Science.gov

Sample records for rocket propellant rp-1

  1. Metallized Gelled Propellants: Oxygen/RP-1/Aluminum Rocket Heat Transfer and Combustion Measurements

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan; Zakany, James S.

    1996-01-01

    A series of rocket engine heat transfer experiments using metallized gelled liquid propellants was conducted. These experiments used a small 20- to 40-lb/f thrust engine composed of a modular injector, igniter, chamber and nozzle. The fuels used were traditional liquid RP-1 and gelled RP-1 with 0-, 5-, and 55-percentage by weight loadings of aluminum particles. Gaseous oxygen was used as the oxidizer. Three different injectors were used during the testing: one for the baseline O(2)/RP-1 tests and two for the gelled and metallized gelled fuel firings. Heat transfer measurements were made with a rocket engine calorimeter chamber and nozzle with a total of 31 cooling channels. Each chamber used a water flow to carry heat away from the chamber and the attached thermocouples and flow meters allowed heat flux estimates at each of the 31 stations. The rocket engine Cstar efficiency for the RP-1 fuel was in the 65-69 percent range, while the gelled 0 percent by weight RP-1 and the 5-percent by weight RP-1 exhibited a Cstar efficiency range of 60 to 62% and 65 to 67%, respectively. The 55-percent by weight RP-1 fuel delivered a 42-47% Cstar efficiency. Comparisons of the heat flux and temperature profiles of the RP-1 and the metallized gelled RP-1/A1 fuels show that the peak nozzle heat fluxes with the metallized gelled O2/RP-1/A1 propellants are substantially higher than the baseline O2/RP-1: up to double the flux for the 55 percent by weight RP-1/A1 over the RP-1 fuel. Analyses showed that the heat transfer to the wall was significantly different for the RP-1/A1 at 55-percent by weight versus the RP-1 fuel. Also, a gellant and an aluminum combustion delay was inferred in the 0 percent and 5-percent by weight RP-1/A1 cases from the decrease in heat flux in the first part of the chamber. A large decrease in heat flux in the last half of the chamber was caused by fuel deposition in the chamber and nozzle. The engine combustion occurred well downstream of the injector face

  2. Metallized Gelled Propellants: Oxygen/RP-1/aluminum Rocket Combustion Experiments

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan; Zakany, James S.

    1995-01-01

    A series of combustion experiments were conducted to measure the specific impulse, Cstar-, and specific-impulse efficiencies of a rocket engine using metallized gelled liquid propellants. These experiments used a small 20- to 40-1bf (89- to 178-N) thrust, modular engine consisting of an injector, igniter, chamber and nozzle. The fuels used were traditional liquid RP-1 and gelled RP-1 with 0-, 5-, and 55-wt% loadings of aluminum and gaseous oxygen was the oxidizer. Ten different injectors were used during the testing: 6 for the baseline 02/RP-1 tests and 4 for the gelled fuel tests which covered a wide range of mixture ratios. At the peak of the Isp versus oxidizer-to-fuel ratio (O/F) data, a range of 93 to 99% Cstar efficiency was reached with ungelled 02/RP-1. A Cstar efficiency range of 75 to 99% was obtained with gelled RP-l (0-wt% RP-1/Al) while the metallized 5-wt% RP-1/Al delivered a Cstar efficiency of 94 to 99% at the peak Isp in the O/F range tested. An 88 to 99% Cstar efficiency was obtained at the peak Isp of the gelled RP1/Al with 55-wt% Al. Specific impulse efficiencies for the 55-wt% RP-1/Al of 67%-83% were obtained at a 2.4:1 expansion ratio. Injector erosion was evident with the 55-wt% testing, while there was little or no erosion seen with the gelled RP-1 with 0- and 5-wt% Al. A protective layer of gelled fuel formed in the firings that minimized the damage to the rocket injector face. This effect may provide a useful technique for engine cooling. These experiments represent a first step in characterizing the performance of and operational issues with gelled RP-1 fuels.

  3. Metallized Gelled Propellants: Oxygen/RP-1/Aluminum Rocket Engine Calorimeter Heat Transfer Measurements and Analysis

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    1997-01-01

    A set of analyses was conducted to determine the heat transfer characteristics of metallized gelled liquid propellants in a rocket engine. The analyses used the data from experiments conducted with a small 30- to 40-lbf thrust engine composed of a modular injector, igniter, chamber and nozzle. The fuels used were traditional liquid RP-1 and gelled RP-1 with 0-wt %, 5-wt%, and 55-wt% loadings of aluminum with silicon dioxide gellant, and gaseous oxygen as the oxidizer. Heat transfer was computed based on measurements using calorimeter rocket chamber and nozzle hardware with a total of 31 cooling channels. A gelled fuel coating formed in the 0-, 5- and 55-wt% engines, and the coating was composed of unburned gelled fuel and partially combusted RP-1. The coating caused a large decrease in calorimeter engine heat flux in the last half of the chamber for the 0- and 5-wt% RP-1/Al. This heat flux reduction effect was analyzed by comparing engine runs and the changes in the heat flux during a run as well as from run to run. Heat transfer and time-dependent heat flux analyses and interpretations are provided. The 5- and 55-wt% RP-1/Al fueled engines had the highest chamber heat fluxes, with the 5-wt% fuel having the highest throat flux. This result is counter to the predicted result, where the 55 wt% fuel has the highest combustion and throat temperature, and therefore implies that it would deliver the highest throat heat flux. The 5-wt% RP-1/Al produced the most influence on the engine heat transfer and the heat flux reduction was caused by the formation of a gelled propellant layer in the chamber and nozzle.

  4. Characterization of aluminum/RP-1 gel propellant properties

    NASA Technical Reports Server (NTRS)

    Rapp, Douglas C.; Zurawski, Robert L.

    1988-01-01

    Research efforts are being conducted by the NASA Lewis Research Center to formulate and characterize the properties of Al/RP-1 and RP-1 gelled propellants for rocket propulsion systems. Twenty four different compositions of gelled fuels were formualted with 5 and 16 micron, atomized aluminum powder in RP-1. The total solids concentration in the propellant varied from 5 to 60 wt percent. Tests were conducted to evaluate the stability and rheological characteristics of the fuels. Physical separation of the solids occurred in fuels with less than 50 wt percent solids concentration. The rheological characteristics of the Al/RP-1 fuels varied with solids concentration. Both thixotropic and rheopectic gel behavior were observed. The unmetallized RP-1 gels, which were formulated by a different technique than the Al/RP-1 gels, were highly viscoelastic. A history of research efforts which were conducted to formulate and characterize the properties of metallized propellants for various applications is also given.

  5. Characterization of aluminum/RP-1 gel propellant properties

    NASA Technical Reports Server (NTRS)

    Rapp, Douglas C.; Zurawski, Robert L.

    1988-01-01

    Research efforts are being conducted by the NASA Lewis Research Center to formulate and characterize the properties of Al/RP-1 and RP-1 gelled propellants for rocket propulsion systems. Twenty four different compositions of gelled fuels were formulated with 5 and 16 micron, atomized aluminum powder in RP-1. The total solids concentration in the propellant varied from 5 to 60 wt percent. Tests were conducted to evaluate the stability and rheological characteristics of the fuels. Physical separation of the solids occurred in fuels with less than 50 wt percent solids concentration. The rheological characteristics of the Al/RP-1 fuels varied with solids concentration. Both thixotropic and rheopectic gel behavior were observed. The unmetallized RP-1 gels, which were formulated by a different technique than the Al/RP-1 gels, were highly viscoelastic. A history of research efforts which were conducted to formulate and characterize the properties of metallized propellants for various applications is also given.

  6. Metallized Gelled Propellants: Heat Transfer of a Rocket Engine Fueled by Oxygen/RP-1/Aluminum Was Measured by a Calorimeter

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1998-01-01

    A set of analyses was conducted to determine the heat transfer characteristics of metallized gelled liquid propellants in a rocket engine. These analyses used data from experiments conducted with a small 30- to 40-lbf thrust engine composed of a modular injector, igniter, chamber, and nozzle. The fuels used were traditional liquid RP-1 and gelled RP-1 with 0-, 5-, and 55-wt % loadings of aluminum (Al) with gaseous oxygen as the oxidizer. Heat transfer measurements were made with a calorimeter chamber and nozzle setup that had a total of 31 cooling channels. A gelled fuel coating, composed of unburned gelled fuel and partially combusted RP-1, formed in the 0-, 5- and 55-wt % engines. For the 0- and 5-wt % RP-1/Al, the coating caused a large decrease in calorimeter engine heat flux in the last half of the chamber. This heat flux reduction was analyzed by comparing engine firings and the changes in the heat flux during a firing at NASA Lewis Research Center's Rocket Laboratories. This work is part of an ongoing series of analyses of metallized gelled propellants.

  7. Metallized gelled propellants: Oxygen/RP-1/aluminum combustion experiments

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    1994-01-01

    A series of combustion experiments using metallized gelled liquid propellants were conducted. These experiments used a small 30- to 40-lb(sub f) thrust engine composed of a modular injector, igniter, chamber and nozzle. The fuels used were traditional liquid RP-1 and gelled RP-1 with 0-wt percent, 5-wt percent, and 44-wt percent loadings of aluminum and gaseous oxygen and the oxidizer. Ten different injectors were used during the testing: 6 were for the baseline O2/RP-1 tests and 4 for the gelled fuels. Relatively high C-star efficiencies were obtained with gelled RP-1 (0-wt% RP-1/Al) and metallized 5-wt% RP-1/Al over the O/F range tested: 90-98%. A peak of 98 percent efficiency was reached with ungelled O2/RP-1 and up to 95% efficiency was obtained with gelled RP-1/Al (55-wt% Al). Injector erosion was evident with the 55-wt% testing, while there was little or no erosion seen with the gelled RP-1 with 0 and 5-wt% Al. A protective layer of gelled fuel formed in the firings that minimized the damage to the rocket injector face. This effect may provide a useful technique for engine cooling.

  8. Numerical Modeling of Drying Residual RP-1 in Rocket Engines

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Polsgrove, Robert; Tiller, Bruce; Rodriquez, Pete (Technical Monitor)

    2000-01-01

    When a Rocket Engine shuts down under a fuel rich environment, a significant amount of unburned RP-1 is trapped In the engine. It is necessary to clean the residual RP-1 prior to subsequent firing to avoid any explosion due to detonation. The conventional method is to dry RP-1 with inert gas such as Nitrogen or Helium. It is difficult to estimate the drying time unless the engine is adequately equipped with instruments to measure the trace of RP-1 during the drying process. Such instrumentation in flight hardware is often impractical and costly. On the other hand numerical modeling of the drying process can provide a good insight for a satisfactory operation of the process. A numerical model can provide answer to questions such as a) how long it takes to dry, b) which fluid is a better dryer for RP-1, c) how to reduce drying time etc. The purpose of the present paper is to describe a numerical model of drying RP-1 trapped in a cavity with flowing nitrogen or helium. The numerical model assumes one dimensional flow of drying fluid in contact with liquid pool of RP-1. An evaporative mass transfer takes place across the contact surface.

  9. Solid propellant rocket motor

    NASA Technical Reports Server (NTRS)

    Dowler, W. L.; Shafer, J. I.; Behm, J. W.; Strand, L. D. (Inventor)

    1973-01-01

    The characteristics of a solid propellant rocket engine with a controlled rate of thrust buildup to a desired thrust level are discussed. The engine uses a regressive burning controlled flow solid propellant igniter and a progressive burning main solid propellant charge. The igniter is capable of operating in a vacuum and sustains the burning of the propellant below its normal combustion limit until the burning propellant surface and combustion chamber pressure have increased sufficiently to provide a stable chamber pressure.

  10. Casting propellant in rocket engine

    NASA Technical Reports Server (NTRS)

    Roach, J. E.; Froehling, S. C. (Inventor)

    1976-01-01

    A method is described for casting a solid propellant in the casing of a rocket engine having a continuous wall with a single opening which is formed by leaves of a material which melt at a temperature of the propellant and with curved edges concentric to the curvature of the spherical casing. The leaves are inserted into the spherical casing through the opening forming a core having a greater width than the width of the single opening and with curved peripheral edges. The cast propellant forms a solid mass and then heated to melt the leaves and provide a central opening with radial projecting flutes.

  11. Liquid propellant rocket combustion instability

    NASA Technical Reports Server (NTRS)

    Harrje, D. T.

    1972-01-01

    The solution of problems of combustion instability for more effective communication between the various workers in this field is considered. The extent of combustion instability problems in liquid propellant rocket engines and recommendations for their solution are discussed. The most significant developments, both theoretical and experimental, are presented, with emphasis on fundamental principles and relationships between alternative approaches.

  12. Environmentally compatible solid rocket propellants

    NASA Technical Reports Server (NTRS)

    Jacox, James L.; Bradford, Daniel J.

    1995-01-01

    Hercules' clean propellant development research is exploring three major types of clean propellant: (1) chloride-free formulations (no chlorine containing ingredients), being developed on the Clean Propellant Development and Demonstration (CPDD) contract sponsored by Phillips Laboratory, Edwards Air Force Base, CA; (2) low HCl scavenged formulations (HCl-scavenger added to propellant oxidized with ammonium perchlorate (AP)); and (3) low HCl formulations oxidized with a combination of AN and AP (with or without an HCl scavenger) to provide a significant reduction (relative to current solid rocket boosters) in exhaust HCl. These propellants provide performance approaching that of current systems, with less than 2 percent HCl in the exhaust, a significant reduction (greater than or equal to 70 percent) in exhaust HCl levels. Excellent processing, safety, and mechanical properties were achieved using only readily available, low cost ingredients. Two formulations, a sodium nitrate (NaNO3) scavenged HTPB and a chloride-free hydroxy terminated polyether (HTPE) propellant, were characterized for ballistic, mechanical, and rheological properties. In addition, the hazards properties were demonstrated to provide two families of class 1.3, 'zero-card' propellants. Further characterization is planned which includes demonstration of ballistic tailorability in subscale (one to 70 pound) motors over the range of burn rates required for retrofit into current Hercules space booster designs (Titan 4 SRMU and Delta 2 GEM).

  13. Rocket thrust variation with foamed liquid propellants

    NASA Technical Reports Server (NTRS)

    Morrell, G

    1957-01-01

    An analysis is presented on a method for varying rocket thrust by varying the bulk density of the propellants. This density variation was accomplished by uniformly dispersing an inert, insoluble gas in the liquid propellants. Only qualitative agreement with theory was obtained from preliminary experiments with a 1000-pound-thrust ammonia - nitric acid rocket engine; the required experimental gas-flow rates were two to six times greater than those predicted by theory. It was demonstrated, however, that this method of rocket-thrust variation is feasible.

  14. A miniature solid propellant rocket motor

    SciTech Connect

    Grubelich, M.C.; Hagan, M.; Mulligan, E.

    1997-08-01

    A miniature solid-propellant rocket motor has been developed to impart a specific motion to an object deployed in space. This rocket motor effectively eliminated the need for a cold-gas thruster system or mechanical spin-up system. A low-energy igniter, an XMC4397, employing a semiconductor bridge was used to ignite the rocket motor. The rocket motor was ground-tested in a vacuum tank to verify predicted space performance and successfully flown in a Sandia National Laboratories flight vehicle program.

  15. High-pressure calorimeter chamber tests for liquid oxygen/kerosene (LOX/RP-1) rocket combustion

    SciTech Connect

    Masters, P.A.; Armstrong, E.S.; Price, H.G.

    1988-12-01

    An experimental program was conducted to investigate the rocket combustion and heat transfer characteristics of liquid oxygen/kerosene (LOX/RP-1) mixtures at high chamber pressures. Two water-cooled calorimeter chambers of different combustion lengths were tested using 37- and 61-element oxidizer-fuel-oxidizer triplet injectors. The tests were conducted at nominal chamber pressures of 4.1, 8.3, and 13.8 MPa abs (600, 1200, and 2000 psia). Heat flux Q/A data were obtained for the entire calorimeter length for oxygen/fuel mixture ratios of 1.8 to 3.3. Test data at 4.1 MPa abs compared favorably with previous test data from another source. Using an injector with a fuel-rich outer zone reduced the throat heat flux by 47 percent with only a 4.5 percent reduction in the characteristic exhaust velocity efficiency C* sub eff. The throat heat transfer coefficient was reduced approximately 40 percent because of carbon deposits on the chamber wall.

  16. High-pressure calorimeter chamber tests for liquid oxygen/kerosene (LOX/RP-1) rocket combustion

    NASA Technical Reports Server (NTRS)

    Masters, Philip A.; Armstrong, Elizabeth S.; Price, Harold G.

    1988-01-01

    An experimental program was conducted to investigate the rocket combustion and heat transfer characteristics of liquid oxygen/kerosene (LOX/RP-1) mixtures at high chamber pressures. Two water-cooled calorimeter chambers of different combustion lengths were tested using 37- and 61-element oxidizer-fuel-oxidizer triplet injectors. The tests were conducted at nominal chamber pressures of 4.1, 8.3, and 13.8 MPa abs (600, 1200, and 2000 psia). Heat flux Q/A data were obtained for the entire calorimeter length for oxygen/fuel mixture ratios of 1.8 to 3.3. Test data at 4.1 MPa abs compared favorably with previous test data from another source. Using an injector with a fuel-rich outer zone reduced the throat heat flux by 47 percent with only a 4.5 percent reduction in the characteristic exhaust velocity efficiency C* sub eff. The throat heat transfer coefficient was reduced approximately 40 percent because of carbon deposits on the chamber wall.

  17. Laser Ignition Technology for Bi-Propellant Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Thomas, Matthew E.; Bossard, John A.; Early, Jim; Trinh, Huu; Dennis, Jay; Turner, James (Technical Monitor)

    2001-01-01

    The fiber optically coupled laser ignition approach summarized is under consideration for use in igniting bi-propellant rocket thrust chambers. This laser ignition approach is based on a novel dual pulse format capable of effectively increasing laser generated plasma life times up to 1000 % over conventional laser ignition methods. In the dual-pulse format tinder consideration here an initial laser pulse is used to generate a small plasma kernel. A second laser pulse that effectively irradiates the plasma kernel follows this pulse. Energy transfer into the kernel is much more efficient because of its absorption characteristics thereby allowing the kernel to develop into a much more effective ignition source for subsequent combustion processes. In this research effort both single and dual-pulse formats were evaluated in a small testbed rocket thrust chamber. The rocket chamber was designed to evaluate several bipropellant combinations. Optical access to the chamber was provided through small sapphire windows. Test results from gaseous oxygen (GOx) and RP-1 propellants are presented here. Several variables were evaluated during the test program, including spark location, pulse timing, and relative pulse energy. These variables were evaluated in an effort to identify the conditions in which laser ignition of bi-propellants is feasible. Preliminary results and analysis indicate that this laser ignition approach may provide superior ignition performance relative to squib and torch igniters, while simultaneously eliminating some of the logistical issues associated with these systems. Further research focused on enhancing the system robustness, multiplexing, and window durability/cleaning and fiber optic enhancements is in progress.

  18. Ammonium nitrate: a promising rocket propellant oxidizer

    PubMed

    Oommen; Jain

    1999-06-30

    Ammonium nitrate (AN) is extensively used in the area of fertilizers and explosives. It is present as the major component in most industrial explosives. Its use as an oxidizer in the area of propellants, however, is not as extensive as in explosive compositions or gas generators. With the growing demand for environmental friendly chlorine free propellants, many attempts have been made of late to investigate oxidizers producing innocuous combustion products. AN, unlike the widely used ammonium perchlorate, produces completely ecofriendly smokeless products. Besides, it is one of the cheapest and easily available compounds. However, its use in large rocket motors is restricted due to some of its adverse characteristics like hygroscopicity, near room temperature phase transformation involving a volume change, and low burning rate (BR) and energetics. The review is an attempt to consolidate the information available on the various issues pertaining to its use as a solid propellant oxidizer. Detailed discussions on the aspects relating to phase modifications, decomposition chemistry, and BR and energetics of AN-based propellants, are presented. To make the review more comprehensive brief descriptions of the history, manufacture, safety, physical and chemical properties and various other applications of the salt are also included. Copyright 1999 Elsevier Science B.V.

  19. Modification of the SHABERTH bearing code to incorporate RP-1 and a discussion of the traction model

    NASA Technical Reports Server (NTRS)

    Woods, Claudia M.

    1990-01-01

    Recently developed traction data for Rocket Propellant 1 (RP-1), a hydrocarbon fuel of the kerosene family, was used to develop the parameters needed by the bearing code SHABERTH in order to include RP-1 as a lubricant choice. The procedure for inputting data for a new lubricant choice is reviewed, and the theoretical fluid traction model is discussed. Comparisons are made between experimental traction data and those predicted by SHABERTH for RP-1. All data needed to modify SHABERTH for use with RP-1 as a lubricant are specified.

  20. Nuclear thermal rockets using indigenous extraterrestrial propellants

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert M.

    1990-01-01

    A preliminary examination of a concept for a Mars and outer solar system exploratory vehicle is presented. Propulsion is provided by utilizing a nuclear thermal reactor to heat a propellant volatile indigenous to the destination world to form a high thrust rocket exhaust. Candidate propellants, whose performance, materials compatibility, and ease of acquisition are examined and include carbon dioxide, water, methane, nitrogen, carbon monoxide, and argon. Ballistics and winged supersonic configurations are discussed. It is shown that the use of this method of propulsion potentially offers high payoff to a manned Mars mission. This is accomplished by sharply reducing the initial mission mass required in low earth orbit, and by providing Mars explorers with greatly enhanced mobility in traveling about the planet through the use of a vehicle that can refuel itself each time it lands. Thus, the nuclear landing craft is utilized in combination with a hydrogen-fueled nuclear-thermal interplanetary launch. By utilizing such a system in the outer solar system, a low level aerial reconnaissance of Titan combined with a multiple sample return from nearly every satellite of Saturn can be accomplished in a single launch of a Titan 4 or the Space Transportation System (STS). Similarly a multiple sample return from Callisto, Ganymede, and Europa can also be accomplished in one launch of a Titan 4 or the STS.

  1. 148. SKID 2 FOR LOADING ROCKET PROPELLANT AT EAST SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    148. SKID 2 FOR LOADING ROCKET PROPELLANT AT EAST SIDE OF FUEL CONTROL ROOM (215), LSB (BLDG. 751) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  2. History of Sulphur Content Effects on the Thermal Stability of RP-1 under Heated Conditions

    NASA Technical Reports Server (NTRS)

    Irvine, Solveig A.; Schoettmer, Amanda K.; Bates, Ronald W.; Meyer, Michael L.

    2004-01-01

    As technologies advance in the aerospace industry, a strong desire has emerged to design more efficient, longer life, reusable liquid hydrocarbon fueled rocket engines. To achieve this goal, a more complete understanding of the thermal stability and chemical makeup of the hydrocarbon propellant is needed. Since the main fuel used in modern liquid hydrocarbon systems is RP-1, there is concern that Standard Grade RP-1 may not be a suitable propellant for future-generation rocket engines due to concern over the outdated Mil-Specification for the fuel. This current specification allows high valued limits on contaminants such as sulfur compounds, and also lacks specification of required thermal stability qualifications for the fuel. Previous studies have highlighted the detrimental effect of high levels of mercaptan sulfur content (^50 ppm) on copper rocket engine materials, but the fuel itself has not been studied. While the role of sulfur in other fuels (e.g., aviation, diesel, and automotive fuels) has been extensively studied, little has been reported on the effects of sulfur levels in rocket fuels. Lower RP-1 sulfur concentrations need to be evaluated and an acceptable sulfur limit established before RP-1 can be recommended for use as the propellant for future launch vehicles. (5 tables, 8 figures, 9 refs.)

  3. Solid propellant processing factor in rocket motor design

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The ways are described by which propellant processing is affected by choices made in designing rocket engines. Tradeoff studies, design proof or scaleup studies, and special design features are presented that are required to obtain high product quality, and optimum processing costs. Processing is considered to include the operational steps involved with the lining and preparation of the motor case for the grain; the procurement of propellant raw materials; and propellant mixing, casting or extrusion, curing, machining, and finishing. The design criteria, recommended practices, and propellant formulations are included.

  4. Propellant-Flow-Actuated Rocket Engine Igniter

    NASA Technical Reports Server (NTRS)

    Wollen, Mark

    2013-01-01

    A rocket engine igniter has been created that uses a pneumatically driven hammer that, by specialized geometry, is induced into an oscillatory state that can be used to either repeatedly impact a piezoelectric crystal with sufficient force to generate a spark capable of initiating combustion, or can be used with any other system capable of generating a spark from direct oscillatory motion. This innovation uses the energy of flowing gaseous propellant, which by means of pressure differentials and kinetic motion, causes a hammer object to oscillate. The concept works by mass flows being induced through orifices on both sides of a cylindrical tube with one or more vent paths. As the mass flow enters the chamber, the pressure differential is caused because the hammer object is supplied with flow on one side and the other side is opened with access to the vent path. The object then crosses the vent opening and begins to slow because the pressure differential across the ball reverses due to the geometry in the tube. Eventually, the object stops because of the increasing pressure differential on the object until all of the kinetic energy has been transferred to the gas via compression. This is the point where the object reverses direction because of the pressure differential. This behavior excites a piezoelectric crystal via direct impact from the hammer object. The hammer strikes a piezoelectric crystal, then reverses direction, and the resultant high voltage created from the crystal is transferred via an electrode to a spark gap in the ignition zone, thereby providing a spark to ignite the engine. Magnets, or other retention methods, might be employed to favorably position the hammer object prior to start, but are not necessary to maintain the oscillatory behavior. Various manifestations of the igniter have been developed and tested to improve device efficiency, and some improved designs are capable of operation at gas flow rates of a fraction of a gram per second (0

  5. The measurement, modeling, and prediction of traction for rocket propellant 1

    NASA Technical Reports Server (NTRS)

    Tevaarwerk, J. L.

    1989-01-01

    Traction tests were performed on RP-1, a common kerosene based rocket propellant. Traction data on this fluid are required for purposes of turbopump bearing design, using codes such as SHABERTH. To obtain the traction data, an existing twin disc machine was used, operating under the side slip mode and using elliptical contacts. The range of test variables were: contact peak Hertz stress from 1.0 to 2.0 GPa, disc surface speed from 10 to 50 m/s, fluid inlet temperature from 30 to 70 C, and with a contact aspect ratio of 1.7. The resulting traction curves were reduced to fundamental fluid property parameters using the Johnson and Tevaarwerk traction model. Theoretical traction predictions were performed by back substitution of the fundamental properties into the traction model. Comparison of the predicted with the measured curves gives a high degree of confidence in the correctness of the traction model. For purposes of input to the NASA SHABERTH program, the traction model was next used to predict the expected traction of RP-1 under line contact conditions.

  6. Coated oxidizers for combustion stability in solid-propellant rockets

    NASA Technical Reports Server (NTRS)

    Helmy, A. M.; Ramohalli, K. N. R.

    1985-01-01

    Experiments are conducted in a laboratory-scale (6.25-cm diameter) end-burning rocket motor with state-of-the-art, ammonium perchlorate hydroxy-terminated polybutadiene (HTPB), nonmetallized propellants. The concept of tailoring the stability characteristics with a small amount (less than 1 percent by weight) of COATING on the oxidizer is explored. The thermal degradation characteristics of the coat chemical are deduced through theoretical arguments on thermal diffusivity of the composite material (propellant). Several candidate coats are selected and propellants are cast. These propellants (with coated oxidizers) are fired in a laboratory-scale end-burning rocket motor, and real-time pressure histories are recorded. The control propellant (with no coating) is also tested for comparison. The uniformity of the coating, confirmed by SEM pictures and BET adsorption measurements, is thought to be an advance in technology. The frequency of bulk mode instability (BMI), the pressure fluctuation amplitudes, and stability boundaries are correlated with parameters related to the characteristic length (L-asterisk) of the rocket motor. The coated oxidizer propellants, in general, display greater combustion stability than the control (state-of-the-art). The correlations of the various parameters are thought to be new to a field filled with much uncertainty.

  7. VIABILITY OF BACILLUS SUBTILIS SPORES IN ROCKET PROPELLANTS.

    PubMed

    GODDING, R M; LYNCH, V H

    1965-01-01

    The sporicidal activity of components used in liquid and solid rocket propellants was tested by use of spores of Bacillus subtilis dried on powdered glass. Liquid propellant ingredients tested were N(2)O(4), monomethylhydrazine and 1,1-dimethylhydrazine. N(2)O(4) was immediately sporicidal; the hydrazines were effective within several days. Solid propellants consisted of ammonium perchlorate in combination with epoxy resin (EPON 828), tris-1-(2-methyl) aziridinyl phosphine oxide, bis-1-(2-methyl) aziridinyl phenylphosphine oxide, and three modified polybutadiene polymers. There was no indication of appreciable sporicidal activity of these components.

  8. Viability of Bacillus subtilis Spores in Rocket Propellants

    PubMed Central

    Godding, Rogene M.; Lynch, Victoria H.

    1965-01-01

    The sporicidal activity of components used in liquid and solid rocket propellants was tested by use of spores of Bacillus subtilis dried on powdered glass. Liquid propellant ingredients tested were N2O4, monomethylhydrazine and 1,1-dimethylhydrazine. N2O4 was immediately sporicidal; the hydrazines were effective within several days. Solid propellants consisted of ammonium perchlorate in combination with epoxy resin (EPON 828), tris-1-(2-methyl) aziridinyl phosphine oxide, bis-1-(2-methyl) aziridinyl phenylphosphine oxide, and three modified polybutadiene polymers. There was no indication of appreciable sporicidal activity of these components. PMID:14264838

  9. Particle behavior in solid propellant rockets

    NASA Technical Reports Server (NTRS)

    Netzer, D. W.; Diloreto, V. D.; Dubrov, E.

    1980-01-01

    The use of holography, high speed motion pictures, light scattering measurements, and post-fire particle collection/scanning electron microscopic examination to study the combustion of composite solid propellants is discussed. The relative advantages and disadvantages of the different experimental techniques for obtaining two-phase flow characteristics within the combustion environment of a solid propellant grain are evaluated. Combustion bomb studies using high speed motion pictures and post-fire residue analysis were completed for six low metal content propellants. Resolution capabilities and the relationships between post-fire residue and motion picture data are determined. Initial testing using a holocamera together with a 2D windowed motor is also described.

  10. Propellant removal from rocket motors containing double-base compositions

    SciTech Connect

    Whinnery, L.; Griffiths, S.; Hruby, J.; Larson, R.; Lipkin, J.; Long, B.; Schoenfelder, C.

    1992-01-01

    The uncertain environmental consequences and regulations associated with using open burning/open detonation for the disposal of energetic materials are forcing both manufacturers and users to examine alternative disposal technologies. In general, these alternatives involve a material removal operation followed by processing steps that lead to reuse of valuable constituents and/or disposal of waste. While a number of post-removal processing options appear to be viable, the initial step of removing an energetic material, such as a solid rocket motor propellant, from its container remains a significant technological challenge. Large rocket motors containing highly energetic propellant, hazard class 1.1, are of particular concern because of their inherent handling hazards. We will describe the results of a study using thermal cycling to increase the surface area of inert propellant formulations. The propellant removal method studied employs thermal cycling to cryogenic temperatures (cryocycling). Using inert propellants and liquid nitrogen we have demonstrated that this process produces multiple cracks throughout the bulk of the grain. The properties of the actual and inert propellants are being measured, and a model is being developed to relate experiments on inert material to actual propellant. Possible methods to increase thermal gradients, crack propagation and initiation are also presented.

  11. Motion Analysis of a Rocket-Propelled Truck.

    ERIC Educational Resources Information Center

    Hitt, Darren L.; Lowe, Mary L.

    1996-01-01

    Describes an experiment to study the motion of a rocket-propelled vehicle over the entire duration of the engine burn using a video system with a frame-by-frame playback and a Sonic Ranger for ultrasonic position movements. Enables students to study the impulse-momentum principle and the effects of a time-varying force. (JRH)

  12. Metallic Hydrogen: A Game Changing Rocket Propellant

    NASA Technical Reports Server (NTRS)

    Silvera, Isaac F.

    2016-01-01

    The objective of this research is to produce metallic hydrogen in the laboratory using an innovative approach, and to study its metastability properties. Current theoretical and experimental considerations expect that extremely high pressures of order 4-6 megabar are required to transform molecular hydrogen to the metallic phase. When metallic hydrogen is produced in the laboratory it will be extremely important to determine if it is metastable at modest temperatures, i.e. remains metallic when the pressure is released. Then it could be used as the most powerful chemical rocket fuel that exists and revolutionize rocketry, allowing single-stage rockets to enter orbit and chemically fueled rockets to explore our solar system.

  13. Design, fabrication, test, and delivery of a high-pressure oxygen/RP-1 injector

    NASA Technical Reports Server (NTRS)

    Schoenman, L.; Gross, R. S.

    1981-01-01

    A summary of the design analyses for a liquid rocket injector using oxygen and RP-1 propellants at high chamber pressures of 20,682 kPa (3000 psia) is presented. This analytical investigation includes combustion efficiency versus injector element type, combustion stability, and combustor cooling requirements. The design and fabrication of a subscale injector/acoustic resonantor assembly capable of providing a nominal thrust of 222K N (50,000 lbF) is presented.

  14. MEMS-Based Solid Propellant Rocket Array Thruster

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuji; Hosokawa, Ryuichiro; Tokudome, Shin-Ichiro; Hori, Keiichi; Saito, Hirobumi; Watanabe, Masashi; Esashi, Masayoshi

    The prototype of a solid propellant rocket array thruster for simple attitude control of a 10 kg class micro-spacecraft was completed and tested. The prototype has 10×10 φ0.8 mm solid propellant micro-rockets arrayed at a pitch of 1.2 mm on a 20×22 mm substrate. To realize such a dense array of micro-rockets, each ignition heater is powered from the backside of the thruster through an electrical feedthrough which passes along a propellant cylinder wall. Boron/potassium nitrate propellant (NAB) is used with/without lead rhodanide/potassium chlorate/nitrocellulose ignition aid (RK). Impulse thrust was measured by a pendulum method in air. Ignition required electric power of at least 3 4 W with RK and 4 6 W without RK. Measured impulse thrusts were from 2×10-5 Ns to 3×10-4 Ns after the calculation of compensation for air dumping.

  15. Rocket Propellants Engine Design/Operations/Validation

    NASA Technical Reports Server (NTRS)

    Monk, Jan C.

    2002-01-01

    Lockheed Martin Astronautics Operations (LMA) was competitively awarded a contract May 21, 2001 for next generation launch system architecture definition and technology maturation. The Second Generation Launch Vehicle Program objectives include reducing the technical and programmatic risk of proceeding to full scale development of the system by establishing requirements for the next generation launch system and maturing critical technologies needed by the system. LMA will conduct analyses and trades to optimize the architecture ETO elements including configuration, conceptual designs, and preliminary operations definition. To fully understand the engine and propellant trades were conducted by LMA to yield the optimized architecture system from the operability, reliability, safety, and cost perspectives. A government/industry team addressed the required trade studies, the parameters and weighting factors, and the most critical trades were addressed. This report summarizes the participation of JCM Consulting, Inc. in the propellant trade study.

  16. Simulations of microfractures in solid rocket propellants

    NASA Astrophysics Data System (ADS)

    Guéry, J.-F.; Seaman, L.

    1996-05-01

    Energetic materials (propellants or explosives) are made of a polymeric matrix loaded with energetic fillers. A joint SNPE-SRI effort led to a microfracture model to represent damage that occurs during impacts in such a filled polymer. The model includes nucleation, growth, and coalescence of the microcracks and eventual separation along spall planes. Nucleation in the model occurs by debonding of the filler particles from the binder, and coalescence occurs by joining several microcracks to form fewer, larger cracks. The model, which includes viscoelastic and viscoplastic processes as well as an elastic pressure-volume relation, was fitted to impact and static data on a CTPB propellant. Simulations of plate impact experiments with the model show a fair agreement with measured crack size distributions and damage level as a function of impact velocity.

  17. High-pressure burning rate studies of solid rocket propellants

    NASA Astrophysics Data System (ADS)

    Atwood, A. I.; Ford, K. P.; Wheeler, C. J.

    2013-03-01

    Increased rocket motor performance is a major driver in the development of solid rocket propellant formulations for chemical propulsion systems. The use of increased operating pressure is an option to improve performance potentially without the cost of reformulation. A technique has been developed to obtain burning rate data across a range of pressures from ambient to 345 MPa. The technique combines the use of a low loading density combustion bomb with a high loading density closed bomb technique. A series of nine ammonium perchlorate (AP) based propellants were used to demonstrate the use of the technique, and the results were compared to the neat AP burning rate "barrier". The effect of plasticizer, oxidizer particle size, catalyst, and binder type were investigated.

  18. Flowfield Characterization in a LOX/GH2 Propellant Rocket

    NASA Technical Reports Server (NTRS)

    Pal, S.; Moser, M. D.; Ryan, H. M.; Foust, M. J.; Santoro, R. J.

    1993-01-01

    The objective of the current work is to experimentally characterize the flowfield associated with an uni-element shear coaxial injector burning liquid oxygen/gaseous hydrogen (LOX/GH2) propellants. These experiments were carried out in an optically-accessible rocket chamber operating at a high pressure (approximately 400 psia). Quantitative measurements of drop size and velocity were obtained along with qualitative measurements of the disintegrating jet.

  19. Characterization of rocket propellant combustion products

    SciTech Connect

    Jenkins, R.A.; Nestor, C.W.; Thompson, C.V.; Gayle, T.M.; Ma, C.Y.; Tomkins, B.A.; Moody, R.L.

    1991-12-09

    The overall objective of the work described in this report is four-fold: to (a) develop a standardized and experimentally validated approach to the sampling and chemical and physical characterization of the exhaust products of scaled-down rocket launch motors fired under experimentally controlled conditions at the Army's Signature Characterization Facility (ASCF) at Redstone Arsenal in Huntsville, Alabama; (b) determine the composition of the exhaust produces; (c) assess the accuracy of a selected existing computer model for predicting the composition of major and minor chemical species; (d) recommended alternations to both the sampling and analysis strategy and the computer model in order to achieve greater congruence between chemical measurements and computer prediction. 34 refs., 2 figs., 35 tabs.

  20. Powdered aluminum and oxygen rocket propellants: Subscale combustion experiments

    NASA Technical Reports Server (NTRS)

    Meyer, Mike L.

    1993-01-01

    Aluminum combined with oxygen has been proposed as a potential lunar in situ propellant for ascent/descent and return missions for future lunar exploration. Engine concepts proposed to use this propellant have not previously been demonstrated, and the impact on performance from combustion and two-phase flow losses could only be estimated. Therefore, combustion tests were performed for aluminum and aluminum/magnesium alloy powders with oxygen in subscale heat-sink rocket engine hardware. The metal powder was pneumatically injected, with a small amount of nitrogen, through the center orifice of a single element O-F-O triplet injector. Gaseous oxygen impinged on the fuel stream. Hot-fire tests of aluminum/oxygen were performed over a mixture ratio range of 0.5 to 3.0, and at a chamber pressure of approximately 480 kPa (70 psia). The theoretical performance of the propellants was analyzed over a mixture ratio range of 0.5 to 5.0. In the theoretical predictions the ideal one-dimensional equilibrium rocket performance was reduced by loss mechanisms including finite rate kinetics, two-dimensional divergence losses, and boundary layer losses. Lower than predicted characteristic velocity and specific impulse performance efficiencies were achieved in the hot-fire tests, and this was attributed to poor mixing of the propellants and two-phase flow effects. Several tests with aluminum/9.8 percent magnesium alloy powder did not indicate any advantage over the pure aluminum fuel.

  1. 40 CFR 61.43 - Emission testing-rocket firing or propellant disposal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Emission testing-rocket firing or... Standard for Beryllium Rocket Motor Firing § 61.43 Emission testing—rocket firing or propellant disposal. (a) Ambient air concentrations shall be measured during and after firing of a rocket motor...

  2. 40 CFR 61.43 - Emission testing-rocket firing or propellant disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Emission testing-rocket firing or... Standard for Beryllium Rocket Motor Firing § 61.43 Emission testing—rocket firing or propellant disposal. (a) Ambient air concentrations shall be measured during and after firing of a rocket motor...

  3. 40 CFR 61.43 - Emission testing-rocket firing or propellant disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Emission testing-rocket firing or... Standard for Beryllium Rocket Motor Firing § 61.43 Emission testing—rocket firing or propellant disposal. (a) Ambient air concentrations shall be measured during and after firing of a rocket motor...

  4. 40 CFR 61.43 - Emission testing-rocket firing or propellant disposal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Emission testing-rocket firing or... Standard for Beryllium Rocket Motor Firing § 61.43 Emission testing—rocket firing or propellant disposal. (a) Ambient air concentrations shall be measured during and after firing of a rocket motor...

  5. 40 CFR 61.43 - Emission testing-rocket firing or propellant disposal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Emission testing-rocket firing or... Standard for Beryllium Rocket Motor Firing § 61.43 Emission testing—rocket firing or propellant disposal. (a) Ambient air concentrations shall be measured during and after firing of a rocket motor...

  6. On the history of the development of solid-propellant rockets in the Soviet Union

    NASA Technical Reports Server (NTRS)

    Pobedonostsev, Y. A.

    1977-01-01

    Pre-World War II Soviet solid-propellant rocket technology is reviewed. Research and development regarding solid composite preparations of pyroxyline TNT powder is described, as well as early work on rocket loading calculations, problems of flight stability, and aircraft rocket launching and ground rocket launching capabilities.

  7. Fuel-Cell Power Source Based on Onboard Rocket Propellants

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani; Narayan, Sri

    2010-01-01

    The use of onboard rocket propellants (dense liquids at room temperature) in place of conventional cryogenic fuel-cell reactants (hydrogen and oxygen) eliminates the mass penalties associated with cryocooling and boil-off. The high energy content and density of the rocket propellants will also require no additional chemical processing. For a 30-day mission on the Moon that requires a continuous 100 watts of power, the reactant mass and volume would be reduced by 15 and 50 percent, respectively, even without accounting for boiloff losses. The savings increase further with increasing transit times. A high-temperature, solid oxide, electrolyte-based fuel-cell configuration, that can rapidly combine rocket propellants - both monopropellant system with hydrazine and bi-propellant systems such as monomethyl hydrazine/ unsymmetrical dimethyl hydrazine (MMH/UDMH) and nitrogen tetroxide (NTO) to produce electrical energy - overcomes the severe drawbacks of earlier attempts in 1963-1967 of using fuel reforming and aqueous media. The electrical energy available from such a fuel cell operating at 60-percent efficiency is estimated to be 1,500 Wh/kg of reactants. The proposed use of zirconia-based oxide electrolyte at 800-1,000 C will permit continuous operation, very high power densities, and substantially increased efficiency of conversion over any of the earlier attempts. The solid oxide fuel cell is also tolerant to a wide range of environmental temperatures. Such a system is built for easy refueling for exploration missions and for the ability to turn on after several years of transit. Specific examples of future missions are in-situ landers on Europa and Titan that will face extreme radiation and temperature environments, flyby missions to Saturn, and landed missions on the Moon with 14 day/night cycles.

  8. Scaling of Performance in Liquid Propellant Rocket Engine Combustion Devices

    NASA Technical Reports Server (NTRS)

    Hulka, James R.

    2008-01-01

    This paper discusses scaling of combustion and combustion performance in liquid propellant rocket engine combustion devices. In development of new combustors, comparisons are often made between predicted performance in a new combustor and measured performance in another combustor with different geometric and thermodynamic characteristics. Without careful interpretation of some key features, the comparison can be misinterpreted and erroneous information used in the design of the new device. This paper provides a review of this performance comparison, including a brief review of the initial liquid rocket scaling research conducted during the 1950s and 1960s, a review of the typical performance losses encountered and how they scale, a description of the typical scaling procedures used in development programs today, and finally a review of several historical development programs to see what insight they can bring to the questions at hand.

  9. Scaling of Performance in Liquid Propellant Rocket Engine Combustors

    NASA Technical Reports Server (NTRS)

    Hulka, James R.

    2007-01-01

    This paper discusses scaling of combustion and combustion performance in liquid propellant rocket engine combustion devices. In development of new combustors, comparisons are often made between predicted performance in a new combustor and measured performance in another combustor with different geometric and thermodynamic characteristics. Without careful interpretation of some key features, the comparison can be misinterpreted and erroneous information used in the design of the new device. This paper provides a review of this performance comparison, including a brief review of the initial liquid rocket scaling research conducted during the 1950s and 1960s, a review of the typical performance losses encountered and how they scale, a description of the typical scaling procedures used in development programs today, and finally a review of several historical development programs to see what insight they can bring to the questions at hand.

  10. Magnesium and Carbon Dioxide - A Rocket Propellant for Mars Missions

    NASA Technical Reports Server (NTRS)

    Shafirovich, E. IA.; Shiriaev, A. A.; Goldshleger, U. I.

    1993-01-01

    A rocket engine for Mars missions is proposed that could utilize CO2 accumulated from the Martian atmosphere as an oxidizer. For use as possible fuel, various metals, their hydrides, and mixtures with hydrogen compounds are considered. Thermodynamic calculations show that beryllium fuels ensure the most impulse but poor inflammability of Be and high toxicity of its compounds put obstacles to their applications. Analysis of the engine performance for other metals together with the parameters of ignition and combustion show that magnesium seems to be the most promising fuel. Ballistic estimates imply that a hopper with the chemical rocket engine on Mg + CO2 propellant could be readily developed. This vehicle would be able to carry out 2-3 ballistic flights on Mars before the final ascent to orbit.

  11. Materials Problems in Chemical Liquid-Propellant Rocket Systems

    NASA Technical Reports Server (NTRS)

    Gilbert, L. L.

    1959-01-01

    With the advent of the space age, new adjustments in technical thinking and engineering experience are necessary. There is an increasing and extensive interest in the utilization of materials for components to be used at temperatures ranging from -423 to over 3500 deg F. This paper presents a description of the materials problems associated with the various components of chemical liquid rocket systems. These components include cooled and uncooled thrust chambers, injectors, turbine drive systems, propellant tanks, and cryogenic propellant containers. In addition to materials limitations associated with these components, suggested research approaches for improving materials properties are made. Materials such as high-temperature alloys, cermets, carbides, nonferrous alloys, plastics, refractory metals, and porous materials are considered.

  12. SRM (Solid Rocket Motor) propellant and polymer materials structural modeling

    NASA Technical Reports Server (NTRS)

    Moore, Carleton J.

    1988-01-01

    The following investigation reviews and evaluates the use of stress relaxation test data for the structural analysis of Solid Rocket Motor (SRM) propellants and other polymer materials used for liners, insulators, inhibitors, and seals. The stress relaxation data is examined and a new mathematical structural model is proposed. This model has potentially wide application to structural analysis of polymer materials and other materials generally characterized as being made of viscoelastic materials. A dynamic modulus is derived from the new model for stress relaxation modulus and is compared to the old viscoelastic model and experimental data.

  13. On Nonlinear Combustion Instability in Liquid Propellant Rocket Motors

    NASA Technical Reports Server (NTRS)

    Sims, J. D. (Technical Monitor); Flandro, Gary A.; Majdalani, Joseph; Sims, Joseph D.

    2004-01-01

    All liquid propellant rocket instability calculations in current use have limited value in the predictive sense and serve mainly as a correlating framework for the available data sets. The well-known n-t model first introduced by Crocco and Cheng in 1956 is still used as the primary analytical tool of this type. A multitude of attempts to establish practical analytical methods have achieved only limited success. These methods usually produce only stability boundary maps that are of little use in making critical design decisions in new motor development programs. Recent progress in understanding the mechanisms of combustion instability in solid propellant rockets"' provides a firm foundation for a new approach to prediction, diagnosis, and correction of the closely related problems in liquid motor instability. For predictive tools to be useful in the motor design process, they must have the capability to accurately determine: 1) time evolution of the pressure oscillations and limit amplitude, 2) critical triggering pulse amplitude, and 3) unsteady heat transfer rates at injector surfaces and chamber walls. The method described in this paper relates these critical motor characteristics directly to system design parameters. Inclusion of mechanisms such as wave steepening, vorticity production and transport, and unsteady detonation wave phenomena greatly enhance the representation of key features of motor chamber oscillatory behavior. The basic theoretical model is described and preliminary computations are compared to experimental data. A plan to develop the new predictive method into a comprehensive analysis tool is also described.

  14. DETAIL, CONTROL BOOTH, RP1 TANK FARM Edwards Air Force ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL, CONTROL BOOTH, RP1 TANK FARM - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Combined Fuel Storage Tank Farm, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  15. Computational Thermochemistry of Jet Fuels and Rocket Propellants

    NASA Technical Reports Server (NTRS)

    Crawford, T. Daniel

    2002-01-01

    The design of new high-energy density molecules as candidates for jet and rocket fuels is an important goal of modern chemical thermodynamics. The NASA Glenn Research Center is home to a database of thermodynamic data for over 2000 compounds related to this goal, in the form of least-squares fits of heat capacities, enthalpies, and entropies as functions of temperature over the range of 300 - 6000 K. The chemical equilibrium with applications (CEA) program written and maintained by researchers at NASA Glenn over the last fifty years, makes use of this database for modeling the performance of potential rocket propellants. During its long history, the NASA Glenn database has been developed based on experimental results and data published in the scientific literature such as the standard JANAF tables. The recent development of efficient computational techniques based on quantum chemical methods provides an alternative source of information for expansion of such databases. For example, it is now possible to model dissociation or combustion reactions of small molecules to high accuracy using techniques such as coupled cluster theory or density functional theory. Unfortunately, the current applicability of reliable computational models is limited to relatively small molecules containing only around a dozen (non-hydrogen) atoms. We propose to extend the applicability of coupled cluster theory- often referred to as the 'gold standard' of quantum chemical methods- to molecules containing 30-50 non-hydrogen atoms. The centerpiece of this work is the concept of local correlation, in which the description of the electron interactions- known as electron correlation effects- are reduced to only their most important localized components. Such an advance has the potential to greatly expand the current reach of computational thermochemistry and thus to have a significant impact on the theoretical study of jet and rocket propellants.

  16. Liquid-Propellant Rocket Engine Throttling: A Comprehensive Review

    NASA Technical Reports Server (NTRS)

    Casiano, Matthew; Hulka, James; Yang, Virog

    2009-01-01

    Liquid-Propellant Rocket Engines (LREs) are capable of on-command variable thrust or thrust modulation, an operability advantage that has been studied intermittently since the late 1930s. Throttleable LREs can be used for planetary entry and descent, space rendezvous, orbital maneuvering including orientation and stabilization in space, and hovering and hazard avoidance during planetary landing. Other applications have included control of aircraft rocket engines, limiting of vehicle acceleration or velocity using retrograde rockets, and ballistic missile defense trajectory control. Throttleable LREs can also continuously follow the most economical thrust curve in a given situation, compared to discrete throttling changes over a few select operating points. The effects of variable thrust on the mechanics and dynamics of an LRE as well as difficulties and issues surrounding the throttling process are important aspects of throttling behavior. This review provides a detailed survey of LRE throttling centered around engines from the United States. Several LRE throttling methods are discussed, including high-pressure-drop systems, dual-injector manifolds, gas injection, multiple chambers, pulse modulation, throat throttling, movable injector components, and hydrodynamically dissipative injectors. Concerns and issues surrounding each method are examined, and the advantages and shortcomings compared.

  17. Solid-propellant rocket motor ballistic performance variation analyses

    NASA Technical Reports Server (NTRS)

    Sforzini, R. H.; Foster, W. A., Jr.

    1975-01-01

    Results are presented of research aimed at improving the assessment of off-nominal internal ballistic performance including tailoff and thrust imbalance of two large solid-rocket motors (SRMs) firing in parallel. Previous analyses using the Monte Carlo technique were refined to permit evaluation of the effects of radial and circumferential propellant temperature gradients. Sample evaluations of the effect of the temperature gradients are presented. A separate theoretical investigation of the effect of strain rate on the burning rate of propellant indicates that the thermoelastic coupling may cause substantial variations in burning rate during highly transient operating conditions. The Monte Carlo approach was also modified to permit the effects on performance of variation in the characteristics between lots of propellants and other materials to be evaluated. This permits the variabilities for the total SRM population to be determined. A sample case shows, however, that the effect of these between-lot variations on thrust imbalances within pairs of SRMs is minor in compariosn to the effect of the within-lot variations. The revised Monte Carlo and design analysis computer programs along with instructions including format requirements for preparation of input data and illustrative examples are presented.

  18. Theoretical performance of lithium and fluorine as a rocket propellant

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Huff, Vearl N

    1951-01-01

    Theoretical performance for liquid lithium and liquid fluorine as a rocket propellant was calculated with assumptions both of equilibrium and frozen composition during expansion. Parameters included were specific impulse, combustion-chamber temperature, nozzle-exit temperature, composition, mean molecular weight, characteristic velocity, coefficient of thrust, and ratio of nozzle-exit area to throat area. For chamber pressure of 300 pounds per square inch absolute and expansion to 1 atmosphere, the maximum equilibrium specific impulse calculated was 335.5 pound-seconds per pound. The effect of ionization on calculated performance was shown to be negligible by comparison of values of various parameters calculated both with and without ionized products of combustion.

  19. Lidar measurements of solid rocket propellant fire particle plumes.

    PubMed

    Brown, David M; Brown, Andrea M; Willitsford, Adam H; Dinello-Fass, Ryan; Airola, Marc B; Siegrist, Karen M; Thomas, Michael E; Chang, Yale

    2016-06-10

    This paper presents the first, to our knowledge, direct measurement of aerosol produced by an aluminized solid rocket propellant (SRP) fire on the ground. Such fires produce aluminum oxide particles small enough to loft high into the atmosphere and disperse over a wide area. These results can be applied to spacecraft launchpad accidents that expose spacecraft to such fires; during these fires, there is concern that some of the plutonium from the spacecraft power system will be carried with the aerosols. Accident-related lofting of this material would be the net result of many contributing processes that are currently being evaluated. To resolve the complexity of fire processes, a self-consistent model of the ground-level and upper-level parts of the plume was determined by merging ground-level optical measurements of the fire with lidar measurements of the aerosol plume at height during a series of SRP fire tests that simulated propellant fire accident scenarios. On the basis of the measurements and model results, the Johns Hopkins University Applied Physics Laboratory (JHU/APL) team was able to estimate the amount of aluminum oxide (alumina) lofted into the atmosphere above the fire. The quantification of this ratio is critical for a complete understanding of accident scenarios, because contaminants are transported through the plume. This paper provides an estimate for the mass of alumina lofted into the air. PMID:27409023

  20. Lidar measurements of solid rocket propellant fire particle plumes.

    PubMed

    Brown, David M; Brown, Andrea M; Willitsford, Adam H; Dinello-Fass, Ryan; Airola, Marc B; Siegrist, Karen M; Thomas, Michael E; Chang, Yale

    2016-06-10

    This paper presents the first, to our knowledge, direct measurement of aerosol produced by an aluminized solid rocket propellant (SRP) fire on the ground. Such fires produce aluminum oxide particles small enough to loft high into the atmosphere and disperse over a wide area. These results can be applied to spacecraft launchpad accidents that expose spacecraft to such fires; during these fires, there is concern that some of the plutonium from the spacecraft power system will be carried with the aerosols. Accident-related lofting of this material would be the net result of many contributing processes that are currently being evaluated. To resolve the complexity of fire processes, a self-consistent model of the ground-level and upper-level parts of the plume was determined by merging ground-level optical measurements of the fire with lidar measurements of the aerosol plume at height during a series of SRP fire tests that simulated propellant fire accident scenarios. On the basis of the measurements and model results, the Johns Hopkins University Applied Physics Laboratory (JHU/APL) team was able to estimate the amount of aluminum oxide (alumina) lofted into the atmosphere above the fire. The quantification of this ratio is critical for a complete understanding of accident scenarios, because contaminants are transported through the plume. This paper provides an estimate for the mass of alumina lofted into the air.

  1. Fault Detection and Diagnosis Techniques for Liquid-Propellant Rocket Propellant Engines

    NASA Astrophysics Data System (ADS)

    Wua, Jianjun; Tanb, Songlin

    2002-01-01

    Fault detection and diagnosis plays a pivotal role in the health-monitoring techniques for liquid- propellant rocket engines. This paper firstly gives a brief summary on the techniques of fault detection and diagnosis utilized in liquid-propellant rocket engines. Then, the applications of fault detection and diagnosis algorithms studied and developed to the Long March Main Engine System(LMME) are introduced. For fault detection, an analytical model-based detection algorithm, a time-series-analysis algorithm and a startup- transient detection algorithm based on nonlinear identification developed and evaluated through ground-test data of the LMME are given. For fault diagnosis, neural-network approaches, nonlinear-static-models based methods, and knowledge-based intelligent approaches are presented. Keywords: Fault detection; Fault diagnosis; Health monitoring; Neural networks; Fuzzy logic; Expert system; Long March main engines Contact author and full address: Dr. Jianjun Wu Department of Astronautical Engineering School of Aerospace and Material Engineering National University of Defense Technology Changsha, Hunan 410073 P.R.China Tel:86-731-4556611(O), 4573175(O), 2219923(H) Fax:86-731-4512301 E-mail:jjwu@nudt.edu.cn

  2. Numerical simulation of a liquid propellant rocket motor

    NASA Astrophysics Data System (ADS)

    Salvador, Nicolas M. C.; Morales, Marcelo M.; Migueis, Carlos E. S. S.; Bastos-Netto, Demétrio

    2001-03-01

    This work presents a numerical simulation of the flow field in a liquid propellant rocket engine chamber and exit nozzle using techniques to allow the results to be taken as starting points for designing those propulsive systems. This was done using a Finite Volume method simulating the different flow regimes which usually take place in those systems. As the flow field has regions ranging from the low subsonic to the supersonic regimes, the numerical code used, initially developed for compressible flows only, was modified to work proficiently in the whole velocity range. It is well known that codes have been developed in CFD, for either compressible or incompressible flows, the joint treatment of both together being complex even today, given the small number of references available in this area. Here an existing code for compressible flow was used and primitive variables, the pressure, the Cartesian components of the velocity and the temperature instead of the conserved variables were introduced in the Euler and Navier-Stokes equations. This was done to permit the treatment at any Mach number. Unstructured meshes with adaptive refinements were employed here. The convective terms were treated with upwind first and second order methods. The numerical stability was kept with artificial dissipation and in the spatial coverage one used a five stage Runge-Kutta scheme for the Fluid Mechanics and the VODE (Value of Ordinary Differential Equations) scheme along with the Chemkin II in the chemical reacting solution. During the development of this code simulating the flow in a rocket engine, comparison tests were made with several different types of internal and external flows, at different velocities, seeking to establish the confidence level of the techniques being used. These comparisons were done with existing theoretical results and with other codes already validated and well accepted by the CFD community.

  3. Nonlinear Longitudinal Mode Instability in Liquid Propellant Rocket Engine Preburners

    NASA Technical Reports Server (NTRS)

    Sims, J. D. (Technical Monitor); Flandro, Gary A.; Majdalani, Joseph; Sims, Joseph D.

