Sample records for rocket propellants based

  1. Rocket propulsion elements - An introduction to the engineering of rockets (6th revised and enlarged edition)

    NASA Astrophysics Data System (ADS)

    Sutton, George P.

    The subject of rocket propulsion is treated with emphasis on the basic technology, performance, and design rationale. Attention is given to definitions and fundamentals, nozzle theory and thermodynamic relations, heat transfer, flight performance, chemical rocket propellant performance analysis, and liquid propellant rocket engine fundamentals. The discussion also covers solid propellant rocket fundamentals, hybrid propellant rockets, thrust vector control, selection of rocket propulsion systems, electric propulsion, and rocket testing.

  2. MEMS-Based Solid Propellant Rocket Array Thruster

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuji; Hosokawa, Ryuichiro; Tokudome, Shin-Ichiro; Hori, Keiichi; Saito, Hirobumi; Watanabe, Masashi; Esashi, Masayoshi

    The prototype of a solid propellant rocket array thruster for simple attitude control of a 10 kg class micro-spacecraft was completed and tested. The prototype has 10×10 φ0.8 mm solid propellant micro-rockets arrayed at a pitch of 1.2 mm on a 20×22 mm substrate. To realize such a dense array of micro-rockets, each ignition heater is powered from the backside of the thruster through an electrical feedthrough which passes along a propellant cylinder wall. Boron/potassium nitrate propellant (NAB) is used with/without lead rhodanide/potassium chlorate/nitrocellulose ignition aid (RK). Impulse thrust was measured by a pendulum method in air. Ignition required electric power of at least 3 4 W with RK and 4 6 W without RK. Measured impulse thrusts were from 2×10-5 Ns to 3×10-4 Ns after the calculation of compensation for air dumping.

  3. Design and Fabrication of a 200N Thrust Rocket Motor Based on NH4ClO4+Al+HTPB as Solid Propellant

    NASA Astrophysics Data System (ADS)

    Wahid, Mastura Ab; Ali, Wan Khairuddin Wan

    2010-06-01

    The development of rocket motor using potassium nitrate, carbon and sulphur mixture has successfully been developed by researchers and students from UTM and recently a new combination for solid propellant is being created. The new solid propellant will combine a composition of Ammonium perchlorate, NH4ClO4 with aluminium, Al and Hydroxyl Terminated Polybutadiene, HTPB as the binder. It is the aim of this research to design and fabricate a new rocket motor that will produce a thrust of 200N by using this new solid propellant. A static test is done to obtain the thrust produced by the rocket motor and analyses by observation and also calculation will be done. The experiment for the rocket motor is successful but the thrust did not achieve its required thrust.

  4. Contained rocket motor burn demonstrations in X-tunnel: Final report for the DoD/DOE Joint Demilitarization Technology Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. W. Allendorf; B. W. Bellow; R. f. Boehm

    Three low-pressure rocket motor propellant burn tests were performed in a large, sealed test chamber located at the X-tunnel complex on the Department of Energy's Nevada Test Site in the period May--June 1997. NIKE rocket motors containing double base propellant were used in two tests (two and four motors, respectively), and the third test used two improved HAWK rocket motors containing composite propellant. The preliminary containment safety calculations, the crack and burn procedures used in each test, and the results of various measurements made during and after each test are all summarized and collected in this document.

  5. Development of a miniature solid propellant rocket motor for use in plume simulation studies

    NASA Technical Reports Server (NTRS)

    Baran, W. J.

    1974-01-01

    A miniature solid propellant rocket motor has been developed to be used in a program to determine those parameters which must be duplicated in a cold gas flow to produce aerodynamic effects on an experimental model similar to those produced by hot, particle-laden exhaust plumes. Phenomena encountered during the testing of the miniature solid propellant motors included erosive propellant burning caused by high flow velocities parallel to the propellant surface, regressive propellant burning as a result of exposed propellant edges, the deposition of aluminum oxide on the nozzle surfaces sufficient to cause aerodynamic nozzle throat geometry changes, and thermal erosion of the nozzle throat at high chamber pressures. A series of tests was conducted to establish the stability of the rocket chamber pressure and the repeatibility of test conditions. Data are presented which define the tests selected to represent the final test matrix. Qualitative observations are also presented concerning the phenomena experienced based on the results of a large number or rocket tests not directly applicable to the final test matrix.

  6. Design considerations for a pressure-driven multi-stage rocket

    NASA Astrophysics Data System (ADS)

    Sauerwein, Steven Craig

    2002-01-01

    The purpose of this study was to examine the feasibility of using propellant tank pressurization to eliminate the use of high-pressure turbopumps in multi-stage liquid-fueled satellite launchers. Several new technologies were examined to reduce the mass of such a rocket. Composite materials have a greater strength-to-weight ratio than metals and can be used to reduce the weight of rocket propellant tanks and structure. Catalytically combined hydrogen and oxygen can be used to heat pressurization gas, greatly reducing the amount of gas required. Ablatively cooled rocket engines can reduce the complexity and cost of the rocket. Methods were derived to estimate the mass of the various rocket components. These included a method to calculate the amount of gas needed to pressurize a propellant tank by modeling the behavior of the pressurization gas as the liquid propellant flows out of the tank. A way to estimate the mass and size of a ablatively cooled composite cased rocket engine. And a method to model the flight of such a rocket through the atmosphere in conjunction with optimization of the rockets trajectory. The results show that while a liquid propellant rocket using tank pressurization are larger than solid propellant rockets and turbopump driven liquid propellant rockets, they are not impractically large.

  7. Development of high temperature materials for solid propellant rocket nozzle applications

    NASA Technical Reports Server (NTRS)

    Manning, C. R., Jr.; Lineback, L. D.

    1974-01-01

    Aspects of the development and characteristics of thermal shock resistant hafnia ceramic material for use in solid propellant rocket nozzles are presented. The investigation of thermal shock resistance factors for hafnia based composites, and the preparation and analysis of a model of elastic materials containing more than one crack are reported.

  8. Lead-Free Double-Base Propellant for the 2.75 Inch Rocket Motor

    NASA Technical Reports Server (NTRS)

    Magill, B. T.; Nauflett, G. W.; Furrow, K. W.

    2000-01-01

    The current MK 66 2.75 inch Rocket Motor double-base propellant contains the lead-based ballistic modifier LC-12-15 to achieve the desired plateau and mesa burning rate characteristics. The use of lead compounds poses a concern for the environment and for personal safety due to the metal's toxic nature when introduced into the atmosphere by propellant manufacture, rocket motor firing, and disposal. Copper beta-resorcylate (copper 2,4-di-hydroxy-benzoate) was successfully used in propellant as a simple modifier in the mid 1970's. This and other compounds have also been mixed with lead salts to obtain more beneficial ballistic results. Synthesized complexes of lead and copper compounds soon replaced the mixtures. The complexes incorporate the lead, copper lack of organic liquids, which allows for easier propellant processing. About ten years ago, the Indian Head Division, Naval Surface Warfare Center (NSWC), initiated an effort to develop a lead-free propellant for use in missile systems. Several lead-free propellant candidate formulations were developed. About five years ago, NSWC, in conjunction with Alliant Techsystems, Radford Army Ammunition Plant, continued ballistic modifier investigations. A four component ballistic modifier system without lead for double-base propellants that provide adequate plateau and mesa burn rate characteristics was developed and patented. The ballistic modifier's system contains bismuth subsalicylate, 1.5 percent; copper salicylate, 1.0 percent, copper stannate, 0.77 percent; and carbon black, 0.1 percent. Action time and impulse data obtained through multiple static firings indicate that the new lead-free double-base propellant, while not a match for NOSIH-AA-2, will be a very suitable replacement in the 2.75 inch Rocket Motor. Accelerated aging of the double-base propellant containing the lead-free ballistic modifier showed that it had a much higher rate of stabilizer depletion than the AA-2. A comprehensive study showed that an increased rate of stabilizer depletion occurred in propellants containing monobasic copper salicylate. The study also showed that propellants containing a mixture of bismuth subsalicylate and copper salicylate, had only about one-half the stabilizer depletion rate than those with copper salicylate alone. The copper salicylate catalyzes the decomposition of nitroglycerin, which triggers a chain of events leading to the increased rate of stabilizer depletion. A program has been initiated to coat the ballistic modifier, thus isolating it from the nitroglycerin.

  9. Application of X-ray television image system to observation in solid rocket motor

    NASA Astrophysics Data System (ADS)

    Fujiwara, T.; Ito, K.; Tanemura, T.; Shimizu, M.; Godai, T.

    The X-ray television image system is used to observe the solid propellant burning surface during rocket motor operation as well as to inspect defects in solid rocket motors in a real time manner. This system can test 200 mm diameter dummy propellant rocket motors with under 2 percent discriminative capacity. Viewing of a 50 mm diameter internal-burning rocket motor, propellant burning surface time transition and propellant burning process of the surroundings of artificial defects were satisfactorily observed. The system was demonstrated to be effective for nondestructive testing and combustion research of solid rocket motors.

  10. Hybrid propulsion technology program: Phase 1, volume 4

    NASA Technical Reports Server (NTRS)

    Claflin, S. E.; Beckman, A. W.

    1989-01-01

    The use of a liquid oxidizer-solid fuel hybrid propellant combination in booster rocket motors appears extremely attractive due to the integration of the best features of liquid and solid propulsion systems. The hybrid rocket combines the high performance, clean exhaust, and safety of liquid propellant engines with the low cost and simplicity of solid propellant motors. Additionally, the hybrid rocket has unique advantages such as an inert fuel grain and a relative insensitivity to fuel grain and oxidizer injection anomalies. The advantages mark the hybrid rocket as a potential replacement or alternative for current and future solid propellant booster systems. The issues are addressed and recommendations are made concerning oxidizer feed systems, injectors, and ignition systems as related to hybrid rocket propulsion. Early in the program a baseline hybrid configuration was established in which liquid oxygen would be injected through ports in a solid fuel whose composition is based on hydroxyl terminated polybutadiene (HTPB). Liquid oxygen remained the recommended oxidizer and thus all of the injector concepts which were evaluated assumed only liquid would be used as the oxidizer.

  11. Efficiency of the rocket engines with a supersonic afterburner

    NASA Astrophysics Data System (ADS)

    Sergienko, A. A.

    1992-08-01

    The paper is concerned with the problem of regenerative cooling of the liquid-propellant rocket engine combustion chamber at high pressures of the working fluid. It is shown that high combustion product pressures can be achieved in the liquid-propellant rocket engine with a supersonic afterburner than in a liquid-propellant rocket engine with a conventional subsonic combustion chamber for the same allowable heat flux density. However, the liquid-propellant rocket engine with a supersonic afterburner becomes more economical than the conventional engine only at generator gas temperatures of 1700 K and higher.

  12. Analysis of liquid-propellant rocket engines designed by F. A. Tsander

    NASA Technical Reports Server (NTRS)

    Dushkin, L. S.; Moshkin, Y. K.

    1977-01-01

    The development of the oxygen-gasoline OR-2 engines and the oxygen-alcohol GIRD-10 rocket engine is described. A result of Tsander's rocket research was an engineering method for propellant calculation of oxygen-propellant rocket engines that determined the basic parameters of the engine and the structural elements.

  13. Using PDV to Understand Damage in Rocket Motor Propellants

    NASA Astrophysics Data System (ADS)

    Tear, Gareth; Chapman, David; Ottley, Phillip; Proud, William; Gould, Peter; Cullis, Ian

    2017-06-01

    There is a continuing requirement to design and manufacture insensitive munition (IM) rocket motors for in-service use under a wide range of conditions, particularly due to shock initiation and detonation of damaged propellant spalled across the central bore of the rocket motor (XDT). High speed photography has been crucial in determining this behaviour, however attempts to model the dynamic behaviour are limited by the lack of precision particle and wave velocity data with which to validate against. In this work Photonic Doppler Velocimetery (PDV) has been combined with high speed video to give accurate point velocity and timing measurements of the rear surface of a propellant block impacted by a fragment travelling upto 1.4 km s-1. By combining traditional high speed video with PDV through a dichroic mirror, the point of velocity measurement within the debris cloud has been determined. This demonstrates a new capability to characterise the damage behaviour of a double base rocket motor propellant and hence validate the damage and fragmentation algorithms used in the numerical simulations.

  14. Liquid Rocket Lines, Bellows, Flexible Hoses, and Filters

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Fluid-flow components in a liquid propellant rocket engine and the rocket vehicle which it propels are interconnected by lines, bellows, and flexible hoses. Elements involved in the successful design of these components are identified and current technologies pertaining to these elements are reviewed, assessed, and summarized to provide a technology base for a checklist of rules to be followed by project managers in guiding a design or assessing its adequacy. Recommended procedures for satisfying each of the design criteria are included.

  15. Experimental research and design planning in the field of liquid-propellant rocket engines conducted between 1934 - 1944 by the followers of F. A. Tsander

    NASA Technical Reports Server (NTRS)

    Dushkin, L. S.

    1977-01-01

    The development of the following Liquid-Propellant Rocket Engines (LPRE) is reviewed: (1) an alcohol-oxygen single-firing LPRE for use in wingless and winged rockets, (2) a similar multifiring LPRE for use in rocket gliders, (3) a combined solid-liquid propellant rocket engine, and (4) an aircraft LPRE operating on nitric acid and kerosene.

  16. The pasty propellant rocket engine development

    NASA Astrophysics Data System (ADS)

    Kukushkin, V. I.; Ivanchenko, A. N.

    1993-06-01

    The paper describes a newly developed pasty propellant rocket engine (PPRE) and the combustion process and presents results of performance tests. It is shown that, compared with liquid propellant rocket engines, the PPREs can regulate the thrust level within a wider range, are safer ecologically, and have better weight characteristics. Compared with solid propellant rocket engines, the PPREs may be produced with lower costs and more safely, are able to regulate thrust performance within a wider range, and are able to offer a greater scope for the variation of the formulation components and propellant characteristics. Diagrams of the PPRE are included.

  17. 46 CFR 160.036-2 - Type.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... APPROVAL LIFESAVING EQUIPMENT Hand-Held Rocket-Propelled Parachute Red Flare Distress Signals § 160.036-2 Type. (a) Handheld rocket-propelled parachute red flare distress signals specified by this subpart... fired from the hand to provide a rocket-propelled parachute red flare distress signal. (b) [Reserved] ...

  18. 46 CFR 160.036-2 - Type.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... APPROVAL LIFESAVING EQUIPMENT Hand-Held Rocket-Propelled Parachute Red Flare Distress Signals § 160.036-2 Type. (a) Handheld rocket-propelled parachute red flare distress signals specified by this subpart... fired from the hand to provide a rocket-propelled parachute red flare distress signal. (b) [Reserved] ...

  19. 46 CFR 160.036-2 - Type.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... APPROVAL LIFESAVING EQUIPMENT Hand-Held Rocket-Propelled Parachute Red Flare Distress Signals § 160.036-2 Type. (a) Handheld rocket-propelled parachute red flare distress signals specified by this subpart... fired from the hand to provide a rocket-propelled parachute red flare distress signal. (b) [Reserved] ...

  20. 46 CFR 160.036-2 - Type.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... APPROVAL LIFESAVING EQUIPMENT Hand-Held Rocket-Propelled Parachute Red Flare Distress Signals § 160.036-2 Type. (a) Handheld rocket-propelled parachute red flare distress signals specified by this subpart... fired from the hand to provide a rocket-propelled parachute red flare distress signal. (b) [Reserved] ...

  1. 46 CFR 160.036-2 - Type.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... APPROVAL LIFESAVING EQUIPMENT Hand-Held Rocket-Propelled Parachute Red Flare Distress Signals § 160.036-2 Type. (a) Handheld rocket-propelled parachute red flare distress signals specified by this subpart... fired from the hand to provide a rocket-propelled parachute red flare distress signal. (b) [Reserved] ...

  2. Chemical propulsion - The old and the new challenges

    NASA Technical Reports Server (NTRS)

    Mccarty, J. P.; Lombardo, J. A.

    1973-01-01

    The historical background concerning the application of liquid propellant rockets is considered. Progress to date in chemical liquid propellant rocket engines can be summarized as an increase in performance through the use of more energetic propellant combinations and increased combustion pressure. New advances regarding liquid propellant rocket engines are related to the requirement for reusability in connection with the development of the Space Shuttle.

  3. Evaluation of Foam Coolants.

    DTIC Science & Technology

    HYPERGOLIC ROCKET PROPELLANTS, * FOAM , FILM COOLING, FILM COOLING, LIQUID COOLING, LIQUID ROCKET FUELS, ADDITIVES, HEAT TRANSFER, COOLANTS, LIQUID PROPELLANT ROCKET ENGINES, LIQUID COOLING, CAPTIVE TESTS, FEASIBILITY STUDIES.

  4. Regression rate behaviors of HTPB-based propellant combinations for hybrid rocket motor

    NASA Astrophysics Data System (ADS)

    Sun, Xingliang; Tian, Hui; Li, Yuelong; Yu, Nanjia; Cai, Guobiao

    2016-02-01

    The purpose of this paper is to characterize the regression rate behavior of hybrid rocket motor propellant combinations, using hydrogen peroxide (HP), gaseous oxygen (GOX), nitrous oxide (N2O) as the oxidizer and hydroxyl-terminated poly-butadiene (HTPB) as the based fuel. In order to complete this research by experiment and simulation, a hybrid rocket motor test system and a numerical simulation model are established. Series of hybrid rocket motor firing tests are conducted burning different propellant combinations, and several of those are used as references for numerical simulations. The numerical simulation model is developed by combining the Navies-Stokes equations with the turbulence model, one-step global reaction model, and solid-gas coupling model. The distribution of regression rate along the axis is determined by applying simulation mode to predict the combustion process and heat transfer inside the hybrid rocket motor. The time-space averaged regression rate has a good agreement between the numerical value and experimental data. The results indicate that the N2O/HTPB and GOX/HTPB propellant combinations have a higher regression rate, since the enhancement effect of latter is significant due to its higher flame temperature. Furthermore, the containing of aluminum (Al) and/or ammonium perchlorate(AP) in the grain does enhance the regression rate, mainly due to the more energy released inside the chamber and heat feedback to the grain surface by the aluminum combustion.

  5. AFRPL Graphite Performance Prediction Program. Improved Capability for the Design and Ablation Performance Prediction of Advanced Air Force Solid Propellant Rocket Nozzles

    DTIC Science & Technology

    1976-12-01

    corrosive attack by both acids and alkali and, in addition, is provided with a special Dynel veil for protection against fluoride attack. 3.1.4...throat region, namely , the entrance, center, and exit. In addition, at each station, the diameters were determined at two angular positions 90° apart. The...characterization test matrix. 3.2.1.1 Rocket Motor Environments Rocket motor environments were based on three advanced MX propellants, namely , * XLDB * HTPB * PEG

  6. On the history of the development of solid-propellant rockets in the Soviet Union

    NASA Technical Reports Server (NTRS)

    Pobedonostsev, Y. A.

    1977-01-01

    Pre-World War II Soviet solid-propellant rocket technology is reviewed. Research and development regarding solid composite preparations of pyroxyline TNT powder is described, as well as early work on rocket loading calculations, problems of flight stability, and aircraft rocket launching and ground rocket launching capabilities.

  7. 40 CFR 61.43 - Emission testing-rocket firing or propellant disposal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Emission testing-rocket firing or... Standard for Beryllium Rocket Motor Firing § 61.43 Emission testing—rocket firing or propellant disposal. (a) Ambient air concentrations shall be measured during and after firing of a rocket motor or...

  8. 40 CFR 61.43 - Emission testing-rocket firing or propellant disposal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Emission testing-rocket firing or... Standard for Beryllium Rocket Motor Firing § 61.43 Emission testing—rocket firing or propellant disposal. (a) Ambient air concentrations shall be measured during and after firing of a rocket motor or...

  9. 40 CFR 61.43 - Emission testing-rocket firing or propellant disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Emission testing-rocket firing or... Standard for Beryllium Rocket Motor Firing § 61.43 Emission testing—rocket firing or propellant disposal. (a) Ambient air concentrations shall be measured during and after firing of a rocket motor or...

  10. 40 CFR 61.43 - Emission testing-rocket firing or propellant disposal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Emission testing-rocket firing or... Standard for Beryllium Rocket Motor Firing § 61.43 Emission testing—rocket firing or propellant disposal. (a) Ambient air concentrations shall be measured during and after firing of a rocket motor or...

  11. 40 CFR 61.43 - Emission testing-rocket firing or propellant disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Emission testing-rocket firing or... Standard for Beryllium Rocket Motor Firing § 61.43 Emission testing—rocket firing or propellant disposal. (a) Ambient air concentrations shall be measured during and after firing of a rocket motor or...

  12. Viscoelastic propellant effects on Space Shuttle Dynamics

    NASA Technical Reports Server (NTRS)

    Bugg, F.

    1981-01-01

    The program of solid propellant research performed in support of the space shuttle dynamics modeling effort is described. Stiffness, damping, and compressibility of the propellant and the effects of many variables on these properties are discussed. The relationship between the propellant and solid rocket booster dynamics during liftoff and boost flight conditions and the effects of booster vibration and propellant stiffness on free free solid rocket booster modes are described. Coupled modes of the shuttle system and the effect of propellant stiffness on the interfaces of the booster and the external tank are described. A finite shell model of the solid rocket booster was developed.

  13. ISRO's solid rocket motors

    NASA Astrophysics Data System (ADS)

    Nagappa, R.; Kurup, M. R.; Muthunayagam, A. E.

    1989-08-01

    Solid rocket motors have been the mainstay of ISRO's sounding rockets and the first generation satellite launch vehicles. For the new launch vehicle under development also, the solid rocket motors contribute significantly to the vehicle's total propulsive power. The rocket motors in use and under development have been developed for a variety of applications and range in size from 30 mm dia employing 450 g of solid propellant—employed for providing a spin to the apogee motors—to the giant 2.8 m dia motor employing nearly 130 tonnes of solid propellant. The initial development, undertaken in 1967 was of small calibre motor of 75 mm dia using a double base charge. The development was essentially to understand the technological elements. Extruded aluminium tubes were used as a rocket motor casing. The fore and aft closures were machined from aluminium rods. The grain was a seven-pointed star with an enlargement of the port at the aft end and was charged into the chamber using a polyester resin system. The nozzle was a metallic heat sink type with graphite throat insert. The motor was ignited with a black powder charge and fired for 2.0 s. Subsequent to this, further developmental activities were undertaken using PVC plastisol based propellants. A class of sounding rockets ranging from 125 to 560 mm calibre were realized. These rocket motors employed improved designs and had delivered lsp ranging from 2060 to 2256 Ns/kg. Case bonding could not be adopted due to the higher cure temperatures of the plastisol propellants but improvements were made in the grain charging techniques and in the design of the igniters and the nozzle. Ablative nozzles based on asbestos phenolic and silica phenolic with graphite inserts were used. For the larger calibre rocket motors, the lsp could be improved by metallic additives. In the early 1970s designs were evolved for larger and more efficient motors. A series of 4 motors for the country's first satellite launch vehicle SLV-3 were developed. The first and second stages of 1 and 0.8 m dia respectively used low carbon steel casing and PBAN propellant. The first stage used segmented construction with a total propellant weight of 8600 kg. The second stage employed about 3 tonnes of the same propellant. The third and fourth stages were of GFRP construction and employed respectively 1100 and 275 kg of CTPB type propellants. Nozzle expansion ratios upto 30 were employed and delivered vacuum lsp of 2766 Ns/kg realized. The fourth stage motor was subsequently used as the apogee motor for orbit injection of India's first geosynchronous satellite—APPLE. All these motors have been flight proven a number of times. Further design improvements have been incorporated and these motors continue to be in use. Starting in 1984 design for a large booster was undertaken. This booster employs a nominal propellant weight of 125 tonne in a 2.8 m dia casing. The motor is expected to be qualified for flight test in 1989. Side by side a high performance motor housing nearly 7 tonnes of propellant in composite casing of 2 m dia and having flex nozzle control system is also under development for upper stage application. Details of the development of the motors, their leading specifications and performance are described.

  14. Low acid producing solid propellants

    NASA Technical Reports Server (NTRS)

    Bennett, Robert R.

    1995-01-01

    The potential environmental effects of the exhaust products of conventional rocket propellants have been assessed by various groups. Areas of concern have included stratospheric ozone, acid rain, toxicity, air quality and global warming. Some of the studies which have been performed on this subject have concluded that while the impacts of rocket use are extremely small, there are propellant development options which have the potential to reduce those impacts even further. This paper discusses the various solid propellant options which have been proposed as being more environmentally benign than current systems by reducing HCI emissions. These options include acid neutralized, acid scavenged, and nonchlorine propellants. An assessment of the acid reducing potential and the viability of each of these options is made, based on current information. Such an assessment is needed in order to judge whether the potential improvements justify the expenditures of developing the new propellant systems.

  15. Propellant development for the Advanced Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Landers, L. C.; Stanley, C. B.; Ricks, D. W.

    1991-01-01

    The properties of a propellant developed for the NASA Advanced Solid Rocket Motor (ASRM) are described in terms of its composition, performance, and compliance to NASA specifications. The class 1.3 HTPB/AP/A1 propellant employs an ester plasticizer and the content of ballistic solids is set at 88 percent. Ammonia evolution is prevented by the utilization of a neutral bonding agent which allows continuous mixing. The propellant also comprises a bimodal AP blend with one ground fraction, ground AP of at least 20 microns, and ferric oxide to control the burning rate. The propellant's characteristics are discussed in terms of tradeoffs in AP particle size and the types of Al powder, bonding agent, and HTPB polymer. The size and shape of the ballistic solids affect the processability, ballistic properties, and structural properties of the propellant. The revised baseline composition is based on maximizing the robustness of in-process viscosity, structural integrity, and burning-rate tailoring range.

  16. Flight Investigation of the Performance of a Two-stage Solid-propellant Nike-deacon (DAN) Meteorological Sounding Rocket

    NASA Technical Reports Server (NTRS)

    Heitkotter, Robert H

    1956-01-01

    A flight investigation of two Nike-Deacon (DAN) two-stage solid-propellant rocket vehicles indicated satisfactory performance may be expected from the DAN meteorological sounding rocket. Peak altitudes of 356,000 and 350,000 feet, respectively, were recorded for the two flight tests when both vehicles were launched from sea level at an elevation angle of 75 degrees. Performance calculations based on flight-test results show that altitudes between 358,000 feet and 487,000 feet may be attained with payloads varying between 60 pounds and 10 pounds.

  17. Hybrid rocket propellants from lunar material

    NASA Astrophysics Data System (ADS)

    Sparks, Douglas R.

    This paper examines the use of lunar material for hybrid rocket propellants. Liquid oxygen is identified as the primary oxidizer and metals such as aluminum, magnesium, calcium, titanium and silicon are compared as possible fuels. Due to the reduced transportation costs, the use of lunar materials for both oxidizer and fuel will dramatically reduce the cost of a sustained space program. The advantage of hybrid rocket systems over liquid and solid rockets is discussed. It is pointed out that this type of hybrid rocket propellant could also be obtained from asteroidal and planetary soils, thereby facilitating the exploration and industrialization of the inner solar system.

  18. The Future of the U.S. Intercontinental Ballistic Missile Force

    DTIC Science & Technology

    2014-01-01

    42 3.7. Nevada Test Range and Surrounding Areas . . . . . . . . . . . . . . . . . . . . . 44 4.1. Solid Rocket ... Rocket Mass Ratio . . . 62 4.6. Range of an ICBM from Current Missile Bases . . . . . . . . . . . . . . . . 64 4.7. Range of an ICBM from Expanded...38 4.1. Specific Impulse of Various Rocket Propellants

  19. Cooling of in-situ propellant rocket engines for Mars mission. M.S. Thesis - Cleveland State Univ.

    NASA Technical Reports Server (NTRS)

    Armstrong, Elizabeth S.

    1991-01-01

    One propulsion option of a Mars ascent/descent vehicle is multiple high-pressure, pump-fed rocket engines using in-situ propellants, which have been derived from substances available on the Martian surface. The chosen in-situ propellant combination for this analysis is carbon monoxide as the fuel and oxygen as the oxidizer. Both could be extracted from carbon dioxide, which makes up 96 percent of the Martian atmosphere. A pump-fed rocket engine allows for higher chamber pressure than a pressure-fed engine, which in turn results in higher thrust and in higher heat flux in the combustion chamber. The heat flowing through the wall cannot be sufficiently dissipated by radiation cooling and, therefore, a regenerative coolant may be necessary to avoid melting the rocket engine. The two possible fluids for this coolant scheme, carbon monoxide and oxygen, are compared analytically. To determine their heat transfer capability, they are evaluated based upon their heat transfer and fluid flow characteristics.

  20. Fuel-Cell Power Source Based on Onboard Rocket Propellants

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani; Narayan, Sri

    2010-01-01

    The use of onboard rocket propellants (dense liquids at room temperature) in place of conventional cryogenic fuel-cell reactants (hydrogen and oxygen) eliminates the mass penalties associated with cryocooling and boil-off. The high energy content and density of the rocket propellants will also require no additional chemical processing. For a 30-day mission on the Moon that requires a continuous 100 watts of power, the reactant mass and volume would be reduced by 15 and 50 percent, respectively, even without accounting for boiloff losses. The savings increase further with increasing transit times. A high-temperature, solid oxide, electrolyte-based fuel-cell configuration, that can rapidly combine rocket propellants - both monopropellant system with hydrazine and bi-propellant systems such as monomethyl hydrazine/ unsymmetrical dimethyl hydrazine (MMH/UDMH) and nitrogen tetroxide (NTO) to produce electrical energy - overcomes the severe drawbacks of earlier attempts in 1963-1967 of using fuel reforming and aqueous media. The electrical energy available from such a fuel cell operating at 60-percent efficiency is estimated to be 1,500 Wh/kg of reactants. The proposed use of zirconia-based oxide electrolyte at 800-1,000 C will permit continuous operation, very high power densities, and substantially increased efficiency of conversion over any of the earlier attempts. The solid oxide fuel cell is also tolerant to a wide range of environmental temperatures. Such a system is built for easy refueling for exploration missions and for the ability to turn on after several years of transit. Specific examples of future missions are in-situ landers on Europa and Titan that will face extreme radiation and temperature environments, flyby missions to Saturn, and landed missions on the Moon with 14 day/night cycles.

  1. Density and mixture fraction measurements in a GO2/GH2 uni-element rocket chamber

    NASA Technical Reports Server (NTRS)

    Moser, M. D.; Pal, S.; Santoro, R. J.

    1994-01-01

    In recent years, there has been a renewed interest in gas/gas injectors for rocket combustion. Specifically, the proposed new concept of full-flow oxygen rich preburner systems calls for the injection of both oxygen and hydrogen into the main chamber as gaseous propellants. The technology base for gas/gas injection must mature before actual booster class systems can be designed and fabricated. Since the data base for gas/gas injection is limited to studies focusing on the global parameters of small reaction engines, there is a critical need for experiment programs that emphasize studying the mixing and combustion characteristics of GO2 and GH2 propellants from a uni-element injector point of view. The experimental study of the combusting GO2/GH2 propellant combination in a uni-element rocket chamber also provides a simplified environment, in terms of both geometry and chemistry, that can be used to verify and validate computational fluid dynamic (CFD) models.

  2. Interactive Schematic Integration Within the Propellant System Modeling Environment

    NASA Technical Reports Server (NTRS)

    Coote, David; Ryan, Harry; Burton, Kenneth; McKinney, Lee; Woodman, Don

    2012-01-01

    Task requirements for rocket propulsion test preparations of the test stand facilities drive the need to model the test facility propellant systems prior to constructing physical modifications. The Propellant System Modeling Environment (PSME) is an initiative designed to enable increased efficiency and expanded capabilities to a broader base of NASA engineers in the use of modeling and simulation (M&S) technologies for rocket propulsion test and launch mission requirements. PSME will enable a wider scope of users to utilize M&S of propulsion test and launch facilities for predictive and post-analysis functionality by offering a clean, easy-to-use, high-performance application environment.

  3. A Theoretical Study of Vapour Phase Nucleation of the Rocket Propellant N2O4

    NASA Astrophysics Data System (ADS)

    Pal, P.

    2003-05-01

    The residual vapour of a rocket fuel at the venting stage develops a potential aerodynamic problem which is linked with the vapour phase nucleation phenomena of the propellant. This study, based entirely on molecular treatment, addresses the problem by focusing specifically on the N2O4 propellant which is used in the ARIANE flight. The phenomenon is examined by considering the thermodynamic free energies of N2O4 clusters, leading to the evaluation of nucleation flux rates of critical nuclei at incipient nucleation. Preliminary examinations of the kinetics of flux pulses provide basic explanation from a molecular perspective.

  4. Dynamic characterization of solid rockets

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The structural dynamics of solid rockets in-general was studied. A review is given of the modes of vibration and bending that can exist for a solid propellant rocket, and a NASTRAN computer model is included. Also studied were the dynamic properties of a solid propellant, polybutadiene-acrylic acid-acrylonitrile terpolymer, which may be used in the space shuttle rocket booster. The theory of viscoelastic materials (i.e, Poisson's ratio) was employed in describing the dynamic properties of the propellant. These studies were performed for an eventual booster stage development program for the space shuttle.

  5. 46 CFR 160.036-3 - Materials, workmanship, construction and performance requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Hand-Held Rocket... performance requirements. (a) Materials. The materials used in handheld rocket-propelled parachute red flare... protected against corrosion. (b) Workmanship. Handheld rocket-propelled parachute red flare distress signals...

  6. 46 CFR 160.036-3 - Materials, workmanship, construction and performance requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Hand-Held Rocket... performance requirements. (a) Materials. The materials used in handheld rocket-propelled parachute red flare... protected against corrosion. (b) Workmanship. Handheld rocket-propelled parachute red flare distress signals...

  7. 46 CFR 160.036-3 - Materials, workmanship, construction and performance requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Hand-Held Rocket... performance requirements. (a) Materials. The materials used in handheld rocket-propelled parachute red flare... protected against corrosion. (b) Workmanship. Handheld rocket-propelled parachute red flare distress signals...

  8. 46 CFR 160.036-3 - Materials, workmanship, construction and performance requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Hand-Held Rocket... performance requirements. (a) Materials. The materials used in handheld rocket-propelled parachute red flare... protected against corrosion. (b) Workmanship. Handheld rocket-propelled parachute red flare distress signals...

  9. 46 CFR 160.036-3 - Materials, workmanship, construction and performance requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Hand-Held Rocket... performance requirements. (a) Materials. The materials used in handheld rocket-propelled parachute red flare... protected against corrosion. (b) Workmanship. Handheld rocket-propelled parachute red flare distress signals...

  10. Safety Practices Followed in ISRO Launch Complex- An Overview

    NASA Astrophysics Data System (ADS)

    Krishnamurty, V.; Srivastava, V. K.; Ramesh, M.

    2005-12-01

    The spaceport of India, Satish Dhawan Space Centre (SDSC) SHAR of Indian Space Research Organisation (ISRO), is located at Sriharikota, a spindle shaped island on the east coast of southern India.SDSC SHAR has a unique combination of facilities, such as a solid propellant production plant, a rocket motor static test facility, launch complexes for different types of rockets, telemetry, telecommand, tracking, data acquisition and processing facilities and other support services.The Solid Propellant Space Booster Plant (SPROB) located at SDSC SHAR produces composite solid propellant for rocket motors of ISRO. The main ingredients of the propellant produced here are ammonium perchlorate (oxidizer), fine aluminium powder (fuel) and hydroxyl terminated polybutadiene (binder).SDSC SHAR has facilities for testing solid rocket motors, both at ambient conditions and at simulated high altitude conditions. Other test facilities for the environmental testing of rocket motors and their subsystems include Vibration, Shock, Constant Acceleration and Thermal / Humidity.SDSC SHAR has the necessary infrastructure for launching satellites into low earth orbit, polar orbit and geo-stationary transfer orbit. The launch complexes provide complete support for vehicle assembly, fuelling with both earth storable and cryogenic propellants, checkout and launch operations. Apart from these, it has facilities for launching sounding rockets for studying the Earth's upper atmosphere and for controlled reentry and recovery of ISRO's space capsule reentry missions.Safety plays a major role at SDSC SHAR right from the mission / facility design phase to post launch operations. This paper presents briefly the infrastructure available at SDSC SHAR of ISRO for launching sounding rockets, satellite launch vehicles, controlled reentry missions and the built in safety systems. The range safety methodology followed as a part of the real time mission monitoring is presented. The built in safety systems provided onboard the launch vehicle are automatic shut off the propulsion system based on real time mission performance and a passivation system incorporated in the orbit insertion stage are highlighted.

  11. Introduction to the problem

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar

    1989-01-01

    Solid propellant rockets were used extensively in space missions ranging from large boosters to orbit-raising upper stages. The smaller motors find exclusive use in various earth-based applications. The advantage of the solids include simplicity, readiness, volumetric efficiency, and storability. Important recent progress in related fields (combustion, rheology, micro-instrumentation/diagnostics, and chaos theory) can be applied to solid rockets to derive maximum advantage and avoid waste. Main objectives of research in solid propellants include: to identify critical parameters, to establish specification rules, and to develop quantitative criteria.

  12. Study of solid rocket motor for space shuttle booster, volume 2, book 2

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A technical analysis of the solid propellant rocket engines for use with the space shuttle is presented. The subjects discussed are: (1) solid rocket motor stage recovery, (2) environmental effects, (3) man rating of the solid propellant rocket engines, (4) system safety analysis, (5) ground support equipment, and (6) transportation, assembly, and checkout.

  13. A Flight Demonstration of Plasma Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Petro, Andrew

    1999-01-01

    The Advanced Space Propulsion Laboratory at the Johnson Space Center has been engaged in the development of a magneto-plasma rocket for several years. This type of rocket could be used in the future to propel interplanetary spacecraft. One advantageous feature of this rocket concept is the ability to vary its specific impulse so that it can be operated in a mode which maximizes propellant efficiency or a mode which maximizes thrust. This presentation will describe a proposed flight experiment in which a simple version of the rocket will be tested in space. In addition to the plasma rocket, the flight experiment will also demonstrate the use of a superconducting electromagnet, extensive use of heat pipes, and possibly the transfer of cryogenic propellant in space.

  14. Metallized solid rocket propellants based on AN/AP and PSAN/AP for access to space

    NASA Astrophysics Data System (ADS)

    Levi, S.; Signoriello, D.; Gabardi, A.; Molinari, M.; Galfetti, L.; Deluca, L. T.; Cianfanelli, S.; Klyakin, G. F.

    2009-09-01

    Solid rocket propellants based on dual mixes of inorganic crystalline oxidizers (ammonium nitrate (AN) and ammonium perchlorate (AP)) with binder and a mixture of micrometric-nanometric aluminum were investigated. Ammonium nitrate is a low-cost oxidizer, producing environment friendly combustion products but with lower specific impulse compared to AP. The better performance obtained with AP and the low quantity of toxic emissions obtained by using AN have suggested an interesting compromise based on a dual mixture of the two oxidizers. To improve the thermal response of raw AN, different types of phase stabilized AN (PSAN) and AN/AP co-crystals were investigated.

  15. High-Energy Propellant Rocket Firing at the Rocket Lab

    NASA Image and Video Library

    1955-01-21

    A rocket using high-energy propellant is fired from the Rocket Laboratory at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The Rocket Lab was a collection of ten one-story cinderblock test cells located behind earthen barriers at the western edge of the campus. The rocket engines tested there were comparatively small, but the Lewis researchers were able to study different configurations, combustion performance, and injectors and nozzle design. The rockets were generally mounted horizontally and fired, as seen in this photograph of Test Cell No. 22. A group of fuels researchers at Lewis refocused their efforts after World War II in order to explore high energy propellants, combustion, and cooling. Research in these three areas began in 1945 and continued through the 1960s. The group of rocket researches was not elevated to a division branch until 1952. The early NACA Lewis work led to the development of liquid hydrogen as a viable propellant in the late 1950s. Following the 1949 reorganization of the research divisions, the rocket group began working with high-energy propellants such as diborane, pentaborane, and hydrogen. The lightweight fuels offered high levels of energy but were difficult to handle and required large tanks. In late 1954, Lewis researchers studied the combustion characteristics of gaseous hydrogen in a turbojet combustor. Despite poor mixing of the fuel and air, it was found that the hydrogen yielded more than a 90-percent efficiency. Liquid hydrogen became the focus of Lewis researchers for the next 15 years.

  16. 46 CFR 160.036-5 - Marking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Hand-Held Rocket-Propelled Parachute Red Flare Distress Signals § 160.036-5 Marking. (a) General. Each hand-held rocket-propelled parachute red flare distress signal shall be legibly marked or labeled as follows: (Company brand or style designation) Hand-Held Rocket...

  17. 46 CFR 160.036-5 - Marking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Hand-Held Rocket-Propelled Parachute Red Flare Distress Signals § 160.036-5 Marking. (a) General. Each hand-held rocket-propelled parachute red flare distress signal shall be legibly marked or labeled as follows: (Company brand or style designation) Hand-Held Rocket...

  18. 46 CFR 160.036-5 - Marking.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Hand-Held Rocket-Propelled Parachute Red Flare Distress Signals § 160.036-5 Marking. (a) General. Each hand-held rocket-propelled parachute red flare distress signal shall be legibly marked or labeled as follows: (Company brand or style designation) Hand-Held Rocket...

  19. 46 CFR 160.036-5 - Marking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Hand-Held Rocket-Propelled Parachute Red Flare Distress Signals § 160.036-5 Marking. (a) General. Each hand-held rocket-propelled parachute red flare distress signal shall be legibly marked or labeled as follows: (Company brand or style designation) Hand-Held Rocket...

  20. 46 CFR 160.036-5 - Marking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Hand-Held Rocket-Propelled Parachute Red Flare Distress Signals § 160.036-5 Marking. (a) General. Each hand-held rocket-propelled parachute red flare distress signal shall be legibly marked or labeled as follows: (Company brand or style designation) Hand-Held Rocket...

  1. Liquid rocket performance computer model with distributed energy release

    NASA Technical Reports Server (NTRS)

    Combs, L. P.

    1972-01-01

    Development of a computer program for analyzing the effects of bipropellant spray combustion processes on liquid rocket performance is described and discussed. The distributed energy release (DER) computer program was designed to become part of the JANNAF liquid rocket performance evaluation methodology and to account for performance losses associated with the propellant combustion processes, e.g., incomplete spray gasification, imperfect mixing between sprays and their reacting vapors, residual mixture ratio striations in the flow, and two-phase flow effects. The DER computer program begins by initializing the combustion field at the injection end of a conventional liquid rocket engine, based on injector and chamber design detail, and on propellant and combustion gas properties. It analyzes bipropellant combustion, proceeding stepwise down the chamber from those initial conditions through the nozzle throat.

  2. Small rocket research and technology

    NASA Technical Reports Server (NTRS)

    Schneider, Steven; Biaglow, James

    1993-01-01

    Small chemical rockets are used on nearly all space missions. The small rocket program provides propulsion technology for civil and government space systems. Small rocket concepts are developed for systems which encompass reaction control for launch and orbit transfer systems, as well as on-board propulsion for large space systems and earth orbit and planetary spacecraft. Major roles for on-board propulsion include apogee kick, delta-V, de-orbit, drag makeup, final insertions, north-south stationkeeping, orbit change/trim, perigee kick, and reboost. The program encompasses efforts on earth-storable, space storable, and cryogenic propellants. The earth-storable propellants include nitrogen tetroxide (NTO) as an oxidizer with monomethylhydrazine (MMH) or anhydrous hydrazine (AH) as fuels. The space storable propellants include liquid oxygen (LOX) as an oxidizer with hydrazine or hydrocarbons such as liquid methane, ethane, and ethanol as fuels. Cryogenic propellants are LOX or gaseous oxygen (GOX) as oxidizers and liquid or gaseous hydrogen as fuels. Improved performance and lifetime for small chemical rockets are sought through the development of new predictive tools to understand the combustion and flow physics, the introduction of high temperature materials to eliminate fuel film cooling and its associated combustion inefficiency, and improved component designs to optimize performance. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Results indicate that modeling of the injector and combustion process in small rockets needs improvement. High temperature materials require the development of fabrication processes, a durability data base in both laboratory and rocket environments, and basic engineering property data such as strength, creep, fatigue, and work hardening properties at both room and elevated temperature. Promising materials under development include iridium-coated rhenium and a ceramic composite of mixed hafnium carbide and tantalum carbide reinforced with graphite fibers.

  3. Main lines of scientific and technical research at the Soviet Jet Propulsion Research Institute (RNII), 1933 - 1942

    NASA Technical Reports Server (NTRS)

    Shchetinkov, Y. S.

    1977-01-01

    The rapid development of rocketry in the U.S.S.R. during the post-war years was due largely to pre-war activity; in particular, to investigations conducted in the Jet Propulsion Research Institute (RNII). The history of RNII commenced in 1933, resulting from the merger of two rocket research organizations. Previous research was continued in areas of solid-propellant rockets, jet-assisted take-off of aircraft, liquid propellant engines (generally with nitric acid as the oxidizer), liquid-propellant rockets (generally with oxgen as the oxidizer), ram jet engines, rockets with and without wings, and rocket planes. RNII research is described and summarized for the years 1933-1942.

  4. Experimental Study of Ballistic-Missile Base Heating with Operating Rocket

    NASA Technical Reports Server (NTRS)

    Nettle, J. Cary

    1958-01-01

    A rocket of the 1000-pound-thrust class using liquid oxygen and JP-4 fuel as propellant was installed in the Lewis 8- by 6-foot tunnel to permit a controlled study of some of the factors affecting the heating of a rocket-missile base. Temperatures measured in the base region are presented from findings of three motor extension lengths relative to the base. Data are also presented for two combustion efficiency levels in the rocket motor. Temperature as high as 1200 F was measured in the base region because of the ignition of burnable rocket gases. combustibles that are dumped into the base by accessories seriously aggravate the base-burning temperature rise.

  5. Advances in aluminum powder usage as an energetic material and applications for rocket propellant

    NASA Astrophysics Data System (ADS)

    Sadeghipour, S.; Ghaderian, J.; Wahid, M. A.

    2012-06-01

    Energetic materials have been widely used for military purposes. Continuous research programs are performing in the world for the development of the new materials with higher and improved performance comparing with the available ones in order to fulfill the needs of the military in future. Different sizes of aluminum powders are employed to produce composite rocket propellants with the bases of Ammonium Perchlorate (AP) and Hydroxyl-Terminated-Polybutadiene (HTPB) as oxidizer and binder respectively. This paper concentrates on recent advances in using aluminum as an energetic material and the properties and characteristics pertaining to its combustion. Nano-sized aluminum as one of the most attractable particles in propellants is discussed particularly.

  6. Low thrust chemical rocket technology

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    1992-01-01

    An on-going technology program to improve the performance of low thrust chemical rockets for spacecraft on-board propulsion applications is reviewed. Improved performance and lifetime is sought by the development of new predictive tools to understand the combustion and flow physics, introduction of high temperature materials and improved component designs to optimize performance, and use of higher performance propellants. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Predictions are based on both the RPLUS Navier-Stokes code with finite rate kinetics and the JANNAF methodology. Data were obtained with laser-based diagnostics along with global performance measurements. Results indicate that the modeling of the injector and the combustion process needs improvement in these codes and flow visualization with a technique such as 2-D laser induced fluorescence (LIF) would aid in resolving issues of flow symmetry and shear layer combustion processes. High temperature material fabrication processes are under development and small rockets are being designed, fabricated, and tested using these new materials. Rhenium coated with iridium for oxidation protection was produced by the Chemical Vapor Deposition (CVD) process and enabled an 800 K increase in rocket operating temperature. Performance gains with this material in rockets using Earth storable propellants (nitrogen tetroxide and monomethylhydrazine or hydrazine) were obtained through component redesign to eliminate fuel film cooling and its associated combustion inefficiency while managing head end thermal soakback. Material interdiffusion and oxidation characteristics indicated that the requisite lifetimes of tens of hours were available for thruster applications. Rockets were designed, fabricated, and tested with thrusts of 22, 62, 440 and 550 N. Performance improvements of 10 to 20 seconds specific impulse were demonstrated. Higher performance propellants were evaluated: Space storable propellants, including liquid oxygen (LOX) as the oxidizer with nitrogen hydrides or hydrocarbon as fuels. Specifically, a LOX/hydrazine engine was designed, fabricated, and shown to have a 95 pct theoretical c-star which translates into a projected vacuum specific impulse of 345 seconds at an area ratio of 204:1. Further performance improvment can be obtained by the use of LOX/hydrogen propellants, especially for manned spacecraft applications, and specific designs must be developed and advanced through flight qualification.

  7. Modeling of vortex generated sound in solid propellant rocket motors

    NASA Technical Reports Server (NTRS)

    Flandro, G. A.

    1980-01-01

    There is considerable evidence based on both full scale firings and cold flow simulations that hydrodynamically unstable shear flows in solid propellant rocket motors can lead to acoustic pressure fluctuations of significant amplitude. Although a comprehensive theoretical understanding of this problem does not yet exist, procedures were explored for generating useful analytical models describing the vortex shedding phenomenon and the mechanisms of coupling to the acoustic field in a rocket combustion chamber. Since combustion stability prediction procedures cannot be successful without incorporation of all acoustic gains and losses, it is clear that a vortex driving model comparable in quality to the analytical models currently employed to represent linear combustion instability must be formulated.

  8. Study of solid rocket motors for a space shuttle booster. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An analysis of the solid propellant rocket engines for use with the space shuttle booster was conducted. A definition of the specific solid propellant rocket engine stage designs, development program requirements, production requirements, launch requirements, and cost data for each program phase were developed.

  9. Coated oxidizers for combustion stability in solid-propellant rockets

    NASA Technical Reports Server (NTRS)

    Helmy, A. M.; Ramohalli, K. N. R.

    1985-01-01

    Experiments are conducted in a laboratory-scale (6.25-cm diameter) end-burning rocket motor with state-of-the-art, ammonium perchlorate hydroxy-terminated polybutadiene (HTPB), nonmetallized propellants. The concept of tailoring the stability characteristics with a small amount (less than 1 percent by weight) of COATING on the oxidizer is explored. The thermal degradation characteristics of the coat chemical are deduced through theoretical arguments on thermal diffusivity of the composite material (propellant). Several candidate coats are selected and propellants are cast. These propellants (with coated oxidizers) are fired in a laboratory-scale end-burning rocket motor, and real-time pressure histories are recorded. The control propellant (with no coating) is also tested for comparison. The uniformity of the coating, confirmed by SEM pictures and BET adsorption measurements, is thought to be an advance in technology. The frequency of bulk mode instability (BMI), the pressure fluctuation amplitudes, and stability boundaries are correlated with parameters related to the characteristic length (L-asterisk) of the rocket motor. The coated oxidizer propellants, in general, display greater combustion stability than the control (state-of-the-art). The correlations of the various parameters are thought to be new to a field filled with much uncertainty.

  10. Performance and technical feasibility comparison of reusable launch systems: A synthesis of the ESA winged launcher studies

    NASA Astrophysics Data System (ADS)

    Berry, W.; Grallert, H.

    1996-02-01

    The paper presents a synthesis of the performance and technical feasibility assessment of 7 reusable launcher types, comprising 13 different vehicles, studied by European Industry for ESA in the ESA Winged Launcher Study in the period January 1988 to May 1994. The vehicles comprised single-stage-to-orbit (SSTO) and two-stage-to-orbit (TSTO) vehicles, propelled by either air-breathing/rocket propulsion or entirely by rocket propulsion. The results showed that an SSTO vehicle of the HOTOL-type, propelled by subsonic combustion air-breathing/rocket engines could barely deliver the specified payload mass and was aerodynamically unstable; that a TSTO vehicle of the Saenger type, employing subsonic combustion airbreathing propulsion in its first stage and rocket propulsion in its second stage, could readily deliver the specified payload mass and was found to be technically feasible and versatile; that an SSTO vehicle of the NASP type, propelled by supersonic combustion airbreathing/rocket propulsion was able to deliver a reduced payload mass, was very complex and required very advanced technologies; that an air-launched rocket propelled vehicle of the Interim HOTOL type, although technically feasible, could deliver only a reduced payload mass, being constrained by the lifting capability of the carrier airplane; that three different, entirely rocket-propelled vehicles could deliver the specified payload mass, were technically feasible but required relatively advanced technologies.

  11. Laser rocket system analysis

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The laser rocket systems investigated in this study were for orbital transportation using space-based, ground-based and airborne laser transmitters. The propulsion unit of these systems utilizes a continuous wave (CW) laser beam focused into a thrust chamber which initiates a plasma in the hydrogen propellant, thus heating the propellant and providing thrust through a suitably designed nozzle and expansion skirt. The specific impulse is limited only by the ability to adequately cool the thruster and the amount of laser energy entering the engine. The results of the study showed that, with advanced technology, laser rocket systems with either a space- or ground-based laser transmitter could reduce the national budget allocated to space transportation by 10 to 345 billion dollars over a 10-year life cycle when compared to advanced chemical propulsion systems (LO2-LH2) of equal capability. The variation in savings depends upon the projected mission model.

  12. Combustion diagnosis for analysis of solid propellant rocket abort hazards: Role of spectroscopy

    NASA Astrophysics Data System (ADS)

    Gill, W.; Cruz-Cabrera, A. A.; Donaldson, A. B.; Lim, J.; Sivathanu, Y.; Bystrom, E.; Haug, A.; Sharp, L.; Surmick, D. M.

    2014-11-01

    Solid rocket propellant plume temperatures have been measured using spectroscopic methods as part of an ongoing effort to specify the thermal-chemical-physical environment in and around a burning fragment of an exploded solid rocket at atmospheric pressures. Such specification is needed for launch safety studies where hazardous payloads become involved with large fragments of burning propellant. The propellant burns in an off-design condition producing a hot gas flame loaded with burning metal droplets. Each component of the flame (soot, droplets and gas) has a characteristic temperature, and it is only through the use of spectroscopy that their temperature can be independently identified.

  13. [Progress in the protective medicine against [correction of aganist] rocket propellents].

    PubMed

    Hu, W X; Tan, C Y; Tan, S J; Jiang, J

    1999-12-01

    To review the progress in the major assignment, the organization and implementation of protection against liquid rocket propellent. The safety detection methods of the rocket [correction of rocked] propellent in the launching field were also discussed. Three steps of the sanitation and protection of the liquid propellent, the toxicity and the toxicology of hydrazine on central nervous system, blood circulatory system, assimilation system, respiratory system, immune system, liver, kidney, eye, skin and its hereditary toxicology were described. In addition, the clinical types of poisoning, the current principle and the common ways of the prevention and treatment of hydrazine and nitrogen oxides poisoning were summarized.

  14. Feasibility of rocket propellant production on Mars

    NASA Technical Reports Server (NTRS)

    Ash, R. L.; Dowler, W. L.; Varsi, G.

    1978-01-01

    In situ production of rocket propellant to reduce landed mass requirements for Mars return missions has been investigated. The analysis has shown that a system which utilizes atmospheric carbon dioxide and soil moisture to produce liquid methane-oxygen propellant requires a landed mass which is less than half the mass of the ascent vehicle it produces.

  15. Boundary cooled rocket engines for space storable propellants

    NASA Technical Reports Server (NTRS)

    Kesselring, R. C.; Mcfarland, B. L.; Knight, R. M.; Gurnitz, R. N.

    1972-01-01

    An evaluation of an existing analytical heat transfer model was made to develop the technology of boundary film/conduction cooled rocket thrust chambers to the space storable propellant combination oxygen difluoride/diborane. Critical design parameters were identified and their importance determined. Test reduction methods were developed to enable data obtained from short duration hot firings with a thin walled (calorimeter) chamber to be used quantitatively evaluate the heat absorbing capability of the vapor film. The modification of the existing like-doublet injector was based on the results obtained from the calorimeter firings.

