NASA Technical Reports Server (NTRS)
Maul, William A.; Meyer, Claudia M.
1991-01-01
A rocket engine safety system was designed to initiate control procedures to minimize damage to the engine or vehicle or test stand in the event of an engine failure. The features and the implementation issues associated with rocket engine safety systems are discussed, as well as the specific concerns of safety systems applied to a space-based engine and long duration space missions. Examples of safety system features and architectures are given, based on recent safety monitoring investigations conducted for the Space Shuttle Main Engine and for future liquid rocket engines. Also, the general design and implementation process for rocket engine safety systems is presented.
Study of solid rocket motor for space shuttle booster, volume 2, book 1
NASA Technical Reports Server (NTRS)
1972-01-01
The technical requirements for the solid propellant rocket engine to be used with the space shuttle orbiter are presented. The subjects discussed are: (1) propulsion system definition, (2) solid rocket engine stage design, (3) solid rocket engine stage recovery, (4) environmental effects, (5) manrating of the solid rocket engine stage, (6) system safety analysis, and (7) ground support equipment.
NASA Technical Reports Server (NTRS)
Pettit, C. D.; Barkhoudarian, S.; Daumann, A. G., Jr.; Provan, G. M.; ElFattah, Y. M.; Glover, D. E.
1999-01-01
In this study, we proposed an Advanced Health Management System (AHMS) functional architecture and conducted a technology assessment for liquid propellant rocket engine lifecycle health management. The purpose of the AHMS is to improve reusable rocket engine safety and to reduce between-flight maintenance. During the study, past and current reusable rocket engine health management-related projects were reviewed, data structures and health management processes of current rocket engine programs were assessed, and in-depth interviews with rocket engine lifecycle and system experts were conducted. A generic AHMS functional architecture, with primary focus on real-time health monitoring, was developed. Fourteen categories of technology tasks and development needs for implementation of the AHMS were identified, based on the functional architecture and our assessment of current rocket engine programs. Five key technology areas were recommended for immediate development, which (1) would provide immediate benefits to current engine programs, and (2) could be implemented with minimal impact on the current Space Shuttle Main Engine (SSME) and Reusable Launch Vehicle (RLV) engine controllers.
Developments in REDES: The rocket engine design expert system
NASA Technical Reports Server (NTRS)
Davidian, Kenneth O.
1990-01-01
The Rocket Engine Design Expert System (REDES) is being developed at the NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP, a nozzle design program named RAO, a regenerative cooling channel performance evaluation code named RTE, and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES is built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.
Developments in REDES: The Rocket Engine Design Expert System
NASA Technical Reports Server (NTRS)
Davidian, Kenneth O.
1990-01-01
The Rocket Engine Design Expert System (REDES) was developed at NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP; a nozzle design program named RAO; a regenerative cooling channel performance evaluation code named RTE; and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES was built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.
Overview of rocket engine control
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.; Musgrave, Jeffrey L.
1991-01-01
The issues of Chemical Rocket Engine Control are broadly covered. The basic feedback information and control variables used in expendable and reusable rocket engines, such as Space Shuttle Main Engine, are discussed. The deficiencies of current approaches are considered and a brief introduction to Intelligent Control Systems for rocket engines (and vehicles) is presented.
High-speed schlieren imaging of rocket exhaust plumes
NASA Astrophysics Data System (ADS)
Coultas-McKenney, Caralyn; Winter, Kyle; Hargather, Michael
2016-11-01
Experiments are conducted to examine the exhaust of a variety of rocket engines. The rocket engines are mounted in a schlieren system to allow high-speed imaging of the engine exhaust during startup, steady state, and shutdown. A variety of rocket engines are explored including a research-scale liquid rocket engine, consumer/amateur solid rocket motors, and water bottle rockets. Comparisons of the exhaust characteristics, thrust and cost for this range of rockets is presented. The variety of nozzle designs, target functions, and propellant type provides unique variations in the schlieren imaging.
Development of Mechanics in Support of Rocket Technology in Ukraine
NASA Astrophysics Data System (ADS)
Prisnyakov, Vladimir
2003-06-01
The paper analyzes the advances of mechanics made in Ukraine in resolving various problems of space and rocket technology such as dynamics and strength of rockets and rocket engines, rockets of different purpose, electric rocket engines, and nonstationary processes in various systems of rockets accompanied by phase transitions of working media. Achievements in research on the effect of vibrations and gravitational fields on the behavior of space-rocket systems are also addressed. Results obtained in investigating the reliability and structural strength durability conditions for nuclear installations, solid- and liquid-propellant engines, and heat pipes are presented
Fabry-Perot interferometer development for rocket engine plume spectroscopy
NASA Astrophysics Data System (ADS)
Bickford, R. L.; Madzsar, G.
1990-07-01
This paper describes a new rugged high-resolution Fabry-Perot interferometer (FPI) designed for rocket engine plume spectroscopy, which is capable of detecting spectral signatures of eroding engine components during rocket engine tests and/or flight operations. The FPI system will make it possible to predict and to respond to the incipient rocket engine failures and to indicate the presence of rocket components degradation. The design diagram of the FPI spectrometer is presented.
Fabry-Perot interferometer development for rocket engine plume spectroscopy
NASA Technical Reports Server (NTRS)
Bickford, R. L.; Madzsar, G.
1990-01-01
This paper describes a new rugged high-resolution Fabry-Perot interferometer (FPI) designed for rocket engine plume spectroscopy, which is capable of detecting spectral signatures of eroding engine components during rocket engine tests and/or flight operations. The FPI system will make it possible to predict and to respond to the incipient rocket engine failures and to indicate the presence of rocket components degradation. The design diagram of the FPI spectrometer is presented.
The development of a post-test diagnostic system for rocket engines
NASA Technical Reports Server (NTRS)
Zakrajsek, June F.
1991-01-01
An effort was undertaken by NASA to develop an automated post-test, post-flight diagnostic system for rocket engines. The automated system is designed to be generic and to automate the rocket engine data review process. A modular, distributed architecture with a generic software core was chosen to meet the design requirements. The diagnostic system is initially being applied to the Space Shuttle Main Engine data review process. The system modules currently under development are the session/message manager, and portions of the applications section, the component analysis section, and the intelligent knowledge server. An overview is presented of a rocket engine data review process, the design requirements and guidelines, the architecture and modules, and the projected benefits of the automated diagnostic system.
NASA Technical Reports Server (NTRS)
Grishin, S. D.; Chekalin, S. V.
1984-01-01
Prospects for the mastery of space and the basic problems which must be solved in developing systems for both manned and cargo spacecraft are examined. The achievements and flaws of rocket boosters are discussed as well as the use of reusable spacecraft. The need for orbiting satellite solar power plants and related astrionics for active control of large space structures for space stations and colonies in an age of space industrialization is demonstrated. Various forms of spacecraft propulsion are described including liquid propellant rocket engines, nuclear reactors, thermonuclear rocket engines, electrorocket engines, electromagnetic engines, magnetic gas dynamic generators, electromagnetic mass accelerators (rail guns), laser rocket engines, pulse nuclear rocket engines, ramjet thermonuclear rocket engines, and photon rockets. The possibilities of interstellar flight are assessed.
NASA Tests RS-25 Flight Engine for Space Launch System
2017-10-19
Engineers at NASA’s Stennis Space Center in Mississippi on Oct. 19 completed a hot-fire test of RS-25 rocket engine E2063, a flight engine for NASA’s new Space Launch System (SLS) rocket. Engine E2063 is scheduled to help power SLS on its Exploration Mission-2 (EM-2), the first flight of the new rocket to carry humans.
Photoignition Torch Applied to Cryogenic H2/O2 Coaxial Jet
2016-12-06
suitable for certain thrusters and liquid rocket engines. This ignition system is scalable for applications in different combustion chambers such as gas ...turbines, gas generators, liquid rocket engines, and multi grain solid rocket motors. photoignition, fuel spray ignition, high pressure ignition...thrusters and liquid rocket engines. This ignition system is scalable for applications in different combustion chambers such as gas turbines, gas
Propulsion Technology Lifecycle Operational Analysis
NASA Technical Reports Server (NTRS)
Robinson, John W.; Rhodes, Russell E.
2010-01-01
The paper presents the results of a focused effort performed by the members of the Space Propulsion Synergy Team (SPST) Functional Requirements Sub-team to develop propulsion data to support Advanced Technology Lifecycle Analysis System (ATLAS). This is a spreadsheet application to analyze the impact of technology decisions at a system-of-systems level. Results are summarized in an Excel workbook we call the Technology Tool Box (TTB). The TTB provides data for technology performance, operations, and programmatic parameters in the form of a library of technical information to support analysis tools and/or models. The lifecycle of technologies can be analyzed from this data and particularly useful for system operations involving long running missions. The propulsion technologies in this paper are listed against Chemical Rocket Engines in a Work Breakdown Structure (WBS) format. The overall effort involved establishing four elements: (1) A general purpose Functional System Breakdown Structure (FSBS). (2) Operational Requirements for Rocket Engines. (3) Technology Metric Values associated with Operating Systems (4) Work Breakdown Structure (WBS) of Chemical Rocket Engines The list of Chemical Rocket Engines identified in the WBS is by no means complete. It is planned to update the TTB with a more complete list of available Chemical Rocket Engines for United States (US) engines and add the Foreign rocket engines to the WBS which are available to NASA and the Aerospace Industry. The Operational Technology Metric Values were derived by the SPST Sub-team in the form of the TTB and establishes a database for users to help evaluate and establish the technology level of each Chemical Rocket Engine in the database. The Technology Metric Values will serve as a guide to help determine which rocket engine to invest technology money in for future development.
NASA Technical Reports Server (NTRS)
Sullivan, Steven J.
2014-01-01
"Rocket University" is an exciting new initiative at Kennedy Space Center led by NASA's Engineering and Technology Directorate. This hands-on experience has been established to develop, refine & maintain targeted flight engineering skills to enable the Agency and KSC strategic goals. Through "RocketU", KSC is developing a nimble, rapid flight engineering life cycle systems knowledge base. Ongoing activities in RocketU develop and test new technologies and potential customer systems through small scale vehicles, build and maintain flight experience through balloon and small-scale rocket missions, and enable a revolving fresh perspective of engineers with hands on expertise back into the large scale NASA programs, providing a more experienced multi-disciplined set of systems engineers. This overview will define the Program, highlight aspects of the training curriculum, and identify recent accomplishments and activities.
Orbital transfer rocket engine technology 7.5K-LB thrust rocket engine preliminary design
NASA Technical Reports Server (NTRS)
Harmon, T. J.; Roschak, E.
1993-01-01
A preliminary design of an advanced LOX/LH2 expander cycle rocket engine producing 7,500 lbf thrust for Orbital Transfer vehicle missions was completed. Engine system, component and turbomachinery analysis at both on design and off design conditions were completed. The preliminary design analysis results showed engine requirements and performance goals were met. Computer models are described and model outputs are presented. Engine system assembly layouts, component layouts and valve and control system analysis are presented. Major design technologies were identified and remaining issues and concerns were listed.
Performance of a RBCC Engine in Rocket-Operation
NASA Astrophysics Data System (ADS)
Tomioka, Sadatake; Kubo, Takahiro; Noboru Sakuranaka; Tani, Koichiro
Combination of a scramjet (supersonic combustion ramjet) flow-pass with embedded rocket engines (the combined system termed as Rocket-based Combined Cycle engine) are expected to be the most effective propulsion system for space launch vehicles. Either SSTO (Single Stage To Orbit) system or TSTO (Two Stage To Orbit) system with separation at high altitude needs final stage acceleration in space, so that the RBCC (Rocket Based Combined Cycle) engine should be operated as rocket engines. Performance of the scramjet combustor as the extension to the rocket nozzle, was experimentally evaluated by injecting inert gas at various pressure through the embedded rocket chamber while the whole sub-scaled model was placed in a low pressure chamber connected to an air-driven ejector system. The results showed that the thrust coefficient was about 1.2, the low value being found to mainly due to the friction force on the scramjet combustor wall, while blocking the scramjet flow pass’s opening to increase nozzle extension thrust surface, was found to have little effects on the thrust performance. The combustor was shortened to reduce the friction loss, however, degree of reduction was limited as friction decreased rapidly with distance from the onset of the scramjet combustor.
2013-12-11
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, from the left, Leandro James, rocket avionics lead, Gary Dahlke, high powered rocket subject matter expert, and Julio Najarro of Mechanical Systems make final adjustments to a small rocket prior to launch as part of Rocket University. The launch will test systems designed by the student engineers. As part of Rocket University, the engineers are given an opportunity to work a fast-track project to develop skills in developing spacecraft systems of the future. As NASA plans for future spaceflight programs to low-Earth orbit and beyond, teams of engineers at Kennedy are gaining experience in designing and flying launch vehicle systems on a small scale. Four teams of five to eight members from Kennedy are designing rockets complete with avionics and recovery systems. Launch operations require coordination with federal agencies, just as they would with rockets launched in support of a NASA mission. Photo credit: NASA/Jim Grossmann
NASA Technical Reports Server (NTRS)
1998-01-01
NASA engineers successfully tested a Russian-built rocket engine on November 4, 1998 at the Marshall Space Flight Center (MSFC) Advanced Engine Test Facility, which had been used for testing the Saturn V F-1 engines and Space Shuttle Main engines. The MSFC was under a Space Act Agreement with Lockheed Martin Astronautics of Denver to provide a series of test firings of the Atlas III propulsion system configured with the Russian-designed RD-180 engine. The tests were designed to measure the performance of the Atlas III propulsion system, which included avionics and propellant tanks and lines, and how these components interacted with the RD-180 engine. The RD-180 is powered by kerosene and liquid oxygen, the same fuel mix used in Saturn rockets. The RD-180, the most powerful rocket engine tested at the MSFC since Saturn rocket tests in the 1960s, generated 860,000 pounds of thrust.
Rocket Engine Oscillation Diagnostics
NASA Technical Reports Server (NTRS)
Nesman, Tom; Turner, James E. (Technical Monitor)
2002-01-01
Rocket engine oscillating data can reveal many physical phenomena ranging from unsteady flow and acoustics to rotordynamics and structural dynamics. Because of this, engine diagnostics based on oscillation data should employ both signal analysis and physical modeling. This paper describes an approach to rocket engine oscillation diagnostics, types of problems encountered, and example problems solved. Determination of design guidelines and environments (or loads) from oscillating phenomena is required during initial stages of rocket engine design, while the additional tasks of health monitoring, incipient failure detection, and anomaly diagnostics occur during engine development and operation. Oscillations in rocket engines are typically related to flow driven acoustics, flow excited structures, or rotational forces. Additional sources of oscillatory energy are combustion and cavitation. Included in the example problems is a sampling of signal analysis tools employed in diagnostics. The rocket engine hardware includes combustion devices, valves, turbopumps, and ducts. Simple models of an oscillating fluid system or structure can be constructed to estimate pertinent dynamic parameters governing the unsteady behavior of engine systems or components. In the example problems it is shown that simple physical modeling when combined with signal analysis can be successfully employed to diagnose complex rocket engine oscillatory phenomena.
NASA Tests 2nd RS-25 Flight Engine for Space Launch System
2017-10-19
Engineers at NASA’s Stennis Space Center in Mississippi on Oct. 19 completed a hot-fire test of RS-25 rocket engine E2063, a flight engine for NASA’s new Space Launch System (SLS) rocket. Engine E2063 is scheduled to help power SLS on its Exploration Mission-2 (EM-2), the first flight of the new rocket to carry humans. Flight engine E2059 was tested on March 10, 2016, also for use on the EM-2 flight.
NASA Tests 2nd RS-25 Flight Engine For Space Launch System
2017-10-19
Engineers at NASA’s Stennis Space Center in Mississippi on Oct. 19 completed a hot-fire test of RS-25 rocket engine E2063, a flight engine for NASA’s new Space Launch System (SLS) rocket. Engine E2063 is scheduled to help power SLS on its Exploration Mission-2 (EM-2), the first flight of the new rocket to carry humans. Flight engine E2059 was tested on March 10, 2016, also for use on the EM-2 flight.
Video File - NASA Tests 2nd RS-25 Flight Engine for Space Launch System
2017-10-19
Engineers at NASA’s Stennis Space Center in Mississippi on Oct. 19 completed a hot-fire test of RS-25 rocket engine E2063, a flight engine for NASA’s new Space Launch System (SLS) rocket. Engine E2063 is scheduled to help power SLS on its Exploration Mission-2 (EM-2), the first flight of the new rocket to carry humans. Flight engine E2059 was tested on March 10, 2016, also for use on the EM-2 flight.
NASA Technical Reports Server (NTRS)
Pryor, D.; Hyde, E. H.; Escher, W. J. D.
1999-01-01
Airbreathing/Rocket combined-cycle, and specifically rocket-based combined- cycle (RBCC), propulsion systems, typically employ an internal engine flow-path installed primary rocket subsystem. To achieve acceptably short mixing lengths in effecting the "air augmentation" process, a large rocket-exhaust/air interfacial mixing surface is needed. This leads, in some engine design concepts, to a "cluster" of small rocket units, suitably arrayed in the flowpath. To support an early (1964) subscale ground-test of a specific RBCC concept, such a 12-rocket cluster was developed by NASA's Marshall Space Flight Center (MSFC). The small primary rockets used in the cluster assembly were modified versions of an existing small kerosene/oxygen water-cooled rocket engine unit routinely tested at MSFC. Following individual thrust-chamber tests and overall subsystem qualification testing, the cluster assembly was installed at the U. S. Air Force's Arnold Engineering Development Center (AEDC) for RBCC systems testing. (The results of the special air-augmented rocket testing are not covered here.) While this project was eventually successfully completed, a number of hardware integration problems were met, leading to catastrophic thrust chamber failures. The principal "lessons learned" in conducting this early primary rocket subsystem experimental effort are documented here as a basic knowledge-base contribution for the benefit of today's RBCC research and development community.
Mean Line Pump Flow Model in Rocket Engine System Simulation
NASA Technical Reports Server (NTRS)
Veres, Joseph P.; Lavelle, Thomas M.
2000-01-01
A mean line pump flow modeling method has been developed to provide a fast capability for modeling turbopumps of rocket engines. Based on this method, a mean line pump flow code PUMPA has been written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The pump code can model axial flow inducers, mixed-flow and centrifugal pumps. The code can model multistage pumps in series. The code features rapid input setup and computer run time, and is an effective analysis and conceptual design tool. The map generation capability of the code provides the map information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of the code permit parametric design space exploration of candidate pump configurations and provide pump performance data for engine system evaluation. The PUMPA code has been integrated with the Numerical Propulsion System Simulation (NPSS) code and an expander rocket engine system has been simulated. The mean line pump flow code runs as an integral part of the NPSS rocket engine system simulation and provides key pump performance information directly to the system model at all operating conditions.
NASA Technical Reports Server (NTRS)
1998-01-01
NASA engineers successfully tested a Russian-built rocket engine on November 4, 1998 at the Marshall Space Flight Center (MSFC) Advanced Engine Test Facility, which had been used for testing the Saturn V F-1 engines and Space Shuttle Main engines. The MSFC was under a Space Act Agreement with Lockheed Martin Astronautics of Denver to provide a series of test firings of the Atlas III propulsion system configured with the Russian-designed RD-180 engine. The tests were designed to measure the performance of the Atlas III propulsion system, which included avionics and propellant tanks and lines, and how these components interacted with the RD-180 engine. The RD-180 is powered by kerosene and liquid oxygen, the same fuel mix used in Saturn rockets. The RD-180, the most powerful rocket engine tested at the MSFC since Saturn rocket tests in the 1960s, generated 860,000 pounds of thrust. The test was the first test ever anywhere outside Russia of a Russian designed and built engine.
Rocketdyne RBCC Engine Concept Development
NASA Technical Reports Server (NTRS)
Ratckin, G.; Goldman, A.; Ortwerth, P.; Weisberg, S.
1999-01-01
Boeing Rocketdyne is pursuing the development of Rocket Based Combined Cycle (RBCC), propulsion systems as demonstrated by significant contract work in the hypersonic arena (ART, NASP, SCT, system studies) and over 12 years of steady company discretionary investment. The Rocketdyne concept is a fixed geometry integrated rocket, ramjet, scramjet which is hydrogen fueled and uses hydrogen regenerative cooling. The baseline engine structural configuration uses an integral structure that eliminates panel seals. seal purge gas, and closeout side attachments. Rocketdyne's experimental RBCC engine (Engine A5) was constructed under contract with the NASA Marshall Space Flight Center. Engine A5 models the complete flight engine flowpath consisting of an inlet, isolator, airbreathing combustor and nozzle. High performance rocket thrusters are integrated into the engine to enable both air-augmented rocket (AAR) and pure rocket operation. Engine A5 was tested in CASL's new FAST facility as an air-augmented rocket, a ramjet and a pure rocket. Measured performance demonstrated vision vehicle performance levels for Mach 3 AAR operation and ramjet operation from Mach 3 to 4. Rocket mode performance was above predictions. For the first time. testing also demonstrated transition from AAR operation to ramjet operation. This baseline configuration has also been shown, in previous testing, to perform well in the scramjet mode.
A reusable rocket engine intelligen control
NASA Technical Reports Server (NTRS)
Merrill, Walter C.; Lorenzo, Carl F.
1988-01-01
An intelligent control system for reusable space propulsion systems for future launch vehicles is described. The system description includes a framework for the design. The framework consists of an execution level with high-speed control and diagnostics, and a coordination level which marries expert system concepts with traditional control. A comparison is made between air breathing and rocket engine control concepts to assess the relative levels of development and to determine the applicability of air breathing control concepts to future reusable rocket engine systems.
A reusable rocket engine intelligent control
NASA Technical Reports Server (NTRS)
Merrill, Walter C.; Lorenzo, Carl F.
1988-01-01
An intelligent control system for reusable space propulsion systems for future launch vehicles is described. The system description includes a framework for the design. The framework consists of an execution level with high-speed control and diagnostics, and a coordination level which marries expert system concepts with traditional control. A comparison is made between air breathing and rocket engine control concepts to assess the relative levels of development and to determine the applicability of air breathing control concepts ot future reusable rocket engine systems.
2013-12-11
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, from the left, Leandro James, rocket avionics lead, and Julio Najarro of Mechanical Systems make final adjustments to a small rocket prior to launch as part of Rocket University. The launch will test systems designed by the student engineers. As part of Rocket University, the engineers are given an opportunity to work a fast-track project to develop skills in developing spacecraft systems of the future. As NASA plans for future spaceflight programs to low-Earth orbit and beyond, teams of engineers at Kennedy are gaining experience in designing and flying launch vehicle systems on a small scale. Four teams of five to eight members from Kennedy are designing rockets complete with avionics and recovery systems. Launch operations require coordination with federal agencies, just as they would with rockets launched in support of a NASA mission. Photo credit: NASA/Jim Grossmann
NASA Astrophysics Data System (ADS)
Sutton, George P.
The subject of rocket propulsion is treated with emphasis on the basic technology, performance, and design rationale. Attention is given to definitions and fundamentals, nozzle theory and thermodynamic relations, heat transfer, flight performance, chemical rocket propellant performance analysis, and liquid propellant rocket engine fundamentals. The discussion also covers solid propellant rocket fundamentals, hybrid propellant rockets, thrust vector control, selection of rocket propulsion systems, electric propulsion, and rocket testing.
Rocketdyne/Westinghouse nuclear thermal rocket engine modeling
NASA Technical Reports Server (NTRS)
Glass, James F.
1993-01-01
The topics are presented in viewgraph form and include the following: systems approach needed for nuclear thermal rocket (NTR) design optimization; generic NTR engine power balance codes; rocketdyne nuclear thermal system code; software capabilities; steady state model; NTR engine optimizer code-logic; reactor power calculation logic; sample multi-component configuration; NTR design code output; generic NTR code at Rocketdyne; Rocketdyne NTR model; and nuclear thermal rocket modeling directions.
A demonstration of an intelligent control system for a reusable rocket engine
NASA Technical Reports Server (NTRS)
Musgrave, Jeffrey L.; Paxson, Daniel E.; Litt, Jonathan S.; Merrill, Walter C.
1992-01-01
An Intelligent Control System for reusable rocket engines is under development at NASA Lewis Research Center. The primary objective is to extend the useful life of a reusable rocket propulsion system while minimizing between flight maintenance and maximizing engine life and performance through improved control and monitoring algorithms and additional sensing and actuation. This paper describes current progress towards proof-of-concept of an Intelligent Control System for the Space Shuttle Main Engine. A subset of identifiable and accommodatable engine failure modes is selected for preliminary demonstration. Failure models are developed retaining only first order effects and included in a simplified nonlinear simulation of the rocket engine for analysis under closed loop control. The engine level coordinator acts as an interface between the diagnostic and control systems, and translates thrust and mixture ratio commands dictated by mission requirements, and engine status (health) into engine operational strategies carried out by a multivariable control. Control reconfiguration achieves fault tolerance if the nominal (healthy engine) control cannot. Each of the aforementioned functionalities is discussed in the context of an example to illustrate the operation of the system in the context of a representative failure. A graphical user interface allows the researcher to monitor the Intelligent Control System and engine performance under various failure modes selected for demonstration.
Linear quadratic servo control of a reusable rocket engine
NASA Technical Reports Server (NTRS)
Musgrave, Jeffrey L.
1991-01-01
A design method for a servo compensator is developed in the frequency domain using singular values. The method is applied to a reusable rocket engine. An intelligent control system for reusable rocket engines was proposed which includes a diagnostic system, a control system, and an intelligent coordinator which determines engine control strategies based on the identified failure modes. The method provides a means of generating various linear multivariable controllers capable of meeting performance and robustness specifications and accommodating failure modes identified by the diagnostic system. Command following with set point control is necessary for engine operation. A Kalman filter reconstructs the state while loop transfer recovery recovers the required degree of robustness while maintaining satisfactory rejection of sensor noise from the command error. The approach is applied to the design of a controller for a rocket engine satisfying performance constraints in the frequency domain. Simulation results demonstrate the performance of the linear design on a nonlinear engine model over all power levels during mainstage operation.
Evaluation of an Ejector Ramjet Based Propulsion System for Air-Breathing Hypersonic Flight
NASA Technical Reports Server (NTRS)
Thomas, Scott R.; Perkins, H. Douglas; Trefny, Charles J.
1997-01-01
A Rocket Based Combined Cycle (RBCC) engine system is designed to combine the high thrust to weight ratio of a rocket along with the high specific impulse of a ramjet in a single, integrated propulsion system. This integrated, combined cycle propulsion system is designed to provide higher vehicle performance than that achievable with a separate rocket and ramjet. The RBCC engine system studied in the current program is the Aerojet strutjet engine concept, which is being developed jointly by a government-industry team as part of the Air Force HyTech program pre-PRDA activity. The strutjet is an ejector-ramjet engine in which small rocket chambers are embedded into the trailing edges of the inlet compression struts. The engine operates as an ejector-ramjet from takeoff to slightly above Mach 3. Above Mach 3 the engine operates as a ramjet and transitions to a scramjet at high Mach numbers. For space launch applications the rockets would be re-ignited at a Mach number or altitude beyond which air-breathing propulsion alone becomes impractical. The focus of the present study is to develop and demonstrate a strutjet flowpath using hydrocarbon fuel at up to Mach 7 conditions.
An Object Model for a Rocket Engine Numerical Simulator
NASA Technical Reports Server (NTRS)
Mitra, D.; Bhalla, P. N.; Pratap, V.; Reddy, P.
1998-01-01
Rocket Engine Numerical Simulator (RENS) is a packet of software which numerically simulates the behavior of a rocket engine. Different parameters of the components of an engine is the input to these programs. Depending on these given parameters the programs output the behaviors of those components. These behavioral values are then used to guide the design of or to diagnose a model of a rocket engine "built" by a composition of these programs simulating different components of the engine system. In order to use this software package effectively one needs to have a flexible model of a rocket engine. These programs simulating different components then should be plugged into this modular representation. Our project is to develop an object based model of such an engine system. We are following an iterative and incremental approach in developing the model, as is the standard practice in the area of object oriented design and analysis of softwares. This process involves three stages: object modeling to represent the components and sub-components of a rocket engine, dynamic modeling to capture the temporal and behavioral aspects of the system, and functional modeling to represent the transformational aspects. This article reports on the first phase of our activity under a grant (RENS) from the NASA Lewis Research center. We have utilized Rambaugh's object modeling technique and the tool UML for this purpose. The classes of a rocket engine propulsion system are developed and some of them are presented in this report. The next step, developing a dynamic model for RENS, is also touched upon here. In this paper we will also discuss the advantages of using object-based modeling for developing this type of an integrated simulator over other tools like an expert systems shell or a procedural language, e.g., FORTRAN. Attempts have been made in the past to use such techniques.
Rocket Based Combined Cycle (RBCC) engine inlet
NASA Technical Reports Server (NTRS)
2004-01-01
Pictured is a component of the Rocket Based Combined Cycle (RBCC) engine. This engine was designed to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsion systems and ultimately a Single Stage to Orbit (SSTO) air breathing propulsion system.
1998-11-04
NASA engineers successfully tested a Russian-built rocket engine on November 4, 1998 at the Marshall Space Flight Center (MSFC) Advanced Engine Test Facility, which had been used for testing the Saturn V F-1 engines and Space Shuttle Main engines. The MSFC was under a Space Act Agreement with Lockheed Martin Astronautics of Denver to provide a series of test firings of the Atlas III propulsion system configured with the Russian-designed RD-180 engine. The tests were designed to measure the performance of the Atlas III propulsion system, which included avionics and propellant tanks and lines, and how these components interacted with the RD-180 engine. The RD-180 is powered by kerosene and liquid oxygen, the same fuel mix used in Saturn rockets. The RD-180, the most powerful rocket engine tested at the MSFC since Saturn rocket tests in the 1960s, generated 860,000 pounds of thrust.
NASA’s Space Launch System Engine Testing Heats Up
2017-05-23
NASA engineers successfully conducted the second in a series of RS-25 flight controller tests on May 23, 2017, for the world’s most-powerful rocket. The 500-second test on the A-1 Test Stand at NASA’s Stennis Space Center in Mississippi marked another milestone toward launch of NASA’s new Space Launch System (SLS) rocket on its inaugural flight, the Exploration Mission-1 (EM-1). The SLS rocket, powered by four RS-25 engines, will provide 2 million pounds of thrust and work in conjunction with two solid rocket boosters. These are former space shuttle main engines, modified to perform at a higher level and with a new controller.
Design of a Hybrid Propulsion System for Orbit Raising Applications
NASA Astrophysics Data System (ADS)
Boman, N.; Ford, M.
2004-10-01
A trade off between conventional liquid apogee engines used for orbit raising applications and hybrid rocket engines (HRE) has been performed using a case study approach. Current requirements for lower cost and enhanced safety places hybrid propulsion systems in the spotlight. For evaluating and design of a hybrid rocket engine a parametric engineering code is developed, based on the combustion chamber characteristics of selected propellants. A single port cylindrical section of fuel grain is considered. Polyethylene (PE) and hydroxyl-terminated polybutadiene (HTPB) represents the fuels investigated. The engine design is optimized to minimize the propulsion system volume and mass, while keeping the system as simple as possible. It is found that the fuel grain L/D ratio boundary condition has a major impact on the overall hybrid rocket engine design.
Video File - NASA on a Roll Testing Space Launch System Flight Engines
2017-08-09
Just two weeks after conducting another in a series of tests on new RS-25 rocket engine flight controllers for NASA’s Space Launch System (SLS) rocket, engineers at NASA’s Stennis Space Center in Mississippi completed one more hot-fire test of a flight controller on August 9, 2017. With the hot fire, NASA has moved a step closer in completing testing on the four RS-25 engines which will power the first integrated flight of the SLS rocket and Orion capsule known as Exploration Mission 1.
Cryogenic gear technology for an orbital transfer vehicle engine and tester design
NASA Technical Reports Server (NTRS)
Calandra, M.; Duncan, G.
1986-01-01
Technology available for gears used in advanced Orbital Transfer Vehicle rocket engines and the design of a cryogenic adapted tester used for evaluating advanced gears are presented. The only high-speed, unlubricated gears currently in cryogenic service are used in the RL10 rocket engine turbomachinery. Advanced rocket engine gear systems experience operational load conditions and rotational speed that are beyond current experience levels. The work under this task consisted of a technology assessment and requirements definition followed by design of a self-contained portable cryogenic adapted gear test rig system.
NASA Technical Reports Server (NTRS)
Foster, Richard W.; Escher, William J. D.; Robinson, John W.
1989-01-01
The present comparative performance study has established that rocket-based combined cycle (RBCC) propulsion systems, when incorporated by essentially axisymmetric SSTO launch vehicle configurations whose conical forebody maximizes both capture-area ratio and total capture area, are capable of furnishing payload-delivery capabilities superior to those of most multistage, all-rocket launchers. Airbreathing thrust augmentation in the rocket-ejector mode of an RBCC powerplant is noted to make a major contribution to final payload capability, by comparison to nonair-augmented rocket engine propulsion systems.
Embedded expert system for space shuttle main engine maintenance
NASA Technical Reports Server (NTRS)
Pooley, J.; Thompson, W.; Homsley, T.; Teoh, W.; Jones, J.; Lewallen, P.
1987-01-01
The SPARTA Embedded Expert System (SEES) is an intelligent health monitoring system that directs analysis by placing confidence factors on possible engine status and then recommends a course of action to an engineer or engine controller. The technique can prevent catastropic failures or costly rocket engine down time because of false alarms. Further, the SEES has potential as an on-board flight monitor for reusable rocket engine systems. The SEES methodology synergistically integrates vibration analysis, pattern recognition and communications theory techniques with an artificial intelligence technique - the Embedded Expert System (EES).
The use of programmable logic controllers (PLC) for rocket engine component testing
NASA Technical Reports Server (NTRS)
Nail, William; Scheuermann, Patrick; Witcher, Kern
1991-01-01
Application of PLCs to the rocket engine component testing at a new Stennis Space Center Component Test Facility is suggested as an alternative to dedicated specialized computers. The PLC systems are characterized by rugged design, intuitive software, fault tolerance, flexibility, multiple end device options, networking capability, and built-in diagnostics. A distributed PLC-based system is projected to be used for testing LH2/LOx turbopumps required for the ALS/NLS rocket engines.
Outbrief - Long Life Rocket Engine Panel
NASA Technical Reports Server (NTRS)
Quinn, Jason Eugene
2004-01-01
This white paper is an overview of the JANNAF Long Life Rocket Engine (LLRE) Panel results from the last several years of activity. The LLRE Panel has met over the last several years in order to develop an approach for the development of long life rocket engines. Membership for this panel was drawn from a diverse set of the groups currently working on rocket engines (Le. government labs, both large and small companies and university members). The LLRE Panel was formed in order to determine the best way to enable the design of rocket engine systems that have life capability greater than 500 cycles while meeting or exceeding current performance levels (Specific Impulse and Thrust/Weight) with a 1/1,OOO,OOO likelihood of vehicle loss due to rocket system failure. After several meetings and much independent work the panel reached a consensus opinion that the primary issues preventing LLRE are a lack of: physics based life prediction, combined loads prediction, understanding of material microphysics, cost effective system level testing. and the inclusion of fabrication process effects into physics based models. With the expected level of funding devoted to LLRE development, the panel recommended that fundamental research efforts focused on these five areas be emphasized.
Injector element characterization methodology
NASA Technical Reports Server (NTRS)
Cox, George B., Jr.
1988-01-01
Characterization of liquid rocket engine injector elements is an important part of the development process for rocket engine combustion devices. Modern nonintrusive instrumentation for flow velocity and spray droplet size measurement, and automated, computer-controlled test facilities allow rapid, low-cost evaluation of injector element performance and behavior. Application of these methods in rocket engine development, paralleling their use in gas turbine engine development, will reduce rocket engine development cost and risk. The Alternate Turbopump (ATP) Hot Gas Systems (HGS) preburner injector elements were characterized using such methods, and the methodology and some of the results obtained will be shown.
NASA Technical Reports Server (NTRS)
Aguilar, R.
2006-01-01
Pratt & Whitney Rocketdyne has developed a real-time engine/vehicle system integrated health management laboratory, or testbed, for developing and testing health management system concepts. This laboratory simulates components of an integrated system such as the rocket engine, rocket engine controller, vehicle or test controller, as well as a health management computer on separate general purpose computers. These general purpose computers can be replaced with more realistic components such as actual electronic controllers and valve actuators for hardware-in-the-loop simulation. Various engine configurations and propellant combinations are available. Fault or failure insertion capability on-the-fly using direct memory insertion from a user console is used to test system detection and response. The laboratory is currently capable of simulating the flow-path of a single rocket engine but work is underway to include structural and multiengine simulation capability as well as a dedicated data acquisition system. The ultimate goal is to simulate as accurately and realistically as possible the environment in which the health management system will operate including noise, dynamic response of the engine/engine controller, sensor time delays, and asynchronous operation of the various components. The rationale for the laboratory is also discussed including limited alternatives for demonstrating the effectiveness and safety of a flight system.
Focused Experimental and Analytical Studies of the RBCC Rocket-Ejector
NASA Technical Reports Server (NTRS)
Lehman, M.; Pal, S.; Schwes, D.; Chen, J. D.; Santoro, R. J.
1999-01-01
The rocket-ejector mode of a Rocket Based Combined Cycle Engine (RBCC) was studied through a joint experimental/analytical approach. A two-dimensional variable geometry rocket-ejector system with enhanced optical access was designed and fabricated for experimentation. The rocket-ejector system utilizes a single two-dimensional gaseous oxygen/gaseous hydrogen rocket as the ejector. To gain a systematic understanding of the rocket ejector's internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static configurations for a range of rocket operating conditions Overall system performance was obtained through Global measurements of wall static pressure profiles, heat flux profiles and engine thrust, whereas detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (gaseous oxygen, hydrogen. nitrogen and water vapor). These experimental efforts were complemented by Computational Fluid Dynamic (CFD) flowfield analyses.
Study of solid rocket motor for space shuttle booster, volume 2, book 2
NASA Technical Reports Server (NTRS)
1972-01-01
A technical analysis of the solid propellant rocket engines for use with the space shuttle is presented. The subjects discussed are: (1) solid rocket motor stage recovery, (2) environmental effects, (3) man rating of the solid propellant rocket engines, (4) system safety analysis, (5) ground support equipment, and (6) transportation, assembly, and checkout.
Mean Flow Augmented Acoustics in Rocket Systems
NASA Technical Reports Server (NTRS)
Fischbach, Sean R.
2015-01-01
Combustion instability in solid rocket motors and liquid engines is a complication that continues to plague designers and engineers. Many rocket systems experience violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. During sever cases of combustion instability fluctuation amplitudes can reach values equal to or greater than the average chamber pressure. Large amplitude oscillations lead to damaged injectors, loss of rocket performance, damaged payloads, and in some cases breach of case/loss of mission. Historic difficulties in modeling and predicting combustion instability has reduced most rocket systems experiencing instability into a costly fix through testing paradigm or to scrap the system entirely.
Independent Review of the Failure Modes of F-1 Engine and Propellants System
NASA Technical Reports Server (NTRS)
Ray, Paul
2003-01-01
The F-1 is the powerful engine, that hurdled the Saturn V launch vehicle from the Earth to the moon on July 16,1969. The force that lifted the rocket overcoming the gravitational force during the first stage of the flight was provided by a cluster of five F-1 rocket engines, each of them developing over 1.5 million pounds of thrust (MSFC-MAN-507). The F-1 Rocket engine used RP-1 (Rocket Propellant-1, commercially known as Kerosene), as fuel with lox (liquid Oxygen) as oxidizer. NASA terminated Saturn V activity and has focused on Space Shuttle since 1972. The interest in rocket system has been revived to meet the National Launch System (NLS) program and a directive from the President to return to the Moon and exploration of the space including Mars. The new program Space Launch Initiative (SLI) is directed to drastically reduce the cost of flight for payloads, and adopt a reusable launch vehicle (RLV). To achieve this goal it is essential to have the ability of lifting huge payloads into low earth orbit. Probably requiring powerful boosters as strap-ons to a core vehicle, as was done for the Saturn launch vehicle. The logic in favor of adopting Saturn system, a proven technology, to meet the SLI challenge is very strong. The F-1 engine was the largest and most powerful liquid rocket engine ever built, and had exceptional performance. This study reviews the failure modes of the F-1 engine and propellant system.
Reusable rocket engine intelligent control system framework design, phase 2
NASA Technical Reports Server (NTRS)
Nemeth, ED; Anderson, Ron; Ols, Joe; Olsasky, Mark
1991-01-01
Elements of an advanced functional framework for reusable rocket engine propulsion system control are presented for the Space Shuttle Main Engine (SSME) demonstration case. Functional elements of the baseline functional framework are defined in detail. The SSME failure modes are evaluated and specific failure modes identified for inclusion in the advanced functional framework diagnostic system. Active control of the SSME start transient is investigated, leading to the identification of a promising approach to mitigating start transient excursions. Key elements of the functional framework are simulated and demonstration cases are provided. Finally, the advanced function framework for control of reusable rocket engines is presented.
Rocket engine exhaust plume diagnostics and health monitoring/management during ground testing
NASA Technical Reports Server (NTRS)
Chenevert, D. J.; Meeks, G. R.; Woods, E. G.; Huseonica, H. F.
1992-01-01
The current status of a rocket exhaust plume diagnostics program sponsored by NASA is reviewed. The near-term objective of the program is to enhance test operation efficiency and to provide for safe cutoff of rocket engines prior to incipient failure, thereby avoiding the destruction of the engine and the test complex and preventing delays in the national space program. NASA programs that will benefit from the nonintrusive remote sensed rocket plume diagnostics and related vehicle health management and nonintrusive measurement program are Space Shuttle Main Engine, National Launch System, National Aero-Space Plane, Space Exploration Initiative, Advanced Solid Rocket Motor, and Space Station Freedom. The role of emission spectrometry and other types of remote sensing in rocket plume diagnostics is discussed.
Turbopump systems for liquid rocket engines
NASA Technical Reports Server (NTRS)
1974-01-01
The turbopump system, from preliminary design through rocket engine testing is examined. Selection of proper system type for each application and integration of the components into a working system are dealt with. Details are also given on the design of various components including inducers, pumps, turbines, gears, and bearings.
Advanced active health monitoring system of liquid rocket engines
NASA Astrophysics Data System (ADS)
Qing, Xinlin P.; Wu, Zhanjun; Beard, Shawn; Chang, Fu-Kuo
2008-11-01
An advanced SMART TAPE system has been developed for real-time in-situ monitoring and long term tracking of structural integrity of pressure vessels in liquid rocket engines. The practical implementation of the structural health monitoring (SHM) system including distributed sensor network, portable diagnostic hardware and dedicated data analysis software is addressed based on the harsh operating environment. Extensive tests were conducted on a simulated large booster LOX-H2 engine propellant duct to evaluate the survivability and functionality of the system under the operating conditions of typical liquid rocket engines such as cryogenic temperature, vibration loads. The test results demonstrated that the developed SHM system could survive the combined cryogenic temperature and vibration environments and effectively detect cracks as small as 2 mm.
Rocket engine system reliability analyses using probabilistic and fuzzy logic techniques
NASA Technical Reports Server (NTRS)
Hardy, Terry L.; Rapp, Douglas C.
1994-01-01
The reliability of rocket engine systems was analyzed by using probabilistic and fuzzy logic techniques. Fault trees were developed for integrated modular engine (IME) and discrete engine systems, and then were used with the two techniques to quantify reliability. The IRRAS (Integrated Reliability and Risk Analysis System) computer code, developed for the U.S. Nuclear Regulatory Commission, was used for the probabilistic analyses, and FUZZYFTA (Fuzzy Fault Tree Analysis), a code developed at NASA Lewis Research Center, was used for the fuzzy logic analyses. Although both techniques provided estimates of the reliability of the IME and discrete systems, probabilistic techniques emphasized uncertainty resulting from randomness in the system whereas fuzzy logic techniques emphasized uncertainty resulting from vagueness in the system. Because uncertainty can have both random and vague components, both techniques were found to be useful tools in the analysis of rocket engine system reliability.
Researcher Poses with a Nuclear Rocket Model
1961-11-21
A researcher at the NASA Lewis Research Center with slide ruler poses with models of the earth and a nuclear-propelled rocket. The Nuclear Engine for Rocket Vehicle Applications (NERVA) was a joint NASA and Atomic Energy Commission (AEC) endeavor to develop a nuclear-powered rocket for both long-range missions to Mars and as a possible upper-stage for the Apollo Program. The early portion of the program consisted of basic reactor and fuel system research. This was followed by a series of Kiwi reactors built to test nuclear rocket principles in a non-flying nuclear engine. The next phase, NERVA, would create an entire flyable engine. The AEC was responsible for designing the nuclear reactor and overall engine. NASA Lewis was responsible for developing the liquid-hydrogen fuel system. The nuclear rocket model in this photograph includes a reactor at the far right with a hydrogen propellant tank and large radiator below. The payload or crew would be at the far left, distanced from the reactor.
Control Room at the NACA’s Rocket Engine Test Facility
1957-05-21
Test engineers monitor an engine firing from the control room of the Rocket Engine Test Facility at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The Rocket Engine Test Facility, built in the early 1950s, had a rocket stand designed to evaluate high-energy propellants and rocket engine designs. The facility was used to study numerous different types of rocket engines including the Pratt and Whitney RL-10 engine for the Centaur rocket and Rocketdyne’s F-1 and J-2 engines for the Saturn rockets. The Rocket Engine Test Facility was built in a ravine at the far end of the laboratory because of its use of the dangerous propellants such as liquid hydrogen and liquid fluorine. The control room was located in a building 1,600 feet north of the test stand to protect the engineers running the tests. The main control and instrument consoles were centrally located in the control room and surrounded by boards controlling and monitoring the major valves, pumps, motors, and actuators. A camera system at the test stand allowed the operators to view the tests, but the researchers were reliant on data recording equipment, sensors, and other devices to provide test data. The facility’s control room was upgraded several times over the years. Programmable logic controllers replaced the electro-mechanical control devices. The new controllers were programed to operate the valves and actuators controlling the fuel, oxidant, and ignition sequence according to a predetermined time schedule.
Rocket-Based Combined Cycle Engine Concept Development
NASA Technical Reports Server (NTRS)
Ratekin, G.; Goldman, Allen; Ortwerth, P.; Weisberg, S.; McArthur, J. Craig (Technical Monitor)
2001-01-01
The development of rocket-based combined cycle (RBCC) propulsion systems is part of a 12 year effort under both company funding and contract work. The concept is a fixed geometry integrated rocket, ramjet, scramjet, which is hydrogen fueled and uses hydrogen regenerative cooling. The baseline engine structural configuration uses an integral structure that eliminates panel seals, seal purge gas, and closeout side attachments. Engine A5 is the current configuration for NASA Marshall Space Flight Center (MSFC) for the ART program. Engine A5 models the complete flight engine flowpath of inlet, isolator, airbreathing combustor, and nozzle. High-performance rocket thrusters are integrated into the engine enabling both low speed air-augmented rocket (AAR) and high speed pure rocket operation. Engine A5 was tested in GASL's new Flight Acceleration Simulation Test (FAST) facility in all four operating modes, AAR, RAM, SCRAM, and Rocket. Additionally, transition from AAR to RAM and RAM to SCRAM was also demonstrated. Measured performance demonstrated vision vehicle performance levels for Mach 3 AAR operation and ramjet operation from Mach 3 to 4. SCRAM and rocket mode performance was above predictions. For the first time, testing also demonstrated transition between operating modes.
Experiment/Analytical Characterization of the RBCC Rocket-Ejector Mode
NASA Technical Reports Server (NTRS)
Ruf, J. H.; Lehman, M.; Pal, S.; Santoro, R. J.; West, J.; Turner, James E. (Technical Monitor)
2000-01-01
Experimental and complementary CFD results from the study of the rocket-ejector mode of a Rocket Based Combined Cycle (RBCC) engine are presented and discussed. The experiments involved systematic flowfield measurements in a two-dimensional, variable geometry rocket-ejector system. The rocket-ejector system utilizes a single two-dimensional, gaseous oxygen/gaseous hydrogen rocket as the ejector. To gain a thorough understanding of the rocket-ejector's internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static configurations for a range of rocket operating conditions. Overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust, whereas detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (oxygen, hydrogen, nitrogen and water vapor). The experimental results for both the direct-connect and sea-level static configurations are compared with CFD predictions of the flowfield.
Measuring System Value in the Ares 1 Rocket Using an Uncertainty-Based Coupling Analysis Approach
NASA Astrophysics Data System (ADS)
Wenger, Christopher
Coupling of physics in large-scale complex engineering systems must be correctly accounted for during the systems engineering process to ensure no unanticipated behaviors or unintended consequences arise in the system during operation. Structural vibration of large segmented solid rocket motors, known as thrust oscillation, is a well-documented problem that can affect the health and safety of any crew onboard. Within the Ares 1 rocket, larger than anticipated vibrations were recorded during late stage flight that propagated from the engine chamber to the Orion crew module. Upon investigation engineers found the root cause to be the structure of the rockets feedback onto fluid flow within the engine. The goal of this paper is to showcase a coupling strength analysis from the field of Multidisciplinary Design Optimization to identify the major impacts that caused the Thrust Oscillation event in the Ares 1. Once identified an uncertainty analysis of the coupled system using an uncertainty based optimization technique is used to identify the likelihood of occurrence for these strong or weak interactions to take place.
X-33 Combustion-Wave Ignition System Tested
NASA Technical Reports Server (NTRS)
Liou, Larry C.
1999-01-01
The NASA Lewis Research Center, in cooperation with Rocketdyne, the Boeing Company, tested a novel rocket engine ignition system, called the combustion-wave ignition system, in its Research Combustion Laboratory. This ignition system greatly simplifies ignition in rocket engines that have a large number of combustors. The particular system tested was designed and fabricated by Rocketdyne for the national experimental spacecraft, X-33, which uses Rocketdyne s aerospike rocket engines. The goal of the tests was to verify the system design and define its operational characteristics. Results will contribute to the eventual successful flight of X-33. Furthermore, the combustion-wave ignition system, after it is better understood and refined on the basis of the test results and, later, flight-proven onboard X-33, could become an important candidate engine ignition system for our Nation s next-generation reusable launch vehicle.
B-1 and B-3 Test Stands at NASA’s Plum Brook Station
1966-09-21
Operation of the High Energy Rocket Engine Research Facility (B-1), left, and Nuclear Rocket Dynamics and Control Facility (B-3) at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station in Sandusky, Ohio. The test stands were constructed in the early 1960s to test full-scale liquid hydrogen fuel systems in simulated altitude conditions. Over the next decade each stand was used for two major series of liquid hydrogen rocket tests: the Nuclear Engine for Rocket Vehicle Application (NERVA) and the Centaur second-stage rocket program. The different components of these rocket engines could be studied under flight conditions and adjusted without having to fire the engine. Once the preliminary studies were complete, the entire engine could be fired in larger facilities. The test stands were vertical towers with cryogenic fuel and steam ejector systems. B-1 was 135 feet tall, and B-3 was 210 feet tall. Each test stand had several levels, a test section, and ground floor shop areas. The test stands relied on an array of support buildings to conduct their tests, including a control building, steam exhaust system, and fuel storage and pumping facilities. A large steam-powered altitude exhaust system reduced the pressure at the exhaust nozzle exit of each test stand. This allowed B-1 and B-3 to test turbopump performance in conditions that matched the altitudes of space.
Test Stand at the Rocket Engine Test Facility
1973-02-21
The thrust stand in the Rocket Engine Test Facility at the National Aeronautics and Space Administration (NASA) Lewis Research Center in Cleveland, Ohio. The Rocket Engine Test Facility was constructed in the mid-1950s to expand upon the smaller test cells built a decade before at the Rocket Laboratory. The $2.5-million Rocket Engine Test Facility could test larger hydrogen-fluorine and hydrogen-oxygen rocket thrust chambers with thrust levels up to 20,000 pounds. Test Stand A, seen in this photograph, was designed to fire vertically mounted rocket engines downward. The exhaust passed through an exhaust gas scrubber and muffler before being vented into the atmosphere. Lewis researchers in the early 1970s used the Rocket Engine Test Facility to perform basic research that could be utilized by designers of the Space Shuttle Main Engines. A new electronic ignition system and timer were installed at the facility for these tests. Lewis researchers demonstrated the benefits of ceramic thermal coatings for the engine’s thrust chamber and determined the optimal composite material for the coatings. They compared the thermal-coated thrust chamber to traditional unlined high-temperature thrust chambers. There were more than 17,000 different configurations tested on this stand between 1973 and 1976. The Rocket Engine Test Facility was later designated a National Historic Landmark for its role in the development of liquid hydrogen as a propellant.
Easier Analysis With Rocket Science
NASA Technical Reports Server (NTRS)
2003-01-01
Analyzing rocket engines is one of Marshall Space Flight Center's specialties. When Marshall engineers lacked a software program flexible enough to meet their needs for analyzing rocket engine fluid flow, they overcame the challenge by inventing the Generalized Fluid System Simulation Program (GFSSP), which was named the co-winner of the NASA Software of the Year award in 2001. This paper describes the GFSSP in a wide variety of applications
Technicians Manufacture a Nozzle for the Kiwi B-1-B Engine
1964-05-21
Technicians manufacture a nozzle for the Kiwi B-1-B nuclear rocket engine in the Fabrication Shop’s vacuum oven at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Nuclear Engine for Rocket Vehicle Applications (NERVA) was a joint NASA and Atomic Energy Commission (AEC) endeavor to develop a nuclear-powered rocket for both long-range missions to Mars and as a possible upper-stage for the Apollo Program. The early portion of the program consisted of basic reactor and fuel system research. This was followed by a series of Kiwi reactors built to test basic nuclear rocket principles in a non-flying nuclear engine. The next phase, NERVA, would create an entire flyable engine. The final phase of the program, called Reactor-In-Flight-Test, would be an actual launch test. The AEC was responsible for designing the nuclear reactor and overall engine. NASA Lewis was responsible for developing the liquid-hydrogen fuel system. The turbopump, which pumped the fuels from the storage tanks to the engine, was the primary tool for restarting the engine. The NERVA had to be able to restart in space on its own using a safe preprogrammed startup system. Lewis researchers endeavored to design and test this system. This non-nuclear Kiwi engine, seen here, was being prepared for tests at Lewis’ High Energy Rocket Engine Research Facility (B-1) located at Plum Brook Station. The tests were designed to start an unfueled Kiwi B-1-B reactor and its Aerojet Mark IX turbopump without any external power.