    2004-01-01

    Nonlinear pressure oscillations have been observed in liquid propellant rocket instability preburner devices. Unlike the familiar transverse mode instabilities that characterize primary combustion chambers, these oscillations appear as longitudinal gas motions with frequencies that are typical of the chamber axial acoustic modes. In several respects, the phenomenon is similar to longitudinal mode combustion instability appearing in low-smoke solid propellant motors. An important feature is evidence of steep-fronted wave motions with very high amplitude. Clearly, gas motions of this type threaten the mechanical integrity of associated engine components and create unacceptably high vibration levels. This paper focuses on development of the analytical tools needed to predict, diagnose, and correct instabilities of this type. For this purpose, mechanisms that lead to steep-fronted, high-amplitude pressure waves are described in detail. It is shown that such gas motions are the outcome of the natural steepening process in which initially low amplitude standing acoustic waves grow into shock-like disturbances. The energy source that promotes this behavior is a combination of unsteady combustion energy release and interactions with the quasi-steady mean chamber flow. Since shock waves characterize the gas motions, detonation-like mechanisms may well control the unsteady combustion processes. When the energy gains exceed the losses (represented mainly by nozzle and viscous damping), the waves can rapidly grow to a finite amplitude limit cycle. Analytical tools are described that allow the prediction of the limit cycle amplitude and show the dependence of this wave amplitude on the system geometry and other design parameters. This information can be used to guide corrective procedures that mitigate or eliminate the oscillations.

  4. Combustion diagnosis for analysis of solid propellant rocket abort hazards: Role of spectroscopy

    NASA Astrophysics Data System (ADS)

    Gill, W.; Cruz-Cabrera, A. A.; Donaldson, A. B.; Lim, J.; Sivathanu, Y.; Bystrom, E.; Haug, A.; Sharp, L.; Surmick, D. M.

    2014-11-01

    Solid rocket propellant plume temperatures have been measured using spectroscopic methods as part of an ongoing effort to specify the thermal-chemical-physical environment in and around a burning fragment of an exploded solid rocket at atmospheric pressures. Such specification is needed for launch safety studies where hazardous payloads become involved with large fragments of burning propellant. The propellant burns in an off-design condition producing a hot gas flame loaded with burning metal droplets. Each component of the flame (soot, droplets and gas) has a characteristic temperature, and it is only through the use of spectroscopy that their temperature can be independently identified.

  5. Development of an advanced rocket propellant handler's suit

    NASA Technical Reports Server (NTRS)

    Doerr, D. F.

    2001-01-01

    Most launch vehicles and satellites in the US inventory rely upon the use of hypergolic rocket propellants, many of which are toxic to humans. These fuels and oxidizers, such as hydrazine and nitrogen tetroxide have threshold limit values as low as 0.01 PPM. It is essential to provide space workers handling these agents whole body protection as they are universally hazardous not only to the respiratory system, but the skin as well. This paper describes a new method for powering a whole body protective garment to assure the safety of ground servicing crews. A new technology has been developed through the small business innovative research program at the Kennedy Space Center. Currently, liquid air is used in the environmental control unit (ECU) that powers the propellant handlers suit (PHE). However, liquid air exhibits problems with attitude dependence, oxygen enrichment, and difficulty with reliable quantity measurement. The new technology employs the storage of the supply air as a supercritical gas. This method of air storage overcomes all of three problems above while maintaining high density storage at relatively low vessel pressures (<7000 kPa or approximately 1000 psi). A one hour prototype ECU was developed and tested to prove the feasibility of this concept. This was upgraded by the design of a larger supercritical dewar capable of holding 7 Kg of air, a supply which provides a 2 hour duration to the PHE. A third version is being developed to test the feasibility of replacing existing air cooling methodology with a liquid cooled garment for relief of heat stress in this warm Florida environment. Testing of the first one hour prototype yielded data comparable to the liquid air powered predecessor, but enjoyed advantages of attitude independence and oxygen level stability. Thermal data revealed heat stress relief at least as good as liquid air supplied units. The application of supercritical air technology to this whole body protective ensemble marked an

  6. Development of an advanced rocket propellant handler's suit

    NASA Astrophysics Data System (ADS)

    Doerr, DonaldF.

    2001-08-01

    Most launch vehicles and satellites in the US inventory rely upon the use of hypergolic rocket propellants, many of which are toxic to humans. These fuels and oxidizers, such as hydrazine and nitrogen tetroxide have threshold limit values as low as 0.01 PPM. It is essential to provide space workers handling these agents whole body protection as they are universally hazardous not only to the respiratory system, but the skin as well. This paper describes a new method for powering a whole body protective garment to assure the safety of ground servicing crews. A new technology has been developed through the small business innovative research program at the Kennedy Space Center. Currently, liquid air is used in the environmental control unit (ECU) that powers the propellant handlers suit (PHE). However, liquid air exhibits problems with attitude dependence, oxygen enrichment, and difficulty with reliable quantity measurement. The new technology employs the storage of the supply air as a supercritical gas. This method of air storage overcomes all of three problems above while maintaining high density storage at relatively low vessel pressures (<7000 kPa or ˜1000 psi). A one hour prototype ECU was developed and tested to prove the feasibility of this concept. This was upgraded by the design of a larger supercritical dewar capable of holding 7 Kg of air, a supply which provides a 2 hour duration to the PHE. A third version is being developed to test the feasibility of replacing existing air cooling methodology with a liquid cooled garment for relief of heat stress in this warm Florida environment. Testing of the first one hour prototype yielded data comprobable to the liquid air powered predecessor, but enjoyed advantages of attitude independence and oxygen level stability. Thermal data revealed heat stress relief at least as good as liquid air supplied units. The application of supercritical air technology to this whole body protective ensemble marked an advancement in

  7. Method for providing real-time control of a gaseous propellant rocket propulsion system

    NASA Technical Reports Server (NTRS)

    Morris, Brian G. (Inventor)

    1991-01-01

    The new and improved methods and apparatus disclosed provide effective real-time management of a spacecraft rocket engine powered by gaseous propellants. Real-time measurements representative of the engine performance are compared with predetermined standards to selectively control the supply of propellants to the engine for optimizing its performance as well as efficiently managing the consumption of propellants. A priority system is provided for achieving effective real-time management of the propulsion system by first regulating the propellants to keep the engine operating at an efficient level and thereafter regulating the consumption ratio of the propellants. A lower priority level is provided to balance the consumption of the propellants so significant quantities of unexpended propellants will not be left over at the end of the scheduled mission of the engine.

  8. Characterization of booster-rocket propellants and their simulants

    SciTech Connect

    Weirick, L.J.

    1989-01-01

    A series of shock-loading experiments on a composite and an energietic propellant and there simulants was conducted on a light-gas gun. The initial objectives were to obtain Hugoniot data, to investigate the pressure threshold at which a reaction occurs, and to measure spall threshold at various impact velocities. The Hugoniot data measured for the propellants fit the Hugoniot curves provided by the manufacturer of the propellants extremely well and the Hugoniot curves developed for the simulants matched those of the propellants. Threshold pressures to initiate reactions in the composite and energetic propellants were found to be 40 and 3 kbars, respectively. In spall tests, the composite propellant and its simulant exhibited spall strengths around 0.25 and 0.18 kbar, respectively. The energetic propellant and its simulant were somewhat stronger with spall strengths just above 0.33 and 0.22 kbar. 12 refs., 6 figs., 6 tabs.

  9. Atmospheric Manmade Glowings Phenomena Observed During the Launches of Solid Propellant Rockets

    NASA Astrophysics Data System (ADS)

    Chernouss, S. A.; Platov, V. V.; Upspensky, M. V.; Alpatov, V. V.; Kirillov, A. S.

    2015-09-01

    Exotic types of luminosities observed in the upper atmosphere always take place during the launch and flight of solid-propellant rockets We consider a large-scale geometry and dynamic features of such phenomena also physics of the intense turquoise (blue-green) glow observed in twilight conditions in the region of missile flight. This study has been based on numerous observations of different rocket flights in the atmosphere over Russia and Scandinavia. Formation of the monoxide aluminum clouds observed in the upper atmosphere is a result of interaction of the exhausted propellant products with the atomic oxygen. The sunlight excited the monoxide aluminum EA1O*) resonance emissions in the atmosphere. Careful studies of spectra of the manmade luminosities during rocket launch/flight permit us to know chemical, thermal and mechanical processes in the atmosphere similar as it is doing in experiments with the artificial cloud release from sounding rockets in the high latitude atmosphere.

  10. Extension of a simplified computer program for analysis of solid-propellant rocket motors

    NASA Technical Reports Server (NTRS)

    Sforzini, R. H.

    1973-01-01

    A research project to develop a computer program for the preliminary design and performance analysis of solid propellant rocket engines is discussed. The following capabilities are included as computer program options: (1) treatment of wagon wheel cross sectional propellant configurations alone or in combination with circular perforated grains, (2) calculation of ignition transients with the igniter treated as a small rocket engine, (3) representation of spherical circular perforated grain ends as an alternative to the conical end surface approximation used in the original program, and (4) graphical presentation of program results using a digital plotter.

  11. A facility for testing the acoustic combustion instability characteristics of solid rocket propellants

    NASA Technical Reports Server (NTRS)

    Mathes, H. B.

    1980-01-01

    A facility is described that has been specifically designed for small-scale laboratory testing of solid rocket propellants. A description of the facility is provided which includes the general plan of the facility and features related to personnel safety. One of the major activities in the facility is testing solid rocket propellants for combustion response to acoustic perturbations. A detailed discussion of acoustic instability testing is given including specially designed combustion apparatus, data acquisition, and signal conditioning. Techniques of data reduction are reviewed and some of the instrumentation problems that arise in this type of testing are mentioned along with practical solutions.

  12. Solid rocket propellant waste disposal/ingredient recovery study

    NASA Technical Reports Server (NTRS)

    Mcintosh, M. J.

    1976-01-01

    A comparison of facility and operating costs of alternate methods shows open burning to be the lowest cost incineration method of waste propellant disposal. The selection, development, and implementation of an acceptable alternate is recommended. The recovery of ingredients from waste propellant has the probability of being able to pay its way, and even show a profit, when large consistent quantities of composite propellant are available. Ingredients recovered from space shuttle waste propellant would be worth over $1.5 million. Open and controlled burning are both energy wasteful.

  13. RP-1 and JP-8 Thermal Stability Experiments

    NASA Technical Reports Server (NTRS)

    Brown, Sarah P.; Emens, Jessica M.; Frederick, Robert A., Jr.

    2005-01-01

    This work experimentally investigates the effect of fuel composition changes on jet and rocket fuel thermal stability. A High Reynolds Number Thermal Stability test device evaluated JP-8 and RP-1 fuels. The experiment consisted of an electrically heated, stainless steel capillary tube with a controlled fuel outlet temperature. An optical pyrometer monitored the increasing external temperature profiles of the capillary tube as deposits build inside during each test. Multiple runs of each fuel composition provided results on measurement repeatability. Testing a t two different facilities provided data on measurement reproducibility. The technique is able to distinguish between thermally stable and unstable compositions of JP-8 and intermediate blends made by combining each composition. The technique is also able to distinguish among standard RP-1 rocket fuels and those having reduced sulfur levels. Carbon burn off analysis of residue in the capillary tubes on the RP-1 fuels correlates with the external temperature results.

  14. Modeling of heat generation in ammonia-treated solid rocket propellant

    SciTech Connect

    Raun, R.L.; Isom, K.B.

    1995-06-01

    With the end of the Cold War, safe, environmentally sound separation, recycling, and disposal of ingredients in solid rocket propellants and munitions has become a national priority. One approach to demilitarize solid rocket propellants is treatment with ammonia. Ammonia extracts the oxidizers ammonium perchlorate and HMX, yielding a solid reside that is more suitable for incineration and less sensitive to impact and other modes of accidental initiation. Ammonia treatment of nitroglycerin-containing propellants is complicated by an exothermic reaction between ammonia and nitroglycerin. If not removed, the heat generated by this reaction can cause propellant ignition. To help design safe treatment processes, a model for the ammonia-propellant reaction was developed, which integrates transient energy and species conservation equations to simulate ammonia diffusion, heat generation, and heat flow in a propellant and in the solid residue resulting from ammonia treatment. It was calibrated using residue thickness and thermocouple data for one propellant. The calibrated model was used to predict conditions leading to ignition of thin propellant strips. The results agree well with experimental observations.

  15. Development of a miniature solid propellant rocket motor for use in plume simulation studies

    NASA Technical Reports Server (NTRS)

    Baran, W. J.

    1974-01-01

    A miniature solid propellant rocket motor has been developed to be used in a program to determine those parameters which must be duplicated in a cold gas flow to produce aerodynamic effects on an experimental model similar to those produced by hot, particle-laden exhaust plumes. Phenomena encountered during the testing of the miniature solid propellant motors included erosive propellant burning caused by high flow velocities parallel to the propellant surface, regressive propellant burning as a result of exposed propellant edges, the deposition of aluminum oxide on the nozzle surfaces sufficient to cause aerodynamic nozzle throat geometry changes, and thermal erosion of the nozzle throat at high chamber pressures. A series of tests was conducted to establish the stability of the rocket chamber pressure and the repeatibility of test conditions. Data are presented which define the tests selected to represent the final test matrix. Qualitative observations are also presented concerning the phenomena experienced based on the results of a large number or rocket tests not directly applicable to the final test matrix.

  16. Laser Ignition Technology for Bi-Propellant Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Thomas, Matt; Bossard, John; Early, Jim; Trinh, Huu; Dennis, Jay; Turner, James (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of laser ignition technology for bipropellant rocket engines applications. The objectives of this project include: (1) the selection test chambers and flows; (2) definition of the laser ignition setup; (3) pulse format optimization; (4) fiber optic coupled laser ignition system analysis; and (5) chamber integration issues definition. The testing concludes that rocket combustion chamber laser ignition is imminent. Support technologies (multiplexing, window durability/cleaning, and fiber optic durability) are feasible.

  17. Development of high temperature materials for solid propellant rocket nozzle applications

    NASA Technical Reports Server (NTRS)

    Manning, C. R., Jr.; Lineback, L. D.

    1974-01-01

    Aspects of the development and characteristics of thermal shock resistant hafnia ceramic material for use in solid propellant rocket nozzles are presented. The investigation of thermal shock resistance factors for hafnia based composites, and the preparation and analysis of a model of elastic materials containing more than one crack are reported.

  18. Features of optical phenomena connected with launches of solid-propellant ballistic rockets

    NASA Astrophysics Data System (ADS)

    Platov, Yu. V.; Chernouss, S. A.; Alpatov, V. V.

    2013-04-01

    Specific optical phenomena observed in the upper atmosphere layers and connected with launches of powerful solid-propellant rockets are considered: the development of spherically symmetric gas-dust formations having the shape of an extending torus in the image plane and the formation of regions with intense blue-green (turquoise) glow observed under twilight conditions along a rocket's flight path. The development of clouds can be represented by the model of a strong explosion occurring at the stage separation of solid-propellant rockets in the upper atmosphere. A turquoise glow arises as a result of resonance scattering of solar radiation on AlO molecules that are formed when metallic aluminum in the composition of fuel interacts with atmosphere components and combustion products.

  19. Examination of the liver in personnel working with liquid rocket propellant

    PubMed Central

    Petersen, Palle; Bredahl, Erik; Lauritsen, Ove; Laursen, Thomas

    1970-01-01

    Petersen, P., Bredahl, E., Lauritsen, O., and Laursen, T. (1970).Brit. J. industr. Med.,27, 141-146. Examination of the liver in personnel working with liquid rocket propellants. Personnel working with liquid rocket propellants were subjected to routine health examinations, including liver function tests, as the propellant, unsymmetrical dimethylhydrazine (UDMH) is potentially toxic to the liver. In 46 persons the concentrations of serum alanine aminotransferase (SGPT) were raised. Liver biopsy was performed in 26 of these men; 6 specimens were pathological (fatty degeneration), 5 were uncertain, and 15 were normal. All 6 pathological biopsies were from patients with a raised SGPT at the time of biopsy. Of the 15 persons with a normal liver biopsy, 14 had a normal SGPT, while one (who was an alcoholic) had a raised SGPT. The connection between SGPT and histology of the liver, as well as the possible causal relation between the pathological findings and exposure to UDMH, is discussed. Images PMID:5428632

  20. Propellant acquisition for single-stage rocket technology

    NASA Astrophysics Data System (ADS)

    Grayson, G.; Distefano, E.

    1993-06-01

    An analytical design approach defines the liquid oxygen (LO2) propellant-acquisition system for the vertical-take-off and vertical-landing DC-X flight test vehicle. The DC-X trajectory includes a rotation maneuver in which the vehicle pitches from a nose-first to a tail-first orientation. The 8-ft diameter LO2 tank accommodates outflow rates as high as 120 lbm/sec, while vehicle drag forces result in a lateral acceleration approaching 25 ft/sq sec during rotation. FLOW-3D computational results show that, without propellant control, these conditions cause the LO2 to slosh within the tank and expose the outlet to ullage gas during the rotation maneuver. Using FLOW 3-D simulations of several baffle configurations, one propellant acquisition concept is selected. In this concept, a simple cone-shaped containment baffle compartmentalizes the tank and an outlet extension offsets the outlet to where the propellant is biased. The final design incorporates a factor of safety greater than 2 resulting in continuous coverage of the outlet by propellant as validated by FLOW-3D simulation.

  1. Lead-Free Double-Base Propellant for the 2.75 Inch Rocket Motor

    NASA Technical Reports Server (NTRS)

    Magill, B. T.; Nauflett, G. W.; Furrow, K. W.

    2000-01-01

    The current MK 66 2.75 inch Rocket Motor double-base propellant contains the lead-based ballistic modifier LC-12-15 to achieve the desired plateau and mesa burning rate characteristics. The use of lead compounds poses a concern for the environment and for personal safety due to the metal's toxic nature when introduced into the atmosphere by propellant manufacture, rocket motor firing, and disposal. Copper beta-resorcylate (copper 2,4-di-hydroxy-benzoate) was successfully used in propellant as a simple modifier in the mid 1970's. This and other compounds have also been mixed with lead salts to obtain more beneficial ballistic results. Synthesized complexes of lead and copper compounds soon replaced the mixtures. The complexes incorporate the lead, copper lack of organic liquids, which allows for easier propellant processing. About ten years ago, the Indian Head Division, Naval Surface Warfare Center (NSWC), initiated an effort to develop a lead-free propellant for use in missile systems. Several lead-free propellant candidate formulations were developed. About five years ago, NSWC, in conjunction with Alliant Techsystems, Radford Army Ammunition Plant, continued ballistic modifier investigations. A four component ballistic modifier system without lead for double-base propellants that provide adequate plateau and mesa burn rate characteristics was developed and patented. The ballistic modifier's system contains bismuth subsalicylate, 1.5 percent; copper salicylate, 1.0 percent, copper stannate, 0.77 percent; and carbon black, 0.1 percent. Action time and impulse data obtained through multiple static firings indicate that the new lead-free double-base propellant, while not a match for NOSIH-AA-2, will be a very suitable replacement in the 2.75 inch Rocket Motor. Accelerated aging of the double-base propellant containing the lead-free ballistic modifier showed that it had a much higher rate of stabilizer depletion than the AA-2. A comprehensive study showed that an

  2. Regression rate behaviors of HTPB-based propellant combinations for hybrid rocket motor

    NASA Astrophysics Data System (ADS)

    Sun, Xingliang; Tian, Hui; Li, Yuelong; Yu, Nanjia; Cai, Guobiao

    2016-02-01

    The purpose of this paper is to characterize the regression rate behavior of hybrid rocket motor propellant combinations, using hydrogen peroxide (HP), gaseous oxygen (GOX), nitrous oxide (N2O) as the oxidizer and hydroxyl-terminated poly-butadiene (HTPB) as the based fuel. In order to complete this research by experiment and simulation, a hybrid rocket motor test system and a numerical simulation model are established. Series of hybrid rocket motor firing tests are conducted burning different propellant combinations, and several of those are used as references for numerical simulations. The numerical simulation model is developed by combining the Navies-Stokes equations with the turbulence model, one-step global reaction model, and solid-gas coupling model. The distribution of regression rate along the axis is determined by applying simulation mode to predict the combustion process and heat transfer inside the hybrid rocket motor. The time-space averaged regression rate has a good agreement between the numerical value and experimental data. The results indicate that the N2O/HTPB and GOX/HTPB propellant combinations have a higher regression rate, since the enhancement effect of latter is significant due to its higher flame temperature. Furthermore, the containing of aluminum (Al) and/or ammonium perchlorate(AP) in the grain does enhance the regression rate, mainly due to the more energy released inside the chamber and heat feedback to the grain surface by the aluminum combustion.

  3. Status of flow separation prediction in liquid propellant rocket nozzles

    NASA Technical Reports Server (NTRS)

    Schmucker, R. H.

    1974-01-01

    Flow separation which plays an important role in the design of a rocket engine nozzle is discussed. For a given ambient pressure, the condition of no flow separation limits the area ratio and, therefore, the vacuum performance. Avoidance of performance loss due to area ratio limitation requires a correct prediction of the flow separation conditions. To provide a better understanding of the flow separation process, the principal behavior of flow separation in a supersonic overexpanded rocket nozzle is described. The hot firing separation tests from various sources are summarized, and the applicability and accuracy of the measurements are described. A comparison of the different data points allows an evaluation of the parameters that affect flow separation. The pertinent flow separation predicting methods, which are divided into theoretical and empirical correlations, are summarized and the numerical results are compared with the experimental points.

  4. Molded composite pyrogen igniter for rocket motors. [solid propellant ignition

    NASA Technical Reports Server (NTRS)

    Heier, W. C.; Lucy, M. H. (Inventor)

    1978-01-01

    A lightweight pyrogen igniter assembly including an elongated molded plastic tube adapted to contain a pyrogen charge was designed for insertion into a rocket motor casing for ignition of the rocket motor charge. A molded plastic closure cap provided for the elongated tube includes an ignition charge for igniting the pyrogen charge and an electrically actuated ignition squib for igniting the ignition charge. The ignition charge is contained within a portion of the closure cap, and it is retained therein by a noncorrosive ignition pellet retainer or screen which is adapted to rest on a shoulder of the elongated tube when the closure cap and tube are assembled together. A circumferentially disposed metal ring is provided along the external circumference of the closure cap and is molded or captured within the plastic cap in the molding process to provide, along with O-ring seals, a leakproof rotary joint.

  5. Rocket propellant inhalation in the Apollo-Soyuz astronauts.

    PubMed

    DeJournette, R L

    1977-10-01

    Acute exposure to monomethylhydrazine and dinitrogen tetroxide, the principal toxic irritants in rocket fuels, is described with particular attention to the development of pulmonary edema as a herbinger of more severe central nervous system toxicity. An acute respiratory embarrassment is documented and possible means of therapy based on animal experimental models is suggested. Early clinical and radiographic examination as a baseline for further evaluation is essential, with follow-up radiographs recommended for assessment of possible developing chronic lung disease.

  6. Rocket propellant inhalation in the Apollo-Soyuz astronauts.

    PubMed

    DeJournette, R L

    1977-10-01

    Acute exposure to monomethylhydrazine and dinitrogen tetroxide, the principal toxic irritants in rocket fuels, is described with particular attention to the development of pulmonary edema as a herbinger of more severe central nervous system toxicity. An acute respiratory embarrassment is documented and possible means of therapy based on animal experimental models is suggested. Early clinical and radiographic examination as a baseline for further evaluation is essential, with follow-up radiographs recommended for assessment of possible developing chronic lung disease. PMID:897171

  7. Studies of the exhaust products from solid propellant rocket motors

    NASA Technical Reports Server (NTRS)

    Dawbarn, R.; Kinslow, M.

    1976-01-01

    This study was undertaken to determine the feasibility of conducting environmental chamber tests on the physical processes which occur when a solid rocket motor exhaust mixes with the ambient atmosphere. Of particular interest was the interaction between hydrogen chloride, aluminum oxide, and water vapor. The program consisted of three phases: (1) building a small rocket motor and using it to provide the exhaust species in a controlled environment; (2) evaluating instruments used to detect and measure HCl concentrations and if possible determining whether the HCl existed in the gaseous state or as an acid aerosol; (3) monitoring a series of 6.4-percent scale space shuttle motor tests and comparing the results to the environmental chamber studies. Eighteen firings were conducted in an environmental chamber with the initial ambient relative humidity set at values from 29 to 100 percent. Two additional firings were made in a large shed, and four were made on an open concrete apron. Six test firings at MSFC were monitored, and the ground level concentrations are reported. Evidence is presented which shows that the larger Al2O3 (5 to 50 micrometers) particles from the rocket motor can act as condensation nuclei. Under appropriate ambient conditions where there is sufficient water vapor this results in the formation of an acid aerosol. Droplets of this acid were detected both in the environmental chamber and in the scaled shuttle engine tests.

  8. Advances in aluminum powder usage as an energetic material and applications for rocket propellant

    NASA Astrophysics Data System (ADS)

    Sadeghipour, S.; Ghaderian, J.; Wahid, M. A.

    2012-06-01

    Energetic materials have been widely used for military purposes. Continuous research programs are performing in the world for the development of the new materials with higher and improved performance comparing with the available ones in order to fulfill the needs of the military in future. Different sizes of aluminum powders are employed to produce composite rocket propellants with the bases of Ammonium Perchlorate (AP) and Hydroxyl-Terminated-Polybutadiene (HTPB) as oxidizer and binder respectively. This paper concentrates on recent advances in using aluminum as an energetic material and the properties and characteristics pertaining to its combustion. Nano-sized aluminum as one of the most attractable particles in propellants is discussed particularly.

  9. Performance and Stability Analyses of Rocket Thrust Chambers with Oxygen/Methane Propellants

    NASA Technical Reports Server (NTRS)

    Hulka, James R.; Jones, Gregg W.

    2010-01-01

    Liquid rocket engines using oxygen and methane propellants are being considered by the National Aeronautics and Space Administration (NASA) for future in-space vehicles. This propellant combination has not been previously used in flight-qualified engine systems developed by NASA, so limited test data and analysis results are available at this stage of early development. As part of activities for the Propulsion and Cryogenic Advanced Development (PCAD) project funded under the Exploration Technology Development Program, the NASA Marshall Space Flight Center (MSFC) has been evaluating capability to model combustion performance and stability for oxygen and methane propellants. This activity has been proceeding for about two years and this paper is a summary of results to date. Hot-fire test results of oxygen/methane propellant rocket engine combustion devices for the modeling investigations have come from several sources, including multi-element injector tests with gaseous methane from the 1980s, single element tests with gaseous methane funded through the Constellation University Institutes Program, and multi-element injector tests with both gaseous and liquid methane conducted at the NASA MSFC funded by PCAD. For the latter, test results of both impinging and coaxial element injectors using liquid oxygen and liquid methane propellants are included. Configurations were modeled with two one-dimensional liquid rocket combustion analysis codes, the Rocket Combustor Interactive Design and Analysis code and the Coaxial Injector Combustion Model. Special effort was focused on how these codes can be used to model combustion and performance with oxygen/methane propellants a priori, and what anchoring or calibrating features need to be applied, improved or developed in the future. Low frequency combustion instability (chug) occurred, with frequencies ranging from 150 to 250 Hz, with several multi-element injectors with liquid/liquid propellants, and was modeled using

  10. Rocket Sled Propelled Testing of a Supersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Meacham, Michael B.; Kennett, Andrew; Townsend, Derik J.; Marti, Benjamin

    2013-01-01

    Decelerators (IADs) have traditionally been tested in wind tunnels. As the limitations of these test facilities are reached, other avenues must be pursued. The IAD being tested is a Supersonic IAD (SIAD), which attaches just aft of the heatshield around the perimeter of an entry body. This 'attached torus' SIAD is meant to improve the accuracy of landing for robotic class missions to Mars and allow for potentially increased payloads. The SIAD Design Verification (SDV) test aims to qualify the SIAD by applying a targeted aerodynamic load to the vehicle. While many test architectures were researched, a rocket sled track was ultimately chosen to be the most cost effective way to achieve the desired dynamic pressures. The Supersonic Naval Ordnance Research Track (SNORT) at the Naval Air Warfare Center Weapons Division (NAWCWD) China Lake is a four mile test track, traditionally used for warhead and ejection seat testing. Prior to SDV, inflatable drag bodies have been tested on this particular track. Teams at Jet Propulsion Laboratory (JPL) and NAWCWD collaborate together to design and fabricate one of the largest sleds ever built. The SDV sled is comprised of three individual sleds: a Pusher Sled which holds the solid booster rockets, an Item Sled which supports the test vehicle, and a Camera Sled that is pushed in front for in-situ footage and measurements. The JPL-designed Test Vehicle has a full-scale heatshield shape and contains all instrumentation and inflation systems necessary to inflate and test a SIAD. The first campaign that is run at SNORT tested all hardware and instrumentation before the SIAD was ready to be tested. For each of the three tests in this campaign, the number of rockets and top speed was increased and the data analyzed to ensure the hardware is safe at the necessary accelerations and aerodynamic loads.

  11. A study on various methods of supplying propellant to an orbit insertion rocket engine

    NASA Technical Reports Server (NTRS)

    Boretz, J. E.; Huniu, S.; Thompson, M.; Pagani, M.; Paulsen, B.; Lewis, J.; Paul, D.

    1980-01-01

    Various types of pumps and pump drives were evaluated to determine the lightest weight system for supplying propellants to a planetary orbit insertion rocket engine. From these analyses four candidate propellant feed systems were identified. Systems Nos. 1 and 2 were both battery powered (lithium-thionyl-chloride or silver-zinc) motor driven pumps. System 3 was a monopropellant gas generator powered turbopump. System 4 was a bipropellant gas generator powered turbopump. Parameters considered were pump break horsepower, weight, reliability, transient response and system stability. Figures of merit were established and the ranking of the candidate systems was determined. Conceptual designs were prepared for typical motor driven pumps and turbopump configurations for a 1000 lbf thrust rocket engine.

  12. Prediction of explosive yield and other characteristics of liquid rocket propellant explosions

    NASA Technical Reports Server (NTRS)

    Farber, E. A.; Smith, J. H.; Watts, E. H.

    1973-01-01

    Work which has been done at the University of Florida in arriving at credible explosive yield values for liquid rocket propellants is presented. The results are based upon logical methods which have been well worked out theoretically and verified through experimental procedures. Three independent methods to predict explosive yield values for liquid rocket propellants are described. All three give the same end result even though they utilize different parameters and procedures. They are: (1) mathematical model; (2) seven chart approach; and (3) critical mass method. A brief description of the methods, how they were derived, how they were applied, and the results which they produced are given. The experimental work used to support and verify the above methods both in the laboratory and in the field with actually explosive mixtures are presented. The methods developed are used and their value demonstrated in analyzing real problems, among them the destruct system of the Saturn 5, and the early configurations of the space shuttle.

  13. Regeneratively cooled rocket engine for space storable propellants

    NASA Technical Reports Server (NTRS)

    Wagner, W. R.

    1973-01-01

    Analysis, design, fabrication, and test efforts were performed for the existing OF2/B2H6 regeneratively cooled lK (4448 N) thrust chamber to illustrate simultaneous B2H6 fuel and OF2 oxidizer cooling and to provide results for a gaseous propellant condition injected into the combustion chamber. Data derived from performance, thermal and flow measurements confirmed predictions derived from previous test work and from concurrent analytical study. Development data derived from the experimental study were indicated to be sufficient to develop a preflight thrust chamber demonstrator prototype for future space mission objectives.

  14. Launch vehicle performance using metallized propellants

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.; Powell, Richard

    1991-01-01

    Metallized propellant propulsion systems are considered as replacements for the solid rocket boosters and liquid sustainer stages on the current launch vehicles: both the Space Transportation System (STS) and the Titan 4. Liquid rocket boosters for the STS were analyzed as replacements for current solid rocket boosters. These boosters can provide a liquid propulsion system within the volume constraints of a solid rocket booster. A replacement for the Space Shuttle Main Engines using metallized O2/H2/Al was studied. The liquid stages of the Titan 4 were also investigated; the Aerozine-50 (A-50) fuel was replaced with metallized storable A-50/Al. A metallized propellant is similar to a traditional liquid propellant. However, it has metal particles, such as aluminum, that are suspended in a gelled fuel, such as hydrogen, RP-1, A-50 or monomethyl hydrazine (MMH). The fuels then undergo combustion with liquid oxygen or nitrogen tetroxide (NTO). These propellants provide options for increasing the performance of existing launch vehicle chemical propulsion systems by increasing fuel density or specific impulse or both. These increases in density and specific impulse can significantly reduce the propulsion system liftoff weight and allow a liquid rocket booster to fit into the same volume as an existing solid rocket booster. Also, because gelled fuels are akin to liquid propellants, metallized systems can provide enhanced controllability over solid propulsion systems. Gelling of the propellant also reduces the sensitivity to impacts and consequently reduces the propellant explosion hazard.

  15. Launch vehicle performance using metallized propellants

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan; Powell, Richard

    1991-01-01

    Metallized propellant propulsion systems are considered as replacements for the solid rocket boosters and liquid sustainer stages on the current launch vehicles: both the Space Transportation System (STS) and the Titan 4. Liquid rocket boosters for the STS were analyzed as replacements for current solid rocket boosters. These boosters can provide a liquid propulsion system within the volume constraints of a solid rocket booster. A replacement for the Space Shuttle Main Engines using metallized 02/H2/A1 was studied. The liquid stages of the Titan 4 were also investigated; the Aerozine-50 (A-50) fuel was replaced with metallized storable A-50/A1. A metallized propellant is similar to a traditional liquid propellant. However, it has metal particles, such as aluminum, that are suspended in a gelled fuel, such as hydrogen, RP-1, A-50 or monomethyl hydrazine (MMH). The fuels then undergo combustion with liquid oxygen or nitrogen tetroxide (NTO). These propellants provide options for increasing the performance of existing launch vehicle chemical propulsion systems by increasing fuel density or specific impulse or both. These increases in density and specific impulse can significantly reduce the propulsion system liftoff weight and allow a liquid rocket booster to fit into the same volume as an existing solid rocket booster. Also, because gelled fuels are akin to liquid propellants, metallized systems can provide enhanced controllability over solid propulsion systems. Gelling of the propellant also reduces the sensitivity to impacts and consequently reduces the propellant explosion hazard.

  16. Attenuation studies of booster-rocket propellants and their simulants

    SciTech Connect

    Weirick, L.J.

    1990-08-01

    A series of impact experiments on a composite propellant, an energetic propellant, and their simulants was recently completed using a light-gas gun. Previous experiments were done to obtain Hugoniot data, to investigate the pressure threshold at which a reaction occurs, and to measure spall damage at various impact velocities. The present studies measured the attenuation of shock waves in these materials, completing the shock characterization needed for material modeling. An initial impulse of 2.0 GPa magnitude and {approximately}0.6 {mu}s duration was imposed upon samples of various thicknesses. VISAR was used to measure the free-surface velocity at the back of the samples; these data were used to generate a curve of shock-wave attenuation versus sample thickness for each material. Results showed that all four materials attenuated the shock wave very similarly. Material thicknesses of 3.0, 7.62, 12.7, and 19.0 mm attenuated the shock wave {approximately}16%, 33%, 50%, and 66% respectively. 14 refs., 12 figs., 4 tabs.

  17. Regeneratively cooled rocket engine for space storable propellants

    NASA Technical Reports Server (NTRS)

    Wagner, W. R.; Waldman, B. J.

    1973-01-01

    Analyses and experimental studies were performed with the OF2 (F2/O2)/B2H6 propellant combination over a range in operating conditions to determine suitability for a space storable pressure fed engine configuration for an extended flight space vehicle configuration. The regenerative cooling mode selected for the thrust chamber was explored in detail with the use of both the fuel and oxidizer as coolants in an advanced milled channel construction thrust chamber design operating at 100 psia chamber pressure and a nominal mixture ratio of 3.0 with a 60:1 area ratio nozzle. Benefits of the simultaneous cooling as related to gaseous injection of both fuel and oxidizer propellants were defined. Heat transfer rates, performance and combustor stability were developed for impinging element triplet injectors in uncooled copper calorimeter hardware with flow, pressure and temperature instrumentation. Evaluation of the capabilities of the B2H6 and OF2 during analytical studies and numerous tests with flow through electrically heated blocks provided design criteria for subsequent regenerative chamber design and fabrication.

  18. Low loss injector for liquid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Vonpragenau, G. L. (Inventor)

    1986-01-01

    A low pressure loss injector element is disclosed for the main combustion chamber of a rocket engine which includes a lox post terminating in a cylindrical barrel. Received within the barrel is a lox plug which is threaded in the lox post and includes an interchangeable lox metering sieve which meters the lox into an annular lox passage. A second annular gas passage is coaxial with the annular lox passage. A cylindrical sleeve surrounds the annular gas passage and includes an interchangeable gas metering seive having metering orifices through which a hot gas passes into the annular passage. The jets which emerge from the annular lox passage and annular gas passage intersect in a recessed area away from the combustion area. Thus, mixing and combustion stability are enhanced.

  19. A Mechanistic Study of Delayed Detonation in Impact Damaged Solid Rocket Propellant

    NASA Astrophysics Data System (ADS)

    Matheson, E. R.; Rosenberg, J. T.

    2002-07-01

    One method of hazard assessment for mass detonable solid rocket propellants consists of impacting right circular cylinders of propellant end-on into thick steel witness plates at varying impact velocities. A detonation that occurs within one shock traversal of the cylinder length is termed a prompt detonation or a shock-to-detonation transition (SDT). At lower velocities, some propellants detonate at times later than one shock transit, typically 1-5 shock transits. Because no mechanism for delayed detonation has been fully confirmed and accepted by the detonation physics community, these low-velocity detonations are referred to as unknown-to-detonation transitions (XDTs). A leading theory, however, is that prior to detonation mechanically induced damage sensitizes the material through the formation of internal porosity which provides new mechanical reaction initiation sites (hot spots) and enhanced internal burn surface. To study this phenomenology, we have developed the Coupled Damage and Reaction (CDAR) model, implemented it in the CTH shock physics code, and simulated propellant impact experiments. The CDAR model fully couples viscoelastic-viscoplastic deformation, tensile damage, porosity evolution, reaction initiation, and grain burning to model the increased reactivity of the propellant. In this paper, CDAR simulations of propellant damage in spall and Taylor impact tests are presented and compared to experiment. An XDT experiment is also simulated, and implications regarding damage mechanisms and hydrodynamic processes leading to XDT are discussed.

  20. Bleed cycle propellant pumping in a gas-core nuclear rocket engine system

    NASA Technical Reports Server (NTRS)

    Kascak, A. F.; Easley, A. J.

    1972-01-01

    The performance of ideal and real staged primary propellant pumps and bleed-powered turbines was calculated for gas-core nuclear rocket engines over a range of operating pressures from 500 to 5000 atm. This study showed that for a required engine operating pressure of 1000 atm the pump work was about 0.8 hp/(lb/sec), the specific impulse penalty resulting from the turbine propellant bleed flow as about 10 percent; and the heat required to preheat the propellant was about 7.8 MN/(lb/sec). For a specific impulse above 2400 sec, there is an excess of energy available in the moderator due to the gamma and neutron heating that occurs there. Possible alternative pumping cycles are the Rankine or Brayton cycles.

  1. Alternate propellants for the space shuttle solid rocket booster motors. [for reducing environmental impact of launches

    NASA Technical Reports Server (NTRS)

    1973-01-01

    As part of the Shuttle Exhaust Effects Panel (SEEP) program for fiscal year 1973, a limited study was performed to determine the feasibility of minimizing the environmental impact associated with the operation of the solid rocket booster motors (SRBMs) in projected space shuttle launches. Eleven hypothetical and two existing limited-experience propellants were evaluated as possible alternates to a well-proven state-of-the-art reference propellant with respect to reducing emissions of primary concern: namely, hydrogen chloride (HCl) and aluminum oxide (Al2O3). The study showed that it would be possible to develop a new propellant to effect a considerable reduction of HCl or Al2O3 emissions. At the one extreme, a 23% reduction of HCl is possible along with a ll% reduction in Al2O3, whereas, at the other extreme, a 75% reduction of Al2O3 is possible, but with a resultant 5% increase in HCl.

  2. Navier-Stokes calculation of solid-propellant rocket motor internal flowfields

    NASA Technical Reports Server (NTRS)

    Hsieh, Kwang-Chung; Yang, Vigor; Tseng, Jesse I. S.

    1988-01-01

    A comprehensive numerical analysis has been carried out to study the detailed physical and chemical processes involved in the combustion of homogeneous propellant in a rocket motor. The formulation is based on the time-dependent full Navier-Stokes equations, with special attention devoted to the chemical reactions in both gas and condensed phases. The turbulence closure is achieved using both the Baldwin-Lomax algebraic model and a modified k-epsilon two-equation scheme with a low Reynolds number and near-wall treatment. The effects of variable thermodynamic and transport properties are also included. The system of governing equations are solved using a multi-stage Runge-Kutta shceme with the source terms treated implicitly. Preliminary results clearly demonstrate the presence of various combustion regimes in the vicinity of propellant surface. The effects of propellant combustion on the motor internal flowfields are investigated in detail.

  3. Flow visualization of a rocket injector spray using gelled propellant simulants

    NASA Technical Reports Server (NTRS)

    Green, James M.; Rapp, Douglas C.; Roncace, James

    1991-01-01

    A study was conducted at NASA-Lewis to compare the atomization characteristics of gelled and nongelled propellant simulants. A gelled propellant simulant composed of water, sodium hydroxide, and an acrylic acid polymer resin (as the gelling agent) was used to simulate the viscosity of an aluminum/PR-1 metallized fuel gel. Water was used as a comparison fluid to isolate the rheological effects of the water-gel and to simulate nongelled RP-1. The water-gel was injected through the central orifice of a triplet injector element and the central post of a coaxial injector element. Nitrogen gas flowed through the outer orifices of the triplet injector element and through the annulus of the coaxial injector element and atomized the gelled and nongelled liquids. Photographs of the water-gel spray patterns at different operating conditions were compared with images obtained using water and nitrogen. A laser light was used for illumination of the sprays. The results of the testing showed that the water sprays produced a finer and more uniform atomization than the water-gel sprays. Rheological analysis of the water-gel showed poor atomization caused by high viscosity of water-gel delaying the transition to turbulence.

  4. Studies of Fission Fragment Rocket Engine Propelled Spacecraft

    NASA Technical Reports Server (NTRS)

    Werka, Robert O.; Clark, Rodney; Sheldon, Rob; Percy, Thomas K.

    2014-01-01

    The NASA Office of Chief Technologist has funded from FY11 through FY14 successive studies of the physics, design, and spacecraft integration of a Fission Fragment Rocket Engine (FFRE) that directly converts the momentum of fission fragments continuously into spacecraft momentum at a theoretical specific impulse above one million seconds. While others have promised future propulsion advances if only you have the patience, the FFRE requires no waiting, no advances in physics and no advances in manufacturing processes. Such an engine unequivocally can create a new era of space exploration that can change spacecraft operation. The NIAC (NASA Institute for Advanced Concepts) Program Phase 1 study of FY11 first investigated how the revolutionary FFRE technology could be integrated into an advanced spacecraft. The FFRE combines existent technologies of low density fissioning dust trapped electrostatically and high field strength superconducting magnets for beam management. By organizing the nuclear core material to permit sufficient mean free path for escape of the fission fragments and by collimating the beam, this study showed the FFRE could convert nuclear power to thrust directly and efficiently at a delivered specific impulse of 527,000 seconds. The FY13 study showed that, without increasing the reactor power, adding a neutral gas to the fission fragment beam significantly increased the FFRE thrust through in a manner analogous to a jet engine afterburner. This frictional interaction of gas and beam resulted in an engine that continuously produced 1000 pound force of thrust at a delivered impulse of 32,000 seconds, thereby reducing the currently studied DRM 5 round trip mission to Mars from 3 years to 260 days. By decreasing the gas addition, this same engine can be tailored for much lower thrust at much higher impulse to match missions to more distant destinations. These studies created host spacecraft concepts configured for manned round trip journeys. While the

  5. Combustion Instability in an Acid-Heptane Rocket with a Pressurized-Gas Propellant Pumping System

    NASA Technical Reports Server (NTRS)

    Tischler, Adelbert O.; Bellman, Donald R.

    1951-01-01

    Results of experimental measurements of low-frequency combustion instability of a 300-pound thrust acid-heptane rocket engine were compared to the trends predicted by an analysis of combustion instability in a rocket engine with a pressurized-gas propellant pumping system. The simplified analysis, which assumes a monopropellant model, was based on the concept of a combustion the delay occurring from the moment of propellant injection to the moment of propellant combustion. This combustion time delay was experimentally measured; the experimental values were of approximately half the magnitude predicted by the analysis. The pressure-fluctuation frequency for a rocket engine with a characteristic length of 100 inches and operated at a combustion-chamber pressure of 280 pounds per square inch absolute was 38 cycles per second; the analysis indicated. a frequency of 37 cycles per second. Increasing combustion-chamber characteristic length decreased the pressure-fluctuation frequency, in conformity to the analysis. Increasing the chamber operating pressure or increasing the injector pressure drop increased the frequency. These latter two effects are contrary to the analysis; the discrepancies are attributed to the conflict between the assumptions made to simplify the analysis and the experimental conditions. Oxidant-fuel ratio had no apparent effect on the experimentally measured pressure-fluctuation frequency for acid-heptane ratios from 3.0 to 7.0. The frequencies decreased with increased amplitude of the combustion-chamber pressure variations. The analysis indicated that if the combustion time delay were sufficiently short, low-frequency combustion instability would be eliminated.

  6. Test data from small solid propellant rocket motor plume measurements (FA-21)

    NASA Technical Reports Server (NTRS)

    Hair, L. M.; Somers, R. E.

    1976-01-01

    A program is described for obtaining a reliable, parametric set of measurements in the exhaust plumes of solid propellant rocket motors. Plume measurements included pressures, temperatures, forces, heat transfer rates, particle sampling, and high-speed movies. Approximately 210,000 digital data points and 15,000 movie frames were acquired. Measurements were made at points in the plumes via rake-mounted probes, and on the surface of a large plate impinged by the exhaust plume. Parametric variations were made in pressure altitude, propellant aluminum loading, impinged plate incidence angle and distance from nozzle exit to plate or rake. Reliability was incorporated by continual use of repeat runs. The test setup of the various hardware items is described along with an account of test procedures. Test results and data accuracy are discussed. Format of the data presentation is detailed. Complete data are included in the appendix.

  7. New Frontiers AO: Advanced Materials Bi-propellant Rocket (AMBR) Engine Information Summary

    NASA Technical Reports Server (NTRS)

    Liou, Larry C.

    2008-01-01

    The Advanced Material Bi-propellant Rocket (AMBR) engine is a high performance (I(sub sp)), higher thrust, radiation cooled, storable bi-propellant space engine of the same physical envelope as the High Performance Apogee Thruster (HiPAT(TradeMark)). To provide further information about the AMBR engine, this document provides details on performance, development, mission implementation, key spacecraft integration considerations, project participants and approach, contact information, system specifications, and a list of references. The In-Space Propulsion Technology (ISPT) project team at NASA Glenn Research Center (GRC) leads the technology development of the AMBR engine. Their NASA partners were Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). Aerojet leads the industrial partners selected competitively for the technology development via the NASA Research Announcement (NRA) process.

  8. Measurement of flowfield in a simulated solid-propellant ducted rocket combustor using laser Doppler velocimetry

    SciTech Connect

    Hsieh, W.H.; Yang, V.; Chuang, C.L.; Yang, A.S.; Cherng, D.L.

    1989-01-01

    A two-component LDV system was used to obtain detailed flow velocity and turbulence measurements in order to study the flow characteristics in a simulated solid-propellant ducted rocket combustor. The vortical structures near the dome region, the size of the recirculation zone, and the location of the reattachment point are all shown to be strongly affected by the jet momentum of both ram air and fuel streams. It is found that the turbulence intensity is anisotropic throughout the front portion of the simulated conbustor, and that the measured Reynolds stress conmponent distribution is well correlated with the local mean velocity vector distribution. 25 refs.

  9. Altitude Starting Tests of a 1000-Pound-Thrust Solid-Propellant Rocket

    NASA Technical Reports Server (NTRS)

    Sloop, John L.; Rollbuhler, R. James; Krawczonek, Eugene M.

    1957-01-01

    Four solid-propellant rocket engines of nominal 1000-pound-thrust were tested for starting characteristics at pressure altitudes ranging from 112,500 to 123,000 feet and at a temperature of -75 F. All engines ignited and operated successfully. Average chamber pressures ranged from 1060 to ll90 pounds per square inch absolute with action times from 1.51 to 1.64 seconds and ignition delays from 0.070 t o approximately 0.088 second. The chamber pressures and action times were near the specifications, but the ignition delay was almost twice the specified value of 0.040 second.

  10. Solid propellant rocket motor internal ballistics performance variation analysis, phase 3

    NASA Technical Reports Server (NTRS)

    Sforzini, R. H.; Foster, W. A., Jr.; Murph, J. E.; Adams, G. W., Jr.

    1977-01-01

    Results of research aimed at improving the predictability of off nominal internal ballistics performance of solid propellant rocket motors (SRMs) including thrust imbalance between two SRMs firing in parallel are reported. The potential effects of nozzle throat erosion on internal ballistic performance were studied and a propellant burning rate low postulated. The propellant burning rate model when coupled with the grain deformation model permits an excellent match between theoretical results and test data for the Titan IIIC, TU455.02, and the first Space Shuttle SRM (DM-1). Analysis of star grain deformation using an experimental model and a finite element model shows the star grain deformation effects for the Space Shuttle to be small in comparison to those of the circular perforated grain. An alternative technique was developed for predicting thrust imbalance without recourse to the Monte Carlo computer program. A scaling relationship used to relate theoretical results to test results may be applied to the alternative technique of predicting thrust imbalance or to the Monte Carlo evaluation. Extended investigation into the effect of strain rate on propellant burning rate leads to the conclusion that the thermoelastic effect is generally negligible for both steadily increasing pressure loads and oscillatory loads.

  11. Characterization of rocket propellant combustion products: Description of sampling and analysis methods for rocket exhaust characterization studies

    SciTech Connect

    Jenkins, R.A.

    1990-06-07

    A systematic approach has been developed and experimentally validated for the sampling and chemical characterization of the rocket motor exhaust generated from the firing of scaled down test motors at the US Army's Signature Characterization Facility (ASCF) at Redstone Arsenal in Huntsville, Alabama. The overall strategy was to sample and analyze major exhaust constituents in near real time, while performing off-site analyses of samples collected for the determination of trace constituents of the particulate and vapor phases. Initial interference studies were performed using atmospheric pressure burns of 1 g quantities of propellants in small chambers at Oak Ridge National Laboratory. Carbon monoxide and carbon dioxide were determined using non-dispersive infrared instrumentation. Hydrogen cyanide, hydrogen chloride, and ammonia determinations were made using ion selective electrode technology. Oxides of nitrogen were determined using chemiluminescence instrumentation. Airborne particulate mass concentration was determined using infrared forward scattering measurements and a tapered element oscillating microbalance, as well as conventional gravimetry. Particulate phase metals were determined by collection on Teflon membrane filters, followed by inductively coupled plasma and atomic absorption analysis. Particulate phase polynuclear aromatic hydrocarbons (PAH) and nitro-PAH were collected using high volume sampling on a two stage filter. Target species were extracted, and quantified by gas chromatography/mass spectrometry (GC/MS). Vapor phase species were collected on multi-sorbent resin traps, and subjected to thermal desorption GC/MS for analysis. 11 refs., 1 fig., 1 tab.

  12. A Preliminary Investigation on the Destruction of Solid-Propellant Rocket Motors by Impact from Small Particles

    NASA Technical Reports Server (NTRS)

    Carter, David J., Jr.

    1960-01-01

    An investigation was conducted to determine whether solid-propellant rocket motors could be ignited and destroyed by small-particle impacts at particle velocities up to a approximately 10,940 feet per second. Spheres ranging from 1/16 to 7/32 inch in diameter were fired into simulated rocket motors containing T-22 propellant over a range of ambient pressures from sea level to 0.12 inch of mercury absolute. Simulated cases of stainless steel, aluminum alloy, and laminated Fiberglas varied in thickness from 1/50 to 1/8 inch. Within the scope of this investigation, it was found that ignition and explosive destruction of simulated steel-case rocket motors could result from impacts by steel spheres at the lowest attainable pressure.

  13. RP-1 Thermal Stability and Copper Based Materials Compatibility Study

    NASA Technical Reports Server (NTRS)

    Stiegemeier, B. R.; Meyer, M. L.; Driscoll, E.

    2005-01-01

    A series of electrically heated tube tests was performed at the NASA Glenn Research Center s Heated Tube Facility to investigate the effect that sulfur content, test duration, and tube material play in the overall thermal stability and materials compatibility characteristics of RP-1. Scanning-electron microscopic (SEM) analysis in conjunction with energy dispersive spectroscopy (EDS) were used to characterize the condition of the tube inner wall surface and any carbon deposition or corrosion formed during these runs. Results of the parametric study indicate that tests with standard RP-1 (total sulfur -23 ppm) and pure copper tubing are characterized by a depostion/deposit shedding process producing local wall temperature swings as high as 500 F. The effect of this shedding is to keep total carbon deposition levels relatively constant for run times from 20 minutes up to 5 hours, though increasing tube pressure drops were observed in all runs. Reduction in the total sulfur content of the fuel from 23 ppm to less than 0.1 ppm resulted in the elimination of deposit shedding, local wall temperature variation, and the tube pressure drop increases that were observed in standard sulfur level RP-1 tests. The copper alloy GRCop-84, a copper alloy developed specifically for high heat flux applications, was found to exhibit higher carbon deposition levels compared to identical tests performed in pure copper tubes. Results of the study are consistent with previously published heated tube data which indicates that small changes in fuel total sulfur content can lead to significant differences in the thermal stability of kerosene type fuels and their compatibility with copper based materials. In conjunction with the existing thermal stability database, these findings give insight into the feasibility of cooling a long life, high performance, high-pressure liquid rocket combustor and nozzle with RP-1.

  14. Flight Performance of a Spin-Stabilized 20-Inch-Diameter Solid-Propellant Spherical Rocket Motor

    NASA Technical Reports Server (NTRS)

    Levine, Jack; Martz, C. William; Swain, Robert L.; Swanson, Andrew G.

    1960-01-01

    A successful flight test of a spin-stabilized 20-inch-diameter solid-propellant rocket motor having a propellant mass fraction of 0.92 has been made. The motor was fired at altitude after being boosted by a three-stage test vehicle. Analysis of the data indicates that a total impulse of 44,243 pound-second with a propellant specific impulse of approximately 185 was achieved over a total action time of about 12 seconds. These results are shown to be in excellent agreement with data from ground static firing tests of these motors. The spherical rocket motor with an 11-pound payload attained a velocity of 15,620 feet per second (m = 16.7) with an incremental velocity increase for the spherical motor stage of 12,120 feet per second.

  15. Metallized Gelled Propellant Heat Transfer Tests Analyzed

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1997-01-01

    A series of rocket engine heat transfer experiments using metallized gelled liquid propellants was conducted at the NASA Lewis Research Center. These experiments used a small 20- to 40-lbf thrust engine composed of a modular injector, an igniter, a chamber, and a nozzle. The fuels used were traditional liquid RP-1 and gelled RP-1 with 0-, 5-, and 55-wt % loadings of aluminum particles. Gaseous oxygen was used as the oxidizer. Heat transfer measurements were made with a rocket engine calorimeter chamber and nozzle with a total of 31 cooling channels. Each channel used water flow to carry heat away from the chamber and the attached thermocouples; flow meters allowed heat flux estimates at each of the 31 stations.

  16. Fuel/propellant mixing in an open-cycle gas core nuclear rocket engine

    SciTech Connect

    Guo, X.; Wehrmeyer, J.A.

    1997-01-01

    A numerical investigation of the mixing of gaseous uranium and hydrogen inside an open-cycle gas core nuclear rocket engine (spherical geometry) is presented. The gaseous uranium fuel is injected near the centerline of the spherical engine cavity at a constant mass flow rate, and the hydrogen propellant is injected around the periphery of the engine at a five degree angle to the wall, at a constant mass flow rate. The main objective is to seek ways to minimize the mixing of uranium and hydrogen by choosing a suitable injector geometry for the mixing of light and heavy gas streams. Three different uranium inlet areas are presented, and also three different turbulent models (k-{var_epsilon} model, RNG k-{var_epsilon} model, and RSM model) are investigated. The commercial CFD code, FLUENT, is used to model the flow field. Uranium mole fraction, axial mass flux, and radial mass flux contours are obtained. {copyright} {ital 1997 American Institute of Physics.}

  17. Characterization of typical platelet injector flow configurations. [liquid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Hickox, C. E.

    1975-01-01

    A study to investigate the hydraulic atomization characteristics of several novel injector designs for use in liquid propellant rocket engines is presented. The injectors were manufactured from a series of thin stainless steel platelets through which orifices were very accurately formed by a photoetching process. These individual platelets were stacked together and the orifices aligned so as to produce flow passages of prescribed geometry. After alignment, the platelets were bonded into a single, 'platelet injector', unit by a diffusion bonding process. Because of the complex nature of the flow associated with platelet injectors, it was necessary to use experimental techniques, exclusively, throughout the study. Large scale models of the injectors were constructed from aluminum plates and the appropriate fluids were modeled using a glycerol-water solution. Stop-action photographs of test configurations, using spark-shadowgraph or stroboscopic back-lighting, are shown.

  18. Solid rocket booster performance evaluation model. Volume 3: Sample case. [propellant combustion simulation/internal ballistics

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The solid rocket booster performance evaluation model (SRB-11) is used to predict internal ballistics in a sample motor. This motor contains a five segmented grain. The first segment has a 14 pointed star configuration with a web which wraps partially around the forward dome. The other segments are circular in cross-section and are tapered along the interior burning surface. Two of the segments are inhibited on the forward face. The nozzle is not assumed to be submerged. The performance prediction is broken into two simulation parts: the delivered end item specific impulse and the propellant properties which are required as inputs for the internal ballistics module are determined; and the internal ballistics for the entire burn duration of the motor are simulated.

  19. Theoretical performance of liquid hydrogen and liquid fluorine as a rocket propellant

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Huff, Vearl N

    1953-01-01

    Theoretical values of performance parameters for liquid hydrogen and liquid fluorine as a rocket propellant were calculated on the assumption of equilibrium composition during the expansion process for a wide range of fuel-oxidant and expansion ratios. The parameters included were specific impulse, combustion-chamber temperature, nozzle-exit temperature, equilibrium composition, mean molecular weight, characteristic velocity, coefficient of thrust, ration of nozzle-exit area to throat area, specific heat at constant pressure, coefficient of viscosity, and coefficient of thermal conductivity. The maximum value of specific impulse was 364.6 pound-seconds per pound for a chamber pressure of 300 pounds per square inch absolute (20.41 atm) and an exit pressure of 1 atmosphere.

  20. Theoretical performance of liquid ammonia and liquid fluorine as a rocket propellant

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Huff, Vearl N

    1953-01-01

    Theoretical values of performance parameters for liquid ammonia and liquid fluorine as a rocket propellant were calculated on the assumption of equilibrium composition during the expansion process for a wide range of fuel-oxidant and expansion ratios. The parameters included were specific impulse, combustion chamber temperature, nozzle-exit temperature, equilibrium composition, mean molecular weight, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, coefficient of viscosity, and coefficient of thermal conductivity. The maximum value of specific impulse was 311.5 pound-seconds per pound for a chamber pressure of 300 pounds per square inch absolute (20.41 atm) and an exit pressure of 1 atmosphere.

  1. Theoretical Performance of Liquid Hydrogen with Liquid Oxygen as a Rocket Propellant

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; McBride, Bonnie J.

