The first horizontal stress and the microwave radiations were synchronically detected and recorded. After reducing the random noise of detected microwave signals with wavelet method, we found the MBT increase with stress rising and decrease with stress dropping, and the correlation factor (R2) of MBT-stress reached 0.88. The experiments and results revealed an important rock physical phenomenon of rock dielectric property changing with stress, which leads to detectable MBT variation.

  11. A petrographical and geochemical study of quartzose nodules, country rocks, and dike rocks from the Upheaval Dome structure, Utah

    NASA Astrophysics Data System (ADS)

    Koeberl, Christian; Plescia, J. B.; Hayward, Chris L.; Reimold, Wolf Uwe

    1999-11-01

    Upheaval Dome, in Canyonlands National Park, Utah, USA, is a unique structure on the Colorado Plateau. It has earlier been interpreted as an impact structure or as a pinched-off salt diapir. Some subrounded quartzose fragments were found in a ring depression near the eastern margin of the structure and, based on vesicularity and apparent flow structure, the fragments were earlier interpreted researchers as "impactites". Our petrographic studies show no indication of a high-temperature history and are in agreement with a slow, low-temperature formation of the quartz nodules. Compositionally, the lag deposit samples are almost pure SiO2. They show no chemical similarity to any of the possible target rocks (e.g., Navajo Sandstone), from which they should have formed by melting if they were impactites. Instead, the samples have relatively high contents of elements that indicate fluid interaction (e.g., hydrothermal growth), such as As, Sb, Ba, and U, and show positive Ce anomalies. Thus, we interpret the "lag deposit samples" as normal low-temperature (hydrothermally-grown?) quartz that show no indication of being impact-derived. In addition, a petrographic and geochemical analysis of a series of dike samples yielded no evidence for shock metamorphism or a meteoritic component.

  12. A petrographical and geochemical study of quartzose nodules, country rocks, and dike rocks from the Upheaval Dome structure, Utah

    USGS Publications Warehouse

    Koeberl, C.; Plescia, J.B.; Hayward, C.L.; Reimold, W.U.

    1999-01-01

    Upheaval Dome, in Canyonlands National Park, Utah, USA, is a unique structure on the Colorado Plateau. It has earlier been interpreted as an impact structure or as a pinched-off salt diapir. Some subrounded quartzose fragments were found in a ring depression near the eastern margin of the structure and, based on vesicularity and apparent flow structure, the fragments were interpreted by early researchers as 'impactites.' Our petrographic studies show no indication of a high-temperature history and are in agreement with a slow, low-temperature formation of the quartz nodules. Compositionally, the lag deposit samples are almost pure SiO2. They show no chemical similarity to any of the possible target rocks (e.g., Navajo Sandstone), from which they should have formed by melting if they were impactites. Instead, the samples have relatively high contents of elements that indicate fluid interaction (e.g., hydrothermal growth), such as As, Sb, Ba, and U, and show positive Ce anomalies. Thus, we interpret the 'lag deposit samples' as normal low-temperature (hydrothermally-grown?) quartz that show no indication of being impact-derived. In addition, a petrographic and geochemical analysis of a series of dike samples yielded no evidence for shock metamorphism or a meteoritic component.

  13. The effect of secondary apatite on the initial 87Sr/86Sr ratio determination in granitic rocks: a case study of the Tadamigawa pluton, northeastern Japan

    NASA Astrophysics Data System (ADS)

    Wakasugi, Y.; Ichino, K.; Tanioka, Y.; Wakaki, S.; Tsuboi, M.; Ishikawa, T.

    2017-12-01

    Apatite is a major accessory mineral in igneous rocks. Because Rb contents in apatite are very low, 87Sr/86Sr ratios of magmatic apatite are useful to estimate the initial 87Sr/86Sr ratio (SrI) of igneous rocks. Secondary post-magmatic event such as hydrothermal alteration may also crystallize secondary apatite, which may inhibit the estimation of SrI of igneous rocks. In this study, we examine the effects of secondary apatite on the initial 87Sr/86Sr ratio determination of granitic rocks by using acid leaching technique. Leached apatite samples were first separated from the whole rock powder as a heavy mineral fraction by heavy liquid technique, and the heavy mineral fraction was then leached by 3 M HNO3. The isotopic ratios of Sr and the concentrations of Rb and Sr were analyzed by TIMS and ICP-MS at Kochi Core Center, respectively. The Tadamigawa Older-stage granites, which locate in the Taishaku Mountains at the northeastern part of Japan, intrude into the Ashio Jurassic complex, and the ages of these rocks are late Cretaceous to Paleogene. The U-Pb ages of zircon and the K-Ar ages of biotite for these rocks are c. 100 Ma [1, 2]. Rb-Sr whole-rock isochron age of the pluton is 96.5 ± 1.3 Ma (SrI = 0.70534 ± 0.00003) and it is concordant with other radiometric ages. Rb-Sr mineral isochron ages range from 84.4 to 97.3 Ma and these ages are relatively younger than the Rb-Sr whole-rock isochron age. The difference among radiometric ages may reflect the difference of the closure temperature in each isotopic system. The Tadamigawa Older-stage granites have SrI for Rb-Sr mineral isochron range from 0.7053 to 0.7061 and are very similar to that (0.70534) for Rb-Sr whole-rock isochron. These may suggest that the Tadamigawa Older-stage granites are generated from same parental magma. However, 87Sr/86Sr ratios of the leached apatite samples were 0.70544-0.70856 and are relatively higher than SrI obtained from the Rb-Sr mineral isochrons (0.7053-0.7061). This result suggests that leached apatite samples contain not only magmatic apatite but also secondary apatite. A careful apatite separation is needed to obtain the magmatic initial 87Sr/86Sr ratios by the isotopic analyses of apatite. [1] Tanioka et al. (2014) Japan. Mag. Mineral. Petrol. Sci. 43, 215-227. [2] Wakasugi et al. (2014) 121st Ann. Meet. Geo. Soc. Japan, Abstr., 57.

  14. Geochemical and tectonic uplift controls on rock nitrogen inputs across terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Morford, Scott L.; Houlton, Benjamin Z.; Dahlgren, Randy A.

    2016-02-01

    Rock contains > 99% of Earth's reactive nitrogen (N), but questions remain over the direct importance of rock N weathering inputs to terrestrial biogeochemical cycling. Here we investigate the factors that regulate rock N abundance and develop a new model for quantifying rock N mobilization fluxes across desert to temperate rainforest ecosystems in California, USA. We analyzed the N content of 968 rock samples from 531 locations and compiled 178 cosmogenically derived denudation estimates from across the region to identify landscapes and ecosystems where rocks account for a significant fraction of terrestrial N inputs. Strong coherence between rock N content and geophysical factors, such as protolith, (i.e. parent rock), grain size, and thermal history, are observed. A spatial model that combines rock geochemistry with lithology and topography demonstrates that average rock N reservoirs range from 0.18 to 1.2 kg N m-3 (80 to 534 mg N kg-1) across the nine geomorphic provinces of California and estimates a rock N denudation flux of 20-92 Gg yr-1 across the entire study area (natural atmospheric inputs ~ 140 Gg yr-1). The model highlights regional differences in rock N mobilization and points to the Coast Ranges, Transverse Ranges, and the Klamath Mountains as regions where rock N could contribute meaningfully to ecosystem N cycling. Contrasting these data to global compilations suggests that our findings are broadly applicable beyond California and that the N abundance and variability in rock are well constrained across most of the Earth system.

  15. An experimental study of the carbonation of serpentinite and partially serpentinised peridotites

    NASA Astrophysics Data System (ADS)

    Lacinska, Alicja M.; Styles, Michael T.; Bateman, Keith; Hall, Matthew; Brown, Paul D.

    2017-06-01

    In situ sequestration of CO2 in mantle peridotites has been proposed as a method to alleviate the amount of anthropogenic CO2 in the atmosphere. This study presents the results of eight-month long laboratory fluid-rock experiments on representative mantle rocks from the Oman-United Arab Emirates ophiolite to investigate this process. Small core samples (3 cm long) were reacted in wet supercritical CO2 and CO2-saturated brine at 100 bar and 70°C. The extent of carbonate formation, and hence the degree of carbon sequestration, varied greatly depending on rock type, with serpentinite (lizardite-dominated) exhibiting the highest capacity, manifested by the precipitation of magnesite MgCO3 and ferroan magnesite (Mg,Fe)CO3. The carbonate precipitation occurred predominantly on the surface of the core and subordinately within cross-cutting fractures. The extent of the CO2 reactions appeared to be principally controlled by the chemical and mineralogical composition of the rock, as well as the rock texture, with all these factors influencing the extent and rate of mineral dissolution and release of Mg and Fe for subsequent reaction with the CO2. It was calculated that ≈ 0.7 g of CO2 was captured by reacting ≈ 23 g of serpentinite, determined by the mass of magnesite formed. This equates to ≈ 30 kg CO2 per tonne of host rock, equivalent to ≈ 3% carbonation in half a year. However, recycling of carbonate present in veins within the original rock sample could mean that the overall amount is around 2%. The increased reactivity of serpentinite was associated with preferential dissolution of more reactive types of serpentine minerals and brucite, that were mainly present in the cross-cutting veins. The bulk of the serpentinite rock was little affected. This study, using relatively short term experiments, suggests that serpentinite might be a good host rock for CO2 sequestration, although long term experiments might prove that dunite and harzburgite could be an effective in an engineered system of CCSM. Wet scCO2 proved to be chemically aggressive than CO2-saturated brine and its ingress along fractures and grain boundaries resulted in greater host rock dissolution and subsequent carbonate precipitation.

  16. Qualitative and quantitative changes in detrital reservoir rocks caused by CO2-brine-rock interactions during first injection phases (Utrillas sandstones, Northern Spain)

    NASA Astrophysics Data System (ADS)

    Berrezueta, E.; Ordóñez-Casado, B.; Quintana, L.

    2015-08-01

    The aim of this article is to describe and interpret qualitative and quantitative changes at rock matrix scale of Lower-Upper Cretaceous sandstones exposed to supercritical (SC) CO2 and brine. The effects of experimental injection of SC CO2 during the first injection phases were studied at rock matrix scale, in a potential deep sedimentary reservoir in Northern Spain (Utrillas unit, at the base of the Cenozoic Duero Basin). Experimental wet CO2 injection was performed in a reactor chamber under realistic conditions of deep saline formations (P ≈ 78 bar, T ≈ 38 °C and 24 h exposure time). After the experiment, exposed and non-exposed equivalent sample sets were compared with the aim of assessing possible changes due to the effect of the CO2-brine exposure. Optical microscopy (OpM) and scanning electron microscopy (SEM) aided by optical image analysis (OIA) were used to compare the rock samples and get qualitative and quantitative information about mineralogy, texture and porous network distribution. Chemical analyses were performed to refine the mineralogical information and to obtain whole rock geochemical data. Brine composition was also analysed before and after the experiment. The results indicate an evolution of the pore network (porosity increase ≈ 2 %). Intergranular quartz matrix detachment and partial removal from the rock sample (due to CO2 input/release dragging) are the main processes that may explain the porosity increase. Primary mineralogy (≈ 95 % quartz) and rock texture (heterogeneous sand with interconnected framework of micro-channels) are important factors that seem to enhance textural/mineralogical changes in this heterogeneous system. The whole rock and brine chemical analyses after interaction with SC CO2-brine do not present important changes in the mineralogical, porosity and chemical configuration of the rock with respect to initial conditions, ruling out relevant precipitation or dissolution at these early stages. These results, simulating the CO2 injection near the injection well during the first phases (24 h) indicate that, in this environment where CO2 displaces the brine, the mixture principally generates local mineralogical/textural re-adjustments due to physical detachment of quartz grains. Consequences deriving from these changes are variable. Possible porosity and permeability increases could facilitate further CO2 injection but textural re-adjustment could also affect the rock physically. However, it is not clear yet what effect the quartz (solid suspension) could provoke in more distant areas of the rock. Quartz could be transported in the fluid flow path and probably accumulated at pore throats.

  17. The origin of oil in the Cretaceous succession from the South Pars Oil Layer of the Persian Gulf

    NASA Astrophysics Data System (ADS)

    Rahmani, Omeid; Aali, Jafar; Junin, Radzuan; Mohseni, Hassan; Padmanabhan, Eswaran; Azdarpour, Amin; Zarza, Sahar; Moayyed, Mohsen; Ghazanfari, Parviz

    2013-07-01

    The origin of the oil in Barremian-Hauterivian and Albian age source rock samples from two oil wells (SPO-2 and SPO-3) in the South Pars oil field has been investigated by analyzing the quantity of total organic carbon (TOC) and thermal maturity of organic matter (OM). The source rocks were found in the interval 1,000-1,044 m for the Kazhdumi Formation (Albian) and 1,157-1,230 m for the Gadvan Formation (Barremian-Hauterivian). Elemental analysis was carried out on 36 samples from the source rock candidates (Gadvan and Kazhdumi formations) of the Cretaceous succession of the South Pars Oil Layer (SPOL). This analysis indicated that the OM of the Barremian-Hauterivian and Albian samples in the SPOL was composed of kerogen Types II and II-III, respectively. The average TOC of analyzed samples is less than 1 wt%, suggesting that the Cretaceous source rocks are poor hydrocarbon (HC) producers. Thermal maturity and Ro values revealed that more than 90 % of oil samples are immature. The source of the analyzed samples taken from Gadvan and Kazhdumi formations most likely contained a content high in mixed plant and marine algal OM deposited under oxic to suboxic bottom water conditions. The Pristane/nC17 versus Phytane/nC18 diagram showed Type II-III kerogen of mixture environments for source rock samples from the SPOL. Burial history modeling indicates that at the end of the Cretaceous time, pre-Permian sediments remained immature in the Qatar Arch. Therefore, lateral migration of HC from the nearby Cretaceous source rock kitchens toward the north and south of the Qatar Arch is the most probable origin for the significant oils in the SPOL.

  18. Geochemical characterization of fluoride in water, table salt, active sediment, rock and soil samples, and its possible relationship with the prevalence of enamel fluorosis in children in four municipalities of the department of Huila (Colombia).

