Sample records for rockfall loads limits

  1. Seismic monitoring of small alpine rockfalls - validity, precision and limitations

    NASA Astrophysics Data System (ADS)

    Dietze, Michael; Mohadjer, Solmaz; Turowski, Jens M.; Ehlers, Todd A.; Hovius, Niels

    2017-10-01

    Rockfall in deglaciated mountain valleys is perhaps the most important post-glacial geomorphic process for determining the rates and patterns of valley wall erosion. Furthermore, rockfall poses a significant hazard to inhabitants and motivates monitoring efforts in populated areas. Traditional rockfall detection methods, such as aerial photography and terrestrial laser scanning (TLS) data evaluation, provide constraints on the location and released volume of rock but have limitations due to significant time lags or integration times between surveys, and deliver limited information on rockfall triggering mechanisms and the dynamics of individual events. Environmental seismology, the study of seismic signals emitted by processes at the Earth's surface, provides a complementary solution to these shortcomings. However, this approach is predominantly limited by the strength of the signals emitted by a source and their transformation and attenuation towards receivers. To test the ability of seismic methods to identify and locate small rockfalls, and to characterise their dynamics, we surveyed a 2.16 km2 large, near-vertical cliff section of the Lauterbrunnen Valley in the Swiss Alps with a TLS device and six broadband seismometers. During 37 days in autumn 2014, 10 TLS-detected rockfalls with volumes ranging from 0.053 ± 0.004 to 2.338 ± 0.085 m3 were independently detected and located by the seismic approach, with a deviation of 81-29+59 m (about 7 % of the average inter-station distance of the seismometer network). Further potential rockfalls were detected outside the TLS-surveyed cliff area. The onset of individual events can be determined within a few milliseconds, and their dynamics can be resolved into distinct phases, such as detachment, free fall, intermittent impact, fragmentation, arrival at the talus slope and subsequent slope activity. The small rockfall volumes in this area require significant supervision during data processing: 2175 initially picked potential events reduced to 511 potential events after applying automatic rejection criteria. The 511 events needed to be inspected manually to reveal 19 short earthquakes and 37 potential rockfalls, including the 10 TLS-detected events. Rockfall volume does not show a relationship with released seismic energy or peak amplitude at this spatial scale due to the dominance of other, process-inherent factors, such as fall height, degree of fragmentation, and subsequent talus slope activity. The combination of TLS and environmental seismology provides, despite the significant amount of manual data processing, a detailed validation of seismic detection of small volume rockfalls, and revealed unprecedented temporal, spatial and geometric details about rockfalls in steep mountainous terrain.

  2. Development of a rockfall hazard rating matrix for the State of Ohio.

    DOT National Transportation Integrated Search

    2005-03-01

    Although Ohio is not considered a "mountainous state", it is well documented that rockfalls are prevalent. Rockfalls pose a : considerable risk to traffic safety, create maintenance problems, and exert a strain on limited maintenance funds available ...

  3. Development of a Rockfall Hazard Rating Matrix for the State of Ohio

    DOT National Transportation Integrated Search

    2005-03-01

    Although Ohio is not considered a "mountainous state", it is well documented that rockfalls are prevalent. Rockfalls pose a : considerable risk to traffic safety, create maintenance problems, and exert a strain on limited maintenance funds available ...

  4. Load Measurement on Foundations of Rockfall Protection Systems

    PubMed Central

    Volkwein, Axel; Kummer, Peter; Bitnel, Hueseyin; Campana, Lorenzo

    2016-01-01

    Rockfall protection barriers are connected to the ground using steel cables fixed with anchors and foundations for the steel posts. It is common practice to measure the forces in the cables, while to date measurements of forces in the foundations have been inadequately resolved. An overview is presented of existing methods to measure the loads on the post foundations of rockfall protection barriers. Addressing some of the inadequacies of existing approaches, a novel sensor unit is presented that is able to capture the forces acting on post foundations in all six degrees of freedom. The sensor unit consists of four triaxial force sensors placed between two steel plates. To correctly convert the measurements into the directional forces acting on the foundation a special in-situ calibration procedure is proposed that delivers a corresponding conversion matrix. PMID:26840315

  5. Rockfall hazard and risk assessment: an example from a high promontory at the historical site of Monemvasia, Greece

    NASA Astrophysics Data System (ADS)

    Saroglou, H.; Marinos, V.; Marinos, P.; Tsiambaos, G.

    2012-06-01

    The paper presents the kinematics of rock instability of a high limestone promontory, where the Monemvasia historical site is situated, in Peloponnese in Southern Greece. The instability phenomena poses a significant threat to the town located at the base of the slope. Rockfall episodes occurred in the past due to the relaxation of the high cliff, whereas significant undermining of the castle frontiers has been observed at the slope crest. The predominant types of instability are of planar, wedge and toppling failure of medium to large blocks. In order to investigate the existing stability conditions and decide upon the protection measures, stability and rockfall analyses were carried out for numerous slope sections under different loading conditions and protection measures were suggested. A rock-fall risk rating system is proposed, which is based on morphological and structural criteria of the rock mass and on vulnerability and consequences. The rating system is applied for individual sections along the slope and a risk map was produced, which depicted areas having different degree of risk against rockfall occurrences.

  6. A Novel DEM Approach to Simulate Block Propagation on Forested Slopes

    NASA Astrophysics Data System (ADS)

    Toe, David; Bourrier, Franck; Dorren, Luuk; Berger, Frédéric

    2018-03-01

    In order to model rockfall on forested slopes, we developed a trajectory rockfall model based on the discrete element method (DEM). This model is able to take the complex mechanical processes at work during an impact into account (large deformations, complex contact conditions) and can explicitly simulate block/soil, block/tree contacts as well as contacts between neighbouring trees. In this paper, we describe the DEM model developed and we use it to assess the protective effect of different types of forest. In addition, we compared it with a more classical rockfall simulation model. The results highlight that forests can significantly reduce rockfall hazard and that the spatial structure of coppice forests has to be taken into account in rockfall simulations in order to avoid overestimating the protective role of these forest structures against rockfall hazard. In addition, the protective role of the forests is mainly influenced by the basal area. Finally, the advantages and limitations of the DEM model were compared with classical rockfall modelling approaches.

  7. Rockfall vulnerability assessment for masonry buildings

    NASA Astrophysics Data System (ADS)

    Mavrouli, Olga

    2015-04-01

    The methodologies for the quantitative risk assessment vary in function of the application scale and the available data. For fragmental rockfalls, risk calculation requires data for the expected damage of the exposed elements due to potential rock block impacts with a range of trajectories, magnitudes and intensities. Although the procedures for the quantification of the rock block characteristics in terms of magnitude-frequency relationships are well established, there are few methodologies for the calculation of the vulnerability, and these are usually empirical or judgmental. The response of buildings to rock block impacts using analytical methods has been mainly realised so far for reinforced concrete buildings, and some fragility curves have been calculated with the results, indicating the potential damage for a range of rock block characteristics. Masonry buildings, as a common structural typology in mountainous areas, are in many cases impacted by rock blocks during rockfalls. Their response presents some peculiarities in comparison with reinforced-concrete structures given the non-homogeneity and variability of the compound materials (blocks and mortar), their orthotropy, low strength in tension, the statically indeterminate load-bearing system and the non-monolithic connections. To this purpose, analytical procedures which are specifically adapted to masonry structures should be used for the evaluation of the expected damage due to rock impacts. In this contribution we discuss the application of the analytical approach for the assessment of the expected damage in rockfall prone areas and the simulation assumptions that can be made concerning the materials, geometry, loading and the relevant simplifications. The amount of uncertainties introduced during their analytical simulation is high due to the dispersion of the data for material mechanical properties and the construction techniques and quality and thus a probabilistic assessment is suggested. The random nature of the rockfall as far as it concerns the magnitude and the intensity of the rock blocks can also be introduced using parametric analyses.

  8. Rockfall risk assessment for a road along the coastal rocky slope of Maratea (Basilicata Region, Italy)

    NASA Astrophysics Data System (ADS)

    Pellicani, R.; Spilotro, G.; Colangelo, G.; Petraglia, A.; Pizzo, V.

    2012-04-01

    The rockfall risk has been evaluated for the Tirrena Inferiore State Road SS18 between 220+600 and 243+670 Kilometers in the coastal area of Maratea (Basilicata, Italy) through a specific multilayer technique. These results are particularly significant as validated in field through the occurrence of rockfall events after the study. The study part of "Tirrena Inferiore" SS18 road is often affected by rockfalls, which periodically (coinciding with abundant rainfalls, earthquakes and temperature lowering) cause large amount of damage and traffic interruptions. In order to assess the rockfall risk and define the countermeasure needed to mitigate the risk, an integrated index-based and physically-based approach was implemented. The roadway is subject to slopes with steep rocky vertical or sub-vertical faces affected by different systems of discontinuities, that show a widespread fracturing. The superficial parts of slopes are characterized by gaping fracturing, often karstified. Several historical rockfall events were recognized in the area and numerous geomechanical analyses, finalized to the stability analysis of rock walls, were carried out. The localization of the potentially unstable areas and the quantification of relative rockfall risk were evaluated through three successive phases of analysis. First, a map based on SMR (Slope Mass Rating) Index of Romana (1985) was produced, through a spatial analysis of both geomechanical parameters, such as the RMR Index of Bieniawski, and the distribution of the discontinuities. This approach therefore allowed the estimation of the potentially unstable zones and their classification on the basis of the resulting stability degree. Subsequently, an analysis of the rockfall trajectories in correspondence to the most unstable zones of slope was carried out by using ROTOMAP, a 3-dimensional rock-fall simulation software. The input data for computing the rockfall trajectories are the following: (1) digital terrain model (DTM), (2) location of rock-fall release points (source areas), (3) geometrical parameters of block rolling, such as limit angle of flight, impact and rebound, and (4) geomechanical parameters of block rolling, such as the coefficients of normal and tangential energy restitution. For each DTM cell the software calculates the number of blocks passing through, the maximum rock-fall velocity and the maximum flying height. These information were used in order to verify the efficiency of the existing rockfall protection systems. Finally, the rockfall risk map was realized through the evaluation of the spatial distribution of the following three parameters: (i) lithology, (ii) kinematic compatibility, and (iii) historical rockfall events. After quantifying the risk, the most suitable typologies of rockfall protection systems were identified for the most unstable sections of slopes. The importance and usefulness of this study derives from the validation of the obtained results, in terms of risk, through the occurrence of new rockfall events in those areas for which the highest level of rockfall risk was defined in previous study.

  9. Anthropocene rockfalls travel farther than prehistoric predecessors

    PubMed Central

    Borella, Josh Walter; Quigley, Mark; Vick, Louise

    2016-01-01

    Human modification of natural landscapes has influenced surface processes in many settings on Earth. Quantitative data comparing the distribution and behavior of geologic phenomena before and after human arrival are sparse but urgently required to evaluate possible anthropogenic influences on geologic hazards. We conduct field and imagery-based mapping, statistical analysis, and numerical modeling of rockfall boulders triggered by the fatal 2011 Christchurch earthquakes (n = 285) and newly identified prehistoric (Holocene and Pleistocene) boulders (n = 1049). Prehistoric and modern boulders are lithologically equivalent, derived from the same source cliff, and yield consistent power-law frequency-volume distributions. However, a significant population of modern boulders (n = 26) traveled farther downslope (>150 m) than their most-traveled prehistoric counterparts, causing extensive damage to residential dwellings at the foot of the hillslope. Replication of prehistoric boulder distributions using three-dimensional rigid-body numerical models that incorporate lidar-derived digital topography and realistic boulder trajectories and volumes requires the application of a drag coefficient, attributed to moderate to dense slope vegetation, to account for their spatial distribution. Incorporating a spatially variable native forest into the models successfully predicts prehistoric rockfall distributions. Radiocarbon dating provides evidence for 17th to early 20th century deforestation at the study site during Polynesian and European colonization and after emplacement of prehistoric rockfall. Anthropocene deforestation enabled modern rockfalls to exceed the limits of their prehistoric predecessors, highlighting a shift in the geologic expression of rockfalls due to anthropogenic activity. Reforestation of hillslopes by mature native vegetation could help reduce future rockfall hazard. PMID:27652344

  10. Rockfall activity of cliff inferred from deposit and cone method

    NASA Astrophysics Data System (ADS)

    Jaboyedoff, M.; Baillifard, F.; Rouiller, J.-D.

    2003-04-01

    Assuming that fresh scree slopes are significant indicators of recent rockfall activity, they can be used as activity indicators for a given rockfall source area. Using simple geometric rules and a DTM (digital elevation model), the propagation zone can be estimated by considering that each potential rockfall source cell (corresponding to the entire cliff) can generate a scree slope within a cone with a slope ranging from 27° to 37°. Thus, the count of pixels representing rockfall deposits that are contained in this cone represents a relative scale of recent rockfall activity. According to Evans and Hungr (1993), the source cell can be chosen at the bottom of the cliff, with lower angles. Choosing the entire cliff or the bottom of the cliff as source area depends on the morphology of the slope situated below the cliff. The cone can also be laterally limited in order to avoid the counting of illogical rock slope trajectories (+-20°). In Switzerland, the vectorized 1:25,000 topographic map (vector25) can provide scree slope and cliff area data sets. Results obtained using this method show good agreement with field observations, although it is evident that the highest topographic reliefs are favored by this method, as verified in the Alps. Compared to the method of Menendéz Duarte and Marquínez (2002), which uses GIS-calculated watersheds as propagation areas, the present method does not take small changes of topography into account. References Evans, S.G. and Hungr, O. The assessment of rockfall hazard at the base of talus slopes. Canadian Geotechnical Journal, 30/4, 620-636, 1993. Menendéz Duarte, R. and Marquínez, J. The influence of environmental and lithologic factors on rockfall at a regional scale: an evaluation using GIS. Geomorphology, 43, 117-136, 2002.

  11. Numerical modelling of new rockfall interception nets

    NASA Astrophysics Data System (ADS)

    von Boetticher, Albrecht; Volkwein, Axel; Wendeler, Corinna

    2010-05-01

    The design and certification of effective rockfall protection barriers is mainly achieved through 1:1 prototype testing. In order to reduce development costs of a prototype it is recommended that pre-studies using numerical simulations are performed. A large component to modelling rockfall protection systems is the numerical simulation of the nets. To date there exist several approaches to model the different mesh types such as ring nets or diagonal meshes (Nicot 1999, Cazzani et al. 2002, Volkwein 2004). However, the consideration of chain link meshes has not yet been realised. Chain link meshes are normally found as standard fence structures. However, they also exist in setups using high-strength steel and wire bundles. These variants show an enormous capacity to retain loads e.g. rockfalls, and at the same time are very efficient due to their low demand of steel material. The increasing application of chain link mesh in barrier systems requires an accurate model is available to complete prototype studies. A new approach now aims to perform a Finite Element simulation of such chain link meshes. The main challenge herein is to achieve the net deformation behaviour that is observed in field tests also in the simulation. A simulation using simple truss elements would not work since it neglects the out-of-plane-height of the mesh construction providing important reserves for local and global high deformations. Thus addressing this, a specially developed Discrete Element is able to reconstruct the mechanical behaviour of the single chain wire (bundles). As input parameters it utilises typical properties such as longitudinal and transversal mesh widths, and break loads resulting from in-plane-tension tests and steel strength. The single chain elements then can be combined to a complete mesh (e.g. 130 x 65 mm, 3 - 4 mm wire with a strength of 1770 N-mm2). Combining these elements with a supporting structure consisting of posts, ropes and energy absorbers, enables the simulation of protection barriers used for natural hazards such as rockfalls or even landslides. The contribution explains the mechanical behaviour of the chain mesh, the calibration procedures and their application in flexible rockfall protection systems. The investigated meshes are built using three or four millimeter wire with a minimum yield strength of 1770 N-mm2: The maximal load in longitudinal mesh direction ranges about 130 - 380 kN-m and transversal 50 - 170 kN-m. The mesh size varies from 83 × 143 mm to 292 × 500 mm. References Cazzani, A., Mongiovi, L. and Frenez, T. (2002) Dynamic Finite Element Analysis of Interceptive Devices for Falling Rocks, International Journal of Rock Mechanics & Mining Sciences. 39,303-321. Volkwein, A. (2004) Numerische Simulation von flexiblen Steinschlagschutzsystemen. Diss. ETH Nr. 15641. Nicot, F. (1999) Etude du comportement méchanique des ouvrages souples de protection contre les éboulements rocheux. Diss. Ecole Centrale de Lyon.

  12. UAV-based mapping, back analysis and trajectory modeling of a coseismic rockfall in Lefkada island, Greece

    NASA Astrophysics Data System (ADS)

    Saroglou, Charalampos; Asteriou, Pavlos; Zekkos, Dimitrios; Tsiambaos, George; Clark, Marin; Manousakis, John

    2018-01-01

    We present field evidence and a kinematic study of a rock block mobilized in the Ponti area by a Mw = 6.5 earthquake near the island of Lefkada on 17 November 2015. A detailed survey was conducted using an unmanned aerial vehicle (UAV) with an ultrahigh definition (UHD) camera, which produced a high-resolution orthophoto and a digital terrain model (DTM). The sequence of impact marks from the rock trajectory on the ground surface was identified from the orthophoto and field verified. Earthquake characteristics were used to estimate the acceleration of the rock slope and the initial condition of the detached block. Using the impact points from the measured rockfall trajectory, an analytical reconstruction of the trajectory was undertaken, which led to insights on the coefficients of restitution (CORs). The measured trajectory was compared with modeled rockfall trajectories using recommended parameters. However, the actual trajectory could not be accurately predicted, revealing limitations of existing rockfall analysis software used in engineering practice.

  13. A PROPOSAL FOR MAKING A RISK MAP OF ROCKFALL BY EVALUATING THE INFLUENCE TO RAILWAY TRACK

    NASA Astrophysics Data System (ADS)

    Fukata, Takahiro; Mori, Taiki; Shibuya, Satoru

    An incident of rockfall may trigger serious damage to the safety as well as the after-the-event maintenance of railway transportation. In an attempt to minimize such damage caused by rockfall incident, the railway companies regularly in spect the concerned slopes along the railway, and take necessary measures. In the current practice, however, it is very difficult to make a full control of slopes in danger spreading over the wide area due to the limited human and financial resources. Accordingly, it is urgently needed for the railway firms to establish cost-effective as well as reliable system for the slope management. A risk map based on the impact statement of rockfall to railway track is of great use for not only enhancing the efficiency of slope inspection, but also planning the disaster prevention of railway. In this paper, a methodology for establishing a risk map by considering the impact statement to railway truck in a quantitative manner is proposed. In so doing, the rockfall movement on a slope was numerically simulated in match with each categorized type of slopes. The applicability of this proposed method for the slope management practice is examined based on a number of case histories.

  14. RockFall analyst: A GIS extension for three-dimensional and spatially distributed rockfall hazard modeling

    NASA Astrophysics Data System (ADS)

    Lan, Hengxing; Derek Martin, C.; Lim, C. H.