    1959-01-01

    Theoretical rocket performance for both equilibrium and frozen composition during expansion was calculated for the propellant combination liquid hydrogen and liquid oxygen at four chamber pressures (60, 150, 300, and 600 lb/sq in. abs) and a wide range of pressure ratios (1 to 4000) and oxidant-fuel ratios (1.190 to 39.683). Data are given to estimate performance parameters at chamber pressures other than those for which data are tabulated. The parameters included are specific impulse, specific impulse in vacuum, combustion-chamber temperature, nozzle-exit temperature, molecular weight, molecular-weight derivatives, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, isentropic exponent, viscosity, thermal conductivity, Mach number, and equilibrium gas compositions.

  2. Size distribution of unburned aluminum particles in solid propellant rocket motor exhaust

    SciTech Connect

    Larson, R.S.

    1986-06-01

    The size distribution of particles of unburned aluminum exiting a solid propellant rocket chamber is calculated by extending a previously developed theoretical model. Both one-dimensional and two-dimensional approximations to the chamber flow field are considered, but particle velocity lags are neglected. Results of the one-dimensional analysis differ from the more realistic two-dimensional results in that they predict a lower overall combustion efficiency and a most probable particle size which is always greater than zero. It is argued that these observations can be explained by the fact that the one-dimensional flow field allows many particles to pass through the chamber with a very short residence time.

  3. Inverse synthetic aperture radar imagery of a man with a rocket propelled grenade launcher

    NASA Astrophysics Data System (ADS)

    Tran, Chi N.; Innocenti, Roberto; Kirose, Getachew; Ranney, Kenneth I.; Smith, Gregory

    2004-08-01

    As the Army moves toward more lightly armored Future Combat System (FCS) vehicles, enemy personnel will present an increasing threat to U.S. soldiers. In particular, they face a very real threat from adversaries using shoulder-launched, rocket propelled grenade (RPG). The Army Research Laboratory has utilized its Aberdeen Proving Ground (APG) turntable facility to collect very high resolution, fully polarimetric Ka band radar data at low depression angles of a man holding an RPG. In this paper, we examine the resulting low resolution and high resolution range profiles; and based on the observed radar cross section (RCS) value, we attempt to determine the utility of Ka band radar for detecting enemy personnel carrying RPG launchers.

  4. Cold Flow Testing for Liquid Propellant Rocket Injector Scaling and Throttling

    NASA Technical Reports Server (NTRS)

    Kenny, Jeremy R.; Moser, Marlow D.; Hulka, James; Jones, Gregg

    2006-01-01

    Scaling and throttling of combustion devices are important capabilities to demonstrate in development of liquid rocket engines for NASA's Space Exploration Mission. Scaling provides the ability to design new injectors and injection elements with predictable performance on the basis of test experience with existing injectors and elements, and could be a key aspect of future development programs. Throttling is the reduction of thrust with fixed designs and is a critical requirement in lunar and other planetary landing missions. A task in the Constellation University Institutes Program (CUIP) has been designed to evaluate spray characteristics when liquid propellant rocket engine injectors are scaled and throttled. The specific objectives of the present study are to characterize injection and primary atomization using cold flow simulations of the reacting sprays. These simulations can provide relevant information because the injection and primary atomization are believed to be the spray processes least affected by the propellant reaction. Cold flow studies also provide acceptable test conditions for a university environment. Three geometric scales - 1/4- scale, 1/2-scale, and full-scale - of two different injector element types - swirl coaxial and shear coaxial - will be designed, fabricated, and tested. A literature review is currently being conducted to revisit and compile the previous scaling documentation. Because it is simple to perform, throttling will also be examined in the present work by measuring primary atomization characteristics as the mass flow rate and pressure drop of the six injector element concepts are reduced, with corresponding changes in chamber backpressure. Simulants will include water and gaseous nitrogen, and an optically accessible chamber will be used for visual and laser-based diagnostics. The chamber will include curtain flow capability to repress recirculation, and additional gas injection to provide independent control of the

  5. Measurements of acoustic responses of gaseous propellant injectors. [for rocket combustion

    NASA Technical Reports Server (NTRS)

    Janardan, B. A.; Daniel, B. R.; Zinn, B. T.

    1976-01-01

    Results are presented for an investigation intended to provide experimental data that can quantitatively describe the way in which various coaxial injector designs affect the stability of gaseous propellant rocket motors. The response factors of configurations that simulate the flow conditions in a gaseous-fuel injector element and a gaseous-oxidizer injector element are measured by using a modified impedance-tube technique and under cold-flow conditions simulating those observed in rocket motors with axial instability. The measured injector response factor data are presented and discussed. It is shown that there is reasonable agreement between the measured injector response factors and those predicted by the Feiler and Heidmann model (1967), and that the orifice length can be varied to shift the resonant frequency of the injector without any change in the magnitude of the response factor at resonance. A change in the injector open-area ratio is found to have a significant effect on the characteristics of the injector response factor.

  6. Navier-Stokes analysis of solid propellant rocket motor internal flows

    SciTech Connect

    Sabnis, J.S.; Gibeling, H.J.; Mcdonald, H. )

    1989-12-01

    A multidimensional implicit Navier-Stokes analysis that uses numerical solution of the ensemble-averaged Navier-Stokes equations in a nonorthogonal, body-fitted, cylindrical coordinate system has been applied to the simulation of the steady mean flow in solid propellant rocket motor chambers. The calculation procedure incorporates a two-equation (k-epsilon) turbulence model and utilizes a consistently split, linearized block-implicit algorithm for numerical solution of the governing equations. The code was validated by comparing computed results with the experimental data obtained in cylindrical-port cold-flow tests. The agreement between the computed and experimentally measured mean axial velocities is excellent. The axial location of transition to turbulent flow predicted by the two-equation (k-epsilon) turbulence model used in the computations also agrees well with the experimental data. Computations performed to simulate the axisymmetric flowfield in the vicinity of the aft field joint in the Space Shuttle solid rocket motor using 14,725 grid points show the presence of a region of reversed axial flow near the downstream edge of the slot. 22 refs.

  7. Amplification of Reynolds number dependent processes by wave distortion. [acoustic instability of liquid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Ventrice, M. B.; Fang, J. C.; Purdy, K. R.

    1975-01-01

    A system using a hot-wire transducer as an analog of a liquid droplet of propellant was employed to investigate the ingredients of the acoustic instability of liquid-propellant rocket engines. It was assumed that the combustion process was vaporization-limited and that the combustion chamber was acoustically similar to a closed-closed right-circular cylinder. Before studying the hot-wire closed-loop system (the analog system), a microphone closed-loop system, which used the response of a microphone as the source of a linear feedback exciting signal, was investigated to establish the characteristics of self-sustenance of acoustic fields. Self-sustained acoustic fields were found to occur only at resonant frequencies of the chamber. In the hot-wire closed-loop system, the response of hot-wire anemometer was used as the source of the feedback exciting signal. The self-sustained acoustic fields which developed in the system were always found to be harmonically distorted and to have as their fundamental frquency a resonant frequency for which there also existed a second resonant frequency which was approximately twice the fundamental frequency.

  8. Solid-propellant rocket motor internal ballistics performance variation analysis, phase 5

    NASA Technical Reports Server (NTRS)

    Sforzini, R. H.; Murph, J. E.

    1980-01-01

    The results of research aimed at improving the predictability of internal ballistics performance of solid-propellant rocket motors (SRM's) including thrust imbalance between two SRM's firing in parallel are presented. Static test data from the first six Space Shuttle SRM's is analyzed using a computer program previously developed for this purpose. The program permits intentional minor design biases affecting the imbalance between any two SMR's to be removed. Results for the last four of the six SRM's, with only the propellant bulk temperature as a non-random variable, are generally within limits predicted by theory. Extended studies of internal ballistic performance of single SRM's are presented based on an earlier developed mathematical model which includes an assessment of grain deformation. The erosive burning rate law used in the model is upgraded and made more general. Excellent results are obtained in predictions of the performances of five different SRM's of quite different sizes and configurations. These SRM's all employ PBAN type propellants with ammonium perchlorate oxidizer and 16 to 20% aluminum except one which uses carboxyl terminated butadiene binder. The only non-calculated parameters in the burning rate equations that are changed for the different SRM's are the zero crossflow velocity burning rate coefficients and exponents. The results, in general, confirm the importance of grain deformation. The improved internal ballistic model makes practical development of an effective computer program for application of an optimization technique to SRM design which is also demonstrated. The program uses a pattern search technique to minimize the difference between a desired thrust-time trace and one calculated based on the internal ballistic model.

  9. RP1 (KEROSENE) STORAGE TANKS ON HILLSIDE EAST OF TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    RP1 (KEROSENE) STORAGE TANKS ON HILLSIDE EAST OF TEST STAND 1-B. THIS TANK FARM SERVES BOTH TEST STANDS 1-A AND 1-B - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Combined Fuel Storage Tank Farm, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  10. Flight Investigation of the Performance of a Two-stage Solid-propellant Nike-deacon (DAN) Meteorological Sounding Rocket

    NASA Technical Reports Server (NTRS)

    Heitkotter, Robert H

    1956-01-01

    A flight investigation of two Nike-Deacon (DAN) two-stage solid-propellant rocket vehicles indicated satisfactory performance may be expected from the DAN meteorological sounding rocket. Peak altitudes of 356,000 and 350,000 feet, respectively, were recorded for the two flight tests when both vehicles were launched from sea level at an elevation angle of 75 degrees. Performance calculations based on flight-test results show that altitudes between 358,000 feet and 487,000 feet may be attained with payloads varying between 60 pounds and 10 pounds.

  11. Specific impulse loss due to friction and dissipation in the nozzle of a liquid propellant rocket engine with film cooling

    NASA Astrophysics Data System (ADS)

    Lushchik, V. G.; Sizov, V. I.; Sternin, L. E.; Yakubenko, A. E.

    1993-07-01

    A method and algorithms for computing a compressible turbulent boundary layer in the nozzles of liquid propellant rocket engines with film cooling are developed which make it possible to determine losses of the specific impulse due to friction as well as heat fluxes and other flow characteristics. The calculations are based on the numerical solution of gasdynamic equations in the boundary layer approximation using a three-parameter turbulence model. The conditions for minimum specific impulse loss are determined.

  12. Liquid rocket booster study. Volume 2, book 5, appendix 9: LRB alternate applications and evolutionary growth

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The analyses performed in assessing the merit of the Liquid Rocket Booster concept for use in alternate applications such as for Shuttle C, for Standalone Expendable Launch Vehicles, and possibly for use with the Air Force's Advanced Launch System are presented. A comparison is also presented of the three LRB candidate designs, namely: (1) the LO2/LH2 pump fed, (2) the LO2/RP-1 pump fed, and (3) the LO2/RP-1 pressure fed propellant systems in terms of evolution along with design and cost factors, and other qualitative considerations. A further description is also presented of the recommended LRB standalone, core-to-orbit launch vehicle concept.

  13. Experimental study of a valveless pulse detonation rocket engine using nontoxic hypergolic propellants

    NASA Astrophysics Data System (ADS)

    Kan, Brandon K.

    A pulsed detonation rocket engine concept was explored through the use of hypergolic propellants in a fuel-centered pintle injector combustor. The combustor design yielded a simple open ended chamber with a pintle type injection element and pressure instrumentation. High-frequency pressure measurements from the first test series showed the presence of large pressure oscillations in excess of 2000 psia at frequencies between 400-600 hz during operation. High-speed video confirmed the high-frequency pulsed behavior and large amounts of after burning. Damaged hardware and instrumentation failure limited the amount of data gathered in the first test series, but the experiments met original test objectives of producing large over-pressures in an open chamber. A second test series proceeded by replacing hardware and instrumentation, and new data showed that pulsed events produced under expanded exhaust prior to pulsing, peak pressures around 8000 psi, and operating frequencies between 400-800 hz. Later hot-fires produced no pulsed behavior despite undamaged hardware. The research succeeded in producing pulsed combustion behavior using hypergolic fuels in a pintle injector setup and provided insights into design concepts that would assist future injector designs and experimental test setups.

  14. Rocket Propellant Ducts (Cryogenic Fuel Lines): First Cut Approximations and Design Guidance

    NASA Technical Reports Server (NTRS)

    Brewer, William V.

    1998-01-01

    The design team has to set parameters before analysis can take place. Analysis is customarily a thorough and time consuming process which can take weeks or even months. Only when analysis is complete can the designer obtain feedback. If margins are negative, the process must be repeated to a greater or lesser degree until satisfactory results are achieved. Reduction of the number of iterations thru this loop would beneficially conserve time and resources. The task was to develop relatively simple, easy to use, guidelines and analytic tools that allow the designer to evaluate what effect various alternatives may have on performance as the design progresses. "Easy to use" is taken to mean closed form approximations and the use of graphic methods. "Simple" implies that 2-d and quasi 3-d approximations be exploited to whatever degree is useful before more resource intensive methods are applied. The objective is to avoid the grosser violation of performance margins at the outset. Initial efforts are focused on thermal expansion/contraction and rigid body kinematics as they relate to propellant duct displacements in the gimbal plane loop (GPL). The purpose of the loop is to place two flexible joints on the same two orthogonal intersecting axes as those of the rocket motor gimbals. This supposes the ducting will flex predictably with independent rotations corresponding to those of the motor gimbal actions. It can be shown that if GPL joint axes do not coincide with motor gimbal axes, displacement incompatibilities result in less predictable movement of the ducts.

  15. Cooling Duct Analysis for Transpiration/Film Cooled Liquid Propellant Rocket Engines

    NASA Technical Reports Server (NTRS)

    Micklow, Gerald J.

    1996-01-01

    The development of a low cost space transportation system requires that the propulsion system be reusable, have long life, with good performance and use low cost propellants. Improved performance can be achieved by operating the engine at higher pressure and temperature levels than previous designs. Increasing the chamber pressure and temperature, however, will increase wall heating rates. This necessitates the need for active cooling methods such as film cooling or transpiration cooling. But active cooling can reduce the net thrust of the engine and add considerably to the design complexity. Recently, a metal drawing process has been patented where it is possible to fabricate plates with very small holes with high uniformity with a closely specified porosity. Such a metal plate could be used for an inexpensive transpiration/film cooled liner to meet the demands of advanced reusable rocket engines, if coolant mass flow rates could be controlled to satisfy wall cooling requirements and performance. The present study investigates the possibility of controlling the coolant mass flow rate through the porous material by simple non-active fluid dynamic means. The coolant will be supplied to the porous material by series of constant geometry slots machined on the exterior of the engine.

  16. Computation of turbulent reacting flow in a solid-propellant ducted rocket

    SciTech Connect

    Chao, Y.; Chou, W.; Liu, S.

    1995-05-01

    A mathematical model for computation of turbulent reacting flows is developed under general curvilinear coordinate systems. An adaptive, streamline grid system is generated to deal with the complex flow structures in a multiple-inlet solid-propellant ducted rocket (SDR) combustor. General tensor representations of the k-epsilon and algebraic stress (ASM) turbulence models are derived in terms of contravariant velocity components, and modification caused by the effects of compressible turbulence is also included in the modeling. The clipped Gaussian probability density function is incorporated in the combustion model to account for fluctuations of properties. Validation of the above modeling is first examined by studying mixing and reacting characteristics in a confined coaxial-jet problem. This is followed by study of nonreacting and reacting SDR combustor flows. The results show that Gibson and Launder`s ASM incorporated with Sarkar`s modification for compressible turbulence effects based on the general curvilinear coordinate systems yields the most satisfactory prediction for this complicated SDR flowfield. 36 refs.

  17. NASTRAN cyclic symmetry capability. [application to solid rocket propellant grains and space antennas

    NASA Technical Reports Server (NTRS)

    Macneal, R. H.; Harder, R. L.; Mason, J. B.

    1973-01-01

    A development for NASTRAN which facilitates the analysis of structures made up of identical segments symmetrically arranged with respect to an axis is described. The key operation in the method is the transformation of the degrees of freedom for the structure into uncoupled symmetrical components, thereby greatly reducing the number of equations which are solved simultaneously. A further reduction occurs if each segment has a plane of reflective symmetry. The only required assumption is that the problem be linear. The capability, as developed, will be available in level 16 of NASTRAN for static stress analysis, steady state heat transfer analysis, and vibration analysis. The paper includes a discussion of the theory, a brief description of the data supplied by the user, and the results obtained for two example problems. The first problem concerns the acoustic modes of a long prismatic cavity imbedded in the propellant grain of a solid rocket motor. The second problem involves the deformations of a large space antenna. The latter example is the first application of the NASTRAN Cyclic Symmetry capability to a really large problem.

  18. Baseline Computational Fluid Dynamics Methodology for Longitudinal-Mode Liquid-Propellant Rocket Combustion Instability

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.

    2005-01-01

    A computational method for the analysis of longitudinal-mode liquid rocket combustion instability has been developed based on the unsteady, quasi-one-dimensional Euler equations where the combustion process source terms were introduced through the incorporation of a two-zone, linearized representation: (1) A two-parameter collapsed combustion zone at the injector face, and (2) a two-parameter distributed combustion zone based on a Lagrangian treatment of the propellant spray. The unsteady Euler equations in inhomogeneous form retain full hyperbolicity and are integrated implicitly in time using second-order, high-resolution, characteristic-based, flux-differencing spatial discretization with Roe-averaging of the Jacobian matrix. This method was initially validated against an analytical solution for nonreacting, isentropic duct acoustics with specified admittances at the inflow and outflow boundaries. For small amplitude perturbations, numerical predictions for the amplification coefficient and oscillation period were found to compare favorably with predictions from linearized small-disturbance theory as long as the grid exceeded a critical density (100 nodes/wavelength). The numerical methodology was then exercised on a generic combustor configuration using both collapsed and distributed combustion zone models with a short nozzle admittance approximation for the outflow boundary. In these cases, the response parameters were varied to determine stability limits defining resonant coupling onset.

  19. Feasibility of an advanced thrust termination assembly for a solid propellant rocket motor

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A total of 68 quench tests were conducted in a vented bomb assembly (VBA). Designed to simulate full-scale motor operating conditions, this laboratory apparatus uses a 2-inch-diameter, end-burning propellant charge and an insulated disc of consolidated hydrated aluminum sulfate along with the explosive charge necessary to disperse the salt and inject it onto the burning surface. The VBA was constructed to permit variation of motor design parameters of interest; i.e., weight of salt per unit burning surface area, weight of explosive per unit weight of salt, distance from salt surface to burning surface, incidence angle of salt injection, chamber pressure, and burn time. Completely satisfactory salt quenching, without re-ignition, occurred in only two VBA tests. These were accomplished with a quench charge ratio (QCR) of 0.023 lb salt per square inch of burning surface at dispersing charge ratios (DCR) of 13 and 28 lb of salt per lb of explosive. Candidate materials for insulating salt charges from the rocket combustion environment were evaluated in firings of 5-inch-diameter, uncured end-burner motors. A pressed, alumina ceramic fiber material was selected for further evaluation and use in the final demonstration motor.

  20. Solid propellants.

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.; Hutchison, J. J.

    1972-01-01

    The basic principles underlying propulsion by rocket motor are examined together with the configuration of a solid propellant motor. Solid propellants and their preparation are discussed, giving attention to homogeneous propellants, composite propellants, energetic considerations in choosing a solid propellant, the processing of composite propellants, and some examples of new developments. The performance of solid propellants is investigated, taking into account characteristics velocity, the specific impulse, and performance calculations. Aspects of propellant development considered include nonperformance requirements for solid propellants, the approach to development, propellant mechanical properties, and future trends.

  1. Residual Fuel Expulsion from a Simulated 50,000 Pound Thrust Liquid-Propellant Rocket Engine Having a Continuous Rocket-Type Igniter

    NASA Technical Reports Server (NTRS)

    Messing, Wesley E.

    1959-01-01

    Tests have been conducted to determine the starting characteristics of a 50,000-pound-thrust rocket engine with the conditions of a quantity of fuel lying dormant in the simulated main thrust chamber. Ignition was provided by a smaller rocket firing rearwardly along the center line. Both alcohol-water and anhydrous ammonia were used as the residual fuel. The igniter successfully expelled the maximum amount of residual fuel (3 1/2 gal) in 2.9 seconds when the igniter.was equipped with a sonic discharge nozzle operating at propellant flow rates of 3 pounds per second. Lesser amounts of residual fuel required correspondingly lower expulsion times. When the igniter was equipped with a supersonic exhaust nozzle operating at a flow of 4 pounds per second, a slightly less effective expulsion rate was encountered.

  2. Fundamental Boiling and RP-1 Freezing Experiments

    NASA Technical Reports Server (NTRS)

    Goode, Brian; Turner, Larry D. (Technical Monitor)

    2001-01-01

    This paper describes results from experiments performed to help understand certain aspects of the MC-1 engine prestart thermal conditioning procedure. The procedure was constrained by the fact that the engine must chill long enough to get quality LOX at the LOX pump inlet but must be short enough to prevent freezing of RP-1 in the fuel pump. A chill test of an MC-1 LOX impeller was performed in LN2 to obtain data on film boiling, transition boiling and impeller temperature histories. The transition boiling data was important to the chill time so a subsequent experiment was performed chilling simple steel plates in LOX to obtain similar data for LOX. To address the fuel freezing concern, two experiments were performed. First, fuel was frozen in a tray and its physical characteristics were observed and temperatures of the fuel were measured. The result was physical characteristics as a function of temperature. Second was an attempt to measure the frozen thickness of RP-1 on a cold wall submerged in warm RP-1 and to develop a method for calculating that thickness for other conditions.

  3. Essential and synergistic roles of RP1 and RP1L1 in rod photoreceptor axoneme and retinitis pigmentosa

    PubMed Central

    Yamashita, Tetsuji; Liu, Jiewu; Gao, Jiangang; LeNoue, Sean; Wang, Changguan; Kaminoh, Jack; Bowne, Sara J.; Sullivan, Lori S.; Daiger, Stephen P.; Zhang, Kang; Fitzgerald, Malinda E.C.; Kefalov, Vladimir J.; Zuo, Jian

    2009-01-01

    Retinitis pigmentosa 1 (RP1) is a common inherited retinopathy with variable onset and severity. The RP1 gene encodes a photoreceptor-specific, microtubule-associated ciliary protein containing the doublecortin (DCX) domain. Here we show that another photoreceptor-specific Rp1-like protein (Rp1L1) in mice is also localized to the axoneme of outer segments (OS) and connecting cilia in rod photoreceptors, overlapping with Rp1. Rp1L1−/− mice display scattered OS disorganization, reduced electroretinogram amplitudes, and progressive photoreceptor degeneration, less severe and slower than in Rp1−/− mice. In single rods of Rp1L1−/−, photosensitivity is reduced, similar to that of Rp1−/−. While individual heterozygotes are normal, double heterozygotes of Rp1 and Rp1L1 exhibit abnormal OS morphology and reduced single rod photosensitivity and dark currents. The electroretinogram amplitudes of double heterozygotes are more reduced than those of individual heterozygotes combined. In support, Rp1L1 interacts with Rp1 in transfected cells and in retina pull-down experiments. Interestingly, phototransduction kinetics are normal in single rods and whole retinas of individual or double Rp1 and Rp1L1 mutant mice. Together, Rp1 and Rp1L1 play essential and synergistic roles in affecting photosensitivity and OS morphogenesis of rod photoreceptors. Our findings suggest that mutations in RP1L1 could underlie retinopathy or modify RP1 disease expression in humans. PMID:19657028

  4. Liquid Rocket Booster Study. Volume 2, Book 1

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The recommended Liquid Rocket Booster (LRB) concept is shown which uses a common main engine with the Advanced Launch System (ALS) which burns LO2 and LH2. The central rationale is based on the belief that the U.S. can only afford one big new rocket engine development in the 1990's. A LO2/LH2 engine in the half million pound thrust class could satisfy STS LRB, ALS, and Shuttle C (instead of SSMEs). Development costs and higher production rates can be shared by NASA and USAF. If the ALS program does not occur, the LO2/RP-1 propellants would produce slight lower costs for and STS LRB. When the planned Booster Engine portion of the Civil Space Transportation Initiatives has provided data on large pressure fed LO2/RP-1 engines, then the choice should be reevaluated.

  5. Cooling of in-situ propellant rocket engines for Mars mission. M.S. Thesis - Cleveland State Univ.

    NASA Technical Reports Server (NTRS)

    Armstrong, Elizabeth S.

    1991-01-01

    One propulsion option of a Mars ascent/descent vehicle is multiple high-pressure, pump-fed rocket engines using in-situ propellants, which have been derived from substances available on the Martian surface. The chosen in-situ propellant combination for this analysis is carbon monoxide as the fuel and oxygen as the oxidizer. Both could be extracted from carbon dioxide, which makes up 96 percent of the Martian atmosphere. A pump-fed rocket engine allows for higher chamber pressure than a pressure-fed engine, which in turn results in higher thrust and in higher heat flux in the combustion chamber. The heat flowing through the wall cannot be sufficiently dissipated by radiation cooling and, therefore, a regenerative coolant may be necessary to avoid melting the rocket engine. The two possible fluids for this coolant scheme, carbon monoxide and oxygen, are compared analytically. To determine their heat transfer capability, they are evaluated based upon their heat transfer and fluid flow characteristics.

  6. High performance N2O4/amine elements. [propellant tests of hypergolic rocket propellants used in Space Shuttle Orbiters

    NASA Technical Reports Server (NTRS)

    Falk, A. Y.

    1976-01-01

    An analytical and experimental investigation was conducted to develop an understanding of the mechanisms that cause reactive stream separation, commonly called blowapart, for hypergolic propellants. The investigation was limited to a N2O4/MMH propellant combination and to a range of engine-operating conditions applicable to the space tug and space shuttle attitude control and orbital maneuvering engines. Primary test variables were: chamber pressure (1 to 20 atm), fuel injection temperature (283 to 400 K)m and propellant injection velocity (9 to 50 m/s). The injector configuration studied was the unlike doublet. The reactive stream separation experiments were conducted using special combustors designed to permit photography of the near-injector spray combustion flow field. Analysis of color motion pictures provided the means of determining the occurrence of reactive stream separation.

  7. Space shuttle SRM plume expansion sensitivity analysis. [flow characteristics of exhaust gases from solid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Smith, S. D.; Tevepaugh, J. A.; Penny, M. M.

    1975-01-01

    The exhaust plumes of the space shuttle solid rocket motors can have a significant effect on the base pressure and base drag of the shuttle vehicle. A parametric analysis was conducted to assess the sensitivity of the initial plume expansion angle of analytical solid rocket motor flow fields to various analytical input parameters and operating conditions. The results of the analysis are presented and conclusions reached regarding the sensitivity of the initial plume expansion angle to each parameter investigated. Operating conditions parametrically varied were chamber pressure, nozzle inlet angle, nozzle throat radius of curvature ratio and propellant particle loading. Empirical particle parameters investigated were mean size, local drag coefficient and local heat transfer coefficient. Sensitivity of the initial plume expansion angle to gas thermochemistry model and local drag coefficient model assumptions were determined.

  8. Analytical Investigation of the Effect of Turbopump Design on Gross-Weight Characteristics of a Hydrogen-Propelled Nuclear Rocket

    NASA Technical Reports Server (NTRS)

    Rohlik, Harold E.; Crouse, James E.

    1959-01-01

    The effect of turbopump design on rocket gross weight was investigated for a high-pressure bleed-type hydrogen-reactor long-range rocket with a fixed mission. Axial-flow, mixed-flow, and centrifugal pumps driven by single and twin turbines were considered. With an efficiency of 0.7 assumed for all pumps, the lowest rocket gross weights were obtained with an axial-flow or a mixed-flow pump driven by a single turbine of at least eight stages. All turbopump combinations could be used, however, with gross weight varying less than 8 percent for a given payload. Turbopump efficiencies have a significant effect on the ratio of gross weight to payload with the magnitude of the effect determined by the ratio of rocket structural weight to total propellant weight. One point in pump efficiency is worth 0.2 percent in gross weight for a given payload with a structural weight parameter of 0.1 and 0.6 percent with a structural weight parameter of 0.2. Turbine and pump weights are much less significant in terms of gross-to-pay weight ratio than the efficiencies of these components. One point in pump efficiency is equivalent to approximately 13 percent in pump weight, while 1 point in turbine efficiency is equivalent to about 7 percent in turbine weight.

  9. Register of specialized sources for information on selected fuels and oxidizers. [rocket propellants, bibliographies

    NASA Technical Reports Server (NTRS)

    Ludtke, P. R.

    1975-01-01

    Thirty-eight (38) organizations are listed and described that catalog and file information in their data systems on fuel and oxidizers. The fuels include hydrogen, methane and hydrazine-type fuels; the oxidizers include oxygen, fluorine, flox, nitrogen tetroxide and ozone. The type of available information covers thermophysical properties, propellant systems, propellant fires-control-extinguishment, propellant explosions, propellant combustion, propellant safety, and fluorine chemistry. These organizations have assembled and collated their information so that it will be useful in the solution of engineering problems.

  10. Design verification programme for an air-to-air type rocket motor with CFRP composite case and reduced smoke propellant

    NASA Astrophysics Data System (ADS)

    Fossumstuen, Kai; Raudsandmoen, Geir; Heie, Ingar H.; Wurtinger, Horst

    1993-06-01

    A design verification program was performed for an air-to-air type rocket motor, having a carbon fiber reinforced epoxy motor case and reduced smoke, nitramine containing, composite propellant. Structural design of the motor case is presented, including choice of material and method of attaching metal parts. Structural tests, including environmental and handling damage tests, of the motor case were performed. On the complete motor, design verification work was performed for insulation, bonding, propellant properties, grain design and motor case behavior. Six flight-weight motors were tested, including firing at extreme temperatures, environmental loads, firing with launch bending moment, ageing and pressure pulsing. Two motors were also used for insensitive munition tests, fast cook-off and bullet impact. Some performance data that are classified, have been omitted.

  11. Concerning the problem of dynamic damping of the vibration combustion self-oscillations in a liquid-propellant rocket engine

    NASA Astrophysics Data System (ADS)

    Basok, B. I.; Gotsulenko, V. V.; Gotsulenko, V. N.

    2012-11-01

    The reason for the decrease in the amplitude of longitudinal vibration combustion self-oscillations in the combustion chamber of a liquid-propellant rocket engine by means of antipulse partitions has been justified. A mathematical model of the development of combustion instability in such a chamber on attachment of a Helmholtz resonator to it has been obtained. The character of the damping of vibration combustion self-oscillations excited by the action of the Crocco mechanisms and negative thermal resistance, when varying the acoustic parameters of the resonator and of the pressure head characteristics of combustion chamber is established.

  12. Concept Assessment of a Fission Fragment Rocket Engine (FFRE) Propelled Spacecraft

    NASA Technical Reports Server (NTRS)

    Werka, Robert; Clark, Rod; Sheldon, Rob; Percy, Tom

    2012-01-01

    The March, 2012 issue of Aerospace America stated that ?the near-to-medium prospects for applying advanced propulsion to create a new era of space exploration are not very good. In the current world, we operate to the Moon by climbing aboard a Carnival Cruise Lines vessel (Saturn 5), sail from the harbor (liftoff) shedding whole decks of the ship (staging) along the way and, having reached the return leg of the journey, sink the ship (burnout) and return home in a lifeboat (Apollo capsule). Clearly this is an illogical way to travel, but forced on Explorers by today's propulsion technology. However, the article neglected to consider the one propulsion technology, using today's physical principles that offer continuous, substantial thrust at a theoretical specific impulse of 1,000,000 sec. This engine unequivocally can create a new era of space exploration that changes the way spacecraft operate. Today's space Explorers could travel in Cruise Liner fashion using the technology not considered by Aerospace America, the novel Dusty Plasma Fission Fragment Rocket Engine (FFRE). This NIAC study addresses the FFRE as well as its impact on Exploration Spacecraft design and operation. It uses common physics of the relativistic speed of fission fragments to produce thrust. It radiatively cools the fissioning dusty core and magnetically controls the fragments direction to practically implement previously patented, but unworkable designs. The spacecraft hosting this engine is no more complex nor more massive than the International Space Station (ISS) and would employ the successful ISS technology for assembly and check-out. The elements can be lifted in "chunks" by a Heavy Lift Launcher. This Exploration Spacecraft would require the resupply of small amounts of nuclear fuel for each journey and would be an in-space asset for decades just as any Cruise Liner on Earth. This study has synthesized versions of the FFRE, integrated one concept onto a host spacecraft designed for

  13. Aluminum/hydrocarbon gel propellants: An experimental and theoretical investigation of secondary atomization and predicted rocket engine performance

    NASA Astrophysics Data System (ADS)

    Mueller, Donn Christopher

    1997-12-01

    Experimental and theoretical investigations of aluminum/hydrocarbon gel propellant secondary atomization and its potential effects on rocket engine performance were conducted. In the experimental efforts, a dilute, polydisperse, gel droplet spray was injected into the postflame region of a burner and droplet size distributions was measured as a function of position above the burner using a laser-based sizing/velocimetry technique. The sizing/velocimetry technique was developed to measure droplets in the 10-125 mum size range and avoids size-biased detection through the use of a uniformly illuminated probe volume. The technique was used to determine particle size distributions and velocities at various axial locations above the burner for JP-10, and 50 and 60 wt% aluminum gels. Droplet shell formation models were applied to aluminum/hydrocarbon gels to examine particle size and mass loading effects on the minimum droplet diameter that will permit secondary atomization. This diameter was predicted to be 38.1 and 34.7 mum for the 50 and 60 wt% gels, which is somewhat greater than the experimentally measured 30 and 25 mum diameters. In the theoretical efforts, three models were developed and an existing rocket code was exercised to gain insights into secondary atomization. The first model was designed to predict gel droplet properties and shell stresses after rigid shell formation, while the second, a one-dimensional gel spray combustion model was created to quantify the secondary atomization process. Experimental and numerical comparisons verify that secondary atomization occurs in 10-125 mum diameter particles although an exact model could not be derived. The third model, a one-dimensional gel-fueled rocket combustion chamber, was developed to evaluate secondary atomization effects on various engine performance parameters. Results show that only modest secondary atomization may be required to reduce propellant burnout distance and radiation losses. A solid propellant

  14. The starting transient of solid propellant rocket motors with high internal gas velocities. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Peretz, A.; Caveny, L. H.; Kuo, K. K.; Summerfield, M.

    1973-01-01

    A comprehensive analytical model which considers time and space development of the flow field in solid propellant rocket motors with high volumetric loading density is described. The gas dynamics in the motor chamber is governed by a set of hyperbolic partial differential equations, that are coupled with the ignition and flame spreading events, and with the axial variation of mass addition. The flame spreading rate is calculated by successive heating-to-ignition along the propellant surface. Experimental diagnostic studies have been performed with a rectangular window motor (50 cm grain length, 5 cm burning perimeter and 1 cm hydraulic port diameter), using a controllable head-end gaseous igniter. Tests were conducted with AP composite propellant at port-to-throat area ratios of 2.0, 1.5, 1.2, and 1.06, and head-end pressures from 35 to 70 atm. Calculated pressure transients and flame spreading rates are in very good agreement with those measured in the experimental system.

  15. Educating Tomorrow's Aerrospace Engineers by Developing and Launching Liquid-Propelled Rockets

    NASA Astrophysics Data System (ADS)

    Besnard, Eric; Garvey, John; Holleman, Tom; Mueller, Tom

    2002-01-01

    conducted at California State University, Long Beach (CSULB), in which engineering students develop and launch liquid propelled rockets. The program is articulated around two main activities, each with specific objectives. The first component of CALVEIN is a systems integration laboratory where students develop/improve vehicle subsystems and integrate them into a vehicle (Prospector-2 - P-2 - for the 2001-02 academic year - AY). This component has three main objectives: (1) Develop hands- on skills for incoming students and expose them to aerospace hardware; (2) allow for upper division students who have been involved in the program to mentor incoming students and manage small teams; and (3) provide students from various disciplines within the College of Engineering - and other universities - with the chance to develop/improve subsystems on the vehicle. Among recent student projects conducted as part of this component are: a new 1000 lbf thrust engine using pintle injector technology, which was successfully tested on Dec. 1, 2001 and flown on Prospector-2 in Feb. 2002 (developed by CSULB Mechanical and Aerospace Engineering students); a digital flight telemetry package (developed by CSULB Electrical Engineering students); a new recovery system where a mechanical system replaces pyrotechnics for parachute release (developed by CSULB Mechanical and Aerospace Engineering students); and a 1-ft payload bay to accommodate experimental payloads (e.g. "CANSATS" developed by Stanford University students). The second component of CALVEIN is a formal Aerospace System Design curriculum. In the first-semester, from top-level system requirements, the students perform functional analysis, define the various subsystems and derive their requirements. These are presented at the Systems Functional and Requirement Reviews (SFR &SRR). The methods used for validation and verification are determined. Specifications and Interface Control Documents (ICD) are generated by the student team

  16. Numerical investigation of the influence of crystallization of ultrafine particles of aluminum oxide on energy characteristics of solid-propellant rocket engine

    NASA Astrophysics Data System (ADS)

    Dyachenko, N. N.; Dyachenko, L. I.

    2014-08-01

    The results of numerical investigation of a multiphase flow considering coagulation, crushing and crystallization of the particles of polydispersed condensate in the nozzles of solid-propellant rocket engine are presented. The influence of particles crystallization on the energy characteristics of the engine is shown.

  17. Propellant grain dynamics in aft attach ring of shuttle solid rocket booster

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1979-01-01

    An analytical technique for implementing simultaneously the temperature, dynamic strain, real modulus, and frequency properties of solid propellant in an unsymmetrical vibrating ring mode is presented. All dynamic parameters and sources are defined for a free vibrating ring-grain structure with initial displacement and related to a forced vibrating system to determine the change in real modulus. Propellant test data application is discussed. The technique was developed to determine the aft attach ring stiffness of the shuttle booster at lift-off.

  18. Nonlinear behavior of acoustic waves in combustion chambers. I, II. [stability in solid propellant rocket engine and T burner

    NASA Technical Reports Server (NTRS)

    Culick, F. E. C.

    1976-01-01

    The general problem of the nonlinear growth and limiting amplitude of acoustic waves in a combustion chamber is treated in three parts: (1) the general conservation equations are expanded in two small parameters, and then combined to yield a nonlinear inhomogeneous wave equation, (2) the unsteady pressure and velocity fields are expressed as a synthesis of the normal modes of the chamber, but with unknown time-varying amplitudes, and (3) the system of nonlinear equations is treated by the method of averaging to produce a set of coupled nonlinear first order differential equations for the amplitudes and phases of the modes. This approximate analysis is applied to the investigation of the unstable motions in a solid propellant rocket engine and in a T burner.

  19. Fiber-optic sensing in cryogenic environments. [for rocket propellant tank monitoring

    NASA Technical Reports Server (NTRS)

    Sharma, M.; Brooks, R. E.

    1980-01-01

    Passive optical sensors using fiber-optic signal transmission to a remote monitoring station are explored as an alternative to electrical sensors used to monitor the status of explosive propellants. The designs of passive optical sensors measuring liquid level, pressure, and temperature in cryogenic propellant tanks are discussed. Test results for an experimental system incorporating these sensors and operating in liquid nitrogen demonstrate the feasibility of passive sensor techniques and indicate that they can serve as non-hazardous replacements for more conventional measuring equipment in explosive environments.

  20. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy.

    PubMed

    Terry, Brandon C; Sippel, Travis R; Pfeil, Mark A; Gunduz, I Emre; Son, Steven F

    2016-11-01

    Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (ISP). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal ISP by ∼7s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5±4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption. PMID:27289269

  1. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy.

    PubMed

    Terry, Brandon C; Sippel, Travis R; Pfeil, Mark A; Gunduz, I Emre; Son, Steven F

    2016-11-01

    Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (ISP). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal ISP by ∼7s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5±4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption.

  2. Impact of condensation upon LIDAR observables from aluminized solid propellant rocket contrails

    NASA Astrophysics Data System (ADS)

    Rabarijaona, Eric G.; Reed, Robert A.

    2006-05-01

    Lidar has been used to track the downwind dispersion of rocket launch contrails and also to determine the particle size distribution of the primary Al IIO 3 smoke particles in the contrail. However, the determination of primary particle size from such lidar measurements is complicated by the presence of secondary smoke in the contrail composed of aqueous hydrochloric acid droplets. In addition, the secondary smoke tends to condense upon the Al IIO 3 primary smoke particles in the form of a liquid coating, with the primary smoke particles acting as condensation nuclei. The potential effect of this liquid coating upon the lidar backscatter return from the rocket contrail is estimated using a standard light scattering model (BHCOAT) for two-zone core-mantle particles.

  3. Analysis of Flow-System Starting Dynamics of Turbopump-Fed Liquid-Propellant Rocket

    NASA Technical Reports Server (NTRS)

    Krebs, Richard P.; Hart, Clint E.

    1959-01-01

    Two rocket configurations with turbopump drive were investigated analytically. In one configuration the inlet pressure to the turbine was fixed at the design value. The second configuration employed a "bootstrap" technique for supplying energy to the turbine. An injector was the chief resistance between the pump and the rocket combustion chamber. From the analysis two parameters were developed from which the speed response time of the turbopump, the flow response time, and the maximum dynamic line loss could be evaluated. These parameters were functions of turbopump moment of inertia, design performance of the turbine, and flow-system geometry. The moment of inertia of the turbopump and the ratio of turbine torque at zero speed to design torque had the most influence on the starting dynamics of the flow system. These parameters were also applicable to the bootstrap configuration as long as the inlet pressure to the turbine exceeded half the design value.

  4. Distributed Parameter Analysis of Pressure and Flow Disturbances in Rocket Propellant Feed Systems

    NASA Technical Reports Server (NTRS)

    Dorsch, Robert G.; Wood, Don J.; Lightner, Charlene

    1966-01-01

    A digital distributed parameter model for computing the dynamic response of propellant feed systems is formulated. The analytical approach used is an application of the wave-plan method of analyzing unsteady flow. Nonlinear effects are included. The model takes into account locally high compliances at the pump inlet and at the injector dome region. Examples of the calculated transient and steady-state periodic responses of a simple hypothetical propellant feed system to several types of disturbances are presented. Included are flow disturbances originating from longitudinal structural motion, gimbaling, throttling, and combustion-chamber coupling. The analytical method can be employed for analyzing developmental hardware and offers a flexible tool for the calculation of unsteady flow in these systems.

  5. PC programs for the prediction of the linear stability behavior of liquid propellant propulsion systems and application to current MSFC rocket engine test programs, volume 1

    NASA Technical Reports Server (NTRS)

    Doane, George B., III; Armstrong, W. C.

    1990-01-01

    Research on propulsion stability (chugging and acoustic modes), and propellant valve control was investigated. As part of the activation of the new liquid propulsion test facilities, it is necessary to analyze total propulsion system stability. To accomplish this, several codes were built to run on desktop 386 machines. These codes enable one to analyze the stability question associated with the propellant feed systems. In addition, further work was adapted to this computing environment and furnished along with other codes. This latter inclusion furnishes those interested in high frequency oscillatory combustion behavior (that does not couple to the feed system) a set of codes for study of proposed liquid rocket engines.

  6. A General Method for Automatic Computation of Equilibrium Compositions and Theoretical Rocket Performance of Propellants

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Zeleznik, Frank J.; Huff, Vearl N.

    1959-01-01

    A general computer program for chemical equilibrium and rocket performance calculations was written for the IBM 650 computer with 2000 words of drum storage, 60 words of high-speed core storage, indexing registers, and floating point attachments. The program is capable of carrying out combustion and isentropic expansion calculations on a chemical system that may include as many as 10 different chemical elements, 30 reaction products, and 25 pressure ratios. In addition to the equilibrium composition, temperature, and pressure, the program calculates specific impulse, specific impulse in vacuum, characteristic velocity, thrust coefficient, area ratio, molecular weight, Mach number, specific heat, isentropic exponent, enthalpy, entropy, and several thermodynamic first derivatives.

  7. Theoretical performance of some rocket propellants containing hydrogen, nitrogen, and oxygen

    NASA Technical Reports Server (NTRS)

    Miller, Riley O; Ordin, Paul M

    1948-01-01

    Theoretical performance data including nozzle-exit temperature, specific impulse, volume specific impulse and composition, temperature, and mean molecular weight of reaction products based on frozen equilibrium and isentropic expansion are presented for 13 propellant combinations at reaction pressure of 300 pounds per square inch absolute and expansion ratio of 20.4. On basis of maximum specific impulse alone, five fuels had the following order for any given oxidant: liquid hydrogen, hydrazine, liquid ammonia, and either hydrazine hydrate or hydroxylamine. Three oxidants with a given fuel had the following order: liquid ozone, liquid oxygen, and 100-percent hydrogen peroxide.

  8. Liquid propellant rocket engine combustion simulation with a time-accurate CFD method

    NASA Technical Reports Server (NTRS)

    Chen, Y. S.; Shang, H. M.; Liaw, Paul; Hutt, J.

    1993-01-01

    Time-accurate computational fluid dynamics (CFD) algorithms are among the basic requirements as an engineering or research tool for realistic simulations of transient combustion phenomena, such as combustion instability, transient start-up, etc., inside the rocket engine combustion chamber. A time-accurate pressure based method is employed in the FDNS code for combustion model development. This is in connection with other program development activities such as spray combustion model development and efficient finite-rate chemistry solution method implementation. In the present study, a second-order time-accurate time-marching scheme is employed. For better spatial resolutions near discontinuities (e.g., shocks, contact discontinuities), a 3rd-order accurate TVD scheme for modeling the convection terms is implemented in the FDNS code. Necessary modification to the predictor/multi-corrector solution algorithm in order to maintain time-accurate wave propagation is also investigated. Benchmark 1-D and multidimensional test cases, which include the classical shock tube wave propagation problems, resonant pipe test case, unsteady flow development of a blast tube test case, and H2/O2 rocket engine chamber combustion start-up transient simulation, etc., are investigated to validate and demonstrate the accuracy and robustness of the present numerical scheme and solution algorithm.

  9. Performance of a UTC FW-4S solid propellant rocket motor under the command effects of simulated altitude and rotational spin

    NASA Technical Reports Server (NTRS)

    Merryman, H. L.; Smith, L. R.

    1974-01-01

    One United Technology Center FW-4S solid-propellant rocket motor was fired at an average simulated altitude of 103,000 ft while spinning about its axial centerline at 180 rpm. The objectives of the test program were to determine motor altitude ballistic performance including the measurement of the nonaxial thrust vector and to demonstrate structural integrity of the motor case and nozzle. These objectives are presented and discussed.

  10. Measurement of Solid Rocket Propellant Burning Rate Using X-ray Imaging

    NASA Astrophysics Data System (ADS)

    Denny, Matthew D.

    The burning rate of solid propellants can be difficult to measure for unusual burning surface geometries, but X-ray imaging can be used to measure burning rate. The objectives of this work were to measure the baseline burning rate of an electrically-controlled solid propellant (ESP) formulation with real-time X-ray radiography and to determine the uncertainty of the measurements. Two edge detection algorithms were written to track the burning surface in X-ray videos. The edge detection algorithms were informed by intensity profiles of simulated 2-D X-ray images. With a 95% confidence level, the burning rates measured by the Projected-Slope Intersection algorithm in the two combustion experiments conducted were 0.0839 in/s +/-2.86% at an average pressure of 407 psi +/-3.6% and 0.0882 in/s +/-3.04% at 410 psi +/-3.9%. The uncertainty percentages were based on the statistics of a Monte Carlo analysis on burning rate.

  11. Development of the platelet micro-orifice injector. [for liquid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    La Botz, R. J.

    1984-01-01

    For some time to come, liquid rocket engines will continue to provide the primary means of propulsion for space transportation. The injector represents a key to the optimization of engine and system performance. The present investigation is concerned with a unique injector design and fabrication process which has demonstrated performance capabilities beyond that achieved with more conventional approaches. This process, which is called the 'platelet process', makes it feasible to fabricate injectors with a pattern an order of magnitude finer than that obtainable by drilling. The fine pattern leads to an achievement of high combustion efficiencies. Platelet injectors have been identified as one of the significant technology advances contributing to the feasibility of advanced dual-fuel booster engines. Platelet injectors are employed in the Space Shuttle Orbit Maneuvering System (OMS) engines. Attention is given to injector design theory as it relates to pattern fineness, a description of platelet injectors, and test data obtained with three different platelet injectors.

  12. Uncertainty Quantification of Non-linear Oscillation Triggering in a Multi-injector Liquid-propellant Rocket Combustion Chamber

    NASA Astrophysics Data System (ADS)

    Popov, Pavel; Sideris, Athanasios; Sirignano, William

    2014-11-01

    We examine the non-linear dynamics of the transverse modes of combustion-driven acoustic instability in a liquid-propellant rocket engine. Triggering can occur, whereby small perturbations from mean conditions decay, while larger disturbances grow to a limit-cycle of amplitude that may compare to the mean pressure. For a deterministic perturbation, the system is also deterministic, computed by coupled finite-volume solvers at low computational cost for a single realization. The randomness of the triggering disturbance is captured by treating the injector flow rates, local pressure disturbances, and sudden acceleration of the entire combustion chamber as random variables. The combustor chamber with its many sub-fields resulting from many injector ports may be viewed as a multi-scale complex system wherein the developing acoustic oscillation is the emergent structure. Numerical simulation of the resulting stochastic PDE system is performed using the polynomial chaos expansion method. The overall probability of unstable growth is assessed in different regions of the parameter space. We address, in particular, the seven-injector, rectangular Purdue University experimental combustion chamber. In addition to the novel geometry, new features include disturbances caused by engine acceleration and unsteady thruster nozzle flow.

  13. Nuclear magnetic resonance imaging of solid rocket propellants at 14.1 T.

    PubMed

    Maas, W E; Merwin, L H; Cory, D G

    1997-11-01

    Proton NMR images of solid propellant materials, consisting of a polybutadiene binder material filled with 82% solid particles, have been obtained at a magnetic field strength of 14.1 T and at a resolution of 8.5 x 8.5 micron. The images are the first of elastomeric materials obtained at a proton frequency of 600 MHz and have the highest spatial resolution yet reported. The images display a high contrast and are rich in information content. They reveal the distribution of individual filler particles in the polymer matrix as well as a thin polymer film of about 10-30 micron which is found to surround some of the larger filler particles.

  14. Conversion of the rocket propellant UDMH to a reagent useful in vicarious nucleophilic substitution reactions

    SciTech Connect

    Mitchell, A.R.; Pagoria, P.F.; Schmidt, R.D.

    1995-11-10

    The objective of our program is to develop novel, innovative solutions for the disposal of surplus energetic materials resulting from the demilitarization of conventional and nuclear munitions. In this report we describe the use of surplus propellant (UDMH) and explosives (TNT, Explosive D) as chemical precursors for higher value products. The conversion of UDMH to 1,1,1-trimethylhydrazinium iodide (TMHI) provides a new aminating reagent for use in Vicarious Nucleophilic Substitution (VNS) reactions. When TMHI is reacted with various nitroarenes the amino functionality is introduced in good to excellent yields. Thus, 2,4,6-trinitroaniline (picramide) reacts with TMHI to give 1,3,5-triamino-2,4,6-trinitroaniline (TATB) while 2,4,6-trinitrotoluene (TNT) reacts with TMHI to give 3,5-diamino-2,4,6-trinitrotoluene (DATNT). The advantages, scope and limitations of the VNS approach and the use of TMHI are discussed.

  15. Context Mediates Antimicrobial Efficacy of Kinocidin Congener Peptide RP-1

    PubMed Central

    Yount, Nannette Y.; Cohen, Samuel E.; Kupferwasser, Deborah; Waring, Alan J.; Ruchala, Piotr; Sharma, Shantanu; Wasserman, Karlman; Jung, Chun-Ling; Yeaman, Michael R.

    2011-01-01

    Structure-mechanism relationships are key determinants of host defense peptide efficacy. These relationships are influenced by anatomic, physiologic and microbiologic contexts. Structure-mechanism correlates were assessed for the synthetic peptide RP-1, modeled on microbicidal domains of platelet kinocidins. Antimicrobial efficacies and mechanisms of action against susceptible (S) or resistant (R) Salmonella typhimurium (ST), Staphylococcus aureus (SA), and Candida albicans (CA) strain pairs were studied at pH 7.5 and 5.5. Although RP-1 was active against all study organisms, it exhibited greater efficacy against bacteria at pH 7.5, but greater efficacy against CA at pH 5.5. RP-1 de-energized SA and CA, but caused hyperpolarization of ST in both pH conditions. However, RP-1 permeabilized STS and CA strains at both pH, whereas permeabilization was modest for STR or SA strain at either pH. Biochemical analysis, molecular modeling, and FTIR spectroscopy data revealed that RP-1 has indistinguishable net charge and backbone trajectories at pH 5.5 and 7.5. Yet, concordant with organism-specific efficacy, surface plasmon resonance, and FTIR, molecular dynamics revealed modest helical order increases but greater RP-1 avidity and penetration of bacterial than eukaryotic lipid systems, particularly at pH 7.5. The present findings suggest that pH– and target–cell lipid contexts influence selective antimicrobial efficacy and mechanisms of RP-1 action. These findings offer new insights into selective antimicrobial efficacy and context–specificity of antimicrobial peptides in host defense, and support design strategies for potent anti-infective peptides with minimal concomitant cytotoxicity. PMID:22073187

  16. Solid-propellant rocket motor internal ballistic performance variation analysis, phase 2

    NASA Technical Reports Server (NTRS)

    Sforzini, R. H.; Foster, W. A., Jr.

    1976-01-01

    The Monte Carlo method was used to investigate thrust imbalance and its first time derivative throughtout the burning time of pairs of solid rocket motors firing in parallel. Results obtained compare favorably with Titan 3 C flight performance data. Statistical correlations of the thrust imbalance at various times with corresponding nominal trace slopes suggest several alternative methods of predicting thrust imbalance. The effect of circular-perforated grain deformation on internal ballistics is discussed, and a modified design analysis computer program which permits such an evaluation is presented. Comparisons with SRM firings indicate that grain deformation may account for a portion of the so-called scale factor on burning rate between large motors and strand burners or small ballistic test motors. Thermoelastic effects on burning rate are also investigated. Burning surface temperature is calculated by coupling the solid phase energy equation containing a strain rate term with a model of gas phase combustion zone using the Zeldovich-Novozhilov technique. Comparisons of solutions with and without the strain rate term indicate a small but possibly significant effect of the thermoelastic coupling.

  17. Effect of Nozzle Nonlinearities upon Nonlinear Stability of Liquid Propellant Rocket Motors

    NASA Technical Reports Server (NTRS)

    Padmanabhan, M. S.; Powell, E. A.; Zinn, B. T.

    1975-01-01

    A three dimensional, nonlinear nozzle admittance relation is developed by solving the wave equation describing finite amplitude oscillatory flow inside the subsonic portion of a choked, slowly convergent axisymmetric nozzle. This nonlinear nozzle admittance relation is then used as a boundary condition in the analysis of nonlinear combustion instability in a cylindrical liquid rocket combustor. In both nozzle and chamber analyses solutions are obtained using the Galerkin method with a series expansion consisting of the first tangential, second tangential, and first radial modes. Using Crocco's time lag model to describe the distributed unsteady combustion process, combustion instability calculations are presented for different values of the following parameters: (1) time lag, (2) interaction index, (3) steady-state Mach number at the nozzle entrance, and (4) chamber length-to-diameter ratio. In each case, limit cycle pressure amplitudes and waveforms are shown for both linear and nonlinear nozzle admittance conditions. These results show that when the amplitudes of the second tangential and first radial modes are considerably smaller than the amplitude of the first tangential mode the inclusion of nozzle nonlinearities has no significant effect on the limiting amplitude and pressure waveforms.

  18. Asbestos Free Insulation Development for the Space Shuttle Solid Propellant Rocket Motor (RSRM)

    NASA Technical Reports Server (NTRS)

    Allred, Larry D.; Eddy, Norman F.; McCool, A. A. (Technical Monitor)

    2000-01-01

    Asbestos has been used for many years as an ablation inhibitor in insulating materials. It has been a constituent of the AS/NBR insulation used to protect the steel case of the RSRM (Reusable Solid Rocket Motor) since its inception. This paper discusses the development of a potential replacement RSRM insulation design, several of the numerous design issues that were worked and processing problems that were resolved. The earlier design demonstration on FSM-5 (Flight Support Motor) of the selected 7% and 11% Kevlar(registered) filled EPDM (KF/EPDM) candidate materials was expanded. Full-scale process simulation articles were built and FSM-8 was manufactured using multiple Asbestos Free (AF) components and materials. Two major problems had to be overcome in developing the AF design. First, bondline corrosion, which occurred in the double-cured region of the aft dome, had to be eliminated. Second, KF/EPDM creates high levels of electrostatic energy (ESE), which does not readily dissipate from the insulation surface. An uncontrolled electrostatic discharge (ESD) of this surface energy during many phases of production could create serious safety hazards. Numerous processing changes were implemented and a conductive paint was developed to prevent exposed external insulation surfaces from generating ESE/ESD. Additionally, special internal instrumentation was incorporated into FSM-8 to record real-time internal motor environment data. These data included inhibitor insulation erosion rates and internal thermal environments. The FSM-8 static test was successfully conducted in February 2000 and much valuable data were obtained to characterize the AF insulation design.

  19. Carrier rockets

    NASA Astrophysics Data System (ADS)

    Aleksandrov, V. A.; Vladimirov, V. V.; Dmitriev, R. D.; Osipov, S. O.

    This book takes into consideration domestic and foreign developments related to launch vehicles. General information concerning launch vehicle systems is presented, taking into account details of rocket structure, basic design considerations, and a number of specific Soviet and American launch vehicles. The basic theory of reaction propulsion is discussed, giving attention to physical foundations, the various types of forces acting on a rocket in flight, basic parameters characterizing rocket motion, the effectiveness of various approaches to obtain the desired velocity, and rocket propellants. Basic questions concerning the classification of launch vehicles are considered along with construction and design considerations, aspects of vehicle control, reliability, construction technology, and details of structural design. Attention is also given to details of rocket motor design, the basic systems of the carrier rocket, and questions of carrier rocket development.

  20. Fuel/oxidizer-rich high-pressure preburners. [staged-combustion rocket engine

    NASA Technical Reports Server (NTRS)

    Schoenman, L.

    1981-01-01

    The analyses, designs, fabrication, and cold-flow acceptance testing of LOX/RP-1 preburner components required for a high-pressure staged-combustion rocket engine are discussed. Separate designs of injectors, combustion chambers, turbine simulators, and hot-gas mixing devices are provided for fuel-rich and oxidizer-rich operation. The fuel-rich design addresses the problem of non-equilibrium LOX/RP-1 combustion. The development and use of a pseudo-kinetic combustion model for predicting operating efficiency, physical properties of the combustion products, and the potential for generating solid carbon is presented. The oxygen-rich design addresses the design criteria for the prevention of metal ignition. This is accomplished by the selection of materials and the generation of well-mixed gases. The combining of unique propellant injector element designs with secondary mixing devices is predicted to be the best approach.

  1. Combustion Model of Supersonic Rocket Exhausts in an Entrained Flow Enclosure

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Oliveira, Justin

    2011-01-01

    This paper describes the Computational Fluid Dynamics (CFD) model developed to simulate the supersonic rocket exhaust in an entrained flow cylinder. The model can be used to study the plume-induced environment due to static firing tests of the Taurus-II launch vehicle. The finite-rate chemistry is used to model the combustion process involving rocket propellant (RP-1) and liquid oxidizer (LOX). A similar chemical reacting model is also used to simulate the mixing of rocket plume and ambient air. The model provides detailed information on the gas concentration and other flow parameters within the enclosed region, thus allowing different operating scenarios to be examined in an efficient manner. It is shown that the real gas influence is significant and yields better agreement with the theory.