    PubMed

    Martignon, Stefania; Opazo-Gutiérrez, Mario Omar; Velásquez-Riaño, Möritz; Orjuela-Osorio, Iván Rodrigo; Avila, Viviana; Martinez-Mier, Esperanza Angeles; González-Carrera, María Clara; Ruiz-Carrizosa, Jaime Alberto; Silva-Hermida, Blanca Cecilia

    2017-06-01

    Fluoride is an element that affects teeth and bone formation in animals and humans. Though the use of systemic fluoride is an evidence-based caries preventive measure, excessive ingestion can impair tooth development, mainly the mineralization of tooth enamel, leading to a condition known as enamel fluorosis. In this study, we investigated the geochemical characterization of fluoride in water, table salt, active sediment, rock and soil samples in four endemic enamel fluorosis sentinel municipalities of the department of Huila, Colombia (Pitalito, Altamira, El Agrado and Rivera), and its possible relationship with the prevalence of enamel fluorosis in children. The concentration of fluoride in drinking water, table salt, active sediment, rock, and soil was evaluated by means of an ion selective electrode and the geochemical analyses were performed using X-ray fluorescence. Geochemical analysis revealed fluoride concentrations under 15 mg/kg in active sediment, rock and soil samples, not indicative of a significant delivery to the watersheds studied. The concentration of fluoride in table salt was found to be under the inferior limit (less than 180 μg/g) established by the Colombian regulations. Likewise, exposure doses for fluoride water intake did not exceed the recommended total dose for all ages from 6 months. Although the evidence does not point out at rocks, soils, fluoride-bearing minerals, fluoridated salt and water, the hypothesis of these elements as responsible of the current prevalence of enamel fluorosis cannot be discarded since, aqueducts might have undergone significant changes overtime.

  19. Rock-forming metals and Pb in modern Alaskan snow

    USGS Publications Warehouse

    Hinkley, Todd K.

    1993-01-01

    Metal concentrations in annual and subannual increments of snowpack from the accumulation zone of a south central Alaska glacier indicate that the deposition of Pb with and upon snow is decoupled from that of rock dusts. Rock dusts accumulate, apparently as dry deposition, on the topmost, exposed surfaces of snowpacks in spring and summer, whereas Pb does not. Pb concentration is elevated throughout the latest one third of an annual snowpack, whereas that of rock dusts is not. For whole-year snowpacks, there is a generally sympathetic relationship among concentration of Pb, concentration of rock dust, degree of dominance of rock dusts over ocean solutes, and ferromagnesian character of the rock dusts; however, the fractional abundance of Pb in whole year samples may decrease when rock dust masses become large and/or when rock dusts dominate most strongly over salts. The metal suite chosen to characterize rock dusts and to distinguish them from ocean solutes gives detailed information about rock type of dust source areas and about the nature of the degraded rock products that are taken up, transported, and deposited by the atmosphere. Rock dusts are present at concentrations of only about 300 nanograms (ng) of dust per gram of snow in the Alaskan snowpacks. Concentrations of Pb in the Alaska snow samples are moderate, ranging from 0.1 to 0.3 ng Pb/g snow. This contrasts with larger Pb concentrations of 0.4 to 0.9 ng Pb/g snow in whole-year snowpack samples from the Sierra Nevada, California; with similar to smaller concentrations from north and south Greenland of about 0.04 ng Pb/g snow or less, and about 0.2 ng Pb/g snow or less, respectively, and with much smaller concentrations from Antarctica, now believed to range from a minimum of about 0.001 to a maximum of 0.005 (or 0.01) ng Pb/g snow.

  20. Nitrate release from waste rock dumps in the Elk Valley, British Columbia, Canada.

    PubMed

    Mahmood, Fazilatun N; Barbour, S Lee; Kennedy, C; Hendry, M Jim

    2017-12-15

    The origin, distribution and leaching of nitrate (NO 3 - ) from coal waste rock dumps in the Elk Valley, British Columbia, Canada were defined using chemical and NO 3 - isotope analyses (δ 15 N- and δ 18 O-NO 3 - ) of solids samples of pre- and post-blast waste rock and from thick (up to 180m) unsaturated waste rock dump profiles constructed between 1982 and 2012 as well as water samples collected from a rock drain located at the base of one dump and effluent from humidity cell (HC) and leach pad (LP) tests on waste rock. δ 15 N- and δ 18 O-NO 3 - values and NO 3 - concentrations of waste rock and rock drain waters confirmed the source of NO 3 - in the waste rock to be explosives and that limited to no denitrification occurs in the dump. The average mass of N released during blasting was estimated to be about 3-6% of the N in the explosives. NO 3 - concentrations in the fresh-blast waste rock and recently placed waste rock used for the HC and LP experiments were highly variable, ranging from below detection to 241mg/kg. The mean and median concentrations of these samples ranged from 10-30mg/kg. In this range of concentrations, the initial aqueous concentration of fresh-blasted waste rock could range from approximately 200-600mg NO 3 - -N/L. Flushing of NO 3 - from the HCs, LPs and a deep field profile was simulated using a scale dependent leaching efficiency (f) where f ranged from 5-15% for HCs, to 35-80% for the LPs, to 80-90% for the field profile. Our findings show aqueous phase NO 3 - from blasting residuals is present at highly variable initial concentrations in waste rock and the majority of this NO 3 - (>75%) should be flushed by recharging water during displacement of the first stored water volume. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Comparative study of Se oxyanions retention on three argillaceous rocks: Upper Toarcian (Tournemire, France), Black Shales (Tournemire, France) and Opalinus Clay (Mont Terri, Switzerland).

    PubMed

    Frasca, B; Savoye, S; Wittebroodt, C; Leupin, O X; Michelot, J-L

    2014-01-01

    A comparative study of selenium oxyanion sorption was carried out by means of batch sorption experiments on three argillaceous rocks that differ in their mineralogical compositions and textural properties. The results show no selenate (Se(VI)) sorption onto the argillaceous rocks after 60 days, but clear sorption of selenite (Se(IV)), the extent being closely related to the initial Se(IV) concentration. At the lowest concentration ([Se(IV)]eq < 10(-8) mol L(-1)), the ranking of rock affinity for Se(IV) is Black Shales > Opalinus Clay (OPA) > Upper Toarcian, with Rd values of 910 ± 70, 600 ± 65 and 470 ± 70 mL g(-1) respectively. The Se(IV) sorption isotherms acquired for the three argillaceous rocks can be reproduced well by means of Langmuir formalism, particularly with a two-site Langmuir model. The comparison of the Se(IV) sorption isotherms obtained for these three rocks led to identification of pyrite associated with natural organic matter (NOM) as one of the main phases involved in selenium retention. While the desorption results suggested a significant Se(IV) reduction in the Upper Toarcian samples, the reversible sorption shown on the Black Shales and OPA samples was correlated with a sulfate increase, symptomatic of surface oxidation of pyrite which could limit the Se(IV) reduction in favor of sorption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Freeze-Thaw Cycle Test on Basalt, Diorite and Tuff Specimens with the Simulated Ground Temperature of Antarctica

    NASA Astrophysics Data System (ADS)

    Park, J.; Hyun, C.; Cho, H.; Park, H.

    2010-12-01

    Physical weathering caused by freeze-thaw action in cold regions was simulated with artificial weathering simulator in laboratory. Physical weathering of rock in cold regions usually depends on the temperature, rock type and moisture content. Then these three variables were considered in this study. The laboratory freeze-thaw tests were conducted on the three types of rocks, e.g. diorite, basalt and tuff, which are the major rock types around Sejong Station, King George Island, Antarctica. Nine core samples composed of three samples from each rock type were prepared in NX core, and 50 cycles of freeze-thaw test was carried out under dried and saturated water conditions. In this study, the physical weathering of rocks was investigated after each 10 cycles by measuring P-wave velocity, bulk density, effective porosity, Schmidt hardness and uniaxial compression strength(UCS). The experimental result of the diorite and the tuff specimens showed that P-wave velocity, bulk density, effective porosity, Schmidt hardness and UCS were gradually decreased as weathering progresses, but the result of the basalt specimens did not show typical trends due to the characteristics of irregular pore distribution and various pore sizes. Scanning electron microscopy(SEM) photographs of diorite, basalt and tuff specimens weathered in dried and saturated conditions were also acquired to investigate the role of water during physical weathering processes. The number and size of microcracks were increased as weathering progresses. This work was supported by the National Research Foundation of Korea(NRF) Grant(NRF-2010-0027753).

  3. Field, petrologic and detrital zircon study of the Kings sequence and Calaveras complex, Southern Lake Kaweah Roof Pendant, Tulare County, California

    NASA Astrophysics Data System (ADS)

    Buchen, Christopher T.

    U-Pb dating of detrital zircon grains separated from elastic sedimentary rocks is combined with field, petrographic and geochemical data to reconstruct the geologic history of Mesozoic rocks exposed at the southern end of the Lake Kaweah metamorphic pendant, western Sierra Nevada. Identification of rocks exposed at Limekiln Hill, Kern County, CA, as belonging to the Calaveras complex and Kings sequence was confirmed. Detrital zircon populations from two Calaveras complex samples provide Permo-Triassic maximum depositional ages (MDA) and reveal a Laurentian provenance indicating that continental accretion of the northwest-trending Kings-Kaweah ophiolite belt was in process prior to the Jurassic Period. Rock types including radiolarian metachert, metachert-argillite, and calc-silicate rocks with marble lenses are interpreted as formed in a hemipelagic environment of siliceous radiolarian deposition, punctuated by extended episodes of lime-mud gravity flows mixing with siliceous ooze forming cafe-silicate protoliths and limestone olistoliths forming marble lenses. Two samples of the overlying Kings sequence turbidites yield detrital zircons with an MDA of 181.4 +/-3.0 Ma and an interpreted provenance similar to other Jurassic metasediments found in the Yokohl Valley, Sequoia and Boyden Cave roof pendants. Age peaks indicative of Jurassic erg heritage are also present. In contrast, detrital zircon samples from the Sequoia and Slate Mountain roof pendants bear age-probability distributions interpreted as characteristic of the Snow Lake block, a tectonic sliver offset from the Paleozoic miogeocline.

  4. Geochemical Analysis of Parasequences within the Productive Middle Member of the Eagle Ford Formation at Lozier Canyon near Del Rio, Texas

    NASA Astrophysics Data System (ADS)

    Shane, Timothy E.

    The middle member of the Eagle Ford formation is a heterogeneous, carbonate-shale unit that is a focus of unconventional oil and gas exploration in southern Texas. Exploration results have been mixed because of the apparent heterogeneity of the member. In this study, the extent of heterogeneities in the Eagle Ford on the "bedding-scale" were examined by evaluating changes in organic and inorganic geochemistry. Samples were collected vertically in outcrop covering four non-consecutive parasequences. These samples were analyzed using a Rock Eval 6 Analyzer(TM) to determine source rock generative potential and a Niton(TM) XRF to evaluate inorganic geochemistry to identify changes in paleoredox conditions, paleoproductivity, and clastic influx. From pyrolysis data, it is determined that Parasequence 1 potentially displays an increase in source rock potential, Parasequence 2 potentially displays a constant source rock potential, and Parasequences 3 and 4 potentially display overall decreases in source rock potential during deposition. From the inferred paleoredox conditions, paleoproductivity, and clastic influx, it is determined that Parasequence 1 experienced a potential increase in oxygen abundance, Parasequence 2 experienced a potential decrease in oxygen abundance, and Parasequences 3 and 4 potentially experienced increases in oxygen abundance during deposition. It is concluded that geochemical heterogeneities do exist on a bedding scale within the parasequences of the middle member of the Eagle Ford. Additional comprehensive sampling and analysis is recommended in the future in order to tie these data to subsurface data for economic application.

  5. UV-Fluorescent Sensing for Primary Selection of Metal-rich Seafloor Massive Sulfide Ore

    NASA Astrophysics Data System (ADS)

    Yamazaki, T.; Nakatani, T.; Nakatani, N.; Arai, R.

    2012-12-01

    Seafloor massive sulfides (SMS) in the western Pacific have received much attention as resources for Au, Ag, Cu, Zn, and Pb. Because of the higher metal contents, the venture commercial mining project may start in 2013 in the East Manus Basin, Papua New Guinea. One of important problems to be solved is reducing the waste rock disposal costs for the economy. The best location for the reducing is on seafloor just after the excavation of SMS ores. The authors select UV-fluorescent sensing for primary selection of the ores, because no additional environmental impact is created with the application of the method. First of all, the effectiveness of the UV-fluorescent sensing by a combination system with a UV-light and a camera (See attached figure) in deep water condition is clarified. Then many UV-fluorescent data of SMS ore, SMS accompanied rock, and seafloor rock samples are collected. In the analyses phase, the ore and rock samples are classified into some groups by applying the cluster analysis to the metal contents at first. Then, using the UV fluorescent color brightness and contrasts of the ore and rock samples, the discriminant analysis based on Mahalanobis distance is applied. The higher possibility to identify the SMS ores containing valuable metals from camera image is suggested from the analyses. When additional UV-fluorescent and chemical assay data are obtained, the renewal of discriminant analysis is necessary. Therefore, the results and conclusions described in this study are tentative ones.; UV-fluorescent sensing

  6. Fine-scale traverses in cumulate rocks, Stillwater Complex: A lunar analogue study

    NASA Technical Reports Server (NTRS)

    Elthon, Donald

    1988-01-01

    The objective was to document finite-scale compositional variations in cumulate rocks from the Stillwater Complex in Montana and to interpret these data in the context of planetary magma fractionation processes such as those operative during the formation of the Earth's Moon. This research problem involved collecting samples in the Stillwater Complex and analyzing them by electron microprobe, X-ray fluorescence (XRF), and instrumental neutron activation analysis (INAA). The electron microprobe is used to determine the compositions of cumulus and intercumulus phases in the rocks, the XRF is used to determine the bulk-rock major element and trace element (Y, Sr, Rb, Zr, Ni, and Cr) abundances, and the INAA lab. is used to determine the trace element (Sc, Co, Cr, Ni, Ta, Hf, U, Th, and the REE) abundances of mineral separates and bulk rocks.

  7. Questa baseline and pre-mining ground-water quality investigation. 19. Leaching characteristics of composited materials from mine waste-rock piles and naturally altered areas near Questa, New Mexico

    USGS Publications Warehouse

    Smith, Kathleen S.; Hageman, Philip L.; Briggs, Paul H.; Sutley, Stephen J.; McCleskey, R. Blaine; Livo, K. Eric; Verplanck, Philip L.; Adams, Monique G.; Gemery-Hill, Pamela A.