    2007-02-01

    Geographic information system (GIS) modeling is used in combination with three-dimensional (3D) rockfall process modeling to assess rockfall hazards. A GIS extension, RockFall Analyst (RA), which is capable of effectively handling large amounts of geospatial information relative to rockfall behaviors, has been developed in ArcGIS using ArcObjects and C#. The 3D rockfall model considers dynamic processes on a cell plane basis. It uses inputs of distributed parameters in terms of raster and polygon features created in GIS. Two major components are included in RA: particle-based rockfall process modeling and geostatistics-based rockfall raster modeling. Rockfall process simulation results, 3D rockfall trajectories and their velocity features either for point seeders or polyline seeders are stored in 3D shape files. Distributed raster modeling, based on 3D rockfall trajectories and a spatial geostatistical technique, represents the distribution of spatial frequency, the flying and/or bouncing height, and the kinetic energy of falling rocks. A distribution of rockfall hazard can be created by taking these rockfall characteristics into account. A barrier analysis tool is also provided in RA to aid barrier design. An application of these modeling techniques to a case study is provided. The RA has been tested in ArcGIS 8.2, 8.3, 9.0 and 9.1.

  15. Rockfall hazard analysis using LiDAR and spatial modeling

    NASA Astrophysics Data System (ADS)

    Lan, Hengxing; Martin, C. Derek; Zhou, Chenghu; Lim, Chang Ho

    2010-05-01

    Rockfalls have been significant geohazards along the Canadian Class 1 Railways (CN Rail and CP Rail) since their construction in the late 1800s. These rockfalls cause damage to infrastructure, interruption of business, and environmental impacts, and their occurrence varies both spatially and temporally. The proactive management of these rockfall hazards requires enabling technologies. This paper discusses a hazard assessment strategy for rockfalls along a section of a Canadian railway using LiDAR and spatial modeling. LiDAR provides accurate topographical information of the source area of rockfalls and along their paths. Spatial modeling was conducted using Rockfall Analyst, a three dimensional extension to GIS, to determine the characteristics of the rockfalls in terms of travel distance, velocity and energy. Historical rockfall records were used to calibrate the physical characteristics of the rockfall processes. The results based on a high-resolution digital elevation model from a LiDAR dataset were compared with those based on a coarse digital elevation model. A comprehensive methodology for rockfall hazard assessment is proposed which takes into account the characteristics of source areas, the physical processes of rockfalls and the spatial attribution of their frequency and energy.

  16. Analysis of seismic signals related to rockfalls in the Dolomieu crater, Piton de la Fournaise, La Réunion

    NASA Astrophysics Data System (ADS)

    Durand, Virginie; Mangeney, Anne; Lebouteiller, Pauline; Hibert, Clément; Ovpf Team

    2015-04-01

    The seismic and photogrammetric networks of the volcano of the Piton de la Fournaise (La Réunion Island), maintained by the OVPF, are well appropriate for the study of seismic signals generated by rockfalls. In this work, we focus on the signals generated by rockfalls occurring in the Dolomieu crater. The aim of this study is to understand the link between rockfall and volcanic activity. One key question is as to whether the number and characteristics of rockfalls can provide a precursor to the occurrence of an eruption. Another scope of this work is to determine if there is a link between the rockfall activity and the precipitations, changes of temperature and seismic activity. For this, we analyze the rockfall activity preceding the June 2014 eruption. To detect the events, we use a method based on the Kurtosis function that picks the beginning of the signals. Then we localize the events using the arrival time of the waves and a propagation model computed with the Fast Marching Method. Finally, we calculate the seismic energy generated by these rockfalls. Thus, we obtain a catalog of events that we can exploit to determine the characteristics and the temporal evolution of the rockfall activity in the Dolomieu crater. A power law is observed between the seismic energy and the duration of rockfalls, making possible to calculate the rockfall volume from the ratio between seismic and potential energy. From previous studies on the Piton de la Fournaise volcano, we can infer that rockfall activity in the crater is correlated with eruptions: the rockfall activity seems to begin before the eruption time. We compare the spatio-temporal changes of the rockfall characteristics to the volcanic, seismic, and rain activity. We show in particular that the rockfall size seems to be different if the intrusion of magma reaches the surface or not, providing potential precursors to the occurrence of an eruption.

  17. Staircase Falls Rockfall on December 26, 2003, and Geologic Hazards at Curry Village, Yosemite National Park, California

    USGS Publications Warehouse

    Wieczorek, Gerald F.; Snyder, James B.; Borchers, James W.; Reichenbach, Paola

    2007-01-01

    Since 1857, several hundred rockfalls, rockslides, and debris flows have been observed in Yosemite National Park. At 12:45 a.m. on December 26, 2003, a severe winter storm triggered a rockfall west of Glacier Point in Yosemite Valley. Rock debris moved quickly eastward down Staircase Falls toward Curry Village. As the rapidly moving rock mass reached talus at the bottom of Staircase Falls, smaller pieces of flying rock penetrated occupied cabins. Physical characterization of the rockfall site included rockfall volume, joint patterns affecting initial release of rock and the travel path of rockfall, factors affecting weathering and weakening of bedrock, and hydrology affecting slope stability within joints. Although time return intervals are not predictable, a three-dimensional rockfall model was used to assess future rockfall potential and risk. Predictive rockfall and debris-flow methods suggest that landslide hazards beneath these steep cliffs extend farther than impact ranges defined from surface talus in Yosemite Valley, leaving some park facilities vulnerable.

  18. Assessing rockfall susceptibility in steep and overhanging slopes using three-dimensional analysis of failure mechanisms

    USGS Publications Warehouse

    Matasci, Battista; Stock, Greg M.; Jaboyedoff, Michael; Carrea, Dario; Collins, Brian D.; Guérin, Antoine; Matasci, G.; Ravanel, L.

    2018-01-01

    Rockfalls strongly influence the evolution of steep rocky landscapes and represent a significant hazard in mountainous areas. Defining the most probable future rockfall source areas is of primary importance for both geomorphological investigations and hazard assessment. Thus, a need exists to understand which areas of a steep cliff are more likely to be affected by a rockfall. An important analytical gap exists between regional rockfall susceptibility studies and block-specific geomechanical calculations. Here we present methods for quantifying rockfall susceptibility at the cliff scale, which is suitable for sub-regional hazard assessment (hundreds to thousands of square meters). Our methods use three-dimensional point clouds acquired by terrestrial laser scanning to quantify the fracture patterns and compute failure mechanisms for planar, wedge, and toppling failures on vertical and overhanging rock walls. As a part of this work, we developed a rockfall susceptibility index for each type of failure mechanism according to the interaction between the discontinuities and the local cliff orientation. The susceptibility for slope parallel exfoliation-type failures, which are generally hard to identify, is partly captured by planar and toppling susceptibility indexes. We tested the methods for detecting the most susceptible rockfall source areas on two famously steep landscapes, Yosemite Valley (California, USA) and the Drus in the Mont-Blanc massif (France). Our rockfall susceptibility models show good correspondence with active rockfall sources. The methods offer new tools for investigating rockfall hazard and improving our understanding of rockfall processes.

  19. The Status and Prospect of Research into Protective Structures of Bridge Piers against Rockfall Impact

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Zhang, Shan; Zhang, Junfa; Wu, Xiangnan

    2017-06-01

    Rockfall impact on bridge piers threats severely the mountain bridge structures of lifeline engineering. Intended for mountain bridge pier protection against rockfall impact, the paper conducted comprehensive reviews on the research status of impact effects, anti-collision structure, impact response to rockfall, and protective design at home and abroad, and proposed a new-type protective structure against rockfall impact. In addition, the paper carried out deep studies on such key scientific issues as impact effect calculation, protective materials against rockfall impact, damage mechanism of protective units, and parameter optimization on the system of protective structures against rockfall impact as well, aiming to strength disaster prevention of mountain bridge structures.

  20. Rockfall susceptibility mapping of Yosemite Valley (USA) using a high-resolution digital elevation model

    NASA Astrophysics Data System (ADS)

    Pannatier, A.; Oppikofer, T.; Jaboyedoff, M.; Stock, G. M.

    2009-04-01

    In Yosemite National Park (California, USA) rockfalls from the steep valley flanks are frequent (>600 documented events in 150 years) and threaten infrastructure in this popular tourist area. This study focuses on a methodology to map the susceptibility to rockfall initiation based on a high-resolution digital elevation model (HRDEM) obtained from aerial laser scanning (1 meter cell size). This methodology is based on geometric factors derived from the HRDEM, i.e., the steepness of the topography, the presence of joints or fractures enabling either a planar or a wedge failure mechanism, and a high denudation potential. The slope angle histogram computed using standard GIS routines was simulated using Gaussian distributions, which were attributed to different parts of the topography, i.e., the cliffs, the valley flanks and the valley floor. Slopes steeper than 36° are found to form cliffs and thus potentially lead to rockfalls. A morpho-structural analysis of the HRDEM was performed in Coltop3D software to determine the major discontinuity sets that shape the topography. Kinematic analyses were made for each of these 7 discontinuity sets in order to determine the HRDEM cells that fulfil the geometric criteria for a planar or wedge failure mechanism. Most of the cliffs in Yosemite Valley enable one or both of these failure mechanisms. The denudation potential was assessed using the sloping local base level (SLBL) concept. The SLBL defines a basal erosion surface and the above lying rock masses (up to 400 m in some of the vertical cliffs) are susceptible to erosion by mass wasting. A thickness of 20 m above the SLBL surface was chosen as lower limit for the denudation potential criterion. The HRDEM cells that satisfy 1, 2 or all 3 criteria are considered having low, moderate and high susceptibility to rockfall initiation. The areas with highest susceptibility (El Capitan, Glacier Point, Yosemite Falls and Half Dome) coincide well with post-glacial talus accumulations and historic rockfall sources. Compared to previous maps of potential rockfall sources that were mainly based on the slope angle criterion, this study provides a more refined analysis of potential rockfall sources and is useful for focussing detailed field investigations on those areas with high susceptibility.

  1. Research notes : new guidance on managing rockfall.

    DOT National Transportation Integrated Search

    2001-11-01

    Hundreds of millions of dollars are spent annually in the U.S. to construct and maintain rock slopes and reduce rockfall hazards along highways. Rockfall occurs on slopes where rocks may free fall, bounce, roll or slide. Many factors cause rockfall, ...

  2. Numerical Simulation of Pipeline Deformation Caused by Rockfall Impact

    PubMed Central

    Liang, Zheng; Han, Chuanjun

    2014-01-01

    Rockfall impact is one of the fatal hazards in pipeline transportation of oil and gas. The deformation of oil and gas pipeline caused by rockfall impact was investigated using the finite element method in this paper. Pipeline deformations under radial impact, longitudinal inclined impact, transverse inclined impact, and lateral eccentric impact of spherical and cube rockfalls were discussed, respectively. The effects of impact angle and eccentricity on the plastic strain of pipeline were analyzed. The results show that the crater depth on pipeline caused by spherical rockfall impact is deeper than by cube rockfall impact with the same volume. In the inclined impact condition, the maximum plastic strain of crater caused by spherical rockfall impact appears when incidence angle α is 45°. The pipeline is prone to rupture under the cube rockfall impact when α is small. The plastic strain distribution of impact crater is more uneven with the increasing of impact angle. In the eccentric impact condition, plastic strain zone of pipeline decreases with the increasing of eccentricity k. PMID:24959599

  3. A methodology for physically based rockfall hazard assessment

    NASA Astrophysics Data System (ADS)

    Crosta, G. B.; Agliardi, F.

    Rockfall hazard assessment is not simple to achieve in practice and sound, physically based assessment methodologies are still missing. The mobility of rockfalls implies a more difficult hazard definition with respect to other slope instabilities with minimal runout. Rockfall hazard assessment involves complex definitions for "occurrence probability" and "intensity". This paper is an attempt to evaluate rockfall hazard using the results of 3-D numerical modelling on a topography described by a DEM. Maps portraying the maximum frequency of passages, velocity and height of blocks at each model cell, are easily combined in a GIS in order to produce physically based rockfall hazard maps. Different methods are suggested and discussed for rockfall hazard mapping at a regional and local scale both along linear features or within exposed areas. An objective approach based on three-dimensional matrixes providing both a positional "Rockfall Hazard Index" and a "Rockfall Hazard Vector" is presented. The opportunity of combining different parameters in the 3-D matrixes has been evaluated to better express the relative increase in hazard. Furthermore, the sensitivity of the hazard index with respect to the included variables and their combinations is preliminarily discussed in order to constrain as objective as possible assessment criteria.

  4. Rockfall risk evaluation using geotechnical survey, remote sensing data, and GIS: a case study from western Greece

    NASA Astrophysics Data System (ADS)

    Nikolakopoulos, Konstantinos; Depountis, Nikolaos; Vagenas, Nikolaos; Kavoura, Katerina; Vlaxaki, Eleni; Kelasidis, George; Sabatakakis, Nikolaos

    2015-06-01

    In this paper a specific example of the synergistic use of geotechnical survey, remote sensing data and GIS for rockfall risk evaluation is presented. The study area is located in Western Greece. Extensive rockfalls have been recorded along Patras - Ioannina highway just after the cable-stayed bridge of Rio-Antirrio, at Klokova site. The rockfalls include medium- sized limestone boulders with volume up to 1.5m3. A detailed engineering geological survey was conducted including rockmass characterization, laboratory testing and geological - geotechnical mapping. Many Rockfall trajectory simulations were done. Rockfall risk along the road was estimated using spatial analysis in a GIS environment.

  5. Semi-Automatic Determination of Rockfall Trajectories

    PubMed Central

    Volkwein, Axel; Klette, Johannes

    2014-01-01

    In determining rockfall trajectories in the field, it is essential to calibrate and validate rockfall simulation software. This contribution presents an in situ device and a complementary Local Positioning System (LPS) that allow the determination of parts of the trajectory. An assembly of sensors (herein called rockfall sensor) is installed in the falling block recording the 3D accelerations and rotational velocities. The LPS automatically calculates the position of the block along the slope over time based on Wi-Fi signals emitted from the rockfall sensor. The velocity of the block over time is determined through post-processing. The setup of the rockfall sensor is presented followed by proposed calibration and validation procedures. The performance of the LPS is evaluated by means of different experiments. The results allow for a quality analysis of both the obtained field data and the usability of the rockfall sensor for future/further applications in the field. PMID:25268916

  6. Analysis of the Spatio-Temporal Evolution of the Rockfalls in the Crater of Piton de la Fournaise Volcano, La Réunion, and their Link with the Eruptive Activity

    NASA Astrophysics Data System (ADS)

    Durand, V.; Mangeney, A.; Hibert, C.; Haas, F.; Peltier, A.; Kowalski, P.; Lauret, F.; Brunet, C.; Delorme, A.; Wegner, K.; Satriano, C.; Bonilla, L. F.; Aissaoui, E. M.; Protin, A.

    2017-12-01

    The seismic and photogrammetric networks of the Piton de la Fournaise volcano (La Réunion Island) are very well appropriate to study seismic signals generated by rockfalls in the Dolomieu crater. In particular, seismic data make it possible to precisely locate the rockfalls and recover the volume of each rockfall. Rockfall locations and volumes are validated comparing them to the ones obtained using photogrammetric data. We thus obtain an accurate catalog of 5802 rockfalls over the 2014-2016 period. This period is especially active, with 7 eruptions, after a break of 4 years. The analysis of the catalog reveals that the recovery of the eruptive activity unsettles the crater edges, increasing the average volume of the rockfalls. It also highlights that rain and seismicity could increase the volume of individual rockfalls. However, it seems that the pre-eruptive seismicity is the main triggering factor for larger volumes, with a delay of several days. We infer that the repetitive vibrations due to the high number of seismic events induce a cyclic fatigue of the material, leading to the collapse of large volumes. To better understand and discriminate the influence of seismicity and rainfall on the rockfall volumes, we investigate in the same way the transition period, from 2010 to 2014, during which there is no eruption. Finally, we show that before an eruption, the largest rockfalls tend to migrate towards the location of the eruption.

  7. Quantifying the effect of forests on frequency and intensity of rockfalls

    NASA Astrophysics Data System (ADS)

    Moos, Christine; Dorren, Luuk; Stoffel, Markus

    2017-02-01

    Forests serve as a natural means of protection against small rockfalls. Due to their barrier effect, they reduce the intensity and the propagation probability of falling rocks and thus reduce the occurrence frequency of a rockfall event for a given element at risk. However, despite established knowledge on the protective effect of forests, they are generally neglected in quantitative rockfall risk analyses. Their inclusion in quantitative rockfall risk assessment would, however, be necessary to express their efficiency in monetary terms and to allow comparison of forests with other protective measures, such as nets and dams. The goal of this study is to quantify the effect of forests on the occurrence frequency and intensity of rockfalls. We therefore defined an onset frequency of blocks based on a power-law magnitude-frequency distribution and determined their propagation probabilities on a virtual slope based on rockfall simulations. Simulations were run for different forest and non-forest scenarios under varying forest stand and terrain conditions. We analysed rockfall frequencies and intensities at five different distances from the release area. Based on two multivariate statistical prediction models, we investigated which of the terrain and forest characteristics predominantly drive the role of forest in reducing rockfall occurrence frequency and intensity and whether they are able to predict the effect of forest on rockfall risk. The rockfall occurrence frequency below forested slopes is reduced between approximately 10 and 90 % compared to non-forested slope conditions; whereas rockfall intensity is reduced by 10 to 70 %. This reduction increases with increasing slope length and decreases with decreasing tree density, tree diameter and increasing rock volume, as well as in cases of clustered or gappy forest structures. The statistical prediction models reveal that the cumulative basal area of trees, block volume and horizontal forest structure represent key variables for the prediction of the protective effect of forests. In order to validate these results, models have to be tested on real slopes with a wide variation of terrain and forest conditions.

  8. Regional-scale controls on the spatial activity of rockfalls (Turtmann Valley, Swiss Alps) - A multivariate modeling approach

    NASA Astrophysics Data System (ADS)

    Messenzehl, Karoline; Meyer, Hanna; Otto, Jan-Christoph; Hoffmann, Thomas; Dikau, Richard

    2017-06-01

    In mountain geosystems, rockfalls are among the most effective sediment transfer processes, reflected in the regional-scale distribution of talus slopes. However, the understanding of the key controlling factors seems to decrease with increasing spatial scale, due to emergent and complex system behavior and not least to recent methodological shortcomings in rockfall modeling research. In this study, we aim (i) to develop a new approach to identify major regional-scale rockfall controls and (ii) to quantify the relative importance of these controls. Using a talus slope inventory in the Turtmann Valley (Swiss Alps), we applied for the first time the decision-tree based random forest algorithm (RF) in combination with a principal component logistic regression (PCLR) to evaluate the spatial distribution of rockfall activity. This study presents new insights into the discussion on whether periglacial rockfall events are controlled more by topo-climatic, cryospheric, paraglacial or/and rock mechanical properties. Both models explain the spatial rockfall pattern very well, given the high areas under the Receiver Operating Characteristic (ROC) curves of > 0.83. Highest accuracy was obtained by the RF, correctly predicting 88% of the rockfall source areas. The RF appears to have a great potential in geomorphic research involving multicollinear data. The regional permafrost distribution, coupled to the bedrock curvature and valley topography, was detected to be the primary rockfall control. Rockfall source areas cluster within a low-radiation elevation belt (2900-3300 m a.s.l,) consistent with a permafrost probability of > 90%. The second most important factor is the time since deglaciation, reflected by the high abundance of rockfalls along recently deglaciated (< 100 years), north-facing slopes. However, our findings also indicate a strong rock mechanical control on the paraglacial rockfall activity, declining either exponentially or linearly since deglaciation. The study demonstrates the benefit of combined statistical approaches for predicting rockfall activity in deglaciated, permafrost-affected mountain valleys and highlights the complex interplay between rock mechanical, paraglacial and topo-climatic controls at the regional scale.