  2. Combustion Model of Supersonic Rocket Exhausts in an Entrained Flow Enclosure

    NASA Technical Reports Server (NTRS)

    Vu, Bruce; Oliveira, Justin

    2011-01-01

    This paper describes the Computation Fluid Dynamics (CFD) model developed to simulate the supersonic rocket exhaust in an entrained flow cylinder. The model can be used to study the plume-induced environment due to static firing test of the Taurus II launch vehicle. The finite rate chemistry is used to model the combustion process involving rocket propellant (RP 1) and liquid oxidizer (LOX). A similar chemical reacting model is also used to simulate the mixing of rocket plume and ambient air. The model provides detailed information on the gas concentration and other flow parameters within the enclosed region thus allowing different operating scenarios to be examined in an efficient manner. It is shown that the real gas influence is significant and yields better agreement with the theory.

  3. Low-thrust chemical rocket engine study

    NASA Technical Reports Server (NTRS)

    Shoji, J. M.

    1981-01-01

    An analytical study evaluating thrust chamber cooling engine cycles and preliminary engine design for low thrust chemical rocket engines for orbit transfer vehicles is described. Oxygen/hydrogen, oxygen/methane, and oxygen/RP-1 engines with thrust levels from 444.8 N to 13345 N, and chamber pressures from 13.8 N/sq cm to 689.5 N/sq cm were evaluated. The physical and thermodynamic properties of the propellant theoretical performance data, and transport properties are documented. The thrust chamber cooling limits for regenerative/radiation and film/radiation cooling are defined and parametric heat transfer data presented. A conceptual evaluation of a number of engine cycles was performed and a 2224.1 N oxygen/hydrogen engine cycle configuration and a 2224.1 N oxygen/methane configuration chosen for preliminary engine design. Updated parametric engine data, engine design drawings, and an assessment of technology required are presented.

  4. Effect of Propellant and Catalyst Bed Temperatures on Thrust Buildup in Several Hydrogen Peroxide Reaction Control Rockets

    NASA Technical Reports Server (NTRS)

    Wanhainen, John P.; Ross, Phil S.; DeWitt, Richard L.

    1960-01-01

    An investigation was undertaken to determine the effect of chamber and propellant feed temperatures on the starting characteristics of hydrogen peroxide thrust chambers. Start delay times for two types of thrust chamber designs in the 1- to 24-pound-thrust range were obtained over a range of chamber and propellant feed temperatures from 30 to 100 F. Start delay times obtained during the first minute of catalyst bed life and again after 6 minutes of total accumulated running time are presented as a function of chamber and propellant feed temperatures. The initial cold-start delay time of the hydrogen peroxide thrust chambers investigated was approximately 0.150 second to attain 90 percent of steady-state chamber pressure at chamber and propellant feed temperatures of 70 F and above. Both thrust chamber designs could be started at chamber and propellant feed temperatures as low as 30 F; start delay times did, however, generally increase at low temperatures. When the chamber was at an elevated temperature from a preceding firing, the start delay time was reduced to approximately 0.050 second, indicating a marked effect of chamber temperature at constant propellant feed temperatures. Accumulated run time affected the starting characteristics only when both the chamber and propellant feed temperatures were at reduced levels.

  5. Analysis of velocity-coupled response function data from the dual rotating valve. [combustion stability of solid rocket propellants

    NASA Technical Reports Server (NTRS)

    Brown, R. S.; Waugh, R. C.

    1980-01-01

    The results of a re-evaluation of the propellant combustion data obtained using the dual valve approach for measuring velocity-coupling characteristics of solid propellants are presented. Data analysis and testing procedures are described. The velocity response is compared to pressure-coupled response data within the context of thermal wave response theory. This comparison shows important inconsistencies which cast doubt on inferring the velocity response from pressure-coupled response functions.

  6. Extended temperature range rocket injector

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J. (Inventor)

    1991-01-01

    A rocket injector is provided with multiple sets of manifolds for supplying propellants to injector elements. Sensors transmit the temperatures of the propellants to a suitable controller which is operably connnected to valves between these manifolds and propellant storage tanks. When cryogenic propellant temperatures are sensed, only a portion of the valves are opened to furnish propellants to some of the manifolds. When lower temperatures are sensed, additional valves are opened to furnish propellants to more of the manifolds.

  7. Chemistry of the system: Al2O3(c)minus HCL aqueous. [chemical reactions resulting from propellant combustion of rocket propellants

    NASA Technical Reports Server (NTRS)

    Tyree, S. Y., Jr.

    1975-01-01

    In order to study exhaust gas chemistry for the space shuttle, the vapor pressure of 2 to 1 weight mixtures of 3-M hydrochloric acid and Al2O3 was studied over a l80 minute reaction period at 31 C. The Al2O3 sample was one of high surface area furnished by NASA Langley Research Center. A brief review is given for aqueous aluminum chemistry, and the chemical reactions of combustion products (exhaust gases) of aluminum propellant binders for the space shuttle are listed.

  8. Stability evaluation of a rocket engine for gaseous oxygen difluoride (OF2) and gaseous diborane (B2H6) propellants

    NASA Technical Reports Server (NTRS)

    Clayton, R. M.

    1972-01-01

    Results of an experimental evaluation of the dynamic stability of a candidate combustor for the space storable propellants gaseous OF2/B2H6 show that the combustor is unstable without supplementary damping. A computer analysis indicated that the uninhibited engine could be unstable. The experiments, conducted with O2/C2H4 substitute propellants and with 70-30 FLOX/B2H6 (OF2 simulated with FLOX), show that the uninhibited combustor has a low stability margin to starting transient perturbations, but that is relatively insensitive to bomb disturbances. Damping cavities are shown to provide stability.

  9. Characterization of rocket propellant combustion products. Chemical characterization and computer modeling of the exhaust products from four propellant formulations: Final report, September 23, 1987--April 1, 1990

    SciTech Connect

    Jenkins, R.A.; Nestor, C.W.; Thompson, C.V.; Gayle, T.M.; Ma, C.Y.; Tomkins, B.A.; Moody, R.L.

    1991-12-09

    The overall objective of the work described in this report is four-fold: to (a) develop a standardized and experimentally validated approach to the sampling and chemical and physical characterization of the exhaust products of scaled-down rocket launch motors fired under experimentally controlled conditions at the Army`s Signature Characterization Facility (ASCF) at Redstone Arsenal in Huntsville, Alabama; (b) determine the composition of the exhaust produces; (c) assess the accuracy of a selected existing computer model for predicting the composition of major and minor chemical species; (d) recommended alternations to both the sampling and analysis strategy and the computer model in order to achieve greater congruence between chemical measurements and computer prediction. 34 refs., 2 figs., 35 tabs.

  10. RP1 Is a Phosphorylation Target of CK2 and Is Involved in Cell Adhesion

    PubMed Central

    Göttig, Stephan; Henschler, Reinhard; Markuly, Norbert; Kleber, Sascha; Faust, Michael; Mischo, Axel; Bauer, Stefan; Zweifel, Martin; Knuth, Alexander; Renner, Christoph; Wadle, Andreas

    2013-01-01

    RP1 (synonym: MAPRE2, EB2) is a member of the microtubule binding EB1 protein family, which interacts with APC, a key regulatory molecule in the Wnt signalling pathway. While the other EB1 proteins are well characterized the cellular function and regulation of RP1 remain speculative to date. However, recently RP1 has been implicated in pancreatic cancerogenesis. CK2 is a pleiotropic kinase involved in adhesion, proliferation and anti-apoptosis. Overexpression of protein kinase CK2 is a hallmark of many cancers and supports the malignant phenotype of tumor cells. In this study we investigate the interaction of protein kinase CK2 with RP1 and demonstrate that CK2 phosphorylates RP1 at Ser236 in vitro. Stable RP1 expression in cell lines leads to a significant cleavage and down-regulation of N-cadherin and impaired adhesion. Cells expressing a Phospho-mimicking point mutant RP1-ASP236 show a marked decrease of adhesion to endothelial cells under shear stress. Inversely, we found that the cells under shear stress downregulate endogenous RP1, most likely to improve cellular adhesion. Accordingly, when RP1 expression is suppressed by shRNA, cells lacking RP1 display significantly increased cell adherence to surfaces. In summary, RP1 phosphorylation at Ser236 by CK2 seems to play a significant role in cell adhesion and might initiate new insights in the CK2 and EB1 family protein association. PMID:23844040

  11. Flow and motion of condensed-phase particles in the prenozzle space of solid-propellant rocket motors

    NASA Astrophysics Data System (ADS)

    Volkov, K. N.; Emel'yanov, V. N.; Kurova, I. V.

    2012-07-01

    The flow of an inviscid liquid containing condensed-phase particles around the recessed nozzle of the solidpropellant rocket motor has been considered. To take into account the complex geometry of the prenozzle space of the rocket motor, the equations describing the liquid flow were written in a curvilinear coordinate system. The paths of solid particles were calculated in the known liquid flow field. The quality criteria of the meshes constructed with the use of different approaches have been compared. The results of the calculations permit determining the limit path of particles dividing the flow region into two subregions, one of which is occupied by particles and the other is free from condensed-phase particles.

  12. Characterization of the non axial thrust generated by large solid propellant rocket motors in three axis stabilized ascent

    NASA Technical Reports Server (NTRS)

    Kosmann, W. J.; Dionne, E. R.; Klemetson, R. W.

    1978-01-01

    Nonaxial thrusts produced by solid rocket motors during three-axis stabilized attitude control have been determined from ascent experience on twenty three Burner II, Burner IIA and Block 5D-1 upper stage vehicles. A data base representing four different rocket motor designs (three spherical and one extended spherical) totaling twenty five three-axis stabilized firings is generated. Solid rocket motor time-varying resultant and lateral side force vector magnitudes, directions and total impulses, and roll torque couple magnitudes, directions, and total impulses are tabulated in the appendix. Population means and three sigma deviations are plotted. Existing applicable ground test side force and roll torque magnitudes and total impulses are evaluated and compared to the above experience data base. Within the spherical motor population, the selected AEDC ground test data consistently underestimated experienced motor side forces, roll torques and total impulses. Within the extended spherical motor population, the selected AEDC test data predicted experienced motor side forces, roll torques, and total impulses, with surprising accuracy considering the very small size of the test and experience populations.

  13. Effect of combustion-chamber pressure and nozzle expansion ratio on theoretical performance of several rocket propellant systems

    NASA Technical Reports Server (NTRS)

    Morrell, Virginia E

    1956-01-01

    Theoretical calculations of specific impulse to determine the separate effects of increasing the combustion-chamber pressure and the nozzle expansion ratio on the performance of the propellants, hydrogen-fluorine, hydrogen-oxygen, ammonia-fluorine and AN-F-58 fuel - white fuming nitric acid (95 percent). The results indicate that an increase in specific impulse obtainable with an increase in combustion-chamber pressure is almost entirely caused by the increased expansion ratio through the nozzle.

  14. Low-Cost Approach to the Design and Fabrication of a LOX/RP-1 Injector

    NASA Technical Reports Server (NTRS)

    Shadoan, Michael D.; Sparks, Dave L.; Turner, James E. (Technical Monitor)

    2000-01-01

    NASA Marshall Space Flight Center (MSFC) has designed, built, and is currently testing Fastrac, a liquid oxygen (LOX)/RP-1 fueled 60K-lb thrust class rocket engine. One facet of Fastrac, which makes it unique is that it is the first large-scale engine designed and developed in accordance with the Agency's mandated "faster, better, cheaper" (FBC) program policy. The engine was developed under the auspices of MSFC's Low Cost Boost Technology office. Development work for the main injector actually began in 1993 in subscale form. In 1996, work began on the full-scale unit approximately 1 year prior to initiation of the engine development program. In order to achieve the value goals established by the FBC policy, a review of traditional design practices was necessary. This internal reevaluation would ultimately challenge more conventional methods of material selection. design process, and fabrication techniques. The effort was highly successful. This "new way" of thinking has resulted in an innovative injector design, one with reduced complexity and significantly lower cost. Application of lessons learned during this effort to new or existing designs can have a similar effect on costs and future program successes.

  15. 3-D Flash Lidar Performance in Flight Testing on the Morpheus Autonomous, Rocket-Propelled Lander to a Lunar-Like Hazard Field

    NASA Technical Reports Server (NTRS)

    Roback, Vincent E.; Amzajerdian, Farzin; Bulyshev, Alexander E.; Brewster, Paul F.; Barnes, Bruce W.

    2016-01-01

    For the first time, a 3-D imaging Flash Lidar instrument has been used in flight to scan a lunar-like hazard field, build a 3-D Digital Elevation Map (DEM), identify a safe landing site, and, in concert with an experimental Guidance, Navigation, and Control (GN&C) system, help to guide the Morpheus autonomous, rocket-propelled, free-flying lander to that safe site on the hazard field. The flight tests served as the TRL 6 demo of the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) system and included launch from NASA-Kennedy, a lunar-like descent trajectory from an altitude of 250m, and landing on a lunar-like hazard field of rocks, craters, hazardous slopes, and safe sites 400m down-range. The ALHAT project developed a system capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The Flash Lidar is a second generation, compact, real-time, air-cooled instrument. Based upon extensive on-ground characterization at flight ranges, the Flash Lidar was shown to be capable of imaging hazards from a slant range of 1 km with an 8 cm range precision and a range accuracy better than 35 cm, both at 1-delta. The Flash Lidar identified landing hazards as small as 30 cm from the maximum slant range which Morpheus could achieve (450 m); however, under certain wind conditions it was susceptible to scintillation arising from air heated by the rocket engine and to pre-triggering on a dust cloud created during launch and transported down-range by wind.

  16. 3D flash lidar performance in flight testing on the Morpheus autonomous, rocket-propelled lander to a lunar-like hazard field

    NASA Astrophysics Data System (ADS)

    Roback, Vincent E.; Amzajerdian, Farzin; Bulyshev, Alexander E.; Brewster, Paul F.; Barnes, Bruce W.

    2016-05-01

    For the first time, a 3-D imaging Flash Lidar instrument has been used in flight to scan a lunar-like hazard field, build a 3-D Digital Elevation Map (DEM), identify a safe landing site, and, in concert with an experimental Guidance, Navigation, and Control system, help to guide the Morpheus autonomous, rocket-propelled, free-flying lander to that safe site on the hazard field. The flight tests served as the TRL 6 demo of the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) system and included launch from NASA-Kennedy, a lunar-like descent trajectory from an altitude of 250m, and landing on a lunar-like hazard field of rocks, craters, hazardous slopes, and safe sites 400m down-range. The ALHAT project developed a system capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The Flash Lidar is a second generation, compact, real-time, air-cooled instrument. Based upon extensive on-ground characterization at flight ranges, the Flash Lidar was shown to be capable of imaging hazards from a slant range of 1 km with an 8 cm range precision and a range accuracy better than 35 cm, both at 1-σ. The Flash Lidar identified landing hazards as small as 30 cm from the maximum slant range which Morpheus could achieve (450 m); however, under certain wind conditions it was susceptible to scintillation arising from air heated by the rocket engine and to pre-triggering on a dust cloud created during launch and transported down-range by wind.

  17. Cooling of rocket thrust chambers with liquid oxygen

    NASA Technical Reports Server (NTRS)

    Armstrong, Elizabeth S.; Schlumberger, Julie A.

    1990-01-01

    Rocket engines using high pressure liquid oxygen (LOX) and kerosene (RP-1) as the propellants have been considered for future launch vehicle propulsion. Generaly, in regeneratively cooled engines, thefuel is used to cool the combustion chamber. However, hydrocarbons such as RP-1 are limited in their cooling capability at high temperatures and pressures. Therefore, LOX is being considered as an alternative coolant. However, there has been concern as to the effect on the integrity of the chamber liner if oxygen leaks into the combustion zone through fatigue cracks that may develop between the cooling passages and the hot-gas side wall. To address this concern, an investigation was previously conducted with simulated fatigue cracks upstream of the thrust chamber throat. When these chambers were tested, an unexpected melting in the throat region developed which was not in line with the simulated fatigue cracks. The current experimental program was conducted in order to determine the cause for the failure in the earlier thrust chambers and to further investigate the effects of cracks in the thrust chamber liner upstream of the throat. The thrust chambers were tested at oxygen-to-fuel mixture ratios from 1.5 to 2.86 at a nominal chamber pressure of 8.6 MPa. As a result of the test series, the reason for the failure occurring in the earlier work was determined to be injector anomalies. The LOX leaking through the simulated fatigue cracks did not affect the integrity of the chambers.

  18. Cooling of rocket thrust chambers with liquid oxygen

    NASA Technical Reports Server (NTRS)

    Armstrong, Elizabeth S.; Schlumberger, Julie A.

    1990-01-01

    Rocket engines using high pressure liquid oxygen (LOX) and kerosene (RP-1) as the propellants have been considered for future launch vehicle propulsion. Generally, in regeneratively cooled engines, the fuel is used to cool the combustion chamber. However, hydrocarbons such as RP-1 are limited in their cooling capability at high temperatures and pressures. Therefore, LOX is being considered as an alternative coolant. However, there has been concern as to the effect on the integrity of the chamber liner if oxygen leaks into the combustion zone through fatigue cracks that may develop between the cooling passages and the hot-gas side wall. To address this concern, an investigation was previously conducted with simulated fatigue cracks upstream of the thrust chamber throat. When these chambers were tested, an unexpected melting in the throat region developed which was not in line with the simulated fatigue cracks. The current experimental program was conducted in order to determine the cause for the failure in the earlier thrust chambers and to further investigate the effects of cracks in the thrust chamber liner upstream of the throat. The thrust chambers were tested at oxygen-to-fuel mixture ratios from 1.5 to 2.86 at a nominal chamber pressure of 8.6 MPa. As a result of the test series, the reason for the failure occurring in the earlier work was determined to be injector anomalies. The LOX leaking through the simulated fatigue cracks did not affect the integrity of the chambers.

  19. Raman Spectroscopy for Instantaneous Multipoint, Multispecies Gas Concentration and Temperature Measurements in Rocket Engine Propellant Injector Flows

    NASA Technical Reports Server (NTRS)

    Wehrmeyer, Joseph A.; Trinh, Huu Phuoc

    2001-01-01

    Propellant injector development at MSFC includes experimental analysis using optical techniques, such as Raman, fluorescence, or Mie scattering. For the application of spontaneous Raman scattering to hydrocarbon-fueled flows a technique needs to be developed to remove the interfering polycyclic aromatic hydrocarbon fluorescence from the relatively weak Raman signals. A current application of such a technique is to the analysis of the mixing and combustion performance of multijet, impinging-jet candidate fuel injectors for the baseline Mars ascent engine, which will burn methane and liquid oxygen produced in-situ on Mars to reduce the propellant mass transported to Mars for future manned Mars missions. The present technique takes advantage of the strongly polarized nature of Raman scattering. It is shown to be discernable from unpolarized fluorescence interference by subtracting one polarized image from another. Both of these polarized images are obtained from a single laser pulse by using a polarization-separating calcite rhomb mounted in the imaging spectrograph. A demonstration in a propane-air flame is presented.

  20. Raman Spectroscopy for Instantaneous Multipoint, Multispecies Gas Concentration and Temperature Measurements in Rocket Engine Propellant Injector Flows

    NASA Technical Reports Server (NTRS)

    Wehrmeyer, Joseph A.

    1999-01-01

    Propellent injector development at MSFC includes experimental analysis using optical techniques, such as Raman, fluorescence, or Mie scattering. For the application of spontaneous Raman scattering to hydrocarbon-fueled flows a technique needs to be developed to remove the interfering polycyclic aromatic hydrocarbon fluorescence from the relatively weak Raman signals. A current application of such a technique is to the analysis of the mixing and combustion performance of multijet, impinging-jet candidate fuel injectors for the baseline Mars ascent engine, which will bum methane and liquid oxygen produced in-situ on Mars to reduce the propellent mass transported to Mars for future manned Mars missions. The present technique takes advantage of the strongly polarized nature of Raman scattering. It is shown to be discernable from unpolarized fluorescence interference by subtracting one polarized image from another. Both of these polarized images are obtained from a single laser pulse by using a polarization-separating calcite rhomb mounted in the imaging spectrograph. A demonstration in a propane-air flame is presented.

  1. Evaluation of Impinging Stream Vortex Chamber Concepts for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu; Kopicz, Charles; Bullard, Brad; Michaels, Scott

    2003-01-01

    NASA Marshall Space Flight Center (MSFC) and the U. S. Army are jointly investigating vortex chamber concepts for cryogenic oxygen/hydrocarbon fuel rocket engine applications. One concept, the Impinging Stream Vortex Chamber Concept (ISVC), has been tested with gel propellants at AMCOM at Redstone Arsenal, Alabama. A version of this concept for the liquid oxygen (LOX)/hydrocarbon fuel (RP-1) propellant system is derived from the one for the gel propellant. An unlike impinging injector is employed to deliver the propellants to the chamber. MSFC has also designed two alternative injection schemes, called the chasing injectors, associated with this vortex chamber concept. In these injection techniques, both propellant jets and their impingement point are in the same chamber cross-sectional plane. One injector has a similar orifice size with the original unlike impinging injector. The second chasing injector has small injection orifices. The team has achieved their objectives of demonstrating the self-cooled chamber wall benefits of ISVC and of providing the test data for validating computational fluids dynamics (CFD) models. These models, in turn, will be used to design the optimum vortex chambers in the future.

  2. Solid propellant motor

    NASA Technical Reports Server (NTRS)

    Shafer, J. I.; Marsh, H. E., Jr. (Inventor)

    1978-01-01

    A case bonded end burning solid propellant rocket motor is described. A propellant with sufficiently low modulus to avoid chamber buckling on cooling from cure and sufficiently high elongation to sustain the stresses induced without cracking is used. The propellant is zone cured within the motor case at high pressures equal to or approaching the pressure at which the motor will operate during combustion. A solid propellant motor with a burning time long enough that its spacecraft would be limited to a maximum acceleration of less than 1 g is provided by one version of the case bonded end burning solid propellant motor of the invention.

  3. Longitudinal Stability and Drag Characteristics at Mach Numbers from 0.70 to 1.37 of Rocket-propelled Models Having a Modified Triangular Wing

    NASA Technical Reports Server (NTRS)

    Chapman, Rowe, Jr; Morrow, John D

    1952-01-01

    A modified triangular wing of aspect ratio 2.53 having an airfoil section 3.7 percent thick at the root and 5.98 percent thick at the tip was designed in an attempt to improve the lift and drag characteristics of triangular wings. Free-flight drag and stability tests were made using rocket-propelled models equipped with the modified wing. The Mach number range of the test was from 0.70 to 1.37. Test results indicated the following: The lift-curve slope of wing plus fuselage approaches the theoretical value of wing alone at supersonic Mach numbers. The drag coefficient, based on total wing area, for wing plus interference was approximately 0.0035 at subsonic Mach numbers and 0.0080 at supersonic Mach numbers. The maximum shift in aerodynamic center for the complete configuration was 14 percent in the rearward direction from the forward position of 51.5 percent of mean aerodynamic chord at subsonic Mach numbers. The variation of lift and moment with angle of attack was linear at supersonic Mach numbers for the range of coefficients covered in the test. The high value of lift-curve slope was considered to be a significant result attributable to the wing modifications.

  4. Flight Test Results of Rocket-Propelled Buffet-Research Models Having 45 Degree Sweptback Wings and 45 Degree Sweptback Tails Located in the Wing Chord Plane

    NASA Technical Reports Server (NTRS)

    Mason, Homer P.

    1953-01-01

    Three rocket-propelled buffet-research models have been flight tested to determine the buffeting characteristics of a swept-wing- airplane configuration with the horizontal tail operating near the wing wake. The models consisted of parabolic bodies having 45deg sweptback wings of aspect ratio 3.56, at aspect ratio of 0.3, NACA 64A007 airfoil sections, and tail surfaces of geometry and section identical to the wings. Two tests were conducted with the horizontal tail located in the wing chord plane with fixed incidence angles of -1.5deg on one model and 0deg on the other model. The third test was conducted with no horizontal tail. Results of these tests are presented as incremental accelerations in the body due to buffeting, trim angles of attack, trim normal- and side-force coefficients, wing-tip helix angles, static-directional-stability derivatives , and drag coefficients plotted against Mach number. These data indicate that mild low-lift buffeting was experienced by all models over a range of Mach number from approximately 0.7 to 1.4. It is further indicated that this buffeting was probably induced by wing-body interference and was amplified at transonic speeds by the horizontal tail operating in the wing wake. A longitudinal trim change was encountered by the tail-on models at transonic speeds, but no large changes in side force and no wing dropping were indicated.

  5. Energetic Properties of Rocket Propellants Evaluated through the Computational Determination of Heats of Formation of Nitrogen-Rich Compounds.

    PubMed

    Forquet, Valérian; Miró Sabaté, Carles; Chermette, Henry; Jacob, Guy; Labarthe, Émilie; Delalu, Henri; Darwich, Chaza

    2016-03-01

    The use of ab initio and DFT methods to calculate the enthalpies of formation of solid ionic compounds is described. The results obtained from the calculations are then compared with those from experimental measurements on nitrogen-rich salts of the 2,2-dimethyltriazanium cation (DMTZ) synthesized in our laboratory and on other nitrogen-rich ionic compounds. The importance of calculating accurate volumes and lattice enthalpies for the determination of heats of formation is also discussed. Furthermore, the crystal structure and hydrogen-bonding networks of the nitroformate salt of the DMTZ cation is described in detail. Lastly, the theoretical heats of formation were used to calculate the specific impulses (Isp ) of the salts of the DMTZ cation in view of a prospective application in propellant formulations.

  6. Lidar Sensor Performance in Closed-Loop Flight Testing of the Morpheus Rocket-Propelled Lander to a Lunar-Like Hazard Field

    NASA Technical Reports Server (NTRS)

    Roback, Vincent E.; Pierrottet, Diego F.; Amzajerdian, Farzin; Barnes, Bruce W.; Hines, Glenn D.; Petway, Larry B.; Brewster, Paul F.; Kempton, Kevin S.; Bulyshev, Alexander E.

    2015-01-01

    For the first time, a suite of three lidar sensors have been used in flight to scan a lunar-like hazard field, identify a safe landing site, and, in concert with an experimental Guidance, Navigation, and Control (GN&C) system, guide the Morpheus autonomous, rocket-propelled, free-flying test bed to a safe landing on the hazard field. The lidar sensors and GN&C system are part of the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) project which has been seeking to develop a system capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The 3-D imaging flash lidar is a second generation, compact, real-time, air-cooled instrument developed from a number of cutting-edge components from industry and NASA and is used as part of the ALHAT Hazard Detection System (HDS) to scan the hazard field and build a 3-D Digital Elevation Map (DEM) in near-real time for identifying safe sites. The flash lidar is capable of identifying a 30 cm hazard from a slant range of 1 km with its 8 cm range precision at 1 sigma. The flash lidar is also used in Hazard Relative Navigation (HRN) to provide position updates down to a 250m slant range to the ALHAT navigation filter as it guides Morpheus to the safe site. The Doppler Lidar system has been developed within NASA to provide velocity measurements with an accuracy of 0.2 cm/sec and range measurements with an accuracy of 17 cm both from a maximum range of 2,200 m to a minimum range of several meters above the ground. The Doppler Lidar's measurements are fed into the ALHAT navigation filter to provide lander guidance to the safe site. The Laser Altimeter, also developed within NASA, provides range measurements with an accuracy of 5 cm from a maximum operational range of 30 km down to 1 m and, being a separate sensor from the flash lidar, can provide range along a separate vector. The Laser Altimeter measurements are also

  7. Determination of Combustion Product Radicals in a Hydrocarbon Fueled Rocket Exhaust Plume

    NASA Technical Reports Server (NTRS)

    Langford, Lester A.; Allgood, Daniel C.; Junell, Justin C.

    2007-01-01

    The identification of metallic effluent materials in a rocket engine exhaust plume indicates the health of the engine. Since 1989, emission spectroscopy of the plume of the Space Shuttle Main Engine (SSME) has been used for ground testing at NASA's Stennis Space Center (SSC). This technique allows the identification and quantification of alloys from the metallic elements observed in the plume. With the prospect of hydrocarbon-fueled rocket engines, such as Rocket Propellant 1 (RP-1) or methane (CH4) fueled engines being considered for use in future space flight systems, the contributions of intermediate or final combustion products resulting from the hydrocarbon fuels are of great interest. The effect of several diatomic molecular radicals, such as Carbon Dioxide , Carbon Monoxide, Molecular Carbon, Methylene Radical, Cyanide or Cyano Radical, and Nitric Oxide, needs to be identified and the effects of their band systems on the spectral region from 300 nm to 850 nm determined. Hydrocarbon-fueled rocket engines will play a prominent role in future space exploration programs. Although hydrogen fuel provides for higher engine performance, hydrocarbon fuels are denser, safer to handle, and less costly. For hydrocarbon-fueled engines using RP-1 or CH4 , the plume is different from a hydrogen fueled engine due to the presence of several other species, such as CO2, C2, CO, CH, CN, and NO, in the exhaust plume, in addition to the standard H2O and OH. These species occur as intermediate or final combustion products or as a result of mixing of the hot plume with the atmosphere. Exhaust plume emission spectroscopy has emerged as a comprehensive non-intrusive sensing technology which can be applied to a wide variety of engine performance conditions with a high degree of sensitivity and specificity. Stennis Space Center researchers have been in the forefront of advancing experimental techniques and developing theoretical approaches in order to bring this technology to a more

  8. Solid Propellant Grain Structural Integrity Analysis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The structural properties of solid propellant rocket grains were studied to determine the propellant resistance to stresses. Grain geometry, thermal properties, mechanical properties, and failure modes are discussed along with design criteria and recommended practices.

  9. Comparative Sequence Analysis of the Sorghum Rph Region and the Maize Rp1 Resistance Gene Complex

    PubMed Central

    Ramakrishna, Wusirika; Emberton, John; SanMiguel, Phillip; Ogden, Matthew; Llaca, Victor; Messing, Joachim; Bennetzen, Jeffrey L.

    2002-01-01

    A 268-kb chromosomal segment containing sorghum (Sorghum bicolor) genes that are orthologous to the maize (Zea mays) Rp1 disease resistance (R) gene complex was sequenced. A region of approximately 27 kb in sorghum was found to contain five Rp1 homologs, but most have structures indicating that they are not functional. In contrast, maize inbred B73 has 15 Rp1 homologs in two nearby clusters of 250 and 300 kb. As at maize Rp1, the cluster of R gene homologs is interrupted by the presence of several genes that appear to have no resistance role, but these genes were different from the ones found within the maize Rp1 complex. More than 200 kb of DNA downstream from the sorghum Rp1-orthologous R gene cluster was sequenced and found to contain many duplicated and/or truncated genes. None of the duplications currently exist as simple tandem events, suggesting that numerous rearrangements were required to generate the current genomic structure. Four truncated genes were observed, including one gene that appears to have both 5′ and 3′ deletions. The maize Rp1 region is also unusually enriched in truncated genes. Hence, the orthologous maize and sorghum regions share numerous structural features, but all involve events that occurred independently in each species. The data suggest that complex R gene clusters are unusually prone to frequent internal and adjacent chromosomal rearrangements of several types. PMID:12481055

  10. Dynamic characterization of solid rockets

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The structural dynamics of solid rockets in-general was studied. A review is given of the modes of vibration and bending that can exist for a solid propellant rocket, and a NASTRAN computer model is included. Also studied were the dynamic properties of a solid propellant, polybutadiene-acrylic acid-acrylonitrile terpolymer, which may be used in the space shuttle rocket booster. The theory of viscoelastic materials (i.e, Poisson's ratio) was employed in describing the dynamic properties of the propellant. These studies were performed for an eventual booster stage development program for the space shuttle.

  11. Design and evaluation of high performance rocket engine injectors for use with hydrocarbon fuels

    NASA Technical Reports Server (NTRS)

    Pavli, A. J.

    1979-01-01

    An experimental program to determine the feasibility of using a heavy hydrocarbon fuel as a rocket propellant is reported herein. A method of predicting performance of a heavy hydrocarbon in terms of vaporization effectiveness is described and compared to other fuels and to experimental test results. The work was done at a chamber pressure of 4137 KN/sq M (600 psia) with RP-1, JP-10, and liquefied natural gas as fuels, and liquid oxygen as the oxidizer. Combustion length effects were explored over a range of 21.6 cm (8 1/2 in.) to 55.9 cm (22 in.). Four injector types were tested, each over a range of mixture ratios. Further configuration modifications were obtained by 'reaming' each injector several times to provide test data over a range of injector pressure drop.

  12. Design and evaluation of high performance rocket engine injectors for use with hydrocarbon fuels

    NASA Technical Reports Server (NTRS)

    Pavli, A. J.

    1979-01-01

    The feasibility of using a heavy hydrocarbon fuel as a rocket propellant is examined. A method of predicting performance of a heavy hydrocarbon in terms of vaporization effectiveness is described and compared to other fuels and to experimental test results. Experiments were done at a chamber pressure of 4137 KN/sq M (600 psia) with RP-1, JP-10, and liquefied natural gas as fuels, and liquid oxygen as the oxidizer. Combustion length effects were explored over a range of 21.6 cm (8 1/2 in) to 55.9 cm (22 in). Four injector types were tested, each over a range of mixture ratios. Further configuration modifications were obtained by reaming each injector several times to provide test data over a range of injector pressure drop.

  13. Lidar Sensor Performance in Closed-Loop Flight Testing of the Morpheus Rocket-Propelled Lander to a Lunar-Like Hazard Field

    NASA Technical Reports Server (NTRS)

    Roback, V. Eric; Pierrottet, Diego F.; Amzajerdian, Farzin; Barnes, Bruce W.; Bulyshev, Alexander E.; Hines, Glenn D.; Petway, Larry B.; Brewster, Paul F.; Kempton, Kevin S.

    2015-01-01

    For the first time, a suite of three lidar sensors have been used in flight to scan a lunar-like hazard field, identify a safe landing site, and, in concert with an experimental Guidance, Navigation, and Control (GN&C) system, help to guide the Morpheus autonomous, rocket-propelled, free-flying lander to that safe site on the hazard field. The lidar sensors and GN&C system are part of the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) project which has been seeking to develop a system capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The 3-D imaging Flash Lidar is a second generation, compact, real-time, aircooled instrument developed from a number of components from industry and NASA and is used as part of the ALHAT Hazard Detection System (HDS) to scan the hazard field and build a 3-D Digital Elevation Map (DEM) in near-real time for identifying safe sites. The Flash Lidar is capable of identifying a 30 cm hazard from a slant range of 1 km with its 8 cm range precision (1-s). The Flash Lidar is also used in Hazard Relative Navigation (HRN) to provide position updates down to a 250m slant range to the ALHAT navigation filter as it guides Morpheus to the safe site. The Navigation Doppler Lidar (NDL) system has been developed within NASA to provide velocity measurements with an accuracy of 0.2 cm/sec and range measurements with an accuracy of 17 cm both from a maximum range of 2,200 m to a minimum range of several meters above the ground. The NDLâ€"TM"s measurements are fed into the ALHAT navigation filter to provide lander guidance to the safe site. The Laser Altimeter (LA), also developed within NASA, provides range measurements with an accuracy of 5 cm from a maximum operational range of 30 km down to 1 m and, being a separate sensor from the Flash Lidar, can provide range along a separate vector. The LA measurements are also fed

  14. Radiative heat transfer in rocket thrust chambers and nozzles

    NASA Technical Reports Server (NTRS)

    Hammad, K. J.; Naraghi, M. H. N.

    1989-01-01

    Numerical models based on the discrete exchange factor (DEF) and the zonal methods for radiative analysis of rocket engines containing a radiatively participating medium have been developed. These models implement a new technique for calculating the direct exchange factors to account for possible blockage by the nozzle throat. Given the gas and surface temperature distributions, engine geometry, and radiative properties, the models compute the wall radiative heat fluxes at different axial positions. The results of sample calculations for a typical rocket engine (engine 700 at NASA), which uses RP-1 (a kerosene-type propellant), are presented for a wide range of surface and gas properties. It is found that the heat transfer by radiation can reach up to 50 percent of that due to convection. The maximum radiative heat flux is at the inner side of the engine, where the gas temperature is the highest. While the results of both models are in excellent agreement, the computation time of the DEF method is found to be much smaller.

  15. User's manual for rocket combustor interactive design (ROCCID) and analysis computer program. Volume 1: User's manual

    NASA Technical Reports Server (NTRS)

    Muss, J. A.; Nguyen, T. V.; Johnson, C. W.

    1991-01-01

    The user's manual for the rocket combustor interactive design (ROCCID) computer program is presented. The program, written in Fortran 77, provides a standardized methodology using state of the art codes and procedures for the analysis of a liquid rocket engine combustor's steady state combustion performance and combustion stability. The ROCCID is currently capable of analyzing mixed element injector patterns containing impinging like doublet or unlike triplet, showerhead, shear coaxial, and swirl coaxial elements as long as only one element type exists in each injector core, baffle, or barrier zone. Real propellant properties of oxygen, hydrogen, methane, propane, and RP-1 are included in ROCCID. The properties of other propellants can easily be added. The analysis model in ROCCID can account for the influence of acoustic cavities, helmholtz resonators, and radial thrust chamber baffles on combustion stability. ROCCID also contains the logic to interactively create a combustor design which meets input performance and stability goals. A preliminary design results from the application of historical correlations to the input design requirements. The steady state performance and combustion stability of this design is evaluated using the analysis models, and ROCCID guides the user as to the design changes required to satisfy the user's performance and stability goals, including the design of stability aids. Output from ROCCID includes a formatted input file for the standardized JANNAF engine performance prediction procedure.

  16. LOX/hydrocarbon rocket engine analytical design methodology development and validation. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Niiya, Karen E.; Walker, Richard E.; Pieper, Jerry L.; Nguyen, Thong V.

    1993-01-01

    This final report includes a discussion of the work accomplished during the period from Dec. 1988 through Nov. 1991. The objective of the program was to assemble existing performance and combustion stability models into a usable design methodology capable of designing and analyzing high-performance and stable LOX/hydrocarbon booster engines. The methodology was then used to design a validation engine. The capabilities and validity of the methodology were demonstrated using this engine in an extensive hot fire test program. The engine used LOX/RP-1 propellants and was tested over a range of mixture ratios, chamber pressures, and acoustic damping device configurations. This volume contains time domain and frequency domain stability plots which indicate the pressure perturbation amplitudes and frequencies from approximately 30 tests of a 50K thrust rocket engine using LOX/RP-1 propellants over a range of chamber pressures from 240 to 1750 psia with mixture ratios of from 1.2 to 7.5. The data is from test configurations which used both bitune and monotune acoustic cavities and from tests with no acoustic cavities. The engine had a length of 14 inches and a contraction ratio of 2.0 using a 7.68 inch diameter injector. The data was taken from both stable and unstable tests. All combustion instabilities were spontaneous in the first tangential mode. Although stability bombs were used and generated overpressures of approximately 20 percent, no tests were driven unstable by the bombs. The stability instrumentation included six high-frequency Kistler transducers in the combustion chamber, a high-frequency Kistler transducer in each propellant manifold, and tri-axial accelerometers. Performance data is presented, both characteristic velocity efficiencies and energy release efficiencies, for those tests of sufficient duration to record steady state values.

  17. LOX/hydrocarbon rocket engine analytical design methodology development and validation. Volume 2: Appendices

    NASA Astrophysics Data System (ADS)

    Niiya, Karen E.; Walker, Richard E.; Pieper, Jerry L.; Nguyen, Thong V.

    1993-05-01

    This final report includes a discussion of the work accomplished during the period from Dec. 1988 through Nov. 1991. The objective of the program was to assemble existing performance and combustion stability models into a usable design methodology capable of designing and analyzing high-performance and stable LOX/hydrocarbon booster engines. The methodology was then used to design a validation engine. The capabilities and validity of the methodology were demonstrated using this engine in an extensive hot fire test program. The engine used LOX/RP-1 propellants and was tested over a range of mixture ratios, chamber pressures, and acoustic damping device configurations. This volume contains time domain and frequency domain stability plots which indicate the pressure perturbation amplitudes and frequencies from approximately 30 tests of a 50K thrust rocket engine using LOX/RP-1 propellants over a range of chamber pressures from 240 to 1750 psia with mixture ratios of from 1.2 to 7.5. The data is from test configurations which used both bitune and monotune acoustic cavities and from tests with no acoustic cavities. The engine had a length of 14 inches and a contraction ratio of 2.0 using a 7.68 inch diameter injector. The data was taken from both stable and unstable tests. All combustion instabilities were spontaneous in the first tangential mode. Although stability bombs were used and generated overpressures of approximately 20 percent, no tests were driven unstable by the bombs. The stability instrumentation included six high-frequency Kistler transducers in the combustion chamber, a high-frequency Kistler transducer in each propellant manifold, and tri-axial accelerometers. Performance data is presented, both characteristic velocity efficiencies and energy release efficiencies, for those tests of sufficient duration to record steady state values.

  18. Coal-Fired Rocket Engine

    NASA Technical Reports Server (NTRS)

    Anderson, Floyd A.

    1987-01-01

    Brief report describes concept for coal-burning hybrid rocket engine. Proposed engine carries larger payload, burns more cleanly, and safer to manufacture and handle than conventional solid-propellant rockets. Thrust changeable in flight, and stops and starts on demand.

  19. Ablative material testing for low-pressure, low-cost rocket engines

    NASA Technical Reports Server (NTRS)

    Richter, G. Paul; Smith, Timothy D.

    1995-01-01

    The results of an experimental evaluation of ablative materials suitable for the production of light weight, low cost rocket engine combustion chambers and nozzles are presented. Ten individual specimens of four different compositions of silica cloth-reinforced phenolic resin materials were evaluated for comparative erosion in a subscale rocket engine combustion chamber. Gaseous hydrogen and gaseous oxygen were used as propellants, operating at a nominal chamber pressure of 1138 kPa (165 psi) and a nominal mixture ratio (O/F) of 3.3. These conditions were used to thermally simulate operation with RP-1 and liquid oxygen, and achieved a specimen throat gas temperature of approximately 2456 K (4420 R). Two high-density composition materials exhibited high erosion resistance, while two low-density compositions exhibited approximately 6-75 times lower average erosion resistance. The results compare favorably with previous testing by NASA and provide adequate data for selection of ablatives for low pressure, low cost rocket engines.

  20. Ablative material testing for low-pressure, low-cost rocket engines

    NASA Astrophysics Data System (ADS)

    Richter, G. Paul; Smith, Timothy D.

    1995-10-01

    The results of an experimental evaluation of ablative materials suitable for the production of light weight, low cost rocket engine combustion chambers and nozzles are presented. Ten individual specimens of four different compositions of silica cloth-reinforced phenolic resin materials were evaluated for comparative erosion in a subscale rocket engine combustion chamber. Gaseous hydrogen and gaseous oxygen were used as propellants, operating at a nominal chamber pressure of 1138 kPa (165 psi) and a nominal mixture ratio (O/F) of 3.3. These conditions were used to thermally simulate operation with RP-1 and liquid oxygen, and achieved a specimen throat gas temperature of approximately 2456 K (4420 R). Two high-density composition materials exhibited high erosion resistance, while two low-density compositions exhibited approximately 6-75 times lower average erosion resistance. The results compare favorably with previous testing by NASA and provide adequate data for selection of ablatives for low pressure, low cost rocket engines.

  1. Uncertainty Analysis on Heat Transfer Correlations for RP-1 Fuel in Copper Tubing

    NASA Technical Reports Server (NTRS)

    Driscoll, E. A.; Landrum, D. B.

    2004-01-01

    NASA is studying kerosene (RP-1) for application in Next Generation Launch Technology (NGLT). Accurate heat transfer correlations in narrow passages at high temperatures and pressures are needed. Hydrocarbon fuels, such as RP-1, produce carbon deposition (coke) along the inside of tube walls when heated to high temperatures. A series of tests to measure the heat transfer using RP-1 fuel and examine the coking were performed in NASA Glenn Research Center's Heated Tube Facility. The facility models regenerative cooling by flowing room temperature RP-1 through resistively heated copper tubing. A Regression analysis is performed on the data to determine the heat transfer correlation for Nusselt number as a function of Reynolds and Prandtl numbers. Each measurement and calculation is analyzed to identify sources of uncertainty, including RP-1 property variations. Monte Carlo simulation is used to determine how each uncertainty source propagates through the regression and an overall uncertainty in predicted heat transfer coefficient. The implications of these uncertainties on engine design and ways to minimize existing uncertainties are discussed.

  2. F. Gomez Arias' rocket vehicle project

    NASA Technical Reports Server (NTRS)

    Carreras, R.

    1977-01-01

    Research done by Spanish pioneer rocket scientists in the 19th century was investigated with major emphasis placed on F. Gomez Arias' rocket vehicle project. Arias, considered the world's first designer of rocket propelled, manned aircraft, was interested in solving the problem of space navigation. Major concerns included ascent and direction of heavier-than-airmachines, as well as ascent and direction of balloons.

  3. Modeling RP-1 fuel advanced distillation data using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry and partial least squares analysis.

    PubMed

    Kehimkar, Benjamin; Parsons, Brendon A; Hoggard, Jamin C; Billingsley, Matthew C; Bruno, Thomas J; Synovec, Robert E

    2015-01-01

    Recent efforts in predicting rocket propulsion (RP-1) fuel performance through modeling put greater emphasis on obtaining detailed and accurate fuel properties, as well as elucidating the relationships between fuel compositions and their properties. Herein, we study multidimensional chromatographic data obtained by comprehensive two-dimensional gas chromatography combined with time-of-flight mass spectrometry (GC × GC-TOFMS) to analyze RP-1 fuels. For GC × GC separations, RTX-Wax (polar stationary phase) and RTX-1 (non-polar stationary phase) columns were implemented for the primary and secondary dimensions, respectively, to separate the chemical compound classes (alkanes, cycloalkanes, aromatics, etc.), providing a significant level of chemical compositional information. The GC × GC-TOFMS data were analyzed using partial least squares regression (PLS) chemometric analysis to model and predict advanced distillation curve (ADC) data for ten RP-1 fuels that were previously analyzed using the ADC method. The PLS modeling provides insight into the chemical species that impact the ADC data. The PLS modeling correlates compositional information found in the GC × GC-TOFMS chromatograms of each RP-1 fuel, and their respective ADC, and allows prediction of the ADC for each RP-1 fuel with good precision and accuracy. The root-mean-square error of calibration (RMSEC) ranged from 0.1 to 0.5 °C, and was typically below ∼0.2 °C, for the PLS calibration of the ADC modeling with GC × GC-TOFMS data, indicating a good fit of the model to the calibration data. Likewise, the predictive power of the overall method via PLS modeling was assessed using leave-one-out cross-validation (LOOCV) yielding root-mean-square error of cross-validation (RMSECV) ranging from 1.4 to 2.6 °C, and was typically below ∼2.0 °C, at each % distilled measurement point during the ADC analysis.

  4. Liquid rocket valve assemblies

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design and operating characteristics of valve assemblies used in liquid propellant rocket engines are discussed. The subjects considered are as follows: (1) valve selection parameters, (2) major design aspects, (3) design integration of valve subassemblies, and (4) assembly of components and functional tests. Information is provided on engine, stage, and spacecraft checkout procedures.

  5. Liquid rocket valve components

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A monograph on valves for use with liquid rocket propellant engines is presented. The configurations of the various types of valves are described and illustrated. Design criteria and recommended practices for the various valves are explained. Tables of data are included to show the chief features of valve components in use on operational vehicles.

  6. Silicone containing solid propellant

    NASA Technical Reports Server (NTRS)

    Ramohalli, K. N. R. (Inventor)

    1980-01-01

    The addition of a small amount, for example 1% by weight, of a liquid silicone oil to a metal containing solid rocket propellant provides a significant reduction in heat transfer to the inert nozzle walls. Metal oxide slag collection and blockage of the nozzle are eliminated and the burning rate is increased by about 5% to 10% thus improving ballistic performance.

  7. Contact diagnostics of combustion products of rocket engines, their units, and systems

    NASA Astrophysics Data System (ADS)

    Ivanov, N. N.; Ivanov, A. N.

    2013-12-01

    This article is devoted to a new block-module device used in the diagnostics of condensed combustion products of rocket engines during research and development with liquid-propellant rocket engines (Glushko NPO Energomash; engines RD-171, RD-180, and RD-191) and solid-propellant rocket motors. Soot samplings from the supersonic high-temperature jet of a high-power liquid-propellant rocket engine were taken by the given device for the first time in practice for closed-exhaust lines. A large quantity of significant results was also obtained during a combustion investigation of solid propellants within solid-propellant rocket motors.

  8. Process for the leaching of AP from propellant

    NASA Technical Reports Server (NTRS)

    Shaw, G. C.; Mcintosh, M. J. (Inventor)

    1980-01-01

    A method for the recovery of ammonium perchlorate from waste solid rocket propellant is described wherein shredded particles of the propellant are leached with an aqueous leach solution containing a low concentration of surface active agent while stirring the suspension.

  9. Evaluation and Characterization Study of Dual Pulse Laser-Induced Spark (DPLIS) for Rocket Engine Ignition System Application

    NASA Technical Reports Server (NTRS)

    Osborne, Robin; Wehrmeyer, Joseph; Trinh, Huu; Early, James

    2003-01-01

    This paper addresses the progress of technology development of a laser ignition system at NASA Marshall Space Flight Center (MSFC). Laser ignition has been used at MSFC in recent test series to successfully ignite RP1/GOX propellants in a subscale rocket chamber, and other past studies by NASA GRC have demonstrated the use of laser ignition for rocket engines. Despite the progress made in the study of this ignition method, the logistics of depositing laser sparks inside a rocket chamber have prohibited its use. However, recent advances in laser designs, the use of fiber optics, and studies of multi-pulse laser formats3 have renewed the interest of rocket designers in this state-of the-art technology which offers the potential elimination of torch igniter systems and their associated mechanical parts, as well as toxic hypergolic ignition systems. In support of this interest to develop an alternative ignition system that meets the risk-reduction demands of Next Generation Launch Technology (NGLT), characterization studies of a dual pulse laser format for laser-induced spark ignition are underway at MSFC. Results obtained at MSFC indicate that a dual pulse format can produce plasmas that absorb the laser energy as efficiently as a single pulse format, yet provide a longer plasma lifetime. In an experiments with lean H2/air propellants, the dual pulse laser format, containing the same total energy of a single laser pulse, produced a spark that was superior in its ability to provide sustained ignition of fuel-lean H2/air propellants. The results from these experiments are being used to optimize a dual pulse laser format for future subscale rocket chamber tests. Besides the ignition enhancement, the dual pulse technique provides a practical way to distribute and deliver laser light to the combustion chamber, an important consideration given the limitation of peak power that can be delivered through optical fibers. With this knowledge, scientists and engineers at Los

  10. User's manual for rocket combustor interactive design (ROCCID) and analysis computer program. Volume 2: Appendixes A-K

    NASA Technical Reports Server (NTRS)

    Muss, J. A.; Nguyen, T. V.; Johnson, C. W.

    1991-01-01

    The appendices A-K to the user's manual for the rocket combustor interactive design (ROCCID) computer program are presented. This includes installation instructions, flow charts, subroutine model documentation, and sample output files. The ROCCID program, written in Fortran 77, provides a standardized methodology using state of the art codes and procedures for the analysis of a liquid rocket engine combustor's steady state combustion performance and combustion stability. The ROCCID is currently capable of analyzing mixed element injector patterns containing impinging like doublet or unlike triplet, showerhead, shear coaxial and swirl coaxial elements as long as only one element type exists in each injector core, baffle, or barrier zone. Real propellant properties of oxygen, hydrogen, methane, propane, and RP-1 are included in ROCCID. The properties of other propellants can be easily added. The analysis models in ROCCID can account for the influences of acoustic cavities, helmholtz resonators, and radial thrust chamber baffles on combustion stability. ROCCID also contains the logic to interactively create a combustor design which meets input performance and stability goals. A preliminary design results from the application of historical correlations to the input design requirements. The steady state performance and combustion stability of this design is evaluated using the analysis models, and ROCCID guides the user as to the design changes required to satisfy the user's performance and stability goals, including the design of stability aids. Output from ROCCID includes a formatted input file for the standardized JANNAF engine performance prediction procedure.

  11. Cone Dystrophy in Patient with Homozygous RP1L1 Mutation

    PubMed Central

    Kikuchi, Sachiko; El Shamieh, Said; Akeo, Keiichiro; Sugawara, Yuko; Yamaki, Kunihiko; Takahashi, Hiroshi

    2015-01-01

    The purpose of this study was to determine whether an autosomal recessive cone dystrophy was caused by a homozygous RP1L1 mutation. A family including one subject affected with cone dystrophy and four unaffected members without evidence of consanguinity underwent detailed ophthalmic evaluations. The ellipsoid and interdigitation zones on the spectral-domain optical coherence tomography images were disorganized in the proband. The proband had a reduced amplitude of cone and flicker full-field electroretinograms (ERGs). Focal macular ERGs and multifocal ERGs were severely reduced in the proband. A homozygous RP1L1 mutation (c.3628T>C, p.S1210P) was identified in the proband. Family members who were heterozygous for the p.S1210P mutation had normal visual acuity and normal results of clinical evaluations. To investigate other putative pathogenic variant(s), a next-generation sequencing (NGS) approach was applied to the proband. NGS identified missense changes in the heterozygous state of the PCDH15, RPGRIP1, and GPR98 genes. None of these variants cosegregated with the phenotype and were predicted to be benign reinforcing the putative pathogenicity of the RP1L1 homozygous mutation. The AO images showed a severe reduction of the cone density in the proband. Our findings indicate that a homozygous p.S1210P exchange in the RP1L1 gene can cause cone dystrophy. PMID:25692141

  12. New Rust Resistance Specificities Associated with Recombination in the Rp1 Complex in Maize

    PubMed Central

    Richter, T. E.; Pryor, T. J.; Bennetzen, J. L.; Hulbert, S. H.

    1995-01-01

    We address the question of whether genetic reassortment events, including unequal crossing over and gene conversion, at the Rp1 complex are capable of generating novel resistance specificities that were not present in the parents. Some 176 events involving genetic reassortment within the Rp1 complex were screened for novel resistance specificities with a set of 11 different rust biotypes. Most (150/176) of the events were susceptible to all tested rust biotypes, providing no evidence for new specificities. Eleven events selected as double-resistant recombinants, when screened with the 11 test biotypes, showed the combined resistance of the two parental types consistent with a simple recombination and pyramiding of the parental resistances. Nine events selected either as having partial resistance or complete susceptibility to a single biotype possessed resistance to a subset of the biotypes that the parents were resistant to, suggesting segregation of resistance genes present in the parental Rp1 complex. Four events gave rise to novel specificities being resistant to at least one rust biotype to which both parents were susceptible. All four had flanking marker exchange, demonstrating that crossing over within the Rp1 complex is associated with the appearance of new rust resistance specificities. PMID:8536984

  13. Electric rockets get a boost

    SciTech Connect

    Ashley, S.

    1995-12-01

    This article reports that xenon-ion thrusters are expected to replace conventional chemical rockets in many nonlaunch propulsion tasks, such as controlling satellite orbits and sending space probes on long exploratory missions. The space age dawned some four decades ago with the arrival of powerful chemical rockets that could propel vehicles fast enough to escape the grasp of earth`s gravity. Today, chemical rocket engines still provide the only means to boost payloads into orbit and beyond. The less glamorous but equally important job of moving vessels around in space, however, may soon be assumed by a fundamentally different rocket engine technology that has been long in development--electric propulsion.

  14. Mars Rocket Propulsion System

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Harber, Dan; Nabors, Sammy

    2008-01-01

    A report discusses the methane and carbon monoxide/LOX (McLOx) rocket for ascent from Mars as well as other critical space propulsion tasks. The system offers a specific impulse over 370 s roughly 50 s higher than existing space-storable bio-propellants. Current Mars in-situ propellant production (ISPP) technologies produce impure methane and carbon monoxide in various combinations. While separation and purification of methane fuel is possible, it adds complexity to the propellant production process and discards an otherwise useful fuel product. The McLOx makes such complex and wasteful processes unnecessary by burning the methane/CO mixtures produced by the Mars ISPP systems without the need for further refinement. Despite the decrease in rocket-specific impulse caused by the CO admixture, the improvement offered by concomitant increased propellant density can provide a net improvement in stage performance. One advantage is the increase of the total amount of propellant produced, but with a decrease in mass and complexity of the required ISPP plant. Methane/CO fuel mixtures also may be produced by reprocessing the organic wastes of a Moon base or a space station, making McLOx engines key for a human Lunar initiative or the International Space Station (ISS) program. Because McLOx propellant components store at a common temperature, very lightweight and compact common bulkhead tanks can be employed, improving overall stage performance further.

  15. Low acid producing solid propellants

    NASA Technical Reports Server (NTRS)

    Bennett, Robert R.

    1995-01-01

    The potential environmental effects of the exhaust products of conventional rocket propellants have been assessed by various groups. Areas of concern have included stratospheric ozone, acid rain, toxicity, air quality and global warming. Some of the studies which have been performed on this subject have concluded that while the impacts of rocket use are extremely small, there are propellant development options which have the potential to reduce those impacts even further. This paper discusses the various solid propellant options which have been proposed as being more environmentally benign than current systems by reducing HCI emissions. These options include acid neutralized, acid scavenged, and nonchlorine propellants. An assessment of the acid reducing potential and the viability of each of these options is made, based on current information. Such an assessment is needed in order to judge whether the potential improvements justify the expenditures of developing the new propellant systems.

  16. A solution to the problem of optimizing the fuel bias for a liquid propellant rocket by an application of the central limit theorem

    NASA Technical Reports Server (NTRS)

    Viera, W. J.

    1974-01-01

    A method of determining the fuel bias for a bipropellant liquid rocket that minimizes outage associated penalties on payload potential is presented. A fuel bias so derived is normally called the optimum fuel bias. The subjects discussed are: (1) probability density function of outage, (2) computer program listing, and (3) choosing the optimum fuel bias.

  17. A logistics and potential hazard study of propellant systems for a Saturn 5 derived heavy lift (three-stage core) launch vehicle

    NASA Technical Reports Server (NTRS)

    Whitney, E. Dow

    1992-01-01

    The Bush Administration has directed NASA to prepare for a return to the Moon and on to Mars - the Space Exploration Initiative. To meet this directive, powerful rocket boosters will be required in order to lift payloads that may reach the half-million pound range into low earth orbit. In this report an analysis is presented on logistics and potential hazards of the propellant systems envisioned for future Saturn 5 derived heavy lift launch vehicles. In discussing propellant logistics, particular attention has been given to possible problems associated with procurement, transportation, and storage of RP-1, HL2, and LOX, the heavy lift launch vehicle propellants. Current LOX producing facilities will need to be expanded and propellant storage and some support facilities will require relocation if current Launch Pads 39A and/or 39B are to be used for future heavy noise-abatement measures. Included in the report is a discussion of suggested additional studies, primarily economic and environmental, which should be undertaken in support of the goals of the Space Exploration Initiative.

  18. Composite propellant combustion modeling studies

    NASA Technical Reports Server (NTRS)

    Ramohalli, K.

    1977-01-01

    A review is presented of theoretical and experimental studies of composite propellant combustion. The theoretical investigations include a model of the combustion of a nonmetallized ammonium perchlorate (AP) propellant (noting time scales for vapor-phase combustion and the condensed phase) and response functions in pressure-coupled oscillations. The experimental studies are discussed with reference to scale-modeling apparatus, flame standoff distance versus velocity as a function of pressure, and results from T-burner firings of a nonmetallized AP/polysulfide propellant. Research applications including problems with nitramine propellants, the feasibility of stop-restart rockets with salt quench, and combustion problems in large boosters are outlined.