Progress toward an advanced condition monitoring system for reusable rocket engines
NASA Technical Reports Server (NTRS)
Maram, J.; Barkhoudarian, S.
1987-01-01
A new generation of advanced sensor technologies will allow the direct measurement of critical/degradable rocket engine components' health and the detection of degraded conditions before component deterioration affects engine performance, leading to substantial improvements in reusable engines' operation and maintenance. When combined with a computer-based engine condition-monitoring system, these sensors can furnish a continuously updated data base for the prediction of engine availability and advanced warning of emergent maintenance requirements. Attention is given to the case of a practical turbopump and combustion device diagnostic/prognostic health-monitoring system.
An intelligent control system for rocket engines - Need, vision, and issues
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.; Merrill, Walter C.
1991-01-01
Several components of intelligence are defined. Within the context of these definitions an intelligent control system for rocket engines is described. The description includes a framework for development of an intelligent control system, including diagnostics, coordination, and direct control. Some current results and issues are presented.
An RL10A-3-3A rocket engine model using the rocket engine transient simulator (ROCETS) software
NASA Technical Reports Server (NTRS)
Binder, Michael
1993-01-01
Steady-state and transient computer models of the RL10A-3-3A rocket engine have been created using the Rocket Engine Transient Simulation (ROCETS) code. These models were created for several purposes. The RL10 engine is a critical component of past, present, and future space missions; the model will give NASA an in-house capability to simulate the performance of the engine under various operating conditions and mission profiles. The RL10 simulation activity is also an opportunity to further validate the ROCETS program. The ROCETS code is an important tool for modeling rocket engine systems at NASA Lewis. ROCETS provides a modular and general framework for simulating the steady-state and transient behavior of any desired propulsion system. Although the ROCETS code is being used in a number of different analysis and design projects within NASA, it has not been extensively validated for any system using actual test data. The RL10A-3-3A has a ten year history of test and flight applications; it should provide sufficient data to validate the ROCETS program capability. The ROCETS models of the RL10 system were created using design information provided by Pratt & Whitney, the engine manufacturer. These models are in the process of being validated using test-stand and flight data. This paper includes a brief description of the models and comparison of preliminary simulation output against flight and test-stand data.
Effect of Swirl on an Unstable Single-Element Gas-Gas Rocket Engine
2014-06-01
at 300 K, and the combustor is filled with a mixture of water and carbon dioxide at 1500 K. The warmer temperature in the combustor enables the auto...a variety of configurations including gas turbines and rocket engines.4–13 The single-element engine chosen for this study is the continuously...combustion systems including gas turbines , rocket engines, and industrial furnaces. Swirl can have dramatic effects on the flowfield; these include jet growth
2016-07-31
fueled liquid rocket engine, enthalpy is removed from the combustion chamber by a regenerative cooling system comprising a series of passages through... rocket engine, enthalpy is removed from the combustion chamber by a regenerative cooling system comprising a series of passages through which fuel flows...the unprecedented correlation of comprehensive two-dimensional gas chromatographic (GC×GC) rocket fuel data with physical and thermochemical
NASA Technical Reports Server (NTRS)
Santoro, Robert J.; Pal, Sibtosh
2003-01-01
This addendum report documents the results of two additional efforts for the Rocket Based Combined Cycle (RBCC) rocket-ejector mode research work carried out at the Penn State Propulsion Engineering Research Center in support of NASA s technology development efforts for enabling 3 d generation Reusable Launch Vehicles (RLV). The tasks reported here build on an earlier NASA MSFC funded research program on rocket ejector investigations. The first task investigated the improvements of a gaseous hydrogen/oxygen twin thruster RBCC rocket ejector system over a single rocket system. The second task investigated the performance of a hydrocarbon (liquid JP-7)/gaseous oxygen single thruster rocket-ejector system. To gain a systematic understanding of the rocket-ejector s internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static diffusion and afterburning (DAB) configurations for a range of rocket operating conditions. For all experimental conditions, overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust. Detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (gaseous oxygen, hydrogen, nitrogen and water vapor) for the gaseous hydrogen/oxygen rocket ejector experiments.
A minimum cost tolerance allocation method for rocket engines and robust rocket engine design
NASA Technical Reports Server (NTRS)
Gerth, Richard J.
1993-01-01
Rocket engine design follows three phases: systems design, parameter design, and tolerance design. Systems design and parameter design are most effectively conducted in a concurrent engineering (CE) environment that utilize methods such as Quality Function Deployment and Taguchi methods. However, tolerance allocation remains an art driven by experience, handbooks, and rules of thumb. It was desirable to develop and optimization approach to tolerancing. The case study engine was the STME gas generator cycle. The design of the major components had been completed and the functional relationship between the component tolerances and system performance had been computed using the Generic Power Balance model. The system performance nominals (thrust, MR, and Isp) and tolerances were already specified, as were an initial set of component tolerances. However, the question was whether there existed an optimal combination of tolerances that would result in the minimum cost without any degradation in system performance.
A study on various methods of supplying propellant to an orbit insertion rocket engine
NASA Technical Reports Server (NTRS)
Boretz, J. E.; Huniu, S.; Thompson, M.; Pagani, M.; Paulsen, B.; Lewis, J.; Paul, D.
1980-01-01
Various types of pumps and pump drives were evaluated to determine the lightest weight system for supplying propellants to a planetary orbit insertion rocket engine. From these analyses four candidate propellant feed systems were identified. Systems Nos. 1 and 2 were both battery powered (lithium-thionyl-chloride or silver-zinc) motor driven pumps. System 3 was a monopropellant gas generator powered turbopump. System 4 was a bipropellant gas generator powered turbopump. Parameters considered were pump break horsepower, weight, reliability, transient response and system stability. Figures of merit were established and the ranking of the candidate systems was determined. Conceptual designs were prepared for typical motor driven pumps and turbopump configurations for a 1000 lbf thrust rocket engine.
Cryostatless high temperature supercurrent bearings for rocket engine turbopumps
NASA Technical Reports Server (NTRS)
Rao, Dantam K.; Dill, James F.
1989-01-01
The rocket engine systems examined include SSME, ALS, and CTV systems. The liquid hydrogen turbopumps in the SSME and ALS vehicle systems are identified as potentially attractive candidates for development of Supercurrent Bearings since the temperatures around the bearings is about 30 K, which is considerably lower than the 95 K transition temperatures of HTS materials. At these temperatures, the current HTS materials are shown to be capable of developing significantly higher current densities. This higher current density capability makes the development of supercurrent bearings for rocket engines an attractive proposition. These supercurrent bearings are also shown to offer significant advantages over conventional bearings used in rocket engines. They can increase the life and reliability over rolling element bearings because of noncontact operation. They offer lower power loss over conventional fluid film bearings. Compared to conventional magnetic bearings, they can reduce the weight of controllers significantly, and require lower power because of the use of persistent currents. In addition, four technology areas that require further attention have been identified. These are: Supercurrent Bearing Conceptual Design Verification; HTS Magnet Fabrication and Testing; Cryosensors and Controller Development; and Rocket Engine Environmental Compatibility Testing.
Analytical concepts for health management systems of liquid rocket engines
NASA Technical Reports Server (NTRS)
Williams, Richard; Tulpule, Sharayu; Hawman, Michael
1990-01-01
Substantial improvement in health management systems performance can be realized by implementing advanced analytical methods of processing existing liquid rocket engine sensor data. In this paper, such techniques ranging from time series analysis to multisensor pattern recognition to expert systems to fault isolation models are examined and contrasted. The performance of several of these methods is evaluated using data from test firings of the Space Shuttle main engines.
DataRocket: Interactive Visualisation of Data Structures
NASA Astrophysics Data System (ADS)
Parkes, Steve; Ramsay, Craig
2010-08-01
CodeRocket is a software engineering tool that provides cognitive support to the software engineer for reasoning about a method or procedure and for documenting the resulting code [1]. DataRocket is a software engineering tool designed to support visualisation and reasoning about program data structures. DataRocket is part of the CodeRocket family of software tools developed by Rapid Quality Systems [2] a spin-out company from the Space Technology Centre at the University of Dundee. CodeRocket and DataRocket integrate seamlessly with existing architectural design and coding tools and provide extensive documentation with little or no effort on behalf of the software engineer. Comprehensive, abstract, detailed design documentation is available early on in a project so that it can be used for design reviews with project managers and non expert stakeholders. Code and documentation remain fully synchronised even when changes are implemented in the code without reference to the existing documentation. At the end of a project the press of a button suffices to produce the detailed design document. Existing legacy code can be easily imported into CodeRocket and DataRocket to reverse engineer detailed design documentation making legacy code more manageable and adding substantially to its value. This paper introduces CodeRocket. It then explains the rationale for DataRocket and describes the key features of this new tool. Finally the major benefits of DataRocket for different stakeholders are considered.
Liquid-propellant rocket engines health-monitoring—a survey
NASA Astrophysics Data System (ADS)
Wu, Jianjun
2005-02-01
This paper is intended to give a summary on the health-monitoring technology, which is one of the key technologies both for improving and enhancing the reliability and safety of current rocket engines and for developing new-generation high reliable reusable rocket engines. The implication of health-monitoring and the fundamental principle obeyed by the fault detection and diagnostics are elucidated. The main aspects of health-monitoring such as system frameworks, failure modes analysis, algorithms of fault detection and diagnosis, control means and advanced sensor techniques are illustrated in some detail. At last, the evolution trend of health-monitoring techniques of liquid-propellant rocket engines is set out.
A Historical Systems Study of Liquid Rocket Engine Throttling Capabilities
NASA Technical Reports Server (NTRS)
Betts, Erin M.; Frederick, Robert A., Jr.
2010-01-01
This is a comprehensive systems study to examine and evaluate throttling capabilities of liquid rocket engines. The focus of this study is on engine components, and how the interactions of these components are considered for throttling applications. First, an assessment of space mission requirements is performed to determine what applications require engine throttling. A background on liquid rocket engine throttling is provided, along with the basic equations that are used to predict performance. Three engines are discussed that have successfully demonstrated throttling. Next, the engine system is broken down into components to discuss special considerations that need to be made for engine throttling. This study focuses on liquid rocket engines that have demonstrated operational capability on American space launch vehicles, starting with the Apollo vehicle engines and ending with current technology demonstrations. Both deep throttling and shallow throttling engines are discussed. Boost and sustainer engines have demonstrated throttling from 17% to 100% thrust, while upper stage and lunar lander engines have demonstrated throttling in excess of 10% to 100% thrust. The key difficulty in throttling liquid rocket engines is maintaining an adequate pressure drop across the injector, which is necessary to provide propellant atomization and mixing. For the combustion chamber, cooling can be an issue at low thrust levels. For turbomachinery, the primary considerations are to avoid cavitation, stall, surge, and to consider bearing leakage flows, rotordynamics, and structural dynamics. For valves, it is necessary to design valves and actuators that can achieve accurate flow control at all thrust levels. It is also important to assess the amount of nozzle flow separation that can be tolerated at low thrust levels for ground testing.
Use of Soft Computing Technologies For Rocket Engine Control
NASA Technical Reports Server (NTRS)
Trevino, Luis C.; Olcmen, Semih; Polites, Michael
2003-01-01
The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to further improve overall engine system reliability and performance. Specifically, this will be presented by enhancing rocket engine control and engine health management (EHM) using SCT coupled with conventional control technologies, and sound software engineering practices used in Marshall s Flight Software Group. The principle goals are to improve software management, software development time and maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control and EHM methodologies, but to provide alternative design choices for control, EHM, implementation, performance, and sustaining engineering. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion, software engineering for embedded systems, and soft computing technologies (i.e., neural networks, fuzzy logic, and Bayesian belief networks), much of which is presented in this paper. The first targeted demonstration rocket engine platform is the MC-1 (formerly FASTRAC Engine) which is simulated with hardware and software in the Marshall Avionics & Software Testbed laboratory that
2017-02-22
Rainbows and rocket engines – doesn’t get much better than that! Check out these gorgeous aerial views from today’s Space Launch System RS-25 engine test @NASA’s Stennis Space Center. PAO Name:Kim Henry Phone Number:256-544-1899 Email Address: kimberly.m.henry@nasa.gov
Engineers demonstrate the pocket rocket
NASA Technical Reports Server (NTRS)
1996-01-01
Part of Stennis Space Center's mission with its traveling exhibits is to educate the younger generation on how propulsion systems work. A popular tool is the 'pocket rocket,' which demonstrates how a hybrid rocket works. A hybrid rocket is a cross breed between a solid fuel rocket and a liquid fuel rocket.
Concepts for the design of an antimatter annihilation rocket
NASA Technical Reports Server (NTRS)
Morgan, D. L., Jr.
1982-01-01
Matter-antimatter annihilation is considered for spacecraft propulsion. Annihilation produces considerably more energy per unit mass of propellant than any other known means of energy production. An antimatter annihilation rocket requires several systems and components that are unique to its nature. Among these are an antimatter storage system, a means to extract the antimatter from storage, a system to transport the antimatter to the rocket engine, and the engine wherein annihilation occurs and thrust is produced. Design concepts of these systems and components are presented and discussed.
NASA Marches on with Test of RS-25 Engine for New Space Launch System
2016-07-29
NASA engineers conducted a successful developmental test of RS-25 rocket engine No. 0528 July 29, 2016, to collect critical performance data for the most powerful rocket in the world – the Space Launch System (SLS). The engine roared to life for a full 650-second test on the A-1 Test Stand at NASA’s Stennis Space Center, near Bay St. Louis, Mississippi, marking another step forward in development of the SLS, which will launch humans deeper into space than ever before, including on the journey to Mars. Four RS-25 engines, joined with a pair of solid rocket boosters, will power the SLS core stage at launch. The RS-25 engines used on the first four SLS flights are former space shuttle main engines, modified to operate at a higher performance level and with a new engine controller, which allows communication between the vehicle and engine.
Rocket Engines Displayed for 1966 Inspection at Lewis Research Center
1966-10-21
An array of rocket engines displayed in the Propulsion Systems Laboratory for the 1966 Inspection held at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis engineers had been working on chemical, nuclear, and solid rocket engines throughout the 1960s. The engines on display are from left to right: two scale models of the Aerojet M-1, a Rocketdyne J-2, a Pratt and Whitney RL-10, and a Rocketdyne throttleable engine. Also on display are several ejector plates and nozzles. The Chemical Rocket Division resolved issues such as combustion instability and screech, and improved operation of cooling systems and turbopumps. The 1.5-million pound thrust M-1 engine was the largest hydrogen-fueled rocket engine ever created. It was a joint project between NASA Lewis and Aerojet-General. Although much larger in size, the M-1 used technology developed for the RL-10 and J-2. The M-1 program was cancelled in late 1965 due to budget cuts and the lack of a post-Apollo mission. The October 1966 Inspection was the culmination of almost a year of events held to mark the centers’ 25th anniversary. The three‐day Inspection, Lewis’ first since 1957, drew 2000 business, industry, and government executives and included an employee open house. The visitors witnessed presentations at the major facilities and viewed the Gemini VII spacecraft, a Centaur rocket, and other displays in the hangar. In addition, Lewis’ newest facility, the Zero Gravity Facility, was shown off for the first time.
The Strutjet Rocket Based Combined Cycle Engine
NASA Technical Reports Server (NTRS)
Siebenhaar, A.; Bulman, M. J.; Bonnar, D. K.
1998-01-01
The multi stage chemical rocket has been established over many years as the propulsion System for space transportation vehicles, while, at the same time, there is increasing concern about its continued affordability and rather involved reusability. Two broad approaches to addressing this overall launch cost problem consist in one, the further development of the rocket motor, and two, the use of airbreathing propulsion to the maximum extent possible as a complement to the limited use of a conventional rocket. In both cases, a single-stage-to-orbit (SSTO) vehicle is considered a desirable goal. However, neither the "all-rocket" nor the "all-airbreathing" approach seems realizable and workable in practice without appreciable advances in materials and manufacturing. An affordable system must be reusable with minimal refurbishing on-ground, and large mean time between overhauls, and thus with high margins in design. It has been suggested that one may use different engine cycles, some rocket and others airbreathing, in a combination over a flight trajectory, but this approach does not lead to a converged solution with thrust-to-mass, specific impulse, and other performance and operational characteristics that can be obtained in the different engines. The reason is this type of engine is simply a combination of different engines with no commonality of gas flowpath or components, and therefore tends to have the deficiencies of each of the combined engines. A further development in this approach is a truly combined cycle that incorporates a series of cycles for different modes of propulsion along a flight path with multiple use of a set of components and an essentially single gas flowpath through the engine. This integrated approach is based on realizing the benefits of both a rocket engine and airbreathing engine in various combinations by a systematic functional integration of components in an engine class usually referred to as a rocket-based combined cycle (RBCC) engine. RBCC engines exhibit a high potential for lowering the operating cost of launching payloads into orbit. Two sources of cost reductions can be identified. First, RBCC powered vehicles require only 20% takeoff thrust compared to conventional rockets, thereby lowering the thrust requirements and the replacement cost of the engines. Second, due to the higher structural and thermal margins achievable with RBCC engines coupled with a higher degree of subsystem redundance lower maintenance and operating cost are obtainable.
Fiber-reinforced ceramic composites for Earth-to-orbit rocket engine turbines
NASA Technical Reports Server (NTRS)
Brockmeyer, Jerry W.; Schnittgrund, Gary D.
1990-01-01
Fiber reinforced ceramic matrix composites (FRCMC) are emerging materials systems that offer potential for use in liquid rocket engines. Advantages of these materials in rocket engine turbomachinery include performance gain due to higher turbine inlet temperature, reduced launch costs, reduced maintenance with associated cost benefits, and reduced weight. This program was initiated to assess the state of FRCMC development and to propose a plan for their implementation into liquid rocket engine turbomachinery. A complete range of FRCMC materials was investigated relative to their development status and feasibility for use in the hot gas path of earth-to-orbit rocket engine turbomachinery. Of the candidate systems, carbon fiber-reinforced silicon carbide (C/SiC) offers the greatest near-term potential. Critical hot gas path components were identified, and the first stage inlet nozzle and turbine rotor of the fuel turbopump for the liquid oxygen/hydrogen Space Transportation Main Engine (STME) were selected for conceptual design and analysis. The critical issues associated with the use of FRCMC were identified. Turbine blades were designed, analyzed and fabricated. The Technology Development Plan, completed as Task 5 of this program, provides a course of action for resolution of these issues.
Andy Hardin with 3-D printed engine part
2015-06-22
ANDY HARDIN, A PROPULSION ENGINEER AT NASA'S MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALABAMA, SHOWS A 3-D PRINTED ROCKET PART MADE WITH A SELECTIVE LASER MELTING MACHINE. PARTS FOR THE SPACE LAUNCH SYSTEM'S RS-25 ROCKET ENGINE ARE BEING MADE WITH THE MACHINE IN THE BACKGROUND
Focused Rocket-Ejector RBCC Experiments
NASA Technical Reports Server (NTRS)
Santoro, Robert J.; Pal, Sibtosh
2003-01-01
This document reports the results of additional efforts for the Rocket Based Combined Cycle (RBCC) rocket-ejector mode research work carried out at the Perm State Propulsion Engineering Research Center in support of NASA s technology development efforts for enabling 3rd generation Reusable Launch Vehicles (RLV). The two tasks conducted under this program build on earlier NASA MSFC funded research program on rocket ejector investigations. The first task continued a systematic investigation of the improvements provided by a gaseous hydrogen (GHz)/oxygen (GO2) twin thruster RBCC rocket ejector system over a single rocket system. In a similar vein, the second task continued investigations into the performance of a hydrocarbon (liquid JP-7)/gaseous oxygen single thruster rocket-ejector system. To gain a systematic understanding of the rocket-ejector s internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static diffusion and afterburning (DAB) configurations for a range of rocket operating conditions. For all experimental conditions, overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust. For the GH2/GO2 propellant rocket ejector experiments, high frequency measurements of the pressure field within the system were also made to understand the unsteady behavior of the flowfield.
Stennis Space Center goes to Washington Folklife Festival
2008-07-03
Bryon Maynard (left), an aerospace technologist for Propulsion Systems & Tech in Stennis' Engineering and Science Directorate, uses a 'pocket rocket' to demonstrate the concept of rocket propulsion as part of NASA's exhibit at the Smithsonian Folklife Festival in Washington, D.C. Maynard is joined by Bradley Messer (right), chief of the Systems Engineering & Integration Division in Stennis' Engineering and Science Directorate, and a pair of exhibit visitors.
Stennis Space Center goes to Washington Folklife Festival
NASA Technical Reports Server (NTRS)
2008-01-01
Bryon Maynard (left), an aerospace technologist for Propulsion Systems & Tech in Stennis' Engineering and Science Directorate, uses a 'pocket rocket' to demonstrate the concept of rocket propulsion as part of NASA's exhibit at the Smithsonian Folklife Festival in Washington, D.C. Maynard is joined by Bradley Messer (right), chief of the Systems Engineering & Integration Division in Stennis' Engineering and Science Directorate, and a pair of exhibit visitors.
Upper-stage space shuttle propulsion by means of separate scramjet and rocket engines
NASA Technical Reports Server (NTRS)
Franciscus, L. C.; Allen, J. L.
1972-01-01
A preliminary mission study of a reusable vehicle from staging to orbit indicates payload advantages for a dual-propulsion system consisting of separate scramjet and rocket engines. In the analysis the scramjet operated continuously and the initiation of rocket operation was varied. For a stage weight of 500,000 lb the payload was 10.4 percent of stage weight or 70 percent greater than that of a comparable all-rocket-powered stage. When compared with a reusable two-state rocket vehicle having 50,000 lb payload, the use of the dual propulsion system for the second stage resulted in significant decreases in lift-off weight and empty weight, indicating possible lower hardware costs.
NASA Technical Reports Server (NTRS)
Farr, R. A.; Elam, S. K.; Hicks, G. D.; Sanders, T. M.; London, J. R.; Mayne, A. W.; Christensen, D. L.
2003-01-01
As a part of NASA s 2003 Centennial of Flight celebration, engineers and technicians at Marshall Space Flight Center (MSFC), Huntsville, Alabama, in cooperation with the Alabama-Mississippi AIAA Section, have reconstructed historically accurate, functional replicas of Dr. Robert H. Goddard s 1926 first liquid- fuel rocket. The purposes of this project were to clearly understand, recreate, and document the mechanisms and workings of the 1926 rocket for exhibit and educational use, creating a vital resource for researchers studying the evolution of liquid rocketry for years to come. The MSFC team s reverse engineering activity has created detailed engineering-quality drawings and specifications describing the original rocket and how it was built, tested, and operated. Static hot-fire tests, as well as flight demonstrations, have further defined and quantified the actual performance and engineering actual performance and engineering challenges of this major segment in early aerospace history.
Air-Breathing Rocket Engine Test
NASA Technical Reports Server (NTRS)
2000-01-01
This photograph depicts an air-breathing rocket engine that completed an hour or 3,600 seconds of testing at the General Applied Sciences Laboratory in Ronkonkoma, New York. Referred to as ARGO by its design team, the engine is named after the mythological Greek ship that bore Jason and the Argonauts on their epic voyage of discovery. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced SpaceTransportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.
NASA Astrophysics Data System (ADS)
Ridenoure, Rex
2004-09-01
Space-borne imaging systems derived from commercial technology have been successfully employed on launch vehicles for several years. Since 1997, over sixty such imagers - all in the product family called RocketCamTM - have operated successfully on 29 launches involving most U.S. launch systems. During this time, these inexpensive systems have demonstrated their utility in engineering analysis of liftoff and ascent events, booster performance, separation events and payload separation operations, and have also been employed to support and document related ground-based engineering tests. Such views from various vantage points provide not only visualization of key events but stunning and extremely positive public relations video content. Near-term applications include capturing key events on Earth-orbiting spacecraft and related proximity operations. This paper examines the history to date of RocketCams on expendable and manned launch vehicles, assesses their current utility on rockets, spacecraft and other aerospace vehicles (e.g., UAVs), and provides guidance for their use in selected defense and security applications. Broad use of RocketCams on defense and security projects will provide critical engineering data for developmental efforts, a large database of in-situ measurements onboard and around aerospace vehicles and platforms, compelling public relations content, and new diagnostic information for systems designers and failure-review panels alike.
Engine Data Interpretation System (EDIS)
NASA Technical Reports Server (NTRS)
Cost, Thomas L.; Hofmann, Martin O.
1990-01-01
A prototype of an expert system was developed which applies qualitative or model-based reasoning to the task of post-test analysis and diagnosis of data resulting from a rocket engine firing. A combined component-based and process theory approach is adopted as the basis for system modeling. Such an approach provides a framework for explaining both normal and deviant system behavior in terms of individual component functionality. The diagnosis function is applied to digitized sensor time-histories generated during engine firings. The generic system is applicable to any liquid rocket engine but was adapted specifically in this work to the Space Shuttle Main Engine (SSME). The system is applied to idealized data resulting from turbomachinery malfunction in the SSME.
Celebrating 50 Years of Testing
2016-04-19
What better way to mark 50 years of rocket engine testing than with a rocket engine test? Stennis Space Center employees enjoyed a chance to view an RS-68 engine test at the B-1 Test Stand on April 19, almost 50 years to the day that the first test was conducted at the south Mississippi site in 1966. The test viewing was part of a weeklong celebration of the 50th year of rocket engine testing at Stennis. The first test at the site occurred April 23, 1966, with a 15-second firing of a Saturn V second stage prototype (S-II-C) on the A-2 Test Stand. The center subsequently tested Apollo rocket stages that carried humans to the moon and every main engine used to power 135 space shuttle missions. It currently tests engines for NASA’s new Space Launch System vehicle.
NASA Technical Reports Server (NTRS)
Obrien, Charles J.
1993-01-01
Existing NASA research contracts are supporting development of advanced reinforced polymer and metal matrix composites for use in liquid rocket engines of the future. Advanced rocket propulsion concepts, such as modular platelet engines, dual-fuel dual-expander engines, and variable mixture ratio engines, require advanced materials and structures to reduce overall vehicle weight as well as address specific propulsion system problems related to elevated operating temperatures, new engine components, and unique operating processes. High performance propulsion systems with improved manufacturability and maintainability are needed for single stage to orbit vehicles and other high performance mission applications. One way to satisfy these needs is to develop a small engine which can be clustered in modules to provide required levels of total thrust. This approach should reduce development schedule and cost requirements by lowering hardware lead times and permitting the use of existing test facilities. Modular engines should also reduce operational costs associated with maintenance and parts inventories.
An Historical Perspective of the NERVA Nuclear Rocket Engine Technology Program
NASA Technical Reports Server (NTRS)
Robbins, W. H.; Finger, H. B.
1991-01-01
Nuclear rocket research and development was initiated in the United States in 1955 and is still being pursued to a limited extent. The major technology emphasis occurred in the decade of the 1960s and was primarily associated with the Rover/NERVA Program where the technology for a nuclear rocket engine system for space application was developed and demonstrated. The NERVA (Nuclear Engine for Rocket Vehicle Application) technology developed twenty years ago provides a comprehensive and viable propulsion technology base that can be applied and will prove to be valuable for application to the NASA Space Exploration Initiative (SEI). This paper, which is historical in scope, provides an overview of the conduct of the NERVA Engine Program, its organization and management, development philosophy, the engine configuration, and significant accomplishments.
NASA Technical Reports Server (NTRS)
Stanley, Thomas Troy; Alexander, Reginald
1999-01-01
Presented is a computer-based tool that connects several disciplines that are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system, as is the case of SSTO vehicles with air breathing propulsion, which is currently being studied by NASA. The deficiencies in the scramjet powered concept led to a revival of interest in Rocket-Based Combined-Cycle (RBCC) propulsion systems. An RBCC propulsion system integrates airbreathing and rocket propulsion into a single engine assembly enclosed within a cowl or duct. A typical RBCC propulsion system operates as a ducted rocket up to approximately Mach 3. At this point the transitions to a ramjet mode for supersonic-to-hypersonic acceleration. Around Mach 8 the engine transitions to a scram4jet mode. During the ramjet and scramjet modes, the integral rockets operate as fuel injectors. Around Mach 10-12 (the actual value depends on vehicle and mission requirements), the inlet is physically closed and the engine transitions to an integral rocket mode for orbit insertion. A common feature of RBCC propelled vehicles is the high degree of integration between the propulsion system and airframe. At high speeds the vehicle forebody is fundamentally part of the engine inlet, providing a compression surface for air flowing into the engine. The compressed air is mixed with fuel and burned. The combusted mixture must be expanded to an area larger than the incoming stream to provide thrust. Since a conventional nozzle would be too large, the entire lower after body of the vehicle is used as an expansion surface. Because of the high external temperatures seen during atmospheric flight, the design of an airbreathing SSTO vehicle requires delicate tradeoffs between engine design, vehicle shape, and thermal protection system (TPS) sizing in order to produce an optimum system in terms of weight (and cost) and maximum performance.
A Comparison of Propulsion Concepts for SSTO Reusable Launchers
NASA Astrophysics Data System (ADS)
Varvill, R.; Bond, A.
This paper discusses the relevant selection criteria for a single stage to orbit (SSTO) propulsion system and then reviews the characteristics of the typical engine types proposed for this role against these criteria. The engine types considered include Hydrogen/Oxygen (H2/O2) rockets, Scramjets, Turbojets, Turborockets and Liquid Air Cycle Engines. In the authors opinion none of the above engines are able to meet all the necessary criteria for an SSTO propulsion system simultaneously. However by selecting appropriate features from each it is possible to synthesise a new class of engines which are specifically optimised for the SSTO role. The resulting engines employ precooling of the airstream and a high internal pressure ratio to enable a relatively conventional high pressure rocket combustion chamber to be utilised in both airbreathing and rocket modes. This results in a significant mass saving with installation advantages which by careful design of the cycle thermodynamics enables the full potential of airbreathing to be realised. The SABRE engine which powers the SKYLON launch vehicle is an example of one of these so called `Precooled hybrid airbreathing rocket engines' and the concep- tual reasoning which leads to its main design parameters are described in the paper.
NASA Technical Reports Server (NTRS)
1989-01-01
Trade studies plans for a number of elements in the Liquid Rocket Booster (LRB) component of the Space Transportation System (STS) are given in viewgraph form. Some of the elements covered include: avionics/flight control; avionics architecture; thrust vector control studies; engine control electronics; liquid rocket propellants; propellant pressurization systems; recoverable spacecraft; cryogenic tanks; and spacecraft construction materials.
Engine Data Interpretation System (EDIS), phase 2
NASA Technical Reports Server (NTRS)
Cost, Thomas L.; Hofmann, Martin O.
1991-01-01
A prototype of an expert system was developed which applies qualitative constraint-based reasoning to the task of post-test analysis of data resulting from a rocket engine firing. Data anomalies are detected and corresponding faults are diagnosed. Engine behavior is reconstructed using measured data and knowledge about engine behavior. Knowledge about common faults guides but does not restrict the search for the best explanation in terms of hypothesized faults. The system contains domain knowledge about the behavior of common rocket engine components and was configured for use with the Space Shuttle Main Engine (SSME). A graphical user interface allows an expert user to intimately interact with the system during diagnosis. The system was applied to data taken during actual SSME tests where data anomalies were observed.
Rocket Ejector Studies for Application to RBCC Engines: An Integrated Experimental/CFD Approach
NASA Technical Reports Server (NTRS)
Pal, S.; Merkle, C. L.; Anderson, W. E.; Santoro, R. J.
1997-01-01
Recent interest in low cost, reliable access to space has generated increased interest in advanced technology approaches to space transportation systems. A key to the success of such programs lies in the development of advanced propulsion systems capable of achieving the performance and operations goals required for the next generation of space vehicles. One extremely promising approach involves the combination of rocket and air- breathing engines into a rocket-based combined-cycle engine (RBCC). A key element of that engine is the rocket ejector which is utilized in the zero to Mach two operating regime. Studies of RBCC engine concepts are not new and studies dating back thirty years are well documented in the literature. However, studies focused on the rocket ejector mode of the RBCC cycle are lacking. The present investigation utilizes an integrated experimental and computation fluid dynamics (CFD) approach to examine critical rocket ejector performance issues. In particular, the development of a predictive methodology capable of performance prediction is a key objective in order to analyze thermal choking and its control, primary/secondary pressure matching considerations, and effects of nozzle expansion ratio. To achieve this objective, the present study emphasizes obtaining new data using advanced optical diagnostics such as Raman spectroscopy and CFD techniques to investigate mixing in the rocket ejector mode. A new research facility for the study of the rocket ejector mode is described along with the diagnostic approaches to be used. The CFD modeling approach is also described along with preliminary CFD predictions obtained to date.
Parametric Study Conducted of Rocket- Based, Combined-Cycle Nozzles
NASA Technical Reports Server (NTRS)
Steffen, Christopher J., Jr.; Smith, Timothy D.
1998-01-01
Having reached the end of the 20th century, our society is quite familiar with the many benefits of recycling and reusing the products of civilization. The high-technology world of aerospace vehicle design is no exception. Because of the many potential economic benefits of reusable launch vehicles, NASA is aggressively pursuing this technology on several fronts. One of the most promising technologies receiving renewed attention is Rocket-Based, Combined-Cycle (RBCC) propulsion. This propulsion method combines many of the efficiencies of high-performance jet aircraft with the power and high-altitude capability of rocket engines. The goal of the present work at the NASA Lewis Research Center is to further understand the complex fluid physics within RBCC engines that govern system performance. This work is being performed in support of NASA's Advanced Reusable Technologies program. A robust RBCC engine design optimization demands further investigation of the subsystem performance of the engine's complex propulsion cycles. The RBCC propulsion system under consideration at Lewis is defined by four modes of operation in a singlestage- to-orbit configuration. In the first mode, the engine functions as a rocket-driven ejector. When the rocket engine is switched off, subsonic combustion (mode 2) is present in the ramjet mode. As the vehicle continues to accelerate, supersonic combustion (mode 3) occurs in the ramjet mode. Finally, as the edge of the atmosphere is approached and the engine inlet is closed off, the rocket is reignited and the final accent to orbit is undertaken in an all-rocket mode (mode 4). The performance of this fourth and final mode is the subject of this present study. Performance is being monitored in terms of the amount of thrust generated from a given amount of propellant.
NASA Astrophysics Data System (ADS)
Qing, Xinlin P.; Beard, Shawn J.; Kumar, Amrita; Sullivan, Kevin; Aguilar, Robert; Merchant, Munir; Taniguchi, Mike
2008-10-01
A series of tests have been conducted to determine the survivability and functionality of a piezoelectric-sensor-based active structural health monitoring (SHM) SMART Tape system under the operating conditions of typical liquid rocket engines such as cryogenic temperature and vibration loads. The performance of different piezoelectric sensors and a low temperature adhesive under cryogenic temperature was first investigated. The active SHM system for liquid rocket engines was exposed to flight vibration and shock environments on a simulated large booster LOX-H2 engine propellant duct conditioned to cryogenic temperatures to evaluate the physical robustness of the built-in sensor network as well as operational survivability and functionality. Test results demonstrated that the developed SMART Tape system can withstand operational levels of vibration and shock energy on a representative rocket engine duct assembly, and is functional under the combined cryogenic temperature and vibration environment.
1998-10-07
This photograph depicts an air-breathing rocket engine prototype in the test bay at the General Applied Science Lab facility in Ronkonkoma, New York. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced Space Transportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.
Computational Fluid Dynamics Analysis Method Developed for Rocket-Based Combined Cycle Engine Inlet
NASA Technical Reports Server (NTRS)
1997-01-01
Renewed interest in hypersonic propulsion systems has led to research programs investigating combined cycle engines that are designed to operate efficiently across the flight regime. The Rocket-Based Combined Cycle Engine is a propulsion system under development at the NASA Lewis Research Center. This engine integrates a high specific impulse, low thrust-to-weight, airbreathing engine with a low-impulse, high thrust-to-weight rocket. From takeoff to Mach 2.5, the engine operates as an air-augmented rocket. At Mach 2.5, the engine becomes a dual-mode ramjet; and beyond Mach 8, the rocket is turned back on. One Rocket-Based Combined Cycle Engine variation known as the "Strut-Jet" concept is being investigated jointly by NASA Lewis, the U.S. Air Force, Gencorp Aerojet, General Applied Science Labs (GASL), and Lockheed Martin Corporation. Work thus far has included wind tunnel experiments and computational fluid dynamics (CFD) investigations with the NPARC code. The CFD method was initiated by modeling the geometry of the Strut-Jet with the GRIDGEN structured grid generator. Grids representing a subscale inlet model and the full-scale demonstrator geometry were constructed. These grids modeled one-half of the symmetric inlet flow path, including the precompression plate, diverter, center duct, side duct, and combustor. After the grid generation, full Navier-Stokes flow simulations were conducted with the NPARC Navier-Stokes code. The Chien low-Reynolds-number k-e turbulence model was employed to simulate the high-speed turbulent flow. Finally, the CFD solutions were postprocessed with a Fortran code. This code provided wall static pressure distributions, pitot pressure distributions, mass flow rates, and internal drag. These results were compared with experimental data from a subscale inlet test for code validation; then they were used to help evaluate the demonstrator engine net thrust.
Liquid rocket engine centrifugal flow turbopumps. [design criteria
NASA Technical Reports Server (NTRS)
1973-01-01
Design criteria and recommended practices are discussed for the following configurations selected from the design sequence of a liquid rocket engine centrifugal flow turbopump: (1) pump performance including speed, efficiency, and flow range; (2) impeller; (3) housing; and (4) thrust balance system. Hydrodynamic, structural, and mechanical problems are addressed for the achievement of required pump performance within the constraints imposed by the engine/turbopump system. Materials and fabrication specifications are also discussed.
Turbo Pump Fed Micro-Rocket Engine
NASA Astrophysics Data System (ADS)
Miotti, P.; Tajmar, M.; Seco, F.; Guraya, C.; Perennes, F.; Soldati, A.; Lang, M.
2004-10-01
Micro-satellites (from 10kg up to 100kg) have mass, volume, and electrical power constraints due to their low dimensions. These limitations lead to the lack in currently available active orbit control systems in micro-satellites. Therefore, a micro-propulsion system with a high thrust to mass ratio is required to increase the potential functionality of small satellites. Mechatronic is presently working on a liquid bipropellant micro-rocket engine under contract with ESA (Contract No.16914/NL/Sfe - Micro-turbo-machinery Based Bipropellant System Using MNT). The advances in Mechatronic's project are to realise a micro-rocket engine with propellants pressurised by micro-pumps. The energy for driving the pumps would be extracted from a micro-turbine. Cooling channels around the nozzle would be also used in order to maintain the wall material below its maximum operating temperature. A mass budget comparison with more traditional pressure-fed micro-rockets shows a real benefit from this system in terms of mass reduction. In the paper, an overview of the project status in Mechatronic is presented.
Smoke and fire Rocket-engine ablaze on This Week @NASA – August 14, 2015
2015-08-14
On Aug. 13, NASA conducted a test firing of the RS-25 rocket engine at Stennis Space Center. The 535 second test was the sixth in the current series of seven developmental tests of the former space shuttle main engine. Four RS-25 engines will power the core stage of the new Space Launch System (SLS) rocket, which will carry humans deeper into space than ever before, including to an asteroid and Mars. Also, Veggies in space, Russian spacewalk, Supply ship undocks from ISS, Smallest giant black hole, 10th anniversary of MRO launch and more!
Liquid rocket propulsion: Retrospective and prospects
NASA Astrophysics Data System (ADS)
Rosenberg, Sanders D.
1993-02-01
Rocket propulsion has made a fundamental contribution to change in the human condition during the second half of the 20th Century. This paper presents a survey of the basic elements of and future prospects for liquid rocket propulsion systems, with emphasis placed on their bipropellant engines, which have contributed profoundly to the successes of this 'aerospace century.' Many technologies had to reach maturity simultaneously to enable our current progress: materials, electronics, guidance and control, systems engineering, and propulsion, made major contributions. However, chemical propellants and the engine systems required to extract and control their propulsive power successfully are at the heart of all that humankind has accomplished through space flight and the use of space for the betterment of all. And it is a fascinating story to tell.
Large Liquid Rocket Testing: Strategies and Challenges
NASA Technical Reports Server (NTRS)
Rahman, Shamim A.; Hebert, Bartt J.
2005-01-01
Rocket propulsion development is enabled by rigorous ground testing in order to mitigate the propulsion systems risks that are inherent in space flight. This is true for virtually all propulsive devices of a space vehicle including liquid and solid rocket propulsion, chemical and non-chemical propulsion, boost stage and in-space propulsion and so forth. In particular, large liquid rocket propulsion development and testing over the past five decades of human and robotic space flight has involved a combination of component-level testing and engine-level testing to first demonstrate that the propulsion devices were designed to meet the specified requirements for the Earth to Orbit launchers that they powered. This was followed by a vigorous test campaign to demonstrate the designed propulsion articles over the required operational envelope, and over robust margins, such that a sufficiently reliable propulsion system is delivered prior to first flight. It is possible that hundreds of tests, and on the order of a hundred thousand test seconds, are needed to achieve a high-reliability, flight-ready, liquid rocket engine system. This paper overviews aspects of earlier and recent experience of liquid rocket propulsion testing at NASA Stennis Space Center, where full scale flight engines and flight stages, as well as a significant amount of development testing has taken place in the past decade. The liquid rocket testing experience discussed includes testing of engine components (gas generators, preburners, thrust chambers, pumps, powerheads), as well as engine systems and complete stages. The number of tests, accumulated test seconds, and years of test stand occupancy needed to meet varying test objectives, will be selectively discussed and compared for the wide variety of ground test work that has been conducted at Stennis for subscale and full scale liquid rocket devices. Since rocket propulsion is a crucial long-lead element of any space system acquisition or development, the appropriate plan and strategy must be put in place at the outset of the development effort. A deferment of this test planning, or inattention to strategy, will compromise the ability of the development program to achieve its systems reliability requirements and/or its development milestones. It is important for the government leadership and support team, as well as the vehicle and propulsion development team, to give early consideration to this aspect of space propulsion and space transportation work.
Additive Manufacturing for Affordable Rocket Engines
NASA Technical Reports Server (NTRS)
West, Brian; Robertson, Elizabeth; Osborne, Robin; Calvert, Marty
2016-01-01
Additive manufacturing (also known as 3D printing) technology has the potential to drastically reduce costs and lead times associated with the development of complex liquid rocket engine systems. NASA is using 3D printing to manufacture rocket engine components including augmented spark igniters, injectors, turbopumps, and valves. NASA is advancing the process to certify these components for flight. Success Story: MSFC has been developing rocket 3D-printing technology using the Selective Laser Melting (SLM) process. Over the last several years, NASA has built and tested several injectors and combustion chambers. Recently, MSFC has 3D printed an augmented spark igniter for potential use the RS-25 engines that will be used on the Space Launch System. The new design is expected to reduce the cost of the igniter by a factor of four. MSFC has also 3D printed and tested a liquid hydrogen turbopump for potential use on an Upper Stage Engine. Additive manufacturing of the turbopump resulted in a 45% part count reduction. To understanding how the 3D printed parts perform and to certify them for flight, MSFC built a breadboard liquid rocket engine using additive manufactured components including injectors, turbomachinery, and valves. The liquid rocket engine was tested seven times in 2016 using liquid oxygen and liquid hydrogen. In addition to exposing the hardware to harsh environments, engineers learned to design for the new manufacturing technique, taking advantage of its capabilities and gaining awareness of its limitations. Benefit: The 3D-printing technology promises reduced cost and schedule for rocket engines. Cost is a function of complexity, and the most complicated features provide the largest opportunities for cost reductions. This is especially true where brazes or welds can be eliminated. The drastic reduction in part count achievable with 3D printing creates a waterfall effect that reduces the number of processes and drawings, decreases the amount of touch labor required, and increases reliability. When certification is achieved, NASA missions will be able to realize these benefits.
Computer Design Technology of the Small Thrust Rocket Engines Using CAE / CAD Systems
NASA Astrophysics Data System (ADS)
Ryzhkov, V.; Lapshin, E.
2018-01-01
The paper presents an algorithm for designing liquid small thrust rocket engine, the process of which consists of five aggregated stages with feedback. Three stages of the algorithm provide engineering support for design, and two stages - the actual engine design. A distinctive feature of the proposed approach is a deep study of the main technical solutions at the stage of engineering analysis and interaction with the created knowledge (data) base, which accelerates the process and provides enhanced design quality. The using multifunctional graphic package Siemens NX allows to obtain the final product -rocket engine and a set of design documentation in a fairly short time; the engine design does not require a long experimental development.
Low-thrust chemical rocket engine study
NASA Technical Reports Server (NTRS)
Mellish, J. A.
1981-01-01
Engine data and information are presented to perform system studies on cargo orbit-transfer vehicles which would deliver large space structures to geosynchronous equatorial orbit. Low-thrust engine performance, weight, and envelope parametric data were established, preliminary design information was generated, and technologies for liquid rocket engines were identified. Two major engine design drivers were considered in the study: cooling and engine cycle options. Both film-cooled and regeneratively cooled engines were evaluated. The propellant combinations studied were hydrogen/oxygen, methane/oxygen, and kerosene/oxygen.
Theoretical Acoustic Absorber Design Approach for LOX/LCH4 Pintle Injector Rocket Engines
NASA Astrophysics Data System (ADS)
Candelaria, Jonathan
Liquid rocket engines, or LREs, have served a key role in space exploration efforts. One current effort involves the utilization of liquid oxygen (LOX) and liquid methane (LCH4) LREs to explore Mars with in-situ resource utilization for propellant production. This on-site production of propellant will allow for greater payload allocation instead of fuel to travel to the Mars surface, and refueling of propellants to travel back to Earth. More useable mass yields a greater benefit to cost ratio. The University of Texas at El Paso's (UTEP) Center for Space Exploration and Technology Research Center (cSETR) aims to further advance these methane propulsion systems with the development of two liquid methane - liquid oxygen propellant combination rocket engines. The design of rocket engines, specifically liquid rocket engines, is complex in that many variables are present that must be taken into consideration in the design. A problem that occurs in almost every rocket engine development program is combustion instability, or oscillatory combustion. It can result in the destruction of the rocket, subsequent destruction of the vehicle and compromise the mission. These combustion oscillations can vary in frequency from 100 to 20,000 Hz or more, with varying effects, and occur from different coupling phenomena. It is important to understand the effects of combustion instability, its physical manifestations, how to identify the instabilities, and how to mitigate or dampen them. Linear theory methods have been developed to provide a mathematical understanding of the low- to mid-range instabilities. Nonlinear theory is more complex and difficult to analyze mathematically, therefore no general analytical method that yields a solution exists. With limited resources, time, and the advice of our NASA mentors, a data driven experimental approach utilizing quarter wave acoustic dampener cavities was designed. This thesis outlines the methodology behind the design of an acoustic dampening system for a 500 lbf and a 2000 lbf throttleable liquid oxygen liquid methane pintle injector rocket engine.
Engine System Loads Analysis Compared to Hot-Fire Data
NASA Technical Reports Server (NTRS)
Frady, Gregory P.; Jennings, John M.; Mims, Katherine; Brunty, Joseph; Christensen, Eric R.; McConnaughey, Paul R. (Technical Monitor)
2002-01-01
Early implementation of structural dynamics finite element analyses for calculation of design loads is considered common design practice for high volume manufacturing industries such as automotive and aeronautical industries. However with the rarity of rocket engine development programs starts, these tools are relatively new to the design of rocket engines. In the NASA MC-1 engine program, the focus was to reduce the cost-to-weight ratio. The techniques for structural dynamics analysis practices, were tailored in this program to meet both production and structural design goals. Perturbation of rocket engine design parameters resulted in a number of MC-1 load cycles necessary to characterize the impact due to mass and stiffness changes. Evolution of loads and load extraction methodologies, parametric considerations and a discussion of load path sensitivities are important during the design and integration of a new engine system. During the final stages of development, it is important to verify the results of an engine system model to determine the validity of the results. During the final stages of the MC-1 program, hot-fire test results were obtained and compared to the structural design loads calculated by the engine system model. These comparisons are presented in this paper.
Study of solid rocket motor for space shuttle booster, Volume 3: Program acquisition planning
NASA Technical Reports Server (NTRS)
1972-01-01
The program planning acquisition functions for the development of the solid propellant rocket engine for the space shuttle booster is presented. The subjects discussed are: (1) program management, (2) contracts administration, (3) systems engineering, (4) configuration management, and (5) maintenance engineering. The plans for manufacturing, testing, and operations support are included.
Collaborative Sounding Rocket launch in Alaska and Development of Hybrid Rockets
NASA Astrophysics Data System (ADS)
Ono, Tomohisa; Tsutsumi, Akimasa; Ito, Toshiyuki; Kan, Yuji; Tohyama, Fumio; Nakashino, Kyouichi; Hawkins, Joseph
Tokai University student rocket project (TSRP) was established in 1995 for a purpose of the space science and engineering hands-on education, consisting of two space programs; the one is sounding rocket experiment collaboration with University of Alaska Fairbanks and the other is development and launch of small hybrid rockets. In January of 2000 and March 2002, two collaborative sounding rockets were successfully launched at Poker Flat Research Range in Alaska. In 2001, the first Tokai hybrid rocket was successfully launched at Alaska. After that, 11 hybrid rockets were launched to the level of 180-1,000 m high at Hokkaido and Akita in Japan. Currently, Tokai students design and build all parts of the rockets. In addition, they are running the organization and development of the project under the tight budget control. This program has proven to be very effective in providing students with practical, real-engineering design experience and this program also allows students to participate in all phases of a sounding rocket mission. Also students learn scientific, engineering subjects, public affairs and system management through experiences of cooperative teamwork. In this report, we summarize the TSRP's hybrid rocket program and discuss the effectiveness of the program in terms of educational aspects.
Software for Collaborative Engineering of Launch Rockets
NASA Technical Reports Server (NTRS)
Stanley, Thomas Troy
2003-01-01
The Rocket Evaluation and Cost Integration for Propulsion and Engineering software enables collaborative computing with automated exchange of information in the design and analysis of launch rockets and other complex systems. RECIPE can interact with and incorporate a variety of programs, including legacy codes, that model aspects of a system from the perspectives of different technological disciplines (e.g., aerodynamics, structures, propulsion, trajectory, aeroheating, controls, and operations) and that are used by different engineers on different computers running different operating systems. RECIPE consists mainly of (1) ISCRM a file-transfer subprogram that makes it possible for legacy codes executed in their original operating systems on their original computers to exchange data and (2) CONES an easy-to-use filewrapper subprogram that enables the integration of legacy codes. RECIPE provides a tightly integrated conceptual framework that emphasizes connectivity among the programs used by the collaborators, linking these programs in a manner that provides some configuration control while facilitating collaborative engineering tradeoff studies, including design to cost studies. In comparison with prior collaborative-engineering schemes, one based on the use of RECIPE enables fewer engineers to do more in less time.
NASA Conducts Final RS-25 Rocket Engine Test of 2017
2017-12-13
NASA engineers at Stennis Space Center capped a year of Space Launch System testing with a final RS-25 rocket engine hot fire on Dec. 13. The 470-second test on the A-1 Test Stand was a “green run” test of an RS-25 flight controller. The engine tested also included a large 3-D-printed part, a pogo accumulator assembly, scheduled for use on future RS-25 flight engines.
System Engineering and Technical Challenges Overcome in the J-2X Rocket Engine Development Project
NASA Technical Reports Server (NTRS)
Ballard, Richard O.
2012-01-01
Beginning in 2006, NASA initiated the J-2X engine development effort to develop an upper stage propulsion system to enable the achievement of the primary objectives of the Constellation program (CxP): provide continued access to the International Space Station following the retirement of the Space Station and return humans to the moon. The J-2X system requirements identified to accomplish this were very challenging and the time expended over the five years following the beginning of the J- 2X effort have been noteworthy in the development of innovations in both the fields for liquid rocket propulsion and system engineering.
Pulse Detonation Rocket Engine Research at NASA Marshall
NASA Technical Reports Server (NTRS)
Morris, Christopher I.
2003-01-01
Pulse detonation rocket engines (PDREs) offer potential performance improvements over conventional designs, but represent a challenging modeling task. A quasi 1-D, finite-rate chemistry CFD model for a PDRE is described and implemented. A parametric study of the effect of blowdown pressure ratio on the performance of an optimized, fixed PDRE nozzle configuration is reported. The results are compared to a steady-state rocket system using similar modeling assumptions.
NASA Technical Reports Server (NTRS)
Thorpe, Douglas G.
1991-01-01
An operation and schedule enhancement is shown that replaces the four-body cluster (Space Shuttle Orbiter (SSO), external tank, and two solid rocket boosters) with a simpler two-body cluster (SSO and liquid rocket booster/external tank). At staging velocity, the booster unit (liquid-fueled booster engines and vehicle support structure) is jettisoned while the remaining SSO and supertank continues on to orbit. The simpler two-bodied cluster reduces the processing and stack time until SSO mate from 57 days (for the solid rocket booster) to 20 days (for the liquid rocket booster). The areas in which liquid booster systems are superior to solid rocket boosters are discussed. Alternative and future generation vehicles are reviewed to reveal greater performance and operations enhancements with more modifications to the current methods of propulsion design philosophy, e.g., combined cycle engines, and concentric propellant tanks.