  9. Monitoring of a steep rockfall area experiencing fast displacements in Kåfjord, Northern Norway

    NASA Astrophysics Data System (ADS)

    Dreiås Majala, Gudrun; Harald Blikra, Lars; Skrede, Ingrid; Kristensen, Lene

    2016-04-01

    An unstable rockfall area in Kåfjord, Northern Norway, was recognized during periodic monitoring campaigns in July and early September 2015. The LiSALab ground based Interferometric Synthethic Aperture Radar (GB InSAR) from Ellegi were used. A relatively sharply defined steep area of 1200 m2 (6.000 - 12.000 m3) was documented to be in movement. Norwegian Water Resources and Energy Directorate (NVE) was at this point performing mitigation work in terms of an embarkment within the rockfall run-out area. The monitoring system was reinstalled and adjusted to perform continuous monitoring with an early-warning aim. The section for rockslide management in NVE was responsible for the monitoring and the warning to the municipality and Police. The displacements increased from about 1 mm/day in July to 3 cm/day in mid September. People were evalcuated due to increased velocities the 16th of September. The displacements continued to increase in several stages, and with a distinct accelleration the 2nd of October. The velocity peaked in a short window to more than 200 cm/day, and it ended with a partly frontal and sideway collapse of the unstable area. However, large parts of the area stabilized again, and the run-out lengths from the small rockfalls were limited. The GB InSAR system operated exceptionally well during the event, and were able to follow continuously the displacements during the accelleration stage until collapse as the processing time window was frequently adjusted to the changes in velocity. We were also able to follow inidividual rockfalls from the images - primarily as the rockfall impact points on the slope below showed up clearly on the radar images. The area continued to stabilize due to falling temperatures, and the mitigation work were finished during the fall. The displacements seem to be correlated to the increasing temperatures in late summer and precipitation events.

  10. Methodologies For A Physically Based Rockfall Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Agliardi, F.; Crosta, G. B.; Guzzetti, F.; Marian, M.

    Rockfall hazard assessment is an important land planning tool in alpine areas, where settlements progressively expand across rockfall prone areas, rising the vulnerability of the elements at risk, the worth of potential losses and the restoration costs. Nev- ertheless, hazard definition is not simple to achieve in practice and sound, physically based assessment methodologies are still missing. In addition, the high mobility of rockfalls implies a more difficult hazard definition with respect to other slope insta- bilities for which runout is minimal. When coping with rockfalls, hazard assessment involves complex definitions for "occurrence probability" and "intensity". The local occurrence probability must derive from the combination of the triggering probability (related to the geomechanical susceptibility of rock masses to fail) and the transit or impact probability at a given location (related to the motion of falling blocks). The intensity (or magnitude) of a rockfall is a complex function of mass, velocity and fly height of involved blocks that can be defined in many different ways depending on the adopted physical description and "destructiveness" criterion. This work is an attempt to evaluate rockfall hazard using the results of numerical modelling performed by an original 3D rockfall simulation program. This is based on a kinematic algorithm and allows the spatially distributed simulation of rockfall motions on a three-dimensional topography described by a DTM. The code provides raster maps portraying the max- imum frequency of transit, velocity and height of blocks at each model cell, easily combined in a GIS in order to produce physically based rockfall hazard maps. The results of some three dimensional rockfall models, performed at both regional and lo- cal scale in areas where rockfall related problems are well known, have been used to assess rockfall hazard, by adopting an objective approach based on three-dimensional matrixes providing a positional "hazard index". Different hazard maps have been ob- tained combining and classifying variables in different ways. The performance of the different hazard maps has been evaluated on the basis of past rockfall events and com- pared to the results of existing methodologies. The sensitivity of the hazard index with respect to the included variables and their combinations is discussed in order to constrain as objective as possible assessment criteria.

  11. A landslide susceptibility map of Africa

    NASA Astrophysics Data System (ADS)

    Broeckx, Jente; Vanmaercke, Matthias; Duchateau, Rica; Poesen, Jean

    2017-04-01

    Studies on landslide risks and fatalities indicate that landslides are a global threat to humans, infrastructure and the environment, certainly in Africa. Nonetheless our understanding of the spatial patterns of landslides and rockfalls on this continent is very limited. Also in global landslide susceptibility maps, Africa is mostly underrepresented in the inventories used to construct these maps. As a result, predicted landslide susceptibilities remain subject to very large uncertainties. This research aims to produce a first continent-wide landslide susceptibility map for Africa, calibrated with a well-distributed landslide dataset. As a first step, we compiled all available landslide inventories for Africa. This data was supplemented by additional landslide mapping with Google Earth in underrepresented regions. This way, we compiled 60 landslide inventories from the literature (ca. 11000 landslides) and an additional 6500 landslides through mapping in Google Earth (including 1500 rockfalls). Various environmental variables such as slope, lithology, soil characteristics, land use, precipitation and seismic activity, were investigated for their significance in explaining the observed spatial patterns of landslides. To account for potential mapping biases in our dataset, we used Monte Carlo simulations that selected different subsets of mapped landslides, tested the significance of the considered environmental variables and evaluated the performance of the fitted multiple logistic regression model against another subset of mapped landslides. Based on these analyses, we constructed two landslide susceptibility maps for Africa: one for all landslide types and one excluding rockfalls. In both maps, topography, lithology and seismic activity were the most significant variables. The latter factor may be surprising, given the overall limited degree of seismicity in Africa. However, its significance indicates that frequent seismic events may serve as in important preparatory factor for landslides. This finding concurs with several other recent studies. Rainfall explains a significant, but limited part of the observed landslide pattern and becomes insignificant when also rockfalls are considered. This may be explained by the fact that a significant fraction of the mapped rockfalls occurred in the Sahara desert. Overall, both maps perform well in predicting intra-continental patterns of mass movements in Africa and explain about 80% of the observed variance in landslide occurrence. As a result, these maps may be a valuable tool for planning and risk reduction strategies.

  12. The Rockfall Buzzsaw: Quantifying the role of frost processes on mountain evolution

    NASA Astrophysics Data System (ADS)

    Hales, T.; Roering, J. J.

    2006-12-01

    The height and relief of high mountains reflects a balance between uplift, caused by tectonic and isostatic forces, and erosion, by fluvial, glacial, periglacial, and hillslope processes. Recently, models of mountain evolution have focused on the importance of glaciers in eroding deep valleys, a process referred to as the "glacial buzzsaw". Little attention has been paid to the role of periglacial processes, despite large scree slopes and rubble-covered glaciers being common in mountains. Frost cracking induced rockfall erosion has wide acceptance in the literature and a number of local studies have calculated high rockfall erosion rates in cold environments; but the question remains, how important is frost cracking in eroding bedrock in mountainous environments? We quantify how and where ice-driven mechanical erosion occurs in cold, bedrock-dominated landscapes using a simple one-dimensional numerical heat flow model. In our model, ice grows by water migration to colder regions in shallow rock by the reduction in chemical potential associated with intermolecular forces between ice and mineral surfaces, a process called segregation ice growth. Positive MAT sites are characterized by intense cracking in the top meter of the rock mass and a maximum frost penetration of ~4m. In contrast, negative MAT areas have an order of magnitude less intense cracking that primarily occurs at depths between 50 and 800 cm. This suggests that periglacial erosion may be concentrated in a narrow elevation range (corresponding to areas with a MAT between 0 and 2°C). At higher MATs ice growth is limited to very shallow depths. As MATs dip below zero, frost cracking intensity is reduced considerably resulting in a high and frozen condition. These results suggest that rocks with a fracture spacing of less than 400cm provide more sites for the nucleation and growth of segregation ice, and are therefore more susceptible to frost-induced bedrock weathering. To quantify the effect of ice weathering, we compared the elevation, rock fracture spacing, and the rockfall erosion rate for three areas, the eastern Southern Alps, New Zealand (fracture spacing of <10cm), rock outcrops in Utah (variable fracture spacing), and Mt. Whitney, Sierra Nevada (fracture spacing of ~400 cm). The eastern Southern Alps are characterized by large (km scale) scree slopes, rapid rockfall erosion rates (~0.1 mm/yr), and rounded peaks whose maximum elevation corresponds with the ~0°C isotherm. The eastern Sierra Nevada has small scree slopes and steep pinnacled ridges and peaks above the -5°C isotherm, consistent with the high and frozen scenario. In Utah the highest rockfall frequencies occur in coincidence with the 0.5°C isotherm. These results hint at an interplay between mountain height and rock fracture spacing, such that the height of mountains with highly fractured rocks may be limited by the intense frost processes coincident with the 1°C isotherm. In this case, mountain elevations may be limited by a rockfall buzzsaw, which efficiently erodes bedrock within a narrow elevation band, the location of which is controlled by glacial- interglacial climate cycles.

  13. Comparison of three GIS-based models for predicting rockfall runout zones at a regional scale

    NASA Astrophysics Data System (ADS)

    Dorren, Luuk K. A.; Seijmonsbergen, Arie C.

    2003-11-01

    Site-specific information about the level of protection that mountain forests provide is often not available for large regions. Information regarding rockfalls is especially scarce. The most efficient way to obtain information about rockfall activity and the efficacy of protection forests at a regional scale is to use a simulation model. At present, it is still unknown which forest parameters could be incorporated best in such models. Therefore, the purpose of this study was to test and evaluate a model for rockfall assessment at a regional scale in which simple forest stand parameters, such as the number of trees per hectare and the diameter at breast height, are incorporated. Therefore, a newly developed Geographical Information System (GIS)-based distributed model is compared with two existing rockfall models. The developed model is the only model that calculates the rockfall velocity on the basis of energy loss due to collisions with trees and on the soil surface. The two existing models calculate energy loss over the distance between two cell centres, while the newly developed model is able to calculate multiple bounces within a pixel. The patterns of rockfall runout zones produced by the three models are compared with patterns of rockfall deposits derived from geomorphological field maps. Furthermore, the rockfall velocities modelled by the three models are compared. It is found that the models produced rockfall runout zone maps with rather similar accuracies. However, the developed model performs best on forested hillslopes and it also produces velocities that match best with field estimates on both forested and nonforested hillslopes irrespective of the slope gradient.

  14. Application of the Unity Rockfall Model to Variable Surface Material Conditions

    NASA Astrophysics Data System (ADS)

    Sala, Zac; Hutchinson, D. Jean; Ondercin, Matthew

    2017-04-01

    Rockfall is a geological process that poses risks to the safe operation of transportation infrastructure in mountainous environments world wide. The Unity rockfall model was created as a tool for 3D rockfall simulation as part of the Railway Ground Hazards Research Program, studying the impact of geotechnical hazards affecting Canadian railways [1]. The Unity rockfall model demonstrates the applicability of 3D video game engines for the development of realistic simulations, leveraging high-resolution site data collected using remote sensing techniques. Currently work is being done to further calibrate the model as an engineering tool for decision support. Calibration datasets include high-resolution terrestrial LiDAR and helicopter photogrammetry data collected as part of an ongoing rockfall monitoring program along the Thompson River Valley in south-central British Columbia, Canada. Change detection techniques developed as part of the program have been used to construct a database of rockfall event history and to develop magnitude-frequency relationships for rockfalls in the area [2][3]. Data collected as part of a controlled rock-rolling field program in Christchurch, New Zealand [4] is also being utilized for model calibration. Data on block dynamics for the artificially triggered rockfalls were collected through the use of embedded motion sensors and a sixteen camera setup. These experiments provide detailed information on block kinematics, and capture each impact point of the rockfall with the slope, thus offering a valuable dataset for comparison with modelling results. The research reported here explores the ability of the game engine based modelling technique to simulate rockfall under the variable slope conditions present at each of the sites where calibration data was collected. This includes steep natural rock slopes, with debris-talus cover, as well as shallower slopes with soil cover and vegetation. The varying slope conditions in each environment affect the dominant processes controlling rockfall movement downslope. In comparison to rock on rock collisions, impacts with soil and talus exhibit lower restitution values, with more energy loss occurring, but less overall fragmentation expected. The current modelling efforts present example workflows for each case, showing the steps taken to run realistic simulations using the Unity rockfall model. A comparison of the setup, model inputs and methods implemented in the model for each case study demonstrates the adaptability of the tool to different rockfall environments. References: [1] Ondercin, M.: An Exploration of Rockfall Modelling Through Game Engines, M.A.Sc Thesis, Queen's University, Kingston, 2016 [2] Kromer, R., Hutchinson, D.J., Lato, M., Gauthier, D., and Edwards, T. 2015. Identifying rock slope failure precursors using LiDAR for transportation corridor hazard management. Engineering Geology, 195, 93-103. doi:10.1016/j.enggeo.2015.05.012 [3] van Veen, M., Hutchinson, D.J., Kromer, R., Lato, M., and Edwards, T. (Submitted September 2016) Effects of Sampling Interval on the Frequency-Magnitude Relationship of Rockfalls Detected from Terrestrial Laser Scanning using Semi-Automated Methods. Landslides, MS number: LASL-D-16-00258. [4] Vick, L.M.: Evaluation of Field Data and 3D Modelling for Rockfall Hazard Assessment, Ph.D Thesis, University of Canterbury, Christchurch, 2015

  15. Assessment of rockfall hazard at Al-Noor Mountain, Makkah city (Saudi Arabia) using spatio-temporal remote sensing data and field investigation

    NASA Astrophysics Data System (ADS)

    Youssef, Ahmed M.; Pradhan, Biswajeet; Al-Kathery, Mohamed; Bathrellos, George D.; Skilodimou, Hariklia D.

    2015-01-01

    Rockfall is one of the major concerns along different urban areas and highways all over the world. Al-Noor Mountain is one of the areas that threaten rockfalls to the Al-Noor escarpment track road and the surrounding urban areas. Thousands of visitors and tourisms use the escarpment track road to visit Hira cave which is located at the top of Al-Noor Mountain. In addition, the surrounding urban areas of Al-Noor Mountain are continuously spreading over the recent years. The escarpment track road and the surrounding urban areas are highly vulnerable and suffers from recurrent rockfall mostly in the rainy season. The steep and highly jointed slope along the different faces of the mountain makes these zones prone to failure due to different actions such as weathering, erosion and anthropogenic effect. Therefore, an attempt has been made in this study to determine the Al-Noor cliff stability, by identifying the unstable areas, and to apply the rockfall simulations. A combination of remote sensing, field study and 2D computer simulation rockfall program were performed to assess surface characteristics of the cliff faces. Bounce height, total and translational kinetic energy, translational velocity, and number of blocks have been estimated. Different unstable zones along the Al-Noor Mountain and escarpment track road were determined using filed investigation and remote sensing based image analysis. In addition the rockfall simulation analysis indicated that rockfall in zone 1 and zone 2 of the Al-Noor Mountain may reach the urban areas, whereas rockfall in zone 3 will not reach the urban areas, and rockfalls along the Al-Noor escarpment track road will have highly impact on the tourists. Proper preventive measures are also suggested to arrest the movement of falling rocks before reaching the urban areas and the Al-Noor escarpment track road. If proper care is taken, then further uncertain rockfall hazards can be prevented.

  16. Improved characterization, monitoring and instability assessment of high rock faces by integrating TLS and GB-InSAR

    NASA Astrophysics Data System (ADS)

    Bianchetti, Matteo; Agliardi, Federico; Villa, Alberto; Battista Crosta, Giovanni; Rivolta, Carlo

    2015-04-01

    Rockfall risk analysis require quantifying rockfall onset susceptibility and magnitude scenarios at source areas, and the expected rockfall trajectories and related dynamic quantities. Analysis efforts usually focus on the rockfall runout component, whereas rock mass characterization and block size distribution quantification, monitoring and analysis of unstable rock volumes are usually performed using simplified approaches, due to technological and site-specific issues. Nevertheless, proper quantification of rock slope stability and rockfall magnitude scenarios is key when dealing with high rock walls, where widespread rockfall sources and high variability of release mechanisms and block volumes can result in excessive modelling uncertainties and poorly constrained mitigation measures. We explored the potential of integrating field, remote sensing, structural analysis and stability modelling techniques to improve hazard assessment at the Gallivaggio sanctuary site, a XVI century heritage located along the State Road 36 in the Spluga Valley (Italian Central Alps). The site is impended by a subvertical cliff up to 600 m high, made of granitic orthogneiss of the Truzzo granitic complex (Tambo Nappe, upper Pennidic domain). The rock mass is cut by NNW and NW-trending slope-scale structural lineaments and by 5-6 fracture sets with variable spatial distribution, spacing and persistence, which bound blocks up to tens of cubic meters and control the 3D slope morphology. The area is characterised by widespread rock slope instability from rockfalls to massive failures. Although a 180 m long embankment was built to protect the site from rockfalls, concerns remain about potential large unstable rock volumes or flyrocks projected by the widely observed impact fragmentation of stiff rock blocks. Thus, the authority in charge started a series of periodical GB-InSAR monitoring surveys using LiSALabTM technology (12 surveys in 2011-2014), which outlined the occurrence of unstable spots spread over the cliff, with cm-scale cumulative displacements in the observation period. To support the interpretation and analysis of these data, we carried out multitemporal TLS surveys (5 sessions between September 2012 and October 2014) using a Riegl VZ-1000 long-range laser scanner. We performed rock mass structural analyses on dense TLS point clouds using two different approaches: 1) manual discontinuity orientation and intensity measurement from digital outcrops; 2) automatic feature extraction and intensity evaluation through the development of an original Matlab tool, suited for multi-scale applications and optimized for parallel computing. Results were validated using field discontinuity measurements and compared to evaluate advantages and limitations of different approaches, and allowed: 1) outlining the precise location, geometry and kinematics of unstable blocks and block clusters corresponding to radar moving spots; 2) performing stability analyses; 3) quantifying rockwall changes over the observation period. Our analysis provided a robust spatial characterization of rockfall sources, block size distribution and onset susceptibility as input for 3D runout modelling and quantitative risk analysis.

