Rocket Engine Oscillation Diagnostics
NASA Technical Reports Server (NTRS)
Nesman, Tom; Turner, James E. (Technical Monitor)
2002-01-01
Rocket engine oscillating data can reveal many physical phenomena ranging from unsteady flow and acoustics to rotordynamics and structural dynamics. Because of this, engine diagnostics based on oscillation data should employ both signal analysis and physical modeling. This paper describes an approach to rocket engine oscillation diagnostics, types of problems encountered, and example problems solved. Determination of design guidelines and environments (or loads) from oscillating phenomena is required during initial stages of rocket engine design, while the additional tasks of health monitoring, incipient failure detection, and anomaly diagnostics occur during engine development and operation. Oscillations in rocket engines are typically related to flow driven acoustics, flow excited structures, or rotational forces. Additional sources of oscillatory energy are combustion and cavitation. Included in the example problems is a sampling of signal analysis tools employed in diagnostics. The rocket engine hardware includes combustion devices, valves, turbopumps, and ducts. Simple models of an oscillating fluid system or structure can be constructed to estimate pertinent dynamic parameters governing the unsteady behavior of engine systems or components. In the example problems it is shown that simple physical modeling when combined with signal analysis can be successfully employed to diagnose complex rocket engine oscillatory phenomena.
Mean Line Pump Flow Model in Rocket Engine System Simulation
NASA Technical Reports Server (NTRS)
Veres, Joseph P.; Lavelle, Thomas M.
2000-01-01
A mean line pump flow modeling method has been developed to provide a fast capability for modeling turbopumps of rocket engines. Based on this method, a mean line pump flow code PUMPA has been written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The pump code can model axial flow inducers, mixed-flow and centrifugal pumps. The code can model multistage pumps in series. The code features rapid input setup and computer run time, and is an effective analysis and conceptual design tool. The map generation capability of the code provides the map information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of the code permit parametric design space exploration of candidate pump configurations and provide pump performance data for engine system evaluation. The PUMPA code has been integrated with the Numerical Propulsion System Simulation (NPSS) code and an expander rocket engine system has been simulated. The mean line pump flow code runs as an integral part of the NPSS rocket engine system simulation and provides key pump performance information directly to the system model at all operating conditions.
Blood Pump Development Using Rocket Engine Flow Simulation Technology
NASA Technical Reports Server (NTRS)
Kiris, Cetin C.; Kwak, Dochan
2002-01-01
This viewgraph presentation provides information on the transfer of rocket engine flow simulation technology to work involving the development of blood pumps. Details are offered regarding the design and requirements of mechanical heart assist devices, or VADs (ventricular assist device). There are various computational fluid dynamics issues involved in the visualization of flow in such devices, and these are highlighted and compared to those of rocket turbopumps.
Two-step rocket engine bipropellant valve concept
NASA Technical Reports Server (NTRS)
Capps, J. E.; Ferguson, R. E.; Pohl, H. O.
1969-01-01
Initiating combustion of altitude control rocket engines in a precombustion chamber of ductile material reduces high pressure surges generated by hypergolic propellants. Two-step bipropellant valve concepts control initial propellant flow into precombustion chamber and subsequent full flow into main chamber.
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
1992-01-01
Design features and concepts that have primary influence on the stable operating flow range of propellant-feed centrifugal turbopumps in a rocket engine are discussed. One of the throttling limitations of a pump-fed rocket engine is the stable operating range of the pump. Several varieties of pump hydraulic instabilities are mentioned. Some pump design criteria are summarized and a qualitative correlation of key parameters to pump stall and surge are referenced. Some of the design criteria were taken from the literature on high pressure ratio centrifugal compressors. Therefore, these have yet to be validated for extending the stable operating flow range of high-head pumps. Casing treatment devices, dynamic fluid-damping plenums, backflow-stabilizing vanes and flow-reinjection techniques are summarized. A planned program was undertaken at LeRC to validate these concepts. Technologies developed by this program will be available for the design of turbopumps for advanced space rocket engines for use by NASA in future space missions where throttling is essential.
Nonlinear Acoustic Processes in a Solid Rocket Engine
1994-03-29
conceptual framwork for the study number (M), weakly viscous internal flow sustained of solid rocket engine chamber flow dynamics which by mass...same magnitude. The formulation and results provide a conceptual framwork for the study of injected cylinder flow dynamics which supplements traditional...towards the axial direction. Until recently, conceptual understanding of this flow turning process has been based largely on the viscous properties of the
Computational Fluid Dynamics Analysis Method Developed for Rocket-Based Combined Cycle Engine Inlet
NASA Technical Reports Server (NTRS)
1997-01-01
Renewed interest in hypersonic propulsion systems has led to research programs investigating combined cycle engines that are designed to operate efficiently across the flight regime. The Rocket-Based Combined Cycle Engine is a propulsion system under development at the NASA Lewis Research Center. This engine integrates a high specific impulse, low thrust-to-weight, airbreathing engine with a low-impulse, high thrust-to-weight rocket. From takeoff to Mach 2.5, the engine operates as an air-augmented rocket. At Mach 2.5, the engine becomes a dual-mode ramjet; and beyond Mach 8, the rocket is turned back on. One Rocket-Based Combined Cycle Engine variation known as the "Strut-Jet" concept is being investigated jointly by NASA Lewis, the U.S. Air Force, Gencorp Aerojet, General Applied Science Labs (GASL), and Lockheed Martin Corporation. Work thus far has included wind tunnel experiments and computational fluid dynamics (CFD) investigations with the NPARC code. The CFD method was initiated by modeling the geometry of the Strut-Jet with the GRIDGEN structured grid generator. Grids representing a subscale inlet model and the full-scale demonstrator geometry were constructed. These grids modeled one-half of the symmetric inlet flow path, including the precompression plate, diverter, center duct, side duct, and combustor. After the grid generation, full Navier-Stokes flow simulations were conducted with the NPARC Navier-Stokes code. The Chien low-Reynolds-number k-e turbulence model was employed to simulate the high-speed turbulent flow. Finally, the CFD solutions were postprocessed with a Fortran code. This code provided wall static pressure distributions, pitot pressure distributions, mass flow rates, and internal drag. These results were compared with experimental data from a subscale inlet test for code validation; then they were used to help evaluate the demonstrator engine net thrust.
Liquid rocket engine centrifugal flow turbopumps. [design criteria
NASA Technical Reports Server (NTRS)
1973-01-01
Design criteria and recommended practices are discussed for the following configurations selected from the design sequence of a liquid rocket engine centrifugal flow turbopump: (1) pump performance including speed, efficiency, and flow range; (2) impeller; (3) housing; and (4) thrust balance system. Hydrodynamic, structural, and mechanical problems are addressed for the achievement of required pump performance within the constraints imposed by the engine/turbopump system. Materials and fabrication specifications are also discussed.
The hard start phenomena in hypergolic engines. Volume 1: Bibliography
NASA Technical Reports Server (NTRS)
Miron, Y.; Perlee, H. E.
1974-01-01
A bibliography of reports pertaining to the hard start phenomenon in attitude control rocket engines on Apollo spacecraft is presented. Some of the subjects discussed are; (1) combustion of hydrazine, (2) one dimensional theory of liquid fuel rocket combustion, (3) preignition phenomena in small pulsed rocket engines, (4) experimental and theoretical investigation of the fluid dynamics of rocket combustion, and (5) nonequilibrium combustion and nozzle flow in propellant performance.
Evaluation of Proposed Rocket Engines for Earth-to-Orbit Vehicles
NASA Technical Reports Server (NTRS)
Martin, James A.; Kramer, Richard D.
1990-01-01
The objective is to evaluate recently analyzed rocket engines for advanced Earth-to-orbit vehicles. The engines evaluated are full-flow staged combustion engines and split expander engines, both at mixture ratios at 6 and above with oxygen and hydrogen propellants. The vehicles considered are single-stage and two-stage fully reusable vehicles and the Space Shuttle with liquid rocket boosters. The results indicate that the split expander engine at a mixture ratio of about 7 is competitive with the full-flow staged combustion engine for all three vehicle concepts. A key factor in this result is the capability to increase the chamber pressure for the split expander as the mixture ratio is increased from 6 to 7.
Analysis of a Rocket Based Combined Cycle Engine during Rocket Only Operation
NASA Technical Reports Server (NTRS)
Smith, T. D.; Steffen, C. J., Jr.; Yungster, S.; Keller, D. J.
1998-01-01
The all rocket mode of operation is a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. However, outside of performing experiments or a full three dimensional analysis, there are no first order parametric models to estimate performance. As a result, an axisymmetric RBCC engine was used to analytically determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and statistical regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, percent of injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inject diameter ratio. A perfect gas computational fluid dynamics analysis was performed to obtain values of vacuum specific impulse. Statistical regression analysis was performed based on both full flow and gas generator engine cycles. Results were also found to be dependent upon the entire cycle assumptions. The statistical regression analysis determined that there were five significant linear effects, six interactions, and one second-order effect. Two parametric models were created to provide performance assessments of an RBCC engine in the all rocket mode of operation.
Performance of a RBCC Engine in Rocket-Operation
NASA Astrophysics Data System (ADS)
Tomioka, Sadatake; Kubo, Takahiro; Noboru Sakuranaka; Tani, Koichiro
Combination of a scramjet (supersonic combustion ramjet) flow-pass with embedded rocket engines (the combined system termed as Rocket-based Combined Cycle engine) are expected to be the most effective propulsion system for space launch vehicles. Either SSTO (Single Stage To Orbit) system or TSTO (Two Stage To Orbit) system with separation at high altitude needs final stage acceleration in space, so that the RBCC (Rocket Based Combined Cycle) engine should be operated as rocket engines. Performance of the scramjet combustor as the extension to the rocket nozzle, was experimentally evaluated by injecting inert gas at various pressure through the embedded rocket chamber while the whole sub-scaled model was placed in a low pressure chamber connected to an air-driven ejector system. The results showed that the thrust coefficient was about 1.2, the low value being found to mainly due to the friction force on the scramjet combustor wall, while blocking the scramjet flow pass’s opening to increase nozzle extension thrust surface, was found to have little effects on the thrust performance. The combustor was shortened to reduce the friction loss, however, degree of reduction was limited as friction decreased rapidly with distance from the onset of the scramjet combustor.
Design and Evaluation of Dual-Expander Aerospike Nozzle Upper Stage Engine
2014-09-18
Nozzle , taken from Martin [2] . . . . . 19 2.3 Typical Liquid Rocket Engine Cycles from Huzel and Huang[3], credit J. Hall[4] 21 2.4 Liquid Rocket Engine...giving the maximum thrust. For steady, supersonic flow (no separation from the nozzle ) the exit pressure is constant for a given engine plus nozzle ...performance independent of a rocket’s nozzle . Assuming one-dimensional, steady, and isentropic flow of a perfect gas gives the definition for characteristic
Investigation of Cooling Water Injection into Supersonic Rocket Engine Exhaust
NASA Astrophysics Data System (ADS)
Jones, Hansen; Jeansonne, Christopher; Menon, Shyam
2017-11-01
Water spray cooling of the exhaust plume from a rocket undergoing static testing is critical in preventing thermal wear of the test stand structure, and suppressing the acoustic noise signature. A scaled test facility has been developed that utilizes non-intrusive diagnostic techniques including Focusing Color Schlieren (FCS) and Phase Doppler Particle Anemometry (PDPA) to examine the interaction of a pressure-fed water jet with a supersonic flow of compressed air. FCS is used to visually assess the interaction of the water jet with the strong density gradients in the supersonic air flow. PDPA is used in conjunction to gain statistical information regarding water droplet size and velocity as the jet is broken up. Measurement results, along with numerical simulations and jet penetration models are used to explain the observed phenomena. Following the cold flow testing campaign a scaled hybrid rocket engine will be constructed to continue tests in a combusting flow environment similar to that generated by the rocket engines tested at NASA facilities. LaSPACE.
Cold Flow Propulsion Test Complex Pulse Testing
NASA Technical Reports Server (NTRS)
McDougal, Kris
2016-01-01
When the propellants in a liquid rocket engine burn, the rocket not only launches and moves in space, it causes forces that interact with the vehicle itself. When these interactions occur under specific conditions, the vehicle's structures and components can become unstable. One instability of primary concern is termed pogo (named after the movement of a pogo stick), in which the oscillations (cycling movements) cause large loads, or pressure, against the vehicle, tanks, feedlines, and engine. Marshall Space Flight Center (MSFC) has developed a unique test technology to understand and quantify the complex fluid movements and forces in a liquid rocket engine that contribute strongly to both engine and integrated vehicle performance and stability. This new test technology was established in the MSFC Cold Flow Propulsion Test Complex to allow injection and measurement of scaled propellant flows and measurement of the resulting forces at multiple locations throughout the engine.
Injector element characterization methodology
NASA Technical Reports Server (NTRS)
Cox, George B., Jr.
1988-01-01
Characterization of liquid rocket engine injector elements is an important part of the development process for rocket engine combustion devices. Modern nonintrusive instrumentation for flow velocity and spray droplet size measurement, and automated, computer-controlled test facilities allow rapid, low-cost evaluation of injector element performance and behavior. Application of these methods in rocket engine development, paralleling their use in gas turbine engine development, will reduce rocket engine development cost and risk. The Alternate Turbopump (ATP) Hot Gas Systems (HGS) preburner injector elements were characterized using such methods, and the methodology and some of the results obtained will be shown.
Schlieren image velocimetry measurements in a rocket engine exhaust plume
NASA Astrophysics Data System (ADS)
Morales, Rudy; Peguero, Julio; Hargather, Michael
2017-11-01
Schlieren image velocimetry (SIV) measures velocity fields by tracking the motion of naturally-occurring turbulent flow features in a compressible flow. Here the technique is applied to measuring the exhaust velocity profile of a liquid rocket engine. The SIV measurements presented include discussion of visibility of structures, image pre-processing for structure visibility, and ability to process resulting images using commercial particle image velocimetry (PIV) codes. The small-scale liquid bipropellant rocket engine operates on nitrous oxide and ethanol as propellants. Predictions of the exhaust velocity are obtained through NASA CEA calculations and simple compressible flow relationships, which are compared against the measured SIV profiles. Analysis of shear layer turbulence along the exhaust plume edge is also presented.
NASA Technical Reports Server (NTRS)
Cheng, Gary
2003-01-01
In the past, the design of rocket engines has primarily relied on the cold flow/hot fire test, and the empirical correlations developed based on the database from previous designs. However, it is very costly to fabricate and test various hardware designs during the design cycle, whereas the empirical model becomes unreliable in designing the advanced rocket engine where its operating conditions exceed the range of the database. The main goal of the 2nd Generation Reusable Launching Vehicle (GEN-II RLV) is to reduce the cost per payload and to extend the life of the hardware, which poses a great challenge to the rocket engine design. Hence, understanding the flow characteristics in each engine components is thus critical to the engine design. In the last few decades, the methodology of computational fluid dynamics (CFD) has been advanced to be a mature tool of analyzing various engine components. Therefore, it is important for the CFD design tool to be able to properly simulate the hot flow environment near the liquid injector, and thus to accurately predict the heat load to the injector faceplate. However, to date it is still not feasible to conduct CFD simulations of the detailed flowfield with very complicated geometries such as fluid flow and heat transfer in an injector assembly and through a porous plate, which requires gigantic computer memories and power to resolve the detailed geometry. The rigimesh (a sintered metal material), utilized to reduce the heat load to the faceplate, is one of the design concepts for the injector faceplate of the GEN-II RLV. In addition, the injector assembly is designed to distribute propellants into the combustion chamber of the liquid rocket engine. A porosity mode thus becomes a necessity for the CFD code in order to efficiently simulate the flow and heat transfer in these porous media, and maintain good accuracy in describing the flow fields. Currently, the FDNS (Finite Difference Navier-Stakes) code is one of the CFD codes which are most widely used by research engineers at NASA Marshall Space Flight Center (MSFC) to simulate various flow problems related to rocket engines. The objective of this research work during the 10-week summer faculty fellowship program was to 1) debug the framework of the porosity model in the current FDNS code, and 2) validate the porosity model by simulating flows through various porous media such as tube banks and porous plate.
Easier Analysis With Rocket Science
NASA Technical Reports Server (NTRS)
2003-01-01
Analyzing rocket engines is one of Marshall Space Flight Center's specialties. When Marshall engineers lacked a software program flexible enough to meet their needs for analyzing rocket engine fluid flow, they overcame the challenge by inventing the Generalized Fluid System Simulation Program (GFSSP), which was named the co-winner of the NASA Software of the Year award in 2001. This paper describes the GFSSP in a wide variety of applications
A Historical Systems Study of Liquid Rocket Engine Throttling Capabilities
NASA Technical Reports Server (NTRS)
Betts, Erin M.; Frederick, Robert A., Jr.
2010-01-01
This is a comprehensive systems study to examine and evaluate throttling capabilities of liquid rocket engines. The focus of this study is on engine components, and how the interactions of these components are considered for throttling applications. First, an assessment of space mission requirements is performed to determine what applications require engine throttling. A background on liquid rocket engine throttling is provided, along with the basic equations that are used to predict performance. Three engines are discussed that have successfully demonstrated throttling. Next, the engine system is broken down into components to discuss special considerations that need to be made for engine throttling. This study focuses on liquid rocket engines that have demonstrated operational capability on American space launch vehicles, starting with the Apollo vehicle engines and ending with current technology demonstrations. Both deep throttling and shallow throttling engines are discussed. Boost and sustainer engines have demonstrated throttling from 17% to 100% thrust, while upper stage and lunar lander engines have demonstrated throttling in excess of 10% to 100% thrust. The key difficulty in throttling liquid rocket engines is maintaining an adequate pressure drop across the injector, which is necessary to provide propellant atomization and mixing. For the combustion chamber, cooling can be an issue at low thrust levels. For turbomachinery, the primary considerations are to avoid cavitation, stall, surge, and to consider bearing leakage flows, rotordynamics, and structural dynamics. For valves, it is necessary to design valves and actuators that can achieve accurate flow control at all thrust levels. It is also important to assess the amount of nozzle flow separation that can be tolerated at low thrust levels for ground testing.
An Ejector Air Intake Design Method for a Novel Rocket-Based Combined-Cycle Rocket Nozzle
NASA Astrophysics Data System (ADS)
Waung, Timothy S.
Rocket-based combined-cycle (RBCC) vehicles have the potential to reduce launch costs through the use of several different air breathing engine cycles, which reduce fuel consumption. The rocket-ejector cycle, in which air is entrained into an ejector section by the rocket exhaust, is used at flight speeds below Mach 2. This thesis develops a design method for an air intake geometry around a novel RBCC rocket nozzle design for the rocket-ejector engine cycle. This design method consists of a geometry creation step in which a three-dimensional intake geometry is generated, and a simple flow analysis step which predicts the air intake mass flow rate. The air intake geometry is created using the rocket nozzle geometry and eight primary input parameters. The input parameters are selected to give the user significant control over the air intake shape. The flow analysis step uses an inviscid panel method and an integral boundary layer method to estimate the air mass flow rate through the intake geometry. Intake mass flow rate is used as a performance metric since it directly affects the amount of thrust a rocket-ejector can produce. The design method results for the air intake operating at several different points along the subsonic portion of the Ariane 4 flight profile are found to under predict mass flow rate by up to 8.6% when compared to three-dimensional computational fluid dynamics simulations for the same air intake.
Dynamics of Supercritical Flows
2012-08-26
to Supercritical Environment of Relevance to Rocket, Gas turbine , and Diesel Engines,” 37th AIAA Aerospace Science Meeting and Exhibit, AIAA...Visual Characteristics of a Round Jet into a Sub- to Supercritical Environment of Relevance to Rocket, Gas turbine , and Diesel Engines,” 37th AIAA...Relevance to Rocket, Gas turbine , and Diesel Engines,” 37th AIAA Aerospace Science Meeting and Exhibit, AIAA, Washington, DC, 11-14 Jan. 1999. 26Chehroudi
NASA Technical Reports Server (NTRS)
Smith, Timothy D.; Steffen, Christopher J., Jr.; Yungster, Shaye; Keller, Dennis J.
1998-01-01
The all rocket mode of operation is shown to be a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. An axisymmetric RBCC engine was used to determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and multiple linear regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inlet diameter ratio. A perfect gas computational fluid dynamics analysis, using both the Spalart-Allmaras and k-omega turbulence models, was performed with the NPARC code to obtain values of vacuum specific impulse. Results from the multiple linear regression analysis showed that for both the full flow and gas generator configurations increasing mixer-ejector area ratio and rocket area ratio increase performance, while increasing mixer-ejector inlet area ratio and mixer-ejector length-to-diameter ratio decrease performance. Increasing injected secondary flow increased performance for the gas generator analysis, but was not statistically significant for the full flow analysis. Chamber pressure was found to be not statistically significant.
Cooling of in-situ propellant rocket engines for Mars mission. M.S. Thesis - Cleveland State Univ.
NASA Technical Reports Server (NTRS)
Armstrong, Elizabeth S.
1991-01-01
One propulsion option of a Mars ascent/descent vehicle is multiple high-pressure, pump-fed rocket engines using in-situ propellants, which have been derived from substances available on the Martian surface. The chosen in-situ propellant combination for this analysis is carbon monoxide as the fuel and oxygen as the oxidizer. Both could be extracted from carbon dioxide, which makes up 96 percent of the Martian atmosphere. A pump-fed rocket engine allows for higher chamber pressure than a pressure-fed engine, which in turn results in higher thrust and in higher heat flux in the combustion chamber. The heat flowing through the wall cannot be sufficiently dissipated by radiation cooling and, therefore, a regenerative coolant may be necessary to avoid melting the rocket engine. The two possible fluids for this coolant scheme, carbon monoxide and oxygen, are compared analytically. To determine their heat transfer capability, they are evaluated based upon their heat transfer and fluid flow characteristics.
Design and Testing of a Liquid Nitrous Oxide and Ethanol Fueled Rocket Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youngblood, Stewart
A small-scale, bi-propellant, liquid fueled rocket engine and supporting test infrastructure were designed and constructed at the Energetic Materials Research and Testing Center (EMRTC). This facility was used to evaluate liquid nitrous oxide and ethanol as potential rocket propellants. Thrust and pressure measurements along with high-speed digital imaging of the rocket exhaust plume were made. This experimental data was used for validation of a computational model developed of the rocket engine tested. The developed computational model was utilized to analyze rocket engine performance across a range of operating pressures, fuel-oxidizer mixture ratios, and outlet nozzle configurations. A comparative study ofmore » the modeling of a liquid rocket engine was performed using NASA CEA and Cantera, an opensource equilibrium code capable of being interfaced with MATLAB. One goal of this modeling was to demonstrate the ability of Cantera to accurately model the basic chemical equilibrium, thermodynamics, and transport properties for varied fuel and oxidizer operating conditions. Once validated for basic equilibrium, an expanded MATLAB code, referencing Cantera, was advanced beyond CEAs capabilities to predict rocket engine performance as a function of supplied propellant flow rate and rocket engine nozzle dimensions. Cantera was found to comparable favorably to CEA for making equilibrium calculations, supporting its use as an alternative to CEA. The developed rocket engine performs as predicted, demonstrating the developedMATLAB rocket engine model was successful in predicting real world rocket engine performance. Finally, nitrous oxide and ethanol were shown to perform well as rocket propellants, with specific impulses experimentally recorded in the range of 250 to 260 seconds.« less
Rocket Engine Nozzle Side Load Transient Analysis Methodology: A Practical Approach
NASA Technical Reports Server (NTRS)
Shi, John J.
2005-01-01
At the sea level, a phenomenon common with all rocket engines, especially for a highly over-expanded nozzle, during ignition and shutdown is that of flow separation as the plume fills and empties the nozzle, Since the flow will be separated randomly. it will generate side loads, i.e. non-axial forces. Since rocket engines are designed to produce axial thrust to power the vehicles, it is not desirable to be excited by non-axial input forcing functions, In the past, several engine failures were attributed to side loads. During the development stage, in order to design/size the rocket engine components and to reduce the risks, the local dynamic environments as well as dynamic interface loads have to be defined. The methodology developed here is the way to determine the peak loads and shock environments for new engine components. In the past it is not feasible to predict the shock environments, e.g. shock response spectra, from one engine to the other, because it is not scaleable. Therefore, the problem has been resolved and the shock environments can be defined in the early stage of new engine development. Additional information is included in the original extended abstract.
Computational Flow Analysis of a Left Ventricular Assist Device
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Kwak, Dochan; Benkowski, Robert
1995-01-01
Computational fluid dynamics has been developed to a level where it has become an Indispensable part of aerospace research and design. Technology developed foe aerospace applications am also be utilized for the benefit of human health. For example, a flange-to-flange rocket engine fuel-pump simulation includes the rotating and non-rotating components: the flow straighteners, the impeller, and diffusers A Ventricular Assist Device developed by NASA Johnson Space Center and Baylor College of Medicine has a design similar to a rocket engine fuel pump in that it also consists of a flow straightener, an impeller, and a diffuser. Accurate and detailed knowledge of the flowfield obtained by incompressible flow calculations can be greatly beneficial to designers in their effort to reduce the cost and improve the reliability of these devices. In addition to the geometric complexities, a variety of flow phenomena are encountered in biofluids Then include turbulent boundary layer separation, wakes, transition, tip vortex resolution, three-dimensional effects, and Reynolds number effects. In order to increase the role of Computational Fluid Dynamics (CFD) in the design process the CFD analysis tools must be evaluated and validated so that designers gain Confidence in their use. The incompressible flow solver, INS3D, has been applied to flow inside of a liquid rocket engine turbopump components and extensively validated. This paper details how the computational flow simulation capability developed for liquid rocket engine pump component analysis has bean applied to the Left Ventricular Assist Device being developed jointly by NASA JSC and Baylor College of Medicine.
Experimental/Analytical Characterization of the RBCC Rocket-Ejector Mode
NASA Technical Reports Server (NTRS)
Ruf, J. H.; Lehman, M.; Pal, S.; Santoro, R. J.
2000-01-01
The experimental/analytical research work described here addresses the rocket-ejector mode (Mach 0-2 operational range) of the RBCC engine. The experimental phase of the program includes studying the mixing and combustion characteristics of the rocket-ejector system utilizing state-of-the-art diagnostic techniques. A two-dimensional variable geometry rocket-ejector system with enhanced optical access was utilized as the experimental platform. The goals of the experimental phase of the research being conducted at Penn State are to: (a) systematically increase the range of rocket-ejector understanding over a wide range of flow/geometry parameters and (b) provide a comprehensive data base for evaluating and anchoring CFD codes. Concurrent with the experimental activities, a CFD code benchmarking effort at Marshall Space Flight Center is also being used to further investigate the RBCC rocket-ejector mode. Experiments involving the single rocket based optically-accessible rocket-ejector system have been conducted for Diffusion and Afterburning (DAB) as well as Simultaneous Mixing and Combustion configurations. For the DAB configuration, air is introduced (direct-connect) or ejected (sea-level static) into a constant area mixer section with a centrally located gaseous oxygen (GO2)/gaseous hydrogen (GH2) rocket combustor. The downstream flowpath for this configuration includes a diffuser, an afterburner and a final converging nozzle. For the SMC configuration, the rocket is centrally located in a slightly divergent duct. For all tested configurations, global measurements of the axial pressure and heat transfer profiles as well as the overall engine thrust were made. Detailed measurements include major species concentration (H2 O2 N2 and H2O) profiles at various mixer locations made using Raman spectroscopy. Complementary CFD calculations of the flowfield at the experimental conditions also provide additional information on the physics of the problem. These calculations are being conducted at Marshall Space Flight Center to benchmark the FDNS code for RBCC engine operations for such configurations. The primary fluid physics of interests are the mixing and interaction of the rocket plume and secondary flow, subsequent combustion of the fuel rich rocket exhaust with the secondary flow and combustion of the injected afterburner flow. The CFD results are compared to static pressure along the RBCC duct walls, Raman Spectroscopy specie distribution data at several axial locations, net engine thrust and entrained air for the SLS cases. The CFD results compare reasonably well with the experimental results.
NASA Technical Reports Server (NTRS)
Sivo, Joseph N.; Peters, Daniel J.
1959-01-01
A rocket engine with an exhaust-nozzle area ratio of 25 was operated at a constant chamber pressure of 600 pounds per square inch absolute over a range of oxidant-fuel ratios at an altitude pressure corresponding to approximately 47,000 feet. At this condition, the nozzle flow is slightly underexpanded as it leaves the nozzle. The altitude simulation was obtained first through the use of an exhaust diffuser coupled with the rocket engine and secondly, in an altitude test chamber where separate exhauster equipment provided the altitude pressure. A comparison of performance data from these two tests has established that a diffuser used with a rocket engine operating at near-design nozzle pressure ratio can be a valid means of obtaining altitude performance data for rocket engines.
Vertical Landing Aerodynamics of Reusable Rocket Vehicle
NASA Astrophysics Data System (ADS)
Nonaka, Satoshi; Nishida, Hiroyuki; Kato, Hiroyuki; Ogawa, Hiroyuki; Inatani, Yoshifumi
The aerodynamic characteristics of a vertical landing rocket are affected by its engine plume in the landing phase. The influences of interaction of the engine plume with the freestream around the vehicle on the aerodynamic characteristics are studied experimentally aiming to realize safe landing of the vertical landing rocket. The aerodynamic forces and surface pressure distributions are measured using a scaled model of a reusable rocket vehicle in low-speed wind tunnels. The flow field around the vehicle model is visualized using the particle image velocimetry (PIV) method. Results show that the aerodynamic characteristics, such as the drag force and pitching moment, are strongly affected by the change in the base pressure distributions and reattachment of a separation flow around the vehicle.
Quantifying Instability Sources in Liquid Rocket Engines
NASA Technical Reports Server (NTRS)
Farmer, Richard C.; Cheng, Gary C.
2000-01-01
Computational fluid dynamics methodology to predict the effects of combusting flows on acoustic pressure oscillations in liquid rocket engines (LREs) is under development. 'Me intent of the investigation is to develop the causal physics of combustion driven acoustic resonances in LREs. The crux of the analysis is the accurate simulation of pressure/density/sound speed in a combustor which when used by the FDNS-RFV CFD code will produce realistic flow phenomena. An analysis of a gas generator considered for the Fastrac engine will be used as a test validation case.
Computational Fluid Dynamic Modeling of Rocket Based Combined Cycle Engine Flowfields
NASA Technical Reports Server (NTRS)
Daines, Russell L.; Merkle, Charles L.
1994-01-01
Computational Fluid Dynamic techniques are used to study the flowfield of a fixed geometry Rocket Based Combined Cycle engine operating in rocket ejector mode. Heat addition resulting from the combustion of injected fuel causes the subsonic engine flow to choke and go supersonic in the slightly divergent combustor-mixer section. Reacting flow computations are undertaken to predict the characteristics of solutions where the heat addition is determined by the flowfield. Here, adaptive gridding is used to improve resolution in the shear layers. Results show that the sonic speed is reached in the unheated portions of the flow first, while the heated portions become supersonic later. Comparison with results from another code show reasonable agreement. The coupled solutions show that the character of the combustion-based thermal choking phenomenon can be controlled reasonably well such that there is opportunity to optimize the length and expansion ratio of the combustor-mixer.
2016-07-31
fueled liquid rocket engine, enthalpy is removed from the combustion chamber by a regenerative cooling system comprising a series of passages through... rocket engine, enthalpy is removed from the combustion chamber by a regenerative cooling system comprising a series of passages through which fuel flows...the unprecedented correlation of comprehensive two-dimensional gas chromatographic (GC×GC) rocket fuel data with physical and thermochemical
NASA Technical Reports Server (NTRS)
Chirivella, J. E.
1975-01-01
Instrumentation for the measurement of plume exhaust specie deposition rates were developed and demonstrated. The instruments, two sets of quartz crystal microbalances, were designed for low temperature operation in the back flow and variable temperature operation in the core flow regions of an exhaust plume. These quartz crystal microbalances performed nominally, and measurements of exhaust specie deposition rates for 8400 number of pulses for a 0.1-lb monopropellant thruster are reported.
Scaled Rocket Testing in Hypersonic Flow
NASA Technical Reports Server (NTRS)
Dufrene, Aaron; MacLean, Matthew; Carr, Zakary; Parker, Ron; Holden, Michael; Mehta, Manish
2015-01-01
NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was strongly based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Detailed base heating results are outside of the scope of the current work, rather test methodology and techniques are presented along with broader applicability toward scaled rocket testing in supersonic and hypersonic flow.
Flow Separation Side Loads Excitation of Rocket Nozzle FEM
NASA Technical Reports Server (NTRS)
Smalley, Kurt B.; Brown, Andrew; Ruf, Joseph; Gilbert, John
2007-01-01
Modern rocket nozzles are designed to operate over a wide range of altitudes, and are also built with large aspect ratios to enable high efficiencies. Nozzles designed to operate over specific regions of a trajectory are being replaced in modern launch vehicles by those that are designed to operate from earth to orbit. This is happening in parallel with modern manufacturing and wall cooling techniques allowing for larger aspect ratio nozzles to be produced. Such nozzles, though operating over a large range of altitudes and ambient pressures, are typically designed for one specific altitude. Above that altitude the nozzle flow is 'underexpanded' and below that altitude, the nozzle flow is 'overexpanded'. In both conditions the nozzle produces less than the maximum possible thrust at that altitude. Usually the nozzle design altitude is well above sea level, leaving the nozzle flow in an overexpanded state for its start up as well as for its ground testing where, if it is a reusable nozzle such as the Space Shuttle Main Engine (SSME), the nozzle will operate for the majority of its life. Overexpansion in a rocket nozzle presents the critical, and sometimes design driving, problem of flow separation induced side loads. To increase their understanding of nozzle side loads, engineers at MSFC began an investigation in 2000 into the phenomenon through a task entitled "Characterization and Accurate Modeling of Rocket Engine Nozzle Side Loads", led by A. Brown. The stated objective of this study was to develop a methodology to accurately predict the character and magnitude of nozzle side loads. The study included further hot-fire testing of the MC-l engine, cold flow testing of subscale nozzles, CFD analyses of both hot-fire and cold flow nozzle testing, and finite element (fe.) analysis of the MC-1 engine and cold flow tested nozzles. A follow on task included an effort to formulate a simplified methodology for modeling a side load during a two nodal diameter fluid/structure interaction for a single moment in time.
NASA Technical Reports Server (NTRS)
Combs, L. P.
1974-01-01
A computer program for analyzing rocket engine performance was developed. The program is concerned with the formation, distribution, flow, and combustion of liquid sprays and combustion product gases in conventional rocket combustion chambers. The capabilities of the program to determine the combustion characteristics of the rocket engine are described. Sample data code sheets show the correct sequence and formats for variable values and include notes concerning options to bypass the input of certain data. A seperate list defines the variables and indicates their required dimensions.
Two-phase flow in the cooling circuit of a cryogenic rocket engine
NASA Astrophysics Data System (ADS)
Preclik, D.
1992-07-01
Transient two-phase flow was investigated for the hydrogen cooling circuit of the HM7 rocket engine. The nuclear reactor code ATHLET/THESEUS was adapted to cryogenics and applied to both principal and prototype experiments for validation and simulation purposes. The cooling circuit two-phase flow simulation focused on the hydrogen prechilling and pump transient phase prior to ignition. Both a single- and a multichannel model were designed and employed for a valve leakage flow, a nominal prechilling flow, and a prechilling with a subsequent pump-transient flow. The latter case was performed in order to evaluate the difference between a nominal and a delayed turbo-pump start-up. It was found that an extension of the nominal prechilling sequence in the order of 1 second is sufficient to finally provide for liquid injection conditions of hydrogen which, as commonly known, is undesirable for smooth ignition and engine starting transients.
1951-02-01
the pressure switch (16) is activated. This causes the-electrical circuit to open valve (11) and start the igniter (17). The nitrogen pressure...activates the pressure switch (11) at approximately 7 psi before it flows through the Injector (9) into the chamber. ATI-85«’ - -A 11...precluded. Accordingly, pressure switch (11) is inserted in the system in parallel (electrically) with the flow indicator (17), and the circuit may
Investigation of the Rocket Induced Flow Field in a Rectangular Duct
NASA Technical Reports Server (NTRS)
Landrum, D. Brian; Thames, Mignon; Parkinson, Doug; Gautney, Serena; Hawk, Clark
1999-01-01
Several tests were performed on a one-sixth scale Rocket Based Combined Cycle (RBCC) engine model at the University of Alabama in Huntsville. The UAH RBCC facility consists of a rectangular duct with a vertical strut mounted in the center. The scaled strut consists of two supersonic rocket nozzles with an embedded vertical turbine between the rocket nozzles. The tests included mass flow, flow visualization and horizontal pressure traverses. The mass flow test indicated a c:hoked condition when the rocket chamber pressure is between 200 psi and 300 psi. The flow visualization tests narrowed the rocket chamber pressure range from, 250 psi to 300 psi. Also, from this t.est, an assumption of a minimum
Fiberoptic sensors for rocket engine applications
NASA Technical Reports Server (NTRS)
Ballard, R. O.
1992-01-01
A research effort was completed to summarize and evaluate the current level of technology in fiberoptic sensors for possible applications in integrated control and health monitoring (ICHM) systems in liquid propellant engines. The environment within a rocket engine is particuarly severe with very high temperatures and pressures present combined with extremely rapid fluid and gas flows, and high-velocity and high-intensity acoustc waves. Application of fiberoptic technology to rocket engine health monitoring is a logical evolutionary step in ICHM development and presents a significant challenge. In this extremely harsh environment, the additional flexibility of fiberoptic techniques to augment conventional sensor technologies offer abundant future potential.
Laser Ignition Technology for Bi-Propellant Rocket Engine Applications
NASA Technical Reports Server (NTRS)
Thomas, Matt; Bossard, John; Early, Jim; Trinh, Huu; Dennis, Jay; Turner, James (Technical Monitor)
2001-01-01
This viewgraph presentation gives an overview of laser ignition technology for bipropellant rocket engines applications. The objectives of this project include: (1) the selection test chambers and flows; (2) definition of the laser ignition setup; (3) pulse format optimization; (4) fiber optic coupled laser ignition system analysis; and (5) chamber integration issues definition. The testing concludes that rocket combustion chamber laser ignition is imminent. Support technologies (multiplexing, window durability/cleaning, and fiber optic durability) are feasible.
A shock wave capability for the improved Two-Dimensional Kinetics (TDK) computer program
NASA Technical Reports Server (NTRS)
Nickerson, G. R.; Dang, L. D.
1984-01-01
The Two Dimensional Kinetics (TDK) computer program is a primary tool in applying the JANNAF liquid rocket engine performance prediction procedures. The purpose of this contract has been to improve the TDK computer program so that it can be applied to rocket engine designs of advanced type. In particular, future orbit transfer vehicles (OTV) will require rocket engines that operate at high expansion ratio, i.e., in excess of 200:1. Because only a limited length is available in the space shuttle bay, it is possible that OTV nozzles will be designed with both relatively short length and high expansion ratio. In this case, a shock wave may be present in the flow. The TDK computer program was modified to include the simulation of shock waves in the supersonic nozzle flow field. The shocks induced by the wall contour can produce strong perturbations of the flow, affecting downstream conditions which need to be considered for thrust chamber performance calculations.
Analysis of a Nuclear Enhanced Airbreathing Rocket for Earth to Orbit Applications
NASA Technical Reports Server (NTRS)
Adams, Robert B.; Landrum, D. Brian; Brown, Norman (Technical Monitor)
2001-01-01
The proposed engine concept is the Nuclear Enhanced Airbreathing Rocket (NEAR). The NEAR concept uses a fission reactor to thermally heat a propellant in a rocket plenum. The rocket is shrouded, thus the exhaust mixes with ingested air to provide additional thermal energy through combustion. The combusted flow is then expanded through a nozzle to provide thrust.
Gas-dynamic modeling of gas flow in semi-closed space including channel surface fluctuation
NASA Astrophysics Data System (ADS)
Petrova, E. N.; Salnikov, A. F.
2016-10-01
In this article frequency interaction conditions, that affect on acoustic stability of solid-propellant rocket engine (SPRE) action, and its influence on level change of pressure fluctuations with longitudinal gas oscillations in the combustion chamber (CC) are considered. Studies of CC in the assessment of the operating rocket engine stability are reported.
A Design Tool for Liquid Rocket Engine Injectors
NASA Technical Reports Server (NTRS)
Farmer, R.; Cheng, G.; Trinh, H.; Tucker, K.
2000-01-01
A practical design tool which emphasizes the analysis of flowfields near the injector face of liquid rocket engines has been developed and used to simulate preliminary configurations of NASA's Fastrac and vortex engines. This computational design tool is sufficiently detailed to predict the interactive effects of injector element impingement angles and points and the momenta of the individual orifice flows and the combusting flow which results. In order to simulate a significant number of individual orifices, a homogeneous computational fluid dynamics model was developed. To describe sub- and supercritical liquid and vapor flows, the model utilized thermal and caloric equations of state which were valid over a wide range of pressures and temperatures. The model was constructed such that the local quality of the flow was determined directly. Since both the Fastrac and vortex engines utilize RP-1/LOX propellants, a simplified hydrocarbon combustion model was devised in order to accomplish three-dimensional, multiphase flow simulations. Such a model does not identify drops or their distribution, but it does allow the recirculating flow along the injector face and into the acoustic cavity and the film coolant flow to be accurately predicted.
Combustion dynamics in cryogenic rocket engines: Research programme at DLR Lampoldshausen
NASA Astrophysics Data System (ADS)
Hardi, Justin S.; Traudt, Tobias; Bombardieri, Cristiano; Börner, Michael; Beinke, Scott K.; Armbruster, Wolfgang; Nicolas Blanco, P.; Tonti, Federica; Suslov, Dmitry; Dally, Bassam; Oschwald, Michael
2018-06-01
The Combustion Dynamics group in the Rocket Propulsion Department at the German Aerospace Center (DLR), Lampoldshausen, strives to advance the understanding of dynamic processes in cryogenic rocket engines. Leveraging the test facilities and experimental expertise at DLR Lampoldshausen, the group has taken a primarily experimental approach to investigating transient flows, ignition, and combustion instabilities for over one and a half decades. This article provides a summary of recent achievements, and an overview of current and planned research activities.
Air breathing engine/rocket trajectory optimization
NASA Technical Reports Server (NTRS)
Smith, V. K., III
1979-01-01
This research has focused on improving the mathematical models of the air-breathing propulsion systems, which can be mated with the rocket engine model and incorporated in trajectory optimization codes. Improved engine simulations provided accurate representation of the complex cycles proposed for advanced launch vehicles, thereby increasing the confidence in propellant use and payload calculations. The versatile QNEP (Quick Navy Engine Program) was modified to allow treatment of advanced turboaccelerator cycles using hydrogen or hydrocarbon fuels and operating in the vehicle flow field.
NASA Technical Reports Server (NTRS)
Pryor, D.; Hyde, E. H.; Escher, W. J. D.
1999-01-01
Airbreathing/Rocket combined-cycle, and specifically rocket-based combined- cycle (RBCC), propulsion systems, typically employ an internal engine flow-path installed primary rocket subsystem. To achieve acceptably short mixing lengths in effecting the "air augmentation" process, a large rocket-exhaust/air interfacial mixing surface is needed. This leads, in some engine design concepts, to a "cluster" of small rocket units, suitably arrayed in the flowpath. To support an early (1964) subscale ground-test of a specific RBCC concept, such a 12-rocket cluster was developed by NASA's Marshall Space Flight Center (MSFC). The small primary rockets used in the cluster assembly were modified versions of an existing small kerosene/oxygen water-cooled rocket engine unit routinely tested at MSFC. Following individual thrust-chamber tests and overall subsystem qualification testing, the cluster assembly was installed at the U. S. Air Force's Arnold Engineering Development Center (AEDC) for RBCC systems testing. (The results of the special air-augmented rocket testing are not covered here.) While this project was eventually successfully completed, a number of hardware integration problems were met, leading to catastrophic thrust chamber failures. The principal "lessons learned" in conducting this early primary rocket subsystem experimental effort are documented here as a basic knowledge-base contribution for the benefit of today's RBCC research and development community.
Turbulent Mixing of Primary and Secondary Flow Streams in a Rocket-Based Combined Cycle Engine
NASA Technical Reports Server (NTRS)
Cramer, J. M.; Greene, M. U.; Pal, S.; Santoro, R. J.; Turner, Jim (Technical Monitor)
2002-01-01
This viewgraph presentation gives an overview of the turbulent mixing of primary and secondary flow streams in a rocket-based combined cycle (RBCC) engine. A significant RBCC ejector mode database has been generated, detailing single and twin thruster configurations and global and local measurements. On-going analysis and correlation efforts include Marshall Space Flight Center computational fluid dynamics modeling and turbulent shear layer analysis. Potential follow-on activities include detailed measurements of air flow static pressure and velocity profiles, investigations into other thruster spacing configurations, performing a fundamental shear layer mixing study, and demonstrating single-shot Raman measurements.
NASA Technical Reports Server (NTRS)
Trinh, H. P.; Gross, K. W.
1989-01-01
Computational studies have been conducted to examine the capability of a CFD code by simulating the steady state thrust chamber internal flow. The SSME served as the sample case, and significant parameter profiles are presented and discussed. Performance predictions from TDK, the recommended JANNAF reference computer program, are compared with those from PHOENICS to establish the credibility of its results. The investigation of an overexpanded nozzle flow is particularly addressed since it plays an important role in the area ratio selection of future rocket engines. Experience gained during this uncompleted flow separation study and future steps are outlined.
NASA Astrophysics Data System (ADS)
Fedorov, A. V.; Bedarev, I. A.; Lavruk, S. A.; Trushlyakov, V. I.; Kudentsov, V. Yu.
2018-03-01
In the present work, a method of mathematical simulation is employed to describe processes occurring in the specimens of new equipment and using the remaining propellant in rocket-engine tanks. Within the framework of certain turbulence models, the authors perform a calculation of the flow field in the volume of the tank of the launch-vehicle stage when a hot gas jet is injected into it. A vortex flow structure is revealed; the characteristics of heat transfer for different angles of injection of the jet are determined. The obtained correlation Nu = Nu(Re) satisfactorily describes experimental data.
NASA Astrophysics Data System (ADS)
Fedorov, A. V.; Bedarev, I. A.; Lavruk, S. A.; Trushlyakov, V. I.; Kudentsov, V. Yu.
2018-05-01
In the present work, a method of mathematical simulation is employed to describe processes occurring in the specimens of new equipment and using the remaining propellant in rocket-engine tanks. Within the framework of certain turbulence models, the authors perform a calculation of the flow field in the volume of the tank of the launch-vehicle stage when a hot gas jet is injected into it. A vortex flow structure is revealed; the characteristics of heat transfer for different angles of injection of the jet are determined. The obtained correlation Nu = Nu(Re) satisfactorily describes experimental data.
Numerical investigations of hybrid rocket engines
NASA Astrophysics Data System (ADS)
Betelin, V. B.; Kushnirenko, A. G.; Smirnov, N. N.; Nikitin, V. F.; Tyurenkova, V. V.; Stamov, L. I.
2018-03-01
Paper presents the results of numerical studies of hybrid rocket engines operating cycle including unsteady-state transition stage. A mathematical model is developed accounting for the peculiarities of diffusion combustion of fuel in the flow of oxidant, which is composed of oxygen-nitrogen mixture. Three dimensional unsteady-state simulations of chemically reacting gas mixture above thermochemically destructing surface are performed. The results show that the diffusion combustion brings to strongly non-uniform fuel mass regression rate in the flow direction. Diffusive deceleration of chemical reaction brings to the decrease of fuel regression rate in the longitudinal direction.
Pulse Detonation Rocket Engine Research at NASA Marshall
NASA Technical Reports Server (NTRS)
Morris, Christopher I.
2003-01-01
This viewgraph representation provides an overview of research being conducted on Pulse Detonation Rocket Engines (PDRE) by the Propulsion Research Center (PRC) at the Marshall Space Flight Center. PDREs have a theoretical thermodynamic advantage over Steady-State Rocket Engines (SSREs) although unsteady blowdown processes complicate effective use of this advantage in practice; PRE is engaged in a fundamental study of PDRE gas dynamics to improve understanding of performance issues. Topics covered include: simplified PDRE cycle, comparison of PDRE and SSRE performance, numerical modeling of quasi 1-D rocket flows, time-accurate thrust calculations, finite-rate chemistry effects in nozzles, effect of F-R chemistry on specific impulse, effect of F-R chemistry on exit species mole fractions and PDRE performance optimization studies.
Mean Flow Augmented Acoustics in Rocket Systems
NASA Technical Reports Server (NTRS)
Fischbach, Sean R.
2015-01-01
Combustion instability in solid rocket motors and liquid engines is a complication that continues to plague designers and engineers. Many rocket systems experience violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. During sever cases of combustion instability fluctuation amplitudes can reach values equal to or greater than the average chamber pressure. Large amplitude oscillations lead to damaged injectors, loss of rocket performance, damaged payloads, and in some cases breach of case/loss of mission. Historic difficulties in modeling and predicting combustion instability has reduced most rocket systems experiencing instability into a costly fix through testing paradigm or to scrap the system entirely.
An improved heat transfer configuration for a solid-core nuclear thermal rocket engine
NASA Technical Reports Server (NTRS)
Clark, John S.; Walton, James T.; Mcguire, Melissa L.
1992-01-01
Interrupted flow, impingement cooling, and axial power distribution are employed to enhance the heat-transfer configuration of a solid-core nuclear thermal rocket engine. Impingement cooling is introduced to increase the local heat-transfer coefficients between the reactor material and the coolants. Increased fuel loading is used at the inlet end of the reactor to enhance heat-transfer capability where the temperature differences are the greatest. A thermal-hydraulics computer program for an unfueled NERVA reactor core is employed to analyze the proposed configuration with attention given to uniform fuel loading, number of channels through the impingement wafers, fuel-element length, mass-flow rate, and wafer gap. The impingement wafer concept (IWC) is shown to have heat-transfer characteristics that are better than those of the NERVA-derived reactor at 2500 K. The IWC concept is argued to be an effective heat-transfer configuration for solid-core nuclear thermal rocket engines.
Application of Background Oriented Schlieren for Altitude Testing of Rocket Engines
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Stiegemeier, Benjamin R.
2017-01-01
A series of experiments was performed to determine the feasibility of using the Background Oriented Schlieren, BOS, flow visualization technique to image a simulated, small, rocket engine, plume under altitude test conditions. Testing was performed at the NASA Glenn Research Centers Altitude Combustion Stand, ACS, using nitrogen as the exhaust gas simulant. Due to limited optical access to the facility test capsule, all of the hardware required to conduct the BOS were located inside the vacuum chamber. During the test series 26 runs were performed using two different nozzle configurations with pressures in the test capsule around 0.3 psia. No problems were encountered during the test series resulting from the optical hardware being located in the test capsule and acceptable resolution images were captured. The test campaign demonstrated the ability of using the BOS technique for small, rocket engine, plume flow visualization during altitude testing.
Evaluation of Vortex Chamber Concepts for Liquid Rocket Engine Applications
NASA Technical Reports Server (NTRS)
Trinh, Huu Phuoc; Knuth, Williams; Michaels, Scott; Turner, James E. (Technical Monitor)
2000-01-01
Rocket-based combined-cycle engines (RBBC) being considered at NASA for future generation launch vehicles feature clusters of small rocket thrusters as part of the engine components. Depending on specific RBBC concepts, these thrusters may be operated at various operating conditions including power level and/or propellant mixture ratio variations. To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for the subject cycle engine application. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concepts not only offer the system simplicity but they also would enhance the combustion performance. The test results showed that the chamber performance was markedly high even at a low chamber length-to- diameter ratio (L/D). This incentive can be translated to a convenience in the thrust chamber packaging.
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Chyu, Ming-King
1993-01-01
Forced flow through channels connected by sharp bends is frequently encountered in various rocket and gas turbine engines. For example, the transfer ducts, the coolant channels surround the combustion chamber, the internal cooling passage in a blade or vane, the flow path in the fuel element of a nuclear rocket engine, the flow around a pressure relieve valve piston, and the recirculated base flow of multiple engine clustered nozzles. Transport phenomena involved in such a flow passage are complex and considered to be very different from those of conventional turning flow with relatively mild radii of curvature. While previous research pertaining to this subject has been focused primarily on the experimental heat transfer, very little analytical work is directed to understanding the flowfield and energy transport in the passage. Therefore, the primary goal of this paper is to benchmark the predicted wall heat fluxes using a state-of-the-art computational fluid dynamics (CFD) formulation against those of measurement for a rectangular turn duct. Other secondary goals include studying the effects of turning configurations, e.g., the semi-circular turn, and the rounded-corner turn, and the effect of system rotation. The computed heat fluxes for the rectangular turn duct compared favorably with those of the experimental data. The results show that the flow pattern, pressure drop, and heat transfer characteristics are different among the three turning configurations, and are substantially different with system rotation. Also demonstrated in this work is that the present computational approach is quite effective and efficient and will be suitable for flow and thermal modeling in rocket and turbine engine applications.
Transpiration cooled throat for hydrocarbon rocket engines
NASA Technical Reports Server (NTRS)
May, Lee R.; Burkhardt, Wendel M.
1991-01-01
The objective for the Transpiration Cooled Throat for Hydrocarbon Rocket Engines Program was to characterize the use of hydrocarbon fuels as transpiration coolants for rocket nozzle throats. The hydrocarbon fuels investigated in this program were RP-1 and methane. To adequately characterize the above transpiration coolants, a program was planned which would (1) predict engine system performance and life enhancements due to transpiration cooling of the throat region using analytical models, anchored with available data; (2) a versatile transpiration cooled subscale rocket thrust chamber was designed and fabricated; (3) the subscale thrust chamber was tested over a limited range of conditions, e.g., coolant type, chamber pressure, transpiration cooled length, and coolant flow rate; and (4) detailed data analyses were conducted to determine the relationship between the key performance and life enhancement variables.
AXISYMMETRIC, THROTTLEABLE NON-GIMBALLED ROCKET ENGINE
NASA Technical Reports Server (NTRS)
Sackheim, Robert L. (Inventor); Hutt, John J. (Inventor); Anderson, William E. (Inventor); Dressler, Gordon A. (Inventor)
2005-01-01
A rocket engine assembly is provided for a vertically launched rocket vehicle. A rocket engine housing of the assembly includes two or more combustion chambers each including an outlet end defining a sonic throat area. A propellant supply for the combustion chambers includes a throttling injector, associated with each of the combustion chambers and located opposite to sonic throat area, which injects the propellant into the associated combustion chamber. A modulator, which may form part of the injector, and which is controlled by a controller, modulates the flow rate of the propellant to the combustion chambers so that the chambers provide a vectorable net thrust. An expansion nozzle or body located downstream of the throat area provides expansion of the combustion gases produced by the combustion chambers so as to increase the net thrust.
Numerical Modeling of Pulse Detonation Rocket Engine Gasdynamics and Performance
NASA Technical Reports Server (NTRS)
2003-01-01
This paper presents viewgraphs on the numerical modeling of pulse detonation rocket engines (PDRE), with an emphasis on the Gasdynamics and performance analysis of these engines. The topics include: 1) Performance Analysis of PDREs; 2) Simplified PDRE Cycle; 3) Comparison of PDRE and Steady-State Rocket Engines (SSRE) Performance; 4) Numerical Modeling of Quasi 1-D Rocket Flows; 5) Specific PDRE Geometries Studied; 6) Time-Accurate Thrust Calculations; 7) PDRE Performance (Geometries A B C and D); 8) PDRE Blowdown Gasdynamics (Geom. A B C and D); 9) PDRE Geometry Performance Comparison; 10) PDRE Blowdown Time (Geom. A B C and D); 11) Specific SSRE Geometry Studied; 12) Effect of F-R Chemistry on SSRE Performance; 13) PDRE/SSRE Performance Comparison; 14) PDRE Performance Study; 15) Grid Resolution Study; and 16) Effect of F-R Chemistry on SSRE Exit Species Mole Fractions.
Historical problem areas lessons learned
NASA Technical Reports Server (NTRS)
Sackheim, Bob; Fester, Dale A.