High-temperature, high-pressure optical port for rocket engine applications
NASA Technical Reports Server (NTRS)
Delcher, Ray; Nemeth, ED; Powers, W. T.
1993-01-01
This paper discusses the design, fabrication, and test of a window assembly for instrumentation of liquid-fueled rocket engine hot gas systems. The window was designed to allow optical measurements of hot gas in the SSME fuel preburner and appears to be the first window designed for application in a rocket engine hot gas system. Such a window could allow the use of a number of remote optical measurement technologies including: Raman temperature and species concentration measurement, Raleigh temperature measurements, flame emission monitoring, flow mapping, laser-induced florescence, and hardware imaging during engine operation. The window assembly has been successfully tested to 8,000 psi at 1000 F and over 11,000 psi at room temperature. A computer stress analysis shows the window will withstand high temperature and cryogenic thermal shock.
Centrifugal pumps for rocket engines
NASA Technical Reports Server (NTRS)
Campbell, W. E.; Farquhar, J.
1974-01-01
The use of centrifugal pumps for rocket engines is described in terms of general requirements of operational and planned systems. Hydrodynamic and mechanical design considerations and techniques and test procedures are summarized. Some of the pump development experiences, in terms of both problems and solutions, are highlighted.
Atomization characteristics of swirl injector sprays
NASA Technical Reports Server (NTRS)
Feikema, Douglas A.
1996-01-01
Stable combustion within rocket engines is a continuing concern for designers of rocket engine systems. The swirl-coaxial injector has demonstrated effectiveness in achieving atomization and mixing, and therefore stable combustion. Swirl-coaxial injector technology is being deployed in the American RL1OA rocket design and Russian engine systems already make wide spread use of this technology. The present requirement for swirl injector research is derived from NASA's current Reusable Launch Vehicle (RLV) technology program. This report describes some of the background and literature on this topic including drop size measurements, comparison with theoretical predictions, the effect of surface tension on the atomization process, and surface wave characteristics of liquid film at the exit of the injector.
2000-05-01
This photograph depicts an air-breathing rocket engine that completed an hour or 3,600 seconds of testing at the General Applied Sciences Laboratory in Ronkonkoma, New York. Referred to as ARGO by its design team, the engine is named after the mythological Greek ship that bore Jason and the Argonauts on their epic voyage of discovery. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced SpaceTransportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.
Rocket Engine Numerical Simulator (RENS)
NASA Technical Reports Server (NTRS)
Davidian, Kenneth O.
1997-01-01
Work is being done at three universities to help today's NASA engineers use the knowledge and experience of their Apolloera predecessors in designing liquid rocket engines. Ground-breaking work is being done in important subject areas to create a prototype of the most important functions for the Rocket Engine Numerical Simulator (RENS). The goal of RENS is to develop an interactive, realtime application that engineers can utilize for comprehensive preliminary propulsion system design functions. RENS will employ computer science and artificial intelligence research in knowledge acquisition, computer code parallelization and objectification, expert system architecture design, and object-oriented programming. In 1995, a 3year grant from the NASA Lewis Research Center was awarded to Dr. Douglas Moreman and Dr. John Dyer of Southern University at Baton Rouge, Louisiana, to begin acquiring knowledge in liquid rocket propulsion systems. Resources of the University of West Florida in Pensacola were enlisted to begin the process of enlisting knowledge from senior NASA engineers who are recognized experts in liquid rocket engine propulsion systems. Dr. John Coffey of the University of West Florida is utilizing his expertise in interviewing and concept mapping techniques to encode, classify, and integrate information obtained through personal interviews. The expertise extracted from the NASA engineers has been put into concept maps with supporting textual, audio, graphic, and video material. A fundamental concept map was delivered by the end of the first year of work and the development of maps containing increasing amounts of information is continuing. Find out more information about this work at the Southern University/University of West Florida. In 1996, the Southern University/University of West Florida team conducted a 4day group interview with a panel of five experts to discuss failures of the RL10 rocket engine in conjunction with the Centaur launch vehicle. The discussion was recorded on video and audio tape. Transcriptions of the entire proceedings and an abbreviated video presentation of the discussion highlights are under development. Also in 1996, two additional 3year grants were awarded to conduct parallel efforts that would complement the work being done by Southern University and the University of West Florida. Dr. Prem Bhalla of Jackson State University in Jackson, Mississippi, is developing the architectural framework for RENS. By employing the Rose Rational language and Booch Object Oriented Programming (OOP) technology, Dr. Bhalla is developing the basic structure of RENS by identifying and encoding propulsion system components, their individual characteristics, and cross-functionality and dependencies. Dr. Ruknet Cezzar of Hampton University, located in Hampton, Virginia, began working on the parallelization and objectification of rocket engine analysis and design codes. Dr. Cezzar will use the Turbo C++ OOP language to translate important liquid rocket engine computer codes from FORTRAN and permit their inclusion into the RENS framework being developed at Jackson State University. The Southern University/University of West Florida grant was extended by 1 year to coordinate the conclusion of all three efforts in 1999.
NASA Technical Reports Server (NTRS)
Escher, William J. D.
1999-01-01
A technohistorical and forward-planning overview of U.S. developments in combined airbreathing/rocket propulsion for advanced aerospace vehicle applications is presented. Such system approaches fall into one of two categories: (1) Combination propulsion systems (separate, non-interacting engines installed), and (2) Combined-Cycle systems. The latter, and main subject, comprises a large family of closely integrated engine types, made up of both airbreathing and rocket derived subsystem hardware. A single vehicle-integrated, multimode engine results, one capable of operating efficiently over a very wide speed and altitude range, atmospherically and in space. While numerous combination propulsion systems have reached operational flight service, combined-cycle propulsion development, initiated ca. 1960, remains at the subscale ground-test engine level of development. However, going beyond combination systems, combined-cycle propulsion potentially offers a compelling set of new and unique capabilities. These capabilities are seen as enabling ones for the evolution of Spaceliner class aerospace transportation systems. The following combined-cycle hypersonic engine developments are reviewed: (1) RENE (rocket engine nozzle ejector), (2) Cryojet and LACE, (3) Ejector Ramjet and its derivatives, (4) the seminal NASA NAS7-377 study, (5) Air Force/Marquardt Hypersonic Ramjet, (6) Air Force/Lockheed-Marquardt Incremental Scramjet flight-test project, (7) NASA/Garrett Hypersonic Research Engine (HRE), (8) National Aero-Space Plane (NASP), (9) all past projects; and such current and planned efforts as (10) the NASA ASTP-ART RBCC project, (11) joint CIAM/NASA DNSCRAM flight test,(12) Hyper-X, (13) Trailblazer,( 14) W-Vehicle and (15) Spaceliner 100. Forward planning programmatic incentives, and the estimated timing for an operational Spaceliner powered by combined-cycle engines are discussed.
JANNAF "Test and Evaluation Guidelines for Liquid Rocket Engines": Status and Application
NASA Technical Reports Server (NTRS)
Parkinson, Douglas; VanLerberghe, Wayne M.; Rahman, Shamim A.
2017-01-01
For many decades, the U.S. rocket propulsion industrial base has performed remarkably in developing complex liquid rocket engines that can propel critical payloads into service for the nation, as well as transport people and hardware for missions that open the frontiers of space exploration for humanity. This has been possible only at considerable expense given the lack of detailed guidance that captures the essence of successful practices and knowledge accumulated over five decades of liquid rocket engine development. In an effort to provide benchmarks and guidance for the next generation of rocket engineers, the Joint Army Navy NASA Air Force (JANNAF) Interagency Propulsion Committee published a liquid rocket engine (LRE) test and evaluation (T&E) guideline document in 2012 focusing on the development challenges and test verification considerations for liquid rocket engine systems. This document has been well received and applied by many current LRE developers as a benchmark and guidance tool, both for government-driven applications as well as for fully commercial ventures. The USAF Space and Missile Systems Center (SMC) has taken an additional near-term step and is directing activity to adapt and augment the content from the JANNAF LRE T&E guideline into a standard for potential application to future USAF requests for proposals for LRE development initiatives and launch vehicles for national security missions. A draft of this standard was already sent out for review and comment, and is intended to be formally approved and released towards the end of 2017. The acceptance and use of the LRE T&E guideline is possible through broad government and industry participation in the JANNAF liquid propulsion committee and associated panels. The sponsoring JANNAF community is expanding upon this initial baseline version and delving into further critical development aspects of liquid rocket propulsion testing at the integrated stage level as well as engine component level, in order to advance the state of the practice. The full participation of the entire U.S. rocket propulsion industrial base is invited and expected at this opportune moment in the continuing advancement of spaceflight technology.
Multivariable optimization of liquid rocket engines using particle swarm algorithms
NASA Astrophysics Data System (ADS)
Jones, Daniel Ray
Liquid rocket engines are highly reliable, controllable, and efficient compared to other conventional forms of rocket propulsion. As such, they have seen wide use in the space industry and have become the standard propulsion system for launch vehicles, orbit insertion, and orbital maneuvering. Though these systems are well understood, historical optimization techniques are often inadequate due to the highly non-linear nature of the engine performance problem. In this thesis, a Particle Swarm Optimization (PSO) variant was applied to maximize the specific impulse of a finite-area combustion chamber (FAC) equilibrium flow rocket performance model by controlling the engine's oxidizer-to-fuel ratio and de Laval nozzle expansion and contraction ratios. In addition to the PSO-controlled parameters, engine performance was calculated based on propellant chemistry, combustion chamber pressure, and ambient pressure, which are provided as inputs to the program. The performance code was validated by comparison with NASA's Chemical Equilibrium with Applications (CEA) and the commercially available Rocket Propulsion Analysis (RPA) tool. Similarly, the PSO algorithm was validated by comparison with brute-force optimization, which calculates all possible solutions and subsequently determines which is the optimum. Particle Swarm Optimization was shown to be an effective optimizer capable of quick and reliable convergence for complex functions of multiple non-linear variables.
NASA Technical Reports Server (NTRS)
Sovie, Amy L.
1992-01-01
A demonstration of the ability of an existing optical fiber cable to survive the harsh environment of a rocket engine was performed at the NASA Lewis Research Center. The intent of this demonstration was to prove the feasibility of applying fiber optic technology to rocket engine instrumentation systems. Extreme thermal transient tests were achieved by wrapping a high temperature optical fiber, which was cablized for mechanical robustness, around the combustion chamber outside wall of a 1500 lb Hydrogen-Oxygen rocket engine. Additionally, the fiber was wrapped around coolant inlet pipes which were subject to near liquid hydrogen temperatures. Light from an LED was sent through the multimode fiber, and output power was monitored as a function of time while the engine was fired. The fiber showed no mechanical damage after 419 firings during which it was subject to transients from 30 K to 350 K, and total exposure time to near liquid hydrogen temperatures in excess of 990 seconds. These extreme temperatures did cause attenuation greater than 3 dB, but the signal was fully recovered at room temperature. This experiment demonstrates that commercially available optical fiber cables can survive the environment seen by a typical rocket engine instrumentation system, and disclose a temperature-dependent attenuation observed during exposure to near liquid hydrogen temperatures.
Testing a new engine controller system for the RS-25
2017-07-25
Engineers conduct the third in a series of RS-25 flight controller tests on July 25, 2017, for NASA’s Space Launch System (SLS) rocket. The more than 8 1/2 minute test on the A-1 Test Stand at NASA’s Stennis Space Center in Mississippi signaled another step toward launch of NASA’s new Space Launch System (SLS). The SLS rocket, powered by four RS-25 engines, along with the Orion spacecraft will take astronauts on a new era of exploration beyond Earth’s orbit into deep space.
Video File - NASA Conducts Final RS-25 Rocket Engine Test of 2017
2017-12-13
NASA engineers at Stennis Space Center capped a year of Space Launch System testing with a final RS-25 rocket engine hot fire on Dec. 13. The 470-second test on the A-1 Test Stand was a “green run” test of an RS-25 flight controller. The engine tested also included a large 3-D-printed part, a pogo accumulator assembly, scheduled for use on future RS-25 flight engines.
Daniel Sokolowski in the Rocket Operations Building
1966-06-21
Dan Sokolowski worked as an engineering coop student at the National Aeronautics and Space Administration (NASA) Lewis Research Center from 1962 to 1966 while earning his Mechanical Engineering degree from Purdue. At the time of this photograph Sokolowski had just been hired as a permanent NASA employee in the Chemical Rocket Evaluation Branch of the Chemical Rocket Division. He had also just won a regional American Institute of Aeronautics and Astronautics competition for his paper on high and low-frequency combustion instability. The resolution of the low-frequency combustion instability, or chugging, in liquid hydrogen rocket systems was one of Lewis’ more significant feats of the early 1960s. In most rocket engine combustion chambers, the pressure, temperature, and flows are in constant flux. The engine is considered to be operating normally if the fluctuations remain random and within certain limits. Lewis researchers used high-speed photography to study and define Pratt and Whitney’s RL-10’s combustion instability by throttling the engine under the simulated flight conditions. They found that the injection of a small stream of helium gas into the liquid-oxygen tank immediately stabilized the system. Sokolowski’s later work focused on combustion in airbreathing engines. In 1983 was named Manager of a multidisciplinary program aimed at improving durability of combustor and turbine components. After 39 years Sokolowski retired from NASA in September 2002.
An expert system for spectroscopic analysis of rocket engine plumes
NASA Technical Reports Server (NTRS)
Reese, Greg; Valenti, Elizabeth; Alphonso, Keith; Holladay, Wendy
1991-01-01
The expert system described in this paper analyzes spectral emissions of rocket engine exhaust plumes and shows major promise for use in engine health diagnostics. Plume emission spectroscopy is an important tool for diagnosing engine anomalies, but it is time-consuming and requires highly skilled personnel. The expert system was created to alleviate such problems. The system accepts a spectral plot in the form of wavelength vs intensity pairs and finds the emission peaks in the spectrum, lists the elemental emitters present in the data and deduces the emitter that produced each peak. The system consists of a conventional language component and a commercially available inference engine that runs on an Apple Macintosh computer. The expert system has undergone limited preliminary testing. It detects elements well and significantly decreases analysis time.
Composite Material Application to Liquid Rocket Engines
NASA Technical Reports Server (NTRS)
Judd, D. C.
1982-01-01
The substitution of reinforced plastic composite (RPC) materials for metal was studied. The major objectives were to: (1) determine the extent to which composite materials can be beneficially used in liquid rocket engines; (2) identify additional technology requirements; and (3) determine those areas which have the greatest potential for return. Weight savings, fabrication costs, performance, life, and maintainability factors were considered. Two baseline designs, representative of Earth to orbit and orbit to orbit engine systems, were selected. Weight savings are found to be possible for selected components with the substitution of materials for metal. Various technology needs are identified before RPC material can be used in rocket engine applications.
Fiberoptic sensors for rocket engine applications
NASA Technical Reports Server (NTRS)
Ballard, R. O.
1992-01-01
A research effort was completed to summarize and evaluate the current level of technology in fiberoptic sensors for possible applications in integrated control and health monitoring (ICHM) systems in liquid propellant engines. The environment within a rocket engine is particuarly severe with very high temperatures and pressures present combined with extremely rapid fluid and gas flows, and high-velocity and high-intensity acoustc waves. Application of fiberoptic technology to rocket engine health monitoring is a logical evolutionary step in ICHM development and presents a significant challenge. In this extremely harsh environment, the additional flexibility of fiberoptic techniques to augment conventional sensor technologies offer abundant future potential.
NASA Technical Reports Server (NTRS)
Shen, Ji Y.; Sharpe, Lonnie, Jr.
1998-01-01
The research activity for this project is mainly to investigate the necessity and feasibility to develop a structural health monitoring system for rocket engines, and to carry out a research plan for further development of the system. More than one hundred technical papers have been searched and reviewed during the period. We concluded after this investigation that adding a new module in NASA's existing automated diagnostic system to monitor the healthy condition of rocket engine structures is a crucial task, and it's possible to develop such a system based upon the vibrational-based nondestructive damage assessment techniques. A number of such techniques have been introduced. Their advantages and disadvantages are also discussed. A global research plan has been figured out. As the first step of the overall research plan, a proposal for the next fiscal year has been submitted.
Comparison of Engine Cycle Codes for Rocket-Based Combined Cycle Engines
NASA Technical Reports Server (NTRS)
Waltrup, Paul J.; Auslender, Aaron H.; Bradford, John E.; Carreiro, Louis R.; Gettinger, Christopher; Komar, D. R.; McDonald, J.; Snyder, Christopher A.
2002-01-01
This paper summarizes the results from a one day workshop on Rocket-Based Combined Cycle (RBCC) Engine Cycle Codes held in Monterey CA in November of 2000 at the 2000 JANNAF JPM with the authors as primary participants. The objectives of the workshop were to discuss and compare the merits of existing Rocket-Based Combined Cycle (RBCC) engine cycle codes being used by government and industry to predict RBCC engine performance and interpret experimental results. These merits included physical and chemical modeling, accuracy and user friendliness. The ultimate purpose of the workshop was to identify the best codes for analyzing RBCC engines and to document any potential shortcomings, not to demonstrate the merits or deficiencies of any particular engine design. Five cases representative of the operating regimes of typical RBCC engines were used as the basis of these comparisons. These included Mach 0 sea level static and Mach 1.0 and Mach 2.5 Air-Augmented-Rocket (AAR), Mach 4 subsonic combustion ramjet or dual-mode scramjet, and Mach 8 scramjet operating modes. Specification of a generic RBCC engine geometry and concomitant component operating efficiencies, bypass ratios, fuel/oxidizer/air equivalence ratios and flight dynamic pressures were provided. The engine included an air inlet, isolator duct, axial rocket motor/injector, axial wall fuel injectors, diverging combustor, and exit nozzle. Gaseous hydrogen was used as the fuel with the rocket portion of the system using a gaseous H2/O2 propellant system to avoid cryogenic issues. The results of the workshop, even after post-workshop adjudication of differences, were surprising. They showed that the codes predicted essentially the same performance at the Mach 0 and I conditions, but progressively diverged from a common value (for example, for fuel specific impulse, Isp) as the flight Mach number increased, with the largest differences at Mach 8. The example cases and results are compared and discussed in this paper.
NASA Technical Reports Server (NTRS)
1981-01-01
The liquid rocket propulsion technology needs to support anticipated future space vehicles were examined including any special action needs to be taken to assure that an industrial base in substained. Propulsion system requirements of Earth-to-orbit vehicles, orbital transfer vehicles, and planetary missions were evaluated. Areas of the fundamental technology program undertaking these needs discussed include: pumps and pump drives; combustion heat transfer; nozzle aerodynamics; low gravity cryogenic fluid management; and component and system life reliability, and maintenance. The primary conclusion is that continued development of the shuttle main engine system to achieve design performance and life should be the highest priority in the rocket engine program.
NASA Technical Reports Server (NTRS)
Seiler, James; Brasfield, Fred; Cannon, Scott
2008-01-01
Ares is an integral part of NASA s Constellation architecture that will provide crew and cargo access to the International Space Station as well as low earth orbit support for lunar missions. Ares replaces the Space Shuttle in the post 2010 time frame. Ares I is an in-line, two-stage rocket topped by the Orion Crew Exploration Vehicle, its service module, and a launch abort system. The Ares I first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program's reusable solid rocket motor. The Ares second or upper stage is propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. This paper describes the advanced systems engineering and planning tools being utilized for the design, test, and qualification of the Ares I first stage element. Included are descriptions of the current first stage design, the milestone schedule requirements, and the marriage of systems engineering, detailed planning efforts, and roadmapping employed to achieve these goals.
Controls, health assessment, and conditional monitoring for large, reusable, liquid rocket engines
NASA Technical Reports Server (NTRS)
Cikanek, H. A., III
1986-01-01
Past and future progress in the performance of control systems for large, liquid rocket engines typified such as current state-of-the-art, the Shuttle Main Engine (SSME), is discussed. Details of the first decade of efforts, which culminates in the F-1 and J-2 Saturn engines control systems, are traced, noting problem modes and improvements which were implemented to realize the SSME. Future control system designs, to accommodate the requirements of operation of engines for a heavy lift launch vehicle, an orbital transfer vehicle and the aerospace plane, are summarized. Generic design upgrades needed include an expanded range of fault detection, maintenance as-needed instead of as-scheduled, reduced human involvement in engine operations, and increased control of internal engine states. Current NASA technology development programs aimed at meeting the future control system requirements are described.
NASA Researchers Examine a Pratt and Whitney RL-10 Rocket Engine
1962-04-21
Lead Test Engineer John Kobak (right) and a technician use an oscilloscope to test the installation of a Pratt and Whitney RL-10 engine in the Propulsion Systems Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. In 1955 the military asked Pratt and Whitney to develop hydrogen engines specifically for aircraft. The program was canceled in 1958, but Pratt and Whitney decided to use the experience to develop a liquid-hydrogen rocket engine, the RL-10. Two of the 15,000-pound-thrust RL-10 engines were used to power the new Centaur second-stage rocket. Centaur was designed to carry the Surveyor spacecraft on its mission to soft-land on the Moon. Pratt and Whitney ran into problems while testing the RL-10 at their facilities. NASA Headquarters assigned Lewis the responsibility for investigating the RL-10 problems because of the center’s long history of liquid-hydrogen development. Lewis’ Chemical Rocket Division began a series of tests to study the RL-10 at its Propulsion Systems Laboratory in March 1960. The facility contained two test chambers that could study powerful engines in simulated altitude conditions. The first series of RL-10 tests in early 1961 involved gimballing the engine as it fired. Lewis researchers were able to yaw and pitch the engine to simulate its behavior during a real flight.
Control techniques to improve Space Shuttle solid rocket booster separation
NASA Technical Reports Server (NTRS)
Tomlin, D. D.
1983-01-01
The present Space Shuttle's control system does not prevent the Orbiter's main engines from being in gimbal positions that are adverse to solid rocket booster separation. By eliminating the attitude error and attitude rate feedback just prior to solid rocket booster separation, the detrimental effects of the Orbiter's main engines can be reduced. In addition, if angular acceleration feedback is applied, the gimbal torques produced by the Orbiter's engines can reduce the detrimental effects of the aerodynamic torques. This paper develops these control techniques and compares the separation capability of the developed control systems. Currently with the worst case initial conditions and each Shuttle system dispersion aligned in the worst direction (which is more conservative than will be experienced in flight), the solid rocket booster has an interference with the Shuttle's external tank of 30 in. Elimination of the attitude error and attitude rate feedback reduces that interference to 19 in. Substitution of angular acceleration feedback reduces the interference to 6 in. The two latter interferences can be eliminated by atess conservative analysis techniques, that is, by using a root sum square of the system dispersions.
Thrust control system design of ducted rockets
NASA Astrophysics Data System (ADS)
Chang, Juntao; Li, Bin; Bao, Wen; Niu, Wenyu; Yu, Daren
2011-07-01
The investigation of the thrust control system is aroused by the need for propulsion system of ducted rockets. Firstly the dynamic mathematical models of gas flow regulating system, pneumatic servo system and ducted rocket engine were established and analyzed. Then, to conquer the discussed problems of thrust control, the idea of information fusion was proposed to construct a new feedback variable. With this fused feedback variable, the thrust control system was designed. According to the simulation results, the introduction of the new fused feedback variable is valid in eliminating the contradiction between rapid response and stability for the thrust control system of ducted rockets.
NASA Technical Reports Server (NTRS)
Fortini, Anthony; Hendrix, Charles D.; Huff, Vearl N.
1959-01-01
The performance for four altitudes (sea-level, 51,000, 65,000, and 70,000 ft) of a rocket engine having a nozzle area ratio of 48.39 and using JP-4 fuel and liquid oxygen as a propellant was evaluated experimentally by use of a 1000-pound-thrust engine operating at a chamber pressure of 600 pounds per square inch absolute. The altitude environment was obtained by a rocket-ejector system which utilized the rocket exhaust gases as the pumping fluid of the ejector. Also, an engine having a nozzle area ratio of 5.49 designed for sea level was tested at sea-level conditions. The following table lists values from faired experimental curves at an oxidant-fuel ratio of 2.3 for various approximate altitudes.
Space shuttle propulsion systems
NASA Technical Reports Server (NTRS)
Bardos, Russell
1991-01-01
This is a presentation of view graphs. The design parameters are given for the redesigned solid rocket motor (RSRM), the Advanced Solid Rocket Motor (ASRM), Space Shuttle Main Engine (SSME), Solid Rocket Booster (SRB) separation motor, Orbit Maneuvering System (OMS), and the Reaction Control System (RCS) primary and Vernier thrusters. Space shuttle propulsion issues are outlined along with ASA program definition, ASA program selection methodology, its priorities, candidates, and categories.
Engine System Loads Development for the Fastrac 60K Flight Engine
NASA Technical Reports Server (NTRS)
Frady, Greg; Christensen, Eric R.; Mims, Katherine; Harris, Don; Parks, Russell; Brunty, Joseph
2000-01-01
Early implementation of structural dynamics finite element analyses for calculation of design loads is considered common design practice for high volume manufacturing industries such as automotive and aeronautical industries. However, with the rarity of rocket engine development programs starts, these tools are relatively new to the design of rocket engines. In the new Fastrac engine program, the focus has been to reduce the cost to weight ratio; current structural dynamics analysis practices were tailored in order to meet both production and structural design goals. Perturbation of rocket engine design parameters resulted in a number of Fastrac load cycles necessary to characterize the impact due to mass and stiffness changes. Evolution of loads and load extraction methodologies, parametric considerations and a discussion of load path sensitivities are discussed.
Final RS-25 Engine Test of the Summer
2017-08-30
On Aug. 30, engineers at our Stennis Space Center wrapped up a summer of hot fire testing for flight controllers on RS-25 engines that will help power the new Space Launch System rocket being built to carry astronauts to deep-space destinations, including Mars. The 500-second hot fire of a flight controller or “brain” of the engine marked another step toward the nation’s return to human deep-space exploration missions. Four RS-25 engines, equipped with flight-worthy controllers will help power the first integrated flight of our Space Launch System rocket with our Orion spacecraft, known as Exploration Mission One.
An overview of in-flight plume diagnostics for rocket engines
NASA Technical Reports Server (NTRS)
Madzsar, G. C.; Bickford, R. L.; Duncan, D. B.
1992-01-01
An overview and progress report of the work performed or sponsored by LeRC toward the development of in-flight plume spectroscopy technology for health and performance monitoring of liquid propellant rocket engines are presented. The primary objective of this effort is to develop technology that can be utilized on any flight engine. This technology will be validated by a hardware demonstration of a system capable of being retrofitted onto the Space Shuttle Main Engines for spectroscopic measurements during flight. The philosophy on system definition and status on the development of instrumentation, optics, and signal processing with respect to implementation on a flight engine are discussed.
Laser Ignition Technology for Bi-Propellant Rocket Engine Applications
NASA Technical Reports Server (NTRS)
Thomas, Matt; Bossard, John; Early, Jim; Trinh, Huu; Dennis, Jay; Turner, James (Technical Monitor)
2001-01-01
This viewgraph presentation gives an overview of laser ignition technology for bipropellant rocket engines applications. The objectives of this project include: (1) the selection test chambers and flows; (2) definition of the laser ignition setup; (3) pulse format optimization; (4) fiber optic coupled laser ignition system analysis; and (5) chamber integration issues definition. The testing concludes that rocket combustion chamber laser ignition is imminent. Support technologies (multiplexing, window durability/cleaning, and fiber optic durability) are feasible.
Structural Integrity and Durability of Reusable Space Propulsion Systems
NASA Technical Reports Server (NTRS)
1985-01-01
The space shuttle main engine (SSME), a reusable space propulsion system, is discussed. The advances in high pressure oxygen hydrogen rocket technology are reported to establish the basic technology and to develop new analytical tools for the evaluation in reusable rocket systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, Samuel A.; Pajer, Gary A.; Paluszek, Michael A.
A system and method for producing and controlling high thrust and desirable specific impulse from a continuous fusion reaction is disclosed. The resultant relatively small rocket engine will have lower cost to develop, test, and operate that the prior art, allowing spacecraft missions throughout the planetary system and beyond. The rocket engine method and system includes a reactor chamber and a heating system for heating a stable plasma to produce fusion reactions in the stable plasma. Magnets produce a magnetic field that confines the stable plasma. A fuel injection system and a propellant injection system are included. The propellant injectionmore » system injects cold propellant into a gas box at one end of the reactor chamber, where the propellant is ionized into a plasma. The propellant and fusion products are directed out of the reactor chamber through a magnetic nozzle and are detached from the magnetic field lines producing thrust.« less
NASA Astrophysics Data System (ADS)
Foster, Richard W.
1989-07-01
The application of rocket-based combined cycle (RBCC) engines to booster-stage propulsion, in combination with all-rocket second stages in orbital-ascent missions, has been studied since the mid-1960s; attention is presently given to the case of the 'ejector scramjet' RBCC configuration's application to SSTO vehicles. While total mass delivered to initial orbit is optimized at Mach 20, payload delivery capability to initial orbit optimizes at Mach 17, primarily due to the reduction of hydrogen fuel tankage structure, insulation, and thermal protection system weights.
High-Temperature Rocket Engine
NASA Technical Reports Server (NTRS)
Schneider, Steven J.; Rosenberg, Sanders D.; Chazen, Melvin L.
1994-01-01
Two rocket engines that operate at temperature of 2,500 K designed to provide thrust for station-keeping adjustments of geosynchronous satellites, for raising and lowering orbits, and for changing orbital planes. Also useful as final propulsion stages of launch vehicles delivering small satellites to low orbits around Earth. With further development, engines used on planetary exploration missions for orbital maneuvers. High-temperature technology of engines adaptable to gas-turbine combustors, ramjets, scramjets, and hot components of many energy-conversion systems.
Large liquid rocket engine transient performance simulation system
NASA Technical Reports Server (NTRS)
Mason, J. R.; Southwick, R. D.
1991-01-01
A simulation system, ROCETS, was designed and developed to allow cost-effective computer predictions of liquid rocket engine transient performance. The system allows a user to generate a simulation of any rocket engine configuration using component modules stored in a library through high-level input commands. The system library currently contains 24 component modules, 57 sub-modules and maps, and 33 system routines and utilities. FORTRAN models from other sources can be operated in the system upon inclusion of interface information on comment cards. Operation of the simulation is simplified for the user by run, execution, and output processors. The simulation system makes available steady-state trim balance, transient operation, and linear partial generation. The system utilizes a modern equation solver for efficient operation of the simulations. Transient integration methods include integral and differential forms for the trapezoidal, first order Gear, and second order Gear corrector equations. A detailed technology test bed engine (TTBE) model was generated to be used as the acceptance test of the simulation system. The general level of model detail was that reflected in the Space Shuttle Main Engine DTM. The model successfully obtained steady-state balance in main stage operation and simulated throttle transients, including engine starts and shutdown. A NASA FORTRAN control model was obtained, ROCETS interface installed in comment cards, and operated with the TTBE model in closed-loop transient mode.
Iridium-Coated Rhenium Radiation-Cooled Rockets
NASA Technical Reports Server (NTRS)
Reed, Brian D.; Biaglow, James A.; Schneider, Steven J.
1997-01-01
Radiation-cooled rockets are used for a range of low-thrust propulsion functions, including apogee insertion, attitude control, and repositioning of satellites, reaction control of launch vehicles, and primary propulsion for planetary space- craft. The key to high performance and long lifetimes for radiation-cooled rockets is the chamber temperature capability. The material system that is currently used for radiation-cooled rockets, a niobium alloy (C103) with a fused silica coating, has a maximum operating temperature of 1370 C. Temperature limitations of C103 rockets force the use of fuel film cooling, which degrades rocket performance and, in some cases, imposes a plume contamination issue from unburned fuel. A material system composed of a rhenium (Re) substrate and an iridium (Ir) coating has demonstrated operation at high temperatures (2200 C) and for long lifetimes (hours). The added thermal margin afforded by iridium-coated rhenium (Ir/Re) allows reduction or elimination of fuel film cooling. This, in turn, leads to higher performance and cleaner spacecraft environments. There are ongoing government- and industry-sponsored efforts to develop flight Ir/ Re engines, with the primary focus on 440-N, apogee insertion engines. Complementing these Ir/Re engine development efforts is a program to address specific concerns and fundamental characterization of the Ir/Re material system, including (1) development of Ir/Re rocket fabrication methods, (2) establishment of critical Re mechanical properly data, (3) development of reliable joining methods, and (4) characterization of Ir/Re life-limiting mechanisms.
Improved maintainability of space-based reusable rocket engines
NASA Technical Reports Server (NTRS)
Barkhoudarian, S.; Szemenyei, B.; Nelson, R. S.; Pauckert, R.; Harmon, T.
1988-01-01
Advanced, noninferential, noncontacting, in situ measurement technologies, combined with automated testing and expert systems, can provide continuous, automated health monitoring of critical space-based rocket engine components, requiring minimal disassembly and no manual data analysis, thus enhancing their maintainability. This paper concentrates on recent progress of noncontacting combustion chamber wall thickness condition-monitoring technologies.
Reusability aspects for space transportation rocket engines: programmatic status and outlook
NASA Astrophysics Data System (ADS)
Preclik, D.; Strunz, R.; Hagemann, G.; Langel, G.
2011-09-01
Rocket propulsion systems belong to the most critical subsystems of a space launch vehicle, being illustrated in this paper by comparing different types of transportation systems. The aspect of reusability is firstly discussed for the space shuttle main engine, the only rocket engine in the world that has demonstrated multiple reuses. Initial projections are contrasted against final reusability achievements summarizing three decades of operating the space shuttle main engine. The discussion is then extended to engines employed on expendable launch vehicles with an operational life requirement typically specifying structural integrities up to 20 cycles (start-ups) and an accumulated burning time of about 6,000 s (Vulcain engine family). Today, this life potential substantially exceeds the duty cycle of an expendable engine. It is actually exploited only during the development and qualification phase of an engine when system reliability is demonstrated on ground test facilities with a reduced number of hardware sets that are subjected to an extended number of test cycles and operation time. The paper will finally evaluate the logic and effort necessary to qualify a reusable engine for a required reliability and put this result in context of possible cost savings realized from reuse operations over a time span of 25 years.
Ricardo Dyrgalla (1910-1970), pioneer of rocket development in Argentina
NASA Astrophysics Data System (ADS)
de León, Pablo
2009-12-01
One of the most important developers of liquid propellant rocket engines in Argentina was Polish-born Ricardo Dyrgalla. Dyrgalla immigrated to Argentina from the United Kingdom in 1946, where he had been studying German weapons development at the end of the Second World War. A trained pilot and aeronautical engineer, he understood the intricacies of rocket propulsion and was eager to find practical applications to his recently gained knowledge. Dyrgalla arrived in Argentina during Juan Perón's first presidency, a time when technicians from all over Europe were being recruited to work in various projects for the recently created Argentine Air Force. Shortly after immigrating, Dyrgalla proposed to develop an advanced air-launched weapon, the Tábano, based on a rocket engine of his design, the AN-1. After a successful development program, the Tábano was tested between 1949 and 1951; however, the project was canceled by the government shortly after. Today, the AN-1 rocket engine is recognized as the first liquid propellant rocket to be developed in South America. Besides the AN-1, Dyrgalla also developed several other rockets systems in Argentina, including the PROSON, a solid-propellant rocket launcher developed by the Argentine Institute of Science and Technology for the Armed Forces (CITEFA). In the late 1960s, Dyrgalla and his family relocated to Brazil due mostly to the lack of continuation of rocket development in Argentina. There, he worked for the Institute of Aerospace Technology (ITA) until his untimely death in 1970. Ricardo Dyrgalla deserves to be recognized among the world's rocket pioneers and his contribution to the science and engineering of rocketry deserves a special place in the history of South America's rocketry and space flight advocacy programs.
SLS Resource Reel Aug 2016 orig
2016-07-04
Space Launch System Resource Reel Description: This video includes launch animation of NASA’s Space Launch System (SLS), as well as work taking place across NASA centers and the country to build and test the various components that make up the rocket including: the 5-segment solid rocket boosters, the RS-25 rocket engines, the massive tanks that make up the Core Stage of the rocket that fuels the RS-25 engines, and upper portions of the rocket that connect the interim cryogenic propulsion stage to the Orion spacecraft. SLS, is an advanced launch vehicle for a new era of exploration beyond Earth’s orbit into deep space. SLS, the world’s most powerful rocket, will launch astronauts in the agency’s Orion spacecraft on missions to an asteroid and eventually to Mars, while opening new possibilities for other payloads including robotic scientific missions to places like Mars, Saturn and Jupiter. Graphic Information: PAO Name:Kim Henry Phone Number:256-544-1899 Email Address: kimberly.m.henry@nasa.gov
Distributed Health Monitoring System for Reusable Liquid Rocket Engines
NASA Technical Reports Server (NTRS)
Lin, C. F.; Figueroa, F.; Politopoulos, T.; Oonk, S.
2009-01-01
The ability to correctly detect and identify any possible failure in the systems, subsystems, or sensors within a reusable liquid rocket engine is a major goal at NASA John C. Stennis Space Center (SSC). A health management (HM) system is required to provide an on-ground operation crew with an integrated awareness of the condition of every element of interest by determining anomalies, examining their causes, and making predictive statements. However, the complexity associated with relevant systems, and the large amount of data typically necessary for proper interpretation and analysis, presents difficulties in implementing complete failure detection, identification, and prognostics (FDI&P). As such, this paper presents a Distributed Health Monitoring System for Reusable Liquid Rocket Engines as a solution to these problems through the use of highly intelligent algorithms for real-time FDI&P, and efficient and embedded processing at multiple levels. The end result is the ability to successfully incorporate a comprehensive HM platform despite the complexity of the systems under consideration.
Delta II JPSS-1 Solid Rocket Motor Hoist and Mate
2016-07-19
The United Launch Alliance/Orbital ATK Delta II solid rocket motor arrives at Space Launch Complex 2 at Vandenberg Air Force Base in California. Technicians and engineers lift and mate the solid rocket motor to a Delta II rocket in preparation for launch of the Joint Polar Satellite System-1 (JPSS-1) later this year. JPSS, a next-generation environmental satellite system, is a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA.
Delta II JPSS-1 Solid Rocket Motor (SRM) Installation
2017-04-04
The United Launch Alliance/Orbital ATK Delta II solid rocket motor arrives at Space Launch Complex 2 at Vandenberg Air Force Base in California. Technicians and engineers lift and mate the solid rocket motor to a Delta II rocket in preparation for launch of the Joint Polar Satellite System-1 (JPSS-1) later this year. JPSS, a next-generation environmental satellite system, is a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA.
NASA Technical Reports Server (NTRS)
Murphy, Kenneth S.; Castro, Joaquin H.
1988-01-01
The activity performed on the screening and evaluation of various coatings for application on columbium alloy test panels representative of a radiation-cooled nozzle extension for the RL10 rocket engine is summarized. Vendors and processes of candidate coatings were evaluated. Post engine test evaluations of the two selected coatings are discussed.
Damage-mitigating control of a reusable rocket engine for high performance and extended life
NASA Technical Reports Server (NTRS)
Ray, Asok; Dai, Xiaowen
1995-01-01
The goal of damage mitigating control in reusable rocket engines is to achieve high performance with increased durability of mechanical structures such that functional lives of the critical components are increased. The major benefit is an increase in structural durability with no significant loss of performance. This report investigates the feasibility of damage mitigating control of reusable rocket engines. Phenomenological models of creep and thermo-mechanical fatigue damage have been formulated in the state-variable setting such that these models can be combined with the plant model of a reusable rocket engine, such as the Space Shuttle Main Engine (SSME), for synthesizing an optimal control policy. Specifically, a creep damage model of the main thrust chamber wall is analytically derived based on the theories of sandwich beam and viscoplasticity. This model characterizes progressive bulging-out and incremental thinning of the coolant channel ligament leading to its eventual failure by tensile rupture. The objective is to generate a closed form solution of the wall thin-out phenomenon in real time where the ligament geometry is continuously updated to account for the resulting deformation. The results are in agreement with those obtained from the finite element analyses and experimental observation for both Oxygen Free High Conductivity (OFHC) copper and a copper-zerconium-silver alloy called NARloy-Z. Due to its computational efficiency, this damage model is suitable for on-line applications of life prediction and damage mitigating control, and also permits parametric studies for off-line synthesis of damage mitigating control systems. The results are presented to demonstrate the potential of life extension of reusable rocket engines via damage mitigating control. The control system has also been simulated on a testbed to observe how the damage at different critical points can be traded off without any significant loss of engine performance. The research work reported here is built upon concepts derived from the disciplines of Controls, Thermo-fluids, Structures, and Materials. The concept of damage mitigation, as presented in this report, is not restricted to control of rocket engines. It can be applied to any system where structural durability is an important issue.
NASA Technical Reports Server (NTRS)
Trevino, Luis; Brown, Terry; Crumbley, R. T. (Technical Monitor)
2001-01-01
The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to improve overall vehicle system safety, reliability, and rocket engine performance by development of a qualitative and reliable engine control system (QRECS). Specifically, this will be addressed by enhancing rocket engine control using SCT, innovative data mining tools, and sound software engineering practices used in Marshall's Flight Software Group (FSG). The principle goals for addressing the issue of quality are to improve software management, software development time, software maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control methodologies, but to provide alternative design choices for control, implementation, performance, and sustaining engineering, all relative to addressing the issue of reliability. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion (system level), software engineering for embedded flight software systems, and soft computing technologies (i.e., neural networks, fuzzy logic, data mining, and Bayesian belief networks); some of which are briefed in this paper. For this effort, the targeted demonstration rocket engine testbed is the MC-1 engine (formerly FASTRAC) which is simulated with hardware and software in the Marshall Avionics & Software Testbed (MAST) laboratory that currently resides at NASA's Marshall Space Flight Center, building 4476, and is managed by the Avionics Department. A brief plan of action for design, development, implementation, and testing a Phase One effort for QRECS is given, along with expected results. Phase One will focus on development of a Smart Start Engine Module and a Mainstage Engine Module for proper engine start and mainstage engine operations. The overall intent is to demonstrate that by employing soft computing technologies, the quality and reliability of the overall scheme to engine controller development is further improved and vehicle safety is further insured. The final product that this paper proposes is an approach to development of an alternative low cost engine controller that would be capable of performing in unique vision spacecraft vehicles requiring low cost advanced avionics architectures for autonomous operations from engine pre-start to engine shutdown.
Experimental/Analytical Characterization of the RBCC Rocket-Ejector Mode
NASA Technical Reports Server (NTRS)
Ruf, J. H.; Lehman, M.; Pal, S.; Santoro, R. J.
2000-01-01
The experimental/analytical research work described here addresses the rocket-ejector mode (Mach 0-2 operational range) of the RBCC engine. The experimental phase of the program includes studying the mixing and combustion characteristics of the rocket-ejector system utilizing state-of-the-art diagnostic techniques. A two-dimensional variable geometry rocket-ejector system with enhanced optical access was utilized as the experimental platform. The goals of the experimental phase of the research being conducted at Penn State are to: (a) systematically increase the range of rocket-ejector understanding over a wide range of flow/geometry parameters and (b) provide a comprehensive data base for evaluating and anchoring CFD codes. Concurrent with the experimental activities, a CFD code benchmarking effort at Marshall Space Flight Center is also being used to further investigate the RBCC rocket-ejector mode. Experiments involving the single rocket based optically-accessible rocket-ejector system have been conducted for Diffusion and Afterburning (DAB) as well as Simultaneous Mixing and Combustion configurations. For the DAB configuration, air is introduced (direct-connect) or ejected (sea-level static) into a constant area mixer section with a centrally located gaseous oxygen (GO2)/gaseous hydrogen (GH2) rocket combustor. The downstream flowpath for this configuration includes a diffuser, an afterburner and a final converging nozzle. For the SMC configuration, the rocket is centrally located in a slightly divergent duct. For all tested configurations, global measurements of the axial pressure and heat transfer profiles as well as the overall engine thrust were made. Detailed measurements include major species concentration (H2 O2 N2 and H2O) profiles at various mixer locations made using Raman spectroscopy. Complementary CFD calculations of the flowfield at the experimental conditions also provide additional information on the physics of the problem. These calculations are being conducted at Marshall Space Flight Center to benchmark the FDNS code for RBCC engine operations for such configurations. The primary fluid physics of interests are the mixing and interaction of the rocket plume and secondary flow, subsequent combustion of the fuel rich rocket exhaust with the secondary flow and combustion of the injected afterburner flow. The CFD results are compared to static pressure along the RBCC duct walls, Raman Spectroscopy specie distribution data at several axial locations, net engine thrust and entrained air for the SLS cases. The CFD results compare reasonably well with the experimental results.
Nonlinear Control of a Reusable Rocket Engine for Life Extension
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.; Holmes, Michael S.; Ray, Asok
1998-01-01
This paper presents the conceptual development of a life-extending control system where the objective is to achieve high performance and structural durability of the plant. A life-extending controller is designed for a reusable rocket engine via damage mitigation in both the fuel (H2) and oxidizer (O2) turbines while achieving high performance for transient responses of the combustion chamber pressure and the O2/H2 mixture ratio. The design procedure makes use of a combination of linear and nonlinear controller synthesis techniques and also allows adaptation of the life-extending controller module to augment a conventional performance controller of the rocket engine. The nonlinear aspect of the design is achieved using non-linear parameter optimization of a prescribed control structure. Fatigue damage in fuel and oxidizer turbine blades is primarily caused by stress cycling during start-up, shutdown, and transient operations of a rocket engine. Fatigue damage in the turbine blades is one of the most serious causes for engine failure.
Combustion dynamics in liquid rocket engines
NASA Technical Reports Server (NTRS)
Mclain, W. H.
1971-01-01
A chemical analysis of the emission and absorption spectra in the combustion chamber of a nitrogen tetroxide/aerozine-50 rocket engine was conducted. Measurements were made under conditions of preignition, ignition, and post combustion operating periods. The cause of severe ignition overpressures sporadically observed during the vacuum startup of the Apollo reaction control system engine was investigated. The extent to which residual propellants or condensed intermediate reaction products remain after the engine has been operated in a pulse mode duty cycle was determined.
Air breathing engine/rocket trajectory optimization
NASA Technical Reports Server (NTRS)
Smith, V. K., III
1979-01-01
This research has focused on improving the mathematical models of the air-breathing propulsion systems, which can be mated with the rocket engine model and incorporated in trajectory optimization codes. Improved engine simulations provided accurate representation of the complex cycles proposed for advanced launch vehicles, thereby increasing the confidence in propellant use and payload calculations. The versatile QNEP (Quick Navy Engine Program) was modified to allow treatment of advanced turboaccelerator cycles using hydrogen or hydrocarbon fuels and operating in the vehicle flow field.
Rocket engine diagnostics using qualitative modeling techniques
NASA Technical Reports Server (NTRS)
Binder, Michael; Maul, William; Meyer, Claudia; Sovie, Amy
1992-01-01
Researchers at NASA Lewis Research Center are presently developing qualitative modeling techniques for automated rocket engine diagnostics. A qualitative model of a turbopump interpropellant seal system has been created. The qualitative model describes the effects of seal failures on the system steady-state behavior. This model is able to diagnose the failure of particular seals in the system based on anomalous temperature and pressure values. The anomalous values input to the qualitative model are generated using numerical simulations. Diagnostic test cases include both single and multiple seal failures.
Rocket engine diagnostics using qualitative modeling techniques
NASA Technical Reports Server (NTRS)
Binder, Michael; Maul, William; Meyer, Claudia; Sovie, Amy
1992-01-01
Researchers at NASA Lewis Research Center are presently developing qualitative modeling techniques for automated rocket engine diagnostics. A qualitative model of a turbopump interpropellant seal system was created. The qualitative model describes the effects of seal failures on the system steady state behavior. This model is able to diagnose the failure of particular seals in the system based on anomalous temperature and pressure values. The anomalous values input to the qualitative model are generated using numerical simulations. Diagnostic test cases include both single and multiple seal failures.
NASA Technical Reports Server (NTRS)
Taylor, M. F.; Whitmarsh, C. L., Jr.; Sirocky, P. J., Jr.; Iwanczyke, L. C.
1973-01-01
A preliminary design study of a conceptual 6000-megawatt open-cycle gas-core nuclear rocket engine system was made. The engine has a thrust of 196,600 newtons (44,200 lb) and a specific impulse of 4400 seconds. The nuclear fuel is uranium-235 and the propellant is hydrogen. Critical fuel mass was calculated for several reactor configurations. Major components of the reactor (reflector, pressure vessel, and waste heat rejection system) were considered conceptually and were sized.
Transpiration cooled throat for hydrocarbon rocket engines
NASA Technical Reports Server (NTRS)
May, Lee R.; Burkhardt, Wendel M.
1991-01-01
The objective for the Transpiration Cooled Throat for Hydrocarbon Rocket Engines Program was to characterize the use of hydrocarbon fuels as transpiration coolants for rocket nozzle throats. The hydrocarbon fuels investigated in this program were RP-1 and methane. To adequately characterize the above transpiration coolants, a program was planned which would (1) predict engine system performance and life enhancements due to transpiration cooling of the throat region using analytical models, anchored with available data; (2) a versatile transpiration cooled subscale rocket thrust chamber was designed and fabricated; (3) the subscale thrust chamber was tested over a limited range of conditions, e.g., coolant type, chamber pressure, transpiration cooled length, and coolant flow rate; and (4) detailed data analyses were conducted to determine the relationship between the key performance and life enhancement variables.
NASA Astrophysics Data System (ADS)
Matsumoto, Jun; Okaya, Shunichi; Igoh, Hiroshi; Kawaguchi, Junichiro
2017-04-01
A new propellant feed system referred to as a self-pressurized feed system is proposed for liquid rocket engines. The self-pressurized feed system is a type of gas-pressure feed system; however, the pressurization source is retained in the liquid state to reduce tank volume. The liquid pressurization source is heated and gasified using heat exchange from the hot propellant using a regenerative cooling strategy. The liquid pressurization source is raised to critical pressure by a pressure booster referred to as a charger in order to avoid boiling and improve the heat exchange efficiency. The charger is driven by a part of the generated pressurization gas using a closed-loop self-pressurized feed system. The purpose of this study is to propose a propellant feed system that is lighter and simpler than traditional gas pressure feed systems. The proposed system can be applied to all liquid rocket engines that use the regenerative cooling strategy. The concept and mathematical models of the self-pressurized feed system are presented first. Experiment results for verification are then shown and compared with the mathematical models.
The microspace launcher: first step to the fully air-breathing space launcher
NASA Astrophysics Data System (ADS)
Falempin, F.; Bouchez, M.; Calabro, M.
2009-09-01
A possible application for the high-speed air-breathing propulsion is the fully or partially reusable space launcher. Indeed, by combining the high-speed air-breathing propulsion with a conventional rocket engine (combined cycle or combined propulsion system), it should be possible to improve the average installed specific impulse along the ascent trajectory and then make possible more performing launchers and, hopefully, a fully reusable one. During the last 15 years, a lot of system studies have been performed in France on that subject within the framework of different and consecutive programs. Nevertheless, these studies never clearly demonstrated that a space launcher could take advantage of using a combined propulsion system. During last years, the interest to air-breathing propulsion for space application has been revisited. During this review and taking into account technologies development activities already in progress in Europe, clear priorities have been identified regarding a minimum complementary research and technology program addressing specific needs of space launcher application. It was also clearly identified that there is the need to restart system studies taking advantage of recent progress made regarding knowledge, tools, and technology and focusing on more innovative airframe/propulsion system concepts enabling better trade-off between structural efficiency and propulsion system performance. In that field, a fully axisymmetric configuration has been considered for a microspace launcher (10 kg payload). The vehicle is based on a main stage powered by air-breathing propulsion, combined or not with liquid rocket mode. A "kick stage," powered by a solid rocket engine provides the final acceleration. A preliminary design has been performed for different variants: one using a separated booster and a purely air-breathing main stage, a second one using a booster and a main stage combining air-breathing and rocket mode, a third one without separated booster, the main stage ensuring the initial acceleration in liquid rocket mode and a complementary acceleration phase in rocket mode beyond the air-breathing propulsion system operation. Finally, the liquid rocket engine of this third variant can be replaced by a continuous detonation wave rocket engine. The paper describes the main guidelines for the design of these variants and provides their main characteristics. On this basis, the achievable performance, estimated by trajectory simulation, are detailed.
Analysis of liquid-propellant rocket engines designed by F. A. Tsander
NASA Technical Reports Server (NTRS)
Dushkin, L. S.; Moshkin, Y. K.
1977-01-01
The development of the oxygen-gasoline OR-2 engines and the oxygen-alcohol GIRD-10 rocket engine is described. A result of Tsander's rocket research was an engineering method for propellant calculation of oxygen-propellant rocket engines that determined the basic parameters of the engine and the structural elements.
Evaluation of undeveloped rocket engine cycle applications to advanced transportation
NASA Technical Reports Server (NTRS)
1990-01-01
Undeveloped pump-fed, liquid propellant rocket engine cycles were assessed and evaluated for application to Next Manned Transportation System (NMTS) vehicles, which would include the evolving Space Transportation System (STS Evolution), the Personnel Launch System (PLS), and the Advanced Manned Launch System (AMLS). Undeveloped engine cycles selected for further analysis had potential for increased reliability, more maintainability, reduced cost, and improved (or possibly level) performance when compared to the existing SSME and proposed STME engines. The split expander (SX) cycle, the full flow staged combustion (FFSC) cycle, and a hybrid version of the FFSC, which has a LOX expander drive for the LOX pump, were selected for definition and analysis. Technology requirements and issues were identified and analyses of vehicle systems weight deltas using the SX and FFSC cycles in AMLS vehicles were performed. A strawman schedule and cost estimate for FFSC subsystem technology developments and integrated engine system demonstration was also provided.