  17. A 3D Analysis of Rock Block Deformation and Failure Mechanics Using Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Rowe, Emily; Hutchinson, D. Jean; Kromer, Ryan A.; Edwards, Tom

    2017-04-01

    Many natural geological hazards are present along the Thompson River corridor in British Columbia, Canada, including one particularly hazardous rocky slope known as the White Canyon. Railway tracks used by Canadian National (CN) and Canadian Pacific (CP) Railway companies pass through this area at the base of the Canyon slope. The geologically complex and weathered rock face exposed at White Canyon is prone to rockfalls. With a limited ditch capacity, these falling rocks have the potential to land on the tracks and therefore increase the risk of train derailment. Since 2012, terrestrial laser scanning (TLS) data has been collected at this site on a regular basis to enable researchers at Queen's University to study these rockfalls in greater detail. In this paper, the authors present a summary of an analysis of these TLS datasets including an examination of the pre-failure deformation patterns exhibited by failed rock blocks as well as an investigation into the influence of structural constraints on the pre-failure behavior of these blocks. Aligning rockfall source zones in an early point cloud dataset to a later dataset generates a transformation matrix describing the movement of the block from one scan to the next. This process was repeated such that the motion of the block over the entire TLS data coverage period was measured. A 3D roto-translation algorithm was then used to resolve the motion into translation and rotation components (Oppikofer et al. 2009; Kromer et al. 2015). Structural information was plotted on a stereonet for further analysis. A total of 111 rockfall events exceeding a volume of 1 m3 were analyzed using this approach. The study reveals that although some rockfall source blocks blocks do not exhibit detectable levels of deformation prior to failure, others do experience cm-level translation and rotation on the order of 1 to 6 degrees before detaching from the slope. Moreover, these movements may, in some cases, be related to the discontinuity planes on the slope that were confining the block. It is concluded that rock blocks in White Canyon may be classified as one of five main failure mechanisms based on their pre-failure deformation and structure: planar slide, topple, rotation, wedge, and overhang, with overhang failures representing a large portion of rockfalls in this area. Overhang rockfalls in the White Canyon are characterized by blocks that (a) are not supported by an underlying discontinuity plane, and (b) generally do not exhibit pre-failure deformation. Though overhanging rock blocks are a structural subset of toppling failure, their behavior suggests a different mechanism of detachment. Future work will further populate the present database of rockfalls in White Canyon and will expand the study to include other sites along this corridor. The ultimate goal of this research is to establish warning thresholds based on deformation magnitudes for rockfalls in White Canyon to assist Canadian railways in better understanding and managing these slopes.

  18. The rockfall hazard rating system.

    DOT National Transportation Integrated Search

    1991-11-01

    The development and dissemination of the Rockfall Hazard Rating System (RHRS) is complete. RHRS is intended to be a proactive tool that will allow transportation agencies to address rationally their rockfall hazards instead of simply reacting to rock...

  19. Endurance of rockfall protection fences

    NASA Astrophysics Data System (ADS)

    Gerber, W.; Meyer, M.

    2009-04-01

    Research on rockfall protection systems usually focuses on the performance of flexible barriers regarding their limit or design energy retention capacity. This research increased the maximum retention by a factor 15 within the last 15-20 years. Today rockfall energies up to 5'000 kJ can be retained. But this is relevant only for actual projects and newly erected barriers. However, the majority of all barriers installed in the alpine area were built many years ago and there is little knowledge on their long-term performance. Among others this includes not only the consideration of maintenance works such as man and machine power as well as yearly costs, but also the endurance of such barriers over the years. Such information normally stays at the authority or institution that initiated the construction of a protection system and/or is responsible for the maintenance of the object. But even if an institution maintains a large number of barriers, there mostly does not exist a general inventory because the barriers were installed over a time period of sometimes more than 30 years enduring many changes in the inventory procedures, drawings and documentations. Therefore, an actual investigation of all rockfall barriers protecting a sector of the Swiss railways (SBB) was performed in order to obtain an overview of their conditions. This project delivers both a detailed analysis of more than 100 single barriers and a statistically evaluable overview. It also allows a comparison between different generations of barrier types, independently from the different producers of the barriers. In a first step existing catalogues and data belonging to the relevant barriers were evaluated, summarized and mapped into topographic maps using GIS allowing a proper planning of the field trip, optimised regarding route, time consumption and possibly necessary closures of rail tracks. During the field investigations each barrier was inspected and all details regarding structural system, geometry, age, retained rockfall volume, probable remaining load capacity, damages, mistakes during erection, sufficient distance to rail tracks for the stopping process of the falling rock etc. were logged and photographically documented. The posterior analyses then lead to an overall classification of the single barriers into the three groups good/sufficent/insufficent resulting in different priority levels regarding the next suggested maintenance steps. The classification depends on whether a barrier can stop a frequent and a medium-sized rockfall event or not. The analysis gives a general overview of all barriers as well as a separate describtion of all criticised barriers to enable a proper planning of the repair tasks. The final summary over all barriers within the investigated sector can also be used to predict the expenditure on repairs for other areas assuming that the investigated barriers reflect the average of barriers installed in other areas. It also revealed that the barriers can be divided into two main groups older and younger than 1990. Around this date the rockfall retention techniques changed completely from more or less rigid fences towards full dynamically operating systems with net curtain effects along support ropes and special energy absorbing devices. For the first time, such an extensive inventory has been compiled and revealed its necessity to now have a unified data basis. The investigation also showed - and this will be shown more closely in the presentation - an in general good status of the protection systems after many years of operation. Although most of the modern flexible barriers are general in a good status, too, it has to be pointed out, that they are not necessarily appropriate to protect the railway infrastructure if they are erected to close to the tracks. The required stopping distance of the barriers has to be taken into account.

  20. Multi-temporal change image inference towards false alarms reduction for an operational photogrammetric rockfall detection system

    NASA Astrophysics Data System (ADS)

    Partsinevelos, Panagiotis; Kallimani, Christina; Tripolitsiotis, Achilleas

    2015-06-01

    Rockfall incidents affect civil security and hamper the sustainable growth of hard to access mountainous areas due to casualties, injuries and infrastructure loss. Rockfall occurrences cannot be easily prevented, whereas previous studies for rockfall multiple sensor early detection systems have focused on large scale incidents. However, even a single rock may cause the loss of a human life along transportation routes thus, it is highly important to establish methods for the early detection of small-scale rockfall incidents. Terrestrial photogrammetric techniques are prone to a series of errors leading to false alarm incidents, including vegetation, wind, and non relevant change in the scene under consideration. In this study, photogrammetric monitoring of rockfall prone slopes is established and the resulting multi-temporal change imagery is processed in order to minimize false alarm incidents. Integration of remote sensing imagery analysis techniques is hereby applied to enhance early detection of a rockfall. Experimental data demonstrated that an operational system able to identify a 10-cm rock movement within a 10% false alarm rate is technically feasible.

  1. Rockfall triggering by cyclic thermal stressing of exfoliation fractures

    USGS Publications Warehouse

    Collins, Brian D.; Stock, Greg M.

    2016-01-01

    Exfoliation of rock deteriorates cliffs through the formation and subsequent opening of fractures, which in turn can lead to potentially hazardous rockfalls. Although a number of mechanisms are known to trigger rockfalls, many rockfalls occur during periods when likely triggers such as precipitation, seismic activity and freezing conditions are absent. It has been suggested that these enigmatic rockfalls may occur due to solar heating of rock surfaces, which can cause outward expansion. Here we use data from 3.5 years of field monitoring of an exfoliating granite cliff in Yosemite National Park in California, USA, to assess the magnitude and temporal pattern of thermally induced rock deformation. From a thermodynamic analysis, we find that daily, seasonal and annual temperature variations are sufficient to drive cyclic and cumulative opening of fractures. Application of fracture theory suggests that these changes can lead to further fracture propagation and the consequent detachment of rock. Our data indicate that the warmest times of the day and year are particularly conducive to triggering rockfalls, and that cyclic thermal forcing may enhance the efficacy of other, more typical rockfall triggers.

  2. The role of alpine rockfall aquifer systems in baseflow maintenance and flood attenuation

    NASA Astrophysics Data System (ADS)

    Lauber, Ute; Kotyla, Patrick; Morche, David; Goldscheider, Nico

    2015-04-01

    Rockfall masses are frequent in alpine valleys. Huge rockfalls (millions to billions m³) precipitated after the end of the last glaciation, but many large events (thousand to millions m³) have occurred in historical time, and increasingly during the past decades, as a result of glacier retreat and thawing of permafrost. Most hydrological research focuses on water as a cause or trigger of rockfalls, while much less research has been done on the hydrogeological properties and functions of rockfall masses in alpine valleys. We have studied a series of rockfall and alluvial aquifer systems in the Reintal valley, German Alps, where all surface water infiltrates underground and reemerges downgradient from the rockfall masses. The goal of the study was to characterize the role of this rockfall aquifer in baseflow maintenance and flood attenuation. Employed methods include geomorphological and hydrogeological mapping, tracer tests, and continuous flow measurements. Field observations have revealed that both the infiltration and exfiltration locations vary as a function of the hydrologic conditions. Underground flow path length range from 500 m during high flows to 2 km during low flows; measured groundwater flow velocities range between 13 and 30 m/h; lag times between upstream and downstream flood peaks are 5 to 101 hours. Flood peaks were dampened by a factor of 1.5 and the maximum discharge ratio (22) and peak recession coefficient (0.2/d) downstream are very low compared with other alpine catchments. These results indicate that rockfall aquifers can play an important role in the flow regime and flood attenuation in alpine regions.

  3. Rockfall Hazard Process Assessment : Final Project Report

    DOT National Transportation Integrated Search

    2017-10-01

    After a decade of using the Rockfall Hazard Rating System (RHRS), the Montana Department of Transportation (MDT) sought a reassessment of their rockfall hazard evaluation process. Their prior system was a slightly modified version of the RHRS and was...

  4. An integrated management tool for rockfall evaluation along transportation corridors: the ParaChute research project

    NASA Astrophysics Data System (ADS)

    Cloutier, Catherine; Locat, Jacques; Mayers, Mélanie; Noël, François; Turmel, Dominique; Jacob, Chantal; Dorval, Pierre; Bossé, François; Gionet, Pierre; Jaboyedoff, Michel

    2016-04-01

    Rockfall is a significant hazard along linear infrastructures due to the presence of natural and man-made rock slopes. Knowing where the problematic rockfalls source areas are is of primary importance to properly manage and mitigate the risk associated to rockfall along linear infrastructures. The aim of the ParaChute research project is to integrate various technologies into a workflow for rockfall characterization for such infrastructures, using a 220 km-long railroad as the study site which is located on Québec's North Shore, Canada. The objectives of this 3-year project which started in 2014 are: (1) to optimize the use of terrestrial, mobile and airborne laser scanners data into terrain analysis, structural geology analysis and rockfall susceptibility rating, (2) to further develop the use of unmanned aerial vehicles (UAV) for photogrammetry applied to rock cliff characterization, and (3) to integrate rockfall simulation studies into a rock slope classification system similar to the Rockfall Hazard Rating System. Firstly, based on laser scanner data and aerial photographs, the morpho-structural features of the terrain (genetic material, landform, drainage, etc.) are mapped. The result can be used to assess all types of mass movements. Secondly, to guide field work and decrease uncertainty of various parameters, systematic rockfall simulations and a first structural analysis are made from point clouds acquired by mobile and airborne laser scanner. The simulation results are used to recognize the rock slopes that have potentially problematic rockfall paths, meaning they could reach the linear infrastructure. Other rock slopes are not included in the inventory. Field work is carried out to validate and complete the rock slopes characterization previously made from remote sensing technique. Because some or parts of cliffs are not visible or accessible from the railroad, we are currently developing the use of photogrammetry by UAV in order to complete the characterization of these rock slopes. At a cliff scale, joint sets orientation and spacing were quantified to identify failure mechanisms and evaluate the most active rockfall areas in order to define susceptibility criteria at that scale. Finally, using all these information, a system will be developed offering, in graphical form, a way to systematically assess rockfall sources and support the development of a dynamic mitigation strategy.

  5. Link between surface temperature and documented rockfalls in the Mont Blanc massif rockwalls

    NASA Astrophysics Data System (ADS)

    Magnin, Florence; Deline, Philip; Ravanel, Ludovic

    2014-05-01

    Recent studies show that rockfall activity has increased along the three past decades in high mountain areas, and permafrost degradation is regarded as the main triggering factor. 433 rockfalls affecting the steep rockwalls of the Mont Blanc massif have been inventoried and documented (time and precise location, topographical and geological settings, volume, conditions, etc.) from 2007 to 2011. With the aim of better understanding geomorphic processes, we address questions about the thermal state of the unstable rockwalls within this study area. A statistical model of the Mean Annual Rock Surface Temperature (MARST) for the 1961-1990 period has been implemented on a 4-m-resolution DEM of the Mont Blanc massif. The model runs with Potential Incoming Solar radiation (PISR) calculated with GIS tools and air temperature parameters computed from Chamonix Météo France's records. 87 rockfalls are located at the geographical margins of the DEM, where the PISR calculation doesn't take account of the surrounding hillshading and biased MARST simulation. Thus, only 346 rockfalls were kept and linked to a MARST value after data sorting. Preliminary results show that rockfalls occurred over a modelled MARST range of -6°C to 5°C. MARSTs ranging from -2.5°C to 2.5°C encompass about 60% of the rockfalls. The mean MARST value for the 346 rockfalls is of -0.9°C. Simulated warm permafrost areas (> -2°C) are therefore appearing as the most affected by instabilities. These first observations reinforce the hypothesis that permafrost degradation is likely the dominant triggering factor of these rockfalls. The 1961-1990 period is supposed to be representative of the conditions at depth that are not affected by the recent climate warming. This means that the here presented results are mainly valuable for rockfalls related to pluri-decadal signal. But they also suggest that MARST model is an interesting tool to explore the link between rockwall instability and permafrost state. Simulations at various time scales would allow more precise reconstruction of the bedrock temperature during each year of rockfalls. Model possibilities and the related outcomings will be also presented.

  6. Quantifying rockfall risk on roads in the Port Hills, Christchurch, New Zealand

    NASA Astrophysics Data System (ADS)

    Unterrader, Stefan; Fuchs, Sven

    2016-04-01

    The Canterbury earthquake sequence starting on 22 September 2010 triggered widespread mass movements in the Port Hills area of Christchurch, the largest agglomeration of New Zealand's South Island. The MW 6.2 Christchurch earthquake of 22 February 2011 in particular generated the largest ground motions ever recorded in New Zealand and as a result initiated several thousands of rockfalls. Over 6,000 boulders were released and mapped shortly after the event. The risk from rockfall to residents in the Port Hills was quantitatively assessed by the regulatory authorities in order to develop an adjusted land zoning policy. Apart from damaging residential buildings many of these boulders also hit several road sections across the Port Hills. Due to the inherent differences between identifying hazard and risk to people in static structures and in moving objects, a recently carried out risk assessment of rockfall was limited to exposed properties. However, given the importance of local road infrastructure for commuter traffic, local risk management strategies would clearly benefit from quantifying the threat of boulders endangering traffic lines. For this study, existing datasets describing the hazard including recently estimated frequency-magnitude bands for earthquakes and non-seismic triggering events, boulder production rates, boulder size distribution and associated run-out distances, were used. These data were provided by the Christchurch City Council's (CCC) GIS web service. A digital layer of the local road network as well as a detailed dataset of traffic counts was used for GIS analysis, and the probability of individuals being hit by boulders was calculated for each road segment that intersects one or more rockfall hazard zones. Finally, risk was computed. The method applied follows a state-of-the-art approach in risk assessment which is generally based on the risk equation defining risk as the probability of occurrence of an event times the expected loss. More specifically, both the annual collective risk and individual risk of being hit by rockfalls on the Port Hills traffic lines were calculated. Both risk terms were assessed by drawing on a well-established method originally developed for evaluating snow avalanche risk on high-alpine pass roads. In order to reflect the discontinuous distribution of rockfall across the hazard zone (i.e. boulders will only hit certain points or follow one specific run-out path compared to the typical snow avalanche run-out behaviour) the original risk equation was adjusted. Hence, (1) the annual collective risk as well as the individual risk of being hit by rockfalls when travelling on the local road network was quantified, (2) the temporal dynamics of most susceptible elements at risk (i.e. commuter traffic) were identified and related dynamics in risk were assessed, and (3) the specific case of waiting traffic and the associated increase in fatality risk compared to moving traffic was computed. The results of this study provide first insights in both the collective and individual rockfall fatality risk on important traffic lines across the Port Hills. Road sections that are most prone to rockfall hazard were clearly identified in high spatial resolution. Sensitivity analysis of main parameters showed that the decrease in seismic hazard expected over the next decades resulted in decreasing rockfall hazard and therefore decreasing fatality risk even if currently increasing traffic volumes will further rise. Furthermore, a closer look on the individual risk of commuters was addressing some of the challenges within the inherent static approach of the risk concept, namely the temporal dynamics in traffic flow. It was further shown that the main traffic line, Tunnel Road, is characterized by a strongly diurnal variability including two traffic peaks between 7 and 9 a.m. and around 5 to 6 p.m. Additionally, the influence of road blockage by boulders falling onto endangered road sections was also responsible for an increasing annual fatality risk of road users on most of the studied road sections. Several conceptual shortcomings in previous studies were addressing this issue, particularly with respect to simplifying assumptions repeatedly made during the risk computation. The results of this study highlight some of the most important aspects in this regard. Finally, the risk of being hit by rockfalls while travelling on the roads of the study area were compared to other risks faced (and tolerated) by the New Zealand citizens. The spatio-temporal dynamics in rockfall risk across the Port Hills road network clearly had shown the inherent limitations of any static risk assessment. Fatality numbers in the Port Hills were low during the 22 February 2011 event because the earthquake hit around noon and it is shown that similar ground shaking intensities occurring during rush hour are likely to cause several fatalities on the main transportation lines. These risks are further increased as traffic jams are very likely to form after extensive road blockage. In addition, rockfall hitting critical infrastructure not only pose fatality risk to people travelling along these lines but also affect the ability of emergency response teams to safely assess parts of the area which otherwise would be cut off. This temporal aspect has yet to be incorporated into local risk management strategies. The clear identification of the road segments most prone to boulder hits can serve the authorities as decision support for any future mitigation works.

  7. Effects of protection forests on rockfall risks: implementation in the Swiss risk concept

    NASA Astrophysics Data System (ADS)

    Trappmann, Daniel; Moos, Christine; Fehlmann, Michael; Ernst, Jacqueline; Sandri, Arthur; Dorren, Luuk; Stoffel, Markus

    2016-04-01

    Forests growing on slopes below active rockfall cliffs can provide effective protection for human lives and infrastructures. The risk-based approach for natural hazards in Switzerland shall take such biological measures just like existing technical protective measures into account, provided that certain criteria regarding condition, maintenance and durability are met. This contribution describes a project in which we are investigating how the effects of protection forests can be considered in rockfall risk analyses in an appropriate way. In principle, protection forests reduce rockfall risks in three different ways: (i) reduction of the event magnitude (energy) due to collisions with tree stems; (ii) reduction of frequency of occurrence of a given scenario (block volume arriving at the damage potential); (iii) reduction of spatial probability of occurrence (spread and runout) of a given scenario in case of multiple fragments during one event. The aim of this work is to develop methods for adequately implementing these three effects of rockfall protection forests in risk calculations. To achieve this, we use rockfall simulations taking collisions with trees into account and detailed field validation. On five test sites, detailed knowledge on past rockfall activity is gathered by combining investigations of impacted trees, analysis of documented historical events, and deposits in the field. Based on this empirical data on past rockfalls, a methodology is developed that allows transferring real past rockfall activity to simulation results obtained with the three-dimensional, process-based model Rockyfor3D. Different ways of quantifying the protective role of forests will be considered by comparing simulation results with and without forest cover. Combining these different research approaches, systematic considerations shall lead to the development of methods for adequate inclusion of the protective effects of forests in risk calculations. The applicability of the developed methods will be tested on the case study slopes in order to ensure practical applicability to a broad range of rockfall situations on forested slopes.