  19. A Design Tool for Liquid Rocket Engine Injectors

    NASA Technical Reports Server (NTRS)

    Farmer, R.; Cheng, G.; Trinh, H.; Tucker, K.

    2000-01-01

    A practical design tool which emphasizes the analysis of flowfields near the injector face of liquid rocket engines has been developed and used to simulate preliminary configurations of NASA's Fastrac and vortex engines. This computational design tool is sufficiently detailed to predict the interactive effects of injector element impingement angles and points and the momenta of the individual orifice flows and the combusting flow which results. In order to simulate a significant number of individual orifices, a homogeneous computational fluid dynamics model was developed. To describe sub- and supercritical liquid and vapor flows, the model utilized thermal and caloric equations of state which were valid over a wide range of pressures and temperatures. The model was constructed such that the local quality of the flow was determined directly. Since both the Fastrac and vortex engines utilize RP-1/LOX propellants, a simplified hydrocarbon combustion model was devised in order to accomplish three-dimensional, multiphase flow simulations. Such a model does not identify drops or their distribution, but it does allow the recirculating flow along the injector face and into the acoustic cavity and the film coolant flow to be accurately predicted.

  20. Microfabricated Liquid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Epstein, Alan H.; Joppin, C.; Kerrebrock, J. L.; Schneider, Steven J. (Technical Monitor)

    2003-01-01

    Under NASA Glenn Research Center sponsorship, MIT has developed the concept of micromachined, bipropellant, liquid rocket engines. This is potentially a breakthrough technology changing the cost-performance tradeoffs for small propulsion systems, enabling new applications, and redefining the meaning of the term low-cost-access-to-space. With this NASA support, a liquid-cooled, gaseous propellant version of the thrust chamber and nozzle was designed, built, and tested as a first step. DARPA is currently funding MIT to demonstrate turbopumps and controls. The work performed herein was the second year of a proposed three-year effort to develop the technology and demonstrate very high power density, regeneratively cooled, liquid bipropellant rocket engine thrust chamber and nozzles. When combined with the DARPA turbopumps and controls, this work would enable the design and demonstration of a complete rocket propulsion system. The original MIT-NASA concept used liquid oxygen-ethanol propellants. The military applications important to DARPA imply that storable liquid propellants are needed. Thus, MIT examined various storable propellant combinations including N2O4 and hydrazine, and H2O2 and various hydrocarbons. The latter are preferred since they do not have the toxicity of N2O4 and hydrazine. In reflection of the newfound interest in H2O2, it is once again in production and available commercially. A critical issue for the microrocket engine concept is cooling of the walls in a regenerative design. This is even more important at microscale than for large engines due to cube-square scaling considerations. Furthermore, the coolant behavior of rocket propellants has not been characterized at microscale. Therefore, MIT designed and constructed an apparatus expressly for this purpose. The report details measurements of two candidate microrocket fuels, JP-7 and JP-10.

  1. Wet air oxidation of propellant wastewaters

    SciTech Connect

    Randall, T.L.; Copa, W.M.; Deitrich, M.J.

    1985-01-01

    Wet Air Oxidation studies have been conducted on a number of propellant wastewaters, to assess destruction levels of specific propellant components. OTTO fuel, used as a torpedo propellant, and hydrazine based rocket fuels were propellants of interest. OTTO fuel wastewaters contain substantial amounts of propylene glycol dinitrate. Hydrazine based rocket fuel wastewaters contain hydrazine and unsymmetrical dimethyl hydrazine. Laboratory Wet Air Oxidation studies on OTTO fuel wastewaters indicated that a 99+ percent destruction of propylene glycol dinitrate can be achieved at an oxidation temperature of 280/sup 0/C.

  2. The Influence of the Von Opel-Valier Experiments Upon German Rocket-Propelled Model Aircraft Development, 1920's-1930's

    NASA Astrophysics Data System (ADS)

    Winter, F. H.

    The following is a brief paper presented at the XXVIIIth International Astronautical Federation (IAF) Congress held in Prague, 25 September - 1 October 1977. Although it is generally assumed that recreational model rocketry, including commercially available kits, evolved during the Space Age, there were some interesting early predecessors, especially in Germany, that apparently arose as a result of the widespread reported rocket car and plane stunts of Fritz von Opel and Max Valier in the late 1920's.

  3. Loss of function mutations in RP1 are responsible for retinitis pigmentosa in consanguineous familial cases

    PubMed Central

    Kabir, Firoz; Ullah, Inayat; Ali, Shahbaz; Gottsch, Alexander D.H.; Naeem, Muhammad Asif; Assir, Muhammad Zaman; Khan, Shaheen N.; Akram, Javed; Riazuddin, Sheikh; Ayyagari, Radha; Hejtmancik, J. Fielding

    2016-01-01

    Purpose This study was undertaken to identify causal mutations responsible for autosomal recessive retinitis pigmentosa (arRP) in consanguineous families. Methods Large consanguineous families were ascertained from the Punjab province of Pakistan. An ophthalmic examination consisting of a fundus evaluation and electroretinography (ERG) was completed, and small aliquots of blood were collected from all participating individuals. Genomic DNA was extracted from white blood cells, and a genome-wide linkage or a locus-specific exclusion analysis was completed with polymorphic short tandem repeats (STRs). Two-point logarithm of odds (LOD) scores were calculated, and all coding exons and exon–intron boundaries of RP1 were sequenced to identify the causal mutation. Results The ophthalmic examination showed that affected individuals in all families manifest cardinal symptoms of RP. Genome-wide scans localized the disease phenotype to chromosome 8q, a region harboring RP1, a gene previously implicated in the pathogenesis of RP. Sanger sequencing identified a homozygous single base deletion in exon 4: c.3697delT (p.S1233Pfs22*), a single base substitution in intron 3: c.787+1G>A (p.I263Nfs8*), a 2 bp duplication in exon 2: c.551_552dupTA (p.Q185Yfs4*) and an 11,117 bp deletion that removes all three coding exons of RP1. These variations segregated with the disease phenotype within the respective families and were not present in ethnically matched control samples. Conclusions These results strongly suggest that these mutations in RP1 are responsible for the retinal phenotype in affected individuals of all four consanguineous families. PMID:27307693

  4. Antinociceptive effects of Randia siamensis extract and its constituent, pseudoginsenoside-RP1 in experimental animals.

    PubMed

    Reanmongkol, W; Matsumoto, K; Itharat, A; Watanabe, H

    1994-09-01

    Analgesic activities of Randia siamensis CRAIB (R. siamensis) extract and pseudoginsenoside-RP1, a constituent of the extract, were examined in the writhing test, hot plate test and Randall-Selitto test. Oral administration of R. siamensis extract dose-dependently decreased the number of writhings and stretchings induced by 0.6% acetic acid in the writhing test in mice. Moreover, in the Randall-Selitto test in rats, the extract raised the nociceptive threshold of the carrageenan-inflamed but not of non-inflamed paw. It did not affect the nociceptive response in the hot plate test in mice. The R. siamensis extract did not affect hexobarbital-induced sleep or spontaneous motor activity in mice, suggesting that it has no sedative effect. Pseudoginsenoside-RP1 produced similar effects to the R. siamensis extract, but its effective doses in the analgesic tests were lower than those with the extract. These results suggest that R. siamensis extract produces anti-nociceptive actions similar to those of a peripherally acting analgesic drug aspirin, and that pseudoginsenoside-RP1 may partly contribute, but is not the main contributor, to the antinociceptive action of the extract. PMID:7841940

  5. ISRO's solid rocket motors

    NASA Astrophysics Data System (ADS)

    Nagappa, R.; Kurup, M. R.; Muthunayagam, A. E.

    1989-08-01

    Solid rocket motors have been the mainstay of ISRO's sounding rockets and the first generation satellite launch vehicles. For the new launch vehicle under development also, the solid rocket motors contribute significantly to the vehicle's total propulsive power. The rocket motors in use and under development have been developed for a variety of applications and range in size from 30 mm dia employing 450 g of solid propellant—employed for providing a spin to the apogee motors—to the giant 2.8 m dia motor employing nearly 130 tonnes of solid propellant. The initial development, undertaken in 1967 was of small calibre motor of 75 mm dia using a double base charge. The development was essentially to understand the technological elements. Extruded aluminium tubes were used as a rocket motor casing. The fore and aft closures were machined from aluminium rods. The grain was a seven-pointed star with an enlargement of the port at the aft end and was charged into the chamber using a polyester resin system. The nozzle was a metallic heat sink type with graphite throat insert. The motor was ignited with a black powder charge and fired for 2.0 s. Subsequent to this, further developmental activities were undertaken using PVC plastisol based propellants. A class of sounding rockets ranging from 125 to 560 mm calibre were realized. These rocket motors employed improved designs and had delivered lsp ranging from 2060 to 2256 Ns/kg. Case bonding could not be adopted due to the higher cure temperatures of the plastisol propellants but improvements were made in the grain charging techniques and in the design of the igniters and the nozzle. Ablative nozzles based on asbestos phenolic and silica phenolic with graphite inserts were used. For the larger calibre rocket motors, the lsp could be improved by metallic additives. In the early 1970s designs were evolved for larger and more efficient motors. A series of 4 motors for the country's first satellite launch vehicle SLV-3 were

  6. Hydrocarbon Rocket Technology Impact Forecasting

    NASA Technical Reports Server (NTRS)

    Stuber, Eric; Prasadh, Nishant; Edwards, Stephen; Mavris, Dimitri N.

    2012-01-01

    Ever since the Apollo program ended, the development of launch propulsion systems in the US has fallen drastically, with only two new booster engine developments, the SSME and the RS-68, occurring in the past few decades.1 In recent years, however, there has been an increased interest in pursuing more effective launch propulsion technologies in the U.S., exemplified by the NASA Office of the Chief Technologist s inclusion of Launch Propulsion Systems as the first technological area in the Space Technology Roadmaps2. One area of particular interest to both government agencies and commercial entities has been the development of hydrocarbon engines; NASA and the Air Force Research Lab3 have expressed interest in the use of hydrocarbon fuels for their respective SLS Booster and Reusable Booster System concepts, and two major commercially-developed launch vehicles SpaceX s Falcon 9 and Orbital Sciences Antares feature engines that use RP-1 kerosene fuel. Compared to engines powered by liquid hydrogen, hydrocarbon-fueled engines have a greater propellant density (usually resulting in a lighter overall engine), produce greater propulsive force, possess easier fuel handling and loading, and for reusable vehicle concepts can provide a shorter turnaround time between launches. These benefits suggest that a hydrocarbon-fueled launch vehicle would allow for a cheap and frequent means of access to space.1 However, the time and money required for the development of a new engine still presents a major challenge. Long and costly design, development, testing and evaluation (DDT&E) programs underscore the importance of identifying critical technologies and prioritizing investment efforts. Trade studies must be performed on engine concepts examining the affordability, operability, and reliability of each concept, and quantifying the impacts of proposed technologies. These studies can be performed through use of the Technology Impact Forecasting (TIF) method. The Technology Impact

  7. Propellant-powered actuator for gas generators

    NASA Technical Reports Server (NTRS)

    Makowski, M. J.

    1972-01-01

    Hydrazine operated monopropellant generators are used for spacecraft rocket engines and propellant pressurization systems. Measured work output of monopropellant actuators compares favorably with output of squib-type actuators.

  8. A Flight Demonstration of Plasma Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Petro, Andrew

    1999-01-01

    The Advanced Space Propulsion Laboratory at the Johnson Space Center has been engaged in the development of a magneto-plasma rocket for several years. This type of rocket could be used in the future to propel interplanetary spacecraft. One advantageous feature of this rocket concept is the ability to vary its specific impulse so that it can be operated in a mode which maximizes propellant efficiency or a mode which maximizes thrust. This presentation will describe a proposed flight experiment in which a simple version of the rocket will be tested in space. In addition to the plasma rocket, the flight experiment will also demonstrate the use of a superconducting electromagnet, extensive use of heat pipes, and possibly the transfer of cryogenic propellant in space.

  9. Runtime and Pressurization Analyses of Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Field, Robert E.; Ryan, Harry M.; Ahuja, Vineet; Hosangadi, Ashvin; Lee, Chung P.

    2007-01-01

    Multi-element unstructured CFD has been utilized at NASA SSC to carry out analyses of propellant tank systems in different modes of operation. The three regimes of interest at SSC include (a) tank chill down (b) tank pressurization and (c) runtime propellant draw-down and purge. While tank chill down is an important event that is best addressed with long time-scale heat transfer calculations, CFD can play a critical role in the tank pressurization and runtime modes of operation. In these situations, problems with contamination of the propellant by inclusion of the pressurant gas from the ullage causes a deterioration of the quality of the propellant delivered to the test article. CFD can be used to help quantify the mixing and propellant degradation. During tank pressurization under some circumstances, rapid mixing of relatively warm pressurant gas with cryogenic propellant can lead to rapid densification of the gas and loss of pressure in the tank. This phenomenon can cause serious problems during testing because of the resulting decrease in propellant flow rate. With proper physical models implemented, CFD can model the coupling between the propellant and pressurant including heat transfer and phase change effects and accurately capture the complex physics in the evolving flowfields. This holds the promise of allowing the specification of operational conditions and procedures that could minimize the undesirable mixing and heat transfer inherent in propellant tank operation. It should be noted that traditional CFD modeling is inadequate for such simulations because the fluids in the tank are in a range of different sub-critical and supercritical states and elaborate phase change and mixing rules have to be developed to accurately model the interaction between the ullage gas and the propellant. We show a typical run-time simulation of a spherical propellant tank, containing RP-1 in this case, being pressurized with room-temperature nitrogen at 540 R. Nitrogen

  10. Nanoparticles for solid rocket propulsion

    NASA Astrophysics Data System (ADS)

    Galfetti, L.; DeLuca, L. T.; Severini, F.; Meda, L.; Marra, G.; Marchetti, M.; Regi, M.; Bellucci, S.

    2006-08-01

    The characterization of several differently sized aluminium powders, by BET (specific surface), EM (electron microscopy), XRD (x-ray diffraction), and XPS (x-ray photoelectron spectroscopy), was performed in order to evaluate their application in solid rocket propellant compositions. These aluminium powders were used in manufacturing several laboratory composite solid rocket propellants, based on ammonium perchlorate (AP) as oxidizer and hydroxil-terminated polybutadiene (HTPB) as binder. The reference formulation was an AP/HTPB/Al composition with 68/17/15% mass fractions respectively. The ballistic characterization of the propellants, in terms of steady burning rates, shows better performance for propellant compositions employing nano-aluminium when compared to micro-aluminium. Results obtained in the pressure range 1-70 bar show that by increasing the nano-Al mass fraction or decreasing the nano-Al size, larger steady burning rates are measured with essentially the same pressure sensitivity.

  11. Solid rocket motor internal insulation

    NASA Technical Reports Server (NTRS)

    Twichell, S. E. (Editor); Keller, R. B., Jr.

    1976-01-01

    Internal insulation in a solid rocket motor is defined as a layer of heat barrier material placed between the internal surface of the case propellant. The primary purpose is to prevent the case from reaching temperatures that endanger its structural integrity. Secondary functions of the insulation are listed and guidelines for avoiding critical problems in the development of internal insulation for rocket motors are presented.

  12. Laser rocket system analysis

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The laser rocket systems investigated in this study were for orbital transportation using space-based, ground-based and airborne laser transmitters. The propulsion unit of these systems utilizes a continuous wave (CW) laser beam focused into a thrust chamber which initiates a plasma in the hydrogen propellant, thus heating the propellant and providing thrust through a suitably designed nozzle and expansion skirt. The specific impulse is limited only by the ability to adequately cool the thruster and the amount of laser energy entering the engine. The results of the study showed that, with advanced technology, laser rocket systems with either a space- or ground-based laser transmitter could reduce the national budget allocated to space transportation by 10 to 345 billion dollars over a 10-year life cycle when compared to advanced chemical propulsion systems (LO2-LH2) of equal capability. The variation in savings depends upon the projected mission model.

  13. Study of solid rocket motor for space shuttle booster, volume 2, book 2

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A technical analysis of the solid propellant rocket engines for use with the space shuttle is presented. The subjects discussed are: (1) solid rocket motor stage recovery, (2) environmental effects, (3) man rating of the solid propellant rocket engines, (4) system safety analysis, (5) ground support equipment, and (6) transportation, assembly, and checkout.

  14. Deposit formation in hydrocarbon rocket fuels

    NASA Technical Reports Server (NTRS)

    Roback, R.; Szetela, E. J.; Spadaccini, L. J.

    1981-01-01

    An experimental program was conducted to study deposit formation in hydrocarbon fuels under flow conditions that exist in high-pressure, rocket engine cooling systems. A high pressure fuel coking test apparatus was designed and developed and was used to evaluate thermal decomposition (coking) limits and carbon deposition rates in heated copper tubes for two hydrocarbon rocket fuels, RP-1 and commercial-grade propane. Tests were also conducted using JP-7 and chemically-pure propane as being representative of more refined cuts of the baseline fuels. A parametric evaluation of fuel thermal stability was performed at pressures of 136 atm to 340 atm, bulk fuel velocities in the range 6 to 30 m/sec, and tube wall temperatures in the range 422 to 811 K. Results indicated that substantial deposit formation occurs with RP-1 fuel at wall temperatures between 600 and 800 K, with peak deposit formation occurring near 700 K. No improvements were obtained when deoxygenated JP-7 fuel was substituted for RP-1. The carbon deposition rates for the propane fuels were generally higher than those obtained for either of the kerosene fuels at any given wall temperature. There appeared to be little difference between commercial-grade and chemically-pure propane with regard to type and quantity of deposit. Results of tests conducted with RP-1 indicated that the rate of deposit formation increased slightly with pressure over the range 136 atm to 340 atm. Finally, lating the inside wall of the tubes with nickel was found to significantly reduce carbon deposition rates for RP-1 fuel.

  15. EPDM rocket motor insulation

    NASA Technical Reports Server (NTRS)

    Guillot, David G. (Inventor); Harvey, Albert R. (Inventor)

    2003-01-01

    A novel and improved EPDM formulation for a solid propellant rocket motor is described wherein hexadiene EPDM monomer components are replaced by alkylidene norbornene components and with appropriate adjustment of curing and other additives functionally-required rheological and physical characteristics are achieved with the desired compatibility with any one of a plurality of solid filler materials, e.g. powder silica, carbon fibers or aramid fibers, and with appropriate adhesion and extended storage or shelf life characteristics.

  16. EPDM rocket motor insulation

    NASA Technical Reports Server (NTRS)

    Guillot, David G. (Inventor); Harvey, Albert R. (Inventor)

    2004-01-01

    A novel and improved EPDM formulation for a solid propellant rocket motor is described wherein hexadiene EPDM monomer components are replaced by alkylidene norbornene components, and, with appropriate adjustment of curing and other additives, functionally required rheological and physical characteristics are achieved with the desired compatibility with any one of a plurality of solid filler materials, e.g., powder silica, carbon fibers or aramid fibers, and with appropriate adhesion and extended storage or shelf-life characteristics.

  17. EPDM rocket motor insulation

    NASA Technical Reports Server (NTRS)

    Guillot, David G. (Inventor); Harvey, Albert R. (Inventor)

    2008-01-01

    A novel and improved EPDM formulation for a solid propellant rocket motor is described wherein hexadiene EPDM monomer components are replaced by alkylidene norbornene components, and, with appropriate adjustment of curing and other additives, functionally required rheological and physical characteristics are achieved with the desired compatibility with any one of a plurality of solid filler materials, e.g., powder silica, carbon fibers or aramid fibers, and with appropriate adhesion and extended storage or shelf-life characteristics.

  18. A smoke producing rocket motor for atmospheric wind profiling

    SciTech Connect

    Grubelich, M.C. ); Rowland, J. . Applied Physics Lab.)

    1991-01-01

    A composite propellant was developed to produce a dense plume from a rocket motor. The development of this propellant combined the smoke producing capabilities of a smoke generator with a rocket motor, thereby integrating the separate systems into one unit. A rocket motor was designed for use with this propellant to produce a high density particulate plume. This plume could then be used to determine the wind profile in the atmosphere by using a light detection and ranging system. Additionally, this smoke producing propellant could be used for rapid screening or identification. The burn rate characteristics of the propellant were measured and static firings of rocket motors were conducted to determine the performance of the propellant. The results of these tests will be presented as well as theoretical performance predictions of a flight vehicle.

  19. A smoke producing rocket motor for atmospheric wind profiling

    SciTech Connect

    Grubelich, M.C.; Rowland, J.

    1991-12-31

    A composite propellant was developed to produce a dense plume from a rocket motor. The development of this propellant combined the smoke producing capabilities of a smoke generator with a rocket motor, thereby integrating the separate systems into one unit. A rocket motor was designed for use with this propellant to produce a high density particulate plume. This plume could then be used to determine the wind profile in the atmosphere by using a light detection and ranging system. Additionally, this smoke producing propellant could be used for rapid screening or identification. The burn rate characteristics of the propellant were measured and static firings of rocket motors were conducted to determine the performance of the propellant. The results of these tests will be presented as well as theoretical performance predictions of a flight vehicle.

  20. Materials characterization of propellants using ultrasonics

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Jones, David

    1993-01-01

    Propellant characteristics for solid rocket motors were not completely determined for its use as a processing variable in today's production facilities. A major effort to determine propellant characteristics obtainable through ultrasonic measurement techniques was performed in this task. The information obtained was then used to determine the uniformity of manufacturing methods and/or the ability to determine non-uniformity in processes.

  1. Recovery of aluminum from composite propellants

    NASA Technical Reports Server (NTRS)

    Shaw, G. C. (Inventor)

    1980-01-01

    Aluminum was recovered from solid rocket propellant containing a small amount of oxidizer by depolymerizing and dissolving propellant binders (containing functional or hydrolyzable groups in a solution of sodium methoxide) in an alcohol solvent optionally containing an aliphatic or aromatic hydrocarbon co-solvent. The solution was filtered to recover substantially all the aluminum in active form.

  2. Composite Solid Propellant Predictability and Quality Assurance

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar

    1989-01-01

    Reports are presented at the meeting at the University of Arizona on the study of predictable and reliable solid rocket motors. The following subject areas were covered: present state and trends in the research of solid propellants; the University of Arizona program in solid propellants, particularly in mixing (experimental and analytical results are presented).

  3. Antagonism between MyD88- and TRIF-dependent signals in B7RP-1 up-regulation.

    PubMed

    Zhou, Zuping; Hoebe, Kasper; Du, Xin; Jiang, Zhengfan; Shamel, Louis; Beutler, Bruce

    2005-06-01

    Type I interferons (IFN) play a critical role in the Toll-like receptor (TLR)-mediated expression of B7 costimulatory family members. For example, LPS-induced up-regulation of CD80 (B7.1) and CD86 (B7.2) is abrogated in antigen-presenting cells (APC) deficient in TRIF or TRAM, two adaptors that are responsible for TLR4-mediated production of Type I IFN. In this report, we demonstrate that LPS-induced up-regulation of B7-related protein 1 (B7RP-1), a ligand for ICOS, is dependent primarily upon the MyD88-dependent signaling pathway. Signaling via the TRIF pathway sharply limits MyD88-dependent B7RP-1 up-regulation. Hence, LPS induces significantly higher B7RP-1 expression on TRIF- or TRAM-deficient mouse peritoneal macrophages and on TRIF-deficient mouse splenic B cells as compared to wild-type cells. Further studies reveal that Type I IFN are general suppressors of TLR-mediated up-regulation of B7RP-1. These data indicate that Type I IFN play a dual role in the TLR-mediated expression of B7 costimulatory family members and suggest that they may act to limit B7RP-1 expression and thus limit signals derived from B7RP-1-ICOS interaction.

  4. Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations.

    PubMed

    Sellami-Kamoun, Alya; Haddar, Anissa; Ali, Nedra El-Hadj; Ghorbel-Frikha, Basma; Kanoun, Safia; Nasri, Moncef

    2008-01-01

    The stability of crude extracellular protease produced by Bacillus licheniformis RP1, isolated from polluted water, in various solid laundry detergents was investigated. The enzyme had an optimum pH and temperature at pH 10.0-11.0 and 65-70 degrees C. Enzyme activity was inhibited by PMSF, suggesting that the preparation contains a serine-protease. The alkaline protease showed extreme stability towards non-ionic (5% Tween 20% and 5% Triton X-100) and anionic (0.5% SDS) surfactants, which retained 100% and above 73%, respectively, of its initial activity after preincubation 60 min at 40 degrees C. The RP1 protease showed excellent stability and compatibility with a wide range of commercial solid detergents at temperatures from 40 to 50 degrees C, suggesting its further application in detergent industry. The enzyme retained 95% of its initial activity with Ariel followed by Axion (94%) then Dixan (93.5%) after preincubation 60 min at 40 degrees C in the presence of 7 mg/ml of detergents. In the presence of Nadhif and New Det, the enzyme retained about 83.5% of the original activity. The effects of additives such as maltodextrin, sucrose and PEG 4000 on the stability of the enzyme during spray-drying and during subsequent storage in New Det detergent were also examined. All additives tested enhanced stability of the enzyme.

  5. Advanced oxygen-hydrocarbon rocket engine study

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.; Ewen, R. L.

    1981-01-01

    This study identifies and evaluates promising LO2/HC rocket engine cycles, produces a consistent and reliable data base for vehicle optimization and design studies, demonstrates the significance of propulsion system improvements, and selects the critical technology areas necessary to realize an improved surface to orbit transportation system. Parametric LO2/HC engine data were generated over a range of thrust levels from 890 to 6672 kN (200K to 1.5M 1bF) and chamber pressures from 6890 to 34500 kN (1000 to 5000 psia). Engine coolants included RP-1, refined RP-1, LCH4, LC3H8, LO2, and LH2. LO2/RP-1 G.G. cycles were found to be not acceptable for advanced engines. The highest performing LO2/RP-1 staged combustion engine cycle utilizes LO2 as the coolant and incorporates an oxidizer rich preburner. The highest performing cycle for LO2/LCH4 and LO2/LC3H8 utilizes fuel cooling and incorporates both fuel and oxidizer rich preburners. LO2/HC engine cycles permitting the use of a third fluid LH2 coolant and an LH2 rich gas generator provide higher performance at significantly lower pump discharge pressures. The LO2/HC dual throat engine, because of its high altitude performance, delivers the highest payload for the vehicle configuration that was investigated.

  6. Measuring Combustion Advance in Solid Propellants

    NASA Technical Reports Server (NTRS)

    Yang, L. C.

    1986-01-01

    Set of gauges on solid-propellant rocket motor with electrically insulating case measures advance of combustion front and local erosion rates of propellant and insulation. Data furnished by gauges aid in motor design, failure analysis, and performance prediction. Technique useful in determining propellant uniformity and electrical properties of exhaust plum. Gauges used both in flight and on ground. Foilgauge technique also useful in basic research on pulsed plasmas or combustion of solids.

  7. Propellant Chemistry for CFD Applications

    NASA Technical Reports Server (NTRS)

    Farmer, R. C.; Anderson, P. G.; Cheng, Gary C.

    1996-01-01

    Current concepts for reusable launch vehicle design have created renewed interest in the use of RP-1 fuels for high pressure and tri-propellant propulsion systems. Such designs require the use of an analytical technology that accurately accounts for the effects of real fluid properties, combustion of large hydrocarbon fuel modules, and the possibility of soot formation. These effects are inadequately treated in current computational fluid dynamic (CFD) codes used for propulsion system analyses. The objective of this investigation is to provide an accurate analytical description of hydrocarbon combustion thermodynamics and kinetics that is sufficiently computationally efficient to be a practical design tool when used with CFD codes such as the FDNS code. A rigorous description of real fluid properties for RP-1 and its combustion products will be derived from the literature and from experiments conducted in this investigation. Upon the establishment of such a description, the fluid description will be simplified by using the minimum of empiricism necessary to maintain accurate combustion analyses and including such empirical models into an appropriate CFD code. An additional benefit of this approach is that the real fluid properties analysis simplifies the introduction of the effects of droplet sprays into the combustion model. Typical species compositions of RP-1 have been identified, surrogate fuels have been established for analyses, and combustion and sooting reaction kinetics models have been developed. Methods for predicting the necessary real fluid properties have been developed and essential experiments have been designed. Verification studies are in progress, and preliminary results from these studies will be presented. The approach has been determined to be feasible, and upon its completion the required methodology for accurate performance and heat transfer CFD analyses for high pressure, tri-propellant propulsion systems will be available.

  8. Space aging of solid rocket materials

    NASA Technical Reports Server (NTRS)

    Lester, Dean M.; Jones, Leon L.; Smalley, R. B., Jr.; Ord, R. Neil

    1991-01-01

    Solid rocket propellant and rocket motor components were aged in a vented container on the interior of the LDEF. The results of aging IPSM-II/PAM-DII space motor components are presented. Ballistic and mechanical properties of the space aged main propellant, igniter propellant, and ignition system were compared with similar data from preflight and ground aged samples. Mechanical properties of the composite materials and bonded joints used in the motor case, insulation, liner, nozzle, exit cone, and skirt were similarly evaluated. The space aging results are compared to data collected in a ground based vacuum aging program on similar components.

  9. Rocket Ignition Demonstrations Using Silane

    NASA Technical Reports Server (NTRS)

    Pal, Sibtosh; Santoro, Robert; Watkins, William B.; Kincaid, Kevin

    1998-01-01

    Rocket ignition demonstration tests using silane were performed at the Penn State Combustion Research Laboratory. A heat sink combustor with one injection element was used with gaseous propellants. Mixtures of silane and hydrogen were used as fuel, and oxygen was used as oxidizer. Reliable ignition was demonstrated using fuel lead and and a swirl injection element.

  10. Adsorption and chemical reaction of gaseous mixtures of hydrogen chloride and water on aluminum oxide and application to solid-propellant rocket exhaust clouds

    NASA Technical Reports Server (NTRS)

    Cofer, W. R., III; Pellett, G. L.

    1978-01-01

    Hydrogen chloride (HCl) and aluminum oxide (Al2O3) are major exhaust products of solid rocket motors (SRM). Samples of calcination-produced alumina were exposed to continuously flowing mixtures of gaseous HCl/H2O in nitrogen. Transient sorption rates, as well as maximum sorptive capacities, were found to be largely controlled by specific surface area for samples of alpha, theta, and gamma alumina. Sorption rates for small samples were characterized linearly with an empirical relationship that accounted for specific area and logarithmic time. Chemisorption occurred on all aluminas studied and appeared to form from the sorption of about a 2/5 HCl-to-H2O mole ratio. The chemisorbed phase was predominantly water soluble, yielding chloride/aluminum III ion mole ratios of about 3.3/1 suggestive of dissolved surface chlorides and/or oxychlorides. Isopiestic experiments in hydrochloric acid indicated that dissolution of alumina led to an increase in water-vapor pressure. Dissolution in aqueous SRM acid aerosol droplets, therefore, might be expected to promote evaporation.

  11. Congreve Rockets

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The British fired Congreve rockets against the United States in the War of 1812. As a result Francis Scott Key coined the phrase the 'rocket's red glare.' Congreve had used a 16-foot guide stick to help stabilize his rocket. William Hale, another British inventor, invented the stickless rocket in 1846. The U.S. Army used the Hale rocket more than 100 years ago in the war with Mexico. Rockets were also used to a limited extent by both sides in the American Civil War.

  12. Study of solid rocket motor for space shuttle booster, volume 2, book 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The technical requirements for the solid propellant rocket engine to be used with the space shuttle orbiter are presented. The subjects discussed are: (1) propulsion system definition, (2) solid rocket engine stage design, (3) solid rocket engine stage recovery, (4) environmental effects, (5) manrating of the solid rocket engine stage, (6) system safety analysis, and (7) ground support equipment.

  13. Rocket noise - A review

    NASA Astrophysics Data System (ADS)

    McInerny, S. A.

    1990-10-01

    This paper reviews what is known about far-field rocket noise from the controlled studies of the late 1950s and 1960s and from launch data. The peak dimensionless frequency, the dependence of overall sound power on exhaust parameters, and the directivity of the overall sound power of rockets are compared to those of subsonic jets and turbo-jets. The location of the dominant sound source in the rocket exhaust plume and the mean flow velocity in this region are discussed and shown to provide a qualitative explanation for the low peak Strouhal number, fD(e)/V(e), and large angle of maximum directivity. Lastly, two empirical prediction methods are compared with data from launches of a Titan family vehicle (two, solid rocket motors of 5.7 x 10 to the 6th N thrust each) and the Saturn V (five, liquid oxygen/rocket propellant engines of 6.7 x 10 to the 6th N thrust, each). The agreement is favorable. In contrast, these methods appear to overpredict the far-field sound pressure levels generated by the Space Shuttle.

  14. Low-thrust rocket trajectories

    SciTech Connect

    Keaton, P.W.

    1986-01-01

    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report. 57 refs., 10 figs.

  15. Rocket Science at the Nanoscale.

    PubMed

    Li, Jinxing; Rozen, Isaac; Wang, Joseph

    2016-06-28

    Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale.

  16. Low-thrust rocket trajectories

    SciTech Connect

    Keaton, P.W.

    1987-03-01

    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report.

  17. Rocket Science at the Nanoscale.

    PubMed

    Li, Jinxing; Rozen, Isaac; Wang, Joseph

    2016-06-28

    Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale. PMID:27219742

  18. Small rocket research and technology

    NASA Technical Reports Server (NTRS)

    Schneider, Steven; Biaglow, James

    1993-01-01

    Small chemical rockets are used on nearly all space missions. The small rocket program provides propulsion technology for civil and government space systems. Small rocket concepts are developed for systems which encompass reaction control for launch and orbit transfer systems, as well as on-board propulsion for large space systems and earth orbit and planetary spacecraft. Major roles for on-board propulsion include apogee kick, delta-V, de-orbit, drag makeup, final insertions, north-south stationkeeping, orbit change/trim, perigee kick, and reboost. The program encompasses efforts on earth-storable, space storable, and cryogenic propellants. The earth-storable propellants include nitrogen tetroxide (NTO) as an oxidizer with monomethylhydrazine (MMH) or anhydrous hydrazine (AH) as fuels. The space storable propellants include liquid oxygen (LOX) as an oxidizer with hydrazine or hydrocarbons such as liquid methane, ethane, and ethanol as fuels. Cryogenic propellants are LOX or gaseous oxygen (GOX) as oxidizers and liquid or gaseous hydrogen as fuels. Improved performance and lifetime for small chemical rockets are sought through the development of new predictive tools to understand the combustion and flow physics, the introduction of high temperature materials to eliminate fuel film cooling and its associated combustion inefficiency, and improved component designs to optimize performance. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Results indicate that modeling of the injector and combustion process in small rockets needs improvement. High temperature materials require the development of fabrication processes, a durability data base in both laboratory and rocket environments, and basic engineering property data such as strength, creep, fatigue, and work hardening properties at both room and elevated temperature. Promising materials under development include iridium-coated rhenium and a

  19. Rocket Flight.

    ERIC Educational Resources Information Center

    Van Evera, Bill; Sterling, Donna R.

    2002-01-01

    Describes an activity for designing, building, and launching rockets that provides students with an intrinsically motivating and real-life application of what could have been classroom-only concepts. Includes rocket design guidelines and a sample grading rubric. (KHR)

  20. Torpedo Rockets

    NASA Technical Reports Server (NTRS)

    2004-01-01

    All through the 13th to the 15th Centuries there were reports of many rocket experiments. For example, Joanes de Fontana of Italy designed a surface-rurning, rocket-powered torpedo for setting enemy ships on fire

  1. Design considerations for a pressure-driven multi-stage rocket

    NASA Astrophysics Data System (ADS)

    Sauerwein, Steven Craig

    2002-01-01

    The purpose of this study was to examine the feasibility of using propellant tank pressurization to eliminate the use of high-pressure turbopumps in multi-stage liquid-fueled satellite launchers. Several new technologies were examined to reduce the mass of such a rocket. Composite materials have a greater strength-to-weight ratio than metals and can be used to reduce the weight of rocket propellant tanks and structure. Catalytically combined hydrogen and oxygen can be used to heat pressurization gas, greatly reducing the amount of gas required. Ablatively cooled rocket engines can reduce the complexity and cost of the rocket. Methods were derived to estimate the mass of the various rocket components. These included a method to calculate the amount of gas needed to pressurize a propellant tank by modeling the behavior of the pressurization gas as the liquid propellant flows out of the tank. A way to estimate the mass and size of a ablatively cooled composite cased rocket engine. And a method to model the flight of such a rocket through the atmosphere in conjunction with optimization of the rockets trajectory. The results show that while a liquid propellant rocket using tank pressurization are larger than solid propellant rockets and turbopump driven liquid propellant rockets, they are not impractically large.

  2. Low-thrust chemical rocket engine study

    NASA Technical Reports Server (NTRS)

    Mellish, J. A.

    1980-01-01

    Parametric data and preliminary designs on liquid rocket engines for low thrust cargo orbit-transfer-vehicles are described and those items where technology is required to enhance the designs are identified. The results of film cooling studies to establish the upper chamber pressure limit are given. The study showed that regen cooling with RP-1 was not feasible over the entire thrust and chamber pressure ranges. The thermal data showed that the RP-1 bulk temperature exceeded the study coking temperature limit of 1010 R. Based upon the results presented, O2/H2 and O2/CH4 regen engine systems and O2/H2 film cooled engines were selected for further study in the system analysis. Six engine design concepts are examined.

  3. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. Appendix B: Liquid rocket booster acoustic and thermal environments

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The ascent thermal environment and propulsion acoustic sources for the Martin-Marietta Corporation designed Liquid Rocket Boosters (LRB) to be used with the Space Shuttle Orbiter and External Tank are described. Two designs were proposed: one using a pump-fed propulsion system and the other using a pressure-fed propulsion system. Both designs use LOX/RP-1 propellants, but differences in performance of the two propulsion systems produce significant differences in the proposed stage geometries, exhaust plumes, and resulting environments. The general characteristics of the two designs which are significant for environmental predictions are described. The methods of analysis and predictions for environments in acoustics, aerodynamic heating, and base heating (from exhaust plume effects) are also described. The acoustic section will compare the proposed exhaust plumes with the current SRB from the standpoint of acoustics and ignition overpressure. The sections on thermal environments will provide details of the LRB heating rates and indications of possible changes in the Orbiter and ET environments as a result of the change from SRBs to LRBs.

  4. Interaction between ICOS-B7RP1 and B7-CD28 costimulatory pathways in alloimmune responses in vivo.

    PubMed

    Salama, Alan D; Yuan, Xueli; Nayer, Ali; Chandraker, Anil; Inobe, Manabu; Uede, Toshimutsu; Sayegh, Mohamed H

    2003-04-01

    The B7-CD28 pathway is one of the foremost costimulatory pathways involved in T-cell activation. Recently, a number of additional costimulatory pathways have been described and preliminary data suggest that they play important roles in alloimmunity. However, the interactions between these different pathways are not well understood. We studied the effect of targeting ICOS ligand, B7RP1, in a rat cardiac transplant model, with and without concomitant blockade of the B7 pathway using CTLA4Ig. In a fully mismatched WF to LEW vascularized cardiac allograft model, without therapy, grafts were acutely rejected (MST 10.8 +/- 1.6 days). Early (day of transplant) B7RP1 blockade with ICOSIg alone had little effect on graft survival and rather than being additive with B7 blockade, ICOSIg abrogated the prolonged graft survival induced by CTLA4Ig treatment. By contrast, delayed (day 2 post-transplant) blockade of B7RP1 did not have such an effect. These findings were not related to cytokine deviation but may be in part related to the pattern of down-regulation of B7.2 expression following early B7RP1 blockade. This is the first report describing the complex interactions between ICOS-B7RP1 and B7-CD28 costimulatory pathways in alloimmunity in vivo. PMID:12694060

  5. Liquid rocket booster study. Volume 2, book 4, appendices 6-8: Reports of Rocketdyne, Pratt and Whitney, and TRW

    NASA Technical Reports Server (NTRS)

    1988-01-01

    For the pressure fed engines, detailed trade studies were conducted defining engine features such as thrust vector control methods, thrust chamber construction, etc. This was followed by engine design layouts and booster propulsion configuration layouts. For the pump fed engines parametric performance and weight data was generated for both O2/H2 and O2/RP-1 engines. Subsequent studies resulted in the selection of both LOX/RP-1 and O2/H2 propellants for the pump fed engines. More detailed analysis of the selected LOX/RP-1 and O2/H2 engines was conducted during the final phase of the study.

  6. Transpiration cooled throat for hydrocarbon rocket engines

    NASA Technical Reports Server (NTRS)

    May, Lee R.; Burkhardt, Wendel M.

    1991-01-01

    The objective for the Transpiration Cooled Throat for Hydrocarbon Rocket Engines Program was to characterize the use of hydrocarbon fuels as transpiration coolants for rocket nozzle throats. The hydrocarbon fuels investigated in this program were RP-1 and methane. To adequately characterize the above transpiration coolants, a program was planned which would (1) predict engine system performance and life enhancements due to transpiration cooling of the throat region using analytical models, anchored with available data; (2) a versatile transpiration cooled subscale rocket thrust chamber was designed and fabricated; (3) the subscale thrust chamber was tested over a limited range of conditions, e.g., coolant type, chamber pressure, transpiration cooled length, and coolant flow rate; and (4) detailed data analyses were conducted to determine the relationship between the key performance and life enhancement variables.

  7. Propellant Technologies: A Persuasive Wave of Future Propulsion Benefits

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan; Ianovski, Leonid S.; Carrick, Patrick

    1997-01-01

    Rocket propellant and propulsion technology improvements can be used to reduce the development time and operational costs of new space vehicle programs. Advanced propellant technologies can make the space vehicles safer, more operable, and higher performing. Five technology areas are described: Monopropellants, Alternative Hydrocarbons, Gelled Hydrogen, Metallized Gelled Propellants, and High Energy Density Materials. These propellants' benefits for future vehicles are outlined using mission study results and the technologies are briefly discussed.

  8. Recent Advancements in Propellant Densification

    NASA Technical Reports Server (NTRS)

    McNelis, Nancy B.; Tomsik, Thomas M.

    1998-01-01

    Next-generation launch vehicles demand several technological improvements to achieve lower cost and more reliable access to space. One technology area whose performance gains may far exceed others is densified propellants. The ideal rocket engine propellant is characterized by high specific impulse, high density, and low vapor pressure. A propellant combination of liquid hydrogen and liquid oxygen (LH2/LOX) is one of the highest performance propellants, but LH2 stored at standard conditions has a relatively low density and high vapor pressure. Propellant densification can significantly improve this propellant's properties relative to vehicle design and engine performance. Vehicle performance calculations based on an average of existing launch vehicles indicate that densified propellants may allow an increase in payload mass of up to 5 percent. Since the NASA Lewis Research Center became involved with the National Aerospace Plane program in the 1980's, it has been leading the way in making densified propellants a viable fuel for next-generation launch vehicles. Lewis researchers have been working to provide a method and critical data for continuous production of densified hydrogen and oxygen.

  9. Advanced Solid Rocket Launcher and Its Evolution

    NASA Astrophysics Data System (ADS)

    Morita, Yasuhiro; Imoto, Takayuki; Habu, Hiroto; Ohtsuka, Hirohito; Hori, Keiichi; Koreki, Takemasa; Fukuchi, Apollo; Uekusa, Yasuyuki; Akiba, Ryojiro

    The research on next generation solid propellant rockets is actively underway in various spectra. JAXA is developing the Advanced Solid Rocket (ASR) as a successor to the M-V launch vehicle, which was utilized over past ten years for space science programs including planetary missions. ASR is a result of the development of the next generation technology including a highly intelligent autonomous check-out system, which is connected to not only the solid rocket but also future transportation systems. It is expected to improve the efficiency of the launch system and double the cost performance. Far beyond this effort, the passion of the volunteers among the industry-government-academia cooperation has been united to establish the society of the freewheeling thinking “Next generation Solid Rocket Society (NSRS)”. It aims at a larger revolution than what the ASR provides so that the order of the cost performance is further improved. A study of the Low melting temperature Thermoplastic Propellant (LTP) is now at the experimental stage, which is expected to reform the manufacturing process of the solid rocket propellant and lead to a significant increase in cost performance. This paper indicates the direction of the big flow towards the next generation solid-propellant rockets: the concept of the intelligent ASR under development; and the innovation behind LTP.

  10. Preliminary study of a hydrogen peroxide rocket for use in moving source jet noise tests

    NASA Technical Reports Server (NTRS)

    Plencner, R. M.

    1977-01-01

    A preliminary investigation was made of using a hydrogen peroxide rocket to obtain pure moving source jet noise data. The thermodynamic cycle of the rocket was analyzed. It was found that the thermodynamic exhaust properties of the rocket could be made to match those of typical advanced commercial supersonic transport engines. The rocket thruster was then considered in combination with a streamlined ground car for moving source jet noise experiments. When a nonthrottlable hydrogen peroxide rocket was used to accelerate the vehicle, propellant masses and/or acceleration distances became too large. However, when a throttlable rocket or an auxiliary system was used to accelerate the vehicle, reasonable propellant masses could be obtained.

  11. Liquid Rocket Booster (LRB) for the Space Transportion System (STS) systems study. Appendix D: Trade study summary for the liquid rocket booster

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Trade studies plans for a number of elements in the Liquid Rocket Booster (LRB) component of the Space Transportation System (STS) are given in viewgraph form. Some of the elements covered include: avionics/flight control; avionics architecture; thrust vector control studies; engine control electronics; liquid rocket propellants; propellant pressurization systems; recoverable spacecraft; cryogenic tanks; and spacecraft construction materials.

  12. Liquid rocket engine injectors

    NASA Technical Reports Server (NTRS)

    Gill, G. S.; Nurick, W. H.

    1976-01-01

    The injector in a liquid rocket engine atomizes and mixes the fuel with the oxidizer to produce efficient and stable combustion that will provide the required thrust without endangering hardware durability. Injectors usually take the form of a perforated disk at the head of the rocket engine combustion chamber, and have varied from a few inches to more than a yard in diameter. This monograph treats specifically bipropellant injectors, emphasis being placed on the liquid/liquid and liquid/gas injectors that have been developed for and used in flight-proven engines. The information provided has limited application to monopropellant injectors and gas/gas propellant systems. Critical problems that may arise during injector development and the approaches that lead to successful design are discussed.

  13. Sirius-5 experimental rocket

    NASA Astrophysics Data System (ADS)

    Kerstein, A.; Omersel, P.; Goljuf, L.; Zidaric, M.

    1981-09-01

    After giving a historical account of multistage rocket development in Yugoslavia, a status report is presented for the three-stage Sirius-5 program. The rocket is composed of: (1) a solid-propellant first stage, consisting of a cluster of eight standard motors yielding 220 kN thrust for 1.3 sec; (2) a mixed amines/inhibited red fuming nitric acid, bipropellant second stage generating 50 kN thrust; and (3) a third stage of the same design as the second but with only 62 kg of fuel, by contrast to 168 kg. Among the design principles adhered to are: minimization of the number of components, conservative design margins, and specifications for key subsystems based on demonstration programs. The primary use of this system is in amateur rocketry, being able to carry a 20 kg payload to 150 km.

  14. ION ROCKET ENGINE

    DOEpatents

    Ehlers, K.W.; Voelker, F. III

    1961-12-19

    A thrust generating engine utilizing cesium vapor as the propellant fuel is designed. The cesium is vaporized by heat and is passed through a heated porous tungsten electrode whereby each cesium atom is fonized. Upon emergfng from the tungsten electrode, the ions are accelerated rearwardly from the rocket through an electric field between the tungsten electrode and an adjacent accelerating electrode grid structure. To avoid creating a large negative charge on the space craft as a result of the expulsion of the positive ions, a source of electrons is disposed adjacent the ion stream to neutralize the cesium atoms following acceleration thereof. (AEC)

  15. Integral rocket ramjets

    NASA Astrophysics Data System (ADS)

    Calzone, R. F.

    1994-03-01

    A rough overview of the important aspects and problem areas associated with the development of Integral Rocket Ramjet (IRR) technology is given in this report. The IRR is a supersonic air-breathing concept in which the gas generator produces fuel-rich gases. These fuel-rich gases are burnt in the secondary combustion chamber with ambient air captured and decelerated in the inlet. During the boost phase, a solid propellant booster provides the thrust necessary to achieve the velocity at which the ramjet may be operated (about M = 2). The booster is integrated in the secondary combustion chamber.

  16. The Advanced Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Mitchell, Royce E.

    1992-01-01

    The paper describes the Advanced Solid Rocket Motor (ASRM) that is being developed to replace, in 1997, the Redesigned Solid Rocket Motor which currently boosts the Space Shuttle. The ASRM will contain features to improve motor safety (fewer potential leak paths, improved seal materials, stronger case material, and fewer nozzle and case joints), an improved ignition system using through-bulkhead initiators, and highly reproducible manufacturing and inspection techniques with a large number of automated procedures. The ASRM will be able to deliver 12,000 lbs greater payloads to any given orbit of the Shuttle. There are also environmental improvements, realized by waste propellant recovery.

  17. Catalytic Microtube Rocket Igniter

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Deans, Matthew C.

    2011-01-01

    Devices that generate both high energy and high temperature are required to ignite reliably the propellant mixtures in combustion chambers like those present in rockets and other combustion systems. This catalytic microtube rocket igniter generates these conditions with a small, catalysis-based torch. While traditional spark plug systems can require anywhere from 50 W to multiple kW of power in different applications, this system has demonstrated ignition at less than 25 W. Reactants are fed to the igniter from the same tanks that feed the reactants to the rest of the rocket or combustion system. While this specific igniter was originally designed for liquid methane and liquid oxygen rockets, it can be easily operated with gaseous propellants or modified for hydrogen use in commercial combustion devices. For the present cryogenic propellant rocket case, the main propellant tanks liquid oxygen and liquid methane, respectively are regulated and split into different systems for the individual stages of the rocket and igniter. As the catalyst requires a gas phase for reaction, either the stored boil-off of the tanks can be used directly or one stream each of fuel and oxidizer can go through a heat exchanger/vaporizer that turns the liquid propellants into a gaseous form. For commercial applications, where the reactants are stored as gases, the system is simplified. The resulting gas-phase streams of fuel and oxidizer are then further divided for the individual components of the igniter. One stream each of the fuel and oxidizer is introduced to a mixing bottle/apparatus where they are mixed to a fuel-rich composition with an O/F mass-based mixture ratio of under 1.0. This premixed flow then feeds into the catalytic microtube device. The total flow is on the order of 0.01 g/s. The microtube device is composed of a pair of sub-millimeter diameter platinum tubes connected only at the outlet so that the two outlet flows are parallel to each other. The tubes are each

  18. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. Appendix F: Performance and trajectory for ALS/LRB launch vehicles

    NASA Technical Reports Server (NTRS)

    1989-01-01

    By simply combining two baseline pump-fed LOX/RP-1 Liquid Rocket Boosters (LRBs) with the Denver core, a launch vehicle (Option 1 Advanced Launch System (ALS)) is obtained that can perform both the 28.5 deg (ALS) mission and the polar orbit ALS mission. The Option 2 LRB was obtained by finding the optimum LOX/LH2 engine for the STS/LRB reference mission (70.5 K lb payload). Then this engine and booster were used to estimate ALS payload for the 28.5 deg inclination ALS mission. Previous studies indicated that the optimum number of STS/LRB engines is four. When the engine/booster sizing was performed, each engine had 478 K lb sea level thrust and the booster carried 625,000 lb of useable propellant. Two of these LRBs combined with the Denver core provided a launch vehicle that meets the payload requirements for both the ALS and STS reference missions. The Option 3 LRB uses common engines for the cores and boosters. The booster engines do not have the nozzle extension. These engines were sized as common ALS engines. An ALS launch vehicle that has six core engines and five engines per booster provides 109,100 lb payload for the 28.5 deg mission. Each of these LOX/LH2 LRBs carries 714,100 lb of useable propellant. It is estimated that the STS/LRB reference mission payload would be 75,900 lb.

  19. Preliminary study of the rocket-ramjet-rocket concept for HTO space plane

    NASA Astrophysics Data System (ADS)

    Wang, Shusheng; Zhang, Kexun

    1990-10-01

    A two-stage-to-orbit rocket-ramjet-rocket concept intended to extend the operating Mach range of ramjets as widely as possible is proposed. The ramjets are of subsonic combustion mode using liquid hydrogen as fuel and operating from Mach 0.8 to Mach 6.5-7. The vehicle takes off from the ground by using liquid tripropellant rockets as boosting power. The ramjets are ignited at high subsonic speed and take over fully at Mach 2. After Mach 6.5-7, the LH2-LOX rocket engines are used to propel the vehicle to orbit.

  20. Study of solid rocket motors for a space shuttle booster. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An analysis of the solid propellant rocket engines for use with the space shuttle booster was conducted. A definition of the specific solid propellant rocket engine stage designs, development program requirements, production requirements, launch requirements, and cost data for each program phase were developed.

  1. Liquid Rocket Lines, Bellows, Flexible Hoses, and Filters

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Fluid-flow components in a liquid propellant rocket engine and the rocket vehicle which it propels are interconnected by lines, bellows, and flexible hoses. Elements involved in the successful design of these components are identified and current technologies pertaining to these elements are reviewed, assessed, and summarized to provide a technology base for a checklist of rules to be followed by project managers in guiding a design or assessing its adequacy. Recommended procedures for satisfying each of the design criteria are included.

  2. Processing solid propellants for recycling

    SciTech Connect

    Whinnery, L.L.; Griffiths, S.K.; Handrock, J.L.; Lipkin, J.

    1994-05-01

    Rapid evolution in the structure of military forces worldwide is resulting in the retirement of numerous weapon systems. Many of these systems include rocket motors containing highly energetic propellants based on hazardous nitrocellulose/nitroglycerin (NC/NG) mixtures. Even as the surplus quantities of such material increases, however, current disposal methods -- principally open burning and open detonation (OB/OD) -- are coming under close scrutiny from environmental regulators. Environmentally conscious alternatives to disposal of propellant and explosives are thus receiving renewed interest. Recycle and reuse alternatives to OB/OD appear particularly attractive because some of the energetic materials in the inventories of surplus weapon systems represent potentially valuable resources to the commercial explosives and chemical industries. The ability to reclaim such resources is therefore likely to be a key requirement of any successful technology of the future in rocket motor demilitarization. This document consists of view graphs from the poster session.

  3. Experiment of rocket-ram combined combustor

    NASA Astrophysics Data System (ADS)

    Sato, Kazuo; Sakamoto, Hiroshi; Sasaki, Masaki; Ono, Fumiei; Yatsuyanagi, Nobuyuki

    1994-10-01

    There are limitations to achieve high specific impulse with rocket engine operations alone. However, in the flight at low altitude, combined engines with an airbreathing ramjet engine and a rocket engine can be expected to increase the specific impulse significantly in parallel operation. In this paper, the superiority in the specific impulse of the double-nozzle type of rocket-ram combined engine over the single-nozzle type combined engine was shown by performance calculations. Then, a double-nozzle type of rocket-ram combined combustor with a total thrust of 5kN was designed and experimentally tested with varying ratios of thrust produced by rocket and ramjet. The propellants are LOX/kerosene+ hydrogen for rocket combustion and air-hydrogen for ram combustion. With the thrust chamber having different diverging half-angles, namely 10 deg 18 min, and 6 deg 40 min, thrust and pressure distribution along the common expansion nozzle were measured to investigate the effect of interaction of the expanding gases of rocket and ram on thrust. Enhancement of the specific impulse was experimentally verified. That is, the specific impulse which was gained in rocket-ram parallel operations, when the thrust ratio of rocket to ram was 50 to 50, was found to increase 90 percent over those in pure rocket operations.

  4. Deposit formation in hydrocarbon rocket fuels: Executive summary

    NASA Technical Reports Server (NTRS)

    Roback, R.; Szetela, E. J.; Spadaccini, L. J.

    1981-01-01

    An experimental program was conducted to study deposit formation in hydrocarbon fuels under flow conditions that exist in high-pressure, rocket engine cooling systems. A high pressure fuel coking test apparatus was designed and developed and was used to evaluate thermal decomposition (coking) limits and carbon deposition rates in heated copper tubes for two hydrocarbon rocket fuels, RP-1 and commercial-grade propane. Tests were also conducted using JP-7 and chemically-pure propane as being representative of more refined cuts of the baseline fuels. A parametric evaluation of fuel thermal stability was performed at pressures of 136 atm to 340 atm, bulk fuel velocities in the range 6 to 30 m/sec, and tube wall temperatures in the range 422 to 811K. In addition, the effect of the inside wall material on deposit formation was evaluated in selected tests which were conducted using nickel-plated tubes. The results of the tests indicated that substantial deposit formation occurs with RP-1 fuel at wall temperatures between 600 and 800K, with peak deposit formation occurring near 700K. No improvements were obtained when de-oxygenated JP-7 fuel was substituted for RP-1. The carbon deposition rates for the propane fuels were generally higher than those obtained for either of the kerosene fuels at any given wall temperature. There appeared to be little difference between commercial-grade and chemically-pure propane with regard to type and quantity of deposit. The results of tests conducted with RP-1 indicated that the rate of deposit formation increased slightly with pressure over the range 136 atm to 340 atm. Finally, plating the inside wall of the tubes with nickel was found to significantly reduce carbon deposition rates for RP-1 fuel.

  5. Evaluation of Impinging Stream Vortex Chamber Concepts for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Bullard, Brad; Kopicz, Charles; Michaels, Scott

    2002-01-01

    for the liquid oxygen (LOX) hydrocarbon fuel (RP-1) system has been derived from the one for the gel propellant. An unlike impinging injector was employed to deliver the propellants to the chamber. MSFC is also conducting an alternative injection scheme, called the chasing injector, associated with this vortex chamber concept. In this injection technique, both propellant jets and their impingement point are in the same chamber cross-sectional plane. Long duration tests (approximately up to 15 seconds) will be conducted on the ISVC to study the thermal effects. This paper will report the progress of the subject efforts at NASA Marshall Space Flight Center. Thrust chamber performance and thermal wall compatibility will be evaluated. The chamber pressures, wall temperatures, and thrust will be measured as appropriate. The test data will be used to validate CFD models, which, in turn, will be used to design the optimum vortex chambers. Measurements in the previous tests showed that the chamber pressures vary significantly with radius. This is due to the existence of the vortices in the chamber flow field. Hence, the combustion efficiency may not be easily determined from chamber pressure. For this project, measured thrust data will be collected. The performance comparison will be in terms of specific impulse efficiencies. In addition to the thrust measurements, several pressure and temperature readings at various locations on the chamber head faceplate and the chamber wall will be made. The first injector and chamber were designed and fabricated based on the available data and experience gained during gel propellant system tests by the U.S. Army. The alternate injector for the ISVC was also fabricated. Hot-fire tests of the vortex chamber are about to start and are expected to complete in February of 2003 at the TS115 facility of MSFC.

  6. Alternate propellant program, phase 1

    NASA Technical Reports Server (NTRS)

    Anderson, F. A.; West, W. R.

    1979-01-01

    Candidate propellant systems for the shuttle booster solid rocket motor (SRM), which would eliminate, or greatly reduce, the amount of HCl produced in the exhaust of the shuttle SRM were investigated. Ammonium nitrate was selected for consideration as the main oxidizer, with ammonium perchlorate and the nitramine, cyclo-tetramethylene-tetranitramine as secondary oxidizers. The amount of ammonium perchlorate used was limited to an amount which would produce an exhaust containing no more than 3% HCl.