  16. Design and Testing of a Liquid Nitrous Oxide and Ethanol Fueled Rocket Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youngblood, Stewart

    A small-scale, bi-propellant, liquid fueled rocket engine and supporting test infrastructure were designed and constructed at the Energetic Materials Research and Testing Center (EMRTC). This facility was used to evaluate liquid nitrous oxide and ethanol as potential rocket propellants. Thrust and pressure measurements along with high-speed digital imaging of the rocket exhaust plume were made. This experimental data was used for validation of a computational model developed of the rocket engine tested. The developed computational model was utilized to analyze rocket engine performance across a range of operating pressures, fuel-oxidizer mixture ratios, and outlet nozzle configurations. A comparative study ofmore » the modeling of a liquid rocket engine was performed using NASA CEA and Cantera, an opensource equilibrium code capable of being interfaced with MATLAB. One goal of this modeling was to demonstrate the ability of Cantera to accurately model the basic chemical equilibrium, thermodynamics, and transport properties for varied fuel and oxidizer operating conditions. Once validated for basic equilibrium, an expanded MATLAB code, referencing Cantera, was advanced beyond CEAs capabilities to predict rocket engine performance as a function of supplied propellant flow rate and rocket engine nozzle dimensions. Cantera was found to comparable favorably to CEA for making equilibrium calculations, supporting its use as an alternative to CEA. The developed rocket engine performs as predicted, demonstrating the developedMATLAB rocket engine model was successful in predicting real world rocket engine performance. Finally, nitrous oxide and ethanol were shown to perform well as rocket propellants, with specific impulses experimentally recorded in the range of 250 to 260 seconds.« less

  17. Ricardo Dyrgalla (1910-1970), pioneer of rocket development in Argentina

    NASA Astrophysics Data System (ADS)

    de León, Pablo

    2009-12-01

    One of the most important developers of liquid propellant rocket engines in Argentina was Polish-born Ricardo Dyrgalla. Dyrgalla immigrated to Argentina from the United Kingdom in 1946, where he had been studying German weapons development at the end of the Second World War. A trained pilot and aeronautical engineer, he understood the intricacies of rocket propulsion and was eager to find practical applications to his recently gained knowledge. Dyrgalla arrived in Argentina during Juan Perón's first presidency, a time when technicians from all over Europe were being recruited to work in various projects for the recently created Argentine Air Force. Shortly after immigrating, Dyrgalla proposed to develop an advanced air-launched weapon, the Tábano, based on a rocket engine of his design, the AN-1. After a successful development program, the Tábano was tested between 1949 and 1951; however, the project was canceled by the government shortly after. Today, the AN-1 rocket engine is recognized as the first liquid propellant rocket to be developed in South America. Besides the AN-1, Dyrgalla also developed several other rockets systems in Argentina, including the PROSON, a solid-propellant rocket launcher developed by the Argentine Institute of Science and Technology for the Armed Forces (CITEFA). In the late 1960s, Dyrgalla and his family relocated to Brazil due mostly to the lack of continuation of rocket development in Argentina. There, he worked for the Institute of Aerospace Technology (ITA) until his untimely death in 1970. Ricardo Dyrgalla deserves to be recognized among the world's rocket pioneers and his contribution to the science and engineering of rocketry deserves a special place in the history of South America's rocketry and space flight advocacy programs.

  18. Space shuttle SRM plume expansion sensitivity analysis. [flow characteristics of exhaust gases from solid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Smith, S. D.; Tevepaugh, J. A.; Penny, M. M.

    1975-01-01

    The exhaust plumes of the space shuttle solid rocket motors can have a significant effect on the base pressure and base drag of the shuttle vehicle. A parametric analysis was conducted to assess the sensitivity of the initial plume expansion angle of analytical solid rocket motor flow fields to various analytical input parameters and operating conditions. The results of the analysis are presented and conclusions reached regarding the sensitivity of the initial plume expansion angle to each parameter investigated. Operating conditions parametrically varied were chamber pressure, nozzle inlet angle, nozzle throat radius of curvature ratio and propellant particle loading. Empirical particle parameters investigated were mean size, local drag coefficient and local heat transfer coefficient. Sensitivity of the initial plume expansion angle to gas thermochemistry model and local drag coefficient model assumptions were determined.

  19. Concept for a high performance MHD airbreathing-IEC fusion rocket

    NASA Astrophysics Data System (ADS)

    Froning, H. D.; Miley, G. H.; Nadler, J.; Shaban, Y.; Momota, H.; Burton, E.

    2001-02-01

    Previous studies have shown that Single-State-to-Orbit (SSTO) vehicle propellant can be reduced by Magnets-Hydro-Dynamic (MHD) processes that minimize airbreathing propulsion losses and propellant consumption during atmospheric flight, and additional reduction in SSTO propellant is enabled by Inertial Electrostatic Confinement (IEC) fusion, whose more energetic reactions reduce rocket propellant needs. MHD airbreathing propulsion during an SSTO vehicle's initial atmospheric flight phase and IEC fusion propulsion during its final exo-atmospheric flight phase is therefore being explored. Accomplished work is not yet sufficient for claiming such a vehicle's feasibility. But takeoff and propellant mass for an MHD airbreathing and IEC fusion vehicle could be as much as 25 and 40 percent less than one with ordinary airbreathing and IEC fusion; and as much as 50 and 70 percent less than SSTO takeoff and propellant mass with MHD airbreathing and chemical rocket propulsion. .

  20. In-situ propellant rocket engines for Mars missions ascent vehicle

    NASA Technical Reports Server (NTRS)

    Roncace, Elizabeth A.

    1991-01-01

    When contemplating the human exploration of Mars, many scenarios using various propulsion systems have been considered. One propulsion option among them is a vehicle stage with multiple, pump fed rocket engines capable of operating on propellants available on Mars. This reduces the earth launch mass requirements, resulting in economic and payload benefits. No plentiful sources of hydrogen on Mars have been identified on the surface of Mars, so most commonly used high performance liquid fuels, such as hydrogen and hydrocarbons, can be eliminated as possible in situ propellants. But 95 pct of the Martian atmosphere consists of carbon dioxide, which can be converted into carbon monoxide and oxygen. The carbon monoxide oxygen propellant combination is a candidate for a Martian in situ propellant rocket engine. The feasibility is analyzed of a pump fed engine cycle using the propellant combination of carbon monoxide and oxygen.

  1. In-situ propellant rocket engines for Mars mission ascent vehicle

    NASA Technical Reports Server (NTRS)

    Roncace, Elizabeth A.

    1991-01-01

    When comtemplating the human exploration of Mars, many scenarios using various propulsion systems have been considered. One propulsion option among them is a vehicle stage with multiple, pump fed rocket engines capable of operating on propellants available on Mars. This reduces the Earth launch mass requirements, resulting in economic and payload benefits. No plentiful sources of hydrogen on Mars have been identified on the surface of Mars, so most commonly used high performance liquid fuels, such as hydrogen and hydrocarbons, can be eliminated as possible in-situ propellants. But 95 pct. of the Martian atmosphere consists of carbon dioxide, which can be converted into carbon monoxide and oxygen. The carbon monoxide oxygen propellant conbination is a candidate for a Martian in-situ propellant rocket engine. The feasibility is analyzed of a pump fed engine cycle using the propellant combination of carbon monoxide and oxygen.

  2. Ozone depletion caused by NO and H2O emissions from hydrazine-fueled rockets

    NASA Astrophysics Data System (ADS)

    Ross, M. N.; Danilin, M. Y.; Weisenstein, D. K.; Ko, M. K. W.

    2004-11-01

    Rockets using unsymmetrical dimethyl hydrazine (N(CH3)2NH2) and dinitrogen tetroxide (N2O4) propellants account for about one third of all stratospheric rocket engine emissions, comparable to the solid-fueled rocket emissions. We use plume and global atmosphere models to provide the first estimate of the local and global ozone depletion caused by NO and H2O emissions from the Proton rocket, the largest hydrazine-fueled launcher in use. NO and H2O emission indices are assumed to be 20 and 350 g/kg (propellant), respectively. Predicted maximum ozone loss in the plume of the Proton rocket is 21% at 44 km altitude. Plume ozone loss at 20 km equals 8% just after launch and steadily declines to 2% by model sunset. Predicted steady state global ozone loss from ten Proton launches annually is 1.2 × 10-4%, with nearly all of the loss due to the NO component of the emission. Normalized by stratospheric propellant consumption, the global ozone depletion efficiency of the Proton is approximately 66-90 times less than that of solid-fueled rockets. In situ Proton plume measurements are required to validate assumed emission indices and to assess the role of rocket emissions not considered in these calculations. Such future studies would help to establish a formalism to evaluate the relative ozone depletion caused by different rocket engines using different propellants.

  3. Propellant Vaporization as a Criterion for Rocket-Engine Design; Experimental Performance, Vaporization and Heat-Transfer Rates with Various Propellant Combinations

    NASA Technical Reports Server (NTRS)

    Clark, Bruce J.; Hersch, Martin; Priem, Richard J.

    1959-01-01

    Experimental combustion efficiencies of eleven propellant combinations were determined as a function of chamber length. Efficiencies were measured in terms of characteristic exhaust velocities at three chamber lengths and in terms of gas velocities. The data were obtained in a nominal 200-pound-thrust rocket engine. Injector and engine configurations were kept essentially the same to allow comparison of the performance. The data, except for those on hydrazine and ammonia-fluorine, agreed with predicted results based on the assumption that vaporization of the propellants determines the rate of combustion. Decomposition in the liquid phase may be.responsible for the anomalous behavior of hydrazine. Over-all heat-transfer rates were also measured for each combination. These rates were close to the values predicted by standard heat-transfer calculations except for the combinations using ammonia.

  4. Erosive burning research. [for solid-propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Strand, L.; Yang, L. C.; Nguyen, M. H.; Cohen, N. S.

    1986-01-01

    A status report is given on the results for the completed tests in a series of motor firings being carried out to measure the effects of the parameters that are considered to most strongly influence the scaling to larger rocket motor sizes of the transition to/or threshold conditions for erosive burning rate augmentation. Propellant burning rates at locations along the axis of the test motors are measured with a newly developed plasma capacitance gauge technique. The measured results are compared with erosive-burning predictions from a supporting ballistics analysis. The completed motor firings have successfully demonstrated response to the designed test variables. The trends with varying propellant burning rate, chamber pressure, and mass flow rate are consistent with existing results, but no pronounced effect of surface roughness has been observed. Rather, the influence of propellant oxidizer particle size on erosive burning is through its effect on the base, no-corssflow burning rate.

  5. Low-Cost Propellant Launch From a Tethered Balloon

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian

    2006-01-01

    A document presents a concept for relatively inexpensive delivery of propellant to a large fuel depot in low orbit around the Earth, for use in rockets destined for higher orbits, the Moon, and for remote planets. The propellant is expected to be at least 85 percent of the mass needed in low Earth orbit to support the NASA Exploration Vision. The concept calls for the use of many small ( 10 ton) spin-stabilized, multistage, solid-fuel rockets to each deliver 250 kg of propellant. Each rocket would be winched up to a balloon tethered above most of the atmospheric mass (optimal altitude 26 2 km). There, the rocket would be aimed slightly above the horizon, spun, dropped, and fired at a time chosen so that the rocket would arrive in orbit near the depot. Small thrusters on the payload (powered, for example, by boil-off gases from cryogenic propellants that make up the payload) would precess the spinning rocket, using data from a low-cost inertial sensor to correct for small aerodynamic and solid rocket nozzle misalignment torques on the spinning rocket; would manage the angle of attack and the final orbit insertion burn; and would be fired on command from the depot in response to observations of the trajectory of the payload so as to make small corrections to bring the payload into a rendezvous orbit and despin it for capture by the depot. The system is low-cost because the small rockets can be mass-produced using the same techniques as those to produce automobiles and low-cost munitions, and one or more can be launched from a U.S. territory on the equator (Baker or Jarvis Islands in the mid-Pacific) to the fuel depot on each orbit (every 90 minutes, e.g., any multiple of 6,000 per year).

  6. Rocket Scientist for a Day: Investigating Alternatives for Chemical Propulsion

    ERIC Educational Resources Information Center

    Angelin, Marcus; Rahm, Martin; Gabrielsson, Erik; Gumaelius, Lena

    2012-01-01

    This laboratory experiment introduces rocket science from a chemistry perspective. The focus is set on chemical propulsion, including its environmental impact and future development. By combining lecture-based teaching with practical, theoretical, and computational exercises, the students get to evaluate different propellant alternatives. To…

  7. Solid propellant processing factor in rocket motor design

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The ways are described by which propellant processing is affected by choices made in designing rocket engines. Tradeoff studies, design proof or scaleup studies, and special design features are presented that are required to obtain high product quality, and optimum processing costs. Processing is considered to include the operational steps involved with the lining and preparation of the motor case for the grain; the procurement of propellant raw materials; and propellant mixing, casting or extrusion, curing, machining, and finishing. The design criteria, recommended practices, and propellant formulations are included.

  8. Liquid Rocket Booster (LRB) for the Space Transportion System (STS) systems study. Appendix D: Trade study summary for the liquid rocket booster

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Trade studies plans for a number of elements in the Liquid Rocket Booster (LRB) component of the Space Transportation System (STS) are given in viewgraph form. Some of the elements covered include: avionics/flight control; avionics architecture; thrust vector control studies; engine control electronics; liquid rocket propellants; propellant pressurization systems; recoverable spacecraft; cryogenic tanks; and spacecraft construction materials.

  9. 38th JANNAF Combustion Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Eggleston, Debra S. (Editor); Gannaway, Mary T. (Editor)

    2002-01-01

    This volume, the first of two volumes, is a collection of 55 unclassified/unlimited-distribution papers which were presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 38th Combustion Subcommittee (CS), 26 th Airbreathing Propulsion Subcommittee (APS), 20th Propulsion Systems Hazards Subcommittee (PSHS), and 21 Modeling and Simulation Subcommittee. The meeting was held 8-12 April 2002 at the Bayside Inn at The Sandestin Golf & Beach Resort and Eglin Air Force Base, Destin, Florida. Topics cover five major technology areas including: 1) Combustion - Propellant Combustion, Ingredient Kinetics, Metal Combustion, Decomposition Processes and Material Characterization, Rocket Motor Combustion, and Liquid & Hybrid Combustion; 2) Liquid Rocket Engines - Low Cost Hydrocarbon Liquid Rocket Engines, Liquid Propulsion Turbines, Liquid Propulsion Pumps, and Staged Combustion Injector Technology; 3) Modeling & Simulation - Development of Multi- Disciplinary RBCC Modeling, Gun Modeling, and Computational Modeling for Liquid Propellant Combustion; 4) Guns Gun Propelling Charge Design, and ETC Gun Propulsion; and 5) Airbreathing - Scramjet an Ramjet- S&T Program Overviews.

  10. Prediction of explosive yield and other characteristics of liquid rocket propellant explosions

    NASA Technical Reports Server (NTRS)

    Farber, E. A.; Smith, J. H.; Watts, E. H.

    1973-01-01

    Work which has been done at the University of Florida in arriving at credible explosive yield values for liquid rocket propellants is presented. The results are based upon logical methods which have been well worked out theoretically and verified through experimental procedures. Three independent methods to predict explosive yield values for liquid rocket propellants are described. All three give the same end result even though they utilize different parameters and procedures. They are: (1) mathematical model; (2) seven chart approach; and (3) critical mass method. A brief description of the methods, how they were derived, how they were applied, and the results which they produced are given. The experimental work used to support and verify the above methods both in the laboratory and in the field with actually explosive mixtures are presented. The methods developed are used and their value demonstrated in analyzing real problems, among them the destruct system of the Saturn 5, and the early configurations of the space shuttle.

  11. Observation of rocket pollution with overhead sensors

    NASA Astrophysics Data System (ADS)

    Fisher, Annette

    2011-12-01

    The objective of this thesis is to study the dispersal of rocket pollution through remote sensing techniques. Substantial research with remote sensors has been dedicated to observation of volcanic plumes, particulate dispersion, and aircraft contrails with less emphasis on observing rocket launches and the effects on the surrounding environment. This research focuses on observation of rocket exhaust constituents, particularly carbon soot, alumina, and water vapor. The sensors utilized in this thesis have unique capabilities that provide measurements that are likely capable of detecting the rocket exhaust constituents. Methodology and analysis included choosing an appropriate launch vehicle with obtainable launch data and various booster combinations of liquid propellant only or a combination of liquid and solid propellant, prioritizing the data based on launch time versus sensor passing, processing the data, and applying known constituent properties to the data sets where key areas of work in this endeavor. Results of this work demonstrate a unique capability in monitoring man-made pollution and the extent the pollution can spread to surrounding areas.

  12. Multiple-wavelength transmission measurements in rocket motor plumes

    NASA Astrophysics Data System (ADS)

    Kim, Hong-On

    1991-09-01

    Multiple-wavelength light transmission measurements were used to measure the mean particle size (d(sub 32)), index of refraction (m), and standard deviation of the small particles in the edge of the plume of a small solid propellant rocket motor. The results have shown that the multiple-wavelength light transmission measurement technique can be used to obtain these variables. The technique was shown to be more sensitive to changes in d(sub 32) and standard deviation (sigma) than to m. A GAP/AP/4.7 percent aluminum propellant burned at 25 atm produced particles with d32 = 0.150 +/- 0.006 microns, standard deviation = 1.50 +/- 0.04 and m = 1.63 +/- 0.13. The good correlation of the data indicated that only submicron particles were present in the edge of the plume. In today's budget conscious industry, the solid propellant rocket motor is an ideal propulsion system due to its low cost and simplicity. The major obstacle for solid rocket motors, however, is their limited specific impulse compared to airbreathing motors. One way to help overcome this limitation is to utilize metal fuel additives. Solid propellant rocket motors can achieve high specific impulse with metal fuel additives such as aluminum. Aluminum propellants also increase propellant densities and suppress transverse modes of combustion oscillations by damping the oscillations with the aluminum agglomerates in the combustion chamber.

  13. Environmentally compatible solid rocket propellants

    NASA Technical Reports Server (NTRS)

    Jacox, James L.; Bradford, Daniel J.

    1995-01-01

    Hercules' clean propellant development research is exploring three major types of clean propellant: (1) chloride-free formulations (no chlorine containing ingredients), being developed on the Clean Propellant Development and Demonstration (CPDD) contract sponsored by Phillips Laboratory, Edwards Air Force Base, CA; (2) low HCl scavenged formulations (HCl-scavenger added to propellant oxidized with ammonium perchlorate (AP)); and (3) low HCl formulations oxidized with a combination of AN and AP (with or without an HCl scavenger) to provide a significant reduction (relative to current solid rocket boosters) in exhaust HCl. These propellants provide performance approaching that of current systems, with less than 2 percent HCl in the exhaust, a significant reduction (greater than or equal to 70 percent) in exhaust HCl levels. Excellent processing, safety, and mechanical properties were achieved using only readily available, low cost ingredients. Two formulations, a sodium nitrate (NaNO3) scavenged HTPB and a chloride-free hydroxy terminated polyether (HTPE) propellant, were characterized for ballistic, mechanical, and rheological properties. In addition, the hazards properties were demonstrated to provide two families of class 1.3, 'zero-card' propellants. Further characterization is planned which includes demonstration of ballistic tailorability in subscale (one to 70 pound) motors over the range of burn rates required for retrofit into current Hercules space booster designs (Titan 4 SRMU and Delta 2 GEM).

  14. Study on Alternative Cargo Launch Options from the Lunar Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheryl A. Blomberg; Zamir A. Zulkefli; Spencer W. Rich

    In the future, there will be a need for constant cargo launches from Earth to Mars in order to build, and then sustain, a Martian base. Currently, chemical rockets are used for space launches. These are expensive and heavy due to the amount of necessary propellant. Nuclear thermal rockets (NTRs) are the next step in rocket design. Another alternative is to create a launcher on the lunar surface that uses magnetic levitation to launch cargo to Mars in order to minimize the amount of necessary propellant per mission. This paper investigates using nuclear power for six different cargo launching alternatives,more » as well as the orbital mechanics involved in launching cargo to a Martian base from the moon. Each alternative is compared to the other alternative launchers, as well as compared to using an NTR instead. This comparison is done on the basis of mass that must be shipped from Earth, the amount of necessary propellant, and the number of equivalent NTR launches. Of the options, a lunar coil launcher had a ship mass that is 12.7% less than the next best option and 17 NTR equivalent launches, making it the best of the presented six options.« less

  15. Testing of Wrought Iridium/Chemical Vapor Deposition Rhenium Rocket

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.; Schneider, Steven J.

    1996-01-01

    A 22-N class, iridium/rhenium (Ir/Re) rocket chamber, composed of a thick (418 miocrometer) wrought iridium (Ir) liner and a rhenium substrate deposited via chemical vapor deposition, was tested over an extended period on gaseous oxygen/gaseous hydrogen (GO2/GH2) propellants. The test conditions were designed to produce species concentrations similar to those expected in an Earth-storable propellant combustion environment. Temperatures attained in testing were significantly higher than those expected with Earth-storable propellants, both because of the inherently higher combustion temperature of GO2/GH2 propellants and because the exterior surface of the rocket was not treated with a high-emissivity coating that would be applied to flight class rockets. Thus the test conditions were thought to represent a more severe case than for typical operational applications. The chamber successfully completed testing (over 11 hr accumulated in 44 firings), and post-test inspections showed little degradation of the Ir liner. The results indicate that use of a thick, wrought Ir liner is a viable alternative to the Ir coatings currently used for Ir/Re rockets.

  16. Low-Cost Propellant Launch to Earth Orbit from a Tethered Balloon

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.

    2006-01-01

    Propellant will be more than 85% of the mass that needs to be lofted into Low Earth Orbit (LEO) in the planned program of Exploration of the Moon, Mars, and beyond. This paper describes a possible means for launching thousands of tons of propellant per year into LEO at a cost 15 to 30 times less than the current launch cost per kilogram. The basic idea is to mass-produce very simple, small and relatively low-performance rockets at a cost per kilogram comparable to automobiles, instead of the 25X greater cost that is customary for current launch vehicles that are produced in small quantities and which are manufactured with performance near the limits of what is possible. These small, simple rockets can reach orbit because they are launched above 95% of the atmosphere, where the drag losses even on a small rocket are acceptable, and because they can be launched nearly horizontally with very simple guidance based primarily on spin-stabilization. Launching above most of the atmosphere is accomplished by winching the rocket up a tether to a balloon. A fuel depot in equatorial orbit passes over the launch site on every orbit (approximately every 90 minutes). One or more rockets can be launched each time the fuel depot passes overhead, so the launch rate can be any multiple of 6000 small rockets per year, a number that is sufficient to reap the benefits of mass production.

  17. Two-step rocket engine bipropellant valve concept

    NASA Technical Reports Server (NTRS)

    Capps, J. E.; Ferguson, R. E.; Pohl, H. O.

    1969-01-01

    Initiating combustion of altitude control rocket engines in a precombustion chamber of ductile material reduces high pressure surges generated by hypergolic propellants. Two-step bipropellant valve concepts control initial propellant flow into precombustion chamber and subsequent full flow into main chamber.

  18. Extension of a simplified computer program for analysis of solid-propellant rocket motors

    NASA Technical Reports Server (NTRS)

    Sforzini, R. H.

    1973-01-01

    A research project to develop a computer program for the preliminary design and performance analysis of solid propellant rocket engines is discussed. The following capabilities are included as computer program options: (1) treatment of wagon wheel cross sectional propellant configurations alone or in combination with circular perforated grains, (2) calculation of ignition transients with the igniter treated as a small rocket engine, (3) representation of spherical circular perforated grain ends as an alternative to the conical end surface approximation used in the original program, and (4) graphical presentation of program results using a digital plotter.

  19. Liquid-hydrogen rocket engine development at Aerojet, 1944 - 1950

    NASA Technical Reports Server (NTRS)

    Osborn, G. H.; Gordon, R.; Coplen, H. L.; James, G. S.

    1977-01-01

    This program demonstrated the feasibility of virtually all the components in present-day, high-energy, liquid-rocket engines. Transpiration and film-cooled thrust chambers were successfully operated. The first liquid-hydrogen tests of the coaxial injector was conducted and the first pump to successfully produce high pressures in pumping liquid hydrogen was tested. A 1,000-lb-thrust gaseous propellant and a 3,000-lb-thrust liquid-propellant thrust chamber were operated satisfactorily. Also, the first tests were conducted to evaluate the effects of jet overexpansion and separation on performance of rocket thrust chambers with hydrogen-oxygen propellants.

  20. Combining MHD Airbreathing and Fusion Rocket Propulsion for Earth-to-Orbit Flight

    NASA Astrophysics Data System (ADS)

    Froning, H. D.; Miley, G. H.; Luo, Nie; Yang, Yang; Momota, H.; Burton, E.

    2005-02-01

    Previous studies have shown that Single-State-to-Orbit (SSTO) vehicle propellant can be reduced by Magnets-Hydro-Dynamic (MHD) processes that minimize airbreathing propulsion losses and propellant consumption during atmospheric flight. Similarly additional reduction in SSTO propellant is enabled by Inertial Electrostatic Confinement (IEC) fusion, whose more energetic reactions reduce rocket propellant needs. MHD airbreathing propulsion during an SSTO vehicle's initial atmospheric flight phase and IEC fusion propulsion during its final exo-atmospheric flight phase is therefore being explored. Accomplished work is not yet sufficient for claiming such a vehicle's feasibility. But takeoff and propellant mass for an MHD airbreathing and IEC fusion vehicle could be as much as 25 and 40 percent less than one with ordinary airbreathing and IEC fusion; and as much as 50 and 70 percent less than SSTO takeoff and propellant mass with MHD airbreathing and chemical rocket propulsion. Thus this unusual combined cycle engine shows great promise for performance gains beyond contemporary combined-cycle airbreathing engines.

  1. Preliminary study of a hydrogen peroxide rocket for use in moving source jet noise tests

    NASA Technical Reports Server (NTRS)

    Plencner, R. M.

    1977-01-01

    A preliminary investigation was made of using a hydrogen peroxide rocket to obtain pure moving source jet noise data. The thermodynamic cycle of the rocket was analyzed. It was found that the thermodynamic exhaust properties of the rocket could be made to match those of typical advanced commercial supersonic transport engines. The rocket thruster was then considered in combination with a streamlined ground car for moving source jet noise experiments. When a nonthrottlable hydrogen peroxide rocket was used to accelerate the vehicle, propellant masses and/or acceleration distances became too large. However, when a throttlable rocket or an auxiliary system was used to accelerate the vehicle, reasonable propellant masses could be obtained.

  2. Method for providing real-time control of a gaseous propellant rocket propulsion system

    NASA Technical Reports Server (NTRS)

    Morris, Brian G. (Inventor)

    1991-01-01

    The new and improved methods and apparatus disclosed provide effective real-time management of a spacecraft rocket engine powered by gaseous propellants. Real-time measurements representative of the engine performance are compared with predetermined standards to selectively control the supply of propellants to the engine for optimizing its performance as well as efficiently managing the consumption of propellants. A priority system is provided for achieving effective real-time management of the propulsion system by first regulating the propellants to keep the engine operating at an efficient level and thereafter regulating the consumption ratio of the propellants. A lower priority level is provided to balance the consumption of the propellants so significant quantities of unexpended propellants will not be left over at the end of the scheduled mission of the engine.

  3. Experimental investigation of solid rocket motors for small sounding rockets

    NASA Astrophysics Data System (ADS)

    Suksila, Thada

    2018-01-01

    Experimentation and research of solid rocket motors are important subjects for aerospace engineering students. However, many institutes in Thailand rarely include experiments on solid rocket motors in research projects of aerospace engineering students, mainly because of the complexity of mixing the explosive propellants. This paper focuses on the design and construction of a solid rocket motor for total impulse in the class I-J that can be utilised as a small sounding rocket by researchers in the near future. Initially, the test stands intended for measuring the pressure in the combustion chamber and the thrust of the solid rocket motor were designed and constructed. The basic design of the propellant configuration was evaluated. Several formulas and ratios of solid propellants were compared for achieving the maximum thrust. The convenience of manufacturing and casting of the fabricated solid rocket motors were a critical consideration. The motor structural analysis such as the combustion chamber wall thickness was also discussed. Several types of nozzles were compared and evaluated for ensuring the maximum thrust of the solid rocket motors during the experiments. The theory of heat transfer analysis in the combustion chamber was discussed and compared with the experimental data.

  4. Theoretical Studies of Ionic Liquids and Nanoclusters as Hybrid Fuels

    DTIC Science & Technology

    2016-08-17

    Acknowledgements Distribution A: Approved for Public Release; Distribution Unlimited. PA# 16409 Aerospace Systems Directorate RQ-West (EAFB, CA)  Rocket ...Engines & Motors  Satellite Propulsion  Combustion Devices  Fuels and Propellants  System Analysis  R&D Rocket Testing RQ-East (WPAFB, OH)  Air...Distribution A: Approved for Public Release; Distribution Unlimited. PA# 16409 5 Identify and develop advanced chemical propellants for rocket

  5. Fluid-solid coupled simulation of the ignition transient of solid rocket motor

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Liu, Peijin; He, Guoqiang

    2015-05-01

    The first period of the solid rocket motor operation is the ignition transient, which involves complex processes and, according to chronological sequence, can be divided into several stages, namely, igniter jet injection, propellant heating and ignition, flame spreading, chamber pressurization and solid propellant deformation. The ignition transient should be comprehensively analyzed because it significantly influences the overall performance of the solid rocket motor. A numerical approach is presented in this paper for simulating the fluid-solid interaction problems in the ignition transient of the solid rocket motor. In the proposed procedure, the time-dependent numerical solutions of the governing equations of internal compressible fluid flow are loosely coupled with those of the geometrical nonlinearity problems to determine the propellant mechanical response and deformation. The well-known Zeldovich-Novozhilov model was employed to model propellant ignition and combustion. The fluid-solid coupling interface data interpolation scheme and coupling instance for different computational agents were also reported. Finally, numerical validation was performed, and the proposed approach was applied to the ignition transient of one laboratory-scale solid rocket motor. For the application, the internal ballistics were obtained from the ground hot firing test, and comparisons were made. Results show that the integrated framework allows us to perform coupled simulations of the propellant ignition, strong unsteady internal fluid flow, and propellant mechanical response in SRMs with satisfactory stability and efficiency and presents a reliable and accurate solution to complex multi-physics problems.

  6. 76 FR 51459 - Office of Commercial Space Transportation (AST); Notice of Availability of the Finding of No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ... five solid-propellant strap-on rocket motors to the Atlas V launch vehicle and larger solid- propellant strap-on rocket motors on the Delta IV vehicle. The FAA participated as a cooperating agency in...

  7. Unique thermocouple to measure the temperatures of squibs, igniters, propellants, and rocket nozzles

    NASA Astrophysics Data System (ADS)

    Nanigian, Jacob; Nanigian, Dan

    2006-05-01

    The temperatures produced by the various components in the propulsion system of rockets and missiles determine the performance of the rocket. Since these temperatures occur very rapidly and under extreme conditions, standard thermocouples fail before any meaningful temperatures are measured. This paper describes the features of a special family of high performance thermocouples, which can measure these transient temperatures with millisecond response times and under the most severe conditions of erosion. Examples of igniter, propellant and rocket nozzle temperatures are included in this paper. Also included is heat flux measurements made by these sensors in rocket applications.

  8. Modeling and testing of a tube-in-tube separation mechanism of bodies in space

    NASA Astrophysics Data System (ADS)

    Michaels, Dan; Gany, Alon

    2016-12-01

    A tube-in-tube concept for separation of bodies in space was investigated theoretically and experimentally. The separation system is based on generation of high pressure gas by combustion of solid propellant and restricting the expansion of the gas only by ejecting the two bodies in opposite directions, in such a fashion that maximizes generated impulse. An interior ballistics model was developed in order to investigate the potential benefits of the separation system for a large range of space body masses and for different design parameters such as geometry and propellant. The model takes into account solid propellant combustion, heat losses, and gas phase chemical reactions. The model shows that for large bodies (above 100 kg) and typical separation velocities of 5 m/s, the proposed separation mechanism may be characterized by a specific impulse of 25,000 s, two order of magnitude larger than that of conventional solid rockets. It means that the proposed separation system requires only 1% of the propellant mass that would be needed for a conventional rocket for the same mission. Since many existing launch vehicles obtain such separation velocities by using conventional solid rocket motors (retro-rockets), the implementation of the new separation system design can reduce dramatically the mass of the separation system and increase safety. A dedicated experimental setup was built in order to demonstrate the concept and validate the model. The experimental results revealed specific impulse values of up to 27,000 s and showed good correspondence with the model.

  9. Combustion Instability in an Acid-Heptane Rocket with a Pressurized-Gas Propellant Pumping System

    NASA Technical Reports Server (NTRS)

    Tischler, Adelbert O.; Bellman, Donald R.

    1951-01-01

    Results of experimental measurements of low-frequency combustion instability of a 300-pound thrust acid-heptane rocket engine were compared to the trends predicted by an analysis of combustion instability in a rocket engine with a pressurized-gas propellant pumping system. The simplified analysis, which assumes a monopropellant model, was based on the concept of a combustion the delay occurring from the moment of propellant injection to the moment of propellant combustion. This combustion time delay was experimentally measured; the experimental values were of approximately half the magnitude predicted by the analysis. The pressure-fluctuation frequency for a rocket engine with a characteristic length of 100 inches and operated at a combustion-chamber pressure of 280 pounds per square inch absolute was 38 cycles per second; the analysis indicated. a frequency of 37 cycles per second. Increasing combustion-chamber characteristic length decreased the pressure-fluctuation frequency, in conformity to the analysis. Increasing the chamber operating pressure or increasing the injector pressure drop increased the frequency. These latter two effects are contrary to the analysis; the discrepancies are attributed to the conflict between the assumptions made to simplify the analysis and the experimental conditions. Oxidant-fuel ratio had no apparent effect on the experimentally measured pressure-fluctuation frequency for acid-heptane ratios from 3.0 to 7.0. The frequencies decreased with increased amplitude of the combustion-chamber pressure variations. The analysis indicated that if the combustion time delay were sufficiently short, low-frequency combustion instability would be eliminated.

  10. Safety and Performance Advantages of Nitrous Oxide Fuel Blends (NOFBX) Propellants for Manned and Unmanned Spaceflight Applications

    NASA Astrophysics Data System (ADS)

    Taylor, R.

    2012-01-01

    Hydrazine, N2H4, is the current workhorse monopropellant in the spacecraft industry. Although widely used since the 1960's, hydrazine is highly toxic and its specific impulse (ISP) performance of ~230s is far lower than bipropellants and solid motors. NOFBX™ monopropellants were originally developed under NASA's Mars Advanced Technology program (2004-2007) for deep space Mars missions. This work focused on characterizing various Nitrous Oxide Fuel Blend (NOFB) monopropellants which exhibited many favorable attributes to include: (1) Mono-propulsion, (2) Isp > 320s, (3) Non-toxic constituents, (4) Non-toxic effluents, (5) Low Cost, (6) High Density Specific Impulse, (7) Non-cryogenic, (8) Wide Storable Temperature Range, (9) Deeply throttlable [between 5 - 100lbs], (10) Self Pressurizing, (11) Wide Range of materials compatibility, along with many, many other benefits. All rocket propellants carry with them a history or stigma associated with either the development or implementation of that propellant and NOFBX™ is no exception. This paper examines the benefits of NOFBX™ propellants while addressing or dispelling a number of critiques N2O based propellants acquired through the decades of rocket propellant testing.

  11. Measurements of Particulates in Solid Propellant Rocket Motors

    DTIC Science & Technology

    1987-10-01

    gradients created during a firing, however, could be a problem. Finally, a torch was placed in the motor to study temperature effects. The nitrogen...techniques available for studying particulate behavior in solid propellant rocket motors is holography. For the exposed scene a hologram provides both...is underway to study the effects of addition of aluminum and other metallic particles on the magnitude of the performance losses in propellant motors

  12. Ultrasonic method for inspection of the propellant grain in the space shuttle solid rocket booster

    NASA Astrophysics Data System (ADS)

    Doyle, T. E.; Degtyar, A. D.; Sorensen, K. P.; Kelso, M. J.; Berger, T. A.

    2000-05-01

    Defects in solid rocket propellant may affect the safe operation of a space launch vehicle. The Space Shuttle reusable solid rocket motor (RSRM) is therefore routinely inspected with radiography for voids, cracks, and inclusions. Ultrasonic methods can be used to supplement radiography when an indication is difficult to interpret due to the projection geometry or low contrast. Such a method was developed to inspect a local region of propellant in an RSRM forward segment for a suspect inclusion. The method used a through-transmission approach, with a stationary transmitter on the propellant grain inside the segment and a receiving transducer scanned over the case surface. Low frequency (⩽250 kHz) pulses were propagated through 10-12 inches of propellant, 0.5 inches of NBR insulation, and 0.5 inches of steel case. Through-transmission images were constructed using time-of-flight analysis of the waveforms. The ultrasonic inspections supported results from extended radiographic studies, showing that the indication was not an inclusion but an artifact resulting from liner thickness variations and a low X-ray projection angle in the segment's dome region. This work demonstrated the feasibility of using ultrasonics for inspection of propellant grain in steel-cased rocket motors.

  13. Solid rocket technology advancements for space tug and IUS applications

    NASA Technical Reports Server (NTRS)

    Ascher, W.; Bailey, R. L.; Behm, J. W.; Gin, W.

    1975-01-01

    In order for the shuttle tug or interim upper stage (IUS) to capture all the missions in the current mission model for the tug and the IUS, an auxiliary or kick stage, using a solid propellant rocket motor, is required. Two solid propellant rocket motor technology concepts are described. One concept, called the 'advanced propulsion module' motor, is an 1800-kg, high-mass-fraction motor, which is single-burn and contains Class 2 propellent. The other concept, called the high energy upper stage restartable solid, is a two-burn (stop-restartable on command) motor which at present contains 1400 kg of Class 7 propellant. The details and status of the motor design and component and motor test results to date are presented, along with the schedule for future work.

  14. Three-dimensional finite element analysis of acoustic instability of solid propellant rocket motors

    NASA Technical Reports Server (NTRS)

    Hackett, R. M.; Juruf, R. S.

    1976-01-01

    A three dimensional finite element solution of the acoustic vibration problem in a solid propellant rocket motor is presented. The solution yields the natural circular frequencies of vibration and the corresponding acoustic pressure mode shapes, considering the coupled response of the propellant grain to the acoustic oscillations occurring in the motor cavity. The near incompressibility of the solid propellant is taken into account in the formulation. A relatively simple example problem is solved in order to illustrate the applicability of the analysis and the developed computer code.

  15. A research on polyether glycol replaced APCP rocket propellant

    NASA Astrophysics Data System (ADS)

    Lou, Tianyou; Bao, Chun Jia; Wang, Yiyang

    2017-08-01

    Ammonium perchlorate composite propellant (APCP) is a modern solid rocket propellant used in rocket vehicles. It differs from many traditional solid rocket propellants by the nature of how it is processed. APCP is cast into shape, as opposed to powder pressing it with black powder. This provides manufacturing regularity and repeatability, which are necessary requirements for use in the aerospace industry. For traditional APCP, ingredients normally used are ammonium peroxide, aluminum, Hydroxyl-terminated polybutadiene(HTPB), curing agency and other additives, the greatest disadvantage is that the fuel is too expensive. According to the price we collected in our country, a single kilogram of this fuel will cost 200 Yuan, which is about 35 dollars, for a fan who may use tons of the fuel in a single year, it definitely is a great deal of money. For this reason, we invented a new kind of APCP fuel. Changing adhesive agency from cross-linked htpb to cross linked polyether glycol gives a similar specific thrust, density and mechanical property while costs a lower price.

  16. Structural Assessment of Solid Propellant Grains (l’Evaluation structurale des blocs de poudre a’ propergol solide)

    DTIC Science & Technology

    1997-12-01

    bonds) This technique is based on the observation of the reflection and attenuation of an ultrasonic wave traversing an object, and is used to check...Nearly all present day composite propellants for tactical rocket motors use hydroxy-terminated polybutadiene ( HTPB ) as a binder as this offers the...polyurethane as a binder. The inferior mechanical properties of these propellants compared to HTPB limited their use. In large space booster and

  17. Army and Marine Corps Active Protection System (APS) Efforts

    DTIC Science & Technology

    2016-08-23

    with hard or soft kill capabilities to a variety of threats, including rocket -propelled grenades (RPGs) and anti-tank guided missiles (ATGMs). APS...of threats, including rocket -propelled grenades (RPGs) and anti-tank guided missiles (ATGMs). APS technologies are not new, and a number of nations...training. 1 RPGs are basically single man-portable, shoulder-fired, unguided rockets . RPGs have been widely proliferated but can be mitigated to a

  18. The alleged contributions of Pedro E. Paulet to liquid-propellant rocketry

    NASA Technical Reports Server (NTRS)

    Ordway, F. I., III

    1977-01-01

    The first practical working liquid propellant rocket motor was claimed by Pedro E. Paulet, a South American engineer from Peru (1895). He operated a conical motor, 10 centimeters in diameter, using nitrogen peroxide and gasoline as propellants and measuring thrust up to 90 kilograms, and apparently used spark ignition and intermittent propellant injection. The test device which he used contained elements of later test stands, such as a spring thrust-measuring device. However, he did not publish his work until twenty-five years later. Evidence is examined concerning this only known claim to liquid propellant rocket engine experiments in the nineteenth century.

  19. Grain Propellant Optimization Using Real Code Genetic Algorithm (RCGA)

    NASA Astrophysics Data System (ADS)

    Farizi, Muhammad Farraz Al; Oktovianus Bura, Romie; Fajar Junjunan, Soleh; Jihad, Bagus H.

    2018-04-01

    Grain propellant design is important in rocket motor design. The total impulse and ISP of the rocket motor is influenced by the grain propellant design. One way to get a grain propellant shape that generates the maximum total impulse value is to use the Real Code Genetic Algorithm (RCGA) method. In this paper RCGA is applied to star grain Rx-450. To find burn area of propellant used analytical method. While the combustion chamber pressures are sought with zero-dimensional equations. The optimization result can reach the desired target and increase the total impulse value by 3.3% from the initial design of Rx-450.

  20. AXISYMMETRIC, THROTTLEABLE NON-GIMBALLED ROCKET ENGINE

    NASA Technical Reports Server (NTRS)

    Sackheim, Robert L. (Inventor); Hutt, John J. (Inventor); Anderson, William E. (Inventor); Dressler, Gordon A. (Inventor)

    2005-01-01

    A rocket engine assembly is provided for a vertically launched rocket vehicle. A rocket engine housing of the assembly includes two or more combustion chambers each including an outlet end defining a sonic throat area. A propellant supply for the combustion chambers includes a throttling injector, associated with each of the combustion chambers and located opposite to sonic throat area, which injects the propellant into the associated combustion chamber. A modulator, which may form part of the injector, and which is controlled by a controller, modulates the flow rate of the propellant to the combustion chambers so that the chambers provide a vectorable net thrust. An expansion nozzle or body located downstream of the throat area provides expansion of the combustion gases produced by the combustion chambers so as to increase the net thrust.

  1. A Preliminary Investigation on the Destruction of Solid-Propellant Rocket Motors by Impact from Small Particles

    NASA Technical Reports Server (NTRS)

    Carter, David J., Jr.

    1960-01-01

    An investigation was conducted to determine whether solid-propellant rocket motors could be ignited and destroyed by small-particle impacts at particle velocities up to a approximately 10,940 feet per second. Spheres ranging from 1/16 to 7/32 inch in diameter were fired into simulated rocket motors containing T-22 propellant over a range of ambient pressures from sea level to 0.12 inch of mercury absolute. Simulated cases of stainless steel, aluminum alloy, and laminated Fiberglas varied in thickness from 1/50 to 1/8 inch. Within the scope of this investigation, it was found that ignition and explosive destruction of simulated steel-case rocket motors could result from impacts by steel spheres at the lowest attainable pressure.

  2. Accuracy of real time radiography burning rate measurement

    NASA Astrophysics Data System (ADS)

    Olaniyi, Bisola

    The design of a solid propellant rocket motor requires the determination of a propellant's burning-rate and its dependency upon environmental parameters. The requirement that the burning-rate be physically measured, establishes the need for methods and equipment to obtain such data. A literature review reveals that no measurement has provided the desired burning rate accuracy. In the current study, flash x-ray modeling and digitized film-density data were employed to predict motor-port area to length ratio. The pre-fired port-areas and base burning rate were within 2.5% and 1.2% of their known values, respectively. To verify the accuracy of the method, a continuous x-ray and a solid propellant rocket motor model (Plexiglas cylinder) were used. The solid propellant motor model was translated laterally through a real-time radiography system at different speeds simulating different burning rates. X-ray images were captured and the burning-rate was then determined. The measured burning rate was within 1.65% of the known values.

  3. America's first long-range-missile and space exploration program: The ORDCIT project of the Jet Propulsion Laboratory, 1943 - 1946: A memoir

    NASA Technical Reports Server (NTRS)

    Malina, F. J.

    1977-01-01

    Research and achievements of the wartime Jet Propulsion Laboratory are outlined. Accomplishments included development of the solid-propellant Private A and private R rockets and the liquid-propellant nitric acid-aniline WAC Corporal rocket.

  4. 76 FR 51459 - Office of Commercial Space Transportation (AST); Notice of Availability of the Record of Decision...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ... impacts of up to five solid-propellant strap-on rocket motors (SRMs) on the Atlas V medium lift vehicle... Proposed Action in the 2000 SEIS, up to five solid- propellant strap-on rocket motors (SRMs) would be added...

  5. KENNEDY SPACE CENTER, FLA. - Seen from below and through a solid rocket booster segment mockup, Jeff Thon, an SRB mechanic with United Space Alliance, tests the feasibility of a vertical solid rocket booster propellant grain inspection technique. The inspection of segments is required as part of safety analysis.

    NASA Image and Video Library

    2003-09-11

    KENNEDY SPACE CENTER, FLA. - Seen from below and through a solid rocket booster segment mockup, Jeff Thon, an SRB mechanic with United Space Alliance, tests the feasibility of a vertical solid rocket booster propellant grain inspection technique. The inspection of segments is required as part of safety analysis.

  6. Study of solid rocket motor for space shuttle booster. Volume 4: Cost

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The cost data for solid propellant rocket engines for use with the space shuttle are presented. The data are based on the selected 156 inch parallel and series burn configurations. Summary cost data are provided for the production of the 120 inch and 260 inch configurations. Graphs depicting parametric cost estimating relationships are included.

  7. The effects of solid rocket motor effluents on selected surfaces and solid particle size, distribution, and composition for simulated shuttle booster separation motors

    NASA Technical Reports Server (NTRS)

    Jex, D. W.; Linton, R. C.; Russell, W. M.; Trenkle, J. J.; Wilkes, D. R.

    1976-01-01

    A series of three tests was conducted using solid rocket propellants to determine the effects a solid rocket plume would have on thermal protective surfaces (TPS). The surfaces tested were those which are baselined for the shuttle vehicle. The propellants used were to simulate the separation solid rocket motors (SSRM) that separate the solid rocket boosters (SRB) from the shuttle launch vehicle. Data cover: (1) the optical effects of the plume environment on spacecraft related surfaces, and (2) the solid particle size, distribution, and composition at TPS sample locations.

  8. ADAPTATION OF A TECHNIQUE FOR PREDICTING LARGE SOLID ROCKET MOTOR SPECIFIC IMPULSE FROM DATA OBTAINED IN MICROMOTORS.

    DTIC Science & Technology

    Laboratory. The purpose of this technique is to predict specific impulse in large solid rocket motors based on data obtained in micromotors . As little as 2...concerning performance of a propellant in a large solid motor. Predictions, based on data obtained in micromotors , were within 0.6% of the delivered impulse in 6-pound motors and 70-pound BATES motors. (Author)

  9. The cohesive law of particle/binder interfaces in solid propellants

    NASA Astrophysics Data System (ADS)

    Tan, H.

    2011-10-01

    Solid propellants are treated as composites with high volume fraction of particles embedded in the polymeric binder. A micromechanics model is developed to establish the link between the microscopic behavior of particle/binder interfaces and the macroscopic constitutive information. This model is then used to determine the tension/shearing coupled interface cohesive law of a redesigned solid rocket motor propellant, based on the experimental data of the stress-strain and dilatation-strain curves for the material under slow rate uniaxial tension.

  10. Method and apparatus to produce high specific impulse and moderate thrust from a fusion-powered rocket engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, Samuel A.; Pajer, Gary A.; Paluszek, Michael A.

    A system and method for producing and controlling high thrust and desirable specific impulse from a continuous fusion reaction is disclosed. The resultant relatively small rocket engine will have lower cost to develop, test, and operate that the prior art, allowing spacecraft missions throughout the planetary system and beyond. The rocket engine method and system includes a reactor chamber and a heating system for heating a stable plasma to produce fusion reactions in the stable plasma. Magnets produce a magnetic field that confines the stable plasma. A fuel injection system and a propellant injection system are included. The propellant injectionmore » system injects cold propellant into a gas box at one end of the reactor chamber, where the propellant is ionized into a plasma. The propellant and fusion products are directed out of the reactor chamber through a magnetic nozzle and are detached from the magnetic field lines producing thrust.« less

  11. Nozzle erosion characterization and minimization for high-pressure rocket motor applications

    NASA Astrophysics Data System (ADS)

    Evans, Brian

    Understanding of the processes that cause nozzle throat erosion and developing methods for mitigation of erosion rate can allow higher operating pressures for advanced rocket motors. However, erosion of the nozzle throat region, which is a strong function of operating pressure, must be controlled to realize the performance gains of higher operating pressures. The objective of this work was the study the nozzle erosion rates at a broad range of pressures from 7 to 34.5 MPa (1,000 to 5,000 psia) using two different rocket motors. The first is an instrumented solidpropellant motor (ISPM), which uses two baseline solid propellants; one is a non-metallized propellant called Propellant S and the other is a metallized propellant called Propellant M. The second test rig is a non-metallized solid-propellant rocket motor simulator (RMS). The RMS is a gas rocket with the ability to vary the combustion-product species composition by systematically varying the flow rates of gaseous reactants. Several reactant mixtures were utilized in the study to determine the relative importance of different oxidizing species (such as H2O, OH, and CO2). Both test rigs are equipped with a windowed nozzle section for real-time X-ray radiography diagnostics of the instantaneous throat variations for deducing the instantaneous erosion rates. The nozzle test section for both motors can also incorporate a nozzle boundary-layer control system (NBLCS) as a means of nozzle erosion mitigation. The effectiveness of the NBLCS at preventing nozzle throat erosion was demonstrated for both the RMS and the ISPM motors at chamber pressures up to 34 MPa (4930 psia). All tests conducted with the NBLCS showed signs of coning of the propellant surface, leading to increased mass burning rate and resultant chamber pressure. Two correlations were developed for the nozzle erosion rates from solid propellant testing, one for metallized propellant and one for non-metallized propellants. The non-metallized propellant correlation also incorporates the RMS data, accounting for swirling flow of the products in the RMS combustor. These correlations are useful for rocket nozzle designs. The correlation for non-metallized propellant and RMS firings was developed in terms of the effective oxidizer mass fraction and effective Reynolds number. The results calculated from this correlation were compared with measured erosion rate data within +/-15% or 0.05 mm/s (2 mils/s). For metallized propellant, the nozzle erosion rate was found to be relatively independent of the concentration of oxidizing species due to the diffusion-controlled process and the partial surface coverage by the liquid Al/Al2O3 layer. The nozzle erosion rate was also found to be lower than those of non-metallized propellant cases. Agreement between predicted and measured erosion rates was found to be within +/-20% or 0.04 mm/s (2 mils/s).

  12. KSC-2012-6222

    NASA Image and Video Library

    2012-11-09

    CAPE CANAVERAL, Fla. -- At the Neo Liquid Propellant Testbed inside a facility near Kennedy Space Center’s Shuttle Landing Facility in Florida, engineers and Rocket University project leads Kyle Dixon, left, and Evelyn Orozco-Smith check the buildup of the Neo test fixture and an Injector 71 engine that uses super-cooled propellants. NASA engineers are working on the design and assembly of the Neo Liquid Propellant Testbed as part of the Engineering Directorate’s Rocket University training program. Photo credit: NASA/Frankie Martin

  13. VIABILITY OF BACILLUS SUBTILIS SPORES IN ROCKET PROPELLANTS.

    PubMed

    GODDING, R M; LYNCH, V H

    1965-01-01

    The sporicidal activity of components used in liquid and solid rocket propellants was tested by use of spores of Bacillus subtilis dried on powdered glass. Liquid propellant ingredients tested were N(2)O(4), monomethylhydrazine and 1,1-dimethylhydrazine. N(2)O(4) was immediately sporicidal; the hydrazines were effective within several days. Solid propellants consisted of ammonium perchlorate in combination with epoxy resin (EPON 828), tris-1-(2-methyl) aziridinyl phosphine oxide, bis-1-(2-methyl) aziridinyl phenylphosphine oxide, and three modified polybutadiene polymers. There was no indication of appreciable sporicidal activity of these components.

  14. Viability of Bacillus subtilis Spores in Rocket Propellants

    PubMed Central

    Godding, Rogene M.; Lynch, Victoria H.

    1965-01-01

    The sporicidal activity of components used in liquid and solid rocket propellants was tested by use of spores of Bacillus subtilis dried on powdered glass. Liquid propellant ingredients tested were N2O4, monomethylhydrazine and 1,1-dimethylhydrazine. N2O4 was immediately sporicidal; the hydrazines were effective within several days. Solid propellants consisted of ammonium perchlorate in combination with epoxy resin (EPON 828), tris-1-(2-methyl) aziridinyl phosphine oxide, bis-1-(2-methyl) aziridinyl phenylphosphine oxide, and three modified polybutadiene polymers. There was no indication of appreciable sporicidal activity of these components. PMID:14264838

  15. Development of sensing techniques for weaponry health monitoring

    NASA Astrophysics Data System (ADS)

    Edwards, Eugene; Ruffin, Paul B.; Walker, Ebonee A.; Brantley, Christina L.

    2013-04-01

    Due to the costliness of destructive evaluation methods for assessing the aging and shelf-life of missile and rocket components, the identification of nondestructive evaluation methods has become increasingly important to the Army. Verifying that there is a sufficient concentration of stabilizer is a dependable indicator that the missile's double-based solid propellant is viable. The research outlined in this paper summarizes the Army Aviation and Missile Research, Development, and Engineering Center's (AMRDEC's) comparative use of nanoporous membranes, carbon nanotubes, and optical spectroscopic configured sensing techniques for detecting degradation in rocket motor propellant. The first sensing technique utilizes a gas collecting chamber consisting of nanoporous structures that trap the smaller solid propellant particles for measurement by a gas analysis device. In collaboration with NASA-Ames, sensing methods are developed that utilize functionalized single-walled carbon nanotubes as the key sensing element. The optical spectroscopic sensing method is based on a unique light collecting optical fiber system designed to detect the concentration of the propellant stabilizer. Experimental setups, laboratory results, and overall effectiveness of each technique are presented in this paper. Expectations are for the three sensing mechanisms to provide nondestructive evaluation methods that will offer cost-savings and improved weaponry health monitoring.

  16. Scaled Rocket Testing in Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    Dufrene, Aaron; MacLean, Matthew; Carr, Zakary; Parker, Ron; Holden, Michael; Mehta, Manish

    2015-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was strongly based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Detailed base heating results are outside of the scope of the current work, rather test methodology and techniques are presented along with broader applicability toward scaled rocket testing in supersonic and hypersonic flow.

  17. Laser Ignition Technology for Bi-Propellant Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Thomas, Matthew E.; Bossard, John A.; Early, Jim; Trinh, Huu; Dennis, Jay; Turner, James (Technical Monitor)

    2001-01-01

    The fiber optically coupled laser ignition approach summarized is under consideration for use in igniting bi-propellant rocket thrust chambers. This laser ignition approach is based on a novel dual pulse format capable of effectively increasing laser generated plasma life times up to 1000 % over conventional laser ignition methods. In the dual-pulse format tinder consideration here an initial laser pulse is used to generate a small plasma kernel. A second laser pulse that effectively irradiates the plasma kernel follows this pulse. Energy transfer into the kernel is much more efficient because of its absorption characteristics thereby allowing the kernel to develop into a much more effective ignition source for subsequent combustion processes. In this research effort both single and dual-pulse formats were evaluated in a small testbed rocket thrust chamber. The rocket chamber was designed to evaluate several bipropellant combinations. Optical access to the chamber was provided through small sapphire windows. Test results from gaseous oxygen (GOx) and RP-1 propellants are presented here. Several variables were evaluated during the test program, including spark location, pulse timing, and relative pulse energy. These variables were evaluated in an effort to identify the conditions in which laser ignition of bi-propellants is feasible. Preliminary results and analysis indicate that this laser ignition approach may provide superior ignition performance relative to squib and torch igniters, while simultaneously eliminating some of the logistical issues associated with these systems. Further research focused on enhancing the system robustness, multiplexing, and window durability/cleaning and fiber optic enhancements is in progress.

  18. Solid Propellant Nonlinear Constitutive Theory Extension

    DTIC Science & Technology

    1984-01-01

    Force Rocket Propulsion Laboratory, June 1979. Farris, R. J., Hermann , I. R., Hutchinson, J. R., and Schapery, R. A., "Development of a Solid Rocket...Effect of Stretching on the Properties of Rubber," J. Rub. Res., 16, 275-289, 1947. 28. Oberth , A. E., and Brenner, R. S., "Tear Phenomena Around...34Development of a Solid Rocket Propellant Nonlinear Viscoelastic Constitutive Theory," AFRPL-TR-73-50, June 1973. 30. Hermann , L. R., and Peterson, F. E., "A

  19. Design issues for lunar in situ aluminum/oxygen propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.

    1992-01-01

    Design issues for lunar ascent and lunar descent rocket engines fueled by aluminum/oxygen propellant produced in situ at the lunar surface were evaluated. Key issues are discussed which impact the design of these rockets: aluminum combustion, throat erosion, and thrust chamber cooling. Four engine concepts are presented, and the impact of combustion performance, throat erosion and thrust chamber cooling on overall engine design are discussed. The advantages and disadvantages of each engine concept are presented.

  20. Performance and Stability Analyses of Rocket Thrust Chambers with Oxygen/Methane Propellants

    NASA Technical Reports Server (NTRS)

    Hulka, James R.; Jones, Gregg W.