  8. Determination of the rockfall source in an urban settlement area by using a rule-based fuzzy evaluation

    NASA Astrophysics Data System (ADS)

    Aksoy, H.; Ercanoglu, M.

    2006-10-01

    The evaluation of the rockfall initiation mechanism and the simulation of the runout behavior is an important issue in the prevention and remedial measures for potential rockfall hazards in highway protection, in forest preservation, and especially in urban settlement areas. In most of the studies in the literature, the extent of the rockfall hazard was determined by various techniques basing on the selection of a rockfall source, generally defined as zones of rock bodies having slope angles higher than a certain value, proposed by general practice. In the present study, it was aimed to carry out a rule-based fuzzy analysis on the discontinuity data of andesites in the city of Ankara, Turkey, in order to bring a different and rather systematic approach to determine the source areas for rockfall hazard in an urban settlement, based on the discontinuity and natural slope features. First, to obtain rock source areas (RSAs), data obtained from the field studies were combined with a rule-based fuzzy evaluation, incorporating the altitude difference, the number of discontinuities, the number of wedges and the number of potential slides as the parameters of the fuzzy sets. After processing the outputs of the rule-based fuzzy system and producing the linguistic definitions, it could be possible to obtain potential RSAs. According to the RSA maps, 1.7% of the study area was found to have "high RSA", and 5.8% of the study area was assigned as "medium RSA". Then, potential rockfall hazard map was prepared. At the final stage, based upon the high and medium RSAs, 3.6% of the study area showed "high rockfall potential", while areal distribution of "medium rockfall potential" was found as 7.9%. Both RSA and potential rockfall hazard map were in accordance with the observations performed in the field.

  9. The influence of environmental and lithologic factors on rockfall at a regional scale: an evaluation using GIS

    NASA Astrophysics Data System (ADS)

    Menéndez Duarte, Rosana; Marquínez, Jorge

    2002-02-01

    Analysis of the spatial distribution of rockfall deposits at a regional scale (over an area of 250 km 2 of northern Spain) using a cartographic database supported by a Geographic Information System (GIS) reveals several relationships between rockfall activity and environmental variables. Recent rockfall activity is inferred when recent scree is preserved at the bottom of the rock slopes. In order to identify the slope source areas of the scree we have mapped the deposit's drainage basin, applying topographic criteria, and we have combined these basins with the rock slopes map. A method for setting the basin boundaries automatically will replace manual cartography. This method is based on algorithms available within many commercial software programs and originally planned to analyse the behaviour of fluids over a topographic surface. The results obtained by combining the rockfall area source map with the geology and DTM show the relationships between the distribution of rockfall deposits and lithology, elevation and slope of the rockwall and a strong control of the joint type and density. Elevation influence on rockfall has been associated with climatic variations with elevation. Other variables, such as orientation, show complex influences that are difficult to interpret.

  10. Rockfalls in the Duratón canyon, central Spain: Inventory and statistical analysis

    NASA Astrophysics Data System (ADS)

    Tanarro, Luis M.; Muñoz, Julio

    2012-10-01

    This paper presents an initial analysis of the rockfall processes affecting the walls of the canyon of the River Duratón. This 34 km long meandering canyon in the basin of the River Duero in central Spain (41°18' N, 3°45' W) has evolved in a large-scale outcrop of Late Cretaceous calcareous rocks (dolomite and limestone) deformed into a series of asymmetrical folds. Its vertical scarps range from 80 to 100 m; its width varies from 150 to 300 m; and its floor is between 30 and 50 m wide. The research consisted of drawing up an inventory of rockfalls from a field survey and mapping the fallen blocks deposited on the basal talus or on the canyon floor, which in turn allowed the original location of each block on the scarps to be identified and located on the orthophotos available. A Digital Elevation Model (DEM) was produced using a Geographic Information System (GIS) and maps made of the aspects and slopes. The aspect of each rockfall data point was determined, and this initial database was completed with other significant parameters (location on the valley side, relationship with the tectonic structure and relative age). An approximate delimitation was also produced of the potential rockfall source area, by reclassifying the slopes according to morphometric criteria. The result is a geomorphic rockfall inventory map, showing the distribution of the rockfalls and a basic statistical analysis to allow a preliminary evaluation of the rockfall characteristics in relation to both their topoclimatic location (aspect) and their structural location (with or counter to the dip of the strata) and to the current geomorphic dynamic through a study of recent scars on the scarps. Recent rockfalls have also been related to the meteorological conditions in which they occurred.

  11. Rockfalls in cliffs surrounding waterfall revealed by high-definition topographic measurements

    NASA Astrophysics Data System (ADS)

    Hayakawa, Y. S.; Obanawa, H.

    2017-12-01

    Bedrock rivers of volcanic terrain often comprise numerous knickpoints. Erosion of bedrock at knickpoints is an essential process of fluvial dissection of volcanic landforms, which also affects the deformations of surrounding slopes. However, short term (less than decadal) changes in bedrock landforms have often been limited to examine in a spatiotemporal framework. Here we use terrestrial laser scanning and SfM-MVS photogrammetry to detect recent annual changes in the morphology of cliffs surrounding a waterfall (Kegon Falls) on jointed andesite lava and conglomerates. The amount of bedrock deformation caused by small rockfalls and surface lowering are assessed in volume, which often appears in a relatively lower portion of the cliff. Such the changes are supposed to be affected by the enhanced supply of water and weathering following the latest major rockfall in 1986 which caused 8-m recession of the waterfall lip. The three-dimensional point cloud data is also utilized to construct a 3D model using cardboards, which is useful for understanding the topography and its changes of the waterfall as educational resources.

  12. Reconstruction of the rock fall/avalanche frequency in the Mont Blanc massif since the Last Glacial Maximum. New results using 10Be cosmogenic dating and reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Gallach, Xavi; Ogier, Christophe; Ravanel, Ludovic; Deline, Philip; Carcaillet, Julien

    2017-04-01

    Rockfalls and rock avalanches are active processes in the Mont Blanc massif, with infrastructure and alpinists at risk. Thanks to a network of observers (hut keepers, mountain guides, alpinists) set up in 2007 present rockfalls are well surveyed and documented. Rockfall frequency over the past 150 years has been studied by comparison of historical photographs, showing that it strongly increased during the three last decades, especially during hot periods like the summer of 2003 and 2015, due to permafrost degradation driven by the climate change. In order to decipher the possible relationship between rockfall occurrence and the warmest periods of the Lateglacial and the Holocene, we start to study the morphodynamics of some selected high-elevated (>3000 m a.s.l.) rockwalls of the massif on a long timescale. Contrary to low altitude, deglaciated sites where study of large rockfall deposits allows to quantify frequency and magnitude of the process, rockfalls that detached from high-elevated rockwalls are no more noticeable as debris were absorbed and evacuated by the glaciers. Therefore, our study focuses on the rockfall scars. Their 10Be dating gives us the rock surface exposure age from present to far beyond the Last Glacial Maximum, interpreted as the rockfall ages. TCN dating of rockfalls has been carried out at the Aiguille du Midi in 2007 (Boehlert et al., 2008), and three other sites in the Mont Blanc massif in 2011 (Gallach et al., submitted). Here we present a new data set of rockfall dating carried out in 2015 that improves the 2007 and 2011 data. Furthermore, a relationship between the colour of the Mont Blanc granite and its exposure age has been shown: fresh rock surface is light grey (e.g. in recent rockfall scars) whereas weathered rock surface is in the range grey to orange/red: the redder a rock surface, the older its age. Here, reflectance spectroscopy is used to quantify the granite surface colour. Böhlert, R., Gruber, S., Egli, M., Maisch, M., Brandová, D., Haeberli, W., Ivy-Ochs, S., Christl, M., Kubik, P.W., Deline, P. (2008). Comparison of exposure ages and spectral propierties of rock surfaces in steep, high alpine rock walls of Aiguille du Midi, France. Proceedings of the 9th International Conference on Permafrost, 143-148. Gallach, X. et al. (submitted). Timing of rockfalls in the Mont Blanc massif (western Alps). Evidences from surface exposure dating with cosmogenic 10Be. Landslides.

  13. Experiments and Dynamic Finite Element Analysis of a Wire-Rope Rockfall Protective Fence

    NASA Astrophysics Data System (ADS)

    Tran, Phuc Van; Maegawa, Koji; Fukada, Saiji

    2013-09-01

    The imperative need to protect structures in mountainous areas against rockfall has led to the development of various protection methods. This study introduces a new type of rockfall protection fence made of posts, wire ropes, wire netting and energy absorbers. The performance of this rock fence was verified in both experiments and dynamic finite element analysis. In collision tests, a reinforced-concrete block rolled down a natural slope and struck the rock fence at the end of the slope. A specialized system of measuring instruments was employed to accurately measure the acceleration of the block without cable connection. In particular, the performance of two energy absorbers, which contribute also to preventing wire ropes from breaking, was investigated to determine the best energy absorber. In numerical simulation, a commercial finite element code having explicit dynamic capabilities was employed to create models of the two full-scale tests. To facilitate simulation, certain simplifying assumptions for mechanical data of each individual component of the rock fence and geometrical data of the model were adopted. Good agreement between numerical simulation and experimental data validated the numerical simulation. Furthermore, the results of numerical simulation helped highlight limitations of the testing method. The results of numerical simulation thus provide a deeper understanding of the structural behavior of individual components of the rock fence during rockfall impact. More importantly, numerical simulations can be used not only as supplements to or substitutes for full-scale tests but also in parametric study and design.

  14. Laser Scanning Systems and Techniques in Rockfall Source Identification and Risk Assessment: A Critical Review

    NASA Astrophysics Data System (ADS)

    Fanos, Ali Mutar; Pradhan, Biswajeet

    2018-04-01

    Rockfall poses risk to people, their properties and to transportation ways in mountainous and hilly regions. This catastrophe shows various characteristics such as vast distribution, sudden occurrence, variable magnitude, strong fatalness and randomicity. Therefore, prediction of rockfall phenomenon both spatially and temporally is a challenging task. Digital Terrain model (DTM) is one of the most significant elements in rockfall source identification and risk assessment. Light detection and ranging (LiDAR) is the most advanced effective technique to derive high-resolution and accurate DTM. This paper presents a critical overview of rockfall phenomenon (definition, triggering factors, motion modes and modeling) and LiDAR technique in terms of data pre-processing, DTM generation and the factors that can be obtained from this technique for rockfall source identification and risk assessment. It also reviews the existing methods that are utilized for the evaluation of the rockfall trajectories and their characteristics (frequency, velocity, bouncing height and kinetic energy), probability, susceptibility, hazard and risk. Detail consideration is given on quantitative methodologies in addition to the qualitative ones. Various methods are demonstrated with respect to their application scales (local and regional). Additionally, attention is given to the latest improvement, particularly including the consideration of the intensity of the phenomena and the magnitude of the events at chosen sites.

  15. A re-analysis of 533 rockfalls occurred since 2003 in the Mont Blanc massif for the study of their relationship with permafrost

    NASA Astrophysics Data System (ADS)

    Ravanel, Ludovic; Magnin, Florence; Deline, Philip

    2015-04-01

    Rockfall is one of the main natural hazards in high mountain regions and its frequency is growing, especially since two decades. Collapses at high elevation are with an increasing certainty assumed to be a consequence of the climate change through the warming permafrost. In the Mont Blanc massif, data on present rockfalls (occurrence time when possible, accurate location, topographical and geological settings, volume, weather and snow conditions) were acquired for 2003 and for the period 2007-2014 thanks to a satellite image of the massif and a network of observers in the central part of the massif, respectively. The study of the 533 so-documented rockfalls shows a strong correlation at the year scale between air temperature and rockfall. Along with this data acquisition, a statistical model of the Mean Annual Rock Surface Temperature (MARST) for the 1961-1990 period has been implemented on a 4-m-resolution DEM of the Mont Blanc massif. The model runs with Potential Incoming Solar radiation (PISR) calculated with GIS tools and air temperature parameters computed from Chamonix Météo France records. We cross here the data on rockfalls with the permafrost distribution model to show that: (i) rockfall occurs mainly over modeled negative MARST (context of permafrost); (ii) simulated warm permafrost areas (> -2°C) are the most affected by instabilities; (iii) as the 1961-1990 period is supposed to be representative of the conditions at depth that are not affected by the climate warming during the two last decades, the latest results are mainly valuable for rockfalls related to pluri-decadal signal; and (iv) the higher (close to 0°C) the MARST, the deeper the detachment (possibly related to the deepening of the permafrost active layer). These results and field observations confirm that warming permafrost corresponds to the main required configuration for rockfall triggering at high elevation. In addition, we show that rockfalls for which ice observed in their scar indicates the presence of permafrost can be used to validate the permafrost distribution model.

  16. Assessment of rockfall susceptibility by integrating statistical and physically-based approaches

    NASA Astrophysics Data System (ADS)

    Frattini, Paolo; Crosta, Giovanni; Carrara, Alberto; Agliardi, Federico

    In Val di Fassa (Dolomites, Eastern Italian Alps) rockfalls constitute the most significant gravity-induced natural disaster that threatens both the inhabitants of the valley, who are few, and the thousands of tourists who populate the area in summer and winter. To assess rockfall susceptibility, we developed an integrated statistical and physically-based approach that aimed to predict both the susceptibility to onset and the probability that rockfalls will attain specific reaches. Through field checks and multi-temporal aerial photo-interpretation, we prepared a detailed inventory of both rockfall source areas and associated scree-slope deposits. Using an innovative technique based on GIS tools and a 3D rockfall simulation code, grid cells pertaining to the rockfall source-area polygons were classified as active or inactive, based on the state of activity of the associated scree-slope deposits. The simulation code allows one to link each source grid cell with scree deposit polygons by calculating the trajectory of each simulated launch of blocks. By means of discriminant analysis, we then identified the mix of environmental variables that best identifies grid cells with low or high susceptibility to rockfalls. Among these variables, structural setting, land use, and morphology were the most important factors that led to the initiation of rockfalls. We developed 3D simulation models of the runout distance, intensity and frequency of rockfalls, whose source grid cells corresponded either to the geomorphologically-defined source polygons ( geomorphological scenario) or to study area grid cells with slope angle greater than an empirically-defined value of 37° ( empirical scenario). For each scenario, we assigned to the source grid cells an either fixed or variable onset susceptibility; the latter was derived from the discriminant model group (active/inactive) membership probabilities. Comparison of these four models indicates that the geomorphological scenario with variable onset susceptibility appears to be the most realistic model. Nevertheless, political and legal issues seem to guide local administrators, who tend to select the more conservative empirically-based scenario as a land-planning tool.

  17. Introducing Meta-models for a More Efficient Hazard Mitigation Strategy with Rockfall Protection Barriers

    NASA Astrophysics Data System (ADS)

    Toe, David; Mentani, Alessio; Govoni, Laura; Bourrier, Franck; Gottardi, Guido; Lambert, Stéphane

    2018-04-01

    The paper presents a new approach to assess the effecctiveness of rockfall protection barriers, accounting for the wide variety of impact conditions observed on natural sites. This approach makes use of meta-models, considering a widely used rockfall barrier type and was developed from on FE simulation results. Six input parameters relevant to the block impact conditions have been considered. Two meta-models were developed concerning the barrier capability either of stopping the block or in reducing its kinetic energy. The outcome of the parameters range on the meta-model accuracy has been also investigated. The results of the study reveal that the meta-models are effective in reproducing with accuracy the response of the barrier to any impact conditions, providing a formidable tool to support the design of these structures. Furthermore, allowing to accommodate the effects of the impact conditions on the prediction of the block-barrier interaction, the approach can be successfully used in combination with rockfall trajectory simulation tools to improve rockfall quantitative hazard assessment and optimise rockfall mitigation strategies.

  18. Rockfall hazard and risk assessments along roads at a regional scale: example in Swiss Alps

    NASA Astrophysics Data System (ADS)

    Michoud, C.; Derron, M.-H.; Horton, P.; Jaboyedoff, M.; Baillifard, F.-J.; Loye, A.; Nicolet, P.; Pedrazzini, A.; Queyrel, A.

    2012-03-01

    Unlike fragmental rockfall runout assessments, there are only few robust methods to quantify rock-mass-failure susceptibilities at regional scale. A detailed slope angle analysis of recent Digital Elevation Models (DEM) can be used to detect potential rockfall source areas, thanks to the Slope Angle Distribution procedure. However, this method does not provide any information on block-release frequencies inside identified areas. The present paper adds to the Slope Angle Distribution of cliffs unit its normalized cumulative distribution function. This improvement is assimilated to a quantitative weighting of slope angles, introducing rock-mass-failure susceptibilities inside rockfall source areas previously detected. Then rockfall runout assessment is performed using the GIS- and process-based software Flow-R, providing relative frequencies for runout. Thus, taking into consideration both susceptibility results, this approach can be used to establish, after calibration, hazard and risk maps at regional scale. As an example, a risk analysis of vehicle traffic exposed to rockfalls is performed along the main roads of the Swiss alpine valley of Bagnes.

  19. Roadway management plan based on rockfall modelling calibration and validation. Application along the Ma-10 road in Mallorca (Spain)

    NASA Astrophysics Data System (ADS)

    Mateos, Rosa Maria; Garcia, Inmaculada; Reichenbach, Paola; Herrera, Gerardo; Sarro, Roberto; Rius, Joan; Aguilo, Raul

    2016-04-01

    The Tramuntana range, in the northwestern sector of the island of Mallorca (Spain), is frequently affected by rockfalls which have caused significant damage, mainly along the road network. The Ma-10 road constitutes the main transportation corridor on the range with a heavy traffic estimated at 7,200 vehicles per day on average. With a length of 111 km and a tortuous path, the road is the connecting track for 12 municipalities and constitutes a strategic road on the island for many tourist resorts. For the period spanning from 1995 to current times, 63 rockfalls have affected the Ma-10 road with volumes ranging from 0.3m3 to 30,000 m3. Fortunately, no fatalities occurred but numerous blockages on the road took place which caused significant economic losses, valued of around 11 MEuro (Mateos el al., 2013). In this work we present the procedure we have applied to calibrate and validate rockfall modelling in the Tramuntana region, using 103 cases of the available detailed rockfall inventory (Mateos, 2006). We have exploited STONE (Guzzetti et al. 2002), a GIS based rockfall simulation software which computes 2D and 3D rockfall trajectories starting from a DTM and maps of the dynamic rolling friction coefficient and of the normal and tangential energy restitution coefficients. The appropriate identification of these parameters determines the accuracy of the simulation. To calibrate them, we have selected 40 rockfalls along the range which include a wide variety of outcropping lithologies. Coefficients values have been changed in numerous attempts in order to select those where the extent and shape of the simulation matched the field mapping. Best results were summarized with the average statistical values for each parameter and for each geotechnical unit, determining that mode values represent more precisely the data. Initially, for the validation stage, 10 well- known rockfalls exploited in the calibration phase have been selected. Confidence tests have been applied taking into account, not only the success, but also the mistakes. We have further validated the calibrated parameters along the Ma-road using the 63 rockfall recorded during the past 18 years along the road. 81.5% of the rockfalls are well represented by STONE modelling. Results have been exploited by the Road Maintenance Service of Mallorca for the design of the following road management plan: (1) Phase 1. Short-term. Design a specific plan for the road- sections where rockfalls were registered and modelling results were obtained. A large investment will be expended for implementation of retention and protection measures. (2) Phase 2. Medium-term. Design a specific plan for the road- sections where rockfalls were registered but no modelling results were obtained. For these cases, new studies at local scale are necessary as well as the application of other modelling software which include higher resolution input data. (3) Phase 3. Long-term. Design a specific plan for the road- sections where no rockfalls were registered but modelling results were obtained. These are potential rockfall areas and local and specific ground studies are necessaries. References Mateos RM (2006) Los movimientos de ladera en la Serra de Tramuntana (Mallorca). Caracterización geomecánica y análisis de peligrosidad. PhD. Servicio de Publicaciones de la Universidad Complutense de Madrid. Madrid, 299 p. Mateos RM, García-Moreno I, Herrera G, Mulas J (2013) Damage caused by recent mass-movements in Majorca (Spain), a region with a high risk due to tourism.Landslide Science and Practice.Claudio Margottini, Paolo Canuti and KyojiSassa (Editors). Volume 7: Social and Economic Impact and Policies. 105-113. Guzzetti F, Crosta G, Detti R, Agliardi F (2002) STONE: A computer program for the three-dimensional simulation of rock-falls. Computers Geosciences. Vol. 28:1079-1093.