    2007-01-01

    The goal of this study is to compare and contrast the leachability of metals and the acidity from individual mine waste-rock piles and natural erosional scars in the study area near Questa, New Mexico. Surficial multi-increment (composite) samples less than 2 millimeters in diameter from five waste-rock piles, nine erosional-scar areas, a less-altered site, and a tailings slurry-pipe sample were analyzed for bulk chemistry and mineralogy and subjected to two back-to-back leaching procedures. The first leaching procedure, the U.S. Geological Survey Field Leach Test (FLT), is a short-duration leach (5-minute shaking and 10-minute settling) and is intended to leach readily soluble materials. The FLT was immediately followed by an 18-hour, end-over-end rotation leaching procedure. Comparison of results from the back-to-back leaching procedures can provide information about reactions that may take place upon migration of leachates through changing geochemical conditions (for example, pH changes), both within the waste-rock and scar materials and away from the source materials. For the scar leachates, the concentrations of leachable metals varied substantially between the scar areas sampled. The scar leachates have low pH (pH 3.2-4.1). Under these low-pH conditions, cationic metals are solubilized and mobile, but anionic species, such as molybdenum, are less soluble and less mobile. Generally, metal concentrations in the waste-rock leachates did not exceed the upper range of those metal concentrations in the erosional-scar leachates. One exception is molybdenum, which is notably higher in the waste-rock leachates compared with the scar leachates. Most of the waste-rock leachates were at least mildly acidic (pH 3.0-6.2). The pH values in the waste-rock leachates span a large pH range that includes some pH-dependent solubility and metal-attenuation reactions. An increase in pH with leaching time and agitation indicates that there is pH-buffering capacity in some of the waste-rock piles. As pH increased in the waste-pile leachates, concentrations of several metals decreased with increasing time and agitation. Similar pH-dependent reactions may take place upon migration of the leachates in the waste-rock piles. Bulk chemistry, mineralogy, and leachate sulfur-isotope data indicate that the Capulin and Sugar Shack West waste-rock piles are compositionally different from the younger Sugar Shack South, Sugar Shack Middle, and Old Sulphur Gulch piles. The Capulin and Sugar Shack West piles have the lowest-pH leachates (pH 3.0-4.1) of the waste-pile samples, and the source material for the Capulin and Sugar Shack West piles appears to be similar to the source material for the erosional-scar areas. Calcite dissolution, in addition to gypsum dissolution, appears to produce the calcium and sulfate concentrations in leachates from the Sugar Shack South, Sugar Shack Middle, and Old Sulphur Gulch piles.

  8. Clastic rocks associated with the Midcontinent rift system in Iowa

    USGS Publications Warehouse

    Anderson, Raymond R.; McKay, Robert M.

    1997-01-01

    The Middle Proterozoic Midcontinent Rift System (MRS) of North America is a failed rift that formed in response to region-wide stresses about 1,100 Ma. In Iowa, the MRS is buried beneath 2,200?3,500 ft of Paleozoic and Mesozoic sedimentary rocks and Quaternary glaciogenic deposits. An extremely large volume of sediments was deposited within basins associated with the rift at several stages during its development. Although the uplift of a rift-axial horst resulted in the erosional removal of most of these clastic rocks from the central region of the MRS in Iowa, thick sequences are preserved in a series of horst-bounding basins. Recent studies incorporating petrographic analysis, geophysical modeling, and other analytical procedures have led to the establishment of a preliminary stratigraphy for these clastic rocks and interpretations of basin geometries. This information has allowed the refinement of existing theories and history of MRS formation in Iowa. Additionally, drill samples previously interpreted as indicating the existence of early Paleozoic basins overlying the Proterozoic MRS basins were re-examined. Samples previously interpreted as deep-lying Paleozoic rocks are now known to have caved from upper levels of the drillhole and were out of stratigraphic position. No deep Paleozoic basins exist in this area. These investigations led to the development of petrographic parameters useful in differentiating the Proterozoic MRS Red clastics from Paleozoic clastic rocks having similar lithologies.

  9. Space Weathering of Rocks

    NASA Technical Reports Server (NTRS)

    Noble, Sarah

    2011-01-01

    Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. On the Moon, rocks make up only a very small percentage of the exposed surface and areas where rocks are exposed, like central peaks, are often among the least space weathered regions we find in remote sensing data. However, our studies of weathered Ap 17 rocks 76015 and 76237 show that significant amounts of weathering products can build up on rock surfaces. Because rocks have much longer surface lifetimes than an individual soil grain, and thus record a longer history of exposure, we can study these products to gain a deeper perspective on the weathering process and better assess the relative impo!1ance of various weathering components on the Moon. In contrast to the lunar case, on small asteroids, like Itokowa, rocks make up a large fraction of the exposed surface. Results from the Hayabusa spacecraft at Itokowa suggest that while the low gravity does not allow for the development of a mature regolith, weathering patinas can and do develop on rock surfaces, in fact, the rocky surfaces were seen to be darker and appear spectrally more weathered than regions with finer materials. To explore how weathering of asteroidal rocks may differ from lunar, a set of ordinary chondrite meteorites (H, L, and LL) which have been subjected to artificial space weathering by nanopulse laser were examined by TEM. NpFe(sup 0) bearing glasses were ubiquitous in both the naturally-weathered lunar and the artificially-weathered meteorite samples.

  10. National Uranium Resource Evaluation, Tularosa Quadrangle, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, V.P.; Nagy, P.A.; Spreng, W.C.

    1981-12-01

    Uranium favorability of the Tularosa Quadrangle, New Mexico, was evaluated to a depth of 1500 m using National Uranium Resource Evaluation criteria. Uranium occurrences reported in the literature were located, sampled, and described in detail. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, and geochemical anomalies, interpreted from hydrogeochemical and stream-sediment reconnaissance, were also investigated. Additionally, several hundred rock samples were studied in thin section, and supplemental geochemical analyses of rock and water samples were completed. Fluorometric analyses were completed for samples from the Black Range Primitive Area to augment previously available geochemical data. Subsurface favorability was evaluatedmore » using gamma-ray logs and descriptive logs of sample cuttings. One area of uranium favorability was delineated, based on the data made available from this study. This area is the Nogal Canyon cauldron margin zone. Within the zone, characterized by concentric and radial fractures, resurgent doming, ring-dike volcanism, and intracauldron sedimentation, uranium conentration is confined to magmatic-hydrothermal and volcanogenic uranium deposits.« less

  11. Pieces of Other Worlds - Enhance YSS Education and Public Outreach Events with Extraterrestrial Samples

    NASA Astrophysics Data System (ADS)

    Allen, C.

    2010-12-01

    During the Year of the Solar System spacecraft will encounter two comets; orbit the asteroid Vesta, continue to explore Mars with rovers, and launch robotic explorers to the Moon and Mars. We have pieces of all these worlds in our laboratories. Extensive information about these unique materials, as well as actual lunar samples and meteorites, is available for display and education. The Johnson Space Center (JSC) curates NASA's extraterrestrial samples to support research, education, and public outreach. At the current time JSC curates five types of extraterrestrial samples: Moon rocks and soils collected by the Apollo astronauts Meteorites collected on US expeditions to Antarctica (including rocks from the Moon, Mars, and many asteroids including Vesta) “Cosmic dust” (asteroid and comet particles) collected by high-altitude aircraft Solar wind atoms collected by the Genesis spacecraft Comet and interstellar dust particles collected by the Stardust spacecraft These rocks, soils, dust particles, and atoms continue to be studied intensively by scientists around the world. Descriptions of the samples, research results, thousands of photographs, and information on how to request research samples are on the JSC Curation website: http://curator.jsc.nasa.gov/ NASA is eager for scientists and the public to have access to these exciting samples through our various loan procedures. NASA provides a limited number of Moon rock samples for either short-term or long-term displays at museums, planetariums, expositions, and professional events that are open to the public. The JSC Public Affairs Office handles requests for such display samples. Requestors should apply in writing to Mr. Louis Parker, JSC Exhibits Manager. He will advise successful applicants regarding provisions for receipt, display, and return of the samples. All loans will be preceded by a signed loan agreement executed between NASA and the requestor's organization. Email address: louis.a.parker@nasa.gov Sets of twelve thin sections of Apollo lunar samples and sets of twelve thin sections of meteorites are available for short-term loan from JSC Curation. The thin sections are designed for use in college and university courses where petrographic microscopes are available for viewing. Requestors should contact Ms. Mary Luckey, Education Sample Curator. Email address: mary.k.luckey@nasa.gov NASA also loans sets of Moon rocks and meteorites for use in classrooms, libraries, museums and planetariums. Lunar samples (three soils and three rocks) are encapsulated in a six-inch diameter clear plastic disk. Disks containing six different samples of meteorites are also available. A CD with PowerPoint presentations, a classroom activity guide, and additional printed material accompany the disks. Educators may qualify for the use of these disks by attending a security certification workshop sponsored by NASA's Aerospace Education Services Program (AESP). Contact Ms. Margaret Maher, AESP Director. Email address: mjm67@psu.edu Please take advantage of the wealth of data and the samples that we have from an exciting variety of solar system bodies.

  12. Multidimensional classification of magma types for altered igneous rocks and application to their tectonomagmatic discrimination and igneous provenance of siliciclastic sediments

    NASA Astrophysics Data System (ADS)

    Verma, Surendra P.; Rivera-Gómez, M. Abdelaly; Díaz-González, Lorena; Pandarinath, Kailasa; Amezcua-Valdez, Alejandra; Rosales-Rivera, Mauricio; Verma, Sanjeet K.; Quiroz-Ruiz, Alfredo; Armstrong-Altrin, John S.

    2017-05-01

    A new multidimensional scheme consistent with the International Union of Geological Sciences (IUGS) is proposed for the classification of igneous rocks in terms of four magma types: ultrabasic, basic, intermediate, and acid. Our procedure is based on an extensive database of major element composition of a total of 33,868 relatively fresh rock samples having a multinormal distribution (initial database with 37,215 samples). Multinormally distributed database in terms of log-ratios of samples was ascertained by a new computer program DOMuDaF, in which the discordancy test was applied at the 99.9% confidence level. Isometric log-ratio (ilr) transformation was used to provide overall percent correct classification of 88.7%, 75.8%, 88.0%, and 80.9% for ultrabasic, basic, intermediate, and acid rocks, respectively. Given the known mathematical and uncertainty propagation properties, this transformation could be adopted for routine applications. The incorrect classification was mainly for the "neighbour" magma types, e.g., basic for ultrabasic and vice versa. Some of these misclassifications do not have any effect on multidimensional tectonic discrimination. For an efficient application of this multidimensional scheme, a new computer program MagClaMSys_ilr (MagClaMSys-Magma Classification Major-element based System) was written, which is available for on-line processing on http://tlaloc.ier.unam.mx/index.html. This classification scheme was tested from newly compiled data for relatively fresh Neogene igneous rocks and was found to be consistent with the conventional IUGS procedure. The new scheme was successfully applied to inter-laboratory data for three geochemical reference materials (basalts JB-1 and JB-1a, and andesite JA-3) from Japan and showed that the inferred magma types are consistent with the rock name (basic for basalts JB-1 and JB-1a and intermediate for andesite JA-3). The scheme was also successfully applied to five case studies of older Archaean to Mesozoic igneous rocks. Similar or more reliable results were obtained from existing tectonomagmatic discrimination diagrams when used in conjunction with the new computer program as compared to the IUGS scheme. The application to three case studies of igneous provenance of sedimentary rocks was demonstrated as a novel approach. Finally, we show that the new scheme is more robust for post-emplacement compositional changes than the conventional IUGS procedure.

  13. Chemometric differentiation of crude oil families in the San Joaquin Basin, California

    USGS Publications Warehouse

    Peters, Kenneth E.; Coutrot, Delphine; Nouvelle, Xavier; Ramos, L. Scott; Rohrback, Brian G.; Magoon, Leslie B.; Zumberge, John E.

    2013-01-01

    Chemometric analyses of geochemical data for 165 crude oil samples from the San Joaquin Basin identify genetically distinct oil families and their inferred source rocks and provide insight into migration pathways, reservoir compartments, and filling histories. In the first part of the study, 17 source-related biomarker and stable carbon-isotope ratios were evaluated using a chemometric decision tree (CDT) to identify families. In the second part, ascendant hierarchical clustering was applied to terpane mass chromatograms for the samples to compare with the CDT results. The results from the two methods are remarkably similar despite differing data input and assumptions. Recognized source rocks for the oil families include the (1) Eocene Kreyenhagen Formation, (2) Eocene Tumey Formation, (3–4) upper and lower parts of the Miocene Monterey Formation (Buttonwillow depocenter), and (5–6) upper and lower parts of the Miocene Monterey Formation (Tejon depocenter). Ascendant hierarchical clustering identifies 22 oil families in the basin as corroborated by independent data, such as carbon-isotope ratios, sample location, reservoir unit, and thermal maturity maps from a three-dimensional basin and petroleum system model. Five families originated from the Eocene Kreyenhagen Formation source rock, and three families came from the overlying Eocene Tumey Formation. Fourteen families migrated from the upper and lower parts of the Miocene Monterey Formation source rocks within the Buttonwillow and Tejon depocenters north and south of the Bakersfield arch. The Eocene and Miocene families show little cross-stratigraphic migration because of seals within and between the source rocks. The data do not exclude the possibility that some families described as originating from the Monterey Formation actually came from source rock in the Temblor Formation.

  14. Development of high through-put Sr isotope analysis for monitoring reservoir integrity for CO{sub 2} storage.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Andy; Jain, Jinesh; Stewart, Brian

    2012-01-01

    Recent innovations in multi-collector ICP-mass spectrometry (MC-ICP-MS) have allowed for rapid and precise measurements of isotope ratios in geological samples. Naturally occurring Sr isotopes has the potential for use in Monitoring, Verification, and Accounting (MVA) associated with geologic CO2 storage. Sr isotopes can be useful for: Sensitive tracking of brine migration; Determining seal rock leakage; Studying fluid/rock reactions. We have optimized separation chemistry procedures that will allow operators to prepare samples for Sr isotope analysis off site using rapid, low cost methods.

  15. A paleolatitude reconstruction of the South Armenian Block (Lesser Caucasus) for the Late Cretaceous: Constraints on the Tethyan realm

    NASA Astrophysics Data System (ADS)

    Meijers, Maud J. M.; Smith, Brigitte; Kirscher, Uwe; Mensink, Marily; Sosson, Marc; Rolland, Yann; Grigoryan, Araik; Sahakyan, Lilit; Avagyan, Ara; Langereis, Cor; Müller, Carla

    2015-03-01

    The continental South Armenian Block - part of the Anatolide-Tauride South Armenian microplate - of Gondwana origin rifted from the African margin after the Triassic and collided with the Eurasian margin after the Late Cretaceous. During the Late Cretaceous, two northward dipping subduction zones were simultaneously active in the northern Neo-Tethys between the South Armenian Block in the south and the Eurasian margin in the north: oceanic subduction took place below the continental Eurasian margin and intra-oceanic subduction resulted in ophiolite obduction onto the South Armenian Block in the Late Cretaceous. The paleolatitude position of the South Armenian Block before its collision with Eurasia within paleogeographic reconstructions is poorly determined and limited to one study. This earlier study places the South Armenian Block at the African margin in the Early Jurassic. To reconstruct the paleolatitude history of the South Armenian Block, we sampled Upper Devonian-Permian and Cretaceous sedimentary rocks in Armenia. The sampled Paleozoic rocks have likely been remagnetized. Results from two out of three sites sampled in Upper Cretaceous strata pass fold tests and probably all three carry a primary paleomagnetic signal. The sampled sedimentary rocks were potentially affected by inclination shallowing. Therefore, two sites that consist of a large number of samples (> 100) were corrected for inclination shallowing using the elongation/inclination method. These are the first paleomagnetic data that quantify the South Armenian Block's position in the Tethys ocean between post-Triassic rifting from the African margin and post-Cretaceous collision with Eurasia. A locality sampled in Lower Campanian Eurasian margin sedimentary rocks and corrected for inclination shallowing, confirms that the corresponding paleolatitude falls on the Eurasian paleolatitude curve. The north-south distance between the South Armenian Block and the Eurasian margin just after Coniacian-Santonian ophiolite obduction was at most 1000 km.