  7. Biodegradation of rocket propellant waste, ammonium perchlorate

    NASA Technical Reports Server (NTRS)

    Naqvi, S. M. Z.; Latif, A.

    1975-01-01

    The short term effects of ammonium perchlorate on selected organisms were studied. A long term experiment was also designed to assess the changes incurred by ammonium perchlorate on the nitrogen and chloride contents of soil within a period of 3 years. In addition, an attempt was made to produce methane gas from anaerobic fermentation of the aquatic weed, Alternanthera philoxeroides.

  8. Biodegradation of rocket propellent waste, ammonium perchlorate

    NASA Technical Reports Server (NTRS)

    Naqui, S. M. Z.

    1975-01-01

    The impact of the biodegradation rate of ammonium perchlorate on the environment was studied in terms of growth, metabolic rate, and total biomass of selected animal and plant species. Brief methodology and detailed results are presented.

  9. Theoretical and Experimental Analysis of the Physics of Water Rockets

    ERIC Educational Resources Information Center

    Barrio-Perotti, R.; Blanco-Marigorta, E.; Fernandez-Francos, J.; Galdo-Vega, M.

    2010-01-01

    A simple rocket can be made using a plastic bottle filled with a volume of water and pressurized air. When opened, the air pressure pushes the water out of the bottle. This causes an increase in the bottle momentum so that it can be propelled to fairly long distances or heights. Water rockets are widely used as an educational activity, and several…

  10. Mutant MiRP1 subunits modulate HERG K+ channel gating: a mechanism for pro-arrhythmia in long QT syndrome type 6

    PubMed Central

    Lu, Yu; Mahaut-Smith, Martyn P; Huang, Christopher L-H; Vandenberg, Jamie I

    2003-01-01

    Mutations in KCNE2, which encodes the minK-related protein 1 (MiRP1), are associated with an increased risk of arrhythmias; however, the underlying mechanisms are unknown. MiRP1 is thought to associate with many K+ channel α-subunits, including HERG K+ channels, which have a major role in suppressing arrhythmias initiated by premature beats. In this study we have investigated in chinese hamster ovary (CHO) cells at 37 °C the effects of co-expressing HERG K+ channels with either wild-type (WT) MiRP1 or one of three mutant MiRP1 subunits, T8A, Q9E and M54T. The most significant effects of MiRP1 subunits on HERG channels were a more negative steady-state activation for HERG + T8A MiRP1 and a more positive steady-state activation for HERG + M54T MiRP1 compared to either HERG + WT MiRP1 or HERG alone. All three mutants caused a significant slowing of deactivation at depolarised potentials. T8A MiRP1 also caused an acceleration of inactivation and recovery from inactivation compared to HERG + WT MiRP1. During ventricular action potential clamp experiments there was a significant decrease in current in the early phases of the action potential for HERG + WT MiRP1 channels compared to HERG alone. This effect was not as prominent for the mutant MiRP1 subunits. During premature action potential clamp protocols, the T8A and Q9E mutants, but not the M54T mutant, resulted in significantly larger current spikes during closely coupled premature beats, compared to HERG + WT MiRP1. At longer coupling intervals, all three mutants resulted in larger current spikes than HERG alone or HERG + WT MiRP1 channels. It is therefore possible that augmentation of HERG currents in the early diastolic period may be pro-arrhythmic. PMID:12923204

  11. Saving Lives With Rocket Power

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Thiokol Propulsion uses NASA's surplus rocket fuel to produce a flare that can safely destroy land mines. Through a Memorandum of Agreement between Thiokol and Marshall Space Flight Center, Thiokol uses the scrap Reusable Solid Rocket Motor (RSRM) propellant. The resulting Demining Device was developed by Thiokol with the help of DE Technologies. The Demining Device neutralizes land mines in the field without setting them off. The Demining Device flare is placed next to an uncovered land mine. Using a battery-triggered electric match, the flare is then ignited. Using the excess and now solidified rocket fuel, the flare burns a hole in the mine's case and ignites the explosive contents. Once the explosive material is burned away, the mine is disarmed and no longer dangerous.

  12. Lead-Free Propellant for Propellant Actuated Devices

    NASA Technical Reports Server (NTRS)

    Goodwin, John L.

    2000-01-01

    Naval Surface Warfare Center, Indian Head Division's CAD/PAD Department has been working to remove toxic compounds from our products for about a decade. In 1992, we embarked on an effort to develop a lead-free double base propellant to replace that of a foreign sole source. At the time there were availability concerns. In 1995, the department developed a strategic proposal to include a wider range of products. Efforts included such efforts as removing lead sheathing from linear explosives and replacing lead azide and lead styphnate compounds. This paper will discuss efforts specifically related to developing non-leaded double base propellant for use in various Propellant Actuated Devices (PADs) for aircrew escape systems. The propellants can replace their leaded counterparts, mitigating lead handling, processing, or toxic exposure to the environment and personnel. This work eliminates the use of leaded compounds, replacing them with a more environmentally benign metal-organic salt. Historically double-base propellants have held an advantage over other families of energetic materials through their relative insensitivity of the burning rate to changes in temperature and pressure. This desirable ballistic effect has been obtained with the use of a lead-organic salt alone or in a physical mixture with a copper-organic salt, or more recently with a lead-copper complex. These ballistic modifiers are typically added to the double-base 'paste' prior to gelatinization on heated calendars or one type or another. The effect of constant burning rate over a pressure range is called a 'plateau' while an even more beneficial effect of decreasing burning rate with increasing pressure is termed a 'mesa.' The latter effect results in very low temperature sensitivity of the propellant burning rate. Propellants with such effects are ideal tactical rocket motor propellants. The use of lead compounds poses a concern for the environment and personnel safety due to the metal's toxic

  13. Analysis of a Nuclear Enhanced Airbreathing Rocket for Earth to Orbit Applications

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.; Landrum, D. Brian; Brown, Norman (Technical Monitor)

    2001-01-01

    The proposed engine concept is the Nuclear Enhanced Airbreathing Rocket (NEAR). The NEAR concept uses a fission reactor to thermally heat a propellant in a rocket plenum. The rocket is shrouded, thus the exhaust mixes with ingested air to provide additional thermal energy through combustion. The combusted flow is then expanded through a nozzle to provide thrust.

  14. Cold solid propellant motor has stop-restart capability

    NASA Technical Reports Server (NTRS)

    Hendel, F. J.

    1966-01-01

    Solid propellant rocket is kept and fired at low temperatures in launch vehicles or spacecraft. The motor is capable of developing a specific impulse comparable to that of liquid propellant motors, is started, stopped, and restarted, and is stored in space without solar radiation causing hot spots on the motor casing.

  15. Development of Ammonium Perchlorate + Aluminium Base Solid Propellant

    NASA Astrophysics Data System (ADS)

    Othman, Norazila; Ali, Wan Khairuddin Wan

    2010-06-01

    Rocket propellant has been identified as a component that played an important role in the development of rockets. The ejected material in rocket propulsion is due to material called propellant. Without propellant, a rocket cannot be launched. Due to this reason, many have started to conduct research on new chemical compound of propellant with new technique if needed. The objectives of this study are to study the thermo-chemistry aspect of the composition and to determine the burning characteristics parameters. For this reason, this dissertation presented a detail preparation of developing a solid propellant using Ammonium Perchlorate (AP) as an oxidizer, Aluminum (Al) as fuel and Hydroxyl Terminated Polybutadiene (HTPB) as the binder. To determine the propellant performance such as burning rate, testing was conducted. From testing result the propellant composition oxidizer-fuel (76/11) at pressure 110 Psi gave the maximum burning rate. From test results the empirical constant, `a' and pressure exponent `n' were calculated for each different propellant compositions.

  16. Rheology of composite solid propellants during motor casting

    NASA Technical Reports Server (NTRS)

    Rogers, C. J.; Smith, P. L.; Klager, K.

    1978-01-01

    In a study conducted to evaluate flow parameters of uncured solid composite propellants during motor casting, two motors (1.8M-lb grain wt) were cast with a PBAN propellant exhibiting good flow characteristics in a 260-in. dia solid rocket motor. Attention is given to the effects of propellant compositional and processing variables on apparent viscosity as they pertain to rheological behavior and grain defect formation during casting. It is noted that optimized flow behavior is impaired with solid propellant loading. Non-Newtonian pseudoplastic flow is observed, which is dependent upon applied shear stress and the age of the uncured propellant.

  17. New Propellants and Cryofuels

    NASA Technical Reports Server (NTRS)

    Palasezski, Bryan; Sullivan, Neil S.; Hamida, Jaha; Kokshenev, V.

    2006-01-01

    The proposed research will investigate the stability and cryogenic properties of solid propellants that are critical to NASA s goal of realizing practical propellant designs for future spacecraft. We will determine the stability and thermal properties of a solid hydrogen-liquid helium stabilizer in a laboratory environment in order to design a practical propellant. In particular, we will explore methods of embedding atomic species and metallic nano-particulates in hydrogen matrices suspended in liquid helium. We will also measure the characteristic lifetimes and diffusion of atomic species in these candidate cryofuels. The most promising large-scale advance in rocket propulsion is the use of atomic propellants; most notably atomic hydrogen stabilized in cryogenic environments, and metallized-gelled liquid hydrogen (MGH) or densified gelled hydrogen (DGH). The new propellants offer very significant improvements over classic liquid oxygen/hydrogen fuels because of two factors: (1) the high energy-release, and (ii) the density increase per unit energy release. These two changes can lead to significant reduced mission costs and increased payload to orbit weight ratios. An achievable 5 to 10 percent improvement in specific impulse for the atomic propellants or MGH fuels can result in a doubling or tripling of system payloads. The high-energy atomic propellants must be stored in a stabilizing medium such as solid hydrogen to inhibit or delay their recombination into molecules. The goal of the proposed research is to determine the stability and thermal properties of the solid hydrogen-liquid helium stabilizer. Magnetic resonance techniques will be used to measure the thermal lifetimes and the diffusive motions of atomic species stored in solid hydrogen grains. The properties of metallic nano-particulates embedded in hydrogen matrices will also be studied and analyzed. Dynamic polarization techniques will be developed to enhance signal/noise ratios in order to be able to

  18. Rockets Away!

    ERIC Educational Resources Information Center

    Kaahaaina, Nancy

    1997-01-01

    Describes a project that involved a rocket-design competition where students played the roles of McDonnell Douglas employees competing for NASA contracts. Provides a real world experience involving deadlines, design and performance specifications, and budgets. (JRH)

  19. Particle size reduction of propellants by cryocycling

    SciTech Connect

    Whinnery, L.; Griffiths, S.; Lipkin, J.

    1995-05-01

    Repeated exposure of a propellant to liquid nitrogen causes thermal stress gradients within the material resulting in cracking and particle size reduction. This process is termed cryocycling. The authors conducted a feasibility study, combining experiments on both inert and live propellants with three modeling approaches. These models provided optimized cycle times, predicted ultimate particle size, and allowed crack behavior to be explored. Process safety evaluations conducted separately indicated that cryocycling does not increase the sensitivity of the propellants examined. The results of this study suggest that cryocycling is a promising technology for the demilitarization of tactical rocket motors.

  20. Focused Rocket-Ejector RBCC Experiments

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh

    2003-01-01

    This document reports the results of additional efforts for the Rocket Based Combined Cycle (RBCC) rocket-ejector mode research work carried out at the Perm State Propulsion Engineering Research Center in support of NASA s technology development efforts for enabling 3rd generation Reusable Launch Vehicles (RLV). The two tasks conducted under this program build on earlier NASA MSFC funded research program on rocket ejector investigations. The first task continued a systematic investigation of the improvements provided by a gaseous hydrogen (GHz)/oxygen (GO2) twin thruster RBCC rocket ejector system over a single rocket system. In a similar vein, the second task continued investigations into the performance of a hydrocarbon (liquid JP-7)/gaseous oxygen single thruster rocket-ejector system. To gain a systematic understanding of the rocket-ejector s internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static diffusion and afterburning (DAB) configurations for a range of rocket operating conditions. For all experimental conditions, overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust. For the GH2/GO2 propellant rocket ejector experiments, high frequency measurements of the pressure field within the system were also made to understand the unsteady behavior of the flowfield.

  1. Model of burning and detonation in rocket motors

    SciTech Connect

    Forest, C.A.

    1980-01-01

    Rocket motor dome failure may produce a damaged porous bed of propellant adjacent to the motor case. This porous bed of propellant may burn and ultimately cause detonation of the motor. A numerical model is presented which examines detonation of the solid propellant grain from shocks induced by the burning porous bed. Calculations are made in one- and two-dimensional cylindrical geometry and employ the Forest Fire model of shock-induced decomposition.

  2. Low thrust chemical rocket technology

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    1992-01-01

    An on-going technology program to improve the performance of low thrust chemical rockets for spacecraft on-board propulsion applications is reviewed. Improved performance and lifetime is sought by the development of new predictive tools to understand the combustion and flow physics, introduction of high temperature materials and improved component designs to optimize performance, and use of higher performance propellants. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Predictions are based on both the RPLUS Navier-Stokes code with finite rate kinetics and the JANNAF methodology. Data were obtained with laser-based diagnostics along with global performance measurements. Results indicate that the modeling of the injector and the combustion process needs improvement in these codes and flow visualization with a technique such as 2-D laser induced fluorescence (LIF) would aid in resolving issues of flow symmetry and shear layer combustion processes. High temperature material fabrication processes are under development and small rockets are being designed, fabricated, and tested using these new materials. Rhenium coated with iridium for oxidation protection was produced by the Chemical Vapor Deposition (CVD) process and enabled an 800 K increase in rocket operating temperature. Performance gains with this material in rockets using Earth storable propellants (nitrogen tetroxide and monomethylhydrazine or hydrazine) were obtained through component redesign to eliminate fuel film cooling and its associated combustion inefficiency while managing head end thermal soakback. Material interdiffusion and oxidation characteristics indicated that the requisite lifetimes of tens of hours were available for thruster applications. Rockets were designed, fabricated, and tested with thrusts of 22, 62, 440 and 550 N. Performance improvements of 10 to 20 seconds specific impulse were demonstrated. Higher

  3. Liquid-hydrogen rocket engine development at Aerojet, 1944 - 1950

    NASA Technical Reports Server (NTRS)

    Osborn, G. H.; Gordon, R.; Coplen, H. L.; James, G. S.

    1977-01-01

    This program demonstrated the feasibility of virtually all the components in present-day, high-energy, liquid-rocket engines. Transpiration and film-cooled thrust chambers were successfully operated. The first liquid-hydrogen tests of the coaxial injector was conducted and the first pump to successfully produce high pressures in pumping liquid hydrogen was tested. A 1,000-lb-thrust gaseous propellant and a 3,000-lb-thrust liquid-propellant thrust chamber were operated satisfactorily. Also, the first tests were conducted to evaluate the effects of jet overexpansion and separation on performance of rocket thrust chambers with hydrogen-oxygen propellants.

  4. SRM propellant, friction/ESD testing

    NASA Technical Reports Server (NTRS)

    Campbell, L. A.

    1989-01-01

    Following the Pershing 2 incident in 1985 and the Peacekeeper ignition during core removal in 1987, it was found that propellant can be much more sensitive to Electrostatic Discharges (ESD) than ever before realized. As a result of the Peacekeeper motor near miss incident, a friction machine was designed and fabricated, and used to determine friction hazards during core removal. Friction testing with and electrical charge being applied across the friction plates resulted in propellant ignitions at low friction pressures and extremely low ESD levels. The objective of this test series was to determine the sensitivity of solid rocket propellant to combined friction pressure and electrostatic stimuli and to compare the sensitivity of the SRM propellant to Peacekeeper propellant. The tests are fully discussed, summarized and conclusions drawn.

  5. Thrust engine and propellant exhaust arrangement therefor

    SciTech Connect

    Retallick, F.D.

    1981-01-27

    A nuclear engine and nozzle arrangement are described for a nuclear rocket comprising a cluster of elongated fissile fuel bearing and high temperature capacity modules suitably supported in a pressure vessel. The modules have a plurality of coolant-propellant channels extending therethrough, a convergent - divergent nozzle structure of fixed cross-sectional dimensions secured to the end portion of each of said modules, a divergent-only unitary skirt member connected directly to the propellant exit end of said modular cluster in series with and diverging from the divergent ends of said convergent-divergent nozzle structures. The modules are formed to conduct a compressible propellant therethrough at sub-sonic velocities, said nozzle structures being formed to develop supersonic velocities of the propellant and said divergent-only skirt being formed to develop further the supersonic velocities of said propellant.

  6. The development of space solid rocket motors in China

    NASA Astrophysics Data System (ADS)

    Jianding, Huang; Dingyou, Ye

    1997-01-01

    China has undertaken to research and develop composite solid propellant rocket motors since 1958. At the request of the development of space technology, composite solid propellant rocket motor has developed from small to large, step by step. For the past thirty eight years, much progress has made, many technical obstacles, such as motor design, case materials and their processing technology, propellant formulations and manufacture, nozzles and thrust vector control, safe ignition, environment tests, nondestructive inspection and quality assurance, static firing test and measurement etc. have been solved. A serial of solid rocket motors have been offered for China's satellites launch. The systems of research, design, test and manufacture of solid rocket motors have been formed.

  7. Marshall Team Recreates Goddard Rocket

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In honor of the Centernial of Flight celebration and commissioned by the American Institute of Aeronautics and Astronautics (AIAA), a team of engineers from Marshall Space Flight Center (MSFC) built a replica of the first liquid-fueled rocket. The original rocket, designed and built by rocket engineering pioneer Robert H. Goddard in 1926, opened the door to modern rocketry. Goddard's rocket reached an altitude of 41 feet while its flight lasted only 2.5 seconds. The Marshall design team's plan was to stay as close as possible to an authentic reconstruction of Goddard's rocket. The same propellants were used - liquid oxygen and gasoline - as available during Goddard's initial testing and firing. The team also tried to construct the replica using the original materials and design to the greatest extent possible. By purposely using less advanced techniques and materials than many that are available today, the team encountered numerous technical challenges in testing the functional hardware. There were no original blueprints or drawings, only photographs and notes. However, this faithful adherence to historical accuracy has also allowed the team to experience many of the same challenges Goddard faced 77 years ago, and more fully appreciate the genius of this extraordinary man. The replica will undergo ground tests at MSFC this summer.

  8. Air-Powered Rockets.

    ERIC Educational Resources Information Center

    Rodriguez, Charley; Raynovic, Jim

    This document describes methods for designing and building two types of rockets--rockets from paper and rockets from bottles. Devices used for measuring the heights that the rockets obtain are also discussed. (KHR)

  9. Defect Characterization in a Thin Walled Composite RP-1 Tank: A Case Study

    NASA Technical Reports Server (NTRS)

    Langsing, Matthew D.; Walker, James L., II; Russell, Samual S.

    2000-01-01

    A full scale thin walled composite tank, designed and fabricated for the storage of pressurized RP- I rocket fuel, was fully inspected with digital infrared thermography (IR) during assembly and prior to proof testing. The tank featured a "pill capsule" design with the equatorial bondline being overwrapped on both the inner and outer surfaces. A composite skirt was bonded to the aft dome of the tank to serve as a structural support when the tank was stood on end in service. Numerous anomalies were detected and mapped prior to proof testing, some along bondlines and some scattered throughout the acreage. After the tank was intentionally burst, coupons were cut from the regions including thermographic anomalies. These coupons were again inspected thermographically to document the growth of any indications due to proof testing. Ultrasonic inspections (UT) were also performed on the coupons for comparison to thermography. Several coupons were dissected and micrographed. Relationships between IR and UT indications and the physical nature of the dissected material are presented.

  10. Study of solid rocket motor for space, shuttle booster, volume 2, book 4 appendices B thru D

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The mass properties and related data for the solid propellant rocket engine for use with the space shuttle are presented. Data for three solid propellant rocket engines are provided. The three designs considered are: (1) baseline parallel burn, (2) optional parallel burn, and (3) baseline series burn. Layouts of the respective designs to show design and dimensional data are included.

  11. Atomic hydrogen rocket engine

    NASA Technical Reports Server (NTRS)

    Etters, R. D.; Flurchick, K.

    1981-01-01

    A rocket using atomic hydrogen propellant is discussed. An essential feature of the proposed engine is that the atomic hydrogen fuel is used as it is produced, thus eliminating the necessity of storage. The atomic hydrogen flows into a combustion chamber and recombines, producing high velocity molecular hydrogen which flows out an exhaust port. Standard thermodynamics, kinetic theory and wall recombination cross-sections are used to predict a thrust of approximately 1.4 N for a RF hydrogen flow rate of 4 x 10 to the 22nd/sec. Specific impulses are nominally from 1000 to 2000 sec. It is predicted that thrusts on the order of one Newton and specific impulses of up to 2200 sec are attainable with nominal RF discharge fluxes on the order of 10 to the 22nd atoms/sec; further refinements will probably not alter these predictions by more than a factor of two.

  12. Rocket-in-a-Duct Performance Analysis

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Reed, Brian D.

    1999-01-01

    An axisymmetric, 110 N class, rocket configured with a free expansion between the rocket nozzle and a surrounding duct was tested in an altitude simulation facility. The propellants were gaseous hydrogen and gaseous oxygen and the hardware consisted of a heat sink type copper rocket firing through copper ducts of various diameters and lengths. A secondary flow of nitrogen was introduced at the blind end of the duct to mix with the primary rocket mass flow in the duct. This flow was in the range of 0 to 10% of the primary massflow and its effect on nozzle performance was measured. The random measurement errors on thrust and massflow were within +/-1%. One dimensional equilibrium calculations were used to establish the possible theoretical performance of these rocket-in-a-duct nozzles. Although the scale of these tests was small, they simulated the relevant flow expansion physics at a modest experimental cost. Test results indicated that lower performance was obtained at higher free expansion area ratios and longer ducts, while, higher performance was obtained with the addition of secondary flow. There was a discernable peak in specific impulse efficiency at 4% secondary flow. The small scale of these tests resulted in low performance efficiencies, but prior numerical modeling of larger rocket-in-a-duct engines predicted performance that was comparable to that of optimized rocket nozzles. This remains to be proven in large-scale, rocket-in-a-duct tests.

  13. Challenger Rocket Booster

    NASA Technical Reports Server (NTRS)

    1986-01-01

    At about 76 seconds, fragments of the Orbiter can be seen tumbling against a background of fire, smoke and vaporized propellants from the External Tank. The left Solid Rocket Booster (SRB) flys rampant, still thrusting. The reddish-brown cloud envelops the disintergrating Orbiter. The color is indicative of the nitrogen tetroxide oxidizer propellant in the Orbiter Reaction Control System. On January 28, 1986 frigid overnight temperatures caused normally pliable rubber O-ring seals and putty that are designed to seal and establish joint integrity between the Solid Rocket Booster (SRB) joint segments, to become hard and non- flexible. At the instant of SRB ignition, tremendous stresses and pressures occur within the SRB casing and especially at the joint attachment points. The failure of the O-rings and putty to 'seat' properly at motor ignition, caused hot exhaust gases to blow by the seals and putty. During Challenger's ascent, this hot gas 'blow by' ultimately cut a swath completely through the steel booster casing; and like a welder's torch, began cutting into the External Tank (ET). It is believed that the ET was compromised in several locations starting in the aft at the initial point where SRB joint failure occured. The ET hydrogen tank is believed to have been breached first, with continuous rapid incremental failure of both the ET and SRB. The chain reaction of events occurring in milliseconds culminated in a massive explosion. The orbiter Challenger was instantly ejected by the blast and went askew into the supersonic air flow. These aerodynamic forces caused structural shattering and complete destruction of the orbiter. Though it was concluded that the G-forces experienced during orbiter ejection and break-up were survivable, impact with the ocean surface was not. Tragically, all seven crewmembers perished.

  14. Ginsenoside-Rp1 inhibits platelet activation and thrombus formation via impaired glycoprotein VI signalling pathway, tyrosine phosphorylation and MAPK activation

    PubMed Central

    Endale, M; Lee, WM; Kamruzzaman, SM; Kim, SD; Park, JY; Park, MH; Park, TY; Park, HJ; Cho, JY; Rhee, MH

    2012-01-01

    BACKGROUND AND PURPOSE Ginsenosides are the main constituents for the pharmacological effects of Panax ginseng. Such effects of ginsenosides including cardioprotective and anti-platelet activities have shown stability and bioavailability limitations. However, information on the anti-platelet activity of ginsenoside-Rp1 (G-Rp1), a stable derivative of ginsenoside-Rg3, is scarce. We examined the ability of G-Rp1 to modulate agonist-induced platelet activation. EXPERIMENTAL APPROACH G-Rp1 in vitro and ex vivo effects on agonist-induced platelet-aggregation, granule-secretion, [Ca2+]i mobilization, integrin-αIIbβ3 activation were examined. Vasodilator-stimulated phosphoprotein (VASP) and MAPK expressions and levels of tyrosine phosphorylation of the glycoprotein VI (GPVI) signalling pathway components were also studied. G-Rp1 effects on arteriovenous shunt thrombus formation in rats or tail bleeding time and ex vivo coagulation time in mice were determined. KEY RESULT G-Rp1 markedly inhibited platelet aggregation induced by collagen, thrombin or ADP. While G-Rp1 elevated cAMP levels, it dose-dependently suppressed collagen-induced ATP-release, thromboxane secretion, p-selectin expression, [Ca2+]i mobilization and αIIbβ3 activation and attenuated p38MAPK and ERK2 activation. Furthermore, G-Rp1 inhibited tyrosine phosphorylation of multiple components (Fyn, Lyn, Syk, LAT, PI3K and PLCγ2) of the GPVI signalling pathway. G-Rp1 inhibited in vivo thrombus formation and ex vivo platelet aggregation and ATP secretion without affecting tail bleeding time and coagulation time, respectively. CONCLUSION AND IMPLICATIONS G-Rp1 inhibits collagen-induced platelet activation and thrombus formation through modulation of early GPVI signalling events, and this effect involves VASP stimulation, and ERK2 and p38-MAPK inhibition. These data suggest that G-Rp1 may have therapeutic potential for the treatment of cardiovascular diseases involving aberrant platelet activation. PMID

  15. Solid propellant environmental issues

    SciTech Connect

    Le, M.D.

    1998-07-01

    The objective of the Solid Propellant Environmental Issues (SPEI) project is to demonstrate environmentally acceptable technologies that will enhance the continued production of solid rocket motors (SRMs) by complying with current and anticipated environmental regulations. Phase 1 of the project identifies current and anticipated environmental regulations that may affect SRMs manufacturing in the future and identify emerging process technologies which comply with these regulations. Phase 2 of the project established a baseline database by fabricating a 363 kg motor using the current manufacturing process. In Phase 3, environmentally acceptable process technologies were evaluated, ranked, and selected for demonstration using criteria developed by the team. The results for Phase 1--3 have previously been presented. This paper will present data obtained to date on Phase 4. In Phase 4, the alternate process technologies were evaluated for compatibility, cleaning effectiveness, and waste minimization/pollution prevention. The best performing candidate for each application area was selected for demonstration. The selected process technologies will be inserted into the baseline manufacturing process from Phase 2. The new manufacturing process will be demonstrated and evaluated through the scale-up and fabrication of two 363 kg solid rocket motors.

  16. Propeller injuries.

    PubMed

    Mann, R J

    1976-05-01

    Water skiing, boat racing, skin and scuba diving, and pleasure boat cruising are increasing in popularity. As a result the incidence of injuries secondary to motor propellers is becoming more frequent. In a ten-year period from 1963 to 1973, I collected a total of nine cases. In some amputations were necessary, and in other cases amputations occurred at the time of injury. Problems with bacterial flora occurring in open sea water versus salt water enclosed near docks and fresh lake water are discussed. A review of the orthopedic literature revealed sparse information regarding propeller injuries.

  17. Low thrust rocket test facility

    NASA Technical Reports Server (NTRS)

    Arrington, Lynn A.; Schneider, Steven J.

    1990-01-01

    A low thrust chemical rocket test facility has recently become operational at the NASA-Lewis. The new facility is used to conduct both long duration and performance tests at altitude over a thruster's operating envelope using hydrogen and oxygen gas for propellants. The facility provides experimental support for a broad range of objectives, including fundamental modeling of fluids and combustion phenomena, the evaluation of thruster components, and life testing of full rocket designs. The major mechanical and electrical systems are described along with aspects of the various optical diagnostics available in the test cell. The electrical and mechanical systems are designed for low down time between tests and low staffing requirements for test operations. Initial results are also presented which illustrate the various capabilities of the cell.

  18. Relativistic rocket: Dream and reality

    NASA Astrophysics Data System (ADS)

    Semyonov, Oleg G.

    2014-06-01

    The dream of interstellar flights persists since the first pioneers in astronautics and has never died. Many concepts of thruster capable to propel a rocket to the stars have been proposed and the most suitable among them are thought to be photon propulsion and propulsion by the products of proton-antiproton annihilation in magnetic nozzle. This article addresses both concepts allowing for cross-section of annihilation among other issues in order to show their vulnerability and to indicate the problems. The concept of relativistic matter propulsion is substantiated and discussed. The latter is argued to be the most straightforward way to build-up a relativistic rocket firstly because it is based on the existing technology of ion generators and accelerators and secondly because it can be stepped up in efflux power starting from interplanetary spacecrafts powered by nuclear reactors to interstellar starships powered by annihilation reactors. The problems imposed by thermodynamics and heat disposal are accentuated.

  19. Space Shuttle solid rocket booster

    NASA Technical Reports Server (NTRS)

    Hardy, G. B.

    1979-01-01

    Details of the design, operation, testing and recovery procedures of the reusable solid rocket boosters (SRB) are given. Using a composite PBAN propellant, they will provide the primary thrust (six million pounds maximum at 20 s after ignition) within a 3 g acceleration constraint, as well as thrust vector control for the Space Shuttle. The drogues were tested to a load of 305,000 pounds, and the main parachutes to 205,000. Insulation in the solid rocket motor (SRM) will be provided by asbestos-silica dioxide filled acrylonitrile butadiene rubber ('asbestos filled NBR') except in high erosion areas (principally in the aft dome), where a carbon-filled ethylene propylene diene monomer-neopreme rubber will be utilized. Furthermore, twenty uses for the SRM nozzle will be allowed by its ablative materials, which are principally carbon cloth and silica cloth phenolics.

  20. Solid rocket motor internal flow during ignition

    SciTech Connect

    Johnston, W.A.

    1995-05-01

    A numerical procedure is presented for the analysis of the internal flow in a solid rocket motor (SRM) during the ignition transient period of operation, along with the results obtained when this computer code was applied to several motors. The purpose of this code development effort was to achieve a detailed picture of the unsteady flowfield for a SRM of arbitrary design during this period of ignition delay, propellant ignition, flame spreading, and chamber filling/pressurization. The approach was to combine an unsteady, axisymmetric solution of the equations of inviscid fluid motion (Euler equations) with simple models for the convective and radiative heat transfer to the propellant surface during the run up to ignition. An unsteady, one-dimensional heat conduction solution for the propellant grain is coupled to this unsteady flow solution in order to calculate the propellant surface temperature. This solution, together with a surface temperature ignition criterion, determines the ignition delay and flame spreading. First, data were used from a Titan 5-1/2-segment solid rocket motor static firing to fix an unknown constant in the heat transfer model. Then, the computer code was applied to two solid rocket motors, Titan 7-segment and Space Shuttle, for which time-dependent chamber pressure measurements were available from static firings. Good agreement with the data was obtained. 17 refs.

  1. The alleged contributions of Pedro E. Paulet to liquid-propellant rocketry

    NASA Technical Reports Server (NTRS)

    Ordway, F. I., III

    1977-01-01

    The first practical working liquid propellant rocket motor was claimed by Pedro E. Paulet, a South American engineer from Peru (1895). He operated a conical motor, 10 centimeters in diameter, using nitrogen peroxide and gasoline as propellants and measuring thrust up to 90 kilograms, and apparently used spark ignition and intermittent propellant injection. The test device which he used contained elements of later test stands, such as a spring thrust-measuring device. However, he did not publish his work until twenty-five years later. Evidence is examined concerning this only known claim to liquid propellant rocket engine experiments in the nineteenth century.

  2. Solid rocket motor temperature sensitivity

    SciTech Connect

    Osborn, J.R.; Heister, S.D.

    1994-11-01

    The temperature sensitivity of the propellant and the solid rocket motor are described by several different temperature sensitivity coefficients. This enabled the derivation of three different relationships for the temperature sensitivity coefficient pi(sub K). To demonstrate this, two different propellants were used wherein the values of pi(sub K) were generated and compared. It was observed that the expressions are of equal complexity and offer ease of use. All involve only the burning rate data and the use of the parameters in St. Roberts burning rate low. It is also suggested that the most general expression for the sensitivity coefficient should be used since it is a true pi(sub K) relationship having the partial derivatives taken with the motor geometry held constant. 11 refs.

  3. The Advanced Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Mitchell, Royce E.

    1992-01-01

    The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.

  4. The Advanced Solid Rocket Motor

    NASA Astrophysics Data System (ADS)

    Mitchell, Royce E.

    1992-08-01

    The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.

  5. Constitutive equations for solid propellants

    SciTech Connect

    Oezuepek, S.; Becker, E.B.

    1997-04-01

    Mechanical behavior of the Space Shuttle redesigned solid rocket motor (RSRM) propellant is studied from a phenomenological point of view. Motivated by the study of the experimental data three initially isotropic constitutive models have been developed. All models represent the effect of strain rate, superimposed hydrostatic pressure, and cyclic loading on the stress and dilatation response of the material. A particular emphasis is given to the prediction of volume dilatation. The model resulting in the best representation of the available data is calibrated using only a few tests. The predictions of the model are compared with experiments for several loading conditions not used in the calibration.

  6. Space Shuttle solid rocket motor exposure monitoring

    NASA Technical Reports Server (NTRS)

    Brown, S. W.

    1993-01-01

    During the processing of the Space Shuttle Solid Rocket Booster (SRB), segments at the Kennedy Space Center, an odor was detected around the solid propellant. An Industrial Hygiene survey was conducted to determine the chemical identity of the SRB offgassing constituents. Air samples were collected inside a forward SRB segment and analyzed to determine chemical composition. Specific chemical analysis for suspected offgassing constituents of the propellant indicated ammonia to be present. A gas chromatograph mass spectroscopy (GC/MS) analysis of the air samples detected numerous high molecular weight hydrocarbons.

  7. Environmental Effects of Space Shuttle Solid Rocket Motor Exhaust Plumes

    NASA Technical Reports Server (NTRS)

    Hwang, B.; Pergament, H. S.

    1976-01-01

    The deposition of NOx and HCl in the stratosphere from the space shuttle solid rocket motors (SRM) and exhaust plume is discussed. A detailed comparison between stratospheric deposition rates using the baseline SRM propellant and an alternate propellant, which replaces ammonium perchlorate by ammonium nitrate, shows the total NOx deposition rate to be approximately the same for each propellant. For both propellants the ratio of the deposition rates of NOx to total chlorine-containing species is negligibly small. Rocket exhaust ground cloud transport processes in the troposphere are also examined. A brief critique of the multilayer diffusion models (presently used for predicting pollutant deposition in the troposphere) is presented, and some detailed cloud rise calculations are compared with data for Titan 3C launches. The results show that, when launch time meteorological data are used as input, the model can reasonably predict measured cloud stabilization heights.

  8. Solid rocket technology advancements for space tug and IUS applications

    NASA Technical Reports Server (NTRS)

    Ascher, W.; Bailey, R. L.; Behm, J. W.; Gin, W.

    1975-01-01

    In order for the shuttle tug or interim upper stage (IUS) to capture all the missions in the current mission model for the tug and the IUS, an auxiliary or kick stage, using a solid propellant rocket motor, is required. Two solid propellant rocket motor technology concepts are described. One concept, called the 'advanced propulsion module' motor, is an 1800-kg, high-mass-fraction motor, which is single-burn and contains Class 2 propellent. The other concept, called the high energy upper stage restartable solid, is a two-burn (stop-restartable on command) motor which at present contains 1400 kg of Class 7 propellant. The details and status of the motor design and component and motor test results to date are presented, along with the schedule for future work.

  9. Space aging of solid rocket materials (P0005)

    NASA Technical Reports Server (NTRS)

    Jones, L. L.; Smalley, R. B., Jr.

    1984-01-01

    The objective of this experiment is to determine the effects of long-term orbital exposure on the materials used in solid-rocket space motors. Specifically, structural materials and propellants from the STAR/PAM-D series motors and the PAM DII/IPSM-II motors will be tested, as well as advanced composite case and nozzle materials planned for future use. The experiment approach is to expose samples of solid-rocket propellant, liner, insulation, case, and nozzle specimens to the space environment and to compare preflight and postflight measurements of various mechanical, chemical, and ballistic properties.

  10. Dynamic characterization and analysis of space shuttle SRM solid propellant

    NASA Technical Reports Server (NTRS)

    Hufferd, W. L.

    1979-01-01

    The dynamic response properties of the space shuttle solid rocket moter (TP-H1148) propellant were characterized and the expected limits of propellant variability were established. Dynamic shear modulus tests conducted on six production batches of TP-H1148 at various static and dynamic strain levels over the temperature range from 40 F to 90 F. A heat conduction analysis and dynamic response analysis of the space shuttle solid rocket motor (SRM) were also conducted. The dynamic test results show significant dependence on static and dynamic strain levels and considerable batch-to-batch and within-batch variability. However, the results of the SRM dynamic response analyses clearly demonstrate that the stiffness of the propellant has no consequential on the overall SRM dynamic response. Only the mass of the propellant needs to be considered in the dynamic analysis of the space shuttle SRM.

  11. Interactive Schematic Integration Within the Propellant System Modeling Environment

    NASA Technical Reports Server (NTRS)

    Coote, David; Ryan, Harry; Burton, Kenneth; McKinney, Lee; Woodman, Don

    2012-01-01

    Task requirements for rocket propulsion test preparations of the test stand facilities drive the need to model the test facility propellant systems prior to constructing physical modifications. The Propellant System Modeling Environment (PSME) is an initiative designed to enable increased efficiency and expanded capabilities to a broader base of NASA engineers in the use of modeling and simulation (M&S) technologies for rocket propulsion test and launch mission requirements. PSME will enable a wider scope of users to utilize M&S of propulsion test and launch facilities for predictive and post-analysis functionality by offering a clean, easy-to-use, high-performance application environment.

  12. Solid Rocket Booster-Illustration

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This illustration is a cutaway of the solid rocket booster (SRB) sections with callouts. The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment. The boosters are designed to survive water impact at almost 60 miles per hour, maintain flotation with minimal damage, and preclude corrosion of the hardware exposed to the harsh seawater environment. Under the project management of the Marshall Space Flight Center, the SRB's are assembled and refurbished by the United Space Boosters. The SRM's are provided by the Morton Thiokol Corporation.

  13. Hybrid Rocket Propulsion for Sounding Rocket Applications

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A discussion of the H-225K hybrid rocket motor, produced by the American Rocket Company, is given. The H-225K motor is presented in terms of the following topics: (1) hybrid rocket fundamentals; (2) hybrid characteristics; and (3) hybrid advantages.

  14. Atomic hydrogen propellants: Historical perspectives and future possibilities

    NASA Astrophysics Data System (ADS)

    Palaszewski, Bryan

    1993-02-01

    Atomic hydrogen, a very high density free-radical propellant, is anticipated to generate a specific impulse of 600-1500 lb-f sec/lb-mass performance; this may facilitate the development of unique launch vehicles. A development status evaluation is presently given for atomic hydrogen investigations. It is noted that breakthroughs are required in the production, storage, and transfer of atomic hydrogen, before this fuel can become a viable rocket propellant.

  15. Atomic hydrogen propellants: Historical perspectives and future possibilities

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    1993-01-01

    Atomic hydrogen, a very high density free-radical propellant, is anticipated to generate a specific impulse of 600-1500 lb-f sec/lb-mass performance; this may facilitate the development of unique launch vehicles. A development status evaluation is presently given for atomic hydrogen investigations. It is noted that breakthroughs are required in the production, storage, and transfer of atomic hydrogen, before this fuel can become a viable rocket propellant.

  16. Photographic combustion characterization of LOX/hydrocarbon type propellants

    NASA Technical Reports Server (NTRS)

    Judd, D. C.

    1979-01-01

    Single element injectors and two fuels were tested with the aim of photographically characterizing observed combustion phenomena. The three injectors tested were the O-F-O triplet, the transverse like on like (TLOL), and the rectangular unlike doublet (RUD). The fuels tested were RP-1 and propane. The hot firings were conducted in a specifically constructed chamber fitted with quartz windows for photographically viewing the impingement spray field. All LOX/HC testing demonstrated coking with the RP-1 fuel leaving far more soot than the propane fuel. No fuel freezing or popping was experienced under the test conditions evaluated. Carbon particle emission and combustion light brilliance increased with Pc for both fuels although RP-1 was far more energetic in this respect. The RSS phenomena appear to be present in the high Pc tests as evidenced by striations in the spray pattern and by separate fuel rich and oxidizer rich areas. The RUD element was also tested as a fuel rich gas generator element by switching the propellant circuits. Excessive sooting occurred at this low mixture ratio (0.55), precluding photographic data.

  17. Bistable (latching) solenoid actuated propellant isolation valve

    NASA Technical Reports Server (NTRS)

    Wichmann, H.; Deboi, H. H.

    1979-01-01

    The design, fabrication, assembly and test of a development configuration bistable (latching) solenoid actuated propellant isolation valve suitable for the control hydrazine and liquid fluorine to an 800 pound thrust rocket engine is described. The valve features a balanced poppet, utilizing metal bellows, a hard poppet/seat interface and a flexure support system for the internal moving components. This support system eliminates sliding surfaces, thereby rendering the valve free of self generated particles.

  18. Space aging of solid rocket materials

    NASA Technical Reports Server (NTRS)

    Lester, Dean M.; Jones, Leon L.; Smalley, R. B., Jr.; Ord, R. Neil

    1992-01-01

    Solid rocket propellant and rocket motor components were aged in a vented container on the interior of the LDEF. This paper will present the results of aging the Improved Performance Space Motor-II/Payload Assist Module-Delta II (IPSM-II/PAM-DII) space motor components. Ballistic and mechanical properties of the space aged main propellant, igniter propellant, and ignition system were compared with similar data from preflight and ground aged samples. Mechanical properties of the composite materials and bonded joints used in the motor case, insulation, liner, nozzle, exit cone, and skirt were similarly evaluated. The space aging results will be compared to data collected in a ground based vacuum aging program on similar components. The operation of the vacuum actuated venting valve and pressure actuated resealing of the container will also be addressed. The materials tested showed no significant changes due to space aging. These results indicate that properly designed solid rocket motors can be expected to perform reliably after extended periods of exposure to a space environment.

  19. Overview of the manufacturing sequence of the Advanced Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Chapman, John S.; Nix, Michael B.

    1992-01-01

    The manufacturing sequence of NASA's new Advanced Solid Rocket Motor, developed as a replacement of the Space Shuttle's existing Redesigned Solid Rocket Motor, is overviewed. Special attention is given to the case preparation, the propellant mix/cast, the nondestructuve evaluation, the motor finishing, and the refurbishment. The fabrication sequences of the case, the nozzle, and the igniter are described.

  20. Rocket Engine Altitude Simulation Technologies

    NASA Technical Reports Server (NTRS)

    Woods, Jody L.; Lansaw, John

    2010-01-01

    John C. Stennis Space Center is embarking on a very ambitious era in its rocket engine propulsion test history. The first new large rocket engine test stand to be built at Stennis Space Center in over 40 years is under construction. The new A3 Test Stand is designed to test very large (294,000 Ibf thrust) cryogenic propellant rocket engines at a simulated altitude of 100,000 feet. A3 Test Stand will have an engine testing chamber where the engine will be fired after the air in the chamber has been evacuated to a pressure at the simulated altitude of less than 0.16 PSIA. This will result in a very unique environment with extremely low pressures inside a very large chamber and ambient pressures outside this chamber. The test chamber is evacuated of air using a 2-stage diffuser / ejector system powered by 5000 lb/sec of steam produced by 27 chemical steam generators. This large amount of power and flow during an engine test will result in a significant acoustic and vibrational environment in and around A3 Test Stand.

  1. Analytic Modeling of Pressurization and Cryogenic Propellant

    NASA Technical Reports Server (NTRS)

    Corpening, Jeremy H.

    2010-01-01

    An analytic model for pressurization and cryogenic propellant conditions during all mission phases of any liquid rocket based vehicle has been developed and validated. The model assumes the propellant tanks to be divided into five nodes and also implements an empirical correlation for liquid stratification if desired. The five nodes include a tank wall node exposed to ullage gas, an ullage gas node, a saturated propellant vapor node at the liquid-vapor interface, a liquid node, and a tank wall node exposed to liquid. The conservation equations of mass and energy are then applied across all the node boundaries and, with the use of perfect gas assumptions, explicit solutions for ullage and liquid conditions are derived. All fluid properties are updated real time using NIST Refprop.1 Further, mass transfer at the liquid-vapor interface is included in the form of evaporation, bulk boiling of liquid propellant, and condensation given the appropriate conditions for each. Model validation has proven highly successful against previous analytic models and various Saturn era test data and reasonably successful against more recent LH2 tank self pressurization ground test data. Finally, this model has been applied to numerous design iterations for the Altair Lunar Lander, Ares V Core Stage, and Ares V Earth Departure Stage in order to characterize Helium and autogenous pressurant requirements, propellant lost to evaporation and thermodynamic venting to maintain propellant conditions, and non-uniform tank draining in configurations utilizing multiple LH2 or LO2 propellant tanks. In conclusion, this model provides an accurate and efficient means of analyzing multiple design configurations for any cryogenic propellant tank in launch, low-acceleration coast, or in-space maneuvering and supplies the user with pressurization requirements, unusable propellants from evaporation and liquid stratification, and general ullage gas, liquid, and tank wall conditions as functions of time.

  2. Flight Investigation of 6.25-Inch-Diameter Deacon Rocket and 10-Inch-Scale Model Rocket

    NASA Technical Reports Server (NTRS)

    Watson, R. S.

    1949-01-01

    Flight tests were conducted at the NACA Pilotless Aircraft Research Station, Wallops Island, to determine the characteristics of the Allegany Ballistics Laboratory's 6.2inch-diameter Deacon and lO-inch-scale model solid-propellant rocket motors. The tests were performed to assist in the development of these rockets which were designed for, and urgently needed to propel supersonic research models and pilotless aircraft. The tests showed that the rocket motors functioned properly under various flight- acceleration loads over a range of pre-ignition grain temperatures. A maximum velocity of 4180 feet per second was obtained at an elapsed time of 2.9 seconds with the 6.25-inch Deacon rocket motor at a gross weight of l9O pounds. Free-flight data of drag coefficient for the Deacon configuration for a Mach number range of 1.1 to 3.6 have been obtained from flight tests of several pounds. Camera studies of the take-off and flights of the Deacon rocket shared no evidence of breakup of propellant grains. An analysis of the forces to which the Deacon rocket grain is subjected was made. The analysis shows that the grain loading is most severe near the beginning and near the end of the rocket action time. The 10-inch-scale model rocket motor is a scaled model of the l6-inch- diameter multi-perforated, cast-grain rocket motor. A maximum velocity of 1625 feet per second at a time of 1.075 seconds was obtained at a gross weight of 309 pounds.

  3. Atmospheric scavenging of solid rocket exhaust effluents

    NASA Technical Reports Server (NTRS)

    Fenton, D. L.; Purcell, R. Y.

    1978-01-01

    Solid propellant rocket exhaust was directly utilized to ascertain raindrop scavenging rates for hydrogen chloride. Two chambers were used to conduct the experiments; a large, rigid walled, spherical chamber stored the exhaust constituents, while the smaller chamber housing all the experiments was charged as required with rocket exhaust HCl. Surface uptake experiments demonstrated an HCl concentration dependence for distilled water. Sea water and brackish water HCl uptake was below the detection limit of the chlorine-ion analysis technique used. Plant life HCl uptake experiments were limited to corn and soybeans. Plant age effectively correlated the HCl uptake data. Metallic corrosion was not significant for single 20 minute exposures to the exhaust HCl under varying relative humidity. Characterization of the aluminum oxide particles substantiated the similarity between the constituents of the small scale rocket and the full size vehicles.

  4. Development of nuclear rocket engine technology

    SciTech Connect

    Gunn, S.V.

    1989-01-01

    Research sponsored by the Atomic Energy Commission, the USAF, and NASA (later on) in the area of nuclear rocket propulsion is discussed. It was found that a graphite reactor, loaded with highly concentrated Uranium 235, can be used to heat high pressure liquid hydrogen to temperatures of about 4500 R, and to expand the hydrogen through a high expansion ratio rocket nozzle assembly. The results of 20 reactor tests conducted at the Nevada Test Site between July 1959 and June 1969 are analyzed. On the basis of these results, the feasibility of solid graphite reactor/nuclear rocket engines is revealed. It is maintained that this technology will support future space propulsion requirements, using liquid hydrogen as the propellant, for thrust requirements ranging from 25,000 lbs to 250,000 lbs, with vacuum specific impulses of at least 850 sec and with full engine throttle capability. 12 refs.

  5. Swirl injectors for oxidizer-rich staged combustion cycle engines and hypergolic propellants

    NASA Astrophysics Data System (ADS)

    Long, Matthew R.

    Presented here are two efforts concerning the application of swirl injectors to rocket engine main chamber injectors. The first study was undertaken to develop a liquid/liquid bi-centrifugal swirl injector for use with new hypergolic propellants in conjunction with KB Sciences and China Lake. The second study focuses on gas/liquid swirl injectors typically used for main chamber elements in oxidizer-rich staged combustion engines. The design, development and testing of hypergolic liquid/liquid bi-centrifugal swirl injector for use with rocket grade hydrogen peroxide (RGHP) and non-toxic hypergolic miscible fuels (NHMF) are discussed first. Cold flow tests were conducted to measure the spray cone angle and discharge coefficient of the injector, and allow for comparison with theoretical predictions to evaluate the design model. The goal of this effort was to establish a method to design swirl injectors operating in a thrust regime of 35 lbf, characteristic lengths of 30 in, and c* efficiencies above 90%. A literature review of existing inviscid swirl models is provided. The bi-centrifugal swirler design process is described, along with the design features of the series of bicentrifugal swirl injectors that were built. Results from cold flow experiments are compared to the theoretical predictions of the models reviewed. Characteristic velocity (c*) efficiencies of 70-92% were measured. Next an introduction will be made to the transition of the study into the research regarding swirl injectors for the oxidizer rich staged combustion (ORSC) cycle. The goals of the effort described here are to establish an empirical knowledge base to provide a fundamental understanding of main chamber injectors and for verification of an injector design methodology for the ORSC cycle. The derivation of the baseline operating conditions is discussed. The liquid oxygen/hydrogen (LOX/H2) preburner and GOX/RP-1 injector design and hardware are detailed. Two alternative injector designs chosen

  6. Design and Testing of a Liquid Nitrous Oxide and Ethanol Fueled Rocket Engine

    SciTech Connect

    Youngblood, Stewart

    2015-08-01

    A small-scale, bi-propellant, liquid fueled rocket engine and supporting test infrastructure were designed and constructed at the Energetic Materials Research and Testing Center (EMRTC). This facility was used to evaluate liquid nitrous oxide and ethanol as potential rocket propellants. Thrust and pressure measurements along with high-speed digital imaging of the rocket exhaust plume were made. This experimental data was used for validation of a computational model developed of the rocket engine tested. The developed computational model was utilized to analyze rocket engine performance across a range of operating pressures, fuel-oxidizer mixture ratios, and outlet nozzle configurations. A comparative study of the modeling of a liquid rocket engine was performed using NASA CEA and Cantera, an opensource equilibrium code capable of being interfaced with MATLAB. One goal of this modeling was to demonstrate the ability of Cantera to accurately model the basic chemical equilibrium, thermodynamics, and transport properties for varied fuel and oxidizer operating conditions. Once validated for basic equilibrium, an expanded MATLAB code, referencing Cantera, was advanced beyond CEAs capabilities to predict rocket engine performance as a function of supplied propellant flow rate and rocket engine nozzle dimensions. Cantera was found to comparable favorably to CEA for making equilibrium calculations, supporting its use as an alternative to CEA. The developed rocket engine performs as predicted, demonstrating the developedMATLAB rocket engine model was successful in predicting real world rocket engine performance. Finally, nitrous oxide and ethanol were shown to perform well as rocket propellants, with specific impulses experimentally recorded in the range of 250 to 260 seconds.

  7. Propellant Management and Conditioning within the X-34 Main Propulsion System

    NASA Technical Reports Server (NTRS)

    Brown, T. M.; McDonald, J. P.; Hedayat, A.; Knight, K. C.; Champion, R. H., Jr.

    1998-01-01

    The X-34 hypersonic flight vehicle is currently under development by Orbital Sciences Corporation (Orbital). The Main Propulsion ystem as been designed around the liquid propellant Fastrac rocket engine currently under development at NASA Marshall Space Flight Center. This paper presents analyses of the MPS subsystems used to manage the liquid propellants. These subsystems include the propellant tanks, the tank vent/relief subsystem, and the dump/fill/drain subsystem. Analyses include LOX tank chill and fill time estimates, LOX boil-off estimates, propellant conditioning simulations, and transient propellant dump simulations.

  8. Space shuttle propellant constitutive law verification tests

    NASA Technical Reports Server (NTRS)

    Thompson, James R.

    1995-01-01

    As part of the Propellants Task (Task 2.0) on the Solid Propulsion Integrity Program (SPIP), a database of material properties was generated for the Space Shuttle Redesigned Solid Rocket Motor (RSRM) PBAN-based propellant. A parallel effort on the Propellants Task was the generation of an improved constitutive theory for the PBAN propellant suitable for use in a finite element analysis (FEA) of the RSRM. The outcome of an analysis with the improved constitutive theory would be more reliable prediction of structural margins of safety. The work described in this report was performed by Materials Laboratory personnel at Thiokol Corporation/Huntsville Division under NASA contract NAS8-39619, Mod. 3. The report documents the test procedures for the refinement and verification tests for the improved Space Shuttle RSRM propellant material model, and summarizes the resulting test data. TP-H1148 propellant obtained from mix E660411 (manufactured February 1989) which had experienced ambient igloo storage in Huntsville, Alabama since January 1990, was used for these tests.

  9. A Study on New Composite Thermoplastic Propellant

    NASA Astrophysics Data System (ADS)

    Kahara, Takehiro; Nakayama, Masanobu; Hasegawa, Hiroshi; Katoh, Kazushige; Miyazaki, Shigehumi; Maruizumi, Haruki; Hori, Keiichi; Morita, Yasuhiro; Akiba, Ryojiro

    Efforts have been paid to realize a new composite propellant using thermoplastics as a fuel binder and lithium as a metallic fuel. Thermoplastics binder makes it possible the storage of solid propellant in small blocks and to provide propellants blocks into rocket motor case at a quantity needed just before use, which enables the production facility of solid propellant at a minimum level, thus, production cost significantly lower. Lithium has been a candidate for a metallic fuel for the ammonium perchlorate based composite propellants owing to its capability to reduce the hydrogen chloride in the exhaust gas, however, never been used because lithium is not stable at room conditions and complex reaction products between oxygen, nitrogen, and water are formed at the surface of particles and even in the core. However, lithium particles whose surface shell structure is well controlled are rather stable and can be stored in thermoplastics for a long period. Evaluation of several organic thermoplastics whose melting temperatures are easily tractable was made from the standpoint of combustion characteristics, and it is shown that thermoplastics propellants can cover wide range of burning rate spectrum. Formation of well-defined surface shell of lithium particles and its kinetics are also discussed.

  10. Hybrid rocket motor testing at Nammo Raufoss A/S

    NASA Astrophysics Data System (ADS)

    Rønningen, Jan-Erik; Kubberud, Nils

    2005-08-01

    Hybrid rocket motor technology and the use of hybrid rockets have gained increased interest in recent years in many countries. A typical hybrid rocket consists of a tank containing the oxidizer in either liquid or gaseous state connected to the combustion chamber containing an injector, inert solid fuel grain and nozzle. Nammo Raufoss A/S has for almost 40 years designed and produced high-performance solid propellant rocket motors for many military missile systems as well as solid propellant rocket motors for civil space use. In 2003 an in-house technology program was initiated to investigate and study hybrid rocket technology. On 23 September 2004 the first in-house designed hybrid test rocket motor was static test fired at Nammo Raufoss Test Center. The oxidizer was gaseous oxygen contained in a tank pressurized to 10MPa, flow controlled through a sonic orifice into the combustion chamber containing a multi port radial injector and six bore cartridge-loaded fuel grain containing a modified HTPB fuel composition. The motor was ignited using a non-explosive heated wire. This paper will present what has been achieved at Nammo Raufoss since the start of the program.

  11. Improved hybrid rocket fuel

    NASA Technical Reports Server (NTRS)

    Dean, David L.

    1995-01-01

    McDonnell Douglas Aerospace, as part of its Independent R&D, has initiated development of a clean burning, high performance hybrid fuel for consideration as an alternative to the solid rocket thrust augmentation currently utilized by American space launch systems including Atlas, Delta, Pegasus, Space Shuttle, and Titan. It could also be used in single stage to orbit or as the only propulsion system in a new launch vehicle. Compared to solid propellants based on aluminum and ammonium perchlorate, this fuel is more environmentally benign in that it totally eliminates hydrogen chloride and aluminum oxide by products, producing only water, hydrogen, nitrogen, carbon oxides, and trace amounts of nitrogen oxides. Compared to other hybrid fuel formulations under development, this fuel is cheaper, denser, and faster burning. The specific impulse of this fuel is comparable to other hybrid fuels and is between that of solids and liquids. The fuel also requires less oxygen than similar hybrid fuels to produce maximum specific impulse, thus reducing oxygen delivery system requirements.

  12. Maize homologs of HCT, a key enzyme in lignin biosynthesis, bind the NLR Rp1 proteins to modulate the defense response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In plants, most disease resistance (R) genes encode nucleotide binding leucine-rich-repeat 42 (NLR) proteins that trigger a rapid localized cell death called a hypersensitive response (HR) 43 upon pathogen recognition. The maize NLR protein Rp1-D21 derives from an intragenic 44 recombination between...

  13. Radial flow nuclear thermal rocket (RFNTR)

    DOEpatents

    Leyse, Carl F.

    1995-11-07

    A radial flow nuclear thermal rocket fuel assembly includes a substantially conical fuel element having an inlet side and an outlet side. An annular channel is disposed in the element for receiving a nuclear propellant, and a second, conical, channel is disposed in the element for discharging the propellant. The first channel is located radially outward from the second channel, and separated from the second channel by an annular fuel bed volume. This fuel bed volume can include a packed bed of loose fuel beads confined by a cold porous inlet frit and a hot porous exit frit. The loose fuel beads include ZrC coated ZrC-UC beads. In this manner, nuclear propellant enters the fuel assembly axially into the first channel at the inlet side of the element, flows axially across the fuel bed volume, and is discharged from the assembly by flowing radially outward from the second channel at the outlet side of the element.

  14. Radial flow nuclear thermal rocket (RFNTR)

    DOEpatents

    Leyse, Carl F.