1991-01-01
Historical problem areas in space transportation propulsion technology are identified in viewgraph form. Problem areas discussed include materials compatibility, contamination, pneumatic/feed system flow instabilities, instabilities in rocket engine combustion and fuel sloshing, exhaust plume interference, composite rocket nozzle failure, and freeze/thaw damage.
Deimos Methane-Oxygen Rocket Engine Test Results
NASA Astrophysics Data System (ADS)
Engelen, S.; Souverein, L. J.; Twigt, D. J.
This paper presents the results of the first DEIMOS Liquid Methane/Oxygen rocket engine test campaign. DEIMOS is an acronym for `Delft Experimental Methane Oxygen propulsion System'. It is a project performed by students under the auspices of DARE (Delft Aerospace Rocket Engineering). The engine provides a theoretical design thrust of 1800 N and specific impulse of 287 s at a chamber pressure of 40 bar with a total mass flow of 637 g/s. It has links to sustainable development, as the propellants used are one of the most promising so-called `green propellants'-combinations, currently under scrutiny by the industry, and the engine is designed to be reusable. This paper reports results from the provisional tests, which had the aim of verifying the engine's ability to fire, and confirming some of the design assumptions to give confidence for further engine designs. Measurements before and after the tests are used to determine first estimates on feed pressures, propellant mass flows and achieved thrust. These results were rather disappointing from a performance point of view, with an average thrust of a mere 3.8% of the design thrust, but nonetheless were very helpful. The reliability of ignition and stability of combustion are discussed as well. An initial assessment as to the reusability, the flexibility and the adaptability of the engine was made. The data provides insight into (methane/oxygen) engine designs, leading to new ideas for a subsequent design. The ultimate goal of this project is to have an operational rocket and to attempt to set an amateur altitude record.
Centrifugal and Axial Pump Design and Off-Design Performance Prediction
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
1995-01-01
A meanline pump-flow modeling method has been developed to provide a fast capability for modeling pumps of cryogenic rocket engines. Based on this method, a meanline pump-flow code PUMPA was written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The design-point rotor efficiency and slip factors are obtained from empirical correlations to rotor-specific speed and geometry. The pump code can model axial, inducer, mixed-flow, and centrifugal pumps and can model multistage pumps in series. The rapid input setup and computer run time for this meanline pump flow code make it an effective analysis and conceptual design tool. The map-generation capabilities of the code provide the information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of PUMPA permit the user to do parametric design space exploration of candidate pump configurations and to provide head-flow maps for engine system evaluation.
Velocimetry with refractive index matching for complex flow configurations, phase 1
NASA Technical Reports Server (NTRS)
Thompson, B. E.; Vafidis, C.; Whitelaw, J. H.
1987-01-01
The feasibility of obtaining detailed velocity field measurements in large Reynolds number flow of the Space Shuttle Main Engine (SSME) main injector bowl was demonstrated using laser velocimetry and the developed refractive-index-matching technique. An experimental system to provide appropriate flow rates and temperature control of refractive-index-matching fluid was designed and tested. Test results are presented to establish the feasibility of obtaining accurate velocity measurements that map the entire field including the flow through the LOX post bundles: sample mean velocity, turbulence intensity, and spectral results are presented. The results indicate that a suitable fluid and control system is feasible for the representation of complex rocket-engine configurations and that measurements of velocity characteristics can be obtained without the optical access restrictions normally associated with laser velocimetry. The refractive-index-matching technique considered needs to be further developed and extended to represent other rocket-engine flows where current methods either cannot measure with adequate accuracy or they fail.
2006-09-01
water, carbon monoxide and carbon dioxide . The ratio of specific heats is reduced as the number of atoms in the molecule increases and as the...The flow of the jet is faster than the surrounding air, and since gas turbine engines run fuel lean, the exhaust products have generally fully reacted...previous types by several characteristics. The core of the rocket exhaust flowfield is fuel rich, and unlike gas turbine engines, which burn fuel
Internal-Film Cooling of Rocket Nozzles
NASA Technical Reports Server (NTRS)
Sloop, J L; Kinney, George R
1948-01-01
Experiments were conducted with 1000-pound-thrust rocket engine to determine feasibility of cooling convergent-divergent nozzle by internal film of water introduced at nozzle entrance. Water flow of 3 percent of propellant flow reduced heat flow into nozzle to 55 percent of uncooled heat flow. Introduction of water by porous ring before nozzle resulted in more uniform coverage of nozzle than water introduced by single arrangement of 36 jets directed along nozzle wall. Water flow through porous ring of 3.5 percent of propellant flow stabilized wall temperature in convergent section but did not adequately cool throat or divergent sections.
Status of flow separation prediction in liquid propellant rocket nozzles
NASA Technical Reports Server (NTRS)
Schmucker, R. H.
1974-01-01
Flow separation which plays an important role in the design of a rocket engine nozzle is discussed. For a given ambient pressure, the condition of no flow separation limits the area ratio and, therefore, the vacuum performance. Avoidance of performance loss due to area ratio limitation requires a correct prediction of the flow separation conditions. To provide a better understanding of the flow separation process, the principal behavior of flow separation in a supersonic overexpanded rocket nozzle is described. The hot firing separation tests from various sources are summarized, and the applicability and accuracy of the measurements are described. A comparison of the different data points allows an evaluation of the parameters that affect flow separation. The pertinent flow separation predicting methods, which are divided into theoretical and empirical correlations, are summarized and the numerical results are compared with the experimental points.
Mean Flow Augmented Acoustics in Rocket Systems
NASA Technical Reports Server (NTRS)
Fischbach, Sean
2014-01-01
Combustion instability in solid rocket motors and liquid engines has long been a subject of concern. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. Recent advances in energy based modeling of combustion instabilities require accurate determination of acoustic frequencies and mode shapes. Of particular interest is the acoustic mean flow interactions within the converging section of a rocket nozzle, where gradients of pressure, density, and velocity become large. The expulsion of unsteady energy through the nozzle of a rocket is identified as the predominate source of acoustic damping for most rocket systems. Recently, an approach to address nozzle damping with mean flow effects was implemented by French [1]. This new approach extends the work originated by Sigman and Zinn [2] by solving the acoustic velocity potential equation (AVPE) formulated by perturbing the Euler equations [3]. The present study aims to implement the French model within the COMSOL Multiphysiscs framework and analyzes one of the author's presented test cases.
NASA Technical Reports Server (NTRS)
Przekwas, A. J.; Singhal, A. K.; Tam, L. T.
1984-01-01
The capability of simulating three dimensional two phase reactive flows with combustion in the liquid fuelled rocket engines is demonstrated. This was accomplished by modifying an existing three dimensional computer program (REFLAN3D) with Eulerian Lagrangian approach to simulate two phase spray flow, evaporation and combustion. The modified code is referred as REFLAN3D-SPRAY. The mathematical formulation of the fluid flow, heat transfer, combustion and two phase flow interaction of the numerical solution procedure, boundary conditions and their treatment are described.
Thrust augmentation nozzle (TAN) concept for rocket engine booster applications
NASA Astrophysics Data System (ADS)
Forde, Scott; Bulman, Mel; Neill, Todd
2006-07-01
Aerojet used the patented thrust augmented nozzle (TAN) concept to validate a unique means of increasing sea-level thrust in a liquid rocket booster engine. We have used knowledge gained from hypersonic Scramjet research to inject propellants into the supersonic region of the rocket engine nozzle to significantly increase sea-level thrust without significantly impacting specific impulse. The TAN concept overcomes conventional engine limitations by injecting propellants and combusting in an annular region in the divergent section of the nozzle. This injection of propellants at moderate pressures allows for obtaining high thrust at takeoff without overexpansion thrust losses. The main chamber is operated at a constant pressure while maintaining a constant head rise and flow rate of the main propellant pumps. Recent hot-fire tests have validated the design approach and thrust augmentation ratios. Calculations of nozzle performance and wall pressures were made using computational fluid dynamics analyses with and without thrust augmentation flow, resulting in good agreement between calculated and measured quantities including augmentation thrust. This paper describes the TAN concept, the test setup, test results, and calculation results.
Heat pipe technology for advanced rocket thrust chambers
NASA Technical Reports Server (NTRS)
Rousar, D. C.
1971-01-01
The application of heat pipe technology to the design of rocket engine thrust chambers is discussed. Subjects presented are: (1) evaporator wick development, (2) specific heat pipe designs and test results, (3) injector design, fabrication, and cold flow testing, and (4) preliminary thrust chamber design.
High-temperature, high-pressure optical port for rocket engine applications
NASA Technical Reports Server (NTRS)
Delcher, Ray; Nemeth, ED; Powers, W. T.
1993-01-01
This paper discusses the design, fabrication, and test of a window assembly for instrumentation of liquid-fueled rocket engine hot gas systems. The window was designed to allow optical measurements of hot gas in the SSME fuel preburner and appears to be the first window designed for application in a rocket engine hot gas system. Such a window could allow the use of a number of remote optical measurement technologies including: Raman temperature and species concentration measurement, Raleigh temperature measurements, flame emission monitoring, flow mapping, laser-induced florescence, and hardware imaging during engine operation. The window assembly has been successfully tested to 8,000 psi at 1000 F and over 11,000 psi at room temperature. A computer stress analysis shows the window will withstand high temperature and cryogenic thermal shock.
Heterogeneous fuel for hybrid rocket
NASA Technical Reports Server (NTRS)
Stickler, David B. (Inventor)
1996-01-01
Heterogeneous fuel compositions suitable for use in hybrid rocket engines and solid-fuel ramjet engines, The compositions include mixtures of a continuous phase, which forms a solid matrix, and a dispersed phase permanently distributed therein. The dispersed phase or the matrix vaporizes (or melts) and disperses into the gas flow much more rapidly than the other, creating depressions, voids and bumps within and on the surface of the remaining bulk material that continuously roughen its surface, This effect substantially enhances heat transfer from the combusting gas flow to the fuel surface, producing a correspondingly high burning rate, The dispersed phase may include solid particles, entrained liquid droplets, or gas-phase voids having dimensions roughly similar to the displacement scale height of the gas-flow boundary layer generated during combustion.
Kerosene-Fuel Engine Testing Under Way
2003-11-17
NASA Stennis Space Center engineers conducted a successful cold-flow test of an RS-84 engine component Sept. 24. The RS-84 is a reusable engine fueled by rocket propellant - a special blend of kerosene - designed to power future flight vehicles. Liquid oxygen was blown through the RS-84 subscale preburner to characterize the test facility's performance and the hardware's resistance. Engineers are now moving into the next phase, hot-fire testing, which is expected to continue into February 2004. The RS-84 engine prototype, developed by the Rocketdyne Propulsion and Power division of The Boeing Co. of Canoga Park, Calif., is one of two competing Rocket Engine Prototype technologies - a key element of NASA's Next Generation Launch Technology program.
Kerosene-Fuel Engine Testing Under Way
NASA Technical Reports Server (NTRS)
2003-01-01
NASA Stennis Space Center engineers conducted a successful cold-flow test of an RS-84 engine component Sept. 24. The RS-84 is a reusable engine fueled by rocket propellant - a special blend of kerosene - designed to power future flight vehicles. Liquid oxygen was blown through the RS-84 subscale preburner to characterize the test facility's performance and the hardware's resistance. Engineers are now moving into the next phase, hot-fire testing, which is expected to continue into February 2004. The RS-84 engine prototype, developed by the Rocketdyne Propulsion and Power division of The Boeing Co. of Canoga Park, Calif., is one of two competing Rocket Engine Prototype technologies - a key element of NASA's Next Generation Launch Technology program.
NASA Technical Reports Server (NTRS)
Kiris, Cetin
1995-01-01
Development of an incompressible Navier-Stokes solution procedure was performed for the analysis of a liquid rocket engine pump components and for the mechanical heart assist devices. The solution procedure for the propulsion systems is applicable to incompressible Navier-Stokes flows in a steadily rotating frame of reference for any general complex configurations. The computer codes were tested on different complex configurations such as liquid rocket engine inducer and impellers. As a spin-off technology from the turbopump component simulations, the flow analysis for an axial heart pump was conducted. The baseline Left Ventricular Assist Device (LVAD) design was improved by adding an inducer geometry by adapting from the liquid rocket engine pump. The time-accurate mode of the incompressible Navier-Stokes code was validated with flapping foil experiment by using different domain decomposition methods. In the flapping foil experiment, two upstream NACA 0025 foils perform high-frequency synchronized motion and generate unsteady flow conditions for a downstream larger stationary foil. Fairly good agreement was obtained between unsteady experimental data and numerical results from two different moving boundary procedures. Incompressible Navier-Stokes code (INS3D) has been extended for heat transfer applications. The temperature equation was written for both forced and natural convection phenomena. Flow in a square duct case was used for the validation of the code in both natural and forced convection.
USM3D Simulations of Saturn V Plume Induced Flow Separation
NASA Technical Reports Server (NTRS)
Deere, Karen; Elmlilgui, Alaa; Abdol-Hamid, K. S.
2011-01-01
The NASA Constellation Program included the Ares V heavy lift cargo vehicle. During the design stage, engineers questioned if the Plume Induced Flow Separation (PIFS) that occurred along Saturn V rocket during moon missions at some flight conditions, would also plague the newly proposed rocket. Computational fluid dynamics (CFD) was offered as a tool for initiating the investigation of PIFS along the Ares V rocket. However, CFD best practice guidelines were not available for such an investigation. In an effort to establish a CFD process and define guidelines for Ares V powered simulations, the Saturn V vehicle was used because PIFS flight data existed. The ideal gas, computational flow solver USM3D was evaluated for its viability in computing PIFS along the Saturn V vehicle with F-1 engines firing. Solutions were computed at supersonic freestream conditions, zero degree angle of attack, zero degree sideslip, and at flight Reynolds numbers. The effects of solution sensitivity to grid refinement, turbulence models, and the engine boundary conditions on the predicted PIFS distance along the Saturn V were discussed and compared to flight data from the Apollo 11 mission AS-506.
Unsteady response of flow system around balance piston in a rocket pump
NASA Astrophysics Data System (ADS)
Kawasaki, S.; Shimura, T.; Uchiumi, M.; Hayashi, M.; Matsui, J.
2013-03-01
In the rocket engine turbopump, a self-balancing type of axial thrust balancing system using a balance piston is often applied. In this study, the balancing system in liquid-hydrogen (LH2) rocket pump was modeled combining the mechanical structure and the flow system, and the unsteady response of the balance piston was investigated. The axial vibration characteristics of the balance piston with a large amplitude were determined, sweeping the frequency of the pressure fluctuation on the inlet of the balance piston. This vibration was significantly affected by the compressibility of LH2.
NASA Technical Reports Server (NTRS)
Kacynski, Kenneth J.; Hoffman, Joe D.
1993-01-01
An advanced engineering computational model has been developed to aid in the analysis and design of hydrogen/oxygen chemical rocket engines. The complete multi-species, chemically reacting and diffusing Navier-Stokes equations are modelled, finite difference approach that is tailored to be conservative in an axisymmetric coordinate system for both the inviscid and viscous terms. Demonstration cases are presented for a 1030:1 area ratio nozzle, a 25 lbf film cooled nozzle, and transpiration cooled plug-and-spool rocket engine. The results indicate that the thrust coefficient predictions of the 1030:1 nozzle and the film cooled nozzle are within 0.2 to 0.5 percent, respectively, of experimental measurements when all of the chemical reaction and diffusion terms are considered. Further, the model's predictions agree very well with the heat transfer measurements made in all of the nozzle test cases. The Soret thermal diffusion term is demonstrated to have a significant effect on the predicted mass fraction of hydrogen along the wall of the nozzle in both the laminar flow 1030:1 nozzle and the turbulent plug-and-spool rocket engine analysis cases performed. Further, the Soret term was shown to represent a significant fraction of the diffusion fluxes occurring in the transpiration cooled rocket engine.
NASA Technical Reports Server (NTRS)
Kacynski, Kenneth John
1994-01-01
An advanced engineering model has been developed to aid in the analysis and design of hydrogen/oxygen chemical rocket engines. The complete multispecies, chemically reacting and multidiffusing Navier-Stokes equations are modelled, including the Soret thermal diffusion and the Dufour energy transfer terms. In addition to the spectrum of multispecies aspects developed, the model developed in this study is also conservative in axisymmetric flow for both inviscid and viscous flow environments and the boundary conditions employ a viscous, chemically reacting, reference plane characteristics method. Demonstration cases are presented for a 1030:1 area ratio nozzle, a 25 lbf film cooled nozzle, and a transpiration cooled plug and spool rocket engine. The results indicate that the thrust coefficient predictions of the 1030:1 and the 25 lbf film cooled nozzle are within 0.2 to 0.5 percent, respectively, of experimental measurements when all of the chemical reaction and diffusion terms are considered. Further, the model's predictions agree very well with the heat transfer measurements made in all of the nozzle test cases. The Soret thermal diffusion term is demonstrated to have a significant effect on the predicted mass fraction of hydrogen along the wall of the nozzle in both the laminar flow 1030:1 nozzle and the turbulent flow plug and spool nozzle analysis cases performed. Further, the Soret term was shown to represent an important fraction of the diffusion fluxes occurring in a transpiration cooled rocket engine.
Measuring System Value in the Ares 1 Rocket Using an Uncertainty-Based Coupling Analysis Approach
NASA Astrophysics Data System (ADS)
Wenger, Christopher
Coupling of physics in large-scale complex engineering systems must be correctly accounted for during the systems engineering process to ensure no unanticipated behaviors or unintended consequences arise in the system during operation. Structural vibration of large segmented solid rocket motors, known as thrust oscillation, is a well-documented problem that can affect the health and safety of any crew onboard. Within the Ares 1 rocket, larger than anticipated vibrations were recorded during late stage flight that propagated from the engine chamber to the Orion crew module. Upon investigation engineers found the root cause to be the structure of the rockets feedback onto fluid flow within the engine. The goal of this paper is to showcase a coupling strength analysis from the field of Multidisciplinary Design Optimization to identify the major impacts that caused the Thrust Oscillation event in the Ares 1. Once identified an uncertainty analysis of the coupled system using an uncertainty based optimization technique is used to identify the likelihood of occurrence for these strong or weak interactions to take place.
NASA Technical Reports Server (NTRS)
Jones, R. D.; Carpenter, Harry W.; Tellier, Jim; Rollins, Clark; Stormo, Jerry
1987-01-01
Abilities of ceramics to serve as turbine blades, stator vanes, and other elements in hot-gas flow of rocket engines discussed in report. Ceramics prime candidates, because of resistance to heat, low density, and tolerance of hostile environments. Ceramics considered in report are silicon nitride, silicon carbide, and new generation of such ceramic composites as transformation-toughened zirconia and alumina and particulate- or whisker-reinforced matrices. Report predicts properly designed ceramic components viable in advanced high-temperature rocket engines and recommends future work.
NASA Astrophysics Data System (ADS)
Ryzhkov, V.; Morozov, I.
2018-01-01
The paper presents the calculating results of the combustion products parameters in the tract of the low thrust rocket engine with thrust P ∼ 100 N. The article contains the following data: streamlines, distribution of total temperature parameter in the longitudinal section of the engine chamber, static temperature distribution in the cross section of the engine chamber, velocity distribution of the combustion products in the outlet section of the engine nozzle, static temperature near the inner wall of the engine. The presented parameters allow to estimate the efficiency of the mixture formation processes, flow of combustion products in the engine chamber and to estimate the thermal state of the structure.
Study on the Effect of water Injection Momentum on the Cooling Effect of Rocket Engine Exhaust Plume
NASA Astrophysics Data System (ADS)
Yang, Kan; Qiang, Yanhui; Zhong, Chenghang; Yu, Shaozhen
2017-10-01
For the study of water injection momentum factors impact on flow field of the rocket engine tail flame, the numerical computation model of gas-liquid two phase flow in the coupling of high temperature and high speed gas flow and low temperature liquid water is established. The accuracy and reliability of the numerical model are verified by experiments. Based on the numerical model, the relationship between the flow rate and the cooling effect is analyzed by changing the water injection momentum of the water spray pipes. And the effective mathematical expression is obtained. What’s more, by changing the number of the water spray and using small flow water injection, the cooling effect is analyzed to check the application range of the mathematical expressions. The results show that: the impact and erosion of the gas flow field could be reduced greatly by water injection, and there are two parts in the gas flow field, which are the slow cooling area and the fast cooling area. In the fast cooling area, the influence of the water flow momentum and nozzle quantity on the cooling effect can be expressed by mathematical functions without causing bifurcation flow for the mainstream gas. The conclusion provides a theoretical reference for the engineering application.
Effect of buoyancy on fuel containment in an open-cycle gas-core nuclear rocket engine.
NASA Technical Reports Server (NTRS)
Putre, H. A.
1971-01-01
Analysis aimed at determining the scaling laws for the buoyancy effect on fuel containment in an open-cycle gas-core nuclear rocket engine, so conducted that experimental conditions can be related to engine conditions. The fuel volume fraction in a short coaxial flow cavity is calculated with a programmed numerical solution of the steady Navier-Stokes equations for isothermal, variable density fluid mixing. A dimensionless parameter B, called the Buoyancy number, was found to correlate the fuel volume fraction for large accelerations and various density ratios. This parameter has the value B = 0 for zero acceleration, and B = 350 for typical engine conditions.
Multivariable optimization of liquid rocket engines using particle swarm algorithms
NASA Astrophysics Data System (ADS)
Jones, Daniel Ray
Liquid rocket engines are highly reliable, controllable, and efficient compared to other conventional forms of rocket propulsion. As such, they have seen wide use in the space industry and have become the standard propulsion system for launch vehicles, orbit insertion, and orbital maneuvering. Though these systems are well understood, historical optimization techniques are often inadequate due to the highly non-linear nature of the engine performance problem. In this thesis, a Particle Swarm Optimization (PSO) variant was applied to maximize the specific impulse of a finite-area combustion chamber (FAC) equilibrium flow rocket performance model by controlling the engine's oxidizer-to-fuel ratio and de Laval nozzle expansion and contraction ratios. In addition to the PSO-controlled parameters, engine performance was calculated based on propellant chemistry, combustion chamber pressure, and ambient pressure, which are provided as inputs to the program. The performance code was validated by comparison with NASA's Chemical Equilibrium with Applications (CEA) and the commercially available Rocket Propulsion Analysis (RPA) tool. Similarly, the PSO algorithm was validated by comparison with brute-force optimization, which calculates all possible solutions and subsequently determines which is the optimum. Particle Swarm Optimization was shown to be an effective optimizer capable of quick and reliable convergence for complex functions of multiple non-linear variables.
Design Rules and Issues with Respect to Rocket Based Combined Cycles
2010-09-01
cause thrust augmentation due to the ejector effects, which in turn, can reduce the requirement for the rocket engine output. In the speed regime with...should produce sufficient thrust to takeoff and to overcome the drag at transonic regime. When embedded into a flow pass, the rocket exhaust can...between the ejector -jet operation and ramjet operation, between the ramjet operations at various flight conditions, and between the ramjet operation and
NASA Technical Reports Server (NTRS)
Dorney, D. J.; Marci, Bogdan; Tran, Ken; Sargent, Scott
2003-01-01
Each single reusable Space Launch Initiative (SLI) booster rocket is an engine operating at a record vacuum thrust level of over 730,000 Ibf using LOX and LH2. This thrust is more than 10% greater than that of the Delta IV rocket, resulting in relatively large LOX and LH2 turbopumps. Since the SLI rocket employs a staged combustion cycle the level of pressure is very high (thousands of psia). This high pressure creates many engineering challenges, including the balancing of axial-forces on the turbopumps. One of the main parameters in the calculation of the axial force is the cavity pressure upstream of the turbine disk. The flow in this cavity is very complex. The lack of understanding of this flow environment hinders the accurate prediction of axial thrust. In order to narrow down the uncertainty band around the actual turbine axial force, a coupled, unsteady computational methodology has been developed to simulate the interaction between the turbine main flow path and the cavity flow. The CORSAIR solver, an unsteady three- dimensional Navier-Stokes code for turbomachinery applications, was used to solve for both the main and the secondary flow fields. Turbine axial thrust values are presented in conjunction with the CFD simulation, together with several considerations regarding the turbine instrumentation for axial thrust estimations during test.
Prediction of X-33 Engine Dynamic Environments
NASA Technical Reports Server (NTRS)
Shi, John J.
1999-01-01
Rocket engines normally have two primary sources of dynamic excitation. The first source is the injector and the combustion chambers that generate wide band random vibration. The second source is the turbopumps, which produce lower levels of wide band random vibration as well as sinusoidal vibration at frequencies related to the rotating speed and multiples thereof. Additionally, the pressure fluctuations due to flow turbulence and acoustics represent secondary sources of excitation. During the development stage, in order to design/size the rocket engine components, the local dynamic environments as well as dynamic interface loads have to be defined.
Method for Determining Optimum Injector Inlet Geometry
NASA Technical Reports Server (NTRS)
Myers, W. Neill (Inventor); Trinh, Huu P. (Inventor)
2015-01-01
A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The method calculates the tangential inlet area for each throttleable stage. The method also uses correlation between the tangential inlet areas and delta pressure values to calculate the spring displacement and variable inlet geometry of a liquid rocket engine swirl injector.
NASA Astrophysics Data System (ADS)
Kudrin, O. I.
1993-10-01
Relationships are presented which describe changes in the thrust and specific impulse of a solar thermal rocket engine due to a change in the flow rate of the working fluid (hydrogen). Expressions are also presented which describe the variation of the STRE thrust and specific impulse with the distance between the flight vehicle and the sun. Results of calculations are presented for an STRE with afterburning of the working fluid (hydrogen + oxygen) using hydrogen heating by solar energy to a temperature of 2360 K.
Plume flowfield analysis of the shuttle primary Reaction Control System (RCS) rocket engine
NASA Technical Reports Server (NTRS)
Hueser, J. E.; Brock, F. J.
1990-01-01
A solution was generated for the physical properties of the Shuttle RCS 4000 N (900 lb) rocket engine exhaust plume flowfield. The modeled exhaust gas consists of the five most abundant molecular species, H2, N2, H2O, CO, and CO2. The solution is for a bare RCS engine firing into a vacuum; the only additional hardware surface in the flowfield is a cylinder (=engine mount) which coincides with the nozzle lip outer corner at X = 0, extends to the flowfield outer boundary at X = -137 m and is coaxial with the negative symmetry axis. Continuum gas dynamic methods and the Direct Simulation Monte Carlo (DSMC) method were combined in an iterative procedure to produce a selfconsistent solution. Continuum methods were used in the RCS nozzle and in the plume as far as the P = 0.03 breakdown contour; the DSMC method was used downstream of this continuum flow boundary. The DSMC flowfield extends beyond 100 m from the nozzle exit and thus the solution includes the farfield flow properties, but substantial information is developed on lip flow dynamics and thus results are also presented for the flow properties in the vicinity of the nozzle lip.
Daniel Sokolowski in the Rocket Operations Building
1966-06-21
Dan Sokolowski worked as an engineering coop student at the National Aeronautics and Space Administration (NASA) Lewis Research Center from 1962 to 1966 while earning his Mechanical Engineering degree from Purdue. At the time of this photograph Sokolowski had just been hired as a permanent NASA employee in the Chemical Rocket Evaluation Branch of the Chemical Rocket Division. He had also just won a regional American Institute of Aeronautics and Astronautics competition for his paper on high and low-frequency combustion instability. The resolution of the low-frequency combustion instability, or chugging, in liquid hydrogen rocket systems was one of Lewis’ more significant feats of the early 1960s. In most rocket engine combustion chambers, the pressure, temperature, and flows are in constant flux. The engine is considered to be operating normally if the fluctuations remain random and within certain limits. Lewis researchers used high-speed photography to study and define Pratt and Whitney’s RL-10’s combustion instability by throttling the engine under the simulated flight conditions. They found that the injection of a small stream of helium gas into the liquid-oxygen tank immediately stabilized the system. Sokolowski’s later work focused on combustion in airbreathing engines. In 1983 was named Manager of a multidisciplinary program aimed at improving durability of combustor and turbine components. After 39 years Sokolowski retired from NASA in September 2002.
Gas-Centered Swirl Coaxial Liquid Injector Evaluations
NASA Technical Reports Server (NTRS)
Cohn, A. K.; Strakey, P. A.; Talley, D. G.
2005-01-01
Development of Liquid Rocket Engines is expensive. Extensive testing at large scales usually required. In order to verify engine lifetime, large number of tests required. Limited Resources available for development. Sub-scale cold-flow and hot-fire testing is extremely cost effective. Could be a necessary (but not sufficient) condition for long engine lifetime. Reduces overall costs and risk of large scale testing. Goal: Determine knowledge that can be gained from sub-scale cold-flow and hot-fire evaluations of LRE injectors. Determine relationships between cold-flow and hot-fire data.
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2012-01-01
The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet s moons atmosphere for entry, descent, and landing can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions. Future EDL systems may include an inflatable decelerator for the initial atmospheric entry and an additional supersonic retro-propulsion (SRP) rocket system for the final soft landing. As part of those efforts, NASA began to conduct experiments to gather the experimental data to make informed decisions on the "best" EDL options. A model of a three engine retro-propulsion configuration with a 2.5 in. diameter sphere-cone aeroshell model was tested in the NASA Glenn 1- by 1-Foot Supersonic Wind Tunnel (SWT). The testing was conducted to identify potential blockage issues in the tunnel, and visualize the rocket flow and shock interactions during supersonic and hypersonic entry conditions. Earlier experimental testing of a 70 Viking-like (sphere-cone) aeroshell was conducted as a baseline for testing of a supersonic retro-propulsion system. This baseline testing defined the flow field around the aeroshell and from this comparative baseline data, retro-propulsion options will be assessed. Images and analyses from the SWT testing with 300- and 500-psia rocket engine chamber pressures are presented here. The rocket engine flow was simulated with a non-combusting flow of air.
Design considerations for a pressure-driven multi-stage rocket
NASA Astrophysics Data System (ADS)
Sauerwein, Steven Craig
2002-01-01
The purpose of this study was to examine the feasibility of using propellant tank pressurization to eliminate the use of high-pressure turbopumps in multi-stage liquid-fueled satellite launchers. Several new technologies were examined to reduce the mass of such a rocket. Composite materials have a greater strength-to-weight ratio than metals and can be used to reduce the weight of rocket propellant tanks and structure. Catalytically combined hydrogen and oxygen can be used to heat pressurization gas, greatly reducing the amount of gas required. Ablatively cooled rocket engines can reduce the complexity and cost of the rocket. Methods were derived to estimate the mass of the various rocket components. These included a method to calculate the amount of gas needed to pressurize a propellant tank by modeling the behavior of the pressurization gas as the liquid propellant flows out of the tank. A way to estimate the mass and size of a ablatively cooled composite cased rocket engine. And a method to model the flight of such a rocket through the atmosphere in conjunction with optimization of the rockets trajectory. The results show that while a liquid propellant rocket using tank pressurization are larger than solid propellant rockets and turbopump driven liquid propellant rockets, they are not impractically large.
Liquid rocket performance computer model with distributed energy release
NASA Technical Reports Server (NTRS)
Combs, L. P.
1972-01-01
Development of a computer program for analyzing the effects of bipropellant spray combustion processes on liquid rocket performance is described and discussed. The distributed energy release (DER) computer program was designed to become part of the JANNAF liquid rocket performance evaluation methodology and to account for performance losses associated with the propellant combustion processes, e.g., incomplete spray gasification, imperfect mixing between sprays and their reacting vapors, residual mixture ratio striations in the flow, and two-phase flow effects. The DER computer program begins by initializing the combustion field at the injection end of a conventional liquid rocket engine, based on injector and chamber design detail, and on propellant and combustion gas properties. It analyzes bipropellant combustion, proceeding stepwise down the chamber from those initial conditions through the nozzle throat.
NASA Technical Reports Server (NTRS)
Trinh, Huu P.; Early, Jim; Osborne, Robin; Thomas, Matthew; Bossard, John
2003-01-01
To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for liquid rocket engine applications. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concept: not only offer system simplicity, but also enhance the combustion performance. Test results have shown that chamber performance is markedly high even at a low chamber length-to-diameter ratio. This incentive can be translated to a convenience in the thrust chamber packaging.
NASA Technical Reports Server (NTRS)
Aguilar, R.
2006-01-01
Pratt & Whitney Rocketdyne has developed a real-time engine/vehicle system integrated health management laboratory, or testbed, for developing and testing health management system concepts. This laboratory simulates components of an integrated system such as the rocket engine, rocket engine controller, vehicle or test controller, as well as a health management computer on separate general purpose computers. These general purpose computers can be replaced with more realistic components such as actual electronic controllers and valve actuators for hardware-in-the-loop simulation. Various engine configurations and propellant combinations are available. Fault or failure insertion capability on-the-fly using direct memory insertion from a user console is used to test system detection and response. The laboratory is currently capable of simulating the flow-path of a single rocket engine but work is underway to include structural and multiengine simulation capability as well as a dedicated data acquisition system. The ultimate goal is to simulate as accurately and realistically as possible the environment in which the health management system will operate including noise, dynamic response of the engine/engine controller, sensor time delays, and asynchronous operation of the various components. The rationale for the laboratory is also discussed including limited alternatives for demonstrating the effectiveness and safety of a flight system.
Concept of planetary gear system to control fluid mixture ratio
NASA Technical Reports Server (NTRS)
Mcgroarty, J. D.
1966-01-01
Mechanical device senses and corrects for fluid flow departures from the selected flow ratio of two fluids. This system has been considered for control of rocket engine propellant mixture control but could find use wherever control of the flow ratio of any two fluids is desired.
The use of x-ray radiography for measuring mass distributions of Rocket Injectors
2013-06-01
successfully applied to diesel injectors , aerated liquid jets and impinging-jet sprays [7-10]. X-ray radiography can be performed using either a...Rocket Injectors 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) S.A. Schumaker, A.L. Kastengren, M.D.A...measurements for injector design. Unfortunately, the mass flow rates typically encountered in rocket engines create sprays with high optical densities
Controlling Gas-Flow Mass Ratios
NASA Technical Reports Server (NTRS)
Morris, Brian G.
1990-01-01
Proposed system automatically controls proportions of gases flowing in supply lines. Conceived for control of oxidizer-to-fuel ratio in new gaseous-propellant rocket engines. Gas-flow control system measures temperatures and pressures at various points. From data, calculates control voltages for electronic pressure regulators for oxygen and hydrogen. System includes commercially available components. Applicable to control of mass ratios in such gaseous industrial processes as chemical-vapor depostion of semiconductor materials and in automotive engines operating on compressed natural gas.
NASA Technical Reports Server (NTRS)
Forbes, R. E.; Smith, M. R.; Farrell, R. R.
1972-01-01
An experimental program was conducted during the static firing of the S-1C stage 13, 14, and 15 rocket engines and the S-2 stage 13, 14, and 15 rocket engines. The data compiled during the experimental program consisted of photographic recordings of the time-dependent growth and diffusion of the exhaust clouds, the collection of meteorological data in the ambient atmosphere, and the acquisition of data on the physical structure of the exhaust clouds which were obtained by flying instrumented aircraft through the clouds. A new technique was developed to verify the previous measurements of evaporation and entrainment of blast deflector cooling water into the cloud. The results of the experimental program indicate that at the lower altitudes the rocket exhaust cloud or plume closely resembles a free-jet type of flow. At the upper altitudes, where the cloud is approaching an equilibrium condition, structure is very similar to a natural cumulus cloud.
Computational Pollutant Environment Assessment from Propulsion-System Testing
NASA Technical Reports Server (NTRS)
Wang, Ten-See; McConnaughey, Paul; Chen, Yen-Sen; Warsi, Saif
1996-01-01
An asymptotic plume growth method based on a time-accurate three-dimensional computational fluid dynamics formulation has been developed to assess the exhaust-plume pollutant environment from a simulated RD-170 engine hot-fire test on the F1 Test Stand at Marshall Space Flight Center. Researchers have long known that rocket-engine hot firing has the potential for forming thermal nitric oxides, as well as producing carbon monoxide when hydrocarbon fuels are used. Because of the complex physics involved, most attempts to predict the pollutant emissions from ground-based engine testing have used simplified methods, which may grossly underpredict and/or overpredict the pollutant formations in a test environment. The objective of this work has been to develop a computational fluid dynamics-based methodology that replicates the underlying test-stand flow physics to accurately and efficiently assess pollutant emissions from ground-based rocket-engine testing. A nominal RD-170 engine hot-fire test was computed, and pertinent test-stand flow physics was captured. The predicted total emission rates compared reasonably well with those of the existing hydrocarbon engine hot-firing test data.
Multiobjective Optimization of Rocket Engine Pumps Using Evolutionary Algorithm
NASA Technical Reports Server (NTRS)
Oyama, Akira; Liou, Meng-Sing
2001-01-01
A design optimization method for turbopumps of cryogenic rocket engines has been developed. Multiobjective Evolutionary Algorithm (MOEA) is used for multiobjective pump design optimizations. Performances of design candidates are evaluated by using the meanline pump flow modeling method based on the Euler turbine equation coupled with empirical correlations for rotor efficiency. To demonstrate the feasibility of the present approach, a single stage centrifugal pump design and multistage pump design optimizations are presented. In both cases, the present method obtains very reasonable Pareto-optimal solutions that include some designs outperforming the original design in total head while reducing input power by one percent. Detailed observation of the design results also reveals some important design criteria for turbopumps in cryogenic rocket engines. These results demonstrate the feasibility of the EA-based design optimization method in this field.
NASA Technical Reports Server (NTRS)
Tucker, Stephen; Salvail, Pat; Haynes, Davy (Technical Monitor)
2001-01-01
A solar-thermal engine serves as a high-temperature solar-radiation absorber, heat exchanger, and rocket nozzle. collecting concentrated solar radiation into an absorber cavity and transferring this energy to a propellant as heat. Propellant gas can be heated to temperatures approaching 4,500 F and expanded in a rocket nozzle, creating low thrust with a high specific impulse (I(sub sp)). The Shooting Star Experiment (SSE) solar-thermal engine is made of 100 percent chemical vapor deposited (CVD) rhenium. The engine 'module' consists of an engine assembly, propellant feedline, engine support structure, thermal insulation, and instrumentation. Engine thermal performance tests consist of a series of high-temperature thermal cycles intended to characterize the propulsive performance of the engines and the thermal effectiveness of the engine support structure and insulation system. A silicone-carbide electrical resistance heater, placed inside the inner shell, substitutes for solar radiation and heats the engine. Although the preferred propellant is hydrogen, the propellant used in these tests is gaseous nitrogen. Because rhenium oxidizes at elevated temperatures, the tests are performed in a vacuum chamber. Test data will include transient and steady state temperatures on selected engine surfaces, propellant pressures and flow rates, and engine thrust levels. The engine propellant-feed system is designed to Supply GN2 to the engine at a constant inlet pressure of 60 psia, producing a near-constant thrust of 1.0 lb. Gaseous hydrogen will be used in subsequent tests. The propellant flow rate decreases with increasing propellant temperature, while maintaining constant thrust, increasing engine I(sub sp). In conjunction with analytical models of the heat exchanger, the temperature data will provide insight into the effectiveness of the insulation system, the structural support system, and the overall engine performance. These tests also provide experience on operational aspects of the engine and associated subsystems, and will include independent variation of both steady slate heat-exchanger temperature prior to thrust operation and nitrogen inlet pressure (flow rate) during thrust operation. Although the Shooting Star engines were designed as thermal-storage engines to accommodate mission parameters, they are fully capable of operating as scalable, direct-gain engines. Tests are conducted in both operational modes. Engine thrust and propellant flow rate will be measured and thereby I(sub sp). The objective of these tests is to investigate the effectiveness of the solar engine as a heat exchanger and a rocket. Of particular interest is the effectiveness of the support structure as a thermal insulator, the integrity of both the insulation system and the insulation containment system, the overall temperature distribution throughout the engine module, and the thermal power required to sustain steady state fluid temperatures at various flow rates.
NASA Technical Reports Server (NTRS)
Hawthorne, P. J.
1976-01-01
The base pressure environment was investigated for the first and second stage mated vehicle in a supersonic flow field from Mach 1.55 through 2.20 with simulated rocket engine exhaust plumes. The pressure environment was investigated for the orbiter at various vent port locations at these same freestream conditions. The Mach number environment around the base of the model with rocket plumes simulated was examined. Data were obtained at angles of attack from -4 deg through +4 deg at zero yaw, and at yaw angles from -4 deg through +4 deg at zero angle of attack, with rocket plume sizes varying from smaller than nominal to much greater than nominal. Failed orbiter engine data were also obtained. Elevon hinge moments and wing panel load data were obtained during all runs. Photographs of the tested configurations are shown.
Prediction of pressure and flow transients in a gaseous bipropellant reaction control rocket engine
NASA Technical Reports Server (NTRS)
Markowsky, J. J.; Mcmanus, H. N., Jr.
1974-01-01
An analytic model is developed to predict pressure and flow transients in a gaseous hydrogen-oxygen reaction control rocket engine feed system. The one-dimensional equations of momentum and continuity are reduced by the method of characteristics from partial derivatives to a set of total derivatives which describe the state properties along the feedline. System components, e.g., valves, manifolds, and injectors are represented by pseudo steady-state relations at discrete junctions in the system. Solutions were effected by a FORTRAN IV program on an IBM 360/65. The results indicate the relative effect of manifold volume, combustion lag time, feedline pressure fluctuations, propellant temperature, and feedline length on the chamber pressure transient. The analytical combustion model is verified by good correlation between predicted and observed chamber pressure transients. The developed model enables a rocket designer to vary the design parameters analytically to obtain stable combustion for a particular mode of operation which is prescribed by mission objectives.
Liquid Rocket Lines, Bellows, Flexible Hoses, and Filters
NASA Technical Reports Server (NTRS)
1977-01-01
Fluid-flow components in a liquid propellant rocket engine and the rocket vehicle which it propels are interconnected by lines, bellows, and flexible hoses. Elements involved in the successful design of these components are identified and current technologies pertaining to these elements are reviewed, assessed, and summarized to provide a technology base for a checklist of rules to be followed by project managers in guiding a design or assessing its adequacy. Recommended procedures for satisfying each of the design criteria are included.
Analytical and experimental studies of impinging liquid jets
NASA Technical Reports Server (NTRS)
Ryan, H. M.; Anderson, W. E.; Pal, S.; Santoro, R. J.
1994-01-01
Impinging injectors are a common type of injector used in liquid propellant rocket engines and are typically used in engines where both propellants are injected as a liquid, e.g., engines using LOX/hydrocarbon and storable propellant combinations. The present research program is focused on providing the requisite fundamental understanding associated with impinging jet injectors for the development of an advanced a priori combustion stability design analysis capability. To date, a systematic study of the atomization characteristics of impinging liquid jets under cold-flow conditions have been completed. Effects of orifice diameter, impingement angle, pre-impingement length, orifice length-to-diameter ratio, fabrication procedure, jet flow condition and jet velocity under steady and oscillating, and atmospheric- and high-pressure environments have been investigated. Results of these experimental studies have been compared to current models of sheet breakup and drop formation. In addition, the research findings have been scrutinized to provide a fundamental explanation for a proven empirical correlation used in the design of stable impinging injector-based rocket engines.
Thrust control system design of ducted rockets
NASA Astrophysics Data System (ADS)
Chang, Juntao; Li, Bin; Bao, Wen; Niu, Wenyu; Yu, Daren
2011-07-01
The investigation of the thrust control system is aroused by the need for propulsion system of ducted rockets. Firstly the dynamic mathematical models of gas flow regulating system, pneumatic servo system and ducted rocket engine were established and analyzed. Then, to conquer the discussed problems of thrust control, the idea of information fusion was proposed to construct a new feedback variable. With this fused feedback variable, the thrust control system was designed. According to the simulation results, the introduction of the new fused feedback variable is valid in eliminating the contradiction between rapid response and stability for the thrust control system of ducted rockets.
Nonlinear Modeling and Control of a Propellant Mixer
NASA Technical Reports Server (NTRS)
Barbieri, Enrique; Richter, Hanz; Figueroa, Fernando
2003-01-01
A mixing chamber used in rocket engine combustion testing at NASA Stennis Space Center is modeled by a second order nonlinear MIMO system. The mixer is used to condition the thermodynamic properties of cryogenic liquid propellant by controlled injection of the same substance in the gaseous phase. The three inputs of the mixer are the positions of the valves regulating the liquid and gas flows at the inlets, and the position of the exit valve regulating the flow of conditioned propellant. The outputs to be tracked and/or regulated are mixer internal pressure, exit mass flow, and exit temperature. The outputs must conform to test specifications dictated by the type of rocket engine or component being tested downstream of the mixer. Feedback linearization is used to achieve tracking and regulation of the outputs. It is shown that the system is minimum-phase provided certain conditions on the parameters are satisfied. The conditions are shown to have physical interpretation.
Characterization of typical platelet injector flow configurations. [liquid propellant rocket engines
NASA Technical Reports Server (NTRS)
Hickox, C. E.
1975-01-01
A study to investigate the hydraulic atomization characteristics of several novel injector designs for use in liquid propellant rocket engines is presented. The injectors were manufactured from a series of thin stainless steel platelets through which orifices were very accurately formed by a photoetching process. These individual platelets were stacked together and the orifices aligned so as to produce flow passages of prescribed geometry. After alignment, the platelets were bonded into a single, 'platelet injector', unit by a diffusion bonding process. Because of the complex nature of the flow associated with platelet injectors, it was necessary to use experimental techniques, exclusively, throughout the study. Large scale models of the injectors were constructed from aluminum plates and the appropriate fluids were modeled using a glycerol-water solution. Stop-action photographs of test configurations, using spark-shadowgraph or stroboscopic back-lighting, are shown.
Effect of Stagger on the Vibroacoustic Loads from Clustered Rockets
NASA Technical Reports Server (NTRS)
Rojo, Raymundo; Tinney, Charles E.; Ruf, Joseph H.
2016-01-01
The effect of stagger startup on the vibro-acoustic loads that form during the end- effects-regime of clustered rockets is studied using both full-scale (hot-gas) and laboratory scale (cold gas) data. Both configurations comprise three nozzles with thrust optimized parabolic contours that undergo free shock separated flow and restricted shock separated flow as well as an end-effects regime prior to flowing full. Acoustic pressure waveforms recorded at the base of the nozzle clusters are analyzed using various statistical metrics as well as time-frequency analysis. The findings reveal a significant reduction in end- effects-regime loads when engine ignition is staggered. However, regardless of stagger, both the skewness and kurtosis of the acoustic pressure time derivative elevate to the same levels during the end-effects-regime event thereby demonstrating the intermittence and impulsiveness of the acoustic waveforms that form during engine startup.
CPU and GPU-based Numerical Simulations of Combustion Processes
2012-04-27
Distribution unlimited UCLA MAE Research and Technology Review April 27, 2012 Magnetohydrodynamic Augmentation of the Pulse Detonation Rocket Engines...Pulse Detonation Rocket-Induced MHD Ejector (PDRIME) – Energy extract from exhaust flow by MHD generator – Seeded air stream acceleration by MHD...accelerator for thrust enhancement and control • Alternative concept: Magnetic piston – During PDE blowdown process, MHD extracts energy and
NASA Technical Reports Server (NTRS)
Allgood, Daniel C.; Graham, Jason S.; McVay, Greg P.; Langford, Lester L.
2008-01-01
A unique assessment of acoustic similarity scaling laws and acoustic analogy methodologies in predicting the far-field acoustic signature from a sub-scale altitude rocket test facility at the NASA Stennis Space Center was performed. A directional, point-source similarity analysis was implemented for predicting the acoustic far-field. In this approach, experimental acoustic data obtained from "similar" rocket engine tests were appropriately scaled using key geometric and dynamic parameters. The accuracy of this engineering-level method is discussed by comparing the predictions with acoustic far-field measurements obtained. In addition, a CFD solver was coupled with a Lilley's acoustic analogy formulation to determine the improvement of using a physics-based methodology over an experimental correlation approach. In the current work, steady-state Reynolds-averaged Navier-Stokes calculations were used to model the internal flow of the rocket engine and altitude diffuser. These internal flow simulations provided the necessary realistic input conditions for external plume simulations. The CFD plume simulations were then used to provide the spatial turbulent noise source distributions in the acoustic analogy calculations. Preliminary findings of these studies will be discussed.
NASA Astrophysics Data System (ADS)
Wei, Xianggeng; Xue, Rui; Qin, Fei; Hu, Chunbo; He, Guoqiang
2017-11-01
A numerical calculation of shock wave characteristics in the isolator of central strut rocket-based combined cycle (RBCC) engine fueled by kerosene was carried out in this paper. A 3D numerical model was established by the DES method. The kerosene chemical kinetic model used the 9-component and 12-step simplified mechanism model. Effects of fuel equivalence ratio, inflow total temperature and central strut rocket on-off on shock wave characteristics were studied under Ma5.5. Results demonstrated that with the increase of equivalence ratio, the leading shock wave moves toward upstream, accompanied with higher possibility of the inlet unstart. However, the leading shock wave moves toward downstream as the inflow total temperature rises. After the central strut rocket is closed, the leading shock wave moves toward downstream, which can reduce risks of the inlet unstart. State of the shear layer formed by the strut rocket jet flow and inflow can influence the shock train structure significantly.
Flow processes in overexpanded chemical rocket nozzles. Part 1: Flow separation
NASA Technical Reports Server (NTRS)
Schmucker, R. H.
1984-01-01
An investigation was made of published nozzle flow separation data in order to determine the parameters which affect the separation conditions. A comparison of experimental data with empirical and theoretical separation prediction methods leads to the selection of suitable equations for the separation criterion. The results were used to predict flow separation of the main space shuttle engine.
Flow processes in overexpanded chemical rocket nozzles. Part 1: Flow separation
NASA Technical Reports Server (NTRS)
Schmucker, R. H.
1973-01-01
An investigation was made of published nozzle flow separation data in order to determine the parameters which affect the separation condition. A comparison of experimental data with empirical and theoretical separation prediction methods leads to the selection of suitable equations for the separation criterion. The results were used to predict flow separation of the main space shuttle engine.
Designing Liquid Rocket Engine Injectors for Performance, Stability, and Cost
NASA Technical Reports Server (NTRS)
Westra, Douglas G.; West, Jeffrey S.
2014-01-01
NASA is developing the Space Launch System (SLS) for crewed exploration missions beyond low Earth orbit. Marshall Space Flight Center (MSFC) is designing rocket engines for the SLS Advanced Booster (AB) concepts being developed to replace the Shuttle-derived solid rocket boosters. One AB concept uses large, Rocket-Propellant (RP)-fueled engines that pose significant design challenges. The injectors for these engines require high performance and stable operation while still meeting aggressive cost reduction goals for access to space. Historically, combustion stability problems have been a critical issue for such injector designs. Traditional, empirical injector design tools and methodologies, however, lack the ability to reliably predict complex injector dynamics that often lead to combustion stability. Reliance on these tools alone would likely result in an unaffordable test-fail-fix cycle for injector development. Recently at MSFC, a massively parallel computational fluid dynamics (CFD) program was successfully applied in the SLS AB injector design process. High-fidelity reacting flow simulations were conducted for both single-element and seven-element representations of the full-scale injector. Data from the CFD simulations was then used to significantly augment and improve the empirical design tools, resulting in a high-performance, stable injector design.
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
1993-01-01
The aerodynamic design and rig test evaluation of a small counter-rotating turbine system is described. The advanced turbine airfoils were designed and tested by Pratt & Whitney. The technology represented by this turbine is being developed for a turbopump to be used in an advanced upper stage rocket engine. The advanced engine will use a hydrogen expander cycle and achieve high performance through efficient combustion of hydrogen/oxygen propellants, high combustion pressure, and high area ratio exhaust nozzle expansion. Engine performance goals require that the turbopump drive turbines achieve high efficiency at low gas flow rates. The low mass flow rates and high operating pressures result in very small airfoil heights and diameters. The high efficiency and small size requirements present a challenging turbine design problem. The shrouded axial turbine blades are 50 percent reaction with a maximum thickness to chord ratio near 1. At 6 deg from the tangential direction, the nozzle and blade exit flow angles are well below the traditional design minimum limits. The blade turning angle of 160 deg also exceeds the maximum limits used in traditional turbine designs.
Multi-Zone Liquid Thrust Chamber Performance Code with Domain Decomposition for Parallel Processing
NASA Technical Reports Server (NTRS)
Navaz, Homayun K.
2002-01-01
Computational Fluid Dynamics (CFD) has considerably evolved in the last decade. There are many computer programs that can perform computations on viscous internal or external flows with chemical reactions. CFD has become a commonly used tool in the design and analysis of gas turbines, ramjet combustors, turbo-machinery, inlet ducts, rocket engines, jet interaction, missile, and ramjet nozzles. One of the problems of interest to NASA has always been the performance prediction for rocket and air-breathing engines. Due to the complexity of flow in these engines it is necessary to resolve the flowfield into a fine mesh to capture quantities like turbulence and heat transfer. However, calculation on a high-resolution grid is associated with a prohibitively increasing computational time that can downgrade the value of the CFD for practical engineering calculations. The Liquid Thrust Chamber Performance (LTCP) code was developed for NASA/MSFC (Marshall Space Flight Center) to perform liquid rocket engine performance calculations. This code is a 2D/axisymmetric full Navier-Stokes (NS) solver with fully coupled finite rate chemistry and Eulerian treatment of liquid fuel and/or oxidizer droplets. One of the advantages of this code has been the resemblance of its input file to the JANNAF (Joint Army Navy NASA Air Force Interagency Propulsion Committee) standard TDK code, and its automatic grid generation for JANNAF defined combustion chamber wall geometry. These options minimize the learning effort for TDK users, and make the code a good candidate for performing engineering calculations. Although the LTCP code was developed for liquid rocket engines, it is a general-purpose code and has been used for solving many engineering problems. However, the single zone formulation of the LTCP has limited the code to be applicable to problems with complex geometry. Furthermore, the computational time becomes prohibitively large for high-resolution problems with chemistry, two-equation turbulence model, and two-phase flow. To overcome these limitations, the LTCP code is rewritten to include the multi-zone capability with domain decomposition that makes it suitable for parallel processing, i.e., enabling the code to run every zone or sub-domain on a separate processor. This can reduce the run time by a factor of 6 to 8, depending on the problem.
Space Shuttle Model in the 10- by 10-Foot Supersonic Wind Tunnel
1975-07-21
Ken Baskin, an engineer from the Facilities and Engineering Branch at the National Aeronautics and Space Administration’s (NASA) Lewis Research Center checks a complete 2.25-scale model of the shuttle in the 10- by 10-Foot Supersonic Wind Tunnel. Baskin’s space shuttle project began in July 1976 during the run-up to the shuttle’s first lift-off scheduled for 1979. The space shuttle was expected to experience multifaceted heating and pressure distributions during the first and second stages of its launch. Rockwell International engineers needed to understand these issues in order to design proper thermal protection. The 10- by 10 tests evaluated the base heating and pressure. The test’s specific objectives were to measure heat transfer and pressure distributions around the orbiter’s external tank and solid rocket booster afterbody caused by rocket exhaust recirculation and impingement, to measure the heat transfer and pressure distributions due to rocket exhaust-induced flow separation, and determine gas recovery temperatures using gas temperature probes and heated model base components. The shuttle model’s main engines and solid rockets were fired during the tests, then just the main engines in an effort to simulate a launch. The researchers conducted 163 runs in the 10- by 10 during the test program.
NASA Technical Reports Server (NTRS)
Schmucker, R. H.
1984-01-01
Methods for measuring the lateral forces, occurring as a result of asymmetric nozzle flow separation, are discussed. The effect of some parameters on the side load is explained. A new method was developed for calculation of the side load. The values calculated are compared with side load data of the J-2 engine. Results are used for predicting side loads of the space shuttle main engine.
Theoretical Investigations on the Efficiency and the Conditions for the Realization of Jet Engines
NASA Technical Reports Server (NTRS)
Roy, Maurice
1950-01-01
Contents: Preliminary notes on the efficiency of propulsion systems; Part I: Propulsion systems with direct axial reaction rockets and rockets with thrust augmentation; Part II: Helicoidal reaction propulsion systems; Appendix I: Steady flow of viscous gases; Appendix II: On the theory of viscous fluids in nozzles; and Appendix III: On the thrusts augmenters, and particularly of gas augmenters
NASA Technical Reports Server (NTRS)
Heidmann, M. F.; Auble, C. M.