  20. Influence of tectonic folding on rockfall susceptibility, American Fork Canyon, Utah, USA

    USGS Publications Warehouse

    Coe, J.A.; Harp, E.L.

    2007-01-01

    We examine rockfall susceptibility of folded strata in the Sevier fold-thrust belt exposed in American Fork Canyon in north-central Utah. Large-scale geologic mapping, talus production data, rock-mass-quality measurements, and historical rockfall data indicate that rockfall susceptibility is correlated with limb dip and curvature of the folded, cliff-forming Mississippian limestones. On fold limbs, rockfall susceptibility increases as dip increases. This relation is controlled by several factors, including an increase in adverse dip conditions and apertures of discontinuities, and shearing by flexural slip during folding that has reduced the friction angles of discontinuities by smoothing surface asperities. Susceptibility is greater in fold hinge zones than on adjacent limbs primarily because there are greater numbers of discontinuities in hinge zones. We speculate that susceptibility increases in hinge zones as fold curvature becomes tighter.

  1. Block ground interaction of rockfalls

    NASA Astrophysics Data System (ADS)

    Volkwein, Axel; Gerber, Werner; Kummer, Peter

    2016-04-01

    During a rockfall the interaction of the falling block with the ground is one of the most important factors that define the evolution of a rockfall trajectory. It steers the rebound, the rotational movement, possibly brake effects, friction losses and damping effects. Therefore, if most reliable rockfall /trajectory simulation software is sought a good understanding of the block ground interaction is necessary. Today's rockfall codes enable the simulation of a fully 3D modelled block within a full 3D surface . However, the details during the contact, i.e. the contact duration, the penetration depth or the dimension of the marks in the ground are usually not part of the simulation. Recent field tests with rocks between 20 and 80 kg have been conducted on a grassy slope in 2014 [1]. A special rockfall sensor [2] within the blocks measured the rotational velocity and the acting accelerations during the tests. External video records and a so-called LocalPositioningSystem deliver information on the travel velocity. With these data not only the flight phases of the trajectories but also the contacts with the ground can be analysed. During the single jumps of a block the flight time, jump length, the velocity, and the rotation are known. During the single impacts their duration and the acting accelerations are visible. Further, the changes of rotational and translational velocity influence the next jump of the block. The change of the rotational velocity over the whole trajectory nicely visualizes the different phases of a rockfall regarding general acceleration and deceleration in respect to the inclination and the topography of the field. References: [1] Volkwein A, Krummenacher B, Gerber W, Lardon J, Gees F, Brügger L, Ott T (2015) Repeated controlled rockfall trajectory testing. [Abstract] Geophys. Res. Abstr. 17: EGU2015-9779. [2] Volkwein A, Klette J (2014) Semi-Automatic Determination of Rockfall Trajectories. Sensors 14: 18187-18210.

  2. Calculation of the rockwall recession rate of a limestone cliff, affected by rockfalls, using cosmogenic chlorine-36. Case study of the Montsec Range (Eastern Pyrenees, Spain)

    NASA Astrophysics Data System (ADS)

    Domènech, Guillem; Corominas, Jordi; Mavrouli, Olga; Merchel, Silke; Abellán, Antonio; Pavetich, Stefan; Rugel, Georg

    2018-04-01

    Cliff erosion may be a major problem in settled areas affecting populations and producing economic and ecological losses. In this paper we present a procedure to calculate the long-term retreat rate of a cliff affected by rockfalls in the Montsec Range, Eastern Pyrenees (Spain). It is composed of low, densely fractured limestones; and the rockwall is affected by rockfalls of different sizes. The rockfall scars are clearly distinguishable by their regular boundaries and by their orange colour, which contrast with the greyish old reference surface (S0) of the cliff face. We have dated different stepped surfaces of the rockwall, including S0, using cosmogenic 36Cl. The total amount of material released by rockfall activity was calculated using a high definition point cloud of the slope face obtained with a terrestrial laser scanner (TLS). The present rockwall surface has been subtracted from the reconstructed old cliff surface. This has allowed the calculation of the total volume released by rockfalls and of the retreat rate. The latter ranges from 0.31 to 0.37 mm·a- 1. This value is of the same order of magnitude as that obtained by other researchers in neighbouring regions in Spain, having similar geology and affected by rockfalls.

  3. Geotechnical applications of LiDAR pertaining to geomechanical evaluation and hazard identification

    NASA Astrophysics Data System (ADS)

    Lato, Matthew J.

    Natural hazards related to ground movement that directly affect the safety of motorists and highway infrastructure include, but are not limited to, rockfalls, rockslides, debris flows, and landslides. This thesis specifically deals with the evaluation of rockfall hazards through the evaluation of LiDAR data. Light Detection And Ranging (LiDAR) is an imaging technology that can be used to delineate and evaluate geomechanically-controlled hazards. LiDAR has been adopted to conduct hazard evaluations pertaining to rockfall, rock-avalanches, debris flows, and landslides. Characteristics of LiDAR surveying, such as rapid data acquisition rates, mobile data collection, and high data densities, pose problems to traditional CAD or GIS-based mapping methods. New analyses methods, including tools specifically oriented to geomechanical analyses, are needed. The research completed in this thesis supports development of new methods, including improved survey techniques, innovative software workflows, and processing algorithms to aid in the detection and evaluation of geomechanically controlled rockfall hazards. The scientific research conducted between the years of 2006-2010, as presented in this thesis, are divided into five chapters, each of which has been published by or is under review by an international journal. The five research foci are: (i) geomechanical feature extraction and analysis using LiDAR data in active mining environments; (ii) engineered monitoring of rockfall hazards along transportation corridors: using mobile terrestrial LiDAR; (iii) optimization of LiDAR scanning and processing for automated structural evaluation of discontinuities in rockmasses; (iv) location orientation bias when using static LiDAR data for geomechanical analysis; and (v) evaluating roadside rockmasses for rockfall hazards from LiDAR data: optimizing data collection and processing protocols. The research conducted pertaining to this thesis has direct and significant implications with respect to numerous engineering projects that are affected by geomechanical stability issues. The ability to efficiently and accurately map discontinuities, detect changes, and standardize roadside geomechanical stability analyses from remote locations will fundamentally change the state-of-practice of geotechnical investigation workflows and repeatable monitoring. This, in turn, will lead to earlier detection and definition of potential zones of instability, will allow for progressive monitoring and risk analysis, and will indicate the need for pro-active slope improvement and stabilization.

  4. Rockfall travel distances theoretical distributions

    NASA Astrophysics Data System (ADS)

    Jaboyedoff, Michel; Derron, Marc-Henri; Pedrazzini, Andrea

    2017-04-01

    The probability of propagation of rockfalls is a key part of hazard assessment, because it permits to extrapolate the probability of propagation of rockfall either based on partial data or simply theoretically. The propagation can be assumed frictional which permits to describe on average the propagation by a line of kinetic energy which corresponds to the loss of energy along the path. But loss of energy can also be assumed as a multiplicative process or a purely random process. The distributions of the rockfall block stop points can be deduced from such simple models, they lead to Gaussian, Inverse-Gaussian, Log-normal or exponential negative distributions. The theoretical background is presented, and the comparisons of some of these models with existing data indicate that these assumptions are relevant. The results are either based on theoretical considerations or by fitting results. They are potentially very useful for rockfall hazard zoning and risk assessment. This approach will need further investigations.

  5. Modified rockfall catch fence Mayflower Creek - Detroit Dam : final report.

    DOT National Transportation Integrated Search

    1988-08-08

    The experimental features project is located on the North Santiam Highway (#162) between Mayflower Creek and Detroit Dam, approximately 40 miles east of Salem. Here access is limited and the slope is nonuniform. To deal with the constant problem of f...

  6. Modified rockfall catch fence Mayflower Creek - Detroit Dam : interim Report.

    DOT National Transportation Integrated Search

    1986-07-01

    This experimental features project is located on the North Santiam Highway (#162) between Mayflower Creek and Detroit Dam, approximately 40 miles east of Salem. Here access is limited and the slope is non-uniform. To deal with the problem of falling ...

  7. Rapid 3-D analysis of rockfalls

    USGS Publications Warehouse

    Stock, Greg M.; Guerin, A.; Avdievitch, Nikita N.; Collins, Brian D.; Jaboyedoff, Michel

    2018-01-01

    Recent fatal and damaging rockfalls in Yosemite National Park indicate the need for rapid response data collection methods to inform public safety and assist with management response. Here we show the use of multiple-platform remote sensing methods to rapidly capture pertinent data needed to inform management and the public following a several large rockfalls from El Capitan cliff in Yosemite Valley, California.

  8. Rockfall Modelling with Remedial Design and Measures along Part of a Mountainous Settlement Area, Southern Turkey

    NASA Astrophysics Data System (ADS)

    Güntel, Berna; Acar, Altay

    2016-10-01

    In June 2011, a heavy rainfall triggered a number of rockfalls from steep slopes and on slopes made of soft to loose soils capped by inhomogeneous hard rock blocks and masses in the Düziçi Town of Osmaniye Province in Turkey. Large rock blocks had damaged 15 prefabricated hotel rooms whereas the slope movement blocked the major road between Duzigi and hot spring facilities at numerous locations along 280 m. This paper describes remedial measures and design recommended according to the modelling process based on the collection of data and simulation of rockfall with Rocscience RockFall 5.0 software.

  9. Rock-fall potential in the Yosemite Valley, California

    USGS Publications Warehouse

    Wieczorek, G.F.; Morrissey, M.M.; Iovine, Giulio; Godt, Jonathan

    1999-01-01

    We used two methods of estimating rock-fall potential in the Yosemite Valley, California based on (1) physical evidence of previous rock-fall travel, in which the potential extends to the base of the talus, and (2) theoretical potential energy considerations, in which the potential can extend beyond the base of the talus, herein referred to as the rock-fall shadow. Rock falls in the valley commonly range in size from individual boulders of less than 1 m3 to moderate-sized falls with volumes of about 100,000 m3. Larger rock falls exceeding 100,000 m3, referred to as rock avalanches, are considered to be much less likely to occur based on the relatively few prehistoric rock-fall avalanche deposits in the Yosemite Valley. Because the valley has steep walls and is relatively narrow, there are no areas that are absolutely safe from large rock avalanches. The map shows areas of rock-fall potential, but does not predict when or how frequently a rock fall will occur. Consequently, neither the hazard in terms of probability of a rock fall at any specific location, nor the risk to people or facilities to such events can be assessed from this map.

  10. Rock face stability analysis and potential rockfall source detection in Yosemite Valley

    NASA Astrophysics Data System (ADS)

    Matasci, B.; Stock, G. M.; Jaboyedoff, M.; Oppikofer, T.; Pedrazzini, A.; Carrea, D.

    2012-04-01

    Rockfall hazard in Yosemite Valley is especially high owing to the great cliff heights (~1 km), the fracturing of the steep granitic cliffs, and the widespread occurrence of surface parallel sheeting or exfoliation joints. Between 1857 and 2011, 890 documented rockfalls and other slope movements caused 15 fatalities and at least 82 injuries. The first part of this study focused on realizing a structural study for Yosemite Valley at both regional (valley-wide) and local (rockfall source area) scales. The dominant joint sets were completely characterized by their orientation, persistence, spacing, roughness and opening. Spacing and trace length for each joint set were accurately measured on terrestrial laser scanning (TLS) point clouds with the software PolyWorks (InnovMetric). Based on this fundamental information the second part of the study aimed to detect the most important failure mechanisms leading to rockfalls. With the software Matterocking and the 1m cell size DEM, we calculated the number of possible failure mechanisms (wedge sliding, planar sliding, toppling) per cell, for several cliffs of the valley. Orientation, spacing and persistence measurements directly issued from field and TLS data were inserted in the Matterocking calculations. TLS point clouds are much more accurate than the 1m DEM and show the overhangs of the cliffs. Accordingly, with the software Coltop 3D we developed a methodology similar to the one used with Matterocking to identify on the TLS point clouds the areas of a cliff with the highest number of failure mechanisms. Exfoliation joints are included in this stability analysis in the same way as the other joint sets, with the only difference that their orientation is parallel to the local cliff orientation and thus variable. This means that, in two separate areas of a cliff, the exfoliation joint set is taken into account with different dip direction and dip, but its effect on the stability assessment is the same. Areas with a high density of possible failure mechanisms are shown to be more susceptible to rockfalls, demonstrating a link between high fracture density and rockfall susceptibility. This approach enables locating the most probable future rockfall sources and provides key elements needed to evaluate the potential volume and run-out distance of rockfall blocks. This information is used to improve rockfall hazard assessment in Yosemite Valley and elsewhere.

  11. RPAS application for estimating road exposition to rockfall

    NASA Astrophysics Data System (ADS)

    Santangelo, Michele; Alvioli, Massimiliano; Baldo, Marco; Giordan, Daniele; Guzzetti, Fausto; Marchesini, Ivan; Reichenbach, Paola

    2017-04-01

    The use of Remotely Piloted Aircraft Systems (RPASs) for landslide analysis and characterization is often aimed at the acquisition of DSMs and orthpohotos. One of the most interesting utilizations of RPASs to landslide studies consists in the production of data for rockfall risk assessment. A typical approach to study rockfalls consists in the application of numerical or stochastic models for the definition of possible trajectories of rock blocks to accurate DTMs of the source and runout areas. In this work, the case study of the rockfall of Vinnanova di Accumoli (Marche Region, central Italy) is presented and discussed. In this area, the earthquakes of the seismic sequence started on 24 August 2016 that struck central Italy caused several rockfalls that, in some cases damaged roads, and represented a threat to the population. In particular, the provincial road SP18 near Villanova di Accumoli was closed due to a 1 m3 rock block that fell down from the slope and crossed the SP20, partially damaging it. During the emergency, it was decided to apply a numerical model to estimate the trajectories of the remaining instable rock masses and to define the possible places where to set up protection measures to safely re-open the road. Therefore, a survey with a multicopter was carried out to obtain (i) an accurate DSM of the source area and the slope (ii) the identification and characterization of other instable blocks possibly not visible in the field. The 6,500 m2 area was covered by a total 161 photograms by a 34 Mpixel camera, obtaining a 1.5 cm/pixel Ground Sampling Distance (GSD). The final orthophoto has a resolution of 2.5 cm, whereas the DSM has a resolution of 20 cm. The DSM was then filtered by a three-step procedure including manual removal of sparse vegetation cover. In area covered by dense vegetation (the lower part of the slope) the DSM could not be manually filtered, which hampered to run the numerical model. This problem was addressed by a GPS RTK survey of the most vegetated area. A total of 73 points with less than 1m error were acquired and integrated in the DTM. The resulting integrated DTM has a resolution of 25 cm. The numerical model STONE was then applied to the source areas mapped in the field and by photo-interpretation of the RPAS orthophoto to get a 1m raster showing the potential trajectories of the mapped instable rock masses. Results showed that only the part of the road hit by the rockfall was actually exposed to rockfall trajectories. Therefore only limited protection measures were suggested to reduce the exposition of the road.

  12. The rockfall observatory in the Reintal, Wetterstein Massif, German Alps

    NASA Astrophysics Data System (ADS)

    Schöpa, Anne; Turowski, Jens M.; Hovius, Niels

    2017-04-01

    The Reintal is an Alpine valley in the Wetterstein Massif close to the Zugspitze, Germany's highest mountain. Due to the variety of active geomorphic processes, including rockfalls off the steep limestone cliffs, debris flows, and snow avalanches, and the river Partnach, the Reintal has been the field area of many geomorphological and hydrological research campaigns over the last few decades. In 2014, the Geomorphology Section of the GFZ Potsdam started to install a monitoring network to detect and classify rockfalls in the Reintal. The network includes six seismic stations, optical and infrared cameras, and two weather stations measuring air and rock temperature, air pressure and relative humidity, precipitation, wind speed and direction, and solar radiation. The continuous observations of the network are supplemented by repeated field campaigns including terrestrial laser scans of a prominent rockfall niche at the Hochwanner mountain. The about 1,500 m high north face of the Hochwanner experienced the detachment of a 2.8 Mio m3 rockfall about 500 years ago that created the so-called Steingerümpel (German for rock debris deposit) and dammed the river Partnach. The cliff still shows high rockfall activity, and an 80,000 m3 block can be expected to fall in the near future. In this contribution, the layout of the observatory and details of the seismic network centered around the Hochwanner north face are described. Furthermore, the network data of a severe thunderstorm event in June 2016, that triggered many rockfalls and debris flows in the Reintal, is presented.

  13. Impact of rockfalls on protection measures: an experimental approach

    NASA Astrophysics Data System (ADS)

    Yuan, J.; Li, Y.; Huang, R.; Pei, X.

    2015-01-01

    The determination of rockfall impact force is crucial in designing the protection measures. In the present study, laboratory tests are carried out by taking the weight and shape of the falling rock fragments, drop height, incident angle, platform on the slideway and cushion layer on the protection measures as factors to investigate their influences on the impact force. The test results indicate that the impact force is positively exponential to the weight of rockfall and the instantaneous impact velocity of the rockfall approaching the protection measures. The impact velocity is found to be dominated not only by the drop height but also by the shape of rockfall as well as the length of the platform on the slideway. A great drop height and/or a short platform produce a fast impact velocity. Spherical rockfalls experience a reater impact velocity than cubic and cylindrical ones. A layer of cushion on the protection measures may reduce the impact force to a greater extent. The reduction effects are dominated by the cushion material and the thickness of the cushion layer. The thicker the cushion layer, the greater the reduction effect and the less the impact force. The stiffer the buffer material, the less the buffering effect and the greater the impact force. The present study indicates that the current standard in China for designing protection measures may overestimate the impact force by taking no consideration for the rockfall shape, platform and cushion layer.