    2010-01-01

    Liquid rocket engines using oxygen and methane propellants are being considered by the National Aeronautics and Space Administration (NASA) for future in-space vehicles. This propellant combination has not been previously used in flight-qualified engine systems developed by NASA, so limited test data and analysis results are available at this stage of early development. As part of activities for the Propulsion and Cryogenic Advanced Development (PCAD) project funded under the Exploration Technology Development Program, the NASA Marshall Space Flight Center (MSFC) has been evaluating capability to model combustion performance and stability for oxygen and methane propellants. This activity has been proceeding for about two years and this paper is a summary of results to date. Hot-fire test results of oxygen/methane propellant rocket engine combustion devices for the modeling investigations have come from several sources, including multi-element injector tests with gaseous methane from the 1980s, single element tests with gaseous methane funded through the Constellation University Institutes Program, and multi-element injector tests with both gaseous and liquid methane conducted at the NASA MSFC funded by PCAD. For the latter, test results of both impinging and coaxial element injectors using liquid oxygen and liquid methane propellants are included. Configurations were modeled with two one-dimensional liquid rocket combustion analysis codes, the Rocket Combustor Interactive Design and Analysis code and the Coaxial Injector Combustion Model. Special effort was focused on how these codes can be used to model combustion and performance with oxygen/methane propellants a priori, and what anchoring or calibrating features need to be applied, improved or developed in the future. Low frequency combustion instability (chug) occurred, with frequencies ranging from 150 to 250 Hz, with several multi-element injectors with liquid/liquid propellants, and was modeled using techniques from Wenzel and Szuch. High-frequency combustion instability also occurred at the first tangential (1T) mode, at about 4500 Hz, with several multi-element injectors with liquid/liquid propellants. Analyses of the transverse mode instability were conducted by evaluating injector resonances and empirical methods developed by Hewitt.

  1. Liquid propellant rocket combustion instability

    NASA Technical Reports Server (NTRS)

    Harrje, D. T.

    1972-01-01

    The solution of problems of combustion instability for more effective communication between the various workers in this field is considered. The extent of combustion instability problems in liquid propellant rocket engines and recommendations for their solution are discussed. The most significant developments, both theoretical and experimental, are presented, with emphasis on fundamental principles and relationships between alternative approaches.

  2. Analysis of a Radioisotope Thermal Rocket Engine

    NASA Technical Reports Server (NTRS)

    Machado-Rodriguez, Jonathan P.; Landis, Geoffrey A.

    2017-01-01

    The Triton Hopper is a concept for a vehicle to explore the surface of Neptunes moon Triton, which uses a radioisotope heated rocket engine and in-situ propellant acquisition. The initial Triton Hopper conceptual design stores pressurized Nitrogen in a spherical tank to be used as the propellant. The aim of the research was to investigate the benefits of storing propellant at ambient temperature and heating it through a thermal block during engine operation, as opposed to storing gas at a high temperature.

  3. Design of a Mars Airplane Propulsion System for the Aerial Regional-Scale Environmental Survey (ARES) Mission Concept

    NASA Technical Reports Server (NTRS)

    Kuhl, Christopher A.

    2008-01-01

    The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept that utilizes a rocket propelled airplane to take scientific measurements of atmospheric, surface, and subsurface phenomena. The liquid rocket propulsion system design has matured through several design cycles and trade studies since the inception of the ARES concept in 2002. This paper describes the process of selecting a bipropellant system over other propulsion system options, and provides details on the rocket system design, thrusters, propellant tank and PMD design, propellant isolation, and flow control hardware. The paper also summarizes computer model results of thruster plume interactions and simulated flight performance. The airplane has a 6.25 m wingspan with a total wet mass of 185 kg and has to ability to fly over 600 km through the atmosphere of Mars with 45 kg of MMH / MON3 propellant.

  4. Environmental Effects of Space Shuttle Solid Rocket Motor Exhaust Plumes

    NASA Technical Reports Server (NTRS)

    Hwang, B.; Pergament, H. S.

    1976-01-01

    The deposition of NOx and HCl in the stratosphere from the space shuttle solid rocket motors (SRM) and exhaust plume is discussed. A detailed comparison between stratospheric deposition rates using the baseline SRM propellant and an alternate propellant, which replaces ammonium perchlorate by ammonium nitrate, shows the total NOx deposition rate to be approximately the same for each propellant. For both propellants the ratio of the deposition rates of NOx to total chlorine-containing species is negligibly small. Rocket exhaust ground cloud transport processes in the troposphere are also examined. A brief critique of the multilayer diffusion models (presently used for predicting pollutant deposition in the troposphere) is presented, and some detailed cloud rise calculations are compared with data for Titan 3C launches. The results show that, when launch time meteorological data are used as input, the model can reasonably predict measured cloud stabilization heights.

  5. Experimental Evaluation of a Subscale Gaseous Hydrogen/gaseous Oxygen Coaxial Rocket Injector

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.; Klem, Mark D.; Breisacher, Kevin J.; Farhangi, Shahram; Sutton, Robert

    2002-01-01

    The next generation reusable launch vehicle may utilize a Full-Flow Stage Combustion (FFSC) rocket engine cycle. One of the key technologies required is the development of an injector that uses gaseous oxygen and gaseous hydrogen as propellants. Gas-gas propellant injection provides an engine with increased stability margin over a range of throttle set points. This paper summarizes an injector design and testing effort that evaluated a coaxial rocket injector for use with gaseous oxygen and gaseous hydrogen propellants. A total of 19 hot-fire tests were conducted up to a chamber pressure of 1030 psia, over a range of 3.3 to 6.7 for injector element mixture ratio. Post-test condition of the hardware was also used to assess injector face cooling. Results show that high combustion performance levels could be achieved with gas-gas propellants and there were no problems with excessive face heating for the conditions tested.

  6. Space Shuttle with rail system and aft thrust structure securing solid rocket boosters to external tank

    NASA Technical Reports Server (NTRS)

    Vonpragenau, G. L. (Inventor)

    1984-01-01

    The configuration and relationship of the external propellant tank and solid rocket boosters of space transportation systems such as the space shuttle are described. The space shuttle system with the improved propellant tank is shown. The external tank has a forward pressure vessel for liquid hydrogen and an aft pressure vessel for liquid oxygen. The solid rocket boosters are joined together by a thrust frame which extends across and behind the external tank. The thrust of the orbiter's main rocket engines are transmitted to the aft portion of the external tank and the thrust of the solid rocket boosters are transmitted to the aft end of the external tank.

  7. Astro Camp is a blast!

    NASA Image and Video Library

    2006-06-08

    An Astro Camp counselor and her campers perform a science experiment to learn what types of `fuel' will best propel their 'rockets.' Stennis Space Center's popular series of day camps have campers design, build and test model rockets based on the principles that would be used to build different types of rockets suitable for a mission to the moon or Mars. They learn details like how far they would travel, how long it would take, what supplies they would need and how to survive in that environment.

  8. Demonstration of the B4C/NaIO4/PTFE Delay in the U.S. Army Hand-Held Signal

    DTIC Science & Technology

    2015-05-20

    Figure 1. Partial cross section diagram of a hand-held signal showing the rocket motor , delay element, expelling charge, and pyrotechnic payload as...The black powder-based rocket motor , consisting of propellant pellets (G) encased in a cardboard tube, contains an axial core hole to accommodate the...that ignites the rocket motor . Simultaneously, the delay element is ignited and burns for an interval (preferably 5−6 s) before it ignites the black

  9. Modal survey of the space shuttle solid rocket motor using multiple input methods

    NASA Technical Reports Server (NTRS)

    Brillhart, Ralph; Hunt, David L.; Jensen, Brent M.; Mason, Donald R.

    1987-01-01

    The ability to accurately characterize propellant in a finite element model is a concern of engineers tasked with studying the dynamic response of the Space Shuttle Solid Rocket Motor (SRM). THe uncertainties arising from propellant characterization through specimem testing led to the decision to perform a model survey and model correlation of a single segment of the Shuttle SRM. Multiple input methods were used to excite and define case/propellant modes of both an inert segment and, later, a live propellant segment. These tests were successful at defining highly damped, flexible modes, several pairs of which occured with frequency spacing of less than two percent.

  10. Evaluation of Vortex Chamber Concepts for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu Phuoc; Knuth, Williams; Michaels, Scott; Turner, James E. (Technical Monitor)

    2000-01-01

    Rocket-based combined-cycle engines (RBBC) being considered at NASA for future generation launch vehicles feature clusters of small rocket thrusters as part of the engine components. Depending on specific RBBC concepts, these thrusters may be operated at various operating conditions including power level and/or propellant mixture ratio variations. To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for the subject cycle engine application. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concepts not only offer the system simplicity but they also would enhance the combustion performance. The test results showed that the chamber performance was markedly high even at a low chamber length-to- diameter ratio (L/D). This incentive can be translated to a convenience in the thrust chamber packaging.

  11. Small Launch Vehicle Concept Development for Affordable Multi-Stage Inline Configurations

    NASA Technical Reports Server (NTRS)

    Beers, Benjamin R.; Waters, Eric D.; Philips, Alan D.; Threet, Grady E., Jr.

    2014-01-01

    The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center conducted a study of two configurations of a three stage, inline, liquid propellant small launch vehicle concept developed on the premise of maximizing affordability by targeting a specific payload capability range based on current industry demand. The initial configuration, NESC-1, employed liquid oxygen as the oxidizer and rocket propellant grade kerosene as the fuel in all three stages. The second and more heavily studied configuration, NESC-4, employed liquid oxygen and rocket propellant grade kerosene on the first and second stages and liquid oxygen and liquid methane fuel on the third stage. On both vehicles, sensitivity studies were first conducted on specific impulse and stage propellant mass fraction in order to baseline gear ratios and drive the focus of concept development. Subsequent sensitivity and trade studies on the NESC-4 configuration investigated potential impacts to affordability due to changes in gross liftoff weight and/or vehicle complexity. Results are discussed at a high level to understand the severity of certain sensitivities and how those trade studies conducted can either affect cost, performance or both.

  12. A study on various methods of supplying propellant to an orbit insertion rocket engine

    NASA Technical Reports Server (NTRS)

    Boretz, J. E.; Huniu, S.; Thompson, M.; Pagani, M.; Paulsen, B.; Lewis, J.; Paul, D.

    1980-01-01

    Various types of pumps and pump drives were evaluated to determine the lightest weight system for supplying propellants to a planetary orbit insertion rocket engine. From these analyses four candidate propellant feed systems were identified. Systems Nos. 1 and 2 were both battery powered (lithium-thionyl-chloride or silver-zinc) motor driven pumps. System 3 was a monopropellant gas generator powered turbopump. System 4 was a bipropellant gas generator powered turbopump. Parameters considered were pump break horsepower, weight, reliability, transient response and system stability. Figures of merit were established and the ranking of the candidate systems was determined. Conceptual designs were prepared for typical motor driven pumps and turbopump configurations for a 1000 lbf thrust rocket engine.

  13. Solid Propellant Grain Structural Integrity Analysis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The structural properties of solid propellant rocket grains were studied to determine the propellant resistance to stresses. Grain geometry, thermal properties, mechanical properties, and failure modes are discussed along with design criteria and recommended practices.

  14. Study of aluminum particle combustion in solid propellant plumes using digital in-line holography and imaging pyrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yi; Guildenbecher, Daniel R.; Hoffmeister, Kathryn N. G.

    The combustion of molten metals is an important area of study with applications ranging from solid aluminized rocket propellants to fireworks displays. Our work uses digital in-line holography (DIH) to experimentally quantify the three-dimensional position, size, and velocity of aluminum particles during combustion of ammonium perchlorate (AP) based solid-rocket propellants. Additionally, spatially resolved particle temperatures are simultaneously measured using two-color imaging pyrometry. To allow for fast characterization of the properties of tens of thousands of particles, automated data processing routines are proposed. In using these methods, statistics from aluminum particles with diameters ranging from 15 to 900 µm are collectedmore » at an ambient pressure of 83 kPa. In the first set of DIH experiments, increasing initial propellant temperature is shown to enhance the agglomeration of nascent aluminum at the burning surface, resulting in ejection of large molten aluminum particles into the exhaust plume. The resulting particle number and volume distributions are quantified. In the second set of simultaneous DIH and pyrometry experiments, particle size and velocity relationships as well as temperature statistics are explored. The average measured temperatures are found to be 2640 ± 282 K, which compares well with previous estimates of the range of particle and gas-phase temperatures. The novel methods proposed here represent new capabilities for simultaneous quantification of the joint size, velocity, and temperature statistics during the combustion of molten metal particles. The proposed techniques are expected to be useful for detailed performance assessment of metalized solid-rocket propellants.« less

  15. Study of aluminum particle combustion in solid propellant plumes using digital in-line holography and imaging pyrometry

    DOE PAGES

    Chen, Yi; Guildenbecher, Daniel R.; Hoffmeister, Kathryn N. G.; ...

    2017-05-05

    The combustion of molten metals is an important area of study with applications ranging from solid aluminized rocket propellants to fireworks displays. Our work uses digital in-line holography (DIH) to experimentally quantify the three-dimensional position, size, and velocity of aluminum particles during combustion of ammonium perchlorate (AP) based solid-rocket propellants. Additionally, spatially resolved particle temperatures are simultaneously measured using two-color imaging pyrometry. To allow for fast characterization of the properties of tens of thousands of particles, automated data processing routines are proposed. In using these methods, statistics from aluminum particles with diameters ranging from 15 to 900 µm are collectedmore » at an ambient pressure of 83 kPa. In the first set of DIH experiments, increasing initial propellant temperature is shown to enhance the agglomeration of nascent aluminum at the burning surface, resulting in ejection of large molten aluminum particles into the exhaust plume. The resulting particle number and volume distributions are quantified. In the second set of simultaneous DIH and pyrometry experiments, particle size and velocity relationships as well as temperature statistics are explored. The average measured temperatures are found to be 2640 ± 282 K, which compares well with previous estimates of the range of particle and gas-phase temperatures. The novel methods proposed here represent new capabilities for simultaneous quantification of the joint size, velocity, and temperature statistics during the combustion of molten metal particles. The proposed techniques are expected to be useful for detailed performance assessment of metalized solid-rocket propellants.« less

  16. The Guggenheim Aeronautics Laboratory at Caltech and the creation of the modern rocket motor (1936-1946): How the dynamics of rocket theory became reality

    NASA Astrophysics Data System (ADS)

    Zibit, Benjamin Seth

    This thesis explores and unfolds the story of discovery in rocketry at The California Institute of Technology---specifically at Caltech's Guggenheim Aeronautics Laboratory---in the 1930s and 1940s. Caltech was home to a small group of engineering students and experimenters who, beginning in the winter of 1935--1936, formed a study and research team destined to change the face of rocket science in the United States. The group, known as the Guggenheim Aeronautics Laboratory (GALCIT, for short) Rocket Research Group, invented a new type of solid-rocket propellant, made distinct and influential discoveries in the theory of rocket combustion and design, founded the Jet Propulsion Laboratory, and incorporated the first American industrial concern devoted entirely to rocket motor production: The Aerojet Corporation. The theoretical work of team members, Frank Malina, Hsueh-shen Tsien, Homer J. Stewart, and Mark Mills, is examined in this thesis in detail. The author scrutinizes Frank Malina's doctoral thesis (both its assumptions and its mathematics), and finds that, although Malina's key assertions, his formulae, hold, his work is shown to make key assumptions about rocket dynamics which only stand the test of validity if certain approximations, rather than exact measurements, are accepted. Malina studied the important connection between motor-nozzle design and thrust; in his Ph.D. thesis, he developed mathematical statements which more precisely defined the design/thrust relation. One of Malina's colleagues on the Rocket Research Team, John Whiteside Parsons, created a new type of solid propellant in the winter of 1941--1942. This propellant, known as a composite propellant (because it simply was a relatively inert amalgam of propellant and oxidizer in non-powder form), became the forerunner of all modern solid propellants, and has become one of the seminal discoveries in the field of Twentieth Century rocketry. The latter chapters of this dissertation discuss the creation of the jet Propulsion Laboratory, the founding of the Aerojet Corporation, and emphasizes the issue of JPL's close relation to military development of the rocket becomes a core subject of this thesis. Cooperation between engineers in an academic setting and the military was not merely inevitable in the 1940s---it was actively fostered and proved quite profitable to all concerned. The deep relationship between the Guggenheim Aeronautics Laboratory and the Army Air Force was one model of the evolution of a permanent institutional edifice, weaving academic research and military end-use together. The dissertation concludes that what began as a modest effort to understand rocket theory in greater depth led within ten years to both research and development tracks which have profoundly altered the technological and military definition of modern history.

  17. Liquid-propellant rocket engines health-monitoring—a survey

    NASA Astrophysics Data System (ADS)

    Wu, Jianjun

    2005-02-01

    This paper is intended to give a summary on the health-monitoring technology, which is one of the key technologies both for improving and enhancing the reliability and safety of current rocket engines and for developing new-generation high reliable reusable rocket engines. The implication of health-monitoring and the fundamental principle obeyed by the fault detection and diagnostics are elucidated. The main aspects of health-monitoring such as system frameworks, failure modes analysis, algorithms of fault detection and diagnosis, control means and advanced sensor techniques are illustrated in some detail. At last, the evolution trend of health-monitoring techniques of liquid-propellant rocket engines is set out.

  18. On the combustion mechanisms of ZrH2 in double-base propellant.

    PubMed

    Yang, Yanjing; Zhao, Fengqi; Yuan, Zhifeng; Wang, Ying; An, Ting; Chen, Xueli; Xuan, Chunlei; Zhang, Jiankan

    2017-12-13

    Metal hydrides are regarded as a series of promising hydrogen-supplying fuel for solid rocket propellants. Their effects on the energetic and combustion performances of propellants are closely related to their reaction mechanisms. Here we report a first attempt to determine the reaction mechanism of ZrH 2 , a high-density metal hydride, in the combustion of a double-base propellant to evaluate its potential as a fuel. ZrH 2 is determined to possess good resistance to oxidation by nitrocellulose and nitroglycerine. Thus its combustion starts with dehydrogenation to generate H 2 and metallic Zr. Subsequently, the newly formed Zr and H 2 participate in the combustion and, especially, Zr melts and then combusts on the burning surface which favors the heat feedback to the propellant. This phenomenon is completely different from the combustion behavior of the traditional fuel Al, where the Al particles are ejected off the burning surface of the propellant to get into the luminous flame zone to burn. The findings in this work validate the potential of ZrH 2 as a hydrogen-supplying fuel for double-base propellants.

  19. Analysis of quasi-hybrid solid rocket booster concepts for advanced earth-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Zurawski, Robert L.; Rapp, Douglas C.

    1987-01-01

    A study was conducted to assess the feasibility of quasi-hybrid solid rocket boosters for advanced Earth-to-orbit vehicles. Thermochemical calculations were conducted to determine the effect of liquid hydrogen addition, solids composition change plus liquid hydrogen addition, and the addition of an aluminum/liquid hydrogen slurry on the theoretical performance of a PBAN solid propellant rocket. The space shuttle solid rocket booster was used as a reference point. All three quasi-hybrid systems theoretically offer higher specific impulse when compared with the space shuttle solid rocket boosters. However, based on operational and safety considerations, the quasi-hybrid rocket is not a practical choice for near-term Earth-to-orbit booster applications. Safety and technology issues pertinent to quasi-hybrid rocket systems are discussed.

  20. Rocket Propellant Talk at the 1957 NACA Lewis Inspection

    NASA Image and Video Library

    1957-10-21

    A researcher works a demonstration board in the Rocket Engine Test Facility during the 1957 Inspection of the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory in Cleveland, Ohio. Representatives from the military, aeronautical industry, universities, and the press were invited to the laboratory to be briefed on the NACA’s latest research efforts and tour the test facilities. Over 1700 people visited the Lewis during the October 7-10, 1957 Inspection. The Soviet Union launched their first Sputnik satellite just days before on October 4. NACA Lewis had been involved in small rockets and propellants research since 1945, but the NACA leadership was wary of involving itself too deeply with the work since ballistics traditionally fell under the military’s purview. The Lewis research was performed by the High Temperature Combustion section in the Fuels and Lubricants Division in a series of small cinderblock test cells. The rocket group was expanded in 1952 and made several test runs in late 1954 using liquid hydrogen as a propellant. A larger test facility, the Rocket Engine Test Facility, was approved and became operational just in time for the Inspection.

  1. State and prospects of solid propellant rocket development

    NASA Astrophysics Data System (ADS)

    Kukushkin, V. Kh.

    1992-07-01

    An overview is presented of aspects of solid-propellant rocket engine (SPRE) development with individual treatment given to sustainer and spacecraft SPRE technologies. The paper focuses on low-modulus fuels of composite solid propellant, requirements for adhesion stability, and enhancement of the power characteristics of solid propellants. R&D activities are described that relate to the use of SPREs with extending nozzles and to the design of ultradimensional nozzles for upper-stage engines. Other developments for the SPREs include engines with separate loading and pasty fuel applications, and progress is reported in the direction of detonation SPREs. The SPREs using pasty propellants provide good control over thrust characteristics and fuel qualities. A device is incorporated that assures fuel burning in the combustion region and reliable ignition during restarting of these engines.

  2. KENNEDY SPACE CENTER, FLA. - Jeff Thon, an SRB mechanic with United Space Alliance, tests a technique for vertical solid rocket booster propellant grain inspection. The inspection of segments is required as part of safety analysis.

    NASA Image and Video Library

    2003-09-11

    KENNEDY SPACE CENTER, FLA. - Jeff Thon, an SRB mechanic with United Space Alliance, tests a technique for vertical solid rocket booster propellant grain inspection. The inspection of segments is required as part of safety analysis.

  3. The 17th JANNAF Combustion Meeting, Volume 1

    NASA Technical Reports Server (NTRS)

    Eggleston, D. S. (Editor)

    1980-01-01

    The combustion of solid rocket propellants and combustion in ramjets is addressed. Subjects discussed include metal burning, steady-state combustion of composite propellants, velocity coupling and nonlinear instability, vortex shedding and flow effects on combustion instability, combustion instability in solid rocket motors, combustion diagnostics, subsonic and supersonic ramjet combustion, characterization of ramburner flowfields, and injection and combustion of ramjet fuels.

  4. A Plasma Rocket Demonstration on the International Space Station

    NASA Astrophysics Data System (ADS)

    Petro, A.

    2002-01-01

    in the development of a magneto-plasma rocket for several years. This type of rocket could be used in the future to propel interplanetary spacecraft. One feature of this concept is the ability to vary its specific impulse so that it can be operated in a mode that maximizes propellant efficiency or a mode that maximizes thrust. For this reason the system is called the Variable Specific Impulse Magneto-plasma Rocket or VASIMR. This ability to vary specific impulse and thrust will allow for optimum low thrust interplanetary trajectories and results in shorter trip times than is possible with fixed specific impulse systems while preserving adequate payload margins. demonstrations are envisioned. A ground-based experiment of a low-power VASIMR prototype rocket is currently underway at the Advanced Space Propulsion Laboratory. The next step is a proposal to build and fly a 25-kilowatt VASIMR rocket as an external payload on the International Space Station. This experiment will provide an opportunity to demonstrate the performance of the rocket in space and measure the induced environment. The experiment will also utilize the space station for its intended purpose as a laboratory with vacuum conditions that cannot be matched by any laboratory on Earth. propulsion on the space station. An electric propulsion system like VASIMR, if provided with sufficient electrical power, could provide continuous drag force compensation for the space station. Drag compensation would eliminate the need for reboosting the station, an operation that will consume about 60 metric tons of propellant in a ten-year period. In contrast, an electric propulsion system would require very little propellant. In fact, a system like VASIMR can use waste hydrogen from the station's life support system as its propellant. This waste hydrogen is otherwise dumped overboard. Continuous drag compensation would also improve the microgravity conditions on the station. So electric propulsion can reduce propellant delivery requirements and thereby increase available payload capacity and at the same time improve the conditions for scientific research. and the space environment. This is a beneficial effect that prevents a charge buildup on the station. The station already operates two dedicated non-propulsive plasma contactor devices for this purpose. A VASIMR rocket would function as an additional plasma contactor. would be delivered to orbit in the Space Shuttle payload bay. It would be mounted on a standard payload attachment structure. After removal from the payload bay by the shuttle robotic arm, it would be handed to the space station robotic arm which would place it at an external payload attach site on the station truss. A mating device for power and data connections exists at the payload site. The experiment would receive one to three kilowatts of power from the station. About 600 watts would be used for cryogenic cooling and control devices. Additional power would be stored in a set of batteries. The VASIMR experiment would be operated for short periods when the batteries can provide power to the amplifiers that feed radio-frequency power to the thruster assembly. The thruster assembly is composed of an inner tube in which the neutral propellant is injected and ionized and a larger tube, which supports the radio frequency antennas, which ionize the gas and heat the plasma. Electromagnet coils that provide the magnetic field to constrain the flow of the plasma and form the magnetic exit nozzle surround these tubes. to this supply are planned for the experiment. The experiment will carry two dedicated propellant tanks which each have the capacity to store all the propellant needed for an experimental program lasting several months. With two propellant tanks, the opportunity exists to perform experiments with more than one type of propellant. Hydrogen is the primary choice for propellant but deuterium and helium are also of interest and might also be included. All the propellant is stored and used in gaseous form at ambient temperature. rocket. There is a superconducting electromagnet that will need to be maintained at cryogenic temperatures in order to operate properly. The magnet is in close proximity to the plasma so a combination of compact insulation and passive and active heat transport techniques will be employed. activity requirements. However, provisions will be included to capitalize on the presence of humans in case repairs or servicing is required. The batteries, propellant tanks, and electronic components will be designed for on-orbit removal and replacement, if necessary. could be located on the station to provide useful thrust for drag compensation. In order to provide power for continuous thrusting, it may be necessary to augment the power generation system for the station. Another attractive possibility is to develop an electric propulsion testbed for the space station. This testbed could be used for testing and certifying a variety of propulsion systems at various stages of maturity while providing thrust for the space station. This station facility would be a valuable asset for commercial and government space transportation programs. more powerful and capable propulsion systems that will be demonstrated on free-flying spacecraft in near-Earth space and eventually on missions to the planets.

  5. SOLID PROPELLANT COMBUSTION MECHANISM STUDIES.

    DTIC Science & Technology

    SOLID ROCKET PROPELLANTS, BURNING RATE), LOW PRESSURE, COMBUSTION PRODUCTS, QUENCHING, THERMAL CONDUCTIVITY, KINETIC THEORY, SURFACE PROPERTIES, PHASE STUDIES, SOLIDS, GASES, PYROLYSIS, MATHEMATICAL ANALYSIS.

  6. Hybrid boosters for future launch vehicles

    NASA Astrophysics Data System (ADS)

    Dargies, E.; Lo, R. E.

    1987-10-01

    Hybrid rocket propulsion systems furnish the advantages of much higher safety levels, due both to shut-down capability in case of ignition failure to one unit and the potential choice of nontoxic propellant combinations, such as LOX/polyethylene; they nevertheless yield performance levels comparable or superior to those of solid rocket boosters. Attention is presently given to the results of DFVLR analytical model studies of hybrid propulsion systems, with attention to solid fuel grain geometrical design and propellant grain surface ablation rate. The safety of hybrid rockets recommends them for use by manned spacecraft.

  7. Demonstration of a sterilizable solid rocket motor system

    NASA Technical Reports Server (NTRS)

    Mastrolia, E. J.; Santerre, G. M.; Lambert, W. L.

    1975-01-01

    A solid propellant rocket motor containing 60.9 Kg (134-lb) of propellant was successfully static fired after being subjected to eight heat sterilization cycles (three 54-hour cycles plus five 40-hour cycles) at 125 C (257 F). The test motor, a modified SVM-3 chamber, incorporated a flexible grain retention system of EPR rubber to relieve thermal shrinkage stresses. The propellant used in the motor was ANB-3438, and 84 wt% solids system (18 wt% aluminum) containing 66 wt% stabilized ammonium perchlorate oxidizer and a saturated hydroxylterminated polybutadiene binder. Bonding of the propellant to the EPR insulation (GenGard V-4030) was provided by the use of SD-886, an epoxy urethane restriction.

  8. Inverse synthetic aperture radar imagery of a man with a rocket propelled grenade launcher

    NASA Astrophysics Data System (ADS)

    Tran, Chi N.; Innocenti, Roberto; Kirose, Getachew; Ranney, Kenneth I.; Smith, Gregory

    2004-08-01

    As the Army moves toward more lightly armored Future Combat System (FCS) vehicles, enemy personnel will present an increasing threat to U.S. soldiers. In particular, they face a very real threat from adversaries using shoulder-launched, rocket propelled grenade (RPG). The Army Research Laboratory has utilized its Aberdeen Proving Ground (APG) turntable facility to collect very high resolution, fully polarimetric Ka band radar data at low depression angles of a man holding an RPG. In this paper, we examine the resulting low resolution and high resolution range profiles; and based on the observed radar cross section (RCS) value, we attempt to determine the utility of Ka band radar for detecting enemy personnel carrying RPG launchers.

  9. Launch Vehicle Performance for Bipropellant Propulsion Using Atomic Propellants With Oxygen

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2000-01-01

    Atomic propellants for bipropellant launch vehicles using atomic boron, carbon, and hydrogen were analyzed. The gross liftoff weights (GLOW) and dry masses of the vehicles were estimated, and the 'best' design points for atomic propellants were identified. Engine performance was estimated for a wide range of oxidizer to fuel (O/F) ratios, atom loadings in the solid hydrogen particles, and amounts of helium carrier fluid. Rocket vehicle GLOW was minimized by operating at an O/F ratio of 1.0 to 3.0 for the atomic boron and carbon cases. For the atomic hydrogen cases, a minimum GLOW occurred when using the fuel as a monopropellant (O/F = 0.0). The atomic vehicle dry masses are also presented, and these data exhibit minimum values at the same or similar O/F ratios as those for the vehicle GLOW. A technology assessment of atomic propellants has shown that atomic boron and carbon rocket analyses are considered to be much more near term options than the atomic hydrogen rockets. The technology for storing atomic boron and carbon has shown significant progress, while atomic hydrogen is not able to be stored at the high densities needed for effective propulsion. The GLOW and dry mass data can be used to estimate the cost of future vehicles and their atomic propellant production facilities. The lower the propellant's mass, the lower the overall investment for the specially manufactured atomic propellants.

  10. Solid rocket motors for the Space Shuttle booster.

    NASA Technical Reports Server (NTRS)

    Odom, J. B.

    1972-01-01

    The evolution of the space shuttle booster system is reviewed from its initial concepts based on liquid-propellant reusable boosters to the final selection of recoverable, solid-fuel rocket motors. The rationale associated with each of the several major decisions in the evolution process is discussed. It is shown that the external tank orbiter configuration emerging from the latest studies takes maximum advantage of the solid rocket motor development experience and promises to be the optimum configuration for fulfilling the paramount shuttle program requirements of minimum total development risk within acceptable costs.

  11. Examination of the liver in personnel working with liquid rocket propellant

    PubMed Central

    Petersen, Palle; Bredahl, Erik; Lauritsen, Ove; Laursen, Thomas

    1970-01-01

    Petersen, P., Bredahl, E., Lauritsen, O., and Laursen, T. (1970).Brit. J. industr. Med.,27, 141-146. Examination of the liver in personnel working with liquid rocket propellants. Personnel working with liquid rocket propellants were subjected to routine health examinations, including liver function tests, as the propellant, unsymmetrical dimethylhydrazine (UDMH) is potentially toxic to the liver. In 46 persons the concentrations of serum alanine aminotransferase (SGPT) were raised. Liver biopsy was performed in 26 of these men; 6 specimens were pathological (fatty degeneration), 5 were uncertain, and 15 were normal. All 6 pathological biopsies were from patients with a raised SGPT at the time of biopsy. Of the 15 persons with a normal liver biopsy, 14 had a normal SGPT, while one (who was an alcoholic) had a raised SGPT. The connection between SGPT and histology of the liver, as well as the possible causal relation between the pathological findings and exposure to UDMH, is discussed. Images PMID:5428632

  12. Propulsion Estimates for High Energy Lunar Missions Using Future Propellants

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.; Bennett, Gary L.

    2016-01-01

    High energy propellants for human lunar missions are analyzed, focusing on very advanced ozone and atomic hydrogen. One of the most advanced launch vehicle propulsion systems, such as the Space Shuttle Main Engine (SSME), used hydrogen and oxygen and had a delivered specific impulse of 453 seconds. In the early days of the space program, other propellants (or so called metapropellants) were suggested, including atomic hydrogen and liquid ozone. Theoretical and experimental studies of atomic hydrogen and ozone were conducted beginning in the late 1940s. This propellant research may have provided screenwriters with the idea of an atomic hydrogen-ozone rocket engine in the 1950 movie, Rocketship X-M. This paper presents analyses showing that an atomic hydrogen-ozone rocket engine could produce a specific impulse over a wide range of specific impulse values reaching as high as 1,600 s. A series of single stage and multistage rocket vehicle analyses were conducted to find the minimum specific impulse needed to conduct high energy round trip lunar missions.

  13. DEVELOPMENT OF FLEXIBLE INSULATION FOR SOLID PROPELLANT ROCKET MOTOR CASES

    DTIC Science & Technology

    acrylonitrile-phenol furfural -asbestos composition. Other promising materials which are reported are based on two types of liquid butadiene/styrene cbers. The...This material was based on a butadiene/acrylonitrile-phenol furfural -asbestos composition. Other promising materials which are reported are based on two

  14. Comparison of super-high-energy-propulsion-systems based on metallic hydrogen propellant for ES to LEO space transportation

    NASA Technical Reports Server (NTRS)

    Thierschmann, M.

    1990-01-01

    The application is studied of metallic H2 as a rocket propellant, which contains a specific energy of about 52 kcal/g in theory yielding a maximum specific impulse of 1700 s. With the convincing advantage of having a density 14 times that of conventional liquid H2/liquid O2 propellants, metallic H2 could satisfy the demands of advanced launch vehicle propulsion for the next millennium. Provided that there is an atomic metallic state of H2, and that this state is metastable at ambient pressure, which still is not proven, the results are given of the study of some important areas, which concern the production of metallic H2, the combustion, chamber cooling, and storage. The results show that the use of metallic H2 as rocket propellant could lead to revolutionary changes in space vehicle philosophy toward small size, small weight, and high performance single stage to orbit systems. The use of high metallic H2 mass fractions results in a dramatic reduction of required propellant volume, while gas temperatures in the combustion chamber exceed 5000 K. Furthermore, it follows, that H2 (liquid or slush) is the most favorable candidate as working fluid. Jet generated noise due to high exhaust velocities could be a problem.

  15. Coal-Fired Rocket Engine

    NASA Technical Reports Server (NTRS)

    Anderson, Floyd A.

    1987-01-01

    Brief report describes concept for coal-burning hybrid rocket engine. Proposed engine carries larger payload, burns more cleanly, and safer to manufacture and handle than conventional solid-propellant rockets. Thrust changeable in flight, and stops and starts on demand.

  16. Effect of the Thruster Configurations on a Laser Ignition Microthruster

    NASA Astrophysics Data System (ADS)

    Koizumi, Hiroyuki; Hamasaki, Kyoichi; Kondo, Ryo; Okada, Keisuke; Nakano, Masakatsu; Arakawa, Yoshihiro

    Research and development of small spacecraft have advanced extensively throughout the world and propulsion devices suitable for the small spacecraft, microthruster, is eagerly anticipated. The authors proposed a microthruster using 1—10-mm-size solid propellant. Small pellets of solid propellant are installed in small combustion chambers and ignited by the irradiation of diode laser beam. This thruster is referred as to a laser ignition microthruster. Solid propellant enables large thrust capability and compact propulsion system. To date theories of a solid-propellant rocket have been well established. However, those theories are for a large-size solid propellant and there are a few theories and experiments for a micro-solid rocket of 1—10mm class. This causes the difficulty of the optimum design of a micro-solid rocket. In this study, we have experimentally investigated the effect of thruster configurations on a laser ignition microthruster. The examined parameters are aperture ratio of the nozzle, length of the combustion chamber, area of the nozzle throat, and divergence angle of the nozzle. Specific impulse dependences on those parameters were evaluated. It was found that large fraction of the uncombusted propellant was the main cause of the degrading performance. Decreasing the orifice diameter in the nozzle with a constant open aperture ratio was an effective method to improve this degradation.

  17. Rocket effluent: Its ice nucleation activity and related properties

    NASA Technical Reports Server (NTRS)

    Parungo, F. P.; Allee, P. A.

    1978-01-01

    To investigate the possibility of inadvertent weather modification from rocket effluent, aerosol samples were collected from an instrumented aircraft subsequent to the Voyager 1 and 2 launches. The aerosol's morphology, concentration, and size distribution were examined with an electron microscope. The elemental compositions of individual particles were analyzed with an X-ray energy spectrometer. Ice nucleus concentration was measured with a thermal diffusion chamber. The particles' physical and chemical properties were related to their ice nucleation activity. A laboratory experiment on rocket propellant exhaust was conducted under controlled conditions. Both laboratory and field experimental results indicated that rocket propellant exhaust can produce active ice nuclei and modify local weather in suitable meteorological conditions.

  18. Combustion stability with baffles, absorbers and velocity sensitive combustion. [liquid propellant rocket combustors

    NASA Technical Reports Server (NTRS)

    Mitchell, C. E.

    1980-01-01

    Analytical and computational techniques were developed to predict the stability behavior of liquid propellant rocket combustors using damping devices such as acoustic liners, slot absorbers, and injector face baffles. Models were developed to determine the frequency and decay rate of combustor oscillations, the spatial and temporal pressure waveforms, and the stability limits in terms of combustion response model parameters.

  19. Analytical and experimental studies of impinging liquid jets

    NASA Technical Reports Server (NTRS)

    Ryan, H. M.; Anderson, W. E.; Pal, S.; Santoro, R. J.

    1994-01-01

    Impinging injectors are a common type of injector used in liquid propellant rocket engines and are typically used in engines where both propellants are injected as a liquid, e.g., engines using LOX/hydrocarbon and storable propellant combinations. The present research program is focused on providing the requisite fundamental understanding associated with impinging jet injectors for the development of an advanced a priori combustion stability design analysis capability. To date, a systematic study of the atomization characteristics of impinging liquid jets under cold-flow conditions have been completed. Effects of orifice diameter, impingement angle, pre-impingement length, orifice length-to-diameter ratio, fabrication procedure, jet flow condition and jet velocity under steady and oscillating, and atmospheric- and high-pressure environments have been investigated. Results of these experimental studies have been compared to current models of sheet breakup and drop formation. In addition, the research findings have been scrutinized to provide a fundamental explanation for a proven empirical correlation used in the design of stable impinging injector-based rocket engines.

  20. Space Propulsion Hazards Analysis Manual (SPHAM). Volume 1

    DTIC Science & Technology

    1988-10-01

    Wiley, New York, 1983, p.p. 64-68 (11) Martin Marietta MCR 82-800, Rev. B, 29 September 1982, "DOD Safety Review Team Lessons Learned Data Base...FLinaIRe-p,.-t, Martin Marietta Technical Report , Contract F42600-81-D-1379, September 1982. (57) Bader, Donaldson, et. al., Liquid Propellant Rocket Abort...Fire Model, Journal of Astronautics and Aeronautics, December 1971. (58) Banning, D., Propellant_$pill Analysi, Martin Marietta Technical Report , July

  1. Computational Thermochemistry of Jet Fuels and Rocket Propellants

    NASA Technical Reports Server (NTRS)

    Crawford, T. Daniel

    2002-01-01

    The design of new high-energy density molecules as candidates for jet and rocket fuels is an important goal of modern chemical thermodynamics. The NASA Glenn Research Center is home to a database of thermodynamic data for over 2000 compounds related to this goal, in the form of least-squares fits of heat capacities, enthalpies, and entropies as functions of temperature over the range of 300 - 6000 K. The chemical equilibrium with applications (CEA) program written and maintained by researchers at NASA Glenn over the last fifty years, makes use of this database for modeling the performance of potential rocket propellants. During its long history, the NASA Glenn database has been developed based on experimental results and data published in the scientific literature such as the standard JANAF tables. The recent development of efficient computational techniques based on quantum chemical methods provides an alternative source of information for expansion of such databases. For example, it is now possible to model dissociation or combustion reactions of small molecules to high accuracy using techniques such as coupled cluster theory or density functional theory. Unfortunately, the current applicability of reliable computational models is limited to relatively small molecules containing only around a dozen (non-hydrogen) atoms. We propose to extend the applicability of coupled cluster theory- often referred to as the 'gold standard' of quantum chemical methods- to molecules containing 30-50 non-hydrogen atoms. The centerpiece of this work is the concept of local correlation, in which the description of the electron interactions- known as electron correlation effects- are reduced to only their most important localized components. Such an advance has the potential to greatly expand the current reach of computational thermochemistry and thus to have a significant impact on the theoretical study of jet and rocket propellants.

  2. Process for the leaching of AP from propellant

    NASA Technical Reports Server (NTRS)

    Shaw, G. C.; Mcintosh, M. J. (Inventor)

    1980-01-01

    A method for the recovery of ammonium perchlorate from waste solid rocket propellant is described wherein shredded particles of the propellant are leached with an aqueous leach solution containing a low concentration of surface active agent while stirring the suspension.

  3. ASRM Multi-Port Igniter Flow Field Analysis

    NASA Technical Reports Server (NTRS)

    Kania, Lee; Dumas, Catherine; Doran, Denise

    1993-01-01

    The Advanced Solid Rocket Motor (ASRM) program was initiated by NASA in response to the need for a new generation rocket motor capable of providing increased thrust levels over the existing Redesigned Solid Rocket Motor (RSRM) and thus augment the lifting capacity of the space shuttle orbiter. To achieve these higher thrust levels and improve motor reliability, advanced motor design concepts were employed. In the head end of the motor, for instance, the propellent cast has been changed from the conventional annular configuration to a 'multi-slot' configuration in order to increase the burn surface area and guarantee rapid motor ignition. In addition, the igniter itself has been redesigned and currently features 12 exhaust ports in order to channel hot igniter combustion gases into the circumferential propellent slots. Due to the close proximity of the igniter ports to the propellent surfaces, new concerns over possible propellent deformation and erosive burning have arisen. The following documents the effort undertaken using computational fluid dynamics to perform a flow field analysis in the top end of the ASRM motor to determine flow field properties necessary to permit a subsequent propellent fin deformation analysis due to pressure loading and an assessment of the extent of erosive burning.

  4. ASRM multi-port igniter flow field analysis

    NASA Astrophysics Data System (ADS)

    Kania, Lee; Dumas, Catherine; Doran, Denise

    1993-07-01

    The Advanced Solid Rocket Motor (ASRM) program was initiated by NASA in response to the need for a new generation rocket motor capable of providing increased thrust levels over the existing Redesigned Solid Rocket Motor (RSRM) and thus augment the lifting capacity of the space shuttle orbiter. To achieve these higher thrust levels and improve motor reliability, advanced motor design concepts were employed. In the head end of the motor, for instance, the propellent cast has been changed from the conventional annular configuration to a 'multi-slot' configuration in order to increase the burn surface area and guarantee rapid motor ignition. In addition, the igniter itself has been redesigned and currently features 12 exhaust ports in order to channel hot igniter combustion gases into the circumferential propellent slots. Due to the close proximity of the igniter ports to the propellent surfaces, new concerns over possible propellent deformation and erosive burning have arisen. The following documents the effort undertaken using computational fluid dynamics to perform a flow field analysis in the top end of the ASRM motor to determine flow field properties necessary to permit a subsequent propellent fin deformation analysis due to pressure loading and an assessment of the extent of erosive burning.

  5. Microfabricated Liquid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Epstein, Alan H.; Joppin, C.; Kerrebrock, J. L.; Schneider, Steven J. (Technical Monitor)

    2003-01-01

    Under NASA Glenn Research Center sponsorship, MIT has developed the concept of micromachined, bipropellant, liquid rocket engines. This is potentially a breakthrough technology changing the cost-performance tradeoffs for small propulsion systems, enabling new applications, and redefining the meaning of the term low-cost-access-to-space. With this NASA support, a liquid-cooled, gaseous propellant version of the thrust chamber and nozzle was designed, built, and tested as a first step. DARPA is currently funding MIT to demonstrate turbopumps and controls. The work performed herein was the second year of a proposed three-year effort to develop the technology and demonstrate very high power density, regeneratively cooled, liquid bipropellant rocket engine thrust chamber and nozzles. When combined with the DARPA turbopumps and controls, this work would enable the design and demonstration of a complete rocket propulsion system. The original MIT-NASA concept used liquid oxygen-ethanol propellants. The military applications important to DARPA imply that storable liquid propellants are needed. Thus, MIT examined various storable propellant combinations including N2O4 and hydrazine, and H2O2 and various hydrocarbons. The latter are preferred since they do not have the toxicity of N2O4 and hydrazine. In reflection of the newfound interest in H2O2, it is once again in production and available commercially. A critical issue for the microrocket engine concept is cooling of the walls in a regenerative design. This is even more important at microscale than for large engines due to cube-square scaling considerations. Furthermore, the coolant behavior of rocket propellants has not been characterized at microscale. Therefore, MIT designed and constructed an apparatus expressly for this purpose. The report details measurements of two candidate microrocket fuels, JP-7 and JP-10.

  6. Simple-1: Development stage of the data transmission system for a solid propellant mid-power rocket model

    NASA Astrophysics Data System (ADS)

    Yarce, Andrés; Sebastián Rodríguez, Juan; Galvez, Julián; Gómez, Alejandro; García, Manuel J.

    2017-06-01

    This paper presents the development stage of a communication module for a solid propellant mid-power rocket model. The communication module was named. Simple-1 and this work considers its design, construction and testing. A rocket model Estes Ventris Series Pro II® was modified to introduce, on the top of the payload, several sensors in a CanSat form factor. The Printed Circuit Board (PCB) was designed and fabricated from Commercial Off The Shelf (COTS) components and assembled in a cylindrical rack structure similar to this small format satellite concept. The sensors data was processed using one Arduino Mini and transmitted using a radio module to a Software Defined Radio (SDR) HackRF based platform on the ground station. The Simple-1 was tested using a drone in successive releases, reaching altitudes from 200 to 300 meters. Different kind of data, in terms of altitude, position, atmospheric pressure and vehicle temperature were successfully measured, making possible the progress to a next stage of launching and analysis.

  7. The Technique for CFD-Simulation of Fuel Valve from Pneumatic-Hydraulic System of Liquid-Propellant Rocket Engine

    NASA Astrophysics Data System (ADS)

    Shabliy, L. S.; Malov, D. V.; Bratchinin, D. S.

    2018-01-01

    In the article the description of technique for simulation of valves for pneumatic-hydraulic system of liquid-propellant rocket engine (LPRE) is given. Technique is based on approach of computational hydrodynamics (Computational Fluid Dynamics - CFD). The simulation of a differential valve used in closed circuit LPRE supply pipes of fuel components is performed to show technique abilities. A schematic and operation algorithm of this valve type is described in detail. Also assumptions made in the construction of the geometric model of the hydraulic path of the valve are described in detail. The calculation procedure for determining valve hydraulic characteristics is given. Based on these calculations certain hydraulic characteristics of the valve are given. Some ways of usage of the described simulation technique for research the static and dynamic characteristics of the elements of the pneumatic-hydraulic system of LPRE are proposed.

  8. Analysis of Rocket, Ram-Jet, and Turbojet Engines for Supersonic Propulsion of Long-Range Missles. II - Rocket Missile Performance

    NASA Technical Reports Server (NTRS)

    Huff, Vearl N.; Kerrebrock, Jack

    1954-01-01

    The theoretical performance of a two-stage ballistic rocket mis having a centerbody and two parallel boosters was investigated for J oxygen and ammonia-fluorine propellants. Both power-plant and missi parameters were optimized to give minimum cost on-the basis of the analysis for a range of 5500 nautical miles. After optimum values were found, each parameter was varied independently to determine its effect on performance of the missile. The missile using the ammonia-fluorine propellant weighs about one half as much as a missile using JP4-oxygen. Based on an expected unit cost of fluorine in quantity production, the ammonia-fluorine missile has a substantially lower relative cost than a JP4-oxygen missile. Optimum chamber pressures for both propellant systems and for both the centerbody and boosters were between 450 and 600 pounds per square inch. High design altitudes for the exhaust nozzle are desirable for both the centerbody and boosters. For the centerbody, the design altitude should be between 45,000 and 60,000 feet, with the value for ammonia-fluorine lower than that for JP4-oxygen. For the boosters, the design altitude should be 20,000 to 30,000 feet, with the value for the ammonia-fluorine. missile higher.

  9. Feasibility Study on Cutting HTPB Propellants with Abrasive Water Jet

    NASA Astrophysics Data System (ADS)

    Jiang, Dayong; Bai, Yun

    2018-01-01

    Abrasive water jet is used to carry out the experiment research on cutting HTPB propellants with three components, which will provide technical support for the engineering treatment of waste rocket motor. Based on the reliability theory and related scientific research results, the safety and efficiency of cutting sensitive HTPB propellants by abrasive water jet were experimentally studied. The results show that the safety reliability is not less than 99.52% at 90% confidence level, so the safety is adequately ensured. The cooling and anti-friction effect of high-speed water jet is the decisive factor to suppress the detonation of HTPB propellant. Compared with pure water jet, cutting efficiency was increased by 5% - 87%. The study shows that abrasive water jets meet the practical use for cutting HTPB propellants.

  10. 14 CFR 101.22 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.22 Definitions. The following definitions apply to this subpart: (a) Class 1—Model Rocket means an amateur rocket that: (1) Uses no more than 125 grams (4.4 ounces) of propellant; (2) Uses a...

  11. 14 CFR 101.22 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.22 Definitions. The following definitions apply to this subpart: (a) Class 1—Model Rocket means an amateur rocket that: (1) Uses no more than 125 grams (4.4 ounces) of propellant; (2) Uses a...

  12. 14 CFR 101.22 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.22 Definitions. The following definitions apply to this subpart: (a) Class 1—Model Rocket means an amateur rocket that: (1) Uses no more than 125 grams (4.4 ounces) of propellant; (2) Uses a...

  13. 14 CFR 101.22 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.22 Definitions. The following definitions apply to this subpart: (a) Class 1—Model Rocket means an amateur rocket that: (1) Uses no more than 125 grams (4.4 ounces) of propellant; (2) Uses a...

  14. 14 CFR 101.22 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.22 Definitions. The following definitions apply to this subpart: (a) Class 1—Model Rocket means an amateur rocket that: (1) Uses no more than 125 grams (4.4 ounces) of propellant; (2) Uses a...

  15. Theoretical Acoustic Absorber Design Approach for LOX/LCH4 Pintle Injector Rocket Engines

    NASA Astrophysics Data System (ADS)

    Candelaria, Jonathan

    Liquid rocket engines, or LREs, have served a key role in space exploration efforts. One current effort involves the utilization of liquid oxygen (LOX) and liquid methane (LCH4) LREs to explore Mars with in-situ resource utilization for propellant production. This on-site production of propellant will allow for greater payload allocation instead of fuel to travel to the Mars surface, and refueling of propellants to travel back to Earth. More useable mass yields a greater benefit to cost ratio. The University of Texas at El Paso's (UTEP) Center for Space Exploration and Technology Research Center (cSETR) aims to further advance these methane propulsion systems with the development of two liquid methane - liquid oxygen propellant combination rocket engines. The design of rocket engines, specifically liquid rocket engines, is complex in that many variables are present that must be taken into consideration in the design. A problem that occurs in almost every rocket engine development program is combustion instability, or oscillatory combustion. It can result in the destruction of the rocket, subsequent destruction of the vehicle and compromise the mission. These combustion oscillations can vary in frequency from 100 to 20,000 Hz or more, with varying effects, and occur from different coupling phenomena. It is important to understand the effects of combustion instability, its physical manifestations, how to identify the instabilities, and how to mitigate or dampen them. Linear theory methods have been developed to provide a mathematical understanding of the low- to mid-range instabilities. Nonlinear theory is more complex and difficult to analyze mathematically, therefore no general analytical method that yields a solution exists. With limited resources, time, and the advice of our NASA mentors, a data driven experimental approach utilizing quarter wave acoustic dampener cavities was designed. This thesis outlines the methodology behind the design of an acoustic dampening system for a 500 lbf and a 2000 lbf throttleable liquid oxygen liquid methane pintle injector rocket engine.

  16. Bleed cycle propellant pumping in a gas-core nuclear rocket engine system

    NASA Technical Reports Server (NTRS)

    Kascak, A. F.; Easley, A. J.

    1972-01-01

    The performance of ideal and real staged primary propellant pumps and bleed-powered turbines was calculated for gas-core nuclear rocket engines over a range of operating pressures from 500 to 5000 atm. This study showed that for a required engine operating pressure of 1000 atm the pump work was about 0.8 hp/(lb/sec), the specific impulse penalty resulting from the turbine propellant bleed flow as about 10 percent; and the heat required to preheat the propellant was about 7.8 MN/(lb/sec). For a specific impulse above 2400 sec, there is an excess of energy available in the moderator due to the gamma and neutron heating that occurs there. Possible alternative pumping cycles are the Rankine or Brayton cycles.

  17. Biogenic technology for recultivation of lands contaminated due to rocket propellant spillage

    NASA Astrophysics Data System (ADS)

    Kovshov, S. V.; Garkushev, A. U.; Sazykin, A. M.

    2015-04-01

    This article describes the problem of soil properties deterioration due to rocket propellant spillage. Melange and samin are considered to be the main pollutants. Provision is made for assessment of the existing mechanisms for monitoring of quality and recultivation of lands disturbed by rocket propellant spills. Some major disadvantages of currently used standard recultivation technologies are listed. An alternative is the use of more environmentally safe and cost effective methods aimed at disturbed lands biological restoration. An example of such a technology is covering the affected area with a biogenic mixture consisting of biohumus and sodium carboxymethyl cellulose followed by seeding it with specially selected herbal mixtures. It was found out that the most rational parameters of such protective layer is its thickness of 3 cm, and 99:1 ratio of its constituent components.

  18. Small Launch Vehicle Concept Development for Affordable Multi-Stage Inline Configurations

    NASA Technical Reports Server (NTRS)

    Beers, Benjamin R.; Waters, Eric D.; Philips, Alan D.; Threet, Grady E., Jr.

    2014-01-01

    The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center conducted a study of two configurations of a three-stage, inline, liquid propellant small launch vehicle concept developed on the premise of maximizing affordability by targeting a specific payload capability range based on current and future industry demand. The initial configuration, NESC-1, employed liquid oxygen as the oxidizer and rocket propellant grade kerosene as the fuel in all three stages. The second and more heavily studied configuration, NESC-4, employed liquid oxygen and rocket propellant grade kerosene on the first and second stages and liquid oxygen and liquid methane fuel on the third stage. On both vehicles, sensitivity studies were first conducted on specific impulse and stage propellant mass fraction in order to baseline gear ratios and drive the focus of concept development. Subsequent sensitivity and trade studies on the NESC-4 concept investigated potential impacts to affordability due to changes in gross liftoff mass and/or vehicle complexity. Results are discussed at a high level to understand the impact severity of certain sensitivities and how those trade studies conducted can either affect cost, performance, or both.

  19. A study of performance and cost improvement potential of the 120 inch (3.05 m) diameter solid rocket motor. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    Backlund, S. J.; Rossen, J. N.

    1971-01-01

    A parametric study of ballistic modifications to the 120 inch diameter solid propellant rocket engine which forms part of the Air Force Titan 3 system is presented. 576 separate designs were defined and 24 were selected for detailed analysis. Detailed design descriptions, ballistic performance, and mass property data were prepared for each design. It was determined that a relatively simple change in design parameters could provide a wide range of solid propellant rocket engine ballistic characteristics for future launch vehicle applications.

  20. UAV Swarm Attack: Protection System Alternatives for Destroyers

    DTIC Science & Technology

    2012-12-01

    Tactical Rocket-Propelled Grenade Airbag Protection System TRL - Technology Readiness Level UAV - Unmanned Aerial Vehicle USN - United States...com- posed of 62 DDGs is $2.014 billion dollars for the 12 year life cycle. J. REACTIVE ARMOR The Tactical Rocket-Propelled Grenade (RPG) Airbag ...Protection System (TRAPS) system involves ‘close-in’ protection using airbags located around a vehicle to minimize the damage from RPGs. This system was

  1. Some problems of nonlinear waves in solid propellant rocket motors

    NASA Technical Reports Server (NTRS)

    Culick, F. E. C.

    1979-01-01

    An approximate technique for analyzing nonlinear waves in solid propellant rocket motors is presented which inexpensively provides accurate results up to amplitudes of ten percent. The connection with linear stability analysis is shown. The method is extended to third order in the amplitude of wave motion in order to study nonlinear stability, or triggering. Application of the approximate method to the behavior of pulses is described.