1955-01-01
The importance of atomizing and mixing liquid oxygen and heptane was studied in a 200-pound-thrust rocket engine. Ten injector elements were used with both steel and transparent chambers. Characteristic velocity was measured over a range of mixture ratios. Combustion gas-flow and luminosity patterns within the chamber were obtained by photographic methods. The results show that, for efficient combustion, the propellants should be both atomized and mixed. Heptane atomization controlled the combustion rate to a much larger extent than oxygen atomization. Induced mixing, however, was required to complete combustion in the smallest volume. For stable, high-efficiency combustion and smooth engine starts, mixing after atomization was most promising.
Review of Nuclear Thermal Propulsion Ground Test Options
NASA Technical Reports Server (NTRS)
Coote, David J.; Power, Kevin P.; Gerrish, Harold P.; Doughty, Glen
2015-01-01
High efficiency rocket propulsion systems are essential for humanity to venture beyond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rockets with relatively high thrust and twice the efficiency of highest performing chemical propellant engines. NTP utilizes the coolant of a nuclear reactor to produce propulsive thrust. An NTP engine produces thrust by flowing hydrogen through a nuclear reactor to cool the reactor, heating the hydrogen and expelling it through a rocket nozzle. The hot gaseous hydrogen is nominally expected to be free of radioactive byproducts from the nuclear reactor; however, it has the potential to be contaminated due to off-nominal engine reactor performance. NTP ground testing is more difficult than chemical engine testing since current environmental regulations do not allow/permit open air testing of NTP as was done in the 1960's and 1970's for the Rover/NERVA program. A new and innovative approach to rocket engine ground test is required to mitigate the unique health and safety risks associated with the potential entrainment of radioactive waste from the NTP engine reactor core into the engine exhaust. Several studies have been conducted since the ROVER/NERVA program in the 1970's investigating NTP engine ground test options to understand the technical feasibility, identify technical challenges and associated risks and provide rough order of magnitude cost estimates for facility development and test operations. The options can be divided into two distinct schemes; (1) real-time filtering of the engine exhaust and its release to the environment or (2) capture and storage of engine exhaust for subsequent processing.
Experimental Flow Models for SSME Flowfield Characterization
NASA Technical Reports Server (NTRS)
Abel, L. C.; Ramsey, P. E.
1989-01-01
Full scale flow models with extensive instrumentation were designed and manufactured to provide data necessary for flow field characterization in rocket engines of the Space Shuttle Main Engine (SSME) type. These models include accurate flow path geometries from the pre-burner outlet through the throat of the main combustion chamber. The turbines are simulated with static models designed to provide the correct pressure drop and swirl for specific power levels. The correct turbopump-hot gas manifold interfaces were designed into the flow models to permit parametric/integration studies for new turbine designs. These experimental flow models provide a vehicle for understanding the fluid dynamics associated with specific engine issues and also fill the more general need for establishing a more detailed fluid dynamic base to support development and verification of advanced math models.
Rover nuclear rocket engine program: Overview of rover engine tests
NASA Technical Reports Server (NTRS)
Finseth, J. L.
1991-01-01
The results of nuclear rocket development activities from the inception of the ROVER program in 1955 through the termination of activities on January 5, 1973 are summarized. This report discusses the nuclear reactor test configurations (non cold flow) along with the nuclear furnace demonstrated during this time frame. Included in the report are brief descriptions of the propulsion systems, test objectives, accomplishments, technical issues, and relevant test results for the various reactor tests. Additionally, this document is specifically aimed at reporting performance data and their relationship to fuel element development with little or no emphasis on other (important) items.
NASA Technical Reports Server (NTRS)
Sass, J. P.; Raines, N. G.; Farner, B. R.; Ryan, H. M.
2004-01-01
The Integrated Powerhead Demonstrator (IPD) is a 250K lbf (1.1 MN) thrust cryogenic hydrogen/oxygen engine technology demonstrator that utilizes a full flow staged combustion engine cycle. The Integrated Powerhead Demonstrator (IPD) is part of NASA's Next Generation Launch Technology (NGLT) program, which seeks to provide safe, dependable, cost-cutting technologies for future space launch systems. The project also is part of the Department of Defense's Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program, which seeks to increase the performance and capability of today s state-of-the-art rocket propulsion systems while decreasing costs associated with military and commercial access to space. The primary industry participants include Boeing-Rocketdyne and GenCorp Aerojet. The intended full flow engine cycle is a key component in achieving all of the aforementioned goals. The IPD Program achieved a major milestone with the successful completion of the IPD Oxidizer Turbopump (OTP) cold-flow test project at the NASA John C. Stennis Space Center (SSC) E-1 test facility in November 2001. A total of 11 IPD OTP cold-flow tests were completed. Following an overview of the NASA SSC E-1 test facility, this paper addresses the facility aspects pertaining to the activation and the cold-flow testing of the IPD OTP. In addition, some of the facility challenges encountered during the test project are addressed.
High frequency flow-structural interaction in dense subsonic fluids
NASA Technical Reports Server (NTRS)
Liu, Baw-Lin; Ofarrell, J. M.
1995-01-01
Prediction of the detailed dynamic behavior in rocket propellant feed systems and engines and other such high-energy fluid systems requires precise analysis to assure structural performance. Designs sometimes require placement of bluff bodies in a flow passage. Additionally, there are flexibilities in ducts, liners, and piping systems. A design handbook and interactive data base have been developed for assessing flow/structural interactions to be used as a tool in design and development, to evaluate applicable geometries before problems develop, or to eliminate or minimize problems with existing hardware. This is a compilation of analytical/empirical data and techniques to evaluate detailed dynamic characteristics of both the fluid and structures. These techniques have direct applicability to rocket engine internal flow passages, hot gas drive systems, and vehicle propellant feed systems. Organization of the handbook is by basic geometries for estimating Strouhal numbers, added mass effects, mode shapes for various end constraints, critical onset flow conditions, and possible structural response amplitudes. Emphasis is on dense fluids and high structural loading potential for fatigue at low subsonic flow speeds where high-frequency excitations are possible. Avoidance and corrective measure illustrations are presented together with analytical curve fits for predictions compiled from a comprehensive data base.
1963-01-01
This artist's concept from 1963 shows a proposed NERVA (Nuclear Engine for Rocket Vehicle Application) incorporating the NRX-A1, the first NERVA-type cold flow reactor. The NERVA engine, based on Kiwi nuclear reactor technology, was intended to power a RIFT (Reactor-In-Flight-Test) nuclear stage, for which Marshall Space Flight Center had development responsibility.
Boundary layer integral matrix procedure: Verification of models
NASA Technical Reports Server (NTRS)
Bonnett, W. S.; Evans, R. M.
1977-01-01
The three turbulent models currently available in the JANNAF version of the Aerotherm Boundary Layer Integral Matrix Procedure (BLIMP-J) code were studied. The BLIMP-J program is the standard prediction method for boundary layer effects in liquid rocket engine thrust chambers. Experimental data from flow fields with large edge-to-wall temperature ratios are compared to the predictions of the three turbulence models contained in BLIMP-J. In addition, test conditions necessary to generate additional data on a flat plate or in a nozzle are given. It is concluded that the Cebeci-Smith turbulence model be the recommended model for the prediction of boundary layer effects in liquid rocket engines. In addition, the effects of homogeneous chemical reaction kinetics were examined for a hydrogen/oxygen system. Results show that for most flows, kinetics are probably only significant for stoichiometric mixture ratios.
LOX/Hydrogen Coaxial Injector Atomization Test Program
NASA Technical Reports Server (NTRS)
Zaller, M.
1990-01-01
Quantitative information about the atomization of injector sprays is needed to improve the accuracy of computational models that predict the performance and stability margin of liquid propellant rocket engines. To obtain this data, a facility for the study of spray atomization is being established at NASA-Lewis to determine the drop size and velocity distributions occurring in vaporizing liquid sprays at supercritical pressures. Hardware configuration and test conditions are selected to make the cold flow simulant testing correspond as closely as possible to conditions in liquid oxygen (LOX)/gaseous H2 rocket engines. Drop size correlations from the literature, developed for liquid/gas coaxial injector geometries, are used to make drop size predictions for LOX/H2 coaxial injectors. The mean drop size predictions for a single element coaxial injector range from 0.1 to 2000 microns, emphasizing the need for additional studies of the atomization process in LOX/H2 engines. Selection of cold flow simulants, measured techniques, and hardware for LOX/H2 atomization simulations are discussed.
MHD thrust vectoring of a rocket engine
NASA Astrophysics Data System (ADS)
Labaune, Julien; Packan, Denis; Tholin, Fabien; Chemartin, Laurent; Stillace, Thierry; Masson, Frederic
2016-09-01
In this work, the possibility to use MagnetoHydroDynamics (MHD) to vectorize the thrust of a solid propellant rocket engine exhaust is investigated. Using a magnetic field for vectoring offers a mass gain and a reusability advantage compared to standard gimbaled, elastomer-joint systems. Analytical and numerical models were used to evaluate the flow deviation with a 1 Tesla magnetic field inside the nozzle. The fluid flow in the resistive MHD approximation is calculated using the KRONOS code from ONERA, coupling the hypersonic CFD platform CEDRE and the electrical code SATURNE from EDF. A critical parameter of these simulations is the electrical conductivity, which was evaluated using a set of equilibrium calculations with 25 species. Two models were used: local thermodynamic equilibrium and frozen flow. In both cases, chlorine captures a large fraction of free electrons, limiting the electrical conductivity to a value inadequate for thrust vectoring applications. However, when using chlorine-free propergols with 1% in mass of alkali, an MHD thrust vectoring of several degrees was obtained.
Cooling Duct Analysis for Transpiration/Film Cooled Liquid Propellant Rocket Engines
NASA Technical Reports Server (NTRS)
Micklow, Gerald J.
1996-01-01
The development of a low cost space transportation system requires that the propulsion system be reusable, have long life, with good performance and use low cost propellants. Improved performance can be achieved by operating the engine at higher pressure and temperature levels than previous designs. Increasing the chamber pressure and temperature, however, will increase wall heating rates. This necessitates the need for active cooling methods such as film cooling or transpiration cooling. But active cooling can reduce the net thrust of the engine and add considerably to the design complexity. Recently, a metal drawing process has been patented where it is possible to fabricate plates with very small holes with high uniformity with a closely specified porosity. Such a metal plate could be used for an inexpensive transpiration/film cooled liner to meet the demands of advanced reusable rocket engines, if coolant mass flow rates could be controlled to satisfy wall cooling requirements and performance. The present study investigates the possibility of controlling the coolant mass flow rate through the porous material by simple non-active fluid dynamic means. The coolant will be supplied to the porous material by series of constant geometry slots machined on the exterior of the engine.
Bleed cycle propellant pumping in a gas-core nuclear rocket engine system
NASA Technical Reports Server (NTRS)
Kascak, A. F.; Easley, A. J.
1972-01-01
The performance of ideal and real staged primary propellant pumps and bleed-powered turbines was calculated for gas-core nuclear rocket engines over a range of operating pressures from 500 to 5000 atm. This study showed that for a required engine operating pressure of 1000 atm the pump work was about 0.8 hp/(lb/sec), the specific impulse penalty resulting from the turbine propellant bleed flow as about 10 percent; and the heat required to preheat the propellant was about 7.8 MN/(lb/sec). For a specific impulse above 2400 sec, there is an excess of energy available in the moderator due to the gamma and neutron heating that occurs there. Possible alternative pumping cycles are the Rankine or Brayton cycles.
Rocketdyne Development of RBCC Engine for Low Cost Access to Space
NASA Technical Reports Server (NTRS)
Ortwerth, P.; Ratekin, G.; Goldman, A.; Emanuel, M.; Ketchum, A.; Horn, M.
1997-01-01
Rocketdyne is pursuing the conceptual design and development of a Rocket Based Combined Cycle (RBCC) engine for booster and SSTO, advanced reusable space transportation ARTT systems under contract with NASA Marshall Space Flight Center. The Rocketdyne concept is fixed geometry integrated Rocket, Ram Scramjet which is Hydrogen fueled and uses Hydrogen regenerative cooling. Vision vehicle integration studies have determined that scramjet operation to Mach 12 has high payoff for low cost reusable space transportation. Rocketdyne is internally developing versions of the concept for other applications in high speed aircraft and missiles with Hydrocarbon fuel systems. Subscale engine ground testing is underway for all modes of operation from takeoff to Mach 8. High altitude Rocket only mode tests will be completed as part of the ground test program to validate high expansion ratio performance. A unique feature of the ground test series is the inclusion of dynamic trajectory simulation with real time Mach number, altitude, engine throttling, and RBCC mode changes in a specially modified freejet test facility at GASL. Preliminary cold flow Air Augmented Rocket mode test results and Short Combustor tests have met program goals and have been used to integrate all modes of operation in a single combustor design with a fixed geometry inlet for design confirmation tests. A water cooled subscale engine is being fabricated and installed for test beginning the last quarter of 1997.
Impeller flow field characterization with a laser two-focus velocimeter
NASA Astrophysics Data System (ADS)
Brozowski, L. A.; Ferguson, T. V.; Rojas, L.
1993-07-01
Use of Computational Fluid Dynamics (CFD) codes, prevalent in the rocket engine turbomachinery industry, necessitates data of sufficient quality and quantity to benchmark computational codes. Existing data bases for typical rocket engine configurations, in particular impellers, are limited. In addition, traditional data acquisition methods have several limitations: typically transducer uncertainties are 0.5% of transducer full scale and traditional pressure probes are unable to provide flow characteristics in the circumferential (blade-to-blade) direction. Laser velocimetry circumvents these limitations by providing +0.5% uncertainty in flow velocity and +0.5% uncertainty in flow angle. The percent of uncertainty in flow velocity is based on the measured value, not full range capability. The laser electronics multiple partitioning capability allows data acquired between blades as the impeller rotates, to be analyzed separately, thus providing blade-to-blade flow characterization. Unlike some probes, the non-intrusive measurements made with the laser velocimeter does not disturb the flow. To this end,, and under Contract (NAS8-38864) to the National Aeronautics and Space Administration (NASA) at Marshall Space Flight Center (MSFC), an extensive test program was undertaken at Rocketdyne. Impellers from two different generic rocket engine pump configurations were examined. The impellers represent different spectrums of pump design: the Space Shuttle Main Engine (SSME) high pressure fuel turbopump (HPFTP) impeller was designed in the 1 1970's the Consortium for CFD application in Propulsion Technology Pump Stage Technology Team (Pump Consortium) optimized impeller was designed with the aid of modern computing techniques. The tester configuration for each of the impellers consisted of an axial inlet, an inducer, a diffuser, and a crossover discharge. While the tested configurations were carefully chosen to be representative of generic rocket engine pumps, several features of both testers were intentionally atypical. A crossover discharge, downstream of the impeller, rather than a volute discharge was used to minimize asymmetric flow conditions that might be reflected in the impeller discharge flow data. Impeller shroud wear ring radial clearances were purposely close to minimize leakage flow, thus increasing confidence in using the inlet data as an input to CFD programs. The empirical study extensively examined the flow fields of the two impellers via performance of laser two-focus velocimeter surveys in an axial plane upstream of the impellers and in multiple radial planes downstream of the impellers. Both studies were performed at the impeller design flow coefficients. Inlet laser surveys that provide CFD code inlet boundary conditions were performed in one axial plane, with ten radial locations surveyed. Three wall static pressures, positioned circumferentially around the impeller inlet, were used to identify asymmetrical pressure distributions in the inlet survey plane.
Parametric Data from a Wind Tunnel Test on a Rocket-Based Combined-Cycle Engine Inlet
NASA Technical Reports Server (NTRS)
Fernandez, Rene; Trefny, Charles J.; Thomas, Scott R.; Bulman, Mel J.
2001-01-01
A 40-percent scale model of the inlet to a rocket-based combined-cycle (RBCC) engine was tested in the NASA Glenn Research Center 1- by 1-Foot Supersonic Wind Tunnel (SWT). The full-scale RBCC engine is scheduled for test in the Hypersonic Tunnel Facility (HTF) at NASA Glenn's Plum Brook Station at Mach 5 and 6. This engine will incorporate the configuration of this inlet model which achieved the best performance during the present experiment. The inlet test was conducted at Mach numbers of 4.0, 5.0, 5.5, and 6.0. The fixed-geometry inlet consists of an 8 deg.. forebody compression plate, boundary layer diverter, and two compressive struts located within 2 parallel sidewalls. These struts extend through the inlet, dividing the flowpath into three channels. Test parameters investigated included strut geometry, boundary layer ingestion, and Reynolds number (Re). Inlet axial pressure distributions and cross-sectional Pitot-pressure surveys at the base of the struts were measured at varying back-pressures. Inlet performance and starting data are presented. The inlet chosen for the RBCC engine self-started at all Mach numbers from 4 to 6. Pitot-pressure contours showed large flow nonuniformity on the body-side of the inlet. The inlet provided adequate pressure recovery and flow quality for the RBCC cycle even with the flow separation.
Droplet-turbulence interactions in subcritical and supercritical evaporating sprays
NASA Technical Reports Server (NTRS)
Santavicca, Domenic A.; Coy, Edward; Greenfield, Stuart; Song, Young-Hoon
1991-01-01
The objective of this research is to obtain an improved understanding of droplet turbulence interactions in vaporizing liquid sprays under conditions typical of those encountered in liquid fueled rocket engines. The interaction between liquid droplets and the surrounding turbulent gas flow affects droplet dispersion, droplet collisions, droplet vaporization and gas-phase, fuel-oxidant mixing, and therefore has a significant effect on the engine's combustion characteristics. An example of this is the role which droplet-turbulence interactions are believed to play in combustion instabilities. Despite their importance, droplet-turbulence interactions and their effect on liquid fueled rocket engine performance are not well understood. This is particularly true under supercritical conditions, where many conventional concepts, such as surface tension, no longer apply. Our limited understanding of droplet-turbulence interactions, under both subcritical conditions, represents a major limitation in our ability to design improved liquid previously unavailable information and valuable new insights which will directly impact the design of future liquid fueled rocket engines, as well as, allow for the development of significantly improved spray combustion models, making such models useful design tools.
Thermal stratification potential in rocket engine coolant channels
NASA Technical Reports Server (NTRS)
Kacynski, Kenneth J.
1992-01-01
The potential for rocket engine coolant channel flow stratification was computationally studied. A conjugate, 3-D, conduction/advection analysis code (SINDA/FLUINT) was used. Core fluid temperatures were predicted to vary by over 360 K across the coolant channel, at the throat section, indicating that the conventional assumption of a fully mixed fluid may be extremely inaccurate. Because of the thermal stratification of the fluid, the walls exposed to the rocket engine exhaust gases will be hotter than an assumption of full mixing would imply. In this analysis, wall temperatures were 160 K hotter in the turbulent mixing case than in the full mixing case. The discrepancy between the full mixing and turbulent mixing analyses increased with increasing heat transfer. Both analysis methods predicted identical channel resistances at the coolant inlet, but in the stratified analysis the thermal resistance was negligible. The implications are significant. Neglect of thermal stratification could lead to underpredictions in nozzle wall temperatures. Even worse, testing at subscale conditions may be inadequate for modeling conditions that would exist in a full scale engine.
Experimental and computational data from a small rocket exhaust diffuser
NASA Astrophysics Data System (ADS)
Stephens, Samuel E.
1993-06-01
The Diagnostics Testbed Facility (DTF) at the NASA Stennis Space Center in Mississippi is a versatile facility that is used primarily to aid in the development of nonintrusive diagnostics for liquid rocket engine testing. The DTF consists of a fixed, 1200 lbf thrust, pressure fed, liquid oxygen/gaseous hydrogen rocket engine, and associated support systems. An exhaust diffuser has been fabricated and installed to provide subatmospheric pressures at the exit of the engine. The diffuser aerodynamic design was calculated prior to fabrication using the PARC Navier-Stokes computational fluid dynamics code. The diffuser was then fabricated and tested at the DTF. Experimental data from these tests were acquired to determine the operational characteristics of the system and to correlate the actual and predicted flow fields. The results show that a good engineering approximation of overall diffuser performance can be made using the PARC Navier-Stokes code and a simplified geometry. Correlations between actual and predicted cell pressure and initial plume expansion in the diffuser are good; however, the wall pressure profiles do not correlate as well with the experimental data.
Modelling of evaporation of a dispersed liquid component in a chemically active gas flow
NASA Astrophysics Data System (ADS)
Kryukov, V. G.; Naumov, V. I.; Kotov, V. Yu.
1994-01-01
A model has been developed to investigate evaporation of dispersed liquids in chemically active gas flow. Major efforts have been directed at the development of algorithms for implementing this model. The numerical experiments demonstrate that, in the boundary layer, significant changes in the composition and temperature of combustion products take place. This gives the opportunity to more correctly model energy release processes in combustion chambers of liquid-propellant rocket engines, gas-turbine engines, and other power devices.
Shock-Induced Heating In A Rocket Engine
NASA Technical Reports Server (NTRS)
Lagnado, Ronald R.; Raiszadeh, Farhad
1989-01-01
Misalignments give rise to hotspots on walls. Report discusses numerical simulation of flow in and near small, ringlike cavity in wall of Space Shuttle main engine at junction of main combustion chamber and nozzle. Purpose to study effects of misalignments between combustion chamber and nozzle on transfer of heat into surfaces chamber, cavity, and nozzle. Depending on specific misalignment flow encounters forward-or backward-facing step leaving chamber and entering nozzle. Results in serious losses of performance and excessive heating of walls.
Liquid fuel injection elements for rocket engines
NASA Technical Reports Server (NTRS)
Cox, George B., Jr. (Inventor)
1993-01-01
Thrust chambers for liquid propellant rocket engines include three principal components. One of these components is an injector which contains a plurality of injection elements to meter the flow of propellants at a predetermined rate, and fuel to oxidizer mixture ratio, to introduce the mixture into the combustion chamber, and to cause them to be atomized within the combustion chamber so that even combustion takes place. Evolving from these injectors are tube injectors. These tube injectors have injection elements for injecting the oxidizer into the combustion chamber. The oxidizer and fuel must be metered at predetermined rates and mixture ratios in order to mix them within the combustion chamber so that combustion takes place smoothly and completely. Hence tube injectors are subject to improvement. An injection element for a liquid propellant rocket engine of the bipropellant type is provided which includes tangential fuel metering orifices, and a plurality of oxidizer tube injection elements whose injection tubes are also provided with tangential oxidizer entry slots and internal reed valves.
RTE: A computer code for Rocket Thermal Evaluation
NASA Technical Reports Server (NTRS)
Naraghi, Mohammad H. N.
1995-01-01
The numerical model for a rocket thermal analysis code (RTE) is discussed. RTE is a comprehensive thermal analysis code for thermal analysis of regeneratively cooled rocket engines. The input to the code consists of the composition of fuel/oxidant mixture and flow rates, chamber pressure, coolant temperature and pressure. dimensions of the engine, materials and the number of nodes in different parts of the engine. The code allows for temperature variation in axial, radial and circumferential directions. By implementing an iterative scheme, it provides nodal temperature distribution, rates of heat transfer, hot gas and coolant thermal and transport properties. The fuel/oxidant mixture ratio can be varied along the thrust chamber. This feature allows the user to incorporate a non-equilibrium model or an energy release model for the hot-gas-side. The user has the option of bypassing the hot-gas-side calculations and directly inputting the gas-side fluxes. This feature is used to link RTE to a boundary layer module for the hot-gas-side heat flux calculations.
Evaluation of undeveloped rocket engine cycle applications to advanced transportation
NASA Technical Reports Server (NTRS)
1990-01-01
Undeveloped pump-fed, liquid propellant rocket engine cycles were assessed and evaluated for application to Next Manned Transportation System (NMTS) vehicles, which would include the evolving Space Transportation System (STS Evolution), the Personnel Launch System (PLS), and the Advanced Manned Launch System (AMLS). Undeveloped engine cycles selected for further analysis had potential for increased reliability, more maintainability, reduced cost, and improved (or possibly level) performance when compared to the existing SSME and proposed STME engines. The split expander (SX) cycle, the full flow staged combustion (FFSC) cycle, and a hybrid version of the FFSC, which has a LOX expander drive for the LOX pump, were selected for definition and analysis. Technology requirements and issues were identified and analyses of vehicle systems weight deltas using the SX and FFSC cycles in AMLS vehicles were performed. A strawman schedule and cost estimate for FFSC subsystem technology developments and integrated engine system demonstration was also provided.
NASA Technical Reports Server (NTRS)
Park, C.
1976-01-01
Chemical reactions expected to occur among the constituents of solid-fuel rocket engine effluents in the hot region behind a Mach disk are analyzed theoretically. With the use of a rocket plume model that assumes the flow to be separated in the base region, and a chemical reaction scheme that includes evaporation of alumina and the associated reactions of 17 gas species, the reformation of the effluent is calculated. It is shown that AlClO and AlOH are produced in exchange for a corresponding reduction in the amounts of HCl and Al2O3. For the case of the space shuttle booster engines, up to 2% of the original mass of the rocket fuel can possibly be converted to these two new species and deposited in the atmosphere between the altitudes of 10 and 40 km. No adverse effects on the atmospheric environment are anticipated with the addition of these two new species.
Feasibility study of palm-based fuels for hybrid rocket motor applications
NASA Astrophysics Data System (ADS)
Tarmizi Ahmad, M.; Abidin, Razali; Taha, A. Latif; Anudip, Amzaryi
2018-02-01
This paper describes the combined analysis done in pure palm-based wax that can be used as solid fuel in a hybrid rocket engine. The measurement of pure palm wax calorific value was performed using a bomb calorimeter. An experimental rocket engine and static test stand facility were established. After initial measurement and calibration, repeated procedures were performed. Instrumentation supplies carried out allow fuel regression rate measurements, oxidizer mass flow rates and stearic acid rocket motors measurements. Similar tests are also carried out with stearate acid (from palm oil by-products) dissolved with nitrocellulose and bee solution. Calculated data and experiments show that rates and regression thrust can be achieved even in pure-tested palm-based wax. Additionally, palm-based wax is mixed with beeswax characterized by higher nominal melting temperatures to increase moisturizing points to higher temperatures without affecting regression rate values. Calorie measurements and ballistic experiments were performed on this new fuel formulation. This new formulation promises driving applications in a wide range of temperatures.
Heat Exchanger Design in Combined Cycle Engines
NASA Astrophysics Data System (ADS)
Webber, H.; Feast, S.; Bond, A.
Combined cycle engines employing both pre-cooled air-breathing and rocket modes of operation are the most promising propulsion system for achieving single stage to orbit vehicles. The air-breathing phase is purely for augmentation of the mission velocity required in the rocket phase and as such must be mass effective, re-using the components of the rocket cycle, whilst achieving adequate specific impulse. This paper explains how the unique demands placed on the air-breathing cycle results in the need for sophisticated thermodynamics and the use of a series of different heat exchangers to enable precooling and high pressure ratio compression of the air for delivery to the rocket combustion chambers. These major heat exchanger roles are; extracting heat from incoming air in the precooler, topping up cycle flow temperatures to maintain constant turbine operating conditions and extracting rejected heat from the power cycle via regenerator loops for thermal capacity matching. The design solutions of these heat exchangers are discussed.
Analysis of Flowfields over Four-Engine DC-X Rockets
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Cornelison, Joni
1996-01-01
The objective of this study is to validate a computational methodology for the aerodynamic performance of an advanced conical launch vehicle configuration. The computational methodology is based on a three-dimensional, viscous flow, pressure-based computational fluid dynamics formulation. Both wind-tunnel and ascent flight-test data are used for validation. Emphasis is placed on multiple-engine power-on effects. Computational characterization of the base drag in the critical subsonic regime is the focus of the validation effort; until recently, almost no multiple-engine data existed for a conical launch vehicle configuration. Parametric studies using high-order difference schemes are performed for the cold-flow tests, whereas grid studies are conducted for the flight tests. The computed vehicle axial force coefficients, forebody, aftbody, and base surface pressures compare favorably with those of tests. The results demonstrate that with adequate grid density and proper distribution, a high-order difference scheme, finite rate afterburning kinetics to model the plume chemistry, and a suitable turbulence model to describe separated flows, plume/air mixing, and boundary layers, computational fluid dynamics is a tool that can be used to predict the low-speed aerodynamic performance for rocket design and operations.
Flow Induced Nutation Instability in Spinning Solid Propellant Rockets
1990-04-01
September 1989 ROCKETS April 1990 Authors: Wasatch Research & Engineering, Inc. G. A. Flandro 375 N. Virginia Street M, Leloudis Salt Lake City UT...AFSC), Edwards Air Force Base, CA. AL Project Manager was Gary L. Vogt. This report has been reviewed and is approved for release and distribution in...accordance with the distribution statement on the cover and on the DD Form 1473. ,(- GARY L. VOCT LAWRENCE P. OUINN Project Manager Chief
Performance and heat transfer characteristics of a carbon monoxide/oxygen rocket engine
NASA Technical Reports Server (NTRS)
Linne, Diane L.
1993-01-01
The combustion and heat transfer characteristics of a carbon monoxide and oxygen rocket engine were evaluated. The test hardware consisted of a calorimeter combustion chamber with a heat sink nozzle and an eighteen element concentric tube injector. Experimental results are given at chamber pressures of 1070 and 3070 kPa, and over a mixture ratio range of 0.3 to 1.0. Experimental C efficiency was between 95 and 96.5 percent. Heat transfer results are discussed both as a function of mixture ratio and axial distance in the chamber. They are also compared to a Nusselt number correlation for fully developed turbulent flow.
Performance of a transpiration-regenerative cooled rocket thrust chamber
NASA Technical Reports Server (NTRS)
Valler, H. W.
1979-01-01
The analysis, design, fabrication, and testing of a liquid rocket engine thrust chamber which is gas transpiration cooled in the high heat flux convergent portion of the chamber and water jacket cooled (simulated regenerative) in the barrel and divergent sections of the chamber are described. The engine burns LOX-hydrogen propellants at a chamber pressure of 600 psia. Various transpiration coolant flow rates were tested with resultant local hot gas wall temperatures in the 800 F to 1400 F range. The feasibility of transpiration cooling with hydrogen and helium, and the use of photo-etched copper platelets for heat transfer and coolant metering was successfully demonstrated.
Studying Transonic Gases With a Hydraulic Analog
NASA Technical Reports Server (NTRS)
Wagner, W.; Lepore, F.
1986-01-01
Water table for hydraulic-flow research yields valuable information about gas flow at transonic speeds. Used to study fuel and oxidizer flow in high-pressure rocket engines. Method applied to gas flows in such equipment as furnaces, nozzles, and chemical lasers. Especially suitable when wall contours nonuniform, discontinuous, or unusually shaped. Wall shapes changed quickly for study and evaluated on spot. Method used instead of computer simulation when computer models unavailable, inaccurate, or costly to run.
Simulations of Instabilities in Complex Valve and Feed Systems
NASA Technical Reports Server (NTRS)
Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy; Cavallo, Peter A.
2006-01-01
CFD analyses are playing an increasingly important role in identifying and characterizing flow induced instabilities in rocket engine test facilities and flight systems. In this paper, we analyze instability mechanisms that range from turbulent pressure fluctuations due to vortex shedding in structurally complex valve systems to flow resonance in plug cavities to large scale pressure fluctuations due to collapse of cavitation induced vapor clouds. Furthermore, we discuss simulations of transient behavior related to valve motion that can serve as guidelines for valve scheduling. Such predictions of valve response to varying flow conditions is of crucial importance to engine operation and testing.
NASA Technical Reports Server (NTRS)
Allgood, Daniel C.
2016-01-01
The objective of the presented work was to develop validated computational fluid dynamics (CFD) based methodologies for predicting propellant detonations and their associated blast environments. Applications of interest were scenarios relevant to rocket propulsion test and launch facilities. All model development was conducted within the framework of the Loci/CHEM CFD tool due to its reliability and robustness in predicting high-speed combusting flow-fields associated with rocket engines and plumes. During the course of the project, verification and validation studies were completed for hydrogen-fueled detonation phenomena such as shock-induced combustion, confined detonation waves, vapor cloud explosions, and deflagration-to-detonation transition (DDT) processes. The DDT validation cases included predicting flame acceleration mechanisms associated with turbulent flame-jets and flow-obstacles. Excellent comparison between test data and model predictions were observed. The proposed CFD methodology was then successfully applied to model a detonation event that occurred during liquid oxygen/gaseous hydrogen rocket diffuser testing at NASA Stennis Space Center.
NASA Technical Reports Server (NTRS)
Mitchell, C. E.; Eckert, K.
1979-01-01
A program for predicting the linear stability of liquid propellant rocket engines is presented. The underlying model assumptions and analytical steps necessary for understanding the program and its input and output are also given. The rocket engine is modeled as a right circular cylinder with an injector with a concentrated combustion zone, a nozzle, finite mean flow, and an acoustic admittance, or the sensitive time lag theory. The resulting partial differential equations are combined into two governing integral equations by the use of the Green's function method. These equations are solved using a successive approximation technique for the small amplitude (linear) case. The computational method used as well as the various user options available are discussed. Finally, a flow diagram, sample input and output for a typical application and a complete program listing for program MODULE are presented.
NASA Technical Reports Server (NTRS)
Smith, S. D.; Tevepaugh, J. A.; Penny, M. M.
1975-01-01
The exhaust plumes of the space shuttle solid rocket motors can have a significant effect on the base pressure and base drag of the shuttle vehicle. A parametric analysis was conducted to assess the sensitivity of the initial plume expansion angle of analytical solid rocket motor flow fields to various analytical input parameters and operating conditions. The results of the analysis are presented and conclusions reached regarding the sensitivity of the initial plume expansion angle to each parameter investigated. Operating conditions parametrically varied were chamber pressure, nozzle inlet angle, nozzle throat radius of curvature ratio and propellant particle loading. Empirical particle parameters investigated were mean size, local drag coefficient and local heat transfer coefficient. Sensitivity of the initial plume expansion angle to gas thermochemistry model and local drag coefficient model assumptions were determined.
NASA Technical Reports Server (NTRS)
Smith, S. D.
1984-01-01
A users manual for the RAMP2 computer code is provided. The RAMP2 code can be used to model the dominant phenomena which affect the prediction of liquid and solid rocket nozzle and orbital plume flow fields. The general structure and operation of RAMP2 are discussed. A user input/output guide for the modified TRAN72 computer code and the RAMP2F code is given. The application and use of the BLIMPJ module are considered. Sample problems involving the space shuttle main engine and motor are included.
Stennis Space Center Conducts Water Flow Test On The B-2 Test Stand
2018-05-04
Stennis Space Center completed a water flow test of the refurbished B-2 Test Stand on May 4, 2018. This included both the deflector and the aspirator, individually and together. This test stand is being prepared for the testing of the Space Launch System's booster core, which will utilize four RS-25 rocket engines.
A fast sampling device for the mass spectrometric analysis of liquid rocket engine exhaust
NASA Technical Reports Server (NTRS)
Ryason, P. R.
1975-01-01
The design of a device to obtain compositional data on rocket exhaust by direct sampling of reactive flow exhausts into a mass spectrometer is presented. Sampling at three stages differing in pressure and orifice angle and diameter is possible. Results of calibration with pure gases and gas mixtures are erratic and of unknown accuracy for H2, limiting the usefulness of the apparatus for determining oxidizer/fuel ratios from combustion product analysis. Deposition effects are discussed, and data obtained from rocket exhaust spectra are analyzed to give O/F ratios and mixture ratio distribution. The O/F ratio determined spectrometrically is insufficiently accurate for quantitative comparison with cold flow data. However, a criterion for operating conditions with improved mixing of fuel and oxidizer which is consistent with cold flow results may be obtained by inspection of contour plots. A chemical inefficiency in the combustion process when oxidizer is in excess is observed from reactive flow measurements. Present results were obtained with N2O4/N2H4 propellants.
Mathematical and computational model for the analysis of micro hybrid rocket motor
NASA Astrophysics Data System (ADS)
Stoia-Djeska, Marius; Mingireanu, Florin
2012-11-01
The hybrid rockets use a two-phase propellant system. In the present work we first develop a simplified model of the coupling of the hybrid combustion process with the complete unsteady flow, starting from the combustion port and ending with the nozzle. The physical and mathematical model are adapted to the simulations of micro hybrid rocket motors. The flow model is based on the one-dimensional Euler equations with source terms. The flow equations and the fuel regression rate law are solved in a coupled manner. The platform of the numerical simulations is an implicit fourth-order Runge-Kutta second order cell-centred finite volume method. The numerical results obtained with this model show a good agreement with published experimental and numerical results. The computational model developed in this work is simple, computationally efficient and offers the advantage of taking into account a large number of functional and constructive parameters that are used by the engineers.
High-speed schlieren imaging of rocket exhaust plumes
NASA Astrophysics Data System (ADS)
Coultas-McKenney, Caralyn; Winter, Kyle; Hargather, Michael
2016-11-01
Experiments are conducted to examine the exhaust of a variety of rocket engines. The rocket engines are mounted in a schlieren system to allow high-speed imaging of the engine exhaust during startup, steady state, and shutdown. A variety of rocket engines are explored including a research-scale liquid rocket engine, consumer/amateur solid rocket motors, and water bottle rockets. Comparisons of the exhaust characteristics, thrust and cost for this range of rockets is presented. The variety of nozzle designs, target functions, and propellant type provides unique variations in the schlieren imaging.
Time-Dependent Simulations of Turbopump Flows
NASA Technical Reports Server (NTRS)
Kris, Cetin C.; Kwak, Dochan
2001-01-01
The objective of the current effort is to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine, including high-fidelity unsteady turbopump flow analysis. This capability is needed to support the design of pump sub-systems for advanced space transportation vehicles that are likely to involve liquid propulsion systems. To date, computational tools for design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available for real-world engineering applications. The present effort will provide developers with information such as transient flow phenomena at start up, impact of non-uniform inflows, system vibration and impact on the structure. In the proposed paper, the progress toward the capability of complete simulation of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. The relative motion of the grid systems for the rotor-stator interaction was obtained using overset grid techniques. Time-accuracy of the scheme has been evaluated with simple test cases. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on Origin 2000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability will be presented along with the performance of parallel versions of the code.
NASA Technical Reports Server (NTRS)
Steele, W. G.; Molder, K. J.; Hudson, S. T.; Vadasy, K. V.; Rieder, P. T.; Giel, T.
2005-01-01
NASA and the U.S. Air Force are working on a joint project to develop a new hydrogen-fueled, full-flow, staged combustion rocket engine. The initial testing and modeling work for the Integrated Powerhead Demonstrator (IPD) project is being performed by NASA Marshall and Stennis Space Centers. A key factor in the testing of this engine is the ability to predict and measure the transient fluid flow during engine start and shutdown phases of operation. A model built by NASA Marshall in the ROCket Engine Transient Simulation (ROCETS) program is used to predict transient engine fluid flows. The model is initially calibrated to data from previous tests on the Stennis E1 test stand. The model is then used to predict the next run. Data from this run can then be used to recalibrate the model providing a tool to guide the test program in incremental steps to reduce the risk to the prototype engine. In this paper, they define this type of model as a calibrated model. This paper proposes a method to estimate the uncertainty of a model calibrated to a set of experimental test data. The method is similar to that used in the calibration of experiment instrumentation. For the IPD example used in this paper, the model uncertainty is determined for both LOX and LH flow rates using previous data. The successful use of this model is then demonstrated to predict another similar test run within the uncertainty bounds. The paper summarizes the uncertainty methodology when a model is continually recalibrated with new test data. The methodology is general and can be applied to other calibrated models.
Heat transfer in rocket engine combustion chambers and regeneratively cooled nozzles
NASA Technical Reports Server (NTRS)
1993-01-01
A conjugate heat transfer computational fluid dynamics (CFD) model to describe regenerative cooling in the main combustion chamber and nozzle and in the injector faceplate region for a launch vehicle class liquid rocket engine was developed. An injector model for sprays which treats the fluid as a variable density, single-phase media was formulated, incorporated into a version of the FDNS code, and used to simulate the injector flow typical of that in the Space Shuttle Main Engine (SSME). Various chamber related heat transfer analyses were made to verify the predictive capability of the conjugate heat transfer analysis provided by the FDNS code. The density based version of the FDNS code with the real fluid property models developed was successful in predicting the streamtube combustion of individual injector elements.
Navier-Stokes analysis of a liquid rocket engine disk cavity
NASA Technical Reports Server (NTRS)
Benjamin, Theodore G.; Mcconnaughey, Paul K.
1991-01-01
This paper presents a Navier-Stokes analysis of hydrodynamic phenomena occurring in the aft disk cavity of a liquid rocket engine turbine. The cavity analyzed in the Space Shuttle Main Engine Alternate Turbopump currently being developed by NASA and Pratt and Whitney. Comparison of results obtained from the Navier-Stokes code for two rotating disk datasets available in the literature are presented as benchmark validations. The benchmark results obtained using the code show good agreement relative to experimental data, and the turbine disk cavity was analyzed with comparable grid resolution, dissipation levels, and turbulence models. Predicted temperatures in the cavity show that little mixing of hot and cold fluid occurs in the cavity and the flow is dominated by swirl and pumping up the rotating disk.
Experimental Evaluation of a Subscale Gaseous Hydrogen/gaseous Oxygen Coaxial Rocket Injector
NASA Technical Reports Server (NTRS)
Smith, Timothy D.; Klem, Mark D.; Breisacher, Kevin J.; Farhangi, Shahram; Sutton, Robert
2002-01-01
The next generation reusable launch vehicle may utilize a Full-Flow Stage Combustion (FFSC) rocket engine cycle. One of the key technologies required is the development of an injector that uses gaseous oxygen and gaseous hydrogen as propellants. Gas-gas propellant injection provides an engine with increased stability margin over a range of throttle set points. This paper summarizes an injector design and testing effort that evaluated a coaxial rocket injector for use with gaseous oxygen and gaseous hydrogen propellants. A total of 19 hot-fire tests were conducted up to a chamber pressure of 1030 psia, over a range of 3.3 to 6.7 for injector element mixture ratio. Post-test condition of the hardware was also used to assess injector face cooling. Results show that high combustion performance levels could be achieved with gas-gas propellants and there were no problems with excessive face heating for the conditions tested.
NMR imaging and hydrodynamic analysis of neutrally buoyant non-Newtonian slurry flows
NASA Astrophysics Data System (ADS)
Bouillard, J. X.; Sinton, S. W.
The flow of solids loaded suspension in cylindrical pipes has been the object of intense experimental and theoretical investigations in recent years. These types of flows are of great interest in chemical engineering because of their important use in many industrial manufacturing processes. Such flows are for example encountered in the manufacture of solid-rocket propellants, advanced ceramics, reinforced polymer composites, in heterogeneous catalytic reactors, and in the pipeline transport of liquid-solids suspensions. In most cases, the suspension microstructure and the degree of solids dispersion greatly affect the final performance of the manufactured product. For example, solid propellant pellets need to be extremely-well dispersed in gel matrices for use as rocket engine solid fuels. The homogeneity of pellet dispersion is critical to allow good uniformity of the burn rate, which in turn affects the final mechanical performance of the engine. Today's manufacturing of such fuels uses continuous flow processes rather than batch processes. Unfortunately, the hydrodynamics of such flow processes is poorly understood and is difficult to assess because it requires the simultaneous measurements of liquid/solids phase velocities and volume fractions. Due to the recent development in pulsed Fourier Transform NMR imaging, NMR imaging is now becoming a powerful technique for the non intrusive investigation of multi-phase flows. This paper reports and exposes a state-of-the-art experimental and theoretical methodology that can be used to study such flows. The hydrodynamic model developed for this study is a two-phase flow shear thinning model with standard constitutive fluid/solids interphase drag and solids compaction stresses. this model shows good agreement with experimental data and the limitations of this model are discussed.
Development of Efficient Real-Fluid Model in Simulating Liquid Rocket Injector Flows
NASA Technical Reports Server (NTRS)
Cheng, Gary; Farmer, Richard
2003-01-01
The characteristics of propellant mixing near the injector have a profound effect on the liquid rocket engine performance. However, the flow features near the injector of liquid rocket engines are extremely complicated, for example supercritical-pressure spray, turbulent mixing, and chemical reactions are present. Previously, a homogeneous spray approach with a real-fluid property model was developed to account for the compressibility and evaporation effects such that thermodynamics properties of a mixture at a wide range of pressures and temperatures can be properly calculated, including liquid-phase, gas- phase, two-phase, and dense fluid regions. The developed homogeneous spray model demonstrated a good success in simulating uni- element shear coaxial injector spray combustion flows. However, the real-fluid model suffered a computational deficiency when applied to a pressure-based computational fluid dynamics (CFD) code. The deficiency is caused by the pressure and enthalpy being the independent variables in the solution procedure of a pressure-based code, whereas the real-fluid model utilizes density and temperature as independent variables. The objective of the present research work is to improve the computational efficiency of the real-fluid property model in computing thermal properties. The proposed approach is called an efficient real-fluid model, and the improvement of computational efficiency is achieved by using a combination of a liquid species and a gaseous species to represent a real-fluid species.
NASA Technical Reports Server (NTRS)
Grishin, S. D.; Chekalin, S. V.
1984-01-01
Prospects for the mastery of space and the basic problems which must be solved in developing systems for both manned and cargo spacecraft are examined. The achievements and flaws of rocket boosters are discussed as well as the use of reusable spacecraft. The need for orbiting satellite solar power plants and related astrionics for active control of large space structures for space stations and colonies in an age of space industrialization is demonstrated. Various forms of spacecraft propulsion are described including liquid propellant rocket engines, nuclear reactors, thermonuclear rocket engines, electrorocket engines, electromagnetic engines, magnetic gas dynamic generators, electromagnetic mass accelerators (rail guns), laser rocket engines, pulse nuclear rocket engines, ramjet thermonuclear rocket engines, and photon rockets. The possibilities of interstellar flight are assessed.
NASA Technical Reports Server (NTRS)
Stanley, Thomas Troy; Alexander, Reginald
1999-01-01
Presented is a computer-based tool that connects several disciplines that are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system, as is the case of SSTO vehicles with air breathing propulsion, which is currently being studied by NASA. The deficiencies in the scramjet powered concept led to a revival of interest in Rocket-Based Combined-Cycle (RBCC) propulsion systems. An RBCC propulsion system integrates airbreathing and rocket propulsion into a single engine assembly enclosed within a cowl or duct. A typical RBCC propulsion system operates as a ducted rocket up to approximately Mach 3. At this point the transitions to a ramjet mode for supersonic-to-hypersonic acceleration. Around Mach 8 the engine transitions to a scram4jet mode. During the ramjet and scramjet modes, the integral rockets operate as fuel injectors. Around Mach 10-12 (the actual value depends on vehicle and mission requirements), the inlet is physically closed and the engine transitions to an integral rocket mode for orbit insertion. A common feature of RBCC propelled vehicles is the high degree of integration between the propulsion system and airframe. At high speeds the vehicle forebody is fundamentally part of the engine inlet, providing a compression surface for air flowing into the engine. The compressed air is mixed with fuel and burned. The combusted mixture must be expanded to an area larger than the incoming stream to provide thrust. Since a conventional nozzle would be too large, the entire lower after body of the vehicle is used as an expansion surface. Because of the high external temperatures seen during atmospheric flight, the design of an airbreathing SSTO vehicle requires delicate tradeoffs between engine design, vehicle shape, and thermal protection system (TPS) sizing in order to produce an optimum system in terms of weight (and cost) and maximum performance.
Current and Future Critical Issues in Rocket Propulsion Systems
NASA Technical Reports Server (NTRS)
Navaz, Homayun K.; Dix, Jeff C.
1998-01-01
The objective of this research was to tackle several problems that are currently of great importance to NASA. In a liquid rocket engine several complex processes take place that are not thoroughly understood. Droplet evaporation, turbulence, finite rate chemistry, instability, and injection/atomization phenomena are some of the critical issues being encountered in a liquid rocket engine environment. Pulse Detonation Engines (PDE) performance, combustion chamber instability analysis, 60K motor flowfield pattern from hydrocarbon fuel combustion, and 3D flowfield analysis for the Combined Cycle engine were of special interest to NASA. During the summer of 1997, we made an attempt to generate computational results for all of the above problems and shed some light on understanding some of the complex physical phenomena. For this purpose, the Liquid Thrust Chamber Performance (LTCP) code, mainly designed for liquid rocket engine applications, was utilized. The following test cases were considered: (1) Characterization of a detonation wave in a Pulse Detonation Tube; (2) 60K Motor wall temperature studies; (3) Propagation of a pressure pulse in a combustion chamber (under single and two-phase flow conditions); (4) Transonic region flowfield analysis affected by viscous effects; (5) Exploring the viscous differences between a smooth and a corrugated wall; and (6) 3D thrust chamber flowfield analysis of the Combined Cycle engine. It was shown that the LTCP-2D and LTCP-3D codes are capable of solving complex and stiff conservation equations for gaseous and droplet phases in a very robust and efficient manner. These codes can be run on a workstation and personal computers (PC's).
NASA Astrophysics Data System (ADS)
Varvill, R.; Bond, A.
SKYLON is a single stage to orbit (SSTO) winged spaceplane designed to give routine low cost access to space. At a gross takeoff weight of 275 tonnes of which 220 tonnes is propellant the vehicle is capable of placing 12 tonnes into an equatorial low Earth orbit. The vehicle configuration consists of a slender fuselage containing the propellant tankage and payload bay with delta wings located midway along the fuselage carrying the SABRE engines in axisymmetric nacelles on the wingtips. The vehicle takes off and lands horizontally on it's own undercarriage. The fuselage is constructed as a multilayer structure consisting of aeroshell, insulation, structure and tankage. SKYLON employs extant or near term materials technology in order to minimise development cost and risk. The SABRE engines have a dual mode capability. In rocket mode the engine operates as a closed cycle liquid oxygen/liquid hydrogen high specific impulse rocket engine. In airbreathing mode (from takeoff to Mach 5) the liquid oxygen flow is replaced by atmospheric air, increasing the installed specific impulse 3-6 fold. The airflow is drawn into the engine via a 2 shock axisymmetric intake and cooled to cryogenic temperatures prior to compression. The hydrogen fuel flow acts as a heat sink for the closed cycle helium loop before entering the main combustion chamber.
Investigation of wood combustion in the high-enthalpy oxidizer flow
NASA Astrophysics Data System (ADS)
Reshetnikov, S. M.; Zyryanov, I. A.; Budin, A. G.; Pozolotin, A. P.
2017-01-01
The experimental data of wood combustion in the high-enthalpy oxidizer flowresearch is presented. Combustion laws of two wood species (pine and birch) in a hybrid rocket engine (HRE) are obtained. Heat flows from the flame to the condensed phase surface are defined. The prospects of the wood use in the HRE (based on thrust characteristics) are shown.
Computational Simulation of Acoustic Modes in Rocket Combustors
NASA Technical Reports Server (NTRS)
Harper, Brent (Technical Monitor); Merkle, C. L.; Sankaran, V.; Ellis, M.
2004-01-01
A combination of computational fluid dynamic analysis and analytical solutions is being used to characterize the dominant modes in liquid rocket engines in conjunction with laboratory experiments. The analytical solutions are based on simplified geometries and flow conditions and are used for careful validation of the numerical formulation. The validated computational model is then extended to realistic geometries and flow conditions to test the effects of various parameters on chamber modes, to guide and interpret companion laboratory experiments in simplified combustors, and to scale the measurements to engine operating conditions. In turn, the experiments are used to validate and improve the model. The present paper gives an overview of the numerical and analytical techniques along with comparisons illustrating the accuracy of the computations as a function of grid resolution. A representative parametric study of the effect of combustor mean flow Mach number and combustor aspect ratio on the chamber modes is then presented for both transverse and longitudinal modes. The results show that higher mean flow Mach numbers drive the modes to lower frequencies. Estimates of transverse wave mechanics in a high aspect ratio combustor are then contrasted with longitudinal modes in a long and narrow combustor to provide understanding of potential experimental simulations.
Verification on spray simulation of a pintle injector for liquid rocket engine
NASA Astrophysics Data System (ADS)
Son, Min; Yu, Kijeong; Radhakrishnan, Kanmaniraja; Shin, Bongchul; Koo, Jaye
2016-02-01
The pintle injector used for a liquid rocket engine is a newly re-attracted injection system famous for its wide throttle ability with high efficiency. The pintle injector has many variations with complex inner structures due to its moving parts. In order to study the rotating flow near the injector tip, which was observed from the cold flow experiment using water and air, a numerical simulation was adopted and a verification of the numerical model was later conducted. For the verification process, three types of experimental data including velocity distributions of gas flows, spray angles and liquid distribution were all compared using simulated results. The numerical simulation was performed using a commercial simulation program with the Eulerian multiphase model and axisymmetric two dimensional grids. The maximum and minimum velocities of gas were within the acceptable range of agreement, however, the spray angles experienced up to 25% error when the momentum ratios were increased. The spray density distributions were quantitatively measured and had good agreement. As a result of this study, it was concluded that the simulation method was properly constructed to study specific flow characteristics of the pintle injector despite having the limitations of two dimensional and coarse grids.
Kinetic: A system code for analyzing nuclear thermal propulsion rocket engine transients
NASA Astrophysics Data System (ADS)
Schmidt, Eldon; Lazareth, Otto; Ludewig, Hans
The topics are presented in viewgraph form and include the following: outline of kinetic code; a kinetic information flow diagram; kinetic neutronic equations; turbopump/nozzle algorithm; kinetic heat transfer equations per node; and test problem diagram.
Analysis of liquid-propellant rocket engines designed by F. A. Tsander
NASA Technical Reports Server (NTRS)
Dushkin, L. S.; Moshkin, Y. K.
1977-01-01
The development of the oxygen-gasoline OR-2 engines and the oxygen-alcohol GIRD-10 rocket engine is described. A result of Tsander's rocket research was an engineering method for propellant calculation of oxygen-propellant rocket engines that determined the basic parameters of the engine and the structural elements.
A Coupling Analysis Approach to Capture Unexpected Behaviors in Ares 1
NASA Astrophysics Data System (ADS)
Kis, David
Coupling of physics in large-scale complex engineering systems must be correctly accounted for during the systems engineering process. Preliminary corrections ensure no unanticipated behaviors arise during operation. Structural vibration of large segmented solid rocket motors, known as thrust oscillation, is a well-documented problem that can effect solid rocket motors in adverse ways. Within the Ares 1 rocket, unexpected vibrations deemed potentially harmful to future crew were recorded during late stage flight that propagated from the engine chamber to the Orion crew module. This research proposes the use of a coupling strength analysis during the design and development phase to identify potential unanticipated behaviors such as thrust oscillation. Once these behaviors and couplings are identified then a value function, based on research in Value Driven Design, is proposed to evaluate mitigation strategies and their impact on system value. The results from this study showcase a strong coupling interaction from structural displacement back onto the fluid flow of the Ares 1 that was previously deemed inconsequential. These findings show that the use of a coupling strength analysis can aid engineers and managers in identifying unanticipated behaviors and then rank order their importance based on the impact they have on value.
Towards Rocket Engine Components with Increased Strength and Robust Operating Characteristics
NASA Technical Reports Server (NTRS)
Marcu, Bogdan; Hadid, Ali; Lin, Pei; Balcazar, Daniel; Rai, Man Mohan; Dorney, Daniel J.
2005-01-01
High-energy rotating machines, powering liquid propellant rocket engines, are subject to various sources of high and low cycle fatigue generated by unsteady flow phenomena. Given the tremendous need for reliability in a sustainable space exploration program, a fundamental change in the design methodology for engine components is required for both launch and space based systems. A design optimization system based on neural-networks has been applied and demonstrated in the redesign of the Space Shuttle Main Engine (SSME) Low Pressure Oxidizer Turbo Pump (LPOTP) turbine nozzle. One objective of the redesign effort was to increase airfoil thickness and thus increase its strength while at the same time detuning the vane natural frequency modes from the vortex shedding frequency. The second objective was to reduce the vortex shedding amplitude. The third objective was to maintain this low shedding amplitude even in the presence of large manufacturing tolerances. All of these objectives were achieved without generating any detrimental effects on the downstream flow through the turbine, and without introducing any penalty in performance. The airfoil redesign and preliminary assessment was performed in the Exploration Technology Directorate at NASA ARC. Boeing/Rocketdyne and NASA MSFC independently performed final CFD assessments of the design. Four different CFD codes were used in this process. They include WIL DCA T/CORSAIR (NASA), FLUENT (commercial), TIDAL (Boeing Rocketdyne) and, a new family (AardvarWPhantom) of CFD analysis codes developed at NASA MSFC employing LOX fluid properties and a Generalized Equation Set formulation. Extensive aerodynamic performance analysis and stress analysis carried out at Boeing Rocketdyne and NASA MSFC indicate that the redesign objectives have been fully met. The paper presents the results of the assessment analysis and discusses the future potential of robust optimal design for rocket engine components.