  14. Rockfall induced seismic signals: case study in Montserrat, Catalonia

    NASA Astrophysics Data System (ADS)

    Vilajosana, I.; Suriñach, E.; Abellán, A.; Khazaradze, G.; Garcia, D.; Llosa, J.

    2008-08-01

    After a rockfall event, a usual post event survey includes qualitative volume estimation, trajectory mapping and determination of departing zones. However, quantitative measurements are not usually made. Additional relevant quantitative information could be useful in determining the spatial occurrence of rockfall events and help us in quantifying their size. Seismic measurements could be suitable for detection purposes since they are non invasive methods and are relatively inexpensive. Moreover, seismic techniques could provide important information on rockfall size and location of impacts. On 14 February 2007 the Avalanche Group of the University of Barcelona obtained the seismic data generated by an artificially triggered rockfall event at the Montserrat massif (near Barcelona, Spain) carried out in order to purge a slope. Two 3 component seismic stations were deployed in the area about 200 m from the explosion point that triggered the rockfall. Seismic signals and video images were simultaneously obtained. The initial volume of the rockfall was estimated to be 75 m3 by laser scanner data analysis. After the explosion, dozens of boulders ranging from 10-4 to 5 m3 in volume impacted on the ground at different locations. The blocks fell down onto a terrace, 120 m below the release zone. The impact generated a small continuous mass movement composed of a mixture of rocks, sand and dust that ran down the slope and impacted on the road 60 m below. Time, time-frequency evolution and particle motion analysis of the seismic records and seismic energy estimation were performed. The results are as follows: 1 A rockfall event generates seismic signals with specific characteristics in the time domain; 2 the seismic signals generated by the mass movement show a time-frequency evolution different from that of other seismogenic sources (e.g. earthquakes, explosions or a single rock impact). This feature could be used for detection purposes; 3 particle motion plot analysis shows that the procedure to locate the rock impact using two stations is feasible; 4 The feasibility and validity of seismic methods for the detection of rockfall events, their localization and size determination are comfirmed.

  15. Harvesting rockfall hazard evaluation parameters from Google Earth Street View

    NASA Astrophysics Data System (ADS)

    Partsinevelos, Panagiotis; Agioutantis, Zacharias; Tripolitsiotis, Achilles; Steiakakis, Chrysanthos; Mertikas, Stelios

    2015-04-01

    Rockfall incidents along highways and railways prove extremely dangerous for properties, infrastructures and human lives. Several qualitative metrics such as the Rockfall Hazard Rating System (RHRS) and the Colorado Rockfall Hazard Rating System (CRHRS) have been established to estimate rockfall potential and provide risk maps in order to control and monitor rockfall incidents. The implementation of such metrics for efficient and reliable risk modeling require accurate knowledge of multi-parametric attributes such as the geological, geotechnical, topographic parameters of the study area. The Missouri Rockfall Hazard Rating System (MORH RS) identifies the most potentially problematic areas using digital video logging for the determination of parameters like slope height and angle, face irregularities, etc. This study aims to harvest in a semi-automated approach geometric and qualitative measures through open source platforms that may provide 3-dimensional views of the areas of interest. More specifically, the Street View platform from Google Maps, is hereby used to provide essential information that can be used towards 3-dimensional reconstruction of slopes along highways. The potential of image capturing along a programmable virtual route to provide the input data for photogrammetric processing is also evaluated. Moreover, qualitative characterization of the geological and geotechnical status, based on the Street View images, is performed. These attributes are then integrated to deliver a GIS-based rockfall hazard map. The 3-dimensional models are compared to actual photogrammetric measures in a rockfall prone area in Crete, Greece while in-situ geotechnical characterization is also used to compare and validate the hazard risk. This work is considered as the first step towards the exploitation of open source platforms to improve road safety and the development of an operational system where authorized agencies (i.e., civil protection) will be able to acquire near-real time hazard maps based on video images retrieved either by open source platforms, operational unmanned aerial vehicles, and/or simple video recordings from users. This work has been performed under the framework of the "Cooperation 2011" project ISTRIA (11_SYN_9_13989) funded from the Operational Program "Competitiveness and Entrepreneurship" (co-funded by the European Regional Development Fund (ERDF)) and managed by the Greek General Secretariat for Research and Technology.

  16. Quantification of controls on regional rockfall activity and talus deposition, Kananaskis, Canadian Rockies

    NASA Astrophysics Data System (ADS)

    Thapa, Prasamsa; Martin, Yvonne E.; Johnson, E. A.

    2017-12-01

    Rockfall is a significant geomorphic process in many mountainous regions that also poses a notable natural hazard risk. Most previous studies of rockfall erosion have investigated the mechanics and rates of local rockwall retreat and talus deposition, with only a few investigations of rockfall and/or associated talus considering larger spatial scales (i.e., drainage basin, mountain range). The purpose of the current research is to investigate the areal extent of rockfall-talus and controlling factors of its distribution over regional spatial scales (of order 102 km2) in Kananaskis, Canadian Rockies to inform our understanding of its significance in mountain development. To achieve this goal, a large talus inventory is collected and analyzed for 11 steep tributaries of the Kananaskis River, Canadian Rockies. Talus accumulations associated with rockfall provide evidence about the nature and rates of rockfall activity that supplies sediment to these deposits and are the focus of the present study. To quantify the controls of rockfall-talus activity in this region, we analyze the association of talus deposits with structural geology, glacial topography, and temperature-related weathering (i.e., frost cracking). A total of 324 talus polygons covering a surface area of 28.51 km2 are delineated within the 11 study basins, with the number of talus polygons in each study basin ranging from 1 to 73. Analysis of the talus inventory shows that cirques and glacially sculpted valleys are locations of notable talus accumulation in Kananaskis, with other locations of significant talus deposition being associated with thrust faults. We also found that the upper elevations at which talus deposits are typically found are the general range of elevations experiencing a notable number of days in the frost cracking window when this window is defined as - 3 to - 15 °C; no such association is found for the frost cracking window of - 3 to - 8 °C. Estimates of average erosion rates for all study basins combined are between 0.15 mm y- 1 (lower estimate) to 3.1 mm y- 1 (upper estimate). Rockfall activity is expected to have been most active for the several millennia following deglaciation (during the paraglacial period) when hillslopes were oversteepened.

  17. Spatially distributed rockfall activity inferred from talus deposits and corresponding rockwall areas in the Gradenbach catchment (Schober Mountains, Austria)

    NASA Astrophysics Data System (ADS)

    Götz, Joachim; Buckel, Johannes; Heckmann, Tobias

    2013-04-01

    The analysis of alpine sediment cascades requires the identification, differentiation and quantification of sediment sources, storages, and transport processes. This study deals with the origin of alpine sediment transfer and relates primary talus deposits to corresponding rockwall source areas within the Gradenbach catchment (Schober Mountains, Austrian Alps). Sediment storage landforms are based on a detailed geomorphological map of the catchment which was generated to analyse the sediment transfer system. Mapping was mainly performed in the field and supplemented by post-mapping analysis using LIDAR data and digital orthophotos. A fundamental part of the mapping procedure was to capture additional landform-based information with respect to morphometry, activity and connectivity. The applied procedure provides a detailed inventory of sediment storage landforms including additional information on surface characteristics, dominant and secondary erosion and deposition processes, process activity and sediment storage coupling. We develop the working hypothesis that the present-day surface area ratio between rockfall talus (area as a proxy for volume, backed by geophysical analysis of selected talus cones) and corresponding rockwall source area is a measure of rockfall activity since deglaciation; large talus cones derived from small rockwall catchments indicate high activity, while low activity can be inferred where rockfall from large rock faces has created only small deposits. The surface area ratio of talus and corresponding rockwalls is analysed using a landform-based and a process-based approach. For the landform-based approach, we designed a GIS procedure which derives the (hydrological) catchment area of the contact lines of talus and rockwall landforms in the geomorphological map. The process-based approach simulates rockfall trajectories from steep (>45°) portions of a DEM generated by a random-walk rockfall model. By back-tracing those trajectories that end on a selected talus landform, the 'rockfall contributing area' is delineated; this approach takes account of the stochastic nature of rockfall trajectories and is able to identify, for example, rockfall delivery from one rockwall segment to multiple talus landforms (or from multiple rockfall segments to the same deposit, respectively). Using both approaches, a total of 290 rockwall-talus-subsystems are statistically analysed indicating a constant relationship between rockfall source areas and corresponding areas of talus deposits of almost 1:1. However, certain rockwall-talus-subsystems deviate from this correlation since sediment storage landforms of similar size originate from varying rockwall source areas and vice versa. This varying relationship is assumed to be strongly controlled by morphometric parameters, such as rockwall slope, altitudinal interval, and aspect. The impact of these parameters on the surface area ratio will be finally discussed.

  18. Visualizing and modelling complex rockfall slopes using game-engine hosted models

    NASA Astrophysics Data System (ADS)

    Ondercin, Matthew; Hutchinson, D. Jean; Harrap, Rob

    2015-04-01

    Innovations in computing in the past few decades have resulted in entirely new ways to collect 3d geological data and visualize it. For example, new tools and techniques relying on high performance computing capabilities have become widely available, allowing us to model rockfalls with more attention to complexity of the rock slope geometry and rockfall path, with significantly higher quality base data, and with more analytical options. Model results are used to design mitigation solutions, considering the potential paths of the rockfall events and the energy they impart on impacted structures. Such models are currently implemented as general-purpose GIS tools and in specialized programs. These tools are used to inspect geometrical and geomechanical data, model rockfalls, and communicate results to researchers and the larger community. The research reported here explores the notion that 3D game engines provide a high speed, widely accessible platform on which to build rockfall modelling workflows and to provide a new and accessible outreach method. Taking advantage of the in-built physics capability of the 3D game codes, and ability to handle large terrains, these models are rapidly deployed and generate realistic visualizations of rockfall trajectories. Their utility in this area is as yet unproven, but preliminary research shows that they are capable of producing results that are comparable to existing approaches. Furthermore, modelling of case histories shows that the output matches the behaviour that is observed in the field. The key advantage of game-engine hosted models is their accessibility to the general public and to people with little to no knowledge of rockfall hazards. With much of the younger generation being very familiar with 3D environments such as Minecraft, the idea of a game-like simulation is intuitive and thus offers new ways to communicate to the general public. We present results from using the Unity game engine to develop 3D voxel worlds and terrain models from detailed LiDAR and photogrammetric data obtained at a complex slope above a railway corridor in British Columbia, Canada. The data was collected with sufficient frequency that single event rockfall paths were detectable, permitting the impact points and the final resting spots to be determined using LiDAR change detection methods. These specific case histories, including the high resolution, detailed slope geometry from the LiDAR data sets were modelled using game engines, as well as the conventional GIS based and specific rockfall modelling packages. The game engine results compare favourably and in some case outperform conventional tools in terms of rockfall trajectory and slope accuracy, physical realism, data handling capacity, and performance.

  19. Lidar-Based Rock-Fall Hazard Characterization of Cliffs

    USGS Publications Warehouse

    Collins, Brian D.; Greg M.Stock,

    2017-01-01

    Rock falls from cliffs and other steep slopes present numerous challenges for detailed geological characterization. In steep terrain, rock-fall source areas are both dangerous and difficult to access, severely limiting the ability to make detailed structural and volumetric measurements necessary for hazard assessment. Airborne and terrestrial lidar survey methods can provide high-resolution data needed for volumetric, structural, and deformation analyses of rock falls, potentially making these analyses straightforward and routine. However, specific methods to collect, process, and analyze lidar data of steep cliffs are needed to maximize analytical accuracy and efficiency. This paper presents observations showing how lidar data sets should be collected, filtered, registered, and georeferenced to tailor their use in rock fall characterization. Additional observations concerning surface model construction, volumetric calculations, and deformation analysis are also provided.

  20. Forensic analysis of rockfall scars

    NASA Astrophysics Data System (ADS)

    de Vilder, Saskia J.; Rosser, Nick J.; Brain, Matthew J.

    2017-10-01

    We characterise and analyse the detachment (scar) surfaces of rockfalls to understand the mechanisms that underpin their failure. Rockfall scars are variously weathered and comprised of both discontinuity release surfaces and surfaces indicative of fracturing through zones of previously intact rock, known as rock bridges. The presence of rock bridges and pre-existing discontinuities is challenging to quantify due to the difficulty in determining discontinuity persistence below the surface of a rock slope. Rock bridges form an important control in holding blocks onto rockslopes, with their frequency, extent and location commonly modelled from the surface exposure of daylighting discontinuities. We explore an alternative approach to assessing their role, by characterising failure scars. We analyse a database of multiple rockfall scar surfaces detailing the areal extent, shape, and location of broken rock bridges and weathered surfaces. Terrestrial laser scanning and gigapixel imagery were combined to record the detailed texture and surface morphology. From this, scar surfaces were mapped via automated classification based on RGB pixel values. Our analysis of the resulting data from scars on the North Yorkshire coast (UK) indicates a wide variation in both weathering and rock bridge properties, controlled by lithology and associated rock mass structure. Importantly, the proportion of rock bridges in a rockfall failure surface does not increase with failure size. Rather larger failures display fracturing through multiple rock bridges, and in contrast smaller failures fracture occurs only through a single critical rock bridge. This holds implications for how failure mechanisms change with rockfall size and shape. Additionally, the location of rock bridges with respect to the geometry of an incipient rockfall is shown to determine failure mode. Weathering can occur both along discontinuity surfaces and previously broken rock bridges, indicating the sequential stages of progressively detaching rockfall. Our findings have wider implications for hazard assessment where rock slope stability is dependent on the nature of rock bridges, how this is accounted for in slope stability modelling, and the implications of rock bridges on long-term rock slope evolution.

  1. A new rapid method for rockfall energies and distances estimation

    NASA Astrophysics Data System (ADS)

    Giacomini, Anna; Ferrari, Federica; Thoeni, Klaus; Lambert, Cedric

    2016-04-01

    Rockfalls are characterized by long travel distances and significant energies. Over the last decades, three main methods have been proposed in the literature to assess the rockfall runout: empirical, process-based and GIS-based methods (Dorren, 2003). Process-based methods take into account the physics of rockfall by simulating the motion of a falling rock along a slope and they are generally based on a probabilistic rockfall modelling approach that allows for taking into account the uncertainties associated with the rockfall phenomenon. Their application has the advantage of evaluating the energies, bounce heights and distances along the path of a falling block, hence providing valuable information for the design of mitigation measures (Agliardi et al., 2009), however, the implementation of rockfall simulations can be time-consuming and data-demanding. This work focuses on the development of a new methodology for estimating the expected kinetic energies and distances of the first impact at the base of a rock cliff, subject to the conditions that the geometry of the cliff and the properties of the representative block are known. The method is based on an extensive two-dimensional sensitivity analysis, conducted by means of kinematic simulations based on probabilistic modelling of two-dimensional rockfall trajectories (Ferrari et al., 2016). To take into account for the uncertainty associated with the estimation of the input parameters, the study was based on 78400 rockfall scenarios performed by systematically varying the input parameters that are likely to affect the block trajectory, its energy and distance at the base of the rock wall. The variation of the geometry of the rock cliff (in terms of height and slope angle), the roughness of the rock surface and the properties of the outcropping material were considered. A simplified and idealized rock wall geometry was adopted. The analysis of the results allowed finding empirical laws that relate impact energies and distances at the base to block and slope features. The validation of the proposed approach was conducted by comparing predictions to experimental data collected in the field and gathered from the scientific literature. The method can be used for both natural and constructed slopes and easily extended to more complicated and articulated slope geometries. The study shows its great potential for a quick qualitative hazard assessment providing indication about impact energy and horizontal distance of the first impact at the base of a rock cliff. Nevertheless, its application cannot substitute a more detailed quantitative analysis required for site-specific design of mitigation measures. Acknowledgements The authors gratefully acknowledge the financial support of the Australian Coal Association Research Program (ACARP). References Dorren, L.K.A. (2003) A review of rockfall mechanics and modelling approaches, Progress in Physical Geography 27(1), 69-87. Agliardi, F., Crosta, G.B., Frattini, P. (2009) Integrating rockfall risk assessment and countermeasure design by 3D modelling techniques. Natural Hazards and Earth System Sciences 9(4), 1059-1073. Ferrari, F., Thoeni, K., Giacomini, A., Lambert, C. (2016) A rapid approach to estimate the rockfall energies and distances at the base of rock cliffs. Georisk, DOI: 10.1080/17499518.2016.1139729.

  2. A new testing station about full-scale testing for rockfall protection systems

    NASA Astrophysics Data System (ADS)

    Bost, Marion; Dubois, Laurent; Rocher-Lacoste, Frédéric

    2010-05-01

    Rock blocks which detach from slopes overhanging urban areas, roads, railways and other infrastructures create one of the most frequent hazards in mountainous areas. Some of protection systems against rockfalls are designed to mitigate the effects of a foreseen movement by intercepting and stopping falling rock blocks. Despite the worldwide application of this kind of protections, the global behaviour of such a system has been poorly investigated, for the time being, and only at a reduced scale. The behaviour of these protection systems at real scale has been widely extrapolated, however these theories have still not been investigated by performing relating test at scale 1. The French Public Work Laboratory (LCPC) has decided to build a new testing station to work on that topic. This new testing station located in French Alps is able to drop heavy loads (up to 20 tons) from the top of a cliff down to structural systems in order to test their resistance to big shocks and study their dynamical behaviour at this high energy level. As the fall height can reach near 70m, the impact velocity can actually reach 35 metres per second and the energy released during the impact can be as large as 13 500 kilojoules. The experimental area at the bottom of the cliff which can be impacted by a block is 12 metres wide. This allows to test not only rockfall protection systems at scale 1 but also some parts of building structures too. To avoid damaging test-structure during a block drop due to dynamical effects, the dropping hook was designed with a special system. This one consists of a reversed mass which can be adapted to the dropped block and dropped together with the block. Moreover, it is very important to pay attention on repeatability of results concerning new devices for experiments. Whatever fall height the impact point is hit so with a precision of 50 centimetres. Such an experimental facility needs to be equipped with a relevant instrumentation. High capacity stress sensors, accelerometers and high speed cameras are available for experiments. They have been chosen for their capacity to work with an important length of cables. The monitoring with these experimental devices is performed at a high sample frequency suitable and for a very short load like an impact. A radio controlled system allows triggering monitoring and dropping at the same time. Due to bounce risk with the dropped block the safety of personal is ensured by strict operating rules. An observation platform has been located on an embankment along the test-site in order to follow experiments without risk. Two years were necessary for the test-site construction and its equipment. First tests on rockfall nets fences were performed at the end of 2009.

  3. Calibration and validation of rockfall models

    NASA Astrophysics Data System (ADS)

    Frattini, Paolo; Valagussa, Andrea; Zenoni, Stefania; Crosta, Giovanni B.