Rocket Based Combined Cycle (RBCC) Engine
NASA Technical Reports Server (NTRS)
2004-01-01
Pictured is an artist's concept of the Rocket Based Combined Cycle (RBCC) launch. The RBCC's overall objective is to provide a technology test bed to investigate critical technologies associated with opperational usage of these engines. The program will focus on near term technologies that can be leveraged to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsions systems and ultimately a Single Stage To Orbit (SSTO) air breathing propulsion system.
Rocket-Based Combined-Cycle (RBCC) Propulsion Technology Workshop. Tutorial session
NASA Technical Reports Server (NTRS)
1992-01-01
The goal of this workshop was to illuminate the nation's space transportation and propulsion engineering community on the potential of hypersonic combined cycle (airbreathing/rocket) propulsion systems for future space transportation applications. Four general topics were examined: (1) selections from the expansive advanced propulsion archival resource; (2) related propulsion systems technical backgrounds; (3) RBCC engine multimode operations related subsystem background; and (4) focused review of propulsion aspects of current related programs.
Active chlorine and nitric oxide formation from chemical rocket plume afterburning
NASA Astrophysics Data System (ADS)
Leone, D. M.; Turns, S. R.
Chlorine and oxides of nitrogen (NO(x)) released into the atmosphere contribute to acid rain (ground level or low-altitude sources) and ozone depletion from the stratosphere (high-altitude sources). Rocket engines have the potential for forming or activating these pollutants in the rocket plume. For instance, H2/O2 rockets can produce thermal NO(x) in their plumes. Emphasis, in the past, has been placed on determining the impact of chlorine release on the stratosphere. To date, very little, if any, information is available to understand what contribution NO(x) emissions from ground-based engine testing and actual rocket launches have on the atmosphere. The goal of this work is to estimate the afterburning emissions from chemical rocket plumes and determine their local stratospheric impact. Our study focuses on the space shuttle rocket motors, which include both the solid rocket boosters (SRB's) and the liquid propellant main engines (SSME's). Rocket plume afterburning is modeled employing a one-dimensional model incorporating two chemical kinetic systems: chemical and thermal equilibria with overlayed nitric oxide chemical kinetics (semi equilibrium) and full finite-rate chemical kinetics. Additionally, the local atmospheric impact immediately following a launch is modeled as the emissions diffuse and chemically react in the stratosphere.
Active chlorine and nitric oxide formation from chemical rocket plume afterburning
NASA Technical Reports Server (NTRS)
Leone, D. M.; Turns, S. R.
1994-01-01
Chlorine and oxides of nitrogen (NO(x)) released into the atmosphere contribute to acid rain (ground level or low-altitude sources) and ozone depletion from the stratosphere (high-altitude sources). Rocket engines have the potential for forming or activating these pollutants in the rocket plume. For instance, H2/O2 rockets can produce thermal NO(x) in their plumes. Emphasis, in the past, has been placed on determining the impact of chlorine release on the stratosphere. To date, very little, if any, information is available to understand what contribution NO(x) emissions from ground-based engine testing and actual rocket launches have on the atmosphere. The goal of this work is to estimate the afterburning emissions from chemical rocket plumes and determine their local stratospheric impact. Our study focuses on the space shuttle rocket motors, which include both the solid rocket boosters (SRB's) and the liquid propellant main engines (SSME's). Rocket plume afterburning is modeled employing a one-dimensional model incorporating two chemical kinetic systems: chemical and thermal equilibria with overlayed nitric oxide chemical kinetics (semi equilibrium) and full finite-rate chemical kinetics. Additionally, the local atmospheric impact immediately following a launch is modeled as the emissions diffuse and chemically react in the stratosphere.
Development Status of Reusable Rocket Engine
NASA Astrophysics Data System (ADS)
Yoshida, Makoto; Takada, Satoshi; Naruo, Yoshihiro; Niu, Kenichi
A 30-kN rocket engine, a pilot engine, is being developed in Japan. Development of this pilot engine has been initiated in relation to a reusable sounding rocket, which is also being developed in Japan. This rocket takes off vertically, reaches an altitude of 100 km, lands vertically at the launch site, and is launched again within several days. Due to advantage of reusability, successful development of this rocket will mean that observation missions can be carried out more frequently and economically. In order to realize this rocket concept, the engines installed on the rocket should be characterized by reusability, long life, deep throttling and health monitoring, features which have not yet been established in Japanese rocket engines. To solve the engineering factors entitled by those features, a new design methodology, advanced engine simulations and engineering testing are being focused on in the pilot engine development stage. Especially in engineering testing, limit condition data is acquired to facilitate development of new diagnostic techniques, which can be applied by utilizing the mobility of small-size hardware. In this paper, the development status of the pilot engine is described, including fundamental design and engineering tests of the turbopump bearing and seal, turbine rig, injector and combustion chamber, and operation and maintenance concepts for one hundred flights by a reusable rocket are examined.
From Earth to Orbit: An assessment of transportation options
NASA Technical Reports Server (NTRS)
Gavin, Joseph G., Jr.; Blond, Edmund; Brill, Yvonne C.; Budiansky, Bernard; Cooper, Robert S.; Demisch, Wolfgang H.; Hawk, Clark W.; Kerrebrock, Jack L.; Lichtenberg, Byron K.; Mager, Artur
1992-01-01
The report assesses the requirements, benefits, technological feasibility, and roles of Earth-to-Orbit transportation systems and options that could be developed in support of future national space programs. Transportation requirements, including those for Mission-to-Planet Earth, Space Station Freedom assembly and operation, human exploration of space, space science missions, and other major civil space missions are examined. These requirements are compared with existing, planned, and potential launch capabilities, including expendable launch vehicles (ELV's), the Space Shuttle, the National Launch System (NLS), and new launch options. In addition, the report examines propulsion systems in the context of various launch vehicles. These include the Advanced Solid Rocket Motor (ASRM), the Redesigned Solid Rocket Motor (RSRM), the Solid Rocket Motor Upgrade (SRMU), the Space Shuttle Main Engine (SSME), the Space Transportation Main Engine (STME), existing expendable launch vehicle engines, and liquid-oxygen/hydrocarbon engines. Consideration is given to systems that have been proposed to accomplish the national interests in relatively cost effective ways, with the recognition that safety and reliability contribute to cost-effectiveness. Related resources, including technology, propulsion test facilities, and manufacturing capabilities are also discussed.
Replacement of chemical rocket launchers by beamed energy propulsion.
Fukunari, Masafumi; Arnault, Anthony; Yamaguchi, Toshikazu; Komurasaki, Kimiya
2014-11-01
Microwave Rocket is a beamed energy propulsion system that is expected to reach space at drastically lower cost. This cost reduction is estimated by replacing the first-stage engine and solid rocket boosters of the Japanese H-IIB rocket with Microwave Rocket, using a recently developed thrust model in which thrust is generated through repetitively pulsed microwave detonation with a reed-valve air-breathing system. Results show that Microwave Rocket trajectory, in terms of velocity versus altitude, can be designed similarly to the current H-IIB first stage trajectory. Moreover, the payload ratio can be increased by 450%, resulting in launch-cost reduction of 74%.
2010-12-03
CAPE CANAVERAL, Fla. -- The SpaceX Falcon 9 rocket awaits a static fire test on Space Launch Complex-40 at Cape Canaveral Air Force Station, in which all nine Merlin engines will fire at once. The engines use rocket-grade kerosene and liquid oxygen to produce 1 million pounds of thrust. After the test, SpaceX will conduct a thorough review of all data as engineers make final preparations for the first launch of the Commercial Orbital Transportation Services (COTS) Dragon spacecraft to low Earth orbit atop the Falcon 9. This first stage firing is part of a full launch dress rehearsal, which will end after the engines fire at full power for two seconds, with only the hold-down system restraining the rocket from flight. Photo credit: NASA/Rusty Backer
Theoretical Studies of Ionic Liquids and Nanoclusters as Hybrid Fuels
2016-08-17
Acknowledgements Distribution A: Approved for Public Release; Distribution Unlimited. PA# 16409 Aerospace Systems Directorate RQ-West (EAFB, CA) Rocket ...Engines & Motors Satellite Propulsion Combustion Devices Fuels and Propellants System Analysis R&D Rocket Testing RQ-East (WPAFB, OH) Air...Distribution A: Approved for Public Release; Distribution Unlimited. PA# 16409 5 Identify and develop advanced chemical propellants for rocket
NASA Technical Reports Server (NTRS)
Foster, Richard W.
1992-01-01
Extensively axisymmetric and non-axisymmetric Single Stage To Orbit (SSTO) vehicles are considered. The information is presented in viewgraph form and the following topics are presented: payload comparisons; payload as a percent of dry weight - a system hardware cost indicator; life cycle cost estimations; operations and support costs estimation; selected engine type; and rocket engine specific impulse calculation.
16 CFR § 1500.85 - Exemptions from classification as banned hazardous substances.
Code of Federal Regulations, 2013 CFR
2013-01-01
... component has no hazards other than being in a self-pressurized container. (8) Model rocket propellant devices designed for use in light-weight, recoverable, and reflyable model rockets, provided such devices... recovery system activation devices intended for use with premanufactured model rocket engines wherein all...
16 CFR 1500.85 - Exemptions from classification as banned hazardous substances.
Code of Federal Regulations, 2014 CFR
2014-01-01
... component has no hazards other than being in a self-pressurized container. (8) Model rocket propellant devices designed for use in light-weight, recoverable, and reflyable model rockets, provided such devices... recovery system activation devices intended for use with premanufactured model rocket engines wherein all...
16 CFR 1500.85 - Exemptions from classification as banned hazardous substances.
Code of Federal Regulations, 2011 CFR
2011-01-01
... component has no hazards other than being in a self-pressurized container. (8) Model rocket propellant devices designed for use in light-weight, recoverable, and reflyable model rockets, provided such devices... recovery system activation devices intended for use with premanufactured model rocket engines wherein all...
NASA Technical Reports Server (NTRS)
Keesler, E. L.
1974-01-01
The functional paths of the Orbital Maneuver Subsystem (OMS) is defined. The operational flight instrumentation required for performance monitoring, fault detection, and annunciation is described. The OMS is a pressure fed rocket engine propulsion subsystem. One complete OMS shares each of the two auxiliary propulsion subsystem pods with a reaction control subsystem. Each OMS is composed of a pressurization system, a propellant tanking system, and a gimbaled rocket engine. The design, development, and operation of the system are explained. Diagrams of the system are provided.
Development of an intelligent diagnostic system for reusable rocket engine control
NASA Technical Reports Server (NTRS)
Anex, R. P.; Russell, J. R.; Guo, T.-H.
1991-01-01
A description of an intelligent diagnostic system for the Space Shuttle Main Engines (SSME) is presented. This system is suitable for incorporation in an intelligent controller which implements accommodating closed-loop control to extend engine life and maximize available performance. The diagnostic system architecture is a modular, hierarchical, blackboard system which is particularly well suited for real-time implementation of a system which must be repeatedly updated and extended. The diagnostic problem is formulated as a hierarchical classification problem in which the failure hypotheses are represented in terms of predefined data patterns. The diagnostic expert system incorporates techniques for priority-based diagnostics, the combination of analytical and heuristic knowledge for diagnosis, integration of different AI systems, and the implementation of hierarchical distributed systems. A prototype reusable rocket engine diagnostic system (ReREDS) has been implemented. The prototype user interface and diagnostic performance using SSME test data are described.
Method for providing real-time control of a gaseous propellant rocket propulsion system
NASA Technical Reports Server (NTRS)
Morris, Brian G. (Inventor)
1991-01-01
The new and improved methods and apparatus disclosed provide effective real-time management of a spacecraft rocket engine powered by gaseous propellants. Real-time measurements representative of the engine performance are compared with predetermined standards to selectively control the supply of propellants to the engine for optimizing its performance as well as efficiently managing the consumption of propellants. A priority system is provided for achieving effective real-time management of the propulsion system by first regulating the propellants to keep the engine operating at an efficient level and thereafter regulating the consumption ratio of the propellants. A lower priority level is provided to balance the consumption of the propellants so significant quantities of unexpended propellants will not be left over at the end of the scheduled mission of the engine.
A study of the durability of beryllium rocket engines. [space shuttle reaction control system
NASA Technical Reports Server (NTRS)
Paster, R. D.; French, G. C.
1974-01-01
An experimental test program was performed to demonstrate the durability of a beryllium INTEREGEN rocket engine when operating under conditions simulating the space shuttle reaction control system. A vibration simulator was exposed to the equivalent of 100 missions of X, Y, and Z axes random vibration to demonstrate the integrity of the recently developed injector-to-chamber braze joint. An off-limits engine was hot fired under extreme conditions of mixture ratio, chamber pressure, and orifice plugging. A durability engine was exposed to six environmental cycles interspersed with hot-fire tests without intermediate cleaning, service, or maintenance. Results from this program indicate the ability of the beryllium INTEREGEN engine concept to meet the operational requirements of the space shuttle reaction control system.
Reliability evaluation methodology for NASA applications
NASA Technical Reports Server (NTRS)
Taneja, Vidya S.
1992-01-01
Liquid rocket engine technology has been characterized by the development of complex systems containing large number of subsystems, components, and parts. The trend to even larger and more complex system is continuing. The liquid rocket engineers have been focusing mainly on performance driven designs to increase payload delivery of a launch vehicle for a given mission. In otherwords, although the failure of a single inexpensive part or component may cause the failure of the system, reliability in general has not been considered as one of the system parameters like cost or performance. Up till now, quantification of reliability has not been a consideration during system design and development in the liquid rocket industry. Engineers and managers have long been aware of the fact that the reliability of the system increases during development, but no serious attempts have been made to quantify reliability. As a result, a method to quantify reliability during design and development is needed. This includes application of probabilistic models which utilize both engineering analysis and test data. Classical methods require the use of operating data for reliability demonstration. In contrast, the method described in this paper is based on similarity, analysis, and testing combined with Bayesian statistical analysis.
Design and Testing of a Liquid Nitrous Oxide and Ethanol Fueled Rocket Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youngblood, Stewart
A small-scale, bi-propellant, liquid fueled rocket engine and supporting test infrastructure were designed and constructed at the Energetic Materials Research and Testing Center (EMRTC). This facility was used to evaluate liquid nitrous oxide and ethanol as potential rocket propellants. Thrust and pressure measurements along with high-speed digital imaging of the rocket exhaust plume were made. This experimental data was used for validation of a computational model developed of the rocket engine tested. The developed computational model was utilized to analyze rocket engine performance across a range of operating pressures, fuel-oxidizer mixture ratios, and outlet nozzle configurations. A comparative study ofmore » the modeling of a liquid rocket engine was performed using NASA CEA and Cantera, an opensource equilibrium code capable of being interfaced with MATLAB. One goal of this modeling was to demonstrate the ability of Cantera to accurately model the basic chemical equilibrium, thermodynamics, and transport properties for varied fuel and oxidizer operating conditions. Once validated for basic equilibrium, an expanded MATLAB code, referencing Cantera, was advanced beyond CEAs capabilities to predict rocket engine performance as a function of supplied propellant flow rate and rocket engine nozzle dimensions. Cantera was found to comparable favorably to CEA for making equilibrium calculations, supporting its use as an alternative to CEA. The developed rocket engine performs as predicted, demonstrating the developedMATLAB rocket engine model was successful in predicting real world rocket engine performance. Finally, nitrous oxide and ethanol were shown to perform well as rocket propellants, with specific impulses experimentally recorded in the range of 250 to 260 seconds.« less
NASA Technical Reports Server (NTRS)
Kacynski, Kenneth J.; Hoffman, Joe D.
1993-01-01
An advanced engineering computational model has been developed to aid in the analysis and design of hydrogen/oxygen chemical rocket engines. The complete multi-species, chemically reacting and diffusing Navier-Stokes equations are modelled, finite difference approach that is tailored to be conservative in an axisymmetric coordinate system for both the inviscid and viscous terms. Demonstration cases are presented for a 1030:1 area ratio nozzle, a 25 lbf film cooled nozzle, and transpiration cooled plug-and-spool rocket engine. The results indicate that the thrust coefficient predictions of the 1030:1 nozzle and the film cooled nozzle are within 0.2 to 0.5 percent, respectively, of experimental measurements when all of the chemical reaction and diffusion terms are considered. Further, the model's predictions agree very well with the heat transfer measurements made in all of the nozzle test cases. The Soret thermal diffusion term is demonstrated to have a significant effect on the predicted mass fraction of hydrogen along the wall of the nozzle in both the laminar flow 1030:1 nozzle and the turbulent plug-and-spool rocket engine analysis cases performed. Further, the Soret term was shown to represent a significant fraction of the diffusion fluxes occurring in the transpiration cooled rocket engine.
Reusable Rocket Engine Turbopump Health Management System
NASA Technical Reports Server (NTRS)
Surko, Pamela
1994-01-01
A health monitoring expert system software architecture has been developed to support condition-based health monitoring of rocket engines. Its first application is in the diagnosis decisions relating to the health of the high pressure oxidizer turbopump (HPOTP) of Space Shuttle Main Engine (SSME). The post test diagnostic system runs off-line, using as input the data recorded from hundreds of sensors, each running typically at rates of 25, 50, or .1 Hz. The system is invoked after a test has been completed, and produces an analysis and an organized graphical presentation of the data with important effects highlighted. The overall expert system architecture has been developed and documented so that expert modules analyzing other line replaceable units may easily be added. The architecture emphasizes modularity, reusability, and open system interfaces so that it may be used to analyze other engines as well.
An Object-Oriented Graphical User Interface for a Reusable Rocket Engine Intelligent Control System
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Musgrave, Jeffrey L.; Guo, Ten-Huei; Paxson, Daniel E.; Wong, Edmond; Saus, Joseph R.; Merrill, Walter C.
1994-01-01
An intelligent control system for reusable rocket engines under development at NASA Lewis Research Center requires a graphical user interface to allow observation of the closed-loop system in operation. The simulation testbed consists of a real-time engine simulation computer, a controls computer, and several auxiliary computers for diagnostics and coordination. The system is set up so that the simulation computer could be replaced by the real engine and the change would be transparent to the control system. Because of the hard real-time requirement of the control computer, putting a graphical user interface on it was not an option. Thus, a separate computer used strictly for the graphical user interface was warranted. An object-oriented LISP-based graphical user interface has been developed on a Texas Instruments Explorer 2+ to indicate the condition of the engine to the observer through plots, animation, interactive graphics, and text.
Advanced instrumentation for next-generation aerospace propulsion control systems
NASA Technical Reports Server (NTRS)
Barkhoudarian, S.; Cross, G. S.; Lorenzo, Carl F.
1993-01-01
New control concepts for the next generation of advanced air-breathing and rocket engines and hypersonic combined-cycle propulsion systems are analyzed. The analysis provides a database on the instrumentation technologies for advanced control systems and cross matches the available technologies for each type of engine to the control needs and applications of the other two types of engines. Measurement technologies that are considered to be ready for implementation include optical surface temperature sensors, an isotope wear detector, a brushless torquemeter, a fiberoptic deflectometer, an optical absorption leak detector, the nonintrusive speed sensor, and an ultrasonic triducer. It is concluded that all 30 advanced instrumentation technologies considered can be recommended for further development to meet need of the next generation of jet-, rocket-, and hypersonic-engine control systems.
Research Technology (ASTP) Rocket Based Combined Cycle (RBCC) Engine
NASA Technical Reports Server (NTRS)
2004-01-01
Pictured is an artist's concept of the Rocket Based Combined Cycle (RBCC) launch. The RBCC's overall objective is to provide a technology test bed to investigate critical technologies associated with opperational usage of these engines. The program will focus on near term technologies that can be leveraged to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsions systems and ultimately a Single Stage To Orbit (SSTO) air breathing propulsion system.
A Rocket Engine Design Expert System
NASA Technical Reports Server (NTRS)
Davidian, Kenneth J.
1989-01-01
The overall structure and capabilities of an expert system designed to evaluate rocket engine performance are described. The expert system incorporates a JANNAF standard reference computer code to determine rocket engine performance and a state of the art finite element computer code to calculate the interactions between propellant injection, energy release in the combustion chamber, and regenerative cooling heat transfer. Rule-of-thumb heuristics were incorporated for the H2-O2 coaxial injector design, including a minimum gap size constraint on the total number of injector elements. One dimensional equilibrium chemistry was used in the energy release analysis of the combustion chamber. A 3-D conduction and/or 1-D advection analysis is used to predict heat transfer and coolant channel wall temperature distributions, in addition to coolant temperature and pressure drop. Inputting values to describe the geometry and state properties of the entire system is done directly from the computer keyboard. Graphical display of all output results from the computer code analyses is facilitated by menu selection of up to five dependent variables per plot.
A rocket engine design expert system
NASA Technical Reports Server (NTRS)
Davidian, Kenneth J.
1989-01-01
The overall structure and capabilities of an expert system designed to evaluate rocket engine performance are described. The expert system incorporates a JANNAF standard reference computer code to determine rocket engine performance and a state-of-the-art finite element computer code to calculate the interactions between propellant injection, energy release in the combustion chamber, and regenerative cooling heat transfer. Rule-of-thumb heuristics were incorporated for the hydrogen-oxygen coaxial injector design, including a minimum gap size constraint on the total number of injector elements. One-dimensional equilibrium chemistry was employed in the energy release analysis of the combustion chamber and three-dimensional finite-difference analysis of the regenerative cooling channels was used to calculate the pressure drop along the channels and the coolant temperature as it exits the coolant circuit. Inputting values to describe the geometry and state properties of the entire system is done directly from the computer keyboard. Graphical display of all output results from the computer code analyses is facilitated by menu selection of up to five dependent variables per plot.
Determination of Combustion Product Radicals in a Hydrocarbon Fueled Rocket Exhaust Plume
NASA Technical Reports Server (NTRS)
Langford, Lester A.; Allgood, Daniel C.; Junell, Justin C.
2007-01-01
The identification of metallic effluent materials in a rocket engine exhaust plume indicates the health of the engine. Since 1989, emission spectroscopy of the plume of the Space Shuttle Main Engine (SSME) has been used for ground testing at NASA's Stennis Space Center (SSC). This technique allows the identification and quantification of alloys from the metallic elements observed in the plume. With the prospect of hydrocarbon-fueled rocket engines, such as Rocket Propellant 1 (RP-1) or methane (CH4) fueled engines being considered for use in future space flight systems, the contributions of intermediate or final combustion products resulting from the hydrocarbon fuels are of great interest. The effect of several diatomic molecular radicals, such as Carbon Dioxide , Carbon Monoxide, Molecular Carbon, Methylene Radical, Cyanide or Cyano Radical, and Nitric Oxide, needs to be identified and the effects of their band systems on the spectral region from 300 nm to 850 nm determined. Hydrocarbon-fueled rocket engines will play a prominent role in future space exploration programs. Although hydrogen fuel provides for higher engine performance, hydrocarbon fuels are denser, safer to handle, and less costly. For hydrocarbon-fueled engines using RP-1 or CH4 , the plume is different from a hydrogen fueled engine due to the presence of several other species, such as CO2, C2, CO, CH, CN, and NO, in the exhaust plume, in addition to the standard H2O and OH. These species occur as intermediate or final combustion products or as a result of mixing of the hot plume with the atmosphere. Exhaust plume emission spectroscopy has emerged as a comprehensive non-intrusive sensing technology which can be applied to a wide variety of engine performance conditions with a high degree of sensitivity and specificity. Stennis Space Center researchers have been in the forefront of advancing experimental techniques and developing theoretical approaches in order to bring this technology to a more mature stage.
Liquid Rocket Booster Study. Volume 2, Book 1
NASA Technical Reports Server (NTRS)
1989-01-01
The recommended Liquid Rocket Booster (LRB) concept is shown which uses a common main engine with the Advanced Launch System (ALS) which burns LO2 and LH2. The central rationale is based on the belief that the U.S. can only afford one big new rocket engine development in the 1990's. A LO2/LH2 engine in the half million pound thrust class could satisfy STS LRB, ALS, and Shuttle C (instead of SSMEs). Development costs and higher production rates can be shared by NASA and USAF. If the ALS program does not occur, the LO2/RP-1 propellants would produce slight lower costs for and STS LRB. When the planned Booster Engine portion of the Civil Space Transportation Initiatives has provided data on large pressure fed LO2/RP-1 engines, then the choice should be reevaluated.
Technology Challenges for Deep-Throttle Cryogenic Engines for Space Exploration
NASA Technical Reports Server (NTRS)
Brown, Kendall K.; Nelson, Karl W.
2005-01-01
Historically, cryogenic rocket engines have not been used for in-space applications due to their additional complexity, the mission need for high reliability, and the challenges of propellant boil-off. While the mission and vehicle architectures are not yet defined for the lunar and Martian robotic and human exploration objectives, cryogenic rocket engines offer the potential for higher performance and greater architecture/mission flexibility. In-situ cryogenic propellant production could enable a more robust exploration program by significantly reducing the propellant mass delivered to low earth orbit, thus warranting the evaluation of cryogenic rocket engines versus the hypergolic bi-propellant engines used in the Apollo program. A multi-use engine. one which can provide the functionality that separate engines provided in the Apollo mission architecture, is desirable for lunar and Mars exploration missions because it increases overall architecture effectiveness through commonality and modularity. The engine requirement derivation process must address each unique mission application and each unique phase within each mission. The resulting requirements, such as thrust level, performance, packaging, bum duration, number of operations; required impulses for each trajectory phase; operation after extended space or surface exposure; availability for inspection and maintenance; throttle range for planetary descent, ascent, acceleration limits and many more must be addressed. Within engine system studies, the system and component technology, capability, and risks must be evaluated and a balance between the appropriate amount of technology-push and technology-pull must be addressed. This paper will summarize many of the key technology challenges associated with using high-performance cryogenic liquid propellant rocket engine systems and components in the exploration program architectures. The paper is divided into two areas. The first area describes how the mission requirements affect the engine system requirements and create system level technology challenges. An engine system architecture for multiple applications or a family of engines based upon a set of core technologies, design, and fabrication approaches may reduce overall programmatic cost and risk. The engine system discussion will also address the characterization of engine cycle figures of merit, configurations, and design approaches for some in-space vehicle alternatives under consideration. The second area evaluates the component-level technology challenges induced from the system requirements. Component technology issues are discussed addressing injector, thrust chamber, ignition system, turbopump assembly, and valve design for the challenging requirements of high reliability, robustness, fault tolerance, deep throttling, reasonable performance (with respect to weight and specific impulse).
Technology Challenges for Deep-Throttle Cryogenic Engines for Space Exploration
NASA Astrophysics Data System (ADS)
Brown, Kendall K.; Nelson, Karl W.
2005-02-01
Historically, cryogenic rocket engines have not been used for in-space applications due to their additional complexity, the mission need for high reliability, and the challenges of propellant boil-off. While the mission and vehicle architectures are not yet defined for the lunar and Martian robotic and human exploration objectives, cryogenic rocket engines offer the potential for higher performance and greater architecture/mission flexibility. In-situ cryogenic propellant production could enable a more robust exploration program by significantly reducing the propellant mass delivered to low earth orbit, thus warranting the evaluation of cryogenic rocket engines versus the hypergolic bipropellant engines used in the Apollo program. A multi-use engine, one which can provide the functionality that separate engines provided in the Apollo mission architecture, is desirable for lunar and Mars exploration missions because it increases overall architecture effectiveness through commonality and modularity. The engine requirement derivation process must address each unique mission application and each unique phase within each mission. The resulting requirements, such as thrust level, performance, packaging, burn duration, number of operations; required impulses for each trajectory phase; operation after extended space or surface exposure; availability for inspection and maintenance; throttle range for planetary descent, ascent, acceleration limits and many more must be addressed. Within engine system studies, the system and component technology, capability, and risks must be evaluated and a balance between the appropriate amount of technology-push and technology-pull must be addressed. This paper will summarize many of the key technology challenges associated with using high-performance cryogenic liquid propellant rocket engine systems and components in the exploration program architectures. The paper is divided into two areas. The first area describes how the mission requirements affect the engine system requirements and create system level technology challenges. An engine system architecture for multiple applications or a family of engines based upon a set of core technologies, design, and fabrication approaches may reduce overall programmatic cost and risk. The engine system discussion will also address the characterization of engine cycle figures of merit, configurations, and design approaches for some in-space vehicle alternatives under consideration. The second area evaluates the component-level technology challenges induced from the system requirements. Component technology issues are discussed addressing injector, thrust chamber, ignition system, turbopump assembly, and valve design for the challenging requirements of high reliability, robustness, fault tolerance, deep throttling, reasonable performance (with respect to weight and specific impulse).
Animation: What makes up the Space Launch System’s massive core stage
2017-04-24
NASA’s new rocket, the Space Launch System, will be the most powerful rocket ever built for deep-space missions. The 212-foot core stage is the largest rocket stage ever built and will fuel four RS-25 engines that will help launch SLS. This animation depicts the parts that make up the core stage and how these parts will be joined to form the entire stage. The five major parts include: the engine section, the hydrogen tank, the intertank, the liquid oxygen tank and the forward skirt.
Robotic Processing Of Rocket-Engine Nozzles
NASA Technical Reports Server (NTRS)
Gilbert, Jeffrey L.; Maslakowski, John E.; Gutow, David A.; Deily, David C.
1994-01-01
Automated manufacturing cell containing computer-controlled robotic processing system developed to implement some important related steps in fabrication of rocket-engine nozzles. Performs several tedious and repetitive fabrication, measurement, adjustment, and inspection processes and subprocesses now performed manually. Offers advantages of reduced processing time, greater consistency, excellent collection of data, objective inspections, greater productivity, and simplified fixturing. Also affords flexibility: by making suitable changes in hardware and software, possible to modify process and subprocesses. Flexibility makes work cell adaptable to fabrication of heat exchangers and other items structured similarly to rocket nozzles.
NASA Technical Reports Server (NTRS)
Vonpragenau, G. L. (Inventor)
1984-01-01
The configuration and relationship of the external propellant tank and solid rocket boosters of space transportation systems such as the space shuttle are described. The space shuttle system with the improved propellant tank is shown. The external tank has a forward pressure vessel for liquid hydrogen and an aft pressure vessel for liquid oxygen. The solid rocket boosters are joined together by a thrust frame which extends across and behind the external tank. The thrust of the orbiter's main rocket engines are transmitted to the aft portion of the external tank and the thrust of the solid rocket boosters are transmitted to the aft end of the external tank.
Shuttle Propulsion Overview - The Design Challenges
NASA Technical Reports Server (NTRS)
Owen, James W.
2011-01-01
The major elements of the Space Shuttle Main Propulsion System include two reusable solid rocket motors integrated into recoverable solid rocket boosters, an expendable external fuel and oxidizer tank, and three reusable Space Shuttle Main Engines. Both the solid rocket motors and space shuttle main engines ignite prior to liftoff, with the solid rocket boosters separating about two minutes into flight. The external tank separates, about eight and a half minutes into the flight, after main engine shutdown and is safely expended in the ocean. The SSME's, integrated into the Space Shuttle Orbiter aft structure, are reused after post landing inspections. The configuration is called a stage and a half as all the propulsion elements are active during the boost phase, with only the SSME s continuing operation to achieve orbital velocity. Design and performance challenges were numerous, beginning with development work in the 1970's. The solid rocket motors were large, and this technology had never been used for human space flight. The SSME s were both reusable and very high performance staged combustion cycle engines, also unique to the Space Shuttle. The multi body side mount configuration was unique and posed numerous integration and interface challenges across the elements. Operation of the system was complex and time consuming. This paper describes the design challenges and key areas where the design evolved during the program.
Instrumentation for In-Flight SSME Rocket Engine Plume Spectroscopy
NASA Technical Reports Server (NTRS)
Madzsar, George C.; Bickford, Randall L.; Duncan, David B.
1994-01-01
This paper describes instrumentation that is under development for an in-flight demonstration of a plume spectroscopy system on the space shuttle main engine. The instrumentation consists of a nozzle mounted optical probe for observation of the plume, and a spectrometer for identification and quantification of plume content. This instrumentation, which is intended for use as a diagnostic tool to detect wear and incipient failure in rocket engines, will be validated by a hardware demonstration on the Technology Test Bed engine at the Marshall Space Flight Center.
Space Shuttle Propulsion System Reliability
NASA Technical Reports Server (NTRS)
Welzyn, Ken; VanHooser, Katherine; Moore, Dennis; Wood, David
2011-01-01
This session includes the following sessions: (1) External Tank (ET) System Reliability and Lessons, (2) Space Shuttle Main Engine (SSME), Reliability Validated by a Million Seconds of Testing, (3) Reusable Solid Rocket Motor (RSRM) Reliability via Process Control, and (4) Solid Rocket Booster (SRB) Reliability via Acceptance and Testing.
Efficiency of the rocket engines with a supersonic afterburner
NASA Astrophysics Data System (ADS)
Sergienko, A. A.
1992-08-01
The paper is concerned with the problem of regenerative cooling of the liquid-propellant rocket engine combustion chamber at high pressures of the working fluid. It is shown that high combustion product pressures can be achieved in the liquid-propellant rocket engine with a supersonic afterburner than in a liquid-propellant rocket engine with a conventional subsonic combustion chamber for the same allowable heat flux density. However, the liquid-propellant rocket engine with a supersonic afterburner becomes more economical than the conventional engine only at generator gas temperatures of 1700 K and higher.
2010-12-03
CAPE CANAVERAL, Fla. -- The SpaceX Falcon 9 rocket awaits a static fire test on Space Launch Complex-40 at Cape Canaveral Air Force Station, in which all nine Merlin engines will fire at once. The engines use rocket-grade kerosene and liquid oxygen to produce 1 million pounds of thrust. After the test, SpaceX will conduct a thorough review of all data as engineers make final preparations for the first launch of the Commercial Orbital Transportation Services (COTS) Dragon spacecraft to low Earth orbit atop the Falcon 9. This first stage firing is part of a full launch dress rehearsal, which will end after the engines fire at full power for two seconds, with only the hold-down system restraining the rocket from flight. Photo credit: NASA/Tony Gray and Kevin O'Connell
2010-12-04
CAPE CANAVERAL, Fla. -- During a static fire test on Space Launch Complex-40 at Cape Canaveral Air Force Station, all nine Merlin engines of the SpaceX Falcon 9 rocket fire at once. The engines use rocket-grade kerosene and liquid oxygen to produce 1 million pounds of thrust. After the test, SpaceX began to conduct a thorough review of all data as engineers make final preparations for the first launch of the Commercial Orbital Transportation Services (COTS) Dragon spacecraft to low Earth orbit atop the Falcon 9. This first stage firing is part of a full launch dress rehearsal, which ended after the engines fired at full power for two seconds, with only the hold-down system restraining the rocket from flight. Photo credit: NASA/Tony Gray and Kevin O'Connell
2010-12-04
CAPE CANAVERAL, Fla. -- During a static fire test on Space Launch Complex-40 at Cape Canaveral Air Force Station, all nine Merlin engines of the SpaceX Falcon 9 rocket fire at once. The engines use rocket-grade kerosene and liquid oxygen to produce 1 million pounds of thrust. After the test, SpaceX began to conduct a thorough review of all data as engineers make final preparations for the first launch of the Commercial Orbital Transportation Services (COTS) Dragon spacecraft to low Earth orbit atop the Falcon 9. This first stage firing is part of a full launch dress rehearsal, which ended after the engines fired at full power for two seconds, with only the hold-down system restraining the rocket from flight. Photo credit: NASA/Tony Gray and Kevin O'Connell
2010-12-04
CAPE CANAVERAL, Fla. -- During a static fire test on Space Launch Complex-40 at Cape Canaveral Air Force Station, all nine Merlin engines of the SpaceX Falcon 9 rocket fire at once. The engines use rocket-grade kerosene and liquid oxygen to produce 1 million pounds of thrust. After the test, SpaceX began to conduct a thorough review of all data as engineers make final preparations for the first launch of the Commercial Orbital Transportation Services (COTS) Dragon spacecraft to low Earth orbit atop the Falcon 9. This first stage firing is part of a full launch dress rehearsal, which ended after the engines fired at full power for two seconds, with only the hold-down system restraining the rocket from flight. Photo credit: NASA/Tony Gray and Kevin O'Connell
NASA's Hydrogen Outpost: The Rocket Systems Area at Plum Brook Station
NASA Technical Reports Server (NTRS)
Arrighi, Robert S.
2016-01-01
"There was pretty much a general knowledge about hydrogen and its capabilities," recalled former researcher Robert Graham. "The question was, could you use it in a rocket engine? Do we have the technology to handle it? How will it cool? Will it produce so much heat release that we can't cool the engine? These were the questions that we had to address." The National Aeronautics and Space Administration's (NASA) Glenn Research Center, referred to historically as the Lewis Research Center, made a concerted effort to answer these and related questions in the 1950s and 1960s. The center played a critical role transforming hydrogen's theoretical potential into a flight-ready propellant. Since then NASA has utilized liquid hydrogen to send humans and robots to the Moon, propel dozens of spacecraft across the universe, orbit scores of satellite systems, and power 135 space shuttle flights. Rocket pioneers had recognized hydrogen's potential early on, but its extremely low boiling temperature and low density made it impracticable as a fuel. The Lewis laboratory first demonstrated that liquid hydrogen could be safely utilized in rocket and aircraft propulsion systems, then perfected techniques to store, pump, and cleanly burn the fuel, as well as use it to cool the engine. The Rocket Systems Area at Lewis's remote testing area, Plum Brook Station, played a little known, but important role in the center's hydrogen research efforts. This publication focuses on the activities at the Rocket Systems Area, but it also discusses hydrogen's role in NASA's space program and Lewis's overall hydrogen work. The Rocket Systems Area included nine physically modest test sites and three test stands dedicated to liquid-hydrogen-related research. In 1962 Cleveland Plain Dealer reporter Karl Abram claimed, "The rocket facility looks more like a petroleum refinery. Its test rigs sprout pipes, valves and tanks. During the night test runs, excess hydrogen is burned from special stacks in the best Oklahoma oil field tradition." Besides the Rocket Systems Area, Plum Brook Station also included a nuclear test reactor, a large vacuum tank, a hypersonic wind tunnel, and a full-scale upper-stage rocket stand. The Rocket Systems Area operated from 1961 until NASA shut down all of Plum Brook in 1974. The center reopened Plum Brook in the late 1980s and continues to use several test facilities. The Rocket Systems Area, however, was not restored. Today Plum Brook resembles a nature preserve more than an oil refinery. Lush fields and forests separate the large test facilities. Until recently, the abandoned Rocket Systems Area structures and equipment were visible amongst the greenery. These space-age ruins, particularly the three towers, stood as silent sentinels over the sparsely populated reservation. Few knew the story of these mysterious facilities when NASA removed them in the late 2000s.
A digital controller for variable thrust liquid rocket engines
NASA Astrophysics Data System (ADS)
Feng, X.; Zhang, Y. L.; Chen, Q. Z.
1993-06-01
The paper describes the design and development of a built-in digital controller (BDC) for the variable thrust liquid rocket engine (VTLRE). Particular attention is given to the function requirements of the BDC, the hardware and software configuration, and the testing process, as well as to the VTLRE real-time computer simulation system used for the development of the BDC. A diagram of the VLTRE control system is presented as well as block diagrams illustrating the hardware and software configuration of the BDC.
1953-12-01
Vt. J. V. Casamassa, Jet aircraft power systems . McGraw-Hill, New York. C. C. Chapel, Jet aircraft simplified. Aero Pubs. Inc., Los Angeles. V. C...combination. NACA Tech. Note No. 1951 (Sept.). A. F. Lietzke and H. M. Henneberry, Evaluation of piston-type gas- generator engine for subsonic transport...Dynamics of a turbojet engine considered as a quasi-static system . NACA Tech. Note No. 2091 (May). A. E. Puckett, Optimum performance of rocket- powered
Coolant Design System for Liquid Propellant Aerospike Engines
NASA Astrophysics Data System (ADS)
McConnell, Miranda; Branam, Richard
2015-11-01
Liquid propellant rocket engines burn at incredibly high temperatures making it difficult to design an effective coolant system. These particular engines prove to be extremely useful by powering the rocket with a variable thrust that is ideal for space travel. When combined with aerospike engine nozzles, which provide maximum thrust efficiency, this class of rockets offers a promising future for rocketry. In order to troubleshoot the problems that high combustion chamber temperatures pose, this research took a computational approach to heat analysis. Chambers milled into the combustion chamber walls, lined by a copper cover, were tested for their efficiency in cooling the hot copper wall. Various aspect ratios and coolants were explored for the maximum wall temperature by developing our own MATLAB code. The code uses a nodal temperature analysis with conduction and convection equations and assumes no internal heat generation. This heat transfer research will show oxygen is a better coolant than water, and higher aspect ratios are less efficient at cooling. This project funded by NSF REU Grant 1358991.
Space Launch System Resource Reel 2017
2017-12-01
NASA's new heavy-lift rocket, the Space Launch System, will be the most powerful rocket every built, launching astronauts in NASA's Orion spacecraft on missions into deep space. Two solid rocket boosters and four RS-25 engines will power the massive rocket, providing 8 million pounds of thrust during launch. Production and testing are underway for much of the rocket's critical hardware. With major welding complete on core stage hardware for the first integrated flight of SLS and Orion, the liquid hydrogen tank, intertank and liquid oxygen tank are ready for further outfitting. NASA's barge Pegasus has transported test hardware the first SLS hardware, the engine section to NASA's Marshall Space Flight Center in Huntsville, Alabama, for testing. In preparation for testing and handling operations, engineers have built the core stage pathfinder, to practice transport without the risk of damaging flight hardware. Integrated structural testing is complete on the top part of the rocket, including the Orion stage adapter, launch vehicle stage adapter and interim cryogenic propulsion stage. The Orion Stage Adapter for SLS's first flight, which will carry 13 CubeSats as secondary payloads, is ready to be outfitted with wiring and brackets. Once structural testing and flight hardware production are complete, the core stage will undergo "green run" testing in the B-2 test stand at NASA's Stennis Space Center in Bay St. Louis, Mississippi. For more information about SLS, visit nasa.gov/sls.
1991-07-31
90 START MCC LN CAV PR 3 UNDERSHOOT ABOVE THRESHOLD YES MI A2-492 2/13/90 MAINSTAGE HPOT DS TMP CHANNEL A/B DIVERGENCE NO MI A2-492 2/13/90 MAINSTAGE ...System for the SSME System Architecture Study Y, , Contract NAS 3 -25883 JUL 31 CR-187112 Prepared for: National Aeronautics and Space...Liquid Propellant Rocket Engines Contract No. NAS 3 -25883 Eli Ki ,,, July 31, 1991 BY Dist Prepared By.: Mr. Mark Gage Aerojet Propulsion Division Box
Pegasus delivers SLS engine section
2017-03-03
NASA engineers install test hardware for the agency's new heavy lift rocket, the Space Launch System, into a newly constructed 50-foot structural test stand at NASA's Marshall Space Flight Center. In the stand, hydraulic cylinders will be electronically controlled to push, pull, twist and bend the test article with millions of pounds of force. Engineers will record and analyze over 3,000 channels of data for each test case to verify the capabilities of the engine section and validate that the design and analysis models accurately predict the amount of loads the core stage can withstand during launch and ascent. The engine section, recently delivered via NASA's barge Pegasus from NASA's Michoud Assembly Facility, is the first of four core stage structural test articles scheduled to be delivered to Marshall for testing. The engine section, located at the bottom of SLS's massive core stage, will house the rocket's four RS-25 engines and be an attachment point for the two solid rocket boosters.
Pegasus delivers SLS engine section
2017-05-18
NASA engineers install test hardware for the agency's new heavy lift rocket, the Space Launch System, into a newly constructed 50-foot structural test stand at NASA's Marshall Space Flight Center. In the stand, hydraulic cylinders will be electronically controlled to push, pull, twist and bend the test article with millions of pounds of force. Engineers will record and analyze over 3,000 channels of data for each test case to verify the capabilities of the engine section and validate that the design and analysis models accurately predict the amount of loads the core stage can withstand during launch and ascent. The engine section, recently delivered via NASA's barge Pegasus from NASA's Michoud Assembly Facility, is the first of four core stage structural test articles scheduled to be delivered to Marshall for testing. The engine section, located at the bottom of SLS's massive core stage, will house the rocket's four RS-25 engines and be an attachment point for the two solid rocket boosters.
Design of a 2000 lbf LOX/LCH4 Throttleable Rocket Engine for a Vertical Lander
NASA Astrophysics Data System (ADS)
Lopez, Israel
Liquid oxygen (LOX) and liquid methane (LCH4) has been recognized as an attractive rocket propellant combination because of its in-situ resource utilization (ISRU) capabilities, namely in Mars. ISRU would allow launch vehicles to carry greater payloads and promote missions to Mars. This has led to an increasing interest to develop spacecraft technologies that employ this propellant combination. The UTEP Center for Space Exploration and Technology Research (cSETR) has focused part of its research efforts to developing LOX/LCH4 systems. One of those projects includes the development of a vertical takeoff and landing vehicle called JANUS. This vehicle will employ a LOX/LCH 4 propulsion system. The main propulsion engine is called CROME-X and is currently being developed as part of this project. This rocket engine will employ LOX/LCH4 propellants and is intended to operate from 2000-500 lbf thrust range. This thesis describes the design and development of CROME-X. Specifically, it describes the design process for the main engine components, the design criteria for each, and plans for future engine development.
NASA Technical Reports Server (NTRS)
Stephenson, Frank W., Jr.
1988-01-01
The NASA Earth-to-Orbit (ETO) Propulsion Technology Program is dedicated to advancing rocket engine technologies for the development of fully reusable engine systems that will enable space transportation systems to achieve low cost, routine access to space. The program addresses technology advancements in the areas of engine life extension/prediction, performance enhancements, reduced ground operations costs, and in-flight fault tolerant engine operations. The primary objective is to acquire increased knowledge and understanding of rocket engine chemical and physical processes in order to evolve more realistic analytical simulations of engine internal environments, to derive more accurate predictions of steady and unsteady loads, and using improved structural analyses, to more accurately predict component life and performance, and finally to identify and verify more durable advanced design concepts. In addition, efforts were focused on engine diagnostic needs and advances that would allow integrated health monitoring systems to be developed for enhanced maintainability, automated servicing, inspection, and checkout, and ultimately, in-flight fault tolerant engine operations.
NASA on a Strong Roll in Preparing Space Launch System Flight Engines
2017-08-09
NASA is on a roll when it comes to testing engines for its new Space Launch System (SLS) rocket that will send astronauts to deep-space destinations, including Mars. Just two weeks after the third test of a new RS-25 engine flight controller, the space agency recorded its fourth full-duration controller test Aug. 9 at Stennis Space Center near Bay St. Louis, Mississippi. Engineers conducted a 500-second test of the RS-25 engine controller on the A-1 Test Stand at Stennis. The test involved installing the controller on an RS-25 development engine and firing it in the same manner, and for the same length of time, as needed during an actual SLS launch. The test marked another milestone toward launch of the first integrated flight of the SLS rocket and Orion crew vehicle. Exploration Mission-1 will be an uncrewed mission into lunar orbit, designed to provide a final check-out test of rocket and Orion capabilities before astronauts are returned to deep space. The SLS rocket will be powered at launch by four RS-25 engines, providing a combined 2 million pounds of thrust, and with a pair of solid rocket boosters, providing more than 8 million pounds of total thrust. The RS-25 engines for the initial SLS flights are former space shuttle main engines that are now being used to launch the larger and heavier SLS rocket and with the new controller. The controller is a critical component that operates as the engine “brain” that communicates with SLS flight computers to receive operation performance commands and to provide diagnostic data on engine health and status. Engineers conducted early prototype tests at Stennis to collect data for development of the new controller by NASA, RS-25 prime contractor Aerojet Rocketdyne and subcontractor Honeywell. Testing of actual flight controllers began at Stennis in March. NASA is testing all controllers and engines designated for the EM-1 flight at Stennis. It also will test the SLS core stage for the flight at Stennis, which will involve installing the stage on the B-2 Test Stand and firing its four RS-25 engines simultaneously, as during an actual launch. RS-25 tests at Stennis are conducted by a team of NASA, Aerojet Rocketdyne and Syncom Space Services engineers and operators. Aerojet Rocketdyne is the RS-25 prime contractor. Syncom Space Services is the prime contractor for Stennis facilities and operations.
Machine learning of fault characteristics from rocket engine simulation data
NASA Technical Reports Server (NTRS)
Ke, Min; Ali, Moonis
1990-01-01
Transformation of data into knowledge through conceptual induction has been the focus of our research described in this paper. We have developed a Machine Learning System (MLS) to analyze the rocket engine simulation data. MLS can provide to its users fault analysis, characteristics, and conceptual descriptions of faults, and the relationships of attributes and sensors. All the results are critically important in identifying faults.
Liquid Rocket Engine Testing Overview
NASA Technical Reports Server (NTRS)
Rahman, Shamim
2005-01-01
Contents include the following: Objectives and motivation for testing. Technology, Research and Development Test and Evaluation (RDT&E), evolutionary. Representative Liquid Rocket Engine (LRE) test compaigns. Apollo, shuttle, Expandable Launch Vehicles (ELV) propulsion. Overview of test facilities for liquid rocket engines. Boost, upper stage (sea-level and altitude). Statistics (historical) of Liquid Rocket Engine Testing. LOX/LH, LOX/RP, other development. Test project enablers: engineering tools, operations, processes, infrastructure.
Injector Design Tool Improvements: User's manual for FDNS V.4.5
NASA Technical Reports Server (NTRS)
Chen, Yen-Sen; Shang, Huan-Min; Wei, Hong; Liu, Jiwen
1998-01-01
The major emphasis of the current effort is in the development and validation of an efficient parallel machine computational model, based on the FDNS code, to analyze the fluid dynamics of a wide variety of liquid jet configurations for general liquid rocket engine injection system applications. This model includes physical models for droplet atomization, breakup/coalescence, evaporation, turbulence mixing and gas-phase combustion. Benchmark validation cases for liquid rocket engine chamber combustion conditions will be performed for model validation purpose. Test cases may include shear coaxial, swirl coaxial and impinging injection systems with combinations LOXIH2 or LOXISP-1 propellant injector elements used in rocket engine designs. As a final goal of this project, a well tested parallel CFD performance methodology together with a user's operation description in a final technical report will be reported at the end of the proposed research effort.
An Eight-Parameter Function for Simulating Model Rocket Engine Thrust Curves
ERIC Educational Resources Information Center
Dooling, Thomas A.
2007-01-01
The toy model rocket is used extensively as an example of a realistic physical system. Teachers from grade school to the university level use them. Many teachers and students write computer programs to investigate rocket physics since the problem involves nonlinear functions related to air resistance and mass loss. This paper describes a nonlinear…
Engine protection system for recoverable rocket booster
NASA Technical Reports Server (NTRS)
Shelby, Jr., Jerry A. (Inventor)
1994-01-01
A rocket engine protection system for a recoverable rocket booster which is arranged to land in a salt water body in substantially a nose down attitude. The system includes an inflatable bag which is stowed on a portion of a flat annular rim of the aft skirt of the booster. The bag is hinged at opposing sides and is provided with springs that urge the bag open. The bag is latched in a stowed position during launch and prior to landing for recovery is unlatched to permit the bag to be urged open and into sealing engagement with the rim. A source of pressurized gas further inflates the bag and urges it into sealing engagement with the rim of the skirt where it is locked into position. The gas provides a positive pressure upon the interior of the bag to preclude entry of salt water into the skirt and into contact with the engine. A flotation arrangement may assist in precluding the skirt of the booster from becoming submerged.
NASA Technical Reports Server (NTRS)
Andreadis, Dean; Drake, Alan; Garrett, Joseph L.; Gettinger, Christopher D.; Hoxie, Stephen S.
2003-01-01
The development and ground test of a rocket-based combined cycle (RBCC) propulsion system is being conducted as part of the NASA Marshall Space Flight Center (MSFC) Integrated System Test of an Airbreathing Rocket (ISTAR) program. The eventual flight vehicle (X-43B) is designed to support an air-launched self-powered Mach 0.7 to 7.0 demonstration of an RBCC engine through all of its airbreathing propulsion modes - air augmented rocket (AAR), ramjet (RJ), and scramjet (SJ). Through the use of analytical tools, numerical simulations, and experimental tests the ISTAR program is developing and validating a hydrocarbon-fueled RBCC combustor design methodology. This methodology will then be used to design an integrated RBCC propulsion system that produces robust ignition and combustion stability characteristics while maximizing combustion efficiency and minimizing drag losses. First order analytical and numerical methods used to design hydrocarbon-fueled combustors are discussed with emphasis on the methods and determination of requirements necessary to establish engine operability and performance characteristics.
NASA Technical Reports Server (NTRS)
Andreadis, Dean; Drake, Alan; Garrett, Joseph L.; Gettinger, Christopher D.; Hoxie, Stephen S.
2002-01-01
The development and ground test of a rocket-based combined cycle (RBCC) propulsion system is being conducted as part of the NASA Marshall Space Flight Center (MSFC) Integrated System Test of an Airbreathing Rocket (ISTAR) program. The eventual flight vehicle (X-43B) is designed to support an air-launched self-powered Mach 0.7 to 7.0 demonstration of an RBCC engine through all of its airbreathing propulsion modes - air augmented rocket (AAR), ramjet (RJ), and scramjet (SJ). Through the use of analytical tools, numerical simulations, and experimental tests the ISTAR program is developing and validating a hydrocarbon-fueled RBCC combustor design methodology. This methodology will then be used to design an integrated RBCC propulsion system thai: produces robust ignition and combustion stability characteristics while maximizing combustion efficiency and minimizing drag losses. First order analytical and numerical methods used to design hydrocarbon-fueled combustors are discussed with emphasis on the methods and determination of requirements necessary to establish engine operability and performance characteristics.