Calculation of Supersonic Combustion Using Implicit Schemes
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan; Kwak, Dochan (Technical Monitor)
2003-01-01
One of the technology goals of NASA for advanced space transportation is to develop highly efficient propulsion systems to reduce the cost of payload for space missions. Developments of rockets for the second generation Reusable Launch Vehicle (RLV) in the past several years have been focused on low-cost versions of conventional engines. However, recent changes in the Integrated Space Transportation Program to build a crew transportation vehicle to extend the life of the Space Shuttle fleet might suggest that air-breathing rockets could reemerge as a possible propulsion system for the third generation RLV to replace the Space Shuttle after 2015. The weight of the oxygen tank exceeds thirty percent of the total weight of the Space Shuttle at launch while the payload is only one percent of the total weight. The air-breathing rocket propulsion systems, which consume oxygen in the air, offer clear advantages by making vehicles lighter and more efficient. Experience in the National Aerospace Plane Program in the late 1980s indicates that scramjet engines can achieve high specific impulse for low hypersonic vehicle speeds. Whether taking a form of Rocket Based Combined Cycle (RBCC) or Turbine Based Combined Cycle (TBCC), the scramjet is an essential mode of operation for air-breathing rockets. It is well known that fuel-air mixing and rapid combustion are of crucial importance for the success of scramjet engines since the spreading rate of the supersonic mixing layer decreases as the Mach number increases. A factored form of the Gauss-Seidel relaxation method has been widely used in hypersonic flow research since its first application to non-equilibrium flows. However, difficulties in stability and convergence have been encountered when there is strong interaction between fluid motion and chemical reaction, such as multiple fuel injection problems. The present paper reports the results from investigation of the effect of modifications to the original algorithm on the performance for multiple injectors.
Development Status of Reusable Rocket Engine
NASA Astrophysics Data System (ADS)
Yoshida, Makoto; Takada, Satoshi; Naruo, Yoshihiro; Niu, Kenichi
A 30-kN rocket engine, a pilot engine, is being developed in Japan. Development of this pilot engine has been initiated in relation to a reusable sounding rocket, which is also being developed in Japan. This rocket takes off vertically, reaches an altitude of 100 km, lands vertically at the launch site, and is launched again within several days. Due to advantage of reusability, successful development of this rocket will mean that observation missions can be carried out more frequently and economically. In order to realize this rocket concept, the engines installed on the rocket should be characterized by reusability, long life, deep throttling and health monitoring, features which have not yet been established in Japanese rocket engines. To solve the engineering factors entitled by those features, a new design methodology, advanced engine simulations and engineering testing are being focused on in the pilot engine development stage. Especially in engineering testing, limit condition data is acquired to facilitate development of new diagnostic techniques, which can be applied by utilizing the mobility of small-size hardware. In this paper, the development status of the pilot engine is described, including fundamental design and engineering tests of the turbopump bearing and seal, turbine rig, injector and combustion chamber, and operation and maintenance concepts for one hundred flights by a reusable rocket are examined.
Flow field description of the Space Shuttle Vernier reaction control system exhaust plumes
NASA Technical Reports Server (NTRS)
Cerimele, Mary P.; Alred, John W.
1987-01-01
The flow field for the Vernier Reaction Control System (VRCS) jets of the Space Shuttle Orbiter has been calculated from the nozzle throat to the far-field region. The calculations involved the use of recently improved rocket engine nozzle/plume codes. The flow field is discussed, and a brief overview of the calculation techniques is presented. In addition, a proposed on-orbit plume measurement experiment, designed to improve future estimations of the Vernier flow field, is addressed.
Deep Throttle Turbopump Technology Testing
NASA Technical Reports Server (NTRS)
Ferguson, T. V.; Guinzburg, A.; McGlynn, R. D.; Williams, M.
2002-01-01
The objectives of this viewgraph presentation were to: (1) enhance and demonstrate critical technologies in support of planned RBCC flight test programs; and (2) obtain knowledge of wide flow range as it is applicable to liquid rocket engine turbopumps operating over extreme throttle ranges. This program was set up to demonstrate wide flow range diffuser technologies. The testing phase of the contract to provide data to anchor initial designs was partially successful. Data collected suggest flow phenomena exists at off-design flow rates.
NASA Technical Reports Server (NTRS)
Mchale, R. M.
1974-01-01
Results are presented of a cold-flow and hot-fire experimental study of the mixing and atomization characteristics of injector elements incorporating noncircular orifices. Both liquid/liquid and gas/liquid element types are discussed. Unlike doublet and triplet elements (circular orifices only) were investigated for the liquid/liquid case while concentric tube elements were investigated for the gas/liquid case. It is concluded that noncircular shape can be employed to significant advantage in injector design for liquid rocket engines.
Overview of rocket engine control
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.; Musgrave, Jeffrey L.
1991-01-01
The issues of Chemical Rocket Engine Control are broadly covered. The basic feedback information and control variables used in expendable and reusable rocket engines, such as Space Shuttle Main Engine, are discussed. The deficiencies of current approaches are considered and a brief introduction to Intelligent Control Systems for rocket engines (and vehicles) is presented.
Hyperthermal Environments Simulator for Nuclear Rocket Engine Development
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Foote, John P.; Clifton, W. B.; Hickman, Robert R.; Wang, Ten-See; Dobson, Christopher C.
2011-01-01
An arc-heater driven hyperthermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce hightemperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low-cost facility for supporting non-nuclear developmental testing of hightemperature fissile fuels and structural materials. The resulting reactor environments simulator represents a valuable addition to the available inventory of non-nuclear test facilities and is uniquely capable of investigating and characterizing candidate fuel/structural materials, improving associated processing/fabrication techniques, and simulating reactor thermal hydraulics. This paper summarizes facility design and engineering development efforts and reports baseline operational characteristics as determined from a series of performance mapping and long duration capability demonstration tests. Potential follow-on developmental strategies are also suggested in view of the technical and policy challenges ahead. Keywords: Nuclear Rocket Engine, Reactor Environments, Non-Nuclear Testing, Fissile Fuel Development.
Structural strengthening of rocket nozzle extension by means of laser metal deposition
NASA Astrophysics Data System (ADS)
Honoré, M.; Brox, L.; Hallberg, M.
2012-03-01
Commercial space operations strive to maximize the payload per launch in order to minimize the costs of each kg launched into orbit; this yields demand for ever larger launchers with larger, more powerful rocket engines. Volvo Aero Corporation in collaboration with Snecma and Astrium has designed and tested a new, upgraded Nozzle extension for the Vulcain 2 engine configuration, denoted Vulcain 2+ NE Demonstrator The manufacturing process for the welding of the sandwich wall and the stiffening structure is developed in close cooperation with FORCE Technology. The upgrade is intended to be available for future development programs for the European Space Agency's (ESA) highly successful commercial launch vehicle, the ARIANE 5. The Vulcain 2+ Nozzle Extension Demonstrator [1] features a novel, thin-sheet laser-welded configuration, with laser metal deposition built-up 3D-features for the mounting of stiffening structure, flanges and for structural strengthening, in order to cope with the extreme load- and thermal conditions, to which the rocket nozzle extension is exposed during launch of the 750 ton ARIANE 5 launcher. Several millimeters of material thickness has been deposited by laser metal deposition without disturbing the intricate flow geometry of the nozzle cooling channels. The laser metal deposition process has been applied on a full-scale rocket nozzle demonstrator, and in excess of 15 kilometers of filler wire has been successfully applied to the rocket nozzle. The laser metal deposition has proven successful in two full-throttle, full-scale tests, firing the rocket engine and nozzle in the ESA test facility P5 by DLR in Lampoldshausen, Germany.
Rocket-Based Combined Cycle Engine Technology Development: Inlet CFD Validation and Application
NASA Technical Reports Server (NTRS)
DeBonis, J. R.; Yungster, S.
1996-01-01
A CFD methodology has been developed for inlet analyses of Rocket-Based Combined Cycle (RBCC) Engines. A full Navier-Stokes analysis code, NPARC, was used in conjunction with pre- and post-processing tools to obtain a complete description of the flow field and integrated inlet performance. This methodology was developed and validated using results from a subscale test of the inlet to a RBCC 'Strut-Jet' engine performed in the NASA Lewis 1 x 1 ft. supersonic wind tunnel. Results obtained from this study include analyses at flight Mach numbers of 5 and 6 for super-critical operating conditions. These results showed excellent agreement with experimental data. The analysis tools were also used to obtain pre-test performance and operability predictions for the RBCC demonstrator engine planned for testing in the NASA Lewis Hypersonic Test Facility. This analysis calculated the baseline fuel-off internal force of the engine which is needed to determine the net thrust with fuel on.
Aero-Thermo-Structural Analysis of Inlet for Rocket Based Combined Cycle Engines
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Challa, Preeti; Sree, Dave; Reddy, Dhanireddy R. (Technical Monitor)
2000-01-01
NASA has been developing advanced space transportation concepts and technologies to make access to space less costly. One such concept is the reusable vehicles with short turn-around times. The NASA Glenn Research Center's concept vehicle is the Trailblazer powered by a rocket-based combined cycle (RBCC) engine. Inlet is one of the most important components of the RBCC engine. This paper presents fluid flow, thermal, and structural analysis of the inlet for Mach 6 free stream velocity for fully supersonic and supercritical with backpressure conditions. The results concluded that the fully supersonic condition was the most severe case and the largest stresses occur in the ceramic matrix composite layer of the inlet cowl. The maximum tensile and the compressive stresses were at least 3.8 and 3.4, respectively, times less than the associated material strength.
Liquid rocket engine axial-flow turbopumps
NASA Technical Reports Server (NTRS)
Scheer, D. D.; Huppert, M. C.; Viteri, F.; Farquhar, J.; Keller, R. B., Jr. (Editor)
1978-01-01
The axial pump is considered in terms of the total turbopump assembly. Stage hydrodynamic design, pump rotor assembly, pump materials for liquid hydrogen applications, and safety factors as utilized in state of the art pumps are among the topics discussed. Axial pump applications are included.
Comparison of liquid rocket engine base region heat flux computations using three turbulence models
NASA Technical Reports Server (NTRS)
Kumar, Ganesh N.; Griffith, Dwaine O., II; Prendergast, Maurice J.; Seaford, C. M.
1993-01-01
The flow in the base region of launch vehicles is characterized by flow separation, flow reversals, and reattachment. Computation of the convective heat flux in the base region and on the nozzle external surface of Space Shuttle Main Engine and Space Transportation Main Engine (STME) is an important part of defining base region thermal environments. Several turbulence models were incorporated in a CFD code and validated for flow and heat transfer computations in the separated and reattaching regions associated with subsonic and supersonic flows over backward facing steps. Heat flux computations in the base region of a single STME engine and a single S1C engine were performed using three different wall functions as well as a renormalization-group based k-epsilon model. With the very limited data available, the computed values are seen to be of the right order of magnitude. Based on the validation comparisons, it is concluded that all the turbulence models studied have predicted the reattachment location and the velocity profiles at various axial stations downstream of the step very well.
Axisymmetric Numerical Modeling of Pulse Detonation Rocket Engines
NASA Technical Reports Server (NTRS)
Morris, Christopher I.
2005-01-01
Pulse detonation rocket engines (PDREs) have generated research interest in recent years as a chemical propulsion system potentially offering improved performance and reduced complexity compared to conventional rocket engines. The detonative mode of combustion employed by these devices offers a thermodynamic advantage over the constant-pressure deflagrative combustion mode used in conventional rocket engines and gas turbines. However, while this theoretical advantage has spurred considerable interest in building PDRE devices, the unsteady blowdown process intrinsic to the PDRE has made realistic estimates of the actual propulsive performance problematic. The recent review article by Kailasanath highlights some of the progress that has been made in comparing the available experimental measurements with analytical and numerical models. In recent work by the author, a quasi-one-dimensional, finite rate chemistry CFD model was utilized to study the gasdynamics and performance characteristics of PDREs over a range of blowdown pressure ratios from 1-1000. Models of this type are computationally inexpensive, and enable first-order parametric studies of the effect of several nozzle and extension geometries on PDRE performance over a wide range of conditions. However, the quasi-one-dimensional approach is limited in that it cannot properly capture the multidimensional blast wave and flow expansion downstream of the PDRE, nor can it resolve nozzle flow separation if present. Moreover, the previous work was limited to single-pulse calculations. In this paper, an axisymmetric finite rate chemistry model is described and utilized to study these issues in greater detail. Example Mach number contour plots showing the multidimensional blast wave and nozzle exhaust plume are shown. The performance results are compared with the quasi-one-dimensional results from the previous paper. Both Euler and Navier-Stokes solutions are calculated in order to determine the effect of viscous effects in the nozzle flowfield. Additionally, comparisons of the model results to performance data from CalTech, as well as experimental flowfield measurements from Stanford University, are also reported.
Design and Analysis of a Turbopump for a Conceptual Expander Cycle Upper-Stage Engine
NASA Technical Reports Server (NTRS)
Dorney, Daniel J.; Rothermel, Jeffry; Griffin, Lisa W.; Thornton, Randall J.; Forbes, John C.; Skelly, Stephen E.; Huber, Frank W.
2006-01-01
As part of the development of technologies for rocket engines that will power spacecraft to the Moon and Mars, a program was initiated to develop a conceptual upper stage engine with wide flow range capability. The resulting expander cycle engine design employs a radial turbine to allow higher pump speeds and efficiencies. In this paper, the design and analysis of the pump section of the engine are discussed. One-dimensional meanline analyses and three-dimensional unsteady computational fluid dynamics simulations were performed for the pump stage. Configurations with both vaneless and vaned diffusers were investigated. Both the meanline analysis and computational predictions show that the pump will meet the performance objectives. Additional details describing the development of a water flow facility test are also presented.
A Three-Dimensional Parallel Time-Accurate Turbopump Simulation Procedure Using Overset Grid System
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Chan, William; Kwak, Dochan
2002-01-01
The objective of the current effort is to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine, including high-fidelity unsteady turbopump flow analysis. This capability is needed to support the design of pump sub-systems for advanced space transportation vehicles that are likely to involve liquid propulsion systems. To date, computational tools for design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available for real-world engineering applications. The present effort provides developers with information such as transient flow phenomena at start up, and nonuniform inflows, and will eventually impact on system vibration and structures. In the proposed paper, the progress toward the capability of complete simulation of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. CAD to solution auto-scripting capability is being developed for turbopump applications. The relative motion of the grid systems for the rotor-stator interaction was obtained using overset grid techniques. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on Origin 3000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability are presented along with the performance of parallel versions of the code.
Fabry-Perot interferometer development for rocket engine plume spectroscopy
NASA Astrophysics Data System (ADS)
Bickford, R. L.; Madzsar, G.
1990-07-01
This paper describes a new rugged high-resolution Fabry-Perot interferometer (FPI) designed for rocket engine plume spectroscopy, which is capable of detecting spectral signatures of eroding engine components during rocket engine tests and/or flight operations. The FPI system will make it possible to predict and to respond to the incipient rocket engine failures and to indicate the presence of rocket components degradation. The design diagram of the FPI spectrometer is presented.
Fabry-Perot interferometer development for rocket engine plume spectroscopy
NASA Technical Reports Server (NTRS)
Bickford, R. L.; Madzsar, G.
1990-01-01
This paper describes a new rugged high-resolution Fabry-Perot interferometer (FPI) designed for rocket engine plume spectroscopy, which is capable of detecting spectral signatures of eroding engine components during rocket engine tests and/or flight operations. The FPI system will make it possible to predict and to respond to the incipient rocket engine failures and to indicate the presence of rocket components degradation. The design diagram of the FPI spectrometer is presented.
NASA Technical Reports Server (NTRS)
Marshall, William M.; Borowski, Stanley K.; Bulman, Mel; Joyner, Russell; Martin, Charles R.
2015-01-01
Brief History of NTP: Project Rover Began in 1950s by Los Alamos Scientific Labs (now Los Alamos National Labs) and ran until 1970s Tested a series of nuclear reactor engines of varying size at Nevada Test Site (now Nevada National Security Site) Ranged in scale from 111 kN (25 klbf) to 1.1 MN (250 klbf) Included Nuclear Furnace-1 tests Demonstrated the viability and capability of a nuclear rocket engine test program One of Kennedys 4 goals during famous moon speech to Congress Nuclear Engines for Rocket Vehicle Applications (NERVA) Atomic Energy Commission and NASA joint venture started in 1964 Parallel effort to Project Rover was focused on technology demonstration Tested XE engine, a 245-kN (55-klbf) engine to demonstrate startup shutdown sequencing. Hot-hydrogen stream is passed directly through fuel elements potential for radioactive material to be eroded into gaseous fuel flow as identified in previous programs NERVA and Project Rover (1950s-70s) were able to test in open atmosphere similar to conventional rocket engine test stands today Nuclear Furance-1 tests employed a full scrubber system Increased government and environmental regulations prohibit the modern testing in open atmosphere. Since the 1960s, there has been an increasing cessation on open air testing of nuclear material Political and national security concerns further compound the regulatory environment
Experimental studies of characteristic combustion-driven flows for CFD validation
NASA Technical Reports Server (NTRS)
Santoro, R. J.; Moser, M.; Anderson, W.; Pal, S.; Ryan, H.; Merkle, C. L.
1992-01-01
A series of rocket-related studies intended to develop a suitable data base for validation of Computational Fluid Dynamics (CFD) models of characteristic combustion-driven flows was undertaken at the Propulsion Engineering Research Center at Penn State. Included are studies of coaxial and impinging jet injectors as well as chamber wall heat transfer effects. The objective of these studies is to provide fundamental understanding and benchmark quality data for phenomena important to rocket combustion under well-characterized conditions. Diagnostic techniques utilized in these studies emphasize determinations of velocity, temperature, spray and droplet characteristics, and combustion zone distribution. Since laser diagnostic approaches are favored, the development of an optically accessible rocket chamber has been a high priority in the initial phase of the project. During the design phase for this chamber, the advice and input of the CFD modeling community were actively sought through presentations and written surveys. Based on this procedure, a suitable uni-element rocket chamber was fabricated and is presently under preliminary testing. Results of these tests, as well as the survey findings leading to the chamber design, were presented.
Estimating Vibrational Powers Of Parts In Fluid Machinery
NASA Technical Reports Server (NTRS)
Harvey, S. A.; Kwok, L. C.
1995-01-01
In new method of estimating vibrational power associated with component of fluid-machinery system, physics of flow through (or in vicinity of) component regarded as governing vibrations. Devised to generate scaling estimates for design of new parts of rocket engines (e.g., pumps, combustors, nozzles) but applicable to terrestrial pumps, turbines, and other machinery in which turbulent flows and vibrations caused by such flows are significant. Validity of method depends on assumption that fluid flows quasi-steadily and that flow gives rise to uncorrelated acoustic powers in different parts of pump.
Acoustic streaming in simplified liquid rocket engines with transverse mode oscillations
NASA Astrophysics Data System (ADS)
Fischbach, Sean R.; Flandro, Gary A.; Majdalani, Joseph
2010-06-01
This study considers a simplified model of a liquid rocket engine in which uniform injection is imposed at the faceplate. The corresponding cylindrical chamber has a small length-to-diameter ratio with respect to solid and hybrid rockets. Given their low chamber aspect ratios, liquid thrust engines are known to experience severe tangential and radial oscillation modes more often than longitudinal ones. In order to model this behavior, tangential and radial waves are superimposed onto a basic mean-flow model that consists of a steady, uniform axial velocity throughout the chamber. Using perturbation tools, both potential and viscous flow equations are then linearized in the pressure wave amplitude and solved to the second order. The effects of the headwall Mach number are leveraged as well. While the potential flow analysis does not predict any acoustic streaming effects, the viscous solution carried out to the second order gives rise to steady secondary flow patterns near the headwall. These axisymmetric, steady contributions to the tangential and radial traveling waves are induced by the convective flow motion through interactions with inertial and viscous forces. We find that suppressing either the convective terms or viscosity at the headwall leads to spurious solutions that are free from streaming. In our problem, streaming is initiated at the headwall, within the boundary layer, and then extends throughout the chamber. We find that nonlinear streaming effects of tangential and radial waves act to alter the outer solution inside a cylinder with headwall injection. As a result of streaming, the radial wave velocities are intensified in one-half of the domain and reduced in the opposite half at any instant of time. Similarly, the tangential waves are either enhanced or weakened in two opposing sectors that are at 90° angle to the radial velocity counterparts. The second-order viscous solution that we obtain clearly displays both an oscillating and a steady flow component. The steady part can be an important contributor to wave steepening, a mechanism that is often observed during the onset of acoustic instability.
NASA Technical Reports Server (NTRS)
Pettit, C. D.; Barkhoudarian, S.; Daumann, A. G., Jr.; Provan, G. M.; ElFattah, Y. M.; Glover, D. E.
1999-01-01
In this study, we proposed an Advanced Health Management System (AHMS) functional architecture and conducted a technology assessment for liquid propellant rocket engine lifecycle health management. The purpose of the AHMS is to improve reusable rocket engine safety and to reduce between-flight maintenance. During the study, past and current reusable rocket engine health management-related projects were reviewed, data structures and health management processes of current rocket engine programs were assessed, and in-depth interviews with rocket engine lifecycle and system experts were conducted. A generic AHMS functional architecture, with primary focus on real-time health monitoring, was developed. Fourteen categories of technology tasks and development needs for implementation of the AHMS were identified, based on the functional architecture and our assessment of current rocket engine programs. Five key technology areas were recommended for immediate development, which (1) would provide immediate benefits to current engine programs, and (2) could be implemented with minimal impact on the current Space Shuttle Main Engine (SSME) and Reusable Launch Vehicle (RLV) engine controllers.
Quasi-2D Unsteady Flow Solver Module for Rocket Engine and Propulsion System Simulations
2006-06-14
Conference, Sacramento, CA, 9-12 July 2006. 14. ABSTRACT A new quasi-two-dimensional procedure is presented for the transient solution of real-fluid flows...solution procedures is being developed in parallel to provide verification test cases. The solution procedure for both codes is coupled with a state-of...Davis, Davis, CA, 95616 A new quasi-two-dimensional procedure is presented for the transient solution of real- fluid flows in lines and volumes
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Steinetz, B. M.; Zaretsky, E. V.; Athavale, M. M.; Przekwas, A. J.
2004-01-01
The issues and components supporting the engine power stream are reviewed. It is essential that companies pay close attention to engine sealing issues, particularly on the high-pressure spool or high-pressure pumps. Small changes in these systems are reflected throughout the entire engine. Although cavity, platform, and tip sealing are complex and have a significant effect on component and engine performance, computational tools (e.g., NASA-developed INDSEAL, SCISEAL, and ADPAC) are available to help guide the designer and the experimenter. Gas turbine engine and rocket engine externals must all function efficiently with a high degree of reliability in order for the engine to run but often receive little attention until they malfunction. Within the open literature statistically significant data for critical engine components are virtually nonexistent; the classic approach is deterministic. Studies show that variations with loading can have a significant effect on component performance and life. Without validation data they are just studies. These variations and deficits in statistical databases require immediate attention.
Study of solid rocket motor for space shuttle booster, volume 2, book 1
NASA Technical Reports Server (NTRS)
1972-01-01
The technical requirements for the solid propellant rocket engine to be used with the space shuttle orbiter are presented. The subjects discussed are: (1) propulsion system definition, (2) solid rocket engine stage design, (3) solid rocket engine stage recovery, (4) environmental effects, (5) manrating of the solid rocket engine stage, (6) system safety analysis, and (7) ground support equipment.
NASA Technical Reports Server (NTRS)
Hawthorne, P. J.
1976-01-01
The primary test objective was to define the base pressure environment of the first and second stage mated vehicle in a supersonic flow field from Mach 2.60 through 3.50 with simulated rocket engine exhaust plumes. The secondary objective was to obtain the pressure environment of the Orbiter at various vent port locations at these same freestream conditions. Data were obtained at angles of attack from -4 deg through +4 deg at zero yaw, and at yaw angles from -4 deg through +4 deg at zero angle of attack, with rocket plume sizes varying from smaller than nominal to much greater than nominal. Failed Orbiter engine data were also obtained. Elevon hinge moments and wing panel load data were obtained during all runs. Photographs of test equipment and tested configurations are shown.
CFD analyses of combustor and nozzle flowfields
NASA Astrophysics Data System (ADS)
Tsuei, Hsin-Hua; Merkle, Charles L.
1993-11-01
The objectives of the research are to improve design capabilities for low thrust rocket engines through understanding of the detailed mixing and combustion processes. A Computational Fluid Dynamic (CFD) technique is employed to model the flowfields within the combustor, nozzle, and near plume field. The computational modeling of the rocket engine flowfields requires the application of the complete Navier-Stokes equations, coupled with species diffusion equations. Of particular interest is a small gaseous hydrogen-oxygen thruster which is considered as a coordinated part of an ongoing experimental program at NASA LeRC. The numerical procedure is performed on both time-marching and time-accurate algorithms, using an LU approximate factorization in time, flux split upwinding differencing in space. The integrity of fuel film cooling along the wall, its effectiveness in the mixing with the core flow including unsteady large scale effects, the resultant impact on performance and the assessment of the near plume flow expansion to finite pressure altitude chamber are addressed.
Efficiency of the rocket engines with a supersonic afterburner
NASA Astrophysics Data System (ADS)
Sergienko, A. A.
1992-08-01
The paper is concerned with the problem of regenerative cooling of the liquid-propellant rocket engine combustion chamber at high pressures of the working fluid. It is shown that high combustion product pressures can be achieved in the liquid-propellant rocket engine with a supersonic afterburner than in a liquid-propellant rocket engine with a conventional subsonic combustion chamber for the same allowable heat flux density. However, the liquid-propellant rocket engine with a supersonic afterburner becomes more economical than the conventional engine only at generator gas temperatures of 1700 K and higher.
Performance potential of air turbo-ramjet employing supersonic through-flow fan
NASA Technical Reports Server (NTRS)
Kepler, C. E.; Champagne, G. A.
1989-01-01
A study was conducted to assess the performance potential of a supersonic through-flow fan in an advanced engine designed to power a Mach-5 cruise vehicle. It included a preliminary evaluation of fan performance requirements and the desirability of supersonic versus subsonic combustion, the design and performance of supersonic fans, and the conceptual design of a single-pass air-turbo-rocket/ramjet engine for a Mach 5 cruise vehicle. The study results showed that such an engine could provide high thrust over the entire speed range from sea-level takeoff to Mach 5 cruise, especially over the transonic speed range, and high fuel specific impulse at the Mach 5 cruise condition, with the fan windmilling.
Duct flow nonuniformities study for space shuttle main engine
NASA Technical Reports Server (NTRS)
Thoenes, J.
1985-01-01
To improve the Space Shuttle Main Engine (SSME) design and for future use in the development of generation rocket engines, a combined experimental/analytical study was undertaken with the goals of first, establishing an experimental data base for the flow conditions in the SSME high pressure fuel turbopump (HPFTP) hot gas manifold (HGM) and, second, setting up a computer model of the SSME HGM flow field. Using the test data to verify the computer model it should be possible in the future to computationally scan contemplated advanced design configurations and limit costly testing to the most promising design. The effort of establishing and using the computer model is detailed. The comparison of computational results and experimental data observed clearly demonstrate that computational fluid mechanics (CFD) techniques can be used successfully to predict the gross features of three dimensional fluid flow through configurations as intricate as the SSME turbopump hot gas manifold.
NASA Technical Reports Server (NTRS)
Bartrand, Timothy A.
1988-01-01
During the shutdown of the space shuttle main engine, oxygen flow is shut off from the fuel preburner and helium is used to push the residual oxygen into the combustion chamber. During this process a low frequency combustion instability, or chug, occurs. This chug has resulted in damage to the engine's augmented spark igniter due to backflow of the contents of the preburner combustion chamber into the oxidizer feed system. To determine possible causes and fixes for the chug, the fuel preburner was modeled as a heterogeneous stirred tank combustion chamber, a variable mass flow rate oxidizer feed system, a constant mass flow rate fuel feed system and an exit turbine. Within the combustion chamber gases were assumed perfectly mixed. To account for liquid in the combustion chamber, a uniform droplet distribution was assumed to exist in the chamber, with mean droplet diameter determined from an empirical relation. A computer program was written to integrate the resulting differential equations. Because chamber contents were assumed perfectly mixed, the fuel preburner model erroneously predicted that combustion would not take place during shutdown. The combustion rate model was modified to assume that all liquid oxygen that vaporized instantaneously combusted with fuel. Using this combustion model, the effect of engine parameters on chamber pressure oscillations during the SSME shutdown was calculated.
Merits of full flow vs. conventional staged combustion cycles for reusable launch vehicle propulsion
NASA Astrophysics Data System (ADS)
Peery, Steven D.; Parsley, Randy C.
1996-03-01
This paper provides a comparison between full-flow and conventional staged combustion thermodynamic O2/H2 rocket engine cycles for Reusable Launch Vehicle, RLV, single-stage-to-orbit applications. The impact of the cycle thermodynamics, component configuration, and component operating parameters on engine performance and weight for the two approaches is presented. Both cycles were modeled with equivalent technology turbomachinery and chamber/nozzle RLV life requirements. The first order impact of cycle selection, pump exit pressure, and turbine temperature on the empty weight of an SSTO Reusable Launch Vehicle is presented.
Theory and Design of Flight-Vehicle Engines
NASA Technical Reports Server (NTRS)
Zhdanov, V. T. (Editor); Kurziner, R. I. (Editor)
1987-01-01
Papers are presented on such topics as the testing of aircraft engines, errors in the experimental determination of the parameters of scramjet engines, the effect of the nonuniformity of supersonic flow with shocks on friction and heat transfer in the channel of a hypersonic ramjet engine, and the selection of the basic parameters of cooled GTE turbines. Consideration is also given to the choice of optimal total wedge angle for the acceleration of aerospace vehicles, the theory of an electromagnetic-resonator engine, the dynamic characteristics of the pumps and turbines of liquid propellant rocket engines in transition regimes, and a hierarchy of mathematical models for spacecraft control engines.
THRSTER: A THRee-STream Ejector Ramjet Analysis and Design Tool
NASA Technical Reports Server (NTRS)
Chue, R. S.; Sabean, J.; Tyll, J.; Bakos, R. J.
2000-01-01
An engineering tool for analyzing ejectors in rocket based combined cycle (RBCC) engines has been developed. A key technology for multi-cycle RBCC propulsion systems is the ejector which functions as the compression stage of the ejector ramjet cycle. The THRee STream Ejector Ramjet analysis tool was developed to analyze the complex aerothermodynamic and combustion processes that occur in this device. The formulated model consists of three quasi-one-dimensional streams, one each for the ejector primary flow, the secondary flow, and the mixed region. The model space marches through the mixer, combustor, and nozzle to evaluate the solution along the engine. In its present form, the model is intended for an analysis mode in which the diffusion rates of the primary and secondary into the mixed stream are stipulated. The model offers the ability to analyze the highly two-dimensional ejector flowfield while still benefits from the simplicity and speed of an engineering tool. To validate the developed code, wall static pressure measurements from the Penn-State and NASA-ART RBCC experiments were used to compare with the results generated by the code. The calculated solutions were generally found to have satisfactory agreement with the pressure measurements along the engines, although further modeling effort may be required when a strong shock train is formed at the rocket exhaust. The range of parameters in which the code would generate valid results are presented and discussed.
THRSTER: A Three-Stream Ejector Ramjet Analysis and Design Tool
NASA Technical Reports Server (NTRS)
Chue, R. S.; Sabean, J.; Tyll, J.; Bakos, R. J.; Komar, D. R. (Technical Monitor)
2000-01-01
An engineering tool for analyzing ejectors in rocket based combined cycle (RBCC) engines has been developed. A key technology for multi-cycle RBCC propulsion systems is the ejector which functions as the compression stage of the ejector ramjet cycle. The THRee STream Ejector Ramjet analysis tool was developed to analyze the complex aerothermodynamic and combustion processes that occur in this device. The formulated model consists of three quasi-one-dimensional streams, one each for the ejector primary flow, the secondary flow, and the mixed region. The model space marches through the mixer, combustor, and nozzle to evaluate the solution along the engine. In its present form, the model is intended for an analysis mode in which the diffusion rates of the primary and secondary into the mixed stream are stipulated. The model offers the ability to analyze the highly two-dimensional ejector flowfield while still benefits from the simplicity and speed of an engineering tool. To validate the developed code, wall static pressure measurements from the Penn-State and NASA-ART RBCC experiments were used to compare with the results generated by the code. The calculated solutions were generally found to have satisfactory agreement with the pressure measurements along the engines, although further modeling effort may be required when a strong shock train is formed at the rocket exhaust. The range of parameters in which the code would generate valid results are presented and discussed.
NASA Astrophysics Data System (ADS)
Cai, Guobiao; Li, Chengen; Tian, Hui
2016-11-01
This paper is aimed to analyze heat transfer in injector plate of hydrogen peroxide hybrid rocket motor by two-dimensional axisymmetric numerical simulations and full-scale firing tests. Long-time working, which is an advantage of hybrid rocket motor over conventional solid rocket motor, puts forward new challenges for thermal protection. Thermal environments of full-scale hybrid rocket motors designed for long-time firing tests are studied through steady-state coupled numerical simulations of flow field and heat transfer in chamber head. The motor adopts 98% hydrogen peroxide (98HP) oxidizer and hydroxyl-terminated poly-butadiene (HTPB) based fuel as the propellants. Simulation results reveal that flowing liquid 98HP in head oxidizer chamber could cool the injector plate of the motor. The cooling of 98HP is similar to the regenerative cooling in liquid rocket engines. However, the temperature of the 98HP in periphery portion of the head oxidizer chamber is higher than its boiling point. In order to prevent the liquid 98HP from unexpected decomposition, a thermal protection method for chamber head utilizing silica-phenolics annular insulating board is proposed. The simulation results show that the annular insulating board could effectively decrease the temperature of the 98HP in head oxidizer chamber. Besides, the thermal protection method for long-time working hydrogen peroxide hybrid rocket motor is verified through full-scale firing tests. The ablation of the insulating board in oxygen-rich environment is also analyzed.
Gas-Generator Augmented Expander Cycle Rocket Engine
NASA Technical Reports Server (NTRS)
Greene, William D. (Inventor)
2011-01-01
An augmented expander cycle rocket engine includes first and second turbopumps for respectively pumping fuel and oxidizer. A gas-generator receives a first portion of fuel output from the first turbopump and a first portion of oxidizer output from the second turbopump to ignite and discharge heated gas. A heat exchanger close-coupled to the gas-generator receives in a first conduit the discharged heated gas, and transfers heat to an adjacent second conduit carrying fuel exiting the cooling passages of a primary combustion chamber. Heat is transferred to the fuel passing through the cooling passages. The heated fuel enters the second conduit of the heat exchanger to absorb more heat from the first conduit, and then flows to drive a turbine of one or both of the turbopumps. The arrangement prevents the turbopumps exposure to combusted gas that could freeze in the turbomachinery and cause catastrophic failure upon attempted engine restart.
Liquid Rocket Engine Testing Overview
NASA Technical Reports Server (NTRS)
Rahman, Shamim
2005-01-01
Contents include the following: Objectives and motivation for testing. Technology, Research and Development Test and Evaluation (RDT&E), evolutionary. Representative Liquid Rocket Engine (LRE) test compaigns. Apollo, shuttle, Expandable Launch Vehicles (ELV) propulsion. Overview of test facilities for liquid rocket engines. Boost, upper stage (sea-level and altitude). Statistics (historical) of Liquid Rocket Engine Testing. LOX/LH, LOX/RP, other development. Test project enablers: engineering tools, operations, processes, infrastructure.
Feasibility Study of SSTO Base Heating Simulation in Pulsed-Type Facilities
NASA Technical Reports Server (NTRS)
Park, Chung Sik; Sharma, Surendra; Edwards, Thomas A. (Technical Monitor)
1995-01-01
A laboratory simulation of the base heating environment of the proposed reusable Single-Stage-To-Orbit vehicle during its ascent flight was proposed. The rocket engine produces CO2 and H2, which are the main combustible components of the exhaust effluent. The burning of these species, known as afterburning, enhances the base region gas temperature as well as the base heating. To determine the heat flux on the SSTO vehicle, current simulation focuses on the thermochemistry of the afterburning, thermophysical properties of the base region gas, and ensuing radiation from the gas. By extrapolating from the Saturn flight data, the Damkohler number for the afterburning of SSTO vehicle is estimated to be of the order of 10. The limitations on the material strengths limit the laboratory simulation of the flight Damkohler number as well as other flow parameters. A plan is presented in impulse facilities using miniature rocket engines which generate the simulated rocket plume by electric ally-heating a H2/CO2 mixture.
A Review of ETM-03 (A Five Segment Shuttle RSRM Configuration) Ballistic Performance
NASA Technical Reports Server (NTRS)
McMillin, J. E.; Furfaro, J. A.
2004-01-01
Marshall Space Flight Center and ATK Thiokol Propulsion worked together on the engineering design of a five-segment Engineering Test Motor (ETM-03), the world's largest segmented solid rocket motor. The data from ETM-03's static test have helped to provide a better understanding of the Reusable Solid Rocket Motor's (RSRM's) margins and the techniques and models used to simulate solid rocket motor performance. The enhanced performance of ETM-03 was achieved primarily by the addition of a RSRM center segment. Added motor performance was also achieved with a nozzle throat diameter increase and the incorporation of an Extended Aft Exit Cone (EAEC). Performance parameters such as web time, action time, head-end pressure, web time average pressure, maximum thrust, mass flow rate, centerline Mach number, pressure and thrust integrals were all increased over RSRM. In some cases, the performance increases were substantial. Overall, the measured data were exceptionally close to the pretest predictions.
Raman Gas Species Measurements in Hydrocarbon-Fueled Rocket Engine Injector Flows
NASA Technical Reports Server (NTRS)
Wehrmeyer, Joseph; Hartfield, Roy J., Jr.; Trinh, Huu P.; Dobson, Chris C.; Eskridge, Richard H.
2000-01-01
Rocket engine propellent injector development at NASA-Marshall includes experimental analysis using optical techniques, such as Raman, fluorescence, or Mie scattering. For the application of spontaneous Raman scattering to hydrocarbon-fueled flows a technique needs to be developed to remove the interfering polycyclic aromatic hydrocarbon fluorescence from the relatively weak Raman signals. A current application of such a technique is to the analysis of the mixing and combustion performance of multijet, impinging-jet candidate fuel injectors for the baseline Mars ascent engine, which will burn methane and liquid oxygen produced in-situ on Mars to reduce the propellent mass transported to Mars for future manned Mars missions. The Raman technique takes advantage of the strongly polarized nature of Raman scattering. It is shown to be discernable from unpolarized fluorescence interference by subtracting one polarized image from another. Both of these polarized images are obtained from a single laser pulse by using a polarization-separating calcite rhomb mounted in the imaging spectrograph. A demonstration in a propane-air flame is presented, as well as a high pressure demonstration in the NASA-Marshall Modular Combustion Test Artice, using the liquid methane-liquid oxygen propellant system
Specific Impulse and Mass Flow Rate Error
NASA Technical Reports Server (NTRS)
Gregory, Don A.
2005-01-01
Specific impulse is defined in words in many ways. Very early in any text on rocket propulsion a phrase similar to .specific impulse is the thrust force per unit propellant weight flow per second. will be found.(2) It is only after seeing the mathematics written down does the definition mean something physically to scientists and engineers responsible for either measuring it or using someone.s value for it.
Rocket Research Presentation at the NACA's 1947 Inspection
1947-10-21
Researcher John Sloop briefs visitors on his latest rocket engine research during the 1947 Inspection at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The NACA had been hosting annual Aircraft Engineering Conferences, better known as Inspections, since 1926. Individuals from the manufacturing industry, military, and university settings were invited to tour the NACA laboratories. There were a series of stops on the tour, mostly at test facilities, where researchers would brief the group on the latest efforts in their particular field. The Inspections grew in size and scope over the years and by the mid-1940s required multiple days. The three-day 1947 Inspection was the first time the event was held at NACA Lewis. Over 800 scientists, industrialists, and military leaders attended the three-day event. Talks were given at the Altitude Wind Tunnel, Four Burner Area, Engine Research Building, and other facilities. An array of topics were discussed, including full-scale engine testing, ramjets, axial-flow compressors, turbojets, fuels, icing, and materials. The NACA Lewis staff and their families were able to view the same presentations after the Inspection was over. Sloop, a researcher in the Fuels and Thermodynamics Division, briefed visitors on NACA Lewis’ early research in rocket engine propellants, combustion, and cooling. This early NACA Lewis work led to the development of liquid hydrogen as a viable propellant in the late 1950s.
Towards Flange-to-Flange Turbopump Simulations for Liquid Rocket Engines
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Williams, Robert
2000-01-01
The primary objective of this research is to support the design of liquid rocket systems for the Advanced Space Transportation System. Since the space launch systems in the near future are likely to rely on liquid rocket engines, increasing the efficiency and reliability of the engine components is an important task. One of the major problems in the liquid rocket engine is to understand fluid dynamics of fuel and oxidizer flows from the fuel tank to plume. Understanding the flow through the entire turbopump geometry through numerical simulation will be of significant value toward design. This will help to improve safety of future space missions. One of the milestones of this effort is to develop, apply and demonstrate the capability and accuracy of 3D CFD methods as efficient design analysis tools on high performance computer platforms. The development of the MPI and MLP versions of the INS3D code is currently underway. The serial version of INS3D code is a multidimensional incompressible Navier-Stokes solver based on overset grid technology. INS3D-MPI is based on the explicit massage-passing interface across processors and is primarily suited for distributed memory systems. INS3D-MLP is based on multi-level parallel method and is suitable for distributed-shared memory systems. For the entire turbopump simulations, moving boundary capability and an efficient time-accurate integration methods are build in the flow solver. To handle the geometric complexity and moving boundary problems, overset grid scheme is incorporated with the solver that new connectivity data will be obtained at each time step. The Chimera overlapped grid scheme allows subdomains move relative to each other, and provides a great flexibility when the boundary movement creates large displacements. The performance of the two time integration schemes for time-accurate computations is investigated. For an unsteady flow which requires small physical time step, the pressure projection method was found to be computationally efficient since it does not require any subiterations procedure. It was observed that the artificial compressibility method requires a fast convergence scheme at each physical time step in order to satisfy incompressibility condition. This was obtained by using a GMRES-ILU(0) solver in our computations. When a line-relaxation scheme was used, the time accuracy was degraded and time-accurate computations became very expensive. The current geometry for the LOX boost turbopump has various rotating and stationary components, such as inducer, stators, kicker, hydrolic turbine, where the flow is extremely unsteady. Figure 1 shows the geometry and computed surface pressure of the inducer. The inducer and the hydrolic turbine rotate in different rotational speed.
Fluidized-Solid-Fuel Injection Process
NASA Technical Reports Server (NTRS)
Taylor, William
1992-01-01
Report proposes development of rocket engines burning small grains of solid fuel entrained in gas streams. Main technical discussion in report divided into three parts: established fluidization technology; variety of rockets and rocket engines used by nations around the world; and rocket-engine equation. Discusses significance of specific impulse and ratio between initial and final masses of rocket. Concludes by stating three important reasons to proceed with new development: proposed engines safer; fluidized-solid-fuel injection process increases variety of solid-fuel formulations used; and development of fluidized-solid-fuel injection process provides base of engineering knowledge.
NASA Engineer Examines the Design of a Regeneratively-Cooled Rocket Engine
1958-12-21
An engineer at the National Aeronautics and Space Administration (NASA) Lewis Research Center examines a drawing showing the assembly and details of a 20,000-pound thrust regeneratively cooled rocket engine. The engine was being designed for testing in Lewis’ new Rocket Engine Test Facility, which began operating in the fall of 1957. The facility was the largest high-energy test facility in the country that was capable of handling liquid hydrogen and other liquid chemical fuels. The facility’s use of subscale engines up to 20,000 pounds of thrust permitted a cost-effective method of testing engines under various conditions. The Rocket Engine Test Facility was critical to the development of the technology that led to the use of hydrogen as a rocket fuel and the development of lightweight, regeneratively-cooled, hydrogen-fueled rocket engines. Regeneratively-cooled engines use the cryogenic liquid hydrogen as both the propellant and the coolant to prevent the engine from burning up. The fuel was fed through rows of narrow tubes that surrounded the combustion chamber and nozzle before being ignited inside the combustion chamber. The tubes are visible in the liner sitting on the desk. At the time, Pratt and Whitney was designing a 20,000-pound thrust liquid-hydrogen rocket engine, the RL-10. Two RL-10s would be used to power the Centaur second-stage rocket in the 1960s. The successful development of the Centaur rocket and the upper stages of the Saturn V were largely credited to the work carried out Lewis.
Control Room at the NACA’s Rocket Engine Test Facility
1957-05-21
Test engineers monitor an engine firing from the control room of the Rocket Engine Test Facility at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The Rocket Engine Test Facility, built in the early 1950s, had a rocket stand designed to evaluate high-energy propellants and rocket engine designs. The facility was used to study numerous different types of rocket engines including the Pratt and Whitney RL-10 engine for the Centaur rocket and Rocketdyne’s F-1 and J-2 engines for the Saturn rockets. The Rocket Engine Test Facility was built in a ravine at the far end of the laboratory because of its use of the dangerous propellants such as liquid hydrogen and liquid fluorine. The control room was located in a building 1,600 feet north of the test stand to protect the engineers running the tests. The main control and instrument consoles were centrally located in the control room and surrounded by boards controlling and monitoring the major valves, pumps, motors, and actuators. A camera system at the test stand allowed the operators to view the tests, but the researchers were reliant on data recording equipment, sensors, and other devices to provide test data. The facility’s control room was upgraded several times over the years. Programmable logic controllers replaced the electro-mechanical control devices. The new controllers were programed to operate the valves and actuators controlling the fuel, oxidant, and ignition sequence according to a predetermined time schedule.
2016-10-21
Briefing Charts 3. DATES COVERED (From - To) 17 October 2016 – 26 October 2016 4. TITLE AND SUBTITLE Liquid Rocket Engine Testing 5a. CONTRACT NUMBER...298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Liquid Rocket Engine Testing SFTE Symposium 21 October 2016 Jake Robertson, Capt USAF AFRL...Distribution Unlimited. PA Clearance 16493 Liquid Rocket Engine Testing • Engines and their components are extensively static-tested in development • This
Injection and swirl driven flowfields in solid and liquid rocket motors
NASA Astrophysics Data System (ADS)
Vyas, Anand B.
In this work, we seek approximate analytical solutions to describe the bulk flow motion in certain types of solid and liquid rocket motors. In the case of an idealized solid rocket motor, a cylindrical double base propellant grain with steady regression rate is considered. The well known inviscid profile determined by Culick is extended here to include the effects of viscosity and steady grain regression. The approximate analytical solution for the cold flow is obtained from similarity principles, perturbation methods and the method of variation of parameters. The velocity, vorticity, pressure gradient and the shear stress distributions are determined and interpreted for different rates of wall regression and injection Reynolds number. The liquid propellant rocket engine considered here is based on a novel design that gives rise to a cyclonic flow. The resulting bidirectional motion is triggered by the tangential injection of an oxidizer just upstream of the chamber nozzle. Velocity, vorticity and pressure gradient distributions are determined for the bulk gas dynamics using a non-reactive inviscid model. Viscous corrections are then incorporated to explain the formation of a forced vortex near the core. Our results compare favorably with numerical simulations and experimental measurements obtained by other researchers. They also indicate that the bidirectional vortex in a cylindrical chamber is a physical solution of the Euler equations. In closing, we investigate the possibility of multi-directional flow behavior as predicted by Euler's equation and as reported recently in laboratory experiments.
Multi-Element Unstructured Analyses of Complex Valve Systems
NASA Technical Reports Server (NTRS)
Sulyma, Peter (Technical Monitor); Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy
2004-01-01
The safe and reliable operation of high pressure test stands for rocket engine and component testing places an increased emphasis on the performance of control valves and flow metering devices. In this paper, we will present a series of high fidelity computational analyses of systems ranging from cryogenic control valves and pressure regulator systems to cavitating venturis that are used to support rocket engine and component testing at NASA Stennis Space Center. A generalized multi-element framework with sub-models for grid adaption, grid movement and multi-phase flow dynamics has been used to carry out the simulations. Such a framework provides the flexibility of resolving the structural and functional complexities that are typically associated with valve-based high pressure feed systems and have been difficult to deal with traditional CFD methods. Our simulations revealed a rich variety of flow phenomena such as secondary flow patterns, hydrodynamic instabilities, fluctuating vapor pockets etc. In the paper, we will discuss performance losses related to cryogenic control valves, and provide insight into the physics of the dominant multi-phase fluid transport phenomena that are responsible for the choking like behavior in cryogenic control elements. Additionally, we will provide detailed analyses of the modal instability that is observed in the operation of the dome pressure regulator valve. Such instabilities are usually not localized and manifest themselves as a system wide phenomena leading to an undesirable chatter at high flow conditions.
NASA Technical Reports Server (NTRS)
Maul, William A.; Meyer, Claudia M.
1991-01-01
A rocket engine safety system was designed to initiate control procedures to minimize damage to the engine or vehicle or test stand in the event of an engine failure. The features and the implementation issues associated with rocket engine safety systems are discussed, as well as the specific concerns of safety systems applied to a space-based engine and long duration space missions. Examples of safety system features and architectures are given, based on recent safety monitoring investigations conducted for the Space Shuttle Main Engine and for future liquid rocket engines. Also, the general design and implementation process for rocket engine safety systems is presented.
A Three Dimensional Parallel Time Accurate Turbopump Simulation Procedure Using Overset Grid Systems
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Chan, William; Kwak, Dochan
2001-01-01
The objective of the current effort is to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine, including high-fidelity unsteady turbopump flow analysis. This capability is needed to support the design of pump sub-systems for advanced space transportation vehicles that are likely to involve liquid propulsion systems. To date, computational tools for design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available for real-world engineering applications. The present effort provides developers with information such as transient flow phenomena at start up, and non-uniform inflows, and will eventually impact on system vibration and structures. In the proposed paper, the progress toward the capability of complete simulation of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. CAD to solution auto-scripting capability is being developed for turbopump applications. The relative motion of the grid systems for the rotor-stator interaction was obtained using overset grid techniques. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on Origin 3000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability will be presented along with the performance of parallel versions of the code.
Developments in REDES: The rocket engine design expert system
NASA Technical Reports Server (NTRS)
Davidian, Kenneth O.
1990-01-01
The Rocket Engine Design Expert System (REDES) is being developed at the NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP, a nozzle design program named RAO, a regenerative cooling channel performance evaluation code named RTE, and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES is built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.
Developments in REDES: The Rocket Engine Design Expert System
NASA Technical Reports Server (NTRS)
Davidian, Kenneth O.
1990-01-01
The Rocket Engine Design Expert System (REDES) was developed at NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP; a nozzle design program named RAO; a regenerative cooling channel performance evaluation code named RTE; and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES was built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.
NASA Astrophysics Data System (ADS)
Emelyanov, V. N.; Teterina, I. V.; Volkov, K. N.; Garkushev, A. U.
2017-06-01
Metal particles are widely used in space engineering to increase specific impulse and to supress acoustic instability of intra-champber processes. A numerical analysis of the internal injection-driven turbulent gas-particle flows is performed to improve the current understanding and modeling capabilities of the complex flow characteristics in the combustion chambers of solid rocket motors (SRMs) in presence of forced pressure oscillations. The two-phase flow is simulated with a combined Eulerian-Lagrangian approach. The Reynolds-averaged Navier-Stokes equations and transport equations of k - ε model are solved numerically for the gas. The particulate phase is simulated through a Lagrangian deterministic and stochastic tracking models to provide particle trajectories and particle concentration. The results obtained highlight the crucial significance of the particle dispersion in turbulent flowfield and high potential of statistical methods. Strong coupling between acoustic oscillations, vortical motion, turbulent fluctuations and particle dynamics is observed.
Flow diverter value and flow diversion method
NASA Technical Reports Server (NTRS)
Arline, S. B.; Carlson, R. L. (Inventor)
1964-01-01
A flow diverter valve applicable to any fluid flow system requiring rapid bleed or bypass is disclosed. Examples of application of the flow diverter valve to a liquid rocket and a turbojet aircraft engine are given. Features of the valve include: (1) an independent fluid source is used to activate the flow diverter valve toward its closed position during its initial stage of travel; (2) the flow diverter port area and size is unlimited and the valve travel is unlimited; and (3) the valve housing is fabricated such that the valve can be a one step valve, a two step valve, or include as many steps as are found desirable.
Development of Mechanics in Support of Rocket Technology in Ukraine
NASA Astrophysics Data System (ADS)
Prisnyakov, Vladimir
2003-06-01
The paper analyzes the advances of mechanics made in Ukraine in resolving various problems of space and rocket technology such as dynamics and strength of rockets and rocket engines, rockets of different purpose, electric rocket engines, and nonstationary processes in various systems of rockets accompanied by phase transitions of working media. Achievements in research on the effect of vibrations and gravitational fields on the behavior of space-rocket systems are also addressed. Results obtained in investigating the reliability and structural strength durability conditions for nuclear installations, solid- and liquid-propellant engines, and heat pipes are presented
Skylon Aerodynamics and SABRE Plumes
NASA Technical Reports Server (NTRS)
Mehta, Unmeel; Afosmis, Michael; Bowles, Jeffrey; Pandya, Shishir
2015-01-01
An independent partial assessment is provided of the technical viability of the Skylon aerospace plane concept, developed by Reaction Engines Limited (REL). The objectives are to verify REL's engineering estimates of airframe aerodynamics during powered flight and to assess the impact of Synergetic Air-Breathing Rocket Engine (SABRE) plumes on the aft fuselage. Pressure lift and drag coefficients derived from simulations conducted with Euler equations for unpowered flight compare very well with those REL computed with engineering methods. The REL coefficients for powered flight are increasingly less acceptable as the freestream Mach number is increased beyond 8.5, because the engineering estimates did not account for the increasing favorable (in terms of drag and lift coefficients) effect of underexpanded rocket engine plumes on the aft fuselage. At Mach numbers greater than 8.5, the thermal environment around the aft fuselage is a known unknown-a potential design and/or performance risk issue. The adverse effects of shock waves on the aft fuselage and plumeinduced flow separation are other potential risks. The development of an operational reusable launcher from the Skylon concept necessitates the judicious use of a combination of engineering methods, advanced methods based on required physics or analytical fidelity, test data, and independent assessments.
Advanced small rocket chambers: Option 1, 14 lbf Ir-Re rocket
NASA Technical Reports Server (NTRS)
Jassowski, Donald M.; Gage, Mark L.
1992-01-01
A high performance Ir-Re 14 lbf (62 N) chamber and nozzle which can be a direct replacement for a production engine was designed, built, hot fired and vibration acceptance tested. It passed all acceptance tests satisfactorily and demonstrated a 20 sec increase in specific impulse (Is) over the conventional 14 lbf silicide coated Cb chamber. The high performance engine uses the production valve and injector without modification. Incorporation of a secondary mixing device or Boundary Layer Trip within the combustion chamber results in elimination of the fuel film coolant, improvement in flow uniformity, the 20 sec performance increase, and reduction of a potential source of spacecraft contamination. Measured Is was 305 sec at 75:1 area ratio, with monomenthylhydrazine and nitrogen tetroxide propellants. Qualification tests remain to be done.