  16. Summary of results of frictional sliding studies, at confining pressures up to 6.98 kb, in selected rock materials

    USGS Publications Warehouse

    Summers, R.; Byerlee, J.

    1977-01-01

    This report is a collection of stress-strain charts which were produced by deforming selected simuiated fault gouge materials. Several sets of samples consisted of intact cylinders, 1.000 inch in diameter and 2.500 inches long. The majority of the samples consisted of thin layers of the selected sample material, inserted within a diagonal sawcut in a 1.000-inch by 2.500-inch Westerly Granite cylinder. Two sorts of inserts were used. The first consisted of thin wafers cut from 1.000-inch-diameter cores of the rock being tested. The other consisted of thin layers of crushed material packed onto the sawcut surface. In several groups of tests using various thicknesses (0.010 inch to 0.160 inch) of a given type material there were variations in the stress level and/or stability of sliding as a function of the fault zone width. Because of this we elected to use a standard 0.025-inch width fault zone to compare the frictional properties of many of the different types of rock materials. This 0.025-inch thickness was chosen partially because this thickness of crushed granite behaves approximately the same as a fractured sample of initially intact granite, and also because this is near the lower limit at which we could cut intact wafers for those samples that were prepared from thin slices of rock. One series of tests was done with saw cut granite cylinders without fault gouge inserts. All of these tests were done in a hydraulically operated triaxial testing machine. The confining pressure (δ1, least principal stress) was applied by pumping petroleum ether into a pressure vessel. The differential stress (δ3-δ1) was applied by a hydraulically operated ram that could be advanced into the pressure vessel at any of several strain rates (10-4sec-1, 10-5sec-1, 10-6sec-1, 10-7sec-1, or 10-8sec-1). All samples were jacketed in polyurethane tubing to exclude the confining pressure medium from the samples. The majority of the samples, with the exception of some of the initially intact rocks, also had thin copper jackets. These served to hold the saw cut parts of the granite sample holders in alignment while the samples were handled and pushed into the polyurethane jackets.

  17. Note: CO₂-mineral dissolution experiments using a rocking autoclave and a novel titanium reaction cell.

    PubMed

    Purser, Gemma; Rochelle, Christopher A; Wallis, Humphrey C; Rosenqvist, Jörgen; Kilpatrick, Andrew D; Yardley, Bruce W D

    2014-08-01

    A novel titanium reaction cell has been constructed for the study of water-rock-CO2 reactions. The reaction cell has been used within a direct-sampling rocking autoclave and offers certain advantages over traditional "flexible gold/titanium cell" approaches. The main advantage is robustness, as flexible cells are prone to rupture on depressurisation during gas-rich experiments. The reaction cell was tested in experiments during an inter-laboratory comparison study, in which mineral kinetic data were determined. The cell performed well during experiments up to 130 °C and 300 bars pressure. The data obtained were similar to those of other laboratories participating in the study, and also to previously published data.

  18. Quantifying rock mass strength degradation in coastal rock cliffs

    NASA Astrophysics Data System (ADS)

    Brain, Matthew; Lim, Michael; Rosser, Nick; Petley, David; Norman, Emma; Barlow, John

    2010-05-01

    Although rock cliffs are generally perceived to evolve through undercutting and cantilever collapse of material, the recent application of high-resolution three-dimensional monitoring techniques has suggested that the volumetric losses recorded from layers above the intertidal zone produce an equally significant contribution to cliff behaviour. It is therefore important to understand the controls on rockfalls in such layers. Here we investigate the progressive influence of subaerial exposure and weathering on the geotechnical properties of the rocks encountered within the geologically complex coastal cliffs of the northeast coast of England, UK. Through a program of continuous in situ monitoring of local environmental and tidal conditions and laboratory rock strength testing, we aim to better quantify the relationships between environmental processes and the geotechnical response of the cliff materials. We have cut fresh (not previously exposed) samples from the three main rock types (sandstone, mudstone and shale) found within the cliff to uniform size, shape and volume, thus minimizing variability and removing previous surface weathering effects. In order to characterise the intact strength of the rocks, we have undertaken unconfined compressive strength and triaxial strength tests using high pressure (400 kN maximum axial load; 64 MPa maximum cell pressure) triaxial testing apparatus. The results outline the peak strength characteristics of the unweathered materials. We then divided the samples of each lithology into different experimental groups. The first set of samples remained in the laboratory at constant temperature and humidity; this group provides our control. Samples from each of the three rock types were located at heights on the cliff face corresponding with the different lithologies: at the base (mudstone), in the mid cliff (shale) and at the top of the cliff (sandstone). This subjected them to the same conditions experienced by the in situ cliff forming materials, which were also monitored using an array of environmental sensors. This experiment forms the basis of a long term investigation into the effects of varying environmental conditions on rock mass strength degradation over time. Ultimately, we aim to develop rock mass strength degradation curves to build a quantitative understanding of the interaction between coastal rock cliff behaviour and environmental processes.

  19. Biodiversity of shallow subtidal, under-rock invertebrates in Europe's first marine reserve: Effects of physical factors and scientific sampling

    NASA Astrophysics Data System (ADS)

    Trowbridge, Cynthia D.; Kachmarik, Katy; Plowman, Caitlin Q.; Little, Colin; Stirling, Penny; McAllen, Rob

    2017-03-01

    At Lough Hyne Marine Reserve in SW Ireland, shallow subtidal, under-rock biodiversity was investigated to assess (i) any deleterious effects of scientific sampling and (ii) quantitative baseline community patterns. Comparisons were made between 10 sites with annual rock-turning disturbance and 10 with multi-decadal (historical) disturbance. At each site, shallow subtidal rocks (N = 1289 total) were lifted, organisms recorded, and rocks replaced in their original position. Biodiversity indices were calculated to evaluate how diversity varied with location within the lough, frequency of sampling disturbance, degree of hypoxia/anoxia, dissolved oxygen (DO) concentration, and number of rocks turned. The richness of solitary invertebrates surveyed in situ averaged 21 taxa per site with significantly more in the South Basin (near the lough's connection to the ocean) than in the North Basin. The Shannon-Wiener Index did not differ significantly with variables investigated. However, evenness was higher at annually disturbed sites than at historical ones where anemones with algal symbionts often dominated. Several sites were hypoxic to anoxic under the shallow subtidal rocks. Cup corals were most abundant in the South Basin; DO was a crucial explanatory variable of these sensitive species. Solitary ascidians were most abundant at South-Basin annual sites with DO levels being a highly significant explanatory variable.

  20. Automated Rock Identification for Future Mars Exploration Missions

    NASA Technical Reports Server (NTRS)

    Gulick, V. C.; Morris, R. L.; Gazis, P.; Bishop, J. L.; Alena, R.; Hart, S. D.; Horton, A.

    2003-01-01

    A key task for human or robotic explorers on the surface of Mars is choosing which particular rock or mineral samples should be selected for more intensive study. The usual challenges of such a task are compounded by the lack of sensory input available to a suited astronaut or the limited downlink bandwidth available to a rover. Additional challenges facing a human mission include limited surface time and the similarities in appearance of important minerals (e.g. carbonates, silicates, salts). Yet the choice of which sample to collect is critical. To address this challenge we are developing science analysis algorithms to interface with a Geologist's Field Assistant (GFA) device that will allow robotic or human remote explorers to better sense and explore their surroundings during limited surface excursions. We aim for our algorithms to interpret spectral and imaging data obtained by various sensors. The algorithms, for example, will identify key minerals, rocks, and sediments from mid-IR, Raman, and visible/near-IR spectra as well as from high resolution and microscopic images to help interpret data and to provide high-level advice to the remote explorer. A top-level system will consider multiple inputs from raw sensor data output by imagers and spectrometers (visible/near-IR, mid-IR, and Raman) as well as human opinion to identify rock and mineral samples.

  1. Cuttability Assessment of Selected Rocks Through Different Brittleness Values

    NASA Astrophysics Data System (ADS)

    Dursun, Arif Emre; Gokay, M. Kemal

    2016-04-01

    Prediction of cuttability is a critical issue for successful execution of tunnel or mining excavation projects. Rock cuttability is also used to determine specific energy, which is defined as the work done by the cutting force to excavate a unit volume of yield. Specific energy is a meaningful inverse measure of cutting efficiency, since it simply states how much energy must be expended to excavate a unit volume of rock. Brittleness is a fundamental rock property and applied in drilling and rock excavation. Brittleness is one of the most crucial rock features for rock excavation. For this reason, determination of relations between cuttability and brittleness will help rock engineers. This study aims to estimate the specific energy from different brittleness values of rocks by means of simple and multiple regression analyses. In this study, rock cutting, rock property, and brittleness index tests were carried out on 24 different rock samples with different strength values, including marble, travertine, and tuff, collected from sites around Konya Province, Turkey. Four previously used brittleness concepts were evaluated in this study, denoted as B 1 (ratio of compressive to tensile strength), B 2 (ratio of the difference between compressive and tensile strength to the sum of compressive and tensile strength), B 3 (area under the stress-strain line in relation to compressive and tensile strength), and B 9 = S 20, the percentage of fines (<11.2 mm) formed in an impact test for the Norwegian University of Science and Technology (NTNU) model as well as B 9p (B 9 as predicted from uniaxial compressive, Brazilian tensile, and point load strengths of rocks using multiple regression analysis). The results suggest that the proposed simple regression-based prediction models including B 3, B 9, and B 9p outperform the other models including B 1 and B 2 and can be used for more accurate and reliable estimation of specific energy.

  2. Fluid flow and coupled poroelastic response in low-permeability rocks

    NASA Astrophysics Data System (ADS)

    Hasanov, A.; Prasad, M.

    2015-12-01

    Hydraulic transport properties of reservoir rocks are traditionally defined as rock properties, responsiblefor the passage of fluids through the porous rock sample, as well as their storage. These properties arealso called permeability and storage capacity. The evaluation of both is an important part of any reservoircharacterization workflow. A vivid example of the importance of the transport properties is the bloomingbusiness of unconventional oil and gas production. Tight formations with ultra-low permeabilities and storagecapacities, which have never been perceived as reservoir rocks, today are actively exploited for oil and gas.This tremendous achievement in petroleum science and technology was only possible due to hydraulic frac-turing, which is essentially a process of enhancing permeability and storage capacity by creating a swarmof microcracks in the rock. The knowledge of hydraulic and poroelastic properties is also essential for proper simulations of diffusive pore fluidflow in petroleum reservoirs, as well as aquifers. This work is devoted to an integrated study of low-permeability rocks' hydraulic and poroe-lastic properties as measured with the oscillating pore pressure experiment. The oscillating pore pressuremethod is traditionally used to measure hydraulic transport properties. We modified the method and builtan experimental setup, capable of measuring all aforementioned rock properties simultaneously. The mea-surements were carried out for four sub-millidarcy rock samples at a range of oscillationfrequencies and effective stresses. An apparent frequency dependence of permeability was observed. Measured frequency dispersion of drained poroelastic propertiesindicates an intrinsically inelastic nature of the porous mineral rock frame. Standard Linear Model demon-strated the best fit to the experimental dispersion data. We established that hydraulically-measured storage capacitiesare in good agreement with elastically-derived ones. We also introduce a novel method, which allowedus to estimate the permeability from the full range of acquired frequency data by utilizing a nonlinear least-squares regression. The results of numerical simulation of oscillatory fluid flow confirm both the analyticalsolution and the experimental data.

  3. The Geology and Petrography of Yücebelen and Surrounding Area, Torul-Gümüşhane

    NASA Astrophysics Data System (ADS)

    Doǧacan, Özcan; Özpınar, Yahya

    2013-04-01

    The study area is located in the tectono-stratigraphic zone named "Eastern Pontide Zone" from the northeastern part of Turkey. Eastern Pontides were formed by the subduction of Tethys Ocean under the Eurasian plate, during the Early Cretaceous - Late Eocene. Eastern Pontide orogenic zone can be divided in two tectono-stratigraphic subgroups as the northern and southern zones. The study area is located very close to border of these two subgroups but located in northern zone. In this project, the first geological map of the study area at the scale 1:5000 was made. Subsequently, detailed geological maps at the scale 1:2000 were made for the areas rich in ores. In the study area, Upper Cretaceous volcanic rocks consisting of basalts and basaltic andesites take place at the bottom of the rock sequence. Basalts and basaltic andesites with hyaloophitic, vitrophiric and microporphyric texture comprise plagioclase +pyroxene +chlorite +calcite ±epidote ±chalcedony ±opaque minerals. They are overlain by concordant pyroclastic and dacitic-rhyodacitic rocks. Quarts + K-feldispar ±plagioclase? ±biotite ±chlorite ±calcite ±chalcedony minerals are determined as a result of microscope investigation on samples taken from these rocks. These rocks are overlain by sedimentary rocks intercalated with pyroclastic rocks. All those units mentioned above, were intruded by granitoids of supposed Upper Cretaceous-Eocene age. Granitoids that crop out in the area were classified in terms of Q-ANOR parameters as granodiorites (Adile Hamlet occurrence - investigated in detail), diorites (Tuzlak Hill occurrence- eastern-part of study area) and quartz monzodiorites (İstavroma Hill occurrence- northern part of study area). Adile Hamlet granodiorites comprise plagioclase +pyroxene +chlorite +calcite ±quarts ±epidote +opaque minerals. A sequence of quarts +orthoclase +plagioclase ±chlorite ±epidote ±calcite ±opaque minerals have been determined after investigation of the rock samples collected from Tuzlak Hill surrounding area. Also, petrographic investigation gave us plagioclase +hornblende ±biotite ±chlorite ±calcite ±quarts ±opaque minerals mineral sequence for the occurrences seen around İstavroma Hill. All of these units are intruded Late Eocene andesitic and dacitic dykes. It was determined that Cu-Pb-Zn mineralization depends on the quartz veins developed in the fracture zones of the granitoid body and its contacts with sedimentary rocks. These veins revealed a paragenesis consisting Cu-Pb-Zn minerals. Key words: Eastern Pontides, Gümüşhane-Torul, Granitoid, Cu-Pb-Zn mineralization, Gümüşhane-Torul

  4. Regional Comparison of Detrital Zircon Populations in Syn-rift, Jurassic Rocks from the Northern Gulf of Mexico to Northern South America

    NASA Astrophysics Data System (ADS)

    Kouassi, M.

    2016-12-01

    We have compiled over 3200 detrital zircon ages in rock samples collected by various groups of previous workers that range in age from Cambrian to Cenozoic and cover the area of rifting between southern North America, Mexico, the Caribbean, and northern South America. We focussed this study on age populations in Jurassic sedimentary rocks from localities in the southern USA, Mexico, and Colombia to identify similar age populations that could constrain the relative locations of the various blocks during the period of Pangea's breakup and the formation of the Gulf of Mexico and Proto-Caribbean seaway. Jurassic samples from the Mixteca and Maya blocks of southern Mexico, the Norphlet Formation of Alabama and the Giron Formation of Eastern Cordillera of Colombia revealed a good correlation with correlative age populations of 900-1200 Ma and 200- 400 Ma. These results indicate that in a closed fit reconstruction all of these areas may have been overlain by common basin that covered the present-day area of the GOM, Yucatan block, and northern South America. We point out key areas for future sampling and dating that will help expand this study.