  2. Fuels and Space Propellants for Reusable Launch Vehicles: A Small Business Innovation Research Topic and Its Commercial Vision

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1997-01-01

    Under its Small Business Innovation Research (SBIR) program (and with NASA Headquarters support), the NASA Lewis Research Center has initiated a topic entitled "Fuels and Space Propellants for Reusable Launch Vehicles." The aim of this project would be to assist in demonstrating and then commercializing new rocket propellants that are safer and more environmentally sound and that make space operations easier. Soon it will be possible to commercialize many new propellants and their related component technologies because of the large investments being made throughout the Government in rocket propellants and the technologies for using them. This article discusses the commercial vision for these fuels and propellants, the potential for these propellants to reduce space access costs, the options for commercial development, and the benefits to nonaerospace industries. This SBIR topic is designed to foster the development of propellants that provide improved safety, less environmental impact, higher density, higher I(sub sp), and simpler vehicle operations. In the development of aeronautics and space technology, there have been limits to vehicle performance imposed by traditionally used propellants and fuels. Increases in performance are possible with either increased propellant specific impulse, increased density, or both. Flight system safety will also be increased by the use of denser, more viscous propellants and fuels.

  3. Flow Induced Nutation Instability in Spinning Solid Propellant Rockets

    DTIC Science & Technology

    1990-04-01

    September 1989 ROCKETS April 1990 Authors: Wasatch Research & Engineering, Inc. G. A. Flandro 375 N. Virginia Street M, Leloudis Salt Lake City UT...AFSC), Edwards Air Force Base, CA. AL Project Manager was Gary L. Vogt. This report has been reviewed and is approved for release and distribution in...accordance with the distribution statement on the cover and on the DD Form 1473. ,(- GARY L. VOCT LAWRENCE P. OUINN Project Manager Chief

  4. Performance and Stability Analyses of Rocket Combustion Devices Using Liquid Oxygen/Liquid Methane Propellants

    NASA Technical Reports Server (NTRS)

    Hulka, James R.; Jones, G. W.

    2010-01-01

    Liquid rocket engines using oxygen and methane propellants are being considered by the National Aeronautics and Space Administration (NASA) for in-space vehicles. This propellant combination has not been previously used in flight-qualified engine systems, so limited test data and analysis results are available at this stage of early development. NASA has funded several hardware-oriented programs with oxygen and methane propellants over the past several years with the Propulsion and Cryogenic Advanced Development (PCAD) project, under the Exploration Technology Development Program. As part of this effort, NASA Marshall Space Flight Center has conducted combustion, performance, and combustion stability analyses of several of the configurations on these programs. This paper summarizes these analyses. Test and analysis results of impinging and coaxial element injectors using liquid oxygen and liquid methane propellants are included. Several cases with gaseous methane are included for reference. Several different thrust chamber configurations have been modeled, including thrust chambers with multi-element like-on-like and swirl coax element injectors tested at NASA MSFC, and a unielement chamber with shear and swirl coax injectors tested at The Pennsylvania State University. Configurations were modeled with two one-dimensional liquid rocket combustion analysis codes, the Rocket Combustor Interaction Design and Analysis (ROCCID), and the Coaxial Injector Combustion Model (CICM). Significant effort was applied to show how these codes can be used to model combustion and performance with oxygen/methane propellants a priori, and what anchoring or calibrating features need to be applied or developed in the future. This paper describes the test hardware configurations, presents the results of all the analyses, and compares the results from the two analytical methods.

  5. Design criteria monograph for pressurized metal cases

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Organiation and presentation of data pertaining to design of solid propellant rocket engine cases are discussed. Design criteria are presented in form of monograph based on accumulated experience and knowledge. Improvements in reliability, cost effectiveness, and engine efficiency are stressed.

  6. Lessons Learned with Metallized Gelled Propellants

    NASA Technical Reports Server (NTRS)

    1996-01-01

    During testing of metallized gelled propellants in a rocket engine, many changes had to be made to the normal test program for traditional liquid propellants. The lessons learned during the testing and the solutions for many of the new operational conditions posed with gelled fuels will help future programs run more smoothly. The major factors that influenced the success of the testing were propellant settling, piston-cylinder tank operation, control of self pressurization, capture of metal oxide particles, and a gelled-fuel protective layer. In these ongoing rocket combustion experiments at the NASA Lewis Research Center, metallized, gelled liquid propellants are used in a small modular engine that produces 30 to 40 lb of thrust. Traditional liquid RP-1 and gelled RP-1 with 0-, 5-, and 55-wt% loadings of aluminum are used with gaseous oxygen as the oxidizer. The figure compares the thrust chamber efficiencies of different engines.

  7. Liquid Propulsion: Propellant Feed System Design. Chapter 2.3.11

    NASA Technical Reports Server (NTRS)

    Cannon, James L.

    2010-01-01

    The propellant feed system of a liquid rocket engine determines how the propellants are delivered from the tanks to the thrust chamber. They are generally classified as either pressure fed or pump fed. The pressure-fed system is simple and relies on tank pressures to feed the propellants into the thrust chamber. This type of system is typically used for space propulsion applications and auxiliary propulsion applications requiring low system pressures and small quantities of propellants. In contrast, the pump-fed system is used for high pressure, high performance applications. The selection of one propellant feed system over another is determined based on design trade studies at both the engine and vehicle levels. This chapter first provides a brief overview of the basic configurations of pressure-fed systems. Pump-fed systems are then discussed with greater detail given to the turbomachinery design. Selected design requirements and configurations are provided.

  8. Development of small solid rocket boosters for the ILR-33 sounding rocket

    NASA Astrophysics Data System (ADS)

    Nowakowski, Pawel; Okninski, Adam; Pakosz, Michal; Cieslinski, Dawid; Bartkowiak, Bartosz; Wolanski, Piotr

    2017-09-01

    This paper gives an overview of the development of a 6000 Newton-class solid rocket motor for suborbital applications. The design configuration and results of interior ballistics calculations are given. The initial use of the motor as the main propulsion system of the H1 experimental in-flight test platform, within the Polish Small Sounding Rocket Program, is presented. Comparisons of theoretical and experimental performance are shown. Both on-ground and in-flight tests are discussed. A novel composite-case manufacturing technology, which enabled to reach high propellant mass fractions, was validated and significant cost-reductions were achieved. This paper focuses on the process of adapting the design for use as the booster stage of the ILR-33 sounding rocket, under development at the Institute of Aviation in Warsaw, Poland. Parallel use of two of the flight-proven rocket motors along with the main stage is planned. The process of adapting the rocket motor for booster application consists of stage integration, aerothermodynamics and reliability analyses. The separation mechanism and environmental impact are also discussed within this paper. Detailed performance analysis with focus on propellant grain geometry is provided. The evolution of the design since the first flights of the H1 rocket is covered and modifications of the manufacturing process are described. Issues of simultaneous ignition of two motors and their non-identical performance are discussed. Further applications and potential for future development are outlined. The presented results are based on the initial work done by the Rocketry Group of the Warsaw University of Technology Students' Space Association. The continuation of the Polish Small Sounding Rocket Program on a larger scale at the Institute of Aviation proves the value of the outcomes of the initial educational project.

  9. The Swedish Rocket Corps, 1833 - 1845

    NASA Technical Reports Server (NTRS)

    Skoog, A. I.

    1977-01-01

    Rockets for pyrotechnic displays used in Sweden in the 19th century are examined in terms of their use in war situations. Work done by the Swedish chemist J. J. Berzelius, who analyzed and improved the propellants of such rockets, and the German engineer, Martin Westermaijer, who researched manufacturing techniques of these rockets is also included.

  10. Characterizing high-energy-density propellants for space propulsion applications

    NASA Astrophysics Data System (ADS)

    Kokan, Timothy

    There exists wide ranging research interest in high-energy-density matter (HEDM) propellants as a potential replacement for existing industry standard fuels for liquid rocket engines. The U.S. Air Force Research Laboratory, the U.S. Army Research Lab, the NASA Marshall Space Flight Center, and the NASA Glenn Research Center each either recently concluded or currently has ongoing programs in the synthesis and development of these potential new propellants. In order to perform conceptual designs using these new propellants, most conceptual rocket engine powerhead design tools (e.g. NPSS, ROCETS, and REDTOP-2) require several thermophysical properties of a given propellant over a wide range of temperature and pressure. These properties include enthalpy, entropy, density, viscosity, and thermal conductivity. Very little thermophysical property data exists for most of these potential new HEDM propellants. Experimental testing of these properties is both expensive and time consuming and is impractical in a conceptual vehicle design environment. A new technique for determining these thermophysical properties of potential new rocket engine propellants is presented. The technique uses a combination of three different computational methods to determine these properties. Quantum mechanics and molecular dynamics are used to model new propellants at a molecular level in order to calculate density, enthalpy, and entropy. Additivity methods are used to calculate the kinematic viscosity and thermal conductivity of new propellants. This new technique is validated via a series of verification experiments of HEDM compounds. Results are provided for two HEDM propellants: quadricyclane and 2-azido-N,N-dimethylethanamine (DMAZ). In each case, the new technique does a better job than the best current computational methods at accurately matching the experimental data of the HEDM compounds of interest. A case study is provided to help quantify the vehicle level impacts of using HEDM propellants. The case study consists of the National Aeronautics and Space Administration's (NASA) Exploration Systems Architecture Study (ESAS) Lunar Surface Access Module (LSAM). The results of this study show that the use of HEDM propellants instead of hypergolic propellants can lower the gross weight of the LSAM and may be an attractive alternative to the current baseline hypergolic propellant choice.

  11. Thrust augmentation nozzle (TAN) concept for rocket engine booster applications

    NASA Astrophysics Data System (ADS)

    Forde, Scott; Bulman, Mel; Neill, Todd

    2006-07-01

    Aerojet used the patented thrust augmented nozzle (TAN) concept to validate a unique means of increasing sea-level thrust in a liquid rocket booster engine. We have used knowledge gained from hypersonic Scramjet research to inject propellants into the supersonic region of the rocket engine nozzle to significantly increase sea-level thrust without significantly impacting specific impulse. The TAN concept overcomes conventional engine limitations by injecting propellants and combusting in an annular region in the divergent section of the nozzle. This injection of propellants at moderate pressures allows for obtaining high thrust at takeoff without overexpansion thrust losses. The main chamber is operated at a constant pressure while maintaining a constant head rise and flow rate of the main propellant pumps. Recent hot-fire tests have validated the design approach and thrust augmentation ratios. Calculations of nozzle performance and wall pressures were made using computational fluid dynamics analyses with and without thrust augmentation flow, resulting in good agreement between calculated and measured quantities including augmentation thrust. This paper describes the TAN concept, the test setup, test results, and calculation results.

  12. Characterization and Analyses of Valves, Feed Lines and Tanks used in Propellant Delivery Systems at NASA SSC

    NASA Technical Reports Server (NTRS)

    Ryan, Harry M.; Coote, David J.; Ahuja, Vineet; Hosangadi, Ashvin

    2006-01-01

    Accurate modeling of liquid rocket engine test processes involves assessing critical fluid mechanic and heat and mass transfer mechanisms within a cryogenic environment, and accurately modeling fluid properties such as vapor pressure and liquid and gas densities as a function of pressure and temperature. The Engineering and Science Directorate at the NASA John C. Stennis Space Center has developed and implemented such analytic models and analysis processes that have been used over a broad range of thermodynamic systems and resulted in substantial improvements in rocket propulsion testing services. In this paper, we offer an overview of the analyses techniques used to simulate pressurization and propellant fluid systems associated with the test stands at the NASA John C. Stennis Space Center. More specifically, examples of the global performance (one-dimensional) of a propellant system are provided as predicted using the Rocket Propulsion Test Analysis (RPTA) model. Computational fluid dynamic (CFD) analyses utilizing multi-element, unstructured, moving grid capability of complex cryogenic feed ducts, transient valve operation, and pressurization and mixing in propellant tanks are provided as well.

  13. Laboratory test methods for combustion stability properties of solid propellants

    NASA Technical Reports Server (NTRS)

    Strand, L. D.; Brown, R. S.

    1992-01-01

    An overview is presented of experimental methods for determining the combustion-stability properties of solid propellants. The methods are generally based on either the temporal response to an initial disturbance or on external methods for generating the required oscillations. The size distribution of condensed-phase combustion products are characterized by means of the experimental approaches. The 'T-burner' approach is shown to assist in the derivation of pressure-coupled driving contributions and particle damping in solid-propellant rocket motors. Other techniques examined include the rotating-valve apparatus, the impedance tube, the modulated throat-acoustic damping burner, and the magnetic flowmeter. The paper shows that experimental methods do not exist for measuring the interactions between acoustic velocity oscillations and burning propellant.

  14. Characterization of Rocket Propellant Combustion Products. Chemical Characterization and Computer Modeling of the Exhaust Products from Four Propellant Formulations

    DTIC Science & Technology

    1990-12-31

    health hazards from weapons combustion products, to include rockets and missiles, became evident, Research to elucidate significant health effects of...CO/CO2 ratios was low for all but one of dhe formulations, In general, if the model were to be used in its present state for health risk assessments...35 Part 2: Modeling for Health Hazard Prediction Introduction ................................................. 37 Results and D iscussion

  15. Optimizing a liquid propellant rocket engine with an automated combustor design code (AUTOCOM)

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Reichel, R. H.; Jones, R. T.; Glatt, C. R.

    1972-01-01

    A procedure for automatically designing a liquid propellant rocket engine combustion chamber in an optimal fashion is outlined. The procedure is contained in a digital computer code, AUTOCOM. The code is applied to an existing engine, and design modifications are generated which provide a substantial potential payload improvement over the existing design. Computer time requirements for this payload improvement were small, approximately four minutes in the CDC 6600 computer.

  16. Hazard Studies for Solid Propellant Rocket Motors (Etude des Risque pour les Moteurs-Fusees a Propergols Solides)

    DTIC Science & Technology

    1990-09-01

    RESEARCH AND DEVELOPMENT (ORGANISATION DU TRAITE DE LATIANTIOUF NORD) AGARDograph No.3 16 Hazard Studies for Solid Propellant Rocket Motors (Etudes de...member nations to use their research and development capabilities for the common benefit of the NATO community; - Providing scientific and technical...advice and assistance to the Military Committee in the field of aerospace research and development (with particular regard to its military application

  17. The microwave thermal thruster and its application to the launch problem

    NASA Astrophysics Data System (ADS)

    Parkin, Kevin L. G.

    Nuclear thermal thrusters long ago bypassed the 50-year-old specific impulse (Isp) limitation of conventional thrusters, using nuclear powered heat exchangers in place of conventional combustion to heat a hydrogen propellant. These heat exchanger thrusters experimentally achieved an Isp of 825 seconds, but with a thrust-to-weight ratio (T/W) of less than ten they have thus far been too heavy to propel rockets into orbit. This thesis proposes a new idea to achieve both high Isp and high T/W The Microwave Thermal Thruster. This thruster covers the underside of a rocket aeroshell with a lightweight microwave absorbent heat exchange layer that may double as a re-entry heat shield. By illuminating the layer with microwaves directed from a ground-based phased array, an Isp of 700--900 seconds and T/W of 50--150 is possible using a hydrogen propellant. The single propellant simplifies vehicle design, and the high Isp increases payload fraction and structural margins. These factors combined could have a profound effect on the economics of building and reusing rockets. A laboratory-scale microwave thermal heat exchanger is constructed using a single channel in a cylindrical microwave resonant cavity, and new type of coupled electromagnetic-conduction-convection model is developed to simulate it. The resonant cavity approach to small-scale testing reveals several drawbacks, including an unexpected oscillatory behavior. Stable operation of the laboratory-scale thruster is nevertheless successful, and the simulations are consistent with the experimental results. In addition to proposing a new type of propulsion and demonstrating it, this thesis provides three other principal contributions: The first is a new perspective on the launch problem, placing it in a wider economic context. The second is a new type of ascent trajectory that significantly reduces the diameter, and hence cost, of the ground-based phased array. The third is an eclectic collection of data, techniques, and ideas that constitute a Microwave Thermal Rocket as it is presently conceived, in turn selecting and motivating the particular experimental and computational analyses undertaken.

  18. Aerodynamic Characteristics and Flying Qualities of a Tailless Triangular-wing Airplane Configuration as Obtained from Flights of Rocket-propelled Models at Transonic and Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Mitcham, Grady L; Stevens, Joseph E; Norris, Harry P

    1956-01-01

    A flight investigation of rocket-powered models of a tailless triangular-wing airplane configuration was made through the transonic and low supersonic speed range at the Langley Pilotless Aircraft Research Station at Wallops Island, Va. An analysis of the aerodynamic coefficients, stability derivatives, and flying qualities based on the results obtained from the successful flight tests of three models is presented.

  19. Rocket propellant inhalation in the Apollo-Soyuz astronauts.

    PubMed

    DeJournette, R L

    1977-10-01

    Acute exposure to monomethylhydrazine and dinitrogen tetroxide, the principal toxic irritants in rocket fuels, is described with particular attention to the development of pulmonary edema as a herbinger of more severe central nervous system toxicity. An acute respiratory embarrassment is documented and possible means of therapy based on animal experimental models is suggested. Early clinical and radiographic examination as a baseline for further evaluation is essential, with follow-up radiographs recommended for assessment of possible developing chronic lung disease.

  20. 77 FR 21619 - Office of Commercial Space Transportation; Notice of Intent To Prepare an Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... rocket propellant-1 or refined petroleum-1 (RP-1), as propellants to carry payloads into orbit. The... tank with a maximum propellant (RP-1 and LOX) load of approximately 6,900 gallons. As part of the... processing-hangar, a launch pad and stand with its associated flame duct, propellant storage and handling...

  1. Materials for Liquid Propulsion Systems. Chapter 12

    NASA Technical Reports Server (NTRS)

    Halchak, John A.; Cannon, James L.; Brown, Corey

    2016-01-01

    Earth to orbit launch vehicles are propelled by rocket engines and motors, both liquid and solid. This chapter will discuss liquid engines. The heart of a launch vehicle is its engine. The remainder of the vehicle (with the notable exceptions of the payload and guidance system) is an aero structure to support the propellant tanks which provide the fuel and oxidizer to feed the engine or engines. The basic principle behind a rocket engine is straightforward. The engine is a means to convert potential thermochemical energy of one or more propellants into exhaust jet kinetic energy. Fuel and oxidizer are burned in a combustion chamber where they create hot gases under high pressure. These hot gases are allowed to expand through a nozzle. The molecules of hot gas are first constricted by the throat of the nozzle (de-Laval nozzle) which forces them to accelerate; then as the nozzle flares outwards, they expand and further accelerate. It is the mass of the combustion gases times their velocity, reacting against the walls of the combustion chamber and nozzle, which produce thrust according to Newton's third law: for every action there is an equal and opposite reaction. Solid rocket motors are cheaper to manufacture and offer good values for their cost. Liquid propellant engines offer higher performance, that is, they deliver greater thrust per unit weight of propellant burned. They also have a considerably higher thrust to weigh ratio. Since liquid rocket engines can be tested several times before flight, they have the capability to be more reliable, and their ability to shut down once started provides an extra margin of safety. Liquid propellant engines also can be designed with restart capability to provide orbital maneuvering capability. In some instances, liquid engines also can be designed to be reusable. On the solid side, hybrid solid motors also have been developed with the capability to stop and restart. Solid motors are covered in detail in chapter 11. Liquid rocket engine operational factors can be described in terms of extremes: temperatures ranging from that of liquid hydrogen (-423 F) to 6000 F hot gases; enormous thermal shock (7000 F/sec); large temperature differentials between contiguous components; reactive propellants; extreme acoustic environments; high rotational speeds for turbo machinery and extreme power densities. These factors place great demands on materials selection and each must be dealt with while maintaining an engine of the lightest possible weight. This chapter will describe the design considerations for the materials used in the various components of liquid rocket engines and provide examples of usage and experiences in each.

  2. 40 CFR 61.44 - Stack sampling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium Rocket Motor... within 30 days after samples are taken and before any subsequent rocket motor firing or propellant...

  3. 40 CFR 61.44 - Stack sampling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium Rocket Motor... within 30 days after samples are taken and before any subsequent rocket motor firing or propellant...

  4. 40 CFR 61.44 - Stack sampling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium Rocket Motor... within 30 days after samples are taken and before any subsequent rocket motor firing or propellant...

  5. Studies on an aerial propellant transfer space plane (APTSP)

    NASA Astrophysics Data System (ADS)

    Jayan, N.; Biju Kumar, K. S.; Gupta, Anish Kumar; Kashyap, Akhilesh Kumar; Venkatraman, Kartik; Mathew, Joseph; Mukunda, H. S.

    2004-04-01

    This paper presents a study of a fully reusable earth-to-orbit launch vehicle concept with horizontal take-off and landing, employing a turbojet engine for low speed, and a rocket for high-speed acceleration and space operations. This concept uses existing technology to the maximum possible extent, thereby reducing development time, cost and effort. It uses the experience in aerial filling of military aircrafts for propellant filling at an altitude of 13 km at a flight speed of M=0.85. Aerial filling of propellant reduces the take-off weight significantly thereby minimizing the structural weight of the vehicle. The vehicle takes off horizontally and uses turbojet engines till the end of the propellant filling operation. The rocket engines provide thrust for the next phase till the injection of a satellite at LEO. A sensitivity analysis of the mission with respect to rocket engine specific impulse and overall vehicle structural factor is also presented in this paper. A conceptual design of space plane with a payload capability of 10 ton to LEO is carried out. The study shows that the realization of an aerial propellant transfer space plane is possible with limited development of new technology thus reducing the demands on the finances required for achieving the objectives.

  6. Astronautics

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Principles of rocket engineering, flight dynamics, and trajectories are discussed in this summary of Soviet rocket development and technology. Topics include rocket engine design, propellants, propulsive efficiency, and capabilities required for orbital launch. The design of the RD 107, 108, 119, and 214 rocket engines and their uses in various satellite launches are described. NASA's Saturn 5 and Atlas Agena launch vehicles are used to illustrate the requirements of multistage rockets.

  7. Study of solid rocket motor for space shuttle booster, volume 2, book 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The technical requirements for the solid propellant rocket engine to be used with the space shuttle orbiter are presented. The subjects discussed are: (1) propulsion system definition, (2) solid rocket engine stage design, (3) solid rocket engine stage recovery, (4) environmental effects, (5) manrating of the solid rocket engine stage, (6) system safety analysis, and (7) ground support equipment.

  8. Researcher Poses with a Nuclear Rocket Model

    NASA Image and Video Library

    1961-11-21

    A researcher at the NASA Lewis Research Center with slide ruler poses with models of the earth and a nuclear-propelled rocket. The Nuclear Engine for Rocket Vehicle Applications (NERVA) was a joint NASA and Atomic Energy Commission (AEC) endeavor to develop a nuclear-powered rocket for both long-range missions to Mars and as a possible upper-stage for the Apollo Program. The early portion of the program consisted of basic reactor and fuel system research. This was followed by a series of Kiwi reactors built to test nuclear rocket principles in a non-flying nuclear engine. The next phase, NERVA, would create an entire flyable engine. The AEC was responsible for designing the nuclear reactor and overall engine. NASA Lewis was responsible for developing the liquid-hydrogen fuel system. The nuclear rocket model in this photograph includes a reactor at the far right with a hydrogen propellant tank and large radiator below. The payload or crew would be at the far left, distanced from the reactor.

  9. Space shuttle propellant constitutive law verification tests

    NASA Technical Reports Server (NTRS)

    Thompson, James R.

    1995-01-01

    As part of the Propellants Task (Task 2.0) on the Solid Propulsion Integrity Program (SPIP), a database of material properties was generated for the Space Shuttle Redesigned Solid Rocket Motor (RSRM) PBAN-based propellant. A parallel effort on the Propellants Task was the generation of an improved constitutive theory for the PBAN propellant suitable for use in a finite element analysis (FEA) of the RSRM. The outcome of an analysis with the improved constitutive theory would be more reliable prediction of structural margins of safety. The work described in this report was performed by Materials Laboratory personnel at Thiokol Corporation/Huntsville Division under NASA contract NAS8-39619, Mod. 3. The report documents the test procedures for the refinement and verification tests for the improved Space Shuttle RSRM propellant material model, and summarizes the resulting test data. TP-H1148 propellant obtained from mix E660411 (manufactured February 1989) which had experienced ambient igloo storage in Huntsville, Alabama since January 1990, was used for these tests.

  10. Development of a solid propellant viscoelastic dynamic model

    NASA Technical Reports Server (NTRS)

    Hufferd, W. L.; Fitzgerald, J. E.

    1976-01-01

    The results of a one year study to develop a dynamic response model for the Space Shuttle Solid Rocket Motor (SRM) propellant are presented. An extensive literature survey was conducted, from which it was concluded that the only significant variables affecting the dynamic response of the SRM propellant are temperature and frequency. Based on this study, and experimental data on propellants related to the SRM propellant, a dynamic constitutive model was developed in the form of a simple power law with temperature incorporated in the form of a modified power law. A computer program was generated which performs a least-squares curve-fit of laboratory data to determine the model parameters and it calculates dynamic moduli at any desired temperature and frequency. Additional studies investigated dynamic scaling laws and the extent of coupling between the SRM propellant and motor cases. It was found, in agreement with other investigations, that the propellant provides all of the mass and damping characteristics whereas the case provides all of the stiffness.

  11. Recent Advancements in Propellant Densification

    NASA Technical Reports Server (NTRS)

    McNelis, Nancy B.; Tomsik, Thomas M.

    1998-01-01

    Next-generation launch vehicles demand several technological improvements to achieve lower cost and more reliable access to space. One technology area whose performance gains may far exceed others is densified propellants. The ideal rocket engine propellant is characterized by high specific impulse, high density, and low vapor pressure. A propellant combination of liquid hydrogen and liquid oxygen (LH2/LOX) is one of the highest performance propellants, but LH2 stored at standard conditions has a relatively low density and high vapor pressure. Propellant densification can significantly improve this propellant's properties relative to vehicle design and engine performance. Vehicle performance calculations based on an average of existing launch vehicles indicate that densified propellants may allow an increase in payload mass of up to 5 percent. Since the NASA Lewis Research Center became involved with the National Aerospace Plane program in the 1980's, it has been leading the way in making densified propellants a viable fuel for next-generation launch vehicles. Lewis researchers have been working to provide a method and critical data for continuous production of densified hydrogen and oxygen.

  12. Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System

    NASA Astrophysics Data System (ADS)

    Ravindran, V. R.; Sreelakshmi, C.; Vibin, Vibin

    2008-09-01

    The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CT image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.

  13. Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravindran, V. R.; Sreelakshmi, C.; Vibin

    2008-09-26

    The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CTmore » image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.« less

  14. Can Re-Use of Demil Explosives and Propellants in Commercial Blasting be Made Environmentally Acceptable

    DTIC Science & Technology

    1994-08-01

    the addition of a gelling agent such as guar gum . Additional AN in the form of prills and a sensitizer such as TNT flakes or grains is mixed into the...crosslinking of the guar gum to a rubbery consistency which has quite good water resistance although it is somewhat water soluble. The name water gel...negative oxygen balance: large negative for TNT and Comp. B, moderate for the AP/Al-based booster rocket propellants, and small for the smokeless powders

  15. Study of the Deposition of Ammonium Perchlorate Following the Static Firing of MK-58 Rocket Motors

    DTIC Science & Technology

    2008-10-01

    hyperthyroidism , gas generators, electrolytes for lithium cells, and as chemical reagents. The occurrence of perchlorate in the environment is...contain 19.6 kg of cross-linked double based propellants, with 7.8 % by weight of binder, 62 % of RDX, 25.88 % of plasticizers, and a few percent...compound is present at less than 1% by weight in the propellant but it might be considered as a health hazard since it has adverse toxicological impacts

  16. Burning Rate Studies of HMX Propellants at High Pressures

    DTIC Science & Technology

    1975-03-01

    slopes of propellants containing amonium perch- lorate and anmonium nitrate oxidizers. Same of these compounds were eval- uated with IMX to detereine their...Branch/Cuns, Rockets Man RV 75 anid Explos-’ives Division/Armamnent Deavelopment an~ d Test Center/E&lin Air Force Base Florida 32542 21____6...NAME & CiESI( d ~’, ntfc, ContrVIIIA9 OjicN) I URIT t SS. (oft his repor’) UCLASSIFIED D ~ ECIASSI F1ICATION/ DOWN GRADING 1SCHEDULE Distribuition limited

  17. Characterization and Fate of Gun and Rocket Propellant Residues on Testing and Training Ranges: Interim Report 2

    DTIC Science & Technology

    2010-12-01

    compounds and stabiliz- ers in more conventional energetic formulations such as nitrocellulose (NC)-based propellants. Assessing the deposition...were opened and spread out to dry on aluminum foil covered trays to dry at room temperature. The dried material was then sieved under a hood with a...filtrate generated were tracked. The filters were placed in a labeled jar and set out to dry . After drying , the jars were sealed and refrigerated

  18. Propellant Technologies: A Persuasive Wave of Future Propulsion Benefits

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan; Ianovski, Leonid S.; Carrick, Patrick

    1997-01-01

    Rocket propellant and propulsion technology improvements can be used to reduce the development time and operational costs of new space vehicle programs. Advanced propellant technologies can make the space vehicles safer, more operable, and higher performing. Five technology areas are described: Monopropellants, Alternative Hydrocarbons, Gelled Hydrogen, Metallized Gelled Propellants, and High Energy Density Materials. These propellants' benefits for future vehicles are outlined using mission study results and the technologies are briefly discussed.

  19. KENNEDY SPACE CENTER, FLA. - At the Rotation, Processing and Surge Facility stand a mockup of two segments of a solid rocket booster (SRB) being used to test the feasibility of a vertical SRB propellant grain inspection, required as part of safety analysis.

    NASA Image and Video Library

    2003-09-11

    KENNEDY SPACE CENTER, FLA. - At the Rotation, Processing and Surge Facility stand a mockup of two segments of a solid rocket booster (SRB) being used to test the feasibility of a vertical SRB propellant grain inspection, required as part of safety analysis.

  20. Acceleration effects in solid propellant rocket motors

    NASA Technical Reports Server (NTRS)

    Langhenry, M. T.

    1986-01-01

    The performance variations due to acceleration loads imposed on spinning solid propellant rocket motors are investigated. The four potentially most significant modes of acceleration-induced phenomena are identified from a study of the literature and modeled. The four modes are a mechanical mode which deals with deformations of the propellant and case: a thermodynamic mode which covers acceleration-induced combustion phenomena; a stress mode which covers the stressed propellant's effect on burn rate; and a gas dynamic mode which deals with changes in gas flow in the chamber and through the nozzle. Simplified models of each mode are developed or taken from the literature and are added to an internal ballistics evaluation computer program. The resulting analysis is the first to include all of the modes. In order to do this an original analysis of the mechanical and stress modes was necessary. However, the analysis shows that the stress mode is not important for the circular perforated grains studied. The other effects are shown to have a significant influence on solid rocket motor performance. The magnitude of the different mode effects are such that one may not be ignored over the others as has been done in the past. The results of the analysis are compared to published rocket motor data. The comparisons indicate an erosive burning effect that is a function of spin rate. A qualitative explanation of the erosive effect is presented.

  1. Long Life Testing of Oxide-Coated Iridium/Rhenium Rockets

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.

    1995-01-01

    22-N class rockets, composed of a rhenium (Re) substrate, an iridium (Ir) coating, and an additional composite coating consisting of Ir and a ceramic oxide, were tested on gaseous oxygen/gaseous hydrogen (GO2/GH2) propellants. Two rockets were tested, one for nearly 39 hours at a nominal mixture ratio (MR) of 4.6 and chamber pressure (Pc) of 469 kPa, and the other for over 13 hours at a nominal MR of 5.8 and 621 kPa Pc. Four additional Ir/Re rockets, with a composite Ir-oxide coating fabricated using a modified process, were also tested, including one for 1.3 hours at a nominal MR of 16.7 and Pc of 503 kPa. The long lifetimes demonstrated on low MR GO2/GH2 suggest greatly extended chamber lifetimes (tens of hours) in the relatively low oxidizing combustion environments of Earth storable propellants. The oxide coatings could also serve as a protective coating in the near injector region, where a still-mixing flowfield may cause degradation of the Ir layer. Operation at MR close to 17 suggests that oxide-coated Ir/Re rockets could be used in severely oxidizing combustion environments, such as high MR GO2/GH2, oxygen/hydrocarbon, and liquid gun propellants.

  2. The techniques of quality operations computational and experimental researches of the launch vehicles in the drawing-board stage

    NASA Astrophysics Data System (ADS)

    Rozhaeva, K.

    2018-01-01

    The aim of the researchis the quality operations of the design process at the stage of research works on the development of active on-Board system of the launch vehicles spent stages descent with liquid propellant rocket engines by simulating the gasification process of undeveloped residues of fuel in the tanks. The design techniques of the gasification process of liquid rocket propellant components residues in the tank to the expense of finding and fixing errors in the algorithm calculation to increase the accuracy of calculation results is proposed. Experimental modelling of the model liquid evaporation in a limited reservoir of the experimental stand, allowing due to the false measurements rejection based on given criteria and detected faults to enhance the results reliability of the experimental studies; to reduce the experiments cost.

  3. Ozone Depletion Caused by Rocket Engine Emissions: A Fundamental Limit on the Scale and Viability of Space-Based Geoengineering Schemes

    NASA Astrophysics Data System (ADS)

    Ross, M. N.; Toohey, D.

    2008-12-01

    Emissions from solid and liquid propellant rocket engines reduce global stratospheric ozone levels. Currently ~ one kiloton of payloads are launched into earth orbit annually by the global space industry. Stratospheric ozone depletion from present day launches is a small fraction of the ~ 4% globally averaged ozone loss caused by halogen gases. Thus rocket engine emissions are currently considered a minor, if poorly understood, contributor to ozone depletion. Proposed space-based geoengineering projects designed to mitigate climate change would require order of magnitude increases in the amount of material launched into earth orbit. The increased launches would result in comparable increases in the global ozone depletion caused by rocket emissions. We estimate global ozone loss caused by three space-based geoengineering proposals to mitigate climate change: (1) mirrors, (2) sunshade, and (3) space-based solar power (SSP). The SSP concept does not directly engineer climate, but is touted as a mitigation strategy in that SSP would reduce CO2 emissions. We show that launching the mirrors or sunshade would cause global ozone loss between 2% and 20%. Ozone loss associated with an economically viable SSP system would be at least 0.4% and possibly as large as 3%. It is not clear which, if any, of these levels of ozone loss would be acceptable under the Montreal Protocol. The large uncertainties are mainly caused by a lack of data or validated models regarding liquid propellant rocket engine emissions. Our results offer four main conclusions. (1) The viability of space-based geoengineering schemes could well be undermined by the relatively large ozone depletion that would be caused by the required rocket launches. (2) Analysis of space- based geoengineering schemes should include the difficult tradeoff between the gain of long-term (~ decades) climate control and the loss of short-term (~ years) deep ozone loss. (3) The trade can be properly evaluated only if our understanding of the stratospheric impact of rocket emissions is significantly improved. (4) Such an improved understanding requires a concerted effort of research including new in situ measurements in a variety of rocket plumes and a multi-scale modeling program similar in scope to the effort required to address the climate and ozone impacts of aircraft emissions.

  4. Propulsion

    NASA Astrophysics Data System (ADS)

    Smith, P. K.

    1993-06-01

    Current requirements for missile systems increasingly stress the need for stealth capability. For the majority of missile systems and missions, the exhaust plume is likely to be the major contributor to overall missile signature, especially considering the recent developments in low emission and low Radar Cross Section coatings for motor bodies. This implies the need for the lowest possible rocket exhaust signature over a wide range of frequencies from the UV through visible and IR to microwave and radio frequencies. The choice of propellant type, Double Base; Composite etc, plays a significant part in determining the exhaust signature of the rocket motor as does the selection of inert materials for liners, inhibitors, and nozzles. It is also possible with certain propellants to incorporate additives which reduce exhaust signature either by modifying the chemistry or the afterburning plume or more significantly by suppressing secondary combustion and hence dramatically reducing plume temperature. The feasibility of plume signature control on the various missions envisaged by the missile designer is considered. The choice of propellant type and hardware components to give low signature is discussed together with performance implications. Signature reduction results obtained over a wide range of frequencies are also presented.

  5. Infrared signature modelling of a rocket jet plume - comparison with flight measurements

    NASA Astrophysics Data System (ADS)

    Rialland, V.; Guy, A.; Gueyffier, D.; Perez, P.; Roblin, A.; Smithson, T.

    2016-01-01

    The infrared signature modelling of rocket plumes is a challenging problem involving rocket geometry, propellant composition, combustion modelling, trajectory calculations, fluid mechanics, atmosphere modelling, calculation of gas and particles radiative properties and of radiative transfer through the atmosphere. This paper presents ONERA simulation tools chained together to achieve infrared signature prediction, and the comparison of the estimated and measured signatures of an in-flight rocket plume. We consider the case of a solid rocket motor with aluminized propellant, the Black Brant sounding rocket. The calculation case reproduces the conditions of an experimental rocket launch, performed at White Sands in 1997, for which we obtained high quality infrared signature data sets from DRDC Valcartier. The jet plume is calculated using an in-house CFD software called CEDRE. The plume infrared signature is then computed on the spectral interval 1900-5000 cm-1 with a step of 5 cm-1. The models and their hypotheses are presented and discussed. Then the resulting plume properties, radiance and spectra are detailed. Finally, the estimated infrared signature is compared with the spectral imaging measurements. The discrepancies are analyzed and discussed.

  6. Comparative analysis of the designs and implementation of vehicles based on reactive propulsion proposed during the nineteenth and beginning of the twentieth centuries

    NASA Technical Reports Server (NTRS)

    Sokolskiy, V. N.

    1977-01-01

    Examination of the presently known historical scientific literature related to the problem of reactive flight indicates that considerable attention had already been given to the idea of reactive propulsion in the nineteenth century; about thirty designs for reaction flying vehicles were proposed during this period. However, the authors of a majority of the designs limited themselves only to a presentation of a diagram of the engine or an account of the principle of its operation, giving neither plans for its structural development nor precise calculations of the amount of energy required for accomplishing reaction flight. None of these authors considered the reaction flying vehicle as an object of variable mass, their choice of energy sources was extremely random, and the theory of the flight of reaction flying vehicles remained completely undeveloped. Early rocket designs of Nezhdanovsky, Ganswindt, Goddard, Tsiolkovsky, and others are examined and the evolution of liquid-propellant rocket engines, solid-propellant rocket engines, and jet aircraft engines is reviewed.

  7. Liquid Rocket Propulsion for Atmospheric Flight in the Proposed ARES Mars Scout Mission

    NASA Technical Reports Server (NTRS)

    Kuhl, Christopher A.; Wright, Henry S.; Hunter, Craig A.; Guernsey, Carl S.; Colozza, Anthony J.

    2004-01-01

    Flying above the Mars Southern Highlands, an airplane will traverse over the terrain of Mars while conducting unique science measurements of the atmosphere, surface, and interior. This paper describes an overview of the ARES (Aerial Regional-scale Environmental Survey) mission with an emphasis on airplane propulsion needs. The process for selecting a propulsion system for the ARES airplane is also included. Details of the propulsion system, including system schematics, hardware and performance are provided. The airplane has a 6.25 m wingspan with a total mass of 149 kg and is propelled by a bi-propellant liquid rocket system capable of carrying roughly 48 kg of MMH/MON3 propellant.

  8. Materials Problems in Chemical Liquid-Propellant Rocket Systems

    NASA Technical Reports Server (NTRS)

    Gilbert, L. L.

    1959-01-01

    With the advent of the space age, new adjustments in technical thinking and engineering experience are necessary. There is an increasing and extensive interest in the utilization of materials for components to be used at temperatures ranging from -423 to over 3500 deg F. This paper presents a description of the materials problems associated with the various components of chemical liquid rocket systems. These components include cooled and uncooled thrust chambers, injectors, turbine drive systems, propellant tanks, and cryogenic propellant containers. In addition to materials limitations associated with these components, suggested research approaches for improving materials properties are made. Materials such as high-temperature alloys, cermets, carbides, nonferrous alloys, plastics, refractory metals, and porous materials are considered.

  9. High-Temperature Polymer Composites Tested for Hypersonic Rocket Combustor Backup Structure

    NASA Technical Reports Server (NTRS)

    Sutter, James K.; Shin, E. Eugene; Thesken, John C.; Fink, Jeffrey E.

    2005-01-01

    Significant component weight reductions are required to achieve the aggressive thrust-toweight goals for the Rocket Based Combined Cycle (RBCC) third-generation, reusable liquid propellant rocket engine, which is one possible engine for a future single-stage-toorbit vehicle. A collaboration between the NASA Glenn Research Center and Boeing Rocketdyne was formed under the Higher Operating Temperature Propulsion Components (HOTPC) program and, currently, the Ultra-Efficient Engine Technology (UEET) Project to develop carbon-fiber-reinforced high-temperature polymer matrix composites (HTPMCs). This program focused primarily on the combustor backup structure to replace all metallic support components with a much lighter polymer-matrixcomposite- (PMC-) titanium honeycomb sandwich structure.

  10. Analysis of a Nuclear Enhanced Airbreathing Rocket for Earth to Orbit Applications

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.; Landrum, D. Brian; Brown, Norman (Technical Monitor)

    2001-01-01

    The proposed engine concept is the Nuclear Enhanced Airbreathing Rocket (NEAR). The NEAR concept uses a fission reactor to thermally heat a propellant in a rocket plenum. The rocket is shrouded, thus the exhaust mixes with ingested air to provide additional thermal energy through combustion. The combusted flow is then expanded through a nozzle to provide thrust.

  11. Hybrid rocket motor testing at Nammo Raufoss A/S

    NASA Astrophysics Data System (ADS)

    Rønningen, Jan-Erik; Kubberud, Nils

    2005-08-01

    Hybrid rocket motor technology and the use of hybrid rockets have gained increased interest in recent years in many countries. A typical hybrid rocket consists of a tank containing the oxidizer in either liquid or gaseous state connected to the combustion chamber containing an injector, inert solid fuel grain and nozzle. Nammo Raufoss A/S has for almost 40 years designed and produced high-performance solid propellant rocket motors for many military missile systems as well as solid propellant rocket motors for civil space use. In 2003 an in-house technology program was initiated to investigate and study hybrid rocket technology. On 23 September 2004 the first in-house designed hybrid test rocket motor was static test fired at Nammo Raufoss Test Center. The oxidizer was gaseous oxygen contained in a tank pressurized to 10MPa, flow controlled through a sonic orifice into the combustion chamber containing a multi port radial injector and six bore cartridge-loaded fuel grain containing a modified HTPB fuel composition. The motor was ignited using a non-explosive heated wire. This paper will present what has been achieved at Nammo Raufoss since the start of the program.

  12. Composite Solid Propellant Predictability and Quality Assurance

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar

    1989-01-01

    Reports are presented at the meeting at the University of Arizona on the study of predictable and reliable solid rocket motors. The following subject areas were covered: present state and trends in the research of solid propellants; the University of Arizona program in solid propellants, particularly in mixing (experimental and analytical results are presented).

  13. 16 CFR § 1500.85 - Exemptions from classification as banned hazardous substances.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... component has no hazards other than being in a self-pressurized container. (8) Model rocket propellant devices designed for use in light-weight, recoverable, and reflyable model rockets, provided such devices... recovery system activation devices intended for use with premanufactured model rocket engines wherein all...

  14. 16 CFR 1500.85 - Exemptions from classification as banned hazardous substances.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... component has no hazards other than being in a self-pressurized container. (8) Model rocket propellant devices designed for use in light-weight, recoverable, and reflyable model rockets, provided such devices... recovery system activation devices intended for use with premanufactured model rocket engines wherein all...

  15. 16 CFR 1500.85 - Exemptions from classification as banned hazardous substances.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... component has no hazards other than being in a self-pressurized container. (8) Model rocket propellant devices designed for use in light-weight, recoverable, and reflyable model rockets, provided such devices... recovery system activation devices intended for use with premanufactured model rocket engines wherein all...

  16. High-speed schlieren imaging of rocket exhaust plumes

    NASA Astrophysics Data System (ADS)

    Coultas-McKenney, Caralyn; Winter, Kyle; Hargather, Michael

    2016-11-01

    Experiments are conducted to examine the exhaust of a variety of rocket engines. The rocket engines are mounted in a schlieren system to allow high-speed imaging of the engine exhaust during startup, steady state, and shutdown. A variety of rocket engines are explored including a research-scale liquid rocket engine, consumer/amateur solid rocket motors, and water bottle rockets. Comparisons of the exhaust characteristics, thrust and cost for this range of rockets is presented. The variety of nozzle designs, target functions, and propellant type provides unique variations in the schlieren imaging.

  17. Simulation Analysis of Computer-Controlled pressurization for Mixture Ratio Control

    NASA Technical Reports Server (NTRS)

    Alexander, Leslie A.; Bishop-Behel, Karen; Benfield, Michael P. J.; Kelley, Anthony; Woodcock, Gordon R.

    2005-01-01

    A procedural code (C++) simulation was developed to investigate potentials for mixture ratio control of pressure-fed spacecraft rocket propulsion systems by measuring propellant flows, tank liquid quantities, or both, and using feedback from these measurements to adjust propellant tank pressures to set the correct operating mixture ratio for minimum propellant residuals. The pressurization system eliminated mechanical regulators in favor of a computer-controlled, servo- driven throttling valve. We found that a quasi-steady state simulation (pressure and flow transients in the pressurization systems resulting from changes in flow control valve position are ignored) is adequate for this purpose. Monte-Carlo methods are used to obtain simulated statistics on propellant depletion. Mixture ratio control algorithms based on proportional-integral-differential (PID) controller methods were developed. These algorithms actually set target tank pressures; the tank pressures are controlled by another PID controller. Simulation indicates this approach can provide reductions in residual propellants.

  18. Development of the Astrobee F sounding rocket system.

    NASA Technical Reports Server (NTRS)

    Jenkins, R. B.; Taylor, J. P.; Honecker, H. J., Jr.

    1973-01-01

    The development of the Astrobee F sounding rocket vehicle through the first flight test at NASA-Wallops Station is described. Design and development of a 15 in. diameter, dual thrust, solid propellant motor demonstrating several new technology features provided the basis for the flight vehicle. The 'F' motor test program described demonstrated the following advanced propulsion technology: tandem dual grain configuration, low burning rate HTPB case-bonded propellant, and molded plastic nozzle. The resultant motor integrated into a flight vehicle was successfully flown with extensive diagnostic instrumentation.-

  19. Barrier Properties of Layered-Silicate Reinforced Ethylenepropylenediene Monomer/Chloroprene Rubber Nanorubbers.

    PubMed

    Wu, Chang Mou; Hsieh, Wen Yen; Cheng, Kuo Bin; Lai, Chiu-Chun; Lee, Kuei Chi

    2018-05-09

    The triacetin and nitroglycerin barrier properties of layered-silicate reinforced ethylenepropylenediene monomer/chloroprene rubber (EPDM/CR) nanorubbers were investigated as rocket-propellant inhibitors. EPDM/CR nanorubbers with intercalated structures were formulated and prepared by the melt-compounding method. The triacetin permeability and nitroglycerin absorption were observed to decrease with increasing layered-silicate content. The layered silicates also improved the flame retardancies of the nanorubbers by forming silicate reinforced carbonaceous chars. Layered-silicate reinforced EPDM/CR nanorubbers are potentially effective rocket propellant-inhibiting materials.

  20. A Practical, Affordable Cryogenic Propellant Depot Based on ULA's Flight Experience

    NASA Technical Reports Server (NTRS)

    Kutter, Bernard F.; Zegler, Frank; O'Neil, Gary; Pitchford, Brian

    2008-01-01

    Mankind is embarking on the next step in the journey of human exploration. We are returning to the moon and eventually moving to Mars and beyond. The current Exploration architecture seeks a balance between the need for a robust infrastructure on the lunar surface, and the performance limitations of Ares I and V. The ability to refuel or top-off propellant tanks from orbital propellant depots offers NASA the opportunity to cost effectively and reliably satisfy these opposing requirements. The ability to cache large orbital quantities of propellant is also an enabling capability for missions to Mars and beyond. This paper describes an option for a propellant depot that enables orbital refueling supporting Exploration, national security, science and other space endeavors. This proposed concept is launched using a single EELV medium class rocket and thus does not require any orbital assembly. The propellant depot provides cryogenic propellant storage that utilizes flight proven technologies augmented with technologies currently under development. The propellant depot system, propellant management, flight experience, and key technologies are also discussed. Options for refueling the propellant depot along with an overview of Exploration architecture impacts are also presented.

  1. Ignition of Hydrogen-Oxygen Rocket Combustor with Chlorine Trifluoride and Triethylaluminum

    NASA Technical Reports Server (NTRS)

    Gregory, John W.; Straight, David M.

    1961-01-01

    Ignition of a nominal-125-pound-thrust cold (2000 R) gaseous-hydrogen - liquid-oxygen rocket combustor with chlorine trifluoride (hypergolic with hydrogen) and triethylaluminum (hypergolic with oxygen) resulted in consistently smooth starting transients for a wide range of combustor operating conditions. The combustor exhaust nozzle discharged into air at ambient conditions. Each starting transient consisted of the following sequence of events: injection of the lead main propellant, injection of the igniter chemical, ignition of these two chemicals, injection of the second main propellant, ignition of the two main propellants, increase in chamber pressure to its terminal value, and cutoff of igniter-chemical flow. Smooth ignition was obtained with an ignition delay of less than 100 milliseconds for the reaction of the lead propellant with the igniter chemical using approximately 0.5 cubic inch (0-038 lb) of chlorine trifluoride or 1.0 cubic inch (0-031 lb) of triethylaluminum. These quantities of igniter chemical were sufficient to ignite a 20-percent-fuel hydrogen-oxygen mixture with a delay time of less than 15 milliseconds. Test results indicated that a simple, light weight chemical ignition system for hydrogen-oxygen rocket engines may be possible.

  2. A Flight Demonstration of Plasma Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Petro, Andrew; Chang-Diaz, Franklin; Schwenterly, WIlliam; Hitt, Michael; Lepore, Joseph

    2000-01-01

    The Advanced Space Propulsion Laboratory at the NASA Johnson Space Center has been engaged in the development of a variable specific impulse magnetoplasma rocket (V ASIMR) for several years. This type of rocket could be used in the future to propel interplanetary spacecraft and has the potential to open the entire solar system to human exploration. One feature of this propulsion technology is the ability to vary its specific impulse so that it can be operated in a mode that maximizes propellant efficiency or a mode that maximizes thrust. Variation of specific impulse and thrust enhances the ability to optimize interplanetary trajectories and results in shorter trip times and lower propellant requirements than with a fixed specific impulse. In its ultimate application for interplanetary travel, the VASIMR would be a multi-megawatt device. A much lower power system is being designed for demonstration in the 2004 timeframe. This first space demonstration would employ a lO-kilowatt thruster aboard a solar powered spacecraft in Earth orbit. The 1O-kilowatt V ASIMR demonstration unit would operate for a period of several months with hydrogen or deuterium propellant with a specific impulse of 10,000 seconds.

  3. Space Shuttle Projects

    NASA Image and Video Library

    1989-01-20

    This photograph shows a static firing test of the Solid Rocket Qualification Motor-8 (QM-8) at the Morton Thiokol Test Site in Wasatch, Utah. The twin solid rocket boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. Under the direction of the Marshall Space Flight Center, the SRM's are provided by the Morton Thiokol Corporation.

  4. Badger Army Ammunition Plant groundwater data management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, J.P.

    1994-12-31

    At the Badger Army Ammunition Plant (Badger), there are currently over 200 wells that are monitored on a quarterly basis. Badger has had three active production periods since its construction in 1942. During these periods, various nitrocellulose based propellants were produced including single base artillery propellants were produced including single base artillery propellant, double base rocket propellant and BALL POWDER{reg_sign} propellant. Intermediate materials used in the manufacture of these propellants were also produced, including nitroglycerine, and sulfuric and nitric acids. To meet the challenge of managing the data in-house, a groundwater data management system (GDMS) was developed. Although such systemsmore » are commercially available, they were not able to provide the specific capabilities necessary for data management and reporting at Badger. The GDMS not only provides the routine database capabilities of data sorts and queries, but has provided an automated data reporting system as well. The reporting function alone has significantly reduced the time and efforts that would normally be associated with this task. Since the GDMS was developed at Badger, the program can be continually adapted to site specific needs. Future planned modifications include automated reconciliation, improved transfer of data to graphics software, and statistical analysis and interpretation of the data.« less

  5. Rocket Science at the Nanoscale.

    PubMed

    Li, Jinxing; Rozen, Isaac; Wang, Joseph

    2016-06-28

    Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale.

  6. Factors affecting the thermal shock behavior of yttria stabilized hafnia based graphite and tungsten composites.

    NASA Technical Reports Server (NTRS)

    Lineback, L. D.; Manning, C. R.

    1971-01-01

    Hafnia-based composites containing either graphite or tungsten were investigated as rocket nozzle throat inserts in solid propellant rocket engines. The thermal shock resistance of these materials is considered in terms of macroscopic thermal conductivity, thermal expansion, modulus of elasticity, and compressive fracture stress. The effect of degree of hafnia stabilization, density, and graphite or tungsten content upon these parameters is discussed. The variation of the ratio of elastic modulus to compressive fracture stress with density and its effect upon thermal shock resistance of these materials are discussed in detail.

  7. Fundamental Understanding of Propellant/Nozzle Interaction for Rocket Nozzle Erosion Minimization Under Very High Pressure Conditions

    DTIC Science & Technology

    2005-08-31

    conditions; with X-ray radiography for erosion rate measurements. A vortex combustor was also designed to simulate propellant product species and to...DATES COVERED Interim Progress Report, August 1, 2004 to July 31, 2005 4. TITLE AND SUBTITLE Fundamental Understanding of Propellant /Nozzle...nozzle erosion by solid- propellant combustion products. Several processes can affect the nozzle erosion rate at high pressure and temperature

  8. Robust Exploration and Commercial Missions to the Moon Using Nuclear Thermal Rocket Propulsion and Lunar Liquid Oxygen Derived from FeO-Rich Pyroclasitc Deposits

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Ryan, Stephen W.; Burke, Laura M.; McCurdy, David R.; Fittje, James E.; Joyner, Claude R.

    2018-01-01

    The nuclear thermal rocket (NTR) has frequently been identified as a key space asset required for the human exploration of Mars. This proven technology can also provide the affordable access through cislunar space necessary for commercial development and sustained human presence on the Moon. It is a demonstrated technology capable of generating both high thrust and high specific impulse (I(sub sp) approx. 900 s) twice that of today's best chemical rockets. Nuclear lunar transfer vehicles-consisting of a propulsion stage using three approx. 16.5-klb(sub f) small nuclear rocket engines (SNREs), an in-line propellant tank, plus the payload-are reusable, enabling a variety of lunar missions. These include cargo delivery and crewed lunar landing missions. Even weeklong ''tourism'' missions carrying passengers into lunar orbit for a day of sightseeing and picture taking are possible. The NTR can play an important role in the next phase of lunar exploration and development by providing a robust in-space lunar transportation system (LTS) that can allow initial outposts to evolve into settlements supported by a variety of commercial activities such as in-situ propellant production used to supply strategically located propellant depots and transportation nodes. The use of lunar liquid oxygen (LLO2) derived from iron oxide (FeO)-rich volcanic glass beads, found in numerous pyroclastic deposits on the Moon, can significantly reduce the launch mass requirements from Earth by enabling reusable, surface-based lunar landing vehicles (LLVs)that use liquid oxygen and hydrogen (LO2/LH2) chemical rocket engines. Afterwards, a LO2/LH2 propellant depot can be established in lunar equatorial orbit to supply the LTS. At this point a modified version of the conventional NTR-called the LO2-augmented NTR, or LANTR-is introduced into the LTS allowing bipropellant operation and leveraging the mission benefits of refueling with lunar-derived propellants for Earth return. The bipropellant LANTR engine utilizes the large divergent section of its nozzle as an ''afterburner'' into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the engine's choked sonic throat-essentially ''scramjet propulsion in reverse.'' By varying the oxygen-to-hydrogen mixture ratio, LANTR engines can operate over a range of thrust and I(sub sp) values while the reactor core power level remains relatively constant. A LANTR-based LTS offers unique mission capabilities including short-transit-time crewed cargo transports. Even a ''commuter'' shuttle service may be possible allowing ''one-way'' trip times to and from the Moon on the order of 36 hours or less. If only 1% of the extracted LLO2 propellant from identified resource sites were available for use in lunar orbit, such a supply could support daily commuter flights to the Moon for many thousands of years! This report outlines an evolutionary architecture and examines a variety of mission types and transfer vehicle designs, along with the increasing demands on LLO2 production as mission complexity and velocity change delta V requirements increase. A comparison of vehicle features and engine operating characteristics, for both NTR and LANTR engines, is also provided along with a discussion of the propellant production and mining requirements associated with using FeO-rich volcanic glass as source material.

  9. Augmentation of Rocket Propulsion: Physical Limits

    NASA Technical Reports Server (NTRS)

    Taylor, Charles R.