NASA Technical Reports Server (NTRS)
Heidmann, M F
1957-01-01
Characteristic exhaust velocity of a 200-pound-thrust rocket engine was evaluated for fuel temperatures of -90 degrees, and 200 degrees f with a spray formed by two impinging heptane jets reacting in a highly atomized oxygen atmosphere. Tests covered a range of mixture ratios and chamber lengths. The characteristic exhaust-velocity efficiency increased 2 percent for a 290 degree f increase in fuel temperature. This increase in performance can be compared with that obtained by increasing chamber length by about 1/2 inch. The result agrees with the fuel-temperature effect predicted from an analysis based on droplet evaporation theory. Mixture ratio markedly affected characteristic exhaust velocity efficiency, but total flow rate and fuel temperature did not.
NASA Technical Reports Server (NTRS)
Shoji, J. M.; Larson, V. R.
1976-01-01
The application of advanced liquid-bipropellant rocket engine analysis techniques has been utilized for prediction of the potential delivered performance and the design of thruster wall cooling schemes for laser-heated rocket thrusters. Delivered specific impulse values greater than 1000 lbf-sec/lbm are potentially achievable based on calculations for thrusters designed for 10-kW and 5000-kW laser beam power levels. A thruster wall-cooling technique utilizing a combination of regenerative cooling and a carbon-seeded hydrogen boundary layer is presented. The flowing carbon-seeded hydrogen boundary layer provides radiation absorption of the heat radiated from the high-temperature plasma. Also described is a forced convection thruster wall cooling design for an experimental test thruster.
Dual Expander Cycle Rocket Engine with an Intermediate, Closed-cycle Heat Exchanger
NASA Technical Reports Server (NTRS)
Greene, William D. (Inventor)
2008-01-01
A dual expander cycle (DEC) rocket engine with an intermediate closed-cycle heat exchanger is provided. A conventional DEC rocket engine has a closed-cycle heat exchanger thermally coupled thereto. The heat exchanger utilizes heat extracted from the engine's fuel circuit to drive the engine's oxidizer turbomachinery.
NASA Technical Reports Server (NTRS)
1977-01-01
Principles of rocket engineering, flight dynamics, and trajectories are discussed in this summary of Soviet rocket development and technology. Topics include rocket engine design, propellants, propulsive efficiency, and capabilities required for orbital launch. The design of the RD 107, 108, 119, and 214 rocket engines and their uses in various satellite launches are described. NASA's Saturn 5 and Atlas Agena launch vehicles are used to illustrate the requirements of multistage rockets.
NASA Technical Reports Server (NTRS)
Coffin, T.
1986-01-01
A dynamic pressure data base and data base management system developed to characterize the Space Shuttle Main Engine (SSME) dynamic pressure environment is described. The data base represents dynamic pressure measurements obtained during single engine hot firing tesets of the SSME. Software is provided to permit statistical evaluation of selected measurements under specified operating conditions. An interpolation scheme is also included to estimate spectral trends with SSME power level. Flow dynamic environments in high performance rocket engines are discussed.
NASA Technical Reports Server (NTRS)
Coffin, T.
1986-01-01
A dynamic pressure data base and data base management system developed to characterize the Space Shuttle Main Engine (SSME) dynamic pressure environment is reported. The data base represents dynamic pressure measurements obtained during single engine hot firing tests of the SSME. Software is provided to permit statistical evaluation of selected measurements under specified operating conditions. An interpolation scheme is included to estimate spectral trends with SSME power level. Flow Dynamic Environments in High Performance Rocket Engines are described.
Reusable rocket engine optical condition monitoring
NASA Technical Reports Server (NTRS)
Wyett, L.; Maram, J.; Barkhoudarian, S.; Reinert, J.
1987-01-01
Plume emission spectrometry and optical leak detection are described as two new applications of optical techniques to reusable rocket engine condition monitoring. Plume spectrometry has been used with laboratory flames and reusable rocket engines to characterize both the nominal combustion spectra and anomalous spectra of contaminants burning in these plumes. Holographic interferometry has been used to identify leaks and quantify leak rates from reusable rocket engine joints and welds.
CFD assessment of the pollutant environment from RD-170 propulsion system testing
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Mcconnaughey, Paul; Warsi, Saif; Chen, Yen-Sen
1995-01-01
Computational Fluid Dynamics (CFD) technology has been used to assess the exhaust plume pollutant environment of the RD-170 engine hot-firing on the F1 Test Stand at Marshall Space Flight Center. Researchers know that rocket engine hot-firing has the potential for forming thermal nitric oxides (NO(x)), as well as producing carbon monoxide (CO) when hydrocarbon fuels are used. Because of the complicated physics involved, however, little attempt has been made to predict the pollutant emissions from ground-based engine testing, except for simplified methods which can grossly underpredict and/or overpredict the pollutant formations in a test environment. The objective of this work, therefore, has been to develop a technology using CFD to describe the underlying pollutant emission physics from ground-based rocket engine testing. This resultant technology is based on a three-dimensional (3D), viscous flow, pressure-based CFD formulation, where wet CO and thermal NO finite-rate chemistry mechanisms are solved with a Penalty Function method. A nominal hot-firing of a RD-170 engine on the F1 stand has been computed. Pertinent test stand flow physics such as the multiple-nozzle clustered engine plume interaction, air aspiration from base and aspirator, plume mixing with entrained air that resulted in contaminant dilution and afterburning, counter-afterburning due to flame bucket water-quenching, plume impingement on the flame bucket, and restricted multiple-plume expansion and turning have been captured. The predicted total emission rates compared reasonably well with those of the existing hydrocarbon engine hot-firing test data.
Computational Modeling of Supercritical and Transcritical Flows
2017-01-09
Acentric factor I. Introduction Liquid rocket and gas turbine engines operate at high pressures. For gas turbines, the combustor pressurecan be 60 − 100...an approach the liquid gas interface is tracked.4 We note that an overwhelming majority of the computational studies have similarly focused on purely...A standard approach for supercritical flows is to treat the multicomponent mixture of species as a dense fluid using a real gas equation of state such
Nuclear Engine System Simulation (NESS) version 2.0
NASA Technical Reports Server (NTRS)
Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.
1993-01-01
The topics are presented in viewgraph form and include the following; nuclear thermal propulsion (NTP) engine system analysis program development; nuclear thermal propulsion engine analysis capability requirements; team resources used to support NESS development; expanded liquid engine simulations (ELES) computer model; ELES verification examples; NESS program development evolution; past NTP ELES analysis code modifications and verifications; general NTP engine system features modeled by NESS; representative NTP expander, gas generator, and bleed engine system cycles modeled by NESS; NESS program overview; NESS program flow logic; enabler (NERVA type) nuclear thermal rocket engine; prismatic fuel elements and supports; reactor fuel and support element parameters; reactor parameters as a function of thrust level; internal shield sizing; and reactor thermal model.
Test Stand at the Rocket Engine Test Facility
1973-02-21
The thrust stand in the Rocket Engine Test Facility at the National Aeronautics and Space Administration (NASA) Lewis Research Center in Cleveland, Ohio. The Rocket Engine Test Facility was constructed in the mid-1950s to expand upon the smaller test cells built a decade before at the Rocket Laboratory. The $2.5-million Rocket Engine Test Facility could test larger hydrogen-fluorine and hydrogen-oxygen rocket thrust chambers with thrust levels up to 20,000 pounds. Test Stand A, seen in this photograph, was designed to fire vertically mounted rocket engines downward. The exhaust passed through an exhaust gas scrubber and muffler before being vented into the atmosphere. Lewis researchers in the early 1970s used the Rocket Engine Test Facility to perform basic research that could be utilized by designers of the Space Shuttle Main Engines. A new electronic ignition system and timer were installed at the facility for these tests. Lewis researchers demonstrated the benefits of ceramic thermal coatings for the engine’s thrust chamber and determined the optimal composite material for the coatings. They compared the thermal-coated thrust chamber to traditional unlined high-temperature thrust chambers. There were more than 17,000 different configurations tested on this stand between 1973 and 1976. The Rocket Engine Test Facility was later designated a National Historic Landmark for its role in the development of liquid hydrogen as a propellant.
NASA Astrophysics Data System (ADS)
Cui, Peng; Xu, WanWu; Li, Qinglian
2018-01-01
Currently, the upper operating limit of the turbine engine is Mach 2+, and the lower limit of the dual-mode scramjet is Mach 4. Therefore no single power systems can operate within the range between Mach 2 + and Mach 4. By using ejector rockets, Rocket-based-combined-cycle can work well in the above scope. As the key component of Rocket-based-combined-cycle, the ejector rocket has significant influence on Rocket-based-combined-cycle performance. Research on the influence of rocket parameters on Rocket-based-combined-cycle in the speed range of Mach 2 + to Mach 4 is scarce. In the present study, influences of Mach number and total pressure of the ejector rocket on Rocket-based-combined-cycle were analyzed numerically. Due to the significant effects of the flight conditions and the Rocket-based-combined-cycle configuration on Rocket-based-combined-cycle performances, flight altitude, flight Mach number, and divergence ratio were also considered. The simulation results indicate that matching lower altitude with higher flight Mach numbers can increase Rocket-based-combined-cycle thrust. For another thing, with an increase of the divergent ratio, the effect of the divergent configuration will strengthen and there is a limit on the divergent ratio. When the divergent ratio is greater than the limit, the effect of divergent configuration will gradually exceed that of combustion on supersonic flows. Further increases in the divergent ratio will decrease Rocket-based-combined-cycle thrust.
NASA Technical Reports Server (NTRS)
Dushkin, L. S.
1977-01-01
The development of the following Liquid-Propellant Rocket Engines (LPRE) is reviewed: (1) an alcohol-oxygen single-firing LPRE for use in wingless and winged rockets, (2) a similar multifiring LPRE for use in rocket gliders, (3) a combined solid-liquid propellant rocket engine, and (4) an aircraft LPRE operating on nitric acid and kerosene.
Rocket-Based Combined Cycle Engine Concept Development
NASA Technical Reports Server (NTRS)
Ratekin, G.; Goldman, Allen; Ortwerth, P.; Weisberg, S.; McArthur, J. Craig (Technical Monitor)
2001-01-01
The development of rocket-based combined cycle (RBCC) propulsion systems is part of a 12 year effort under both company funding and contract work. The concept is a fixed geometry integrated rocket, ramjet, scramjet, which is hydrogen fueled and uses hydrogen regenerative cooling. The baseline engine structural configuration uses an integral structure that eliminates panel seals, seal purge gas, and closeout side attachments. Engine A5 is the current configuration for NASA Marshall Space Flight Center (MSFC) for the ART program. Engine A5 models the complete flight engine flowpath of inlet, isolator, airbreathing combustor, and nozzle. High-performance rocket thrusters are integrated into the engine enabling both low speed air-augmented rocket (AAR) and high speed pure rocket operation. Engine A5 was tested in GASL's new Flight Acceleration Simulation Test (FAST) facility in all four operating modes, AAR, RAM, SCRAM, and Rocket. Additionally, transition from AAR to RAM and RAM to SCRAM was also demonstrated. Measured performance demonstrated vision vehicle performance levels for Mach 3 AAR operation and ramjet operation from Mach 3 to 4. SCRAM and rocket mode performance was above predictions. For the first time, testing also demonstrated transition between operating modes.
1. ROCKET ENGINE TEST STAND, LOCATED IN THE NORTHEAST ¼ ...
1. ROCKET ENGINE TEST STAND, LOCATED IN THE NORTHEAST ¼ OF THE X-15 ENGINE TEST COMPLEX. Looking northeast. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
NASA Astrophysics Data System (ADS)
McInerny, S. A.
1990-10-01
This paper reviews what is known about far-field rocket noise from the controlled studies of the late 1950s and 1960s and from launch data. The peak dimensionless frequency, the dependence of overall sound power on exhaust parameters, and the directivity of the overall sound power of rockets are compared to those of subsonic jets and turbo-jets. The location of the dominant sound source in the rocket exhaust plume and the mean flow velocity in this region are discussed and shown to provide a qualitative explanation for the low peak Strouhal number, fD(e)/V(e), and large angle of maximum directivity. Lastly, two empirical prediction methods are compared with data from launches of a Titan family vehicle (two, solid rocket motors of 5.7 x 10 to the 6th N thrust each) and the Saturn V (five, liquid oxygen/rocket propellant engines of 6.7 x 10 to the 6th N thrust, each). The agreement is favorable. In contrast, these methods appear to overpredict the far-field sound pressure levels generated by the Space Shuttle.
Large Eddy Simulations of Transverse Combustion Instability in a Multi-Element Injector
2016-07-27
plagued the development of liquid rocket engines and remains a large riskin the development and acquisition of new liquid rocket engines. Combustion...simulations to better understand the physics that can lead combustion instability in liquid rocket engines. Simulations of this type are able to...instabilities found in liquid rocket engines are transverse. The motivating of the experiment behind the current work is to subject the CVRC injector
Rocketdyne RBCC Engine Concept Development
NASA Technical Reports Server (NTRS)
Ratckin, G.; Goldman, A.; Ortwerth, P.; Weisberg, S.
1999-01-01
Boeing Rocketdyne is pursuing the development of Rocket Based Combined Cycle (RBCC), propulsion systems as demonstrated by significant contract work in the hypersonic arena (ART, NASP, SCT, system studies) and over 12 years of steady company discretionary investment. The Rocketdyne concept is a fixed geometry integrated rocket, ramjet, scramjet which is hydrogen fueled and uses hydrogen regenerative cooling. The baseline engine structural configuration uses an integral structure that eliminates panel seals. seal purge gas, and closeout side attachments. Rocketdyne's experimental RBCC engine (Engine A5) was constructed under contract with the NASA Marshall Space Flight Center. Engine A5 models the complete flight engine flowpath consisting of an inlet, isolator, airbreathing combustor and nozzle. High performance rocket thrusters are integrated into the engine to enable both air-augmented rocket (AAR) and pure rocket operation. Engine A5 was tested in CASL's new FAST facility as an air-augmented rocket, a ramjet and a pure rocket. Measured performance demonstrated vision vehicle performance levels for Mach 3 AAR operation and ramjet operation from Mach 3 to 4. Rocket mode performance was above predictions. For the first time. testing also demonstrated transition from AAR operation to ramjet operation. This baseline configuration has also been shown, in previous testing, to perform well in the scramjet mode.
NASA Technical Reports Server (NTRS)
Anderson, Floyd A.
1987-01-01
Brief report describes concept for coal-burning hybrid rocket engine. Proposed engine carries larger payload, burns more cleanly, and safer to manufacture and handle than conventional solid-propellant rockets. Thrust changeable in flight, and stops and starts on demand.
NASA Astrophysics Data System (ADS)
Sutton, George P.
The subject of rocket propulsion is treated with emphasis on the basic technology, performance, and design rationale. Attention is given to definitions and fundamentals, nozzle theory and thermodynamic relations, heat transfer, flight performance, chemical rocket propellant performance analysis, and liquid propellant rocket engine fundamentals. The discussion also covers solid propellant rocket fundamentals, hybrid propellant rockets, thrust vector control, selection of rocket propulsion systems, electric propulsion, and rocket testing.
Powdered aluminum and oxygen rocket propellants: Subscale combustion experiments
NASA Technical Reports Server (NTRS)
Meyer, Mike L.
1993-01-01
Aluminum combined with oxygen has been proposed as a potential lunar in situ propellant for ascent/descent and return missions for future lunar exploration. Engine concepts proposed to use this propellant have not previously been demonstrated, and the impact on performance from combustion and two-phase flow losses could only be estimated. Therefore, combustion tests were performed for aluminum and aluminum/magnesium alloy powders with oxygen in subscale heat-sink rocket engine hardware. The metal powder was pneumatically injected, with a small amount of nitrogen, through the center orifice of a single element O-F-O triplet injector. Gaseous oxygen impinged on the fuel stream. Hot-fire tests of aluminum/oxygen were performed over a mixture ratio range of 0.5 to 3.0, and at a chamber pressure of approximately 480 kPa (70 psia). The theoretical performance of the propellants was analyzed over a mixture ratio range of 0.5 to 5.0. In the theoretical predictions the ideal one-dimensional equilibrium rocket performance was reduced by loss mechanisms including finite rate kinetics, two-dimensional divergence losses, and boundary layer losses. Lower than predicted characteristic velocity and specific impulse performance efficiencies were achieved in the hot-fire tests, and this was attributed to poor mixing of the propellants and two-phase flow effects. Several tests with aluminum/9.8 percent magnesium alloy powder did not indicate any advantage over the pure aluminum fuel.
Low Pressure Nuclear Thermal Rocket (LPNTR) concept
NASA Technical Reports Server (NTRS)
Ramsthaler, J. H.
1991-01-01
A background and a description of the low pressure nuclear thermal system are presented. Performance, mission analysis, development, critical issues, and some conclusions are discussed. The following subject areas are covered: LPNTR's inherent advantages in critical NTR requirement; reactor trade studies; reference LPNTR; internal configuration and flow of preliminary LPNTR; particle bed fuel assembly; preliminary LPNTR neutronic study results; multiple LPNTR engine concept; tank and engine configuration for mission analysis; LPNTR reliability potential; LPNTR development program; and LPNTR program costs.
Flow dynamic environment data base development for the SSME
NASA Technical Reports Server (NTRS)
Sundaram, C. V.
1985-01-01
The fluid flow-induced vibration of the Space Shuttle main engine (SSME) components are being studied with a view to correlating the frequency characteristics of the pressure fluctuations in a rocket engine to its operating conditions and geometry. An overview of the data base development for SSME test firing results and the interactive computer software used to access, retrieve, and plot or print the results selectively for given thrust levels, engine numbers, etc., is presented. The various statistical methods available in the computer code for data analysis are discussed. Plots of test data, nondimensionalized using parameters such as fluid flow velocities, densities, and pressures, are presented. Results are compared with those available in the literature. Correlations between the resonant peaks observed at higher frequencies in power spectral density plots with pump geometry and operating conditions are discussed. An overview of the status of the investigation is presented and future directions are discussed.
NASA Technical Reports Server (NTRS)
1998-01-01
NASA engineers successfully tested a Russian-built rocket engine on November 4, 1998 at the Marshall Space Flight Center (MSFC) Advanced Engine Test Facility, which had been used for testing the Saturn V F-1 engines and Space Shuttle Main engines. The MSFC was under a Space Act Agreement with Lockheed Martin Astronautics of Denver to provide a series of test firings of the Atlas III propulsion system configured with the Russian-designed RD-180 engine. The tests were designed to measure the performance of the Atlas III propulsion system, which included avionics and propellant tanks and lines, and how these components interacted with the RD-180 engine. The RD-180 is powered by kerosene and liquid oxygen, the same fuel mix used in Saturn rockets. The RD-180, the most powerful rocket engine tested at the MSFC since Saturn rocket tests in the 1960s, generated 860,000 pounds of thrust.
Electrophoretic separator for purifying biologicals, part 1
NASA Technical Reports Server (NTRS)
Mccreight, L. R.
1978-01-01
A program to develop an engineering model of an electrophoretic separator for purifying biologicals is summarized. An extensive mathematical modeling study and numerous ground based tests were included. Focus was placed on developing an actual electrophoretic separator of the continuous flow type, configured and suitable for flight testing as a space processing applications rocket payload.
Liquid rocket disconnects, couplings, fittings, fixed joints, and seals
NASA Technical Reports Server (NTRS)
1976-01-01
State of the art and design criteria for components used in liquid propellant rocket propulsion systems to contain and control the flow of fluids involved are discussed. Particular emphasis is placed on the design of components used in the engine systems of boosters and upper stages, and in spacecraft propulsion systems because of the high pressure and high vibration levels to which these components are exposed. A table for conversion of U.S. customary units to SI units is included with a glossary, and a list of NASA space vehicle design criteria monographs issued to September 1976.
NASA Technical Reports Server (NTRS)
Sukanek, Peter C.
2002-01-01
The NASA EPSCoR project in Mississippi involved investigations into three areas of interest to NASA by researchers at the four comprehensive universities in the state. These areas involved: (1) Noninvasive Flow Measurement Techniques, (2) Spectroscopic Exhaust Plume Measurements of Hydrocarbon Fueled Rocket Engines and (3) Integration of Remote Sensing and GIS data for Flood Forecasting on the Mississippi Gulf Coast. Each study supported a need at the Stennis Space Center in Mississippi. The first two addressed needs in rocket testing, and the third, in commercial remote sensing. Students from three of the institutions worked with researchers at Stennis Space Center on the projects.
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Canabal, Francisco; Chen, Yen-Sen; Cheng, Gary; Ito, Yasushi
2013-01-01
Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions. This chapter describes a thermal hydraulics design and analysis methodology developed at the NASA Marshall Space Flight Center, in support of the nuclear thermal propulsion development effort. The objective of this campaign is to bridge the design methods in the Rover/NERVA era, with a modern computational fluid dynamics and heat transfer methodology, to predict thermal, fluid, and hydrogen environments of a hypothetical solid-core, nuclear thermal engine the Small Engine, designed in the 1960s. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics and heat transfer platform, while formulations of flow and heat transfer through porous and solid media were implemented to describe those of hydrogen flow channels inside the solid24 core. Design analyses of a single flow element and the entire solid-core thrust chamber of the Small Engine were performed and the results are presented herein
NASA Technical Reports Server (NTRS)
Williams, Powtawche N.
1998-01-01
To assess engine performance during the testing of Space Shuttle Main Engines (SSMEs), the design of an optimal altitude diffuser is studied for future Space Transportation Systems (STS). For other Space Transportation Systems, rocket propellant using kerosene is also studied. Methane and dodecane have similar reaction schemes as kerosene, and are used to simulate kerosene combustion processes at various temperatures. The equations for the methane combustion mechanism at high temperature are given, and engine combustion is simulated on the General Aerodynamic Simulation Program (GASP). The successful design of an altitude diffuser depends on the study of a sub-scaled diffuser model tested through two-dimensional (2-D) flow-techniques. Subroutines given calculate the static temperature and pressure at each Mach number within the diffuser flow. Implementing these subroutines into program code for the properties of 2-D compressible fluid flow determines all fluid characteristics, and will be used in the development of an optimal diffuser design.
Measuring Model Rocket Engine Thrust Curves
ERIC Educational Resources Information Center
Penn, Kim; Slaton, William V.
2010-01-01
This paper describes a method and setup to quickly and easily measure a model rocket engine's thrust curve using a computer data logger and force probe. Horst describes using Vernier's LabPro and force probe to measure the rocket engine's thrust curve; however, the method of attaching the rocket to the force probe is not discussed. We show how a…
NASA Astrophysics Data System (ADS)
Sung, Hong-Gye
This research focuses on the time-accurate simulation and analysis of the unsteady flowfield in an integrated rocket-ramjet engine (IRR) and combustion dynamics of a swirl-stabilized gas turbine engine. The primary objectives are: (1) to establish a unified computational framework for studying unsteady flow and flame dynamics in ramjet propulsion systems and gas turbine combustion chambers, and (2) to investigate the parameters and mechanisms responsible for driving flow oscillations. The first part of the thesis deals with a complete axi-symmetric IRR engine. The domain of concern includes a supersonic inlet diffuser, a combustion chamber, and an exhaust nozzle. This study focused on the physical mechanism of the interaction between the oscillatory terminal shock in the inlet diffuser and the flame in the combustion chamber. In addition, the flow and ignition transitions from the booster to the sustainer phase were analyzed comprehensively. Even though the coupling between the inlet dynamics and the unsteady motions of flame shows that they are closely correlated, fortunately, those couplings are out of phase with a phase lag of 90 degrees, which compensates for the amplification of the pressure fluctuation in the inlet. The second part of the thesis treats the combustion dynamics of a lean-premixed gas turbine swirl injector. A three-dimensional computation method utilizing the message passing interface (MPI) Parallel architecture and large-eddy-simulation technique was applied. Vortex breakdown in the swirling flow is clearly visualized and explained on theoretical bases. The unsteady turbulent flame dynamics are carefully simulated so that the flow motion can be characterized in detail. It was observed that some fuel lumps escape from the primary combustion zone, and move downstream and consequently produce hot spots and large vortical structures in the azimuthal direction. The correlation between pressure oscillation and unsteady heat release is examined by both the spatial and temporal Rayleigh parameters. In addition, basis modes of the unsteady turbulent flame are characterized using proper orthogonal decomposition (POD) analysis.
Unsteady Turbopump Flow Simulations
NASA Technical Reports Server (NTRS)
Centin, Kiris C.; Kwak, Dochan
2001-01-01
The objective of the current effort is two-fold: 1) to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine; and 2) to provide high-fidelity unsteady turbopump flow analysis capability to support the design of pump sub-systems for advanced space transportation vehicle. Since the space launch systems in the near future are likely to involve liquid propulsion system, increasing the efficiency and reliability of the turbopump components is an important task. To date, computational tools for design/analysis of turbopump flow are based on relatively lower fidelity methods. Unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available, at least, for real-world engineering applications. Present effort is an attempt to provide this capability so that developers of the vehicle will be able to extract such information as transient flow phenomena for start up, impact of non-uniform inflow, system vibration and impact on the structure. Those quantities are not readily available from simplified design tools. In this presentation, the progress being made toward complete turbo-pump simulation capability for a liquid rocket engine is reported. Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for the performance evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. Relative motion of the grid system for rotor-stator interaction was obtained by employing overset grid techniques. Time-accuracy of the scheme has been evaluated by using simple test cases. Unsteady computations for SSME turbopump, which contains 106 zones with 34.5 Million grid points, are currently underway on Origin 2000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability and the performance of the parallel versions of the code will be presented.
NASA Astrophysics Data System (ADS)
Jeyashekar, Nigil Satish
Scramjet engines propelled at hypersonic velocities have the potential to replace existing rocket launchers. Commercializing the vehicle is an arduous task, owing to issues relating to low combustion efficiency. The performance, thrust, and speed of the engine can be improved by optimizing: turbulence-chemistry interaction to provide mixing conditions favorable for the chemistry, pressure buildup, and re-circulation of hydrogen throughout the engine. The performance of the engine can be measured, flow and chemical dynamics can be evaluated when all three variables in the transport equations are known. The variables are instantaneous flow velocity, static temperature (refers to the macroscopic temperature and not the molecular species temperature), and total number density at a point in the flow. The motive is to build a non-intrusive tool to measure thermodynamic quantities (static temperature and total number density). This can be integrated with a velocity measurement tool, in the future, to obtain all three variables simultaneously and instantaneously. The dissertation describes in detail the motivation for the proposed work, with introduction to the formalism involved, with a concise literature review, followed by mathematical perspective to obtain the working equations for temperature and number density. The design of the adiabatic burner and the experimental setup used for calibration is discussed with the uncertainty involved in measurements. The measurements are made for a certain set of flow conditions in the laminar burner by Raman scattering and is validated by comparing it to the theoretical/adiabatic flame temperature and mole fraction plots, in lean and rich regime. This technique is applied to turbulent, supersonic, hydrogen-air flame of an afterburning rocket nozzle. The statistics of temperature and total number density versus the corresponding values at adiabatic conditions gives the departure from thermal and chemical equilibrium. The extent of mixing and combustion can be concluded from such statistics. The future work will involve experimental modifications to make line and planar measurements in combusting jets.
Cold Flow Testing for Liquid Propellant Rocket Injector Scaling and Throttling
NASA Technical Reports Server (NTRS)
Kenny, Jeremy R.; Moser, Marlow D.; Hulka, James; Jones, Gregg
2006-01-01
Scaling and throttling of combustion devices are important capabilities to demonstrate in development of liquid rocket engines for NASA's Space Exploration Mission. Scaling provides the ability to design new injectors and injection elements with predictable performance on the basis of test experience with existing injectors and elements, and could be a key aspect of future development programs. Throttling is the reduction of thrust with fixed designs and is a critical requirement in lunar and other planetary landing missions. A task in the Constellation University Institutes Program (CUIP) has been designed to evaluate spray characteristics when liquid propellant rocket engine injectors are scaled and throttled. The specific objectives of the present study are to characterize injection and primary atomization using cold flow simulations of the reacting sprays. These simulations can provide relevant information because the injection and primary atomization are believed to be the spray processes least affected by the propellant reaction. Cold flow studies also provide acceptable test conditions for a university environment. Three geometric scales - 1/4- scale, 1/2-scale, and full-scale - of two different injector element types - swirl coaxial and shear coaxial - will be designed, fabricated, and tested. A literature review is currently being conducted to revisit and compile the previous scaling documentation. Because it is simple to perform, throttling will also be examined in the present work by measuring primary atomization characteristics as the mass flow rate and pressure drop of the six injector element concepts are reduced, with corresponding changes in chamber backpressure. Simulants will include water and gaseous nitrogen, and an optically accessible chamber will be used for visual and laser-based diagnostics. The chamber will include curtain flow capability to repress recirculation, and additional gas injection to provide independent control of the backpressure. This paper provides a short review of the appropriate literature, as well as descriptions of plans for experimental hardware, test chamber instrumentation, diagnostics, and testing.
Supersonic Rocket Thruster Flow Predicted by Numerical Simulation
NASA Technical Reports Server (NTRS)
Davoudzadeh, Farhad
2004-01-01
Despite efforts in the search for alternative means of energy, combustion still remains the key source. Most propulsion systems primarily use combustion for their needed thrust. Associated with these propulsion systems are the high-velocity hot exhaust gases produced as the byproducts of combustion. These exhaust products often apply uneven high temperature and pressure over the surfaces of the appended structures exposed to them. If the applied pressure and temperature exceed the design criteria of the surfaces of these structures, they will not be able to protect the underlying structures, resulting in the failure of the vehicle mission. An understanding of the flow field associated with hot exhaust jets and the interactions of these jets with the structures in their path is critical not only from the design point of view but for the validation of the materials and manufacturing processes involved in constructing the materials from which the structures in the path of these jets are made. The hot exhaust gases often flow at supersonic speeds, and as a result, various incident and reflected shock features are present. These shock structures induce abrupt changes in the pressure and temperature distribution that need to be considered. In addition, the jet flow creates a gaseous plume that can easily be traced from large distances. To study the flow field associated with the supersonic gases induced by a rocket engine, its interaction with the surrounding surfaces, and its effects on the strength and durability of the materials exposed to it, NASA Glenn Research Center s Combustion Branch teamed with the Ceramics Branch to provide testing and analytical support. The experimental work included the full range of heat flux environments that the rocket engine can produce over a flat specimen. Chamber pressures were varied from 130 to 500 psia and oxidizer-to-fuel ratios (o/f) were varied from 1.3 to 7.5.
Nitrous Oxide/Paraffin Hybrid Rocket Engines
NASA Technical Reports Server (NTRS)
Zubrin, Robert; Snyder, Gary
2010-01-01
Nitrous oxide/paraffin (N2OP) hybrid rocket engines have been invented as alternatives to other rocket engines especially those that burn granular, rubbery solid fuels consisting largely of hydroxyl- terminated polybutadiene (HTPB). Originally intended for use in launching spacecraft, these engines would also be suitable for terrestrial use in rocket-assisted takeoff of small airplanes. The main novel features of these engines are (1) the use of reinforced paraffin as the fuel and (2) the use of nitrous oxide as the oxidizer. Hybrid (solid-fuel/fluid-oxidizer) rocket engines offer advantages of safety and simplicity over fluid-bipropellant (fluid-fuel/fluid-oxidizer) rocket en - gines, but the thrusts of HTPB-based hybrid rocket engines are limited by the low regression rates of the fuel grains. Paraffin used as a solid fuel has a regression rate about 4 times that of HTPB, but pure paraffin fuel grains soften when heated; hence, paraffin fuel grains can, potentially, slump during firing. In a hybrid engine of the present type, the paraffin is molded into a 3-volume-percent graphite sponge or similar carbon matrix, which supports the paraffin against slumping during firing. In addition, because the carbon matrix material burns along with the paraffin, engine performance is not appreciably degraded by use of the matrix.
Performance potential of gas-core and fusion rockets - A mission applications survey.
NASA Technical Reports Server (NTRS)
Fishbach, L. H.; Willis, E. A., Jr.
1971-01-01
This paper reports an evaluation of the performance potential of five nuclear rocket engines for four mission classes. These engines are: the regeneratively cooled gas-core nuclear rocket; the light bulb gas-core nuclear rocket; the space-radiator cooled gas-core nuclear rocket; the fusion rocket; and an advanced solid-core nuclear rocket which is included for comparison. The missions considered are: earth-to-orbit launch; near-earth space missions; close interplanetary missions; and distant interplanetary missions. For each of these missions, the capabilities of each rocket engine type are compared in terms of payload ratio for the earth launch mission or by the initial vehicle mass in earth orbit for space missions (a measure of initial cost). Other factors which might determine the engine choice are discussed. It is shown that a 60 day manned round trip to Mars is conceivable.-
NASA Technical Reports Server (NTRS)
Edwards, Daryl A.; Weaver, Harold F; Kastner, Carl E., Jr.
2009-01-01
The center-body diffuser (CBD) steam blocker (SB) system is a concept that incorporates a set of secondary drive nozzles into the envelope of a CBD, such that both nozzle systems (i.e., the rocket engine and the steam blocking nozzles) utilize the same supersonic diffuser, and will operate either singularly or concurrently. In this manner, the SB performs as an exhaust system stage when the rocket engine is not operating, and virtually eliminates discharge flow on rocket engine shutdown. A 2.25-percent scale model of a proposed SB integrated into a diffuser for the Plum Brook B-2 facility was constructed and cold-flow tested for the purpose of evaluating performance characteristics of various design options. These specific design options addressed secondary drive nozzle design (method of steam injection), secondary drive nozzle location relative to CBD throat, and center-body throat length to diameter (L/D) ratios. The objective of the test program is to identify the desired configuration to carry forward should the next phase of design proceed. The tested scale model can provide data for various pressure ratios; however, its design is based on a proposed B-2 spray chamber (SC) operating pressure of 4.0 psia and a steam supply pressure of 165 psia. Evaluation of the test data acquired during these tests indicate that either the discrete axial or annular nozzle configuration integrated into a CBD, with an annular throat length of 1.5 L/D at the nominal injection position, would be suitable to carry forward from the SB's perspective. Selection between these two then becomes more a function of constructability and implementation than performance. L/D also has some flexibility, and final L/D selection can be a function of constructability issues within a limited range.
DataRocket: Interactive Visualisation of Data Structures
NASA Astrophysics Data System (ADS)
Parkes, Steve; Ramsay, Craig
2010-08-01
CodeRocket is a software engineering tool that provides cognitive support to the software engineer for reasoning about a method or procedure and for documenting the resulting code [1]. DataRocket is a software engineering tool designed to support visualisation and reasoning about program data structures. DataRocket is part of the CodeRocket family of software tools developed by Rapid Quality Systems [2] a spin-out company from the Space Technology Centre at the University of Dundee. CodeRocket and DataRocket integrate seamlessly with existing architectural design and coding tools and provide extensive documentation with little or no effort on behalf of the software engineer. Comprehensive, abstract, detailed design documentation is available early on in a project so that it can be used for design reviews with project managers and non expert stakeholders. Code and documentation remain fully synchronised even when changes are implemented in the code without reference to the existing documentation. At the end of a project the press of a button suffices to produce the detailed design document. Existing legacy code can be easily imported into CodeRocket and DataRocket to reverse engineer detailed design documentation making legacy code more manageable and adding substantially to its value. This paper introduces CodeRocket. It then explains the rationale for DataRocket and describes the key features of this new tool. Finally the major benefits of DataRocket for different stakeholders are considered.
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.
1995-01-01
The potential for a revolutionary step in the durability of reusable rocket engines is made possible by the combination of several emerging technologies. The recent creation and analytical demonstration of life extending (or damage mitigating) control technology enables rapid rocket engine transients with minimum fatigue and creep damage. This technology has been further enhanced by the formulation of very simple but conservative continuum damage models. These new ideas when combined with recent advances in multidisciplinary optimization provide the potential for a large (revolutionary) step in reusable rocket engine durability. This concept has been named the robust rocket engine concept (RREC) and is the basic contribution of this paper. The concept also includes consideration of design innovations to minimize critical point damage.
NTREES Testing and Operations Status
NASA Technical Reports Server (NTRS)
Emrich, Bill
2007-01-01
Nuclear Thermal Rockets or NTR's have been suggested as a propulsion system option for vehicles traveling to the moon or Mars. These engines are capable of providing high thrust at specific impulses at least twice that of today's best chemical engines. The performance constraints on these engines are mainly the result of temperature limitations on the fuel coupled with a limited ability to withstand chemical attack by the hot hydrogen propellant. To operate at maximum efficiency, fuel forms are desired which can withstand the extremely hot, hostile environment characteristic of NTR operation for at least several hours. The simulation of such an environment would require an experimental device which could simultaneously approximate the power, flow, and temperature conditions which a nuclear fuel element (or partial element) would encounter during NTR operation. Such a simulation would allow detailed studies of the fuel behavior and hydrogen flow characteristics under reactor like conditions to be performed. Currently, the construction of such a simulator has been completed at the Marshall Space Flight Center, and will be used in the future to evaluate a wide variety of fuel element designs and the materials of which they are fabricated. This present work addresses the operational status of the Nuclear Thermal Rocket Element Environmental Simulator or NTREES and some of the design considerations which were considered prior to and during its construction.
Metallized Gelled Propellants: Oxygen/RP-1/Aluminum Rocket Heat Transfer and Combustion Measurements
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan; Zakany, James S.
1996-01-01
A series of rocket engine heat transfer experiments using metallized gelled liquid propellants was conducted. These experiments used a small 20- to 40-lb/f thrust engine composed of a modular injector, igniter, chamber and nozzle. The fuels used were traditional liquid RP-1 and gelled RP-1 with 0-, 5-, and 55-percentage by weight loadings of aluminum particles. Gaseous oxygen was used as the oxidizer. Three different injectors were used during the testing: one for the baseline O(2)/RP-1 tests and two for the gelled and metallized gelled fuel firings. Heat transfer measurements were made with a rocket engine calorimeter chamber and nozzle with a total of 31 cooling channels. Each chamber used a water flow to carry heat away from the chamber and the attached thermocouples and flow meters allowed heat flux estimates at each of the 31 stations. The rocket engine Cstar efficiency for the RP-1 fuel was in the 65-69 percent range, while the gelled 0 percent by weight RP-1 and the 5-percent by weight RP-1 exhibited a Cstar efficiency range of 60 to 62% and 65 to 67%, respectively. The 55-percent by weight RP-1 fuel delivered a 42-47% Cstar efficiency. Comparisons of the heat flux and temperature profiles of the RP-1 and the metallized gelled RP-1/A1 fuels show that the peak nozzle heat fluxes with the metallized gelled O2/RP-1/A1 propellants are substantially higher than the baseline O2/RP-1: up to double the flux for the 55 percent by weight RP-1/A1 over the RP-1 fuel. Analyses showed that the heat transfer to the wall was significantly different for the RP-1/A1 at 55-percent by weight versus the RP-1 fuel. Also, a gellant and an aluminum combustion delay was inferred in the 0 percent and 5-percent by weight RP-1/A1 cases from the decrease in heat flux in the first part of the chamber. A large decrease in heat flux in the last half of the chamber was caused by fuel deposition in the chamber and nozzle. The engine combustion occurred well downstream of the injector face based on the heat flux estimates from the temperature measurements.
Computational Fluid Dynamics (CFD) Analysis for the Reduction of Impeller Discharge Flow Distortion
NASA Technical Reports Server (NTRS)
Garcia, R.; McConnaughey, P. K.; Eastland, A.
1993-01-01
The use of Computational Fluid Dynamics (CFD) in the design and analysis of high performance rocket engine pumps has increased in recent years. This increase has been aided by the activities of the Marshall Space Flight Center (MSFC) Pump Stage Technology Team (PSTT). The team's goals include assessing the accuracy and efficiency of several methodologies and then applying the appropriate methodology(s) to understand and improve the flow inside a pump. The PSTT's objectives, team membership, and past activities are discussed in Garcia1 and Garcia2. The PSTT is one of three teams that form the NASA/MSFC CFD Consortium for Applications in Propulsion Technology (McConnaughey3). The PSTT first applied CFD in the design of the baseline consortium impeller. This impeller was designed for the Space Transportation Main Engine's (STME) fuel turbopump. The STME fuel pump was designed with three impeller stages because a two-stage design was deemed to pose a high developmental risk. The PSTT used CFD to design an impeller whose performance allowed for a two-stage STME fuel pump design. The availability of this design would have lead to a reduction in parts, weight, and cost had the STME reached production. One sample of the baseline consortium impeller was manufactured and tested in a water rig. The test data showed that the impeller performance was as predicted and that a two-stage design for the STME fuel pump was possible with minimal risk. The test data also verified another CFD predicted characteristic of the design that was not desirable. The classical 'jet-wake' pattern at the impeller discharge was strengthened by two aspects of the design: by the high head coefficient necessary for the required pressure rise and by the relatively few impeller exit blades, 12, necessary to reduce manufacturing cost. This 'jet-wake pattern produces an unsteady loading on the diffuser vanes and has, in past rocket engine programs, lead to diffuser structural failure. In industrial applications, this problem is typically avoided by increasing the space between the impeller and the diffuser to allow the dissipation of this pattern and, hence, the reduction of diffuser vane unsteady loading. This approach leads to small performance losses and, more importantly in rocket engine applications, to significant increases in the pump's size and weight. This latter consideration typically makes this approach unacceptable in high performance rocket engines.
Fuel/oxidizer-rich high-pressure preburners. [staged-combustion rocket engine
NASA Technical Reports Server (NTRS)
Schoenman, L.
1981-01-01
The analyses, designs, fabrication, and cold-flow acceptance testing of LOX/RP-1 preburner components required for a high-pressure staged-combustion rocket engine are discussed. Separate designs of injectors, combustion chambers, turbine simulators, and hot-gas mixing devices are provided for fuel-rich and oxidizer-rich operation. The fuel-rich design addresses the problem of non-equilibrium LOX/RP-1 combustion. The development and use of a pseudo-kinetic combustion model for predicting operating efficiency, physical properties of the combustion products, and the potential for generating solid carbon is presented. The oxygen-rich design addresses the design criteria for the prevention of metal ignition. This is accomplished by the selection of materials and the generation of well-mixed gases. The combining of unique propellant injector element designs with secondary mixing devices is predicted to be the best approach.
NASA Technical Reports Server (NTRS)
1998-01-01
NASA engineers successfully tested a Russian-built rocket engine on November 4, 1998 at the Marshall Space Flight Center (MSFC) Advanced Engine Test Facility, which had been used for testing the Saturn V F-1 engines and Space Shuttle Main engines. The MSFC was under a Space Act Agreement with Lockheed Martin Astronautics of Denver to provide a series of test firings of the Atlas III propulsion system configured with the Russian-designed RD-180 engine. The tests were designed to measure the performance of the Atlas III propulsion system, which included avionics and propellant tanks and lines, and how these components interacted with the RD-180 engine. The RD-180 is powered by kerosene and liquid oxygen, the same fuel mix used in Saturn rockets. The RD-180, the most powerful rocket engine tested at the MSFC since Saturn rocket tests in the 1960s, generated 860,000 pounds of thrust. The test was the first test ever anywhere outside Russia of a Russian designed and built engine.
Thermal analysis of regenerative-cooled pylon in multi-mode rocket based combined cycle engine
NASA Astrophysics Data System (ADS)
Yan, Dekun; He, Guoqiang; Li, Wenqiang; Zhang, Duo; Qin, Fei
2018-07-01
Combining pylon injector with rocket is an effective method to achieve efficient mixing and combustion in the RBCC engine. This study designs a fuel pylon with active cooling structure, and numerically investigates the coupled heat transfer between active cooling process in the pylon and combustion in the combustor in different modes. Effect of the chemical reaction of the fuel on the flow, heat transfer and physical characteristics is also discussed. The numerical results present a good agreement with the experimental data. Results indicate that drastic supplementary combustion caused by rocket gas and secondary combustion caused by the fuel injection from the pylon result in severe thermal load on the pylon. Although regenerative cooling without cracking can reduce pylon's temperature below the allowable limit, a high-temperature area appears in the middle and nail section of the pylon due to the coolant's insufficient convective heat transfer coefficient. Comparatively, endothermic cracking can provide extra chemical heat sink for the coolant and low velocity contributes to prolong the reaction time to increase the heat absorption from chemical reaction, which further lowers and unifies the pylon surface temperature.
Unsteady Analyses of Valve Systems in Rocket Engine Testing Environments
NASA Technical Reports Server (NTRS)
Shipman, Jeremy; Hosangadi, Ashvin; Ahuja, Vineet
2004-01-01
This paper discusses simulation technology used to support the testing of rocket propulsion systems by performing high fidelity analyses of feed system components. A generalized multi-element framework has been used to perform simulations of control valve systems. This framework provides the flexibility to resolve the structural and functional complexities typically associated with valve-based high pressure feed systems that are difficult to deal with using traditional Computational Fluid Dynamics (CFD) methods. In order to validate this framework for control valve systems, results are presented for simulations of a cryogenic control valve at various plug settings and compared to both experimental data and simulation results obtained at NASA Stennis Space Center. A detailed unsteady analysis has also been performed for a pressure regulator type control valve used to support rocket engine and component testing at Stennis Space Center. The transient simulation captures the onset of a modal instability that has been observed in the operation of the valve. A discussion of the flow physics responsible for the instability and a prediction of the dominant modes associated with the fluctuations is presented.
2. ROCKET ENGINE TEST STAND, SHOWING TANK (BUILDING 1929) AND ...
2. ROCKET ENGINE TEST STAND, SHOWING TANK (BUILDING 1929) AND GARAGE (BUILDING 1930) AT LEFT REAR. Looking to west. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
7. Historic aerial photo of rocket engine test facility complex, ...
7. Historic aerial photo of rocket engine test facility complex, June 1962. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-60674. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
NASA Technical Reports Server (NTRS)
Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan; Kirchner, Robert; Engel, Carl D.
2014-01-01
The Space Launch System (SLS) base heating test is broken down into two test programs: (1) Pathfinder and (2) Main Test. The Pathfinder Test Program focuses on the design, development, hot-fire test and performance analyses of the 2% sub-scale SLS core-stage and booster element propulsion systems. The core-stage propulsion system is composed of four gaseous oxygen/hydrogen RS-25D model engines and the booster element is composed of two aluminum-based model solid rocket motors (SRMs). The first section of the paper discusses the motivation and test facility specifications for the test program. The second section briefly investigates the internal flow path of the design. The third section briefly shows the performance of the model RS-25D engines and SRMs for the conducted short duration hot-fire tests. Good agreement is observed based on design prediction analysis and test data. This program is a challenging research and development effort that has not been attempted in 40+ years for a NASA vehicle.
A hybrid rocket engine design for simple low cost sounding rocket use
NASA Astrophysics Data System (ADS)
Grubelich, Mark; Rowland, John; Reese, Larry
1993-06-01
Preliminary test results on a nitrous oxide/HTPB hybrid rocket engine suitable for powering a small sounding rocket to altitudes of 50-100 K/ft are presented. It is concluded that the advantage of the N2O hybrid engine over conventional solid propellant rocket motors is the ability to obtain long burn times with core burning geometries due to the low regression rate of the fuel. Long burn times make it possible to reduce terminal velocity to minimize air drag losses.
Modeling Liquid Rocket Engine Atomization and Swirl/Coaxial Injectors
2008-02-27
47-61, 2004. 2. Yoon, S . S ., and Heister, S . D., "A Fully Nonlinear Model for Atomization of High - Speed Jets," Engineering Analysis with... Power , V20, pp 468-479, 2004. 5. Yoon, S . S ., and Heister, S . D., "Analytic Solutions for Computing Velocities Induced from Potential Vortex Ring...Heister, S . D., "Three Dimensional Flow Simulations in Recessed Region of a Coaxial Injector," J. Propulsion and Power , V21, No.4, pp. 728-742
1978-01-01
around 100 miles. With two Lockheed external 165-gallon tanks (and a full rocket load ) it was only 225 miles. Lieutenants Edward R. Johnston and...start. 12 While waiting for acceptable engines, North American had to bear the expense of storing unequipped F-82 airframes.13 The situation grew so bad...secure a suitable airframe for the GE TG-180 axial flow gas turbine engine, that the Air Technical Service Command of the Army Air Forces was
Rocket engine exhaust plume diagnostics and health monitoring/management during ground testing
NASA Technical Reports Server (NTRS)
Chenevert, D. J.; Meeks, G. R.; Woods, E. G.; Huseonica, H. F.
1992-01-01
The current status of a rocket exhaust plume diagnostics program sponsored by NASA is reviewed. The near-term objective of the program is to enhance test operation efficiency and to provide for safe cutoff of rocket engines prior to incipient failure, thereby avoiding the destruction of the engine and the test complex and preventing delays in the national space program. NASA programs that will benefit from the nonintrusive remote sensed rocket plume diagnostics and related vehicle health management and nonintrusive measurement program are Space Shuttle Main Engine, National Launch System, National Aero-Space Plane, Space Exploration Initiative, Advanced Solid Rocket Motor, and Space Station Freedom. The role of emission spectrometry and other types of remote sensing in rocket plume diagnostics is discussed.
NASA Astrophysics Data System (ADS)
Mishra, Arpit; Ghosh, Parthasarathi
2015-12-01
For low cost, high thrust, space missions with high specific impulse and high reliability, inert weight needs to be minimized and thereby increasing the delivered payload. Turbopump feed system for a liquid propellant rocket engine (LPRE) has the highest power to weight ratio. Turbopumps are primarily equipped with an axial flow inducer to achieve the high angular velocity and low suction pressure in combination with increased system reliability. Performance of the turbopump strongly depends on the performance of the inducer. Thus, for designing a LPRE turbopump, demands optimization of the inducer geometry based on the performance of different off-design operating regimes. In this paper, steady-state CFD analysis of the inducer of a liquid oxygen (LOX) axial pump used as a booster pump for an oxygen rich staged combustion cycle rocket engine has been presented using ANSYS® CFX. Attempts have been made to obtain the performance characteristic curves for the LOX pump inducer. The formalism has been used to predict the performance of the inducer for the throttling range varying from 80% to 113% of nominal thrust and for the different rotational velocities from 4500 to 7500 rpm. The results have been analysed to determine the region of cavitation inception for different inlet pressure.
12. Historic plot plan and drawings index for rocket engine ...
12. Historic plot plan and drawings index for rocket engine test facility, June 28, 1956. NASA GRC drawing number CE-101810. On file at NASA Glenn Research Center. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
9. Historic aerial photo of rocket engine test facility complex, ...
9. Historic aerial photo of rocket engine test facility complex, June 11, 1965. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-65-1270. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
10. Historic photo of rendering of rocket engine test facility ...
10. Historic photo of rendering of rocket engine test facility complex, April 28, 1964. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-69472. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
5. Historic photo of scale model of rocket engine test ...
5. Historic photo of scale model of rocket engine test facility, June 18, 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45264. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
8. Historic aerial photo of rocket engine test facility complex, ...
8. Historic aerial photo of rocket engine test facility complex, June 11, 1965. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-65-1271. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
Hydrocarbon-Fueled Rocket Engine Plume Diagnostics: Analytical Developments and Experimental Results
NASA Technical Reports Server (NTRS)
Tejwani, Gopal D.; McVay, Gregory P.; Langford, Lester A.; St. Cyr, William W.
2006-01-01
A viewgraph presentation describing experimental results and analytical developments about plume diagnostics for hydrocarbon-fueled rocket engines is shown. The topics include: 1) SSC Plume Diagnostics Background; 2) Engine Health Monitoring Approach; 3) Rocket Plume Spectroscopy Simulation Code; 4) Spectral Simulation for 10 Atomic Species and for 11 Diatomic Molecular Electronic Bands; 5) "Best" Lines for Plume Diagnostics for Hydrocarbon-Fueled Rocket Engines; 6) Experimental Set Up for the Methane Thruster Test Program and Experimental Results; and 7) Summary and Recommendations.
NASA Tests RS-25 Flight Engine for Space Launch System
2017-10-19
Engineers at NASA’s Stennis Space Center in Mississippi on Oct. 19 completed a hot-fire test of RS-25 rocket engine E2063, a flight engine for NASA’s new Space Launch System (SLS) rocket. Engine E2063 is scheduled to help power SLS on its Exploration Mission-2 (EM-2), the first flight of the new rocket to carry humans.
Development and application of theoretical models for Rotating Detonation Engine flowfields
NASA Astrophysics Data System (ADS)
Fievisohn, Robert
As turbine and rocket engine technology matures, performance increases between successive generations of engine development are becoming smaller. One means of accomplishing significant gains in thermodynamic performance and power density is to use detonation-based heat release instead of deflagration. This work is focused on developing and applying theoretical models to aid in the design and understanding of Rotating Detonation Engines (RDEs). In an RDE, a detonation wave travels circumferentially along the bottom of an annular chamber where continuous injection of fresh reactants sustains the detonation wave. RDEs are currently being designed, tested, and studied as a viable option for developing a new generation of turbine and rocket engines that make use of detonation heat release. One of the main challenges in the development of RDEs is to understand the complex flowfield inside the annular chamber. While simplified models are desirable for obtaining timely performance estimates for design analysis, one-dimensional models may not be adequate as they do not provide flow structure information. In this work, a two-dimensional physics-based model is developed, which is capable of modeling the curved oblique shock wave, exit swirl, counter-flow, detonation inclination, and varying pressure along the inflow boundary. This is accomplished by using a combination of shock-expansion theory, Chapman-Jouguet detonation theory, the Method of Characteristics (MOC), and other compressible flow equations to create a shock-fitted numerical algorithm and generate an RDE flowfield. This novel approach provides a numerically efficient model that can provide performance estimates as well as details of the large-scale flow structures in seconds on a personal computer. Results from this model are validated against high-fidelity numerical simulations that may require a high-performance computing framework to provide similar performance estimates. This work provides a designer a new tool to conduct large-scale parametric studies to optimize a design space before conducting computationally-intensive, high-fidelity simulations that may be used to examine additional effects. The work presented in this thesis not only bridges the gap between simple one-dimensional models and high-fidelity full numerical simulations, but it also provides an effective tool for understanding and exploring RDE flow processes.
Supercomputer modeling of hydrogen combustion in rocket engines
NASA Astrophysics Data System (ADS)
Betelin, V. B.; Nikitin, V. F.; Altukhov, D. I.; Dushin, V. R.; Koo, Jaye
2013-08-01
Hydrogen being an ecological fuel is very attractive now for rocket engines designers. However, peculiarities of hydrogen combustion kinetics, the presence of zones of inverse dependence of reaction rate on pressure, etc. prevents from using hydrogen engines in all stages not being supported by other types of engines, which often brings the ecological gains back to zero from using hydrogen. Computer aided design of new effective and clean hydrogen engines needs mathematical tools for supercomputer modeling of hydrogen-oxygen components mixing and combustion in rocket engines. The paper presents the results of developing verification and validation of mathematical model making it possible to simulate unsteady processes of ignition and combustion in rocket engines.
Photoignition Torch Applied to Cryogenic H2/O2 Coaxial Jet
2016-12-06
suitable for certain thrusters and liquid rocket engines. This ignition system is scalable for applications in different combustion chambers such as gas ...turbines, gas generators, liquid rocket engines, and multi grain solid rocket motors. photoignition, fuel spray ignition, high pressure ignition...thrusters and liquid rocket engines. This ignition system is scalable for applications in different combustion chambers such as gas turbines, gas
Adaptive Time Stepping for Transient Network Flow Simulation in Rocket Propulsion Systems
NASA Technical Reports Server (NTRS)
Majumdar, Alok K.; Ravindran, S. S.
2017-01-01
Fluid and thermal transients found in rocket propulsion systems such as propellant feedline system is a complex process involving fast phases followed by slow phases. Therefore their time accurate computation requires use of short time step initially followed by the use of much larger time step. Yet there are instances that involve fast-slow-fast phases. In this paper, we present a feedback control based adaptive time stepping algorithm, and discuss its use in network flow simulation of fluid and thermal transients. The time step is automatically controlled during the simulation by monitoring changes in certain key variables and by feedback. In order to demonstrate the viability of time adaptivity for engineering problems, we applied it to simulate water hammer and cryogenic chill down in pipelines. Our comparison and validation demonstrate the accuracy and efficiency of this adaptive strategy.