NASA Technical Reports Server (NTRS)
Lansaw, John; Schmalzel, John; Figueroa, Jorge
2009-01-01
John C. Stennis Space Center (SSC) provides rocket engine propulsion testing for NASA's space programs. Since the development of the Space Shuttle, every Space Shuttle Main Engine (SSME) has undergone acceptance testing at SSC before going to Kennedy Space Center (KSC) for integration into the Space Shuttle. The SSME is a large cryogenic rocket engine that uses Liquid Hydrogen (LH2) as the fuel. As NASA moves to the new ARES V launch system, the main engines on the new vehicle, as well as the upper stage engine, are currently base lined to be cryogenic rocket engines that will also use LH2. The main rocket engines for the ARES V will be larger than the SSME, while the upper stage engine will be approximately half that size. As a result, significant quantities of hydrogen will be required during the development, testing, and operation of these rocket engines.Better approaches are needed to simplify sensor integration and help reduce life-cycle costs. 1.Smarter sensors. Sensor integration should be a matter of "plug-and-play" making sensors easier to add to a system. Sensors that implement new standards can help address this problem; for example, IEEE STD 1451.4 defines transducer electronic data sheet (TEDS) templates for commonly used sensors such as bridge elements and thermocouples. When a 1451.4 compliant smart sensor is connected to a system that can read the TEDS memory, all information needed to configure the data acquisition system can be uploaded. This reduces the amount of labor required and helps minimize configuration errors. 2.Intelligent sensors. Data received from a sensor be scaled, linearized; and converted to engineering units. Methods to reduce sensor processing overhead at the application node are needed. Smart sensors using low-cost microprocessors with integral data acquisition and communication support offer the means to add these capabilities. Once a processor is embedded, other features can be added; for example, intelligent sensors can make a health assessment to inform the data acquisition client when sensor performance is suspect. 3.Distributed sample synchronization. Networks of sensors require new ways for synchronizing samples. Standards that address the distributed timing problem (for example, IEEE STD 1588) provide the means to aggregate samples from many distributed smart sensors with sub-microsecond accuracy. 4. Reduction in interconnect. Alternative means are needed to reduce the frequent problems associated with cabling and connectors. Wireless technologies offer the promise of reducing interconnects and simultaneously making it easy to quickly add a sensor to a system.
Materials for Liquid Propulsion Systems. Chapter 12
NASA Technical Reports Server (NTRS)
Halchak, John A.; Cannon, James L.; Brown, Corey
2016-01-01
Earth to orbit launch vehicles are propelled by rocket engines and motors, both liquid and solid. This chapter will discuss liquid engines. The heart of a launch vehicle is its engine. The remainder of the vehicle (with the notable exceptions of the payload and guidance system) is an aero structure to support the propellant tanks which provide the fuel and oxidizer to feed the engine or engines. The basic principle behind a rocket engine is straightforward. The engine is a means to convert potential thermochemical energy of one or more propellants into exhaust jet kinetic energy. Fuel and oxidizer are burned in a combustion chamber where they create hot gases under high pressure. These hot gases are allowed to expand through a nozzle. The molecules of hot gas are first constricted by the throat of the nozzle (de-Laval nozzle) which forces them to accelerate; then as the nozzle flares outwards, they expand and further accelerate. It is the mass of the combustion gases times their velocity, reacting against the walls of the combustion chamber and nozzle, which produce thrust according to Newton's third law: for every action there is an equal and opposite reaction. Solid rocket motors are cheaper to manufacture and offer good values for their cost. Liquid propellant engines offer higher performance, that is, they deliver greater thrust per unit weight of propellant burned. They also have a considerably higher thrust to weigh ratio. Since liquid rocket engines can be tested several times before flight, they have the capability to be more reliable, and their ability to shut down once started provides an extra margin of safety. Liquid propellant engines also can be designed with restart capability to provide orbital maneuvering capability. In some instances, liquid engines also can be designed to be reusable. On the solid side, hybrid solid motors also have been developed with the capability to stop and restart. Solid motors are covered in detail in chapter 11. Liquid rocket engine operational factors can be described in terms of extremes: temperatures ranging from that of liquid hydrogen (-423 F) to 6000 F hot gases; enormous thermal shock (7000 F/sec); large temperature differentials between contiguous components; reactive propellants; extreme acoustic environments; high rotational speeds for turbo machinery and extreme power densities. These factors place great demands on materials selection and each must be dealt with while maintaining an engine of the lightest possible weight. This chapter will describe the design considerations for the materials used in the various components of liquid rocket engines and provide examples of usage and experiences in each.
Fluidized-Solid-Fuel Injection Process
NASA Technical Reports Server (NTRS)
Taylor, William
1992-01-01
Report proposes development of rocket engines burning small grains of solid fuel entrained in gas streams. Main technical discussion in report divided into three parts: established fluidization technology; variety of rockets and rocket engines used by nations around the world; and rocket-engine equation. Discusses significance of specific impulse and ratio between initial and final masses of rocket. Concludes by stating three important reasons to proceed with new development: proposed engines safer; fluidized-solid-fuel injection process increases variety of solid-fuel formulations used; and development of fluidized-solid-fuel injection process provides base of engineering knowledge.
Turbopump Design and Analysis Approach for Nuclear Thermal Rockets
NASA Technical Reports Server (NTRS)
Chen, Shu-cheng S.; Veres, Joseph P.; Fittje, James E.
2006-01-01
A rocket propulsion system, whether it is a chemical rocket or a nuclear thermal rocket, is fairly complex in detail but rather simple in principle. Among all the interacting parts, three components stand out: they are pumps and turbines (turbopumps), and the thrust chamber. To obtain an understanding of the overall rocket propulsion system characteristics, one starts from analyzing the interactions among these three components. It is therefore of utmost importance to be able to satisfactorily characterize the turbopump, level by level, at all phases of a vehicle design cycle. Here at NASA Glenn Research Center, as the starting phase of a rocket engine design, specifically a Nuclear Thermal Rocket Engine design, we adopted the approach of using a high level system cycle analysis code (NESS) to obtain an initial analysis of the operational characteristics of a turbopump required in the propulsion system. A set of turbopump design codes (PumpDes and TurbDes) were then executed to obtain sizing and performance characteristics of the turbopump that were consistent with the mission requirements. A set of turbopump analyses codes (PUMPA and TURBA) were applied to obtain the full performance map for each of the turbopump components; a two dimensional layout of the turbopump based on these mean line analyses was also generated. Adequacy of the turbopump conceptual design will later be determined by further analyses and evaluation. In this paper, descriptions and discussions of the aforementioned approach are provided and future outlooks are discussed.
Development of CFD model for augmented core tripropellant rocket engine
NASA Astrophysics Data System (ADS)
Jones, Kenneth M.
1994-10-01
The Space Shuttle era has made major advances in technology and vehicle design to the point that the concept of a single-stage-to-orbit (SSTO) vehicle appears more feasible. NASA presently is conducting studies into the feasibility of certain advanced concept rocket engines that could be utilized in a SSTO vehicle. One such concept is a tripropellant system which burns kerosene and hydrogen initially and at altitude switches to hydrogen. This system will attain a larger mass fraction because LOX-kerosene engines have a greater average propellant density and greater thrust-to-weight ratio. This report describes the investigation to model the tripropellant augmented core engine. The physical aspects of the engine, the CFD code employed, and results of the numerical model for a single modular thruster are discussed.
Reuse fo a Cold War Surveillance Drone to Flight Test a NASA Rocket Based Combined Cycle Engine
NASA Technical Reports Server (NTRS)
Brown, T. M.; Smith, Norm
1999-01-01
Plans for and early feasibility investigations into the modification of a Lockheed D21B drone to flight test the DRACO Rocket Based Combined Cycle (RBCC) engine are discussed. Modifications include the addition of oxidizer tanks, modern avionics systems, actuators, and a vehicle recovery system. Current study results indicate that the D21B is a suitable candidate for this application and will allow demonstrations of all DRACO engine operating modes at Mach numbers between 0.8 and 4.0. Higher Mach numbers may be achieved with more extensive modification. Possible project risks include low speed stability and control, and recovery techniques.
NASA Engineer Examines the Design of a Regeneratively-Cooled Rocket Engine
1958-12-21
An engineer at the National Aeronautics and Space Administration (NASA) Lewis Research Center examines a drawing showing the assembly and details of a 20,000-pound thrust regeneratively cooled rocket engine. The engine was being designed for testing in Lewis’ new Rocket Engine Test Facility, which began operating in the fall of 1957. The facility was the largest high-energy test facility in the country that was capable of handling liquid hydrogen and other liquid chemical fuels. The facility’s use of subscale engines up to 20,000 pounds of thrust permitted a cost-effective method of testing engines under various conditions. The Rocket Engine Test Facility was critical to the development of the technology that led to the use of hydrogen as a rocket fuel and the development of lightweight, regeneratively-cooled, hydrogen-fueled rocket engines. Regeneratively-cooled engines use the cryogenic liquid hydrogen as both the propellant and the coolant to prevent the engine from burning up. The fuel was fed through rows of narrow tubes that surrounded the combustion chamber and nozzle before being ignited inside the combustion chamber. The tubes are visible in the liner sitting on the desk. At the time, Pratt and Whitney was designing a 20,000-pound thrust liquid-hydrogen rocket engine, the RL-10. Two RL-10s would be used to power the Centaur second-stage rocket in the 1960s. The successful development of the Centaur rocket and the upper stages of the Saturn V were largely credited to the work carried out Lewis.
Advanced oxygen-hydrocarbon rocket engine study
NASA Technical Reports Server (NTRS)
Obrien, C. J.; Salkeld, R.
1980-01-01
The advantages and disadvantages, system performance and operating limits, engine parametric data, and technology requirements for candidate high pressure LO2/Hydrocarbon engine systems are summarized. These summaries of parametric analysis and design provide a consistent engine system data base. Power balance data were generated for the eleven engine cycles. Engine cycle rating parameters were established and the desired condition and the effect of the parameter on the engine and/or vehicle are described.
U.S. Strategic Nuclear Forces: Background, Developments, and Issues
2016-09-27
meet the terms of the New START Treaty. The Air Force is also modernizing the Minuteman missiles, replacing and upgrading their rocket motors...began in 1998 and has been replacing the propellant, the solid rocket fuel, in the Minuteman motors to extend the life of the rocket motors. A...complete the program. It has not requested additional funding in subsequent years. Propulsion System Rocket Engine Program (PSRE) According to the Air
Apollo Contour Rocket Nozzle in the Propulsion Systems Laboratory
1964-07-21
Bill Harrison and Bud Meilander check the setup of an Apollo Contour rocket nozzle in the Propulsion Systems Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Propulsion Systems Laboratory contained two 14-foot diameter test chambers that could simulate conditions found at very high altitudes. The facility was used in the 1960s to study complex rocket engines such as the Pratt and Whitney RL-10 and rocket components such as the Apollo Contour nozzle, seen here. Meilander oversaw the facility’s mechanics and the installation of test articles into the chambers. Harrison was head of the Supersonic Tunnels Branch in the Test Installations Division. Researchers sought to determine the impulse value of the storable propellant mix, classify and improve the internal engine performance, and compare the results with analytical tools. A special setup was installed in the chamber that included a device to measure the thrust load and a calibration stand. Both cylindrical and conical combustion chambers were examined with the conical large area ratio nozzles. In addition, two contour nozzles were tested, one based on the Apollo Service Propulsion System and the other on the Air Force’s Titan transtage engine. Three types of injectors were investigated, including a Lewis-designed model that produced 98-percent efficiency. It was determined that combustion instability did not affect the nozzle performance. Although much valuable information was obtained during the tests, attempts to improve the engine performance were not successful.
2016-10-21
Briefing Charts 3. DATES COVERED (From - To) 17 October 2016 – 26 October 2016 4. TITLE AND SUBTITLE Liquid Rocket Engine Testing 5a. CONTRACT NUMBER...298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Liquid Rocket Engine Testing SFTE Symposium 21 October 2016 Jake Robertson, Capt USAF AFRL...Distribution Unlimited. PA Clearance 16493 Liquid Rocket Engine Testing • Engines and their components are extensively static-tested in development • This
NASA Technical Reports Server (NTRS)
Backlund, S. J.; Rossen, J. N.
1971-01-01
A parametric study of ballistic modifications to the 120 inch diameter solid propellant rocket engine which forms part of the Air Force Titan 3 system is presented. 576 separate designs were defined and 24 were selected for detailed analysis. Detailed design descriptions, ballistic performance, and mass property data were prepared for each design. It was determined that a relatively simple change in design parameters could provide a wide range of solid propellant rocket engine ballistic characteristics for future launch vehicle applications.
NASA Collaborative Design Processes
NASA Technical Reports Server (NTRS)
Jones, Davey
2017-01-01
This is Block 1, the first evolution of the world's most powerful and versatile rocket, the Space Launch System, built to return humans to the area around the moon. Eventually, larger and even more powerful and capable configurations will take astronauts and cargo to Mars. On the sides of the rocket are the twin solid rocket boosters that provide more than 75 percent during liftoff and burn for about two minutes, after which they are jettisoned, lightening the load for the rest of the space flight. Four RS-25 main engines provide thrust for the first stage of the rocket. These are the world's most reliable rocket engines. The core stage is the main body of the rocket and houses the fuel for the RS-25 engines, liquid hydrogen and liquid oxygen, and the avionics, or "brain" of the rocket. The core stage is all new and being manufactured at NASA's "rocket factory," Michoud Assembly Facility near New Orleans. The Launch Vehicle Stage Adapter, or LVSA, connects the core stage to the Interim Cryogenic Propulsion Stage. The Interim Cryogenic Propulsion Stage, or ICPS, uses one RL-10 rocket engine and will propel the Orion spacecraft on its deep-space journey after first-stage separation. Finally, the Orion human-rated spacecraft sits atop the massive Saturn V-sized launch vehicle. Managed out of Johnson Space Center in Houston, Orion is the first spacecraft in history capable of taking humans to multiple destinations within deep space. 2) Each element of the SLS utilizes collaborative design processes to achieve the incredible goal of sending human into deep space. Early phases are focused on feasibility and requirements development. Later phases are focused on detailed design, testing, and operations. There are 4 basic phases typically found in each phase of development.
Rocketdyne Development of RBCC Engine for Low Cost Access to Space
NASA Technical Reports Server (NTRS)
Ortwerth, P.; Ratekin, G.; Goldman, A.; Emanuel, M.; Ketchum, A.; Horn, M.
1997-01-01
Rocketdyne is pursuing the conceptual design and development of a Rocket Based Combined Cycle (RBCC) engine for booster and SSTO, advanced reusable space transportation ARTT systems under contract with NASA Marshall Space Flight Center. The Rocketdyne concept is fixed geometry integrated Rocket, Ram Scramjet which is Hydrogen fueled and uses Hydrogen regenerative cooling. Vision vehicle integration studies have determined that scramjet operation to Mach 12 has high payoff for low cost reusable space transportation. Rocketdyne is internally developing versions of the concept for other applications in high speed aircraft and missiles with Hydrocarbon fuel systems. Subscale engine ground testing is underway for all modes of operation from takeoff to Mach 8. High altitude Rocket only mode tests will be completed as part of the ground test program to validate high expansion ratio performance. A unique feature of the ground test series is the inclusion of dynamic trajectory simulation with real time Mach number, altitude, engine throttling, and RBCC mode changes in a specially modified freejet test facility at GASL. Preliminary cold flow Air Augmented Rocket mode test results and Short Combustor tests have met program goals and have been used to integrate all modes of operation in a single combustor design with a fixed geometry inlet for design confirmation tests. A water cooled subscale engine is being fabricated and installed for test beginning the last quarter of 1997.
2010-12-03
CAPE CANAVERAL, Fla. -- The SpaceX Falcon 9 rocket static fire test on Space Launch Complex-40 at Cape Canaveral Air Force Station was aborted at T minus 1.1 seconds due to high engine chamber pressure. During the test, all nine Merlin engines, which use rocket-grade kerosene and liquid oxygen to produce 1 million pounds of thrust, are expected to fire at once. After the test, SpaceX will conduct a thorough review of all data as engineers make final preparations for the first launch of the Commercial Orbital Transportation Services (COTS) Dragon spacecraft to low Earth orbit atop the Falcon 9. This first stage firing is part of a full launch dress rehearsal, which will end after the engines fire at full power for two seconds, with only the hold-down system restraining the rocket from flight. Photo credit: NASA/Rusty Backer
Performance Evaluation of the NASA GTX RBCC Flowpath
NASA Technical Reports Server (NTRS)
Thomas, Scott R.; Palac, Donald T.; Trefny, Charles J.; Roche, Joseph M.
2001-01-01
The NASA Glenn Research Center serves as NASAs lead center for aeropropulsion. Several programs are underway to explore revolutionary airbreathing propulsion systems in response to the challenge of reducing the cost of space transportation. Concepts being investigated include rocket-based combined cycle (RBCC), pulse detonation wave, and turbine-based combined cycle (TBCC) engines. The GTX concept is a vertical launched, horizontal landing, single stage to orbit (SSTO) vehicle utilizing RBCC engines. The propulsion pod has a nearly half-axisymmetric flowpath that incorporates a rocket and ram-scramjet. The engine system operates from lift-off up to above Mach 10, at which point the airbreathing engine flowpath is closed off, and the rocket alone powers the vehicle to orbit. The paper presents an overview of the research efforts supporting the development of this RBCC propulsion system. The experimental efforts of this program consist of a series of test rigs. Each rig is focused on development and optimization of the flowpath over a specific operating mode of the engine. These rigs collectively establish propulsion system performance over all modes of operation, therefore, covering the entire speed range. Computational Fluid Mechanics (CFD) analysis is an important element of the GTX propulsion system development and validation. These efforts guide experiments and flowpath design, provide insight into experimental data, and extend results to conditions and scales not achievable in ground test facilities. Some examples of important CFD results are presented.
A transient model of the RL10A-3-3A rocket engine
NASA Technical Reports Server (NTRS)
Binder, Michael P.
1995-01-01
RL10A-3-3A rocket engines have served as the main propulsion system for Centaur upper stage vehicles since the early 1980's. This hydrogen/oxygen expander cycle engine continues to play a major role in the American launch industry. The Space Propulsion Technology Division at the NASA Lewis Research Center has created a computer model of the RL10 engine, based on detailed component analyses and available test data. This RL10 engine model can predict the performance of the engine over a wide range of operating conditions. The model may also be used to predict the effects of any proposed design changes and anticipated failure scenarios. In this paper, the results of the component analyses are discussed. Simulation results from the new system model are compared with engine test and flight data, including the start and shut-down transient characteristics.
Calculation of Dynamic Loads Due to Random Vibration Environments in Rocket Engine Systems
NASA Technical Reports Server (NTRS)
Christensen, Eric R.; Brown, Andrew M.; Frady, Greg P.
2007-01-01
An important part of rocket engine design is the calculation of random dynamic loads resulting from internal engine "self-induced" sources. These loads are random in nature and can greatly influence the weight of many engine components. Several methodologies for calculating random loads are discussed and then compared to test results using a dynamic testbed consisting of a 60K thrust engine. The engine was tested in a free-free condition with known random force inputs from shakers attached to three locations near the main noise sources on the engine. Accelerations and strains were measured at several critical locations on the engines and then compared to the analytical results using two different random response methodologies.
Design of a 500 lbf liquid oxygen and liquid methane rocket engine for suborbital flight
NASA Astrophysics Data System (ADS)
Trillo, Jesus Eduardo
Liquid methane (LCH4)is the most promising rocket fuel for our journey to Mars and other space entities. Compared to liquid hydrogen, the most common cryogenic fuel used today, methane is denser and can be stored at a more manageable temperature; leading to more affordable tanks and a lighter system. The most important advantage is it can be produced from local sources using in-situ resource utilization (ISRU) technology. This will allow the production of the fuel needed to come back to earth on the surface of Mars, or the space entity being explored, making the overall mission more cost effective by enabling larger usable mass. The major disadvantage methane has over hydrogen is it provides a lower specific impulse, or lower rocket performance. The UTEP Center for Space Exploration and Technology Research (cSETR) in partnership with the National Aeronautics and Space Administration (NASA) has been the leading research center for the advancement of Liquid Oxygen (LOX) and Liquid Methane (LCH4) propulsion technologies. Through this partnership, the CROME engine, a throattable 500 lbf LOX/LCH4 rocket engine, was designed and developed. The engine will serve as the main propulsion system for Daedalus, a suborbital demonstration vehicle being developed by the cSETR. The purpose of Daedalus mission and the engine is to fire in space under microgravity conditions to demonstrate its restartability. This thesis details the design process, decisions, and characteristics of the engine to serve as a complete design guide.
Summary of Rocketdyne Engine A5 Rocket Based Combined Cycle Testing
NASA Technical Reports Server (NTRS)
Ketchum. A.; Emanuel, Mark; Cramer, John
1998-01-01
Rocketdyne Propulsion and Power (RPP) has completed a highly successful experimental test program of an advanced rocket based combined cycle (RBCC) propulsion system. The test program was conducted as part of the Advanced Reusable Technology program directed by NASA-MSFC to demonstrate technologies for low-cost access to space. Testing was conducted in the new GASL Flight Acceleration Simulation Test (FAST) facility at sea level (Mach 0), Mach 3.0 - 4.0, and vacuum flight conditions. Significant achievements obtained during the test program include 1) demonstration of engine operation in air-augmented rocket mode (AAR), ramjet mode and rocket mode and 2) smooth transition from AAR to ramjet mode operation. Testing in the fourth mode (scramjet) is scheduled for November 1998.
2012-04-10
The last of 15 RS-25 rocket engines arrived at Stennis Space Center from Kennedy Space Center in Flordia , on April 10, 2012. The engines will be stored at Stennis until testing begins for the engines to be used on NASA's new Space Launch System.
Rocket Engine Plume Diagnostics at Stennis Space Center
NASA Technical Reports Server (NTRS)
Tejwani, Gopal D.; Langford, Lester A.; VanDyke, David B.; McVay, Gregory P.; Thurman, Charles C.
2003-01-01
The Stennis Space Center has been at the forefront of development and application of exhaust plume spectroscopy to rocket engine health monitoring since 1989. Various spectroscopic techniques, such as emission, absorption, FTIR, LIF, and CARS, have been considered for application at the engine test stands. By far the most successful technology h a been exhaust plume emission spectroscopy. In particular, its application to the Space Shuttle Main Engine (SSME) ground test health monitoring has been invaluable in various engine testing and development activities at SSC since 1989. On several occasions, plume diagnostic methods have successfully detected a problem with one or more components of an engine long before any other sensor indicated a problem. More often, they provide corroboration for a failure mode, if any occurred during an engine test. This paper gives a brief overview of our instrumentation and computational systems for rocket engine plume diagnostics at SSC. Some examples of successful application of exhaust plume spectroscopy (emission as well as absorption) to the SSME testing are presented. Our on-going plume diagnostics technology development projects and future requirements are discussed.
Radiation effect on rocket engine performance
NASA Technical Reports Server (NTRS)
Chiu, Huei-Huang
1988-01-01
The effects of radiation on the performance of modern rocket propulsion systems operating at high pressure and temperature were recognized as a key issue in the design and operation of various liquid rocket engines of the current and future generations. Critical problem areas of radiation coupled with combustion of bipropellants are assessed and accounted for in the formulation of a universal scaling law incorporated with a radiation-enhanced vaporization combustion model. Numerical algorithms are developed and the pertaining data of the Variable Thrust Engine (VTE) and Space Shuttle Main Engine (SSME) are used to conduct parametric sensitivity studies to predict the principal intercoupling effects of radiation. The analysis reveals that low enthalpy engines, such as the VTE, are vulnerable to a substantial performance set back by the radiative loss, whereas the performance of high enthalpy engines such as the SSME, are hardly affected over a broad range of engine operation. Additionally, combustion enhancement by the radiative heating of the propellant has a significant impact in those propellants with high absorptivity. Finally, the areas of research related with radiation phenomena in bipropellant engines are identified.
Dual Expander Cycle Rocket Engine with an Intermediate, Closed-cycle Heat Exchanger
NASA Technical Reports Server (NTRS)
Greene, William D. (Inventor)
2008-01-01
A dual expander cycle (DEC) rocket engine with an intermediate closed-cycle heat exchanger is provided. A conventional DEC rocket engine has a closed-cycle heat exchanger thermally coupled thereto. The heat exchanger utilizes heat extracted from the engine's fuel circuit to drive the engine's oxidizer turbomachinery.
NASA Technical Reports Server (NTRS)
1977-01-01
Principles of rocket engineering, flight dynamics, and trajectories are discussed in this summary of Soviet rocket development and technology. Topics include rocket engine design, propellants, propulsive efficiency, and capabilities required for orbital launch. The design of the RD 107, 108, 119, and 214 rocket engines and their uses in various satellite launches are described. NASA's Saturn 5 and Atlas Agena launch vehicles are used to illustrate the requirements of multistage rockets.
Test Planning Approach and Lessons
NASA Technical Reports Server (NTRS)
Parkinson, Douglas A.; Brown, Kendall K.
2004-01-01
As NASA began technology risk reduction activities and planning for the next generation launch vehicle under the Space Launch Initiative (SLI), now the Next Generation Launch Technology (NGLT) Program, a review of past large liquid rocket engine development programs was performed. The intent of the review was to identify any significant lessons from the development testing programs that could be applied to current and future engine development programs. Because the primary prototype engine in design at the time of this study was the Boeing-Rocketdyne RS-84, the study was slightly biased towards LOX/RP-1 liquid propellant engines. However, the significant lessons identified are universal. It is anticipated that these lessons will serve as a reference for test planning in the Engine Systems Group at Marshall Space Flight Center (MSFC). Towards the end of F-1 and J-2 engine development testing, NASA/MSFC asked Rocketdyne to review those test programs. The result was a document titled, Study to Accelerate Development by Test of a Rocket Engine (R-8099). The "intent (of this study) is to apply this thinking and learning to more efficiently develop rocket engines to high reliability with improved cost effectivenes" Additionally, several other engine programs were reviewed - such as SSME, NSTS, STME, MC-1, and RS-83- to support or refute the R-8099. R-8099 revealed two primary lessons for test planning, which were supported by the other engine development programs. First, engine development programs can benefit from arranging the test program for engine system testing as early as feasible. The best test for determining environments is at the system level, the closest to the operational flight environment. Secondly, the component testing, which tends to be elaborate, should instead be geared towards reducing risk to enable system test. Technical risk can be reduced at the component level, but the design can only be truly verified and validated after engine system testing.
Evaluation of Recent Upgrades to the NESS (Nuclear Engine System Simulation) Code
NASA Technical Reports Server (NTRS)
Fittje, James E.; Schnitzler, Bruce G.
2008-01-01
The Nuclear Thermal Rocket (NTR) concept is being evaluated as a potential propulsion technology for exploratory expeditions to the moon, Mars, and beyond. The need for exceptional propulsion system performance in these missions has been documented in numerous studies, and was the primary focus of a considerable effort undertaken during the Rover/NERVA program from 1955 to 1973. The NASA Glenn Research Center is leveraging this past NTR investment in their vehicle concepts and mission analysis studies with the aid of the Nuclear Engine System Simulation (NESS) code. This paper presents the additional capabilities and upgrades made to this code in order to perform higher fidelity NTR propulsion system analysis and design, and a comparison of its results to the Small Nuclear Rocket Engine (SNRE) design.
Historical problem areas lessons learned
NASA Technical Reports Server (NTRS)
Sackheim, Bob; Fester, Dale A.
1991-01-01
Historical problem areas in space transportation propulsion technology are identified in viewgraph form. Problem areas discussed include materials compatibility, contamination, pneumatic/feed system flow instabilities, instabilities in rocket engine combustion and fuel sloshing, exhaust plume interference, composite rocket nozzle failure, and freeze/thaw damage.
NASA Technical Reports Server (NTRS)
Osborne, Robin; Wehrmeyer, Joseph; Trinh, Huu; Early, James
2003-01-01
This paper addresses the progress of technology development of a laser ignition system at NASA Marshall Space Flight Center (MSFC). Laser ignition has been used at MSFC in recent test series to successfully ignite RP1/GOX propellants in a subscale rocket chamber, and other past studies by NASA GRC have demonstrated the use of laser ignition for rocket engines. Despite the progress made in the study of this ignition method, the logistics of depositing laser sparks inside a rocket chamber have prohibited its use. However, recent advances in laser designs, the use of fiber optics, and studies of multi-pulse laser formats3 have renewed the interest of rocket designers in this state-of the-art technology which offers the potential elimination of torch igniter systems and their associated mechanical parts, as well as toxic hypergolic ignition systems. In support of this interest to develop an alternative ignition system that meets the risk-reduction demands of Next Generation Launch Technology (NGLT), characterization studies of a dual pulse laser format for laser-induced spark ignition are underway at MSFC. Results obtained at MSFC indicate that a dual pulse format can produce plasmas that absorb the laser energy as efficiently as a single pulse format, yet provide a longer plasma lifetime. In an experiments with lean H2/air propellants, the dual pulse laser format, containing the same total energy of a single laser pulse, produced a spark that was superior in its ability to provide sustained ignition of fuel-lean H2/air propellants. The results from these experiments are being used to optimize a dual pulse laser format for future subscale rocket chamber tests. Besides the ignition enhancement, the dual pulse technique provides a practical way to distribute and deliver laser light to the combustion chamber, an important consideration given the limitation of peak power that can be delivered through optical fibers. With this knowledge, scientists and engineers at Los Alamos National Laboratory and CFD Research Corporation have designed and fabricated a miniaturized, first-generation optical prototype of a laser ignition system that could be the basis for a laser ignition system for rocket applications. This prototype will be tested at MSFC in future subscale rocket ignition tests.
Rocket Engine Nozzle Side Load Transient Analysis Methodology: A Practical Approach
NASA Technical Reports Server (NTRS)
Shi, John J.
2005-01-01
During the development stage, in order to design/to size the rocket engine components and to reduce the risks, the local dynamic environments as well as dynamic interface loads must be defined. There are two kinds of dynamic environment, i.e. shock transients and steady-state random and sinusoidal vibration environments. Usually, the steady-state random and sinusoidal vibration environments are scalable, but the shock environments are not scalable. In other words, based on similarities only random vibration environments can be defined for a new engine. The methodology covered in this paper provides a way to predict the shock environments and the dynamic loads for new engine systems and new engine components in the early stage of new engine development or engine nozzle modifications.
Reusable rocket engine optical condition monitoring
NASA Technical Reports Server (NTRS)
Wyett, L.; Maram, J.; Barkhoudarian, S.; Reinert, J.
1987-01-01
Plume emission spectrometry and optical leak detection are described as two new applications of optical techniques to reusable rocket engine condition monitoring. Plume spectrometry has been used with laboratory flames and reusable rocket engines to characterize both the nominal combustion spectra and anomalous spectra of contaminants burning in these plumes. Holographic interferometry has been used to identify leaks and quantify leak rates from reusable rocket engine joints and welds.
Investigation of Cleanliness Verification Techniques for Rocket Engine Hardware
NASA Technical Reports Server (NTRS)
Fritzemeier, Marilyn L.; Skowronski, Raymund P.
1994-01-01
Oxidizer propellant systems for liquid-fueled rocket engines must meet stringent cleanliness requirements for particulate and nonvolatile residue. These requirements were established to limit residual contaminants which could block small orifices or ignite in the oxidizer system during engine operation. Limiting organic residues in high pressure oxygen systems, such as in the Space Shuttle Main Engine (SSME), is particularly important. The current method of cleanliness verification for the SSME uses an organic solvent flush of the critical hardware surfaces. The solvent is filtered and analyzed for particulate matter followed by gravimetric determination of the nonvolatile residue (NVR) content of the filtered solvent. The organic solvents currently specified for use (1, 1, 1-trichloroethane and CFC-113) are ozone-depleting chemicals slated for elimination by December 1995. A test program is in progress to evaluate alternative methods for cleanliness verification that do not require the use of ozone-depleting chemicals and that minimize or eliminate the use of solvents regulated as hazardous air pollutants or smog precursors. Initial results from the laboratory test program to evaluate aqueous-based methods and organic solvent flush methods for NVR verification are provided and compared with results obtained using the current method. Evaluation of the alternative methods was conducted using a range of contaminants encountered in the manufacture of rocket engine hardware.
NASA Technical Reports Server (NTRS)
Bekele, Gete
2002-01-01
This document explores the use of advanced computer technologies with an emphasis on object-oriented design to be applied in the development of software for a rocket engine to improve vehicle safety and reliability. The primary focus is on phase one of this project, the smart start sequence module. The objectives are: 1) To use current sound software engineering practices, object-orientation; 2) To improve on software development time, maintenance, execution and management; 3) To provide an alternate design choice for control, implementation, and performance.
A Coupling Analysis Approach to Capture Unexpected Behaviors in Ares 1
NASA Astrophysics Data System (ADS)
Kis, David
Coupling of physics in large-scale complex engineering systems must be correctly accounted for during the systems engineering process. Preliminary corrections ensure no unanticipated behaviors arise during operation. Structural vibration of large segmented solid rocket motors, known as thrust oscillation, is a well-documented problem that can effect solid rocket motors in adverse ways. Within the Ares 1 rocket, unexpected vibrations deemed potentially harmful to future crew were recorded during late stage flight that propagated from the engine chamber to the Orion crew module. This research proposes the use of a coupling strength analysis during the design and development phase to identify potential unanticipated behaviors such as thrust oscillation. Once these behaviors and couplings are identified then a value function, based on research in Value Driven Design, is proposed to evaluate mitigation strategies and their impact on system value. The results from this study showcase a strong coupling interaction from structural displacement back onto the fluid flow of the Ares 1 that was previously deemed inconsequential. These findings show that the use of a coupling strength analysis can aid engineers and managers in identifying unanticipated behaviors and then rank order their importance based on the impact they have on value.
RL10A-3-3A Rocket Engine Modeling Project
NASA Technical Reports Server (NTRS)
Binder, Michael; Tomsik, Thomas; Veres, Joseph P.
1997-01-01
Two RL10A-3-3A rocket engines comprise the main propulsion system for the Centaur upper stage vehicle. Centaur is used with bod Titan and Atlas launch vehicles, carrying military and civilian payloads from high altitudes into orbit and beyond. The RL10 has delivered highly reliable service for the past 30 years. Recently, however, there have been two in-flight failures which have refocused attention on the RL10. This heightened interest has sparked a desire for an independent RL10 modeling capability within NASA and th Air Force. Pratt & Whitney, which presently has the most detailed model of the RL10, also sees merit in having an independent model which could be used as a cross-check with their own simulations. The Space Propulsion Technology Division (SPTD) at the NASA Lewis Research Center has developed a computer model of the RL10A-3-3A. A project team was formed, consisting of experts in the areas of turbomachinery, combustion, and heat transfer. The overall goal of the project was to provide a model of the entire RL10 rocket engine for government use. In the course of the project, the major engine components have been modeled using a combination of simple correlations and detailed component analysis tools (computer codes). The results of these component analyses were verified with data provided by Pratt & Whitney. Select modeling results and test data curves were then integrated to form the RL10 engine system model The purpose of this report is to introduce the reader to the RL10 rocket engine and to describe the engine system model. The RL10 engine and its application to U.S. launch vehicles are described first, followed by a summary of the SPTD project organization, goals, and accomplishments. Simulated output from the system model are shown in comparison with test and flight data for start transient, steady state, and shut-down transient operations. Detailed descriptions of all component analyses, including those not selected for integration with the system model, are included as appendices.
2001-01-01
The Space Shuttle represented an entirely new generation of space vehicles, the world's first reusable spacecraft. Unlike earlier expendable rockets, the Shuttle was designed to be launched over and over again and would serve as a system for ferrying payloads and persornel to and from Earth orbit. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRB's), with their combined thrust of some 5.8 million pounds, that provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components. The MSFC was assigned responsibility for developing the Shuttle orbiter's high-performance main engines, the most complex rocket engines ever built. The MSFC was also responsible for developing the Shuttle's massive ET and the solid rocket motors and boosters.
1975-01-01
The Space Shuttle represented an entirely new generation of space vehicle, the world's first reusable spacecraft. Unlike earlier expendable rockets, the Shuttle was designed to be launched over and over again and would serve as a system for ferrying payloads and persornel to and from Earth orbit. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRB's), with their combined thrust of some 5.8 million pounds. The SRB's provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components. The MSFC was assigned responsibility for developing the Shuttle orbiter's high-performance main engines, the most complex rocket engines ever built. The MSFC was also responsible for developing the Shuttle's massive ET and the solid rocket motors and boosters.
2002-01-01
An artist's rendering of the air-breathing, hypersonic X-43B, the third and largest of NASA's Hyper-X series flight demonstrators, which could fly later this decade. Revolutionizing the way we gain access to space is NASA's primary goal for the Hypersonic Investment Area, managed for NASA by the Advanced Space Transportation Program at the Marshall Space Flight Center in Huntsville, Alabama. The Hypersonic Investment area, which includes leading-edge partners in industry and academia, will support future generation reusable vehicles and improved access to space. These technology demonstrators, intended for flight testing by decade's end, are expected to yield a new generation of vehicles that routinely fly about 100,000 feet above Earth's surface and reach sustained speeds in excess of Mach 5 (3,750 mph), the point at which "supersonic" flight becomes "hypersonic" flight. The flight demonstrators, the Hyper-X series, will be powered by air-breathing rocket or turbine-based engines, and ram/scramjets. Air-breathing engines, known as combined-cycle systems, achieve their efficiency gains over rocket systems by getting their oxygen for combustion from the atmosphere, as opposed to a rocket that must carry its oxygen. Once a hypersonic vehicle has accelerated to more than twice the speed of sound, the turbine or rockets are turned off, and the engine relies solely on oxygen in the atmosphere to burn fuel. When the vehicle has accelerated to more than 10 to 15 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's series of hypersonic flight demonstrators includes three air-breathing vehicles: the X-43A, X-43B and X-43C.
Scaled Rocket Testing in Hypersonic Flow
NASA Technical Reports Server (NTRS)
Dufrene, Aaron; MacLean, Matthew; Carr, Zakary; Parker, Ron; Holden, Michael; Mehta, Manish
2015-01-01
NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was strongly based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Detailed base heating results are outside of the scope of the current work, rather test methodology and techniques are presented along with broader applicability toward scaled rocket testing in supersonic and hypersonic flow.
Unsteady response of flow system around balance piston in a rocket pump
NASA Astrophysics Data System (ADS)
Kawasaki, S.; Shimura, T.; Uchiumi, M.; Hayashi, M.; Matsui, J.
2013-03-01
In the rocket engine turbopump, a self-balancing type of axial thrust balancing system using a balance piston is often applied. In this study, the balancing system in liquid-hydrogen (LH2) rocket pump was modeled combining the mechanical structure and the flow system, and the unsteady response of the balance piston was investigated. The axial vibration characteristics of the balance piston with a large amplitude were determined, sweeping the frequency of the pressure fluctuation on the inlet of the balance piston. This vibration was significantly affected by the compressibility of LH2.
NASA Technical Reports Server (NTRS)
Dushkin, L. S.
1977-01-01
The development of the following Liquid-Propellant Rocket Engines (LPRE) is reviewed: (1) an alcohol-oxygen single-firing LPRE for use in wingless and winged rockets, (2) a similar multifiring LPRE for use in rocket gliders, (3) a combined solid-liquid propellant rocket engine, and (4) an aircraft LPRE operating on nitric acid and kerosene.
1. ROCKET ENGINE TEST STAND, LOCATED IN THE NORTHEAST ¼ ...
1. ROCKET ENGINE TEST STAND, LOCATED IN THE NORTHEAST ¼ OF THE X-15 ENGINE TEST COMPLEX. Looking northeast. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
In-situ propellant rocket engines for Mars missions ascent vehicle
NASA Technical Reports Server (NTRS)
Roncace, Elizabeth A.
1991-01-01
When contemplating the human exploration of Mars, many scenarios using various propulsion systems have been considered. One propulsion option among them is a vehicle stage with multiple, pump fed rocket engines capable of operating on propellants available on Mars. This reduces the earth launch mass requirements, resulting in economic and payload benefits. No plentiful sources of hydrogen on Mars have been identified on the surface of Mars, so most commonly used high performance liquid fuels, such as hydrogen and hydrocarbons, can be eliminated as possible in situ propellants. But 95 pct of the Martian atmosphere consists of carbon dioxide, which can be converted into carbon monoxide and oxygen. The carbon monoxide oxygen propellant combination is a candidate for a Martian in situ propellant rocket engine. The feasibility is analyzed of a pump fed engine cycle using the propellant combination of carbon monoxide and oxygen.
In-situ propellant rocket engines for Mars mission ascent vehicle
NASA Technical Reports Server (NTRS)
Roncace, Elizabeth A.
1991-01-01
When comtemplating the human exploration of Mars, many scenarios using various propulsion systems have been considered. One propulsion option among them is a vehicle stage with multiple, pump fed rocket engines capable of operating on propellants available on Mars. This reduces the Earth launch mass requirements, resulting in economic and payload benefits. No plentiful sources of hydrogen on Mars have been identified on the surface of Mars, so most commonly used high performance liquid fuels, such as hydrogen and hydrocarbons, can be eliminated as possible in-situ propellants. But 95 pct. of the Martian atmosphere consists of carbon dioxide, which can be converted into carbon monoxide and oxygen. The carbon monoxide oxygen propellant conbination is a candidate for a Martian in-situ propellant rocket engine. The feasibility is analyzed of a pump fed engine cycle using the propellant combination of carbon monoxide and oxygen.
NASA Technical Reports Server (NTRS)
Seymour, David C.; Martin, Michael A.; Nguyen, Huy H.; Greene, William D.
2005-01-01
The subject of mathematical modeling of the transient operation of liquid rocket engines is presented in overview form from the perspective of engineers working at the NASA Marshall Space Flight Center. The necessity of creating and utilizing accurate mathematical models as part of liquid rocket engine development process has become well established and is likely to increase in importance in the future. The issues of design considerations for transient operation, development testing, and failure scenario simulation are discussed. An overview of the derivation of the basic governing equations is presented along with a discussion of computational and numerical issues associated with the implementation of these equations in computer codes. Also, work in the field of generating usable fluid property tables is presented along with an overview of efforts to be undertaken in the future to improve the tools use for the mathematical modeling process.
NASA Technical Reports Server (NTRS)
Martin, Michael A.; Nguyen, Huy H.; Greene, William D.; Seymout, David C.
2003-01-01
The subject of mathematical modeling of the transient operation of liquid rocket engines is presented in overview form from the perspective of engineers working at the NASA Marshall Space Flight Center. The necessity of creating and utilizing accurate mathematical models as part of liquid rocket engine development process has become well established and is likely to increase in importance in the future. The issues of design considerations for transient operation, development testing, and failure scenario simulation are discussed. An overview of the derivation of the basic governing equations is presented along with a discussion of computational and numerical issues associated with the implementation of these equations in computer codes. Also, work in the field of generating usable fluid property tables is presented along with an overview of efforts to be undertaken in the future to improve the tools use for the mathematical modeling process.
2010-12-03
CAPE CANAVERAL, Fla. -- The SpaceX Falcon 9 rocket static fire test on Space Launch Complex-40 at Cape Canaveral Air Force Station was aborted at T minus 1.1 seconds due to high engine chamber pressure. During the test, all nine Merlin engines, which use rocket-grade kerosene and liquid oxygen to produce 1 million pounds of thrust, are expected to fire at once. After the test, SpaceX will conduct a thorough review of all data as engineers make final preparations for the first launch of the Commercial Orbital Transportation Services (COTS) Dragon spacecraft to low Earth orbit atop the Falcon 9. This first stage firing is part of a full launch dress rehearsal, which will end after the engines fire at full power for two seconds, with only the hold-down system restraining the rocket from flight. Photo credit: NASA/Tony Gray and Kevin O'Connell
2010-12-03
CAPE CANAVERAL, Fla. -- The SpaceX Falcon 9 rocket static fire test on Space Launch Complex-40 at Cape Canaveral Air Force Station was aborted at T minus 1.1 seconds due to high engine chamber pressure. During the test, all nine Merlin engines, which use rocket-grade kerosene and liquid oxygen to produce 1 million pounds of thrust, are expected to fire at once. After the test, SpaceX will conduct a thorough review of all data as engineers make final preparations for the first launch of the Commercial Orbital Transportation Services (COTS) Dragon spacecraft to low Earth orbit atop the Falcon 9. This first stage firing is part of a full launch dress rehearsal, which will end after the engines fire at full power for two seconds, with only the hold-down system restraining the rocket from flight. Photo credit: NASA/Tony Gray and Kevin O'Connell
2010-12-03
CAPE CANAVERAL, Fla. -- The SpaceX Falcon 9 rocket static fire test on Space Launch Complex-40 at Cape Canaveral Air Force Station was aborted at T minus 1.1 seconds due to high engine chamber pressure. During the test, all nine Merlin engines, which use rocket-grade kerosene and liquid oxygen to produce 1 million pounds of thrust, are expected to fire at once. After the test, SpaceX will conduct a thorough review of all data as engineers make final preparations for the first launch of the Commercial Orbital Transportation Services (COTS) Dragon spacecraft to low Earth orbit atop the Falcon 9. This first stage firing is part of a full launch dress rehearsal, which will end after the engines fire at full power for two seconds, with only the hold-down system restraining the rocket from flight. Photo credit: NASA/Tony Gray and Kevin O'Connell
Multiple dopant injection system for small rocket engines
NASA Technical Reports Server (NTRS)
Sakala, G. G.; Raines, N. G.
1992-01-01
The Diagnostics Test Facility (DTF) at NASA's Stennis Space Center (SSC) was designed and built to provide a standard rocket engine exhaust plume for use in the research and development of engine health monitoring instrumentation. A 1000 lb thrust class liquid oxygen (LOX)-gaseous hydrogen (GH2) fueled rocket engine is used as the subscale plume source to simulate the SSME during experimentation and instrument development. The ability of the DTF to provide efficient, and low cost test operations makes it uniquely suited for plume diagnostic experimentation. The most unique feature of the DTF is the Multiple Dopant Injection System (MDIS) that is used to seed the exhaust plume with the desired element or metal alloy. The dopant injection takes place at the fuel injector, yielding a very uniform and homogeneous distribution of the seeding material in the exhaust plume. The MDIS allows during a single test firing of the DTF, the seeding of the exhaust plume with up to three different dopants and also provides distilled water base lines between the dopants. A number of plume diagnostic-related experiments have already utilized the unique capabilities of the DTF.
Experimental and computational data from a small rocket exhaust diffuser
NASA Astrophysics Data System (ADS)
Stephens, Samuel E.
1993-06-01
The Diagnostics Testbed Facility (DTF) at the NASA Stennis Space Center in Mississippi is a versatile facility that is used primarily to aid in the development of nonintrusive diagnostics for liquid rocket engine testing. The DTF consists of a fixed, 1200 lbf thrust, pressure fed, liquid oxygen/gaseous hydrogen rocket engine, and associated support systems. An exhaust diffuser has been fabricated and installed to provide subatmospheric pressures at the exit of the engine. The diffuser aerodynamic design was calculated prior to fabrication using the PARC Navier-Stokes computational fluid dynamics code. The diffuser was then fabricated and tested at the DTF. Experimental data from these tests were acquired to determine the operational characteristics of the system and to correlate the actual and predicted flow fields. The results show that a good engineering approximation of overall diffuser performance can be made using the PARC Navier-Stokes code and a simplified geometry. Correlations between actual and predicted cell pressure and initial plume expansion in the diffuser are good; however, the wall pressure profiles do not correlate as well with the experimental data.
Application of High Speed Digital Image Correlation in Rocket Engine Hot Fire Testing
NASA Technical Reports Server (NTRS)
Gradl, Paul R.; Schmidt, Tim
2016-01-01
Hot fire testing of rocket engine components and rocket engine systems is a critical aspect of the development process to understand performance, reliability and system interactions. Ground testing provides the opportunity for highly instrumented development testing to validate analytical model predictions and determine necessary design changes and process improvements. To properly obtain discrete measurements for model validation, instrumentation must survive in the highly dynamic and extreme temperature application of hot fire testing. Digital Image Correlation has been investigated and being evaluated as a technique to augment traditional instrumentation during component and engine testing providing further data for additional performance improvements and cost savings. The feasibility of digital image correlation techniques were demonstrated in subscale and full scale hotfire testing. This incorporated a pair of high speed cameras to measure three-dimensional, real-time displacements and strains installed and operated under the extreme environments present on the test stand. The development process, setup and calibrations, data collection, hotfire test data collection and post-test analysis and results are presented in this paper.
2011-09-14
Team members check the progress of a liquid nitrogen cold shock test on the A-1 Test Stand at Stennis Space Center on Sept. 15. The cold shock test is used to confirm the test stand's support system can withstand test conditions, when super-cold rocket engine propellant is piped. The A-1 Test Stand is preparing to conduct tests on the powerpack component of the J-2X rocket engine, beginning in early 2012.
Large Eddy Simulations of Transverse Combustion Instability in a Multi-Element Injector
2016-07-27
plagued the development of liquid rocket engines and remains a large riskin the development and acquisition of new liquid rocket engines. Combustion...simulations to better understand the physics that can lead combustion instability in liquid rocket engines. Simulations of this type are able to...instabilities found in liquid rocket engines are transverse. The motivating of the experiment behind the current work is to subject the CVRC injector
Integrated model development for liquid fueled rocket propulsion systems
NASA Technical Reports Server (NTRS)
Santi, L. Michael
1993-01-01
As detailed in the original statement of work, the objective of phase two of this research effort was to develop a general framework for rocket engine performance prediction that integrates physical principles, a rigorous mathematical formalism, component level test data, system level test data, and theory-observation reconciliation. Specific phase two development tasks are defined.
NASA Technical Reports Server (NTRS)
1973-01-01
Calculations, curves, and substantiating data which support the engine design characteristics of the RL-10 engines are presented. A description of the RL-10 ignition system is provided. The performance calculations of the RL-10 derivative engines and the performance results obtained are reported. The computer simulations used to establish the control system requirements and to define the engine transient characteristics are included.
Centaur Rocket in Space Propulsion Research Facility (B-2)
1969-07-21
A Centaur second-stage rocket in the Space Propulsion Research Facility, better known as B‒2, operating at NASA’s Plum Brook Station in Sandusky, Ohio. Centaur was designed to be used with an Atlas booster to send the Surveyor spacecraft to the moon in the mid-1960s. After those missions, the rocket was modified to launch a series of astronomical observation satellites into orbit and send space probes to other planets. Researchers conducted a series of systems tests at the Plum Brook test stands to improve the Centaur fuel pumping system. Follow up full-scale tests in the B-2 facility led to the eventual removal of the boost pumps from the design. This reduced the system’s complexity and significantly reduced the cost of a Centaur rocket. The Centaur tests were the first use of the new B-2 facility. B‒2 was the world's only high altitude test facility capable of full-scale rocket engine and launch vehicle system level tests. It was created to test rocket propulsion systems with up to 100,000 pounds of thrust in a simulated space environment. The facility has the unique ability to maintain a vacuum at the rocket’s nozzle while the engine is firing. The rocket fires into a 120-foot deep spray chamber which cools the exhaust before it is ejected outside the facility. B‒2 simulated space using giant diffusion pumps to reduce chamber pressure 10-6 torr, nitrogen-filled cold walls create cryogenic temperatures, and quartz lamps replicate the radiation of the sun.
NASA Technical Reports Server (NTRS)
Anderson, Floyd A.
1987-01-01
Brief report describes concept for coal-burning hybrid rocket engine. Proposed engine carries larger payload, burns more cleanly, and safer to manufacture and handle than conventional solid-propellant rockets. Thrust changeable in flight, and stops and starts on demand.
Feasibility of rotating fluidized bed reactor for rocket propulsion
NASA Technical Reports Server (NTRS)
Ludewig, H.; Manning, A. J.; Raseman, C. J.
1974-01-01
The rotating fluidized bed reactor concept is outlined, and its application to rocket propulsion is discussed. Experimental results obtained indicate that minimum fluidization correlations commonly in use for 1-g beds can also be applied to multiple-g beds. It was found that for a low thrust system (20,000 lbf) the fuel particle size and/or particle stress play a limiting role on performance. The superiority of U-233 as a fuel for this type of rocket engine is clearly demonstrated in the analysis. The maximum thrust/weight ratio for a 90,000N thrust engine was found to be approximately 65N/kg.
NASA Technical Reports Server (NTRS)
1976-01-01
The engineering design for the Shuttle Missions Simulator is presented in sections, with each section representing a subsystem development activity. Subsystems covered include: electrical power system; mechanical power system; main propellant and external tank; solid rocket booster; reaction control system; orbital maneuvering system; guidance, navigation, and control; data processing system; mission control center interface; and image display system.
State Machine Modeling of the Space Launch System Solid Rocket Boosters
NASA Technical Reports Server (NTRS)
Harris, Joshua A.; Patterson-Hine, Ann
2013-01-01
The Space Launch System is a Shuttle-derived heavy-lift vehicle currently in development to serve as NASA's premiere launch vehicle for space exploration. The Space Launch System is a multistage rocket with two Solid Rocket Boosters and multiple payloads, including the Multi-Purpose Crew Vehicle. Planned Space Launch System destinations include near-Earth asteroids, the Moon, Mars, and Lagrange points. The Space Launch System is a complex system with many subsystems, requiring considerable systems engineering and integration. To this end, state machine analysis offers a method to support engineering and operational e orts, identify and avert undesirable or potentially hazardous system states, and evaluate system requirements. Finite State Machines model a system as a finite number of states, with transitions between states controlled by state-based and event-based logic. State machines are a useful tool for understanding complex system behaviors and evaluating "what-if" scenarios. This work contributes to a state machine model of the Space Launch System developed at NASA Ames Research Center. The Space Launch System Solid Rocket Booster avionics and ignition subsystems are modeled using MATLAB/Stateflow software. This model is integrated into a larger model of Space Launch System avionics used for verification and validation of Space Launch System operating procedures and design requirements. This includes testing both nominal and o -nominal system states and command sequences.