    1996-01-01

    Rocket propulsion is not ideal when the propellant is not ejected at a unique velocity in an inertial frame. An ideal velocity distribution requires that the exhaust velocity vary linearly with the velocity of the vehicle in an inertial frame. It also requires that the velocity distribution variance as a thermodynamic quantity be minimized. A rocket vehicle with an inert propellant is not optimal, because it does not take advantage of the propellant mass for energy storage. Nor is it logical to provide another energy storage device in order to realize variable exhaust velocity, because it would have to be partly unfilled at the beginning of the mission. Performance is enhanced by pushing on the surrounding because it increases the reaction mass and decreases the reaction jet velocity. This decreases the fraction of the energy taken away by the propellant and increases the share taken by the payload. For an optimal model with the propellant used as fuel, the augmentation realized by pushing on air is greatest for vehicles with a low initial/final mass ratio. For a typical vehicle in the Earth's atmosphere, the augmentation is seen mainly at altitudes below about 80 km. When drag is taken into account, there is a well-defined optimum size for the air intake. Pushing on air has the potential to increase the performance of rockets which pass through the atmosphere. This is apart from benefits derived from "air breathing", or using the oxygen in the atmosphere to reduce the mass of an on-board oxidizer. Because of the potential of these measures, it is vital to model these effects more carefully and explore technology that may realize their advantages.

  10. Register of specialized sources for information on selected fuels and oxidizers. [rocket propellants, bibliographies

    NASA Technical Reports Server (NTRS)

    Ludtke, P. R.

    1975-01-01

    Thirty-eight (38) organizations are listed and described that catalog and file information in their data systems on fuel and oxidizers. The fuels include hydrogen, methane and hydrazine-type fuels; the oxidizers include oxygen, fluorine, flox, nitrogen tetroxide and ozone. The type of available information covers thermophysical properties, propellant systems, propellant fires-control-extinguishment, propellant explosions, propellant combustion, propellant safety, and fluorine chemistry. These organizations have assembled and collated their information so that it will be useful in the solution of engineering problems.

  11. Propellant Management and Conditioning within the X-34 Main Propulsion System

    NASA Technical Reports Server (NTRS)

    Brown, T. M.; McDonald, J. P.; Hedayat, A.; Knight, K. C.; Champion, R. H., Jr.

    1998-01-01

    The X-34 hypersonic flight vehicle is currently under development by Orbital Sciences Corporation (Orbital). The Main Propulsion ystem as been designed around the liquid propellant Fastrac rocket engine currently under development at NASA Marshall Space Flight Center. This paper presents analyses of the MPS subsystems used to manage the liquid propellants. These subsystems include the propellant tanks, the tank vent/relief subsystem, and the dump/fill/drain subsystem. Analyses include LOX tank chill and fill time estimates, LOX boil-off estimates, propellant conditioning simulations, and transient propellant dump simulations.

  12. Biodegradable protein-based rockets for drug transportation and light-triggered release.

    PubMed

    Wu, Zhiguang; Lin, Xiankun; Zou, Xian; Sun, Jianmin; He, Qiang

    2015-01-14

    We describe a biodegradable, self-propelled bovine serum albumin/poly-l-lysine (PLL/BSA) multilayer rocket as a smart vehicle for efficient anticancer drug encapsulation/delivery to cancer cells and near-infrared light controlled release. The rockets were constructed by a template-assisted layer-by-layer assembly of the PLL/BSA layers, followed by incorporation of a heat-sensitive gelatin hydrogel containing gold nanoparticles, doxorubicin, and catalase. These rockets can rapidly deliver the doxorubicin to the targeted cancer cell with a speed of up to 68 μm/s, through a combination of biocatalytic bubble propulsion and magnetic guidance. The photothermal effect of the gold nanoparticles under NIR irradiation enable the phase transition of the gelatin hydrogel for rapid release of the loaded doxorubicin and efficient killing of the surrounding cancer cells. Such biodegradable and multifunctional protein-based microrockets provide a convenient and efficient platform for the rapid delivery and controlled release of therapeutic drugs.

  13. Advanced Small Rocket Chambers. Basic Program and Option 2: Fundamental Processes and Material Evaluation

    NASA Technical Reports Server (NTRS)

    Jassowski, Donald M.

    1993-01-01

    Propellants, chamber materials, and processes for fabrication of small high performance radiation cooled liquid rocket engines were evaluated to determine candidates for eventual demonstration in flight-type thrusters. Both storable and cryogenic propellant systems were considered. The storable propellant systems chosen for further study were nitrogen tetroxide oxidizer with either hydrazine or monomethylhydrazine as fuel. The cryogenic propellants chosen were oxygen with either hydrogen or methane as fuel. Chamber material candidates were chemical vapor deposition (CVD) rhenium protected from oxidation by CVD iridium for the chamber hot section, and film cooled wrought platinum-rhodium or regeneratively cooled stainless steel for the front end section exposed to partially reacted propellants. Laser diagnostics of the combustion products near the hot chamber surface and measurements at the surface layer were performed in a collaborative program at Sandia National Laboratories, Livermore, CA. The Material Sample Test Apparatus, a laboratory system to simulate the combustion environment in terms of gas and material temperature, composition, and pressure up to 6 Atm, was developed for these studies. Rocket engine simulator studies were conducted to evaluate the materials under simulated combustor flow conditions, in the diagnostic test chamber. These tests used the exhaust species measurement system, a device developed to monitor optically species composition and concentration in the chamber and exhaust by emission and absorption measurements.

  14. The engineering of a nuclear thermal landing and ascent vehicle utilizing indigenous Martian propellant

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert M.

    1991-01-01

    The following paper reports on a design study of a novel space transportation concept known as a 'NIMF' (Nuclear rocket using Indigenous Martian Fuel). The NIMF is a ballistic vehicle which obtains its propellant out of the Martian air by compression and liquefaction of atmospheric CO2. This propellant is subsequently used to generate rocket thrust at a specific impulse of 264 s by being heated to high temperature (2800 K) gas in the NIMFs' nuclear thermal rocket engines. The vehicle is designed to provide surface to orbit and surface to surface transportation, as well as housing, for a crew of three astronauts. It is capable of refueling itself for a flight to its maximum orbit in less than 50 days. The ballistic NIMF has a mass of 44.7 tonnes and, with the assumed 2800 K propellant temperature, is capable of attaining highly energetic (250 km by 34,000 km elliptical) orbits. This allows it to rendezvous with interplanetary transfer vehicles which are only very loosely bound into orbit around Mars. If a propellant temperature of 2000 K is assumed, then low Mars orbit can be attained; while if 3100 K is assumed, then the ballistic NIMF is capable of injecting itself onto a minimum energy transfer orbit to Earth in a direct ascent from the Martian surface.

  15. Powdered aluminum and oxygen rocket propellants: Subscale combustion experiments

    NASA Technical Reports Server (NTRS)

    Meyer, Mike L.

    1993-01-01

    Aluminum combined with oxygen has been proposed as a potential lunar in situ propellant for ascent/descent and return missions for future lunar exploration. Engine concepts proposed to use this propellant have not previously been demonstrated, and the impact on performance from combustion and two-phase flow losses could only be estimated. Therefore, combustion tests were performed for aluminum and aluminum/magnesium alloy powders with oxygen in subscale heat-sink rocket engine hardware. The metal powder was pneumatically injected, with a small amount of nitrogen, through the center orifice of a single element O-F-O triplet injector. Gaseous oxygen impinged on the fuel stream. Hot-fire tests of aluminum/oxygen were performed over a mixture ratio range of 0.5 to 3.0, and at a chamber pressure of approximately 480 kPa (70 psia). The theoretical performance of the propellants was analyzed over a mixture ratio range of 0.5 to 5.0. In the theoretical predictions the ideal one-dimensional equilibrium rocket performance was reduced by loss mechanisms including finite rate kinetics, two-dimensional divergence losses, and boundary layer losses. Lower than predicted characteristic velocity and specific impulse performance efficiencies were achieved in the hot-fire tests, and this was attributed to poor mixing of the propellants and two-phase flow effects. Several tests with aluminum/9.8 percent magnesium alloy powder did not indicate any advantage over the pure aluminum fuel.

  16. The Effect of Rapid Liquid-Phase Reactions on Injector Design and Combustion in Rocket Motors

    NASA Technical Reports Server (NTRS)

    Elverum, Gerard W., Jr.; Staudhammer, Peter

    1959-01-01

    Data are presented indicating the rates and magnitudes of energy released by the liquid-phase reactions of various propellant combinations. The data show that this energy release can contribute significantly to the rate of vaporization of the incoming propellants and thus aid the combustion process. Nevertheless, very low performances were obtained in rocket motors with conventional impinging-jet injectors when highly reactive systems such as N104-N2H4, were employed. A possible explanation for this low performance is that the initial reactions of such systems are so rapid that liquid-phase mixing is inhibited. Evidence for such an effect is presented in a series of color photographs of open flames using various injector elements. Based on these studies, some requirements are suggested for injector elements using highly reactive propellants. Experimental results are presented of motor tests using injector elements in which some of these requirements are met through the use of a set of concentric tubes. These tests, carried out at thrust levels of 40 to 800 lb per element, demonstrated combustion efficiencies of up to 98% based on equilibrium characteristic velocity values. Results are also presented for tests made with impinging-jet and splash-plate injectors for comparison.

  17. Technical prospects for utilizing extraterrestrial propellants for space exploration

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.; Meyer, Michael L.

    1991-01-01

    NASA's LeRC has supported several efforts to understand how lunar and Martian produced propellants can be used to their best advantage for space exploration propulsion. A discussion of these efforts and their results is presented. A Manned Mars Mission Analysis Study identified that a more thorough technology base for propellant production is required before the the net economic benefits of in situ propellants can be determined. Evaluation of the materials available on the moon indicated metal/oxygen combinations are the most promising lunar propellants. A hazard analysis determined that several lunar metal/LOX monopropellants could be safely worked with in small quantities, and a characterization study was initiated to determine the physical and chemical properties of potential lunar monopropellant formulations. A bipropellant metal/oxygen subscale test engine which utilizes pneumatic injection of powdered metal is being pursued as an alternative to the monopropellant systems. The technology for utilizing carbon monoxide/oxygen, a potential Martian propellant, was studied in subscale ignition and rocket performance experiments.

  18. Direct electrical arc ignition of hybrid rocket motors

    NASA Astrophysics Data System (ADS)

    Judson, Michael I., Jr.

    Hybrid rockets motors provide distinct safety advantages when compared to traditional liquid or solid propellant systems, due to the inherent stability and relative inertness of the propellants prior to established combustion. As a result of this inherent propellant stability, hybrid motors have historically proven difficult to ignite. State of the art hybrid igniter designs continue to require solid or liquid reactants distinct from the main propellants. These ignition methods however, reintroduce to the hybrid propulsion system the safety and complexity disadvantages associated with traditional liquid or solid propellants. The results of this study demonstrate the feasibility of a novel direct electrostatic arc ignition method for hybrid motors. A series of small prototype stand-alone thrusters demonstrating this technology were successfully designed and tested using Acrylonitrile Butadiene Styrene (ABS) plastic and Gaseous Oxygen (GOX) as propellants. Measurements of input voltage and current demonstrated that arc-ignition will occur using as little as 10 watts peak power and less than 5 joules total energy. The motor developed for the stand-alone small thruster was adapted as a gas generator to ignite a medium-scale hybrid rocket motor using nitrous oxide /and HTPB as propellants. Multiple consecutive ignitions were performed. A large data set as well as a collection of development `lessons learned' were compiled to guide future development and research. Since the completion of this original groundwork research, the concept has been developed into a reliable, operational igniter system for a 75mm hybrid motor using both gaseous oxygen and liquid nitrous oxide as oxidizers. A development map of the direct spark ignition concept is presented showing the flow of key lessons learned between this original work and later follow on development.

  19. Atmospheric Mining in the Outer Solar System: Outer Planet Orbital Transfer and Lander Analyses

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2016-01-01

    High energy propellants for human lunar missions are analyzed, focusing on very advanced ozone and atomic hydrogen. One of the most advanced launch vehicle propulsion systems, such as the Space Shuttle Main Engine (SSME), used hydrogen and oxygen and had a delivered specific impulse of 453 seconds. In the early days of the space program, other propellants (or so called metapropellants) were suggested, including atomic hydrogen and liquid ozone. Theoretical and experimental studies of atomic hydrogen and ozone were conducted beginning in the late 1940s. This propellant research may have provided screenwriters with the idea of an atomic hydrogen-ozone rocket engine in the 1950 movie, Rocketship X-M. This paper presents analyses showing that an atomic hydrogen-ozone rocket engine could produce a specific impulse over a wide range of specific impulse values reaching as high as 1,600 seconds. A series of single stage and multistage rocket vehicle analyses were conducted to find the minimum specific impulse needed to conduct high energy round trip lunar missions.

  20. Liquid fuel injection elements for rocket engines

    NASA Technical Reports Server (NTRS)

    Cox, George B., Jr. (Inventor)

    1993-01-01

    Thrust chambers for liquid propellant rocket engines include three principal components. One of these components is an injector which contains a plurality of injection elements to meter the flow of propellants at a predetermined rate, and fuel to oxidizer mixture ratio, to introduce the mixture into the combustion chamber, and to cause them to be atomized within the combustion chamber so that even combustion takes place. Evolving from these injectors are tube injectors. These tube injectors have injection elements for injecting the oxidizer into the combustion chamber. The oxidizer and fuel must be metered at predetermined rates and mixture ratios in order to mix them within the combustion chamber so that combustion takes place smoothly and completely. Hence tube injectors are subject to improvement. An injection element for a liquid propellant rocket engine of the bipropellant type is provided which includes tangential fuel metering orifices, and a plurality of oxidizer tube injection elements whose injection tubes are also provided with tangential oxidizer entry slots and internal reed valves.

  1. Robust Exploration and Commercial Missions to the Moon Using NTR LANTR Propulsion and Lunar-Derived Propellants

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Ryan, Stephen W.; Burke, Laura M.; McCurdy, David R.; Fittje, James E.; Joyner, Claude R.

    2017-01-01

    The nuclear thermal rocket (NTR) has frequently been identified as a key space asset required for the human exploration of Mars. This proven technology can also provide the affordable access through cislunar space necessary for commercial development and sustained human presence on the Moon. In his post-Apollo Integrated Space Program Plan (1970-1990), Wernher von Braun, proposed a reusable nuclear thermal propulsion stage (NTPS) to deliver cargo and crew to the Moon to establish a lunar base before undertaking human missions to Mars. The NTR option was selected by von Braun because it was a demonstrated technology capable of generating both high thrust and high specific impulse (Isp 900 s) twice that of todays best chemical rockets. In NASAs Mars Design Reference Architecture (DRA) 5.0 study, the crewed Mars transfer vehicle used three 25 klbf Pewee engines the smallest and highest performing engine tested in the Rover program along with graphite composite fuel. Smaller, lunar transfer vehicles consisting of a NTPS using three approximately 16.5 klbf Small Nuclear Rocket Engines (SNREs), an in-line propellant tank, plus the payload can enable a variety of reusable lunar missions. These include cargo delivery and crewed lunar landing missions. Even weeklong tourism missions carrying passengers into lunar orbit for a day of sightseeing and picture taking are possible. The NTR can play an important role in the next phase of lunar exploration and development by providing an affordable in-space lunar transportation system (LTS) that can allow initial outposts to evolve into settlements supported by a variety of commercial activities such as in-situ propellant production used to supply strategically located propellant depots and transportation nodes. The utilization of iron-rich volcanic glass or lunar polar ice (LPI) deposits (each estimated at billions of metric tons) for propellant production can significantly reduce the launch mass requirements from Earth and can enable reusable, surface-based lunar landing vehicles (LLVs) using liquid oxygen/hydrogen (LOX/LH2) chemical rocket engines. Afterwards, LOX/LH2 propellant depots can be established in lunar equatorial and polar orbits to supply the LTS. At this point a modified version of the conventional NTR called the LOX-augmented NTR, or LANTR would be introduced into the LTS allowing bipropellant operation and leveraging the mission benefits of refueling with lunar-derived propellants for Earth return. The bipropellant LANTR engine utilizes the large divergent section of its nozzle as an afterburner into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the engines choked sonic throat essentially scramjet propulsion in reverse. By varying the oxygen-to-hydrogen mixture ratio, LANTR engines can operate over a range of thrust and Isp values while the reactor core power level remains relatively constant. Eventually, a LANTR-based LTS can enable a rapid commuter shuttle with one-way trip times to and from the Moon ranging from 36 to 24 hours. Even if only 1 of the extracted propellant from identified volcanic glass and polar ice deposits were available for use in lunar orbit, such a supply could support daily commuter flights to the Moon for many thousands of years! An evolutionary mission architecture is outlined and a variety of lunar missions and transfer vehicle designs are examined, along with the increasing demands on propellant production as mission complexity increases. A comparison of vehicle features and engine operating characteristics, for both NTR and LANTR engines, is also provided along with a brief discussion on the propellant production issues associated with using volcanic glass and LPI as source material.

  2. Catalytic Microtube Rocket Igniter

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Deans, Matthew C.

    2011-01-01

    Devices that generate both high energy and high temperature are required to ignite reliably the propellant mixtures in combustion chambers like those present in rockets and other combustion systems. This catalytic microtube rocket igniter generates these conditions with a small, catalysis-based torch. While traditional spark plug systems can require anywhere from 50 W to multiple kW of power in different applications, this system has demonstrated ignition at less than 25 W. Reactants are fed to the igniter from the same tanks that feed the reactants to the rest of the rocket or combustion system. While this specific igniter was originally designed for liquid methane and liquid oxygen rockets, it can be easily operated with gaseous propellants or modified for hydrogen use in commercial combustion devices. For the present cryogenic propellant rocket case, the main propellant tanks liquid oxygen and liquid methane, respectively are regulated and split into different systems for the individual stages of the rocket and igniter. As the catalyst requires a gas phase for reaction, either the stored boil-off of the tanks can be used directly or one stream each of fuel and oxidizer can go through a heat exchanger/vaporizer that turns the liquid propellants into a gaseous form. For commercial applications, where the reactants are stored as gases, the system is simplified. The resulting gas-phase streams of fuel and oxidizer are then further divided for the individual components of the igniter. One stream each of the fuel and oxidizer is introduced to a mixing bottle/apparatus where they are mixed to a fuel-rich composition with an O/F mass-based mixture ratio of under 1.0. This premixed flow then feeds into the catalytic microtube device. The total flow is on the order of 0.01 g/s. The microtube device is composed of a pair of sub-millimeter diameter platinum tubes connected only at the outlet so that the two outlet flows are parallel to each other. The tubes are each approximately 10 cm long and are heated via direct electric resistive heating. This heating brings the gasses to their minimum required ignition temperature, which is lower than the auto-thermal ignition temperature, and causes the onset of both surface and gas phase ignition producing hot temperatures and a highly reacting flame. The combustion products from the catalytic tubes, which are below the melting point of platinum, are injected into the center of another combustion stage, called the primary augmenter. The reactants for this combustion stage come from the same source but the flows of non-premixed methane and oxygen gas are split off to a secondary mixing apparatus and can be mixed in a near-stoichiometric to highly lean mixture ratio. The primary augmenter is a component that has channels venting this mixed gas to impinge on each other in the center of the augmenter, perpendicular to the flow from the catalyst. The total crosssectional area of these channels is on a similar order as that of the catalyst. The augmenter has internal channels that act as a manifold to distribute equally the gas to the inward-venting channels. This stage creates a stable flame kernel as its flows, which are on the order of 0.01 g/s, are ignited by the combustion products of the catalyst. This stage is designed to produce combustion products in the flame kernel that exceed the autothermal ignition temperature of oxygen and methane.

  3. Reusable Rocket Engine Advanced Health Management System. Architecture and Technology Evaluation: Summary

    NASA Technical Reports Server (NTRS)

    Pettit, C. D.; Barkhoudarian, S.; Daumann, A. G., Jr.; Provan, G. M.; ElFattah, Y. M.; Glover, D. E.

    1999-01-01

    In this study, we proposed an Advanced Health Management System (AHMS) functional architecture and conducted a technology assessment for liquid propellant rocket engine lifecycle health management. The purpose of the AHMS is to improve reusable rocket engine safety and to reduce between-flight maintenance. During the study, past and current reusable rocket engine health management-related projects were reviewed, data structures and health management processes of current rocket engine programs were assessed, and in-depth interviews with rocket engine lifecycle and system experts were conducted. A generic AHMS functional architecture, with primary focus on real-time health monitoring, was developed. Fourteen categories of technology tasks and development needs for implementation of the AHMS were identified, based on the functional architecture and our assessment of current rocket engine programs. Five key technology areas were recommended for immediate development, which (1) would provide immediate benefits to current engine programs, and (2) could be implemented with minimal impact on the current Space Shuttle Main Engine (SSME) and Reusable Launch Vehicle (RLV) engine controllers.

  4. Injection and swirl driven flowfields in solid and liquid rocket motors

    NASA Astrophysics Data System (ADS)

    Vyas, Anand B.

    In this work, we seek approximate analytical solutions to describe the bulk flow motion in certain types of solid and liquid rocket motors. In the case of an idealized solid rocket motor, a cylindrical double base propellant grain with steady regression rate is considered. The well known inviscid profile determined by Culick is extended here to include the effects of viscosity and steady grain regression. The approximate analytical solution for the cold flow is obtained from similarity principles, perturbation methods and the method of variation of parameters. The velocity, vorticity, pressure gradient and the shear stress distributions are determined and interpreted for different rates of wall regression and injection Reynolds number. The liquid propellant rocket engine considered here is based on a novel design that gives rise to a cyclonic flow. The resulting bidirectional motion is triggered by the tangential injection of an oxidizer just upstream of the chamber nozzle. Velocity, vorticity and pressure gradient distributions are determined for the bulk gas dynamics using a non-reactive inviscid model. Viscous corrections are then incorporated to explain the formation of a forced vortex near the core. Our results compare favorably with numerical simulations and experimental measurements obtained by other researchers. They also indicate that the bidirectional vortex in a cylindrical chamber is a physical solution of the Euler equations. In closing, we investigate the possibility of multi-directional flow behavior as predicted by Euler's equation and as reported recently in laboratory experiments.

  5. Materials characterization of propellants using ultrasonics

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Jones, David

    1993-01-01

    Propellant characteristics for solid rocket motors were not completely determined for its use as a processing variable in today's production facilities. A major effort to determine propellant characteristics obtainable through ultrasonic measurement techniques was performed in this task. The information obtained was then used to determine the uniformity of manufacturing methods and/or the ability to determine non-uniformity in processes.

  6. Review of Combustion Stability Characteristics of Swirl Coaxial Element Injectors

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Casiano, M. J.

    2013-01-01

    Liquid propellant rocket engine injectors using coaxial elements where the center liquid is swirled have become more common in the United States over the past several decades, although primarily for technology or advanced development programs. Currently, only one flight engine operates with this element type in the United States (the RL10 engine), while the element type is very common in Russian (and ex-Soviet) liquid propellant rocket engines. In the United States, the understanding of combustion stability characteristics of swirl coaxial element injectors is still very limited, despite the influx of experimental and theoretical information from Russia. The empirical and theoretical understanding is much less advanced than for the other prevalent liquid propellant rocket injector element types, the shear coaxial and like-on-like paired doublet. This paper compiles, compares and explores the combustion stability characteristics of swirl coaxial element injectors tested in the United States, dating back to J-2 and RL-10 development, and extending to very recent programs at the NASA MSFC using liquid oxygen and liquid methane and kerosene propellants. Included in this study are several other relatively recent design and test programs, including the Space Transportation Main Engine (STME), COBRA, J-2X, and the Common Extensible Cryogenic Engine (CECE). A presentation of the basic data characteristics is included, followed by an evaluation by several analysis techniques, including those included in Rocket Combustor Interactive Design and Analysis Computer Program (ROCCID), and methodologies described by Hewitt and Bazarov.

  7. JANNAF 35th Combustion Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor); Rognan, Melanie (Editor)

    1998-01-01

    Volume 1, the first of two volumes is a compilation of 63 unclassified/unlimited distribution technical papers presented at the 35th meeting of the Joint Army-Navy-NASA-Air Force (JANNAF) Combustion Subcommittee (CS) held jointly with the 17th Propulsion Systems Hazards Subcommittee (PSHS) and Airbreathing Propulsion Subcommittee (APS). The meeting was held on 7-11 December 1998 at Raytheon Systems Company and the Marriott Hotel, Tucson, AZ. Topics covered include solid gun propellant processing, ignition and combustion, charge concepts, barrel erosion and flash, gun interior ballistics, kinetics and molecular modeling, ETC gun modeling, simulation and diagnostics, and liquid gun propellant combustion; solid rocket motor propellant combustion, combustion instability fundamentals, motor instability, and measurement techniques; and liquid and hybrid rocket combustion.

  8. Carbon monoxide and oxygen combustion experiments: A demonstration of Mars in situ propellants

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.

    1991-01-01

    The feasibility of using carbon monoxide and oxygen as rocket propellants was examined both experimentally and theoretically. The steady-state combustion of carbon monoxide and oxygen was demonstrated for the first time in a subscale rocket engine. Measurements of experimental characteristic velocity, vacuum specific impulse, and thrust coefficient efficiency were obtained over a mixture ratio range of 0.30 to 2.0 and a chamber pressures of 1070 and 530 kPa. The theoretical performance of the propellant combination was studied parametrically over the same mixture ratio range. In addition to one dimensional ideal performance predictions, various performance reduction mechanisms were also modeled, including finite-rate kinetic reactions, two-dimensional divergence effects and viscous boundary layer effects.

  9. Analysis of rocket engine injection combustion processes

    NASA Technical Reports Server (NTRS)

    Salmon, J. W.

    1976-01-01

    A critique is given of the JANNAF sub-critical propellant injection/combustion process analysis computer models and application of the models to correlation of well documented hot fire engine data bases. These programs are the distributed energy release (DER) model for conventional liquid propellants injectors and the coaxial injection combustion model (CICM) for gaseous annulus/liquid core coaxial injectors. The critique identifies model inconsistencies while the computer analyses provide quantitative data on predictive accuracy. The program is comprised of three tasks: (1) computer program review and operations; (2) analysis and data correlations; and (3) documentation.

  10. Positioning Mechanism For Hoisting

    NASA Technical Reports Server (NTRS)

    Marlin, John D., III; Moore, Barry J.; Myers, Robert I.

    1992-01-01

    Mechanism positions large, heavy objects in container for lifting out by hoist, crane, or winch. Handles objects gently and ensures they are lifted cleanly away in vertical direction without bumping container. Developed for lifting offset pieces of solid-propellant core out of rocket motor through its propellant port. Similar specialized mechanisms can be developed to lift other specially shaped, specially contained heavy objects. Track in base of mechanism guides each trunnion and piece to which attached to middle as hydraulic rods extend. When mechanism lifted, tilted pieces swing inward and come to rest on energy-absorbing paddle.

  11. Development of Mechanics in Support of Rocket Technology in Ukraine

    NASA Astrophysics Data System (ADS)

    Prisnyakov, Vladimir

    2003-06-01

    The paper analyzes the advances of mechanics made in Ukraine in resolving various problems of space and rocket technology such as dynamics and strength of rockets and rocket engines, rockets of different purpose, electric rocket engines, and nonstationary processes in various systems of rockets accompanied by phase transitions of working media. Achievements in research on the effect of vibrations and gravitational fields on the behavior of space-rocket systems are also addressed. Results obtained in investigating the reliability and structural strength durability conditions for nuclear installations, solid- and liquid-propellant engines, and heat pipes are presented

  12. Aluminum/hydrocarbon gel propellants: An experimental and theoretical investigation of secondary atomization and predicted rocket engine performance

    NASA Astrophysics Data System (ADS)

    Mueller, Donn Christopher

    1997-12-01

    Experimental and theoretical investigations of aluminum/hydrocarbon gel propellant secondary atomization and its potential effects on rocket engine performance were conducted. In the experimental efforts, a dilute, polydisperse, gel droplet spray was injected into the postflame region of a burner and droplet size distributions was measured as a function of position above the burner using a laser-based sizing/velocimetry technique. The sizing/velocimetry technique was developed to measure droplets in the 10-125 mum size range and avoids size-biased detection through the use of a uniformly illuminated probe volume. The technique was used to determine particle size distributions and velocities at various axial locations above the burner for JP-10, and 50 and 60 wt% aluminum gels. Droplet shell formation models were applied to aluminum/hydrocarbon gels to examine particle size and mass loading effects on the minimum droplet diameter that will permit secondary atomization. This diameter was predicted to be 38.1 and 34.7 mum for the 50 and 60 wt% gels, which is somewhat greater than the experimentally measured 30 and 25 mum diameters. In the theoretical efforts, three models were developed and an existing rocket code was exercised to gain insights into secondary atomization. The first model was designed to predict gel droplet properties and shell stresses after rigid shell formation, while the second, a one-dimensional gel spray combustion model was created to quantify the secondary atomization process. Experimental and numerical comparisons verify that secondary atomization occurs in 10-125 mum diameter particles although an exact model could not be derived. The third model, a one-dimensional gel-fueled rocket combustion chamber, was developed to evaluate secondary atomization effects on various engine performance parameters. Results show that only modest secondary atomization may be required to reduce propellant burnout distance and radiation losses. A solid propellant engine code was employed to estimate nozzle two-phase flow losses and engine performance for upper-stage and booster missions (3-6% and 2-3%, respectively). Given these losses and other difficulties, metallized gel propellants may be impractical in high-expansion ratio engines. Although uncertainties remain, it appears that performance gains will be minimal in gross-weight limited missions, but that significant gains may arise in volume-limited missions.

  13. A-3 Test Stand work

    NASA Image and Video Library

    2011-07-29

    Rocket engine propellant tanks and cell dome top the A-3 Test Stand under construction at Stennis Space Center. The stand will test next-generation rocket engines that could carry humans beyond low-Earth orbit into deep space once more.

  14. Installation Restoration Program. Phase I. Records Search. Vandenberg Air Force Base, California.

    DTIC Science & Technology

    1984-12-01

    acidity or alkalinity POL Petroleum, oils, and lubricants PVC Polyvinyl chloride plastic RCRA Resource Conservation and Recovery Act RP-1 Rocket propellant...multiplter: Subscore 3 K ?hvsical State ulriptier Waste Caracteristics Subscore 50 X 1 50 11-1. CS-I HAZARD ASSESSMENT RATING METHODOLOGY FORM (Continued

  15. Atmospheric environmental implications of propulsion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcdonald, A.J.; Bennett, R.R.

    1995-03-01

    Three independent studies have been conducted for assessing the impact of rocket launches on the earth`s environment. These studies have addressed issues of acid rain in the troposphere, ozone depletion in the stratosphere, toxicity of chemical rocket exhaust products, and the potential impact on global warming from carbon dioxide emissions from rocket launches. Local, regional, and global impact assessments were examined and compared with both natural sources and anthropogenic sources of known atmospheric pollutants with the following conclusions: (1) Neither solid nor liquid rocket launches have a significant impact on the earth`s global environment, and there is no real significantmore » difference between the two. (2) Regional and local atmospheric impacts are more significant than global impacts, but quickly return to normal background conditions within a few hours after launch. And (3) vastly increased space launch activities equivalent to 50 U.S. Space Shuttles or 50 Russian Energia launches per year would not significantly impact these conclusions. However, these assessments, for the most part, are based upon homogeneous gas phase chemistry analysis; heterogeneous chemistry from exhaust particulates, such as aluminum oxide, ice contrails, soot, etc., and the influence of plume temperature and afterburning of fuel-rich exhaust products, need to be further addressed. It was the consensus of these studies that computer modeling of interactive plume chemistry with the atmosphere needs to be improved and computer models need to be verified with experimental data. Rocket exhaust plume chemistry can be modified with propellant reformulation and changes in operating conditions, but, based upon the current state of knowledge, it does not appear that significant environmental improvements from propellant formulation changes can be made or are warranted.« less

  16. The hard start phenomena in hypergolic engines. Volume 1: Bibliography

    NASA Technical Reports Server (NTRS)

    Miron, Y.; Perlee, H. E.

    1974-01-01

    A bibliography of reports pertaining to the hard start phenomenon in attitude control rocket engines on Apollo spacecraft is presented. Some of the subjects discussed are; (1) combustion of hydrazine, (2) one dimensional theory of liquid fuel rocket combustion, (3) preignition phenomena in small pulsed rocket engines, (4) experimental and theoretical investigation of the fluid dynamics of rocket combustion, and (5) nonequilibrium combustion and nozzle flow in propellant performance.

  17. Worldwide Space Launch Vehicles and Their Mainstage Liquid Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim A.

    2010-01-01

    Space launch vehicle begins with a basic propulsion stage, and serves as a missile or small launch vehicle; many are traceable to the 1945 German A-4. Increasing stage size, and increasingly energetic propulsion allows for heavier payloads and greater. Earth to Orbit lift capability. Liquid rocket propulsion began with use of storable (UDMH/N2O4) and evolved to high performing cryogenics (LOX/RP, and LOX/LH). Growth versions of SLV's rely on strap-on propulsive stages of either solid propellants or liquid propellants.

  18. Optical Measurements on Solid Specimens of Solid Rocket Motor Exhaust and Solid Rocket Motor Slag

    NASA Technical Reports Server (NTRS)

    Roberts, F. E., III

    1991-01-01

    Samples of aluminum slag were investigated to aid the Earth Science and Applications Division at the Marshall Space Flight Center (MSFC). Alumina from space motor propellant exhaust and space motor propellant slag was examined as a component of space refuse. Thermal emittance and solar absorptivity measurements were taken to support their comparison with reflectance measurements derived from actual debris. To determine the similarity between the samples and space motor exhaust or space motor slag, emittance and absorbance results were correlated with an examination of specimen morphology.

  19. Pulsed-Laser, High Speed Photography of Rocket Propellant Surface Deflagration.

    DTIC Science & Technology

    1986-05-01

    Investigator was Dr Roger J. Becker. AFRPL Project Manager was Mr Gary L. Vogt. This technical report has been reviewed and is approved for publication...8217;YMlB)OI (/P’I I la . i tJ .o C ’ Gary L. Vogt (805) 277-5258 AFPLIDYCR DD FORM 1473,83 APR EDITION OF 1 JAN 73 IS OBSOLETE. Unclass i fied" SECURl iY...84-1236. 4. G. A. Flandro , "A Simple Conceptual Model for the Nonlinear Transient Combustion of a Solid Rocket Propellant," AIAA Paper No. 82-1222

  20. The prediction of three-dimensional liquid-propellant rocket nozzle admittances

    NASA Technical Reports Server (NTRS)

    Bell, W. A.; Zinn, B. T.

    1973-01-01

    Crocco's three-dimensional nozzle admittance theory is extended to be applicable when the amplitudes of the combustor and nozzle oscillations increase or decrease with time. An analytical procedure and a computer program for determining nozzle admittance values from the extended theory are presented and used to compute the admittances of a family of liquid-propellant rocket nozzles. The calculated results indicate that the nozzle geometry entrance Mach number and temporal decay coefficient significantly affect the nozzle admittance values. The theoretical predictions are shown to be in good agreement with available experimental data.

  1. Barrier Properties of Layered-Silicate Reinforced Ethylenepropylenediene Monomer/Chloroprene Rubber Nanorubbers

    PubMed Central

    Hsieh, Wen Yen; Cheng, Kuo Bin; Lai, Chiu-Chun; Lee, Kuei Chi

    2018-01-01

    The triacetin and nitroglycerin barrier properties of layered-silicate reinforced ethylenepropylenediene monomer/chloroprene rubber (EPDM/CR) nanorubbers were investigated as rocket-propellant inhibitors. EPDM/CR nanorubbers with intercalated structures were formulated and prepared by the melt-compounding method. The triacetin permeability and nitroglycerin absorption were observed to decrease with increasing layered-silicate content. The layered silicates also improved the flame retardancies of the nanorubbers by forming silicate reinforced carbonaceous chars. Layered-silicate reinforced EPDM/CR nanorubbers are potentially effective rocket propellant-inhibiting materials. PMID:29747427

  2. Space Shuttle solid rocket motor exposure monitoring

    NASA Technical Reports Server (NTRS)

    Brown, S. W.

    1993-01-01

    During the processing of the Space Shuttle Solid Rocket Booster (SRB), segments at the Kennedy Space Center, an odor was detected around the solid propellant. An Industrial Hygiene survey was conducted to determine the chemical identity of the SRB offgassing constituents. Air samples were collected inside a forward SRB segment and analyzed to determine chemical composition. Specific chemical analysis for suspected offgassing constituents of the propellant indicated ammonia to be present. A gas chromatograph mass spectroscopy (GC/MS) analysis of the air samples detected numerous high molecular weight hydrocarbons.

  3. Research on combustion instability and application to solid propellant rocket motors. II.

    NASA Technical Reports Server (NTRS)

    Culick, F. E. C.

    1972-01-01

    Review of the current state of analyses of combustion instability in solid-propellant rocket motors, citing appropriate measurements and observations. The work discussed has become increasingly important, both for the interpretation of laboratory data and for predicting the transient behavior of disturbances in full-scale motors. Two central questions are considered - namely, linear stability and nonlinear behavior. Several classes of problems are discussed as special cases of a general approach to the analysis of combustion instability. Application to motors, and particularly the limitations presently understood, are stressed.

  4. Independent Review of the Failure Modes of F-1 Engine and Propellants System

    NASA Technical Reports Server (NTRS)

    Ray, Paul

    2003-01-01

    The F-1 is the powerful engine, that hurdled the Saturn V launch vehicle from the Earth to the moon on July 16,1969. The force that lifted the rocket overcoming the gravitational force during the first stage of the flight was provided by a cluster of five F-1 rocket engines, each of them developing over 1.5 million pounds of thrust (MSFC-MAN-507). The F-1 Rocket engine used RP-1 (Rocket Propellant-1, commercially known as Kerosene), as fuel with lox (liquid Oxygen) as oxidizer. NASA terminated Saturn V activity and has focused on Space Shuttle since 1972. The interest in rocket system has been revived to meet the National Launch System (NLS) program and a directive from the President to return to the Moon and exploration of the space including Mars. The new program Space Launch Initiative (SLI) is directed to drastically reduce the cost of flight for payloads, and adopt a reusable launch vehicle (RLV). To achieve this goal it is essential to have the ability of lifting huge payloads into low earth orbit. Probably requiring powerful boosters as strap-ons to a core vehicle, as was done for the Saturn launch vehicle. The logic in favor of adopting Saturn system, a proven technology, to meet the SLI challenge is very strong. The F-1 engine was the largest and most powerful liquid rocket engine ever built, and had exceptional performance. This study reviews the failure modes of the F-1 engine and propellant system.

  5. Rheology of composite solid propellants during motor casting

    NASA Technical Reports Server (NTRS)

    Rogers, C. J.; Smith, P. L.; Klager, K.

    1978-01-01

    In a study conducted to evaluate flow parameters of uncured solid composite propellants during motor casting, two motors (1.8M-lb grain wt) were cast with a PBAN propellant exhibiting good flow characteristics in a 260-in. dia solid rocket motor. Attention is given to the effects of propellant compositional and processing variables on apparent viscosity as they pertain to rheological behavior and grain defect formation during casting. It is noted that optimized flow behavior is impaired with solid propellant loading. Non-Newtonian pseudoplastic flow is observed, which is dependent upon applied shear stress and the age of the uncured propellant.

  6. Liquid Methane/Liquid Oxygen Propellant Conditioning Feed System (PCFS) Test Rigs

    NASA Technical Reports Server (NTRS)

    Skaff, A.; Grasl, S.; Nguyen, C.; Hockenberry S.; Schubert, J.; Arrington, L.; Vasek, T.

    2008-01-01

    As part of their Propulsion and Cryogenic Advanced Development (PCAD) program, NASA has embarked upon an effort to develop chemical rocket engines which utilize non-toxic, cryogenic propellants such as liquid oxygen (LO2) and liquid methane (LCH4). This effort includes the development and testing of a 100 lbf Reaction Control Engine (RCE) that will be used to evaluate the performance of a LO2/LCH4 rocket engine over a broad range of propellant temperatures and pressures. This testing will take place at NASA-Glenn Research Center's (GRC) Research Combustion Laboratory (RCL) test facility in Cleveland, OH, and is currently scheduled to begin in late 2008. While the initial tests will be performed at sea level, follow-on testing will be performed at NASA-GRC's Altitude Combustion Stand (ACS) for altitude testing. In support of these tests, Sierra Lobo, Inc. (SLI) has designed, developed, and fabricated two separate portable propellant feed systems under the Propellant Conditioning and Feed System (PCFS) task: one system for LCH4, and one for LO2. These systems will be capable of supplying propellants over a large range of conditions from highly densified to several hundred pounds per square inch (psi) saturated. This paper presents the details of the PCFS design and explores the full capability of these propellant feed systems.

  7. Efficient solid rocket propulsion for access to space

    NASA Astrophysics Data System (ADS)

    Maggi, Filippo; Bandera, Alessio; Galfetti, Luciano; De Luca, Luigi T.; Jackson, Thomas L.

    2010-06-01

    Space launch activity is expected to grow in the next few years in order to follow the current trend of space exploitation for business purpose. Granting high specific thrust and volumetric specific impulse, and counting on decades of intense development, solid rocket propulsion is a good candidate for commercial access to space, even with common propellant formulations. Yet, some drawbacks such as low theoretical specific impulse, losses as well as safety issues, suggest more efficient propulsion systems, digging into the enhancement of consolidated techniques. Focusing the attention on delivered specific impulse, a consistent fraction of losses can be ascribed to the multiphase medium inside the nozzle which, in turn, is related to agglomeration; a reduction of agglomerate size is likely. The present paper proposes a model based on heterogeneity characterization capable of describing the agglomeration trend for a standard aluminized solid propellant formulation. Material microstructure is characterized through the use of two statistical descriptors (pair correlation function and near-contact particles) looking at the mean metal pocket size inside the bulk. Given the real formulation and density of a propellant, a packing code generates the material representative which is then statistically analyzed. Agglomerate predictions are successfully contrasted to experimental data at 5 bar for four different formulations.

  8. Propellant Management in Microgravity- Further Analysis of an Experiment Flown on REXUS-14

    NASA Astrophysics Data System (ADS)

    Strobino, D.; Zumbrunen, E.; Putzu, R.; Pontelandolfo, P.

    2015-09-01

    This paper is about the further analysis of an experiment named CAESAR (stands for Capillarity-based Experiment for Spatial Advanced Research): a sounding rocket experiment carried out by students of hepia within the REXUS program. The authors have launched on REXUS-14 a propellant management experiment based on capillarity to reliably confirm other ground-based cxperiments. In the framework of the present work, the authors present the comparison of CAESAR experimental data with theoretical profiles provided in literature. The objective of this flight was to place several Propellant Management Devices (PMD) in a microgravity environment and acquire images of the fluid distribution around them. The main element of the experiment, called a sponge, is a PMD for space vehicles, often used in satellites. This radial panel shaped device can be used at the bottom of a satellite tank to keep the propellant near the outlet. It is designed to work even if the vehicle undergoes small accelerations, for example during station-keeping maneuvers. The fluid is eccentric but stays on the sponge and near the outlet, so the injection system of the motor is continuously supplied with the propellant. As previously published, the authors have created a buoyancy test bench and have designed another system by magnetic levitation to perform the same experiment on earth. These systems are easier to use and less expensive than a sounding rocket, a parabolic flight or a drop tower (i.e. other system to obtain microgravity on earth), so they will be very useful to make progress in this particular domain of science. They will also allow universities with small funds to work within this spatial field. A previous publication showed, from a qualitative point of view, a good agreement between experiments and theory; however in this paper quantitative comparisons are given. With this demonstrated, hepia can validate its buoyancy test facility with real flight tests.

  9. A hybrid rocket engine design for simple low cost sounding rocket use

    NASA Astrophysics Data System (ADS)

    Grubelich, Mark; Rowland, John; Reese, Larry

    1993-06-01

    Preliminary test results on a nitrous oxide/HTPB hybrid rocket engine suitable for powering a small sounding rocket to altitudes of 50-100 K/ft are presented. It is concluded that the advantage of the N2O hybrid engine over conventional solid propellant rocket motors is the ability to obtain long burn times with core burning geometries due to the low regression rate of the fuel. Long burn times make it possible to reduce terminal velocity to minimize air drag losses.

  10. A review of research in low earth orbit propellant collection

    NASA Astrophysics Data System (ADS)

    Singh, Lake A.; Walker, Mitchell L. R.

    2015-05-01

    This comprehensive review examines the efforts of previous researchers to develop concepts for propellant-collecting spacecraft, estimate the performance of these systems, and understand the physics involved. Rocket propulsion requires the spacecraft to expend two fundamental quantities: energy and propellant mass. A growing number of spacecraft collect the energy they need to execute propulsive maneuvers in-situ with solar panels. In contrast, every spacecraft using rocket propulsion has carried all of the propellant mass needed for the mission from the ground, which limits the range and mission capabilities. Numerous researchers have explored the concept of collecting propellant mass while in space. These concepts have varied in scale and complexity from chemical ramjets to fusion-driven interstellar vessels. Research into propellant-collecting concepts occurred in distinct eras. During the Cold War, concepts tended to be large, complex, and nuclear powered. After the Cold War, concepts transitioned to solar power sources and more effort has been devoted to detailed analysis of specific components of the propellant-collecting architecture. By detailing the major contributions and limitations of previous work, this review concisely presents the state-of-the-art and outlines five areas for continued research. These areas include air-compatible cathode technology, techniques to improve propellant utilization on atmospheric species, in-space compressor and liquefaction technology, improved hypersonic and hyperthermal free molecular flow inlet designs, and improved understanding of how design parameters affect system performance.

  11. Solid rocket propellant waste disposal/ingredient recovery study

    NASA Technical Reports Server (NTRS)

    Mcintosh, M. J.

    1976-01-01

    A comparison of facility and operating costs of alternate methods shows open burning to be the lowest cost incineration method of waste propellant disposal. The selection, development, and implementation of an acceptable alternate is recommended. The recovery of ingredients from waste propellant has the probability of being able to pay its way, and even show a profit, when large consistent quantities of composite propellant are available. Ingredients recovered from space shuttle waste propellant would be worth over $1.5 million. Open and controlled burning are both energy wasteful.

  12. Evaluation of Impinging Stream Vortex Chamber Concepts for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu; Kopicz, Charles; Bullard, Brad; Michaels, Scott

    2003-01-01

    NASA Marshall Space Flight Center (MSFC) and the U. S. Army are jointly investigating vortex chamber concepts for cryogenic oxygen/hydrocarbon fuel rocket engine applications. One concept, the Impinging Stream Vortex Chamber Concept (ISVC), has been tested with gel propellants at AMCOM at Redstone Arsenal, Alabama. A version of this concept for the liquid oxygen (LOX)/hydrocarbon fuel (RP-1) propellant system is derived from the one for the gel propellant. An unlike impinging injector is employed to deliver the propellants to the chamber. MSFC has also designed two alternative injection schemes, called the chasing injectors, associated with this vortex chamber concept. In these injection techniques, both propellant jets and their impingement point are in the same chamber cross-sectional plane. One injector has a similar orifice size with the original unlike impinging injector. The second chasing injector has small injection orifices. The team has achieved their objectives of demonstrating the self-cooled chamber wall benefits of ISVC and of providing the test data for validating computational fluids dynamics (CFD) models. These models, in turn, will be used to design the optimum vortex chambers in the future.

  13. Space Launch System Base Heating Test: Experimental Operations & Results

    NASA Technical Reports Server (NTRS)

    Dufrene, Aaron; Mehta, Manish; MacLean, Matthew; Seaford, Mark; Holden, Michael

    2016-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Test methodology and conditions are presented, and base heating results from 76 runs are reported in non-dimensional form. Regions of high heating are identified and comparisons of various configuration and conditions are highlighted. Base pressure and radiometer results are also reported.

  14. Solid-propellant rocket motor internal ballistics performance variation analysis, phase 5

    NASA Technical Reports Server (NTRS)

    Sforzini, R. H.; Murph, J. E.

    1980-01-01

    The results of research aimed at improving the predictability of internal ballistics performance of solid-propellant rocket motors (SRM's) including thrust imbalance between two SRM's firing in parallel are presented. Static test data from the first six Space Shuttle SRM's is analyzed using a computer program previously developed for this purpose. The program permits intentional minor design biases affecting the imbalance between any two SMR's to be removed. Results for the last four of the six SRM's, with only the propellant bulk temperature as a non-random variable, are generally within limits predicted by theory. Extended studies of internal ballistic performance of single SRM's are presented based on an earlier developed mathematical model which includes an assessment of grain deformation. The erosive burning rate law used in the model is upgraded and made more general. Excellent results are obtained in predictions of the performances of five different SRM's of quite different sizes and configurations. These SRM's all employ PBAN type propellants with ammonium perchlorate oxidizer and 16 to 20% aluminum except one which uses carboxyl terminated butadiene binder. The only non-calculated parameters in the burning rate equations that are changed for the different SRM's are the zero crossflow velocity burning rate coefficients and exponents. The results, in general, confirm the importance of grain deformation. The improved internal ballistic model makes practical development of an effective computer program for application of an optimization technique to SRM design which is also demonstrated. The program uses a pattern search technique to minimize the difference between a desired thrust-time trace and one calculated based on the internal ballistic model.

  15. 'RCHX-1-STORM' first Slovenian meteorological rocket program

    NASA Astrophysics Data System (ADS)

    Kerstein, Aleksander; Matko, Drago; Trauner, Amalija; Britovšek, Zvone

    2004-08-01

    Astronautic and Rocket Society Celje (ARSC) formed a special working team for research and development of a small meteorological hail suppression rocket in the 70th. The hail suppression system was established in former Yugoslavia in the late 60th as an attempt to protect important agricultural regions from one of the summer's most vicious storm. In this time Slovenia was a part of Yugoslavia as one of the federal republic with relative high developed agricultural region production. The Rocket program 'RCHX-STORM' was a second attempt, for Slovenia indigenously developed in the production of meteorological hail suppression rocket. ARSC has designed a family of small sounding rocket that were based on highly promising hybrid propellant propulsion. Hybrid propulsion was selected for this family because it was offering low cost, save production and operation and simple logistics. Conventional sounding rockets use solid propellant motor for their propulsion. The introduction of hybrid motors has enabled a considerable decrease in overall cost. The transportation handling and storage procedures were greatly simplified due to the fact that a hybrid motor was not considered as explosive matter. A hybrid motor may also be designed to stand a severe environment without resorting to conditioning arrangements. The program started in the late 70th when the team ARSC was integrated in the Research and Development Institute in Celje (RDIC). The development program aimed to produce three types of meteorological rockets with diameters 76, 120 and 160 mm. Development of the RCHX-76 engine and rocket vehicle including flight certification has been undertaken by a joint team comprising of the ARCS, RDIC and the company Cestno podjetje Celje (CPC), Road building company Celje. Many new techniques and methods were used in this program such as computer simulation of external and internal ballistics, composite materials for rocket construction, intensive static testing of models and flight configuration with long flight-testing program. The main features of this project were discussed in this paper, summarizing the history of the development of the RCHX-STORM rockets family.

  16. History of Sulphur Content Effects on the Thermal Stability of RP-1 under Heated Conditions

    NASA Technical Reports Server (NTRS)

    Irvine, Solveig A.; Schoettmer, Amanda K.; Bates, Ronald W.; Meyer, Michael L.

    2004-01-01

    As technologies advance in the aerospace industry, a strong desire has emerged to design more efficient, longer life, reusable liquid hydrocarbon fueled rocket engines. To achieve this goal, a more complete understanding of the thermal stability and chemical makeup of the hydrocarbon propellant is needed. Since the main fuel used in modern liquid hydrocarbon systems is RP-1, there is concern that Standard Grade RP-1 may not be a suitable propellant for future-generation rocket engines due to concern over the outdated Mil-Specification for the fuel. This current specification allows high valued limits on contaminants such as sulfur compounds, and also lacks specification of required thermal stability qualifications for the fuel. Previous studies have highlighted the detrimental effect of high levels of mercaptan sulfur content (^50 ppm) on copper rocket engine materials, but the fuel itself has not been studied. While the role of sulfur in other fuels (e.g., aviation, diesel, and automotive fuels) has been extensively studied, little has been reported on the effects of sulfur levels in rocket fuels. Lower RP-1 sulfur concentrations need to be evaluated and an acceptable sulfur limit established before RP-1 can be recommended for use as the propellant for future launch vehicles. (5 tables, 8 figures, 9 refs.)

  17. Investigation of the flow turning loss in unstable solid propellant rocket motors

    NASA Astrophysics Data System (ADS)

    Matta, Lawrence Mark

    The goal of this study was to improve the understanding of the flow turning loss, which contributes to the damping of axial acoustic instabilities in solid propellant rocket motors. This understanding is needed to develop practical methods for designing motors that do not exhibit such instabilities. The flow turning loss results from the interaction of the flow of combustion products leaving the surface of the propellant with the acoustic field in an unstable motor. While state of the art solid rocket stability models generally account for the flow turning loss, its magnitude and characteristics have never been fully investigated. This thesis describes a combined theoretical, numerical, and experimental investigation of the flow turning loss and its dependence upon various motor design and operating parameters. First, a one dimensional acoustic stability equation that verifies the existence of the flow turning loss was derived for a chamber with constant mean pressure and temperature. The theoretical development was then extended to include the effects of mean temperature gradients to accommodate combustion systems in which mean temperature gradients and heat losses are significant. These analyses provided the background and expressions necessary to guide an experimental study. The relevant equations were then solved for the developed experimental setup to predict the behavior of the flow turning loss and the other terms of the developed acoustic stability equation. This was followed by and experimental study in which the flow turning region of an unstable solid propellant rocket motor was simulated. The setup was used, with and without combustion, to determine the dependence of the flow turning loss upon operating conditions. These studies showed that the flow turning loss strongly depends upon the gas velocity at the propellant surface and the location of the flow turning region relative to the standing acoustic wave. The flow turning loss measured in the experiment was found to be small relative to other mechanisms. This, however, was characteristic of the experimental setup and is not representative of actual rocket motors, in which the flow turning loss is often a significant part of the overall stability.

  18. Robust Exploration and Commercial Missions to the Moon Using LANTR Propulsion and In-Situ Propellants Derived from Lunar Polar Ice (LPI) Deposits

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Ryan, Stephen W.; Burke, Laura M.; McCurdy, David R.; Fittje, James E.; Joyner, Claude R.

    2017-01-01

    The nuclear thermal rocket (NTR) has frequently been identified as a key space asset required for the human exploration of Mars. This proven technology can also provide the affordable access through cislunar space necessary for commercial development and sustained human presence on the Moon. It is a demonstrated technology capable of generating both high thrust and high specific impulse (Isp 900 s) twice that of todays best chemical rockets. Nuclear lunar transfer vehicles consisting of a propulsion stage using three approx.16.5 klbf "Small Nuclear Rocket Engines (SNREs)", an in-line propellant tank, plus the payload can enable a variety of reusable lunar missions. These include cargo delivery and crewed lunar landing missions. Even weeklong "tourism" missions carrying passengers into lunar orbit for a day of sightseeing and picture taking are possible. The NTR can play an important role in the next phase of lunar exploration and development by providing a robust in-space lunar transportation system (LTS) that can allow initial outposts to evolve into settlements supported by a variety of commercial activities such as in-situ propellant production used to supply strategically located propellant depots and transportation nodes. The processing of LPI deposits (estimated to be approx. 2 billion metric tons) for propellant production - specifically liquid oxygen (LO2) and hydrogen (LH2) can significantly reduce the launch mass requirements from Earth and can enable reusable, surface-based lunar landing vehicles (LLVs) using LO2/LH2 chemical rocket engines. Afterwards, LO2/LH2 propellant depots can be established in lunar polar and equatorial orbits to supply the LTS. At this point a modified version of the conventional NTR called the LO2-augmented NTR, or LANTR would be introduced into the LTS allowing bipropellant operation and leveraging the mission benefits of refueling with lunar-derived propellants (LDPs) for Earth return. The bipropellant LANTR engine utilizes the large divergent section of its nozzle as an afterburner into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the engines choked sonic throat essentially scramjet propulsion in reverse. By varying the oxygen-to-hydrogen mixture ratio, LANTR engines can operate over a range of thrust and Isp values while the reactor core power level remains relatively constant. A LANTR-based LTS offers unique mission capabilities including short transit time crewed cargo transports. Even a commuter shuttle service may be possible allowing one-way trip times to and from the Moon on the order of 36 hours or less. If only 1 of the postulated water ice trapped in deep shadowed craters at the lunar poles were available for use in lunar orbit, such a supply could support daily commuter flights to the Moon for many thousands of years! The proposed paper outlines an evolutionary mission architecture and examines a variety of mission types and transfer vehicle designs, along with the increasing demands on LDP production as mission complexity and delta V requirements increase. A comparison of vehicle features and engine operating characteristics are also provided together with a discussion of the propellant production and mining requirements, and issues, associated with using LPI as the source material.

  19. New Frontiers AO: Advanced Materials Bi-propellant Rocket (AMBR) Engine Information Summary

    NASA Technical Reports Server (NTRS)

    Liou, Larry C.

    2008-01-01

    The Advanced Material Bi-propellant Rocket (AMBR) engine is a high performance (I(sub sp)), higher thrust, radiation cooled, storable bi-propellant space engine of the same physical envelope as the High Performance Apogee Thruster (HiPAT(TradeMark)). To provide further information about the AMBR engine, this document provides details on performance, development, mission implementation, key spacecraft integration considerations, project participants and approach, contact information, system specifications, and a list of references. The In-Space Propulsion Technology (ISPT) project team at NASA Glenn Research Center (GRC) leads the technology development of the AMBR engine. Their NASA partners were Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). Aerojet leads the industrial partners selected competitively for the technology development via the NASA Research Announcement (NRA) process.