2013-05-29
VANDENBERG AFB, Calif. – Engineers unwrap NASA's IRIS spacecraft after its connection to the nose of an Orbital Sciences Pegasus XL rocket that will lift the solar observatory into orbit in June. The work is taking place in a hangar at Vandenberg Air Force Base where IRIS, short for Interface Region Imaging Spectrograph, is being prepared for launch on a Pegasus XL rocket. Scheduled for launch from Vandenberg June 26, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and the region around the sun known as the heliosphere. Photo credit: NASA/Randy Beaudoin
2013-05-29
VANDENBERG AFB, Calif. – Engineers unwrap NASA's IRIS spacecraft after its connection to the nose of an Orbital Sciences Pegasus XL rocket that will lift the solar observatory into orbit in June. The work is taking place in a hangar at Vandenberg Air Force Base where IRIS, short for Interface Region Imaging Spectrograph, is being prepared for launch on a Pegasus XL rocket. Scheduled for launch from Vandenberg June 26, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and the region around the sun known as the heliosphere. Photo credit: NASA/Randy Beaudoin
Air-Breathing Rocket Engine Test
NASA Technical Reports Server (NTRS)
2000-01-01
This photograph depicts an air-breathing rocket engine that completed an hour or 3,600 seconds of testing at the General Applied Sciences Laboratory in Ronkonkoma, New York. Referred to as ARGO by its design team, the engine is named after the mythological Greek ship that bore Jason and the Argonauts on their epic voyage of discovery. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced SpaceTransportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.
Modular Rocket Engine Control Software (MRECS)
NASA Technical Reports Server (NTRS)
Tarrant, C.; Crook, J.
1998-01-01
The Modular Rocket Engine Control Software (MRECS) Program is a technology demonstration effort designed to advance the state-of-the-art in launch vehicle propulsion systems. Its emphasis is on developing and demonstrating a modular software architecture for advanced engine control systems that will result in lower software maintenance (operations) costs. It effectively accommodates software requirement changes that occur due to hardware technology upgrades and engine development testing. Ground rules directed by MSFC were to optimize modularity and implement the software in the Ada programming language. MRECS system software and the software development environment utilize Commercial-Off-the-Shelf (COTS) products. This paper presents the objectives, benefits, and status of the program. The software architecture, design, and development environment are described. MRECS tasks are defined and timing relationships given. Major accomplishments are listed. MRECS offers benefits to a wide variety of advanced technology programs in the areas of modular software architecture, reuse software, and reduced software reverification time related to software changes. MRECS was recently modified to support a Space Shuttle Main Engine (SSME) hot-fire test. Cold Flow and Flight Readiness Testing were completed before the test was cancelled. Currently, the program is focused on supporting NASA MSFC in accomplishing development testing of the Fastrac Engine, part of NASA's Low Cost Technologies (LCT) Program. MRECS will be used for all engine development testing.
Research of the high performance low temperature vortex street flowmeter
NASA Astrophysics Data System (ADS)
Gao, Feng; Chen, Yang; Zhang, Zhen-peng; Geng, Wei-guo
2007-07-01
Flow measurement is the key method for R&D and operation monitoring of liquid rocket engine. Therefore, it is important to measure flux of low temperature liquid propellants for the liquid hydrogen/liquid oxygen or the liquid oxygen/kerosene rocket engine. Presently in China, the level meter and the turbine flowmeter are usually used in the experimentation of the liquid hydrogen/liquid oxygen rocket engine. The level meter can only scale average flux and the precision of the turbine flowmeter (the measuring wild point is 1.5%) can not be ensured due to the reason which there is not devices of low temperature real-time demarcation in China. Therefore, it is required to research the high performance low temperature flow measurement equipment and the vortex street flowmeter is selected because of its advantages. In the paper, some key techniques of low temperature vortex street flowmeter are researched from the design aspect. Firstly, the basic theoretical research of vortex street flowmeter includes signal detection method, shape of vortex producer and effects of dimension of vertex producer to vortex quality. Secondly, low temperature vortex street flowmeter adopts the method of piezoelectric components stress mode. As for the weakness of phase-change, lattice change and fragility for many piezoelectric materials in low temperature, it can not be fulfilled piezoelectric signal and mechanism performance under this condition. Some piezoelectric materials which can be used in low temperature are illustrated in the paper by lots of research in order for the farther research. The article places emphasis upon low temperature trait of piezoelectric materials, and the structure designs of signal detector and calculation of stress, electric charge quantity and heat transfer.
Ignition and combustion characteristics of metallized propellants, phase 2
NASA Technical Reports Server (NTRS)
Mueller, D. C.; Turns, S. R.
1994-01-01
Experimental and analytical investigations focusing on aluminum/hydrocarbon gel droplet secondary atomization and its effects on gel-fueled rocket engine performance are being conducted. A single laser sheet sizing/velocimetry diagnostic technique, which should eliminate sizing bias in the data collection process, has been designed and constructed to overcome limitations of the two-color forward-scatter technique used in previous work. Calibration of this system is in progress and the data acquisition/validation code is being written. Narrow-band measurements of radiant emission, discussed in previous reports, will be used to determine if aluminum ignition has occurred in a gel droplet. A one-dimensional model of a gel-fueled rocket combustion chamber, described in earlier reports, has been exercised in conjunction with a two-dimensional, two-phase nozzle code to predict the performance of an aluminum/hydrocarbon fueled engine. Estimated secondary atomization effects on propellant burnout distance, condensed particle radiation losses to the chamber walls, and nozzle two phase flow losses are also investigated. Calculations indicate that only modest secondary atomization is required to significantly reduce propellant burnout distances, aluminum oxide residual size, and radiation heat losses. Radiation losses equal to approximately 2-13 percent of the energy released during combustion were estimated, depending on secondary atomization intensity. A two-dimensional, two-phase nozzle code was employed to estimate radiation and nozzle two phase flow effects on overall engine performance. Radiation losses yielded a one percent decrease in engine Isp. Results also indicate that secondary atomization may have less effect on two-phase losses than it does on propellant burnout distance and no effect if oxide particle coagulation and shear induced droplet breakup govern oxide particle size. Engine Isp was found to decrease from 337.4 to 293.7 seconds as gel aluminum mass loading was varied from 0-70 wt percent. Engine Isp efficiencies, accounting for radiation and two phase flow effects, on the order of 0.946 were calculated for a 60 wt percent gel, assuming a fragmentation ratio of five.
11. Historic photo of cutaway rendering of rocket engine test ...
11. Historic photo of cutaway rendering of rocket engine test facility complex, June 11, 1965. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-74433. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
Romanian MRE Rocket Engines Program - An Early Endeavor
NASA Astrophysics Data System (ADS)
Rugescu, R. E.
2002-01-01
(MRE) was initiated in the years '60 of the past century at the Chair of Aerospace Sciences "Elie Carafoli" from the "Politehnica" University in Bucharest (PUB). Consisting of theoretical and experimental investigations in the form of computational methods and technological solutions for small size MRE-s and the concept of the test stand for these engines, the program ended in the construction of the first Romanian liquid rocket motors. Hermann Oberth and Dorin Pavel, were known from 1923, no experimental practice was yet tempted, at the time level of 1960. It was the intention of the developers at PUB to cover this gap and initiate a feasible, low-cost, demonstrative program of designing and testing experimental models of MRE. The research program was oriented towards future development of small size space carrier vehicles for scientific applications only, as an independent program with no connection to other defense programs imagined by the authorities in Bucharest, at that time. Consequently the entire financial support was assured by "Politehnica" university. computerized methods in the thermochemistry of heterogeneous combustion, for both steady and unsteady flows with chemical reactions and two phase flows. The research was gradually extended to the production of a professional CAD program for steady-state heat transfer simulations and the loading capacity analyses of the double wall, cooled thrust chamber. The resulting computer codes were run on a 360-30 IMB machine, beginning in 1968. Some of the computational methods were first exposed at the 9th International Conference on Applied Mechanics, held in Bucharest between June 23-27, 1969. hot testing of a series of storable propellant, variable thrust, variable geometry, liquid rocket motors, with a maximal thrust of 200N. A remotely controlled, portable test bad, actuated either automatically or manually and consisting of a 6-modules construction was built for this motor series, with a simple 8 analog-channel and 5 digital-channel data measuring and recording system. The first hot test firing of the MRE-1B motor took place successfully on April 9th, 1969 in Bucharest, at the "Elie Carafoli" Chair of UPB. The research program continued with the development of a series of solid, double base propellant rocket and ram-rocket motors, with emphasize on the optimization of the gasdynamic contour of the engine, in order to increase the flight performances. Increments of up to 8% in specific thrust were measured on the test stand, with mass savings and no extra costs. The test firing of the first Romanian, air-breathing ram-rocket engine took place successfully in august 1987 at the Chemical Works in Fagaras, Romania. Astronautics", founded in Bucharest. The principles and history of the "MRE" research program are presented in the proposed paper.
Pump CFD code validation tests
NASA Technical Reports Server (NTRS)
Brozowski, L. A.
1993-01-01
Pump CFD code validation tests were accomplished by obtaining nonintrusive flow characteristic data at key locations in generic current liquid rocket engine turbopump configurations. Data were obtained with a laser two-focus (L2F) velocimeter at scaled design flow. Three components were surveyed: a 1970's-designed impeller, a 1990's-designed impeller, and a four-bladed unshrouded inducer. Two-dimensional velocities were measured upstream and downstream of the two impellers. Three-dimensional velocities were measured upstream, downstream, and within the blade row of the unshrouded inducer.
General Equation Set Solver for Compressible and Incompressible Turbomachinery Flows
NASA Technical Reports Server (NTRS)
Sondak, Douglas L.; Dorney, Daniel J.
2002-01-01
Turbomachines for propulsion applications operate with many different working fluids and flow conditions. The flow may be incompressible, such as in the liquid hydrogen pump in a rocket engine, or supersonic, such as in the turbine which may drive the hydrogen pump. Separate codes have traditionally been used for incompressible and compressible flow solvers. The General Equation Set (GES) method can be used to solve both incompressible and compressible flows, and it is not restricted to perfect gases, as are many compressible-flow turbomachinery solvers. An unsteady GES turbomachinery flow solver has been developed and applied to both air and water flows through turbines. It has been shown to be an excellent alternative to maintaining two separate codes.
6. Historic photo of rocket engine test facility Building 202 ...
6. Historic photo of rocket engine test facility Building 202 complex in operation at night, September 12, 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45924. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
13. Historic drawing of rocket engine test facility layout, including ...
13. Historic drawing of rocket engine test facility layout, including Buildings 202, 205, 206, and 206A, February 3, 1984. NASA GRC drawing number CF-101539. On file at NASA Glenn Research Center. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
2017-08-09
The 8.5-minute test conducted at NASA’s Stennis Space Center is part of a series of tests designed to put the upgraded former space shuttle engines through the rigorous temperature and pressure conditions they will experience during a launch. The tests also support the development of a new controller, or “brain,” for the engine, which monitors engine status and communicates between the rocket and the engine, relaying commands to the engine and transmitting data back to the rocket.
XLR-11 - X-1 rocket engine display
NASA Technical Reports Server (NTRS)
1996-01-01
What started as a hobby for four rocket fanatics went on to break the sound barrier: Lovell Lawrence, Hugh Franklin Pierce, John Shesta, and Jimmy Wyld the four founders of Reaction Motors, Inc. that built the XLR-11 Rocket Engine. The XLR-11 engine is shown on display in the NASA Exchange Gift Shop, NASA Hugh L. Dryden Flight Research Center at Edwards, California. This engine, familiarly known as Black Betsy, a 4-chamber rocket that ignited diluted ethyl alcohol and liquid oxygen into 6000 pounds or more of thrust powered the X-1 series airplanes.
NASA Technical Reports Server (NTRS)
Sullivan, Steven J.
2014-01-01
"Rocket University" is an exciting new initiative at Kennedy Space Center led by NASA's Engineering and Technology Directorate. This hands-on experience has been established to develop, refine & maintain targeted flight engineering skills to enable the Agency and KSC strategic goals. Through "RocketU", KSC is developing a nimble, rapid flight engineering life cycle systems knowledge base. Ongoing activities in RocketU develop and test new technologies and potential customer systems through small scale vehicles, build and maintain flight experience through balloon and small-scale rocket missions, and enable a revolving fresh perspective of engineers with hands on expertise back into the large scale NASA programs, providing a more experienced multi-disciplined set of systems engineers. This overview will define the Program, highlight aspects of the training curriculum, and identify recent accomplishments and activities.
Improving of Hybrid Rocket Engine on the Basis of Optimizing Design Fuel Grain
NASA Astrophysics Data System (ADS)
Oriekov, K. M.; Ushkin, M. P.
2015-09-01
This article examines the processes intrachamber in hybrid rocket engine (HRE) and the comparative assessment of the use of solid rocket motors (SRM) and HRE for meteorological rockets with a mass of payload of the 364 kg. Results of the research showed the possibility of a significant increase in the ballistic effectiveness of meteorological rocket.
2016-07-27
for liquid propellant atomization in rocket engines1- 2. Liquid rocket engines like the F-1 have successfully used like-on-like impinging jet...impingement of the two cylindrical jets. Another drawback, perhaps the most critical, is that rocket engine using impinging jets sacrifice performance in...The experimental results also suggested that impact waves seem to dominate the atomization process over most of the conditions relevant to rocket
NASA Tests 2nd RS-25 Flight Engine for Space Launch System
2017-10-19
Engineers at NASA’s Stennis Space Center in Mississippi on Oct. 19 completed a hot-fire test of RS-25 rocket engine E2063, a flight engine for NASA’s new Space Launch System (SLS) rocket. Engine E2063 is scheduled to help power SLS on its Exploration Mission-2 (EM-2), the first flight of the new rocket to carry humans. Flight engine E2059 was tested on March 10, 2016, also for use on the EM-2 flight.
NASA Tests 2nd RS-25 Flight Engine For Space Launch System
2017-10-19
Engineers at NASA’s Stennis Space Center in Mississippi on Oct. 19 completed a hot-fire test of RS-25 rocket engine E2063, a flight engine for NASA’s new Space Launch System (SLS) rocket. Engine E2063 is scheduled to help power SLS on its Exploration Mission-2 (EM-2), the first flight of the new rocket to carry humans. Flight engine E2059 was tested on March 10, 2016, also for use on the EM-2 flight.
Video File - NASA Tests 2nd RS-25 Flight Engine for Space Launch System
2017-10-19
Engineers at NASA’s Stennis Space Center in Mississippi on Oct. 19 completed a hot-fire test of RS-25 rocket engine E2063, a flight engine for NASA’s new Space Launch System (SLS) rocket. Engine E2063 is scheduled to help power SLS on its Exploration Mission-2 (EM-2), the first flight of the new rocket to carry humans. Flight engine E2059 was tested on March 10, 2016, also for use on the EM-2 flight.
Teaching Engineering Design Through Paper Rockets
ERIC Educational Resources Information Center
Welling, Jonathan; Wright, Geoffrey A.
2018-01-01
The paper rocket activity described in this article effectively teaches the engineering design process (EDP) by engaging students in a problem-based learning activity that encourages iterative design. For example, the first rockets the students build typically only fly between 30 and 100 feet. As students test and evaluate their rocket designs,…
Parametric Modeling for Fluid Systems
NASA Technical Reports Server (NTRS)
Pizarro, Yaritzmar Rosario; Martinez, Jonathan
2013-01-01
Fluid Systems involves different projects that require parametric modeling, which is a model that maintains consistent relationships between elements as is manipulated. One of these projects is the Neo Liquid Propellant Testbed, which is part of Rocket U. As part of Rocket U (Rocket University), engineers at NASA's Kennedy Space Center in Florida have the opportunity to develop critical flight skills as they design, build and launch high-powered rockets. To build the Neo testbed; hardware from the Space Shuttle Program was repurposed. Modeling for Neo, included: fittings, valves, frames and tubing, between others. These models help in the review process, to make sure regulations are being followed. Another fluid systems project that required modeling is Plant Habitat's TCUI test project. Plant Habitat is a plan to develop a large growth chamber to learn the effects of long-duration microgravity exposure to plants in space. Work for this project included the design and modeling of a duct vent for flow test. Parametric Modeling for these projects was done using Creo Parametric 2.0.
Ignition and Performance Tests of Rocket-Based Combined Cycle Propulsion System
NASA Technical Reports Server (NTRS)
Anderson, William E.
2005-01-01
The ground testing of a Rocket Based Combined Cycle engine implementing the Simultaneous Mixing and Combustion scheme was performed at the direct-connect facility of Purdue University's High Pressure Laboratory. The fuel-rich exhaust of a JP-8/H2O2 thruster was mixed with compressed, metered air in a constant area, axisymmetric duct. The thruster was similar in design and function to that which will be used in the flight test series of Dryden's Ducted-Rocket Experiment. The determination of duct ignition limits was made based on the variation of secondary air flow rates and primary thruster equivalence ratios. Thrust augmentation and improvements in specific impulse were studied along with the pressure and temperature profiles of the duct to study mixing lengths and thermal choking. The occurrence of ignition was favored by lower rocket equivalence ratios. However, among ignition cases, better thrust and specific impulse performance were seen with higher equivalence ratios owing to the increased fuel available for combustion. Thrust and specific impulse improvements by factors of 1.2 to 1.7 were seen. The static pressure and temperature profiles allowed regions of mixing and heat addition to be identified. The mixing lengths were found to be shorter at lower rocket equivalence ratios. Total pressure measurements allowed plume-based calculation of thrust, which agreed with load-cell measured values to within 6.5-8.0%. The corresponding Mach Number profile indicated the flow was not thermally choked for the highest duct static pressure case.
Enhanced development of a catalyst chamber for the decomposition of up to 1.0 kg/s hydrogen peroxide
NASA Astrophysics Data System (ADS)
Božić, Ognjan; Porrmann, Dennis; Lancelle, Daniel; May, Stefan
2016-06-01
A new innovative hybrid rocket engine concept is developed within the AHRES program of the German Aerospace Center (DLR). This rocket engine based on hydroxyl-terminated polybutadiene (HTPB) with metallic additives as solid fuel and high test peroxide (HTP) as liquid oxidizer. Instead of a conventional ignition system, a catalyst chamber with a silver mesh catalyst is designed to decompose the HTP. The newly modified catalyst chamber is able to decompose up to 1.0 kg/s of 87.5 wt% HTP. Used as a monopropellant thruster, this equals an average thrust of 1600 N. The catalyst chamber is designed using the self-developed software tool SHAKIRA. The applied kinetic law, which determines catalytic decomposition of HTP within the catalyst chamber, is given and commented. Several calculations are carried out to determine the appropriate geometry for complete decomposition with a minimum of catalyst material. A number of tests under steady state conditions are carried out, using 87.5 wt% HTP with different flow rates and a constant amount of catalyst material. To verify the decomposition, the temperature is measured and compared with the theoretical prediction. The experimental results show good agreement with the results generated by the design tool. The developed catalyst chamber provides a simple, reliable ignition system for hybrid rocket propulsion systems based on hydrogen peroxide as oxidizer. This system is capable for multiple reignition. The developed hardware and software can be used to design full scale monopropellant thrusters based on HTP and catalyst chambers for hybrid rocket engines.
Nuclear Rocket Technology Conference
NASA Technical Reports Server (NTRS)
1966-01-01
The Lewis Research Center has a strong interest in nuclear rocket propulsion and provides active support of the graphite reactor program in such nonnuclear areas as cryogenics, two-phase flow, propellant heating, fluid systems, heat transfer, nozzle cooling, nozzle design, pumps, turbines, and startup and control problems. A parallel effort has also been expended to evaluate the engineering feasibility of a nuclear rocket reactor using tungsten-matrix fuel elements and water as the moderator. Both of these efforts have resulted in significant contributions to nuclear rocket technology. Many successful static firings of nuclear rockets have been made with graphite-core reactors. Sufficient information has also been accumulated to permit a reasonable Judgment as to the feasibility of the tungsten water-moderated reactor concept. We therefore consider that this technoIogy conference on the nuclear rocket work that has been sponsored by the Lewis Research Center is timely. The conference has been prepared by NASA personnel, but the information presented includes substantial contributions from both NASA and AEC contractors. The conference excludes from consideration the many possible mission requirements for nuclear rockets. Also excluded is the direct comparison of nuclear rocket types with each other or with other modes of propulsion. The graphite reactor support work presented on the first day of the conference was partly inspired through a close cooperative effort between the Cleveland extension of the Space Nuclear Propulsion Office (headed by Robert W. Schroeder) and the Lewis Research Center. Much of this effort was supervised by Mr. John C. Sanders, chairman for the first day of the conference, and by Mr. Hugh M. Henneberry. The tungsten water-moderated reactor concept was initiated at Lewis by Mr. Frank E. Rom and his coworkers. The supervision of the recent engineering studies has been shared by Mr. Samuel J. Kaufman, chairman for the second day of the conference, and Mr. Roy V. Humble. Dr. John C. Eward served as general chairman for the conference.
Propulsion Technology Lifecycle Operational Analysis
NASA Technical Reports Server (NTRS)
Robinson, John W.; Rhodes, Russell E.
2010-01-01
The paper presents the results of a focused effort performed by the members of the Space Propulsion Synergy Team (SPST) Functional Requirements Sub-team to develop propulsion data to support Advanced Technology Lifecycle Analysis System (ATLAS). This is a spreadsheet application to analyze the impact of technology decisions at a system-of-systems level. Results are summarized in an Excel workbook we call the Technology Tool Box (TTB). The TTB provides data for technology performance, operations, and programmatic parameters in the form of a library of technical information to support analysis tools and/or models. The lifecycle of technologies can be analyzed from this data and particularly useful for system operations involving long running missions. The propulsion technologies in this paper are listed against Chemical Rocket Engines in a Work Breakdown Structure (WBS) format. The overall effort involved establishing four elements: (1) A general purpose Functional System Breakdown Structure (FSBS). (2) Operational Requirements for Rocket Engines. (3) Technology Metric Values associated with Operating Systems (4) Work Breakdown Structure (WBS) of Chemical Rocket Engines The list of Chemical Rocket Engines identified in the WBS is by no means complete. It is planned to update the TTB with a more complete list of available Chemical Rocket Engines for United States (US) engines and add the Foreign rocket engines to the WBS which are available to NASA and the Aerospace Industry. The Operational Technology Metric Values were derived by the SPST Sub-team in the form of the TTB and establishes a database for users to help evaluate and establish the technology level of each Chemical Rocket Engine in the database. The Technology Metric Values will serve as a guide to help determine which rocket engine to invest technology money in for future development.
29. Historic view of twentythousandpound rocket test stand with engine ...
29. Historic view of twenty-thousand-pound rocket test stand with engine installation in test cell of Building 202, September 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45870. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
Design issues for lunar in situ aluminum/oxygen propellant rocket engines
NASA Technical Reports Server (NTRS)
Meyer, Michael L.
1992-01-01
Design issues for lunar ascent and lunar descent rocket engines fueled by aluminum/oxygen propellant produced in situ at the lunar surface were evaluated. Key issues are discussed which impact the design of these rockets: aluminum combustion, throat erosion, and thrust chamber cooling. Four engine concepts are presented, and the impact of combustion performance, throat erosion and thrust chamber cooling on overall engine design are discussed. The advantages and disadvantages of each engine concept are presented.
Multi-Phase Modeling of Rainbird Water Injection
NASA Technical Reports Server (NTRS)
Vu, Bruce T.; Moss, Nicholas; Sampson, Zoe
2014-01-01
This paper describes the use of a Volume of Fluid (VOF) multiphase model to simulate the water injected from a rainbird nozzle used in the sound suppression system during launch. The simulations help determine the projectile motion for different water flow rates employed at the pad, as it is critical to know if water will splash on the first-stage rocket engine during liftoff.
Cylindrical Asymmetrical Capacitors for Use in Outer Space
NASA Technical Reports Server (NTRS)
Campbell, Jonathan W.
2007-01-01
A report proposes that cylindrical asymmetrical capacitors (CACs) be used to generate small thrusts for precise maneuvering of spacecraft on long missions. The report notes that it has been known for decades that when high voltages are applied to CACs in air, thrusts are generated - most likely as a result of ionization of air molecules and acceleration of the ions by the high electric fields. The report goes on to discuss how to optimize the designs of CACs for operation as thrusters in outer space. Components that could be used to enable outerspace operation include a supply of gas and a shroud, partly surrounding a CAC, into which the gas would flow. Other elements of operation and design discussed in the report include variation of applied voltage and/or of gas flow to vary thrust, effects of CAC and shroud dimensions on thrust and weight, some representative electrode configurations, and several alternative designs, including one in which the basic CAC configuration would be modified into something shaped like a conventional rocket engine with converging/diverging nozzle and an anode with gas feed in the space that, in a conventional rocket engine, would be the combustion chamber.
NASA Astrophysics Data System (ADS)
Popov, Pavel; Sideris, Athanasios; Sirignano, William
2014-11-01
We examine the non-linear dynamics of the transverse modes of combustion-driven acoustic instability in a liquid-propellant rocket engine. Triggering can occur, whereby small perturbations from mean conditions decay, while larger disturbances grow to a limit-cycle of amplitude that may compare to the mean pressure. For a deterministic perturbation, the system is also deterministic, computed by coupled finite-volume solvers at low computational cost for a single realization. The randomness of the triggering disturbance is captured by treating the injector flow rates, local pressure disturbances, and sudden acceleration of the entire combustion chamber as random variables. The combustor chamber with its many sub-fields resulting from many injector ports may be viewed as a multi-scale complex system wherein the developing acoustic oscillation is the emergent structure. Numerical simulation of the resulting stochastic PDE system is performed using the polynomial chaos expansion method. The overall probability of unstable growth is assessed in different regions of the parameter space. We address, in particular, the seven-injector, rectangular Purdue University experimental combustion chamber. In addition to the novel geometry, new features include disturbances caused by engine acceleration and unsteady thruster nozzle flow.
A detailed numerical simulation of a liquid-propellant rocket engine ground test experiment
NASA Astrophysics Data System (ADS)
Lankford, D. W.; Simmons, M. A.; Heikkinen, B. D.
1992-07-01
A computational simulation of a Liquid Rocket Engine (LRE) ground test experiment was performed using two modeling approaches. The results of the models were compared with selected data to assess the validity of state-of-the-art computational tools for predicting the flowfield and radiative transfer in complex flow environments. The data used for comparison consisted of in-band station radiation measurements obtained in the near-field portion of the plume exhaust. The test article was a subscale LRE with an afterbody, resulting in a large base region. The flight conditions were such that afterburning regions were observed in the plume flowfield. A conventional standard modeling approach underpredicted the extent of afterburning and the associated radiation levels. These results were attributed to the absence of the base flow region which is not accounted for in this model. To assess the effects of the base region a Navier-Stokes model was applied. The results of this calculation indicate that the base recirculation effects are dominant features in the immediate expansion region and resulted in a much improved comparison. However, the downstream in-band station radiation data remained underpredicted by this model.
Scale-Up of GRCop: From Laboratory to Rocket Engines
NASA Technical Reports Server (NTRS)
Ellis, David L.
2016-01-01
GRCop is a high temperature, high thermal conductivity copper-based series of alloys designed primarily for use in regeneratively cooled rocket engine liners. It began with laboratory-level production of a few grams of ribbon produced by chill block melt spinning and has grown to commercial-scale production of large-scale rocket engine liners. Along the way, a variety of methods of consolidating and working the alloy were examined, a database of properties was developed and a variety of commercial and government applications were considered. This talk will briefly address the basic material properties used for selection of compositions to scale up, the methods used to go from simple ribbon to rocket engines, the need to develop a suitable database, and the issues related to getting the alloy into a rocket engine or other application.
Prediction of the Thrust Performance and the Flowfield of Liquid Rocket Engines
NASA Technical Reports Server (NTRS)
Wang, T.-S.
1990-01-01
In an effort to improve the current solutions in the design and analysis of liquid propulsive engines, a computational fluid dynamics (CFD) model capable of calculating the reacting flows from the combustion chamber, through the nozzle to the external plume, was developed. The Space Shuttle Main Engine (SSME) fired at sea level, was investigated as a sample case. The CFD model, FDNS, is a pressure based, non-staggered grid, viscous/inviscid, ideal gas/real gas, reactive code. An adaptive upwinding differencing scheme is employed for the spatial discretization. The upwind scheme is based on fourth order central differencing with fourth order damping for smooth regions, and second order central differencing with second order damping for shock capturing. It is equipped with a CHMQGM equilibrium chemistry algorithm and a PARASOL finite rate chemistry algorithm using the point implicit method. The computed flow results and performance compared well with those of other standard codes and engine hot fire test data. In addition, the transient nozzle flowfield calculation was also performed to demonstrate the ability of FDNS in capturing the flow separation during the startup process.
Computation of Coupled Thermal-Fluid Problems in Distributed Memory Environment
NASA Technical Reports Server (NTRS)
Wei, H.; Shang, H. M.; Chen, Y. S.
2001-01-01
The thermal-fluid coupling problems are very important to aerospace and engineering applications. Instead of analyzing heat transfer and fluid flow separately, this study merged two well-accepted engineering solution methods, SINDA for thermal analysis and FDNS for fluid flow simulation, into a unified multi-disciplinary thermal fluid prediction method. A fully conservative patched grid interface algorithm for arbitrary two-dimensional and three-dimensional geometry has been developed. The state-of-the-art parallel computing concept was used to couple SINDA and FDNS for the communication of boundary conditions through PVM (Parallel Virtual Machine) libraries. Therefore, the thermal analysis performed by SINDA and the fluid flow calculated by FDNS are fully coupled to obtain steady state or transient solutions. The natural convection between two thick-walled eccentric tubes was calculated and the predicted results match the experiment data perfectly. A 3-D rocket engine model and a real 3-D SSME geometry were used to test the current model, and the reasonable temperature field was obtained.
2013-06-10
VANDENBERG AFB – Orbital Sciences engineers connect the payload fairing over NASA's IRIS spacecraft. The fairing connects to the nose of the Orbital Sciences Pegasus XL rocket that will lift the solar observatory into orbit in June. The work is taking place in a hangar at Vandenberg Air Force Base where IRIS, short for Interface Region Imaging Spectrograph, is being prepared for launch on a Pegasus XL rocket. Scheduled for launch from Vandenberg June 26, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and the region around the sun known as the heliosphere. Photo credit: NASA/Tony Vauclin
2013-05-29
VANDENBERG AFB, Calif. – Engineers unwrap NASA's IRIS spacecraft after its connection to the nose of an Orbital Sciences Pegasus XL rocket that will lift the solar observatory into orbit in June. The work is taking place in a hangar at Vandenberg Air Force Base where IRIS, short for Interface Region Imaging Spectrograph, is being prepared for launch on a Pegasus XL rocket. Scheduled for launch from Vandenberg no earlier than June 26, 2013, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and the region around the sun known as the heliosphere. Photo credit: NASA/Randy Beaudoin
2013-05-30
VANDENBERG AFB, Calif. – Engineers prepare to install a radial retraction system on NASA's IRIS spacecraft after its connection to the nose of an Orbital Sciences Pegasus XL rocket that will lift the solar observatory into orbit in June. The work is taking place in a hangar at Vandenberg Air Force Base where IRIS, short for Interface Region Imaging Spectrograph, is being prepared for launch on a Pegasus XL rocket. Scheduled for launch from Vandenberg June 26, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and the region around the sun known as the heliosphere. Photo credit: NASA/Randy Beaudoin
2013-06-10
VANDENBERG AFB, Calif. – Engineers conduct inspections on NASA's IRIS spacecraft with blacklights before the payload fairing before it is connected. The fairing connects to the nose of the Orbital Sciences Pegasus XL rocket that will lift the solar observatory into orbit in June. The work is taking place in a hangar at Vandenberg Air Force Base where IRIS, short for Interface Region Imaging Spectrograph, is being prepared for launch on a Pegasus XL rocket. Scheduled for launch from Vandenberg June 26, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and the region around the sun known as the heliosphere. Photo credit: NASA/Randy Beaudoin
2013-06-10
VANDENBERG AFB – Orbital Sciences team engineers monitor the connection of the payload fairing over NASA's IRIS spacecraft. The fairing connects to the nose of the Orbital Sciences Pegasus XL rocket that will lift the solar observatory into orbit in June. The work is taking place in a hangar at Vandenberg Air Force Base where IRIS, short for Interface Region Imaging Spectrograph, is being prepared for launch on a Pegasus XL rocket. Scheduled for launch from Vandenberg June 26, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and the region around the sun known as the heliosphere. Photo credit: NASA/Tony Vauclin
2013-06-10
VANDENBERG AFB – Orbital Sciences team members watch as engineers connect the payload fairing over NASA's IRIS spacecraft. The fairing connects to the nose of the Orbital Sciences Pegasus XL rocket that will lift the solar observatory into orbit in June. The work is taking place in a hangar at Vandenberg Air Force Base where IRIS, short for Interface Region Imaging Spectrograph, is being prepared for launch on a Pegasus XL rocket. Scheduled for launch from Vandenberg June 26, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and the region around the sun known as the heliosphere. Photo credit: NASA/Tony Vauclin
2013-06-10
VANDENBERG AFB – Engineers attach the starboard side of the payload fairing into place for NASA's IRIS spacecraft. The fairing connects to the nose of the Orbital Sciences Pegasus XL rocket that will lift the solar observatory into orbit in June. The work is taking place in a hangar at Vandenberg Air Force Base where IRIS, short for Interface Region Imaging Spectrograph, is being prepared for launch on a Pegasus XL rocket. Scheduled for launch from Vandenberg June 26, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and the region around the sun known as the heliosphere. Photo credit: NASA/Randy Beaudoin
2013-06-05
VANDENBERG AFB – Engineers move the port side of the payload fairing before it is connected into place for NASA's IRIS spacecraft. The fairing connects to the nose of the Orbital Sciences Pegasus XL rocket that will lift the solar observatory into orbit in June. The work is taking place in a hangar at Vandenberg Air Force Base where IRIS, short for Interface Region Imaging Spectrograph, is being prepared for launch on a Pegasus XL rocket. Scheduled for launch from Vandenberg June 26, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and the region around the sun known as the heliosphere. Photo credit: NASA/Randy Beaudoin
2013-05-29
VANDENBERG AFB, Calif. – Engineers prepare to connect NASA's IRIS spacecraft to the nose of an Orbital Sciences Pegasus XL rocket that will lift the solar observatory into orbit in June. The work is taking place in a hangar at Vandenberg Air Force Base where IRIS, short for Interface Region Imaging Spectrograph, is being prepared for launch on a Pegasus XL rocket. Scheduled for launch from Vandenberg no earlier than June 26, 2013, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and the region around the sun known as the heliosphere. Photo credit: NASA/Randy Beaudoin
2013-06-10
VANDENBERG AFB - Orbital Sciences engineers connect the payload fairing over NASA's IRIS spacecraft. The fairing connects to the nose of the Orbital Sciences Pegasus XL rocket that will lift the solar observatory into orbit in June. The work is taking place in a hangar at Vandenberg Air Force Base where IRIS, short for Interface Region Imaging Spectrograph, is being prepared for launch on a Pegasus XL rocket. Scheduled for launch from Vandenberg June 26, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and the region around the sun known as the heliosphere. Photo credit: NASA/Tony Vauclin
2013-06-10
VANDENBERG AFB – Orbital Sciences engineers connect the payload fairing over NASA's IRIS spacecraft. The fairing connects to the nose of the Orbital Sciences Pegasus XL rocket that will lift the solar observatory into orbit in June. The work is taking place in a hangar at Vandenberg Air Force Base where IRIS, short for Interface Region Imaging Spectrograph, is being prepared for launch on a Pegasus XL rocket. Scheduled for launch from Vandenberg June 26, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and the region around the sun known as the heliosphere. Photo credit: NASA/Tony Vauclin
2013-06-10
VANDENBERG AFB – Orbital Sciences engineers monitor the connection of the payload fairing over NASA's IRIS spacecraft. The fairing connects to the nose of the Orbital Sciences Pegasus XL rocket that will lift the solar observatory into orbit in June. The work is taking place in a hangar at Vandenberg Air Force Base where IRIS, short for Interface Region Imaging Spectrograph, is being prepared for launch on a Pegasus XL rocket. Scheduled for launch from Vandenberg June 26, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and the region around the sun known as the heliosphere. Photo credit: NASA/Tony Vauclin
2013-05-29
VANDENBERG AFB, Calif. – Engineers prepare to connect NASA's IRIS spacecraft to the nose of an Orbital Sciences Pegasus XL rocket that will lift the solar observatory into orbit in June. The work is taking place in a hangar at Vandenberg Air Force Base where IRIS, short for Interface Region Imaging Spectrograph, is being prepared for launch on a Pegasus XL rocket. Scheduled for launch from Vandenberg no earlier than June 26, 2013, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and the region around the sun known as the heliosphere. Photo credit: NASA/Randy Beaudoin
2013-06-10
VANDENBERG AFB – Orbital Sciences engineers connect the payload fairing over NASA's IRIS spacecraft. The fairing connects to the nose of the Orbital Sciences Pegasus XL rocket that will lift the solar observatory into orbit in June. The work is taking place in a hangar at Vandenberg Air Force Base where IRIS, short for Interface Region Imaging Spectrograph, is being prepared for launch on a Pegasus XL rocket. Scheduled for launch from Vandenberg June 26, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and the region around the sun known as the heliosphere. Photo credit: NASA/Tony Vauclin
2013-05-29
VANDENBERG AFB, Calif. – Engineers prepare to connect NASA's IRIS spacecraft to the nose of an Orbital Sciences Pegasus XL rocket that will lift the solar observatory into orbit in June. The work is taking place in a hangar at Vandenberg Air Force Base where IRIS, short for Interface Region Imaging Spectrograph, is being prepared for launch on a Pegasus XL rocket. Scheduled for launch from Vandenberg no earlier than June 26, 2013, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and the region around the sun known as the heliosphere. Photo credit: NASA/Randy Beaudoin
2013-05-29
VANDENBERG AFB, Calif. – Engineers unwrap NASA's IRIS spacecraft after its connection to the nose of an Orbital Sciences Pegasus XL rocket that will lift the solar observatory into orbit in June. The work is taking place in a hangar at Vandenberg Air Force Base where IRIS, short for Interface Region Imaging Spectrograph, is being prepared for launch on a Pegasus XL rocket. Scheduled for launch from Vandenberg no earlier than June 26, 2013, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and the region around the sun known as the heliosphere. Photo credit: NASA/Randy Beaudoin
2013-06-10
VANDENBERG AFB – Orbital Sciences engineers connect the payload fairing over NASA's IRIS spacecraft. The fairing connects to the nose of the Orbital Sciences Pegasus XL rocket that will lift the solar observatory into orbit in June. The work is taking place in a hangar at Vandenberg Air Force Base where IRIS, short for Interface Region Imaging Spectrograph, is being prepared for launch on a Pegasus XL rocket. Scheduled for launch from Vandenberg June 26, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and the region around the sun known as the heliosphere. Photo credit: NASA/Tony Vauclin
2013-05-30
VANDENBERG AFB, Calif. – Engineers install a radial retraction system on NASA's IRIS spacecraft after its connection to the nose of an Orbital Sciences Pegasus XL rocket that will lift the solar observatory into orbit in June. The work is taking place in a hangar at Vandenberg Air Force Base where IRIS, short for Interface Region Imaging Spectrograph, is being prepared for launch on a Pegasus XL rocket. Scheduled for launch from Vandenberg June 26, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and the region around the sun known as the heliosphere. Photo credit: NASA/Randy Beaudoin
2013-06-10
VANDENBERG AFB – Orbital Sciences engineers connect the payload fairing over NASA's IRIS spacecraft. The fairing connects to the nose of the Orbital Sciences Pegasus XL rocket that will lift the solar observatory into orbit in June. The work is taking place in a hangar at Vandenberg Air Force Base where IRIS, short for Interface Region Imaging Spectrograph, is being prepared for launch on a Pegasus XL rocket. Scheduled for launch from Vandenberg June 26, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and the region around the sun known as the heliosphere. Photo credit: NASA/Tony Vauclin
2013-06-10
VANDENBERG AFB, Calif. – Engineers conduct inspections on NASA's IRIS spacecraft with blacklights before the payload fairing before it is connected. The fairing connects to the nose of the Orbital Sciences Pegasus XL rocket that will lift the solar observatory into orbit in June. The work is taking place in a hangar at Vandenberg Air Force Base where IRIS, short for Interface Region Imaging Spectrograph, is being prepared for launch on a Pegasus XL rocket. Scheduled for launch from Vandenberg June 26, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and the region around the sun known as the heliosphere. Photo credit: NASA/Randy Beaudoin
2013-06-05
- VANDENBERG AFB – An engineer makes preparations on the starboard side of the payload fairing before it is connected into place for NASA's IRIS spacecraft. The fairing connects to the nose of the Orbital Sciences Pegasus XL rocket that will lift the solar observatory into orbit in June. The work is taking place in a hangar at Vandenberg Air Force Base where IRIS, short for Interface Region Imaging Spectrograph, is being prepared for launch on a Pegasus XL rocket. Scheduled for launch from Vandenberg June 26, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and the region around the sun known as the heliosphere. Photo credit: NASA/Randy Beaudoin
2013-06-11
Orbital Sciences engineers connect the payload fairing over NASA's IRIS spacecraft. The fairing connects to the nose of the Orbital Sciences Pegasus XL rocket that will lift the solar observatory into orbit in June. The work is taking place in a hangar at Vandenberg Air Force Base where IRIS, short for Interface Region Imaging Spectrograph, is being prepared for launch on a Pegasus XL rocket. Scheduled for launch from Vandenberg June 26, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and the region around the sun known as the heliosphere. Photo credit: NASA/Tony Vauclin
2013-05-29
VANDENBERG AFB, Calif. – Engineers prepare to connect NASA's IRIS spacecraft to the nose of an Orbital Sciences Pegasus XL rocket that will lift the solar observatory into orbit in June. The work is taking place in a hangar at Vandenberg Air Force Base where IRIS, short for Interface Region Imaging Spectrograph, is being prepared for launch on a Pegasus XL rocket. Scheduled for launch from Vandenberg no earlier than June 26, 2013, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and the region around the sun known as the heliosphere. Photo credit: NASA/Randy Beaudoin
Modeling and Simulation of a Nuclear Fuel Element Test Section
NASA Technical Reports Server (NTRS)
Moran, Robert P.; Emrich, William
2011-01-01
"The Nuclear Thermal Rocket Element Environmental Simulator" test section closely simulates the internal operating conditions of a thermal nuclear rocket. The purpose of testing is to determine the ideal fuel rod characteristics for optimum thermal heat transfer to their hydrogen cooling/working fluid while still maintaining fuel rod structural integrity. Working fluid exhaust temperatures of up to 5,000 degrees Fahrenheit can be encountered. The exhaust gas is rendered inert and massively reduced in temperature for analysis using a combination of water cooling channels and cool N2 gas injectors in the H2-N2 mixer portion of the test section. An extensive thermal fluid analysis was performed in support of the engineering design of the H2-N2 mixer in order to determine the maximum "mass flow rate"-"operating temperature" curve of the fuel elements hydrogen exhaust gas based on the test facilities available cooling N2 mass flow rate as the limiting factor.
Linear Aerospike SR-71 Experiment (LASRE) dumps water after first in-flight cold flow test
1998-03-04
The NASA SR-71A successfully completed its first cold flow flight as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California on March 4, 1998. During a cold flow flight, gaseous helium and liquid nitrogen are cycled through the linear aerospike engine to check the engine's plumbing system for leaks and to check the engine operating characterisitics. Cold-flow tests must be accomplished successfully before firing the rocket engine experiment in flight. The SR-71 took off at 10:16 a.m. PST. The aircraft flew for one hour and fifty-seven minutes, reaching a maximum speed of Mach 1.58 before landing at Edwards at 12:13 p.m. PST. "I think all in all we had a good mission today," Dryden LASRE Project Manager Dave Lux said. Flight crew member Bob Meyer agreed, saying the crew "thought it was a really good flight." Dryden Research Pilot Ed Schneider piloted the SR-71 during the mission. Lockheed Martin LASRE Project Manager Carl Meade added, "We are extremely pleased with today's results. This will help pave the way for the first in-flight engine data-collection flight of the LASRE."
Characterization of the space shuttle reaction control system engine
NASA Technical Reports Server (NTRS)
Wilson, M. S.; Stechman, R. C.; Edelman, R. B.; Fortune, O. F.; Economos, C.
1972-01-01
A computer program was developed and written in FORTRAN 5 which predicts the transient and steady state performance and heat transfer characteristics of a pulsing GO2/GH2 rocket engine. This program predicts the dynamic flow and ignition characteristics which, when combined in a quasi-steady state manner with the combustion and mixing analysis program, will provide the thrust and specific impulse of the engine as a function of time. The program also predicts the transient and steady state heat transfer characteristics of the engine using various cooling concepts. The computer program, test case, and documentation are presented. The program is applicable to any system capable of utilizing the FORTRAN 4 or FORTRAN 5 language.
The Strutjet Rocket Based Combined Cycle Engine
NASA Technical Reports Server (NTRS)
Siebenhaar, A.; Bulman, M. J.; Bonnar, D. K.
1998-01-01
The multi stage chemical rocket has been established over many years as the propulsion System for space transportation vehicles, while, at the same time, there is increasing concern about its continued affordability and rather involved reusability. Two broad approaches to addressing this overall launch cost problem consist in one, the further development of the rocket motor, and two, the use of airbreathing propulsion to the maximum extent possible as a complement to the limited use of a conventional rocket. In both cases, a single-stage-to-orbit (SSTO) vehicle is considered a desirable goal. However, neither the "all-rocket" nor the "all-airbreathing" approach seems realizable and workable in practice without appreciable advances in materials and manufacturing. An affordable system must be reusable with minimal refurbishing on-ground, and large mean time between overhauls, and thus with high margins in design. It has been suggested that one may use different engine cycles, some rocket and others airbreathing, in a combination over a flight trajectory, but this approach does not lead to a converged solution with thrust-to-mass, specific impulse, and other performance and operational characteristics that can be obtained in the different engines. The reason is this type of engine is simply a combination of different engines with no commonality of gas flowpath or components, and therefore tends to have the deficiencies of each of the combined engines. A further development in this approach is a truly combined cycle that incorporates a series of cycles for different modes of propulsion along a flight path with multiple use of a set of components and an essentially single gas flowpath through the engine. This integrated approach is based on realizing the benefits of both a rocket engine and airbreathing engine in various combinations by a systematic functional integration of components in an engine class usually referred to as a rocket-based combined cycle (RBCC) engine. RBCC engines exhibit a high potential for lowering the operating cost of launching payloads into orbit. Two sources of cost reductions can be identified. First, RBCC powered vehicles require only 20% takeoff thrust compared to conventional rockets, thereby lowering the thrust requirements and the replacement cost of the engines. Second, due to the higher structural and thermal margins achievable with RBCC engines coupled with a higher degree of subsystem redundance lower maintenance and operating cost are obtainable.
The pasty propellant rocket engine development
NASA Astrophysics Data System (ADS)
Kukushkin, V. I.; Ivanchenko, A. N.
1993-06-01
The paper describes a newly developed pasty propellant rocket engine (PPRE) and the combustion process and presents results of performance tests. It is shown that, compared with liquid propellant rocket engines, the PPREs can regulate the thrust level within a wider range, are safer ecologically, and have better weight characteristics. Compared with solid propellant rocket engines, the PPREs may be produced with lower costs and more safely, are able to regulate thrust performance within a wider range, and are able to offer a greater scope for the variation of the formulation components and propellant characteristics. Diagrams of the PPRE are included.
Simulation of Rocket-Grade Kerosene Flowing in an Electrically Heated Experimental Apparatus
2015-07-01
Technical Paper 3. DATES COVERED (From - To) July 2015-July 2015 4. TITLE AND SUBTITLE Simulation of Rocket Kerosene Flowing in an Electrically Heated...rocket-grade kerosene (RP-2) flowing in an electrically heated tube is simulated. The model and boundary conditions are selected so as to simulate an...and Astronautics 1 Simulation of Rocket-Grade Kerosene Flowing in an Electrically Heated Experimental Apparatus Ananda Himansu1 and Matthew C
Solid rocket booster internal flow analysis by highly accurate adaptive computational methods
NASA Technical Reports Server (NTRS)
Huang, C. Y.; Tworzydlo, W.; Oden, J. T.; Bass, J. M.; Cullen, C.; Vadaketh, S.
1991-01-01
The primary objective of this project was to develop an adaptive finite element flow solver for simulating internal flows in the solid rocket booster. Described here is a unique flow simulator code for analyzing highly complex flow phenomena in the solid rocket booster. New methodologies and features incorporated into this analysis tool are described.
Orbital transfer rocket engine technology 7.5K-LB thrust rocket engine preliminary design
NASA Technical Reports Server (NTRS)
Harmon, T. J.; Roschak, E.
1993-01-01
A preliminary design of an advanced LOX/LH2 expander cycle rocket engine producing 7,500 lbf thrust for Orbital Transfer vehicle missions was completed. Engine system, component and turbomachinery analysis at both on design and off design conditions were completed. The preliminary design analysis results showed engine requirements and performance goals were met. Computer models are described and model outputs are presented. Engine system assembly layouts, component layouts and valve and control system analysis are presented. Major design technologies were identified and remaining issues and concerns were listed.
1998-10-07
This photograph depicts an air-breathing rocket engine prototype in the test bay at the General Applied Science Lab facility in Ronkonkoma, New York. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced Space Transportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.
30. Historic view of twentythousandpound rocket test stand with engine ...
30. Historic view of twenty-thousand-pound rocket test stand with engine installation in test cell of Building 202, looking down from elevated location, September 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45872. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
14 CFR Appendix E to Part 25 - Appendix E to Part 25
Code of Federal Regulations, 2013 CFR
2013-01-01
... certificated takeoff and landing weights of an airplane equipped with a type-certificated standby power rocket engine may obtain an increase as specified in paragraph (b) if— (1) The installation of the rocket engine has been approved and it has been established by flight test that the rocket engine and its controls...
14 CFR Appendix E to Part 25 - Appendix E to Part 25
Code of Federal Regulations, 2011 CFR
2011-01-01
... certificated takeoff and landing weights of an airplane equipped with a type-certificated standby power rocket engine may obtain an increase as specified in paragraph (b) if— (1) The installation of the rocket engine has been approved and it has been established by flight test that the rocket engine and its controls...
14 CFR Appendix E to Part 25 - Appendix E to Part 25
Code of Federal Regulations, 2014 CFR
2014-01-01
... certificated takeoff and landing weights of an airplane equipped with a type-certificated standby power rocket engine may obtain an increase as specified in paragraph (b) if— (1) The installation of the rocket engine has been approved and it has been established by flight test that the rocket engine and its controls...
14 CFR Appendix E to Part 25 - Appendix E to Part 25
Code of Federal Regulations, 2012 CFR
2012-01-01
... certificated takeoff and landing weights of an airplane equipped with a type-certificated standby power rocket engine may obtain an increase as specified in paragraph (b) if— (1) The installation of the rocket engine has been approved and it has been established by flight test that the rocket engine and its controls...
14 CFR Appendix E to Part 25 - Appendix E to Part 25
Code of Federal Regulations, 2010 CFR
2010-01-01
... certificated takeoff and landing weights of an airplane equipped with a type-certificated standby power rocket engine may obtain an increase as specified in paragraph (b) if— (1) The installation of the rocket engine has been approved and it has been established by flight test that the rocket engine and its controls...
NASA Technical Reports Server (NTRS)
Tucker, P. K.; Warsi, S. A.
1993-01-01
Film/dump cooling a rocket nozzle with fuel rich gas, as in the National Launch System (NLS) Space Transportation Main Engine (STME), adds potential complexities for integrating the engine with the vehicle. The chief concern is that once the film coolant is exhausted from the nozzle, conditions may exist during flight for the fuel-rich film gases to be recirculated to the vehicle base region. The result could be significantly higher base temperatures than would be expected from a regeneratively cooled nozzle. CFD analyses were conduced to augment classical scaling techniques for vehicle base environments. The FDNS code with finite rate chemistry was used to simulate a single, axisymmetric STME plume and the NLS base area. Parallel calculations were made of the Saturn V S-1 C/F1 plume base area flows. The objective was to characterize the plume/freestream shear layer for both vehicles as inputs for scaling the S-C/F1 flight data to NLS/STME conditions. The code was validated on high speed flows with relevant physics. This paper contains the calculations for the NLS/STME plume for the baseline nozzle and a modified nozzle. The modified nozzle was intended to reduce the fuel available for recirculation to the vehicle base region. Plumes for both nozzles were calculated at 10kFT and 50kFT.
1998-11-04
NASA engineers successfully tested a Russian-built rocket engine on November 4, 1998 at the Marshall Space Flight Center (MSFC) Advanced Engine Test Facility, which had been used for testing the Saturn V F-1 engines and Space Shuttle Main engines. The MSFC was under a Space Act Agreement with Lockheed Martin Astronautics of Denver to provide a series of test firings of the Atlas III propulsion system configured with the Russian-designed RD-180 engine. The tests were designed to measure the performance of the Atlas III propulsion system, which included avionics and propellant tanks and lines, and how these components interacted with the RD-180 engine. The RD-180 is powered by kerosene and liquid oxygen, the same fuel mix used in Saturn rockets. The RD-180, the most powerful rocket engine tested at the MSFC since Saturn rocket tests in the 1960s, generated 860,000 pounds of thrust.
NASA Technical Reports Server (NTRS)
Farr, R. A.; Elam, S. K.; Hicks, G. D.; Sanders, T. M.; London, J. R.; Mayne, A. W.; Christensen, D. L.
2003-01-01
As a part of NASA s 2003 Centennial of Flight celebration, engineers and technicians at Marshall Space Flight Center (MSFC), Huntsville, Alabama, in cooperation with the Alabama-Mississippi AIAA Section, have reconstructed historically accurate, functional replicas of Dr. Robert H. Goddard s 1926 first liquid- fuel rocket. The purposes of this project were to clearly understand, recreate, and document the mechanisms and workings of the 1926 rocket for exhibit and educational use, creating a vital resource for researchers studying the evolution of liquid rocketry for years to come. The MSFC team s reverse engineering activity has created detailed engineering-quality drawings and specifications describing the original rocket and how it was built, tested, and operated. Static hot-fire tests, as well as flight demonstrations, have further defined and quantified the actual performance and engineering actual performance and engineering challenges of this major segment in early aerospace history.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolonkin, A.
A first-hand account of developments in the Soviet rocket industry is presented. The organization and leadership of the rocket and missile industry are traced from its beginning in the 1920s. The development of the Glushko Experimental Design Bureau, where the majority of Soviet rocket engines were created, is related. The evolution of Soviet rocket engines is traced in regard to both their technical improvement and their application in missiles and space vehicles. Improved Glushko engines and specialized Isaev and Kosberg engines are discussed. The difficulties faced by the Soviet missile and space program, such as the pre-Sputnik failures, the oscillationmore » problem of 1965/1966, which exposed a weakness in Soviet ICBM missiles, and the Nedelin disaster of 1960, which cost the lives of more than 200 scientists and engineers, as well as the Commander-in-Chief of the Strategic Rocket Forces, Marshall Nedelin, are examined. 122 refs.« less
Study of solid rocket motor for space shuttle booster, volume 2, book 2
NASA Technical Reports Server (NTRS)
1972-01-01
A technical analysis of the solid propellant rocket engines for use with the space shuttle is presented. The subjects discussed are: (1) solid rocket motor stage recovery, (2) environmental effects, (3) man rating of the solid propellant rocket engines, (4) system safety analysis, (5) ground support equipment, and (6) transportation, assembly, and checkout.
Passive Rocket Diffuser Testing: Reacting Flow Performance of Four Second-Throat Geometries
NASA Technical Reports Server (NTRS)
Jones, Daniel R.; Allgood, Daniel C.; Saunders, Grady P.