Preliminary study of a hydrogen peroxide rocket for use in moving source jet noise tests
NASA Technical Reports Server (NTRS)
Plencner, R. M.
1977-01-01
A preliminary investigation was made of using a hydrogen peroxide rocket to obtain pure moving source jet noise data. The thermodynamic cycle of the rocket was analyzed. It was found that the thermodynamic exhaust properties of the rocket could be made to match those of typical advanced commercial supersonic transport engines. The rocket thruster was then considered in combination with a streamlined ground car for moving source jet noise experiments. When a nonthrottlable hydrogen peroxide rocket was used to accelerate the vehicle, propellant masses and/or acceleration distances became too large. However, when a throttlable rocket or an auxiliary system was used to accelerate the vehicle, reasonable propellant masses could be obtained.
Theoretical Investigations on the Efficiency and the Conditions for the Realization of Jet Engines
NASA Technical Reports Server (NTRS)
Roy, Maurice
1950-01-01
Contents: Preliminary notes on the efficiency of propulsion systems; Part I: Propulsion systems with direct axial reaction rockets and rockets with thrust augmentation; Part II: Helicoidal reaction propulsion systems; Appendix I: Steady flow of viscous gases; Appendix II: On the theory of viscous fluids in nozzles; and Appendix III: On the thrusts augmenters, and particularly of gas augmenters
Study of solid rocket motor for space shuttle booster, volume 2, book 3, appendix A
NASA Technical Reports Server (NTRS)
1972-01-01
A systems requirements analysis for the solid propellant rocket engine to be used with the space shuttle was conducted. The systems analysis was developed to define the physical and functional requirements for the systems and subsystems. The operations analysis was performed to identify the requirements of the various launch operations, mission operations, ground operations, and logistic and flight support concepts.
Numerical Modeling of Pulse Detonation Rocket Engine Gasdynamics and Performance
NASA Technical Reports Server (NTRS)
Morris, C. I.
2003-01-01
Pulse detonation engines (PDB) have generated considerable research interest in recent years as a chemical propulsion system potentially offering improved performance and reduced complexity compared to conventional gas turbines and rocket engines. The detonative mode of combustion employed by these devices offers a theoretical thermodynamic advantage over the constant-pressure deflagrative combustion mode used in conventional engines. However, the unsteady blowdown process intrinsic to all pulse detonation devices has made realistic estimates of the actual propulsive performance of PDES problematic. The recent review article by Kailasanath highlights some of the progress that has been made in comparing the available experimental measurements with analytical and numerical models.
XCALIBUR: a Vertical Takeoff TSTO RLV Concept with a HEDM Upperstage and a Scram-Rocket Booster
NASA Astrophysics Data System (ADS)
Bradford, J.
2002-01-01
A new 3rd generation, two-stage-to-orbit (TSTO) reusable launch vehicle (RLV) has been designed. The Xcalibur concept represents a novel approach due to its integration method for the upperstage element of the system. The vertical-takeoff booster, which is powered by rocket-based combined-cycle (RBCC) engines, carries the upperstage internally in the aft section of the airframe to a Mach 15 staging condition. The upperstage is released from the booster and carries the 6,820 kg of payload to low earth orbit (LEO) using its high energy density matter (HEDM) propulsion system. The booster element is capable of returning to the original launch site in a ramjet-cruise propulsion mode. Both the booster and the upperstage utilize advanced technologies including: graphite-epoxy tanks, metal-matrix composites, UHTC TPS materials, electro- mechanical actuators (EMAs), and lightweight subsystems (avionics, power distribution, etc.). The booster system is enabled main propulsion system which utilizes four RBCC engines. These engines operate in four distinct modes: air- augmented rocket (AAR), ramjet, scram-rocket, and all-rocket. The booster operates in AAR mode from takeoff to Mach 3, with ramjet mode operation from Mach 3 to Mach 6. The rocket re-ignition for scram-rocket mode occurs at Mach 6, with all-rocket mode from Mach 14 to the staging condition. The extended utilization of the scram-rocket mode greatly improves vehicle performance by providing superior vehicle acceleration when compared to the scramjet mode performance over the same flight region. Results indicate that the specific impulse penalty due to the scram-rocket mode operation is outweighed by the reduced flight time, smaller vehicle size due to increased mixture ratio, and lower allowable maximum dynamic pressure. A complete vehicle system life-cycle analysis was performed in an automated, multi-disciplinary design environment. Automated disciplinary performance analysis tools include: trajectory (POST), propulsion (SCCREAM), aeroheating (TCAT II), and an Excel spreadsheet for component weight estimation. These tools were automated using `file wrappers' in Phoenix Integration's ModelCenter collaborative design environment. Performance tools utilized for the analysis, but not requiring automation included IDEAS for solid modeling and APAS for the aerodynamic analysis. The paper describes the vehicle concept and operation, discussing the types of technologies used and the nominal flight scenario. A brief discussion explaining the decision-making process for the vehicle configuration is included. For cost predictions, NAFCOM-derived cost estimating relationships were used. Economic predictions were developed using a number of codes, including CABAM (financials), AATe (operations), and GTSafetyII (safety and reliability).
Measuring Model Rocket Engine Thrust Curves
ERIC Educational Resources Information Center
Penn, Kim; Slaton, William V.
2010-01-01
This paper describes a method and setup to quickly and easily measure a model rocket engine's thrust curve using a computer data logger and force probe. Horst describes using Vernier's LabPro and force probe to measure the rocket engine's thrust curve; however, the method of attaching the rocket to the force probe is not discussed. We show how a…
2004-04-15
Pictured is a component of the Rocket Based Combined Cycle (RBCC) engine. This engine was designed to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsion systems and ultimately a Single Stage to Orbit (SSTO) air breathing propulsion system.
Saturn systems holddown acoustic efficiency and normalized acoustic power spectrum.
NASA Technical Reports Server (NTRS)
Gilbert, D. W.
1972-01-01
Saturn systems field acoustic data are used to derive mid- and far-field prediction parameters for rocket engine noise. The data were obtained during Saturn vehicle launches at the Kennedy Space Center. The data base is a sorted set of acoustic data measured during the period 1961 through 1971 for Saturn system launches SA-1 through AS-509. The model assumes hemispherical radiation from a simple source located at the intersection of the longitudinal axis of each booster and the engine exit plane. The model parameters are evaluated only during vehicle holddown. The acoustic normalized power spectrum and efficiency for each system are isolated as a composite from the data using linear numerical methods. The specific definitions of each allows separation. The resulting power spectra are nondimensionalized as a function of rocket engine parameters. The nondimensional Saturn system acoustic spectrum and efficiencies are compared as a function of Strouhal number with power spectra from other systems.
SSME component assembly and life management expert system
NASA Technical Reports Server (NTRS)
Ali, M.; Dietz, W. E.; Ferber, H. J.
1989-01-01
The space shuttle utilizes several rocket engine systems, all of which must function with a high degree of reliability for successful mission completion. The space shuttle main engine (SSME) is by far the most complex of the rocket engine systems and is designed to be reusable. The reusability of spacecraft systems introduces many problems related to testing, reliability, and logistics. Components must be assembled from parts inventories in a manner which will most effectively utilize the available parts. Assembly must be scheduled to efficiently utilize available assembly benches while still maintaining flight schedules. Assembled components must be assigned to as many contiguous flights as possible, to minimize component changes. Each component must undergo a rigorous testing program prior to flight. In addition, testing and assembly of flight engines and components must be done in conjunction with the assembly and testing of developmental engines and components. The development, testing, manufacture, and flight assignments of the engine fleet involves the satisfaction of many logistical and operational requirements, subject to many constraints. The purpose of the SSME Component Assembly and Life Management Expert System (CALMES) is to assist the engine assembly and scheduling process, and to insure that these activities utilize available resources as efficiently as possible.
NASA Astrophysics Data System (ADS)
Bozic, O.; Longo, J. M.; Giese, P.; Behren, J.
2005-02-01
The electromagnetic railgun technology appears to be an interesting alternative to launch small payloads into Low Earth Orbit (LEO), as this may introduce lower launch costs. A high-end solution, based upon present state of the art technology, has been investigated to derive the technical boundary conditions for the application of such a new system. This paper presents the main concept and the design aspects of such propelled projectile with special emphasis on flight mechanics, aero-/thermodynamics, materials and propulsion characteristics. Launch angles and trajectory optimisation analyses are carried out by means of 3 degree of freedom simulations (3DOF). The aerodynamic form of the projectile is optimised to provoke minimum drag and low heat loads. The surface temperature distribution for critical zones is calculated with DLR developed Navier-Stokes codes TAU, HOTSOSE, whereas the engineering tool HF3T is used for time dependent calculations of heat loads and temperatures on project surface and inner structures. Furthermore, competing propulsions systems are considered for the rocket engines of both stages. The structural mass is analysed mostly on the basis of carbon fibre reinforced materials as well as classical aerospace metallic materials. Finally, this paper gives a critical overview of the technical feasibility and cost of small rockets for such missions. Key words: micro-satellite, two-stage-rocket, railgun, rocket-engines, aero/thermodynamic, mass optimization
NASA Technical Reports Server (NTRS)
Gunn, Stanley
1991-01-01
The needs of the designer of a solid core nuclear rocket engine are discussed. Some of the topics covered include: (1) a flight thrust module/feed system module assembly; (2) a nuclear thermal rocket (NTR), expander cycle, dual T/P; (3) turbopump operating conditions; (4) typical system parameters; (5) growth capability composite fuel elements; (6) a NTR radiation cooled nozzle extension; (7) a NFS-3B Feed System; and (8) a NTR Integrated Pneumatic-Fluidics Control System.
Performance Criteria of Nuclear Space Propulsion Systems
NASA Astrophysics Data System (ADS)
Shepherd, L. R.
Future exploration of the solar system on a major scale will require propulsion systems capable of performance far greater than is achievable with the present generation of rocket engines using chemical propellants. Viable missions going deeper into interstellar space will be even more demanding. Propulsion systems based on nuclear energy sources, fission or (eventually) fusion offer the best prospect for meeting the requirements. The most obvious gain coming from the application of nuclear reactions is the possibility, at least in principle, of obtaining specific impulses a thousandfold greater than can be achieved in chemically energised rockets. However, practical considerations preclude the possibility of exploiting the full potential of nuclear energy sources in any engines conceivable in terms of presently known technology. Achievable propulsive power is a particularly limiting factor, since this determines the acceleration that may be obtained. Conventional chemical rocket engines have specific propulsive powers (power per unit engine mass) in the order of gigawatts per tonne. One cannot envisage the possibility of approaching such a level of performance by orders of magnitude in presently conceivable nuclear propulsive systems. The time taken, under power, to reach a given terminal velocity is proportional to the square of the engine's exhaust velocity and the inverse of its specific power. An assessment of various nuclear propulsion concepts suggests that, even with the most optimistic assumptions, it could take many hundreds of years to attain the velocities necessary to reach the nearest stars. Exploration within a range of the order of a thousand AU, however, would appear to offer viable prospects, even with the low levels of specific power of presently conceivable nuclear engines.
Atmospheric Mining in the Outer Solar System: Outer Planet Orbital Transfer and Lander Analyses
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2016-01-01
High energy propellants for human lunar missions are analyzed, focusing on very advanced ozone and atomic hydrogen. One of the most advanced launch vehicle propulsion systems, such as the Space Shuttle Main Engine (SSME), used hydrogen and oxygen and had a delivered specific impulse of 453 seconds. In the early days of the space program, other propellants (or so called metapropellants) were suggested, including atomic hydrogen and liquid ozone. Theoretical and experimental studies of atomic hydrogen and ozone were conducted beginning in the late 1940s. This propellant research may have provided screenwriters with the idea of an atomic hydrogen-ozone rocket engine in the 1950 movie, Rocketship X-M. This paper presents analyses showing that an atomic hydrogen-ozone rocket engine could produce a specific impulse over a wide range of specific impulse values reaching as high as 1,600 seconds. A series of single stage and multistage rocket vehicle analyses were conducted to find the minimum specific impulse needed to conduct high energy round trip lunar missions.
Airbreathing engine selection criteria for SSTO propulsion system
NASA Astrophysics Data System (ADS)
Ohkami, Yoshiaki; Maita, Masataka
1995-02-01
This paper presents airbreathing engine selection criteria to be applied to the propulsion system of a Single Stage To Orbit (SSTO). To establish the criteria, a relation among three major parameters, i.e., delta-V capability, weight penalty, and effective specific impulse of the engine subsystem, is derived as compared to these parameters of the LH2/LOX rocket engine. The effective specific impulse is a function of the engine I(sub sp) and vehicle thrust-to-drag ratio which is approximated by a function of the vehicle velocity. The weight penalty includes the engine dry weight, cooling subsystem weight. The delta-V capability is defined by the velocity region starting from the minimum operating velocity up to the maximum velocity. The vehicle feasibility is investigated in terms of the structural and propellant weights, which requires an iteration process adjusting the system parameters. The system parameters are computed by iteration based on the Newton-Raphson method. It has been concluded that performance in the higher velocity region is extremely important so that the airbreathing engines are required to operate beyond the velocity equivalent to the rocket engine exhaust velocity (approximately 4500 m/s).
Damage-mitigating control of space propulsion systems for high performance and extended life
NASA Technical Reports Server (NTRS)
Ray, Asok; Wu, Min-Kuang; Dai, Xiaowen; Carpino, Marc; Lorenzo, Carl F.
1993-01-01
Calculations are presented showing that a substantial improvement in service life of a reusable rocket engine can be achieved by an insignificant reduction in the system dynamic performance. The paper introduces the concept of damage mitigation and formulates a continuous-time model of fatigue damage dynamics. For control of complex mechanical systems, damage prediction and damage mitigation are carried out based on the available sensory and operational information such that the plant can be inexpensively maintained and safely and efficiently steered under diverse operating conditions. The results of simulation experiments are presented for transient operations of a reusable rocket engine.
Ion Propulsion Development Projects in US: Space Electric Rocket Test I to Deep Space 1
NASA Technical Reports Server (NTRS)
Sovey, James S.; Rawlin, Vincent K.; Patterson, Michael J.
2001-01-01
The historical background and characteristics of the experimental flights of ion propulsion systems and the major ground-based technology demonstrations are reviewed. The results of the first successful ion engine flight in 1964, Space Electric Rocket Test (SERT) I, which demonstrated ion beam neutralization, are discussed along with the extended operation of SERT II starting in 1970. These results together with the technologies employed on the early cesium engine flights, the applications technology satellite series, and the ground-test demonstrations, have provided the evolutionary path for the development of xenon ion thruster component technologies, control systems, and power circuit implementations. In the 1997-1999 period, the communication satellite flights using ion engine systems and the Deep Space 1 flight confirmed that these auxiliary and primary propulsion systems have advanced to a high level of flight readiness.
Nitrous Oxide/Paraffin Hybrid Rocket Engines
NASA Technical Reports Server (NTRS)
Zubrin, Robert; Snyder, Gary
2010-01-01
Nitrous oxide/paraffin (N2OP) hybrid rocket engines have been invented as alternatives to other rocket engines especially those that burn granular, rubbery solid fuels consisting largely of hydroxyl- terminated polybutadiene (HTPB). Originally intended for use in launching spacecraft, these engines would also be suitable for terrestrial use in rocket-assisted takeoff of small airplanes. The main novel features of these engines are (1) the use of reinforced paraffin as the fuel and (2) the use of nitrous oxide as the oxidizer. Hybrid (solid-fuel/fluid-oxidizer) rocket engines offer advantages of safety and simplicity over fluid-bipropellant (fluid-fuel/fluid-oxidizer) rocket en - gines, but the thrusts of HTPB-based hybrid rocket engines are limited by the low regression rates of the fuel grains. Paraffin used as a solid fuel has a regression rate about 4 times that of HTPB, but pure paraffin fuel grains soften when heated; hence, paraffin fuel grains can, potentially, slump during firing. In a hybrid engine of the present type, the paraffin is molded into a 3-volume-percent graphite sponge or similar carbon matrix, which supports the paraffin against slumping during firing. In addition, because the carbon matrix material burns along with the paraffin, engine performance is not appreciably degraded by use of the matrix.
Performance potential of gas-core and fusion rockets - A mission applications survey.
NASA Technical Reports Server (NTRS)
Fishbach, L. H.; Willis, E. A., Jr.
1971-01-01
This paper reports an evaluation of the performance potential of five nuclear rocket engines for four mission classes. These engines are: the regeneratively cooled gas-core nuclear rocket; the light bulb gas-core nuclear rocket; the space-radiator cooled gas-core nuclear rocket; the fusion rocket; and an advanced solid-core nuclear rocket which is included for comparison. The missions considered are: earth-to-orbit launch; near-earth space missions; close interplanetary missions; and distant interplanetary missions. For each of these missions, the capabilities of each rocket engine type are compared in terms of payload ratio for the earth launch mission or by the initial vehicle mass in earth orbit for space missions (a measure of initial cost). Other factors which might determine the engine choice are discussed. It is shown that a 60 day manned round trip to Mars is conceivable.-
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.
1995-01-01
The potential for a revolutionary step in the durability of reusable rocket engines is made possible by the combination of several emerging technologies. The recent creation and analytical demonstration of life extending (or damage mitigating) control technology enables rapid rocket engine transients with minimum fatigue and creep damage. This technology has been further enhanced by the formulation of very simple but conservative continuum damage models. These new ideas when combined with recent advances in multidisciplinary optimization provide the potential for a large (revolutionary) step in reusable rocket engine durability. This concept has been named the robust rocket engine concept (RREC) and is the basic contribution of this paper. The concept also includes consideration of design innovations to minimize critical point damage.
SAFE Testing Nuclear Rockets Economically
NASA Astrophysics Data System (ADS)
Howe, Steven D.; Travis, Bryan; Zerkle, David K.
2003-01-01
Several studies over the past few decades have recognized the need for advanced propulsion to explore the solar system. As early as the 1960s, Werner Von Braun and others recognized the need for a nuclear rocket for sending humans to Mars. The great distances, the intense radiation levels, and the physiological response to zero-gravity all supported the concept of using a nuclear rocket to decrease mission time. These same needs have been recognized in later studies, especially in the Space Exploration Initiative in 1989. One of the key questions that has arisen in later studies, however, is the ability to test a nuclear rocket engine in the current societal environment. Unlike the Rover/NERVA programs in the 1960s, the rocket exhaust can no longer be vented to the open atmosphere. As a consequence, previous studies have examined the feasibility of building a large-scale version of the Nuclear Furnace Scrubber that was demonstrated in 1971. We have investigated an alternative that would deposit the rocket exhaust along with any entrained fission products directly into the ground. The Subsurface Active Filtering of Exhaust, or SAFE, concept would allow variable sized engines to be tested for long times at a modest expense. A system overview, results of preliminary calculations, and cost estimates of proof of concept demonstrations are presented. The results indicate that a nuclear rocket could be tested at the Nevada Test Site for under $20 M.
A Demonstration of an Intelligent Control System for a Reusable Rocket Engine
1992-06-01
Research Center Cleveland, Ohio 44135 ABSTRACT DTIC QUALrI’ ’illE ,;TED 3 An Intelligent Control System for reusable rocket engines is under development at...through the ring seal may be written as rh,i,,g - 0.685 It Co d c~iiPexi g ( 3 )VRTIprt( where d. and cri6t now correspond to the shaft diameter and the ring...discharge coefficient of 0.9 for both seals and disk and shaft diameters of 6.0 and 2.0 inches respectively, equations I and 3 may be equated and the
2. ROCKET ENGINE TEST STAND, SHOWING TANK (BUILDING 1929) AND ...
2. ROCKET ENGINE TEST STAND, SHOWING TANK (BUILDING 1929) AND GARAGE (BUILDING 1930) AT LEFT REAR. Looking to west. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
Evaluation of an Ejector Ramjet Based Propulsion System for Air-Breathing Hypersonic Flight
NASA Technical Reports Server (NTRS)
Thomas, Scott R.; Perkins, H. Douglas; Trefny, Charles J.
1997-01-01
A Rocket Based Combined Cycle (RBCC) engine system is designed to combine the high thrust to weight ratio of a rocket along with the high specific impulse of a ramjet in a single, integrated propulsion system. This integrated, combined cycle propulsion system is designed to provide higher vehicle performance than that achievable with a separate rocket and ramjet. The RBCC engine system studied in the current program is the Aerojet strutjet engine concept, which is being developed jointly by a government-industry team as part of the Air Force HyTech program pre-PRDA activity. The strutjet is an ejector-ramjet engine in which small rocket chambers are embedded into the trailing edges of the inlet compression struts. The engine operates as an ejector-ramjet from take-off to slightly above Mach 3. Above Mach 3 the engine operates as a ramjet and transitions to a scramjet at high Mach numbers. For space launch applications the rockets would be re-ignited at a Mach number or altitude beyond which air-breathing propulsion alone becomes impractical. The focus of the present study is to develop and demonstrate a strutjet flowpath using hydrocarbon fuel at up to Mach 7 conditions. Freejet tests of a candidate flowpath for this RBCC engine were conducted at the NASA Lewis Research Center's Hypersonic Tunnel Facility between July and September 1996. This paper describes the engine flowpath and installation, outlines the primary objectives of the program, and describes the overall results of this activity. Through this program 15 full duration tests, including 13 fueled tests were made. The first major achievement was the further demonstration of the HTF capability. The facility operated at conditions up to 1950 K and 7.34 MPa, simulating approximately Mach 6.6 flight. The initial tests were unfueled and focused on verifying both facility and engine starting. During these runs additional aerodynamic appliances were incorporated onto the facility diffuser to enhance starting. Both facility and engine starting were achieved. Further, the static pressure distributions compared well with the results previously obtained in a 40% subscale flowpath study conducted in the LERC 1X1 supersonic wind tunnel (SWT), as well as the results of CFD analysis. Fueled performance results were obtained for the engine at both simulated Mach 6 (1670 K) and Mach 6.6 (1950 K) conditions. For all these tests the primary fuel was liquid JP-10 with gaseous silane (a mixture of 20% SiH4 and 80% H2 by volume) as an ignitor/pilot. These tests verified performance of this engine flowpath in a freejet mode. High combustor pressures were reached and significant changes in axial force were achieved due to combustion. Future test plans include redistributing the fuel to improve mixing, and consequently performance, at higher equivalence ratios.
7. Historic aerial photo of rocket engine test facility complex, ...
7. Historic aerial photo of rocket engine test facility complex, June 1962. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-60674. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
Flight Testing the Linear Aerospike SR-71 Experiment (LASRE)
NASA Technical Reports Server (NTRS)
Corda, Stephen; Neal, Bradford A.; Moes, Timothy R.; Cox, Timothy H.; Monaghan, Richard C.; Voelker, Leonard S.; Corpening, Griffin P.; Larson, Richard R.; Powers, Bruce G.
1998-01-01
The design of the next generation of space access vehicles has led to a unique flight test that blends the space and flight research worlds. The new space vehicle designs, such as the X-33 vehicle and Reusable Launch Vehicle (RLV), are powered by linear aerospike rocket engines. Conceived of in the 1960's, these aerospike engines have yet to be flown, and many questions remain regarding aerospike engine performance and efficiency in flight. To provide some of these data before flying on the X-33 vehicle and the RLV, a spacecraft rocket engine has been flight-tested atop the NASA SR-71 aircraft as the Linear Aerospike SR-71 Experiment (LASRE). A 20 percent-scale, semispan model of the X-33 vehicle, the aerospike engine, and all the required fuel and oxidizer tanks and propellant feed systems have been mounted atop the SR-71 airplane for this experiment. A major technical objective of the LASRE flight test is to obtain installed-engine performance flight data for comparison to wind-tunnel results and for the development of computational fluid dynamics-based design methodologies. The ultimate goal of firing the aerospike rocket engine in flight is still forthcoming. An extensive design and development phase of the experiment hardware has been completed, including approximately 40 ground tests. Five flights of the LASRE and firing the rocket engine using inert liquid nitrogen and helium in place of liquid oxygen and hydrogen have been successfully completed.
Engine management during NTRE start up
NASA Technical Reports Server (NTRS)
Bulman, Mel; Saltzman, Dave
1993-01-01
The topics are presented in viewgraph form and include the following: total engine system management critical to successful nuclear thermal rocket engine (NTRE) start up; NERVA type engine start windows; reactor power control; heterogeneous reactor cooling; propellant feed system dynamics; integrated NTRE start sequence; moderator cooling loop and efficient NTRE starting; analytical simulation and low risk engine development; accurate simulation through dynamic coupling of physical processes; and integrated NTRE and mission performance.
Development Activities on Airbreathing Combined Cycle Engines
NASA Technical Reports Server (NTRS)
McArthur, J. Craig; Lyles, Garry (Technical Monitor)
2000-01-01
Contents include the following: Advanced reusable transportation(ART); aerojet and rocketdyne tests, RBCC focused concept flowpaths,fabricate flight weigh, test select components, document ART project, Istar (Integrated system test of an airbreathing rocket); combined cycle propulsion testbed;hydrocarbon demonstrator tracebility; Istar engine system and vehicle system closure study; and Istar project planning.
Review of Nuclear Thermal Propulsion Ground Test Options
NASA Technical Reports Server (NTRS)
Coote, David J.; Power, Kevin P.; Gerrish, Harold P.; Doughty, Glen
2015-01-01
High efficiency rocket propulsion systems are essential for humanity to venture beyond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rockets with relatively high thrust and twice the efficiency of highest performing chemical propellant engines. NTP utilizes the coolant of a nuclear reactor to produce propulsive thrust. An NTP engine produces thrust by flowing hydrogen through a nuclear reactor to cool the reactor, heating the hydrogen and expelling it through a rocket nozzle. The hot gaseous hydrogen is nominally expected to be free of radioactive byproducts from the nuclear reactor; however, it has the potential to be contaminated due to off-nominal engine reactor performance. NTP ground testing is more difficult than chemical engine testing since current environmental regulations do not allow/permit open air testing of NTP as was done in the 1960's and 1970's for the Rover/NERVA program. A new and innovative approach to rocket engine ground test is required to mitigate the unique health and safety risks associated with the potential entrainment of radioactive waste from the NTP engine reactor core into the engine exhaust. Several studies have been conducted since the ROVER/NERVA program in the 1970's investigating NTP engine ground test options to understand the technical feasibility, identify technical challenges and associated risks and provide rough order of magnitude cost estimates for facility development and test operations. The options can be divided into two distinct schemes; (1) real-time filtering of the engine exhaust and its release to the environment or (2) capture and storage of engine exhaust for subsequent processing.
SLS Booster Engine Service Platforms Delivery
2017-07-31
A flatbed truck carrying one of two new service platforms for NASA's Space Launch System booster engines nears the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be delivered to the VAB, where they will be stored and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.
Booster Engine Service Platforms Delivered to VAB
2018-04-17
A new service platform for NASA's Space Launch System booster engines is being prepared for the move into the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platform was transported from fabricator Met-Con Inc. in Cocoa, Florida. It will be stored in the VAB, and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.
SLS Booster Engine Service Platforms Delivery
2017-07-31
A flatbed truck carrying one of two new service platforms for NASA's Space Launch System booster engines backs up inside the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be stored in the VAB, where they will be used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.
SLS Booster Engine Service Platforms Delivery
2017-07-31
A flatbed truck carrying one of two new service platforms for NASA's Space Launch System booster engines backs in to the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be stored in the VAB, where they will be used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.
SLS Booster Engine Service Platforms Delivery
2017-07-31
A flatbed truck carrying one of two new service platforms for NASA's Space Launch System booster engines arrives inside the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be stored in the VAB, where they will be used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.
SLS Booster Engine Service Platforms Delivery
2017-07-31
A flatbed truck carrying one of two new service platforms for NASA's Space Launch System booster engines arrives at the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be stored in the VAB, where they will be used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.
SLS Booster Engine Service Platforms Delivery
2017-07-31
New service platforms for NASA's Space Launch System booster engines, secured on two flatbed trucks, are on their way to the agency's Kennedy Space Center in Florida. They are being transported from fabricator Met-Con Inc. in Cocoa, Florida. The platforms will be delivered to the Vehicle Assembly Building, where they will be stored and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.
SLS Booster Engine Service Platforms Delivery
2017-07-31
One of two new work platforms for NASA's Space Launch System booster engines is secured on dunnage inside the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be stored in the VAB, where they will be used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.
Historical flight qualifications of space nuclear systems
NASA Astrophysics Data System (ADS)
Bennett, Gary L.
1997-01-01
An overview is presented of the qualification programs for the general-purpose heat source radioisotope thermoelectric generators (GPHS-RTGs) as developed for the Galileo and Ulysses missions; the SNAP-10A space reactor; the Nuclear Engine for Rocket Vehicle Applications (NERVA); the F-1 chemical rocket engine used on the Saturn-V Apollo lunar missions; and the Space Shuttle Main Engines (SSMEs). Some similarities and contrasts between the qualification testing employed on these five programs will be noted. One common thread was that in each of these successful programs there was an early focus on component and subsystem tests to uncover and correct problems.
NASA Astrophysics Data System (ADS)
Kudrin, O. I.
1993-10-01
Relationships are presented which describe changes in the thrust and specific impulse of a solar thermal rocket engine due to a change in the flow rate of the working fluid (hydrogen). Expressions are also presented which describe the variation of the STRE thrust and specific impulse with the distance between the flight vehicle and the sun. Results of calculations are presented for an STRE with afterburning of the working fluid (hydrogen + oxygen) using hydrogen heating by solar energy to a temperature of 2360 K.
A hybrid rocket engine design for simple low cost sounding rocket use
NASA Astrophysics Data System (ADS)
Grubelich, Mark; Rowland, John; Reese, Larry
1993-06-01
Preliminary test results on a nitrous oxide/HTPB hybrid rocket engine suitable for powering a small sounding rocket to altitudes of 50-100 K/ft are presented. It is concluded that the advantage of the N2O hybrid engine over conventional solid propellant rocket motors is the ability to obtain long burn times with core burning geometries due to the low regression rate of the fuel. Long burn times make it possible to reduce terminal velocity to minimize air drag losses.
Analytical study of nozzle performance for nuclear thermal rockets
NASA Technical Reports Server (NTRS)
Davidian, Kenneth O.; Kacynski, Kenneth J.
1991-01-01
A parametric study has been conducted by the NASA-Lewis Rocket Engine Design Expert System for the convergent-divergent nozzle of the Nuclear Thermal Rocket system, which uses a nuclear reactor to heat hydrogen to high temperature and then expands it through the nozzle. It is established by the study that finite-rate chemical reactions lower performance levels from theoretical levels. Major parametric roles are played by chamber temperature and chamber pressure. A maximum performance of 930 sec is projected at 2700 K, and of 1030 at 3100 K.
12. Historic plot plan and drawings index for rocket engine ...
12. Historic plot plan and drawings index for rocket engine test facility, June 28, 1956. NASA GRC drawing number CE-101810. On file at NASA Glenn Research Center. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
9. Historic aerial photo of rocket engine test facility complex, ...
9. Historic aerial photo of rocket engine test facility complex, June 11, 1965. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-65-1270. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
10. Historic photo of rendering of rocket engine test facility ...
10. Historic photo of rendering of rocket engine test facility complex, April 28, 1964. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-69472. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
5. Historic photo of scale model of rocket engine test ...
5. Historic photo of scale model of rocket engine test facility, June 18, 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45264. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
8. Historic aerial photo of rocket engine test facility complex, ...
8. Historic aerial photo of rocket engine test facility complex, June 11, 1965. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-65-1271. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
Hydrocarbon-Fueled Rocket Engine Plume Diagnostics: Analytical Developments and Experimental Results
NASA Technical Reports Server (NTRS)
Tejwani, Gopal D.; McVay, Gregory P.; Langford, Lester A.; St. Cyr, William W.
2006-01-01
A viewgraph presentation describing experimental results and analytical developments about plume diagnostics for hydrocarbon-fueled rocket engines is shown. The topics include: 1) SSC Plume Diagnostics Background; 2) Engine Health Monitoring Approach; 3) Rocket Plume Spectroscopy Simulation Code; 4) Spectral Simulation for 10 Atomic Species and for 11 Diatomic Molecular Electronic Bands; 5) "Best" Lines for Plume Diagnostics for Hydrocarbon-Fueled Rocket Engines; 6) Experimental Set Up for the Methane Thruster Test Program and Experimental Results; and 7) Summary and Recommendations.
Boiler and Pressure Balls Monopropellant Thermal Rocket Engine
NASA Technical Reports Server (NTRS)
Greene, William D. (Inventor)
2009-01-01
The proposed technology is a rocket engine cycle utilizing as the propulsive fluid a low molecular weight, cryogenic fluid, typically liquid hydrogen, pressure driven, heated, and expelled through a nozzle to generate high velocity and high specific impulse discharge gas. The proposed technology feeds the propellant through the engine cycle without the use of a separate pressurization fluid and without the use of turbomachinery. Advantages of the proposed technology are found in those elements of state-of-the-art systems that it avoids. It does not require a separate pressurization fluid or a thick-walled primary propellant tank as is typically required for a classical pressure-fed system. Further, it does not require the acceptance of intrinsic reliability risks associated with the use of turbomachinery
NASA Technical Reports Server (NTRS)
Crowe, Kathryn; Williams, Michael
2015-01-01
Test site selection is a critical element of the design, development and production of a new system. With the advent of the new Space Launch System (SLS), the National Aeronautics and Space Administration (NASA) had a number of test site selection decisions that needed to be made early enough in the Program to support the planned Launch Readiness Date (LRD). This case study focuses on decisions that needed to be made in 2011 and 2012 in preparation for the April 2013 DPMC decision about where to execute the Main Propulsion Test that is commonly referred to as "Green Run." Those decisions relied upon cooperative analysis between the Program, the Test Lab and Center Operations. The SLS is a human spaceflight vehicle designed to carry a crew farther into space than humans have previously flown. The vehicle consists of four parts: the crew capsule, the upper stage, the core stage, and the first stage solid rocket boosters. The crew capsule carries the astronauts, while the upper stage, the core stage, and solid rocket boosters provide thrust for the vehicle. In other words, the stages provide the "lift" part of the lift vehicle. In conjunction with the solid rocket boosters, the core stage provides the initial "get-off-the-ground" thrust to the vehicle. The ignition of the four core stage engines and two solid rocket boosters is the first step in the launch portion of the mission. The solid rocket boosters burn out after about 2 minutes of flight, and are then jettisoned. The core stage provides thrust until the vehicle reaches a specific altitude and speed, at which point the core stage is shut off and jettisoned, and the upper stage provides vehicle thrust for subsequent mission trajectories. The integrated core stage primarily consists of a liquid oxygen tank, a liquid hydrogen tank, and the four core stage engines. For the SLS program, four RS-25 engines were selected as the four core stage engines. The RS-25 engine is the same engine that was used for Space Shuttle. The test plan for the integrated core stage was broken down into several segments: Component testing, system level testing, and element level testing. In this context, components are items such as valves, controllers, sensors, etc. Systems are items such as an entire engine, a tank, or the outer stage body. The core stage itself is considered to be an element. The rocket engines are also considered an element. At the program level, it was decided to perform a single green run test on the integrated core stage prior to shipment of it to Kennedy Space Center (KSC) for use in the EM-1 test flight of the SLS vehicle. A green run test is the first live fire of the new integrated core stage and engine elements - without boosters of course. The SLS Program had to decide where to perform SLS green run testing.
NASA Astrophysics Data System (ADS)
Trushlyakov, V.; Shatrov, Ya.
2017-09-01
In this paper, the analysis of technical requirements (TR) for the development of modern space launch vehicles (LV) with main liquid rocket engines (LRE) is fulfilled in relation to the anthropogenic impact decreasing. Factual technical characteristics on the example of a promising type of rocket ;Soyuz-2.1.v.; are analyzed. Meeting the TR in relation to anthropogenic impact decrease based on the conventional design approach and the content of the onboard system does not prove to be efficient and leads to depreciation of the initial technical characteristics obtained at the first design stage if these requirements are not included. In this concern, it is shown that the implementation of additional active onboard de-orbiting system (AODS) of worked-off stages (WS) into the onboard LV stages systems allows to meet the TR related to the LV environmental characteristics, including fire-explosion safety. In some cases, the orbital payload mass increases.
Supercomputer modeling of hydrogen combustion in rocket engines
NASA Astrophysics Data System (ADS)
Betelin, V. B.; Nikitin, V. F.; Altukhov, D. I.; Dushin, V. R.; Koo, Jaye
2013-08-01
Hydrogen being an ecological fuel is very attractive now for rocket engines designers. However, peculiarities of hydrogen combustion kinetics, the presence of zones of inverse dependence of reaction rate on pressure, etc. prevents from using hydrogen engines in all stages not being supported by other types of engines, which often brings the ecological gains back to zero from using hydrogen. Computer aided design of new effective and clean hydrogen engines needs mathematical tools for supercomputer modeling of hydrogen-oxygen components mixing and combustion in rocket engines. The paper presents the results of developing verification and validation of mathematical model making it possible to simulate unsteady processes of ignition and combustion in rocket engines.
From Bridges and Rockets, Lessons for Software Systems
NASA Technical Reports Server (NTRS)
Holloway, C. Michael
2004-01-01
Although differences exist between building software systems and building physical structures such as bridges and rockets, enough similarities exist that software engineers can learn lessons from failures in traditional engineering disciplines. This paper draws lessons from two well-known failures the collapse of the Tacoma Narrows Bridge in 1940 and the destruction of the space shuttle Challenger in 1986 and applies these lessons to software system development. The following specific applications are made: (1) the verification and validation of a software system should not be based on a single method, or a single style of methods; (2) the tendency to embrace the latest fad should be overcome; and (3) the introduction of software control into safety-critical systems should be done cautiously.
Designing Liquid Rocket Engine Injectors for Performance, Stability, and Cost
NASA Technical Reports Server (NTRS)
Westra, Douglas G.; West, Jeffrey S.
2014-01-01
NASA is developing the Space Launch System (SLS) for crewed exploration missions beyond low Earth orbit. Marshall Space Flight Center (MSFC) is designing rocket engines for the SLS Advanced Booster (AB) concepts being developed to replace the Shuttle-derived solid rocket boosters. One AB concept uses large, Rocket-Propellant (RP)-fueled engines that pose significant design challenges. The injectors for these engines require high performance and stable operation while still meeting aggressive cost reduction goals for access to space. Historically, combustion stability problems have been a critical issue for such injector designs. Traditional, empirical injector design tools and methodologies, however, lack the ability to reliably predict complex injector dynamics that often lead to combustion stability. Reliance on these tools alone would likely result in an unaffordable test-fail-fix cycle for injector development. Recently at MSFC, a massively parallel computational fluid dynamics (CFD) program was successfully applied in the SLS AB injector design process. High-fidelity reacting flow simulations were conducted for both single-element and seven-element representations of the full-scale injector. Data from the CFD simulations was then used to significantly augment and improve the empirical design tools, resulting in a high-performance, stable injector design.
Liquid-Propellant Rocket Engine Throttling: A Comprehensive Review
NASA Technical Reports Server (NTRS)
Casiano, Matthew; Hulka, James; Yang, Virog
2009-01-01
Liquid-Propellant Rocket Engines (LREs) are capable of on-command variable thrust or thrust modulation, an operability advantage that has been studied intermittently since the late 1930s. Throttleable LREs can be used for planetary entry and descent, space rendezvous, orbital maneuvering including orientation and stabilization in space, and hovering and hazard avoidance during planetary landing. Other applications have included control of aircraft rocket engines, limiting of vehicle acceleration or velocity using retrograde rockets, and ballistic missile defense trajectory control. Throttleable LREs can also continuously follow the most economical thrust curve in a given situation, compared to discrete throttling changes over a few select operating points. The effects of variable thrust on the mechanics and dynamics of an LRE as well as difficulties and issues surrounding the throttling process are important aspects of throttling behavior. This review provides a detailed survey of LRE throttling centered around engines from the United States. Several LRE throttling methods are discussed, including high-pressure-drop systems, dual-injector manifolds, gas injection, multiple chambers, pulse modulation, throat throttling, movable injector components, and hydrodynamically dissipative injectors. Concerns and issues surrounding each method are examined, and the advantages and shortcomings compared.
Time-Lapse Video of SLS Engine Section Test Article Being Stacked at Michoud
2017-04-25
This time-lapse video shows the Space Launch System engine section structural qualification test article being stacked at NASA's Michoud Assembly Facility in New Orleans. The rocket's engine section is the bottom of the core stage and houses the four RS-25 engines. The engine section test article was moved to Michoud's Cell A in Building 110 for vertical stacking with hardware that simulates the rocket's liquid hydrogen tank, which is the fuel tank that joins to the engine section. Once stacked, the entire test article will load onto the barge Pegasus and ship to NASA's Marshall Space Flight Center in Huntsville, Alabama. There, it will be subjected to millions of pounds of force during testing to ensure the hardware can withstand the incredible stresses of launch.
SLS Engine Section Test Article Moved for Stacking at Michoud
2017-04-25
Stacking is underway for the Space Launch System core stage engine section structural qualification test article at NASA's Michoud Assembly Facility in New Orleans. The rocket's engine section is the bottom of the core stage and houses the four RS-25 engines. The engine section test article was moved to Michoud's Cell A in Building 110 for vertical stacking with hardware that simulates the rocket's liquid hydrogen tank, which is the fuel tank that joins to the engine section. Once stacked, the entire test article will load onto the barge Pegasus and ship to NASA's Marshall Space Flight Center in Huntsville, Alabama. There, it will be subjected to millions of pounds of force during testing to ensure the hardware can withstand the incredible stresses of launch.
11. Historic photo of cutaway rendering of rocket engine test ...
11. Historic photo of cutaway rendering of rocket engine test facility complex, June 11, 1965. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-74433. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
1951-02-01
the pressure switch (16) is activated. This causes the-electrical circuit to open valve (11) and start the igniter (17). The nitrogen pressure...activates the pressure switch (11) at approximately 7 psi before it flows through the Injector (9) into the chamber. ATI-85«’ - -A 11...precluded. Accordingly, pressure switch (11) is inserted in the system in parallel (electrically) with the flow indicator (17), and the circuit may
Deimos Methane-Oxygen Rocket Engine Test Results
NASA Astrophysics Data System (ADS)
Engelen, S.; Souverein, L. J.; Twigt, D. J.
This paper presents the results of the first DEIMOS Liquid Methane/Oxygen rocket engine test campaign. DEIMOS is an acronym for `Delft Experimental Methane Oxygen propulsion System'. It is a project performed by students under the auspices of DARE (Delft Aerospace Rocket Engineering). The engine provides a theoretical design thrust of 1800 N and specific impulse of 287 s at a chamber pressure of 40 bar with a total mass flow of 637 g/s. It has links to sustainable development, as the propellants used are one of the most promising so-called `green propellants'-combinations, currently under scrutiny by the industry, and the engine is designed to be reusable. This paper reports results from the provisional tests, which had the aim of verifying the engine's ability to fire, and confirming some of the design assumptions to give confidence for further engine designs. Measurements before and after the tests are used to determine first estimates on feed pressures, propellant mass flows and achieved thrust. These results were rather disappointing from a performance point of view, with an average thrust of a mere 3.8% of the design thrust, but nonetheless were very helpful. The reliability of ignition and stability of combustion are discussed as well. An initial assessment as to the reusability, the flexibility and the adaptability of the engine was made. The data provides insight into (methane/oxygen) engine designs, leading to new ideas for a subsequent design. The ultimate goal of this project is to have an operational rocket and to attempt to set an amateur altitude record.
SLS Engine Section Test Article Loaded on Barge Pegasus at NASA's Michoud Assembly Facility
2017-04-27
A NASA move team loaded the engine section structural qualification test article for the Space Launch System into the barge Pegasus docked in the harbor at NASA's Michoud Assembly Facility in New Orleans. The rocket's engine section is the bottom of the core stage and houses the four RS-25 engines. The engine section test article was moved from Building 103, Michoud’s 43-acre rocket factory, to the barge where it was loaded for a river trip to NASA’s Marshall Space Flight Center in Huntsville, Alabama. The bottom part of the test article is structurally the same as the engine section that will be flown as part of the SLS core stage. The shiny metal top part simulates the rocket's liquid hydrogen tank, which is the fuel tank that joins to the engine section. The barge Pegasus will travel 1,240 miles by river to Marshall and endure tests that pull, push, and bend it, subjecting it to millions of pounds of force. This ensures the structure can withstand the incredible stresses produced by the 8.8 million pounds of thrust during launch and ascent.
The hard start phenomena in hypergolic engines. Volume 1: Bibliography
NASA Technical Reports Server (NTRS)
Miron, Y.; Perlee, H. E.
1974-01-01
A bibliography of reports pertaining to the hard start phenomenon in attitude control rocket engines on Apollo spacecraft is presented. Some of the subjects discussed are; (1) combustion of hydrazine, (2) one dimensional theory of liquid fuel rocket combustion, (3) preignition phenomena in small pulsed rocket engines, (4) experimental and theoretical investigation of the fluid dynamics of rocket combustion, and (5) nonequilibrium combustion and nozzle flow in propellant performance.
6. Historic photo of rocket engine test facility Building 202 ...
6. Historic photo of rocket engine test facility Building 202 complex in operation at night, September 12, 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45924. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
13. Historic drawing of rocket engine test facility layout, including ...
13. Historic drawing of rocket engine test facility layout, including Buildings 202, 205, 206, and 206A, February 3, 1984. NASA GRC drawing number CF-101539. On file at NASA Glenn Research Center. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
2017-08-09
The 8.5-minute test conducted at NASA’s Stennis Space Center is part of a series of tests designed to put the upgraded former space shuttle engines through the rigorous temperature and pressure conditions they will experience during a launch. The tests also support the development of a new controller, or “brain,” for the engine, which monitors engine status and communicates between the rocket and the engine, relaying commands to the engine and transmitting data back to the rocket.
Unsteady Analyses of Valve Systems in Rocket Engine Testing Environments
NASA Technical Reports Server (NTRS)
Shipman, Jeremy; Hosangadi, Ashvin; Ahuja, Vineet
2004-01-01
This paper discusses simulation technology used to support the testing of rocket propulsion systems by performing high fidelity analyses of feed system components. A generalized multi-element framework has been used to perform simulations of control valve systems. This framework provides the flexibility to resolve the structural and functional complexities typically associated with valve-based high pressure feed systems that are difficult to deal with using traditional Computational Fluid Dynamics (CFD) methods. In order to validate this framework for control valve systems, results are presented for simulations of a cryogenic control valve at various plug settings and compared to both experimental data and simulation results obtained at NASA Stennis Space Center. A detailed unsteady analysis has also been performed for a pressure regulator type control valve used to support rocket engine and component testing at Stennis Space Center. The transient simulation captures the onset of a modal instability that has been observed in the operation of the valve. A discussion of the flow physics responsible for the instability and a prediction of the dominant modes associated with the fluctuations is presented.
I(sup STAR), NASA's Next Step in Air-Breathing Propulsion for Space Access
NASA Technical Reports Server (NTRS)
Hutt, John J.; McArthur, Craig; Cook, Stephen (Technical Monitor)
2001-01-01
The United States' National Aeronautics and Space Administration (NASA) has established a strategic plan for future activities in space. A primary goal of this plan is to make drastic improvements in the cost and safety of earth to low-earth-orbit transportation. One approach to achieving this goal is through the development of highly reusable, highly reliable space transportation systems analogous to the commercial airline system. In the year 2000, NASA selected the Rocket Based Combined Cycle (RBCC) engine as the next logical step towards this goal. NASA will develop a complete flight-weight, pump-fed engine system under the Integrated System Test of an Airbreathing Rocket (I(sup STAR)) Project. The objective of this project is develop a reusable engine capable of self-powering a vehicle through the air-augmented rocket, ramjet and scramjet modes required in all RBCC based operational vehicle concepts. The project is currently approved and funded to develop the engine through ground test demonstration. Plans are in place to proceed with flight demonstration pending funding approval. The project is in formulation phase and the Preliminary Requirements Review has been completed. The engine system and vehicle have been selected at the conceptual level. The I(sup STAR) engine concept is based on an air-breathing flowpath downselected from three configurations evaluated in NASA's Advanced Reusable Technology contract. The selected flowpath features rocket thrust chambers integrated into struts separating modular flowpath ducts, a variable geometry inlet, and a thermally choked throat. The engine will be approximately 220 inches long and 79 inches wide and fueled with a hydrocarbon fuel using liquid oxygen as the primary oxidizer candidate. The primary concept for the pump turbine drive is pressure-fed catalyzed hydrogen peroxide. In order to control costs, the flight demonstration vehicle will be launched from a B-52 aircraft. The vehicle concept is based on the Air Breathing Launch Vehicle 4 (ABLV4) lifting body configuration which has design heritage from NASA's NASP Program. The vehicle will be designed to accelerate from Mach 0.8 to Mach 7 and will be equipped with landing gear for horizontal landing. The complete vehicle, including the engine, will be designed for 25 flights and will be approximately 33 feet long with a total vehicle weight of approximately 25000 lbs.
Microfabricated Liquid Rocket Motors
NASA Technical Reports Server (NTRS)
Epstein, Alan H.; Joppin, C.; Kerrebrock, J. L.; Schneider, Steven J. (Technical Monitor)
2003-01-01
Under NASA Glenn Research Center sponsorship, MIT has developed the concept of micromachined, bipropellant, liquid rocket engines. This is potentially a breakthrough technology changing the cost-performance tradeoffs for small propulsion systems, enabling new applications, and redefining the meaning of the term low-cost-access-to-space. With this NASA support, a liquid-cooled, gaseous propellant version of the thrust chamber and nozzle was designed, built, and tested as a first step. DARPA is currently funding MIT to demonstrate turbopumps and controls. The work performed herein was the second year of a proposed three-year effort to develop the technology and demonstrate very high power density, regeneratively cooled, liquid bipropellant rocket engine thrust chamber and nozzles. When combined with the DARPA turbopumps and controls, this work would enable the design and demonstration of a complete rocket propulsion system. The original MIT-NASA concept used liquid oxygen-ethanol propellants. The military applications important to DARPA imply that storable liquid propellants are needed. Thus, MIT examined various storable propellant combinations including N2O4 and hydrazine, and H2O2 and various hydrocarbons. The latter are preferred since they do not have the toxicity of N2O4 and hydrazine. In reflection of the newfound interest in H2O2, it is once again in production and available commercially. A critical issue for the microrocket engine concept is cooling of the walls in a regenerative design. This is even more important at microscale than for large engines due to cube-square scaling considerations. Furthermore, the coolant behavior of rocket propellants has not been characterized at microscale. Therefore, MIT designed and constructed an apparatus expressly for this purpose. The report details measurements of two candidate microrocket fuels, JP-7 and JP-10.
Rocket Science in 60 Seconds: Insulating NASA's New Deep-space Rocket
2018-02-09
Rocket Science in 60 Seconds gives you an inside look at work being done at NASA to explore deep space like never before. In the first episode, we take a look at the thermal protection application on the launch vehicle stage adapter for the first flight of NASA's new rocket, the Space Launch System. Engineer Amy Buck takes us behind the scenes at Marshall Space Flight Center in Huntsville, Alabama, for a peek at how she is helping build the rocket and protect it as extreme hot and cold collide during launch! For more information about SLS and the OSA, visit nasa.gov/sls.
XLR-11 - X-1 rocket engine display
NASA Technical Reports Server (NTRS)
1996-01-01
What started as a hobby for four rocket fanatics went on to break the sound barrier: Lovell Lawrence, Hugh Franklin Pierce, John Shesta, and Jimmy Wyld the four founders of Reaction Motors, Inc. that built the XLR-11 Rocket Engine. The XLR-11 engine is shown on display in the NASA Exchange Gift Shop, NASA Hugh L. Dryden Flight Research Center at Edwards, California. This engine, familiarly known as Black Betsy, a 4-chamber rocket that ignited diluted ethyl alcohol and liquid oxygen into 6000 pounds or more of thrust powered the X-1 series airplanes.
2012-04-10
RS-25 series rocket engine No. 2059 is unloaded and positioned at Stennis Space Center on April 10, 2012, for future testing and use on NASA's new Space Launch System. The engine was the last of 15 RS-25 engines to be delivered from NASA's Kennedy Space Center in Florida to Stennis, where all will be stored until testing begins.
Improving of Hybrid Rocket Engine on the Basis of Optimizing Design Fuel Grain
NASA Astrophysics Data System (ADS)
Oriekov, K. M.; Ushkin, M. P.
2015-09-01
This article examines the processes intrachamber in hybrid rocket engine (HRE) and the comparative assessment of the use of solid rocket motors (SRM) and HRE for meteorological rockets with a mass of payload of the 364 kg. Results of the research showed the possibility of a significant increase in the ballistic effectiveness of meteorological rocket.
NASA Technical Reports Server (NTRS)
Tomsik, Thomas M.
1994-01-01
The design of coolant passages in regeneratively cooled thrust chambers is critical to the operation and safety of a rocket engine system. Designing a coolant passage is a complex thermal and hydraulic problem requiring an accurate understanding of the heat transfer between the combustion gas and the coolant. Every major rocket engine company has invested in the development of thrust chamber computer design and analysis tools; two examples are Rocketdyne's REGEN code and Aerojet's ELES program. In an effort to augment current design capabilities for government and industry, the NASA Lewis Research Center is developing a computer model to design coolant passages for advanced regeneratively cooled thrust chambers. The RECOP code incorporates state-of-the-art correlations, numerical techniques and design methods, certainly minimum requirements for generating optimum designs of future space chemical engines. A preliminary version of the RECOP model was recently completed and code validation work is in progress. This paper introduces major features of RECOP and compares the analysis to design points for the first test case engine; the Pratt & Whitney RL10A-3-3A thrust chamber.