  20. PC programs for the prediction of the linear stability behavior of liquid propellant propulsion systems and application to current MSFC rocket engine test programs, volume 1

    NASA Technical Reports Server (NTRS)

    Doane, George B., III; Armstrong, W. C.

    1990-01-01

    Research on propulsion stability (chugging and acoustic modes), and propellant valve control was investigated. As part of the activation of the new liquid propulsion test facilities, it is necessary to analyze total propulsion system stability. To accomplish this, several codes were built to run on desktop 386 machines. These codes enable one to analyze the stability question associated with the propellant feed systems. In addition, further work was adapted to this computing environment and furnished along with other codes. This latter inclusion furnishes those interested in high frequency oscillatory combustion behavior (that does not couple to the feed system) a set of codes for study of proposed liquid rocket engines.

  1. Cryogenic Impinging Jets Subjected to High Frequency Transverse Acoustic Forcing in a High Pressure Environment

    DTIC Science & Technology

    2016-07-27

    for liquid propellant atomization in rocket engines1- 2. Liquid rocket engines like the F-1 have successfully used like-on-like impinging jet...impingement of the two cylindrical jets. Another drawback, perhaps the most critical, is that rocket engine using impinging jets sacrifice performance in...The experimental results also suggested that impact waves seem to dominate the atomization process over most of the conditions relevant to rocket

  2. U.S. Strategic Nuclear Forces: Background, Developments, and Issues

    DTIC Science & Technology

    2016-09-27

    meet the terms of the New START Treaty. The Air Force is also modernizing the Minuteman missiles, replacing and upgrading their rocket motors...began in 1998 and has been replacing the propellant, the solid rocket fuel, in the Minuteman motors to extend the life of the rocket motors. A...complete the program. It has not requested additional funding in subsequent years. Propulsion System Rocket Engine Program (PSRE) According to the Air

  3. Liquid rocket engine fluid-cooled combustion chambers

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A monograph on the design and development of fluid cooled combustion chambers for liquid propellant rocket engines is presented. The subjects discussed are (1) regenerative cooling, (2) transpiration cooling, (3) film cooling, (4) structural analysis, (5) chamber reinforcement, and (6) operational problems.

  4. Modeling and Fault Simulation of Propellant Filling System

    NASA Astrophysics Data System (ADS)

    Jiang, Yunchun; Liu, Weidong; Hou, Xiaobo

    2012-05-01

    Propellant filling system is one of the key ground plants in launching site of rocket that use liquid propellant. There is an urgent demand for ensuring and improving its reliability and safety, and there is no doubt that Failure Mode Effect Analysis (FMEA) is a good approach to meet it. Driven by the request to get more fault information for FMEA, and because of the high expense of propellant filling, in this paper, the working process of the propellant filling system in fault condition was studied by simulating based on AMESim. Firstly, based on analyzing its structure and function, the filling system was modular decomposed, and the mathematic models of every module were given, based on which the whole filling system was modeled in AMESim. Secondly, a general method of fault injecting into dynamic system was proposed, and as an example, two typical faults - leakage and blockage - were injected into the model of filling system, based on which one can get two fault models in AMESim. After that, fault simulation was processed and the dynamic characteristics of several key parameters were analyzed under fault conditions. The results show that the model can simulate effectively the two faults, and can be used to provide guidance for the filling system maintain and amelioration.

  5. Combustion and Performance Analyses of Coaxial Element Injectors with Liquid Oxygen/Liquid Methane Propellants

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Jones, G. W.

    2010-01-01

    Liquid rocket engines using oxygen and methane propellants are being considered by the National Aeronautics and Space Administration (NASA) for in-space vehicles. This propellant combination has not been previously used in a flight-qualified engine system, so limited test data and analysis results are available at this stage of early development. NASA has funded several hardware-oriented activities with oxygen and methane propellants over the past several years with the Propulsion and Cryogenic Advanced Development (PCAD) project, under the Exploration Technology Development Program. As part of this effort, the NASA Marshall Space Flight Center has conducted combustion, performance, and combustion stability analyses of several of the configurations. This paper summarizes the analyses of combustion and performance as a follow-up to a paper published in the 2008 JANNAF/LPS meeting. Combustion stability analyses are presented in a separate paper. The current paper includes test and analysis results of coaxial element injectors using liquid oxygen and liquid methane or gaseous methane propellants. Several thrust chamber configurations have been modeled, including thrust chambers with multi-element swirl coax element injectors tested at the NASA MSFC, and a uni-element chamber with shear and swirl coax injectors tested at The Pennsylvania State University. Configurations were modeled with two one-dimensional liquid rocket combustion analysis codes, the Rocket Combustor Interaction Design and Analysis (ROCCID), and the Coaxial Injector Combustion Model (CICM). Significant effort was applied to show how these codes can be used to model combustion and performance with oxygen/methane propellants a priori, and what anchoring or calibrating features need to be applied or developed in the future. This paper describes the test hardware configurations, presents the results of all the analyses, and compares the results from the two analytical methods

  6. Combustion mechanism of double-base propellant containing nitrogen heterocyclic nitroamines (II): The temperature distribution of the flame and its chemical structure

    NASA Astrophysics Data System (ADS)

    Yan, Qi-Long; Song, Zhen-Wei; Shi, Xiao-Bing; Yang, Zhi-Yuan; Zhang, Xiao-Hong

    2009-03-01

    In order to evaluate the actual pros and cons in the use of new nitroamines for solid rocket applications, the combustion properties of double-base propellants containing nitrogen heterocyclic nitroamines such as RDX, TNAD, HMX and DNP are investigated by means of high-speed photography technique, Non-contact wavelet-based measurement of flame temperature distribution. The chemical reactions in different combustion zone which control the burning characteristics of the double-base propellant containing nitrogen heterocyclic nitroamines were systematically investigated and descriptions of the detailed thermal decomposition mechanisms from solid phase to liquid phase or to gas phase are also included. It was indicated that the thermodynamic phase transition consisting of both evaporation and condensation of NC+NG, HMX, TNAD, RDX and DNP, are considered to provide a complete description of the mass transfer process in the combustion of these double-base propellants, and the combustion mechanisms of them are mainly involved with the oxidation mechanism of the NO 2, formaldehyde (CH 2O) and hydrogen cyanide (HCN). The entire oxidation reaction rate might be dependent on the pressure of the combustion chamber and temperature of the gas phase.

  7. Concept of a self-pressurized feed system for liquid rocket engines and its fundamental experiment results

    NASA Astrophysics Data System (ADS)

    Matsumoto, Jun; Okaya, Shunichi; Igoh, Hiroshi; Kawaguchi, Junichiro

    2017-04-01

    A new propellant feed system referred to as a self-pressurized feed system is proposed for liquid rocket engines. The self-pressurized feed system is a type of gas-pressure feed system; however, the pressurization source is retained in the liquid state to reduce tank volume. The liquid pressurization source is heated and gasified using heat exchange from the hot propellant using a regenerative cooling strategy. The liquid pressurization source is raised to critical pressure by a pressure booster referred to as a charger in order to avoid boiling and improve the heat exchange efficiency. The charger is driven by a part of the generated pressurization gas using a closed-loop self-pressurized feed system. The purpose of this study is to propose a propellant feed system that is lighter and simpler than traditional gas pressure feed systems. The proposed system can be applied to all liquid rocket engines that use the regenerative cooling strategy. The concept and mathematical models of the self-pressurized feed system are presented first. Experiment results for verification are then shown and compared with the mathematical models.

  8. Design of a 2000 lbf LOX/LCH4 Throttleable Rocket Engine for a Vertical Lander

    NASA Astrophysics Data System (ADS)

    Lopez, Israel

    Liquid oxygen (LOX) and liquid methane (LCH4) has been recognized as an attractive rocket propellant combination because of its in-situ resource utilization (ISRU) capabilities, namely in Mars. ISRU would allow launch vehicles to carry greater payloads and promote missions to Mars. This has led to an increasing interest to develop spacecraft technologies that employ this propellant combination. The UTEP Center for Space Exploration and Technology Research (cSETR) has focused part of its research efforts to developing LOX/LCH4 systems. One of those projects includes the development of a vertical takeoff and landing vehicle called JANUS. This vehicle will employ a LOX/LCH 4 propulsion system. The main propulsion engine is called CROME-X and is currently being developed as part of this project. This rocket engine will employ LOX/LCH4 propellants and is intended to operate from 2000-500 lbf thrust range. This thesis describes the design and development of CROME-X. Specifically, it describes the design process for the main engine components, the design criteria for each, and plans for future engine development.

  9. Solid rocket motor internal insulation

    NASA Technical Reports Server (NTRS)

    Twichell, S. E. (Editor); Keller, R. B., Jr.

    1976-01-01

    Internal insulation in a solid rocket motor is defined as a layer of heat barrier material placed between the internal surface of the case propellant. The primary purpose is to prevent the case from reaching temperatures that endanger its structural integrity. Secondary functions of the insulation are listed and guidelines for avoiding critical problems in the development of internal insulation for rocket motors are presented.

  10. Early Rockets

    NASA Image and Video Library

    1953-08-30

    U.S. Army Redstone Rocket: The Redstone ballistic missile was a high-accuracy, liquid-propelled, surface-to-surface missile developed by the Army Ballistic Missile Agency, Redstone Arsenal, in Huntsville, Alabama, under the direction of Dr. von Braun. The Redstone rocket was also known as "Old Reliable" because of its many diverse missions. The first Redstone Missile was launched from Cape Canaveral, Florida on August 30, 1953.

  11. Spark Ignition of Combustible Vapor in a Plastic Bottle as a Demonstration of Rocket Propulsion

    ERIC Educational Resources Information Center

    Mattox, J. R.

    2017-01-01

    I report an innovation that provides a compelling demonstration of rocket propulsion, appropriate for students of physics and other physical sciences. An electrical spark is initiated from a distance to cause the deflagration of a combustible vapor mixed with air in a lightweight plastic bottle that is consequently propelled as a rocket by the…

  12. 2005 40th Annual Armament Systems: Guns - Ammunition - Rockets - Missiles Conference and Exhibition. Volume 3: Wednesday

    DTIC Science & Technology

    2005-04-28

    Lessons Learned, Mr. David F. Fair, US Army ARDEC Propellant Replacement for the 105-mm M67 Propelling Charge, Ms. Adriana L. Eng, US Army ARDEC Lead...Application of Lessons Learned Mr. David F. Fair, US Army ARDEC Propellant Replacement for the 105-mm Artillery Propelling Charge Ms. Adriana L. Eng...high voltage power supply (several kV and kA ) • Solid state Switching device • Appropriate dimensions en properties of: • Exploding foil • Flyer

  13. Magnesium and Carbon Dioxide - A Rocket Propellant for Mars Missions

    NASA Technical Reports Server (NTRS)

    Shafirovich, E. IA.; Shiriaev, A. A.; Goldshleger, U. I.

    1993-01-01

    A rocket engine for Mars missions is proposed that could utilize CO2 accumulated from the Martian atmosphere as an oxidizer. For use as possible fuel, various metals, their hydrides, and mixtures with hydrogen compounds are considered. Thermodynamic calculations show that beryllium fuels ensure the most impulse but poor inflammability of Be and high toxicity of its compounds put obstacles to their applications. Analysis of the engine performance for other metals together with the parameters of ignition and combustion show that magnesium seems to be the most promising fuel. Ballistic estimates imply that a hopper with the chemical rocket engine on Mg + CO2 propellant could be readily developed. This vehicle would be able to carry out 2-3 ballistic flights on Mars before the final ascent to orbit.

  14. Dynamic Simulation of VEGA SRM Bench Firing By Using Propellant Complex Characterization

    NASA Astrophysics Data System (ADS)

    Di Trapani, C. D.; Mastrella, E.; Bartoccini, D.; Squeo, E. A.; Mastroddi, F.; Coppotelli, G.; Linari, M.

    2012-07-01

    During the VEGA launcher development, from the 2004 up to now, 8 firing tests have been performed at Salto di Quirra (Sardinia, Italy) and Kourou (Guyana, Fr) with the objective to characterize and qualify of the Zefiros and P80 Solid Rocket Motors (SRM). In fact the VEGA launcher configuration foreseen 3 solid stages based on P80, Z23 and Z9 Solid Rocket Motors respectively. One of the primary objectives of the firing test is to correctly characterize the dynamic response of the SRM in order to apply such a characterization to the predictions and simulations of the VEGA launch dynamic environment. Considering that the solid propellant is around 90% of the SRM mass, it is very important to dynamically characterize it, and to increase the confidence in the simulation of the dynamic levels transmitted to the LV upper part from the SRMs. The activity is articulated in three parts: • consolidation of an experimental method for the dynamic characterization of the complex dynamic elasticity modulus of elasticity of visco-elastic materials applicable to the SRM propellant operative conditions • introduction of the complex dynamic elasticity modulus in a numerical FEM benchmark based on MSC NASTRAN solver • analysis of the effect of the introduction of the complex dynamic elasticity modulus in the Zefiros FEM focusing on experimental firing test data reproduction with numerical approach.

  15. 62. Historic propellant piping diagram of oxidant pit at Building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. Historic propellant piping diagram of oxidant pit at Building 202, January 6, 1956. NASA GRC drawing no. CF-101644. (On file at NASA Glenn Research Center). - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  16. Effect of silicone oil on solid propellant combustion in small motors. [for rockets

    NASA Technical Reports Server (NTRS)

    Ramohalli, K.

    1980-01-01

    The feasibility of reducing troublesome nozzle blockage (by condensation deposits) in laboratory-scale solid rockets by addition of a silicone oil as a propellant ingredient was explored experimentally. An aluminized composite propellant and its counterpart with 1% silicone oil replacing part of the binder were fired in a 63.5 mm diameter, end-burning, all-metal burner. Pressure-time histories were recorded for all of the tests by a Taber gauge mounted at the downstream end of the chamber; temperature-time data at the nozzle throat were obtained in some of the runs by thermocouples having junctions positioned at the wall but insulated from the metal. Deposition of condensables on the nozzle walls causing a progressive increase in the chamber pressure with time was noted. The fraction of firings exhibiting practically no condensation was 59% with silicone and 32% without. On the average, temperature readings at the nozzle throat were higher with the silicone propellants. Although various phenomena may contribute to these findings, the results are not understood completely.

  17. Alternate propellants for the space shuttle solid rocket booster motors. [for reducing environmental impact of launches

    NASA Technical Reports Server (NTRS)

    1973-01-01

    As part of the Shuttle Exhaust Effects Panel (SEEP) program for fiscal year 1973, a limited study was performed to determine the feasibility of minimizing the environmental impact associated with the operation of the solid rocket booster motors (SRBMs) in projected space shuttle launches. Eleven hypothetical and two existing limited-experience propellants were evaluated as possible alternates to a well-proven state-of-the-art reference propellant with respect to reducing emissions of primary concern: namely, hydrogen chloride (HCl) and aluminum oxide (Al2O3). The study showed that it would be possible to develop a new propellant to effect a considerable reduction of HCl or Al2O3 emissions. At the one extreme, a 23% reduction of HCl is possible along with a ll% reduction in Al2O3, whereas, at the other extreme, a 75% reduction of Al2O3 is possible, but with a resultant 5% increase in HCl.

  18. A Novel Data System for Verification of Internal Parameters of Motor Design

    NASA Technical Reports Server (NTRS)

    Smith, Doug; Saint Jean, Paul; Everton, Randy; Uresk, Bonnie

    2003-01-01

    Three major obstacles have limited the amount of information that can be obtained from inside an operating solid rocket motor. The first is a safety issue due to the presence of live propellant interacting with classical, electrical instrumentation. The second is a pressure vessel feed through risk arising from bringing a large number of wires through the rocket motor wall safely. The third is an attachment/protection issue associated with connecting gages to live propellant. Thiokol has developed a highly miniaturized, networked, electrically isolated data system that has safely delivered information from classical, electrical instrumentation (even on the burning propellant surface) to the outside world. This system requires only four wires to deliver 80 channels of data at 2300 samples/second/channel. The feed through leak path risk is massively reduced from the current situation where each gage requires at least three pressure vessel wire penetrations. The external electrical isolation of the system is better than that of the propellant itself. This paper describes the new system.

  19. The starting transient of solid propellant rocket motors with high internal gas velocities. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Peretz, A.; Caveny, L. H.; Kuo, K. K.; Summerfield, M.

    1973-01-01

    A comprehensive analytical model which considers time and space development of the flow field in solid propellant rocket motors with high volumetric loading density is described. The gas dynamics in the motor chamber is governed by a set of hyperbolic partial differential equations, that are coupled with the ignition and flame spreading events, and with the axial variation of mass addition. The flame spreading rate is calculated by successive heating-to-ignition along the propellant surface. Experimental diagnostic studies have been performed with a rectangular window motor (50 cm grain length, 5 cm burning perimeter and 1 cm hydraulic port diameter), using a controllable head-end gaseous igniter. Tests were conducted with AP composite propellant at port-to-throat area ratios of 2.0, 1.5, 1.2, and 1.06, and head-end pressures from 35 to 70 atm. Calculated pressure transients and flame spreading rates are in very good agreement with those measured in the experimental system.

  20. 76 FR 57103 - Office of Commercial Space Transportation (AST); Notice of Availability of the Supplemental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-15

    ..., consisting of a two-stage Castor 120 solid-propellant rocket motor with the addition of up to six Castor IVA or Castor IVXL rocket motors strapped to the first stage. The 1995 EA analyzed the potential...

  1. Rocket engine injectorhead with flashback barrier

    NASA Technical Reports Server (NTRS)

    Mungas, Gregory S. (Inventor); Fisher, David J. (Inventor); Mungas, Christopher (Inventor)

    2012-01-01

    Propellants flow through specialized mechanical hardware that is designed for effective and safe ignition and sustained combustion of the propellants. By integrating a micro-fluidic porous media element between a propellant feed source and the combustion chamber, an effective and reliable propellant injector head may be implemented that is capable of withstanding transient combustion and detonation waves that commonly occur during an ignition event. The micro-fluidic porous media element is of specified porosity or porosity gradient selected to be appropriate for a given propellant. Additionally the propellant injector head design integrates a spark ignition mechanism that withstands extremely hot running conditions without noticeable spark mechanism degradation.

  2. Theoretical performance of some rocket propellants containing hydrogen, nitrogen, and oxygen

    NASA Technical Reports Server (NTRS)

    Miller, Riley O; Ordin, Paul M

    1948-01-01

    Theoretical performance data including nozzle-exit temperature, specific impulse, volume specific impulse and composition, temperature, and mean molecular weight of reaction products based on frozen equilibrium and isentropic expansion are presented for 13 propellant combinations at reaction pressure of 300 pounds per square inch absolute and expansion ratio of 20.4. On basis of maximum specific impulse alone, five fuels had the following order for any given oxidant: liquid hydrogen, hydrazine, liquid ammonia, and either hydrazine hydrate or hydroxylamine. Three oxidants with a given fuel had the following order: liquid ozone, liquid oxygen, and 100-percent hydrogen peroxide.

  3. Development of Life Prediction Capabilities for Liquid Propellant Rocket Engines. Task 4. Post-Fire Diagnostic System for the SSME System Architecture Study.

    DTIC Science & Technology

    1991-07-31

    90 START MCC LN CAV PR 3 UNDERSHOOT ABOVE THRESHOLD YES MI A2-492 2/13/90 MAINSTAGE HPOT DS TMP CHANNEL A/B DIVERGENCE NO MI A2-492 2/13/90 MAINSTAGE ...System for the SSME System Architecture Study Y, , Contract NAS 3 -25883 JUL 31󈧣 CR-187112 Prepared for: National Aeronautics and Space...Liquid Propellant Rocket Engines Contract No. NAS 3 -25883 Eli Ki ,,, July 31, 1991 BY Dist Prepared By.: Mr. Mark Gage Aerojet Propulsion Division Box

  4. Internal-Film Cooling of Rocket Nozzles

    NASA Technical Reports Server (NTRS)

    Sloop, J L; Kinney, George R

    1948-01-01

    Experiments were conducted with 1000-pound-thrust rocket engine to determine feasibility of cooling convergent-divergent nozzle by internal film of water introduced at nozzle entrance. Water flow of 3 percent of propellant flow reduced heat flow into nozzle to 55 percent of uncooled heat flow. Introduction of water by porous ring before nozzle resulted in more uniform coverage of nozzle than water introduced by single arrangement of 36 jets directed along nozzle wall. Water flow through porous ring of 3.5 percent of propellant flow stabilized wall temperature in convergent section but did not adequately cool throat or divergent sections.

  5. Altitude Starting Tests of a 1000-Pound-Thrust Solid-Propellant Rocket

    NASA Technical Reports Server (NTRS)

    Sloop, John L.; Rollbuhler, R. James; Krawczonek, Eugene M.

    1957-01-01

    Four solid-propellant rocket engines of nominal 1000-pound-thrust were tested for starting characteristics at pressure altitudes ranging from 112,500 to 123,000 feet and at a temperature of -75 F. All engines ignited and operated successfully. Average chamber pressures ranged from 1060 to ll90 pounds per square inch absolute with action times from 1.51 to 1.64 seconds and ignition delays from 0.070 t o approximately 0.088 second. The chamber pressures and action times were near the specifications, but the ignition delay was almost twice the specified value of 0.040 second.

  6. KENNEDY SPACE CENTER, FLA. - Jeff Thon, an SRB mechanic with United Space Alliance, is fitted with a harness to test a vertical solid rocket booster propellant grain inspection technique. Thon will be lowered inside a mockup of two segments of the SRBs. The inspection of segments is required as part of safety analysis.

    NASA Image and Video Library

    2003-09-11

    KENNEDY SPACE CENTER, FLA. - Jeff Thon, an SRB mechanic with United Space Alliance, is fitted with a harness to test a vertical solid rocket booster propellant grain inspection technique. Thon will be lowered inside a mockup of two segments of the SRBs. The inspection of segments is required as part of safety analysis.

  7. Advanced active health monitoring system of liquid rocket engines

    NASA Astrophysics Data System (ADS)

    Qing, Xinlin P.; Wu, Zhanjun; Beard, Shawn; Chang, Fu-Kuo

    2008-11-01

    An advanced SMART TAPE system has been developed for real-time in-situ monitoring and long term tracking of structural integrity of pressure vessels in liquid rocket engines. The practical implementation of the structural health monitoring (SHM) system including distributed sensor network, portable diagnostic hardware and dedicated data analysis software is addressed based on the harsh operating environment. Extensive tests were conducted on a simulated large booster LOX-H2 engine propellant duct to evaluate the survivability and functionality of the system under the operating conditions of typical liquid rocket engines such as cryogenic temperature, vibration loads. The test results demonstrated that the developed SHM system could survive the combined cryogenic temperature and vibration environments and effectively detect cracks as small as 2 mm.

  8. A Study on New Composite Thermoplastic Propellant

    NASA Astrophysics Data System (ADS)

    Kahara, Takehiro; Nakayama, Masanobu; Hasegawa, Hiroshi; Katoh, Kazushige; Miyazaki, Shigehumi; Maruizumi, Haruki; Hori, Keiichi; Morita, Yasuhiro; Akiba, Ryojiro

    Efforts have been paid to realize a new composite propellant using thermoplastics as a fuel binder and lithium as a metallic fuel. Thermoplastics binder makes it possible the storage of solid propellant in small blocks and to provide propellants blocks into rocket motor case at a quantity needed just before use, which enables the production facility of solid propellant at a minimum level, thus, production cost significantly lower. Lithium has been a candidate for a metallic fuel for the ammonium perchlorate based composite propellants owing to its capability to reduce the hydrogen chloride in the exhaust gas, however, never been used because lithium is not stable at room conditions and complex reaction products between oxygen, nitrogen, and water are formed at the surface of particles and even in the core. However, lithium particles whose surface shell structure is well controlled are rather stable and can be stored in thermoplastics for a long period. Evaluation of several organic thermoplastics whose melting temperatures are easily tractable was made from the standpoint of combustion characteristics, and it is shown that thermoplastics propellants can cover wide range of burning rate spectrum. Formation of well-defined surface shell of lithium particles and its kinetics are also discussed.

  9. Refueling with In-Situ Produced Propellants

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2014-01-01

    In-situ produced propellants have been identified in many architecture studies as key to implementing feasible chemical propulsion missions to destinations beyond lunar orbit. Some of the more noteworthy ones include: launching from Mars to return to Earth (either direct from the surface, or via an orbital rendezvous); using the Earth-Moon Lagrange point as a place to refuel Mars transfer stages with Lunar surface produced propellants; and using Mars Moon Phobos as a place to produce propellants for descent and ascent stages bound for the Mars surface. However successful implementation of these strategies require an ability to successfully transfer propellants from the in-situ production equipment into the propellant tankage of the rocket stage used to move to the desired location. In many circumstances the most desirable location for this transfer to occur is in the low-gravity environment of space. In support of low earth orbit propellant depot concepts, extensive studies have been conducted on transferring propellants in-space. Most of these propellant transfer techniques will be applicable to low gravity operations in other locations. Even ground-based transfer operations on the Moon, Mars, and especially Phobos could benefit from the propellant conserving techniques used for depot refueling. This paper will review the literature of in-situ propellants and refueling to: assess the performance benefits of the use in-situ propellants for mission concepts; review the parallels with propellant depot efforts; assess the progress of the techniques required; and provide recommendations for future research.

  10. Poisson’s Ratio Extrapolation from Digital Image Correlation Experiments

    DTIC Science & Technology

    2013-03-01

    prior to dewetting ). Also, it is often impractical to measure compressibility. Current rocket laboratory methods measure strains in propellants...distribution unlimited. Public Affairs Clearance Number XXXXX. Damage Characterization of Propellants 16 Dewetting Results 0 2 4 6 8 10 0 5 10 15 20

  11. Rho-Isp Revisited and Basic Stage Mass Estimating for Launch Vehicle Conceptual Sizing Studies

    NASA Technical Reports Server (NTRS)

    Kibbey, Timothy P.

    2015-01-01

    A single metric for judging between two candidate propellant combinations for a given application is sought. By using the ideal rocket equation, the essential link between propellant density and specific impulse as the two primary performance drivers can be demonstrated.

  12. Swirl-Stabilized Injector Flow and Combustion Dynamics for Liquid Propellants at Supercritical Conditions

    DTIC Science & Technology

    2007-02-08

    was employed to study the vapor cavitation during liquid carbon dioxide expansion through a sharp-orifice nozzle. Numerical experiments demonstrated...Combustion Dynamics for 6b. GRANT NUMBER Liquid Propellants at Supercritical Conditions FA9550-04-1-0014 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...fundamental knowledge of supercritical combustion of liquid propellants under conditions representative of contemporary rocket engines. Both shear and

  13. KSC-2012-6224

    NASA Image and Video Library

    2012-11-09

    CAPE CANAVERAL, Fla. -- At the Neo Liquid Propellant Testbed inside a facility near Kennedy Space Center’s Shuttle Landing Facility in Florida, engineers are working on the buildup of the Neo test fixture and an Injector 71 engine that uses super-cooled propellants. NASA engineers are working on the design and assembly of the Neo Liquid Propellant Testbed as part of the Engineering Directorate’s Rocket University training program. Photo credit: NASA/Frankie Martin

  14. KSC-2012-6223

    NASA Image and Video Library

    2012-11-09

    CAPE CANAVERAL, Fla. -- At the Neo Liquid Propellant Testbed inside a facility near Kennedy Space Center’s Shuttle Landing Facility in Florida, engineers are working on the buildup of the Neo test fixture and an Injector 71 engine that uses super-cooled propellants. NASA engineers are working on the design and assembly of the Neo Liquid Propellant Testbed as part of the Engineering Directorate’s Rocket University training program. Photo credit: NASA/Frankie Martin

  15. Atomic hydrogen propellants: Historical perspectives and future possibilities

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    1993-01-01

    Atomic hydrogen, a very high density free-radical propellant, is anticipated to generate a specific impulse of 600-1500 lb-f sec/lb-mass performance; this may facilitate the development of unique launch vehicles. A development status evaluation is presently given for atomic hydrogen investigations. It is noted that breakthroughs are required in the production, storage, and transfer of atomic hydrogen, before this fuel can become a viable rocket propellant.

  16. Testing of a Liquid Oxygen/Liquid Methane Reaction Control Thruster in a New Altitude Rocket Engine Test Facility

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Arrington, Lynn A.; Kleinhenz, Julie E.; Marshall, William M.

    2012-01-01

    A relocated rocket engine test facility, the Altitude Combustion Stand (ACS), was activated in 2009 at the NASA Glenn Research Center. This facility has the capability to test with a variety of propellants and up to a thrust level of 2000 lbf (8.9 kN) with precise measurement of propellant conditions, propellant flow rates, thrust and altitude conditions. These measurements enable accurate determination of a thruster and/or nozzle s altitude performance for both technology development and flight qualification purposes. In addition the facility was designed to enable efficient test operations to control costs for technology and advanced development projects. A liquid oxygen-liquid methane technology development test program was conducted in the ACS from the fall of 2009 to the fall of 2010. Three test phases were conducted investigating different operational modes and in addition, the project required the complexity of controlling propellant inlet temperatures over an extremely wide range. Despite the challenges of a unique propellant (liquid methane) and wide operating conditions, the facility performed well and delivered up to 24 hot fire tests in a single test day. The resulting data validated the feasibility of utilizing this propellant combination for future deep space applications.

  17. Performance and Cost Evaluation of Cryogenic Solid Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Adirim, Harry; Lo, Roger; Knecht, Thomas; Reinbold, Georg-Friedrich; Poller, Sascha

    2002-01-01

    Under the sponsorship of the German Aerospace Center DLR, Cryogenic Solid Propulsion (CSP) is now in its 6th year of R&D. The development proceeds as a joint international university-, small business-, space industry- and professional research effort (Berlin University of Technology / AI: Aerospace Institute, Berlin / Bauman Moscow State Technical University, Russia / ASTRIUM GmbH, Bremen / Fraunhofer Institute for Chemical Technology, Berghausen). This paper aims at introducing CSP as a novel type of chemical propellant that uses frozen liquids as Oxygen (SOX) or Hydrogen Peroxide (SH2O2) inside of a coherent solid Hydrocarbon (PE, PU or HTPB) matrix in solid rocket motors. Theoretically any conceivable chemical rocket propellant combination (including any environmentally benign ,,green propellant") can be used in solid rocket propellant motors if the definition of solids is not restricted to "solid at ambient temperature". The CSP concept includes all suitable high energy propellant combinations, but is not limited to them. Any liquid or hybrid bipropellant combination is (Isp-wise) superior to any conventional solid propellant formulation. While CSPs do share some of the disadvantages of solid propulsion (e.g. lack of cooling fluid and preset thrust-time function), they definitely share one of their most attractive advantages: the low number of components that is the base for high reliability and low cost of structures. In this respect, CSPs are superior to liquid propellant rocket motors with whom, they share the high Isp performance. High performance, low cost, low pollution CSP technology could bring about a near term improvement for chemical Earth-to-orbit high thrust propulsion. In the long run it could surpass conventional chemical propulsion because it is better suited for applying High Energy Density Matter (HEDM) than any other mode of propulsion. So far, ongoing preliminary analyses have not shown any insuperable problems in areas of concern, such as cooling equipment and its operation during fabrication and launch, neither were there problems with thrust to weight ratio of un-cooled but insulated Cryogenic Solid Motors which ascend into their trajectory while leaving the cooling equipment at the launch pad. In performance calculations for new launchers with CSP-replacements of boosters or existing stages, ARIANE 5 and a 3-stage launcher with CSP - 1st stage into GTO serve as examples. For keeping payload-capacity in the reference orbit constant, the modeling of a rocket system essentially requires a process of iteration, in which the propellant mass is varied as central parameter and - with the help of a CSP mass-model - all other dimensions of the booster are derived from mass models etc. accordingly. The process is repeated until the payload resulting from GTO track-optimization corresponds with that of the model ARIANE 5 in sufficient approximation. Under the assumptions made, the application of cryogenic motors lead to a clear reduction of the launch mass. This is essentially caused by the lower propellant mass and secondary by the reduced structure mass. Finally cost calculations have been made by ASTRIUM and demonstrated the cost saving potential of CSP propulsion. For estimating development, production, ground facilities, and operating cost, the parametric cost modeling tool has been used in combination with Cost Estimating Relationships (CER). Parametric cost models only allow comparative analyses, therefore ARIANE 5 in its current (P1) configuration has been estimated using the same mission model as for the CSP launcher. As conclusion of these cost assessment can be stated, that the utilization of cryogenic solid propulsion could offer a considerable cost savings potential. Academic and industrial cooperation is crucial for the challenging R&D work required. It will take the combined capacities of all experts involved to unlock the promises of clean, high Isp CSP propulsion for chemical Earth-to-orbit transportation in next 10 to 15 years to come.

  18. Summary of Low-Lift Drag and Directional Stability Data from Rocket Models of the Douglas XF4D-1 Airplane with and without External Stores and Rocket Packets at Mach Numbers from 0.8 to 1.38 TED No. NACA DE-349

    NASA Technical Reports Server (NTRS)

    Mitcham, Grady L.; Blanchard, Willard S.; Hastings, Earl C., Jr.

    1952-01-01

    At the request of the Bureau of Aeronautics, Department of the Navy, an investigation at transonic and low supersonic speeds of the drag and longitudinal trim characteristics of the Douglas XF4D-1 airplane is being conducted by the Langley Pilotless Aircraft Research Division. The Douglas XF4D-1 is a jet-propelled, low-aspect-ratio, swept-wing, tailless, interceptor-type airplane designed to fly at low supersonic speeds. As a part of this investigation, flight tests were made using rocket- propelled 1/10- scale models to determine the effect of the addition of 10 external stores and rocket packets on the drag at low lift coefficients. In addition to these data, some qualitative values of the directional stability parameter C(sub n beta) and duct total-pressure recovery are also presented.

  19. Atmospheric environmental implications of propulsion systems

    NASA Technical Reports Server (NTRS)

    Mcdonald, Allan J.; Bennett, Robert R.

    1995-01-01

    Three independent studies have been conducted for assessing the impact of rocket launches on the earth's environment. These studies have addressed issues of acid rain in the troposphere, ozone depletion in the stratosphere, toxicity of chemical rocket exhaust products, and the potential impact on global warming from carbon dioxide emissions from rocket launches. Local, regional, and global impact assessments were examined and compared with both natural sources and anthropogenic sources of known atmospheric pollutants with the following conclusions: (1) Neither solid nor liquid rocket launches have a significant impact on the earth's global environment, and there is no real significant difference between the two. (2) Regional and local atmospheric impacts are more significant than global impacts, but quickly return to normal background conditions within a few hours after launch. And (3) vastly increased space launch activities equivalent to 50 U.S. Space Shuttles or 50 Russian Energia launches per year would not significantly impact these conclusions. However, these assessments, for the most part, are based upon homogeneous gas phase chemistry analysis; heterogeneous chemistry from exhaust particulates, such as aluminum oxide, ice contrails, soot, etc., and the influence of plume temperature and afterburning of fuel-rich exhaust products, need to be further addressed. It was the consensus of these studies that computer modeling of interactive plume chemistry with the atmosphere needs to be improved and computer models need to be verified with experimental data. Rocket exhaust plume chemistry can be modified with propellant reformulation and changes in operating conditions, but, based upon the current state of knowledge, it does not appear that significant environmental improvements from propellant formulation changes can be made or are warranted. Flight safety, reliability, and cost improvements are paramount for any new rocket system, and these important aspects cannot be compromised. A detailed environmental cost-benefit-risk analysis must be conducted before any new chemistry or changes in rocket operating conditions should be seriously considered for any future space or defense applications. This paper presents a summary of the results of environmental assessments contained in these independent studies.

  20. Control Room at the NACA’s Rocket Engine Test Facility

    NASA Image and Video Library

    1957-05-21

    Test engineers monitor an engine firing from the control room of the Rocket Engine Test Facility at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The Rocket Engine Test Facility, built in the early 1950s, had a rocket stand designed to evaluate high-energy propellants and rocket engine designs. The facility was used to study numerous different types of rocket engines including the Pratt and Whitney RL-10 engine for the Centaur rocket and Rocketdyne’s F-1 and J-2 engines for the Saturn rockets. The Rocket Engine Test Facility was built in a ravine at the far end of the laboratory because of its use of the dangerous propellants such as liquid hydrogen and liquid fluorine. The control room was located in a building 1,600 feet north of the test stand to protect the engineers running the tests. The main control and instrument consoles were centrally located in the control room and surrounded by boards controlling and monitoring the major valves, pumps, motors, and actuators. A camera system at the test stand allowed the operators to view the tests, but the researchers were reliant on data recording equipment, sensors, and other devices to provide test data. The facility’s control room was upgraded several times over the years. Programmable logic controllers replaced the electro-mechanical control devices. The new controllers were programed to operate the valves and actuators controlling the fuel, oxidant, and ignition sequence according to a predetermined time schedule.

  1. KSC technicians use propellant slump measurement tool on ATA SRM

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Kennedy Space Center (KSC) technicians use new propellant slump measurement tool on the Assembly Test Article (ATA) aft solid rocket motor (SRM). The tool measures any slumping of the top of the solid rocket booster (SRB) solid propellant. Data gathered by this tool and others during the ATA test will be analyzed by SRM engineers. Astronaut Stephen S. Oswald at far right (barely visible) and Morton Thiokol supervisor Howard Fichtl look on during the data gathering process. The month-long ATA test is designed to evaluate the performance of new tools required to put the tighter fitting redesigned SRM joints together. In addition, new procedures are being used and ground crews are receiving training in preparation for stacking the STS-26 flight set of motors. View provided by KSC with alternate number KSC-87PC-956.

  2. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. Appendix A: Stress analysis report for the pump-fed and pressure-fed liquid rocket booster

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Pressure effects on the pump-fed Liquid Rocket Booster (LRB) of the Space Transportation System are examined. Results from the buckling tests; bending moments tests; barrel, propellant tanks, frame XB1513, nose cone, and intertank tests; and finite element examination of forward and aft skirts are presented.

  3. Theoretical and Experimental Analysis of the Physics of Water Rockets

    ERIC Educational Resources Information Center

    Barrio-Perotti, R.; Blanco-Marigorta, E.; Fernandez-Francos, J.; Galdo-Vega, M.

    2010-01-01

    A simple rocket can be made using a plastic bottle filled with a volume of water and pressurized air. When opened, the air pressure pushes the water out of the bottle. This causes an increase in the bottle momentum so that it can be propelled to fairly long distances or heights. Water rockets are widely used as an educational activity, and several…

  4. Mars Sample Return and Flight Test of a Small Bimodal Nuclear Rocket and ISRU Plant

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.; Wolinsky, Jason J.; Bilyeu, Michael B.; Scott, John H.

    2014-01-01

    A combined Nuclear Thermal Rocket (NTR) flight test and Mars Sample Return mission (MSR) is explored as a means of "jump-starting" NTR development. Development of a small-scale engine with relevant fuel and performance could more affordably and quickly "pathfind" the way to larger scale engines. A flight test with subsequent inflight postirradiation evaluation may also be more affordable and expedient compared to ground testing and associated facilities and approvals. Mission trades and a reference scenario based upon a single expendable launch vehicle (ELV) are discussed. A novel "single stack" spacecraft/lander/ascent vehicle concept is described configured around a "top-mounted" downward firing NTR, reusable common tank, and "bottom-mount" bus, payload and landing gear. Requirements for a hypothetical NTR engine are described that would be capable of direct thermal propulsion with either hydrogen or methane propellant, and modest electrical power generation during cruise and Mars surface insitu resource utilization (ISRU) propellant production.

  5. Applied algorithm in the liner inspection of solid rocket motors

    NASA Astrophysics Data System (ADS)

    Hoffmann, Luiz Felipe Simões; Bizarria, Francisco Carlos Parquet; Bizarria, José Walter Parquet

    2018-03-01

    In rocket motors, the bonding between the solid propellant and thermal insulation is accomplished by a thin adhesive layer, known as liner. The liner application method involves a complex sequence of tasks, which includes in its final stage, the surface integrity inspection. Nowadays in Brazil, an expert carries out a thorough visual inspection to detect defects on the liner surface that may compromise the propellant interface bonding. Therefore, this paper proposes an algorithm that uses the photometric stereo technique and the K-nearest neighbor (KNN) classifier to assist the expert in the surface inspection. Photometric stereo allows the surface information recovery of the test images, while the KNN method enables image pixels classification into two classes: non-defect and defect. Tests performed on a computer vision based prototype validate the algorithm. The positive results suggest that the algorithm is feasible and when implemented in a real scenario, will be able to help the expert in detecting defective areas on the liner surface.

  6. Computation of turbulent reacting flow in a solid-propellant ducted rocket

    NASA Astrophysics Data System (ADS)

    Chao, Yei-Chin; Chou, Wen-Fuh; Liu, Sheng-Shyang

    1995-05-01

    A mathematical model for computation of turbulent reacting flows is developed under general curvilinear coordinate systems. An adaptive, streamline grid system is generated to deal with the complex flow structures in a multiple-inlet solid-propellant ducted rocket (SDR) combustor. General tensor representations of the k-epsilon and algebraic stress (ASM) turbulence models are derived in terms of contravariant velocity components, and modification caused by the effects of compressible turbulence is also included in the modeling. The clipped Gaussian probability density function is incorporated in the combustion model to account for fluctuations of properties. Validation of the above modeling is first examined by studying mixing and reacting characteristics in a confined coaxial-jet problem. This is followed by study of nonreacting and reacting SDR combustor flows. The results show that Gibson and Launder's ASM incorporated with Sarkar's modification for compressible turbulence effects based on the general curvilinear coordinate systems yields the most satisfactory prediction for this complicated SDR flowfield.

  7. Computation of turbulent reacting flow in a solid-propellant ducted rocket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Y.; Chou, W.; Liu, S.

    1995-05-01

    A mathematical model for computation of turbulent reacting flows is developed under general curvilinear coordinate systems. An adaptive, streamline grid system is generated to deal with the complex flow structures in a multiple-inlet solid-propellant ducted rocket (SDR) combustor. General tensor representations of the k-epsilon and algebraic stress (ASM) turbulence models are derived in terms of contravariant velocity components, and modification caused by the effects of compressible turbulence is also included in the modeling. The clipped Gaussian probability density function is incorporated in the combustion model to account for fluctuations of properties. Validation of the above modeling is first examined bymore » studying mixing and reacting characteristics in a confined coaxial-jet problem. This is followed by study of nonreacting and reacting SDR combustor flows. The results show that Gibson and Launder`s ASM incorporated with Sarkar`s modification for compressible turbulence effects based on the general curvilinear coordinate systems yields the most satisfactory prediction for this complicated SDR flowfield. 36 refs.« less

  8. Liquid and gelled sprays for mixing hypergolic propellants using an impinging jet injection system

    NASA Astrophysics Data System (ADS)

    James, Mark D.

    The characteristics of sprays produced by liquid rocket injectors are important in understanding rocket engine ignition and performance. The includes, but is not limited to, drop size distribution, spray density, drop velocity, oscillations in the spray, uniformity of mixing between propellants, and the spatial distribution of drops. Hypergolic ignition and the associated ignition delay times are also important features in rocket engines, providing high reliability and simplicity of the ignition event. The ignition delay time is closely related to the level and speed of mixing between a hypergolic fuel and oxidizer, which makes the injection method and conditions crucial in determining the ignition performance. Although mixing and ignition of liquid hypergolic propellants has been studied for many years, the processes for injection, mixing, and ignition of gelled hypergolic propellants are less understood. Gelled propellants are currently under investigation for use in rocket injectors to combine the advantages of solid and liquid propellants, although not without their own difficulties. A review of hypergolic ignition has been conducted for selected propellants, and methods for achieving ignition have been established. This research is focused on ignition using the liquid drop-on-drop method, as well as the doublet impinging jet injector. The events leading up to ignition, known as pre-ignition stage are discussed. An understanding of desirable ignition and combustion performance requires a study of the effects of injection, temperature, and ambient pressure conditions. A review of unlike-doublet impinging jet injection mixing has also been conducted. This includes mixing factors in reactive and non-reactive sprays. Important mixing factors include jet momentum, jet diameter and length, impingement angle, mass distribution, and injector configuration. An impinging jet injection system is presented using an electro-mechanically driven piston for injecting liquid and gelled hypergolic propellants. A calibration of the system is done with water in preparation for hypergolic injection, and characteristics of individual water and gelled JP-8 jets are studied at velocities in the range of 3 ft/s to 61 ft/s. The piston response is also analyzed to characterize the startup and steady state liquid jet velocities using orifices of 0.02" in diameter. Using this injection system, water and gelled JP-8 sprays are formed and compared across injection velocities of 30 ft/s to 121 ft/s. The comparison includes sheet shape and disintegration, total number of drops, drop size distributions, drop eccentricity, most populated drop bin size, and mean drop sizes. A test matrix for investigating the effects of mixing on ignition of MMH and IRFNA through different injection conditions are presented. First, water and IRFNA are injected to create a spray in the combustion chamber in order to verify effectiveness of test procedures and the test hardware. Next, injection of the hypergolic propellants MMH and IRFNA are done in accordance to the test matrix, although ignition was not observed as expected. These injections are followed by simple drop-on-drop tests to investigate propellant quality and ignition delay. Drop tests are performed with propellants IRFNA/MMH, and again with H2O2/Block 0 as possible propellant replacements for the proposed test plan.

  9. Solid propellant rocket motor internal ballistics performance variation analysis, phase 3

    NASA Technical Reports Server (NTRS)

    Sforzini, R. H.; Foster, W. A., Jr.; Murph, J. E.; Adams, G. W., Jr.

    1977-01-01

    Results of research aimed at improving the predictability of off nominal internal ballistics performance of solid propellant rocket motors (SRMs) including thrust imbalance between two SRMs firing in parallel are reported. The potential effects of nozzle throat erosion on internal ballistic performance were studied and a propellant burning rate low postulated. The propellant burning rate model when coupled with the grain deformation model permits an excellent match between theoretical results and test data for the Titan IIIC, TU455.02, and the first Space Shuttle SRM (DM-1). Analysis of star grain deformation using an experimental model and a finite element model shows the star grain deformation effects for the Space Shuttle to be small in comparison to those of the circular perforated grain. An alternative technique was developed for predicting thrust imbalance without recourse to the Monte Carlo computer program. A scaling relationship used to relate theoretical results to test results may be applied to the alternative technique of predicting thrust imbalance or to the Monte Carlo evaluation. Extended investigation into the effect of strain rate on propellant burning rate leads to the conclusion that the thermoelastic effect is generally negligible for both steadily increasing pressure loads and oscillatory loads.

  10. Moon-Based Advanced Reusable Transportation Architecture: The MARTA Project

    NASA Astrophysics Data System (ADS)

    Alexander, R.; Bechtel, R.; Chen, T.; Cormier, T.; Kalaver, S.; Kirtas, M.; Lewe, J.-H.; Marcus, L.; Marshall, D.; Medlin, M.; McIntire, J.; Nelson, D.; Remolina, D.; Scott, A.; Weglian, J.; Olds, J.

    2000-01-01

    The Moon-based Advanced Reusable Transportation Architecture (MARTA) Project conducted an in-depth investigation of possible Low Earth Orbit (LEO) to lunar surface transportation systems capable of sending both astronauts and large masses of cargo to the Moon and back. This investigation was conducted from the perspective of a private company operating the transportation system for a profit. The goal of this company was to provide an Internal Rate of Return (IRR) of 25% to its shareholders. The technical aspect of the study began with a wide open design space that included nuclear rockets and tether systems as possible propulsion systems. Based on technical, political, and business considerations, the architecture was quickly narrowed down to a traditional chemical rocket using liquid oxygen and liquid hydrogen. However, three additional technologies were identified for further investigation: aerobraking, in-situ resource utilization (ISRU), and a mass driver on the lunar surface. These three technologies were identified because they reduce the mass of propellant used. Operational costs are the largest expense with propellant cost the largest contributor. ISRU, the production of materials using resources on the Moon, was considered because an Earth to Orbit (ETO) launch cost of 1600 per kilogram made taking propellant from the Earth's surface an expensive proposition. The use of an aerobrake to circularize the orbit of a vehicle coming from the Moon towards Earth eliminated 3, 100 meters per second of velocity change (Delta V), eliminating almost 30% of the 11,200 m/s required for one complete round trip. The use of a mass driver on the lunar surface, in conjunction with an ISRU production facility, would reduce the amount of propellant required by eliminating using propellant to take additional propellant from the lunar surface to Low Lunar Orbit (LLO). However, developing and operating such a system required further study to identify if it was cost effective. The vehicle was modeled using the Simulated Probabilistic Parametric Lunar Architecture Tool (SPPLAT), which incorporated the disciplines of Weights and Sizing, Trajectories, and Cost. This tool used ISRU propellant cost, Technology Reduction Factor (a dry weight reduction due to improved technology), and vehicle engine specific impulse as inputs. Outputs were vehicle dry weight, total propellant used per trip, and cost to charge the customer in order to guarantee an IRR of 25%. SPPLAT also incorporated cost estimation error, weight estimation error, market growth, and ETO launch cost as uncertainty variables. Based on the stipulation that the venture be profitable, the price to charge the customer was highly dependent on ISRU propellant cost and relatively insensitive to the other inputs. The best estimate of ISRU cost is 1000/kg, and results in a price to charge the customer of 2600/kg of payload. If ISRU cost can be reduced to 160/kg, the price to the customer is reduced to just 800/kg of payload. Additionally, the mass driver was only cost effective at an ISRU propellant cost greater than 250/kg, although it reduced total propellant used by 35%. In conclusion, this mission is achievable with current technology, but is only profitable with greater research into the enabling technology of ISRU propellant production.

  11. Scaling of Performance in Liquid Propellant Rocket Engine Combustors

    NASA Technical Reports Server (NTRS)

    Hulka, James R.

    2007-01-01

    This paper discusses scaling of combustion and combustion performance in liquid propellant rocket engine combustion devices. In development of new combustors, comparisons are often made between predicted performance in a new combustor and measured performance in another combustor with different geometric and thermodynamic characteristics. Without careful interpretation of some key features, the comparison can be misinterpreted and erroneous information used in the design of the new device. This paper provides a review of this performance comparison, including a brief review of the initial liquid rocket scaling research conducted during the 1950s and 1960s, a review of the typical performance losses encountered and how they scale, a description of the typical scaling procedures used in development programs today, and finally a review of several historical development programs to see what insight they can bring to the questions at hand.

  12. Scaling of Performance in Liquid Propellant Rocket Engine Combustion Devices

    NASA Technical Reports Server (NTRS)

    Hulka, James R.

    2008-01-01

    This paper discusses scaling of combustion and combustion performance in liquid propellant rocket engine combustion devices. In development of new combustors, comparisons are often made between predicted performance in a new combustor and measured performance in another combustor with different geometric and thermodynamic characteristics. Without careful interpretation of some key features, the comparison can be misinterpreted and erroneous information used in the design of the new device. This paper provides a review of this performance comparison, including a brief review of the initial liquid rocket scaling research conducted during the 1950s and 1960s, a review of the typical performance losses encountered and how they scale, a description of the typical scaling procedures used in development programs today, and finally a review of several historical development programs to see what insight they can bring to the questions at hand.

  13. Technology Challenges for Deep-Throttle Cryogenic Engines for Space Exploration

    NASA Technical Reports Server (NTRS)

    Brown, Kendall K.; Nelson, Karl W.

    2005-01-01

    Historically, cryogenic rocket engines have not been used for in-space applications due to their additional complexity, the mission need for high reliability, and the challenges of propellant boil-off. While the mission and vehicle architectures are not yet defined for the lunar and Martian robotic and human exploration objectives, cryogenic rocket engines offer the potential for higher performance and greater architecture/mission flexibility. In-situ cryogenic propellant production could enable a more robust exploration program by significantly reducing the propellant mass delivered to low earth orbit, thus warranting the evaluation of cryogenic rocket engines versus the hypergolic bi-propellant engines used in the Apollo program. A multi-use engine. one which can provide the functionality that separate engines provided in the Apollo mission architecture, is desirable for lunar and Mars exploration missions because it increases overall architecture effectiveness through commonality and modularity. The engine requirement derivation process must address each unique mission application and each unique phase within each mission. The resulting requirements, such as thrust level, performance, packaging, bum duration, number of operations; required impulses for each trajectory phase; operation after extended space or surface exposure; availability for inspection and maintenance; throttle range for planetary descent, ascent, acceleration limits and many more must be addressed. Within engine system studies, the system and component technology, capability, and risks must be evaluated and a balance between the appropriate amount of technology-push and technology-pull must be addressed. This paper will summarize many of the key technology challenges associated with using high-performance cryogenic liquid propellant rocket engine systems and components in the exploration program architectures. The paper is divided into two areas. The first area describes how the mission requirements affect the engine system requirements and create system level technology challenges. An engine system architecture for multiple applications or a family of engines based upon a set of core technologies, design, and fabrication approaches may reduce overall programmatic cost and risk. The engine system discussion will also address the characterization of engine cycle figures of merit, configurations, and design approaches for some in-space vehicle alternatives under consideration. The second area evaluates the component-level technology challenges induced from the system requirements. Component technology issues are discussed addressing injector, thrust chamber, ignition system, turbopump assembly, and valve design for the challenging requirements of high reliability, robustness, fault tolerance, deep throttling, reasonable performance (with respect to weight and specific impulse).

  14. Results of the NASA/MSFC FA-23 plume technology test program performed in the NASA/Ames unitary wind tunnels

    NASA Technical Reports Server (NTRS)

    Hendershot, K. C.

    1977-01-01

    A 2.25% scale model of the space shuttle external tank and solid rocket boosters was tested in the NASA/Ames Unitary 11 x 11 foot transonic and 9 x 7 foot supersonic tunnels to obtain base pressure data with firing solid propellant exhaust plumes. Data system difficulties prevented the acquisition of any useful data in the 9 x 7 tunnel. However, 28 successful rocket test firings were made in the 11 x 11 tunnel, providing base pressure data at Mach numbers of 0.5, 0.9, 1.05, 1.2, and 1.3 and at plume pressure ratios ranging from 11 to 89.

  15. Low Cost Upper Stage-Class Propulsion (LCUSP)

    NASA Technical Reports Server (NTRS)

    Vickers, John

    2015-01-01

    NASA is making space exploration more affordable and viable by developing and utilizing innovative manufacturing technologies. Technology development efforts at NASA in propulsion are committed to continuous innovation of design and manufacturing technologies for rocket engines in order to reduce the cost of NASA's journey to Mars. The Low Cost Upper Stage-Class Propulsion (LCUSP) effort will develop and utilize emerging Additive Manufacturing (AM) to significantly reduce the development time and cost for complex rocket propulsion hardware. Benefit of Additive Manufacturing (3-D Printing) Current rocket propulsion manufacturing techniques are costly and have lengthy development times. In order to fabricate rocket engines, numerous complex parts made of different materials are assembled in a way that allow the propellant to collect heat at the right places to drive the turbopump and simultaneously keep the thrust chamber from melting. The heat conditioned fuel and oxidizer come together and burn inside the combustion chamber to provide thrust. The efforts to make multiple parts precisely fit together and not leak after experiencing cryogenic temperatures on one-side and combustion temperatures on the other is quite challenging. Additive manufacturing has the potential to significantly reduce the time and cost of making rocket parts like the copper liner and Nickel-alloy jackets found in rocket combustion chambers where super-cold cryogenic propellants are heated and mixed to the extreme temperatures needed to propel rockets in space. The Selective Laser Melting (SLM) machine fuses 8,255 layers of copper powder to make a section of the chamber in 10 days. Machining an equivalent part and assembling it with welding and brazing techniques could take months to accomplish with potential failures or leaks that could require fixes. The design process is also enhanced since it does not require the 3D model to be converted to 2-D drawings. The design and fabrication process can be sped up and improved with fewer errors to be accomplished in weeks instead of months.

  16. Focused Rocket-Ejector RBCC Experiments

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh

    2003-01-01

    This document reports the results of additional efforts for the Rocket Based Combined Cycle (RBCC) rocket-ejector mode research work carried out at the Perm State Propulsion Engineering Research Center in support of NASA s technology development efforts for enabling 3rd generation Reusable Launch Vehicles (RLV). The two tasks conducted under this program build on earlier NASA MSFC funded research program on rocket ejector investigations. The first task continued a systematic investigation of the improvements provided by a gaseous hydrogen (GHz)/oxygen (GO2) twin thruster RBCC rocket ejector system over a single rocket system. In a similar vein, the second task continued investigations into the performance of a hydrocarbon (liquid JP-7)/gaseous oxygen single thruster rocket-ejector system. To gain a systematic understanding of the rocket-ejector s internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static diffusion and afterburning (DAB) configurations for a range of rocket operating conditions. For all experimental conditions, overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust. For the GH2/GO2 propellant rocket ejector experiments, high frequency measurements of the pressure field within the system were also made to understand the unsteady behavior of the flowfield.