    1995-01-01

    A radial flow nuclear thermal rocket fuel assembly includes a substantially conical fuel element having an inlet side and an outlet side. An annular channel is disposed in the element for receiving a nuclear propellant, and a second, conical, channel is disposed in the element for discharging the propellant. The first channel is located radially outward from the second channel, and separated from the second channel by an annular fuel bed volume. This fuel bed volume can include a packed bed of loose fuel beads confined by a cold porous inlet frit and a hot porous exit frit. The loose fuel beads include ZrC coated ZrC-UC beads. In this manner, nuclear propellant enters the fuel assembly axially into the first channel at the inlet side of the element, flows axially across the fuel bed volume, and is discharged from the assembly by flowing radially outward from the second channel at the outlet side of the element.

  15. Holographic investigation of solid propellant combustion particles

    NASA Astrophysics Data System (ADS)

    Mellin, P. J.

    1983-12-01

    This investigation continued the development of a method for obtaining high quality holograms of the combustion products from aluminized solid rocket motor propellants burned in a two-dimensional motor to provide a cross-flow environment. The use of glass side plates as a motor casing provided both a convenient construction technique and allowed good quality holograms to be obtained. At combustion pressures above 500 psia and propellant slab thicknesses greater than 0.080 inches, the timing of the laser pulse during the burn was found to be critical, since an extremely short time interval existed between the establishment of steady state slab burning and the generation of too much smoke/combustion products to permit laser penetration. As desired operating pressures increase and aluminum powder particle sizes decrease, it will probably be necessary to use thinner propellant slabs.

  16. Effects of MiRP1 and DPP6 β-subunits on the blockade induced by flecainide of KV4.3/KChIP2 channels

    PubMed Central

    Radicke, S; Vaquero, M; Caballero, R; Gómez, R; Núñez, L; Tamargo, J; Ravens, U; Wettwer, E; Delpón, E

    2008-01-01

    Background and purpose: The human cardiac transient outward potassium current (Ito) is believed to be composed of the pore-forming KV4.3 α-subunit, coassembled with modulatory β-subunits as KChIP2, MiRP1 and DPP6 proteins. β-Subunits can alter the pharmacological response of Ito; therefore, we analysed the effects of flecainide on KV4.3/KChIP2 channels coassembled with MiRP1 and/or DPP6 β-subunits. Experimental approach: Currents were recorded in Chinese hamster ovary cells stably expressing KV4.3/KChIP2 channels, and transiently transfected with either MiRP1, DPP6 or both, using the whole-cell patch-clamp technique. Key results: In control conditions, KV4.3/KChIP2/MiRP1 channels exhibited the slowest activation and inactivation kinetics and showed an ‘overshoot' in the time course of recovery from inactivation. The midpoint values (Vh) of the activation and inactivation curves for KV4.3/KChIP2/DPP6 and KV4.3/KChIP2/MiRP1/DPP6 channels were ≈10 mV more negative than Vh values for KV4.3/KChIP2 and KV4.3/KChIP2/MiRP1 channels. Flecainide (0.1–100 μM) produced a similar concentration-dependent blockade of total integrated current flow (IC50 ≈10 μM) in all the channel complexes. However, the IC50 values for peak current amplitude and inactivated channel block were significantly different. Flecainide shifted the Vh values of both the activation and inactivation curves to more negative potentials and apparently accelerated inactivation kinetics in all channels. Moreover, flecainide slowed recovery from inactivation in all the channel complexes and suppressed the ‘overshoot' in KV4.3/KChIP2/MiRP1 channels. Conclusions and implications: Flecainide directly binds to the KV4.3 α-subunit when the channels are in the open and inactivated state and the presence of the β-subunits modulates the blockade by altering the gating function. PMID:18536731

  17. SRM propellant and polymer materials structural test program

    NASA Technical Reports Server (NTRS)

    Moore, Carleton J.

    1988-01-01

    The SRM propellant and polymer materials structural test program has potentially wide application to the testing and structural analysis of polymer materials and other materials generally characterized as being made of viscoelastic materials. The test program will provide a basis for characterization of the dynamic failure criteria for Solid Rocket Motor (SRM) propellant, insulation, inhibitor and liners. This experimental investigation will also endeavor to obtain a consistent complete set of materials test data. This test will be used to improve and revise the presently used theoretical math models for SRM propellant, insulators, inhibitor, liners, and O-ring seals.

  18. Photographic Combustion Characterization of LOX/Hydrocarbon Type Propellants

    NASA Technical Reports Server (NTRS)

    Judd, D. C.

    1980-01-01

    The advantages and limitations of using high speed photography to identify potential combustion anomalies (pops, fuel freezing, reactive stream separation (RSS), carbon formation) were demonstrated. Combustion evaluation criteria were developed for evaluating, characterizing, and screening promising low cost propellant combination(s) and injector element(s) for long life, reusable engine systems. Carbon formation and RSS mechanisms and trends were identified by using high speed color photography at speeds up to 6000 frames/sec. Single element injectors were tested with LOX/RP-1, LOX/Propane, LOX/Methane and LOX/Ammonia propellants. Tests were conducted using seven separate injector elements. Five different conventionally machined elements were tested: OFO Triplet; Rectangular Unlike Doublet (RUD); Unlike Doublet (UD); Like on Lke Doublet (LOL-EDM); and Slit Triplet.

  19. An evaluation of metallized propellants based on vehicle performance

    NASA Technical Reports Server (NTRS)

    Zurawski, Robert L.; Green, James M.

    1987-01-01

    An analytical study was conducted to determine the improvements in vehicle performance possible by burning metals with conventional liquid bipropellants. These metallized propellants theoretically offer higher specific impulse, increased propellant density and improved vehicle performance compared with conventional liquid bipropellants. Metals considered were beryllium, lithium, aluminum and iron. Liquid bipropellants were H2/O2, N2H4/N2O4, RP-1/O2 and H2/F2. A mission with a delta V = 4267.2 m/sec (14,000 ft/sec) and vehicle with propellant volume fixed at 56.63 cu m (2000 cu ft) and dry mass fixed at 2761.6 kg (6000 lb) was used, roughly representing the transfer of a chemically propelled upper-stage vehicle from a low-Earth orbit to a geosynchronous orbit. The results of thermochemical calculations and mission analysis calculations for bipropellants metallized with beryllium, lithium, aluminum and iron are presented. Technology issues pertinent to metallized propellants are discussed.

  20. A review of research in low earth orbit propellant collection

    NASA Astrophysics Data System (ADS)

    Singh, Lake A.; Walker, Mitchell L. R.

    2015-05-01

    This comprehensive review examines the efforts of previous researchers to develop concepts for propellant-collecting spacecraft, estimate the performance of these systems, and understand the physics involved. Rocket propulsion requires the spacecraft to expend two fundamental quantities: energy and propellant mass. A growing number of spacecraft collect the energy they need to execute propulsive maneuvers in-situ with solar panels. In contrast, every spacecraft using rocket propulsion has carried all of the propellant mass needed for the mission from the ground, which limits the range and mission capabilities. Numerous researchers have explored the concept of collecting propellant mass while in space. These concepts have varied in scale and complexity from chemical ramjets to fusion-driven interstellar vessels. Research into propellant-collecting concepts occurred in distinct eras. During the Cold War, concepts tended to be large, complex, and nuclear powered. After the Cold War, concepts transitioned to solar power sources and more effort has been devoted to detailed analysis of specific components of the propellant-collecting architecture. By detailing the major contributions and limitations of previous work, this review concisely presents the state-of-the-art and outlines five areas for continued research. These areas include air-compatible cathode technology, techniques to improve propellant utilization on atmospheric species, in-space compressor and liquefaction technology, improved hypersonic and hyperthermal free molecular flow inlet designs, and improved understanding of how design parameters affect system performance.

  1. Rocket Scientist for a Day: Investigating Alternatives for Chemical Propulsion

    ERIC Educational Resources Information Center

    Angelin, Marcus; Rahm, Martin; Gabrielsson, Erik; Gumaelius, Lena

    2012-01-01

    This laboratory experiment introduces rocket science from a chemistry perspective. The focus is set on chemical propulsion, including its environmental impact and future development. By combining lecture-based teaching with practical, theoretical, and computational exercises, the students get to evaluate different propellant alternatives. To…

  2. Fundamental Study on Coking Characteristics of LNG Rocket Engines

    NASA Astrophysics Data System (ADS)

    Higashino, Kazuyuki; Sugioka, Masatoshi; Kobayashi, Takao; Minato, Ryojiro; Maru, Yusuke; Sasayama, Yousuke; Otsuka, Masaya; Makino, Takashi; Sakaguchi, Hiroyuki

    Liquid Natural Gas (LNG) will be used as propellant of near future space vehicles and rocket engines. Cooling characteristics of engines, especially methane thermal cracking characteristics depend on material candidate for nozzle and chamber cooling passage material temperature. This paper describes these effects on coking and sample analysis method is suggested.

  3. Liquid rocket engine fluid-cooled combustion chambers

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A monograph on the design and development of fluid cooled combustion chambers for liquid propellant rocket engines is presented. The subjects discussed are (1) regenerative cooling, (2) transpiration cooling, (3) film cooling, (4) structural analysis, (5) chamber reinforcement, and (6) operational problems.

  4. 62. Historic propellant piping diagram of oxidant pit at Building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. Historic propellant piping diagram of oxidant pit at Building 202, January 6, 1956. NASA GRC drawing no. CF-101644. (On file at NASA Glenn Research Center). - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  5. The effects of recombination, mutation and selection on the evolution of the Rp1 resistance genes in grasses.

    PubMed

    Jouet, Agathe; McMullan, Mark; van Oosterhout, Cock

    2015-06-01

    Plant immune genes, or resistance genes, are involved in a co-evolutionary arms race with a diverse range of pathogens. In agronomically important grasses, such R genes have been extensively studied because of their role in pathogen resistance and in the breeding of resistant cultivars. In this study, we evaluate the importance of recombination, mutation and selection on the evolution of the R gene complex Rp1 of Sorghum, Triticum, Brachypodium, Oryza and Zea. Analyses show that recombination is widespread, and we detected 73 independent instances of sequence exchange, involving on average 1567 of 4692 nucleotides analysed (33.4%). We were able to date 24 interspecific recombination events and found that four occurred postspeciation, which suggests that genetic introgression took place between different grass species. Other interspecific events seemed to have been maintained over long evolutionary time, suggesting the presence of balancing selection. Significant positive selection (i.e. a relative excess of nonsynonymous substitutions (dN /dS >1)) was detected in 17-95 codons (0.42-2.02%). Recombination was significantly associated with areas with high levels of polymorphism but not with an elevated dN /dS ratio. Finally, phylogenetic analyses show that recombination results in a general overestimation of the divergence time (mean = 14.3%) and an alteration of the gene tree topology if the tree is not calibrated. Given that the statistical power to detect recombination is determined by the level of polymorphism of the amplicon as well as the number of sequences analysed, it is likely that many studies have underestimated the importance of recombination relative to the mutation rate.

  6. Marshall Team Fires Recreated Goddard Rocket

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In honor of the Centernial of Flight Celebration and commissioned by the American Institute of Aeronautics and Astronautics (AIAA), a team of engineers from Marshall Space Flight Center (MSFC) built a replica of the first liquid-fueled rocket. The original rocket, designed and built by rocket engineering pioneer Robert H. Goddard in 1926, opened the door to modern rocketry. Goddard's rocket reached an altitude of 41 feet while its flight lasted only 2.5 seconds. The Marshall design team's plan was to stay as close as possible to an authentic reconstruction of Goddard's rocket. The same propellants were used - liquid oxygen and gasoline - as available during Goddard's initial testing and firing. The team also tried to construct the replica using the original materials and design to the greatest extent possible. By purposely using less advanced techniques and materials than many that are available today, the team encountered numerous technical challenges in testing the functional hardware. There were no original blueprints or drawings, only photographs and notes. However, this faithful adherence to historical accuracy has allowed the team to experience many of the same challenges Goddard faced 77 years ago, and more fully appreciate the genius of this extraordinary man. In this photo, the replica is shown firing in the A-frame launch stand in near-flight configuration at MSFC's Test Area 116 during the American Institute of Aeronautics and Astronautics 39th Joint Propulsion Conference on July 23, 2003.

  7. Characterizing high-energy-density propellants for space propulsion applications

    NASA Astrophysics Data System (ADS)

    Kokan, Timothy

    There exists wide ranging research interest in high-energy-density matter (HEDM) propellants as a potential replacement for existing industry standard fuels for liquid rocket engines. The U.S. Air Force Research Laboratory, the U.S. Army Research Lab, the NASA Marshall Space Flight Center, and the NASA Glenn Research Center each either recently concluded or currently has ongoing programs in the synthesis and development of these potential new propellants. In order to perform conceptual designs using these new propellants, most conceptual rocket engine powerhead design tools (e.g. NPSS, ROCETS, and REDTOP-2) require several thermophysical properties of a given propellant over a wide range of temperature and pressure. These properties include enthalpy, entropy, density, viscosity, and thermal conductivity. Very little thermophysical property data exists for most of these potential new HEDM propellants. Experimental testing of these properties is both expensive and time consuming and is impractical in a conceptual vehicle design environment. A new technique for determining these thermophysical properties of potential new rocket engine propellants is presented. The technique uses a combination of three different computational methods to determine these properties. Quantum mechanics and molecular dynamics are used to model new propellants at a molecular level in order to calculate density, enthalpy, and entropy. Additivity methods are used to calculate the kinematic viscosity and thermal conductivity of new propellants. This new technique is validated via a series of verification experiments of HEDM compounds. Results are provided for two HEDM propellants: quadricyclane and 2-azido-N,N-dimethylethanamine (DMAZ). In each case, the new technique does a better job than the best current computational methods at accurately matching the experimental data of the HEDM compounds of interest. A case study is provided to help quantify the vehicle level impacts of using HEDM

  8. Rocket effluent - Its ice nucleation activity and related properties

    NASA Technical Reports Server (NTRS)

    Parungo, F. P.; Allee, P. A.

    1978-01-01

    To investigate the possibility of inadvertent weather modification from rocket effluent, aerosol samples were collected from an instrumented aircraft subsequent to the Voyager I and II launches. The aerosol's morphology, concentration and size distribution were examined with an electron microscope. The elemental compositions of individual particles were analyzed with an X-ray energy spectrometer. Ice nucleus concentration was measured with a subfreezing thermal diffusion chamber. The particles' physical and chemical properties were related to their ice nucleation activity. A laboratory experiment on rocket propellant exhaust was conducted under controlled conditions. Both laboratory and field experimental results indicated that rocket propellant exhaust can produce active ice nuclei. Their consequences for potential inadvertant weather modification demand additional study.

  9. Rocket effluent: Its ice nucleation activity and related properties

    NASA Technical Reports Server (NTRS)

    Parungo, F. P.; Allee, P. A.

    1978-01-01

    To investigate the possibility of inadvertent weather modification from rocket effluent, aerosol samples were collected from an instrumented aircraft subsequent to the Voyager 1 and 2 launches. The aerosol's morphology, concentration, and size distribution were examined with an electron microscope. The elemental compositions of individual particles were analyzed with an X-ray energy spectrometer. Ice nucleus concentration was measured with a thermal diffusion chamber. The particles' physical and chemical properties were related to their ice nucleation activity. A laboratory experiment on rocket propellant exhaust was conducted under controlled conditions. Both laboratory and field experimental results indicated that rocket propellant exhaust can produce active ice nuclei and modify local weather in suitable meteorological conditions.

  10. Studies of solid propellant combustion with pulsed radiography

    NASA Technical Reports Server (NTRS)

    Godai, T.; Tanemura, T.; Fujiwara, T.; Shimizu, M.

    1987-01-01

    Pulsed radiography was applied to observe solid propellant surface regression during rocket motor operation. Using a 150 KV flash X-ray system manufactured by the Field Emission Corporation and two kinds of film suppliers, images of the propellant surface of a 5 cm diameter end burning rocket motor were recorded on film. The repetition frame rate of 8 pulses per second and the pulse train length of 10 pulses are limited by the capability of the power supply and the heat build up within the X-ray tube, respectively. The experiment demonstrated the effectiveness of pulsed radiography for observing solid propellant surface regression. Measuring the position of burning surface images on film with a microdensitometer, quasi-instantaneous burning rate as a function of pressure and the variation of characteristic velocity with pressure and gas stay time were obtained. Other research items to which pulsed radiography can be applied are also suggested.

  11. Effect of R-plasmid RP1 and nutrient depletion on the gross cellular composition of Escherichia coli and its resistance to some uncoupling phenols.

    PubMed

    Gilbert, P; Brown, M R

    1978-03-01

    The resistance of Escherichia coli batch cultures depleted of carbon (C-dep), magnesium (Mg-dep), or phosphate (P-dep) against low concentrations of 3-chlorophenol, 4-chlorophenol, or 2-phenoxyethanol varied. C-dep cultures were always significantly more sensitive than Mg-dep or P-dep cultures. The presence of R-plasmid RP1 increased the sensitivity of C-dep cultures to 3- and 4-chlorophenol, yet had little effect on those cultured depleted in magnesium or phosphate ions. Cultures with R-plasmid RP1 had increased levels of beta-polyhydroxybutyrate irrespective of the nature of the depleting nutrient. P-dep bacteria had less than one-third of the phospholipid of other cell types, this deficiency being compensated for by increases in fatty acid and neutral lipid content. The reduction in phospholipid content of P-dep cultures was entirely accounted for by decreased diphosphatidylglycerol and phosphatidylethanolamine levels in these cells.

  12. A nonsense mutation in a novel gene is associated with retinitis pigmentosa in a family linked to the RP1 locus.

    PubMed

    Guillonneau, X; Piriev, N I; Danciger, M; Kozak, C A; Cideciyan, A V; Jacobson, S G; Farber, D B

    1999-08-01

    Retinitis pigmentosa (RP) represents a group of inherited human retinal diseases which involve degeneration of photoreceptor cells resulting in visual loss and often leading to blindness. In order to identify candidate genes for the causes of these diseases, we have been studying a pool of photoreceptor-specific cDNAs isolated by subtractive hybridization of mRNAs from normal and photoreceptorless rd mouse retinas. One of these cDNAs was of interest because it mapped to proximal mouse chromosome 1 in a region homo-logous to human 8q11-q13, the locus of autosomal dominant RP1. Therefore, using the mouse cDNA as probe, we cloned the human cDNA (hG28) and its corresponding gene and mapped it near to D8S509, which lies in the RP1 locus. This gene consists of four exons with an open reading frame of 6468 nt encoding a protein of 2156 amino acids with a predicted mass of 240 kDa. Given its chromosomal localization, we screened this gene for mutations in a large family affected with autosomal dominant RP previously linked to the RP1 locus. We found an R677X mutation that co-segregated with disease in the family and is absent from unaffected members and 100 unrelated controls. This mutation is predicted to lead to rapid degradation of hG28 mRNA or to the synthesis of a truncated protein lacking approximately 70% of its original length. Our results suggest that R677X is responsible for disease in this family and that the gene corresponding to hG28 is the RP1 gene.

  13. Computational simulation of liquid rocket injector anomalies

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Singhal, A. K.; Tam, L. T.; Davidian, K.

    1986-01-01

    A computer model has been developed to analyze the three-dimensional two-phase reactive flows in liquid fueled rocket combustors. The model is designed to study the influence of liquid propellant injection nonuniformities on the flow pattern, combustion and heat transfer within the combustor. The Eulerian-Lagrangian approach for simulating polidisperse spray flow, evaporation and combustion has been used. Full coupling between the phases is accounted for. A nonorthogonal, body fitted coordinate system along with a conservative control volume formulation is employed. The physical models built into the model include a kappa-epsilon turbulence model, a two-step chemical reaction, and the six-flux radiation model. Semiempirical models are used to describe all interphase coupling terms as well as chemical reaction rates. The purpose of this study was to demonstrate an analytical capability to predict the effects of reactant injection nonuniformities (injection anomalies) on combustion and heat transfer within the rocket combustion chamber. The results show promising application of the model to comprehensive modeling of liquid propellant rocket engines.

  14. Characterization of nal powders for rocket propulsion

    NASA Astrophysics Data System (ADS)

    Merotto, L.; Galfetti, L.; Colombo, G.; DeLuca, L. T.

    2011-10-01

    Nanosized metal powders are known to significantly improve both solid and hybrid rocket performance, but have some drawbacks in terms of cost, safety, and possible influence on propellant mechanical properties. Performance enhancement through nanosized metal or metal hydride addition to solid fuels is currently under investigation also for hybrid propulsion. Therefore, a preburning characterization of the powders used in solid propellant or fuel manufacturing is useful to assess their effects on the ballistic properties and engine performance. An investigation concerning the comparative characterization of several aluminum powders having different particle size, age, and coating is presented. Surface area, morphology, chemical species concentration and characteristics, surface passivation layers, surface and subsurface chemical composition, ignition temperature and ignition delay are investigated. The aim of this characterization is to experimentally assess the effect of the nAl powder properties on ballistic characteristics of solid fuels and solidrocket composite-propellant performance, showing an increase in terms of Is caused by the decrease of two-phase losses in solid and a possible significant rf increase in hybrid rockets.

  15. Characterizing high-energy-density propellants for space propulsion applications

    NASA Astrophysics Data System (ADS)

    Kokan, Timothy S.; Olds, John R.; Seitzman, Jerry M.; Ludovice, Peter J.

    2009-10-01

    A technique for computationally determining the thermophysical properties of high-energy-density matter (HEDM) propellants is presented. HEDM compounds are of interest in the liquid rocket engine industry due to their high density and high energy content relative to existing industry-standard propellants. In order to accurately model rocket engine performance, cost and weight in a conceptual design environment, several thermodynamic and physical properties are required over a range of temperatures and pressures. The approach presented here combines quantum mechanical and molecular dynamic (MD) calculations and group additivity methods. A method for improving the force field model coefficients used in the MD is included. This approach is used to determine thermophysical properties for two HEDM compounds of interest: quadricyclane and 2-azido-N,N-dimethylethanamine (DMAZ). The modified force field approach provides results that more accurately match experimental data than the unmodified approach. Launch vehicle and Lunar lander case studies are presented to quantify the system level impact of employing quadricyclane and DMAZ rather than industry standard propellants. In both cases, the use of HEDM propellants provides reductions in vehicle mass compared to industry standard propellants. The results demonstrate that HEDM propellants can be an attractive technology for future launch vehicle and Lunar lander applications.

  16. SSTO rockets. A practical possibility

    NASA Astrophysics Data System (ADS)

    Bekey, Ivan

    1994-07-01

    Most experts agree that single-stage-to-orbit (SSTO) rockets would become feasible if more advanced technologies were available to reduce the vehicle dry weight, increase propulsion system performance, or both. However, these technologies are usually judged to be very ambitious and very far off. This notion persists despite major advances in technology and vehicle design in the past decade. There appears to be four major misperceptions about SSTOs, regarding their mass fraction, their presumed inadequate performance margin, their supposedly small payloads, and their extreme sensitivity to unanticipated vehicle weight growth. These misperceptions can be dispelled for SSTO rockets using advanced technologies that could be matured and demonstrated in the near term. These include a graphite-composite primary structure, graphite-composite and Al-Li propellant tanks with integral reusable thermal protection, long-life tripropellant or LOX-hydrogen engines, and several technologies related to operational effectiveness, including vehicle health monitoring, autonomous avionics/flight control, and operable launch and ground handling systems.

  17. Sounding rockets in Antarctica

    NASA Technical Reports Server (NTRS)

    Alford, G. C.; Cooper, G. W.; Peterson, N. E.

    1982-01-01

    Sounding rockets are versatile tools for scientists studying the atmospheric region which is located above balloon altitudes but below orbital satellite altitudes. Three NASA Nike-Tomahawk sounding rockets were launched from Siple Station in Antarctica in an upper atmosphere physics experiment in the austral summer of 1980-81. The 110 kg payloads were carried to 200 km apogee altitudes in a coordinated project with Arcas rocket payloads and instrumented balloons. This Siple Station Expedition demonstrated the feasibility of launching large, near 1,000 kg, rocket systems from research stations in Antarctica. The remoteness of research stations in Antarctica and the severe environment are major considerations in planning rocket launching expeditions.

  18. Rockets for spin recovery

    NASA Technical Reports Server (NTRS)

    Whipple, R. D.

    1980-01-01

    The potential effectiveness of rockets as an auxiliary means for an aircraft to effect recovery from spins was investigated. The advances in rocket technology produced by the space effort suggested that currently available systems might obviate many of the problems encountered in earlier rocket systems. A modern fighter configuration known to exhibit a flat spin mode was selected. An analytical study was made of the thrust requirements for a rocket spin recovery system for the subject configuration. These results were then applied to a preliminary systems study of rocket components appropriate to the problem. Subsequent spin tunnel tests were run to evaluate the analytical results.

  19. On fundamentally new sources of energy for rockets in the early works of the pioneers of astronautics

    NASA Technical Reports Server (NTRS)

    Melkumov, T. M.

    1977-01-01

    The research for more efficient methods of propelling a spacecraft, than can be achieved with chemical energy, was studied. During a time when rockets for space flight had not actually been built pioneers in rocket technology were already concerned with this problem. Alternative sources proposed at that time, were nuclear and solar energy. Basic engineering problems of each source were investigated.

  20. Contained rocket motor burn demonstrations in X-tunnel: Final report for the DoD/DOE Joint Demilitarization Technology Program

    SciTech Connect

    S. W. Allendorf; B. W. Bellow; R. f. Boehm

    2000-05-01

    Three low-pressure rocket motor propellant burn tests were performed in a large, sealed test chamber located at the X-tunnel complex on the Department of Energy's Nevada Test Site in the period May--June 1997. NIKE rocket motors containing double base propellant were used in two tests (two and four motors, respectively), and the third test used two improved HAWK rocket motors containing composite propellant. The preliminary containment safety calculations, the crack and burn procedures used in each test, and the results of various measurements made during and after each test are all summarized and collected in this document.

  1. Rocket pollution reduction system

    SciTech Connect

    Geisler, R.L.

    1994-01-04

    A system is provided for reducing the emissions of hydrochloric acid (HCl) from solid fuel rockets, especially during ground disposal. An aqueous solution of an alkali metal hydroxide is injected as a mist into the rocket chamber as the rocket fuel is burned. The reaction of the alkali metal with hydrogen chloride (HCl) produces a salt and thereby minimizes the presence of hydrochloric acid in the rocket exhaust. An injected neutralizing material which reduces hydrochloric acid, but which produces less thrust than an equal weight of rocket fuel, can be injected into an operating rocket which carries a payload high above the earth, with the injected material being injected only while the rocket is at a lower altitude when hydrochloric acid is most undesirable. The injected material can be produced by a small auxiliary rocket device whose exhaust is delivered directly to the main rocket chamber, and with the exhaust of the auxiliary rocket device including a high proportion of magnesium to react with the hydrochloric acid with minimal degradation of rocket performance. 4 figs.

  2. Airbreathing/Rocket Single-Stage-to-Orbit Design Matrix

    NASA Technical Reports Server (NTRS)

    Hunt, James L.

    1995-01-01

    A definitive design/performance study was performed on a single-stage-to-orbit (SSTO) airbreathing propelled orbital vehicle with rocket propulsion augmentation in the Access to Space activities during 1993. A credible reference design was established, but by no means an optimum. The results supported the viability of SSTO airbreathing/rocket vehicles for operational scenarios and indicated compelling reasons to continue to explore the design matrix. This paper will (1) summarize the Access to Space design activity from the SSTO airbreathing/rocket perspective, (2) present an airbreathing/rocket SSTO design matrix established for continued optimization of the design space, and (3) focus on the compelling reasons for airbreathing vehicles in Access to Space scenarios.

  3. Modal survey of the space shuttle solid rocket motor using multiple input methods

    NASA Technical Reports Server (NTRS)

    Brillhart, Ralph; Hunt, David L.; Jensen, Brent M.; Mason, Donald R.

    1987-01-01

    The ability to accurately characterize propellant in a finite element model is a concern of engineers tasked with studying the dynamic response of the Space Shuttle Solid Rocket Motor (SRM). THe uncertainties arising from propellant characterization through specimem testing led to the decision to perform a model survey and model correlation of a single segment of the Shuttle SRM. Multiple input methods were used to excite and define case/propellant modes of both an inert segment and, later, a live propellant segment. These tests were successful at defining highly damped, flexible modes, several pairs of which occured with frequency spacing of less than two percent.

  4. Settled Cryogenic Propellant Transfer

    NASA Technical Reports Server (NTRS)

    Kutter, Bernard F.; Zegler, Frank; Sakla, Steve; Wall, John; Hopkins, Josh; Saks, Greg; Duffey, Jack; Chato, David J.

    2006-01-01

    Cryogenic propellant transfer can significantly benefit NASA s space exploration initiative. LMSSC parametric studies indicate that "Topping off" the Earth Departure Stage (EDS) in LEO with approx.20 mT of additional propellant using cryogenic propellant transfer increases the lunar delivered payload by 5 mT. Filling the EDS to capacity in LEO with 78 mT of propellants increases the delivered payload by 20 mT. Cryogenic propellant transfer is directly extensible to Mars exploration in that it provides propellant for the Mars Earth Departure stage and in-situ propellant utilization at Mars. To enable the significant performance increase provided by cryogenic propellant transfer, the reliability and robustness of the transfer process must be guaranteed. By utilizing low vehicle acceleration during the cryogenic transfer the operation is significantly simplified and enables the maximum use of existing, reliable, mature upper stage cryogenic-fluid-management (CFM) techniques. Due to settling, large-scale propellant transfer becomes an engineering effort, and not the technology development endeavor required with zero-gravity propellant transfer. The following key CFM technologies are all currently implemented by settling on both the Centaur and Delta IV upper stages: propellant acquisition, hardware chilldown, pressure control, and mass gauging. The key remaining technology, autonomous rendezvous and docking, is already in use by the Russians, and must be perfected for NASA whether the use of propellant transfer is utilized or not.

  5. The effects of solid rocket motor effluents on selected surfaces and solid particle size, distribution, and composition for simulated shuttle booster separation motors

    NASA Technical Reports Server (NTRS)

    Jex, D. W.; Linton, R. C.; Russell, W. M.; Trenkle, J. J.; Wilkes, D. R.

    1976-01-01

    A series of three tests was conducted using solid rocket propellants to determine the effects a solid rocket plume would have on thermal protective surfaces (TPS). The surfaces tested were those which are baselined for the shuttle vehicle. The propellants used were to simulate the separation solid rocket motors (SSRM) that separate the solid rocket boosters (SRB) from the shuttle launch vehicle. Data cover: (1) the optical effects of the plume environment on spacecraft related surfaces, and (2) the solid particle size, distribution, and composition at TPS sample locations.

  6. Fluid-solid coupled simulation of the ignition transient of solid rocket motor

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Liu, Peijin; He, Guoqiang

    2015-05-01

    The first period of the solid rocket motor operation is the ignition transient, which involves complex processes and, according to chronological sequence, can be divided into several stages, namely, igniter jet injection, propellant heating and ignition, flame spreading, chamber pressurization and solid propellant deformation. The ignition transient should be comprehensively analyzed because it significantly influences the overall performance of the solid rocket motor. A numerical approach is presented in this paper for simulating the fluid-solid interaction problems in the ignition transient of the solid rocket motor. In the proposed procedure, the time-dependent numerical solutions of the governing equations of internal compressible fluid flow are loosely coupled with those of the geometrical nonlinearity problems to determine the propellant mechanical response and deformation. The well-known Zeldovich-Novozhilov model was employed to model propellant ignition and combustion. The fluid-solid coupling interface data interpolation scheme and coupling instance for different computational agents were also reported. Finally, numerical validation was performed, and the proposed approach was applied to the ignition transient of one laboratory-scale solid rocket motor. For the application, the internal ballistics were obtained from the ground hot firing test, and comparisons were made. Results show that the integrated framework allows us to perform coupled simulations of the propellant ignition, strong unsteady internal fluid flow, and propellant mechanical response in SRMs with satisfactory stability and efficiency and presents a reliable and accurate solution to complex multi-physics problems.

  7. Metallic hydrogen: The most powerful rocket fuel yet to exist

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac F.; Cole, John W.

    2010-03-01

    Wigner and Huntington first predicted that pressures of order 25 GPa were required for the transition of solid molecular hydrogen to the atomic metallic phase. Later it was predicted that metallic hydrogen might be a metastable material so that it remains metallic when pressure is released. Experimental pressures achieved on hydrogen have been more than an order of magnitude higher than the predicted transition pressure and yet it remains an insulator. We discuss the applications of metastable metallic hydrogen to rocketry. Metastable metallic hydrogen would be a very light-weight, low volume, powerful rocket propellant. One of the characteristics of a propellant is its specific impulse, Isp. Liquid (molecular) hydrogen-oxygen used in modern rockets has an Isp of ~460s; metallic hydrogen has a theoretical Isp of 1700s! Detailed analysis shows that such a fuel would allow single-stage rockets to enter into orbit or carry economical payloads to the moon. If pure metallic hydrogen is used as a propellant, the reaction chamber temperature is calculated to be greater than 6000 K, too high for currently known rocket engine materials. By diluting metallic hydrogen with liquid hydrogen or water, the reaction temperature can be reduced, yet there is still a significant performance improvement for the diluted mixture.

  8. Liquid rocket combustor computer code development

    NASA Technical Reports Server (NTRS)

    Liang, P. Y.

    1985-01-01

    The Advanced Rocket Injector/Combustor Code (ARICC) that has been developed to model the complete chemical/fluid/thermal processes occurring inside rocket combustion chambers are highlighted. The code, derived from the CONCHAS-SPRAY code originally developed at Los Alamos National Laboratory incorporates powerful features such as the ability to model complex injector combustion chamber geometries, Lagrangian tracking of droplets, full chemical equilibrium and kinetic reactions for multiple species, a fractional volume of fluid (VOF) description of liquid jet injection in addition to the gaseous phase fluid dynamics, and turbulent mass, energy, and momentum transport. Atomization and droplet dynamic models from earlier generation codes are transplated into the present code. Currently, ARICC is specialized for liquid oxygen/hydrogen propellants, although other fuel/oxidizer pairs can be easily substituted.

  9. Boron epoxy rocket motor case program

    NASA Technical Reports Server (NTRS)

    Stang, D. A.

    1971-01-01

    Three 28-inch-diameter solid rocket motor cases were fabricated using 1/8 inch wide boron/epoxy tape. The cases had unequal end closures (4-1/8-inch-diameter forward flanges and 13-inch-diameter aft flanges) and metal attachment skirts. The flanges and skirts were titanium 6Al-4V alloy. The original design for the first case was patterned after the requirements of the Applications Technology Satellite apogee kick motor. The second and third cases were designed and fabricated to approximate the requirements of a small Applications Technology Satellite apogee kick motor. The program demonstrated the feasibility of designing and fabricating large-scale filament-wound solid propellant rocket motor cases with boron/epoxy tape.

  10. Nuclear rocket using indigenous Martian fuel NIMF

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert

    1991-01-01

    In the 1960's, Nuclear Thermal Rocket (NTR) engines were developed and ground tested capable of yielding isp of up to 900 s at thrusts up to 250 klb. Numerous trade studies have shown that such traditional hydrogen fueled NTR engines can reduce the inertial mass low earth orbit (IMLEO) of lunar missions by 35 percent and Mars missions by 50 to 65 percent. The same personnel and facilities used to revive the hydrogen NTR can also be used to develop NTR engines capable of using indigenous Martian volatiles as propellant. By putting this capacity of the NTR to work in a Mars descent/acent vehicle, the Nuclear rocket using Indigenous Martian Fuel (NIMF) can greatly reduce the IMLEO of a manned Mars mission, while giving the mission unlimited planetwide mobility.

  11. Scaled Rocket Testing in Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    Dufrene, Aaron; MacLean, Matthew; Carr, Zakary; Parker, Ron; Holden, Michael; Mehta, Manish

    2015-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was strongly based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Detailed base heating results are outside of the scope of the current work, rather test methodology and techniques are presented along with broader applicability toward scaled rocket testing in supersonic and hypersonic flow.

  12. An Analysis of Rocket Propulsion Testing Costs

    NASA Technical Reports Server (NTRS)

    Ramirez, Carmen; Rahman, Shamim

    2010-01-01

    The primary mission at NASA Stennis Space Center (SSC) is rocket propulsion testing. Such testing is commonly characterized as one of two types: production testing for certification and acceptance of engine hardware, and developmental testing for prototype evaluation or research and development (R&D) purposes. For programmatic reasons there is a continuing need to assess and evaluate the test costs for the various types of test campaigns that involve liquid rocket propellant test articles. Presently, in fact, there is a critical need to provide guidance on what represents a best value for testing and provide some key economic insights for decision-makers within NASA and the test customers outside the Agency. Hence, selected rocket propulsion test databases and references have been evaluated and analyzed with the intent to discover correlations of technical information and test costs that could help produce more reliable and accurate cost projections in the future. The process of searching, collecting, and validating propulsion test cost information presented some unique obstacles which then led to a set of recommendations for improvement in order to facilitate future cost information gathering and analysis. In summary, this historical account and evaluation of rocket propulsion test cost information will enhance understanding of the various kinds of project cost information; identify certain trends of interest to the aerospace testing community.

  13. Studies on an aerial propellant transfer space plane (APTSP)

    NASA Astrophysics Data System (ADS)

    Jayan, N.; Biju Kumar, K. S.; Gupta, Anish Kumar; Kashyap, Akhilesh Kumar; Venkatraman, Kartik; Mathew, Joseph; Mukunda, H. S.

    2004-04-01

    This paper presents a study of a fully reusable earth-to-orbit launch vehicle concept with horizontal take-off and landing, employing a turbojet engine for low speed, and a rocket for high-speed acceleration and space operations. This concept uses existing technology to the maximum possible extent, thereby reducing development time, cost and effort. It uses the experience in aerial filling of military aircrafts for propellant filling at an altitude of 13 km at a flight speed of M=0.85. Aerial filling of propellant reduces the take-off weight significantly thereby minimizing the structural weight of the vehicle. The vehicle takes off horizontally and uses turbojet engines till the end of the propellant filling operation. The rocket engines provide thrust for the next phase till the injection of a satellite at LEO. A sensitivity analysis of the mission with respect to rocket engine specific impulse and overall vehicle structural factor is also presented in this paper. A conceptual design of space plane with a payload capability of 10 ton to LEO is carried out. The study shows that the realization of an aerial propellant transfer space plane is possible with limited development of new technology thus reducing the demands on the finances required for achieving the objectives.

  14. Demonstration of a sterilizable solid rocket motor system

    NASA Technical Reports Server (NTRS)

    Mastrolia, E. J.; Santerre, G. M.; Lambert, W. L.

    1975-01-01

    A solid propellant rocket motor containing 60.9 Kg (134-lb) of propellant was successfully static fired after being subjected to eight heat sterilization cycles (three 54-hour cycles plus five 40-hour cycles) at 125 C (257 F). The test motor, a modified SVM-3 chamber, incorporated a flexible grain retention system of EPR rubber to relieve thermal shrinkage stresses. The propellant used in the motor was ANB-3438, and 84 wt% solids system (18 wt% aluminum) containing 66 wt% stabilized ammonium perchlorate oxidizer and a saturated hydroxylterminated polybutadiene binder. Bonding of the propellant to the EPR insulation (GenGard V-4030) was provided by the use of SD-886, an epoxy urethane restriction.

  15. Propellant Feed Subsystem for the X-34 Main Propulsion System

    NASA Technical Reports Server (NTRS)

    McDonald, J. P.; Minor, R. B.; Knight, K. C.; Champion, R. H., Jr.; Russell, F. J., Jr.

    1998-01-01

    The Orbital Sciences Corporation X-34 vehicle demonstrates technologies and operations key to future reusable launch vehicles. The general flight performance goal of this unmanned rocket plane is Mach 8 flight at an altitude of 250,000 feet. The Main Propulsion System supplies liquid propellants to the main engine, which provides the primary thrust for attaining mission goals. Major NMS design and operational goals are aircraft-like ground operations, quick turnaround between missions, and low initial/operational costs. This paper reviews major design and analysis aspects of the X-34 propellant feed subsystem of the X-34 Main Propulsion System. Topics include system requirements, system design, the integration of flight and feed system performance, propellant acquisition at engine start, and propellant tank terminal drain.

  16. Instrumented propellant block test and stress analysis comparison

    NASA Astrophysics Data System (ADS)

    Thompson, Richard E.; Perkins, Steven E.

    1992-02-01

    There is an on-going need to experimentally measure bond stresses in both termination stress and low-gradient stress areas of solid propellant rocket motors employing composite cases and having complex geometries. These measurements are needed to verify the finite element-predicted structural margins and environmental operating limits for these advanced tactical, strategic, and space motors. Chemical Systems Division undertook a program to develop stress transducers usable in low stress gradient regions and in termination, or high stress gradient, regions. The various transducers were evaluated in propellant blocks tested in tension and compression in the laboratory prior to being placed into structural test vehicles. Finite element analyses of the propellant test blocks were also performed to predict transducer response. The results of the instrumented propellant block tests are presented.

  17. Propeller/wing interaction

    NASA Technical Reports Server (NTRS)

    Witkowski, David P.; Johnston, Robert T.; Sullivan, John P.

    1989-01-01

    The present experimental investigation of the steady-state and unsteady-state effects due to the interaction between a tractor propeller's wake and a wing employs, in the steady case, wind tunnel measurements at low subsonic speed; results are obtained which demonstrate wing performance response to variations in configuration geometry. Other steady-state results involve the propeller-hub lift and side-force due to the wing's influence on the propeller. The unsteady effects of interaction were studied through flow visualization of propeller-tip vortex distortion over a wing, again using a tractor-propeller configuration.

  18. Rocket Engine Innovations Advance Clean Energy

    NASA Technical Reports Server (NTRS)

    2012-01-01

    During launch countdown, at approximately T-7 seconds, the Space Shuttle Main Engines (SSMEs) roar to life. When the controllers indicate normal operation, the solid rocket boosters ignite and the shuttle blasts off. Initially, the SSMEs throttle down to reduce stress during the period of maximum dynamic pressure, but soon after, they throttle up to propel the orbiter to 17,500 miles per hour. In just under 9 minutes, the three SSMEs burn over 1.6 million pounds of propellant, and temperatures inside the main combustion chamber reach 6,000 F. To cool the engines, liquid hydrogen circulates through miles of tubing at -423 F. From 1981to 2011, the Space Shuttle fleet carried crew and cargo into orbit to perform a myriad of unprecedented tasks. After 30 years and 135 missions, the feat of engineering known as the SSME boasted a 100-percent flight success rate.

  19. Combustion dynamics in liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Mclain, W. H.

    1971-01-01

    A chemical analysis of the emission and absorption spectra in the combustion chamber of a nitrogen tetroxide/aerozine-50 rocket engine was conducted. Measurements were made under conditions of preignition, ignition, and post combustion operating periods. The cause of severe ignition overpressures sporadically observed during the vacuum startup of the Apollo reaction control system engine was investigated. The extent to which residual propellants or condensed intermediate reaction products remain after the engine has been operated in a pulse mode duty cycle was determined.

  20. Air breathing engine/rocket trajectory optimization

    NASA Technical Reports Server (NTRS)

    Smith, V. K., III

    1979-01-01

    This research has focused on improving the mathematical models of the air-breathing propulsion systems, which can be mated with the rocket engine model and incorporated in trajectory optimization codes. Improved engine simulations provided accurate representation of the complex cycles proposed for advanced launch vehicles, thereby increasing the confidence in propellant use and payload calculations. The versatile QNEP (Quick Navy Engine Program) was modified to allow treatment of advanced turboaccelerator cycles using hydrogen or hydrocarbon fuels and operating in the vehicle flow field.

  1. Low-thrust chemical rocket engine study

    NASA Technical Reports Server (NTRS)

    Mellish, J. A.

    1981-01-01

    Engine data and information are presented to perform system studies on cargo orbit-transfer vehicles which would deliver large space structures to geosynchronous equatorial orbit. Low-thrust engine performance, weight, and envelope parametric data were established, preliminary design information was generated, and technologies for liquid rocket engines were identified. Two major engine design drivers were considered in the study: cooling and engine cycle options. Both film-cooled and regeneratively cooled engines were evaluated. The propellant combinations studied were hydrogen/oxygen, methane/oxygen, and kerosene/oxygen.

  2. Water rocket - Electrolysis propulsion and fuel cell power

    SciTech Connect

    Carter, P H; Dittman, M D; Kare, J T; Militsky, F; Myers, B; Weisberg, A H

    1999-07-24

    Water Rocket is the collective name for an integrated set of technologies that offer new options for spacecraft propulsion, power, energy storage, and structure. Low pressure water stored on the spacecraft is electrolyzed to generate, separate, and pressurize gaseous hydrogen and oxygen. These gases, stored in lightweight pressure tanks, can be burned to generate thrust or recombined to produce electric power. As a rocket propulsion system, Water Rocket provides the highest feasible chemical specific impulse (-400 seconds). Even higher specific impulse propulsion can be achieved by combining Water Rocket with other advanced propulsion technologies, such as arcjet or electric thrusters. With innovative pressure tank technology, Water Rocket's specific energy [Wh/kg] can exceed that of the best foreseeable batteries by an order of magnitude, and the tanks can often serve as vehicle structural elements. For pulsed power applications, Water Rocket propellants can be used to drive very high power density generators, such as MHD devices or detonation-driven pulse generators. A space vehicle using Water Rocket propulsion can be totally inert and non-hazardous during assembly and launch. These features are particularly important for the timely development and flight qualification of new classes of spacecraft, such as microsats, nanosats, and refuelable spacecraft.

  3. Analysis of quasi-hybrid solid rocket booster concepts for advanced earth-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Zurawski, Robert L.; Rapp, Douglas C.

    1987-01-01

    A study was conducted to assess the feasibility of quasi-hybrid solid rocket boosters for advanced Earth-to-orbit vehicles. Thermochemical calculations were conducted to determine the effect of liquid hydrogen addition, solids composition change plus liquid hydrogen addition, and the addition of an aluminum/liquid hydrogen slurry on the theoretical performance of a PBAN solid propellant rocket. The space shuttle solid rocket booster was used as a reference point. All three quasi-hybrid systems theoretically offer higher specific impulse when compared with the space shuttle solid rocket boosters. However, based on operational and safety considerations, the quasi-hybrid rocket is not a practical choice for near-term Earth-to-orbit booster applications. Safety and technology issues pertinent to quasi-hybrid rocket systems are discussed.

  4. Minuteman 3: Stage 3 propellant fire characterization

    SciTech Connect

    Diaz, J C

    1994-06-20

    We have completed an experimental program to diagnose and characterize the thermal environment of a solid rocket propellant fire burning in ambient atmospheric conditions. This work has been conducted as part of the Defense Nuclear Agency`s probabilistic risk assessment (PRA) of the Minuteman III (MMIII) weapon system. The goals of this study are two-fold; (1) to provide a description of a propellant fire in sufficient detail so as to allow system response models to predict the outcome of various hypothetical accident, scenarios and, (2) to identify diagnostics that could be used in a large-scale test fire of MMIII stage 3 motor. The study has been performed burning SRAM II and MMIII stage 3 propellant (ANB-3066), in chimneys ranging in size from 18 cm to 53 cm (twenty-one inches) in diameter. Several methods have been used to determine and confirm temperature measurements including thermometry, radiometry, and ultrasonic thermal sensing. Temperature profiles with peaks in excess of 2300{degree} C have been measured. Temperature measurements have been used in conjunction with inverse modeling to determine heat flux characteristics. The regression rate for ANB-3066 (under ambient conditions) has also been determined. Finally, at a very cursory level, we have studied the characteristics of aluminum oxide deposits as well as some materials responses to these fires. We have also addressed the initial efforts on development of diagnostics, problems encountered in controlling the burning of propellants, in taking radiometric measurements, and the survivability of materials in the fire.

  5. Deposit formation and heat transfer in hydrocarbon rocket fuels

    NASA Technical Reports Server (NTRS)

    Giovanetti, A. J.; Spadaccini, L. J.; Szetela, E. J.

    1983-01-01

    An experimental research program was undertaken to investigate the thermal stability and heat transfer characteristics of several hydrocarbon fuels under conditions that simulate high-pressure, rocket engine cooling systems. The rates of carbon deposition in heated copper and nickel-plated copper tubes were determined for RP-1, propane, and natural gas using a continuous flow test apparatus which permitted independent variation and evaluation of the effect on deposit formation of wall temperature, fuel pressure, and fuel velocity. In addition, the effects of fuel additives and contaminants, cryogenic fuel temperatures, and extended duration testing with intermittent operation were examined. Parametric tests to map the thermal stability characteristics of RP-1, commercial-grade propane, and natural gas were conducted at pressures of 6.9 to 13.8 MPa, bulk fuel velocities of 30 to 90 m/s, and tube wall temperatures in the range of 230 to 810 K. Also, tests were run in which propane and natural gas fuels were chilled to 230 and 160 K, respectively. Corrosion of the copper tube surface was detected for all fuels tested. Plating the inside of the copper tubes with nickel reduced deposit formation and eliminated tube corrosion in most cases. The lowest rates of carbon deposition were obtained for natural gas, and the highest rates were obtained for propane. For all fuels tested, the forced-convection heat transfer film coefficients were satisfactorily correlated using a Nusselt-Reynolds-Prandtl number equation.

  6. Influence of curvature in regenerative cooling system of rocket engine

    NASA Astrophysics Data System (ADS)

    Torres, Y.; Stefanini, L.; Suslov, D.

    2009-09-01

    Thermomechanical loads in rocket engines can be drastically reduced by a reliable cooling system. The regenerative cooling system uses propellants as coolant which flows through milled cooling channels in the chamber walls. Due to centrifugal forces, dynamic secondary motions appear in cooling-channel curvatures, which strongly modify heat transfer. Three-dimensional (3D) numerical calculations have been performed in order to compare this heat flux modification with empirical correlations. Different turbulence models and wall treatments have been tested to develop a complete numerical data base about asymmetrical (concave side) heat transfer in curved cooling channels of rocket engine.

  7. Concepts for the design of an antimatter annihilation rocket

    NASA Technical Reports Server (NTRS)

    Morgan, D. L., Jr.

    1982-01-01

    Matter-antimatter annihilation is considered for spacecraft propulsion. Annihilation produces considerably more energy per unit mass of propellant than any other known means of energy production. An antimatter annihilation rocket requires several systems and components that are unique to its nature. Among these are an antimatter storage system, a means to extract the antimatter from storage, a system to transport the antimatter to the rocket engine, and the engine wherein annihilation occurs and thrust is produced. Design concepts of these systems and components are presented and discussed.

  8. Yuzhnoye's new liquid rocket engines as enablers for space exploration

    NASA Astrophysics Data System (ADS)

    Degtyarev, Alexander; Kushnaryov, Alexander; Shulga, Vladimir; Ventskovsky, Oleg

    2016-10-01

    Advanced liquid rocket engines (LREs) are being created by Yuzhnoye Design Office of Ukraine based on the fifty-year experience of rocket engines' and propulsion systems' development. These LREs use both hypergolic (NTO+UDMH) and cryogenic (liquid oxygen+kerosene) propellants. First stage engines have a range of thrust from 40 to 250 t, while the upper stage (used in space) engines - from several kilograms to 50 t and a re-ignition feature. The engines are intended for both Ukraine"s independent access to space and international market.

  9. Grooved Fuel Rings for Nuclear Thermal Rocket Engines

    NASA Technical Reports Server (NTRS)

    Emrich, William

    2009-01-01

    An alternative design concept for nuclear thermal rocket engines for interplanetary spacecraft calls for the use of grooved-ring fuel elements. Beyond spacecraft rocket engines, this concept also has potential for the design of terrestrial and spacecraft nuclear electric-power plants. The grooved ring fuel design attempts to retain the best features of the particle bed fuel element while eliminating most of its design deficiencies. In the grooved ring design, the hydrogen propellant enters the fuel element in a manner similar to that of the Particle Bed Reactor (PBR) fuel element.

  10. Miniature Rocket Motor for Aircraft Stall/Spin Recovery

    NASA Technical Reports Server (NTRS)

    Lucy, M. H.

    1985-01-01

    Design accommodates different thrust levels and burn times with minimum weight. Different thrust levels achieved by substituting other propellants of different diameter and burn-rate characteristics. Different burn times achieved by simply changing length of grain/tube assembly. Grain bond material also acts as insulator for fiberglass tube. Rocket motor attached to aircraft model and ignited from radio-controlled 4.8-volt power source. Device provides more than twice energy available in previous designs at only 60 percent of weight. Rocket motor used to identify energy requirements for aircraft stall/spin recovery positive propulsion system.

  11. Heat transfer analysis of fuel assemblies in a heterogeneous gas core nuclear rocket

    NASA Technical Reports Server (NTRS)

    Watanabe, Yoichi; Appelbaum, Jacob; Diaz, Nils; Maya, Isaac

    1991-01-01

    Heat transfer problems of a heterogeneous gaseous core nuclear rocket were studied. The reactor core consists of 1.5-m long hexagonal fuel assemblies filled with pressurized uranium tetrafluoride (UF4) gas. The fuel gas temperature ranges from 3500 to 7000 K at a nominal operating condition of 40 atm. Each fuel assembly has seven coolant tubes, through which hydrogen propellant flows. The propellant temperature is not constrained by the fuel temperature but by the maximum temperature of the graphite coolant tube. For a core achieving a fission power density of 1000 MW/cu m, the propellant core exit temperature can be as high as 3200 K. The physical size of a 1250 MW gaseous core nuclear rocket is comparable with that of a NERVA-type solid core nuclear rocket. The engine can deliver a specific impulse of 1020 seconds and a thrust of 330 kN.

  12. Recent Advances and Applications in Cryogenic Propellant Densification Technology

    NASA Technical Reports Server (NTRS)

    Tomsik, Thomas M.

    2000-01-01

    This purpose of this paper is to review several historical cryogenic test programs that were conducted at the NASA Glenn Research Center (GRC), Cleveland, Ohio over the past fifty years. More recently these technology programs were intended to study new and improved denser forms of liquid hydrogen (LH2) and liquid oxygen (LO2) cryogenic rocket fuels. Of particular interest are subcooled cryogenic propellants. This is due to the fact that they have a significantly higher density (eg. triple-point hydrogen, slush etc.), a lower vapor pressure and improved cooling capacity over the normal boiling point cryogen. This paper, which is intended to be a historical technology overview, will trace the past and recent development and testing of small and large-scale propellant densification production systems. Densifier units in the current GRC fuels program, were designed and are capable of processing subcooled LH2 and L02 propellant at the X33 Reusable Launch Vehicle (RLV) scale. One final objective of this technical briefing is to discuss some of the potential benefits and application which propellant densification technology may offer the industrial cryogenics production and end-user community. Density enhancements to cryogenic propellants (LH2, LO2, CH4) in rocket propulsion and aerospace application have provided the opportunity to either increase performance of existing launch vehicles or to reduce the overall size, mass and cost of a new vehicle system.

  13. Questions of testing rate and flexibility of rocket test benches, discussed on the basis of the test benches of Nitrochemie GMBH in Aschau

    NASA Technical Reports Server (NTRS)

    LEGRAND

    1987-01-01

    The rocket test benches are used to study burnup behavior by various methods. In the first ten months of 1966, 1578 shots were performed to test propellants, and 920 to test 14 thrust and pressure measurement projects.

  14. Ice nucleus activity measurements of solid rocket motor exhaust particles

    NASA Technical Reports Server (NTRS)

    Keller, V. W. (Compiler)

    1986-01-01

    The ice Nucleus activity of exhaust particles generated from combustion of Space Shuttle propellant in small rocket motors has been measured. The activity at -20 C was substantially lower than that of aerosols generated by unpressurized combustion of propellant samples in previous studies. The activity decays rapidly with time and is decreased further in the presence of moist air. These tests corroborate the low effectivity ice nucleus measurement results obtained in the exhaust ground cloud of the Space Shuttle. Such low ice nucleus activity implies that Space Shuttle induced inadvertent weather modification via an ice phase process is extremely unlikely.

  15. Ignition and combustion characteristics of metallized propellants, phase 2

    NASA Technical Reports Server (NTRS)

    Mueller, D. C.; Turns, Stephen R.

    1994-01-01

    Secondary atomization and ignition characteristics of aluminum/hydrocarbon gel propellants were investigated. Models of gel droplet shell formation were applied to aluminum/liquid hydrocarbon propellants to examine the effects of solid loading and ultimate particle size on the minimum droplet diameter permitting secondary atomization. A one-dimensional model of a gel-fueled rocket combustion chamber was developed. A model for radiant heat transfer from hot aluminum oxide particles to the chamber walls is included. A two-dimensional, two-phase nozzle code was used to estimate nozzle two-phase losses and overall engine performance.

  16. The Guggenheim Aeronautics Laboratory at Caltech and the creation of the modern rocket motor (1936-1946): How the dynamics of rocket theory became reality

    NASA Astrophysics Data System (ADS)

    Zibit, Benjamin Seth

    This thesis explores and unfolds the story of discovery in rocketry at The California Institute of Technology---specifically at Caltech's Guggenheim Aeronautics Laboratory---in the 1930s and 1940s. Caltech was home to a small group of engineering students and experimenters who, beginning in the winter of 1935--1936, formed a study and research team destined to change the face of rocket science in the United States. The group, known as the Guggenheim Aeronautics Laboratory (GALCIT, for short) Rocket Research Group, invented a new type of solid-rocket propellant, made distinct and influential discoveries in the theory of rocket combustion and design, founded the Jet Propulsion Laboratory, and incorporated the first American industrial concern devoted entirely to rocket motor production: The Aerojet Corporation. The theoretical work of team members, Frank Malina, Hsueh-shen Tsien, Homer J. Stewart, and Mark Mills, is examined in this thesis in detail. The author scrutinizes Frank Malina's doctoral thesis (both its assumptions and its mathematics), and finds that, although Malina's key assertions, his formulae, hold, his work is shown to make key assumptions about rocket dynamics which only stand the test of validity if certain approximations, rather than exact measurements, are accepted. Malina studied the important connection between motor-nozzle design and thrust; in his Ph.D. thesis, he developed mathematical statements which more precisely defined the design/thrust relation. One of Malina's colleagues on the Rocket Research Team, John Whiteside Parsons, created a new type of solid propellant in the winter of 1941--1942. This propellant, known as a composite propellant (because it simply was a relatively inert amalgam of propellant and oxidizer in non-powder form), became the forerunner of all modern solid propellants, and has become one of the seminal discoveries in the field of Twentieth Century rocketry. The latter chapters of this dissertation discuss the

  17. A theoretical evaluation of aluminum gel propellant two-phase flow losses on vehicle performance

    NASA Technical Reports Server (NTRS)

    Mueller, Donn C.; Turns, Stephen R.

    1993-01-01

    A one-dimensional model of a hydrocarbon/Al/O2(gaseous) fueled rocket combustion chamber was developed to study secondary atomization effects on propellant combustion. This chamber model was coupled with a two dimensional, two-phase flow nozzle code to estimate the two-phase flow losses associated with solid combustion products. Results indicate that moderate secondary atomization significantly reduces propellant burnout distance and Al2O3 particle size; however, secondary atomization provides only moderate decreases in two-phase flow induced I(sub sp) losses. Despite these two-phase flow losses, a simple mission study indicates that aluminum gel propellants may permit a greater maximum payload than the hydrocarbon/O2 bi-propellant combination for a vehicle of fixed propellant volume. Secondary atomization was also found to reduce radiation losses from the solid combustion products to the chamber walls, primarily through reductions in propellant burnout distance.

  18. A theoretical evaluation of aluminum gel propellant two-phase flow losses on vehicle performance

    NASA Astrophysics Data System (ADS)

    Mueller, Donn C.; Turns, Stephen R.