2016-01-01
Second-throat diffusers serve to isolate rocket engines from the effects of ambient back pressure. As one of the nation's largest rocket testing facilities, the performance and design limitations of diffusers are of great interest to NASA's Stennis Space Center. This paper describes a series of tests conducted on four diffuser configurations to better understand the effects of inlet geometry and throat area on starting behavior and boundary layer separation. The diffusers were tested for a duration of five seconds with a 1455-pound thrust, LO2/GH2 thruster to ensure they each reached aerodynamic steady state. The effects of a water spray ring at the diffuser exits and a water-cooled deflector plate were also evaluated. Static pressure and temperature measurements were taken at multiple axial locations along the diffusers, and Computational Fluid Dynamics (CFD) simulations were used as a tool to aid in the interpretation of data. The hot combustion products were confirmed to enable the diffuser start condition with tighter second throats than predicted by historical cold-flow data or the theoretical normal shock method. Both aerodynamic performance and heat transfer were found to increase with smaller diffuser throats. Spray ring and deflector cooling water had negligible impacts on diffuser boundary layer separation. CFD was found to accurately capture diffuser shock structures and full-flowing diffuser wall pressures, and the qualitative behavior of heat transfer. However, the ability to predict boundary layer separated flows was not consistent.
Enrichment Zoning Options for the Small Nuclear Rocket Engine (SNRE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruce G. Schnitzler; Stanley K. Borowski
2010-07-01
Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. In NASA’s recent Mars Design Reference Architecture (DRA) 5.0 study (NASA-SP-2009-566, July 2009), nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option because of its high thrust and high specific impulse (-900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. An extensive nuclear thermal rocket technology development effortmore » was conducted from 1955-1973 under the Rover/NERVA Program. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art design incorporating lessons learned from the very successful technology development program. Past activities at the NASA Glenn Research Center have included development of highly detailed MCNP Monte Carlo transport models of the SNRE and other small engine designs. Preliminary core configurations typically employ fuel elements with fixed fuel composition and fissile material enrichment. Uniform fuel loadings result in undesirable radial power and temperature profiles in the engines. Engine performance can be improved by some combination of propellant flow control at the fuel element level and by varying the fuel composition. Enrichment zoning at the fuel element level with lower enrichments in the higher power elements at the core center and on the core periphery is particularly effective. Power flattening by enrichment zoning typically results in more uniform propellant exit temperatures and improved engine performance. For the SNRE, element enrichment zoning provided very flat radial power profiles with 551 of the 564 fuel elements within 1% of the average element power. Results for this and alternate enrichment zoning options for the SNRE are compared.« less
2000-05-01
This photograph depicts an air-breathing rocket engine that completed an hour or 3,600 seconds of testing at the General Applied Sciences Laboratory in Ronkonkoma, New York. Referred to as ARGO by its design team, the engine is named after the mythological Greek ship that bore Jason and the Argonauts on their epic voyage of discovery. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced SpaceTransportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.
An Investigation of the Jetevator as a Means of Thrust Vector Control
1958-02-01
actual rocket firings. Description of the Tests The cold-flow jetevator tcsts were conduc.ted in the engine test cells of the Ordnance Aerophysics...45 and 210 psia, as noted on the figures. The cel. pres- sure was adjusted to give a ratio of supply pressure to cell pressure of approximately 37...CORPORATO t. r .U and SPACE DIVISION - FDN LMSD-2630 °; •GN F.]DE NT1 .A.L`. -[, GAP DEFLECTED NOZZLE JETEVATOR FLOW 6 =220 JETEVATOR .°=60O HINGE POINT
Liquid-propellant rocket engines health-monitoring—a survey
NASA Astrophysics Data System (ADS)
Wu, Jianjun
2005-02-01
This paper is intended to give a summary on the health-monitoring technology, which is one of the key technologies both for improving and enhancing the reliability and safety of current rocket engines and for developing new-generation high reliable reusable rocket engines. The implication of health-monitoring and the fundamental principle obeyed by the fault detection and diagnostics are elucidated. The main aspects of health-monitoring such as system frameworks, failure modes analysis, algorithms of fault detection and diagnosis, control means and advanced sensor techniques are illustrated in some detail. At last, the evolution trend of health-monitoring techniques of liquid-propellant rocket engines is set out.
Turbopump options for nuclear thermal rockets
NASA Astrophysics Data System (ADS)
Bissell, W. R.; Gunn, S. V.
1992-07-01
Several turbopump options for delivering liquid nitrogen to nuclear thermal rocket (NTR) engines were evaluated and compared. Axial and centrifugal flow pumps were optimized, with and without boost pumps, utilizing current design criteria within the latest turbopump technology limits. Two possible NTR design points were used, a modest pump pressure rise of 1,743 psia and a relatively higher pump pressure rise of 4,480 psia. Both engines utilized the expander cycle to maximize engine performance for the long duration mission. Pump suction performance was evaluated. Turbopumps with conventional cavitating inducers were compared with zero NPSH (saturated liquid in the tanks) pumps over a range of tank saturation pressures, with and without boost pumps. Results indicate that zero NSPH pumps at high tank vapor pressures, 60 psia, are very similar to those with the finite NPSHs. At low vapor pressures efficiencies fall and turbine pressure ratios increase leading to decreased engine chamber pressures and or increased pump pressure discharges and attendant high-pressure component weights. It may be concluded that zero tank NSPH capabilities can be obtained with little penalty to the engine systems but boost pumps are needed if tank vapor pressure drops below 30 psia. Axial pumps have slight advantages in weight and chamber pressure capability while centrifugal pumps have a greater operating range.
The development of a post-test diagnostic system for rocket engines
NASA Technical Reports Server (NTRS)
Zakrajsek, June F.
1991-01-01
An effort was undertaken by NASA to develop an automated post-test, post-flight diagnostic system for rocket engines. The automated system is designed to be generic and to automate the rocket engine data review process. A modular, distributed architecture with a generic software core was chosen to meet the design requirements. The diagnostic system is initially being applied to the Space Shuttle Main Engine data review process. The system modules currently under development are the session/message manager, and portions of the applications section, the component analysis section, and the intelligent knowledge server. An overview is presented of a rocket engine data review process, the design requirements and guidelines, the architecture and modules, and the projected benefits of the automated diagnostic system.
Long Duration Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Foote, John P.; Hickman, Robert; Dobson, Chris; Clifton, Scooter
2007-01-01
An arc-heater driven hyper-thermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to .produce high-temperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low cost test facility for the purpose of investigating and characterizing candidate fuel/structural materials and improving associated processing/fabrication techniques. Design and engineering development efforts are fully summarized, and facility operating characteristics are reported as determined from a series of baseline performance mapping runs and long duration capability demonstration tests.
NASA Technical Reports Server (NTRS)
Bjorklund, R. A.; Rogero, R. S.; Baerwald, R. K.
1979-01-01
The design, installation, and operation of systems to be used for directly measuring quantities of fundamental importance to the determination of monopropellant thruster performance is described. Areas covered include: (1) force and impulse measurement; (2) propellant mass usage and flow measurement; (3) pressure measurement; (4) temperature measurement; (5) exhaust gas composition measurement; and (6) data reduction and performance determination.
Effect of Swirl on an Unstable Single-Element Gas-Gas Rocket Engine
2014-06-01
at 300 K, and the combustor is filled with a mixture of water and carbon dioxide at 1500 K. The warmer temperature in the combustor enables the auto...a variety of configurations including gas turbines and rocket engines.4–13 The single-element engine chosen for this study is the continuously...combustion systems including gas turbines , rocket engines, and industrial furnaces. Swirl can have dramatic effects on the flowfield; these include jet growth
A History of Welding on the Space Shuttle Main Engine (1975 to 2010)
NASA Technical Reports Server (NTRS)
Zimmerman, Frank R.; Russell, Carolyn K.
2010-01-01
The Space Shuttle Main Engine (SSME) is a high performance, throttleable, liquid hydrogen fueled rocket engine. High thrust and specific impulse (Isp) are achieved through a staged combustion engine cycle, combined with high combustion pressure (approx.3000psi) generated by the two-stage pump and combustion process. The SSME is continuously throttleable from 67% to 109% of design thrust level. The design criteria for this engine maximize performance and weight, resulting in a 7,800 pound rocket engine that produces over a half million pounds of thrust in vacuum with a specific impulse of 452/sec. It is the most reliable rocket engine in the world, accumulating over one million seconds of hot-fire time and achieving 100% flight success in the Space Shuttle program. A rocket engine with the unique combination of high reliability, performance, and reusability comes at the expense of manufacturing simplicity. Several innovative design features and fabrication techniques are unique to this engine. This is as true for welding as any other manufacturing process. For many of the weld joints it seemed mean cheating physics and metallurgy to meet the requirements. This paper will present a history of the welding used to produce the world s highest performance throttleable rocket engine.
Rocket-Based Combined Cycle Flowpath Testing for Modes 1 and 4
NASA Technical Reports Server (NTRS)
Rice, Tharen
2002-01-01
Under sponsorship of the NASA Glenn Research Center (NASA GRC), the Johns Hopkins University Applied Physics Laboratory (JHU/APL) designed and built a five-inch diameter, Rocket-Based Combined Cycle (RBCC) engine to investigate mode 1 and mode 4 engine performance as well as Mach 4 inlet performance. This engine was designed so that engine area and length ratios were similar to the NASA GRC GTX engine is shown. Unlike the GTX semi-circular engine design, the APL engine is completely axisymmetric. For this design, a traditional rocket thruster was installed inside of the scramjet flowpath, along the engine centerline. A three part test series was conducted to determine Mode I and Mode 4 engine performance. In part one, testing of the rocket thruster alone was accomplished and its performance determined (average Isp efficiency = 90%). In part two, Mode 1 (air-augmented rocket) testing was conducted at a nominal chamber pressure-to-ambient pressure ratio of 100 with the engine inlet fully open. Results showed that there was neither a thrust increment nor decrement over rocket-only thrust during Mode 1 operation. In part three, Mode 4 testing was conducted with chamber pressure-to-ambient pressure ratios lower than desired (80 instead of 600) with the inlet fully closed. Results for this testing showed a performance decrease of 20% as compared to the rocket-only testing. It is felt that these results are directly related to the low pressure ratio tested and not the engine design. During this program, Mach 4 inlet testing was also conducted. For these tests, a moveable centerbody was tested to determine the maximum contraction ratio for the engine design. The experimental results agreed with CFD results conducted by NASA GRC, showing a maximum geometric contraction ratio of approximately 10.5. This report details the hardware design, test setup, experimental results and data analysis associated with the aforementioned tests.
Collaborative Sounding Rocket launch in Alaska and Development of Hybrid Rockets
NASA Astrophysics Data System (ADS)
Ono, Tomohisa; Tsutsumi, Akimasa; Ito, Toshiyuki; Kan, Yuji; Tohyama, Fumio; Nakashino, Kyouichi; Hawkins, Joseph
Tokai University student rocket project (TSRP) was established in 1995 for a purpose of the space science and engineering hands-on education, consisting of two space programs; the one is sounding rocket experiment collaboration with University of Alaska Fairbanks and the other is development and launch of small hybrid rockets. In January of 2000 and March 2002, two collaborative sounding rockets were successfully launched at Poker Flat Research Range in Alaska. In 2001, the first Tokai hybrid rocket was successfully launched at Alaska. After that, 11 hybrid rockets were launched to the level of 180-1,000 m high at Hokkaido and Akita in Japan. Currently, Tokai students design and build all parts of the rockets. In addition, they are running the organization and development of the project under the tight budget control. This program has proven to be very effective in providing students with practical, real-engineering design experience and this program also allows students to participate in all phases of a sounding rocket mission. Also students learn scientific, engineering subjects, public affairs and system management through experiences of cooperative teamwork. In this report, we summarize the TSRP's hybrid rocket program and discuss the effectiveness of the program in terms of educational aspects.
Ceramic composites for rocket engine turbines
NASA Technical Reports Server (NTRS)
Herbell, Thomas P.; Eckel, Andrew J.
1991-01-01
The use of ceramic materials in the hot section of the fuel turbopump of advanced reusable rocket engines promises increased performance and payload capability, improved component life and economics, and greater design flexibility. Severe thermal transients present during operation of the Space Shuttle Main Engine (SSME), push metallic components to the limit of their capabilities. Future engine requirements might be even more severe. In phase one of this two-phase program, performance benefits were quantified and continuous fiber reinforced ceramic matrix composite components demonstrated a potential to survive the hostile environment of an advanced rocket engine turbopump.
Ceramic composites for rocket engine turbines
NASA Technical Reports Server (NTRS)
Herbell, Thomas P.; Eckel, Andrew J.
1991-01-01
The use of ceramic materials in the hot section of the fuel turbopump of advanced reusable rocket engines promises increased performance and payload capability, improved component life and economics, and greater design flexibility. Severe thermal transients present during operation of the Space Shuttle Main Engine (SSME), push metallic components to the limit of their capabilities. Future engine requirements might be even more severe. In phase one of this two-phase program, performance benefits were quantified and continuous fiber reinforced ceramic matrix composite components demonstrated a potential to survive the hostile environment of an advaced rocket engine turbopump.
Done in 60 seconds- See a Massive Rocket Fuel Tank Built in A Minute
2016-08-18
The 7.5-minute test conducted at NASA’s Stennis Space Center is part of a series of tests designed to put the upgraded former space shuttle engines through the rigorous temperature and pressure conditions they will experience during a launch. The tests also support the development of a new controller, or “brain,” for the engine, which monitors engine status and communicates between the rocket and the engine, relaying commands to the engine and transmitting data back to the rocket.
Mean Flow Augmented Acoustics in Rocket Systems
NASA Technical Reports Server (NTRS)
Fischbach, Sean R.
2014-01-01
Oscillatory motion in solid rocket motors and liquid engines has long been a subject of concern. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. The customary approach to modeling acoustic waves inside a rocket chamber is to apply the classical inhomogeneous wave equation to the combustion gas. The assumption of a linear, non-dissipative wave in a quiescent fluid remains valid while the acoustic amplitudes are small and local gas velocities stay below Mach 0.2. The converging section of a rocket nozzle, where gradients in pressure, density, and velocity become large, is a notable region where this approach is not applicable. The expulsion of unsteady energy through the nozzle of a rocket is identified as the predominate source of acoustic damping for most rocket systems. An accurate model of the acoustic behavior within this region where acoustic modes are influenced by the presence of a steady mean flow is required for reliable stability predictions. Recently, an approach to address nozzle damping with mean flow effects was implemented by French [1]. This new approach extends the work originated by Sigman and Zinn [2] by solving the acoustic velocity potential equation (AVPE) formulated by perturbing the Euler equations [3]. The acoustic velocity potential (psi) describing the acoustic wave motion in the presence of an inhomogeneous steady high-speed flow is defined by, (del squared)(psi) - (lambda/c)(exp 2)(psi) - M(dot)[M(dot)(del)(del(psi))] - 2(lambda(M/c) + (M(dot)del(M))(dot)del(psi)-2(lambda)(psi)[M(dot)del(1/c)]=0 (1) with M as the Mach vector, c as the speed of sound, and lambda as the complex eigenvalue. French apply the finite volume method to solve the steady flow field within the combustion chamber and nozzle with inviscid walls. The complex eigenvalues and eigenvector are determined with the use of the ARPACK eigensolver. The present study employs the COMSOL Multphysics framework to solve the coupled eigenvalue problem using the finite element approach. The study requires one way coupling of the CFD High Mach Number Flow (HMNF) and mathematics module. The HMNF module evaluated the gas flow inside of a solid rocket motor using St. Robert's law modeling solid propellant burn rate, slip boundary conditions, and the supersonic outflow condition. Results from the HMNF model are used by the coefficient form of the mathematics module to determine the eigenvalues of the AVPE. The mathematics model is truncated at the nozzle sonic line, where a zero flux boundary condition is self-satisfying. The remaining boundaries are modeled with a zero flux boundary condition, assuming zero acoustic absorption on all surfaces. Pertinent results from these analyses are the complex valued eigenvalue and eigenvectors. Comparisons are made to the French results to evaluate the modeling approach. A comparison of the French results with that of the present analysis is displayed in figures 1 and 2, respectively. The graphic shows the first tangential eigenvector's real (a) and imaginary (b) values.
Thrust Augmented Nozzle for a Hybrid Rocket with a Helical Fuel Port
NASA Astrophysics Data System (ADS)
Marshall, Joel H.
A thrust augmented nozzle for hybrid rocket systems is investigated. The design lever-ages 3-D additive manufacturing to embed a helical fuel port into the thrust chamber of a hybrid rocket burning gaseous oxygen and ABS plastic as propellants. The helical port significantly increases how quickly the fuel burns, resulting in a fuel-rich exhaust exiting the nozzle. When a secondary gaseous oxygen flow is injected into the nozzle downstream of the throat, all of the remaining unburned fuel in the plume spontaneously ignites. This secondary reaction produces additional high pressure gases that are captured by the nozzle and significantly increases the motor's performance. Secondary injection and combustion allows a high expansion ratio (area of the nozzle exit divided by area of the throat) to be effective at low altitudes where there would normally be significantly flow separation and possibly an embedded shock wave due. The result is a 15 percent increase in produced thrust level with no loss in engine efficiency due to secondary injection. Core flow efficiency was increased significantly. Control tests performed using cylindrical fuel ports with secondary injection, and helical fuel ports without secondary injection did not exhibit this performance increase. Clearly, both the fuel-rich plume and secondary injection are essential features allowing the hybrid thrust augmentation to occur. Techniques for better design optimization are discussed.
2013-12-11
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, from the left, Leandro James, rocket avionics lead, Gary Dahlke, high powered rocket subject matter expert, and Julio Najarro of Mechanical Systems make final adjustments to a small rocket prior to launch as part of Rocket University. The launch will test systems designed by the student engineers. As part of Rocket University, the engineers are given an opportunity to work a fast-track project to develop skills in developing spacecraft systems of the future. As NASA plans for future spaceflight programs to low-Earth orbit and beyond, teams of engineers at Kennedy are gaining experience in designing and flying launch vehicle systems on a small scale. Four teams of five to eight members from Kennedy are designing rockets complete with avionics and recovery systems. Launch operations require coordination with federal agencies, just as they would with rockets launched in support of a NASA mission. Photo credit: NASA/Jim Grossmann
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2014-01-01
The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet's moon atmospheres for entry, and descent can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions. Future EDL systems may include an inflatable decelerator for the initial atmospheric entry and an additional supersonic retropropulsion (SRP) rocket system for the final soft landing. A three engine retropropulsion configuration with a 2.5 in. diameter sphere-cone aeroshell model was tested in the NASA Glenn Research Center's 1- by 1-ft (1×1) Supersonic Wind Tunnel (SWT). The testing was conducted to identify potential blockage issues in the tunnel, and visualize the rocket flow and shock interactions during supersonic and hypersonic entry conditions. Earlier experimental testing of a 70deg Viking-like (sphere-cone) aeroshell was conducted as a baseline for testing of a SRP system. This baseline testing defined the flow field around the aeroshell and from this comparative baseline data, retropropulsion options will be assessed. Images and analyses from the SWT testing with 300- and 500-psia rocket engine chamber pressures are presented here. In addition, special topics of electromagnetic interference with retropropulsion induced shock waves and retropropulsion for Earth launched booster recovery are also addressed.
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2013-01-01
The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet's moon atmospheres for entry, and descent can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions. Future EDL systems may include an inflatable decelerator for the initial atmospheric entry and an additional supersonic retro-propulsion (SRP) rocket system for the final soft landing. A three engine retro-propulsion configuration with a 2.5 inch diameter sphere-cone aeroshell model was tested in the NASA Glenn 1x1 Supersonic Wind Tunnel (SWT). The testing was conducted to identify potential blockage issues in the tunnel, and visualize the rocket flow and shock interactions during supersonic and hypersonic entry conditions. Earlier experimental testing of a 70 degree Viking-like (sphere-cone) aeroshell was conducted as a baseline for testing of a supersonic retro-propulsion system. This baseline testing defined the flow field around the aeroshell and from this comparative baseline data, retro-propulsion options will be assessed. Images and analyses from the SWT testing with 300- and 500-psia rocket engine chamber pressures are presented here. In addition, special topics of electromagnetic interference with retro-propulsion induced shock waves and retro-propulsion for Earth launched booster recovery are also addressed.
Celebrating 50 Years of Testing
2016-04-19
What better way to mark 50 years of rocket engine testing than with a rocket engine test? Stennis Space Center employees enjoyed a chance to view an RS-68 engine test at the B-1 Test Stand on April 19, almost 50 years to the day that the first test was conducted at the south Mississippi site in 1966. The test viewing was part of a weeklong celebration of the 50th year of rocket engine testing at Stennis. The first test at the site occurred April 23, 1966, with a 15-second firing of a Saturn V second stage prototype (S-II-C) on the A-2 Test Stand. The center subsequently tested Apollo rocket stages that carried humans to the moon and every main engine used to power 135 space shuttle missions. It currently tests engines for NASA’s new Space Launch System vehicle.
Rocketdyne/Westinghouse nuclear thermal rocket engine modeling
NASA Technical Reports Server (NTRS)
Glass, James F.
1993-01-01
The topics are presented in viewgraph form and include the following: systems approach needed for nuclear thermal rocket (NTR) design optimization; generic NTR engine power balance codes; rocketdyne nuclear thermal system code; software capabilities; steady state model; NTR engine optimizer code-logic; reactor power calculation logic; sample multi-component configuration; NTR design code output; generic NTR code at Rocketdyne; Rocketdyne NTR model; and nuclear thermal rocket modeling directions.
Researcher Poses with a Nuclear Rocket Model
1961-11-21
A researcher at the NASA Lewis Research Center with slide ruler poses with models of the earth and a nuclear-propelled rocket. The Nuclear Engine for Rocket Vehicle Applications (NERVA) was a joint NASA and Atomic Energy Commission (AEC) endeavor to develop a nuclear-powered rocket for both long-range missions to Mars and as a possible upper-stage for the Apollo Program. The early portion of the program consisted of basic reactor and fuel system research. This was followed by a series of Kiwi reactors built to test nuclear rocket principles in a non-flying nuclear engine. The next phase, NERVA, would create an entire flyable engine. The AEC was responsible for designing the nuclear reactor and overall engine. NASA Lewis was responsible for developing the liquid-hydrogen fuel system. The nuclear rocket model in this photograph includes a reactor at the far right with a hydrogen propellant tank and large radiator below. The payload or crew would be at the far left, distanced from the reactor.
AJ26 rocket engine testing news briefing
NASA Technical Reports Server (NTRS)
2010-01-01
Operators at NASA's John C. Stennis Space Center are completing modifications to the E-1 Test Stand to begin testing Aerojet AJ26 rocket engines in early summer of 2010. Modifications include construction of a 27-foot-deep flame deflector trench. The AJ26 rocket engines will be used to power Orbital Sciences Corp.'s Taurus II space vehicles to provide commercial cargo transportation missions to the International Space Station for NASA. Stennis has partnered with Orbital to test all engines for the transport missions.
Iridium/Rhenium Parts For Rocket Engines
NASA Technical Reports Server (NTRS)
Schneider, Steven J.; Harding, John T.; Wooten, John R.
1991-01-01
Oxidation/corrosion of metals at high temperatures primary life-limiting mechanism of parts in rocket engines. Combination of metals greatly increases operating temperature and longevity of these parts. Consists of two transition-element metals - iridium and rhenium - that melt at extremely high temperatures. Maximum operating temperature increased to 2,200 degrees C from 1,400 degrees C. Increases operating lifetimes of small rocket engines by more than factor of 10. Possible to make hotter-operating, longer-lasting components for turbines and other heat engines.
CFD Simulation of Liquid Rocket Engine Injectors
NASA Technical Reports Server (NTRS)
Farmer, Richard; Cheng, Gary; Chen, Yen-Sen; Garcia, Roberto (Technical Monitor)
2001-01-01
Detailed design issues associated with liquid rocket engine injectors and combustion chamber operation require CFD methodology which simulates highly three-dimensional, turbulent, vaporizing, and combusting flows. The primary utility of such simulations involves predicting multi-dimensional effects caused by specific injector configurations. SECA, Inc. and Engineering Sciences, Inc. have been developing appropriate computational methodology for NASA/MSFC for the past decade. CFD tools and computers have improved dramatically during this time period; however, the physical submodels used in these analyses must still remain relatively simple in order to produce useful results. Simulations of clustered coaxial and impinger injector elements for hydrogen and hydrocarbon fuels, which account for real fluid properties, is the immediate goal of this research. The spray combustion codes are based on the FDNS CFD code' and are structured to represent homogeneous and heterogeneous spray combustion. The homogeneous spray model treats the flow as a continuum of multi-phase, multicomponent fluids which move without thermal or velocity lags between the phases. Two heterogeneous models were developed: (1) a volume-of-fluid (VOF) model which represents the liquid core of coaxial or impinger jets and their atomization and vaporization, and (2) a Blob model which represents the injected streams as a cloud of droplets the size of the injector orifice which subsequently exhibit particle interaction, vaporization, and combustion. All of these spray models are computationally intensive, but this is unavoidable to accurately account for the complex physics and combustion which is to be predicted, Work is currently in progress to parallelize these codes to improve their computational efficiency. These spray combustion codes were used to simulate the three test cases which are the subject of the 2nd International Workshop on-Rocket Combustion Modeling. Such test cases are considered by these investigators to be very valuable for code validation because combustion kinetics, turbulence models and atomization models based on low pressure experiments of hydrogen air combustion do not adequately verify analytical or CFD submodels which are necessary to simulate rocket engine combustion. We wish to emphasize that the simulations which we prepared for this meeting are meant to test the accuracy of the approximations used in our general purpose spray combustion models, rather than represent a definitive analysis of each of the experiments which were conducted. Our goal is to accurately predict local temperatures and mixture ratios in rocket engines; hence predicting individual experiments is used only for code validation. To replace the conventional JANNAF standard axisymmetric finite-rate (TDK) computer code 2 for performance prediction with CFD cases, such codes must posses two features. Firstly, they must be as easy to use and of comparable run times for conventional performance predictions. Secondly, they must provide more detailed predictions of the flowfields near the injector face. Specifically, they must accurately predict the convective mixing of injected liquid propellants in terms of the injector element configurations.
NASA’s Space Launch System Engine Testing Heats Up
2017-05-23
NASA engineers successfully conducted the second in a series of RS-25 flight controller tests on May 23, 2017, for the world’s most-powerful rocket. The 500-second test on the A-1 Test Stand at NASA’s Stennis Space Center in Mississippi marked another milestone toward launch of NASA’s new Space Launch System (SLS) rocket on its inaugural flight, the Exploration Mission-1 (EM-1). The SLS rocket, powered by four RS-25 engines, will provide 2 million pounds of thrust and work in conjunction with two solid rocket boosters. These are former space shuttle main engines, modified to perform at a higher level and with a new controller.
Primary atomization of liquid jets issuing from rocket engine coaxial injectors
NASA Astrophysics Data System (ADS)
Woodward, Roger D.
1993-01-01
The investigation of liquid jet breakup and spray development is critical to the understanding of combustion phenomena in liquid-propellant rocket engines. Much work has been done to characterize low-speed liquid jet breakup and dilute sprays, but atomizing jets and dense sprays have yielded few quantitative measurements due to their optical opacity. This work focuses on a characteristic of the primary breakup process of round liquid jets, namely the length of the intact liquid core. The specific application considered is that of shear-coaxial type rocket engine injectors. Real-time x-ray radiography, capable of imaging through the dense two-phase region surrounding the liquid core, has been used to make the measurements. Nitrogen and helium were employed as the fuel simulants while an x-ray absorbing potassium iodide aqueous solution was used as the liquid oxygen (LOX) simulant. The intact-liquid-core length data have been obtained and interpreted to illustrate the effects of chamber pressure (gas density), injected-gas and liquid velocities, and cavitation. The results clearly show that the effect of cavitation must be considered at low chamber pressures since it can be the dominant breakup mechanism. A correlation of intact core length in terms of gas-to-liquid density ratio, liquid jet Reynolds number, and Weber number is suggested. The gas-to-liquid density ratio appears to be the key parameter for aerodynamic shear breakup in this study. A small number of hot-fire, LOX/hydrogen tests were also conducted to attempt intact-LOX-core measurements under realistic conditions in a single-coaxial-element rocket engine. The tests were not successful in terms of measuring the intact core, but instantaneous imaging of LOX jets suggests that LOX jet breakup is qualitatively similar to that of cold-flow, propellant-simulant jets. The liquid oxygen jets survived in the hot-fire environment much longer than expected, and LOX was even visualized exiting the chamber nozzle under some conditions. This may be an effect of the single element configuration.
Program For Optimization Of Nuclear Rocket Engines
NASA Technical Reports Server (NTRS)
Plebuch, R. K.; Mcdougall, J. K.; Ridolphi, F.; Walton, James T.
1994-01-01
NOP is versatile digital-computer program devoloped for parametric analysis of beryllium-reflected, graphite-moderated nuclear rocket engines. Facilitates analysis of performance of engine with respect to such considerations as specific impulse, engine power, type of engine cycle, and engine-design constraints arising from complications of fuel loading and internal gradients of temperature. Predicts minimum weight for specified performance.
An Historical Perspective of the NERVA Nuclear Rocket Engine Technology Program
NASA Technical Reports Server (NTRS)
Robbins, W. H.; Finger, H. B.
1991-01-01
Nuclear rocket research and development was initiated in the United States in 1955 and is still being pursued to a limited extent. The major technology emphasis occurred in the decade of the 1960s and was primarily associated with the Rover/NERVA Program where the technology for a nuclear rocket engine system for space application was developed and demonstrated. The NERVA (Nuclear Engine for Rocket Vehicle Application) technology developed twenty years ago provides a comprehensive and viable propulsion technology base that can be applied and will prove to be valuable for application to the NASA Space Exploration Initiative (SEI). This paper, which is historical in scope, provides an overview of the conduct of the NERVA Engine Program, its organization and management, development philosophy, the engine configuration, and significant accomplishments.
Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis
NASA Technical Reports Server (NTRS)
Morgan, Morris H., III; Gilinsky, Mikhail M.
2004-01-01
In this project on the first stage (2000-Ol), we continued to develop the previous joint research between the Fluid Mechanics and Acoustics Laboratory (FM&AL) at Hampton University (HU) and the Jet Noise Team (JNT) at the NASA Langley Research Center (NASA LaRC). At the second stage (2001-03), FM&AL team concentrated its efforts on solving of problems of interest to Glenn Research Center (NASA GRC), especially in the field of propulsion system enhancement. The NASA GRC R&D Directorate and LaRC Hyper-X Program specialists in a hypersonic technology jointly with the FM&AL staff conducted research on a wide region of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. The last year the Hampton University School of Engineering & Technology was awarded the NASA grant, for creation of the Aeropropulsion Center, and the FM&AL is a key team of the project fulfillment responsible for research in Aeropropulsion and Acoustics (Pillar I). This work is supported by joint research between the NASA GRC/ FM&AL and the Institute of Mechanics at Moscow State University (IMMSU) in Russia under a CRDF grant. The main areas of current scientific interest of the FM&AL include an investigation of the proposed and patented advanced methods for aircraft engine thrust and noise benefits. This is the main subject of our other projects, of which one is presented. The last year we concentrated our efforts to analyze three main problems: (a) new effective methods fuel injection into the flow stream in air-breathing engines; (b) new re-circulation method for mixing, heat transfer and combustion enhancement in propulsion systems and domestic industry application; (c) covexity flow The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines (see, for example, Figures 4). The FM&AL Team uses analytical methods, numerical simulations and experimental tests at the Hampton University campus, NASA and IM/MSU.
Supercomputing Aspects for Simulating Incompressible Flow
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Kris, Cetin C.
2000-01-01
The primary objective of this research is to support the design of liquid rocket systems for the Advanced Space Transportation System. Since the space launch systems in the near future are likely to rely on liquid rocket engines, increasing the efficiency and reliability of the engine components is an important task. One of the major problems in the liquid rocket engine is to understand fluid dynamics of fuel and oxidizer flows from the fuel tank to plume. Understanding the flow through the entire turbo-pump geometry through numerical simulation will be of significant value toward design. One of the milestones of this effort is to develop, apply and demonstrate the capability and accuracy of 3D CFD methods as efficient design analysis tools on high performance computer platforms. The development of the Message Passage Interface (MPI) and Multi Level Parallel (MLP) versions of the INS3D code is currently underway. The serial version of INS3D code is a multidimensional incompressible Navier-Stokes solver based on overset grid technology, INS3D-MPI is based on the explicit massage-passing interface across processors and is primarily suited for distributed memory systems. INS3D-MLP is based on multi-level parallel method and is suitable for distributed-shared memory systems. For the entire turbo-pump simulations, moving boundary capability and efficient time-accurate integration methods are built in the flow solver, To handle the geometric complexity and moving boundary problems, an overset grid scheme is incorporated with the solver so that new connectivity data will be obtained at each time step. The Chimera overlapped grid scheme allows subdomains move relative to each other, and provides a great flexibility when the boundary movement creates large displacements. Two numerical procedures, one based on artificial compressibility method and the other pressure projection method, are outlined for obtaining time-accurate solutions of the incompressible Navier-Stokes equations. The performance of the two methods is compared by obtaining unsteady solutions for the evolution of twin vortices behind a flat plate. Calculated results are compared with experimental and other numerical results. For an unsteady flow, which requires small physical time step, the pressure projection method was found to be computationally efficient since it does not require any subiteration procedure. It was observed that the artificial compressibility method requires a fast convergence scheme at each physical time step in order to satisfy the incompressibility condition. This was obtained by using a GMRES-ILU(0) solver in present computations. When a line-relaxation scheme was used, the time accuracy was degraded and time-accurate computations became very expensive.
Ricardo Dyrgalla (1910-1970), pioneer of rocket development in Argentina
NASA Astrophysics Data System (ADS)
de León, Pablo
2009-12-01
One of the most important developers of liquid propellant rocket engines in Argentina was Polish-born Ricardo Dyrgalla. Dyrgalla immigrated to Argentina from the United Kingdom in 1946, where he had been studying German weapons development at the end of the Second World War. A trained pilot and aeronautical engineer, he understood the intricacies of rocket propulsion and was eager to find practical applications to his recently gained knowledge. Dyrgalla arrived in Argentina during Juan Perón's first presidency, a time when technicians from all over Europe were being recruited to work in various projects for the recently created Argentine Air Force. Shortly after immigrating, Dyrgalla proposed to develop an advanced air-launched weapon, the Tábano, based on a rocket engine of his design, the AN-1. After a successful development program, the Tábano was tested between 1949 and 1951; however, the project was canceled by the government shortly after. Today, the AN-1 rocket engine is recognized as the first liquid propellant rocket to be developed in South America. Besides the AN-1, Dyrgalla also developed several other rockets systems in Argentina, including the PROSON, a solid-propellant rocket launcher developed by the Argentine Institute of Science and Technology for the Armed Forces (CITEFA). In the late 1960s, Dyrgalla and his family relocated to Brazil due mostly to the lack of continuation of rocket development in Argentina. There, he worked for the Institute of Aerospace Technology (ITA) until his untimely death in 1970. Ricardo Dyrgalla deserves to be recognized among the world's rocket pioneers and his contribution to the science and engineering of rocketry deserves a special place in the history of South America's rocketry and space flight advocacy programs.
Facility Activation and Characterization for IPD Turbopump Testing at NASA Stennis Space Center
NASA Technical Reports Server (NTRS)
Sass, J. P.; Pace, J. S.; Raines, N. G.; Meredith, T. O.; Taylor, S. A.; Ryan, H. M.
2005-01-01
The Integrated Powerhead Demonstrator (IPD) is a 250K lbf (1.1 MN) thrust cryogenic hydrogen/oxygen engine technology demonstrator that utilizes a full flow staged combustion engine cycle. The Integrated Powerhead Demonstrator (IPD) is, in part, supported by NASA. IPD is also supported through the Department of Defense's Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program, which seeks to increase the performance and capability of today's state-of-the-art rocket propulsion systems while decreasing costs associated with military and commercial access to space. The primary industry participants include Boeing-Rocketdyne and GenCorp Aerojet. The IPD Program recently achieved two major milestones. The first was the successful completion of the IPD Oxidizer Turbopump (OTP) hot-fire test project at the NASA John C. Stennis Space Center (SSC) E-1 test facility in June 2003. A total of nine IPD Workhorse Preburner tests were completed, and subsequently 12 IPD OTP hot-fire tests were completed. The second major milestone was the successful completion of the IPD Fuel Turbopump (FTP) cold-flow test project at the NASA SSC E-1 test facility in November 2003. A total of six IPD FTP cold-flow tests were completed. The next phase of development involves IPD integrated engine system testing also at the NASA SSC E-1 test facility scheduled to begin in early 2005. Following and overview of the NASA SSC E-1 test facility, this paper addresses the facility aspects pertaining to the activation and testing of the IPD oxidizer and fuel turbopumps. In addition, some of the facility challenges encountered and the lessons learned during the test projects shall be detailed.
Investigation of conjugate circular arcs in rocket nozzle contour design
NASA Astrophysics Data System (ADS)
Schomberg, K.; Olsen, J.; Neely, A.; Doig, G.
2018-05-01
The use of conjugate circular arcs in rocket nozzle contour design has been investigated by numerically comparing three existing sub-scale nozzles to a range of equivalent arc-based contour designs. Three performance measures were considered when comparing nozzle designs: thrust coefficient, nozzle exit wall pressure, and a transition between flow separation regimes during the engine start-up phase. In each case, an equivalent arc-based contour produced an increase in the thrust coefficient and exit wall pressure of up to 0.4 and 40% respectively, in addition to suppressing the transition between a free and restricted shock separation regime. A general approach to arc-based nozzle contour design has also been presented to outline a rapid and repeatable process for generating sub-scale arc-based contours with an exit Mach number of 3.8-5.4 and a length between 60 and 100% of a 15° conical nozzle. The findings suggest that conjugate circular arcs may represent a viable approach for producing sub-scale rocket nozzle contours, and that a further investigation is warranted between arc-based and existing full-scale rocket nozzles.
Rocket Engines Displayed for 1966 Inspection at Lewis Research Center
1966-10-21
An array of rocket engines displayed in the Propulsion Systems Laboratory for the 1966 Inspection held at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis engineers had been working on chemical, nuclear, and solid rocket engines throughout the 1960s. The engines on display are from left to right: two scale models of the Aerojet M-1, a Rocketdyne J-2, a Pratt and Whitney RL-10, and a Rocketdyne throttleable engine. Also on display are several ejector plates and nozzles. The Chemical Rocket Division resolved issues such as combustion instability and screech, and improved operation of cooling systems and turbopumps. The 1.5-million pound thrust M-1 engine was the largest hydrogen-fueled rocket engine ever created. It was a joint project between NASA Lewis and Aerojet-General. Although much larger in size, the M-1 used technology developed for the RL-10 and J-2. The M-1 program was cancelled in late 1965 due to budget cuts and the lack of a post-Apollo mission. The October 1966 Inspection was the culmination of almost a year of events held to mark the centers’ 25th anniversary. The three‐day Inspection, Lewis’ first since 1957, drew 2000 business, industry, and government executives and included an employee open house. The visitors witnessed presentations at the major facilities and viewed the Gemini VII spacecraft, a Centaur rocket, and other displays in the hangar. In addition, Lewis’ newest facility, the Zero Gravity Facility, was shown off for the first time.
NASA Technical Reports Server (NTRS)
1998-01-01
Final preparations for lift off of the DELTA II Mars Pathfinder Rocket are shown. Activities include loading the liquid oxygen, completing the construction of the Rover, and placing the Rover into the Lander. After the countdown, important visual events include the launch of the Delta Rocket, burnout and separation of the three Solid Rocket Boosters, and the main engine cutoff. The cutoff of the main engine marks the beginning of the second stage engine. After the completion of the second stage, the third stage engine ignites and then cuts off. Once the third stage engine cuts off spacecraft separation occurs.
Study of solid rocket motors for a space shuttle booster. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1972-01-01
An analysis of the solid propellant rocket engines for use with the space shuttle booster was conducted. A definition of the specific solid propellant rocket engine stage designs, development program requirements, production requirements, launch requirements, and cost data for each program phase were developed.
Conjugate Analysis of Two-Dimensional Ablation and Pyrolysis in Rocket Nozzles
NASA Astrophysics Data System (ADS)
Cross, Peter G.
The development of a methodology and computational framework for performing conjugate analyses of transient, two-dimensional ablation of pyrolyzing materials in rocket nozzle applications is presented. This new engineering methodology comprehensively incorporates fluid-thermal-chemical processes relevant to nozzles and other high temperature components, making it possible, for the first time, to rigorously capture the strong interactions and interdependencies that exist between the reacting flowfield and the ablating material. By basing thermal protection system engineering more firmly on first principles, improved analysis accuracy can be achieved. The computational framework developed in this work couples a multi-species, reacting flow solver to a two-dimensional material response solver. New capabilities are added to the flow solver in order to be able to model unique aspects of the flow through solid rocket nozzles. The material response solver is also enhanced with new features that enable full modeling of pyrolyzing, anisotropic materials with a true two-dimensional treatment of the porous flow of the pyrolysis gases. Verification and validation studies demonstrating correct implementation of these new models in the flow and material response solvers are also presented. Five different treatments of the surface energy balance at the ablating wall, with increasing levels of fidelity, are investigated. The Integrated Equilibrium Surface Chemistry (IESC) treatment computes the surface energy balance and recession rate directly from the diffusive fluxes at the ablating wall, without making transport coefficient or unity Lewis number assumptions, or requiring pre-computed surface thermochemistry tables. This method provides the highest level of fidelity, and can inherently account for the effects that recession, wall temperature, blowing, and the presence of ablation product species in the boundary layer have on the flowfield and ablation response. Multiple decoupled and conjugate ablation analysis studies for the HIPPO nozzle test case are presented. Results from decoupled simulations show sensitivity to the wall temperature profile used within the flow solver, indicating the need for conjugate analyses. Conjugate simulations show that the thermal response of the nozzle is relatively insensitive to the choice of the surface energy balance treatment. However, the surface energy balance treatment is found to strongly affect the surface recession predictions. Out of all the methods considered, the IESC treatment produces surface recession predictions with the best agreement to experimental data. These results show that the increased fidelity provided by the proposed conjugate ablation modeling methodology produces improved analysis accuracy, as desired.
Outbrief - Long Life Rocket Engine Panel
NASA Technical Reports Server (NTRS)
Quinn, Jason Eugene
2004-01-01
This white paper is an overview of the JANNAF Long Life Rocket Engine (LLRE) Panel results from the last several years of activity. The LLRE Panel has met over the last several years in order to develop an approach for the development of long life rocket engines. Membership for this panel was drawn from a diverse set of the groups currently working on rocket engines (Le. government labs, both large and small companies and university members). The LLRE Panel was formed in order to determine the best way to enable the design of rocket engine systems that have life capability greater than 500 cycles while meeting or exceeding current performance levels (Specific Impulse and Thrust/Weight) with a 1/1,OOO,OOO likelihood of vehicle loss due to rocket system failure. After several meetings and much independent work the panel reached a consensus opinion that the primary issues preventing LLRE are a lack of: physics based life prediction, combined loads prediction, understanding of material microphysics, cost effective system level testing. and the inclusion of fabrication process effects into physics based models. With the expected level of funding devoted to LLRE development, the panel recommended that fundamental research efforts focused on these five areas be emphasized.
An Object Model for a Rocket Engine Numerical Simulator
NASA Technical Reports Server (NTRS)
Mitra, D.; Bhalla, P. N.; Pratap, V.; Reddy, P.
1998-01-01
Rocket Engine Numerical Simulator (RENS) is a packet of software which numerically simulates the behavior of a rocket engine. Different parameters of the components of an engine is the input to these programs. Depending on these given parameters the programs output the behaviors of those components. These behavioral values are then used to guide the design of or to diagnose a model of a rocket engine "built" by a composition of these programs simulating different components of the engine system. In order to use this software package effectively one needs to have a flexible model of a rocket engine. These programs simulating different components then should be plugged into this modular representation. Our project is to develop an object based model of such an engine system. We are following an iterative and incremental approach in developing the model, as is the standard practice in the area of object oriented design and analysis of softwares. This process involves three stages: object modeling to represent the components and sub-components of a rocket engine, dynamic modeling to capture the temporal and behavioral aspects of the system, and functional modeling to represent the transformational aspects. This article reports on the first phase of our activity under a grant (RENS) from the NASA Lewis Research center. We have utilized Rambaugh's object modeling technique and the tool UML for this purpose. The classes of a rocket engine propulsion system are developed and some of them are presented in this report. The next step, developing a dynamic model for RENS, is also touched upon here. In this paper we will also discuss the advantages of using object-based modeling for developing this type of an integrated simulator over other tools like an expert systems shell or a procedural language, e.g., FORTRAN. Attempts have been made in the past to use such techniques.
2007-02-08
was employed to study the vapor cavitation during liquid carbon dioxide expansion through a sharp-orifice nozzle. Numerical experiments demonstrated...Combustion Dynamics for 6b. GRANT NUMBER Liquid Propellants at Supercritical Conditions FA9550-04-1-0014 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...fundamental knowledge of supercritical combustion of liquid propellants under conditions representative of contemporary rocket engines. Both shear and
NASA Technical Reports Server (NTRS)
1990-01-01
The topics are presented in viewgraph form and include the following: LRB study results summary -- Feb. 1989; LRB study results -- Jan. 1990; Shuttle configuration with booster options; LRB study results -- Sept. 1990; LRB statement of work tasks; ground rules and assumptions; study flow of design, manufacturing/production, and test program/certification; study products; study schedule; and candidate 1.5 stage engine arrangements.
X-ray Fluorescence Measurements of Turbulent Methane-Oxygen Shear Coaxial Flames
2015-05-01
The shear coaxial jet injector is a typical injector design in liquid rocket engines, used as the main chamber element for Space Shuttle Main...current study. (b) Representation of the injector tip of the shear coaxial burner with propellant streams and dimensions labeled. (c) Picture of flame...integrated with the Air Force Research Laboratories’ (AFRL) Mobile Flow Laboratory (MFL). This facility is designed to allow aerospace-propulsion injector
Magnetohydrodynamic Augmentation of Pulse Detonation Rocket Engines (Preprint)
2010-09-28
augmentation of the thrust . Ejectors typically transfer energy between streams through shear stress between separate flow streams, where a portion of the...the opportunity to extract energy and apply it to a separate stream where the net thrust can be increased. With MHD augmentation , such as in the Pulse...with the PDRIME for separate or additional thrust augmentation . Results show potential performance gains under many flight and operating conditions
Rocket Engine Turbine Blade Surface Pressure Distributions Experiment and Computations
NASA Technical Reports Server (NTRS)
Hudson, Susan T.; Zoladz, Thomas F.; Dorney, Daniel J.; Turner, James (Technical Monitor)
2002-01-01
Understanding the unsteady aspects of turbine rotor flow fields is critical to successful future turbine designs. A technology program was conducted at NASA's Marshall Space Flight Center to increase the understanding of unsteady environments for rocket engine turbines. The experimental program involved instrumenting turbine rotor blades with miniature surface mounted high frequency response pressure transducers. The turbine model was then tested to measure the unsteady pressures on the rotor blades. The data obtained from the experimental program is unique in two respects. First, much more unsteady data was obtained (several minutes per set point) than has been possible in the past. Also, an extensive steady performance database existed for the turbine model. This allowed an evaluation of the effect of the on-blade instrumentation on the turbine's performance. A three-dimensional unsteady Navier-Stokes analysis was also used to blindly predict the unsteady flow field in the turbine at the design operating conditions and at +15 degrees relative incidence to the first-stage rotor. The predicted time-averaged and unsteady pressure distributions show good agreement with the experimental data. This unique data set, the lessons learned for acquiring this type of data, and the improvements made to the data analysis and prediction tools are contributing significantly to current Space Launch Initiative turbine airflow test and blade surface pressure prediction efforts.
NASA Astrophysics Data System (ADS)
Vaidyanathan, Aravind
In-flow species concentration measurements in reacting flows at high pressures are needed both to improve the current understanding of the physical processes taking place and to validate predictive tools that are under development, for application to the design and optimization of a range of power plants from diesel to rocket engines. To date, non intrusive measurements have been based on calibrations determined from assumptions that were not sufficiently quantified to provide a clear understanding of the range of uncertainty associated with these measurements. The purpose of this work is to quantify the uncertainties associated with OH measurement in a oxygen-hydrogen system produced by a shear, coaxial injector typical of those used in rocket engines. Planar OH distributions are obtained providing instantaneous and averaged distribution that are required for both LES and RANS codes currently under development. This study has evaluated the uncertainties associated with OH measurement at 10, 27, 37 and 53 bar respectively. The total rms error for OH-PLIF measurements from eighteen different parameters was quantified and found as 21.9, 22.8, 22.5, and 22.9% at 10, 27, 37 and 53 bar respectively. These results are used by collaborators at Georgia Institute of Technology (LES), Pennsylvania State University (LES), University of Michigan (RANS) and NASA Marshall (RANS).
NASA Astrophysics Data System (ADS)
Huang, Zhi-wei; He, Guo-qiang; Qin, Fei; Cao, Dong-gang; Wei, Xiang-geng; Shi, Lei
2016-10-01
This study reports combustion characteristics of a rocket-based combined-cycle engine combustor operating at ramjet mode numerically. Compressible large eddy simulation with liquid kerosene sprayed and vaporized is used to study the intrinsic unsteadiness of combustion in such a propulsion system. Results for the pressure oscillation amplitude and frequency in the combustor as well as the wall pressure distribution along the flow-path, are validated using experimental data, and they show acceptable agreement. Coupled with reduced chemical kinetics of kerosene, results are compared with the simultaneously obtained Reynolds-Averaged Navier-Stokes results, and show significant differences. A flow field analysis is also carried out for further study of the turbulent flame structures. Mixture fraction is used to determine the most probable flame location in the combustor at stoichiometric condition. Spatial distributions of the Takeno flame index, scalar dissipation rate, and heat release rate reveal that different combustion modes, such as premixed and non-premixed modes, coexisted at different sections of the combustor. The RBCC combustor is divided into different regions characterized by their non-uniform features. Flame stabilization mechanism, i.e., flame propagation or fuel auto-ignition, and their relative importance, is also determined at different regions in the combustor.
Nuclear design of a vapor core reactor for space nuclear propulsion
NASA Astrophysics Data System (ADS)
Dugan, Edward T.; Watanabe, Yoichi; Kuras, Stephen A.; Maya, Isaac; Diaz, Nils J.
1993-01-01
Neutronic analysis methodology and results are presented for the nuclear design of a vapor core reactor for space nuclear propulsion. The Nuclear Vapor Thermal Reactor (NVTR) Rocket Engine uses modified NERVA geometry and systems which the solid fuel replaced by uranium tetrafluoride vapor. The NVTR is an intermediate term gas core thermal rocket engine with specific impulse in the range of 1000-1200 seconds; a thrust of 75,000 lbs for a hydrogen flow rate of 30 kg/s; average core exit temperatures of 3100 K to 3400 K; and reactor thermal powers of 1400 to 1800 MW. Initial calculations were performed on epithermal NVTRs using ZrC fuel elements. Studies are now directed at thermal NVTRs that use fuel elements made of C-C composite. The large ZrC-moderated reactors resulted in thrust-to-weight ratios of only 1 to 2; the compact C-C composite systems yield thrust-to-weight ratios of 3 to 5.
Catalyst Bed Instability Within the USFE H2O2/JP-8 Rocket Engine
NASA Technical Reports Server (NTRS)
Johnson, Curtis W.; Anderson, William; Ross, Robert; Lyles, G. (Technical Monitor)
2000-01-01
Orbital Sciences Corporation has been awarded a contract by NASA's Marshall Space Flight Center, in cooperation with the U.S. Air Force Research Laboratory's Military Space Plane Technology Program Office, for the Upper Stage Flight Experiment (USFE) program. Orbital is designing, developing, and will flight test a new low-cost, 10,000 lbf hydrogen peroxide/ JP-8 pressure fed liquid rocket. During combustion chamber tests at NASA Stennis Space Center (SSC) of the USFE engine, the catalyst bed showed a low frequency instability occurring as the H202 flow reached about 1/3 its design rate. This paper reviews the USFE catalyst bed and combustion chamber and its operation, then discusses the dynamics of the instability. Next the paper describes the dynamic computer model used to recreate the instability. The model was correlated to the SSC test data, and used to investigate possible solutions to the problem. The combustion chamber configuration which solved the instability is shown, and the subsequent stable operation presented.
Simulation of UV atomic radiation for application in exhaust plume spectrometry
NASA Astrophysics Data System (ADS)
Wallace, T. L.; Powers, W. T.; Cooper, A. E.
1993-06-01
Quantitative analysis of exhaust plume spectral data has long been a goal of developers of advanced engine health monitoring systems which incorporate optical measurements of rocket exhaust constituents. Discussed herein is the status of present efforts to model and predict atomic radiation spectra and infer free-atom densities from emission/absorption measurements as part of the Optical Plume Anomaly Detection (OPAD) program at Marshall Space Flight Center (MSFC). A brief examination of the mathematical formalism is provided in the context of predicting radiation from the Mach disk region of the SSME exhaust flow at nominal conditions during ground level testing at MSFC. Computational results are provided for Chromium and Copper at selected transitions which indicate a strong dependence upon broadening parameter values determining the absorption-emission line shape. Representative plots of recent spectral data from the Stennis Space Center (SSC) Diagnostic Test Facility (DTF) rocket engine are presented and compared to numerical results from the present self-absorbing model; a comprehensive quantitative analysis will be reported at a later date.
Low thrust chemical rocket technology
NASA Technical Reports Server (NTRS)
Schneider, Steven J.
1992-01-01
An on-going technology program to improve the performance of low thrust chemical rockets for spacecraft on-board propulsion applications is reviewed. Improved performance and lifetime is sought by the development of new predictive tools to understand the combustion and flow physics, introduction of high temperature materials and improved component designs to optimize performance, and use of higher performance propellants. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Predictions are based on both the RPLUS Navier-Stokes code with finite rate kinetics and the JANNAF methodology. Data were obtained with laser-based diagnostics along with global performance measurements. Results indicate that the modeling of the injector and the combustion process needs improvement in these codes and flow visualization with a technique such as 2-D laser induced fluorescence (LIF) would aid in resolving issues of flow symmetry and shear layer combustion processes. High temperature material fabrication processes are under development and small rockets are being designed, fabricated, and tested using these new materials. Rhenium coated with iridium for oxidation protection was produced by the Chemical Vapor Deposition (CVD) process and enabled an 800 K increase in rocket operating temperature. Performance gains with this material in rockets using Earth storable propellants (nitrogen tetroxide and monomethylhydrazine or hydrazine) were obtained through component redesign to eliminate fuel film cooling and its associated combustion inefficiency while managing head end thermal soakback. Material interdiffusion and oxidation characteristics indicated that the requisite lifetimes of tens of hours were available for thruster applications. Rockets were designed, fabricated, and tested with thrusts of 22, 62, 440 and 550 N. Performance improvements of 10 to 20 seconds specific impulse were demonstrated. Higher performance propellants were evaluated: Space storable propellants, including liquid oxygen (LOX) as the oxidizer with nitrogen hydrides or hydrocarbon as fuels. Specifically, a LOX/hydrazine engine was designed, fabricated, and shown to have a 95 pct theoretical c-star which translates into a projected vacuum specific impulse of 345 seconds at an area ratio of 204:1. Further performance improvment can be obtained by the use of LOX/hydrogen propellants, especially for manned spacecraft applications, and specific designs must be developed and advanced through flight qualification.
Numerical study for flame deflector design of a space launch vehicle
NASA Astrophysics Data System (ADS)
Oh, Hwayoung; Lee, Jungil; Um, Hyungsik; Huh, Hwanil
2017-04-01
A flame deflector is a structure that prevents damage to a launch vehicle and a launch pad due to exhaust plumes of a lifting-off launch vehicle. The shape of a flame deflector should be designed to restrain the discharged gas from backdraft inside the deflector and to reflect the impact to the surrounding environment and the engine characteristics of the vehicle. This study presents the five preliminary flame deflector configurations which are designed for the first-stage rocket engine of the Korea Space Launch Vehicle-II and surroundings of the Naro space center. The gas discharge patterns of the designed flame deflectors are investigated using the 3D flow field analysis by assuming that the air, in place of the exhaust gas, forms the plume. In addition, a multi-species unreacted flow model is investigated through 2D analysis of the first-stage engine of the KSLV-II. The results indicate that the closest Mach number and temperature distributions to the reacted flow model can be achieved from the 4-species unreacted flow model which employs H2O, CO2, and CO and specific heat-corrected plume.