  17. The performance of a piezoelectric-sensor-based SHM system under a combined cryogenic temperature and vibration environment

    NASA Astrophysics Data System (ADS)

    Qing, Xinlin P.; Beard, Shawn J.; Kumar, Amrita; Sullivan, Kevin; Aguilar, Robert; Merchant, Munir; Taniguchi, Mike

    2008-10-01

    A series of tests have been conducted to determine the survivability and functionality of a piezoelectric-sensor-based active structural health monitoring (SHM) SMART Tape system under the operating conditions of typical liquid rocket engines such as cryogenic temperature and vibration loads. The performance of different piezoelectric sensors and a low temperature adhesive under cryogenic temperature was first investigated. The active SHM system for liquid rocket engines was exposed to flight vibration and shock environments on a simulated large booster LOX-H2 engine propellant duct conditioned to cryogenic temperatures to evaluate the physical robustness of the built-in sensor network as well as operational survivability and functionality. Test results demonstrated that the developed SMART Tape system can withstand operational levels of vibration and shock energy on a representative rocket engine duct assembly, and is functional under the combined cryogenic temperature and vibration environment.

  18. Current status of free radicals and electronically excited metastable species as high energy propellants

    NASA Technical Reports Server (NTRS)

    Rosen, G.

    1973-01-01

    A survey is presented of free radicals and electronically excited metastable species as high energy propellants for rocket engines. Nascent or atomic forms of diatomic gases are considered free radicals as well as the highly reactive diatomic triatomic molecules that posess unpaired electrons. Manufacturing and storage problems are described, and a review of current experimental work related to the manufacture of atomic hydrogen propellants is presented.

  19. Robust Exploration and Commercial Missions to the Moon Using LANTR Propulsion and Lunar Liquid Oxygen Derived from FeO-Rich Pyroclastic Deposits

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Ryan, Stephen W.; Burke, Laura M.; McCurdy, David R.; Fittje, James E.; Joyner, Claude R.

    2017-01-01

    The nuclear thermal rocket (NTR) has frequently been identified as a key space asset required for the human exploration of Mars. This proven technology can also provide the affordable access through cislunar space necessary for commercial development and sustained human presence on the Moon. It is a demonstrated technology capable of generating both high thrust and high specific impulse (Isp approx.900 s) twice that of todays best chemical rockets. Nuclear lunar transfer vehicles consisting of a propulsion stage using three approx.16.5 klbf Small Nuclear Rocket Engines (SNREs), an in-line propellant tank, plus the payload can enable a variety of reusable lunar missions. These include cargo delivery and crewed lunar landing missions. Even weeklong tourism missions carrying passengers into lunar orbit for a day of sightseeing and picture taking are possible. The NTR can play an important role in the next phase of lunar exploration and development by providing a robust in-space lunar transportation system (LTS) that can allow initial outposts to evolve into settlements supported by a variety of commercial activities such as in-situ propellant production used to supply strategically located propellant depots and transportation nodes. The use of lunar liquid oxygen (LLO2) derived from iron oxide (FeO)-rich volcanic glass beads, found in numerous pyroclastic deposits on the Moon, can significantly reduce the launch mass requirements from Earth by enabling reusable, surface-based lunar landing vehicles (LLVs) using liquid oxygen/hydrogen (LO2/H2) chemical rocket engines. Afterwards, a LO2/H2 propellant depot can be established in lunar equatorial orbit to supply the LTS. At this point a modified version of the conventional NTR called the LOX-augmented NTR, or LANTR is introduced into the LTS allowing bipropellant operation and leveraging the mission benefits of refueling with lunar-derived propellants for Earth return. The bipropellant LANTR engine utilizes the large divergent section of its nozzle as an afterburner into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the engines choked sonic throat - essentially scramjet propulsion in reverse. By varying the oxygen-to-hydrogen mixture ratio, LANTR engines can operate over a range of thrust and Isp values while the reactor core power level remains relatively constant. A LANTR-based LTS offers unique mission capabilities including short transit time crewed cargo transports. Even a commuter shuttle service may be possible allowing one-way trip times to and from the Moon on the order of 36 hours or less. If only 1 of the extracted LLO2 propellant from identified resource sites were available for use in lunar orbit, such a supply could support daily commuter flights to the Moon for many thousands of years! The proposed paper outlines an evolutionary architecture and examines a variety of mission types and transfer vehicle designs, along with the increasing demands on LLO2 production as mission complexity and (Delta)V requirements increase. A comparison of vehicle features and engine operating characteristics, for both NTR and LANTR engines, is also provided along with a discussion of the propellant production and mining requirements associated with using FeO-rich volcanic glass as source material.

  20. On fundamentally new sources of energy for rockets in the early works of the pioneers of astronautics

    NASA Technical Reports Server (NTRS)

    Melkumov, T. M.

    1977-01-01

    The research for more efficient methods of propelling a spacecraft, than can be achieved with chemical energy, was studied. During a time when rockets for space flight had not actually been built pioneers in rocket technology were already concerned with this problem. Alternative sources proposed at that time, were nuclear and solar energy. Basic engineering problems of each source were investigated.

  1. Europa Sample Return Mission Utilizing High Specific Impulse Propulsion Refueled with Indigenous Resources

    NASA Astrophysics Data System (ADS)

    Paniagua, J.; Powell, J. R.; Maise, G.

    2002-01-01

    We have conducted studies of a revolutionary new concept for conducting a Europa Sample Return Mission. Robotic spacecraft exploration of the Solar System has been severely constrained by the large energy requirements of interplanetary trajectories and the inherent delta V limitations of chemical rockets. Current missions use gravitational assists from intermediate planets to achieve these high-energy trajectories restricting payload size and increasing flight times. We propose a 6-year Europa Sample Return mission with very modest launch requirements enabled by MITEE. A new nuclear thermal propulsion engine design, termed MITEE (MIniature reacTor EnginE), has over twice the delta V capability of H2/O2 rockets (and much greater when refueled with H2 propellant from indigenous extraterrestrial resources) enabling unique missions that are not feasible with chemical propulsion. The MITEE engine is a compact, ultra-lightweight, thermal nuclear rocket that uses hydrogen as the propellant. MITEE, with its small size (50 cm O.D.), low mass (200 kg), and high specific impulse (~1000 sec), can provide a quantum leap in the capability for space science and exploration missions. The Robotic Europa Explorer (REE) spacecraft has a two-year outbound direct trajectory and lands on the satellite surface for an approximate 9 month stay. During this time, the vehicle is refueled with H2 propellant derived from Europa ice by the Autonomous Propellant Producer (APP), while collecting samples and searching for life. A small nuclear-heated submarine probe, the Autonomous Submarine Vehicle (ASV), based on MITEE technology, would melt through the ice and explore the undersea realm. The spacecraft has approximately a three year return to Earth after departure from Europa with samples onboard. Spacecraft payload is 430 kg at the start of the mission and can be launched with a single, conventional medium-sized Delta III booster. The spacecraft can bring back 25 kg of samples from Europa. Europa, in the Jovian system, is a high priority target for an outer Solar System exploration mission. More than a decade ago the Voyager spacecraft revealed Europa as a world swathed in ice and geologically young. NASA's Galileo spacecraft passed approximately 500 miles above the surface and provided detailed images of Europa's terrain marked by a dynamic topology that appeared to be remnants of ice volcanoes or geysers. The surface temperature averages a chilly -200° C. The pictures appear to show a relatively young surface of ice, possibly only 1 km thick in some places. Internal heating of Europa from Jupiter's tidal pull could form an ocean of liquid water beneath the surface. More recently, Ganymede and Callisto are believed to be ocean-bearing Jovian moons based on magnetometer measurements from the Galileo spacecraft. If liquid water exists, life may also. NASA plans to send an orbiting spacecraft to Europa to measure the thickness of the ice and to detect if an underlying liquid ocean exists. This mission would precede the proposed Europa Sample Return mission, which includes dispatching an autonomous submarine-like vehicle that could melt through the ice and explore the undersea realm. Because of the large energy requirements typical of these ambitious solar system science missions, use of chemical rockets results in interplanetary spacecraft that are prohibitive in terms of Initial Mass in Low- Earth Orbit (IMLEO) and cost. For example, using chemical rockets to return samples from Europa appears to be technically impractical, as it would require large delta V and launch vehicle capabilities. On the other hand, use of nuclear thermal rockets will significantly reduce IMLEO and, subsequently, costs. Moreover, nuclear thermal rockets can utilize extraterrestrial resources as propellants, an option not practical with chemical rockets. This "refueling" capability would enable nuclear rockets to carry out very high-energy missions, such as the return of large amounts of extraterrestrial material to Earth. The Europa missions considered in this proposal will be restricted to starting from LEO only after being placed in a stable orbit by a launch vehicle. This simplifies and eases the safety issues and mitigates political concerns. High propulsive efficiency of the MITEE engine yields the benefits of reduced transit time and a smaller launch vehicle.

  2. Mercury Capsule Retrorocket Test in the Altitude Wind Tunnel

    NASA Image and Video Library

    1960-09-21

    A mechanic at the National Aeronautics and Space Administration (NASA) Lewis Research Center prepares the inverted base of a Mercury capsule for a test of its posigrade retrorockets inside the Altitude Wind Tunnel. In October 1959 NASA’s Space Task Group allocated several Project Mercury assignments to Lewis. The Altitude Wind Tunnel was modified to test the Atlas separation system, study the escape tower rocket plume, train astronauts to bring a spinning capsule under control, and calibrate the capsule’s retrorockets. The turning vanes, makeup air pipes, and cooling coils were removed from the wide western end of the tunnel to create a 51-foot diameter test chamber. The Mercury capsule had a six-rocket retro-package affixed to the bottom of the capsule. Three of these were posigrade rockets used to separate the capsule from the booster and three were retrograde rockets used to slow the capsule for reentry into the earth’s atmosphere. Performance of the retrorockets was vital since there was no backup system. Qualification tests of the retrorockets began in April 1960 on a retrograde thrust stand inside the southwest corner of the Altitude Wind Tunnel. These studies showed that a previous issue concerning the delayed ignition of the propellant had been resolved. Follow-up test runs verified reliability of the igniter’s attachment to the propellant. In addition, the capsule’s retrorockets were calibrated so they would not alter the capsule’s attitude when fired.

  3. Future space transport

    NASA Technical Reports Server (NTRS)

    Grishin, S. D.; Chekalin, S. V.

    1984-01-01

    Prospects for the mastery of space and the basic problems which must be solved in developing systems for both manned and cargo spacecraft are examined. The achievements and flaws of rocket boosters are discussed as well as the use of reusable spacecraft. The need for orbiting satellite solar power plants and related astrionics for active control of large space structures for space stations and colonies in an age of space industrialization is demonstrated. Various forms of spacecraft propulsion are described including liquid propellant rocket engines, nuclear reactors, thermonuclear rocket engines, electrorocket engines, electromagnetic engines, magnetic gas dynamic generators, electromagnetic mass accelerators (rail guns), laser rocket engines, pulse nuclear rocket engines, ramjet thermonuclear rocket engines, and photon rockets. The possibilities of interstellar flight are assessed.

  4. Study of solid rocket motors for a space shuttle booster. Volume 4: Mass properties report

    NASA Technical Reports Server (NTRS)

    Vonderesch, A. H.

    1972-01-01

    Mass properties data for the 156 inch diameter, parallel burn, solid propellant rocket engine for the space shuttle booster are presented. Design ground rules and assumptions applicable to generation of the mass properties data are described, together with pertinent data sources.

  5. Early Rockets

    NASA Image and Video Library

    1950-01-01

    Test firing of a Redstone Missile at Redstone Test Stand in the early 1950's. The Redstone was a high-accuracy, liquid-propelled, surface-to-surface missile developed by the von Braun Team under the management of the U.S. Army. The Redstone was the first major rocket development program in the United States.

  6. Liquid rocket valve components

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A monograph on valves for use with liquid rocket propellant engines is presented. The configurations of the various types of valves are described and illustrated. Design criteria and recommended practices for the various valves are explained. Tables of data are included to show the chief features of valve components in use on operational vehicles.

  7. Predicting the Wear of High Speed Rocket Sleds

    DTIC Science & Technology

    2012-12-01

    42 # body force...mounted on a steel track. The front sled has the experimental payload, and the trailing sleds have rockets loaded on them that propel the fore body ...between the two metals, but as mentioned earlier, not decreasing the wear overall. All of these factors and other tribological conditions make

  8. Liquid rocket valve assemblies

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design and operating characteristics of valve assemblies used in liquid propellant rocket engines are discussed. The subjects considered are as follows: (1) valve selection parameters, (2) major design aspects, (3) design integration of valve subassemblies, and (4) assembly of components and functional tests. Information is provided on engine, stage, and spacecraft checkout procedures.

  9. Prediction of high frequency combustion instability in liquid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Kim, Y. M.; Chen, C. P.; Ziebarth, J. P.; Chen, Y. S.

    1992-01-01

    The present use of a numerical model developed for the prediction of high-frequency combustion stabilities in liquid propellant rocket engines focuses on (1) the overall behavior of nonlinear combustion instabilities (2) the effects of acoustic oscillations on the fuel-droplet vaporization and combustion process in stable and unstable engine operating conditions, oscillating flowfields, and liquid-fuel trajectories during combustion instability, and (3) the effects of such design parameters as inlet boundary conditions, initial spray conditions, and baffle length. The numerical model has yielded predictions of the tangential-mode combustion instability; baffle length and droplet size variations are noted to have significant effects on engine stability.

  10. Expendable Launch Vehicles Briefing and Basic Rocketry Physics

    NASA Technical Reports Server (NTRS)

    Delgado, Luis G.

    2010-01-01

    This slide presentation is composed of two parts. The first part shows pictures of launch vehicles and lift offs or in the case of the Pegasus launch vehicle separations. The second part discusses the basic physics of rocketry, starting with Newton's three physical laws that form the basis for classical mechanics. It includes a review of the basic equations that define the physics of rocket science, such as total impulse, specific impulse, effective exhaust velocity, mass ratio, propellant mass fraction, and the equations that combine to arrive at the thrust of the rocket. The effect of atmospheric pressure is reviewed, as is the effect of propellant mix on specific impulse.

  11. Historical perspective - Viking Mars Lander propulsion

    NASA Technical Reports Server (NTRS)

    Morrisey, Donald C.

    1989-01-01

    This paper discusses the Viking 1 and 2 missions to Mars in 1975-1976 and describes the design evolution of the Viking Terminal Descent Rocket Engines responsible for decelerating the Viking Mars Landers during the final portion of their descent from orbit. The Viking Terminal Descent Rocket Engines have twice the thrust of the largest monopropellant hydrazine engine developed previously but weigh considerably less. The engine has 18 nozzles, the capability of 10:1 throttling, is totally sealed until fired, employs no organic unsealed materials, is 100 percent germ free, utilized hydrazine STM-20 as the propellant, and starts at a temperature more than 45 F below the propellant's freezing point.

  12. KSC-69PC-0397

    NASA Image and Video Library

    1969-07-16

    CAPE CANAVERAL, Fla. -- The American Flag heralds the flight of Apollo 11, man's first lunar landing mission. This double exposure was made with a 1,000 mm lens. The photograph was taken from Cape Kennedy, adjacent to Kennedy Space Center, where Apollo 11 lifted off from pad 39A at 9:32 a.m. EDT. This image was imposed upon the image of hte flag, filmed a day earlier. In the photo, the rocket at an alititude of about 5,000 feet. A band of super-cold propellants seems to circle the rocket near its center. The effect is caused by the difference in temperature between the propellants and the atmosphere. Photo credit: NASA

  13. Determination of the Flow Field in the Propellant Tank of a Rocket Engine on Completion of the Mission

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Bedarev, I. A.; Lavruk, S. A.; Trushlyakov, V. I.; Kudentsov, V. Yu.

    2018-03-01

    In the present work, a method of mathematical simulation is employed to describe processes occurring in the specimens of new equipment and using the remaining propellant in rocket-engine tanks. Within the framework of certain turbulence models, the authors perform a calculation of the flow field in the volume of the tank of the launch-vehicle stage when a hot gas jet is injected into it. A vortex flow structure is revealed; the characteristics of heat transfer for different angles of injection of the jet are determined. The obtained correlation Nu = Nu(Re) satisfactorily describes experimental data.

  14. Determination of the Flow Field in the Propellant Tank of a Rocket Engine on Completion of the Mission

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Bedarev, I. A.; Lavruk, S. A.; Trushlyakov, V. I.; Kudentsov, V. Yu.

    2018-05-01

    In the present work, a method of mathematical simulation is employed to describe processes occurring in the specimens of new equipment and using the remaining propellant in rocket-engine tanks. Within the framework of certain turbulence models, the authors perform a calculation of the flow field in the volume of the tank of the launch-vehicle stage when a hot gas jet is injected into it. A vortex flow structure is revealed; the characteristics of heat transfer for different angles of injection of the jet are determined. The obtained correlation Nu = Nu(Re) satisfactorily describes experimental data.

  15. Plasma Igniter for Reliable Ignition of Combustion in Rocket Engines

    NASA Technical Reports Server (NTRS)

    Martin, Adam; Eskridge, Richard

    2011-01-01

    A plasma igniter has been developed for initiating combustion in liquid-propellant rocket engines. The device propels a hot, dense plasma jet, consisting of elemental fluorine and fluorine compounds, into the combustion chamber to ignite the cold propellant mixture. The igniter consists of two coaxial, cylindrical electrodes with a cylindrical bar of solid Teflon plastic in the region between them. The outer electrode is a metal (stainless steel) tube; the inner electrode is a metal pin (mild steel, stainless steel, tungsten, or thoriated-tungsten). The Teflon bar fits snugly between the two electrodes and provides electrical insulation between them. The Teflon bar may have either a flat surface, or a concave, conical surface at the open, down-stream end of the igniter (the igniter face). The igniter would be mounted on the combustion chamber of the rocket engine, either on the injector-plate at the upstream side of the engine, or on the sidewalls of the chamber. It also might sit behind a valve that would be opened just prior to ignition, and closed just after, in order to prevent the Teflon from melting due to heating from the combustion chamber.

  16. Ignition propagation and heat effects of propellant chips embedded in castable inhibitor using a laser flux test bomb

    NASA Technical Reports Server (NTRS)

    Bolton, Douglas E., Jr.

    1993-01-01

    A castable inhibitor is applied to the aft face of the Space Shuttle Redesigned Solid Rocket Motor (RSRM) forward segment propellant grain to control propellant surface burn area. During fabrication, the propellant surface is trimmed prior to the inhibitor application. This produces a potential for small propellant chips to remain undetected on the propellant surface and contaminate the inhibitor during application. The concern was that undetected propellant chips in the inhibitor might provide a fuse path for premature propellant ignition underneath the inhibitor. To evaluate the fuse path potential, testing was performed on inhibitor samples with embedded propellant. The internal motor environment was simulated with a calibrated CO2 laser beam directed onto a sample which was placed in a 4100 kPa (600 psi) nitrogen pressurized bomb (laser bomb). The testing showed definitive results pertaining to fuse path formation. Embedded propellant chips did not autoignite until the receding heat affected inhibitor surface reached, or passed, the propellant chip. Samples with embedded propellant chips in alignment did not propagate ignition from one chip to another with separation distances as small as 0.010 cm(0.004 inc) and some as little as 0.0051 cm (0.002 in). Propellant chips with volumes approximately less than 0.025 cu cm (0.0015 cu in) (which did not propagate ignition) did not increase the inhibitor material decomposition depth more than the resulting void cavity of the burned out propellant chip. In addition, the depth of this void cavity did not increase until it was overtaken by the surrounding material decomposition depth. This was due, in part, to the retention of the protective inhibitor char layer. Samples with embedded propellant strings, whose thicknesses were below 0.023 cm (0.009 in), did not propagate ignition. Propellant string thicknesses above 0.038 cm (0.015 in) did propagate ignition. Test sample char and heat affected layer measurements and observations compared well with those from the Space Shuttle Solid Rocket Motor (SRM) Technical Evaluation Motor no. 9(TEM-9).

  17. Nonlinear Modeling and Control of a Propellant Mixer

    NASA Technical Reports Server (NTRS)

    Barbieri, Enrique; Richter, Hanz; Figueroa, Fernando

    2003-01-01

    A mixing chamber used in rocket engine combustion testing at NASA Stennis Space Center is modeled by a second order nonlinear MIMO system. The mixer is used to condition the thermodynamic properties of cryogenic liquid propellant by controlled injection of the same substance in the gaseous phase. The three inputs of the mixer are the positions of the valves regulating the liquid and gas flows at the inlets, and the position of the exit valve regulating the flow of conditioned propellant. The outputs to be tracked and/or regulated are mixer internal pressure, exit mass flow, and exit temperature. The outputs must conform to test specifications dictated by the type of rocket engine or component being tested downstream of the mixer. Feedback linearization is used to achieve tracking and regulation of the outputs. It is shown that the system is minimum-phase provided certain conditions on the parameters are satisfied. The conditions are shown to have physical interpretation.

  18. Test data from small solid propellant rocket motor plume measurements (FA-21)

    NASA Technical Reports Server (NTRS)

    Hair, L. M.; Somers, R. E.

    1976-01-01

    A program is described for obtaining a reliable, parametric set of measurements in the exhaust plumes of solid propellant rocket motors. Plume measurements included pressures, temperatures, forces, heat transfer rates, particle sampling, and high-speed movies. Approximately 210,000 digital data points and 15,000 movie frames were acquired. Measurements were made at points in the plumes via rake-mounted probes, and on the surface of a large plate impinged by the exhaust plume. Parametric variations were made in pressure altitude, propellant aluminum loading, impinged plate incidence angle and distance from nozzle exit to plate or rake. Reliability was incorporated by continual use of repeat runs. The test setup of the various hardware items is described along with an account of test procedures. Test results and data accuracy are discussed. Format of the data presentation is detailed. Complete data are included in the appendix.

  19. The engineering of a nuclear thermal landing and ascent vehicle utilizing indigenous Martian propellant

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert M.

    1990-01-01

    A design study of a novel space transportation concept called NIMF (Nuclear rocket using Indigenous Martian Fuel) is reported. In this concept, Martian CO2 gas, which constitutes 95 percent of the atmosphere, is liquified by simple compression to about 100 psi and remains stable without refrigeration. When heated and exhausted out of a rocket nozzle, a specific impulse of about 264 s can be achieved, sufficient for flights from the surface to highly energetic orbits or from one point on the surface to any other point. The propellant acquisition system can travel with the vehicle, allowing it to refuel itself each time it lands. The concept offers unequalled potential to achieve planetwide mobility, allowing complete global access for the exploration of Mars. By eliminating the necessity of transporting ascent propellant to Mars, the NIMF can also significantly reduce the initial mass in LEO and of a manned Mars mission.

  20. Radial flow nuclear thermal rocket (RFNTR)

    DOEpatents

    Leyse, Carl F.

    1995-11-07

    A radial flow nuclear thermal rocket fuel assembly includes a substantially conical fuel element having an inlet side and an outlet side. An annular channel is disposed in the element for receiving a nuclear propellant, and a second, conical, channel is disposed in the element for discharging the propellant. The first channel is located radially outward from the second channel, and separated from the second channel by an annular fuel bed volume. This fuel bed volume can include a packed bed of loose fuel beads confined by a cold porous inlet frit and a hot porous exit frit. The loose fuel beads include ZrC coated ZrC-UC beads. In this manner, nuclear propellant enters the fuel assembly axially into the first channel at the inlet side of the element, flows axially across the fuel bed volume, and is discharged from the assembly by flowing radially outward from the second channel at the outlet side of the element.

  1. Radial flow nuclear thermal rocket (RFNTR)

    DOEpatents

    Leyse, Carl F.

    1995-01-01

    A radial flow nuclear thermal rocket fuel assembly includes a substantially conical fuel element having an inlet side and an outlet side. An annular channel is disposed in the element for receiving a nuclear propellant, and a second, conical, channel is disposed in the element for discharging the propellant. The first channel is located radially outward from the second channel, and separated from the second channel by an annular fuel bed volume. This fuel bed volume can include a packed bed of loose fuel beads confined by a cold porous inlet frit and a hot porous exit frit. The loose fuel beads include ZrC coated ZrC-UC beads. In this manner, nuclear propellant enters the fuel assembly axially into the first channel at the inlet side of the element, flows axially across the fuel bed volume, and is discharged from the assembly by flowing radially outward from the second channel at the outlet side of the element.

  2. Technology for Transient Simulation of Vibration during Combustion Process in Rocket Thruster

    NASA Astrophysics Data System (ADS)

    Zubanov, V. M.; Stepanov, D. V.; Shabliy, L. S.

    2018-01-01

    The article describes the technology for simulation of transient combustion processes in the rocket thruster for determination of vibration frequency occurs during combustion. The engine operates on gaseous propellant: oxygen and hydrogen. Combustion simulation was performed using the ANSYS CFX software. Three reaction mechanisms for the stationary mode were considered and described in detail. The way for obtaining quick CFD-results with intermediate combustion components using an EDM model was found. The way to generate the Flamelet library with CFX-RIF was described. A technique for modeling transient combustion processes in the rocket thruster was proposed based on the Flamelet library. A cyclic irregularity of the temperature field like vortex core precession was detected in the chamber. Frequency of flame precession was obtained with the proposed simulation technique.

  3. Sirius-5 experimental rocket

    NASA Astrophysics Data System (ADS)

    Kerstein, A.; Omersel, P.; Goljuf, L.; Zidaric, M.

    1981-09-01

    After giving a historical account of multistage rocket development in Yugoslavia, a status report is presented for the three-stage Sirius-5 program. The rocket is composed of: (1) a solid-propellant first stage, consisting of a cluster of eight standard motors yielding 220 kN thrust for 1.3 sec; (2) a mixed amines/inhibited red fuming nitric acid, bipropellant second stage generating 50 kN thrust; and (3) a third stage of the same design as the second but with only 62 kg of fuel, by contrast to 168 kg. Among the design principles adhered to are: minimization of the number of components, conservative design margins, and specifications for key subsystems based on demonstration programs. The primary use of this system is in amateur rocketry, being able to carry a 20 kg payload to 150 km.

  4. Design of a Hybrid Propulsion System for Orbit Raising Applications

    NASA Astrophysics Data System (ADS)

    Boman, N.; Ford, M.

    2004-10-01

    A trade off between conventional liquid apogee engines used for orbit raising applications and hybrid rocket engines (HRE) has been performed using a case study approach. Current requirements for lower cost and enhanced safety places hybrid propulsion systems in the spotlight. For evaluating and design of a hybrid rocket engine a parametric engineering code is developed, based on the combustion chamber characteristics of selected propellants. A single port cylindrical section of fuel grain is considered. Polyethylene (PE) and hydroxyl-terminated polybutadiene (HTPB) represents the fuels investigated. The engine design is optimized to minimize the propulsion system volume and mass, while keeping the system as simple as possible. It is found that the fuel grain L/D ratio boundary condition has a major impact on the overall hybrid rocket engine design.

  5. Evaluation of the Effect of Exhausts from Liquid and Solid Rockets on Ozone Layer

    NASA Astrophysics Data System (ADS)

    Yamagiwa, Yoshiki; Ishimaki, Tetsuya

    This paper reports the analytical results of the influences of solid rocket and liquid rocket exhausts on ozone layer. It is worried about that the exhausts from solid propellant rockets cause the ozone depletion in the ozone layer. Some researchers try to develop the analytical model of ozone depletion by rocket exhausts to understand its physical phenomena and to find the effective design of rocket to minimize its effect. However, these models do not include the exhausts from liquid rocket although there are many cases to use solid rocket boosters with a liquid rocket at the same time in practical situations. We constructed combined analytical model include the solid rocket exhausts and liquid rocket exhausts to analyze their effects. From the analytical results, we find that the exhausts from liquid rocket suppress the ozone depletion by solid rocket exhausts.

  6. Space Shuttle propulsion performance reconstruction from flight data

    NASA Technical Reports Server (NTRS)

    Rogers, Robert M.

    1989-01-01

    The aplication of extended Kalman filtering to estimating Space Shuttle Solid Rocket Booster (SRB) performance, specific impulse, from flight data in a post-flight processing computer program. The flight data used includes inertial platform acceleration, SRB head pressure, and ground based radar tracking data. The key feature in this application is the model used for the SRBs, which represents a reference quasi-static internal ballistics model normalized to the propellant burn depth. Dynamic states of mass overboard and propellant burn depth are included in the filter model to account for real-time deviations from the reference model used. Aerodynamic, plume, wind and main engine uncertainties are included.

  7. Active chlorine and nitric oxide formation from chemical rocket plume afterburning

    NASA Astrophysics Data System (ADS)

    Leone, D. M.; Turns, S. R.

    Chlorine and oxides of nitrogen (NO(x)) released into the atmosphere contribute to acid rain (ground level or low-altitude sources) and ozone depletion from the stratosphere (high-altitude sources). Rocket engines have the potential for forming or activating these pollutants in the rocket plume. For instance, H2/O2 rockets can produce thermal NO(x) in their plumes. Emphasis, in the past, has been placed on determining the impact of chlorine release on the stratosphere. To date, very little, if any, information is available to understand what contribution NO(x) emissions from ground-based engine testing and actual rocket launches have on the atmosphere. The goal of this work is to estimate the afterburning emissions from chemical rocket plumes and determine their local stratospheric impact. Our study focuses on the space shuttle rocket motors, which include both the solid rocket boosters (SRB's) and the liquid propellant main engines (SSME's). Rocket plume afterburning is modeled employing a one-dimensional model incorporating two chemical kinetic systems: chemical and thermal equilibria with overlayed nitric oxide chemical kinetics (semi equilibrium) and full finite-rate chemical kinetics. Additionally, the local atmospheric impact immediately following a launch is modeled as the emissions diffuse and chemically react in the stratosphere.

  8. Active chlorine and nitric oxide formation from chemical rocket plume afterburning

    NASA Technical Reports Server (NTRS)

    Leone, D. M.; Turns, S. R.

    1994-01-01

    Chlorine and oxides of nitrogen (NO(x)) released into the atmosphere contribute to acid rain (ground level or low-altitude sources) and ozone depletion from the stratosphere (high-altitude sources). Rocket engines have the potential for forming or activating these pollutants in the rocket plume. For instance, H2/O2 rockets can produce thermal NO(x) in their plumes. Emphasis, in the past, has been placed on determining the impact of chlorine release on the stratosphere. To date, very little, if any, information is available to understand what contribution NO(x) emissions from ground-based engine testing and actual rocket launches have on the atmosphere. The goal of this work is to estimate the afterburning emissions from chemical rocket plumes and determine their local stratospheric impact. Our study focuses on the space shuttle rocket motors, which include both the solid rocket boosters (SRB's) and the liquid propellant main engines (SSME's). Rocket plume afterburning is modeled employing a one-dimensional model incorporating two chemical kinetic systems: chemical and thermal equilibria with overlayed nitric oxide chemical kinetics (semi equilibrium) and full finite-rate chemical kinetics. Additionally, the local atmospheric impact immediately following a launch is modeled as the emissions diffuse and chemically react in the stratosphere.

  9. Guided Rocket Weapon,

    DTIC Science & Technology

    1982-06-11

    nyn;tei% (fuel/propellant ir, extruded trent the tanks by *C Cc:’ njie d g a. Work liquid-propellant engines on the same principle, as on the ~c~A t...82052705 PAGE 44-- Fig. 26. Starting/launcing of the guided winged missile * Snack ". Page 49.1 Ballistic short-range missiles. The most widely used short

  10. Modeling of Nonlinear Combustion Instability in Solid Propellant Rocket Motors

    DTIC Science & Technology

    1984-02-01

    34. .. .°. .., . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . . . . ..°.... . .°-""... ’o.’ . . °o: :--, - .:" . "" . °° - - 54. Flandro , 0. A., "Solid Propellant Acoustic Admittance...such as those due to Gary , 2 1) Gourlay and Morris ( 2 2 ) and Mas- (23)son are more involved, both from a program development, and computational

  11. Refinement of Propellant Strand Burning Method to Suit Aluminised Composite Rocket Propellant

    DTIC Science & Technology

    2014-12-01

    from discrete burn rates at each pressure. Strands are ignited with a nickel- chromium (nichrome) wire with burn time measured via timing wires which...Application of Paint Inhibitor 8.5.1 Switch on the fume hood and prepare a 70% dilution of inhibitor paint as per instructions of document 3.5

  12. Experimental Characteristics of Particle Dynamics within Solid Rocket Motors Environments

    DTIC Science & Technology

    2009-04-03

    McCrorie, J. D., Vaughn, J. K., Netzer, D. W., “Motor and Plume Particle Size Measurements in Solid Propellant Micromotors ,” Journal of Propulsion...Solid Propellant Micromotors ,” Journal of Propulsion and Power 10(3), 410-418 (1994). 6. Kovalev, O. B., “Motor and Plume Particle Size Prediction in...McCrorie, J. D., Vaughn, J. K., Netzer, D. W., “Motor and Plume Particle Size Measurements in Solid Propellant Micromotors ,” Journal of Propulsion

  13. Technical Report for the Period 10 January 1959 to 30 June 1960

    DTIC Science & Technology

    1960-08-22

    boon started to determine the efficacy of various drying procedures for polyesters. Water contents are being determined by the Karl Fischer method to an...CHARGES 17 XX.4 Inspection Methods 17 XXI SOLID PROPELLANTS FOR ROCKETS 18 XXI.1 Colloidal Propellants - Extruded 18 XXI.2 Colloidal Propellants - Cast...derivatives can be made more durable and, in particular, more resistant to heat. The method used has consisted in the preparation of crotonyl derivatives of

  14. Recent Advances and Applications in Cryogenic Propellant Densification Technology

    NASA Technical Reports Server (NTRS)

    Tomsik, Thomas M.

    2000-01-01

    This purpose of this paper is to review several historical cryogenic test programs that were conducted at the NASA Glenn Research Center (GRC), Cleveland, Ohio over the past fifty years. More recently these technology programs were intended to study new and improved denser forms of liquid hydrogen (LH2) and liquid oxygen (LO2) cryogenic rocket fuels. Of particular interest are subcooled cryogenic propellants. This is due to the fact that they have a significantly higher density (eg. triple-point hydrogen, slush etc.), a lower vapor pressure and improved cooling capacity over the normal boiling point cryogen. This paper, which is intended to be a historical technology overview, will trace the past and recent development and testing of small and large-scale propellant densification production systems. Densifier units in the current GRC fuels program, were designed and are capable of processing subcooled LH2 and L02 propellant at the X33 Reusable Launch Vehicle (RLV) scale. One final objective of this technical briefing is to discuss some of the potential benefits and application which propellant densification technology may offer the industrial cryogenics production and end-user community. Density enhancements to cryogenic propellants (LH2, LO2, CH4) in rocket propulsion and aerospace application have provided the opportunity to either increase performance of existing launch vehicles or to reduce the overall size, mass and cost of a new vehicle system.

  15. Space Shuttle Projects

    NASA Image and Video Library

    1977-12-01

    The solid rocket booster (SRB) structural test article is being installed in the Solid Rocket Booster Test Facility for the structural and load verification test at the Marshall Space Flight Center (MSFC). The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment.

  16. Cold Flow Propulsion Test Complex Pulse Testing

    NASA Technical Reports Server (NTRS)

    McDougal, Kris

    2016-01-01

    When the propellants in a liquid rocket engine burn, the rocket not only launches and moves in space, it causes forces that interact with the vehicle itself. When these interactions occur under specific conditions, the vehicle's structures and components can become unstable. One instability of primary concern is termed pogo (named after the movement of a pogo stick), in which the oscillations (cycling movements) cause large loads, or pressure, against the vehicle, tanks, feedlines, and engine. Marshall Space Flight Center (MSFC) has developed a unique test technology to understand and quantify the complex fluid movements and forces in a liquid rocket engine that contribute strongly to both engine and integrated vehicle performance and stability. This new test technology was established in the MSFC Cold Flow Propulsion Test Complex to allow injection and measurement of scaled propellant flows and measurement of the resulting forces at multiple locations throughout the engine.

  17. Solid Rocket Booster Structural Test Article

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The structural test article to be used in the solid rocket booster (SRB) structural and load verification tests is being assembled in a high bay building of the Marshall Space Flight Center (MSFC). The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment.

  18. Space Shuttle Five-Segment Booster (Short Course)

    NASA Technical Reports Server (NTRS)

    Graves, Stanley R.; Rudolphi, Michael (Technical Monitor)

    2002-01-01

    NASA is considering upgrading the Space Shuttle by adding a fifth segment (FSB) to the current four-segment solid rocket booster. Course materials cover design and engineering issues related to the Reusable Solid Rocket Motor (RSRM) raised by the addition of a fifth segment to the rocket booster. Topics cover include: four segment vs. five segment booster, abort modes, FSB grain design, erosive burning, enhanced propellant burn rate, FSB erosive burning model development and hardware configuration.

  19. A two-phase restricted equilibrium model for combustion of metalized solid propellants

    NASA Technical Reports Server (NTRS)

    Sabnis, J. S.; Dejong, F. J.; Gibeling, H. J.

    1992-01-01

    An Eulerian-Lagrangian two-phase approach was adopted to model the multi-phase reacting internal flow in a solid rocket with a metalized propellant. An Eulerian description was used to analyze the motion of the continuous phase which includes the gas as well as the small (micron-sized) particulates, while a Lagrangian description is used for the analysis of the discrete phase which consists of the larger particulates in the motor chamber. The particulates consist of Al and Al2O3 such that the particulate composition is 100 percent Al at injection from the propellant surface with Al2O3 fraction increasing due to combustion along the particle trajectory. An empirical model is used to compute the combustion rate for agglomerates while the continuous phase chemistry is treated using chemical equilibrium. The computer code was used to simulate the reacting flow in a solid rocket motor with an AP/HTPB/Al propellant. The computed results show the existence of an extended combustion zone in the chamber rather than a thin reaction region. The presence of the extended combustion zone results in the chamber flow field and chemical being far from isothermal (as would be predicted by a surface combustion assumption). The temperature in the chamber increases from about 2600 K at the propellant surface to about 3350 K in the core. Similarly the chemical composition and the density of the propellant gas also show spatially non-uniform distribution in the chamber. The analysis developed under the present effort provides a more sophisticated tool for solid rocket internal flow predictions than is presently available, and can be useful in studying apparent anomalies and improving the simple correlations currently in use. The code can be used in the analysis of combustion efficiency, thermal load in the internal insulation, plume radiation, etc.

  20. Metallized Gelled Propellants: Oxygen/RP-1/Aluminum Rocket Engine Calorimeter Heat Transfer Measurements and Analysis

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    1997-01-01

    A set of analyses was conducted to determine the heat transfer characteristics of metallized gelled liquid propellants in a rocket engine. The analyses used the data from experiments conducted with a small 30- to 40-lbf thrust engine composed of a modular injector, igniter, chamber and nozzle. The fuels used were traditional liquid RP-1 and gelled RP-1 with 0-wt %, 5-wt%, and 55-wt% loadings of aluminum with silicon dioxide gellant, and gaseous oxygen as the oxidizer. Heat transfer was computed based on measurements using calorimeter rocket chamber and nozzle hardware with a total of 31 cooling channels. A gelled fuel coating formed in the 0-, 5- and 55-wt% engines, and the coating was composed of unburned gelled fuel and partially combusted RP-1. The coating caused a large decrease in calorimeter engine heat flux in the last half of the chamber for the 0- and 5-wt% RP-1/Al. This heat flux reduction effect was analyzed by comparing engine runs and the changes in the heat flux during a run as well as from run to run. Heat transfer and time-dependent heat flux analyses and interpretations are provided. The 5- and 55-wt% RP-1/Al fueled engines had the highest chamber heat fluxes, with the 5-wt% fuel having the highest throat flux. This result is counter to the predicted result, where the 55 wt% fuel has the highest combustion and throat temperature, and therefore implies that it would deliver the highest throat heat flux. The 5-wt% RP-1/Al produced the most influence on the engine heat transfer and the heat flux reduction was caused by the formation of a gelled propellant layer in the chamber and nozzle.

  1. A Nuclear Ramjet Flyer for Exploration of Jovian Atmosphere

    NASA Astrophysics Data System (ADS)

    Maise, G.; Powell, J.; Paniagua, J.; Lecat, R.

    2001-01-01

    We investigated the design, operation, and data gathering possibilities of a nuclear-powered ramjet flyer in the Jovian atmosphere. The MITEE nuclear rocket engine can be modified to operate as a ramjet in planetary atmospheres. (Note: MITEE is a compact, ultra-light-weight thermal nuclear rocket which uses hydrogen as the propellant.) To operate as a ramjet, MITEE requires a suitable inlet and diffuser to substitute for the propellant that is pumped from the supply tanks in a nuclear rocket engine. Such a ramjet would fly in the upper Jovian atmosphere, mapping in detail temperatures, pressures, compositions, lightning activity, and wind speeds in the highly turbulent equatorial zone and the Great Red Spot. The nuclear ramjet could operate for months because: (1) the Jovian atmosphere has unlimited propellant, (2) the MITEE nuclear reactor is a (nearly) unlimited power source, and (3) with few moving parts, mechanical wear should be minimal. This paper presents a conceptual design of a ramjet flyer and its nuclear engine. The flyer incorporates a swept-wing design with instruments located in the twin wing-tip pods (away from the radiation source and readily shielded, if necessary). The vehicle is 2 m long with a 2 m wingspan. Its mass is 220 kg, and its nominal flight Mach number is 1.5. Based on combined neutronic and thermal/hydraulic analyses, we calculated that the ambient pressure range over which the flyer can operate to be from about 0.04 to 4 (terrestrial) atmospheres. This altitude range encompasses the three uppermost cloud layers in the Jovian atmosphere: (1) the entire uppermost visible NH3 ice cloud layer (where lightning has been observed), (2) the entire NH4HS ice cloud layer, and (3) the upper portion of the H2O ice cloud layer.

  2. SRM propellant, friction/ESD testing

    NASA Technical Reports Server (NTRS)

    Campbell, L. A.

    1989-01-01

    Following the Pershing 2 incident in 1985 and the Peacekeeper ignition during core removal in 1987, it was found that propellant can be much more sensitive to Electrostatic Discharges (ESD) than ever before realized. As a result of the Peacekeeper motor near miss incident, a friction machine was designed and fabricated, and used to determine friction hazards during core removal. Friction testing with and electrical charge being applied across the friction plates resulted in propellant ignitions at low friction pressures and extremely low ESD levels. The objective of this test series was to determine the sensitivity of solid rocket propellant to combined friction pressure and electrostatic stimuli and to compare the sensitivity of the SRM propellant to Peacekeeper propellant. The tests are fully discussed, summarized and conclusions drawn.

  3. Throttleable GOX/ABS launch assist hybrid rocket motor for small scale air launch platform

    NASA Astrophysics Data System (ADS)

    Spurrier, Zachary S.

    Aircraft-based space-launch platforms allow operational flexibility and offer the potential for significant propellant savings for small-to-medium orbital payloads. The NASA Armstrong Flight Research Center's Towed Glider Air-Launch System (TGALS) is a small-scale flight research project investigating the feasibility for a remotely-piloted, towed, glider system to act as a versatile air launch platform for nano-scale satellites. Removing the crew from the launch vehicle means that the system does not have to be human rated, and offers a potential for considerable cost savings. Utah State University is developing a small throttled launch-assist system for the TGALS platform. This "stage zero" design allows the TGALS platform to achieve the required flight path angle for the launch point, a condition that the TGALS cannot achieve without external propulsion. Throttling is required in order to achieve and sustain the proper launch attitude without structurally overloading the airframe. The hybrid rocket system employs gaseous-oxygen and acrylonitrile butadiene styrene (ABS) as propellants. This thesis summarizes the development and testing campaign, and presents results from the clean-sheet design through ground-based static fire testing. Development of the closed-loop throttle control system is presented.

  4. High frequency flow-structural interaction in dense subsonic fluids

    NASA Technical Reports Server (NTRS)

    Liu, Baw-Lin; Ofarrell, J. M.

    1995-01-01

    Prediction of the detailed dynamic behavior in rocket propellant feed systems and engines and other such high-energy fluid systems requires precise analysis to assure structural performance. Designs sometimes require placement of bluff bodies in a flow passage. Additionally, there are flexibilities in ducts, liners, and piping systems. A design handbook and interactive data base have been developed for assessing flow/structural interactions to be used as a tool in design and development, to evaluate applicable geometries before problems develop, or to eliminate or minimize problems with existing hardware. This is a compilation of analytical/empirical data and techniques to evaluate detailed dynamic characteristics of both the fluid and structures. These techniques have direct applicability to rocket engine internal flow passages, hot gas drive systems, and vehicle propellant feed systems. Organization of the handbook is by basic geometries for estimating Strouhal numbers, added mass effects, mode shapes for various end constraints, critical onset flow conditions, and possible structural response amplitudes. Emphasis is on dense fluids and high structural loading potential for fatigue at low subsonic flow speeds where high-frequency excitations are possible. Avoidance and corrective measure illustrations are presented together with analytical curve fits for predictions compiled from a comprehensive data base.

  5. Saturn V Dedication

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A replica of the Saturn V rocket that propelled man from the confines of Earth's gravity to the surface of the Moon was built on the grounds of the U. S. Space and Rocket Center in Huntsville, AL. in time for the 30th arniversary celebration of that historic occasion. Marshall Space Flight Center and its team of German rocket scientists headed by Dr. Wernher von Braun were responsible for the design and development of the Saturn V rocket. Pictured are MSFC's current Center Director Art Stephenson, Alabama Congressman Bud Cramer, and NASA Administrator Dan Goldin during the dedication ceremony.

  6. Around Marshall

    NASA Image and Video Library

    1999-07-17

    A replica of the Saturn V rocket that propelled man from the confines of Earth's gravity to the surface of the Moon was built on the grounds of the U. S. Space and Rocket Center in Huntsville, AL. in time for the 30th arniversary celebration of that historic occasion. Marshall Space Flight Center and its team of German rocket scientists headed by Dr. Wernher von Braun were responsible for the design and development of the Saturn V rocket. Pictured are MSFC's current Center Director Art Stephenson, Alabama Congressman Bud Cramer, and NASA Administrator Dan Goldin during the dedication ceremony.

  7. Study of solid rocket motors for a space shuttle booster. Volume 2, book 3: Cost estimating data

    NASA Technical Reports Server (NTRS)

    Vanderesch, A. H.

    1972-01-01

    Cost estimating data for the 156 inch diameter, parallel burn solid rocket propellant engine selected for the space shuttle booster are presented. The costing aspects on the baseline motor are initially considered. From the baseline, sufficient data is obtained to provide cost estimates of alternate approaches.

  8. Questions of testing rate and flexibility of rocket test benches, discussed on the basis of the test benches of Nitrochemie GMBH in Aschau

    NASA Technical Reports Server (NTRS)

    LEGRAND

    1987-01-01

    The rocket test benches are used to study burnup behavior by various methods. In the first ten months of 1966, 1578 shots were performed to test propellants, and 920 to test 14 thrust and pressure measurement projects.

  9. Holographic investigation of solid propellant particulates

    NASA Astrophysics Data System (ADS)

    Gillespie, T. R.

    1981-12-01

    The investigation completed the development process to establish a technique to obtain holographic recordings of particulate behavior during the combustion process of solid propellants in a two-dimensional rocket motor. Holographic and photographic recordings were taken in a crossflow environment using various compositions of metallized propellants. The reconstructed holograms are used to provide data on the behavior of aluminum/aluminum oxide particulates in a steady state combustion environment as a function of the initial aluminum size cast into the propellant. High speed, high resolution motion pictures were taken to compare the cinematic data with that available from the holograms.

  10. Particle size reduction of propellants by cryocycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whinnery, L.; Griffiths, S.; Lipkin, J.

    1995-05-01

    Repeated exposure of a propellant to liquid nitrogen causes thermal stress gradients within the material resulting in cracking and particle size reduction. This process is termed cryocycling. The authors conducted a feasibility study, combining experiments on both inert and live propellants with three modeling approaches. These models provided optimized cycle times, predicted ultimate particle size, and allowed crack behavior to be explored. Process safety evaluations conducted separately indicated that cryocycling does not increase the sensitivity of the propellants examined. The results of this study suggest that cryocycling is a promising technology for the demilitarization of tactical rocket motors.

  11. Characterization of the non axial thrust generated by large solid propellant rocket motors in three axis stabilized ascent

    NASA Technical Reports Server (NTRS)

    Kosmann, W. J.; Dionne, E. R.; Klemetson, R. W.

    1978-01-01

    Nonaxial thrusts produced by solid rocket motors during three-axis stabilized attitude control have been determined from ascent experience on twenty three Burner II, Burner IIA and Block 5D-1 upper stage vehicles. A data base representing four different rocket motor designs (three spherical and one extended spherical) totaling twenty five three-axis stabilized firings is generated. Solid rocket motor time-varying resultant and lateral side force vector magnitudes, directions and total impulses, and roll torque couple magnitudes, directions, and total impulses are tabulated in the appendix. Population means and three sigma deviations are plotted. Existing applicable ground test side force and roll torque magnitudes and total impulses are evaluated and compared to the above experience data base. Within the spherical motor population, the selected AEDC ground test data consistently underestimated experienced motor side forces, roll torques and total impulses. Within the extended spherical motor population, the selected AEDC test data predicted experienced motor side forces, roll torques, and total impulses, with surprising accuracy considering the very small size of the test and experience populations.

  12. Conceptual Launch Vehicles Using Metallic Hydrogen Propellant

    NASA Astrophysics Data System (ADS)

    Cole, John W.; Silvera, Isaac F.; Foote, John P.

    2008-01-01

    Solid molecular hydrogen is predicted to transform into an atomic solid with metallic properties under pressures >4.5 Mbar. Atomic metallic hydrogen is predicted to be metastable, limited by some critical temperature and pressure, and to store very large amounts of energy. Experiments may soon determine the critical temperature, critical pressure, and specific energy availability. It is useful to consider the feasibility of using metastable atomic hydrogen as a rocket propellant. If one assumes that metallic hydrogen is stable at usable temperatures and pressures, and that it can be affordably produced, handled, and stored, then it may be a useful rocket propellant. Assuming further that the available specific energy can be determined from the recombination of the atoms into molecules (216 MJ/kg), then conceptual engines and launch vehicle concepts can be developed. Under these assumptions, metallic hydrogen would be a revolutionary new rocket fuel with a theoretical specific impulse of 1700 s at a chamber pressure of 100 atm. A practical problem that arises is that rocket chamber temperatures may be too high for the use of this pure fuel. This paper examines an engine concept that uses liquid hydrogen or water as a diluent coolant for the metallic hydrogen to reduce the chamber temperature to usable values. Several launch vehicles are then conceptually developed. Results indicate that if metallic hydrogen is experimentally found to have the properties assumed in this analysis, then there are significant benefits. These benefits become more attractive as the chamber temperatures increase.

  13. The Initial Atmospheric Transport (IAT) Code: Description and Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrow, Charles W.; Bartel, Timothy James

    The Initial Atmospheric Transport (IAT) computer code was developed at Sandia National Laboratories as part of their nuclear launch accident consequences analysis suite of computer codes. The purpose of IAT is to predict the initial puff/plume rise resulting from either a solid rocket propellant or liquid rocket fuel fire. The code generates initial conditions for subsequent atmospheric transport calculations. The Initial Atmospheric Transfer (IAT) code has been compared to two data sets which are appropriate to the design space of space launch accident analyses. The primary model uncertainties are the entrainment coefficients for the extended Taylor model. The Titan 34Dmore » accident (1986) was used to calibrate these entrainment settings for a prototypic liquid propellant accident while the recent Johns Hopkins University Applied Physics Laboratory (JHU/APL, or simply APL) large propellant block tests (2012) were used to calibrate the entrainment settings for prototypic solid propellant accidents. North American Meteorology (NAM )formatted weather data profiles are used by IAT to determine the local buoyancy force balance. The IAT comparisons for the APL solid propellant tests illustrate the sensitivity of the plume elevation to the weather profiles; that is, the weather profile is a dominant factor in determining the plume elevation. The IAT code performed remarkably well and is considered validated for neutral weather conditions.« less

  14. Carrier rockets

    NASA Astrophysics Data System (ADS)

    Aleksandrov, V. A.; Vladimirov, V. V.; Dmitriev, R. D.; Osipov, S. O.

    This book takes into consideration domestic and foreign developments related to launch vehicles. General information concerning launch vehicle systems is presented, taking into account details of rocket structure, basic design considerations, and a number of specific Soviet and American launch vehicles. The basic theory of reaction propulsion is discussed, giving attention to physical foundations, the various types of forces acting on a rocket in flight, basic parameters characterizing rocket motion, the effectiveness of various approaches to obtain the desired velocity, and rocket propellants. Basic questions concerning the classification of launch vehicles are considered along with construction and design considerations, aspects of vehicle control, reliability, construction technology, and details of structural design. Attention is also given to details of rocket motor design, the basic systems of the carrier rocket, and questions of carrier rocket development.

  15. Baseline Computational Fluid Dynamics Methodology for Longitudinal-Mode Liquid-Propellant Rocket Combustion Instability

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.

    2005-01-01

    A computational method for the analysis of longitudinal-mode liquid rocket combustion instability has been developed based on the unsteady, quasi-one-dimensional Euler equations where the combustion process source terms were introduced through the incorporation of a two-zone, linearized representation: (1) A two-parameter collapsed combustion zone at the injector face, and (2) a two-parameter distributed combustion zone based on a Lagrangian treatment of the propellant spray. The unsteady Euler equations in inhomogeneous form retain full hyperbolicity and are integrated implicitly in time using second-order, high-resolution, characteristic-based, flux-differencing spatial discretization with Roe-averaging of the Jacobian matrix. This method was initially validated against an analytical solution for nonreacting, isentropic duct acoustics with specified admittances at the inflow and outflow boundaries. For small amplitude perturbations, numerical predictions for the amplification coefficient and oscillation period were found to compare favorably with predictions from linearized small-disturbance theory as long as the grid exceeded a critical density (100 nodes/wavelength). The numerical methodology was then exercised on a generic combustor configuration using both collapsed and distributed combustion zone models with a short nozzle admittance approximation for the outflow boundary. In these cases, the response parameters were varied to determine stability limits defining resonant coupling onset.

  16. Propellant grain dynamics in aft attach ring of shuttle solid rocket booster

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1979-01-01

    An analytical technique for implementing simultaneously the temperature, dynamic strain, real modulus, and frequency properties of solid propellant in an unsymmetrical vibrating ring mode is presented. All dynamic parameters and sources are defined for a free vibrating ring-grain structure with initial displacement and related to a forced vibrating system to determine the change in real modulus. Propellant test data application is discussed. The technique was developed to determine the aft attach ring stiffness of the shuttle booster at lift-off.

  17. An Improved Model of Cryogenic Propellant Stratification in a Rotating, Reduced Gravity Environment

    NASA Technical Reports Server (NTRS)

    Oliveira, Justin; Kirk, Daniel R.; Schallhorn, Paul A.; Piquero, Jorge L.; Campbell, Mike; Chase, Sukhdeep

    2007-01-01

    This paper builds on a series of analytical literature models used to predict thermal stratification within rocket propellant tanks. The primary contribution to the literature is to add the effect of tank rotation and to demonstrate the influence of rotation on stratification times and temperatures. This work also looks levels of thermal stratification for generic propellant tanks (cylindrical shapes) over a parametric range of upper-stage coast times, heating levels, rotation rates, and gravity levels.

  18. Survivability of a Propellant Fire inside a Simulated Military Vehicle Crew Compartment: Part 2 - Hazard Mitigation Strategies and Their Effectiveness

    DTIC Science & Technology

    2013-06-01

    Weapons Propulsion Group where his work initially focussed on R&D relating to cast- composite rocket motors. The emphasis of his work then shifted to gun...Relative humidity RHS Rectangular Hollow Section t Time (s) T1 Ambient room temperature, ceiling-height (K) T2 Ambient room temperature...propellant and a centre- core igniter train. The BCM and UNCLASSIFIED DSTO-RR-0393 UNCLASSIFIED 2 TCM contain the same propellant formulation and

  19. AFRL Solid Propellant Laboratory Explosive Siting and Renovation Lessons Learned

    DTIC Science & Technology

    2010-05-19

    AFRL Solid Propellant Laboratory Explosive Siting and Renovation Lessons Learned Daniel F. Schwartz Air Force Research Laboratory ...9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Air Force Research Laboratory (AFMC) AFRL /RZS...provide the United States Air Force with advanced rocket propulsion technologies, the Air Force Research

  20. -----SPACE TRANSPORTATION

    NASA Image and Video Library

    1998-10-07

    This photograph depicts an air-breathing rocket engine prototype in the test bay at the General Applied Science Lab facility in Ronkonkoma, New York. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced Space Transportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  1. Theoretical performance of liquid hydrogen and liquid fluorine as a rocket propellant

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Huff, Vearl N

    1953-01-01

    Theoretical values of performance parameters for liquid hydrogen and liquid fluorine as a rocket propellant were calculated on the assumption of equilibrium composition during the expansion process for a wide range of fuel-oxidant and expansion ratios. The parameters included were specific impulse, combustion-chamber temperature, nozzle-exit temperature, equilibrium composition, mean molecular weight, characteristic velocity, coefficient of thrust, ration of nozzle-exit area to throat area, specific heat at constant pressure, coefficient of viscosity, and coefficient of thermal conductivity. The maximum value of specific impulse was 364.6 pound-seconds per pound for a chamber pressure of 300 pounds per square inch absolute (20.41 atm) and an exit pressure of 1 atmosphere.