  5. The intensity of the ancient lunar field from magnetic studies on lunar samples

    NASA Technical Reports Server (NTRS)

    Stephenson, A.; Collinson, D. W.; Runchorn, S. K.

    1977-01-01

    Palaeointensity determination on Apollo 11, 16, and 17 rocks have indicated that from 3.9 to 4.0 AE ago the strength of the surface lunar magnetic field was about 1.3 Oe, while there is evidence from younger rocks that a field of about one quarter of this value was present at a later time (3.6 AE).

  6. Petrophysical Rock Typing of Unconventional Shale Plays: A Case Study for the Niobrara Formation of the Denver-Julesburg (DJ) Basin

    NASA Astrophysics Data System (ADS)

    Kamruzzaman, A.; Prasad, M.

    2015-12-01

    The hydrocarbon-rich mudstone rock layers of the Niobrara Formation were deposited in the shallow marine environment and have evolved as overmature oil- or gas-prone source and reservoir rocks. The hydrocarbon production from its low-porosity, nano-darcy permeability and interbedded chalk-marl reservoir intervals is very challenging. The post-diagenetic processes have altered the mineralogy and pore structure of its sourcing and producing rock units. A rock typing analysis in this play can help understand the reservoir heterogeneity significantly. In this study, a petrophysical rock typing workflow is presented for the Niobrara Formation by integrating experimental rock properties with geologic lithofacies classification, well log data and core study.Various Niobrara lithofacies are classified by evaluating geologic depositional history, sequence stratigraphy, mineralogy, pore structure, organic content, core texture, acoustic properties, and well log data. The experimental rock measurements are conducted on the core samples recovered from a vertical well from the Wattenberg Field of the Denver-Julesburg (DJ) Basin. Selected lithofacies are used to identify distinct petrofacies through the empirical analysis of the experimental data-set. The grouped petrofacies are observed to have unique mineralogical properties, pore characteristics, and organic contents and are labelled as discrete Niobrara rock types in the study area.Micro-textural image analysis (FESEM) is performed to qualitatively examine the pore size distribution, pore types and mineral composition in the matrix to confirm the classified rock units. The principal component analysis and the cluster analysis are carried out to establish the certainty of the selected rock types. Finally, the net-to-pay thicknesses of these rock units are compared with the cumulative production data from the field to further validate the chosen rock types.For unconventional shale plays, the rock typing information can be used to locate hydrocarbon sweetspots, facilitate the placement of the horizontal section of the wells along the sweetspots, and can augment engineers' abilities on suitable well placement considerations. It can also help enhancing the effectiveness of the hydraulic fracture stimulation and completion operation.

  7. Drug use and nightlife: more than just dance music.

    PubMed

    Van Havere, Tina; Vanderplasschen, Wouter; Lammertyn, Jan; Broekaert, Eric; Bellis, Mark

    2011-07-27

    Research over the last decade has focused almost exclusively on the association between electronic music and MDMA (3,4-Methylenedioxymethamphetamine or "ecstasy") or other stimulant drug use in clubs. Less attention has been given to other nightlife venues and music preferences, such as rock music or southern/funky music. This study aims to examine a broader spectrum of nightlife, beyond dance music. It looks at whether certain factors influence the frequency of illegal drug and alcohol use: the frequency of going to certain nightlife venues in the previous month (such as, pubs, clubs or goa parties); listening to rock music, dance music or southern and funky music; or sampling venues (such as, clubs, dance events or rock festivals). The question of how these nightlife variables influence the use of popular drugs like alcohol, MDMA, cannabis, cocaine and amphetamines is addressed. The study sample consisted of 775 visitors of dance events, clubs and rock festivals in Belgium. Study participants answered a survey on patterns of going out, music preferences and drug use. Odds ratios were used to determine whether the odds of being an illegal substance user are higher for certain nightlife-related variables. Furthermore, five separate ordinal regression analyses were used to investigate drug use in relation to music preference, venues visited during the last month and sampling venue. Respondents who used illegal drugs were 2.5 times more likely to report that they prefer dance music. Goa party visitors were nearly 5 times more likely to use illegal drugs. For those who reported visiting clubs, the odds of using illegal drugs were nearly 2 times higher. Having gone to a pub in the last month was associated with both more frequent alcohol use and more frequent illegal substance use. People who reported liking rock music and attendees of rock festivals used drugs less frequently. It was concluded that a more extended recreational environment, beyond dance clubs, is associated with frequent drug use. This stresses the importance of targeted prevention in various recreational venues tailored to the specific needs of the setting and its visitors.

  8. Drug use and nightlife: more than just dance music

    PubMed Central

    2011-01-01

    Background Research over the last decade has focused almost exclusively on the association between electronic music and MDMA (3,4-Methylenedioxymethamphetamine or "ecstasy") or other stimulant drug use in clubs. Less attention has been given to other nightlife venues and music preferences, such as rock music or southern/funky music. This study aims to examine a broader spectrum of nightlife, beyond dance music. It looks at whether certain factors influence the frequency of illegal drug and alcohol use: the frequency of going to certain nightlife venues in the previous month (such as, pubs, clubs or goa parties); listening to rock music, dance music or southern and funky music; or sampling venues (such as, clubs, dance events or rock festivals). The question of how these nightlife variables influence the use of popular drugs like alcohol, MDMA, cannabis, cocaine and amphetamines is addressed. Methods The study sample consisted of 775 visitors of dance events, clubs and rock festivals in Belgium. Study participants answered a survey on patterns of going out, music preferences and drug use. Odds ratios were used to determine whether the odds of being an illegal substance user are higher for certain nightlife-related variables. Furthermore, five separate ordinal regression analyses were used to investigate drug use in relation to music preference, venues visited during the last month and sampling venue. Results Respondents who used illegal drugs were 2.5 times more likely to report that they prefer dance music. Goa party visitors were nearly 5 times more likely to use illegal drugs. For those who reported visiting clubs, the odds of using illegal drugs were nearly 2 times higher. Having gone to a pub in the last month was associated with both more frequent alcohol use and more frequent illegal substance use. People who reported liking rock music and attendees of rock festivals used drugs less frequently. Conclusions It was concluded that a more extended recreational environment, beyond dance clubs, is associated with frequent drug use. This stresses the importance of targeted prevention in various recreational venues tailored to the specific needs of the setting and its visitors. PMID:21794101

  9. Pieces of Other Worlds - Extraterrestrial Samples for Education and Public Outreach

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.

    2010-01-01

    During the Year of the Solar System spacecraft from NASA and our international partners will encounter two comets; orbit the asteroid Vesta, continue to explore Mars with rovers, and launch robotic explorers to the Moon and Mars. We have pieces of all these worlds in our laboratories, and their continued study provides incredibly valuable "ground truth" to complement space exploration missions. Extensive information about these unique materials, as well as actual lunar samples and meteorites, are available for display and education. The Johnson Space Center (JSC) has the unique responsibility to curate NASA's extraterrestrial samples from past and future missions. Curation includes documentation, preservation, preparation, and distribution of samples for research, education, and public outreach. At the current time JSC curates six types of extraterrestrial samples: (1) Moon rocks and soils collected by the Apollo astronauts (2) Meteorites collected on US expeditions to Antarctica (including rocks from the Moon, Mars, and many asteroids including Vesta) (3) "Cosmic dust" (asteroid and comet particles) collected by high-altitude aircraft (4) Solar wind atoms collected by the Genesis spacecraft (5) Comet particles collected by the Stardust spacecraft (6) Interstellar dust particles collected by the Stardust spacecraft These rocks, soils, dust particles, and atoms continue to be studied intensively by scientists around the world. Descriptions of the samples, research results, thousands of photographs, and information on how to request research samples are on the JSC Curation website: http://curator.jsc.nasa.gov/ NASA provides a limited number of Moon rock samples for either short-term or long-term displays at museums, planetariums, expositions, and professional events that are open to the public. The JSC Public Affairs Office handles requests for such display samples. Requestors should apply in writing to Mr. Louis Parker, JSC Exhibits Manager. Mr. Parker will advise successful applicants regarding provisions for receipt, display, and return of the samples. All loans will be preceded by a signed loan agreement executed between NASA and the requestor's organization. Email address: louis.a.parker@nasa.gov Sets of twelve thin sections of Apollo lunar samples and sets of twelve thin sections of meteorites are available for short-term loan from JSC Curation. The thin sections are designed for use in college and university courses where petrographic microscopes are available for viewing. Requestors should contact the Ms. Mary Luckey, Education Sample Curator. Email address: mary.k.luckey@nasa.gov

  10. Some Data from Detection of Organics in a Rock on Mars

    NASA Image and Video Library

    2014-12-16

    Data graphed here are examples from the Sample Analysis at Mars SAM laboratory detection of Martian organics in a sample of powder that the drill on NASA Curiosity Mars rover collected from a rock target called Cumberland.

  11. Rock sample brought to earth from the Apollo 12 lunar landing mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Close-up view of Apollo 12 sample 12,062 under observation in the Manned Spacecraft Center's Lunar Receiving Laboratory. This sample, collected during the second Apollo 12 extravehicular activity (EVA-2) of Astronauts Charles Conrad Jr., and Alan L. Bean, is a medium-grained rock with lath-shaped crystals of feldspar and pyroxene It contains vugs-holes-with crystals growing in them (note right side of exposed portion). An idea of the size of the rock can be gained by reference to the gauge on the bottom portion of the number meter.

  12. Lithium in rocks from the Lincoln, Helena, and Townsend areas, Montana

    USGS Publications Warehouse

    Brenner-Tourtelot, Elizabeth F.; Meier, Allen L.; Curtis, Craig A.

    1978-01-01

    In anticipation of increased demand for lithium for energy-related uses, the U.S. Geological Survey has been appraising the lithium resources of the United States and investigating occurrences of lithium. Analyses of samples of chiefly lacustrine rocks of Oligocene age collected by M. R. Mudge near Lincoln, Mont. showed as much as 1,500 ppm lithium. Since then we have sampled the area in greater detail, and have sampled rocks of similar ages in the Helena and Townsend valleys. The lithium-rich beds crop out in a band about 1.3 km long by 0.3 km wide near the head of Beaver Creek, about 14 km northwest of Lincoln, Mont. These beds consist of laminated marlstone, oil shale, carbonaceous shale, limestone, conglomerate, and tuff. Some parts of this sequence average almost 0.1 percent lithium. The lithium-bearing rocks are too low in grade and volume to be economic. Samples of sedimentary rocks of Oligocene age from the Helena and Townsend valleys in the vicinity of Helena, Mont. were generally low in lithium (3-40 ppm). However, samples of rhyolites from the western side of the Helena valley and from the Lava Mountain area were slightly above average in lithium content (6-200 ppm).

  13. Small-Town Rock Trade

    ERIC Educational Resources Information Center

    Robarge, Thomas J.

    1977-01-01

    Describes an eighth grade rock exchange project in which small groups of students researched, then wrote letters to schools throughout the United States requesting samples of local rocks and minerals. Provides experience in use of the atlas and letter writing. (CS)

  14. Geochemical survey of the Chattahoochee Roadless Area, Towns, Union, and White counties, Georgia

    USGS Publications Warehouse

    Koeppen, Robert P.; Nelson, Arthur E.

    1989-01-01

    Th U.S. Geological Survey made a reconnaissance geochemical survey of the Chattahoochee Roadless Area (fig. 1) to search for unexposed mineral deposits which might be recognized by a geochemical signature in the abundance or distribution patterns of trace elements. As part of a regional geochemical reconnaissance, M/ Hurst (University of Georgia) collected 51 fine-grained stream-sediment samples and 45 planned-concentrate samples  of alluvial gravels in the Chattahoochee study area (see figure 1). A.E. Nelson, in conjunction with detailed geologic mapping (Nelso, 1983), collected 10 rock-chip samples for geochemical analysis in addition to a large number of hand specimens for thin-section study. In order to evaluate isolated anomalies indicated by the earlier sampling, R.P. Koeppen, D.M. Sutphin, and P.D. Schruben collected several additional panned-concentrate, stream-sediment, and rock samples from the area in 1986. Both the geologic study by Nelson (1983) and this geochemical survey provide the basis for our mineral-resource assessment of the Chattahoochee Roadless Area (Nelson and others, 1983). 

  15. Major influencing factors of indoor radon concentrations in Switzerland.

    PubMed

    Kropat, Georg; Bochud, Francois; Jaboyedoff, Michel; Laedermann, Jean-Pascal; Murith, Christophe; Palacios, Martha; Baechler, Sébastien

    2014-03-01

    In Switzerland, nationwide large-scale radon surveys have been conducted since the early 1980s to establish the distribution of indoor radon concentrations (IRC). The aim of this work was to study the factors influencing IRC in Switzerland using univariate analyses that take into account biases caused by spatial irregularities of sampling. About 212,000 IRC measurements carried out in more than 136,000 dwellings were available for this study. A probability map to assess risk of exceeding an IRC of 300 Bq/m(3) was produced using basic geostatistical techniques. Univariate analyses of IRC for different variables, namely the type of radon detector, various building characteristics such as foundation type, year of construction and building type, as well as the altitude, the average outdoor temperature during measurement and the lithology, were performed comparing 95% confidence intervals among classes of each variable. Furthermore, a map showing the spatial aggregation of the number of measurements was generated for each class of variable in order to assess biases due to spatially irregular sampling. IRC measurements carried out with electret detectors were 35% higher than measurements performed with track detectors. Regarding building characteristics, the IRC of apartments are significantly lower than individual houses. Furthermore, buildings with concrete foundations have the lowest IRC. A significant decrease in IRC was found in buildings constructed after 1900 and again after 1970. Moreover, IRC decreases at higher outdoor temperatures. There is also a tendency to have higher IRC with altitude. Regarding lithology, carbonate rock in the Jura Mountains produces significantly higher IRC, almost by a factor of 2, than carbonate rock in the Alps. Sedimentary rock and sediment produce the lowest IRC while carbonate rock from the Jura Mountains and igneous rock produce the highest IRC. Potential biases due to spatially unbalanced sampling of measurements were identified for several influencing factors. Significant associations were found between IRC and all variables under study. However, we showed that the spatial distribution of samples strongly affected the relevance of those associations. Therefore, future methods to estimate local radon hazards should take the multidimensionality of the process of IRC into account. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Do Hf isotopes in magmatic zircons represent those of their host rocks?