Nuclear Thermal Rocket Simulation in NPSS
NASA Technical Reports Server (NTRS)
Belair, Michael L.; Sarmiento, Charles J.; Lavelle, Thomas M.
2013-01-01
Four nuclear thermal rocket (NTR) models have been created in the Numerical Propulsion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic-metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf ). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf ). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design.
Nuclear Thermal Rocket Simulation in NPSS
NASA Technical Reports Server (NTRS)
Belair, Michael L.; Sarmiento, Charles J.; Lavelle, Thomas L.
2013-01-01
Four nuclear thermal rocket (NTR) models have been created in the Numerical Propulsion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic- metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf ). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf ). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design.
2016-07-27
for liquid propellant atomization in rocket engines1- 2. Liquid rocket engines like the F-1 have successfully used like-on-like impinging jet...impingement of the two cylindrical jets. Another drawback, perhaps the most critical, is that rocket engine using impinging jets sacrifice performance in...The experimental results also suggested that impact waves seem to dominate the atomization process over most of the conditions relevant to rocket
SRB Processing Facilities Media Event
2016-03-01
Members of the news media view the high bay inside the Rotation, Processing and Surge Facility (RPSF) at NASA’s Kennedy Space Center in Florida. Inside the RPSF, engineers and technicians with Jacobs Engineering on the Test and Operations Support Contract, explain the various test stands. In the far corner is one of two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket. The Ground Systems Development and Operations Program and Jacobs are preparing the booster segments, which are inert, for a series of lifts, moves and stacking operations to prepare for Exploration Mission-1, deep-space missions and the journey to Mars.
Teaching Engineering Design Through Paper Rockets
ERIC Educational Resources Information Center
Welling, Jonathan; Wright, Geoffrey A.
2018-01-01
The paper rocket activity described in this article effectively teaches the engineering design process (EDP) by engaging students in a problem-based learning activity that encourages iterative design. For example, the first rockets the students build typically only fly between 30 and 100 feet. As students test and evaluate their rocket designs,…
A Rainbow View of NASA's RS-25 Engine Test
2017-02-22
NASA engineers conducted their first RS-25 test of 2017 on the A-1 Test Stand at Stennis Space Center near Bay St. Louis, Mississippi, on Feb. 22, continuing to collect data on the performance of the rocket engine that will help power the new Space Launch System (SLS) rocket. Shown from the viewpoint of an overhead drone, the test of development engine No. 0528 ran the scheduled 380 seconds (six minutes and 20 seconds), allowing engineers to monitor various engine operating conditions. The test represents another step forward in development of the rocket that will launch humans aboard Orion deeper into space than ever before. Four RS-25 engines, together with a pair of solid rocket boosters, will power the SLS at launch on its deep-space missions. The engines for the first four SLS flights are former space shuttle main engines, which were tested extensively at Stennis and are some of the most proven engines in the world. Engineers are conducting an ongoing series of tests this year for SLS on both development and flight engines for future flights to ensure the engine, outfitted with a new controller, can perform at the higher level under a variety of conditions and situations. Stennis is also preparing its B-2 Test Stand to test the core stage for the first SLS flight with Orion, known as Exploration Mission-1. That testing will involve installing the flight stage on the stand and firing its four RS-25 engines simultaneously, just as during an actual launch. The Feb. 22 test was conducted by Aerojet Rocketdyne and Syncom Space Services engineers and operators. Aerojet Rocketdyne is the prime contractor for the RS-25 engines. Syncom Space Services is the prime contractor for Stennis facilities and operations. PAO Name:Kim Henry Phone Number:256-544-1899 Email Address: kimberly.m.henry@nasa.gov
Space propulsion systems. Present performance limits and application and development trends
NASA Technical Reports Server (NTRS)
Buehler, R. D.; Lo, R. E.
1981-01-01
Typical spaceflight programs and their propulsion requirements as a comparison for possible propulsion systems are summarized. Chemical propulsion systems, solar, nuclear, or even laser propelled rockets with electrical or direct thermal fuel acceleration, nonrockets with air breathing devices and solar cells are considered. The chemical launch vehicles have similar technical characteristics and transportation costs. A possible improvement of payload by using air breathing lower stages is discussed. The electrical energy supply installations which give performance limits of electrical propulsion and the electrostatic ion propulsion systems are described. The development possibilities of thermal, magnetic, and electrostatic rocket engines and the state of development of the nuclear thermal rocket and propulsion concepts are addressed.
Ground test facility for SEI nuclear rocket engines
NASA Astrophysics Data System (ADS)
Harmon, Charles D.; Ottinger, Cathy A.; Sanchez, Lawrence C.; Shipers, Larry R.
1992-07-01
Nuclear (fission) thermal propulsion has been identified as a critical technology for a manned mission to Mars by the year 2019. Facilities are required that will support ground tests to qualify the nuclear rocket engine design, which must support a realistic thermal and neutronic environment in which the fuel elements will operate at a fraction of the power for a flight weight reactor/engine. This paper describes the design of a fuel element ground test facility, with a strong emphasis on safety and economy. The details of major structures and support systems of the facility are discussed, and a design diagram of the test facility structures is presented.
Booster Engine Service Platforms Delivered to VAB
2018-04-17
A new service platform for NASA's Space Launch System booster engines, secured on a flatbed truck, has arrived at the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. It was transported from fabricator Met-Con Inc. in Cocoa, Florida. The platform will be stored in the VAB and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1 (EM-1). During EM-1, an uncrewed Orion spacecraft will launch on the SLS to a stable orbit beyond the Moon and return to Earth for a splashdown in the Pacific Ocean.
Booster Engine Service Platforms Delivered to VAB
2018-04-17
A new service platform for NASA's Space Launch System booster engines has been offloaded from a flatbed truck and is being prepared for the move into the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platform was transported from fabricator Met-Con Inc. in Cocoa, Florida. It will be stored in the VAB, and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.
Booster Engine Service Platforms Delivered to VAB
2018-04-17
A new service platform for NASA's Space Launch System booster engines, secured on a flatbed truck, is on its way to the agency's Kennedy Space Center in Florida. It was transported from fabricator Met-Con Inc. in Cocoa, Florida. The platform will be delivered to the Vehicle Assembly Building, where it will be stored and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1 (EM-1). During EM-1, an uncrewed Orion spacecraft will launch on the SLS to a stable orbit beyond the Moon and return to Earth for a splashdown in the Pacific Ocean.
SLS Booster Engine Service Platforms Delivery
2017-07-31
A flatbed truck carrying one of two new service platforms for NASA's Space Launch System booster engines makes its way along the NASA Causeway to the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be delivered to the Vehicle Assembly Building, where they will be stored and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.
Altitude-Limiting Airbrake System for Small to Medium Scale Rockets
NASA Technical Reports Server (NTRS)
Aaron, Robert F., III
2013-01-01
The goal of the overall internship opportunity this semester was to learn and practice the elements of engineering design through direct exposure to real engineering problems. The primary exposure was to design and manufacture an airbrake device for use with small-medium scale rocket applications. The idea was to take the presented concept of a solution and transform said concept into a reliable fully-functioning and reusable mechanism. The mechanism was to be designed as an insurance feature so that the overall altitude of a rocket with relatively undetermined engine capabilities does not unexpectedly exceed the imposed 10,000 foot ceiling, per range requirements. The airbrake concept was introduced to the Prototype Development Lab as a rotation-driven four tiered offset track pin mechanism, i.e. the airbrake was deployed by rotating a central shaft attached directly to the bottom plate. The individual airbrake fins were subsequently deployed using multiple plates with tracks of offset curvature. The fins were created with guide pins to follow the tracks in each of the offset plates, thus allowing the simultaneous rotational deployment of all fins by only rotating one plate. The concept of this solution was great; though it did not function in application. The rotating plates alone brought up problems like the entire back half of the rocket rotating according to the motion of the aforementioned base plate. Subsequently, the solution currently under development became a static linear actuator-driven spring-loaded fin release system. This solution is almost instantaneously triggered electronically when the avionics detect that the rocket has reached the calculated altitude of deceleration. This altitude will allow enough time remaining to the overall ceiling to adequately decelerate the rocket prior to reaching the ceiling.
Advanced transportation system studies. Alternate propulsion subsystem concepts: Propulsion database
NASA Technical Reports Server (NTRS)
Levack, Daniel
1993-01-01
The Advanced Transportation System Studies alternate propulsion subsystem concepts propulsion database interim report is presented. The objective of the database development task is to produce a propulsion database which is easy to use and modify while also being comprehensive in the level of detail available. The database is to be available on the Macintosh computer system. The task is to extend across all three years of the contract. Consequently, a significant fraction of the effort in this first year of the task was devoted to the development of the database structure to ensure a robust base for the following years' efforts. Nonetheless, significant point design propulsion system descriptions and parametric models were also produced. Each of the two propulsion databases, parametric propulsion database and propulsion system database, are described. The descriptions include a user's guide to each code, write-ups for models used, and sample output. The parametric database has models for LOX/H2 and LOX/RP liquid engines, solid rocket boosters using three different propellants, a hybrid rocket booster, and a NERVA derived nuclear thermal rocket engine.
Experimental Study on an Unsteady Pressure Gain Combustion Hypergolic Rocket Engine Concept
NASA Astrophysics Data System (ADS)
Kan, Brandon K.
An experimental study is conducted to investigate pulsed combustion in a lab-scale bipropellant rocket engine using hypergolic propellants. The propellant combination is high concentration hydrogen peroxide and a catalyst-laced triglyme fuel. A total of 50 short duration firings have been conducted; the vast majority in an open-chamber configuration. High amplitude pulsations were evident in nearly all cases and have been assessed with high frequency pressure measurements. Both pintle and unlike impinging quadlet injector types have been evaluated although the bulk of the testing was with the latter configuration. Several firings were conducted with a transparent chamber in an attempt to gain understanding using a high-speed camera in the visible spectrum. Peak chamber pressures in excess of 5000 psi have been recorded with surface mounted high frequency gages with pulsation frequencies exceeding 600 Hz. A characterization of time-averaged performance is made for the unsteady system, where time-resolved thrust and pressure measurements were attempted. While prior literature describes this system as a pulse detonation rocket engine, the combustion appears to be more "constant volume" in nature.
2007-08-23
NASA officials and government leaders participated in a groundbreaking event for a new rocket engine test stand at NASA's Stennis Space Center, Miss. Pictured (left to right) are Deputy Associate Administrator for Exploration Systems Doug Cooke, Pratt & Whitney Rocketdyne President Jim Maser, Stennis Space Center Director Richard Gilbrech, NASA Associate Administrator for Exploration Systems Scott Horowitz, NASA Deputy Administrator Shana Dale, Mississippi Gov. Haley Barbour, Sen. Thad Cochran, Sen. Trent Lott, Rep. Gene Taylor, SSC's Deputy Director Gene Goldman, and SSC's A-3 Project Manager Lonnie Dutreix. Stennis' A-3 Test Stand will provide altitude testing for NASA's developing J-2X engine. That engine will power the upper stages of NASA's Ares I and Ares V rockets. A-3 is the first large test stand to be built at SSC since the site's inception in the 1960s.
Overview of Engineering Design and Analysis at the NASA John C. Stennis Space Center
NASA Technical Reports Server (NTRS)
Ryan, Harry; Congiardo, Jared; Junell, Justin; Kirkpatrick, Richard
2007-01-01
A wide range of rocket propulsion test work occurs at the NASA John C. Stennis Space Center (SSC) including full-scale engine test activities at test facilities A-1, A-2, B-1 and B-2 as well as combustion device research and development activities at the E-Complex (E-1, E-2, E-3 and E-4) test facilities. The propulsion test engineer at NASA SSC faces many challenges associated with designing and operating a test facility due to the extreme operating conditions (e.g., cryogenic temperatures, high pressures) of the various system components and the uniqueness of many of the components and systems. The purpose of this paper is to briefly describe the NASA SSC Engineering Science Directorate s design and analysis processes, experience, and modeling techniques that are used to design and support the operation of unique rocket propulsion test facilities.
NASA Technical Reports Server (NTRS)
Stinson, Henry; Turner, James (Technical Monitor)
2002-01-01
In this viewgraph presentation, information and diagrams are provided on rocket engine turbopumps. These turbomachines are highly complex and have several unique features: (1) They are generally very high power density machines; (2) They experience high fluid dynamic loads; (3) They are exposed to severe thermal shocks in terms of rapid starts and stops and extremely high heat transfer coefficients; (4) They have stringent suction performance requirements to minimize tank weight; (5) Their working fluids significantly impact the design: oxidizers are generally explosive, they afford almost no lubrication for bearings and seals, some fuels can degrade material properties, cryogenics result in severe thermal gradients; (6) Their life requirements are short relative to other turbomachines in that there are hundreds of cycles and a few hours of operation for reusable systems. The design of rocket engine turbomachines is a systems engineering challenge because multiple engineering disciplines must be integrated to deal with issues pertaining to stress, structural dynamics, hydrodynamics, aerodynamics, thermodynamics, and materials and process selection.
New Frontiers AO: Advanced Materials Bi-propellant Rocket (AMBR) Engine Information Summary
NASA Technical Reports Server (NTRS)
Liou, Larry C.
2008-01-01
The Advanced Material Bi-propellant Rocket (AMBR) engine is a high performance (I(sub sp)), higher thrust, radiation cooled, storable bi-propellant space engine of the same physical envelope as the High Performance Apogee Thruster (HiPAT(TradeMark)). To provide further information about the AMBR engine, this document provides details on performance, development, mission implementation, key spacecraft integration considerations, project participants and approach, contact information, system specifications, and a list of references. The In-Space Propulsion Technology (ISPT) project team at NASA Glenn Research Center (GRC) leads the technology development of the AMBR engine. Their NASA partners were Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). Aerojet leads the industrial partners selected competitively for the technology development via the NASA Research Announcement (NRA) process.
Prediction of pressure and flow transients in a gaseous bipropellant reaction control rocket engine
NASA Technical Reports Server (NTRS)
Markowsky, J. J.; Mcmanus, H. N., Jr.
1974-01-01
An analytic model is developed to predict pressure and flow transients in a gaseous hydrogen-oxygen reaction control rocket engine feed system. The one-dimensional equations of momentum and continuity are reduced by the method of characteristics from partial derivatives to a set of total derivatives which describe the state properties along the feedline. System components, e.g., valves, manifolds, and injectors are represented by pseudo steady-state relations at discrete junctions in the system. Solutions were effected by a FORTRAN IV program on an IBM 360/65. The results indicate the relative effect of manifold volume, combustion lag time, feedline pressure fluctuations, propellant temperature, and feedline length on the chamber pressure transient. The analytical combustion model is verified by good correlation between predicted and observed chamber pressure transients. The developed model enables a rocket designer to vary the design parameters analytically to obtain stable combustion for a particular mode of operation which is prescribed by mission objectives.
Technology Innovations from NASA's Next Generation Launch Technology Program
NASA Technical Reports Server (NTRS)
Cook, Stephen A.; Morris, Charles E. K., Jr.; Tyson, Richard W.
2004-01-01
NASA's Next Generation Launch Technology Program has been on the cutting edge of technology, improving the safety, affordability, and reliability of future space-launch-transportation systems. The array of projects focused on propulsion, airframe, and other vehicle systems. Achievements range from building miniature fuel/oxygen sensors to hot-firings of major rocket-engine systems as well as extreme thermo-mechanical testing of large-scale structures. Results to date have significantly advanced technology readiness for future space-launch systems using either airbreathing or rocket propulsion.
Subsonic Glideback Rocket Demonstrator Flight Testing
NASA Technical Reports Server (NTRS)
DeTurris, Dianne J.; Foster, Trevor J.; Barthel, Paul E.; Macy, Daniel J.; Droney, Christopher K.; Talay, Theodore A. (Technical Monitor)
2001-01-01
For the past two years, Cal Poly's rocket program has been aggressively exploring the concept of remotely controlled, fixed wing, flyable rocket boosters. This program, embodied by a group of student engineers known as Cal Poly Space Systems, has successfully demonstrated the idea of a rocket design that incorporates a vertical launch pattern followed by a horizontal return flight and landing. Though the design is meant for supersonic flight, CPSS demonstrators are deployed at a subsonic speed. Many steps have been taken by the club that allowed the evolution of the StarBooster prototype to reach its current size: a ten-foot tall, one-foot diameter, composite material rocket. Progress is currently being made that involves multiple boosters along with a second stage, third rocket.
29. Historic view of twentythousandpound rocket test stand with engine ...
29. Historic view of twenty-thousand-pound rocket test stand with engine installation in test cell of Building 202, September 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45870. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
Integrated Design Methodology for Highly Reliable Liquid Rocket Engine
NASA Astrophysics Data System (ADS)
Kuratani, Naoshi; Aoki, Hiroshi; Yasui, Masaaki; Kure, Hirotaka; Masuya, Goro
The Integrated Design Methodology is strongly required at the conceptual design phase to achieve the highly reliable space transportation systems, especially the propulsion systems, not only in Japan but also all over the world in these days. Because in the past some catastrophic failures caused some losses of mission and vehicle (LOM/LOV) at the operational phase, moreover did affect severely the schedule delays and cost overrun at the later development phase. Design methodology for highly reliable liquid rocket engine is being preliminarily established and investigated in this study. The sensitivity analysis is systematically performed to demonstrate the effectiveness of this methodology, and to clarify and especially to focus on the correlation between the combustion chamber, turbopump and main valve as main components. This study describes the essential issues to understand the stated correlations, the need to apply this methodology to the remaining critical failure modes in the whole engine system, and the perspective on the engine development in the future.
Design issues for lunar in situ aluminum/oxygen propellant rocket engines
NASA Technical Reports Server (NTRS)
Meyer, Michael L.
1992-01-01
Design issues for lunar ascent and lunar descent rocket engines fueled by aluminum/oxygen propellant produced in situ at the lunar surface were evaluated. Key issues are discussed which impact the design of these rockets: aluminum combustion, throat erosion, and thrust chamber cooling. Four engine concepts are presented, and the impact of combustion performance, throat erosion and thrust chamber cooling on overall engine design are discussed. The advantages and disadvantages of each engine concept are presented.
Scale-Up of GRCop: From Laboratory to Rocket Engines
NASA Technical Reports Server (NTRS)
Ellis, David L.
2016-01-01
GRCop is a high temperature, high thermal conductivity copper-based series of alloys designed primarily for use in regeneratively cooled rocket engine liners. It began with laboratory-level production of a few grams of ribbon produced by chill block melt spinning and has grown to commercial-scale production of large-scale rocket engine liners. Along the way, a variety of methods of consolidating and working the alloy were examined, a database of properties was developed and a variety of commercial and government applications were considered. This talk will briefly address the basic material properties used for selection of compositions to scale up, the methods used to go from simple ribbon to rocket engines, the need to develop a suitable database, and the issues related to getting the alloy into a rocket engine or other application.
Design Considerations for Clean QED Fusion Propulsion Systems
NASA Astrophysics Data System (ADS)
Bussard, Robert W.; Jameson, Lorin W.
1994-07-01
The direct production of electric power appears possible from fusion reactions between fuels whose products consist solely of charged particles and thus do not present radiation hazards from energetic neutron production, as do reactions involving deuteron-bearing fuels. Among these are the fuels p, 11B, 3He, and 6Li. All of these can be ``burned'' in inertial-electrostatic-fusion (IEF) devices to power QED fusion-electric rocket engines. These IEF sources provide direct-converted electrical power at high voltage (MeV) to drive e-beams for efficient propellant heating to extreme temperatures, with resulting high specific impulse performance capabilities. IEF/QED engine systems using p11B can outperform all other advanced concepts for controlled fusion propulsion by 2-3 orders of magnitude, while 6Li6Li fusion yields one order of magnitude less advance. Either of these fusion rocket propulsion systems can provide very rapid transit for solar system missions, with high payload fractions in single-stage vehicles. The 3He3He reaction can not be used practically for direct electric conversion because of the wide spread in energy of its fusion products. However, it may eventually prove useful for thermal/electrical power generation in central station power plants, or for direct-fusion-product (DFP) propellant heatingin advanced deep-space rocket engines.
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2012-01-01
The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet s moons atmosphere for entry, descent, and landing can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions. Future EDL systems may include an inflatable decelerator for the initial atmospheric entry and an additional supersonic retro-propulsion (SRP) rocket system for the final soft landing. As part of those efforts, NASA began to conduct experiments to gather the experimental data to make informed decisions on the "best" EDL options. A model of a three engine retro-propulsion configuration with a 2.5 in. diameter sphere-cone aeroshell model was tested in the NASA Glenn 1- by 1-Foot Supersonic Wind Tunnel (SWT). The testing was conducted to identify potential blockage issues in the tunnel, and visualize the rocket flow and shock interactions during supersonic and hypersonic entry conditions. Earlier experimental testing of a 70 Viking-like (sphere-cone) aeroshell was conducted as a baseline for testing of a supersonic retro-propulsion system. This baseline testing defined the flow field around the aeroshell and from this comparative baseline data, retro-propulsion options will be assessed. Images and analyses from the SWT testing with 300- and 500-psia rocket engine chamber pressures are presented here. The rocket engine flow was simulated with a non-combusting flow of air.
Providing a Turn for the Better
NASA Technical Reports Server (NTRS)
2004-01-01
Engineers are tasked with designing new systems every day to meet changing or unexpected technical requirements. After the tragic explosion of the Space Shuttle Challenger on January 28, 1986, NASA engineers embarked on a complete overhaul of many of their long-standing quality systems and procedures. When the official cause of the accident was determined to be an O-ring failure in the right Solid Rocket Booster, NASA's Shuttle Program initiated a thorough redesign of the rocket boosters' clevis ends, which are the O-ring's mating surfaces. One of the unique systems that NASA engineers developed as a result of this effort included a heating assembly that is coupled to the outside of the rocket boosters. When the assembly is affixed to the external surface of the boosters, the very nature of its design allows for the warming of the O-rings prior to launch. After the engineers completed the assembly's design, however, they found that it was nearly impossible to tighten the spanner nuts required for attaching the system, given the minimum amount of clearance they had in the limited and confined space. Under these circumstances, the standard wrenches typically used for tightening these types of nuts did not work, and there were no other existing devices to solve the problem. NASA engineers embraced the challenge, developing a torque wrench tool adapter that allowed for a full rotation of spanner nuts in confined spaces. The tool, which is similar to an open-ended crowfoot wrench and a fixed-face spanner wrench, contains two dowel pins that center and lock the wrench onto the nut.
The pasty propellant rocket engine development
NASA Astrophysics Data System (ADS)
Kukushkin, V. I.; Ivanchenko, A. N.
1993-06-01
The paper describes a newly developed pasty propellant rocket engine (PPRE) and the combustion process and presents results of performance tests. It is shown that, compared with liquid propellant rocket engines, the PPREs can regulate the thrust level within a wider range, are safer ecologically, and have better weight characteristics. Compared with solid propellant rocket engines, the PPREs may be produced with lower costs and more safely, are able to regulate thrust performance within a wider range, and are able to offer a greater scope for the variation of the formulation components and propellant characteristics. Diagrams of the PPRE are included.
Development of Metal Matrix Composites for NASA'S Advanced Propulsion Systems
NASA Technical Reports Server (NTRS)
Lee, Jonathan A.
2000-01-01
The state-of-the-art development of several aluminum and copper based Metal Matrix Composites (MMC) for NASA's advanced propulsion systems will be presented. The presentation's goal is to provide an overview of NASA-Marshall Space Flight Center's planned and on-going activities in MMC for advanced liquid rocket engines such as the X-33 vehicle's Aerospike and X-34 Fastrac engine. The focus will be on lightweight and environmental compatibility with oxygen and hydrogen of key MMC materials, within each NASA's new propulsion application, that will provide a high payoff for NASA's reusable launch vehicle systems and space access vehicles. Advanced MMC processing techniques such as plasma spray, centrifugal casting, pressure infiltration casting will be discussed. Development of a novel 3D printing method for low cost production of composite preform, and functional gradient MMC to enhanced rocket engine's dimensional stability will be presented.
GPS Sounding Rocket Developments
NASA Technical Reports Server (NTRS)
Bull, Barton
1999-01-01
Sounding rockets are suborbital launch vehicles capable of carrying scientific payloads several hundred miles in altitude. These missions return a variety of scientific data including; chemical makeup and physical processes taking place in the atmosphere, natural radiation surrounding the Earth, data on the Sun, stars, galaxies and many other phenomena. In addition, sounding rockets provide a reasonably economical means of conducting engineering tests for instruments and devices used on satellites and other spacecraft prior to their use in more expensive activities. This paper addresses the NASA Wallops Island history of GPS Sounding Rocket experience since 1994 and the development of highly accurate and useful system.
Development of the platelet micro-orifice injector. [for liquid propellant rocket engines
NASA Technical Reports Server (NTRS)
La Botz, R. J.
1984-01-01
For some time to come, liquid rocket engines will continue to provide the primary means of propulsion for space transportation. The injector represents a key to the optimization of engine and system performance. The present investigation is concerned with a unique injector design and fabrication process which has demonstrated performance capabilities beyond that achieved with more conventional approaches. This process, which is called the 'platelet process', makes it feasible to fabricate injectors with a pattern an order of magnitude finer than that obtainable by drilling. The fine pattern leads to an achievement of high combustion efficiencies. Platelet injectors have been identified as one of the significant technology advances contributing to the feasibility of advanced dual-fuel booster engines. Platelet injectors are employed in the Space Shuttle Orbit Maneuvering System (OMS) engines. Attention is given to injector design theory as it relates to pattern fineness, a description of platelet injectors, and test data obtained with three different platelet injectors.
Technical engineering services in support of the Nike-Tomahawk sounding rocket vehicle system
NASA Technical Reports Server (NTRS)
1972-01-01
Task assignments in support of the Nike-Tomahawk vehicles, which were completed from May, 1970 through November 1972 are reported. The services reported include: analytical, design and drafting, fabrication and modification, and field engineering.
Enhanced development of a catalyst chamber for the decomposition of up to 1.0 kg/s hydrogen peroxide
NASA Astrophysics Data System (ADS)
Božić, Ognjan; Porrmann, Dennis; Lancelle, Daniel; May, Stefan
2016-06-01
A new innovative hybrid rocket engine concept is developed within the AHRES program of the German Aerospace Center (DLR). This rocket engine based on hydroxyl-terminated polybutadiene (HTPB) with metallic additives as solid fuel and high test peroxide (HTP) as liquid oxidizer. Instead of a conventional ignition system, a catalyst chamber with a silver mesh catalyst is designed to decompose the HTP. The newly modified catalyst chamber is able to decompose up to 1.0 kg/s of 87.5 wt% HTP. Used as a monopropellant thruster, this equals an average thrust of 1600 N. The catalyst chamber is designed using the self-developed software tool SHAKIRA. The applied kinetic law, which determines catalytic decomposition of HTP within the catalyst chamber, is given and commented. Several calculations are carried out to determine the appropriate geometry for complete decomposition with a minimum of catalyst material. A number of tests under steady state conditions are carried out, using 87.5 wt% HTP with different flow rates and a constant amount of catalyst material. To verify the decomposition, the temperature is measured and compared with the theoretical prediction. The experimental results show good agreement with the results generated by the design tool. The developed catalyst chamber provides a simple, reliable ignition system for hybrid rocket propulsion systems based on hydrogen peroxide as oxidizer. This system is capable for multiple reignition. The developed hardware and software can be used to design full scale monopropellant thrusters based on HTP and catalyst chambers for hybrid rocket engines.
Study of solid rocket motors for a space shuttle booster. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1972-01-01
The design, development, production, and launch support analysis for determining the solid propellant rocket engine to be used with the space shuttle are discussed. Specific program objectives considered were: (1) definition of engine designs to satisfy the performance and configuration requirements of the various vehicle/booster concepts, (2) definition of requirements to produce booster stages at rates of 60, 40, 20, and 10 launches per year in a man-rated system, and (3) estimation of costs for the defined SRM booster stages.
30. Historic view of twentythousandpound rocket test stand with engine ...
30. Historic view of twenty-thousand-pound rocket test stand with engine installation in test cell of Building 202, looking down from elevated location, September 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45872. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
14 CFR Appendix E to Part 25 - Appendix E to Part 25
Code of Federal Regulations, 2013 CFR
2013-01-01
... certificated takeoff and landing weights of an airplane equipped with a type-certificated standby power rocket engine may obtain an increase as specified in paragraph (b) if— (1) The installation of the rocket engine has been approved and it has been established by flight test that the rocket engine and its controls...
14 CFR Appendix E to Part 25 - Appendix E to Part 25
Code of Federal Regulations, 2011 CFR
2011-01-01
... certificated takeoff and landing weights of an airplane equipped with a type-certificated standby power rocket engine may obtain an increase as specified in paragraph (b) if— (1) The installation of the rocket engine has been approved and it has been established by flight test that the rocket engine and its controls...
14 CFR Appendix E to Part 25 - Appendix E to Part 25
Code of Federal Regulations, 2014 CFR
2014-01-01
... certificated takeoff and landing weights of an airplane equipped with a type-certificated standby power rocket engine may obtain an increase as specified in paragraph (b) if— (1) The installation of the rocket engine has been approved and it has been established by flight test that the rocket engine and its controls...
14 CFR Appendix E to Part 25 - Appendix E to Part 25
Code of Federal Regulations, 2012 CFR
2012-01-01
... certificated takeoff and landing weights of an airplane equipped with a type-certificated standby power rocket engine may obtain an increase as specified in paragraph (b) if— (1) The installation of the rocket engine has been approved and it has been established by flight test that the rocket engine and its controls...
14 CFR Appendix E to Part 25 - Appendix E to Part 25
Code of Federal Regulations, 2010 CFR
2010-01-01
... certificated takeoff and landing weights of an airplane equipped with a type-certificated standby power rocket engine may obtain an increase as specified in paragraph (b) if— (1) The installation of the rocket engine has been approved and it has been established by flight test that the rocket engine and its controls...
Negative feedback system reduces pump oscillations
NASA Technical Reports Server (NTRS)
Rosenmann, W.
1967-01-01
External negative feedback system counteracts low frequency oscillations in rocket engine propellant pumps. The system uses a control piston to sense pump discharge fluid on one side and a gas pocket on the other.
NASA Technical Reports Server (NTRS)
Doane, George B., III; Armstrong, W. C.
1990-01-01
Research on propulsion stability (chugging and acoustic modes), and propellant valve control was investigated. As part of the activation of the new liquid propulsion test facilities, it is necessary to analyze total propulsion system stability. To accomplish this, several codes were built to run on desktop 386 machines. These codes enable one to analyze the stability question associated with the propellant feed systems. In addition, further work was adapted to this computing environment and furnished along with other codes. This latter inclusion furnishes those interested in high frequency oscillatory combustion behavior (that does not couple to the feed system) a set of codes for study of proposed liquid rocket engines.
Technology readiness assessment of advanced space engine integrated controls and health monitoring
NASA Technical Reports Server (NTRS)
Millis, Marc G.
1991-01-01
An evaluation is given for an integrated control and health monitoring system (ICHM) system that is designed to be used with hydrogen-oxygen rocket engines. The minimum required ICHM functions, system elements, technology readiness, and system cost are assessed for a system which permits the operation of H-O engines that are space-based, reusable, and descent throttleable. Based on the evaluation of the H-O ICHM, it is estimated that the minimum system requirements for demonstration on an engine system testbed will require an investment of 30 to 45 million dollars over six years.
NASA Technical Reports Server (NTRS)
Ryan, Harry M.; Coote, David J.; Ahuja, Vineet; Hosangadi, Ashvin
2006-01-01
Accurate modeling of liquid rocket engine test processes involves assessing critical fluid mechanic and heat and mass transfer mechanisms within a cryogenic environment, and accurately modeling fluid properties such as vapor pressure and liquid and gas densities as a function of pressure and temperature. The Engineering and Science Directorate at the NASA John C. Stennis Space Center has developed and implemented such analytic models and analysis processes that have been used over a broad range of thermodynamic systems and resulted in substantial improvements in rocket propulsion testing services. In this paper, we offer an overview of the analyses techniques used to simulate pressurization and propellant fluid systems associated with the test stands at the NASA John C. Stennis Space Center. More specifically, examples of the global performance (one-dimensional) of a propellant system are provided as predicted using the Rocket Propulsion Test Analysis (RPTA) model. Computational fluid dynamic (CFD) analyses utilizing multi-element, unstructured, moving grid capability of complex cryogenic feed ducts, transient valve operation, and pressurization and mixing in propellant tanks are provided as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolonkin, A.
A first-hand account of developments in the Soviet rocket industry is presented. The organization and leadership of the rocket and missile industry are traced from its beginning in the 1920s. The development of the Glushko Experimental Design Bureau, where the majority of Soviet rocket engines were created, is related. The evolution of Soviet rocket engines is traced in regard to both their technical improvement and their application in missiles and space vehicles. Improved Glushko engines and specialized Isaev and Kosberg engines are discussed. The difficulties faced by the Soviet missile and space program, such as the pre-Sputnik failures, the oscillationmore » problem of 1965/1966, which exposed a weakness in Soviet ICBM missiles, and the Nedelin disaster of 1960, which cost the lives of more than 200 scientists and engineers, as well as the Commander-in-Chief of the Strategic Rocket Forces, Marshall Nedelin, are examined. 122 refs.« less
NASA Technical Reports Server (NTRS)
Panda, Jayanta; Mosher, Robert N.; Porter, Barry J.
2013-01-01
A 70 microphone, 10-foot by 10-foot, microphone phased array was built for use in the harsh environment of rocket launches. The array was setup at NASA Wallops launch pad 0A during a static test firing of Orbital Sciences' Antares engines, and again during the first launch of the Antares vehicle. It was placed 400 feet away from the pad, and was hoisted on a scissor lift 40 feet above ground. The data sets provided unprecedented insight into rocket noise sources. The duct exit was found to be the primary source during the static test firing; the large amount of water injected beneath the nozzle exit and inside the plume duct quenched all other sources. The maps of the noise sources during launch were found to be time-dependent. As the engines came to full power and became louder, the primary source switched from the duct inlet to the duct exit. Further elevation of the vehicle caused spilling of the hot plume, resulting in a distributed noise map covering most of the pad. As the entire plume emerged from the duct, and the ondeck water system came to full power, the plume itself became the loudest noise source. These maps of the noise sources provide vital insight for optimization of sound suppression systems for future Antares launches.
Nuclear thermal rocket workshop reference system Rover/NERVA
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.
1991-01-01
The Rover/NERVA engine system is to be used as a reference, against which each of the other concepts presented in the workshop will be compared. The following topics are reviewed: the operational characteristics of the nuclear thermal rocket (NTR); the accomplishments of the Rover/NERVA programs; and performance characteristics of the NERVA-type systems for both Mars and lunar mission applications. Also, the issues of ground testing, NTR safety, NASA's nuclear propulsion project plans, and NTR development cost estimates are briefly discussed.
NASA Technical Reports Server (NTRS)
Sivo, Joseph N.; Peters, Daniel J.
1959-01-01
A rocket engine with an exhaust-nozzle area ratio of 25 was operated at a constant chamber pressure of 600 pounds per square inch absolute over a range of oxidant-fuel ratios at an altitude pressure corresponding to approximately 47,000 feet. At this condition, the nozzle flow is slightly underexpanded as it leaves the nozzle. The altitude simulation was obtained first through the use of an exhaust diffuser coupled with the rocket engine and secondly, in an altitude test chamber where separate exhauster equipment provided the altitude pressure. A comparison of performance data from these two tests has established that a diffuser used with a rocket engine operating at near-design nozzle pressure ratio can be a valid means of obtaining altitude performance data for rocket engines.
Summary of Results from Space Shuttle Main Engine Off-Nominal Testing
NASA Technical Reports Server (NTRS)
Horton, James F.; Megivern, Jeffrey M.; McNutt, Leslie M.
2011-01-01
This paper is a summary of Space Shuttle Main Engine (SSME) off-nominal testing that occurred during 2008 and 2009. During the last two years of planned SSME testing at Stennis Space Center, Pratt & Whitney Rocketdyne worked with their NASA MSFC customer to systematically identify, develop, assess, and implement challenging test objectives in order to expand the knowledge of one of the world s most reliable and highly tested large rocket engine. The objectives successfully investigated three main areas of interest expanding engine performance margins, demonstrating system operational capabilities, and establishing ground work for new rocket engine technology. The testing gave the Space Shuttle Program new options to safely fly out the flight manifest and provided Pratt & Whitney Rocketdyne and NASA new insight into the operational capabilities of the SSME, capabilities which can be used in assessing potential future applications of the RS-25 engine.
A unique nuclear thermal rocket engine using a particle bed reactor
NASA Astrophysics Data System (ADS)
Culver, Donald W.; Dahl, Wayne B.; McIlwain, Melvin C.
1992-01-01
Aerojet Propulsion Division (APD) studied 75-klb thrust Nuclear Thermal Rocket Engines (NTRE) with particle bed reactors (PBR) for application to NASA's manned Mars mission and prepared a conceptual design description of a unique engine that best satisfied mission-defined propulsion requirements and customer criteria. This paper describes the selection of a sprint-type Mars transfer mission and its impact on propulsion system design and operation. It shows how our NTRE concept was developed from this information. The resulting, unusual engine design is short, lightweight, and capable of high specific impulse operation, all factors that decrease Earth to orbit launch costs. Many unusual features of the NTRE are discussed, including nozzle area ratio variation and nozzle closure for closed loop after cooling. Mission performance calculations reveal that other well known engine options do not support this mission.
Booster Engine Service Platforms Delivered to VAB
2018-04-17
A new service platform for NASA's Space Launch System booster engines, secured on a flatbed truck, is on its way to the Vehicle Assembly Building (VAB), in view in the distance, at the agency's Kennedy Space Center in Florida. It was transported from fabricator Met-Con Inc. in Cocoa, Florida. The platform will be delivered to the VAB, where it will be stored and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1 (EM-1). During EM-1, an uncrewed Orion spacecraft will launch on the SLS to a stable orbit beyond the Moon and return to Earth for a splashdown in the Pacific Ocean.
Historical flight qualifications of space nuclear systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, G.L.
1997-01-01
An overview is presented of the qualification programs for the general-purpose heat source radioisotope thermoelectric generators (GPHS-RTGs) as developed for the Galileo and Ulysses missions; the SNAP-10A space reactor; the Nuclear Engine for Rocket Vehicle Applications (NERVA); the F-1 chemical rocket engine used on the Saturn-V Apollo lunar missions; and the Space Shuttle Main Engines (SSMEs). Some similarities and contrasts between the qualification testing employed on these five programs will be noted. One common thread was that in each of these successful programs there was an early focus on component and subsystem tests to uncover and correct problems. {copyright} {italmore » 1997 American Institute of Physics.}« less
2003-12-01
This photo gives an overhead look at an RS-88 development rocket engine being test fired at NASA's Marshall Space Flight Center in Huntsville, Alabama, in support of the Pad Abort Demonstration (PAD) test flights for NASA's Orbital Space Plane (OSP). The tests could be instrumental in developing the first crew launch escape system in almost 30 years. Paving the way for a series of integrated PAD test flights, the engine tests support development of a system that could pull a crew safely away from danger during liftoff. A series of 16 hot fire tests of a 50,000-pound thrust RS-88 rocket engine were conducted, resulting in a total of 55 seconds of successful engine operation. The engine is being developed by the Rocketdyne Propulsion and Power unit of the Boeing Company. Integrated launch abort demonstration tests in 2005 will use four RS-88 engines to separate a test vehicle from a test platform, simulating pulling a crewed vehicle away from an aborted launch. Four 156-foot parachutes will deploy and carry the vehicle to landing. Lockheed Martin is building the vehicles for the PAD tests. Seven integrated tests are plarned for 2005 and 2006.
2003-12-01
In this photo, an RS-88 development rocket engine is being test fired at NASA's Marshall Space Flight Center in Huntsville, Alabama, in support of the Pad Abort Demonstration (PAD) test flights for NASA's Orbital Space Plane (OSP). The tests could be instrumental in developing the first crew launch escape system in almost 30 years. Paving the way for a series of integrated PAD test flights, the engine tests support development of a system that could pull a crew safely away from danger during liftoff. A series of 16 hot fire tests of a 50,000-pound thrust RS-88 rocket engine were conducted, resulting in a total of 55 seconds of successful engine operation. The engine is being developed by the Rocketdyne Propulsion and Power unit of the Boeing Company. Integrated launch abort demonstration tests in 2005 will use four RS-88 engines to separate a test vehicle from a test platform, simulating pulling a crewed vehicle away from an aborted launch. Four 156-foot parachutes will deploy and carry the vehicle to landing. Lockheed Martin is building the vehicles for the PAD tests. Seven integrated tests are plarned for 2005 and 2006.
Mean Flow Augmented Acoustics in Rocket Systems
NASA Technical Reports Server (NTRS)
Fischbach, Sean
2014-01-01
Combustion instability in solid rocket motors and liquid engines has long been a subject of concern. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. Recent advances in energy based modeling of combustion instabilities require accurate determination of acoustic frequencies and mode shapes. Of particular interest is the acoustic mean flow interactions within the converging section of a rocket nozzle, where gradients of pressure, density, and velocity become large. The expulsion of unsteady energy through the nozzle of a rocket is identified as the predominate source of acoustic damping for most rocket systems. Recently, an approach to address nozzle damping with mean flow effects was implemented by French [1]. This new approach extends the work originated by Sigman and Zinn [2] by solving the acoustic velocity potential equation (AVPE) formulated by perturbing the Euler equations [3]. The present study aims to implement the French model within the COMSOL Multiphysiscs framework and analyzes one of the author's presented test cases.
1961-01-01
The static firing of a Saturn F-1 engine at the Marshall Space Flight Center's Static Test Stand. The F-1 engine is a single-start, 1,5000,000 Lb fixed-thrust, bipropellant rocket system. The engine uses liquid oxygen as the oxidizer and RP-1 (kerosene) as fuel. The five-engine cluster used on the first stage of the Saturn V produces 7,500,000 lbs of thrust.
NASA Technical Reports Server (NTRS)
Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan; Kirchner, Robert; Engel, Carl D.
2014-01-01
The Space Launch System (SLS) base heating test is broken down into two test programs: (1) Pathfinder and (2) Main Test. The Pathfinder Test Program focuses on the design, development, hot-fire test and performance analyses of the 2% sub-scale SLS core-stage and booster element propulsion systems. The core-stage propulsion system is composed of four gaseous oxygen/hydrogen RS-25D model engines and the booster element is composed of two aluminum-based model solid rocket motors (SRMs). The first section of the paper discusses the motivation and test facility specifications for the test program. The second section briefly investigates the internal flow path of the design. The third section briefly shows the performance of the model RS-25D engines and SRMs for the conducted short duration hot-fire tests. Good agreement is observed based on design prediction analysis and test data. This program is a challenging research and development effort that has not been attempted in 40+ years for a NASA vehicle.
Large liquid rocket engine transient performance simulation system
NASA Technical Reports Server (NTRS)
Mason, J. R.; Southwick, R. D.
1989-01-01
Phase 1 of the Rocket Engine Transient Simulation (ROCETS) program consists of seven technical tasks: architecture; system requirements; component and submodel requirements; submodel implementation; component implementation; submodel testing and verification; and subsystem testing and verification. These tasks were completed. Phase 2 of ROCETS consists of two technical tasks: Technology Test Bed Engine (TTBE) model data generation; and system testing verification. During this period specific coding of the system processors was begun and the engineering representations of Phase 1 were expanded to produce a simple model of the TTBE. As the code was completed, some minor modifications to the system architecture centering on the global variable common, GLOBVAR, were necessary to increase processor efficiency. The engineering modules completed during Phase 2 are listed: INJTOO - main injector; MCHBOO - main chamber; NOZLOO - nozzle thrust calculations; PBRNOO - preburner; PIPE02 - compressible flow without inertia; PUMPOO - polytropic pump; ROTROO - rotor torque balance/speed derivative; and TURBOO - turbine. Detailed documentation of these modules is in the Appendix. In addition to the engineering modules, several submodules were also completed. These submodules include combustion properties, component performance characteristics (maps), and specific utilities. Specific coding was begun on the system configuration processor. All functions necessary for multiple module operation were completed but the SOLVER implementation is still under development. This system, the Verification Checkout Facility (VCF) allows interactive comparison of module results to store data as well as provides an intermediate checkout of the processor code. After validation using the VCF, the engineering modules and submodules were used to build a simple TTBE.
A History of Welding on the Space Shuttle Main Engine (1975 to 2010)
NASA Technical Reports Server (NTRS)
Zimmerman, Frank R.; Russell, Carolyn K.
2010-01-01
The Space Shuttle Main Engine (SSME) is a high performance, throttleable, liquid hydrogen fueled rocket engine. High thrust and specific impulse (Isp) are achieved through a staged combustion engine cycle, combined with high combustion pressure (approx.3000psi) generated by the two-stage pump and combustion process. The SSME is continuously throttleable from 67% to 109% of design thrust level. The design criteria for this engine maximize performance and weight, resulting in a 7,800 pound rocket engine that produces over a half million pounds of thrust in vacuum with a specific impulse of 452/sec. It is the most reliable rocket engine in the world, accumulating over one million seconds of hot-fire time and achieving 100% flight success in the Space Shuttle program. A rocket engine with the unique combination of high reliability, performance, and reusability comes at the expense of manufacturing simplicity. Several innovative design features and fabrication techniques are unique to this engine. This is as true for welding as any other manufacturing process. For many of the weld joints it seemed mean cheating physics and metallurgy to meet the requirements. This paper will present a history of the welding used to produce the world s highest performance throttleable rocket engine.
Rocket-Based Combined Cycle Flowpath Testing for Modes 1 and 4
NASA Technical Reports Server (NTRS)
Rice, Tharen
2002-01-01
Under sponsorship of the NASA Glenn Research Center (NASA GRC), the Johns Hopkins University Applied Physics Laboratory (JHU/APL) designed and built a five-inch diameter, Rocket-Based Combined Cycle (RBCC) engine to investigate mode 1 and mode 4 engine performance as well as Mach 4 inlet performance. This engine was designed so that engine area and length ratios were similar to the NASA GRC GTX engine is shown. Unlike the GTX semi-circular engine design, the APL engine is completely axisymmetric. For this design, a traditional rocket thruster was installed inside of the scramjet flowpath, along the engine centerline. A three part test series was conducted to determine Mode I and Mode 4 engine performance. In part one, testing of the rocket thruster alone was accomplished and its performance determined (average Isp efficiency = 90%). In part two, Mode 1 (air-augmented rocket) testing was conducted at a nominal chamber pressure-to-ambient pressure ratio of 100 with the engine inlet fully open. Results showed that there was neither a thrust increment nor decrement over rocket-only thrust during Mode 1 operation. In part three, Mode 4 testing was conducted with chamber pressure-to-ambient pressure ratios lower than desired (80 instead of 600) with the inlet fully closed. Results for this testing showed a performance decrease of 20% as compared to the rocket-only testing. It is felt that these results are directly related to the low pressure ratio tested and not the engine design. During this program, Mach 4 inlet testing was also conducted. For these tests, a moveable centerbody was tested to determine the maximum contraction ratio for the engine design. The experimental results agreed with CFD results conducted by NASA GRC, showing a maximum geometric contraction ratio of approximately 10.5. This report details the hardware design, test setup, experimental results and data analysis associated with the aforementioned tests.
Ceramic composites for rocket engine turbines
NASA Technical Reports Server (NTRS)
Herbell, Thomas P.; Eckel, Andrew J.
1991-01-01
The use of ceramic materials in the hot section of the fuel turbopump of advanced reusable rocket engines promises increased performance and payload capability, improved component life and economics, and greater design flexibility. Severe thermal transients present during operation of the Space Shuttle Main Engine (SSME), push metallic components to the limit of their capabilities. Future engine requirements might be even more severe. In phase one of this two-phase program, performance benefits were quantified and continuous fiber reinforced ceramic matrix composite components demonstrated a potential to survive the hostile environment of an advanced rocket engine turbopump.
Ceramic composites for rocket engine turbines
NASA Technical Reports Server (NTRS)
Herbell, Thomas P.; Eckel, Andrew J.
1991-01-01
The use of ceramic materials in the hot section of the fuel turbopump of advanced reusable rocket engines promises increased performance and payload capability, improved component life and economics, and greater design flexibility. Severe thermal transients present during operation of the Space Shuttle Main Engine (SSME), push metallic components to the limit of their capabilities. Future engine requirements might be even more severe. In phase one of this two-phase program, performance benefits were quantified and continuous fiber reinforced ceramic matrix composite components demonstrated a potential to survive the hostile environment of an advaced rocket engine turbopump.
Done in 60 seconds- See a Massive Rocket Fuel Tank Built in A Minute
2016-08-18
The 7.5-minute test conducted at NASA’s Stennis Space Center is part of a series of tests designed to put the upgraded former space shuttle engines through the rigorous temperature and pressure conditions they will experience during a launch. The tests also support the development of a new controller, or “brain,” for the engine, which monitors engine status and communicates between the rocket and the engine, relaying commands to the engine and transmitting data back to the rocket.
Health management and controls for Earth-to-orbit propulsion systems
NASA Astrophysics Data System (ADS)
Bickford, R. L.
1995-03-01
Avionics and health management technologies increase the safety and reliability while decreasing the overall cost for Earth-to-orbit (ETO) propulsion systems. New ETO propulsion systems will depend on highly reliable fault tolerant flight avionics, advanced sensing systems and artificial intelligence aided software to ensure critical control, safety and maintenance requirements are met in a cost effective manner. Propulsion avionics consist of the engine controller, actuators, sensors, software and ground support elements. In addition to control and safety functions, these elements perform system monitoring for health management. Health management is enhanced by advanced sensing systems and algorithms which provide automated fault detection and enable adaptive control and/or maintenance approaches. Aerojet is developing advanced fault tolerant rocket engine controllers which provide very high levels of reliability. Smart sensors and software systems which significantly enhance fault coverage and enable automated operations are also under development. Smart sensing systems, such as flight capable plume spectrometers, have reached maturity in ground-based applications and are suitable for bridging to flight. Software to detect failed sensors has reached similar maturity. This paper will discuss fault detection and isolation for advanced rocket engine controllers as well as examples of advanced sensing systems and software which significantly improve component failure detection for engine system safety and health management.
NASA Technical Reports Server (NTRS)
Tucker, Stephen; Salvail, Pat; Haynes, Davy (Technical Monitor)
2001-01-01
A solar-thermal engine serves as a high-temperature solar-radiation absorber, heat exchanger, and rocket nozzle. collecting concentrated solar radiation into an absorber cavity and transferring this energy to a propellant as heat. Propellant gas can be heated to temperatures approaching 4,500 F and expanded in a rocket nozzle, creating low thrust with a high specific impulse (I(sub sp)). The Shooting Star Experiment (SSE) solar-thermal engine is made of 100 percent chemical vapor deposited (CVD) rhenium. The engine 'module' consists of an engine assembly, propellant feedline, engine support structure, thermal insulation, and instrumentation. Engine thermal performance tests consist of a series of high-temperature thermal cycles intended to characterize the propulsive performance of the engines and the thermal effectiveness of the engine support structure and insulation system. A silicone-carbide electrical resistance heater, placed inside the inner shell, substitutes for solar radiation and heats the engine. Although the preferred propellant is hydrogen, the propellant used in these tests is gaseous nitrogen. Because rhenium oxidizes at elevated temperatures, the tests are performed in a vacuum chamber. Test data will include transient and steady state temperatures on selected engine surfaces, propellant pressures and flow rates, and engine thrust levels. The engine propellant-feed system is designed to Supply GN2 to the engine at a constant inlet pressure of 60 psia, producing a near-constant thrust of 1.0 lb. Gaseous hydrogen will be used in subsequent tests. The propellant flow rate decreases with increasing propellant temperature, while maintaining constant thrust, increasing engine I(sub sp). In conjunction with analytical models of the heat exchanger, the temperature data will provide insight into the effectiveness of the insulation system, the structural support system, and the overall engine performance. These tests also provide experience on operational aspects of the engine and associated subsystems, and will include independent variation of both steady slate heat-exchanger temperature prior to thrust operation and nitrogen inlet pressure (flow rate) during thrust operation. Although the Shooting Star engines were designed as thermal-storage engines to accommodate mission parameters, they are fully capable of operating as scalable, direct-gain engines. Tests are conducted in both operational modes. Engine thrust and propellant flow rate will be measured and thereby I(sub sp). The objective of these tests is to investigate the effectiveness of the solar engine as a heat exchanger and a rocket. Of particular interest is the effectiveness of the support structure as a thermal insulator, the integrity of both the insulation system and the insulation containment system, the overall temperature distribution throughout the engine module, and the thermal power required to sustain steady state fluid temperatures at various flow rates.
Karl Poggensee - A widely unknown German rocket pioneer - The early years 1930-1934 - A chronology
NASA Astrophysics Data System (ADS)
Rohrwild, Karlheinz
2017-09-01
The rediscovered estate of Karl Poggensee allows to reproduce chronologically his rocket tests of the period 1930-1934 almost completely for the first time. Thrilled by the movie ;The Woman in the Moon; for the idea of space travel, he started as a student of Hinderburg-Polytechnikum (IAO), Oldenburg, to build his first solid-fuel rocket, producing his own propellant charges. Being a coming electrical engineer his main goal was not set up new record heights, but to provide his rockets with automatic measuring instruments, camera and parachute release systems. The optimization of this sequence was his main focus.