  2. Experimental thrust performance of a high-area-ratio rocket nozzle

    NASA Technical Reports Server (NTRS)

    Pavli, Albert J.; Kacynski, Kenneth J.; Smith, Tamara A.

    1987-01-01

    An experimental investigation was conducted to determine the thrust performance attainable from high-area-ratio rocket nozzles. A modified Rao-contoured nozzle with an expansion area of 1030 was test fired with hydrogen-oxygen propellants at altitude conditions. The nozzle was also tested as a truncated nozzle, at an expansion area ratio of 428. Thrust coefficient and thrust coefficient efficiency values are presented for each configuration at various propellant mixture ratios (oxygen/fuel). Several procedural techniques were developed permitting improved measurement of nozzle performance. The more significant of these were correcting the thrust for the aneroid effects, determining the effective chamber pressure, and referencing differential pressure transducers to a vacuum reference tank.

  3. Experimental thrust performance of a high area-ratio rocket nozzle

    NASA Technical Reports Server (NTRS)

    Pavli, A. J.; Kacynski, K. J.; Smith, T. A.

    1986-01-01

    An experimental investigation was conducted to determine the thrust performance attainable from high-area-ratio rocket nozzles. A modified Rao-contoured nozzle with an expansion area of 1030 was test fired with hydrogen-oxygen propellants at altitude conditions. The nozzle was also tested as a truncated nozzle, at an expansion area ratio of 428. Thrust coefficient and thrust coefficient efficiency values are presented for each configuration at various propellant mixture ratios (oxygen/fuel). Several procedural techniques were developed permitting improved measurement of nozzle performance. The more significant of these were correcting the thrust for the aneroid effects, determining the effective chamber pressure, and referencing differential pressure transducers to a vacuum reference tank.

  4. Video of SLS Liquid Hydrogen Tank Qualification Structural Test Article Being Moved to Cell E at NASA’s Michoud Assembly Facility

    NASA Image and Video Library

    2017-06-29

    This video shows the Space Launch System liquid hydrogen tank structural qualification test article being moved to Building 110, Cell at NASA's Michoud Assembly Facility in New Orleans. The rocket's liquid hydrogen tank, which is the propellant tank that joins to the engine section of the 212-foot tall core stage, will carry cryogenic liquid hydrogen that propels the rocket. This test article build at Michoud is being prepared for testing at NASA's Marshall Space Flight Center in Huntsville, Alabama. There, it will be subjected to millions of pounds of force during testing to ensure the hardware can withstand the incredible stresses of launch.

  5. Qualitative Results from a Flight Investigation to Determine Aileron Effectiveness of Two Rocket-Propelled 1/20-Scale Models of the MX -76 Missile

    NASA Technical Reports Server (NTRS)

    Stevens, Joseph E.

    1955-01-01

    Free-flight tests of two rocket-propelled l/20-scale models of the Bell MX-776 missile have been conducted to obtain measurements of the aileron deflection required to counteract the induced rolling moments caused by combined angles of attack and sideslip and thus to determine whether the ailerons provided were capable of controlling the model at the attitudes produced by the test conditions. Inability to obtain reasonably steady-state conditions and superimposed high-frequency oscillations in the data precluded any detailed analysis of the results obtained from the tests. For these reasons, the data presented are limited largely to qualitative results.

  6. Theoretical performance of liquid ammonia and liquid fluorine as a rocket propellant

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Huff, Vearl N

    1953-01-01

    Theoretical values of performance parameters for liquid ammonia and liquid fluorine as a rocket propellant were calculated on the assumption of equilibrium composition during the expansion process for a wide range of fuel-oxidant and expansion ratios. The parameters included were specific impulse, combustion chamber temperature, nozzle-exit temperature, equilibrium composition, mean molecular weight, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, coefficient of viscosity, and coefficient of thermal conductivity. The maximum value of specific impulse was 311.5 pound-seconds per pound for a chamber pressure of 300 pounds per square inch absolute (20.41 atm) and an exit pressure of 1 atmosphere.

  7. Assessment of tbe Performance of Ablative Insulators Under Realistic Solid Rocket Motor Operating Conditions (a Doctoral Dissertation)

    NASA Technical Reports Server (NTRS)

    Martin, Heath Thomas

    2013-01-01

    Ablative insulators are used in the interior surfaces of solid rocket motors to prevent the mechanical structure of the rocket from failing due to intense heating by the high-temperature solid-propellant combustion products. The complexity of the ablation process underscores the need for ablative material response data procured from a realistic solid rocket motor environment, where all of the potential contributions to material degradation are present and in their appropriate proportions. For this purpose, the present study examines ablative material behavior in a laboratory-scale solid rocket motor. The test apparatus includes a planar, two-dimensional flow channel in which flat ablative material samples are installed downstream of an aluminized solid propellant grain and imaged via real-time X-ray radiography. In this way, the in-situ transient thermal response of an ablator to all of the thermal, chemical, and mechanical erosion mechanisms present in a solid rocket environment can be observed and recorded. The ablative material is instrumented with multiple micro-thermocouples, so that in-depth temperature histories are known. Both total heat flux and thermal radiation flux gauges have been designed, fabricated, and tested to characterize the thermal environment to which the ablative material samples are exposed. These tests not only allow different ablative materials to be compared in a realistic solid rocket motor environment but also improve the understanding of the mechanisms that influence the erosion behavior of a given ablative material.

  8. Saturn V Dedication

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A replica of the Saturn V rocket that propelled man from the confines of Earth's gravity to the surface of the Moon was built on the grounds of the U. S. Space and Rocket Center in Huntsville, AL. in time for the 30th arniversary celebration of that historic occasion. Marshall Space Flight Center and its team of German rocket scientists headed by Dr. Wernher von Braun were responsible for the design and development of the Saturn V rocket. Pictured are MSFC's current Center Director Art Stephenson, Alabama Congressman Bud Cramer, NASA Administrator Dan Goldin, and director of the U. S. Space and Rocket Center Mike Wing during the dedication ceremony.

  9. Around Marshall

    NASA Image and Video Library

    1999-07-17

    A replica of the Saturn V rocket that propelled man from the confines of Earth's gravity to the surface of the Moon was built on the grounds of the U. S. Space and Rocket Center in Huntsville, AL. in time for the 30th arniversary celebration of that historic occasion. Marshall Space Flight Center and its team of German rocket scientists headed by Dr. Wernher von Braun were responsible for the design and development of the Saturn V rocket. Pictured are MSFC's current Center Director Art Stephenson, Alabama Congressman Bud Cramer, NASA Administrator Dan Goldin, and director of the U. S. Space and Rocket Center Mike Wing during the dedication ceremony.

  10. Laser Ignition Technology for Bi-Propellant Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Thomas, Matt; Bossard, John; Early, Jim; Trinh, Huu; Dennis, Jay; Turner, James (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of laser ignition technology for bipropellant rocket engines applications. The objectives of this project include: (1) the selection test chambers and flows; (2) definition of the laser ignition setup; (3) pulse format optimization; (4) fiber optic coupled laser ignition system analysis; and (5) chamber integration issues definition. The testing concludes that rocket combustion chamber laser ignition is imminent. Support technologies (multiplexing, window durability/cleaning, and fiber optic durability) are feasible.

  11. Effect of ambient vibration on solid rocket motor grain and propellant/liner bonding interface

    NASA Astrophysics Data System (ADS)

    Cao, Yijun; Huang, Weidong; Li, Jinfei

    2017-05-01

    In order to study the condition of structural integrity in the process of the solid propellant motor launching and transporting, the stress and strain field analysis were studied on a certain type of solid propellant motor. the vibration acceleration on the solid propellant motors' transport process were monitored, then the original vibration data was eliminated the noise and the trend term efficiently, finally the characteristic frequency of vibration was got to the finite element analysis. Experiment and simulation results show that the monitored solid propellant motor mainly bear 0.2 HZ and 15 HZ low frequency vibration in the process of transportation; Under the low frequency vibration loading, solid propellant motor grain stress concentration position is respectively below the head and tail of the propellant/liner bonding surface and the grain roots.

  12. Liquid Rocket Booster Study. Volume 2, Book 1

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The recommended Liquid Rocket Booster (LRB) concept is shown which uses a common main engine with the Advanced Launch System (ALS) which burns LO2 and LH2. The central rationale is based on the belief that the U.S. can only afford one big new rocket engine development in the 1990's. A LO2/LH2 engine in the half million pound thrust class could satisfy STS LRB, ALS, and Shuttle C (instead of SSMEs). Development costs and higher production rates can be shared by NASA and USAF. If the ALS program does not occur, the LO2/RP-1 propellants would produce slight lower costs for and STS LRB. When the planned Booster Engine portion of the Civil Space Transportation Initiatives has provided data on large pressure fed LO2/RP-1 engines, then the choice should be reevaluated.

  13. The development of a solid-state hydrogen sensor for rocket engine leakage detection

    NASA Technical Reports Server (NTRS)

    Liu, Chung-Chiun

    1994-01-01

    Hydrogen propellant leakage poses significant operational problems in the rocket propulsion industry as well as for space exploratory applications. Vigorous efforts have been devoted to minimizing hydrogen leakage in assembly, test, and launch operations related to hydrogen propellant. The objective has been to reduce the operational cost of assembling and maintaining hydrogen delivery systems. Specifically, efforts have been made to develop a hydrogen leak detection system for point-contact measurement. Under the auspices of Lewis Research Center, the Electronics Design Center at Case Western Reserve University, Cleveland, Ohio, has undertaken the development of a point-contact hydrogen gas sensor with potential applications to the hydrogen propellant industry. We envision a sensor array consisting of numbers of discrete hydrogen sensors that can be located in potential leak sites. Silicon-based microfabrication and micromachining techniques are used in the fabrication of these sensor prototypes. Evaluations of the sensor are carried out in-house at Case Western Reserve University as well as at Lewis Research Center and GenCorp Aerojet, Sacramento, California. The hydrogen gas sensor is not only applicable in a hydrogen propulsion system, but also usable in many other civilian and industrial settings. This includes vehicles or facility use, or in the production of hydrogen gas. Dual space and commercial uses of these point-contacted hydrogen sensors are feasible and will directly meet the needs and objectives of NASA as well as various industrial segments.

  14. The development of a solid-state hydrogen sensor for rocket engine leakage detection

    NASA Astrophysics Data System (ADS)

    Liu, Chung-Chiun

    Hydrogen propellant leakage poses significant operational problems in the rocket propulsion industry as well as for space exploratory applications. Vigorous efforts have been devoted to minimizing hydrogen leakage in assembly, test, and launch operations related to hydrogen propellant. The objective has been to reduce the operational cost of assembling and maintaining hydrogen delivery systems. Specifically, efforts have been made to develop a hydrogen leak detection system for point-contact measurement. Under the auspices of Lewis Research Center, the Electronics Design Center at Case Western Reserve University, Cleveland, Ohio, has undertaken the development of a point-contact hydrogen gas sensor with potential applications to the hydrogen propellant industry. We envision a sensor array consisting of numbers of discrete hydrogen sensors that can be located in potential leak sites. Silicon-based microfabrication and micromachining techniques are used in the fabrication of these sensor prototypes. Evaluations of the sensor are carried out in-house at Case Western Reserve University as well as at Lewis Research Center and GenCorp Aerojet, Sacramento, California. The hydrogen gas sensor is not only applicable in a hydrogen propulsion system, but also usable in many other civilian and industrial settings. This includes vehicles or facility use, or in the production of hydrogen gas. Dual space and commercial uses of these point-contacted hydrogen sensors are feasible and will directly meet the needs and objectives of NASA as well as various industrial segments.

  15. Retro Rocket Motor Self-Penetrating Scheme for Heat Shield Exhaust Ports

    NASA Technical Reports Server (NTRS)

    Marrese-Reading, Colleen; St.Vaughn, Josh; Zell, Peter; Hamm, Ken; Corliss, Jim; Gayle, Steve; Pain, Rob; Rooney, Dan; Ramos, Amadi; Lewis, Doug; hide

    2009-01-01

    A preliminary scheme was developed for base-mounted solid-propellant retro rocket motors to self-penetrate the Orion Crew Module heat shield for configurations with the heat shield retained during landings on Earth. In this system the motors propel impactors into structural push plates, which in turn push through the heat shield ablator material. The push plates are sized such that the remaining port in the ablator material is large enough to provide adequate flow area for the motor exhaust plume. The push plate thickness is sized to assure structural integrity behind the ablative thermal protection material. The concept feasibility was demonstrated and the performance was characterized using a gas gun to launch representative impactors into heat shield targets with push plates. The tests were conducted using targets equipped with Fiberform(R) and PICA as the heat shield ablator material layer. The PICA penetration event times were estimated to be under 30 ms from the start of motor ignition. The mass of the system (not including motors) was estimated to be less than 2.3 kg (5 lbs) per motor. The configuration and demonstrations are discussed.

  16. Computational fluid dynamics and frequency-dependent finite-difference time-domain method coupling for the interaction between microwaves and plasma in rocket plumes

    NASA Astrophysics Data System (ADS)

    Kinefuchi, K.; Funaki, I.; Shimada, T.; Abe, T.

    2012-10-01

    Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model. The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.

  17. Experimental Studies of the Heat Transfer to RBCC Rocket Nozzles for CFD Application to Design Methodologies

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh

    1999-01-01

    Rocket thrusters for Rocket Based Combined Cycle (RBCC) engines typically operate with hydrogen/oxygen propellants in a very compact space. Packaging considerations lead to designs with either axisymmetric or two-dimensional throat sections. Nozzles tend to be either two- or three-dimensional. Heat transfer characteristics, particularly in the throat, where the peak heat flux occurs, are not well understood. Heat transfer predictions for these small thrusters have been made with one-dimensional analysis such as the Bartz equation or scaling of test data from much larger thrusters. The current work addresses this issue with an experimental program that examines the heat transfer characteristics of a gaseous oxygen (GO2)/gaseous hydrogen (GH2) two-dimensional compact rocket thruster. The experiments involved measuring the axial wall temperature profile in the nozzle region of a water-cooled gaseous oxygen/gaseous hydrogen rocket thruster at a pressure of 3.45 MPa. The wall temperature measurements in the thruster nozzle in concert with Bartz's correlation are utilized in a one-dimensional model to obtain axial profiles of nozzle wall heat flux.

  18. Design of a High Temperature Radiator for the Variable Specific Impulse Magnetoplasma Rocket

    NASA Technical Reports Server (NTRS)

    Sheth, Rubik B.; Ungar, Eugene K.; Chambliss, Joe P.

    2012-01-01

    The Variable Specific Impulse Magnetoplasma Rocket (VASIMR), currently under development by Ad Astra Rocket Company (Webster, TX), is a unique propulsion system that could change the way space propulsion is performed. VASIMR's efficiency, when compared to that of a conventional chemical rocket, reduces the propellant needed for exploration missions by a factor of 10. Currently plans include flight tests of a 200 kW VASIMR system, titled VF-200, on the International Space Station (ISS). The VF-200 will consist of two 100 kW thruster units packaged together in one engine bus. Each thruster core generates 27 kW of waste heat during its 15 minute firing time. The rocket core will be maintained between 283 and 573 K by a pumped thermal control loop. The design of a high temperature radiator is a unique challenge for the vehicle design. This paper will discuss the path taken to develop a steady state and transient-based radiator design. The paper will describe the radiator design option selected for the VASIMR thermal control system for use on ISS, and how the system relates to future exploration vehicles.

  19. Radiation/convection coupling in rocket motors and plumes

    NASA Technical Reports Server (NTRS)

    Farmer, R. C.; Saladino, A. J.

    1993-01-01

    The three commonly used propellant systems - H2/O2, RP-1/O2, and solid propellants - primarily radiate as molecular emitters, non-scattering small particles, and scattering larger particles, respectively. Present technology has accepted the uncoupling of the radiation analysis from that of the flowfield. This approximation becomes increasingly inaccurate as one considers plumes, interior rocket chambers, and nuclear rocket propulsion devices. This study will develop a hierarchy of methods which will address radiation/convection coupling in all of the aforementioned propulsion systems. The nature of the radiation/convection coupled problem is that the divergence of the radiative heat flux must be included in the energy equation and that the local, volume-averaged intensity of the radiation must be determined by a solution of the radiative transfer equation (RTE). The intensity is approximated by solving the RTE along several lines of sight (LOS) for each point in the flowfield. Such a procedure is extremely costly; therefore, further approximations are needed. Modified differential approximations are being developed for this purpose. It is not obvious which order of approximations are required for a given rocket motor analysis. Therefore, LOS calculations have been made for typical rocket motor operating conditions in order to select the type approximations required. The results of these radiation calculations, and the interpretation of these intensity predictions are presented herein.

  20. Study of solid rocket motor for a space shuttle booster. Appendix A: SRM water entry loads

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An analysis of the water entry loads imposed on the reusable solid propellant rocket engine of the space shuttle following parachute descent is presented. The cases discussed are vertical motion, horizontal motion, and motion after penetration. Mathematical models, diagrams, and charts are included to support the theoretical considerations.

  1. Gas-dynamic modeling of gas flow in semi-closed space including channel surface fluctuation

    NASA Astrophysics Data System (ADS)

    Petrova, E. N.; Salnikov, A. F.

    2016-10-01

    In this article frequency interaction conditions, that affect on acoustic stability of solid-propellant rocket engine (SPRE) action, and its influence on level change of pressure fluctuations with longitudinal gas oscillations in the combustion chamber (CC) are considered. Studies of CC in the assessment of the operating rocket engine stability are reported.

  2. Study of solid rocket motor for space shuttle booster, Volume 3: Program acquisition planning

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The program planning acquisition functions for the development of the solid propellant rocket engine for the space shuttle booster is presented. The subjects discussed are: (1) program management, (2) contracts administration, (3) systems engineering, (4) configuration management, and (5) maintenance engineering. The plans for manufacturing, testing, and operations support are included.

  3. Early Rockets

    NASA Image and Video Library

    2004-04-15

    By the end of the 19th Century, a Russian theorist, Konstantian Tsiolkovsky, was examining the fundamental scientific theories behind rocketry. He made some pioneering studies in liquid chemical rocket concepts and recommended liquid oxygen and liquid hydrogen as the optimum propellants. In the 1920's, Tsiolkovsky analyzed and mathematically formulated the technique for staged vehicles to reach escape velocities from Earth.

  4. Buckling of thin walled composite cylindrical shell filled with solid propellant

    NASA Astrophysics Data System (ADS)

    Dash, A. P.; Velmurugan, R.; Prasad, M. S. R.

    2017-12-01

    This paper investigates the buckling of thin walled composite cylindrical tubes that are partially filled with solid propellant equivalent elastic filler. Experimental investigation is conducted on thin composite tubes made out of S2-glass epoxy, which is made by using filament winding technique. The composite tubes are filled with elastic filler having similar mechanical properties as that of a typical solid propellant used in rocket motors. The tubes are tested for their buckling strength against the external pressure in the presence of the filler. Experimental data confirms the enhancement of external pressure carrying capacity of the composite tubes by up to three times as that of empty tubes for a volumetric loading fraction (VLF) of 0.9. Furthermore, the finite element based geometric nonlinearity analysis predicts the buckling behaviour of the partially filled composite tubes close to the experimental results.

  5. This group view shows propellant preparation buidling 4241/E42, 4242/E43, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    This group view shows propellant preparation buidling 4241/E-42, 4242/E-43, and northwest (314 degrees). Note warning lights at the extreme left of the view, and the use of lightning rods on structures. Building 4241/E-42 housed solid rocket motors after they were cast and awaiting curing. Building 4241/E-42 was the Preparation Control center which housed remote controls for operations in the other two buildings. Building 4243/E-44 housed a remotely controlled mandrel puller for pulling mandrels (casting cores) from cured grain, and a vertical lathe for trimming grain to shape and size. - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA

  6. KSC-08pd1859

    NASA Image and Video Library

    2008-07-01

    CAPE CANAVERAL, Fla. – In the Assembly and Refurbishment Facility at NASA's Kennedy Space Center, a crane is lowered over the aft skirt for the Ares 1-X rocket. The segment is being lifted into a machine shop work stand for drilling modifications. The modifications will prepare it for the installation of the auxiliary power unit controller, the reduced-rate gyro unit, the booster decelerator motors and the booster tumble motors. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. Ares I-X is a test rocket. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Jim Grossmann

  7. Development of Detonation Modeling Capabilities for Rocket Test Facilities: Hydrogen-Oxygen-Nitrogen Mixtures

    NASA Technical Reports Server (NTRS)

    Allgood, Daniel C.

    2016-01-01

    The objective of the presented work was to develop validated computational fluid dynamics (CFD) based methodologies for predicting propellant detonations and their associated blast environments. Applications of interest were scenarios relevant to rocket propulsion test and launch facilities. All model development was conducted within the framework of the Loci/CHEM CFD tool due to its reliability and robustness in predicting high-speed combusting flow-fields associated with rocket engines and plumes. During the course of the project, verification and validation studies were completed for hydrogen-fueled detonation phenomena such as shock-induced combustion, confined detonation waves, vapor cloud explosions, and deflagration-to-detonation transition (DDT) processes. The DDT validation cases included predicting flame acceleration mechanisms associated with turbulent flame-jets and flow-obstacles. Excellent comparison between test data and model predictions were observed. The proposed CFD methodology was then successfully applied to model a detonation event that occurred during liquid oxygen/gaseous hydrogen rocket diffuser testing at NASA Stennis Space Center.

  8. Turbo Pump Fed Micro-Rocket Engine

    NASA Astrophysics Data System (ADS)

    Miotti, P.; Tajmar, M.; Seco, F.; Guraya, C.; Perennes, F.; Soldati, A.; Lang, M.

    2004-10-01

    Micro-satellites (from 10kg up to 100kg) have mass, volume, and electrical power constraints due to their low dimensions. These limitations lead to the lack in currently available active orbit control systems in micro-satellites. Therefore, a micro-propulsion system with a high thrust to mass ratio is required to increase the potential functionality of small satellites. Mechatronic is presently working on a liquid bipropellant micro-rocket engine under contract with ESA (Contract No.16914/NL/Sfe - Micro-turbo-machinery Based Bipropellant System Using MNT). The advances in Mechatronic's project are to realise a micro-rocket engine with propellants pressurised by micro-pumps. The energy for driving the pumps would be extracted from a micro-turbine. Cooling channels around the nozzle would be also used in order to maintain the wall material below its maximum operating temperature. A mass budget comparison with more traditional pressure-fed micro-rockets shows a real benefit from this system in terms of mass reduction. In the paper, an overview of the project status in Mechatronic is presented.

  9. Advanced APS impacts on vehicle payloads

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Reed, Brian D.

    1989-01-01

    Advanced auxiliary propulsion system (APS) technology has the potential to both, increase the payload capability of earth-to-orbit (ETO) vehicles by reducing APS propellant mass, and simplify ground operations and logistics by reducing the number of fluids on the vehicle and eliminating toxic, corrosive propellants. The impact of integrated cryogenic APS on vehicle payloads is addressed. In this system, launch propulsion system residuals are scavenged from integral launch propulsion tanks for use in the APS. Sufficient propellant is preloaded into the APS to return to earth with margin and noncomplete scavenging assumed. No propellant conditioning is required by the APS, but ambient heat soak is accommodated. High temperature rocket materials enable the use of the unconditioned hydrogen/oxygen in the APS and are estimated to give APS rockets specific impulse of up to about 444 sec. The payload benefits are quantified and compared with an uprated monomethylhydrazine/nitrogen tetroxide system in a conservative fashion, by assuming a 25.5 percent weight growth for the hydrogen/oxygen system and a 0 percent weight growth for the uprated system. The combination of scavenging and high performance gives payload impacts which are highly mission specific. A payload benefit of 861 kg (1898 lbm) was estimated for a Space Station Freedom rendezvous mission and 2099 kg (4626 lbm) for a sortie mission, with payload impacts varying with the amount of launch propulsion residual propellants. Missions without liquid propellant scavenging were estimated to have payload penalties, however, operational benefits were still possible.

  10. Advanced APS Impacts on Vehicle Payloads

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Reed, Brian D.

    1989-01-01

    Advanced auxiliary propulsion system (APS) technology has the potential to both, increase the payload capability of earth-to-orbit (ETO) vehicles by reducing APS propellant mass, and simplify ground operations and logistics by reducing the number of fluids on the vehicle and eliminating toxic, corrosive propellants. The impact of integrated cryogenic APS on vehicle payloads is addressed. In this system, launch propulsion system residuals are scavenged from integral launch propulsion tanks for use in the APS. Sufficient propellant is preloaded into the APS to return to earth with margin and noncomplete scavenging assumed. No propellant conditioning is required by the APS, but ambient heat soak is accommodated. High temperature rocket materials enable the use of the unconditioned hydrogen/oxygen in the APS and are estimated to give APS rockets specific impulse of up to about 444 sec. The payload benefits are quantified and compared with an uprated monomethyl hydrazine/nitrogen tetroxide system in a conservative fashion, by assuming a 25.5 percent weight growth for the hydrogen/oxygen system and a 0 percent weight growth for the uprated system. The combination and scavenging and high performance gives payload impacts which are highly mission specific. A payload benefit of 861 kg (1898 lbm) was estimated for a Space Station Freedom rendezvous mission and 2099 kg (4626 lbm) for a sortie mission, with payload impacts varying with the amount of launch propulsion residual propellants. Missions without liquid propellant scavenging were estimated to have payload penalties, however, operational benefits were still possible.

  11. Spark Ignition of Combustible Vapor in a Plastic Bottle as a Demonstration of Rocket Propulsion

    NASA Astrophysics Data System (ADS)

    Mattox, J. R.

    2017-01-01

    I report an innovation that provides a compelling demonstration of rocket propulsion, appropriate for students of physics and other physical sciences. An electrical spark is initiated from a distance to cause the deflagration of a combustible vapor mixed with air in a lightweight plastic bottle that is consequently propelled as a rocket by the release of combustion products, i.e., a "whoosh rocket." My recommendation is that the standard fuel for pedagogical whoosh demonstrations be isopropanol, and the recommended vessel is the 3.8-L high-density polyethylene (HDPE) bottle.

  12. Solid-propellant rocket motor ballistic performance variation analyses

    NASA Technical Reports Server (NTRS)

    Sforzini, R. H.; Foster, W. A., Jr.

    1975-01-01

    Results are presented of research aimed at improving the assessment of off-nominal internal ballistic performance including tailoff and thrust imbalance of two large solid-rocket motors (SRMs) firing in parallel. Previous analyses using the Monte Carlo technique were refined to permit evaluation of the effects of radial and circumferential propellant temperature gradients. Sample evaluations of the effect of the temperature gradients are presented. A separate theoretical investigation of the effect of strain rate on the burning rate of propellant indicates that the thermoelastic coupling may cause substantial variations in burning rate during highly transient operating conditions. The Monte Carlo approach was also modified to permit the effects on performance of variation in the characteristics between lots of propellants and other materials to be evaluated. This permits the variabilities for the total SRM population to be determined. A sample case shows, however, that the effect of these between-lot variations on thrust imbalances within pairs of SRMs is minor in compariosn to the effect of the within-lot variations. The revised Monte Carlo and design analysis computer programs along with instructions including format requirements for preparation of input data and illustrative examples are presented.

  13. Draft environmental impact statement: Space Shuttle Advanced Solid Rocket Motor Program

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The proposed action is design, development, testing, and evaluation of Advanced Solid Rocket Motors (ASRM) to replace the motors currently used to launch the Space Shuttle. The proposed action includes design, construction, and operation of new government-owned, contractor-operated facilities for manufacturing and testing the ASRM's. The proposed action also includes transport of propellant-filled rocket motor segments from the manufacturing facility to the testing and launch sites and the return of used and/or refurbished segments to the manufacturing site.

  14. Electrostatic Evaluation of the Propellant Handlers Ensemble

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Calle, Carlos I.; Buhler, Charles

    2006-01-01

    The Self-Contained Atmospheric Protective Ensemble (SCAPE) used in propellant handling at NASA's Kennedy Space Center (KSC) has recently completed a series of tests to determine its electrostatic properties of the coverall fabric used in the Propellant Handlers Ensemble (PHE). Understanding these electrostatic properties are fundamental to ensuring safe operations when working with flammable rocket propellants such as hydrazine, methyl hydrazine, and unsymmetrical dimethyl hydrazine. These tests include surface resistivity, charge decay, triboelectric charging, and flame incendivity. In this presentation, we will discuss the results of these tests on the current PHE as well as new fabrics and materials being evaluated for the next generation of PHE.

  15. Preliminary analysis of space mission applications for electromagnetic launchers

    NASA Technical Reports Server (NTRS)

    Miller, L. A.; Rice, E. E.; Earhart, R. W.; Conlon, R. J.

    1984-01-01

    The technical and economic feasibility of using electromagnetically launched EML payloads propelled from the Earth's surface to LEO, GEO, lunar orbit, or to interplanetary space was assessed. Analyses of the designs of rail accelerators and coaxial magnetic accelerators show that each is capable of launching to space payloads of 800 KG or more. A hybrid launcher in which EML is used for the first 2 KM/sec followed by chemical rocket stages was also tested. A cost estimates study shows that one to two EML launches per day are needed to break even, compared to a four-stage rocket. Development models are discussed for: (1) Earth orbital missions; (2) lunar base supply mission; (3) solar system escape mission; (4) Earth escape missions; (5) suborbital missions; (6) electromagnetic boost missions; and (7) space-based missions. Safety factors, environmental impacts, and EML systems analysis are discussed. Alternate systems examined include electrothermal thrustors, an EML rocket gun; an EML theta gun, and Soviet electromagnetic accelerators.

  16. Propellant Feed Subsystem for the X-34 Main Propulsion System

    NASA Technical Reports Server (NTRS)

    McDonald, J. P.; Minor, R. B.; Knight, K. C.; Champion, R. H., Jr.; Russell, F. J., Jr.

    1998-01-01

    The Orbital Sciences Corporation X-34 vehicle demonstrates technologies and operations key to future reusable launch vehicles. The general flight performance goal of this unmanned rocket plane is Mach 8 flight at an altitude of 250,000 feet. The Main Propulsion System supplies liquid propellants to the main engine, which provides the primary thrust for attaining mission goals. Major NMS design and operational goals are aircraft-like ground operations, quick turnaround between missions, and low initial/operational costs. This paper reviews major design and analysis aspects of the X-34 propellant feed subsystem of the X-34 Main Propulsion System. Topics include system requirements, system design, the integration of flight and feed system performance, propellant acquisition at engine start, and propellant tank terminal drain.

  17. A theoretical evaluation of aluminum gel propellant two-phase flow losses on vehicle performance

    NASA Technical Reports Server (NTRS)

    Mueller, Donn C.; Turns, Stephen R.

    1993-01-01

    A one-dimensional model of a hydrocarbon/Al/O2(gaseous) fueled rocket combustion chamber was developed to study secondary atomization effects on propellant combustion. This chamber model was coupled with a two dimensional, two-phase flow nozzle code to estimate the two-phase flow losses associated with solid combustion products. Results indicate that moderate secondary atomization significantly reduces propellant burnout distance and Al2O3 particle size; however, secondary atomization provides only moderate decreases in two-phase flow induced I(sub sp) losses. Despite these two-phase flow losses, a simple mission study indicates that aluminum gel propellants may permit a greater maximum payload than the hydrocarbon/O2 bi-propellant combination for a vehicle of fixed propellant volume. Secondary atomization was also found to reduce radiation losses from the solid combustion products to the chamber walls, primarily through reductions in propellant burnout distance.

  18. Deimos Methane-Oxygen Rocket Engine Test Results

    NASA Astrophysics Data System (ADS)

    Engelen, S.; Souverein, L. J.; Twigt, D. J.

    This paper presents the results of the first DEIMOS Liquid Methane/Oxygen rocket engine test campaign. DEIMOS is an acronym for `Delft Experimental Methane Oxygen propulsion System'. It is a project performed by students under the auspices of DARE (Delft Aerospace Rocket Engineering). The engine provides a theoretical design thrust of 1800 N and specific impulse of 287 s at a chamber pressure of 40 bar with a total mass flow of 637 g/s. It has links to sustainable development, as the propellants used are one of the most promising so-called `green propellants'-combinations, currently under scrutiny by the industry, and the engine is designed to be reusable. This paper reports results from the provisional tests, which had the aim of verifying the engine's ability to fire, and confirming some of the design assumptions to give confidence for further engine designs. Measurements before and after the tests are used to determine first estimates on feed pressures, propellant mass flows and achieved thrust. These results were rather disappointing from a performance point of view, with an average thrust of a mere 3.8% of the design thrust, but nonetheless were very helpful. The reliability of ignition and stability of combustion are discussed as well. An initial assessment as to the reusability, the flexibility and the adaptability of the engine was made. The data provides insight into (methane/oxygen) engine designs, leading to new ideas for a subsequent design. The ultimate goal of this project is to have an operational rocket and to attempt to set an amateur altitude record.

  19. Evaluation and Characterization Study of Dual Pulse Laser-Induced Spark (DPLIS) for Rocket Engine Ignition System Application

    NASA Technical Reports Server (NTRS)

    Osborne, Robin; Wehrmeyer, Joseph; Trinh, Huu; Early, James

    2003-01-01

    This paper addresses the progress of technology development of a laser ignition system at NASA Marshall Space Flight Center (MSFC). Laser ignition has been used at MSFC in recent test series to successfully ignite RP1/GOX propellants in a subscale rocket chamber, and other past studies by NASA GRC have demonstrated the use of laser ignition for rocket engines. Despite the progress made in the study of this ignition method, the logistics of depositing laser sparks inside a rocket chamber have prohibited its use. However, recent advances in laser designs, the use of fiber optics, and studies of multi-pulse laser formats3 have renewed the interest of rocket designers in this state-of the-art technology which offers the potential elimination of torch igniter systems and their associated mechanical parts, as well as toxic hypergolic ignition systems. In support of this interest to develop an alternative ignition system that meets the risk-reduction demands of Next Generation Launch Technology (NGLT), characterization studies of a dual pulse laser format for laser-induced spark ignition are underway at MSFC. Results obtained at MSFC indicate that a dual pulse format can produce plasmas that absorb the laser energy as efficiently as a single pulse format, yet provide a longer plasma lifetime. In an experiments with lean H2/air propellants, the dual pulse laser format, containing the same total energy of a single laser pulse, produced a spark that was superior in its ability to provide sustained ignition of fuel-lean H2/air propellants. The results from these experiments are being used to optimize a dual pulse laser format for future subscale rocket chamber tests. Besides the ignition enhancement, the dual pulse technique provides a practical way to distribute and deliver laser light to the combustion chamber, an important consideration given the limitation of peak power that can be delivered through optical fibers. With this knowledge, scientists and engineers at Los Alamos National Laboratory and CFD Research Corporation have designed and fabricated a miniaturized, first-generation optical prototype of a laser ignition system that could be the basis for a laser ignition system for rocket applications. This prototype will be tested at MSFC in future subscale rocket ignition tests.

  20. An air-breathing ballistic space transporter for Europe

    NASA Technical Reports Server (NTRS)

    Kramer, P. A.; Buehler, R. D.

    1985-01-01

    With increasing transport requirements, reusable space transporters again receive serious consideration in Europe as successors to the Ariane family. The paper deals with a hydrogen-ramjet-propelled, 1-1/2-stage reusable ballistic space transporter with vertical take-off and landing and using liquid hydrogen/oxygen rockets. This novel concept was developed in a theoretical study at the University of Stuttgart. The results are compared with recently published studies of several other European space transporter concepts. The data derived for the Istra - concept are: 15.4 Mg payload into low Earth-orbit, 155 Mg gross lift-off mass, 10% payload ratio, which represents a 57% propellant saving, and 44% reduction in dry mass (structure and engines) compared with comparable two-stage pure rocket concepts.

  1. Scaling of Performance in Liquid Propellant Rocket Engine Combustors

    NASA Technical Reports Server (NTRS)

    Hulka, James

    2008-01-01

    The objectives are: a) Re-introduce to you the concept of scaling; b) Describe the scaling research conducted in the 1950s and early 1960s, and present some of their conclusions; c) Narrow the focus to scaling for performance of combustion devices for liquid propellant rocket engines; and d) Present some results of subscale to full-scale performance from historical programs. Scaling is "The ability to develop new combustion devices with predictable performance on the basis of test experience with old devices." Scaling can be used to develop combustion devices of any thrust size from any thrust size. Scaling is applied mostly to increase thrust. Objective is to use scaling as a development tool. - Move injector design from an "art" to a "science"

  2. Space Shuttle Projects

    NASA Image and Video Library

    1987-05-27

    This photograph is a long shot view of a full scale solid rocket motor (SRM) for the solid rocket booster (SRB) being test fired at Morton Thiokol's Wasatch Operations in Utah. The twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the SRM's were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. Under the direction of the Marshall Space Flight Center, the SRM's are provided by the Morton Thiokol Corporation.

  3. Boiler and Pressure Balls Monopropellant Thermal Rocket Engine

    NASA Technical Reports Server (NTRS)

    Greene, William D. (Inventor)

    2009-01-01

    The proposed technology is a rocket engine cycle utilizing as the propulsive fluid a low molecular weight, cryogenic fluid, typically liquid hydrogen, pressure driven, heated, and expelled through a nozzle to generate high velocity and high specific impulse discharge gas. The proposed technology feeds the propellant through the engine cycle without the use of a separate pressurization fluid and without the use of turbomachinery. Advantages of the proposed technology are found in those elements of state-of-the-art systems that it avoids. It does not require a separate pressurization fluid or a thick-walled primary propellant tank as is typically required for a classical pressure-fed system. Further, it does not require the acceptance of intrinsic reliability risks associated with the use of turbomachinery

  4. Theoretical Performance of Liquid Hydrogen with Liquid Oxygen as a Rocket Propellant

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; McBride, Bonnie J.

    1959-01-01

    Theoretical rocket performance for both equilibrium and frozen composition during expansion was calculated for the propellant combination liquid hydrogen and liquid oxygen at four chamber pressures (60, 150, 300, and 600 lb/sq in. abs) and a wide range of pressure ratios (1 to 4000) and oxidant-fuel ratios (1.190 to 39.683). Data are given to estimate performance parameters at chamber pressures other than those for which data are tabulated. The parameters included are specific impulse, specific impulse in vacuum, combustion-chamber temperature, nozzle-exit temperature, molecular weight, molecular-weight derivatives, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, isentropic exponent, viscosity, thermal conductivity, Mach number, and equilibrium gas compositions.

  5. Thermo-mechanical concepts applied to modeling liquid propellant rocket engine stability

    NASA Astrophysics Data System (ADS)

    Kassoy, David R.; Norris, Adam

    2016-11-01

    The response of a gas to transient, spatially distributed energy addition can be quantified mathematically using thermo-mechanical concepts available in the literature. The modeling demonstrates that the ratio of the energy addition time scale to the acoustic time scale of the affected volume, and the quantity of energy added to that volume during the former determine the whether the responses to heating can be described as occurring at nearly constant volume, fully compressible or nearly constant pressure. Each of these categories is characterized by significantly different mechanical responses. Application to idealized configurations of liquid propellant rocket engines provides an opportunity to identify physical conditions compatible with gasdynamic disturbances that are sources of engine instability. Air Force Office of Scientific Research.

  6. Rho-Isp Revisited and Basic Stage Mass Estimating for Launch Vehicle Conceptual Sizing Studies

    NASA Technical Reports Server (NTRS)

    Kibbey, Timothy P.

    2015-01-01

    The ideal rocket equation is manipulated to demonstrate the essential link between propellant density and specific impulse as the two primary stage performance drivers for a launch vehicle. This is illustrated by examining volume-limited stages such as first stages and boosters. This proves to be a good approximation for first-order or Phase A vehicle design studies for solid rocket motors and for liquid stages, except when comparing to hydrogen-fueled stages. A next-order mass model is developed that is able to model the mass differences between hydrogen-fueled and other stages. Propellants considered range in density from liquid methane to inhibited red fuming nitric acid. Calculated comparisons are shown for solid rocket boosters, liquid first stages, liquid upper stages, and a balloon-deployed single-stage-to-orbit concept. The derived relationships are ripe for inclusion in a multi-stage design space exploration and optimization algorithm, as well as for single-parameter comparisons such as those shown herein.

  7. Coolant Design System for Liquid Propellant Aerospike Engines

    NASA Astrophysics Data System (ADS)

    McConnell, Miranda; Branam, Richard

    2015-11-01

    Liquid propellant rocket engines burn at incredibly high temperatures making it difficult to design an effective coolant system. These particular engines prove to be extremely useful by powering the rocket with a variable thrust that is ideal for space travel. When combined with aerospike engine nozzles, which provide maximum thrust efficiency, this class of rockets offers a promising future for rocketry. In order to troubleshoot the problems that high combustion chamber temperatures pose, this research took a computational approach to heat analysis. Chambers milled into the combustion chamber walls, lined by a copper cover, were tested for their efficiency in cooling the hot copper wall. Various aspect ratios and coolants were explored for the maximum wall temperature by developing our own MATLAB code. The code uses a nodal temperature analysis with conduction and convection equations and assumes no internal heat generation. This heat transfer research will show oxygen is a better coolant than water, and higher aspect ratios are less efficient at cooling. This project funded by NSF REU Grant 1358991.

  8. Fiber-optic sensing in cryogenic environments. [for rocket propellant tank monitoring

    NASA Technical Reports Server (NTRS)

    Sharma, M.; Brooks, R. E.

    1980-01-01

    Passive optical sensors using fiber-optic signal transmission to a remote monitoring station are explored as an alternative to electrical sensors used to monitor the status of explosive propellants. The designs of passive optical sensors measuring liquid level, pressure, and temperature in cryogenic propellant tanks are discussed. Test results for an experimental system incorporating these sensors and operating in liquid nitrogen demonstrate the feasibility of passive sensor techniques and indicate that they can serve as non-hazardous replacements for more conventional measuring equipment in explosive environments.

  9. Low-Cost Propellant Launch to LEO from a Tethered Balloon - 'Propulsion Depots' Not 'Propellant Depots'

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.; Schneider, Evan G.; Vaughan, David A.; Hall, Jeffrey L.; Yu, Chi Yau

    2011-01-01

    As we have previously reported, it may be possible to launch payloads into low-Earth orbit (LEO) at a per-kilogram cost that is one to two orders of magnitude lower than current launch systems, using only a relatively small capital investment (comparable to a single large present-day launch). An attractive payload would be large quantities of high-performance chemical rocket propellant (e.g. Liquid Oxygen/Liquid Hydrogen (LO2/LH2)) that would greatly facilitate, if not enable, extensive exploration of the moon, Mars, and beyond.

  10. Solid-propellant motors for high-incremental-velocity low-acceleration maneuvers in space

    NASA Technical Reports Server (NTRS)

    Shafer, J. I.

    1972-01-01

    The applicability of solid-propellant rockets into a regime of high-performance long-burning tasks beyond the capability of existing motors is discussed. Successful static test firings have demonstrated the feasibility of: (1) utilizing fully case-bonded end-burning propellant charges without mechanical stress relief; (2) using an all-carbon radiative nozzle markedly lighter than the flight-weight ablative nozzle it replaces, and (3) producing low spacecraft acceleration rates during the thrust transient through a controlled-flow igniter that promotes operation below the previous combustion limit.

  11. Liquid-Propellant Rocket Engine Throttling: A Comprehensive Review

    NASA Technical Reports Server (NTRS)

    Casiano, Matthew; Hulka, James; Yang, Virog

    2009-01-01

    Liquid-Propellant Rocket Engines (LREs) are capable of on-command variable thrust or thrust modulation, an operability advantage that has been studied intermittently since the late 1930s. Throttleable LREs can be used for planetary entry and descent, space rendezvous, orbital maneuvering including orientation and stabilization in space, and hovering and hazard avoidance during planetary landing. Other applications have included control of aircraft rocket engines, limiting of vehicle acceleration or velocity using retrograde rockets, and ballistic missile defense trajectory control. Throttleable LREs can also continuously follow the most economical thrust curve in a given situation, compared to discrete throttling changes over a few select operating points. The effects of variable thrust on the mechanics and dynamics of an LRE as well as difficulties and issues surrounding the throttling process are important aspects of throttling behavior. This review provides a detailed survey of LRE throttling centered around engines from the United States. Several LRE throttling methods are discussed, including high-pressure-drop systems, dual-injector manifolds, gas injection, multiple chambers, pulse modulation, throat throttling, movable injector components, and hydrodynamically dissipative injectors. Concerns and issues surrounding each method are examined, and the advantages and shortcomings compared.

  12. Solid rocket motor fire tests: Phases 1 and 2

    NASA Astrophysics Data System (ADS)

    Chang, Yale; Hunter, Lawrence W.; Han, David K.; Thomas, Michael E.; Cain, Russell P.; Lennon, Andrew M.

    2002-01-01

    JHU/APL conducted a series of open-air burns of small blocks (3 to 10 kg) of solid rocket motor (SRM) propellant at the Thiokol Elkton MD facility to elucidate the thermal environment under burning propellant. The propellant was TP-H-3340A for the STAR 48 motor, with a weight ratio of 71/18/11 for the ammonium perchlorate, aluminum, and HTPB binder. Combustion inhibitor applied on the blocks allowed burning on the bottom and/or sides only. Burns were conducted on sand and concrete to simulate near-launch pad surfaces, and on graphite to simulate a low-recession surface. Unique test fixturing allowed propellant self-levitation while constraining lateral motion. Optics instrumentation consisted of a longwave infrared imaging pyrometer, a midwave spectroradiometer, and a UV/visible spectroradiometer. In-situ instrumentation consisted of rod calorimeters, Gardon gauges, elevated thermocouples, flush thermocouples, a two-color pyrometer, and Knudsen cells. Witness materials consisted of yttria, ceria, alumina, tungsten, iridium, and platinum/rhodium. Objectives of the tests were to determine propellant burn characteristics such as burn rate and self-levitation, to determine heat fluxes and temperatures, and to carry out materials analyses. A summary of qualitative results: alumina coated almost all surfaces, the concrete spalled, sand moisture content matters, the propellant self-levitated, the test fixtures worked as designed, and bottom-burning propellant does not self-extinguish. A summary of quantitative results: burn rate averaged 1.15 mm/s, thermocouples peaked at 2070 C, pyrometer readings matched MWIR data at about 2400 C, the volume-averaged plume temperatures were 2300-2400 C with peaks of 2400-2600 C, and the heat fluxes peaked at 125 W/cm2. These results are higher than other researchers' measurements of top-burning propellant in chimneys, and will be used, along with Phase 3 test results, to analyze hardware response to these environments, including General Purpose Heat Sources (GPHS) and Radioisotope Heater Units (RHU). Follow-on Phase 3 tests burning propellant blocks up to 90 kg will be briefly described. .

  13. Solar-Thermal Engine Testing

    NASA Technical Reports Server (NTRS)

    Tucker, Stephen; Salvail, Pat; Haynes, Davy (Technical Monitor)

    2001-01-01

    A solar-thermal engine serves as a high-temperature solar-radiation absorber, heat exchanger, and rocket nozzle. collecting concentrated solar radiation into an absorber cavity and transferring this energy to a propellant as heat. Propellant gas can be heated to temperatures approaching 4,500 F and expanded in a rocket nozzle, creating low thrust with a high specific impulse (I(sub sp)). The Shooting Star Experiment (SSE) solar-thermal engine is made of 100 percent chemical vapor deposited (CVD) rhenium. The engine 'module' consists of an engine assembly, propellant feedline, engine support structure, thermal insulation, and instrumentation. Engine thermal performance tests consist of a series of high-temperature thermal cycles intended to characterize the propulsive performance of the engines and the thermal effectiveness of the engine support structure and insulation system. A silicone-carbide electrical resistance heater, placed inside the inner shell, substitutes for solar radiation and heats the engine. Although the preferred propellant is hydrogen, the propellant used in these tests is gaseous nitrogen. Because rhenium oxidizes at elevated temperatures, the tests are performed in a vacuum chamber. Test data will include transient and steady state temperatures on selected engine surfaces, propellant pressures and flow rates, and engine thrust levels. The engine propellant-feed system is designed to Supply GN2 to the engine at a constant inlet pressure of 60 psia, producing a near-constant thrust of 1.0 lb. Gaseous hydrogen will be used in subsequent tests. The propellant flow rate decreases with increasing propellant temperature, while maintaining constant thrust, increasing engine I(sub sp). In conjunction with analytical models of the heat exchanger, the temperature data will provide insight into the effectiveness of the insulation system, the structural support system, and the overall engine performance. These tests also provide experience on operational aspects of the engine and associated subsystems, and will include independent variation of both steady slate heat-exchanger temperature prior to thrust operation and nitrogen inlet pressure (flow rate) during thrust operation. Although the Shooting Star engines were designed as thermal-storage engines to accommodate mission parameters, they are fully capable of operating as scalable, direct-gain engines. Tests are conducted in both operational modes. Engine thrust and propellant flow rate will be measured and thereby I(sub sp). The objective of these tests is to investigate the effectiveness of the solar engine as a heat exchanger and a rocket. Of particular interest is the effectiveness of the support structure as a thermal insulator, the integrity of both the insulation system and the insulation containment system, the overall temperature distribution throughout the engine module, and the thermal power required to sustain steady state fluid temperatures at various flow rates.

  14. Safety issues of high-concentrated hydrogen peroxide production used as rocket propellant

    NASA Astrophysics Data System (ADS)

    Romantsova, O. V.; Ulybin, V. B.

    2015-04-01

    The article dwells on the possibility of production of high-concentrated hydrogen peroxide with the Russian technology of isopropyl alcohol autoxidation. Analysis of fire/explosion hazards and reasons of insufficient quality is conducted for the technology. Modified technology is shown. Non-standard fire/explosion characteristics required for integrated fire/explosion hazards rating for modified hydrogen peroxide production based on the autoxidation of isopropyl alcohol are defined.

  15. Injector Design Tool Improvements: User's manual for FDNS V.4.5

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Shang, Huan-Min; Wei, Hong; Liu, Jiwen

    1998-01-01

    The major emphasis of the current effort is in the development and validation of an efficient parallel machine computational model, based on the FDNS code, to analyze the fluid dynamics of a wide variety of liquid jet configurations for general liquid rocket engine injection system applications. This model includes physical models for droplet atomization, breakup/coalescence, evaporation, turbulence mixing and gas-phase combustion. Benchmark validation cases for liquid rocket engine chamber combustion conditions will be performed for model validation purpose. Test cases may include shear coaxial, swirl coaxial and impinging injection systems with combinations LOXIH2 or LOXISP-1 propellant injector elements used in rocket engine designs. As a final goal of this project, a well tested parallel CFD performance methodology together with a user's operation description in a final technical report will be reported at the end of the proposed research effort.

  16. Ammonium nitrate as an oxidizer in solid composite propellants

    NASA Astrophysics Data System (ADS)

    Manelis, G. B.; Lempert, D. B.

    2009-09-01

    Despite the fact that ammonium nitrate (AN) has the highest hydrogen content and fairly high oxygen balance (compared to other oxidizers), its extremely low formation enthalpy and relatively low density makes it one of the worst power oxidizers in solid composite propellants (SCP). Nevertheless, AN has certain advantages - the combustion of the compositions containing AN is virtually safe, its combustion products are ecologically clean, it is very accessible and cheap, and also very thermostable (far more stable than ammonium dinitramide (ADN)). Besides, its low density stops being a disadvantage if the propellant has to be used in deep space and therefore, must be carried there with other rocket carriers. The low cost of AN may also become a serious advantage in the AN application even in lower stages of multistage space launchers as well as in one-stage space launchers with low mass fraction of the propellant. The main specific features relevant to the creation of AN-based SCPs with the optimal energetic characteristics are discussed. The use of metals and their hydrides and proper fuel-binders as well as the recent successes in phase stabilization of AN are described.

  17. Development and Testing of a Green Monopropellant Ignition System

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Merkley, Daniel P.; Eilers, Shannon D.; Judson, Michael I.; Taylor, Terry L.

    2013-01-01

    This paper will detail the development and testing of a "green" monopropellant booster ignition system. The proposed booster ignition technology eliminates the need for a pre-heated catalyst bed, a high wattage power source, toxic pyrophoric ignition fluids, or a bi-propellant spark ignitor. The design offers the simplicity of a monopropellant feed system features non-hazardous gaseous oxygen (GOX) as the working fluid. The approach is fundamentally different from all other "green propellant" solutions in the aerospace in the industry. Although the proposed system is more correctly a "hybrid" rocket technology, since only a single propellant feed path is required, it retains all the simple features of a monopropellant system. The technology is based on the principle of seeding an oxidizing flow with a small amount of hydrocarbon.1 The ignition is initiated electrostatically with a low-wattage inductive spark. Combustion gas byproducts from the hydrocarbon-seeding ignition process can exceed 2400 C and the high exhaust temperature ensures reliable main propellant ignition. The system design is described in detail in the Hydrocarbon-Seeded Ignition System Design subsection.

  18. A History of Collapse Factor Modeling and Empirical Data for Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    deQuay, Laurence; Hodge, B. Keith

    2010-01-01

    One of the major technical problems associated with cryogenic liquid propellant systems used to supply rocket engines and their subassemblies and components is the phenomenon of propellant tank pressurant and ullage gas collapse. This collapse is mainly caused by heat transfer from ullage gas to tank walls and interfacing propellant, which are both at temperatures well below those of this gas. Mass transfer between ullage gas and cryogenic propellant can also occur and have minor to significant secondary effects that can increase or decrease ullage gas collapse. Pressurant gas is supplied into cryogenic propellant tanks in order to initially pressurize these tanks and then maintain required pressures as propellant is expelled from these tanks. The net effect of pressurant and ullage gas collapse is increased total mass and mass flow rate requirements of pressurant gases. For flight vehicles this leads to significant and undesirable weight penalties. For rocket engine component and subassembly ground test facilities this results in significantly increased facility hardware, construction, and operational costs. "Collapse Factor" is a parameter used to quantify the pressurant and ullage gas collapse. Accurate prediction of collapse factors, through analytical methods and modeling tools, and collection and evaluation of collapse factor data has evolved over the years since the start of space exploration programs in the 1950 s. Through the years, numerous documents have been published to preserve results of studies associated with the collapse factor phenomenon. This paper presents a summary and selected details of prior literature that document the aforementioned studies. Additionally other literature that present studies and results of heat and mass transfer processes, related to or providing important insights or analytical methods for the studies of collapse factor, are presented.

  19. Technology Challenges for Deep-Throttle Cryogenic Engines for Space Exploration

    NASA Astrophysics Data System (ADS)

    Brown, Kendall K.; Nelson, Karl W.

    2005-02-01

    Historically, cryogenic rocket engines have not been used for in-space applications due to their additional complexity, the mission need for high reliability, and the challenges of propellant boil-off. While the mission and vehicle architectures are not yet defined for the lunar and Martian robotic and human exploration objectives, cryogenic rocket engines offer the potential for higher performance and greater architecture/mission flexibility. In-situ cryogenic propellant production could enable a more robust exploration program by significantly reducing the propellant mass delivered to low earth orbit, thus warranting the evaluation of cryogenic rocket engines versus the hypergolic bipropellant engines used in the Apollo program. A multi-use engine, one which can provide the functionality that separate engines provided in the Apollo mission architecture, is desirable for lunar and Mars exploration missions because it increases overall architecture effectiveness through commonality and modularity. The engine requirement derivation process must address each unique mission application and each unique phase within each mission. The resulting requirements, such as thrust level, performance, packaging, burn duration, number of operations; required impulses for each trajectory phase; operation after extended space or surface exposure; availability for inspection and maintenance; throttle range for planetary descent, ascent, acceleration limits and many more must be addressed. Within engine system studies, the system and component technology, capability, and risks must be evaluated and a balance between the appropriate amount of technology-push and technology-pull must be addressed. This paper will summarize many of the key technology challenges associated with using high-performance cryogenic liquid propellant rocket engine systems and components in the exploration program architectures. The paper is divided into two areas. The first area describes how the mission requirements affect the engine system requirements and create system level technology challenges. An engine system architecture for multiple applications or a family of engines based upon a set of core technologies, design, and fabrication approaches may reduce overall programmatic cost and risk. The engine system discussion will also address the characterization of engine cycle figures of merit, configurations, and design approaches for some in-space vehicle alternatives under consideration. The second area evaluates the component-level technology challenges induced from the system requirements. Component technology issues are discussed addressing injector, thrust chamber, ignition system, turbopump assembly, and valve design for the challenging requirements of high reliability, robustness, fault tolerance, deep throttling, reasonable performance (with respect to weight and specific impulse).

  20. Specific Impulses Losses in Solid Propellant Rockets

    DTIC Science & Technology

    1974-12-17

    binder -- polyvinyl, polyurethane, or polybutadiene) markedly increases performance. Aluminum is the most widely used metal since its energy properties...temperature is also used. -5- The specific impulse values calculated for a typical propellant with 16.4% aluminum are as follows: (p0 70 atm. p - 1 atm...Direct Measurement of Combuction Efficiency of Aluminum Analysis of the condensed phase enables the proportion of unburnt aluminum to be determined

Top