    NASA Astrophysics Data System (ADS)

    Wang, Di; Wang, Xiao-Lei; Cai, Yue; Goldstein, Steven L.; Yang, Tao

    2018-04-01

    Lu-Hf isotopic system in zircon is a powerful and widely used geochemical tracer in studying petrogenesis of magmatic rocks and crustal evolution, assuming that zircon Hf isotopes can represent initial Hf isotopes of their parental whole rock. However, this assumption may not always be valid. Disequilibrium partial melting of continental crust would preferentially melt out non-zircon minerals with high time-integrated Lu/Hf ratios and generate partial melts with Hf isotope compositions that are more radiogenic than those of its magma source. Dissolution experiments (with hotplate, bomb and sintering procedures) of zircon-bearing samples demonstrate this disequilibrium effect where partial dissolution yielded variable and more radiogenic Hf isotope compositions than fully dissolved samples. A case study from the Neoproterozoic Jiuling batholith in southern China shows that about half of the investigated samples show decoupled Hf isotopes between zircons and the bulk rocks. This decoupling could reflect complex and prolonged magmatic processes, such as crustal assimilation, magma mixing, and disequilibrium melting, which are consistent with the wide temperature spectrum from ∼630 °C to ∼900 °C by Ti-in-zircon thermometer. We suggest that magmatic zircons may only record the Hf isotopic composition of their surrounding melt during crystallization and it is uncertain whether their Hf isotopic compositions can represent the primary Hf isotopic compositions of the bulk magmas. In this regard, using zircon Hf isotopic compositions to trace crustal evolution may be biased since most of these could be originally from disequilibrium partial melts.

  17. A Parametric Study for the Design of an Optimized Ultrasonic Percussive Planetary Drill Tool.

    PubMed

    Li, Xuan; Harkness, Patrick; Worrall, Kevin; Timoney, Ryan; Lucas, Margaret

    2017-03-01

    Traditional rotary drilling for planetary rock sampling, in situ analysis, and sample return are challenging because the axial force and holding torque requirements are not necessarily compatible with lightweight spacecraft architectures in low-gravity environments. This paper seeks to optimize an ultrasonic percussive drill tool to achieve rock penetration with lower reacted force requirements, with a strategic view toward building an ultrasonic planetary core drill (UPCD) device. The UPCD is a descendant of the ultrasonic/sonic driller/corer technique. In these concepts, a transducer and horn (typically resonant at around 20 kHz) are used to excite a toroidal free mass that oscillates chaotically between the horn tip and drill base at lower frequencies (generally between 10 Hz and 1 kHz). This creates a series of stress pulses that is transferred through the drill bit to the rock surface, and while the stress at the drill-bit tip/rock interface exceeds the compressive strength of the rock, it causes fractures that result in fragmentation of the rock. This facilitates augering and downward progress. In order to ensure that the drill-bit tip delivers the greatest effective impulse (the time integral of the drill-bit tip/rock pressure curve exceeding the strength of the rock), parameters such as the spring rates and the mass of the free mass, the drill bit and transducer have been varied and compared in both computer simulation and practical experiment. The most interesting findings and those of particular relevance to deep drilling indicate that increasing the mass of the drill bit has a limited (or even positive) influence on the rate of effective impulse delivered.

  18. Evaluation of errors in quantitative determination of asbestos in rock

    NASA Astrophysics Data System (ADS)

    Baietto, Oliviero; Marini, Paola; Vitaliti, Martina

    2016-04-01

    The quantitative determination of the content of asbestos in rock matrices is a complex operation which is susceptible to important errors. The principal methodologies for the analysis are Scanning Electron Microscopy (SEM) and Phase Contrast Optical Microscopy (PCOM). Despite the PCOM resolution is inferior to that of SEM, PCOM analysis has several advantages, including more representativity of the analyzed sample, more effective recognition of chrysotile and a lower cost. The DIATI LAA internal methodology for the analysis in PCOM is based on a mild grinding of a rock sample, its subdivision in 5-6 grain size classes smaller than 2 mm and a subsequent microscopic analysis of a portion of each class. The PCOM is based on the optical properties of asbestos and of the liquids with note refractive index in which the particles in analysis are immersed. The error evaluation in the analysis of rock samples, contrary to the analysis of airborne filters, cannot be based on a statistical distribution. In fact for airborne filters a binomial distribution (Poisson), which theoretically defines the variation in the count of fibers resulting from the observation of analysis fields, chosen randomly on the filter, can be applied. The analysis in rock matrices instead cannot lean on any statistical distribution because the most important object of the analysis is the size of the of asbestiform fibers and bundles of fibers observed and the resulting relationship between the weights of the fibrous component compared to the one granular. The error evaluation generally provided by public and private institutions varies between 50 and 150 percent, but there are not, however, specific studies that discuss the origin of the error or that link it to the asbestos content. Our work aims to provide a reliable estimation of the error in relation to the applied methodologies and to the total content of asbestos, especially for the values close to the legal limits. The error assessments must be made through the repetition of the same analysis on the same sample to try to estimate the error on the representativeness of the sample and the error related to the sensitivity of the operator, in order to provide a sufficiently reliable uncertainty of the method. We used about 30 natural rock samples with different asbestos content, performing 3 analysis on each sample to obtain a trend sufficiently representative of the percentage. Furthermore we made on one chosen sample 10 repetition of the analysis to try to define more specifically the error of the methodology.

  19. From dry to saturated thermal conductivity: mixing-model correction charts and new conversion equations for sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Fuchs, Sven; Schütz, Felina; Förster, Andrea; Förster, Hans-Jürgen

    2013-04-01

    The thermal conductivity (TC) of a rock is, in collaboration with the temperature gradient, the basic parameter to determine the heat flow from the Earth interior. Moreover, it forms the input into models targeted on temperature prognoses for geothermal reservoirs at those depths not yet reached by boreholes. Thus, rock TC is paramount in geothermal exploration and site selection. Most commonly, TC of a rock is determined in the laboratory on samples that are either dry or water-saturated. Because sample saturation is time-consuming, it is desirable, especially if large numbers of samples need to be assessed, to develop an approach that quickly and reliably converts dry-measured bulk TC into the respective saturated value without applying the saturation procedure. Different petrophysical models can be deployed to calculate the matrix TC of a rock from the bulk TC and vice versa, if the effective porosity is known (e.g., from well logging data) and the TC of the saturation fluid (e.g., gas, oil, water) is considered. We have studied for a large suite of different sedimentary rocks the performance of two-component (rock matrix, porosity) models that are widely used in geothermics (arithmetic mean, geometric mean, harmonic mean, Hashin and Shtrikman mean, and effective medium theory mean). The data set consisted of 1147 TC data from three different sedimentary basins (North German Basin, Molasse Basin, Mesozoic platform sediments of the northern Sinai Microplate in Israel). Four lithotypes (sandstone, mudstone, limestone, dolomite) were studied exhibiting bulk TC in the range between 1.0 and 6.5 W/(mK). The quality of fit between measured (laboratory) and calculated bulk TC values was studied separately for the influence of lithotype, saturation fluid (water and isooctane), and rock anisotropy (parallel and perpendicular to bedding). The geometric mean model displays the best correspondence between calculated and measured bulk TC, however, the relation is not satisfying. To improve the fit of the models, correction equations are calculated based on the statistical data. In addition, the application of correction equations allows a significant improvement of the accuracy of bulk TC data calculated. However, the "corrected" geometric mean constitutes the only model universally applicable to different types of sedimentary rocks and, thus, is recommended for the calculation of bulk TC. Finally, the statistical analysis also resulted in lithotype-specific conversion equations, which permit a calculation of the water-saturated bulk TC from dry-measured TC and porosity (e.g., well-log-derived porosity). This approach has the advantage that the saturated bulk TC could be calculated readily without application of any mixing model. The expected errors with this approach are in the range between 5 and 10 % (Fuchs et al., 2013).

  20. Summary geochemical maps for samples of rock, stream sediment, and nonmagnetic heavy-mineral concentrate, Sweetwater Roadless Area, Mono County, California and Lyon and Douglas Counties, Nevada

    USGS Publications Warehouse

    Chaffee, Maurice A.

    1986-01-01

    Map A shows the locations of all sites where rock samples were collected for this report and the distributions of anomalous concentrations for 12 elements in the 127 rock samples collected. In a similar manner, map B shows the collection sites for 59 samples of minus-60-mesh stream sediment, and 59 samples of nonmagnetic heavy-mineral concentrate derived from stream sediment and also shows the distributions of anomalous concentrations for 13 elements in the stream-sediment samples and 17 elements in the concentrate samples. Map C shows outlines of those drainage basins containing samples of stream sediment and concentrate with anomalous element concentrations and also shows weighted values for each outlined basin based on the number of elements with anomalous concentrations in each stream-sediment and concentrate sample and on the degree to which these concentrations are anomalous in each sample.

  1. Mineralogy and Morphology of Amphiboles Observed in Soils and Rocks in El Dorado Hills, California

    USGS Publications Warehouse

    Meeker, G.P.; Lowers, H.A.; Swayze, G.A.; Van Gosen, B. S.; Sutley, S.J.; Brownfield, I.K.

    2006-01-01

    From the Executive Summary: At the request of the U.S. Environmental Protection Agency (USEPA), the U.S. Geological Survey (USGS) has conducted an independent study of amphiboles in rocks and soils in the El Dorado Hills, California, area. The purpose of this study is to investigate specific issues regarding the presence of 'naturally occurring asbestos' raised by an USEPA activity-based sampling study and subsequent criticisms of that study outlined in a review prepared by The R.J. Lee Group (RJLG).

  2. Beagle I and II Voyages: Charles Darwin's rocks and the quest for Mars rock; the Open University's virtual microscope has both

    NASA Astrophysics Data System (ADS)

    Schwenzer, S. P.; Tindle, A. G.; Anand, M.; Gibson, E. K.; Pearson, V. K.; Pemberton, D.; Pillinger, C.; Smith, C. L.; Whalley, P.; Kelley, S. P.

    2011-12-01

    Exploration is in itself a fascinating subject, and a strong draw to engaging the public in understanding science. Nearly two hundred years ago Charles Darwin took part in an exploration of the Earth, and more recently we have begun to explore the solar system and in particular the surface of Mars. The engagement is made easier if an element of exploration is involved in the public engagement, using modern internet and even mobile technologies. The Open University combines all those aspects in a series of virtual microscopes for Earth science that are freely available on the web, installed in museums, or built into its teaching material. The basis of the virtual microscope is a mosaic of several hundred microscopic images of each thin section taken in plane polarised light, between crossed polars and in reflected light, which are then assembled into three high resolution images. Rotation movies for selected points in the thin section illustrate changing optical properties such as birefringence. The user is able to pan and zoom around to explore the section, studying the mineralogy and rock texture, and view the rotation movies linked to points in the section to see the changing birefringence colours. We have created several collections of terrestrial rocks, mainly for teaching purposes, and outreach directly linked to exploration: Charles Darwin returned from the Voyage of the Beagle with a large variety of rock samples, and although thin sections were not being made at that time, they were created from his rocks in the late 19th century. The historic material is part of the "Darwin the Geologist" exhibition at the Sedgwick Museum in Cambridge. Our Darwin virtual microscope includes hand specimen illustrations and thin sections together with documentation and an interactive map allow internet users and museum visitors alike to have a close look at Darwin's rocks and study the petrology of them. Charles Darwin explored distant horizons on Earth in the 19th century; in the 20th century the Apollo astronauts set foot on the Moon, returning valuable rock samples to Earth. Through collaboration between NASA and the OU it became possible to show lunar samples as virtual thin sections. The Beagle II mission represented a new voyage, following Charles Darwin's footsteps, to horizons well beyond the Earth - on a journey to investigate the planet Mars. Although no samples have yet been returned from the red planet, we do have access to Martian meteorites. Like Moon rock samples, these meteorites are rare and very valuable. So, one way to make them accessible to the general public is via the internet using our virtual microscope technology. Within the framework of the EUROPLANET project, and in collaboration with the Natural History Museum in London we are making such meteorites freely available to all. We plan to extend this collection and make it openly accessible for teaching and outreach activities anywhere and any time. Our current microscopes are located at http://microscope.open.ac.uk.

  3. Source identification of soil mercury in the Spanish islands.

    PubMed

    Rodríguez Martín, José Antonio; Carbonell, Gregoria; Nanos, Nikos; Gutiérrez, Carmen

    2013-02-01

    This study spatially analysed the relation between mercury (Hg) content in soil and Hg in rock fragment for the purpose of assessing natural soil Hg contribution compared with Hg from human inputs. We present the Hg content of 318 soil and rock fragment samples from 11 islands distributed into two Spanish archipelagos (the volcanic Canary Islands [Canaries] and the Mediterranean Balearic [Balearic] islands). Assumedly both are located far enough away from continental Hg sources to be able to minimise the effects of diffuse pollution. Physical and chemical soil properties were also specified for the samples. Hg contents were significantly greater in the Balearic limestone soils (61 μg kg(-1)) than in the volcanic soils of the Canaries (33 μg kg(-1)). Hg levels were also greater in topsoil than in rocky fragments, especially on the Balearics. The soil-to-rock ratios varied between 1 and 30. Interestingly, the highest topsoil-to-rock Hg ratio (>16 ×) was found in the vicinity of a coal-fired power plant in Majorca, whereas no similar areas in the Canary archipelago were identified.

  4. Study on characteristics of EMR signals induced from fracture of rock samples and their application in rockburst prediction in copper mine

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofei; Wang, Enyuan

    2018-06-01

    A rockburst is a dynamic disaster that occurs during underground excavation or mining which has been a serious threat to safety. Rockburst prediction and control are as important as any other underground engineering in deep mines. For this paper, we tested electromagnetic radiation (EMR) signals generated during the deformation and fracture of rock samples from a copper mine under uniaxial compression, tension, and cycle-loading experiments, analyzed the changes in the EMR intensity, pulse number, and frequency corresponding to the loading, and a high correlation between these EMR parameters and the applied loading was observed. EMR apparently reflects the deformation and fracture status to the loaded rock. Based on this experimental work, we invented the KBD5-type EMR monitor and used it to test EMR signals generated in the rock surrounding the Hongtoushan copper mine. From the test results, it is determined the responding characteristics of EMR signals generated by changes in mine-generated stresses and stress concentrations and it is proposed that this EMR monitoring method can be used to provide early warning for rockbursts.

  5. Mineralogical, chemical and K-Ar isotopic changes in Kreyenhagen Shale whole rocks and <2 μm clay fractions during natural burial and hydrous-pyrolysis experimental maturation

    NASA Astrophysics Data System (ADS)

    Clauer, N.; Lewan, M. D.; Dolan, M. P.; Chaudhuri, S.; Curtis, J. B.