    1993-11-01

    A one-dimensional model of a hydrocarbon/Al/O2(gaseous) fueled rocket combustion chamber was developed to study secondary atomization effects on propellant combustion. This chamber model was coupled with a two dimensional, two-phase flow nozzle code to estimate the two-phase flow losses associated with solid combustion products. Results indicate that moderate secondary atomization significantly reduces propellant burnout distance and Al2O3 particle size; however, secondary atomization provides only moderate decreases in two-phase flow induced I(sub sp) losses. Despite these two-phase flow losses, a simple mission study indicates that aluminum gel propellants may permit a greater maximum payload than the hydrocarbon/O2 bi-propellant combination for a vehicle of fixed propellant volume. Secondary atomization was also found to reduce radiation losses from the solid combustion products to the chamber walls, primarily through reductions in propellant burnout distance.

  19. Experimental Evaluation of a Subscale Gaseous Hydrogen/Gaseous Oxygen Coaxial Rocket Injector

    NASA Astrophysics Data System (ADS)

    Smith, Timothy D.; Klem, Mark D.; Breisacher, Kevin J.; Farhangi, Shahram; Sutton, Robert

    2002-11-01

    The next generation reusable launch vehicle may utilize a Full-Flow Stage Combustion (FFSC) rocket engine cycle. One of the key technologies required is the development of an injector that uses gaseous oxygen and gaseous hydrogen as propellants. Gas-gas propellant injection provides an engine with increased stability margin over a range of throttle set points. This paper summarizes an injector design and testing effort that evaluated a coaxial rocket injector for use with gaseous oxygen and gaseous hydrogen propellants. A total of 19 hot-fire tests were conducted up to a chamber pressure of 1030 psia, over a range of 3.3 to 6.7 for injector element mixture ratio. Post-test condition of the hardware was also used to assess injector face cooling. Results show that high combustion performance levels could be achieved with gas-gas propellants and there were no problems with excessive face heating for the conditions tested.

  20. Experimental Evaluation of a Subscale Gaseous Hydrogen/gaseous Oxygen Coaxial Rocket Injector

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.; Klem, Mark D.; Breisacher, Kevin J.; Farhangi, Shahram; Sutton, Robert

    2002-01-01

    The next generation reusable launch vehicle may utilize a Full-Flow Stage Combustion (FFSC) rocket engine cycle. One of the key technologies required is the development of an injector that uses gaseous oxygen and gaseous hydrogen as propellants. Gas-gas propellant injection provides an engine with increased stability margin over a range of throttle set points. This paper summarizes an injector design and testing effort that evaluated a coaxial rocket injector for use with gaseous oxygen and gaseous hydrogen propellants. A total of 19 hot-fire tests were conducted up to a chamber pressure of 1030 psia, over a range of 3.3 to 6.7 for injector element mixture ratio. Post-test condition of the hardware was also used to assess injector face cooling. Results show that high combustion performance levels could be achieved with gas-gas propellants and there were no problems with excessive face heating for the conditions tested.

  1. The use of electrical discharge for ignition and control of combustion of solid propellants

    NASA Technical Reports Server (NTRS)

    Tachibana, Takeshi; Kobayashi, Tsuruo; Matsuda, Takashi; Kimura, Itsuro

    1987-01-01

    As the first step of the study of the combustion control of solid propellants by electrical discharges, the effects of an arc discharge, which flows along the burning surface, on the burning rate and on the increase of enthalpy of the combustion product were investigated. For specially devised composite propellants, which are composed of Al and Teflon powders, it was shown that the combination can be controlled by an arc discharge; the combustion continues when the arc discharge is applied and is interrupted when the arc discharge breaks. In the present investigation, it was also shown that an arc discharge coupled with a high-frequency electrical discharge has potential as an effective ignition method for solid propellants. For the application of this type of combustion control to an ignitor for a solid propellant rocket motor or to a control rocket motor, this method lacks flexibility in the configuration scale and needs relatively high electric power at the present stage.

  2. Rocket injector head

    NASA Technical Reports Server (NTRS)

    Green, C. W., Jr. (Inventor)

    1968-01-01

    A high number of liquid oxygen and gaseous hydrogen orifices per unit area are provided in an injector head designed to give intimate mixing and more thorough combustion. The injector head comprises a main body portion, a cooperating plate member as a flow chamber for one propellant, a cooperating manifold portion for the second propellant, and an annular end plate for enclosing an annular propellant groove formed around the outer edge of the body. All the openings for one propellant are located at the same angle with respect to a radial plane to permit a short combustion chamber.

  3. Pellet bed reactor for nuclear propelled vehicles: Part 1: Reactor technology

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S.

    1991-01-01

    The pellet bed reactor (PBR) for nuclear propelled vehicles is briefly discussed. Much of the information is given in viewgraph form. Viewgraphs include information on the layout for a Mars mission using a PBR nuclear thermal rocket, the rocket reactor layout, the fuel pellet design, materials compatibility, fuel microspheres, microsphere coating, melting points in quasibinary systems, stress analysis of microspheres, safety features, and advantages of the PBR concept.

  4. Overexpression of Cytoplasmic TcSIR2RP1 and Mitochondrial TcSIR2RP3 Impacts on Trypanosoma cruzi Growth and Cell Invasion

    PubMed Central

    Ritagliati, Carla; Alonso, Victoria L.; Manarin, Romina; Cribb, Pamela; Serra, Esteban C.

    2015-01-01

    Background Trypanosoma cruzi is a protozoan pathogen responsible for Chagas disease. Current therapies are inadequate because of their severe host toxicity and numerous side effects. The identification of new biotargets is essential for the development of more efficient therapeutic alternatives. Inhibition of sirtuins from Trypanosoma brucei and Leishmania ssp. showed promising results, indicating that these enzymes may be considered as targets for drug discovery in parasite infection. Here, we report the first characterization of the two sirtuins present in T. cruzi. Methodology Dm28c epimastigotes that inducibly overexpress TcSIR2RP1 and TcSIR2RP3 were constructed and used to determine their localizations and functions. These transfected lines were tested regarding their acetylation levels, proliferation and metacyclogenesis rate, viability when treated with sirtuin inhibitors and in vitro infectivity. Conclusion TcSIR2RP1 and TcSIR2RP3 are cytosolic and mitochondrial proteins respectively. Our data suggest that sirtuin activity is important for the proliferation of T. cruzi replicative forms, for the host cell-parasite interplay, and for differentiation among life-cycle stages; but each one performs different roles in most of these processes. Our results increase the knowledge on the localization and function of these enzymes, and the overexpressing T. cruzi strains we obtained can be useful tools for experimental screening of trypanosomatid sirtuin inhibitors. PMID:25875650

  5. Sounding rocket lessons learned

    NASA Technical Reports Server (NTRS)

    Wessling, Francis C.; Maybee, George W.

    1991-01-01

    Programmatic, applicatory, developmental, and operational aspects of sounding rocket utilization for materials processing studies are discussed. Lessons learned through the experience of 10 sounding rocket missions are described. Particular attention is given to missions from the SPAR, Consort, and Joust programs. Successful experiments on Consort include the study of polymer membranes and resins, biological processes, demixing of immiscible liquids, and electrodeposition.

  6. The Rocket Project.

    ERIC Educational Resources Information Center

    Winemiller, Jake; And Others

    1991-01-01

    Describes an extra credit science project in which students compete to see who can build the most efficient water rocket out of a two-liter pop bottle. Provides instructions on how to build a demonstration rocket and launching pad. (MDH)

  7. Life Saving Rockets

    NASA Technical Reports Server (NTRS)

    2004-01-01

    By 1870, American and British inventors had found other ways to use rockets. For example, the Congreve rocket was capable of carrying a line over 1,000 feet to a stranded ship. In 1914, an estimated 1,000 lives were saved by this technique.

  8. Model Rockets and Microchips.

    ERIC Educational Resources Information Center

    Fitzsimmons, Charles P.

    1986-01-01

    Points out the instructional applications and program possibilities of a unit on model rocketry. Describes the ways that microcomputers can assist in model rocket design and in problem calculations. Provides a descriptive listing of model rocket software for the Apple II microcomputer. (ML)

  9. Rockets -- Part II.

    ERIC Educational Resources Information Center

    Leitner, Alfred

    1982-01-01

    If two rockets are identical except that one engine burns in one-tenth the time of the other (total impulse and initial fuel mass of the two engines being the same), which rocket will rise higher? Why? The answer to this question (part 1 response in v20 n6, p410, Sep 1982) is provided. (Author/JN)

  10. Cryogenic Propellant Densification Study

    NASA Technical Reports Server (NTRS)

    Ewart, R. O.; Dergance, R. H.

    1978-01-01

    Ground and vehicle system requirements are evaluated for the use of densified cryogenic propellants in advanced space transportation systems. Propellants studied were slush and triple point liquid hydrogen, triple point liquid oxygen, and slush and triple point liquid methane. Areas of study included propellant production, storage, transfer, vehicle loading and system requirements definition. A savings of approximately 8.2 x 100,000 Kg can be achieved in single stage to orbit gross liftoff weight for a payload of 29,484 Kg by utilizing densified cryogens in place of normal boiling point propellants.

  11. Standard Molded Composite Rocket Pyrogen Igniter - A progress report

    NASA Technical Reports Server (NTRS)

    Lucy, M. H.

    1978-01-01

    The pyrogen igniter has the function to furnish a controlled, high temperature, high pressure gas to ignite solid propellant surfaces in a rocket motor. Present pyrogens consist of numerous inert components. The Standard Molded Pyrogen Igniter (SMPI) consists of three basic parts, a cap with several integrally molded features, an ignition pellet retainer plate, and a tube with additional integrally molded features. A description is presented of an investigation which indicates that the SMPI concept is a viable approach to the design and manufacture of pyrogen igniters for solid propellant rocket motors. For some applications, combining the structural and thermal properties of molded composites can result in the manufacture of lighter assemblies at considerable cost reduction. It is demonstrated that high strength, thin walled tubes with high length to diameter ratios can be fabricated from reinforced plastic molding compound using the displacement compression process.

  12. Nonlinear Modeling and Control of a Propellant Mixer

    NASA Technical Reports Server (NTRS)

    Barbieri, Enrique; Richter, Hanz; Figueroa, Fernando

    2003-01-01

    A mixing chamber used in rocket engine combustion testing at NASA Stennis Space Center is modeled by a second order nonlinear MIMO system. The mixer is used to condition the thermodynamic properties of cryogenic liquid propellant by controlled injection of the same substance in the gaseous phase. The three inputs of the mixer are the positions of the valves regulating the liquid and gas flows at the inlets, and the position of the exit valve regulating the flow of conditioned propellant. The outputs to be tracked and/or regulated are mixer internal pressure, exit mass flow, and exit temperature. The outputs must conform to test specifications dictated by the type of rocket engine or component being tested downstream of the mixer. Feedback linearization is used to achieve tracking and regulation of the outputs. It is shown that the system is minimum-phase provided certain conditions on the parameters are satisfied. The conditions are shown to have physical interpretation.

  13. Computational simulation of liquid fuel rocket injectors

    NASA Technical Reports Server (NTRS)

    Landrum, D. Brian

    1994-01-01

    A major component of any liquid propellant rocket is the propellant injection system. Issues of interest include the degree of liquid vaporization and its impact on the combustion process, the pressure and temperature fields in the combustion chamber, and the cooling of the injector face and chamber walls. The Finite Difference Navier-Stokes (FDNS) code is a primary computational tool used in the MSFC Computational Fluid Dynamics Branch. The branch has dedicated a significant amount of resources to development of this code for prediction of both liquid and solid fuel rocket performance. The FDNS code is currently being upgraded to include the capability to model liquid/gas multi-phase flows for fuel injection simulation. An important aspect of this effort is benchmarking the code capabilities to predict existing experimental injection data. The objective of this MSFC/ASEE Summer Faculty Fellowship term was to evaluate the capabilities of the modified FDNS code to predict flow fields with liquid injection. Comparisons were made between code predictions and existing experimental data. A significant portion of the effort included a search for appropriate validation data. Also, code simulation deficiencies were identified.

  14. Solid Rocket Launch Vehicle Explosion Environments

    NASA Technical Reports Server (NTRS)

    Richardson, E. H.; Blackwood, J. M.; Hays, M. J.; Skinner, T.

    2014-01-01

    Empirical explosion data from full scale solid rocket launch vehicle accidents and tests were collected from all available literature from the 1950s to the present. In general data included peak blast overpressure, blast impulse, fragment size, fragment speed, and fragment dispersion. Most propellants were 1.1 explosives but a few were 1.3. Oftentimes the data from a single accident was disjointed and/or missing key aspects. Despite this fact, once the data as a whole was digitized, categorized, and plotted clear trends appeared. Particular emphasis was placed on tests or accidents that would be applicable to scenarios from which a crew might need to escape. Therefore, such tests where a large quantity of high explosive was used to initiate the solid rocket explosion were differentiated. Also, high speed ground impacts or tests used to simulate such were also culled. It was found that the explosions from all accidents and applicable tests could be described using only the pressurized gas energy stored in the chamber at the time of failure. Additionally, fragmentation trends were produced. Only one accident mentioned the elusive "small" propellant fragments, but upon further analysis it was found that these were most likely produced as secondary fragments when larger primary fragments impacted the ground. Finally, a brief discussion of how this data is used in a new launch vehicle explosion model for improving crew/payload survival is presented.

  15. Solid Rocket Motor/Booster-Illustration

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This image illustrates the solid rocket motor (SRM)/solid rocket booster (SRB) configuration. The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the SRM's were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment. The boosters are designed to survive water impact at almost 60 miles per hour, maintain flotation with minimal damage, and preclude corrosion of the hardware exposed to the harsh seawater environment. Under the project management of the Marshall Space Flight Center, the SRB's are assembled and refurbished by the United Space Boosters. The SRM's are provided by the Morton Thiokol Corporation.

  16. Radiation effect on rocket engine performance

    NASA Technical Reports Server (NTRS)

    Chiu, Huei-Huang

    1988-01-01

    The effects of radiation on the performance of modern rocket propulsion systems operating at high pressure and temperature were recognized as a key issue in the design and operation of various liquid rocket engines of the current and future generations. Critical problem areas of radiation coupled with combustion of bipropellants are assessed and accounted for in the formulation of a universal scaling law incorporated with a radiation-enhanced vaporization combustion model. Numerical algorithms are developed and the pertaining data of the Variable Thrust Engine (VTE) and Space Shuttle Main Engine (SSME) are used to conduct parametric sensitivity studies to predict the principal intercoupling effects of radiation. The analysis reveals that low enthalpy engines, such as the VTE, are vulnerable to a substantial performance set back by the radiative loss, whereas the performance of high enthalpy engines such as the SSME, are hardly affected over a broad range of engine operation. Additionally, combustion enhancement by the radiative heating of the propellant has a significant impact in those propellants with high absorptivity. Finally, the areas of research related with radiation phenomena in bipropellant engines are identified.

  17. Direct electrical arc ignition of hybrid rocket motors

    NASA Astrophysics Data System (ADS)

    Judson, Michael I., Jr.

    Hybrid rockets motors provide distinct safety advantages when compared to traditional liquid or solid propellant systems, due to the inherent stability and relative inertness of the propellants prior to established combustion. As a result of this inherent propellant stability, hybrid motors have historically proven difficult to ignite. State of the art hybrid igniter designs continue to require solid or liquid reactants distinct from the main propellants. These ignition methods however, reintroduce to the hybrid propulsion system the safety and complexity disadvantages associated with traditional liquid or solid propellants. The results of this study demonstrate the feasibility of a novel direct electrostatic arc ignition method for hybrid motors. A series of small prototype stand-alone thrusters demonstrating this technology were successfully designed and tested using Acrylonitrile Butadiene Styrene (ABS) plastic and Gaseous Oxygen (GOX) as propellants. Measurements of input voltage and current demonstrated that arc-ignition will occur using as little as 10 watts peak power and less than 5 joules total energy. The motor developed for the stand-alone small thruster was adapted as a gas generator to ignite a medium-scale hybrid rocket motor using nitrous oxide /and HTPB as propellants. Multiple consecutive ignitions were performed. A large data set as well as a collection of development `lessons learned' were compiled to guide future development and research. Since the completion of this original groundwork research, the concept has been developed into a reliable, operational igniter system for a 75mm hybrid motor using both gaseous oxygen and liquid nitrous oxide as oxidizers. A development map of the direct spark ignition concept is presented showing the flow of key lessons learned between this original work and later follow on development.

  18. Solid Hydrogen Formed for Atomic Propellants

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    2000-01-01

    Several experiments on the formation of solid hydrogen particles in liquid helium were recently conducted at the NASA Glenn Research Center at Lewis Field. The solid hydrogen experiments are the first step toward seeing these particles and determining their shape and size. The particles will ultimately store atoms of boron, carbon, or hydrogen, forming an atomic propellant. Atomic propellants will allow rocket vehicles to carry payloads many times heavier than possible with existing rockets or allow them to be much smaller and lighter. Solid hydrogen particles are preferred for storing atoms. Hydrogen is generally an excellent fuel with a low molecular weight. Very low temperature hydrogen particles (T < 4 K) can prevent the atoms from recombining, making it possible for their lifetime to be controlled. Also, particles that are less than 1 mm in diameter are preferred because they can flow easily into a pipe when suspended in liquid helium. The particles and atoms must remain at this low temperature until the fuel is introduced into the engine combustion (or recombination) chamber. Experiments were, therefore, planned to look at the particles and observe their formation and any changes while in liquid helium.

  19. Manned Mars missions using propellant from space

    SciTech Connect

    Zuppero, A.C.; Olson, T.S. ); Redd, L.R. )

    1993-01-10

    .A recent discovery (8/14/92) of a near-earth object containing materials potentially useful for space activities could perhaps change the entire way humans access and operate in space. A near-Earth object ([number sign]4015, 1979 VA, comet Wilson-Harrington) contains water ice that could be used for space propulsion. In addition, this type of object may contain structural and lifesustaining materials (complex hydrocarbons, ammonia and/or bound nitrogen compounds) for space structures, manned planetary bases, or planetary surface terraforming. The retrieval and utilization of rocket propellant from near-Earth objects, for manned Mars missions in particular, has been investigated and the benefits of this scenario to over performing a Mars mission with terrestrial propellants have been documented. The results show water extracted from these objects and retrieved to Earth orbit for use in going to Mars may actually enable manned Mars exploration by reducing the number of Heavy Lift Launch Vehicle (HLLV) flights or eliminating the need for HLLV's altogether. The mission can perhaps be supported with existing launch vehicles and not required heavy lift capability. Also, the development of a nuclear thermal rocket for this alternate approach may be simplified substantially by reducing the operating temperature required.

  20. Injection dynamics of gelled propellants

    NASA Astrophysics Data System (ADS)

    Yoon, Changjin

    Gel propellants have been recognized as attractive candidates for future propulsion systems due to the reduced tendency to spill and the energy advantages over solid propellants. One of strong benefits emphasized in gel propellant applications is a throttling capability, but the accurate flow control is more complicated and difficult than with conventional Newtonian propellants because of the unique rheological behaviors of gels. This study is a computational effort directed to enhance understanding of the injector internal flow characteristics for gel propellants under rocket injection conditions. In simulations, the emphasized rheology is a shear-thinning which represents a viscosity decrease with increasing a shear rate. It is described by a generalized Newtonian fluid constitutive equation and Carreau-Yasuda model. Using this rheological model, two injection schemes are considered in the present study: axially-fed and cross-fed injection for single-element and multi-element impinging injectors, respectively. An axisymmetric model is developed to describe the axially-fed injector flows and fully three-dimensional model is utilized to simulate cross-fed injector flows. Under axially-fed injection conditions investigated, three distinct modes, an unsteady, steady, and hydraulic flip mode, are observed and mapped in terms of Reynolds number and orifice design. In an unsteady mode, quasi-periodic oscillations occur near the inlet lip leading mass pulsations and viscosity fluctuations at the orifice exit. This dynamic behavior is characterized using a time-averaged discharge coefficient, oscillation magnitude and frequency by a parametric study with respect to an orifice design, Reynolds number and rheology. As a result, orifice exit flows for gel propellants appear to be significantly influenced by a viscous damping and flow resistance due to a shear thinning behavior and these are observed in each factors considered. Under conditions driven by a manifold crossflow

  1. Current status of free radicals and electronically excited metastable species as high energy propellants

    NASA Technical Reports Server (NTRS)

    Rosen, G.

    1973-01-01

    A survey is presented of free radicals and electronically excited metastable species as high energy propellants for rocket engines. Nascent or atomic forms of diatomic gases are considered free radicals as well as the highly reactive diatomic triatomic molecules that posess unpaired electrons. Manufacturing and storage problems are described, and a review of current experimental work related to the manufacture of atomic hydrogen propellants is presented.

  2. An Improved Model of Cryogenic Propellant Stratification in a Rotating, Reduced Gravity Environment

    NASA Technical Reports Server (NTRS)

    Oliveira, Justin; Kirk, Daniel R.; Schallhorn, Paul A.; Piquero, Jorge L.; Campbell, Mike; Chase, Sukhdeep

    2007-01-01

    This paper builds on a series of analytical literature models used to predict thermal stratification within rocket propellant tanks. The primary contribution to the literature is to add the effect of tank rotation and to demonstrate the influence of rotation on stratification times and temperatures. This work also looks levels of thermal stratification for generic propellant tanks (cylindrical shapes) over a parametric range of upper-stage coast times, heating levels, rotation rates, and gravity levels.

  3. Accelerated Aging of Lead-Free Propellant

    NASA Technical Reports Server (NTRS)

    Furrow, Keith W.; Jervey, David D.

    2000-01-01

    Following higher than expected 2-NDPA depletion rates in a lead-free doublebase formulation (RPD-422), an accelerated aging study was conducted to verify the depletion rates. A test plan was prepared to compare the aging characteristics of lead-free propellant and NOSIH-AA2. The study was also designed to determine which lead-free ballistic modifiers accelerated 2-NDPA depletion. The increased depletion rate occurred in propellants containing monobasic copper salicylate. Four lead-free propellants were then formulated to improved aging characteristics over previous lead-free propellant formulations. The new formulations reduced or replaced the monobasic copper salicylate. The new formulations had improved aging characteristics. Their burn rates, however, were unacceptable for use in a 2.75 inch rocket. To compare aging characteristics, stabilizer depletion rates of RPD-422, AA2, M28, and RLC 470/6A were measured or taken from the literature. The data were fit to a kinetic model. The model contained first and zero order terms which allowed the stabilizer concentration to go to zero. In the model, only the concentration of the primary stabilizer was considered. Derivatives beyond the first nitrated or nitroso derivative of 2-NPDA were not considered. The rate constants were fit to the Arrhenius equation and extrapolated to lower temperatures. The time to complete stabilizer depletion was estimated using the kinetic model. The four propellants were compared and the RPD-422 depleted faster at 45 C than both A22 and M28. These types of predictions depend on the validity of the model and on confidence in the Arrhenius relationship holding at lower temperatures. At 45 C, the zero order portion of the model dominates the depletion rate.

  4. Effects of substantial mass loss on the attitude motion of a spinning rocket

    NASA Astrophysics Data System (ADS)

    Sookgaew, Jeerapa

    This study deals with the dynamic behavior of a spinning body of the rocket-type. The general goal is to increase scientific understanding of the behavior of variable mass systems, and to augment the existing arsenal of mathematical tools and relationships that can be used in the design of rocket type systems. There are two practical objectives delineated for this work. One is to re-examine some of the simplifying assumptions that have been traditionally used in the study of variable mass systems, by quantifying their impact on motion predictions, and also determining whether these assumptions are in fact reasonable. The second objective is to extend the work of previous investigators in this field by utilizing a more realistic model for the rocket than have been used in the past, and to explore propellant burn patterns that go beyond those studied by previous investigators. One of the two major assumptions that are relaxed is the one that ignores the contributions of the fluid products of combustion within the combustion chamber of a rocket to the mass and inertia of the rocket. The second assumption that is re-examined has to do with the manner in which fluid particles move within a rocket's combustion chamber. It has been traditional to assume that the velocity of any fluid particle within a rocket's combustion chamber relative to the rocket body is parallel to the rocket's axis, and that all the fluid particles have the same velocity. Yet, engineering intuition tells us that a transverse component for fluid velocity is inevitable in the case of a spinning rocket. In this study, the validity of this assumption is assessed. The attitude behavior of rocket systems is known to be influenced by the manner in which mass loss affects the geometry of the system. In addition to the radial burn, this document presents in-depth studies of three other propellant burn patterns: the uniform burn, the end burn, and the centripetal burn.

  5. The Alfred Nobel rocket camera. An early aerial photography attempt

    NASA Astrophysics Data System (ADS)

    Ingemar Skoog, A.

    2010-02-01

    Alfred Nobel (1833-1896), mainly known for his invention of dynamite and the creation of the Nobel Prices, was an engineer and inventor active in many fields of science and engineering, e.g. chemistry, medicine, mechanics, metallurgy, optics, armoury and rocketry. Amongst his inventions in rocketry was the smokeless solid propellant ballistite (i.e. cordite) patented for the first time in 1887. As a very wealthy person he actively supported many Swedish inventors in their work. One of them was W.T. Unge, who was devoted to the development of rockets and their applications. Nobel and Unge had several rocket patents together and also jointly worked on various rocket applications. In mid-1896 Nobel applied for patents in England and France for "An Improved Mode of Obtaining Photographic Maps and Earth or Ground Measurements" using a photographic camera carried by a "…balloon, rocket or missile…". During the remaining of 1896 the mechanical design of the camera mechanism was pursued and cameras manufactured. In April 1897 (after the death of Alfred Nobel) the first aerial photos were taken by these cameras. These photos might be the first documented aerial photos taken by a rocket borne camera. Cameras and photos from 1897 have been preserved. Nobel did not only develop the rocket borne camera but also proposed methods on how to use the photographs taken for ground measurements and preparing maps.

  6. Fuels and Space Propellants for Reusable Launch Vehicles: A Small Business Innovation Research Topic and Its Commercial Vision

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1997-01-01

    Under its Small Business Innovation Research (SBIR) program (and with NASA Headquarters support), the NASA Lewis Research Center has initiated a topic entitled "Fuels and Space Propellants for Reusable Launch Vehicles." The aim of this project would be to assist in demonstrating and then commercializing new rocket propellants that are safer and more environmentally sound and that make space operations easier. Soon it will be possible to commercialize many new propellants and their related component technologies because of the large investments being made throughout the Government in rocket propellants and the technologies for using them. This article discusses the commercial vision for these fuels and propellants, the potential for these propellants to reduce space access costs, the options for commercial development, and the benefits to nonaerospace industries. This SBIR topic is designed to foster the development of propellants that provide improved safety, less environmental impact, higher density, higher I(sub sp), and simpler vehicle operations. In the development of aeronautics and space technology, there have been limits to vehicle performance imposed by traditionally used propellants and fuels. Increases in performance are possible with either increased propellant specific impulse, increased density, or both. Flight system safety will also be increased by the use of denser, more viscous propellants and fuels.

  7. Ricardo Dyrgalla (1910-1970), pioneer of rocket development in Argentina

    NASA Astrophysics Data System (ADS)

    de León, Pablo

    2009-12-01

    One of the most important developers of liquid propellant rocket engines in Argentina was Polish-born Ricardo Dyrgalla. Dyrgalla immigrated to Argentina from the United Kingdom in 1946, where he had been studying German weapons development at the end of the Second World War. A trained pilot and aeronautical engineer, he understood the intricacies of rocket propulsion and was eager to find practical applications to his recently gained knowledge. Dyrgalla arrived in Argentina during Juan Perón's first presidency, a time when technicians from all over Europe were being recruited to work in various projects for the recently created Argentine Air Force. Shortly after immigrating, Dyrgalla proposed to develop an advanced air-launched weapon, the Tábano, based on a rocket engine of his design, the AN-1. After a successful development program, the Tábano was tested between 1949 and 1951; however, the project was canceled by the government shortly after. Today, the AN-1 rocket engine is recognized as the first liquid propellant rocket to be developed in South America. Besides the AN-1, Dyrgalla also developed several other rockets systems in Argentina, including the PROSON, a solid-propellant rocket launcher developed by the Argentine Institute of Science and Technology for the Armed Forces (CITEFA). In the late 1960s, Dyrgalla and his family relocated to Brazil due mostly to the lack of continuation of rocket development in Argentina. There, he worked for the Institute of Aerospace Technology (ITA) until his untimely death in 1970. Ricardo Dyrgalla deserves to be recognized among the world's rocket pioneers and his contribution to the science and engineering of rocketry deserves a special place in the history of South America's rocketry and space flight advocacy programs.

  8. Mechanical Slosh Models for Rocket-Propelled Spacecraft

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Alaniz, Abram; Yang, Lee; Powers. Joseph; Hall, Charles

    2013-01-01

    Several analytical mechanical slosh models for a cylindrical tank with flat bottom are reviewed. Even though spacecrafts use cylinder shaped tanks, most of those tanks usually have elliptical domes. To extend the application of the analytical models for a cylindrical tank with elliptical domes, the modified slosh parameter models are proposed in this report by mapping an elliptical dome cylindrical tank to a flat top/bottom cylindrical tank while maintaining the equivalent liquid volume. For the low Bond number case, the low-g slosh models were also studied. Those low-g models can be used for Bond number > 10. The current low-g slosh models were also modified to extend their applications for the case that liquid height is smaller than the tank radius. All modified slosh models are implemented in MATLAB m-functions and are collected in the developed MST (Mechanical Slosh Toolbox).

  9. Metallic Hydrogen - Potentially a High Energy Rocket Propellant

    NASA Technical Reports Server (NTRS)

    Cole, John; Silvera, Ike

    2007-01-01

    Pure metallic hydrogen is predicted to have a specific impulse (Isp) of 1700 seconds, but the reaction temperature is too high for current engine materials. Diluting metallic hydrogen with liquid hydrogen can reduce the reaction temperature to levels compatible with current material limits and still provide an Isp greater than 900 s. Metallic hydrogen has not yet been produced on earth, but experimental techniques exist that may change this situation. This paper will provide a brief description of metallic hydrogen and the status of experiments that may soon produce detectable quantities of this material in the lab. Also provided are some characteristics for diluted metallic hydrogen engines and launch vehicles.

  10. Russian Meteorological and Geophysical Rockets of New Generation

    NASA Astrophysics Data System (ADS)

    Yushkov, V.; Gvozdev, Yu.; Lykov, A.; Shershakov, V.; Ivanov, V.; Pozin, A.; Afanasenkov, A.; Savenkov, Yu.; Kuznetsov, V.

    2015-09-01

    To study the process in the middle and upper atmosphere, ionosphere and near-Earth space, as well as to monitor the geophysical environment in Russian Federal Service for Hydrology and Environmental Monitoring (ROSHYDROMET) the development of new generation of meteorological and geophysical rockets has been completed. The modern geophysical research rocket system MR-30 was created in Research and Production Association RPA "Typhoon". The basis of the complex MR-30 is a new geophysical sounding rocket MN-300 with solid propellant, Rocket launch takes place at an angle of 70º to 90º from the launcher, which is a farm with a guide rail type required for imparting initial rotation rocket. The Rocket is spin stabilized with a spin rate between 5 and 7 Hz. Launch weight is 1564 kg, and the mass of the payload of 50 to 150 kg. MR-300 is capable of lifting up to 300 km, while the area of dispersion points for booster falling is an ellipse with parameters 37x 60 km. The payload of the rocket MN-300 consists of two sections: a sealed, located below the instrument compartment, and not sealed, under the fairing. Block of scientific equipment is formed on the platform in a modular layout. This makes it possible to solve a wide range of tasks and conduct research and testing technologies using a unique environment of space, as well as to conduct technological experiments testing and research systems and spacecraft equipment. New Russian rocket system MERA (MEteorological Rocket for Atmospheric Research) belongs to so called "dart" technique that provide lifting of small scientific payload up to altitude 100 km and descending with parachute. It was developed at Central Aerological Observatory jointly with State Unitary Enterprise Instrument Design Bureau. The booster provides a very rapid acceleration to about Mach 5. After the burning phase of the buster the dart is separated and continues ballistic flight for about 2 minutes. The dart carries the instrument payload+ parachute

  11. Launch Vehicle Performance for Bipropellant Propulsion Using Atomic Propellants With Oxygen

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2000-01-01

    Atomic propellants for bipropellant launch vehicles using atomic boron, carbon, and hydrogen were analyzed. The gross liftoff weights (GLOW) and dry masses of the vehicles were estimated, and the 'best' design points for atomic propellants were identified. Engine performance was estimated for a wide range of oxidizer to fuel (O/F) ratios, atom loadings in the solid hydrogen particles, and amounts of helium carrier fluid. Rocket vehicle GLOW was minimized by operating at an O/F ratio of 1.0 to 3.0 for the atomic boron and carbon cases. For the atomic hydrogen cases, a minimum GLOW occurred when using the fuel as a monopropellant (O/F = 0.0). The atomic vehicle dry masses are also presented, and these data exhibit minimum values at the same or similar O/F ratios as those for the vehicle GLOW. A technology assessment of atomic propellants has shown that atomic boron and carbon rocket analyses are considered to be much more near term options than the atomic hydrogen rockets. The technology for storing atomic boron and carbon has shown significant progress, while atomic hydrogen is not able to be stored at the high densities needed for effective propulsion. The GLOW and dry mass data can be used to estimate the cost of future vehicles and their atomic propellant production facilities. The lower the propellant's mass, the lower the overall investment for the specially manufactured atomic propellants.

  12. Parallelization of Rocket Engine System Software (Press)

    NASA Technical Reports Server (NTRS)

    Cezzar, Ruknet

    1996-01-01

    The main goal is to assess parallelization requirements for the Rocket Engine Numeric Simulator (RENS) project which, aside from gathering information on liquid-propelled rocket engines and setting forth requirements, involve a large FORTRAN based package at NASA Lewis Research Center and TDK software developed by SUBR/UWF. The ultimate aim is to develop, test, integrate, and suitably deploy a family of software packages on various aspects and facets of rocket engines using liquid-propellants. At present, all project efforts by the funding agency, NASA Lewis Research Center, and the HBCU participants are disseminated over the internet using world wide web home pages. Considering obviously expensive methods of actual field trails, the benefits of software simulators are potentially enormous. When realized, these benefits will be analogous to those provided by numerous CAD/CAM packages and flight-training simulators. According to the overall task assignments, Hampton University's role is to collect all available software, place them in a common format, assess and evaluate, define interfaces, and provide integration. Most importantly, the HU's mission is to see to it that the real-time performance is assured. This involves source code translations, porting, and distribution. The porting will be done in two phases: First, place all software on Cray XMP platform using FORTRAN. After testing and evaluation on the Cray X-MP, the code will be translated to C + + and ported to the parallel nCUBE platform. At present, we are evaluating another option of distributed processing over local area networks using Sun NFS, Ethernet, TCP/IP. Considering the heterogeneous nature of the present software (e.g., first started as an expert system using LISP machines) which now involve FORTRAN code, the effort is expected to be quite challenging.

  13. Mobile propeller dynamometer validation

    NASA Astrophysics Data System (ADS)

    Morris, Mason Wade

    With growing interest in UAVs and OSU's interest in propeller performance and manufacturing, evaluating UAV propeller and propulsion system performance has become essential. In attempts to evaluate these propellers a mobile propeller dynamometer has been designed, built, and tested. The mobile dyno has been designed to be cost effective through the ability to load it into the back of a test vehicle to create simulated forward flight characteristics. This allows much larger propellers to be dynamically tested without the use of large and expensive wind tunnels. While evaluating the accuracy of the dyno, several improvements had to be made to get accurate results. The decisions made to design and improve the mobile propeller dyno will be discussed along with attempts to validate the dyno by comparing its results against known sources. Another large part of assuring the accuracy of the mobile dyno is determining if the test vehicle will influence the flow going into the propellers being tested. The flow into the propeller needs to be as smooth and uniform as possible. This is determined by characterizing the boundary layer and accelerated flow over the vehicle. This evaluation was accomplished with extensive vehicle aerodynamic measurements with the use of full-scale tests using a pitot-rake and the actual test vehicle. Additional tests were conducted in Oklahoma State University's low speed wind tunnel with a 1/8-scale model using qualitative flow visualization with smoke. Continuing research on the mobile dyno will be discussed, along with other potential uses for the dyno.

  14. Liquid propellant densification

    NASA Technical Reports Server (NTRS)

    Lak, Tibor I. (Inventor); Petrilla, Steve P. (Inventor); Lozano, Martin E. (Inventor)

    1997-01-01

    Super cooling the cryogenic liquid propellant in a vehicle propellant tank densities the propellant allowing the vehicle propellant tank to carry more fuel in the same volume tank while lowering the vapor pressure and thus the tank operating pressure. Lowering the tank operating pressure reduces the stress and therefore allows the walls of the tank to be thinner. Both the smaller tank volume and thinner tank wall results in an overall smaller and lighter vehicle with increased payload capability. The cryogenic propellant can be supercooled well below the normal boiling point temperature level by transporting the liquid propellant from the vehicle tanks to a ground based cooling unit which utilizes a combination of heat exchanger and compressor. The compressor lowers the coolant fluid bath pressure resulting in a low temperature boiling liquid which is subsequently used to cool the recirculating liquid. The cooled propellant is then returned to the vehicle propellant tank. In addition to reducing the vehicle size and weight the invention also allows location of the vent valve on the ground, elimination of on-board recirculation pumps or bleed systems, smaller and lighter engine pumps and valves, lighter and more stable ullage gas, and significant reduction in tank fill operation. All of these mentioned attributes provide lower vehicle weight and cost.

  15. Return of the propeller

    SciTech Connect

    Not Available

    1987-05-01

    Resurrecting the propeller-driven airplane could help save fuel if there is another oil crisis like in the 1970s. This article discusses the new propeller engine, propfans, which are being developed for commercial airplanes. It discusses the three types of propfan engines and the advantages and disadvantages of each. It also tells about the propfan airplanes several companies are developing.

  16. Ballistic anomalies in solid rocket motors due to migration effects

    NASA Astrophysics Data System (ADS)

    Pröbster, M.; Schmucker, R. H.

    Double base and composite propellants are generally used for rocket motors, whereby double base propellants basically consist of nitrocellulose plasticized with an explosive plasticizer, mostly nitroglycerine, and in some cases with an additional inert plasticizer and ballistic additives. Composite propellants consist of an oxidizer like ammonium perchlorate and of aluminum, binder and plasticizer and often contain liquid or solid burning rate catalysts. A common feature of both propellants is that they contain smaller or larger amounts of chemically unbonded liquid species which tend to migrate. If these propellants loose part of the plasticizer by migration into the insulation layer, not only will there be a change in mechanical propellant properties but also the bond between propellant and insulation may degrade. However, depending on the severity of these effects, the change in the ballistic properties of the propellant grain caused by plasticizer migration may be of even more importance. In the past, most emphasis was placed on the behaviour of end-burning configurations. However, more recent theoretical and experimental studies revealed that not only for end-burning grain configurations but also for internal burning configurations there is a common effect which is responsible for ballistic anomalies: migration of liquid species from the propellant into the insulation. By using a plasticizer equilibrated insulation in an internal burning configuration the liquid species migration and thus the previously observed ballistic anomalies are avoided. Using this approach for end-burning configurations provides similar positive results. The various factors affecting plasticizer migration are studied and discussed, and several methods to prevent liquid species migration are described as well as methods to obtain plasticizer resistant insulations.

  17. Low-Cost Propellant Launch to LEO from a Tethered Balloon - 'Propulsion Depots' Not 'Propellant Depots'

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.; Schneider, Evan G.; Vaughan, David A.; Hall, Jeffrey L.; Yu, Chi Yau

    2011-01-01

    As we have previously reported, it may be possible to launch payloads into low-Earth orbit (LEO) at a per-kilogram cost that is one to two orders of magnitude lower than current launch systems, using only a relatively small capital investment (comparable to a single large present-day launch). An attractive payload would be large quantities of high-performance chemical rocket propellant (e.g. Liquid Oxygen/Liquid Hydrogen (LO2/LH2)) that would greatly facilitate, if not enable, extensive exploration of the moon, Mars, and beyond.

  18. Turbo Pump Fed Micro-Rocket Engine

    NASA Astrophysics Data System (ADS)

    Miotti, P.; Tajmar, M.; Seco, F.; Guraya, C.; Perennes, F.; Soldati, A.; Lang, M.

    2004-10-01

    Micro-satellites (from 10kg up to 100kg) have mass, volume, and electrical power constraints due to their low dimensions. These limitations lead to the lack in currently available active orbit control systems in micro-satellites. Therefore, a micro-propulsion system with a high thrust to mass ratio is required to increase the potential functionality of small satellites. Mechatronic is presently working on a liquid bipropellant micro-rocket engine under contract with ESA (Contract No.16914/NL/Sfe - Micro-turbo-machinery Based Bipropellant System Using MNT). The advances in Mechatronic's project are to realise a micro-rocket engine with propellants pressurised by micro-pumps. The energy for driving the pumps would be extracted from a micro-turbine. Cooling channels around the nozzle would be also used in order to maintain the wall material below its maximum operating temperature. A mass budget comparison with more traditional pressure-fed micro-rockets shows a real benefit from this system in terms of mass reduction. In the paper, an overview of the project status in Mechatronic is presented.

  19. Another Look at Rocket Thrust

    ERIC Educational Resources Information Center

    Hester, Brooke; Burris, Jennifer

    2012-01-01

    Rocket propulsion is often introduced as an example of Newton's third law. The rocket exerts a force on the exhaust gas being ejected; the gas exerts an equal and opposite force--the thrust--on the rocket. Equivalently, in the absence of a net external force, the total momentum of the system, rocket plus ejected gas, remains constant. The law of…

  20. Indians Repulse British With Rocket

    NASA Technical Reports Server (NTRS)

    2004-01-01

    During the early introduction of rockets to Europe, they were used only as weapons. Enemy troops in India repulsed the British with rockets. Later, in Britain, Sir William Congreve developed a rocket that could fire to about 9,000 feet. The British fired Congreve rockets against the United States in the War of 1812.

  1. High Energy Density Matter for Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Carrick, Patrick G.

    1996-01-01

    The objective of the High Energy Density Matter (HEDM) program is to identify, develop, and exploit high energy atomic and molecular systems as energetic sources for rocket propulsion applications. It is a high risk, high payoff program that incorporates both basic and applied research, experimental and theoretical efforts, and science and engineering efforts. The HEDM program is co-sponsored by the Air Force Office of Scientific Research (AFOSR) and the Phillips Laboratory (PURKS). It includes both in-house and contracted University/Industry efforts. Technology developed by the HEDM program offers the opportunity for significant breakthroughs in propulsion system capabilities over the current state-of-the-art. One area of great interest is the use of cryogenic solids to increase the density of the propellant and to act as a stable matrix for storage of energetic materials. No cryogenic solid propellant has ever been used in a rocket, and there remain engineering challenges to such a propellant. However, these solids would enable a wide class of highly energetic materials by providing an environment that is at very low temperatures and is a physical barrier to recombination or energy loss reactions. Previous to our experiments only hydrogen atoms had been isolated in solid hydrogen. To date we have succeeded in trapping B, Al, Li, N, and Mg atoms in solid H2. Small molecules, such as B2 and LiB, are also of interest. Current efforts involve the search for new energetic small molecules, increasing free radical concentrations up to 5 mole percent, and scale-up for propulsion testing.

  2. Welded Titanium Case for Space-Probe Rocket Motor

    NASA Technical Reports Server (NTRS)

    Brothers, A. J.; Boundy, R. A.; Martens, H. E.; Jaffe, L. D.

    1959-01-01

    The high strength-to-weight ratio of titanium alloys suggests their use for solid-propellant rocket-motor cases for high-performance orbiting or space-probe vehicles. The paper describes the fabrication of a 6-in.-diam., 0.025-in.-wall rocket-motor from the 6A1-4V titanium alloy. The rocket-motor case, used in the fourth stage of a successful JPL-NASA lunar-probe flight, was constructed using a design previously proven satisfactory for Type 410 stainless steel. The nature and scope of the problems peculiar to the use of the titanium alloy, which effected an average weight saving of 34%, are described.

  3. Two-dimensional calculation of chemical species and electrical properties in rocket plume flowfields

    NASA Astrophysics Data System (ADS)

    Zhang, Ping; Cui, Jisong; Liu, Qingyun

    1993-08-01

    A computational modeling technique and prediction method are presented for calculating two-dimensional profiles of chemical species mole fraction and electrical properties of rocket exhaust plumes. A comprehensive computer code has been programmed. The chemical reactions and radar attenuation which occur in a rocket plume can be predicted more truly by using this code. It is suitable to calculating parameters of rocket plumes under a near complete-expansion condition and for smokeless (or reduced smoke) propellant application. The calculation results indicate that evident errors will occur for prediction of chemical and electrical parameters in the plume flowfield if the chemical reactions in the plume are ignored.

  4. Baking Soda and Vinegar Rockets

    NASA Astrophysics Data System (ADS)

    Claycomb, James R.; Zachary, Christopher; Tran, Quoc

    2009-02-01

    Rocket experiments demonstrating conservation of momentum will never fail to generate enthusiasm in undergraduate physics laboratories. In this paper, we describe tests on rockets from two vendors1,2 that combine baking soda and vinegar for propulsion. The experiment compared two analytical approximations for the maximum rocket height to the experimentally measured rocket height. Baking soda and vinegar rockets present fewer safety concerns and require a smaller launch area than rapid combustion chemical rockets. Both kits were of nearly identical design, costing ˜20. The rockets required roughly 30 minutes of assembly time consisting of mostly taping the soft plastic fuselage to the Styrofoam nose cone.

  5. Propellant-remaining modeling

    NASA Technical Reports Server (NTRS)

    Torgovitsky, S.

    1991-01-01

    A successful satellite mission is predicted upon the proper maintenance of the spacecraft's orbit and attitude. One requirement for planning and predicting the orbit and attitude is the accurate estimation of the propellant remaining onboard the spacecraft. Focuss is on the three methods that were developed for calculating the propellant budget: the errors associated with each method and the uncertainties in the variables required to determine the propellant remaining that contribute to these errors. Based on these findings, a strategy is developed for improved propellant-remaining estimation. The first method is based on Boyle's law, which related the values of pressure, volume, and temperature (PVT) of an ideal gas. The PVT method is used for the monopropellant and the bipropellant engines. The second method is based on the engine performance tests, which provide data that relate thrust and specific impulse associated with a propellant tank to that tank's pressure. Two curves representing thrust and specific impulse as functions of pressure are then generated using a polynomial fit on the engine performance data. The third method involves a computer simulation of the propellant system. The propellant flow is modeled by creating a conceptual model of the propulsion system configuration, taking into account such factors as the propellant and pressurant tank characteristics, thruster functionality, and piping layout. Finally, a thrust calibration technique is presented that uses differential correction with the computer simulation method of propellant-remaining modeling. Thrust calibration provides a better assessment of thruster performance and therefore enables a more accurate estimation of propellant consumed during a given maneuver.

  6. GPS Sounding Rocket Developments

    NASA Technical Reports Server (NTRS)

    Bull, Barton

    1999-01-01

    Sounding rockets are suborbital launch vehicles capable of carrying scientific payloads several hundred miles in altitude. These missions return a variety of scientific data including; chemical makeup and physical processes taking place in the atmosphere, natural radiation surrounding the Earth, data on the Sun, stars, galaxies and many other phenomena. In addition, sounding rockets provide a reasonably economical means of conducting engineering tests for instruments and devices used on satellites and other spacecraft prior to their use in more expensive activities. This paper addresses the NASA Wallops Island history of GPS Sounding Rocket experience since 1994 and the development of highly accurate and useful system.

  7. Development of a solid propellant viscoelastic dynamic model

    NASA Technical Reports Server (NTRS)

    Hufferd, W. L.; Fitzgerald, J. E.

    1976-01-01

    The results of a one year study to develop a dynamic response model for the Space Shuttle Solid Rocket Motor (SRM) propellant are presented. An extensive literature survey was conducted, from which it was concluded that the only significant variables affecting the dynamic response of the SRM propellant are temperature and frequency. Based on this study, and experimental data on propellants related to the SRM propellant, a dynamic constitutive model was developed in the form of a simple power law with temperature incorporated in the form of a modified power law. A computer program was generated which performs a least-squares curve-fit of laboratory data to determine the model parameters and it calculates dynamic moduli at any desired temperature and frequency. Additional studies investigated dynamic scaling laws and the extent of coupling between the SRM propellant and motor cases. It was found, in agreement with other investigations, that the propellant provides all of the mass and damping characteristics whereas the case provides all of the stiffness.

  8. Thrust augmentation nozzle (TAN) concept for rocket engine booster applications

    NASA Astrophysics Data System (ADS)

    Forde, Scott; Bulman, Mel; Neill, Todd

    2006-07-01

    Aerojet used the patented thrust augmented nozzle (TAN) concept to validate a unique means of increasing sea-level thrust in a liquid rocket booster engine. We have used knowledge gained from hypersonic Scramjet research to inject propellants into the supersonic region of the rocket engine nozzle to significantly increase sea-level thrust without significantly impacting specific impulse. The TAN concept overcomes conventional engine limitations by injecting propellants and combusting in an annular region in the divergent section of the nozzle. This injection of propellants at moderate pressures allows for obtaining high thrust at takeoff without overexpansion thrust losses. The main chamber is operated at a constant pressure while maintaining a constant head rise and flow rate of the main propellant pumps. Recent hot-fire tests have validated the design approach and thrust augmentation ratios. Calculations of nozzle performance and wall pressures were made using computational fluid dynamics analyses with and without thrust augmentation flow, resulting in good agreement between calculated and measured quantities including augmentation thrust. This paper describes the TAN concept, the test setup, test results, and calculation results.

  9. Spinning Rocket Simulator Turntable Design

    NASA Technical Reports Server (NTRS)

    Miles, Robert W.

    2001-01-01

    Contained herein is the research and data acquired from the Turntable Design portion of the Spinning Rocket Simulator (SRS) project. The SRS Project studies and eliminates the effect of coning on thrust-propelled spacecraft. This design and construction of the turntable adds a structural support for the SRS model and two degrees of freedom. The two degrees of freedom, radial and circumferential, will help develop a simulated thrust force perpendicular to the plane of the spacecraft model while undergoing an unstable coning motion. The Turntable consists of a ten-foot linear track mounted to a sprocket and press-fit to a thrust bearing. A two-inch high column grounded by a Triangular Baseplate supports this bearing and houses the slip rings and pressurized, air-line swivel. The thrust bearing allows the entire system to rotate under the moment applied through the chain-driven sprocket producing a circumferential degree of freedom. The radial degree of freedom is given to the model through the helically threaded linear track. This track allows the Model Support and Counter Balance to simultaneously reposition according to the coning motion of the Model. Two design factors that hinder the linear track are bending and twist due to torsion. A Standard Aluminum "C" channel significantly reduces these two deflections. Safety considerations dictate the design of all the components involved in this project.

  10. NASA's Advanced solid rocket motor

    NASA Astrophysics Data System (ADS)

    Mitchell, Royce E.

    The Advanced Solid Rocket Motor (ASRM) will not only bring increased safety, reliability and performance for the Space Shuttle Booster, it will enhance overall Shuttle safety by effectively eliminating 174 failure points in the Space Shuttle Main Engine throttling system and by reducing the exposure time to aborts due to main engine loss or shutdown. In some missions, the vulnerability time to Return-to-Launch Site aborts is halved. The ASRM uses case joints which will close or remain static under the effects of motor ignition and pressurization. The case itself is constructed of the weldable steel alloy HP 9-4-0.30, having very high strength and with superior fracture toughness and stress corrosion resistance. The internal insulation is strip-wound and is free of asbestos. The nozzle employs light weight ablative parts and is some 5,000 pounds lighter than the Shuttle motor used to date. The payload performance of the ASRM-powered Shuttle is 12,000 pounds higher than that provided by the present motor. This is of particular benefit for payloads delivered to higher inclinations and/or altitudes. The ASRM facility uses state-of-the-art manufacturing techniques, including continuous propellant mixing and direct casting.

  11. NASA's Advanced solid rocket motor

    NASA Technical Reports Server (NTRS)

    Mitchell, Royce E.

    1993-01-01

    The Advanced Solid Rocket Motor (ASRM) will not only bring increased safety, reliability and performance for the Space Shuttle Booster, it will enhance overall Shuttle safety by effectively eliminating 174 failure points in the Space Shuttle Main Engine throttling system and by reducing the exposure time to aborts due to main engine loss or shutdown. In some missions, the vulnerability time to Return-to-Launch Site aborts is halved. The ASRM uses case joints which will close or remain static under the effects of motor ignition and pressurization. The case itself is constructed of the weldable steel alloy HP 9-4-0.30, having very high strength and with superior fracture toughness and stress corrosion resistance. The internal insulation is strip-wound and is free of asbestos. The nozzle employs light weight ablative parts and is some 5,000 pounds lighter than the Shuttle motor used to date. The payload performance of the ASRM-powered Shuttle is 12,000 pounds higher than that provided by the present motor. This is of particular benefit for payloads delivered to higher inclinations and/or altitudes. The ASRM facility uses state-of-the-art manufacturing techniques, including continuous propellant mixing and direct casting.

  12. Space shuttle with common fuel tank for liquid rocket booster and main engines (supertanker space shuttle)

    NASA Technical Reports Server (NTRS)

    Thorpe, Douglas G.

    1991-01-01

    An operation and schedule enhancement is shown that replaces the four-body cluster (Space Shuttle Orbiter (SSO), external tank, and two solid rocket boosters) with a simpler two-body cluster (SSO and liquid rocket booster/external tank). At staging velocity, the booster unit (liquid-fueled booster engines and vehicle support structure) is jettisoned while the remaining SSO and supertank continues on to orbit. The simpler two-bodied cluster reduces the processing and stack time until SSO mate from 57 days (for the solid rocket booster) to 20 days (for the liquid rocket booster). The areas in which liquid booster systems are superior to solid rocket boosters are discussed. Alternative and future generation vehicles are reviewed to reveal greater performance and operations enhancements with more modifications to the current methods of propulsion design philosophy, e.g., combined cycle engines, and concentric propellant tanks.

  13. Rocket Propulsion Through Multiply Charged Ions From a Mirror Plasma

    NASA Astrophysics Data System (ADS)

    Leung, L.; Petty, C. C.; Evans, T. E.

    2006-10-01

    Plasma propulsion is of interest for space exploration because the high exit velocity of the propellant, compared to that of chemical means, generates a high final spacecraft velocity with reduced propellant mass. This project evaluates the viability of using plasma in a magnetic mirror to produce multiply charged ions as propellant. Electron cyclotron heating of a mirror plasma produces deeply trapped hot electrons which strip heavy ions of electrons. The ambipolar potential accelerates the greatly charged ions to high velocity as they exit the end of the magnetic mirror open to space, generating thrust. We model the distribution of ion charge states to include all relevant atomic processes using the conservation of particle and energy equations in tandem with cross-sections from the ADAS database. The system of equations is then optimized to determine the feasibility of plasma propulsion. The results of this model in a high- density rocket regime are benchmarked against experimental data in low-density mirror plasmas.

  14. Effect of Cumulative Damage on Rocket Motor Service Life

    NASA Astrophysics Data System (ADS)

    Gligorijević, Nikola; Živković, Saša; Subotić, Sredoje; Rodić, Vesna; Gligorijević, Ivan

    2015-10-01

    Two series of antihail rocket propellant grains failed only 3 months after production, due to the appearance of cracks in the grain channel. Structural integrity analysis demonstrated sufficient reliability at the beginning of service life. Further analysis showed that under temperature loads, cumulative damage during the short period in field stocks caused the grain failure, despite the established opinion that such failure can become significant only after lengthy storage. A linear cumulative damage law is evaluated by exposing a number of hydroxyl-terminated polybutadiene (HTPB) composite propellant specimens to different but constant stress levels. The analysis showed that cumulative damage must not be overlooked at the design stage. Further, a positive correlation between the propellant cumulative damage law and tensile strength is strongly indicated.

  15. Nitramine propellants. [gun propellant burning rate

    NASA Technical Reports Server (NTRS)

    Cohen, N. S.; Strand, L. D. (Inventor)

    1978-01-01

    Nitramine propellants without a pressure exponent shift in the burning rate curves are prepared by matching the burning rate of a selected nitramine or combination of nitramines within 10% of burning rate of a plasticized active binder so as to smooth out the break point appearance in the burning rate curve.

  16. Composite propellant tank study for very low cost space transportation

    NASA Technical Reports Server (NTRS)

    Moser, D. J.; Keith, E. L.

    1992-01-01

    A study of life-cycle cost is conducted to determine acceptable options for composite propellant tanks at low cost and weight and for use at moderate pressures. The review examines all cost issues relevant to the production, mass, applications, and reliability of the tanks for pressure-fed rockets. Specific attention is given to the manufacturing and life-cycle issues relevant to the use of composite materials in this application since composites are effective materials for liquid propellant tanks. Specific costs and parametric considerations are given for several tank candidates with 62,303-lb capacities. The mass sensitivity of the fourth stage for the concept vehicle is shown to be high, and the use of a 325-psi fourth-stage tank is shown to yield the minimum cost/lb for the stage. Wound S-glass/epoxy composites can be employed as cost-effective replacements for steel in the design of liquid-propellant tanks.

  17. Laboratory test methods for combustion stability properties of solid propellants

    NASA Technical Reports Server (NTRS)

    Strand, L. D.; Brown, R. S.

    1992-01-01

    An overview is presented of experimental methods for determining the combustion-stability properties of solid propellants. The methods are generally based on either the temporal response to an initial disturbance or on external methods for generating the required oscillations. The size distribution of condensed-phase combustion products are characterized by means of the experimental approaches. The 'T-burner' approach is shown to assist in the derivation of pressure-coupled driving contributions and particle damping in solid-propellant rocket motors. Other techniques examined include the rotating-valve apparatus, the impedance tube, the modulated throat-acoustic damping burner, and the magnetic flowmeter. The paper shows that experimental methods do not exist for measuring the interactions between acoustic velocity oscillations and burning propellant.

  18. Rocket University at KSC

    NASA Technical Reports Server (NTRS)

    Sullivan, Steven J.

    2014-01-01

    "Rocket University" is an exciting new initiative at Kennedy Space Center led by NASA's Engineering and Technology Directorate. This hands-on experience has been established to develop, refine & maintain targeted flight engineering skills to enable the Agency and KSC strategic goals. Through "RocketU", KSC is developing a nimble, rapid flight engineering life cycle systems knowledge base. Ongoing activities in RocketU develop and test new technologies and potential customer systems through small scale vehicles, build and maintain flight experience through balloon and small-scale rocket missions, and enable a revolving fresh perspective of engineers with hands on expertise back into the large scale NASA programs, providing a more experienced multi-disciplined set of systems engineers. This overview will define the Program, highlight aspects of the training curriculum, and identify recent accomplishments and activities.

  19. Antares Rocket Lifts Off!

    NASA Video Gallery

    NASA commercial space partner Orbital Sciences Corp. of Dulles, Va., launched its Cygnus cargo spacecraft aboard its Antares rocket at 10:58 a.m. EDT Wednesday from the Mid-Atlantic Regional Spacep...

  20. Rocketing into Adaptive Inquiry.

    ERIC Educational Resources Information Center

    Farenga, Stephen J.; Joyce, Beverly A.; Dowling, Thomas W.

    2002-01-01

    Defines adaptive inquiry and argues for employing this method which allows lessons to be shaped in response to student needs. Illustrates this idea by detailing an activity in which teams of students build rockets. (DDR)