Nuclear Engine System Simulation (NESS) version 2.0
NASA Technical Reports Server (NTRS)
Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.
1993-01-01
The topics are presented in viewgraph form and include the following; nuclear thermal propulsion (NTP) engine system analysis program development; nuclear thermal propulsion engine analysis capability requirements; team resources used to support NESS development; expanded liquid engine simulations (ELES) computer model; ELES verification examples; NESS program development evolution; past NTP ELES analysis code modifications and verifications; general NTP engine system features modeled by NESS; representative NTP expander, gas generator, and bleed engine system cycles modeled by NESS; NESS program overview; NESS program flow logic; enabler (NERVA type) nuclear thermal rocket engine; prismatic fuel elements and supports; reactor fuel and support element parameters; reactor parameters as a function of thrust level; internal shield sizing; and reactor thermal model.
NASA Stennis Space Center integrated system health management test bed and development capabilities
NASA Astrophysics Data System (ADS)
Figueroa, Fernando; Holland, Randy; Coote, David
2006-05-01
Integrated System Health Management (ISHM) capability for rocket propulsion testing is rapidly evolving and promises substantial reduction in time and cost of propulsion systems development, with substantially reduced operational costs and evolutionary improvements in launch system operational robustness. NASA Stennis Space Center (SSC), along with partners that includes NASA, contractor, and academia; is investigating and developing technologies to enable ISHM capability in SSC's rocket engine test stands (RETS). This will enable validation and experience capture over a broad range of rocket propulsion systems of varying complexity. This paper describes key components that constitute necessary ingredients to make possible implementation of credible ISHM capability in RETS, other NASA ground test and operations facilities, and ultimately spacecraft and space platforms and systems: (1) core technologies for ISHM, (2) RETS as ISHM testbeds, and (3) RETS systems models.
Modular Rocket Engine Control Software (MRECS)
NASA Technical Reports Server (NTRS)
Tarrant, C.; Crook, J.
1998-01-01
The Modular Rocket Engine Control Software (MRECS) Program is a technology demonstration effort designed to advance the state-of-the-art in launch vehicle propulsion systems. Its emphasis is on developing and demonstrating a modular software architecture for advanced engine control systems that will result in lower software maintenance (operations) costs. It effectively accommodates software requirement changes that occur due to hardware technology upgrades and engine development testing. Ground rules directed by MSFC were to optimize modularity and implement the software in the Ada programming language. MRECS system software and the software development environment utilize Commercial-Off-the-Shelf (COTS) products. This paper presents the objectives, benefits, and status of the program. The software architecture, design, and development environment are described. MRECS tasks are defined and timing relationships given. Major accomplishments are listed. MRECS offers benefits to a wide variety of advanced technology programs in the areas of modular software architecture, reuse software, and reduced software reverification time related to software changes. MRECS was recently modified to support a Space Shuttle Main Engine (SSME) hot-fire test. Cold Flow and Flight Readiness Testing were completed before the test was cancelled. Currently, the program is focused on supporting NASA MSFC in accomplishing development testing of the Fastrac Engine, part of NASA's Low Cost Technologies (LCT) Program. MRECS will be used for all engine development testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilgore, Roger Martin; Soloboda, Alexander Joseph
Launching a rocket involves a controlled transition of the rocket subsystems from a quiescent state to the launch state (i.e., lift-off). In order to launch safely, with confidence that the rocket will successfully complete its mission, the state-of-health for all rocket subsystems and critical ground support equipment must be closely monitored throughout the launch process. This is accomplished by the ground support engineers using mission-specific ground support equipment. A subset of the GSE, the Remote Electrical Ground Interface System (REGIS), is located nearest the rocket to which it's connected via the Umbilical, a wiring harness providing power, sensor, and controlmore » lines. The REGIS also connects via Ethernet to the Ground Launch Computer (GLC).« less
LOx / LCH4: A Unifying Technology for Future Exploration
NASA Technical Reports Server (NTRS)
Falker, John; Terrier, Douglas; Clayton, Ronald G.; Banker, Brian; Ryan, Abigail
2015-01-01
Reduced mass due to increasing commonality between spacecraft subsystems such as power and propulsion have been identified as critical to enabling human missions to Mars. This project represents the first ever integrated propulsion and power system testing and lays the foundations for future sounding rocket flight testing, which will yield the first in-space ignition of a LOx / LCH4 rocket engine.
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.
2012-01-01
The NTR represents the next evolutionary step in high performance rocket propulsion. It generates high thrust and has a specific impulse (Isp) of approx.900 seconds (s) or more V twice that of today s best chemical rockets. The technology is also proven. During the previous Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) nuclear rocket programs, 20 rocket reactors were designed, built and ground tested. These tests demonstrated: (1) a wide range of thrust; (2) high temperature carbide-based nuclear fuel; (3) sustained engine operation; (4) accumulated lifetime; and (5) restart capability V all the requirements needed for a human mission to Mars. Ceramic metal cermet fuel was also pursued, as a backup option. The NTR also has significant growth and evolution potential. Configured as a bimodal system, it can generate electrical power for the spacecraft. Adding an oxygen afterburner nozzle introduces a variable thrust and Isp capability and allows bipropellant operation. In NASA s recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, simple assembly and mission operations. In contrast to other advanced propulsion options, NTP requires no large technology scale-ups. In fact, the smallest engine tested during the Rover program V the 25,000 lbf (25 klbf) Pewee engine is sufficient for human Mars missions when used in a clustered engine arrangement. The Copernicus crewed spacecraft design developed in DRA 5.0 has significant capability and a human exploration strategy is outlined here that uses Copernicus and its key components for precursor near Earth asteroid (NEA) and Mars orbital missions prior to a Mars landing mission. Initially, the basic Copernicus vehicle can enable reusable 1-year round trip human missions to candidate NEAs like 1991 JW and Apophis in the late 2020 s to check out vehicle systems. Afterwards, the Copernicus spacecraft and its 2 key components, now configured as an Earth Return Vehicle / propellant tanker, would be used for a short round trip (approx.18 - 20 months)/short orbital stay (60 days) Mars / Phobos survey mission in 2033 using a split mission approach. The paper also discusses NASA s current Foundational Technology Development activities and its pre-decisional plans for future system-level Technology Demonstrations that include ground testing a small (approx.7.5 klbf) scalable NTR before the decade is out with a flight test shortly thereafter.
A rapid method for optimization of the rocket propulsion system for single-stage-to-orbit vehicles
NASA Technical Reports Server (NTRS)
Eldred, C. H.; Gordon, S. V.
1976-01-01
A rapid analytical method for the optimization of rocket propulsion systems is presented for a vertical take-off, horizontal landing, single-stage-to-orbit launch vehicle. This method utilizes trade-offs between propulsion characteristics affecting flight performance and engine system mass. The performance results from a point-mass trajectory optimization program are combined with a linearized sizing program to establish vehicle sizing trends caused by propulsion system variations. The linearized sizing technique was developed for the class of vehicle systems studied herein. The specific examples treated are the optimization of nozzle expansion ratio and lift-off thrust-to-weight ratio to achieve either minimum gross mass or minimum dry mass. Assumed propulsion system characteristics are high chamber pressure, liquid oxygen and liquid hydrogen propellants, conventional bell nozzles, and the same fixed nozzle expansion ratio for all engines on a vehicle.
Hybrid propulsion technology program: Phase 1, volume 4
NASA Technical Reports Server (NTRS)
Claflin, S. E.; Beckman, A. W.
1989-01-01
The use of a liquid oxidizer-solid fuel hybrid propellant combination in booster rocket motors appears extremely attractive due to the integration of the best features of liquid and solid propulsion systems. The hybrid rocket combines the high performance, clean exhaust, and safety of liquid propellant engines with the low cost and simplicity of solid propellant motors. Additionally, the hybrid rocket has unique advantages such as an inert fuel grain and a relative insensitivity to fuel grain and oxidizer injection anomalies. The advantages mark the hybrid rocket as a potential replacement or alternative for current and future solid propellant booster systems. The issues are addressed and recommendations are made concerning oxidizer feed systems, injectors, and ignition systems as related to hybrid rocket propulsion. Early in the program a baseline hybrid configuration was established in which liquid oxygen would be injected through ports in a solid fuel whose composition is based on hydroxyl terminated polybutadiene (HTPB). Liquid oxygen remained the recommended oxidizer and thus all of the injector concepts which were evaluated assumed only liquid would be used as the oxidizer.
Design of a High Temperature Radiator for the Variable Specific Impulse Magnetoplasma Rocket
NASA Technical Reports Server (NTRS)
Sheth, Rubik B.; Ungar, Eugene K.; Chambliss, Joe P.
2012-01-01
The Variable Specific Impulse Magnetoplasma Rocket (VASIMR), currently under development by Ad Astra Rocket Company (Webster, TX), is a unique propulsion system that could change the way space propulsion is performed. VASIMR's efficiency, when compared to that of a conventional chemical rocket, reduces the propellant needed for exploration missions by a factor of 10. Currently plans include flight tests of a 200 kW VASIMR system, titled VF-200, on the International Space Station (ISS). The VF-200 will consist of two 100 kW thruster units packaged together in one engine bus. Each thruster core generates 27 kW of waste heat during its 15 minute firing time. The rocket core will be maintained between 283 and 573 K by a pumped thermal control loop. The design of a high temperature radiator is a unique challenge for the vehicle design. This paper will discuss the path taken to develop a steady state and transient-based radiator design. The paper will describe the radiator design option selected for the VASIMR thermal control system for use on ISS, and how the system relates to future exploration vehicles.
Current and Future Critical Issues in Rocket Propulsion Systems
NASA Technical Reports Server (NTRS)
Navaz, Homayun K.; Dix, Jeff C.
1998-01-01
The objective of this research was to tackle several problems that are currently of great importance to NASA. In a liquid rocket engine several complex processes take place that are not thoroughly understood. Droplet evaporation, turbulence, finite rate chemistry, instability, and injection/atomization phenomena are some of the critical issues being encountered in a liquid rocket engine environment. Pulse Detonation Engines (PDE) performance, combustion chamber instability analysis, 60K motor flowfield pattern from hydrocarbon fuel combustion, and 3D flowfield analysis for the Combined Cycle engine were of special interest to NASA. During the summer of 1997, we made an attempt to generate computational results for all of the above problems and shed some light on understanding some of the complex physical phenomena. For this purpose, the Liquid Thrust Chamber Performance (LTCP) code, mainly designed for liquid rocket engine applications, was utilized. The following test cases were considered: (1) Characterization of a detonation wave in a Pulse Detonation Tube; (2) 60K Motor wall temperature studies; (3) Propagation of a pressure pulse in a combustion chamber (under single and two-phase flow conditions); (4) Transonic region flowfield analysis affected by viscous effects; (5) Exploring the viscous differences between a smooth and a corrugated wall; and (6) 3D thrust chamber flowfield analysis of the Combined Cycle engine. It was shown that the LTCP-2D and LTCP-3D codes are capable of solving complex and stiff conservation equations for gaseous and droplet phases in a very robust and efficient manner. These codes can be run on a workstation and personal computers (PC's).
A Brief Historical Survey of Rocket Testing Induced Acoustic Environments at NASA SSC
NASA Technical Reports Server (NTRS)
Allgood, Daniel C.
2012-01-01
A survey was conducted of all the various rocket test programs that have been performed since the establishment of NASA Stennis Space Center. The relevant information from each of these programs were compiled and used to quantify the theoretical noise source levels using the NASA approved methodology for computing "acoustic loads generated by a propulsion system" (NASA SP ]8072). This methodology, which is outlined in Reference 1, has been verified as a reliable means of determining the noise source characteristics of rocket engines. This information is being provided to establish reference environments for new government/business residents to ascertain whether or not their activities will generate acoustic environments that are more "encroaching" in the NASA Fee Area. In this report, the designation of sound power level refers to the acoustic power of the rocket engine at the engine itself. This is in contrast to the sound pressure level associated with the propagation of the acoustic energy in the surrounding air. The first part of the survey documents the "at source" sound power levels and their dominant frequency bands for the range of engines tested at Stennis. The second part of the survey discusses how the acoustic energy levels will propagate non ]uniformly from the test stands. To demonstrate this, representative acoustic sound pressure mappings in the NASA Stennis Fee Area were computed for typical engine tests on the B ]1 and E ]1 test stands.
Reduced Basis and Stochastic Modeling of Liquid Propellant Rocket Engine as a Complex System
2015-07-02
additions, the approach will be extended to a real- gas system so that it can be used to investigate model multi-element liquid rocket combustors in a...Sirignano (2010). In the following discussion, we examine the various conservation principles for the gas and liquid phases. The hyperbolic nature of the...conservation equations for the gas and liquid phases. Mass conservation of individual chemical species or of individual classes of liquid droplets will
NASA African American History Month Profile - Kimberly Ennix-Sandhu (AFRC)
2018-02-20
Kimberly Ennix-Sandhu is the SOFIA Operations Center System Safety Lead at NASA Armstrong Flight Research Center. SOFIA is the Stratospheric Observatory for Infrared Astronomy. Kimberly has worked for NASA for 27 years. She started out in jet and rocket propulsion research engineering and moved to Safety and Mission Assurance as a system safety engineer.
NASA Technical Reports Server (NTRS)
Rom, F. E.
1969-01-01
Recent developments in the fields of gas core hydrodynamics, heat transfer, and neutronics indicate that gas core nuclear rockets may be feasible from the point of view of basic principles. Based on performance predictions using these results, mission analyses indicate that gas core nuclear rockets may have the potential for reducing the initial weight in orbit of manned interplanetary vehicles by a factor of 5 when compared to the best chemical rocket systems. In addition, there is a potential for reducing total trip times from 450 to 500 days for chemical systems to 250 to 300 days for gas core systems. The possibility of demonstrating the feasibility of gas core nuclear rocket engines by means of a logical series of experiments of increasing difficulty that ends with ground tests of full scale gas core reactors is considered.
Inside The Space Launch System (SLS): Outfitting The World’s Most Powerful Rocket
2018-02-13
Find out why NASA’s new deep-space rocket, the Space Launch System (SLS) is more than just big and beautiful. For the world’s most powerful rocket, it takes a lot of “guts.” Engineers have built all the giant structures that will be assembled to form the first SLS rocket, and now they are busy installing and outfitting the rocket’s insides with sensors, cables and other equipment. The rocket’s insides including its incredible flight computers and batteries will ensure SLS can do the job of sending the Orion spacecraft out beyond the Moon farther than any human-rated space vehicle as ever ventured. Learn how the SLS core stage components are being outfitted for the first SLS mission, Exploration Mission-1. Find out more at https://www.nasa.gov/exploration/systems/sls/index.html
AJ26 rocket engine testing news briefing
NASA Technical Reports Server (NTRS)
2010-01-01
Operators at NASA's John C. Stennis Space Center are completing modifications to the E-1 Test Stand to begin testing Aerojet AJ26 rocket engines in early summer of 2010. Modifications include construction of a 27-foot-deep flame deflector trench. The AJ26 rocket engines will be used to power Orbital Sciences Corp.'s Taurus II space vehicles to provide commercial cargo transportation missions to the International Space Station for NASA. Stennis has partnered with Orbital to test all engines for the transport missions.
Iridium/Rhenium Parts For Rocket Engines
NASA Technical Reports Server (NTRS)
Schneider, Steven J.; Harding, John T.; Wooten, John R.
1991-01-01
Oxidation/corrosion of metals at high temperatures primary life-limiting mechanism of parts in rocket engines. Combination of metals greatly increases operating temperature and longevity of these parts. Consists of two transition-element metals - iridium and rhenium - that melt at extremely high temperatures. Maximum operating temperature increased to 2,200 degrees C from 1,400 degrees C. Increases operating lifetimes of small rocket engines by more than factor of 10. Possible to make hotter-operating, longer-lasting components for turbines and other heat engines.
Propulsion Estimates for High Energy Lunar Missions Using Future Propellants
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan A.; Bennett, Gary L.
2016-01-01
High energy propellants for human lunar missions are analyzed, focusing on very advanced ozone and atomic hydrogen. One of the most advanced launch vehicle propulsion systems, such as the Space Shuttle Main Engine (SSME), used hydrogen and oxygen and had a delivered specific impulse of 453 seconds. In the early days of the space program, other propellants (or so called metapropellants) were suggested, including atomic hydrogen and liquid ozone. Theoretical and experimental studies of atomic hydrogen and ozone were conducted beginning in the late 1940s. This propellant research may have provided screenwriters with the idea of an atomic hydrogen-ozone rocket engine in the 1950 movie, Rocketship X-M. This paper presents analyses showing that an atomic hydrogen-ozone rocket engine could produce a specific impulse over a wide range of specific impulse values reaching as high as 1,600 s. A series of single stage and multistage rocket vehicle analyses were conducted to find the minimum specific impulse needed to conduct high energy round trip lunar missions.
Heat Exchanger Design in Combined Cycle Engines
NASA Astrophysics Data System (ADS)
Webber, H.; Feast, S.; Bond, A.
Combined cycle engines employing both pre-cooled air-breathing and rocket modes of operation are the most promising propulsion system for achieving single stage to orbit vehicles. The air-breathing phase is purely for augmentation of the mission velocity required in the rocket phase and as such must be mass effective, re-using the components of the rocket cycle, whilst achieving adequate specific impulse. This paper explains how the unique demands placed on the air-breathing cycle results in the need for sophisticated thermodynamics and the use of a series of different heat exchangers to enable precooling and high pressure ratio compression of the air for delivery to the rocket combustion chambers. These major heat exchanger roles are; extracting heat from incoming air in the precooler, topping up cycle flow temperatures to maintain constant turbine operating conditions and extracting rejected heat from the power cycle via regenerator loops for thermal capacity matching. The design solutions of these heat exchangers are discussed.
Space shuttle main engine definition (phase B). Volume 2: Avionics. [for space shuttle
NASA Technical Reports Server (NTRS)
1971-01-01
The advent of the space shuttle engine with its requirements for high specific impulse, long life, and low cost have dictated a combustion cycle and a closed loop control system to allow the engine components to run close to operating limits. These performance requirements, combined with the necessity for low operational costs, have placed new demands on rocket engine control, system checkout, and diagnosis technology. Based on considerations of precision environment, and compatibility with vehicle interface commands, an electronic control, makes available many functions that logically provide the information required for engine system checkout and diagnosis.
NASA Astrophysics Data System (ADS)
Ross, M. N.; Toohey, D.
2008-12-01
Emissions from solid and liquid propellant rocket engines reduce global stratospheric ozone levels. Currently ~ one kiloton of payloads are launched into earth orbit annually by the global space industry. Stratospheric ozone depletion from present day launches is a small fraction of the ~ 4% globally averaged ozone loss caused by halogen gases. Thus rocket engine emissions are currently considered a minor, if poorly understood, contributor to ozone depletion. Proposed space-based geoengineering projects designed to mitigate climate change would require order of magnitude increases in the amount of material launched into earth orbit. The increased launches would result in comparable increases in the global ozone depletion caused by rocket emissions. We estimate global ozone loss caused by three space-based geoengineering proposals to mitigate climate change: (1) mirrors, (2) sunshade, and (3) space-based solar power (SSP). The SSP concept does not directly engineer climate, but is touted as a mitigation strategy in that SSP would reduce CO2 emissions. We show that launching the mirrors or sunshade would cause global ozone loss between 2% and 20%. Ozone loss associated with an economically viable SSP system would be at least 0.4% and possibly as large as 3%. It is not clear which, if any, of these levels of ozone loss would be acceptable under the Montreal Protocol. The large uncertainties are mainly caused by a lack of data or validated models regarding liquid propellant rocket engine emissions. Our results offer four main conclusions. (1) The viability of space-based geoengineering schemes could well be undermined by the relatively large ozone depletion that would be caused by the required rocket launches. (2) Analysis of space- based geoengineering schemes should include the difficult tradeoff between the gain of long-term (~ decades) climate control and the loss of short-term (~ years) deep ozone loss. (3) The trade can be properly evaluated only if our understanding of the stratospheric impact of rocket emissions is significantly improved. (4) Such an improved understanding requires a concerted effort of research including new in situ measurements in a variety of rocket plumes and a multi-scale modeling program similar in scope to the effort required to address the climate and ozone impacts of aircraft emissions.
US Rocket Propulsion Industrial Base Health Metrics
NASA Technical Reports Server (NTRS)
Doreswamy, Rajiv
2013-01-01
The number of active liquid rocket engine and solid rocket motor development programs has severely declined since the "space race" of the 1950s and 1960s center dot This downward trend has been exacerbated by the retirement of the Space Shuttle, transition from the Constellation Program to the Space launch System (SLS) and similar activity in DoD programs center dot In addition with consolidation in the industry, the rocket propulsion industrial base is under stress. To Improve the "health" of the RPIB, we need to understand - The current condition of the RPIB - How this compares to past history - The trend of RPIB health center dot This drives the need for a concise set of "metrics" - Analogous to the basic data a physician uses to determine the state of health of his patients - Easy to measure and collect - The trend is often more useful than the actual data point - Can be used to focus on problem areas and develop preventative measures The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs. center dot The RPIB encompasses US government, academic, and commercial (including industry primes and their supplier base) research, development, test, evaluation, and manufacturing capabilities and facilities. center dot The RPIB includes the skilled workforce, related intellectual property, engineering and support services, and supply chain operations and management. This definition touches the five main segments of the U.S. RPIB as categorized by the USG: defense, intelligence community, civil government, academia, and commercial sector. The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs. center dot The RPIB encompasses US government, academic, and commercial (including industry primes and their supplier base) research, development, test, evaluation, and manufacturing capabilities and facilities. center dot The RPIB includes the skilled workforce, related intellectual property, engineering and support services, and supply chain operations and management. This definition touches the five main segments of the U.S. RPIB as categorized by the USG: defense, intelligence community, civil government, academia, and commercial sector.
Integrated System Health Management (ISHM) Implementation in Rocket Engine Testing
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Morris, Jon; Turowski, Mark; Franzl, Richard; Walker, Mark; Kapadia, Ravi; Venkatesh, Meera
2010-01-01
A pilot operational ISHM capability has been implemented for the E-2 Rocket Engine Test Stand (RETS) and a Chemical Steam Generator (CSG) test article at NASA Stennis Space Center. The implementation currently includes an ISHM computer and a large display in the control room. The paper will address the overall approach, tools, and requirements. It will also address the infrastructure and architecture. Specific anomaly detection algorithms will be discussed regarding leak detection and diagnostics, valve validation, and sensor validation. It will also describe development and use of a Health Assessment Database System (HADS) as a repository for measurements, health, configuration, and knowledge related to a system with ISHM capability. It will conclude with a discussion of user interfaces, and a description of the operation of the ISHM system prior, during, and after testing.
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.
1994-01-01
The solid core nuclear thermal rocket (NTR) represents the next major evolutionary step in propulsion technology. With its attractive operating characteristics, which include high specific impulse (approximately 850-1000 s) and engine thrust-to-weight (approximately 4-20), the NTR can form the basis for an efficient lunar space transportation system (LTS) capable of supporting both piloted and cargo missions. Studies conducted at the NASA Lewis Research Center indicate that an NTR-based LTS could transport a fully-fueled, cargo-laden, lunar excursion vehicle to the Moon, and return it to low Earth orbit (LEO) after mission completion, for less initial mass in LEO than an aerobraked chemical system of the type studied by NASA during its '90-Day Study.' The all-propulsive NTR-powered LTS would also be 'fully reusable' and would have a 'return payload' mass fraction of approximately 23 percent--twice that of the 'partially reusable' aerobraked chemical system. Two NTR technology options are examined--one derived from the graphite-moderated reactor concept developed by NASA and the AEC under the Rover/NERVA (Nuclear Engine for Rocket Vehicle Application) programs, and a second concept, the Particle Bed Reactor (PBR). The paper also summarizes NASA's lunar outpost scenario, compares relative performance provided by different LTS concepts, and discusses important operational issues (e.g., reusability, engine 'end-of life' disposal, etc.) associated with using this important propulsion technology.
Space Launch System Base Heating Test: Experimental Operations & Results
NASA Technical Reports Server (NTRS)
Dufrene, Aaron; Mehta, Manish; MacLean, Matthew; Seaford, Mark; Holden, Michael
2016-01-01
NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Test methodology and conditions are presented, and base heating results from 76 runs are reported in non-dimensional form. Regions of high heating are identified and comparisons of various configuration and conditions are highlighted. Base pressure and radiometer results are also reported.
Program For Optimization Of Nuclear Rocket Engines
NASA Technical Reports Server (NTRS)
Plebuch, R. K.; Mcdougall, J. K.; Ridolphi, F.; Walton, James T.
1994-01-01
NOP is versatile digital-computer program devoloped for parametric analysis of beryllium-reflected, graphite-moderated nuclear rocket engines. Facilitates analysis of performance of engine with respect to such considerations as specific impulse, engine power, type of engine cycle, and engine-design constraints arising from complications of fuel loading and internal gradients of temperature. Predicts minimum weight for specified performance.
Oxidation of Copper Alloy Candidates for Rocket Engine Applications
NASA Technical Reports Server (NTRS)
Ogbuji, Linus U. Thomas; Humphrey, Donald L.
2002-01-01
The gateway to affordable and reliable space transportation in the near future remains long-lived rocket-based propulsion systems; and because of their high conductivities, copper alloys remain the best materials for lining rocket engines and dissipating their enormous thermal loads. However, Cu and its alloys are prone to oxidative degradation -- especially via the ratcheting phenomenon of blanching, which occurs in situations where the local ambient can oscillate between oxidation and reduction, as it does in a H2/02- fuelled rocket engine. Accordingly, resistance to blanching degradation is one of the key requirements for the next generation of reusable launch vehicle (RLV) liner materials. Candidate copper alloys have been studied with a view to comparing their oxidation behavior, and hence resistance to blanching, in ambients corresponding to conditions expected in rocket engine service. These candidate materials include GRCop-84 and GRCop-42 (Cu - Cr-8 - Nb-4 and Cu - Cr-4 - Nb-2 respectively); NARloy-Z (Cu-3%Ag-0.5%Y), and GlidCop (Cu-O.l5%Al2O3 ODS alloy); they represent different approaches to improving the mechanical properties of Cu without incurring a large drop in thermal conductivity. Pure Cu (OFHC-Cu) was included in the study to provide a baseline for comparison. The samples were exposed for 10 hours in the TGA to oxygen partial pressures ranging from 322 ppm to 1.0 atmosphere and at temperatures of up to 700 C, and examined by SEM-EDS and other techniques of metallography. This paper will summarize the results obtained.
STERN-Educational Benefits for the Space Industry
NASA Astrophysics Data System (ADS)
Schuttauf, K.; Stamminger, A.; Lappohn, K.; Ciezki, H.; Kitsche, W.
2015-09-01
STERN, the German word for star, is also an acronym for STudentische Experimental-RaketeN. It is a program to provide students with “hands-on” experience in space systems and research. This name was chosen for two reasons. The first reason was to emphasize the idealistic goals of spaceflight providing students with the opportunity to “reach for the stars”. The second and most important one was that the program offers engineering students a practical chance to experience the scope of aerospace and should motivate them to become a new star in this field. Currently eight German universities are participating in the STERN-program. STERN was initiated in April 2012, by the DLR Space Administration in Bonn and is supported by funds from the German Federal Ministry of Economics and Technology (BMWi). During the project runtime of three years the students should develop and launch their own rocket. There are no limits regarding trajectory, altitude or the propulsion system used (solid fuel, liquid fuel, steam or hybrid). The reason for the “no limits” strategy is to create a new perspective of a problem and encourage new technological ideas. The students shall not be limited in their creativity. Nevertheless the spacecraft should have a telemetry system to transmit key trajectory and housekeeping data back to earth during flight and provide information to the students including the rocket altitude. Moreover the rocket shall reach a velocity of at least Mach 1 . The project requirements are set to show the real world of work to the students. To reach the project goal, the students have to work project-oriented and in teams. In order to teach students engineering and science, as well as to put their technical knowledge to the test as early as possible in their studies, they are integrated into courses at their universities, which already deal with various aspects of rocket technology and space research. As in any development program, the students have to pass several reviews in which they have to present and defend their rocket design in front of experts. This practically oriented study should prepare the students for life in industry. The DLR Mobile Rocket Base (MORABA) and the DLR Institute of Space Propulsion as well as the DLR Space Administration, accompany the students during the reviews and until launch. MORABA has five decades of experience in launching sounding rockets and the Space Propulsion Institute in testing of and research in rocket engines. The reviews as well as special workshops (organized by DLR MORABA and the DLR Institute of Space Propulsion), offer a platform for exchange of technical information. The STERN project provides an opportunity to train the next generation of aerospace engineers.
NASA Technical Reports Server (NTRS)
Vonderesch, A. H.
1972-01-01
A second iteration of the program baseline configuration and cost for the solid propellant rocket engines used with the space shuttle booster system is presented. The purpose of the study was to ensure that total program costs were complete and to review areas where costs might be overly conservative and could be reduced. Labor and material were analyzed in more depth, more definition was prepared to separate recurring from nonrecurring costs, and the operations portions of the engine and stage were separated into more identifiable activities.
A new vision for fusion energy research: Fusion rocket engines for planetary defense
Wurden, G. A.; Weber, T. E.; Turchi, P. J.; ...
2015-11-16
Here, we argue that it is essential for the fusion energy program to identify an imagination-capturing critical mission by developing a unique product which could command the marketplace. We lay out the logic that this product is a fusion rocket engine, to enable a rapid response capable of deflecting an incoming comet, to prevent its impact on the planet Earth, in defense of our population, infrastructure, and civilization. As a side benefit, deep space solar system exploration, with greater speed and orders-of-magnitude greater payload mass would also be possible.
NASP - Waveriders in a hypersonic sky.
NASA Astrophysics Data System (ADS)
Baker, David
1993-01-01
A development history is presented for the hydrogen-fueled, airbreathing (scramjet) engine-propelled National Aerospace Plane (NASP), which will be able to cruise endoatmospherically at hypersopnic speeds or rise exoatmospherically, by converting to rocket power, to LEO. Attention is given to the technology-development and configuration-validation services that the X-30 project will render the far larger NASP vehicle; the configurational and propulsion system factors in question encompass the use of 'slush' hydrogen fuel, the integration of engine inlets into the aircraft forebody and exhaust nozzles into the afterbody, and the conversion from turbojet or rocket propulsion to scramjet mode and back.
Rover nuclear rocket engine program: Overview of rover engine tests
NASA Technical Reports Server (NTRS)
Finseth, J. L.
1991-01-01
The results of nuclear rocket development activities from the inception of the ROVER program in 1955 through the termination of activities on January 5, 1973 are summarized. This report discusses the nuclear reactor test configurations (non cold flow) along with the nuclear furnace demonstrated during this time frame. Included in the report are brief descriptions of the propulsion systems, test objectives, accomplishments, technical issues, and relevant test results for the various reactor tests. Additionally, this document is specifically aimed at reporting performance data and their relationship to fuel element development with little or no emphasis on other (important) items.
A new vision for fusion energy research: Fusion rocket engines for planetary defense
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurden, G. A.; Weber, T. E.; Turchi, P. J.
Here, we argue that it is essential for the fusion energy program to identify an imagination-capturing critical mission by developing a unique product which could command the marketplace. We lay out the logic that this product is a fusion rocket engine, to enable a rapid response capable of deflecting an incoming comet, to prevent its impact on the planet Earth, in defense of our population, infrastructure, and civilization. As a side benefit, deep space solar system exploration, with greater speed and orders-of-magnitude greater payload mass would also be possible.
The History and Promise of Combined Cycle Engines for Access to Space Applications
NASA Technical Reports Server (NTRS)
Clark, Casie
2010-01-01
For the summer of 2010, I have been working in the Aerodynamics and Propulsion Branch at NASA Dryden Flight Research Center studying combined-cycle engines, a high speed propulsion concept. Combined cycle engines integrate multiple propulsion systems into a single engine capable of running in multiple modes. These different modes allow the engine to be extremely versatile and efficient in varied flight conditions. The two most common types of combined cycle engines are Rocket-Based Combined Cycle (RBCC) and Turbine Based Combined Cycle (TBCC). The RBCC essentially combines a rocket and ramjet engine, while the TBCC integrates a turbojet and ramjet1. These two engines are able to switch between different propulsion modes to achieve maximum performance. Extensive conceptual and ground test studies of RBCC engines have been undertaken; however, an RBCC engine has never, to my knowledge, been demonstrated in flight. RBCC engines are of particular interest because they could potentially power a reusable launch vehicle (RLV) into space. The TBCC has been flight tested and shown to be effective at reaching supersonic speeds, most notably in the SR-71 Blackbird2.
Propulsion Progress for NASA's Space Launch System
NASA Technical Reports Server (NTRS)
May, Todd A.; Lyles, Garry M.; Priskos, Alex S.; Kynard, Michael H.; Lavoie, Anthony R.
2012-01-01
Leaders from NASA's Space Launch System (SLS) will participate in a panel discussing the progress made on the program's propulsion systems. The SLS will be the nation's next human-rated heavy-lift vehicle for new missions beyond Earth's orbit. With a first launch slated for 2017, the SLS Program is turning plans into progress, with the initial rocket being built in the U.S.A. today, engaging the aerospace workforce and infrastructure. Starting with an overview of the SLS mission and programmatic status, the discussion will then delve into progress on each of the primary SLS propulsion elements, including the boosters, core stage engines, upper stage engines, and stage hardware. Included will be a discussion of the 5-segment solid rocket motors (ATK), which are derived from Space Shuttle and Ares developments, as well as the RS-25 core stage engines from the Space Shuttle inventory and the J- 2X upper stage engine now in testing (Pratt and Whitney Rocketdyne). The panel will respond to audience questions about this important national capability for human and scientific space exploration missions.
Propulsion Systems for Aircraft. Aerospace Education II.
ERIC Educational Resources Information Center
Mackin, T. E.
This is a revised text used for the Air Force ROTC program. The main part of the book centers on the discussion of the engines in an airplane. After describing the terms and concepts of power, jets, and rockets, the author describes reciprocating engines. The description of diesel engines helps to explain why these are not used in airplanes. The…
Propulsion Systems for Aircraft. Aerospace Education II.
ERIC Educational Resources Information Center
Mackin, T. E.
The main part of the book centers on the discussion of the engines in an airplane. After describing the terms and concepts of power, jets, and rockets, the author describes the reciprocating engines. The description of diesel engines helps to explain why these are not used in airplanes. The discussion of the carburetor is followed by a discussion…
Lox/Gox related failures during Space Shuttle Main Engine development
NASA Technical Reports Server (NTRS)
Cataldo, C. E.
1981-01-01
Specific rocket engine hardware and test facility system failures are described which were caused by high pressure liquid and/or gaseous oxygen reactions. The failures were encountered during the development and testing of the space shuttle main engine. Failure mechanisms are discussed as well as corrective actions taken to prevent or reduce the potential of future failures.
Dynamics of Supercritical Flows
2012-08-26
to Supercritical Environment of Relevance to Rocket, Gas turbine , and Diesel Engines,” 37th AIAA Aerospace Science Meeting and Exhibit, AIAA...Visual Characteristics of a Round Jet into a Sub- to Supercritical Environment of Relevance to Rocket, Gas turbine , and Diesel Engines,” 37th AIAA...Relevance to Rocket, Gas turbine , and Diesel Engines,” 37th AIAA Aerospace Science Meeting and Exhibit, AIAA, Washington, DC, 11-14 Jan. 1999. 26Chehroudi
Space vehicle engine and heat shield environment review. Volume 1: Engineering analysis
NASA Technical Reports Server (NTRS)
Mcanelly, W. B.; Young, C. T. K.
1973-01-01
Methods for predicting the base heating characteristics of a multiple rocket engine installation are discussed. The environmental data is applied to the design of adequate protection system for the engine components. The methods for predicting the base region thermal environment are categorized as: (1) scale model testing, (2) extrapolation of previous and related flight test results, and (3) semiempirical analytical techniques.
NASA Orbit Transfer Rocket Engine Technology Program
NASA Technical Reports Server (NTRS)
1984-01-01
The advanced expander cycle engine with a 15,000 lb thrust level and a 6:1 mixture ratio and optimized performance was used as the baseline for a design study of the hydrogen/oxgyen propulsion system for the orbit transfer vehicle. The critical components of this engine are the thrust chamber, the turbomachinery, the extendible nozzle system, and the engine throttling system. Turbomachinery technology is examined for gears, bearing, seals, and rapid solidification rate turbopump shafts. Continuous throttling concepts are discussed. Components of the OTV engine described include the thrust chamber/nozzle assembly design, nozzles, the hydrogen regenerator, the gaseous oxygen heat exchanger, turbopumps, and the engine control valves.
2011-10-04
CAPE CANAVERAL, Fla. -- NASA managers at NASA's Kennedy Space Center in Florida show off the Florida Project of the Year trophies that the crawlerway system evaluation team received from the American Society of Civil Engineers (ASCE). From left are Michael Benik, director of Center Operations; Pepper Phillips, manager of the 21st Century Ground Systems Program Office; and Russell Romanella, associate director for Engineering and Technical Operations. The Cape Canaveral branch of the ASCE nominated the team for its project, the Crawlerway Evaluation to Support a Heavy-Lift Program. The crawlerway is a 130-foot-wide, specialty-built roadway between Kennedy's Vehicle Assembly Building (VAB), where rockets and spacecraft are prepared for flight, and Launch Pad 39A and 39B. The team's more than two-year evaluation confirmed the crawlerway system would be able to support the weight of moving the agency's future heavy-lift rockets and potential commercial vehicles from the VAB to the launch pads. The award honors the team's outstanding engineering efforts in research, design, construction and management, recognizing the complexity of multi-agency coordination and cost-effective engineering advances. For more information on the American Society of Civil Engineers, visit: http://www.asce.org. Photo credit: NASA/Kim Shiflett
Modular Rocket Engine Control Software (MRECS)
NASA Technical Reports Server (NTRS)
Tarrant, Charlie; Crook, Jerry
1997-01-01
The Modular Rocket Engine Control Software (MRECS) Program is a technology demonstration effort designed to advance the state-of-the-art in launch vehicle propulsion systems. Its emphasis is on developing and demonstrating a modular software architecture for a generic, advanced engine control system that will result in lower software maintenance (operations) costs. It effectively accommodates software requirements changes that occur due to hardware. technology upgrades and engine development testing. Ground rules directed by MSFC were to optimize modularity and implement the software in the Ada programming language. MRECS system software and the software development environment utilize Commercial-Off-the-Shelf (COTS) products. This paper presents the objectives and benefits of the program. The software architecture, design, and development environment are described. MRECS tasks are defined and timing relationships given. Major accomplishment are listed. MRECS offers benefits to a wide variety of advanced technology programs in the areas of modular software, architecture, reuse software, and reduced software reverification time related to software changes. Currently, the program is focused on supporting MSFC in accomplishing a Space Shuttle Main Engine (SSME) hot-fire test at Stennis Space Center and the Low Cost Boost Technology (LCBT) Program.
Parallel Unsteady Turbopump Simulations for Liquid Rocket Engines
NASA Technical Reports Server (NTRS)
Kiris, Cetin C.; Kwak, Dochan; Chan, William
2000-01-01
This paper reports the progress being made towards complete turbo-pump simulation capability for liquid rocket engines. Space Shuttle Main Engine (SSME) turbo-pump impeller is used as a test case for the performance evaluation of the MPI and hybrid MPI/Open-MP versions of the INS3D code. Then, a computational model of a turbo-pump has been developed for the shuttle upgrade program. Relative motion of the grid system for rotor-stator interaction was obtained by employing overset grid techniques. Time-accuracy of the scheme has been evaluated by using simple test cases. Unsteady computations for SSME turbo-pump, which contains 136 zones with 35 Million grid points, are currently underway on Origin 2000 systems at NASA Ames Research Center. Results from time-accurate simulations with moving boundary capability, and the performance of the parallel versions of the code will be presented in the final paper.
NASA Technical Reports Server (NTRS)
1998-01-01
Final preparations for lift off of the DELTA II Mars Pathfinder Rocket are shown. Activities include loading the liquid oxygen, completing the construction of the Rover, and placing the Rover into the Lander. After the countdown, important visual events include the launch of the Delta Rocket, burnout and separation of the three Solid Rocket Boosters, and the main engine cutoff. The cutoff of the main engine marks the beginning of the second stage engine. After the completion of the second stage, the third stage engine ignites and then cuts off. Once the third stage engine cuts off spacecraft separation occurs.
Nuclear Thermal Propulsion (NTP): A Proven Growth Technology for Human NEO/Mars Exploration Missions
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.
2012-01-01
The nuclear thermal rocket (NTR) represents the next "evolutionary step" in high performance rocket propulsion. Unlike conventional chemical rockets that produce their energy through combustion, the NTR derives its energy from fission of Uranium-235 atoms contained within fuel elements that comprise the engine s reactor core. Using an "expander" cycle for turbopump drive power, hydrogen propellant is raised to a high pressure and pumped through coolant channels in the fuel elements where it is superheated then expanded out a supersonic nozzle to generate high thrust. By using hydrogen for both the reactor coolant and propellant, the NTR can achieve specific impulse (Isp) values of 900 seconds (s) or more - twice that of today s best chemical rockets. From 1955 - 1972, twenty rocket reactors were designed, built and ground tested in the Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) programs. These programs demonstrated: (1) high temperature carbide-based nuclear fuels; (2) a wide range of thrust levels; (3) sustained engine operation; (4) accumulated lifetime at full power; and (5) restart capability - all the requirements needed for a human Mars mission. Ceramic metal "cermet" fuel was pursued as well, as a backup option. The NTR also has significant "evolution and growth" capability. Configured as a "bimodal" system, it can generate its own electrical power to support spacecraft operational needs. Adding an oxygen "afterburner" nozzle introduces a variable thrust and Isp capability and allows bipropellant operation. In NASA s recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, versatile vehicle design, simple assembly, and growth potential. In contrast to other advanced propulsion options, no large technology scale-ups are required for NTP either. In fact, the smallest engine tested during the Rover program - the 25,000 lbf (25 klbf) "Pewee" engine is sufficient when used in a clustered engine arrangement. The "Copernicus" crewed spacecraft design developed in DRA 5.0 has significant capability and a human exploration strategy is outlined here that uses Copernicus and its key components for precursor near Earth object (NEO) and Mars orbital missions prior to a Mars landing mission. The paper also discusses NASA s current activities and future plans for NTP development that include system-level Technology Demonstrations - specifically ground testing a small, scalable NTR by 2020, with a flight test shortly thereafter.
SLS Intertank Transported to NASA's Barge Pegasus for Shipment, Testing
2018-02-22
A structural test version of the intertank for NASA's new heavy-lift rocket, the Space Launch System, is loaded onto the barge Pegasus Feb. 22, at NASA’s Michoud Assembly Facility in New Orleans. NASA engineers and technicians used the agency's new self-propelled modular transporters -- highly specialized, mobile platforms specifically designed to transport SLS hardware -- to transport the critical test hardware to the barge. The intertank is the second piece of structural hardware for the rocket's massive core stage scheduled for delivery to NASA's Marshall Space Flight Center in Huntsville, Alabama, for testing. Engineers at Marshall will push, pull and bend the intertank with millions of pounds of force to ensure the hardware can withstand the forces of launch and ascent. The flight version of the intertank will connect the core stage's two colossal fuel tanks, serve as the upper-connection point for the two solid rocket boosters and house the avionics and electronics that will serve as the "brains" of the rocket. Pegasus, originally used during the Space Shuttle Program, has been redesigned and extended to accommodate the SLS rocket's massive, 212-foot-long core stage -- the backbone of the rocket. The 310-foot-long barge will ferry the core stage elements from Michoud to other NASA centers for tests and launches.
SLS Intertank Transported to NASA's Barge Pegasus for Shipment, testing
2018-02-22
A structural test version of the intertank for NASA's new heavy-lift rocket, the Space Launch System, is loaded onto the barge Pegasus Feb. 22, at NASA’s Michoud Assembly Facility in New Orleans. NASA engineers and technicians used the agency's new self-propelled modular transporters -- highly specialized, mobile platforms specifically designed to transport SLS hardware -- to transport the critical test hardware to the barge. The intertank is the second piece of structural hardware for the rocket's massive core stage scheduled for delivery to NASA's Marshall Space Flight Center in Huntsville, Alabama, for testing. Engineers at Marshall will push, pull and bend the intertank with millions of pounds of force to ensure the hardware can withstand the forces of launch and ascent. The flight version of the intertank will connect the core stage's two colossal fuel tanks, serve as the upper-connection point for the two solid rocket boosters and house the avionics and electronics that will serve as the "brains" of the rocket. Pegasus, originally used during the Space Shuttle Program, has been redesigned and extended to accommodate the SLS rocket's massive, 212-foot-long core stage -- the backbone of the rocket. The 310-foot-long barge will ferry the core stage elements from Michoud to other NASA centers for tests and launches.
NASA Technical Reports Server (NTRS)
1989-01-01
By simply combining two baseline pump-fed LOX/RP-1 Liquid Rocket Boosters (LRBs) with the Denver core, a launch vehicle (Option 1 Advanced Launch System (ALS)) is obtained that can perform both the 28.5 deg (ALS) mission and the polar orbit ALS mission. The Option 2 LRB was obtained by finding the optimum LOX/LH2 engine for the STS/LRB reference mission (70.5 K lb payload). Then this engine and booster were used to estimate ALS payload for the 28.5 deg inclination ALS mission. Previous studies indicated that the optimum number of STS/LRB engines is four. When the engine/booster sizing was performed, each engine had 478 K lb sea level thrust and the booster carried 625,000 lb of useable propellant. Two of these LRBs combined with the Denver core provided a launch vehicle that meets the payload requirements for both the ALS and STS reference missions. The Option 3 LRB uses common engines for the cores and boosters. The booster engines do not have the nozzle extension. These engines were sized as common ALS engines. An ALS launch vehicle that has six core engines and five engines per booster provides 109,100 lb payload for the 28.5 deg mission. Each of these LOX/LH2 LRBs carries 714,100 lb of useable propellant. It is estimated that the STS/LRB reference mission payload would be 75,900 lb.
Study of solid rocket motors for a space shuttle booster. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1972-01-01
An analysis of the solid propellant rocket engines for use with the space shuttle booster was conducted. A definition of the specific solid propellant rocket engine stage designs, development program requirements, production requirements, launch requirements, and cost data for each program phase were developed.
Bleed cycle propellant pumping in a gas-core nuclear rocket engine system
NASA Technical Reports Server (NTRS)
Kascak, A. F.; Easley, A. J.
1972-01-01
The performance of ideal and real staged primary propellant pumps and bleed-powered turbines was calculated for gas-core nuclear rocket engines over a range of operating pressures from 500 to 5000 atm. This study showed that for a required engine operating pressure of 1000 atm the pump work was about 0.8 hp/(lb/sec), the specific impulse penalty resulting from the turbine propellant bleed flow as about 10 percent; and the heat required to preheat the propellant was about 7.8 MN/(lb/sec). For a specific impulse above 2400 sec, there is an excess of energy available in the moderator due to the gamma and neutron heating that occurs there. Possible alternative pumping cycles are the Rankine or Brayton cycles.
An historical collection of papers on nuclear thermal propulsion
NASA Astrophysics Data System (ADS)
The present volume of historical papers on nuclear thermal propulsion (NTP) encompasses NTP technology development regarding solid-core NTP technology, advanced concepts from the early years of NTP research, and recent activities in the field. Specific issues addressed include NERVA rocket-engine technology, the development of nuclear rocket propulsion at Los Alamos, fuel-element development, reactor testing for the Rover program, and an overview of NTP concepts and research emphasizing two decades of NASA research. Also addressed are the development of the 'nuclear light bulb' closed-cycle gas core and a demonstration of a fissioning UF6 gas in an argon vortex. The recent developments reviewed include the application of NTP to NASA's Lunar Space Transportation System, the use of NTP for the Space Exploration Initiative, and the development of nuclear rocket engines in the former Soviet Union.
Centrifugal and Axial Pump Design and Off-Design Performance Prediction
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
1995-01-01
A meanline pump-flow modeling method has been developed to provide a fast capability for modeling pumps of cryogenic rocket engines. Based on this method, a meanline pump-flow code PUMPA was written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The design-point rotor efficiency and slip factors are obtained from empirical correlations to rotor-specific speed and geometry. The pump code can model axial, inducer, mixed-flow, and centrifugal pumps and can model multistage pumps in series. The rapid input setup and computer run time for this meanline pump flow code make it an effective analysis and conceptual design tool. The map-generation capabilities of the code provide the information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of PUMPA permit the user to do parametric design space exploration of candidate pump configurations and to provide head-flow maps for engine system evaluation.
Liquid Rocket Engine Testing - Historical Lecture: Simulated Altitude Testing at AEDC
NASA Technical Reports Server (NTRS)
Dougherty, N. S.
2010-01-01
The span of history covered is from 1958 to the present. The outline of this lecture draws from historical examples of liquid propulsion testing done at AEDC primarily for NASA's Marshall Space Flight Center (NASA/MSFC) in the Saturn/Apollo Program and for USAF Space and Missile Systems dual-use customers. NASA has made dual use of Air Force launch vehicles, Test Ranges and Tracking Systems, and liquid rocket altitude test chambers / facilities. Examples are drawn from the Apollo/ Saturn vehicles and the testing of their liquid propulsion systems. Other examples are given to extend to the family of the current ELVs and Evolved ELVs (EELVs), in this case, primarily to their Upper Stages. The outline begins with tests of the XLR 99 Engine for the X-15 aircraft, tests for vehicle / engine induced environments during flight in the atmosphere and in Space, and vehicle staging at high altitude. The discussion is from the author's perspective and background in developmental testing.
Combustion Instability in an Acid-Heptane Rocket with a Pressurized-Gas Propellant Pumping System
NASA Technical Reports Server (NTRS)
Tischler, Adelbert O.; Bellman, Donald R.
1951-01-01
Results of experimental measurements of low-frequency combustion instability of a 300-pound thrust acid-heptane rocket engine were compared to the trends predicted by an analysis of combustion instability in a rocket engine with a pressurized-gas propellant pumping system. The simplified analysis, which assumes a monopropellant model, was based on the concept of a combustion the delay occurring from the moment of propellant injection to the moment of propellant combustion. This combustion time delay was experimentally measured; the experimental values were of approximately half the magnitude predicted by the analysis. The pressure-fluctuation frequency for a rocket engine with a characteristic length of 100 inches and operated at a combustion-chamber pressure of 280 pounds per square inch absolute was 38 cycles per second; the analysis indicated. a frequency of 37 cycles per second. Increasing combustion-chamber characteristic length decreased the pressure-fluctuation frequency, in conformity to the analysis. Increasing the chamber operating pressure or increasing the injector pressure drop increased the frequency. These latter two effects are contrary to the analysis; the discrepancies are attributed to the conflict between the assumptions made to simplify the analysis and the experimental conditions. Oxidant-fuel ratio had no apparent effect on the experimentally measured pressure-fluctuation frequency for acid-heptane ratios from 3.0 to 7.0. The frequencies decreased with increased amplitude of the combustion-chamber pressure variations. The analysis indicated that if the combustion time delay were sufficiently short, low-frequency combustion instability would be eliminated.
Developing hybrid near-space technologies for affordable access to suborbital space
NASA Astrophysics Data System (ADS)
Badders, Brian David
High power rockets and high altitude balloons are two near-space technologies that could be combined in order to provide access to the mesosphere and, eventually, suborbital space. This "rockoon" technology has been used by several large budget space programs before being abandoned in favor of even more expensive, albeit more accurate, ground launch systems. With the increased development of nano-satellites and atmospheric sensors, combined with rising interest in global atmospheric data, there is an increase in desire for affordable access to extreme altitudes that does not necessarily require the precision of ground launches. Development of hybrid near-space technologies for access to over 200k ft. on a small budget brings many challenges within engineering, systems integration, cost analysis, market analysis, and business planning. This research includes the design and simulation testing of all the systems needed for a safe and reusable launch system, the cost analysis for initial production, the development of a business plan, and the development of a marketing plan. This project has both engineering and scientific significance in that it can prove the space readiness of new technologies, raise their technology readiness levels (TRLs), expedite the development process, and also provide new data to the scientific community. It also has the ability to stimulate university involvement in the aerospace industry and help to inspire the next generation of workers in the space sector. Previous development of high altitude balloon/high power rocket hybrid systems have been undertaken by government funded military programs or large aerospace corporations with varying degrees of success. However, there has yet to be a successful flight with this type of system which provides access to the upper mesosphere in a university setting. This project will aim to design and analyze a viable system while testing the engineering process under challenging budgetary constraints. The technical, engineering, and systems integration challenges that will be investigated are rocket design, launch platform design, communications, ignition systems, recovery systems, and stabilization methods. This will be done using rocket performance simulation software, computer-aided design software, and computational fluid dynamic analysis software. The business planning is also an important part of this research. Through detailed market analysis, the needs for the proposed product/services being developed will be assessed. Through the combination of detailed cost analysis and the market needs, the economic viability of this launch system will be determined.
Aft Skirt Electrical Umbilical (ASEU) and Vehicle Support Post (
2016-12-09
A flatbed truck carries a vertical support post (VSP) for NASA's Space Launch System (SLS) rocket to the Mobile Launcher Yard at NASA's Kennedy Space Center in Florida. The two aft skirt electrical umbilicals (ASEUs) and the first of the vehicle support posts underwent a series of tests to confirm they are functioning properly and ready to support the SLS for launch. The ASEUs will connect to the SLS rocket at the bottom outer edge of each booster and provide electrical power and data connections to the rocket until it lifts off from the launch pad. The eight VSPs will support the load of the solid rocket boosters, with four posts for each of the boosters. The center’s Engineering Directorate and the Ground Systems Development and Operations Program are overseeing processing and testing of the umbilicals.