    2014-04-01

    Progressive maturation of the Eocene Kreyenhagen Shale from the San Joaquin Basin of California was studied by combining mineralogical and chemical analyses with K-Ar dating of whole rocks and <2 μm clay fractions from naturally buried samples and laboratory induced maturation by hydrous pyrolysis of an immature outcrop sample. The K-Ar age decreases from 89.9 ± 3.9 and 72.4 ± 4.2 Ma for the outcrop whole rock and its <2 μm fraction, respectively, to 29.7 ± 1.5 and 21.0 ± 0.7 Ma for the equivalent materials buried to 5167 m. The natural maturation does not produce K-Ar ages in the historical sense, but rather K/Ar ratios of relative K and radiogenic 40Ar amounts resulting from a combined crystallization of authigenic and alteration of initial detrital K-bearing minerals of the rocks. The Al/K ratio of the naturally matured rocks is essentially constant for the entire depth sequence, indicating that there is no detectable variation in the crystallo-chemical organization of the K-bearing alumino-silicates with depth. No supply of K from outside of the rock volumes occurred, which indicates a closed-system behavior for it. Conversely, the content of the total organic carbon (TOC) content decreases significantly with burial, based on the progressive increasing Al/TOC ratio of the whole rocks. The initial varied mineralogy and chemistry of the rocks and their <2 μm fractions resulting from differences in detrital sources and depositional settings give scattered results that homogenize progressively during burial due to increased authigenesis, and concomitant increased alteration of the detrital material. Hydrous pyrolysis was intended to alleviate the problem of mineral and chemical variations in initially deposited rocks of naturally matured sequences. However, experiments on aliquots from thermally immature Kreyenhagen Shale outcrop sample did not mimic the results from naturally buried samples. Experiments conducted for 72 h at temperatures from 270 to 365 °C did not induce significant changes at temperatures above 310 °C in the mineralogical composition and K-Ar ages of the rock and <2 μm fraction. The K-Ar ages of the <2 μm fraction range from 72.4 ± 4.2 Ma in the outcrop sample to 62.4 ± 3.4 Ma in the sample heated the most at 365 °C for 216 h. This slight decrease in age outlines some loss of radiogenic 40Ar, together with losses of organic matter as oil, gas, and aqueous organic species. Large amounts of smectite layers in the illite-smectite mixed layers of the pyrolyzed outcrop <2 μm fraction remain during thermal experiments, especially above 310 °C. With no illitization detected above 310 °C, smectite appears to have inhibited rather than promoted generation of expelled oil from decomposition of bitumen. This hindrance is interpreted to result from bitumen impregnating the smectite interlayer sites and rock matrix. Bitumen remains in the <2 μm fraction despite leaching with H2O2. Its presence in the smectite interlayers is apparent by the inability of the clay fraction to fully expand or collapse once bitumen generation from the thermal decomposition of the kerogen is completed, and by almost invariable K-Ar ages confirming for the lack of any K supply and/or radiogenic 40Ar removal. This suggests that once bitumen impregnates the porosity of a progressively maturing source rock, the pore system is no longer wetted by water and smectite to illite conversion ceases. Experimental attempts to evaluate the smectite conversion to illite should preferentially use low-TOC rocks to avoid inhibition of the reaction by bitumen impregnation.

  6. Use of nanotomographic images for structure analysis of carbonate rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagata, Rodrigo; Appoloni, Carlos Roberto

    Carbonate rocks store more than 50% of world's petroleum. These rocks' structures are highly complex and vary depending on many factors regarding their formation, e.g., lithification and diagenesis. In order to perform an effective extraction of petroleum it is necessary to know petrophysical parameters, such as total porosity, pore size and permeability of the reservoir rocks. Carbonate rocks usually have a range of pore sizes that goes from nanometers to meters or even dozen of meters. The nanopores and micropores might play an important role in the pores connectivity of carbonate rocks. X-ray computed tomography (CT) has been widely usedmore » to analyze petrophysical parameters in recent years. This technique has the capability to generate 2D images of the samples' inner structure and also allows the 3D reconstruction of the actual analyzed volume. CT is a powerful technique, but its results depend on the spatial resolution of the generated image. Spatial resolution is a measurement parameter that indicates the smallest object that can be detected. There are great difficulties to generate images with nanoscale resolution (nanotomographic images). In this work three carbonate rocks, one dolomite and two limestones (that will be called limestone A and limestone B) were analyzed by nanotomography. The measurements were performed with the SkyScan2011 nanotomograph, operated at 60 kV and 200 μA to measure the dolomite sample and 40 kV and 200 μA to measure the limestone samples. Each sample was measured with a given spatial resolution (270 nm for the dolomite sample, 360 nm for limestone A and 450 nm for limestone B). The achieved results for total porosity were: 3.09 % for dolomite, 0.65% for limestone A and 3.74% for limestone B. This paper reports the difficulties to acquire nanotomographic images and further analysis about the samples' pore sizes.« less

  7. Mineralogy and geochemistry of Eocene Helete formation , Adiyaman, Turkey

    NASA Astrophysics Data System (ADS)

    Choi, J.; Lee, I.; Yildirim, E.

    2013-12-01

    Helete formation is located at Adiyaman, Turkey which is in the Alpine-Himalayan orogeny belt. Helete formation is represented by andesitic, basaltic and gabbroic rocks cut by localized felsic intrusions and overlain by open-marine Nummulitic carbonate sediments. Electron microprobe analyses were conducted for 15 rocks samples of Helete formation. These rock samples are named as basalt, andesite, gabbro, diorite, dacite, and granite. Basalt and andesite samples are composed of clinopyroxene(augite), plagioclase(Ab98-96), carbonate, and hyaline. Gabbro samples have wide range of plagioclase composition from anorthite to albite(Ab92-16), and other minerals like clinopyroxene(augite) and amphibole(hornblende and actinolite). Diabase samples consist of epidote group minerals and sphene with plagioclase(Ab80), pyroxene and hornblende. Dacite samples are composed of dolomite and quartz. Granite samples are composed of quartz, chlorite, and plagioclase which range from albite to oligoclase in composition (Ab98-89).

  8. Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data

    USGS Publications Warehouse

    Rowan, L.C.; Schmidt, R.G.; Mars, J.C.

    2006-01-01

    The Reko Diq, Pakistan mineralized study area, approximately 10??km in diameter, is underlain by a central zone of hydrothermally altered rocks associated with Cu-Au mineralization. The surrounding country rocks are a variable mixture of unaltered volcanic rocks, fluvial deposits, and eolian quartz sand. Analysis of 15-band Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data of the study area, aided by laboratory spectral reflectance and spectral emittance measurements of field samples, shows that phyllically altered rocks are laterally extensive, and contain localized areas of argillically altered rocks. In the visible through shortwave-infrared (VNIR + SWIR) phyllically altered rocks are characterized by Al-OH absorption in ASTER band 6 because of molecular vibrations in muscovite, whereas argillically altered rocks have an absorption feature in band 5 resulting from alunite. Propylitically altered rocks form a peripheral zone and are present in scattered exposures within the main altered area. Chlorite and muscovite cause distinctive absorption features at 2.33 and 2.20????m, respectively, although less intense 2.33????m absorption is also present in image spectra of country rocks. Important complementary lithologic information was derived by analysis of the spectral emittance data in the 5 thermal-infrared (TIR) bands. Silicified rocks were not distinguished in the 9 VNIR + SWIR bands because of the lack of diagnostic spectral absorption features in quartz in this wavelength region. Quartz-bearing surficial deposits, as well as hydrothermally silicified rocks, were mapped in the TIR bands by using a band 13/band 12 ratio image, which is sensitive to the intensity of the quartz reststrahlen feature. Improved distinction between the quartzose surficial deposits and silicified bedrock was achieved by using matched-filter processing with TIR image spectra for reference. ?? 2006 Elsevier Inc. All rights reserved.

  9. Streaming Potential In Rocks Saturated With Water And Oil

    NASA Astrophysics Data System (ADS)

    Tarvin, J. A.; Caston, A.

    2011-12-01

    Fluids flowing through porous media generate electrical currents. These currents cause electric potentials, called "streaming potentials." Streaming potential amplitude depends on the applied pressure gradient, on rock and fluid properties, and on the interaction between rock and fluid. Streaming potential has been measured for rocks saturated with water (1) and with water-gas mixtures. (2) Few measurements (3) have been reported for rocks saturated with water-oil mixtures. We measured streaming potential for sandstone and limestone saturated with a mixture of brine and laboratory oil. Cylindrical samples were initially saturated with brine and submerged in oil. Saturation was changed by pumping oil from one end of a sample to the other and then through the sample in the opposite direction. Saturation was estimated from sample resistivity. The final saturation of each sample was determined by heating the sample in a closed container and measuring the pressure. Measurements were made by modulating the pressure difference (of oil) between the ends of a sample at multiple frequencies below 20 Hz. The observed streaming potential is a weak function of the saturation. Since sample conductivity decreases with increasing oil saturation, the electro-kinetic coupling coefficient (Pride's L (4)) decreases with increasing oil saturation. (1) David B. Pengra and Po-zen Wong, Colloids and Surfaces, vol., p. 159 283-292 (1999). (2) Eve S. Sprunt, Tony B. Mercer, and Nizar F. Djabbarah, Geophysics, vol. 59, p. 707-711 (1994). (3) Vinogradov, J., Jackson, M.D., Geophysical Res. L., Vol. 38, Article L01301 (2011). (4) Steve Pride, Phys. Rev. B, vol. 50, pp. 15678-15696 (1994).

  10. Preliminary study of a potential CO2 reservoir area in Hungary

    NASA Astrophysics Data System (ADS)

    Sendula, Eszter; Király, Csilla; Szabó, Zsuzsanna; Falus, György; Szabó, Csaba; Kovács, István; Füri, Judit; Kónya, Péter; Páles, Mariann; Forray, Viktória

    2014-05-01

    Since the first international agreement in 1997 (the Kyoto Protocol) the reduction of greenhouse gas emission has a key role in the European Union's energy and climate change policy. Following the Directive 2009/31/EC we are experiencing a significant change in the Hungarian national activity. Since the harmonization procedure, which was completed in May 2012, the national regulation obligates the competent authority to collect and regularly update all geological complexes that are potential for CO2 geological storage. In Hungary the most abundant potential storage formations are mostly saline aquifers of the Great Hungarian Plain (SE-Hungary), with sandstone reservoir and clayey caprock. The Neogene basin of the Great Hungarian Plain was subsided and then filled by a prograding delta system from NW and NE during the Late Miocene, mostly in the Pannonian time. The most potential storage rock was formed as a fine-grained sandy turbidite interlayered by thin argillaceous beds in the deepest part of the basin. It has relatively high porosity, depth and more than 1000 m thickness. Providing a regional coverage for the sandy turbidite, a 400-500 m thick argillaceous succession was formed in the slope environment. The composition, thickness and low permeability is expected to make it a suitable, leakage-safe caprock of the storage system. This succession is underlain by argillaceous rocks that were formed in the basin, far from sediment input and overlain by interfingering siltstone, sandstone and claystone succession formed in delta and shoreline environments and in the alluvial plain. Core samples have been collected from the potential reservoir rock and its cap rock in the Great Hungarian Plain's succession. The water compositions of the studied depth were known from well-log database. Using the information, acquired from these archive documents, we have constructed input data for geochemical modeling in order to to study the effect of pCO2 injection in the potential CO2 storage environment. From the potential reservoir rock samples (sandstone) thin sections were prepared to determine the mineral composition, pore distribution, pore geometry and grain size. The volume ratio of the minerals was calculated using pixel counter. To have more accurate mineral composition, petrographic observation and SEM analyzes have been carried out. The caprock samples involved in the study can be divided into mudstone and aleurolite samples. To determine the mineral composition of these samples, XRD, DTA, FTIR, SEM analysis has been carried out. To obtain a picture about the geochemical behavior of the potential CO2 storage system, geochemical models were made for the reservoir rocks. For the equilibrium geochemical model, PHREEQC 3.0 was used applying LLNL database. The data used in the model are real pore water compositions from the studied area and an average mineral composition based on petrographic microscope and SEM images. In the model we considered the cation-anion ratio (<10%) and the partial pressure of CO2. First of all, we were interested in the direction of the geochemical reactions during an injection process. Present work is focused on the mineralogy of the most potential storage rock and its caprock, and their expectable geochemical reactions for the effect of scCO2.

  11. Studies of electrical properties of low-resistivity sandstones based on digital rock technology

    NASA Astrophysics Data System (ADS)

    Yan, Weichao; Sun, Jianmeng; Zhang, Jinyan; Yuan, Weiguo; Zhang, Li; Cui, Likai; Dong, Huaimin

    2018-02-01

    Electrical properties are important parameters to quantitatively calculate water saturation in oil and gas reservoirs by well logging interpretation. It is usual that oil layers show high resistivity responses, while water layers show low-resistivity responses. However, there are low-resistivity oil zones that exist in many oilfields around the world, leading to difficulties for reservoir evaluation. In our research, we used digital rock technology to study different internal and external factors to account for low rock resistivity responses in oil layers. We first constructed three-dimensional digital rock models with five components based on micro-computed tomography technology and x-ray diffraction experimental results, and then oil and water distributions in pores were determined by the pore morphology method. When the resistivity of each component was assigned, rock resistivities were calculated by using the finite element method. We collected 20 sandstone samples to prove the effectiveness of our numerical simulation methods. Based on the control variate method, we studied the effects of different factors on the resistivity indexes and rock resistivities. After sensitivity analyses, we found the main factors which caused low rock resistivities in oil layers. For unfractured rocks, influential factors arranged in descending order of importance were porosity, clay content, temperature, water salinity, heavy mineral, clay type and wettability. In addition, we found that the resistivity index could not provide enough information to identify a low-resistivity oil zone by using laboratory rock-electric experimental results. These results can not only expand our understandings of the electrical properties of low-resistivity rocks from oil layers, but also help identify low-resistivity oil zones better.

  12. Geogenic Groundwater Contamination: A Case Study Of Canakkale - Western Turkey

    NASA Astrophysics Data System (ADS)

    Deniz, Ozan; Çalık, Ayten

    2016-04-01

    Study area is located NW of Turkey. Total area of the drainage basin is 465 square kilometers and mostly covered by volcanic rocks. Majority of these rocks have highly altered and lost their primary properties because of alteration processes. Especially argillic alteration is common. Tectonic movements and cooling fractures were created suitable circulation environment of groundwater in the rocks (secondary porosity). Alteration affects the composition of groundwater and some rock elements pass into groundwater during the movement of water in the cavities of rocks. High concentration of natural contaminants related to water-rock interaction in spring water has been studied in this research. Field measurements such as pH, electrical conductivity, temperature, oxidation-reduction potential and salinity carried out in 500 water points (spring, drilling, well and stream). 150 water samples taken from the water points and 50 rock samples taken from the source of springs has been investigated in point of major anion-cations, heavy metals and trace elements. Some components in the water such as pH (3.5-9.1), specific electrical conductivity (84-6400 microS/cm), aluminum (27-44902 ppb), iron (10-8048 ppb), manganese (0.13-8740 ppb), nickel (0.2-627 ppb), lead (0.1-42.5 ppb) and sulphate (10 to 1940 ppm) extremely high or low in the springs sourced from especially highly altered Miocene aged volcanic rocks. Some measured parameters highly above according to European Communities Drinking Water Regulations (2007) and TS266 (2015-Intended for Human Consumption Water Regulations of Turkey) drinking water standards. The most common element which is found in the groundwater is aluminum that is higher than to the drinking water standards (200 microg/L). The highest levels of the Al values measured in acidic waters with very low pH (3.4) emerging from altered volcanic rocks because of acid mine drainage in Obakoy district, north of the study area. The abundance of this element in some water sources is believed to be closely associated with the alteration of feldspar minerals in the andesite and basalts of the Middle Eocene Sahinli Formation. Various studies related to topic show that consumption of these water containing high aluminum, iron, manganese, nickel and lead for drinking purposes cause serious health problems (Alzheimer's, Parkinson's, physical and mental development disorders in children, various cancers, stomach - intestinal disorders and skin diseases). This situation limits the usable groundwater potential and causes potable water scarcity in the region. Consequently, while using of these groundwater resources in the region, taking several precautions are necessary and doing new water resource explorations are recommended. This study is supported by The Turkish Scientific and Technical Research Institute (Project number: 113Y577). Keywords: Geogenic groundwater contamination, Water-Rock Interaction, Canakkale

  13. Acoustic and Petrophysical Evolution of Organic-Rich Chalk Following Maturation Induced by Unconfined Pyrolysis

    NASA Astrophysics Data System (ADS)

    Shitrit, Omri; Hatzor, Yossef H.; Feinstein, Shimon; Vinegar, Harold J.