The Viking Orbiter 1975 beryllium INTEREGEN rocket engine assembly.
NASA Technical Reports Server (NTRS)
Martinez, R. S.; Mcfarland, B. L.; Fischler, S.
1972-01-01
Description of the conversion of the Mariner 9 rocket engine for Viking Orbiter use. Engine conversion consists of replacing the 40:1 expansion area ratio nozzle with a 60:1 nozzle of the internal regeneratively (INTEREGEN) cooled rocket engine. Five converted engines using nitrogen tetroxide and monomethylhydrazine demonstrated thermal stability during the nominal 2730-sec burn, but experienced difficulty at operating extremes. The thermal stability characteristic was treated in two ways. The first treatment consisted of mapping the operating regime of the engine to determine its safest operating boundaries as regards thermal equilibrium. Six engines were used for this purpose. Two of the six engines were then modified to effect the second approach - i.e., extend the operating regime. The engines were modified by permitting fuel injection into the acoustic cavity.
NASA Technical Reports Server (NTRS)
Melcher, John C., IV; Allred, Jennifer K.
2009-01-01
Tests were conducted with the RS18 rocket engine using liquid oxygen (LO2) and liquid methane (LCH4) propellants under simulated altitude conditions at NASA Johnson Space Center White Sands Test Facility (WSTF). This project is part of NASA s Propulsion and Cryogenics Advanced Development (PCAD) project. "Green" propellants, such as LO2/LCH4, offer savings in both performance and safety over equivalently sized hypergolic propellant systems in spacecraft applications such as ascent engines or service module engines. Altitude simulation was achieved using the WSTF Large Altitude Simulation System, which provided altitude conditions equivalent up to approx.120,000 ft (approx.37 km). For specific impulse calculations, engine thrust and propellant mass flow rates were measured. Propellant flow rate was measured using a coriolis-style mass-flow meter and compared with a serial turbine-style flow meter. Results showed a significant performance measurement difference during ignition startup. LO2 flow ranged from 5.9-9.5 lbm/sec (2.7-4.3 kg/sec), and LCH4 flow varied from 3.0-4.4 lbm/sec (1.4-2.0 kg/sec) during the RS-18 hot-fire test series. Thrust was measured using three load cells in parallel. Ignition was demonstrated using a gaseous oxygen/methane spark torch igniter. Data was obtained at multiple chamber pressures, and calculations were performed for specific impulse, C* combustion efficiency, and thrust vector alignment. Test objectives for the RS-18 project are 1) conduct a shakedown of the test stand for LO2/methane lunar ascent engines, 2) obtain vacuum ignition data for the torch and pyrotechnic igniters, and 3) obtain nozzle kinetics data to anchor two-dimensional kinetics codes.
Comparison of Laminar and Linear Eddy Model Closures for Combustion Instability Simulations
2015-07-01
14. ABSTRACT Unstable liquid rocket engines can produce highly complex dynamic flowfields with features such as rapid changes in temperature and...applicability. In the present study, the linear eddy model (LEM) is applied to an unstable single element liquid rocket engine to assess its performance and to...Sankaran‡ Air Force Research Laboratory, Edwards AFB, CA, 93524 Unstable liquid rocket engines can produce highly complex dynamic flowfields with features
Linear Spectral Analysis of Plume Emissions Using an Optical Matrix Processor
NASA Technical Reports Server (NTRS)
Gary, C. K.
1992-01-01
Plume spectrometry provides a means to monitor the health of a burning rocket engine, and optical matrix processors provide a means to analyze the plume spectra in real time. By observing the spectrum of the exhaust plume of a rocket engine, researchers have detected anomalous behavior of the engine and have even determined the failure of some equipment before it would normally have been noticed. The spectrum of the plume is analyzed by isolating information in the spectrum about the various materials present to estimate what materials are being burned in the engine. Scientists at the Marshall Space Flight Center (MSFC) have implemented a high resolution spectrometer to discriminate the spectral peaks of the many species present in the plume. Researchers at the Stennis Space Center Demonstration Testbed Facility (DTF) have implemented a high resolution spectrometer observing a 1200-lb. thrust engine. At this facility, known concentrations of contaminants can be introduced into the burn, allowing for the confirmation of diagnostic algorithms. While the high resolution of the measured spectra has allowed greatly increased insight into the functioning of the engine, the large data flows generated limit the ability to perform real-time processing. The use of an optical matrix processor and the linear analysis technique described below may allow for the detailed real-time analysis of the engine's health. A small optical matrix processor can perform the required mathematical analysis both quicker and with less energy than a large electronic computer dedicated to the same spectral analysis routine.
Large liquid rocket engine transient performance simulation system
NASA Technical Reports Server (NTRS)
Mason, J. R.; Southwick, R. D.
1989-01-01
Phase 1 of the Rocket Engine Transient Simulation (ROCETS) program consists of seven technical tasks: architecture; system requirements; component and submodel requirements; submodel implementation; component implementation; submodel testing and verification; and subsystem testing and verification. These tasks were completed. Phase 2 of ROCETS consists of two technical tasks: Technology Test Bed Engine (TTBE) model data generation; and system testing verification. During this period specific coding of the system processors was begun and the engineering representations of Phase 1 were expanded to produce a simple model of the TTBE. As the code was completed, some minor modifications to the system architecture centering on the global variable common, GLOBVAR, were necessary to increase processor efficiency. The engineering modules completed during Phase 2 are listed: INJTOO - main injector; MCHBOO - main chamber; NOZLOO - nozzle thrust calculations; PBRNOO - preburner; PIPE02 - compressible flow without inertia; PUMPOO - polytropic pump; ROTROO - rotor torque balance/speed derivative; and TURBOO - turbine. Detailed documentation of these modules is in the Appendix. In addition to the engineering modules, several submodules were also completed. These submodules include combustion properties, component performance characteristics (maps), and specific utilities. Specific coding was begun on the system configuration processor. All functions necessary for multiple module operation were completed but the SOLVER implementation is still under development. This system, the Verification Checkout Facility (VCF) allows interactive comparison of module results to store data as well as provides an intermediate checkout of the processor code. After validation using the VCF, the engineering modules and submodules were used to build a simple TTBE.
Linear quadratic servo control of a reusable rocket engine
NASA Technical Reports Server (NTRS)
Musgrave, Jeffrey L.
1991-01-01
A design method for a servo compensator is developed in the frequency domain using singular values. The method is applied to a reusable rocket engine. An intelligent control system for reusable rocket engines was proposed which includes a diagnostic system, a control system, and an intelligent coordinator which determines engine control strategies based on the identified failure modes. The method provides a means of generating various linear multivariable controllers capable of meeting performance and robustness specifications and accommodating failure modes identified by the diagnostic system. Command following with set point control is necessary for engine operation. A Kalman filter reconstructs the state while loop transfer recovery recovers the required degree of robustness while maintaining satisfactory rejection of sensor noise from the command error. The approach is applied to the design of a controller for a rocket engine satisfying performance constraints in the frequency domain. Simulation results demonstrate the performance of the linear design on a nonlinear engine model over all power levels during mainstage operation.
NASA Astrophysics Data System (ADS)
Haase, S.; Olivier, H.
2017-10-01
Detonation-based short-duration facilities provide hot gas with very high stagnation pressures and temperatures. Due to the short testing time, complex and expensive cooling techniques of the facility walls are not needed. Therefore, they are attractive for economical experimental investigations of high-enthalpy flows such as the flow in a rocket engine. However, cold walls can provoke condensation of the hot combustion gas at the walls. This has already been observed in detonation tubes close behind the detonation wave, resulting in a loss of tube performance. A potential influence of condensation at the wall on the experimental results, like wall heat fluxes and static pressures, has not been considered so far. Therefore, in this study the occurrence of condensation and its influence on local heat flux and pressure measurements has been investigated in the nozzle test section of a short-duration rocket-engine simulation facility. This facility provides hot water vapor with stagnation pressures up to 150 bar and stagnation temperatures up to 3800 K. A simple method has been developed to detect liquid water at the wall without direct optical access to the flow. It is shown experimentally and theoretically that condensation has a remarkable influence on local measurement values. The experimental results indicate that for the elimination of these influences the nozzle wall has to be heated to a certain temperature level, which exclusively depends on the local static pressure.
NASA Technical Reports Server (NTRS)
Smith, J. A.; Stechman, R. C.
1981-01-01
A test program was performed to evaluate hydrazine (N2H4) as a fuel for a 445 Newton (100 lbf) thrust bipropellant rocket engine. Results of testing with an identical thruster utilizing monomethylhydrazine (MMH) are included for comparison. Engine performance with hydrazine fuel was essentially identical to that experienced with monomethylhydrazine although higher combustor wall temperatures (approximately 400 F) were obtained with hydrazine. Results are presented which indicate that hydrazine as a fuel is compatible with Marquardt bipropellant rocket engines which use monomethylhydrazine as a baseline fuel.
Video File - NASA on a Roll Testing Space Launch System Flight Engines
2017-08-09
Just two weeks after conducting another in a series of tests on new RS-25 rocket engine flight controllers for NASA’s Space Launch System (SLS) rocket, engineers at NASA’s Stennis Space Center in Mississippi completed one more hot-fire test of a flight controller on August 9, 2017. With the hot fire, NASA has moved a step closer in completing testing on the four RS-25 engines which will power the first integrated flight of the SLS rocket and Orion capsule known as Exploration Mission 1.
Cryogenic gear technology for an orbital transfer vehicle engine and tester design
NASA Technical Reports Server (NTRS)
Calandra, M.; Duncan, G.
1986-01-01
Technology available for gears used in advanced Orbital Transfer Vehicle rocket engines and the design of a cryogenic adapted tester used for evaluating advanced gears are presented. The only high-speed, unlubricated gears currently in cryogenic service are used in the RL10 rocket engine turbomachinery. Advanced rocket engine gear systems experience operational load conditions and rotational speed that are beyond current experience levels. The work under this task consisted of a technology assessment and requirements definition followed by design of a self-contained portable cryogenic adapted gear test rig system.
Low Thrust, Deep Throttling, US/CIS Integrated NTRE
NASA Astrophysics Data System (ADS)
Culver, Donald W.; Kolganov, Vyacheslav; Rochow, Richard F.
1994-07-01
In 1993 our international team performed a follow-on ``Nuclear Thermal Rocket Engine (NTRE) Extended Life Feasibility Assessment'' study for the Nuclear Propulsion Office (NPO) at NASAs Lewis Research Center. The main purpose of this study was to complete the 1992 study matrix to assess NTRE designs at thrust levels of 22.5, 11.3, and 6.8 tonnes, using Commonwealth of Independent States (CIS) reactor technology. An additional Aerojet goal was to continue improving the NTRE concept we had generated. Deep throttling, mission performance optimized engine design parametrics, and reliability/cost enhancing engine system simplifications were studied, because they seem to be the last three basic design improvements sorely needed by post-NERVA NTRE. Deep throttling improves engine life by eliminating damaging thermal and mechanical shocks caused by after-cooling with pulsed coolant flow. Alternately, it improves mission performance with steady flow after-cooling by minimizing reactor over-cooling. Deep throttling also provides a practical transition from high pressures and powers of the high thrust power cycle to the low pressures and powers of our electric power generating mode. Two deep throttling designs are discussed; a workable system that was studied and a simplified system that is recommended for future study. Mission-optimized engine thrust/weight (T/W) and Isp predictions are included along with system flow schemes and concept sketches.
NASA Technical Reports Server (NTRS)
Foster, Richard W.; Escher, William J. D.; Robinson, John W.
1989-01-01
The present comparative performance study has established that rocket-based combined cycle (RBCC) propulsion systems, when incorporated by essentially axisymmetric SSTO launch vehicle configurations whose conical forebody maximizes both capture-area ratio and total capture area, are capable of furnishing payload-delivery capabilities superior to those of most multistage, all-rocket launchers. Airbreathing thrust augmentation in the rocket-ejector mode of an RBCC powerplant is noted to make a major contribution to final payload capability, by comparison to nonair-augmented rocket engine propulsion systems.
Use of Soft Computing Technologies For Rocket Engine Control
NASA Technical Reports Server (NTRS)
Trevino, Luis C.; Olcmen, Semih; Polites, Michael
2003-01-01
The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to further improve overall engine system reliability and performance. Specifically, this will be presented by enhancing rocket engine control and engine health management (EHM) using SCT coupled with conventional control technologies, and sound software engineering practices used in Marshall s Flight Software Group. The principle goals are to improve software management, software development time and maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control and EHM methodologies, but to provide alternative design choices for control, EHM, implementation, performance, and sustaining engineering. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion, software engineering for embedded systems, and soft computing technologies (i.e., neural networks, fuzzy logic, and Bayesian belief networks), much of which is presented in this paper. The first targeted demonstration rocket engine platform is the MC-1 (formerly FASTRAC Engine) which is simulated with hardware and software in the Marshall Avionics & Software Testbed laboratory that
2013-12-11
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, from the left, Leandro James, rocket avionics lead, and Julio Najarro of Mechanical Systems make final adjustments to a small rocket prior to launch as part of Rocket University. The launch will test systems designed by the student engineers. As part of Rocket University, the engineers are given an opportunity to work a fast-track project to develop skills in developing spacecraft systems of the future. As NASA plans for future spaceflight programs to low-Earth orbit and beyond, teams of engineers at Kennedy are gaining experience in designing and flying launch vehicle systems on a small scale. Four teams of five to eight members from Kennedy are designing rockets complete with avionics and recovery systems. Launch operations require coordination with federal agencies, just as they would with rockets launched in support of a NASA mission. Photo credit: NASA/Jim Grossmann
NASA Technical Reports Server (NTRS)
Thorpe, Douglas G.
1991-01-01
An operation and schedule enhancement is shown that replaces the four-body cluster (Space Shuttle Orbiter (SSO), external tank, and two solid rocket boosters) with a simpler two-body cluster (SSO and liquid rocket booster/external tank). At staging velocity, the booster unit (liquid-fueled booster engines and vehicle support structure) is jettisoned while the remaining SSO and supertank continues on to orbit. The simpler two-bodied cluster reduces the processing and stack time until SSO mate from 57 days (for the solid rocket booster) to 20 days (for the liquid rocket booster). The areas in which liquid booster systems are superior to solid rocket boosters are discussed. Alternative and future generation vehicles are reviewed to reveal greater performance and operations enhancements with more modifications to the current methods of propulsion design philosophy, e.g., combined cycle engines, and concentric propellant tanks.
Modeling Tools Predict Flow in Fluid Dynamics
NASA Technical Reports Server (NTRS)
2010-01-01
"Because rocket engines operate under extreme temperature and pressure, they present a unique challenge to designers who must test and simulate the technology. To this end, CRAFT Tech Inc., of Pipersville, Pennsylvania, won Small Business Innovation Research (SBIR) contracts from Marshall Space Flight Center to develop software to simulate cryogenic fluid flows and related phenomena. CRAFT Tech enhanced its CRUNCH CFD (computational fluid dynamics) software to simulate phenomena in various liquid propulsion components and systems. Today, both government and industry clients in the aerospace, utilities, and petrochemical industries use the software for analyzing existing systems as well as designing new ones."
2016-04-23
A 15-second test of a Saturn V rocket stage on the A-2 Test Stand at Stennis Space Center ushered in the Space Age for south Mississippi. Fifty years later, Stennis has grown into the nation’s largest rocket engine test site, continuing to test rocket engines and stages that power the nation’s space program.
ERIC Educational Resources Information Center
Leitner, Alfred
1982-01-01
If two rockets are identical except that one engine burns in one-tenth the time of the other (total impulse and initial fuel mass of the two engines being the same), which rocket will rise higher? Why? The answer to this question (part 1 response in v20 n6, p410, Sep 1982) is provided. (Author/JN)
Computer Design Technology of the Small Thrust Rocket Engines Using CAE / CAD Systems
NASA Astrophysics Data System (ADS)
Ryzhkov, V.; Lapshin, E.
2018-01-01
The paper presents an algorithm for designing liquid small thrust rocket engine, the process of which consists of five aggregated stages with feedback. Three stages of the algorithm provide engineering support for design, and two stages - the actual engine design. A distinctive feature of the proposed approach is a deep study of the main technical solutions at the stage of engineering analysis and interaction with the created knowledge (data) base, which accelerates the process and provides enhanced design quality. The using multifunctional graphic package Siemens NX allows to obtain the final product -rocket engine and a set of design documentation in a fairly short time; the engine design does not require a long experimental development.
NASA Technical Reports Server (NTRS)
Martin, P. J.
1974-01-01
A program to identify surplus solid rocket propellant engines which would be available for a program of functional integrity testing was conducted. The engines are classified as: (1) upper stage and apogee engines, (2) sounding rocket and launch vehicle engines, and (3) jato, sled, and tactical engines. Nearly all the engines were available because their age exceeds the warranted shelf life. The preference for testing included tests at nominal flight conditions, at design limits, and to establish margin limits. The principal failure modes of interest were case bond separation and grain bore cracking. Data concerning the identification and characteristics of each engine are tabulated. Methods for conducting the tests are described.
Nuclear Thermal Rocket Element Environmental Simulator (NTREES)
NASA Astrophysics Data System (ADS)
Emrich, William J.
2008-01-01
To support a potential future development of a nuclear thermal rocket engine, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components could be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts.
Nuclear Thermal Rocket Element Environmental Simulator (NTREES)
NASA Technical Reports Server (NTRS)
Emrich, William J., Jr.
2008-01-01
To support the eventual development of a nuclear thermal rocket engine, a state-of-the-art experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts.
Additive Manufacturing for Affordable Rocket Engines
NASA Technical Reports Server (NTRS)
West, Brian; Robertson, Elizabeth; Osborne, Robin; Calvert, Marty
2016-01-01
Additive manufacturing (also known as 3D printing) technology has the potential to drastically reduce costs and lead times associated with the development of complex liquid rocket engine systems. NASA is using 3D printing to manufacture rocket engine components including augmented spark igniters, injectors, turbopumps, and valves. NASA is advancing the process to certify these components for flight. Success Story: MSFC has been developing rocket 3D-printing technology using the Selective Laser Melting (SLM) process. Over the last several years, NASA has built and tested several injectors and combustion chambers. Recently, MSFC has 3D printed an augmented spark igniter for potential use the RS-25 engines that will be used on the Space Launch System. The new design is expected to reduce the cost of the igniter by a factor of four. MSFC has also 3D printed and tested a liquid hydrogen turbopump for potential use on an Upper Stage Engine. Additive manufacturing of the turbopump resulted in a 45% part count reduction. To understanding how the 3D printed parts perform and to certify them for flight, MSFC built a breadboard liquid rocket engine using additive manufactured components including injectors, turbomachinery, and valves. The liquid rocket engine was tested seven times in 2016 using liquid oxygen and liquid hydrogen. In addition to exposing the hardware to harsh environments, engineers learned to design for the new manufacturing technique, taking advantage of its capabilities and gaining awareness of its limitations. Benefit: The 3D-printing technology promises reduced cost and schedule for rocket engines. Cost is a function of complexity, and the most complicated features provide the largest opportunities for cost reductions. This is especially true where brazes or welds can be eliminated. The drastic reduction in part count achievable with 3D printing creates a waterfall effect that reduces the number of processes and drawings, decreases the amount of touch labor required, and increases reliability. When certification is achieved, NASA missions will be able to realize these benefits.
Parametric Study Conducted of Rocket- Based, Combined-Cycle Nozzles
NASA Technical Reports Server (NTRS)
Steffen, Christopher J., Jr.; Smith, Timothy D.
1998-01-01
Having reached the end of the 20th century, our society is quite familiar with the many benefits of recycling and reusing the products of civilization. The high-technology world of aerospace vehicle design is no exception. Because of the many potential economic benefits of reusable launch vehicles, NASA is aggressively pursuing this technology on several fronts. One of the most promising technologies receiving renewed attention is Rocket-Based, Combined-Cycle (RBCC) propulsion. This propulsion method combines many of the efficiencies of high-performance jet aircraft with the power and high-altitude capability of rocket engines. The goal of the present work at the NASA Lewis Research Center is to further understand the complex fluid physics within RBCC engines that govern system performance. This work is being performed in support of NASA's Advanced Reusable Technologies program. A robust RBCC engine design optimization demands further investigation of the subsystem performance of the engine's complex propulsion cycles. The RBCC propulsion system under consideration at Lewis is defined by four modes of operation in a singlestage- to-orbit configuration. In the first mode, the engine functions as a rocket-driven ejector. When the rocket engine is switched off, subsonic combustion (mode 2) is present in the ramjet mode. As the vehicle continues to accelerate, supersonic combustion (mode 3) occurs in the ramjet mode. Finally, as the edge of the atmosphere is approached and the engine inlet is closed off, the rocket is reignited and the final accent to orbit is undertaken in an all-rocket mode (mode 4). The performance of this fourth and final mode is the subject of this present study. Performance is being monitored in terms of the amount of thrust generated from a given amount of propellant.
An approximate flight profile of an Ariane launch vehicle
NASA Astrophysics Data System (ADS)
Dijkshoorn, B.
1983-04-01
The flight trajectory of an Ariane launch vehicle, launched from Kourou (French Guyana) to put the satellites MARECS-B and SIRIO-2 in a geostationary transfer orbit, was approximated. The calculation was carried out to subject a panel 24 m from the nose to a heat flow, corresponding to the heat flow from the boundary layer in real flight. Height, flight speed (relative to the surrounding atmosphere) air density, dynamic pressure, air temperature, and Mach number were determined every 10 sec as a function of time from lift-off until the stopping of the rocket engines of the first stage 143.9 sec afterwards. Heat flow calculations show good agreement with published data.
Potential Climate and Ozone Impacts From Hybrid Rocket Engine Emissions
NASA Astrophysics Data System (ADS)
Ross, M.
2009-12-01
Hybrid rocket engines that use N2O as an oxidizer and a solid hydrocarbon (such as rubber) as a fuel are relatively new. Little is known about the composition of such hybrid engine emissions. General principles and visual inspection of hybrid plumes suggest significant soot and possibly NO emissions. Understanding hybrid rocket emissions is important because of the possibility that a fleet of hybrid powered suborbital rockets will be flying on the order of 1000 flights per year by 2020. The annual stratospheric emission for these rockets would be about 10 kilotons, equal to present day solid rocket motor (SRM) emissions. We present a preliminary analysis of the magnitude of (1) the radiative forcing from soot emissions and (2) the ozone depletion from soot and NO emissions associated with such a fleet of suborbital hybrid rockets. Because the details of the composition of hybrid emissions are unknown, it is not clear if the ozone depletion caused by these hybrid rockets would be more or less than the ozone depletion from SRMs. We also consider the climate implications associated with the N2O production and use requirements for hybrid rockets. Finally, we identify the most important data collection and modeling needs that are required to reliably assess the complete range of environmental impacts of a fleet of hybrid rockets.
The use of programmable logic controllers (PLC) for rocket engine component testing
NASA Technical Reports Server (NTRS)
Nail, William; Scheuermann, Patrick; Witcher, Kern
1991-01-01
Application of PLCs to the rocket engine component testing at a new Stennis Space Center Component Test Facility is suggested as an alternative to dedicated specialized computers. The PLC systems are characterized by rugged design, intuitive software, fault tolerance, flexibility, multiple end device options, networking capability, and built-in diagnostics. A distributed PLC-based system is projected to be used for testing LH2/LOx turbopumps required for the ALS/NLS rocket engines.
Evaluation of an Ejector Ramjet Based Propulsion System for Air-Breathing Hypersonic Flight
NASA Technical Reports Server (NTRS)
Thomas, Scott R.; Perkins, H. Douglas; Trefny, Charles J.
1997-01-01
A Rocket Based Combined Cycle (RBCC) engine system is designed to combine the high thrust to weight ratio of a rocket along with the high specific impulse of a ramjet in a single, integrated propulsion system. This integrated, combined cycle propulsion system is designed to provide higher vehicle performance than that achievable with a separate rocket and ramjet. The RBCC engine system studied in the current program is the Aerojet strutjet engine concept, which is being developed jointly by a government-industry team as part of the Air Force HyTech program pre-PRDA activity. The strutjet is an ejector-ramjet engine in which small rocket chambers are embedded into the trailing edges of the inlet compression struts. The engine operates as an ejector-ramjet from takeoff to slightly above Mach 3. Above Mach 3 the engine operates as a ramjet and transitions to a scramjet at high Mach numbers. For space launch applications the rockets would be re-ignited at a Mach number or altitude beyond which air-breathing propulsion alone becomes impractical. The focus of the present study is to develop and demonstrate a strutjet flowpath using hydrocarbon fuel at up to Mach 7 conditions.
Fiber-reinforced ceramic composites for Earth-to-orbit rocket engine turbines
NASA Technical Reports Server (NTRS)
Brockmeyer, Jerry W.; Schnittgrund, Gary D.
1990-01-01
Fiber reinforced ceramic matrix composites (FRCMC) are emerging materials systems that offer potential for use in liquid rocket engines. Advantages of these materials in rocket engine turbomachinery include performance gain due to higher turbine inlet temperature, reduced launch costs, reduced maintenance with associated cost benefits, and reduced weight. This program was initiated to assess the state of FRCMC development and to propose a plan for their implementation into liquid rocket engine turbomachinery. A complete range of FRCMC materials was investigated relative to their development status and feasibility for use in the hot gas path of earth-to-orbit rocket engine turbomachinery. Of the candidate systems, carbon fiber-reinforced silicon carbide (C/SiC) offers the greatest near-term potential. Critical hot gas path components were identified, and the first stage inlet nozzle and turbine rotor of the fuel turbopump for the liquid oxygen/hydrogen Space Transportation Main Engine (STME) were selected for conceptual design and analysis. The critical issues associated with the use of FRCMC were identified. Turbine blades were designed, analyzed and fabricated. The Technology Development Plan, completed as Task 5 of this program, provides a course of action for resolution of these issues.
Theoretical Acoustic Absorber Design Approach for LOX/LCH4 Pintle Injector Rocket Engines
NASA Astrophysics Data System (ADS)
Candelaria, Jonathan
Liquid rocket engines, or LREs, have served a key role in space exploration efforts. One current effort involves the utilization of liquid oxygen (LOX) and liquid methane (LCH4) LREs to explore Mars with in-situ resource utilization for propellant production. This on-site production of propellant will allow for greater payload allocation instead of fuel to travel to the Mars surface, and refueling of propellants to travel back to Earth. More useable mass yields a greater benefit to cost ratio. The University of Texas at El Paso's (UTEP) Center for Space Exploration and Technology Research Center (cSETR) aims to further advance these methane propulsion systems with the development of two liquid methane - liquid oxygen propellant combination rocket engines. The design of rocket engines, specifically liquid rocket engines, is complex in that many variables are present that must be taken into consideration in the design. A problem that occurs in almost every rocket engine development program is combustion instability, or oscillatory combustion. It can result in the destruction of the rocket, subsequent destruction of the vehicle and compromise the mission. These combustion oscillations can vary in frequency from 100 to 20,000 Hz or more, with varying effects, and occur from different coupling phenomena. It is important to understand the effects of combustion instability, its physical manifestations, how to identify the instabilities, and how to mitigate or dampen them. Linear theory methods have been developed to provide a mathematical understanding of the low- to mid-range instabilities. Nonlinear theory is more complex and difficult to analyze mathematically, therefore no general analytical method that yields a solution exists. With limited resources, time, and the advice of our NASA mentors, a data driven experimental approach utilizing quarter wave acoustic dampener cavities was designed. This thesis outlines the methodology behind the design of an acoustic dampening system for a 500 lbf and a 2000 lbf throttleable liquid oxygen liquid methane pintle injector rocket engine.
Rocket Ejector Studies for Application to RBCC Engines: An Integrated Experimental/CFD Approach
NASA Technical Reports Server (NTRS)
Pal, S.; Merkle, C. L.; Anderson, W. E.; Santoro, R. J.
1997-01-01
Recent interest in low cost, reliable access to space has generated increased interest in advanced technology approaches to space transportation systems. A key to the success of such programs lies in the development of advanced propulsion systems capable of achieving the performance and operations goals required for the next generation of space vehicles. One extremely promising approach involves the combination of rocket and air- breathing engines into a rocket-based combined-cycle engine (RBCC). A key element of that engine is the rocket ejector which is utilized in the zero to Mach two operating regime. Studies of RBCC engine concepts are not new and studies dating back thirty years are well documented in the literature. However, studies focused on the rocket ejector mode of the RBCC cycle are lacking. The present investigation utilizes an integrated experimental and computation fluid dynamics (CFD) approach to examine critical rocket ejector performance issues. In particular, the development of a predictive methodology capable of performance prediction is a key objective in order to analyze thermal choking and its control, primary/secondary pressure matching considerations, and effects of nozzle expansion ratio. To achieve this objective, the present study emphasizes obtaining new data using advanced optical diagnostics such as Raman spectroscopy and CFD techniques to investigate mixing in the rocket ejector mode. A new research facility for the study of the rocket ejector mode is described along with the diagnostic approaches to be used. The CFD modeling approach is also described along with preliminary CFD predictions obtained to date.
NASA Technical Reports Server (NTRS)
Sass, J. P.; Raines, N. G.; Ryan, H. M.
2004-01-01
The Integrated Powerhead Demonstrator (IPD) is a 250K lbf (1.1 MN) thrust cryogenic hydrogen/oxygen engine technology demonstrator that utilizes a full flow staged combustion engine cycle. The Integrated Powerhead Demonstrator (IPD) is part of NASA's Next Generation Launch Technology (NGLT) program, which seeks to provide safe, dependable, cost-cutting technologies for future space launch systems. The project also is part of the Department of Defense's Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program, which seeks to increase the performance and capability of today s state-of-the-art rocket propulsion systems while decreasing costs associated with military and commercial access to space. The primary industry participants include Boeing-Rocketdyne and GenCorp Aerojet. The intended full flow engine cycle is a key component in achieving all of the aforementioned goals. The IPD Program recently achieved a major milestone with the successful completion of the IPD Oxidizer Turbopump (OTP) hot-fire test project at the NASA John C. Stennis Space Center (SSC) E-1 test facility in June 2003. A total of nine IPD Workhorse Preburner tests were completed, and subsequently 12 IPD OTP hot-fire tests were completed. The next phase of development involves IPD integrated engine system testing also at the NASA SSC E-1 test facility scheduled to begin in late 2004. Following an overview of the NASA SSC E-1 test facility, this paper addresses the facility aspects pertaining to the activation and testing of the IPD Workhorse Preburner and the IPD Oxidizer Turbopump. In addition, some of the facility challenges encountered during the test project shall be addressed.
Engineers demonstrate the pocket rocket
NASA Technical Reports Server (NTRS)
1996-01-01
Part of Stennis Space Center's mission with its traveling exhibits is to educate the younger generation on how propulsion systems work. A popular tool is the 'pocket rocket,' which demonstrates how a hybrid rocket works. A hybrid rocket is a cross breed between a solid fuel rocket and a liquid fuel rocket.
Rocket engine numerical simulator
NASA Technical Reports Server (NTRS)
Davidian, Ken
1993-01-01
The topics are presented in viewgraph form and include the following: a rocket engine numerical simulator (RENS) definition; objectives; justification; approach; potential applications; potential users; RENS work flowchart; RENS prototype; and conclusion.
Space Launch System Base Heating Test: Environments and Base Flow Physics
NASA Technical Reports Server (NTRS)
Mehta, Manish; Knox, Kyle S.; Seaford, C. Mark; Dufrene, Aaron T.
2016-01-01
The NASA Space Launch System (SLS) vehicle is composed of four RS-25 liquid oxygen-hydrogen rocket engines in the core-stage and two 5-segment solid rocket boosters and as a result six hot supersonic plumes interact within the aft section of the vehicle during flight. Due to the complex nature of rocket plume-induced flows within the launch vehicle base during ascent and a new vehicle configuration, sub-scale wind tunnel testing is required to reduce SLS base convective environment uncertainty and design risk levels. This hot-fire test program was conducted at the CUBRC Large Energy National Shock (LENS) II short-duration test facility to simulate flight from altitudes of 50 kft to 210 kft. The test program is a challenging and innovative effort that has not been attempted in 40+ years for a NASA vehicle. This paper discusses the various trends of base convective heat flux and pressure as a function of altitude at various locations within the core-stage and booster base regions of the two-percent SLS wind tunnel model. In-depth understanding of the base flow physics is presented using the test data, infrared high-speed imaging and theory. The normalized test design environments are compared to various NASA semi-empirical numerical models to determine exceedance and conservatism of the flight scaled test-derived base design environments. Brief discussion of thermal impact to the launch vehicle base components is also presented.
JANNAF "Test and Evaluation Guidelines for Liquid Rocket Engines": Status and Application
NASA Technical Reports Server (NTRS)
Parkinson, Douglas; VanLerberghe, Wayne M.; Rahman, Shamim A.
2017-01-01
For many decades, the U.S. rocket propulsion industrial base has performed remarkably in developing complex liquid rocket engines that can propel critical payloads into service for the nation, as well as transport people and hardware for missions that open the frontiers of space exploration for humanity. This has been possible only at considerable expense given the lack of detailed guidance that captures the essence of successful practices and knowledge accumulated over five decades of liquid rocket engine development. In an effort to provide benchmarks and guidance for the next generation of rocket engineers, the Joint Army Navy NASA Air Force (JANNAF) Interagency Propulsion Committee published a liquid rocket engine (LRE) test and evaluation (T&E) guideline document in 2012 focusing on the development challenges and test verification considerations for liquid rocket engine systems. This document has been well received and applied by many current LRE developers as a benchmark and guidance tool, both for government-driven applications as well as for fully commercial ventures. The USAF Space and Missile Systems Center (SMC) has taken an additional near-term step and is directing activity to adapt and augment the content from the JANNAF LRE T&E guideline into a standard for potential application to future USAF requests for proposals for LRE development initiatives and launch vehicles for national security missions. A draft of this standard was already sent out for review and comment, and is intended to be formally approved and released towards the end of 2017. The acceptance and use of the LRE T&E guideline is possible through broad government and industry participation in the JANNAF liquid propulsion committee and associated panels. The sponsoring JANNAF community is expanding upon this initial baseline version and delving into further critical development aspects of liquid rocket propulsion testing at the integrated stage level as well as engine component level, in order to advance the state of the practice. The full participation of the entire U.S. rocket propulsion industrial base is invited and expected at this opportune moment in the continuing advancement of spaceflight technology.
Plug cluster module demonstration
NASA Technical Reports Server (NTRS)
Rousar, D. C.
1978-01-01
The low pressure, film cooled rocket engine design concept developed during two previous ALRC programs was re-evaluated for application as a module for a plug cluster engine capable of performing space shuttle OTV missions. The nominal engine mixture ratio was 5.5 and the engine life requirements were 1200 thermal cycles and 10 hours total operating life. The program consisted of pretest analysis; engine tests, performed using residual components; and posttest analysis. The pretest analysis indicated that operation of the operation of the film cooled engine at O/F = 5.5 was feasible. During the engine tests, steady state wall temperature and performance measurement were obtained over a range of film cooling flow rates, and the durability of the engine was demonstrated by firing the test engine 1220 times at a nominal performance ranging from 430 - 432 seconds. The performance of the test engine was limited by film coolant sleeve damage which had occurred during previous testing. The post-test analyses indicated that the nominal performance level can be increased to 436 seconds.
NASA Technical Reports Server (NTRS)
Stanley, Thomas Troy; Alexander, Reginald; Landrum, Brian
2000-01-01
Presented is a computer-based tool that connects several disciplines that are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system, as is the case of SSTO vehicles with air breathing propulsion, which is currently being studied by NASA. An RBCC propulsion system integrates airbreathing and rocket propulsion into a single engine assembly enclosed within a cowl or duct. A typical RBCC propulsion system operates as a ducted rocket up to approximately Mach 3. Then there is a transition to a ramjet mode for supersonic-to-hypersonic acceleration. Around Mach 8 the engine transitions to a scramjet mode. During the ramjet and scramjet modes, the integral rockets operate as fuel injectors. Around Mach 10-12 (the actual value depends on vehicle and mission requirements), the inlet is physically closed and the engine transitions to an integral rocket mode for orbit insertion. A common feature of RBCC propelled vehicles is the high degree of integration between the propulsion system and airframe. At high speeds the vehicle forebody is fundamentally part of the engine inlet, providing a compression surface for air flowing into the engine. The compressed air is mixed with fuel and burned. The combusted mixture must be expanded to an area larger than the incoming stream to provide thrust. Since a conventional nozzle would be too large, the entire lower after body of the vehicle is used as an expansion surface. Because of the high external temperatures seen during atmospheric flight, the design of an airbreathing SSTO vehicle requires delicate tradeoffs between engine design, vehicle shape, and thermal protection system (TPS) sizing in order to produce an optimum system in terms of weight (and cost) and maximum performance. To adequately determine the performance of the engine/vehicle, the Hypersonic Flight Inlet Model (HYFIM) module was designed to interface with the RBCC engine model. HYFIM performs the aerodynamic analysis of forebodies and inlet characteristics of RBCC powered SSTO launch vehicles. HYFIM is applicable to the analysis of the ramjet/scramjet engine operations modes (Mach 3-12), and provides estimates of parameters such as air capture area, shock-on-lip Mach number, design Mach number, compression ratio, etc., based on a basic geometry routine for modeling axisymmetric cones, 2-D wedge geometries. HYFIM also estimates the variation of shock layer properties normal to the forebody surface. The thermal protection system (TPS) is directly linked to determination of the vehicle moldline and the shaping of the trajectory. Thermal protection systems to maintain the structural integrity of the vehicle must be able to mitigate the heat transfer to the structure and be lightweight. Herein lies the interdependency, in that as the vehicle's speed increases, the TPS requirements are increased. And as TPS masses increase the effect on the propulsion system and all other systems is compounded. The need to analyze vehicle forebody and engine inlet is critical to be able to design the RBCC vehicle. To adequately determine insulation masses for an RBCC vehicle, the hypersonic aerodynamic environment and aeroheating loads must be calculated and the TPS thicknesses must be calculated for the entire vehicle. To accomplish this an ascent or reentry trajectory is obtained using the computer code Program to Optimize Simulated Trajectories (POST). The trajectory is then used to calculate the convective heat rates on several locations on the vehicles using the Miniature Version of the JA70 Aerodynamic Heating Computer Program (MINIVER). Once the heat rates are defined for each body point on the vehicle, then insulation thicknesses that are required to maintain the vehicle within structural limits are calculated using Systems Improved Numerical Differencing Analyzer (SINDA) models. If the TPS masses are too heavy for the performance of the vehicle the process may be repeated altering the trajectory or some other input to reduce the TPS mass. E-PSURBCC is an "engine performance" model and requires the specification of inlet air static temperature and pressure as well as Mach number (which it pulls from the HYFIM and POST trajectory files), and calculates the corresponding stagnation properties. The engine air flow path geometry includes inlet, a constant area section where the rocket is positioned, a subsonic diffuser, a constant area afterburner, and either a converging nozzle or a converging-diverging nozzle. The current capabilities of E-PSURBCC ejector and ramjet mode treatment indicated that various complex flow phenomena including multiple choking and internal shocks can occur for combinations of geometry/flow conditions. For a given input deck defining geometry/flow conditions, the program first goes through a series of checks to establish whether the input parameters are sound in terms of a solution path. If the vehicle/engine performance fails mission goals, the engineer is able to collaboratively alter the vehicle moldline to change aerodynamics, or trajectory, or some other input to achieve orbit. The problem described is an example of the need for collaborative design and analysis. RECIPE is a cross-platform application capable of hosting a number of engineers and designers across the Internet for distributed and collaborative engineering environments. Such integrated system design environments allow for collaborative team design analysis for performing individual or reduced team studies. To facilitate the larger number of potential runs that may need to be made, RECIPE connects the computer codes that calculate the trajectory data, aerodynamic data based on vehicle geometry, heat rate data, TPS masses, and vehicle and engine performance, so that the output from each tool is easily transferred to the model input files that need it.
Rocket Based Combined Cycle (RBCC) engine inlet
NASA Technical Reports Server (NTRS)
2004-01-01
Pictured is a component of the Rocket Based Combined Cycle (RBCC) engine. This engine was designed to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsion systems and ultimately a Single Stage to Orbit (SSTO) air breathing propulsion system.
AJ26 engine testing moves forward
2010-07-19
Stennis employees at the E-1 Test Stand position an Aerojet AJ26 rocket engine in preparation for a series of early tests. Stennis has partnered with Orbital Sciences Corporation to test the rocket engine for the company's commercial cargo flights to the International Space Station.
2017-02-22
Rainbows and rocket engines – doesn’t get much better than that! Check out these gorgeous aerial views from today’s Space Launch System RS-25 engine test @NASA’s Stennis Space Center. PAO Name:Kim Henry Phone Number:256-544-1899 Email Address: kimberly.m.henry@nasa.gov
Options for flight testing rocket-based combined-cycle (RBCC) engines
NASA Technical Reports Server (NTRS)
Olds, John
1996-01-01
While NASA's current next-generation launch vehicle research has largely focused on advanced all-rocket single-stage-to-orbit vehicles (i.e. the X-33 and it's RLV operational follow-on), some attention is being given to advanced propulsion concepts suitable for 'next-generation-and-a-half' vehicles. Rocket-based combined-cycle (RBCC) engines combining rocket and airbreathing elements are one candidate concept. Preliminary RBCC engine development was undertaken by the United States in the 1960's. However, additional ground and flight research is required to bring the engine to technological maturity. This paper presents two options for flight testing early versions of the RBCC ejector scramjet engine. The first option mounts a single RBCC engine module to the X-34 air-launched technology testbed for test flights up to about Mach 6.4. The second option links RBCC engine testing to the simultaneous development of a small-payload (220 lb.) two-stage-to-orbit operational vehicle in the Bantam payload class. This launcher/testbed concept has been dubbed the W vehicle. The W vehicle can also serve as an early ejector ramjet RBCC launcher (albeit at a lower payload). To complement current RBCC ground testing efforts, both flight test engines will use earth-storable propellants for their RBCC rocket primaries and hydrocarbon fuel for their airbreathing modes. Performance and vehicle sizing results are presented for both options.
CLOSEUP VIEW OF THE FIRST STAGE OF THE SATURN I ...
CLOSE-UP VIEW OF THE FIRST STAGE OF THE SATURN I ROCKET, SHOWING A DETAIL VIEW OF THE ENGINE CLUSTER. THE SATURN I ROCKET WAS THE FIRST UNITED STATES ROCKET TO HAVE MULTIPLE ENGINES ON A SINGLE STAGE. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL
Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines
2012-10-01
use of high-order numerical methods can also be a powerful tool in the analysis of such complex flows, but we need to understand the interaction of...computational physics, 43(2):357372, 1981. [47] B. Einfeldt. On godunov-type methods for gas dynamics . SIAM Journal on Numerical Analysis , pages 294...dimensional effects with complex reaction kinetics, the simple one-dimensional detonation structure provides a rich spectrum of dynamical features which are
2012-12-01
6 1.1.1 Differences Between Hot-Fire at Subcritical Conditions and Cold Flow ........10 1.1.2 Differences at Supercritical Conditions...cooling. 1.1.2 Differences at Supercritical Conditions Liquid film cooling is expected to behave even more differently at supercritical conditions...phase will behave more like the mixing of two gases of dissimilar densities. Once enough heat is imparted into the supercritical fuel film, it
2001-01-24
The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Shear thirning will cause a normally viscous fluid -- such as pie filling or whipped cream -- to deform and flow more readily under high shear conditions. In shear thinning, a pocket of fluid will deform and move one edge forward, as depicted here.
Smoke and fire Rocket-engine ablaze on This Week @NASA – August 14, 2015
2015-08-14
On Aug. 13, NASA conducted a test firing of the RS-25 rocket engine at Stennis Space Center. The 535 second test was the sixth in the current series of seven developmental tests of the former space shuttle main engine. Four RS-25 engines will power the core stage of the new Space Launch System (SLS) rocket, which will carry humans deeper into space than ever before, including to an asteroid and Mars. Also, Veggies in space, Russian spacewalk, Supply ship undocks from ISS, Smallest giant black hole, 10th anniversary of MRO launch and more!
Focused Experimental and Analytical Studies of the RBCC Rocket-Ejector
NASA Technical Reports Server (NTRS)
Lehman, M.; Pal, S.; Schwes, D.; Chen, J. D.; Santoro, R. J.
1999-01-01
The rocket-ejector mode of a Rocket Based Combined Cycle Engine (RBCC) was studied through a joint experimental/analytical approach. A two-dimensional variable geometry rocket-ejector system with enhanced optical access was designed and fabricated for experimentation. The rocket-ejector system utilizes a single two-dimensional gaseous oxygen/gaseous hydrogen rocket as the ejector. To gain a systematic understanding of the rocket ejector's internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static configurations for a range of rocket operating conditions Overall system performance was obtained through Global measurements of wall static pressure profiles, heat flux profiles and engine thrust, whereas detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (gaseous oxygen, hydrogen. nitrogen and water vapor). These experimental efforts were complemented by Computational Fluid Dynamic (CFD) flowfield analyses.
A reusable rocket engine intelligen control
NASA Technical Reports Server (NTRS)
Merrill, Walter C.; Lorenzo, Carl F.
1988-01-01
An intelligent control system for reusable space propulsion systems for future launch vehicles is described. The system description includes a framework for the design. The framework consists of an execution level with high-speed control and diagnostics, and a coordination level which marries expert system concepts with traditional control. A comparison is made between air breathing and rocket engine control concepts to assess the relative levels of development and to determine the applicability of air breathing control concepts to future reusable rocket engine systems.
A reusable rocket engine intelligent control
NASA Technical Reports Server (NTRS)
Merrill, Walter C.; Lorenzo, Carl F.
1988-01-01
An intelligent control system for reusable space propulsion systems for future launch vehicles is described. The system description includes a framework for the design. The framework consists of an execution level with high-speed control and diagnostics, and a coordination level which marries expert system concepts with traditional control. A comparison is made between air breathing and rocket engine control concepts to assess the relative levels of development and to determine the applicability of air breathing control concepts ot future reusable rocket engine systems.
Fiber-Reinforced Superalloys For Rocket Engines
NASA Technical Reports Server (NTRS)
Lewis, Jack R.; Yuen, Jim L.; Petrasek, Donald W.; Stephens, Joseph R.
1990-01-01
Report discusses experimental studies of fiber-reinforced superalloy (FRS) composite materials for use in turbine blades in rocket engines. Intended to withstand extreme conditions of high temperature, thermal shock, atmospheres containing hydrogen, high cycle fatigue loading, and thermal fatigue, which tax capabilities of even most-advanced current blade material - directionally-solidified, hafnium-modified MAR M-246 {MAR M-246 (Hf) (DS)}. FRS composites attractive combination of properties for use in turbopump blades of advanced rocket engines at temperatures from 870 to 1,100 degrees C.
System Guidelines for EMC Safety-Critical Circuits: Design, Selection, and Margin Demonstration
NASA Technical Reports Server (NTRS)
Lawton, R. M.
1996-01-01
Demonstration of required safety margins on critical electrical/electronic circuits in large complex systems has become an implementation and cost problem. These margins are the difference between the activation level of the circuit and the electrical noise on the circuit in the actual operating environment. This document discusses the origin of the requirement and gives a detailed process flow for the identification of the system electromagnetic compatibility (EMC) critical circuit list. The process flow discusses the roles of engineering disciplines such as systems engineering, safety, and EMC. Design and analysis guidelines are provided to assist the designer in assuring the system design has a high probability of meeting the margin requirements. Examples of approaches used on actual programs (Skylab and Space Shuttle Solid Rocket Booster) are provided to show how variations of the approach can be used successfully.
NASA Astrophysics Data System (ADS)
Mueller, Donn Christopher
1997-12-01
Experimental and theoretical investigations of aluminum/hydrocarbon gel propellant secondary atomization and its potential effects on rocket engine performance were conducted. In the experimental efforts, a dilute, polydisperse, gel droplet spray was injected into the postflame region of a burner and droplet size distributions was measured as a function of position above the burner using a laser-based sizing/velocimetry technique. The sizing/velocimetry technique was developed to measure droplets in the 10-125 mum size range and avoids size-biased detection through the use of a uniformly illuminated probe volume. The technique was used to determine particle size distributions and velocities at various axial locations above the burner for JP-10, and 50 and 60 wt% aluminum gels. Droplet shell formation models were applied to aluminum/hydrocarbon gels to examine particle size and mass loading effects on the minimum droplet diameter that will permit secondary atomization. This diameter was predicted to be 38.1 and 34.7 mum for the 50 and 60 wt% gels, which is somewhat greater than the experimentally measured 30 and 25 mum diameters. In the theoretical efforts, three models were developed and an existing rocket code was exercised to gain insights into secondary atomization. The first model was designed to predict gel droplet properties and shell stresses after rigid shell formation, while the second, a one-dimensional gel spray combustion model was created to quantify the secondary atomization process. Experimental and numerical comparisons verify that secondary atomization occurs in 10-125 mum diameter particles although an exact model could not be derived. The third model, a one-dimensional gel-fueled rocket combustion chamber, was developed to evaluate secondary atomization effects on various engine performance parameters. Results show that only modest secondary atomization may be required to reduce propellant burnout distance and radiation losses. A solid propellant engine code was employed to estimate nozzle two-phase flow losses and engine performance for upper-stage and booster missions (3-6% and 2-3%, respectively). Given these losses and other difficulties, metallized gel propellants may be impractical in high-expansion ratio engines. Although uncertainties remain, it appears that performance gains will be minimal in gross-weight limited missions, but that significant gains may arise in volume-limited missions.
Density and mixture fraction measurements in a GO2/GH2 uni-element rocket chamber
NASA Technical Reports Server (NTRS)
Moser, M. D.; Pal, S.; Santoro, R. J.
1994-01-01
In recent years, there has been a renewed interest in gas/gas injectors for rocket combustion. Specifically, the proposed new concept of full-flow oxygen rich preburner systems calls for the injection of both oxygen and hydrogen into the main chamber as gaseous propellants. The technology base for gas/gas injection must mature before actual booster class systems can be designed and fabricated. Since the data base for gas/gas injection is limited to studies focusing on the global parameters of small reaction engines, there is a critical need for experiment programs that emphasize studying the mixing and combustion characteristics of GO2 and GH2 propellants from a uni-element injector point of view. The experimental study of the combusting GO2/GH2 propellant combination in a uni-element rocket chamber also provides a simplified environment, in terms of both geometry and chemistry, that can be used to verify and validate computational fluid dynamic (CFD) models.
Numerical study of chemically reacting viscous flow relevant to pulsed detonation engines
NASA Astrophysics Data System (ADS)
Yi, Tae-Hyeong
2005-11-01
A computational fluid dynamics code for two-dimensional, multi-species, laminar Navier-Stokes equations is developed to simulate a recently proposed engine concept for a pulsed detonation based propulsion system and to investigate the feasibility of the engine of the concept. The governing equations that include transport phenomena such as viscosity, thermal conduction and diffusion are coupled with chemical reactions. The gas is assumed to be thermally perfect and in chemically non-equilibrium. The stiffness due to coupling the fluid dynamics and the chemical kinetics is properly taken care of by using a time-operator splitting method and a variable coefficient ordinary differential equation solver. A second-order Roe scheme with a minmod limiter is explicitly used for space descretization, while a second-order, two-step Runge-Kutta method is used for time descretization. In space integration, a finite volume method and a cell-centered scheme are employed. The first-order derivatives in the equations of transport properties are discretized by a central differencing with Green's theorem. Detailed chemistry is involved in this study. Two chemical reaction mechanisms are extracted from GRI-Mech, which are forty elementary reactions with thirteen species for a hydrogen-air mixture and twenty-seven reactions with eight species for a hydrogen-oxygen mixture. The code is ported to a high-performance parallel machine with Message-Passing Interface. Code validation is performed with chemical kinetic modeling for a stoichiometric hydrogen-air mixture, an one-dimensional detonation tube, a two-dimensional, inviscid flow over a wedge and a viscous flow over a flat plate. Detonation is initiated using a numerically simulated arc-ignition or shock-induced ignition system. Various freestream conditions are utilized to study the propagation of the detonation in the proposed concept of the engine. Investigation of the detonation propagation is performed for a pulsed detonation rocket and a supersonic combustion chamber. For a pulsed detonation rocket case, the detonation tube is embedded in a mixing chamber where an initiator is added to the main detonation chamber. Propagating detonation waves in a supersonic combustion chamber is investigated for one- and two-dimensional cases. The detonation initiated by an arc and a shock wave is studied in the inviscid and viscous flow, respectively. Various features including a detonation-shock interaction, a detonation diffraction, a base flow and a vortex are observed.
Robust Strategy for Rocket Engine Health Monitoring
NASA Technical Reports Server (NTRS)
Santi, L. Michael
2001-01-01
Monitoring the health of rocket engine systems is essentially a two-phase process. The acquisition phase involves sensing physical conditions at selected locations, converting physical inputs to electrical signals, conditioning the signals as appropriate to establish scale or filter interference, and recording results in a form that is easy to interpret. The inference phase involves analysis of results from the acquisition phase, comparison of analysis results to established health measures, and assessment of health indications. A variety of analytical tools may be employed in the inference phase of health monitoring. These tools can be separated into three broad categories: statistical, rule based, and model based. Statistical methods can provide excellent comparative measures of engine operating health. They require well-characterized data from an ensemble of "typical" engines, or "golden" data from a specific test assumed to define the operating norm in order to establish reliable comparative measures. Statistical methods are generally suitable for real-time health monitoring because they do not deal with the physical complexities of engine operation. The utility of statistical methods in rocket engine health monitoring is hindered by practical limits on the quantity and quality of available data. This is due to the difficulty and high cost of data acquisition, the limited number of available test engines, and the problem of simulating flight conditions in ground test facilities. In addition, statistical methods incur a penalty for disregarding flow complexity and are therefore limited in their ability to define performance shift causality. Rule based methods infer the health state of the engine system based on comparison of individual measurements or combinations of measurements with defined health norms or rules. This does not mean that rule based methods are necessarily simple. Although binary yes-no health assessment can sometimes be established by relatively simple rules, the causality assignment needed for refined health monitoring often requires an exceptionally complex rule base involving complicated logical maps. Structuring the rule system to be clear and unambiguous can be difficult, and the expert input required to maintain a large logic network and associated rule base can be prohibitive.
Integrated High Payoff Rocket Propulsion Technology (IHPRPT) SiC Recession Model
NASA Technical Reports Server (NTRS)
Opila, E. J.
2009-01-01
SiC stability and recession rates were modeled in hydrogen/oxygen combustion environments for the Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program. The IHPRPT program is a government and industry program to improve U.S. rocket propulsion systems. Within this program SiC-based ceramic matrix composites are being considered for transpiration cooled injector faceplates or rocket engine thrust chamber liners. Material testing under conditions representative of these environments was conducted at the NASA Glenn Research Center, Cell 22. For the study described herein, SiC degradation was modeled under these Cell 22 test conditions for comparison to actual test results: molar mixture ratio, MR (O2:H2) = 6, material temperatures to 1700 C, combustion gas pressures between 0.34 and 2.10 atm, and gas velocities between 8,000 and 12,000 fps. Recession was calculated assuming rates were controlled by volatility of thermally grown silica limited by gas boundary layer transport. Assumptions for use of this model were explored, including the presence of silica on the SiC surface, laminar gas boundary layer limited volatility, and accuracy of thermochemical data for volatile Si-O-H species. Recession rates were calculated as a function of temperature. It was found that at 1700 C, the highest temperature considered, the calculated recession rates were negligible, about 200 m/h, relative to the expected lifetime of the material. Results compared favorably to testing observations. Other mechanisms contributing to SiC recession are briefly described including consumption of underlying carbon and pitting. A simple expression for liquid flow on the material surface was developed from a one-dimensional treatment of the Navier-Stokes Equation. This relationship is useful to determine under which conditions glassy coatings or thermally grown silica would flow on the material surface, removing protective layers by shear forces. The velocity of liquid flow was found to depend on the gas velocity, the viscosity of gas and liquid, as well as the thickness of the gas boundary layer and the liquid layer. Calculated flow rates of a borosilicate glass coating compared well to flow rates observed for this coating tested on a SiC panel in Cell 22.