    2017-12-01

    Thermal maturation is known to influence the rock physics of organic-rich rocks. While most studies were performed on low-porosity organic-rich shales, here we examine the effect of thermal maturation on a high-porosity organic-rich chalk. We compare the physical properties of native state immature rock with the properties at two pyrolysis-simulated maturity levels: early-mature and over-mature. We further evaluate the applicability of results from unconfined pyrolysis experiments to naturally matured rock properties. Special attention is dedicated to the elastic properties of the organic phase and the influence of bitumen and kerogen contents. Rock physics is studied based on confined petrophysical measurements of porosity, density and permeability, and measurements of bedding-normal acoustic velocities at estimated field stresses. Geochemical parameters like total organic carbon (TOC), bitumen content and thermal maturation indicators are used to monitor variations in density and volume fraction of each phase. We find that porosity increases significantly upon pyrolysis and that P wave velocity decreases in accordance. Solids density versus TOC relationships indicate that the kerogen increases its density from 1.43 to 1.49 g/cc at the immature and early-mature stages to 2.98 g/cc at the over-mature stage. This density value is unusually high, although increase in S wave velocity and backscatter SEM images of the over-mature samples verify that the over-mature kerogen is significantly denser and stiffer. Using the petrophysical and acoustic properties, the elastic moduli of the rock are estimated by two Hashin-Shtrikman (HS)-based models: "HS + BAM" and "HS kerogen." The "HS + BAM" model is calibrated to the post-pyrolysis measurements to describe the mechanical effect of the unconfined pyrolysis on the rock. The absence of compaction in the pyrolysis process causes the post-pyrolysis samples to be extremely porous. The "HS kerogen" model, which simulates a kerogen-supported matrix, depicts a compacted version of the matrix and is believed to be more representative of a naturally matured rock. Rock physics analysis using the "HS kerogen" model indicates strong mechanical dominance of porosity and organic content, and only small maturity-associated effects.

  14. A Paleomagnetic and Paleointensity Study on Late Pliocene Volcanic Rocks From Southern Georgia (Caucasus)

    NASA Astrophysics Data System (ADS)

    Calvo-Rathert, M.; Bogalo, M.; Gogichaishvili, A.; Vegas-Tubia, N.; Sologashvili, J.; Villalain, J.

    2009-05-01

    A paleomagnetic, rock-magnetic and paleointensity study was carried out on 21 basaltic lava flows belonging to four different sequences of late Pliocene age from southern Georgia (Caucasus): Diliska (5 flows), Kvemo Orozmani (5 flows), Dmanisi (11 flows) and Zemo Karabulaki (3 flows). Paleomagnetic analysis generally showed the presence of a single component (mainly in the Dmanisi sequence) but also two more or less superimposed components in several other cases. All sites except one clearly displayed a normal-polarity characteristic component. Susceptibility-versus-temperature curves measured in argon atmosphere on whole- rock powdered samples yielded low-Ti titanomagnetite as main carrier of remanence, although a lower Tc- component (300-400C) was also observed in several cases. Both reversible and non-reversible k-T curves were measured. A pilot paleointensity study was performed with the Coe method on two samples of each of those sites considered suitable after interpretation of rock-magnetic and paleomagnetic results. The pilot study showed that reliable paleointensity results were mainly obtained from sites of the Dmanisi sequence. This thick sequence of basaltic lava flows records the upper end of the normal-polarity Olduvai subchron, a fact confirmed by 40Ar/39Ar dating of the uppermost lava flow and overlying volcanogenic ashes, which yields ages of 1.8 to 1.85 My. A new paleointensity experiment was carried out only on samples belonging to the Dmanisi sequence. Although this work is still in progress, first results show that paleointensities are low, their values lying between 10 and 20 µT in many cases, and not being higher than 30 µT. For comparison, present day field is 47 µT.

  15. Coseismic Damage Generation in Fault Zones by Successive High Strain Rate Loading Experiments

    NASA Astrophysics Data System (ADS)

    Aben, F. M.; Doan, M. L.; Renard, F.; Toussaint, R.; Reuschlé, T.; Gratier, J. P.

    2014-12-01

    Damage zones of active faults control both resistance to rupture and transport properties of the fault. Hence, knowing the rock damage's origin is important to constrain its properties. Here we study experimentally the damage generated by a succession of dynamic loadings, a process mimicking the stress history of a rock sample located next to an active fault. A propagating rupture generates high frequency stress perturbations next to its tip. This dynamic loading creates pervasive damage (pulverization), as multiple fractures initiate and grow simultaneously. Previous single loading experiments have shown a strain rate threshold for pulverization. Here, we focus on conditions below this threshold and the dynamic peak stress to constrain: 1) if there is dynamic fracturing at these conditions and 2) if successive loadings (cumulative seismic events) result in pervasive fracturing, effectively reducing the pulverization threshold to milder conditions. Monzonite samples were dynamically loaded (strain rate > 50 s-1) several times below the dynamic peak strength, using a Split Hopkinson Pressure Bar apparatus. Several quasi-static experiments were conducted as well (strain rate < 10-5-s). Samples loaded up to stresses above the quasi-static uniaxial compressive strength (qsUCS) systematically fragmented or pulverized after four successive loadings. We measured several damage proxies (P-wave velocity, porosity), that show a systematic increase in damage with each load. In addition, micro-computed tomography acquisition on several damage samples revealed the growth of a pervasive fracture network between ensuing loadings. Samples loaded dynamically below the qsUCS failed along one fracture after a variable amount of loadings and damage proxies do not show any a systematic trend. Our conclusions is that milder dynamic loading conditions, below the dynamic peak strength, result in pervasive dynamic fracturing. Also, successive loadings effectively lower the pulverization threshold of the rock. However, the peak loading stress must exceed the qsUCS of the rock, otherwise quasi-static fracturing occurs. Pulverized rocks found in the field are therefore witnesses of previous large earthquakes.

  16. Experimental research of the influence of the strength of ore samples on the parameters of an electromagnetic signal during acoustic excitation in the process of uniaxial compression

    NASA Astrophysics Data System (ADS)

    Yavorovich, L. V.; Bespal`ko, A. A.; Fedotov, P. I.

    2018-01-01

    Parameters of electromagnetic responses (EMRe) generated during uniaxial compression of rock samples under excitation by deterministic acoustic pulses are presented and discussed. Such physical modeling in the laboratory allows to reveal the main regularities of electromagnetic signals (EMS) generation in rock massive. The influence of the samples mechanical properties on the parameters of the EMRe excited by an acoustic signal in the process of uniaxial compression is considered. It has been established that sulfides and quartz in the rocks of the Tashtagol iron ore deposit (Western Siberia, Russia) contribute to the conversion of mechanical energy into the energy of the electromagnetic field, which is expressed in an increase in the EMS amplitude. The decrease in the EMS amplitude when the stress-strain state of the sample changes during the uniaxial compression is observed when the amount of conductive magnetite contained in the rock is increased. The obtained results are important for the physical substantiation of testing methods and monitoring of changes in the stress-strain state of the rock massive by the parameters of electromagnetic signals and the characteristics of electromagnetic emission.

  17. Astronaut David Scott - Sample - "Genesis Rock" - MSC

    NASA Image and Video Library

    1971-08-12

    S71-43477 (12 Aug. 1971) --- Astronaut David R. Scott, right, commander of the Apollo 15 mission, gets a close look at the sample referred to as "Genesis rock" in the Non-Sterile Nitrogen Processing Line (NNPL) in the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center (MSC). Scientist-astronaut Joseph P. Allen IV, left, an Apollo 15 spacecraft communicator, looks on with interest. The white-colored rock has been given the permanent identification of 15415.

  18. Preliminary geochemical assessment of water in selected streams, springs, and caves in the Upper Baker and Snake Creek drainages in Great Basin National Park, Nevada, 2009

    USGS Publications Warehouse

    Paul, Angela P.; Thodal, Carl E.; Baker, Gretchen M.; Lico, Michael S.; Prudic, David E.

    2014-01-01

    Water in caves, discharging from springs, and flowing in streams in the upper Baker and Snake Creek drainages are important natural resources in Great Basin National Park, Nevada. Water and rock samples were collected from 15 sites during February 2009 as part of a series of investigations evaluating the potential for water resource depletion in the park resulting from the current and proposed groundwater withdrawals. This report summarizes general geochemical characteristics of water samples collected from the upper Baker and Snake Creek drainages for eventual use in evaluating possible hydrologic connections between the streams and selected caves and springs discharging in limestone terrain within each watershed.Generally, water discharging from selected springs in the upper Baker and Snake Creek watersheds is relatively young and, in some cases, has similar chemical characteristics to water collected from associated streams. In the upper Baker Creek drainage, geochemical data suggest possible hydrologic connections between Baker Creek and selected springs and caves along it. The analytical results for water samples collected from Wheelers Deep and Model Caves show characteristics similar to those from Baker Creek, suggesting a hydrologic connection between the creek and caves, a finding previously documented by other researchers. Generally, geochemical evidence does not support a connection between water flowing in Pole Canyon Creek to that in Model Cave, at least not to any appreciable extent. The water sample collected from Rosethorn Spring had relatively high concentrations of many of the constituents sampled as part of this study. This finding was expected as the water from the spring travelled through alluvium prior to being discharged at the surface and, as a result, was provided the opportunity to interact with soil minerals with which it came into contact. Isotopic evidence does not preclude a connection between Baker Creek and the water discharging from Rosethorn Spring. The residence time of water discharging into the caves and from selected springs sampled as part of this study ranged from 10 to 25 years.Within the upper Snake Creek drainage, the results of this study show geochemical similarities between Snake Creek and Outhouse Spring, Spring Creek Spring, and Squirrel Spring Cave. The strontium isotope ratio (87Sr/86Sr) for intrusive rock samples representative of the Snake Creek drainage were similar to carbonate rock samples. The water sample collected from Snake Creek at the pipeline discharge point had lower strontium concentrations than the sample downstream and a similar 87Sr/86Sr value as the carbonate and intrusive rocks. The chemistry of the water sample was considered representative of upstream conditions in Snake Creek and indicates minimal influence of rock dissolution. The results of this study suggest that water discharging from Outlet Spring is not hydrologically connected to Snake Creek but rather is recharged at high altitude(s) within the Snake Creek drainage. These findings for Outlet Spring largely stem from the relatively high specific conductance and chloride concentration, the lightest deuterium (δD) and oxygen-18 (δ18O) values, and the longest calculated residence time (60 to 90 years) relative to any other sample collected as part of this study. With the exception of water sampled from Outlet Spring, the residence time of water discharging into Squirrel Spring Cave and selected springs in the upper Snake Creek drainage was less than 30 years.

  19. Geochemical Database for Igneous Rocks of the Ancestral Cascades Arc - Southern Segment, California and Nevada

    USGS Publications Warehouse

    du Bray, Edward A.; John, David A.; Putirka, Keith; Cousens, Brian L.

    2009-01-01

    Volcanic rocks that form the southern segment of the Cascades magmatic arc are an important manifestation of Cenozoic subduction and associated magmatism in western North America. Until recently, these rocks had been little studied and no systematic compilation of existing composition data had been assembled. This report is a compilation of all available chemical data for igneous rocks that constitute the southern segment of the ancestral Cascades magmatic arc and complement a previously completed companion compilation that pertains to rocks that constitute the northern segment of the arc. Data for more than 2,000 samples from a diversity of sources were identified and incorporated in the database. The association between these igneous rocks and spatially and temporally associated mineral deposits is well established and suggests a probable genetic relationship. The ultimate goal of the related research is an evaluation of the time-space-compositional evolution of magmatism associated with the southern Cascades arc segment and identification of genetic associations between magmatism and mineral deposits in this region.

  20. Rock Physics and Petrographic Parameters Relationship Within Siliciclastic Rocks: Quartz Sandstone Outcrop Study Case

    NASA Astrophysics Data System (ADS)

    Syafriyono, S.; Caesario, D.; Swastika, A.; Adlan, Q.; Syafri, I.; Abdurrokhim, A.; Mardiana, U.; Mohamad, F.; Alfadli, M. K.; Sari, V. M.

    2018-03-01

    Rock physical parameters value (Vp and Vs) is one of fundamental aspects in reservoir characterization as a tool to detect rock heterogenity. Its response is depend on several reservoir conditions such as lithology, pressure and reservoir fluids. The value of Vp and Vs is controlled by grain contact and contact stiffness, a function of clay mineral content and porosity also affected by mineral composition. The study about Vp and Vs response within sandstone and its relationship with petrographic parameters has become important to define anisotrophy of reservoir characteristics distribution and could give a better understanding about local diagenesis that influence clastic reservoir properties. Petrographic analysis and Vp-Vs calculation was carried out to 12 core sample which is obtained by hand-drilling of the outcrop in Sukabumi area, West Java as a part of Bayah Formation. Data processing and interpretation of sedimentary vertical succession showing that this outcrop comprises of 3 major sandstone layers indicating fluvial depositional environment. As stated before, there are 4 petrographic parameters (sorting, roundness, clay mineral content, and grain contact) which are responsible to the differences of shear wave and compressional wave value in this outcrop. Lithology with poor-sorted and well- roundness has Vp value lower than well-sorted and poor-roundness (sub-angular) grain. For the sample with high clay content, Vp value is ranging from 1681 to 2000 m/s and could be getting high until 2190 to 2714 m/s in low clay content sample even though the presence of clay minerals cannot be defined neither as matrix nor cement. The whole sample have suture grain contact indicating telogenesis regime whereas facies has no relationship with Vp and Vs value because of the different type of facies show similar petrographic parameters after diagenesis.

Top