    2013-04-01

    Calibrating and validating landslide models is extremely difficult due to the particular characteristic of landslides: limited recurrence in time, relatively low frequency of the events, short durability of post-event traces, poor availability of continuous monitoring data, especially for small landslide and rockfalls. For this reason, most of the rockfall models presented in literature completely lack calibration and validation of the results. In this contribution, we explore different strategies for rockfall model calibration and validation starting from both an historical event and a full-scale field test. The event occurred in 2012 in Courmayeur (Western Alps, Italy), and caused serious damages to quarrying facilities. This event has been studied soon after the occurrence through a field campaign aimed at mapping the blocks arrested along the slope, the shape and location of the detachment area, and the traces of scars associated to impacts of blocks on the slope. The full-scale field test was performed by Geovert Ltd in the Christchurch area (New Zealand) after the 2011 earthquake. During the test, a number of large blocks have been mobilized from the upper part of the slope and filmed with high velocity cameras from different viewpoints. The movies of each released block were analysed to identify the block shape, the propagation path, the location of impacts, the height of the trajectory and the velocity of the block along the path. Both calibration and validation of rockfall models should be based on the optimization of the agreement between the actual trajectories or location of arrested blocks and the simulated ones. A measure that describe this agreement is therefore needed. For calibration purpose, this measure should simple enough to allow trial and error repetitions of the model for parameter optimization. In this contribution we explore different calibration/validation measures: (1) the percentage of simulated blocks arresting within a buffer of the actual blocks, (2) the percentage of trajectories passing through the buffer of the actual rockfall path, (3) the mean distance between the location of arrest of each simulated blocks and the location of the nearest actual blocks; (4) the mean distance between the location of detachment of each simulated block and the location of detachment of the actual block located closer to the arrest position. By applying the four measures to the case studies, we observed that all measures are able to represent the model performance for validation purposes. However, the third measure is more simple and reliable than the others, and seems to be optimal for model calibration, especially when using a parameter estimation and optimization modelling software for automated calibration.

  4. Instability of a highly vulnerable high alpine rock ridge: the lower Arête des Cosmiques (Mont Blanc massif, France)

    NASA Astrophysics Data System (ADS)

    Ravanel, L.; Deline, P.; Lambiel, C.; Vincent, C.

    2012-04-01

    Glacier retreat and permafrost degradation are actually more and more thought to explain the increasing instability of rock slopes and rock ridges in high mountain environments. Hot summers with numerous rockfalls we experienced over the last two decades in the Alps have indeed contributed to test/strengthen the hypothesis of a strong correlation between rockfalls and global warming through these two cryospheric factors. Rockfalls from recently deglaciated and/or thawing areas may have very important economic and social implications for high mountain infrastructures and be a fatal hazard for mountaineers. At high mountain sites characterized by infrastructures that can be affected by rockfalls, the monitoring of rock slopes, permafrost and glaciers is thus an essential element for the sustainability of the infrastructure and for the knowledge/management of risks. Our study focuses on a particularly active area of the Mont Blanc massif (France), the lower Arête des Cosmiques, on which is located the very popular Refuge des Cosmiques (3613 m a.s.l.). Since 1998, when a rockfall threatened a part of the refuge and forced to major stabilizing works, observations allowed to identify 10 detachments (20 m3 to > 1000 m3), especially on the SE face of the ridge. Since 2009, this face is yearly surveyed by terrestrial laser scanning to obtain high-resolution 3D models. Their diachronic comparison gives precise measurements of the evolution of the rock slope. Eight rock detachments have thus been documented (0.7 m3 to 256.2 m3). Rock temperature measurements at the ridge and the close Aiguille du Midi (3842 m a.s.l.), and observations of the evolution of the underlying Glacier du Géant have enable to better understand the origin of the strong dynamics of this highly vulnerable area: (i) rock temperature data suggest the presence of warm permafrost (i.e. close to 0°C) from the first meters to depth in the SE face, and cold permafrost in the NW face; (ii) as suggested by the occurrence of rockfalls mainly during or at the end of hot periods in summer, degradation of the cleft ice - observed in several rockfall scars - has likely participated in the triggering of several if not all of these rockfalls; (iii) alternation of the ice content increase during segregation phases and its decrease during the summer periods has probably modified the geotechnical properties of the rock mass, especially since rockfalls have mostly been triggered in the active layer; (iv) evolution of the glacier have also directly interfered with the stability of the SE face of the ridge: rockfalls at the foot of the rockslopes were only possible because of the lowering of the glacier in the recent years. Rockfalls that occurred at the lower Arête des Cosmiques thus probably result from the combination between permafrost activity/degradation and glacier shrinkage.

  5. Slope-scale dynamic states of rockfalls

    NASA Astrophysics Data System (ADS)

    Agliardi, F.; Crosta, G. B.

    2009-04-01

    Rockfalls are common earth surface phenomena characterised by complex dynamics at the slope scale, depending on local block kinematics and slope geometry. We investigated the nature of this slope-scale dynamics by parametric 3D numerical modelling of rockfalls over synthetic slopes with different inclination, roughness and spatial resolution. Simulations were performed through an original code specifically designed for rockfall modeling, incorporating kinematic and hybrid algorithms with different damping functions available to model local energy loss by impact and pure rolling. Modelling results in terms of average velocity profiles suggest that three dynamic regimes (i.e. decelerating, steady-state and accelerating), previously recognized in the literature through laboratory experiments on granular flows, can set up at the slope scale depending on slope average inclination and roughness. Sharp changes in rock fall kinematics, including motion type and lateral dispersion of trajectories, are associated to the transition among different regimes. Associated threshold conditions, portrayed in "phase diagrams" as slope-roughness critical lines, were analysed depending on block size, impact/rebound angles, velocity and energy, and model spatial resolution. Motion in regime B (i.e. steady state) is governed by a slope-scale "viscous friction" with average velocity linearly related to the sine of slope inclination. This suggest an analogy between rockfall motion in regime B and newtonian flow, whereas in regime C (i.e. accelerating) an analogy with a dilatant flow was observed. Thus, although local behavior of single falling blocks is well described by rigid body dynamics, the slope scale dynamics of rockfalls seem to statistically approach that of granular media. Possible outcomes of these findings include a discussion of the transition from rockfall to granular flow, the evaluation of the reliability of predictive models, and the implementation of criteria for a preliminary evaluation of hazard assessment and countermeasure planning.

  6. Climate anomalies associated with the occurrence of rockfalls at high-elevation in the Italian Alps

    NASA Astrophysics Data System (ADS)

    Paranunzio, Roberta; Laio, Francesco; Chiarle, Marta; Nigrelli, Guido; Guzzetti, Fausto

    2016-09-01

    Climate change is seriously affecting the cryosphere in terms, for example, of permafrost thaw, alteration of rain / snow ratio, and glacier shrinkage. There is concern about the increasing number of rockfalls at high elevation in the last decades. Nevertheless, the exact role of climate parameters in slope instability at high elevation has not been fully explored yet. In this paper, we investigate 41 rockfalls listed in different sources (newspapers, technical reports, and CNR IRPI archive) in the elevation range 1500-4200 m a.s.l. in the Italian Alps between 1997 and 2013 in the absence of an evident trigger. We apply and improve an existing data-based statistical approach to detect the anomalies of climate parameters (temperature and precipitation) associated with rockfall occurrences. The identified climate anomalies have been related to the spatiotemporal distribution of the events. Rockfalls occurred in association with significant temperature anomalies in 83 % of our case studies. Temperature represents a key factor contributing to slope failure occurrence in different ways. As expected, warm temperatures accelerate snowmelt and permafrost thaw; however, surprisingly, negative anomalies are also often associated with slope failures. Interestingly, different regional patterns emerge from the data: higher-than-average temperatures are often associated with rockfalls in the Western Alps, while in the Eastern Alps slope failures are mainly associated with colder-than-average temperatures.

  7. Empirical Model for Predicting Rockfall Trajectory Direction

    NASA Astrophysics Data System (ADS)

    Asteriou, Pavlos; Tsiambaos, George

    2016-03-01

    A methodology for the experimental investigation of rockfall in three-dimensional space is presented in this paper, aiming to assist on-going research of the complexity of a block's response to impact during a rockfall. An extended laboratory investigation was conducted, consisting of 590 tests with cubical and spherical blocks made of an artificial material. The effects of shape, slope angle and the deviation of the post-impact trajectory are examined as a function of the pre-impact trajectory direction. Additionally, an empirical model is proposed that estimates the deviation of the post-impact trajectory as a function of the pre-impact trajectory with respect to the slope surface and the slope angle. This empirical model is validated by 192 small-scale field tests, which are also presented in this paper. Some important aspects of the three-dimensional nature of rockfall phenomena are highlighted that have been hitherto neglected. The 3D space data provided in this study are suitable for the calibration and verification of rockfall analysis software that has become increasingly popular in design practice.

  8. Passive Seismic Monitoring for Rockfall at Yucca Mountain: Concept Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, J; Twilley, K; Murvosh, H

    2003-03-03

    For the purpose of proof-testing a system intended to remotely monitor rockfall inside a potential radioactive waste repository at Yucca Mountain, a system of seismic sub-arrays will be deployed and tested on the surface of the mountain. The goal is to identify and locate rockfall events remotely using automated data collecting and processing techniques. We install seismometers on the ground surface, generate seismic energy to simulate rockfall in underground space beneath the array, and interpret the surface response to discriminate and locate the event. Data will be analyzed using matched-field processing, a generalized beam forming method for localizing discrete signals.more » Software is being developed to facilitate the processing. To date, a three-component sub-array has been installed and successfully tested.« less

  9. Dynamic rockfall risk assessment along the SS113 coastal road (Northern Sicily)

    NASA Astrophysics Data System (ADS)

    Mastrolembo, V. Brunella; Penna, Ivanna; Voumard, Jérémie; Jaboyedoff, Michel

    2016-04-01

    Rockfalls are natural hazards that usually affect only small areas. However, due to the big amount of material that can be moved and the associated kinetic energy they can cost serious damages to infrastructures and people. Even fairly small rockfall fragments are a significant hazard if deposited on a highway or along a rail-road track since they are not easily detected and can cause accidents or derailments. Rockfalls can also cause the closure of streets resulting in long term indirect economic losses due to transportation delays as well as to the impact on the commercial and tourist activities. In letterature there are numerous examples of rockfall risk assessments along transportation corridors, most of them are based on the use of standard risk estimation methods. The latters are static approaches founded on a macroscopic view of road traffic, assumed as uniform in space and time, thus characterized by average values of parameters. Lately, a new dynamic approach has been developed within the 'risk analysis group' at the University of Lausanne (Voumard, 2013). It consists of a kinematic interpretation of road traffic where vehicles are parametrized as single entities with different characteristics, speed, dimensions and behaviour. We apply this new approach to estimate the dynamic risk due to rockfall occurrence on the SS113 national road running along the northern coast of Sicily. In this work we focus our attention on a ≈10 km section along which the SS113 road and a railway connect all the costal villages going through very steep cliffs and very close to the sea with evident problems of erosion and maintenance. The area is a tourist destination and many hotels and facilities are found along the road. Moreover the area was already hit in the past by numerous rockfalls resulting in the closure of the road for periods running from a few days up to a few years with big direct and indirect damages to the local socio-economic activities. In order to achieve a rockfall risk assessment we apply a two steps approach. First, we realize an hazard estimation along the SS113 road applying a classical approach to evaluate the propagation area, so the probability of impact and storage of boulders on the road lanes. Then, we use this result as input to realize a dynamic estimation of risk for vehicles traveling on the road. Using the TSiNaHa numerical simulator we estimate the risk relative to different combinations of rockfall scenarios and traffic variables. The aim of the work is to get informations that could be used by local politicians and decision makers to take decisions both, about permanent mitigation measures and emergency actions to be taken during the alert phase or after the occurrence of a rockfall.

  10. Potential of two submontane broadleaved species (Acer opalus, Quercus pubescens) to reveal spatiotemporal patterns of rockfall activity

    NASA Astrophysics Data System (ADS)

    Favillier, Adrien; Lopez-Saez, Jérôme; Corona, Christophe; Trappmann, Daniel; Toe, David; Stoffel, Markus; Rovéra, Georges; Berger, Frédéric

    2015-10-01

    Long-term records of rockfalls have proven to be scarce and typically incomplete, especially in increasingly urbanized areas where inventories are largely absent and the risk associated with rockfall events rises proportionally with urbanization. On forested slopes, tree-ring analyses may help to fill this gap, as they have been demonstrated to provide annually-resolved data on past rockfall activity over long periods. Yet, the reconstruction of rockfall chronologies has been hampered in the past by the paucity of studies that include broadleaved tree species, which are, in fact, quite common in various rockfall-prone environments. In this study, we test the sensitivity of two common, yet unstudied, broadleaved species - Quercus pubescens Willd. (Qp) and Acer opalus Mill. (Ao) - to record rockfall impacts. The approach is based on a systematic mapping of trees and the counting of visible scars on the stem surface of both species. Data are presented from a site in the Vercors massif (French Alps) where rocks are frequently detached from Valanginian limestone and marl cliffs. We compare recurrence interval maps obtained from both species and from two different sets of tree structures (i.e., single trees vs. coppice stands) based on Cohen's k coefficient and the mean absolute error. A total of 1230 scars were observed on the stem surface of 847 A. opalus and Q. pubescens trees. Both methods yield comparable results on the spatial distribution of relative rockfall activity with similar downslope decreasing recurrence intervals. Yet recurrence intervals vary significantly according to tree species and tree structure. The recurrence interval observed on the stem surface of Q. pubescens exceeds that of A. opalus by > 20 years in the lower part of the studied plot. Similarly, the recurrence interval map derived from A. opalus coppice stands, dominant at the stand scale, does not exhibit a clear spatial pattern. Differences between species may be explained by the bark thickness of Q. pubescens, which has been demonstrated to grow at twice the rate of A. opalus, thus constituting a mechanical barrier that is able to buffer low energy rockfalls and thus can avoid damage to the underlying tissues. The reasons for differences between tree structures are related to the clustered coppice-specific spatial stem distribution in clumps that could result on one hand in bigger gaps between clumps, which in turn decreases the probability of tree impacts for traveling blocks. On the other hand, data also indicate that several scars on the bark of coppice stands may stem from the same impact and thus may lead to an overestimation of rockfall activity.

  11. Quantifying, Analysing and Modeling Rockfall Activity in two Different Alpine Catchments using Terrestrial Laserscanning

    NASA Astrophysics Data System (ADS)

    Haas, F.; Heckmann, T.; Wichmann, V.; Becht, M.

    2011-12-01

    Rockfall processes play a major role as a natural hazard, especially if the rock faces are located close to infrastructure. However these processes cause also the retreat of the steep rock faces by weathering and the growth of the corresponding talus cones by routing debris down the talus cones. That's why this process plays also an important role for the geomorphic system and the sediment budget of high mountain catchments. The presented investigation deals with the use of TLS for quantification and for analysis of rockfall activity in two study areas located in the Alps. The rockfaces of both catchments and the corresponding talus cones were scanned twice a year from different distances. Figure 1 shows an example for the spatial distribution of surface changes at a rockface in the Northern Dolomites between 2008 and 2010. The measured surface changes at this location yields to a mean rockwall retreat of 0.04 cm/a. But high resolution TLS data are not only applicable to quantify rockfall activity they can also be used to characterize the surface properties of the corresponding talus cones and the runout distances of bigger boulders and this can lead to a better process understanding. Therefore the surface roughness of talus cones in both catchments was characterized from the TLS point clouds by a GIS approach. The resulting detailed maps of the surface conditions on the talus cones were used to improve an existing process model which is able to model runout distances on the talus cones using distributed friction parameters. Beside this the investigations showed, that also the shape of the boulders has an influence on the runout distance. That's why the interrelationships between rock fragment morphology and runout distance of over 600 single boulders were analysed at the site of a large rockfall event. The submitted poster will show the results of the quantification of the rockfall activity and additionally it will show the results of the analyses of the talus cones and of the large rockfall event and applying these results to an existing rockfall model.

  12. Rock slope design guide.

    DOT National Transportation Integrated Search

    2011-04-01

    This Manual is intended to provide guidance for the design of rock cut slopes, rockfall catchment, and : rockfall controls. Recommendations presented in this manual are based on research presented in Shakoor : and Admassu (2010) entitled Rock Slop...

  13. Rockfall magnitude-frequency estimation: how data acquistion strategies influence methodological results

    NASA Astrophysics Data System (ADS)

    Guerin, Antoine; Abellán, Antonio; Jesús Royán, Manuel; Carrea, Dario; Vilaplana, Joan Manuel; Jaboyedoff, Michel

    2014-05-01

    The modelling of rock cliff erosion rates through rockfall magnitude-frequency is a well-known technique extensively carried out before by many authors (e.g. Barlow et al., 2012; Guerin et al., 2014). These studies show how the relation between frequency (F) and magnitude (M) of rockfalls is well fitted by a negative power law [F = a*M ^ (-b)], the value of its parameters varying considerably according to differences in type of material, structural settings, climate, etc. Nevertheless, little insight is given into how methodological and instrumental issues influence power law, typically into how data acquisition accuracy, minimum level of detection and spatio-temporal resolution influence this relationship. Extensive Terrestrial Laser Scanner (TLS) campaigns were carried out during more than six years (from Nov.2007 to Dec.2013) in order to monitor a semi-circular rock wall of 150 m width and 25 m height, situated in Puigcercós (Pallars Jussà, Catalonia, Spain). The analysed cliff represents the main outcrop of a landslide that took place in 1881, the scarp being affected by a high number of rockfalls per year (Royan et al., 2013). The spatial-temporal rockfall frequency is determined by comparison of very dense point clouds (about 500 points/m2) acquired in 22 fieldwork campaigns at different dates. The TLS data processing (data filtering, alignment, georeferencing, meshing and comparison) was carried out with the ImInspect module of Polyworks software. The analysis of the magnitude-frequency parameters was carried out for each period of comparison using a script specifically developed in Matlab software. We used the image processing toolbox aiming to extract rockfall areas (number of pixels) and centroids for each event. We carried out an exploratory analysis in order to investigate how certain parameters linked to data acquisition -spatial and temporal resolution, level of detection, etc.- influence the complementary cumulative distributions of the rockfall frequency. Furthermore, for each observation period, we have examined if there exists a correlation between the rockfall characteristics (magnitude and frequencies) and the associated weather conditions (precipitations, temperature, wind). In this work we demonstrated how the acquisition strategies play a significant role on the exponent value of magnitude-frequency cumulative distributions. Moreover, the level of detection influenced the detected number of small rockfalls and therefore, the censoring effect linked to the presence of underrepresented volumes. Nevertheless, no clear correlation has been made regarding atmospheric conditions yet; a great quantity of parameters should be taken into account in order to clearly identify a trend.

  14. Three-dimensional Reconstruction of Block Shape Irregularity and its Effects on Block Impacts Using an Energy-Based Approach

    NASA Astrophysics Data System (ADS)

    Zhang, Yulong; Liu, Zaobao; Shi, Chong; Shao, Jianfu

    2018-04-01

    This study is devoted to three-dimensional modeling of small falling rocks in block impact analysis in energy view using the particle flow method. The restitution coefficient of rockfall collision is introduced from the energy consumption mechanism to describe rockfall-impacting properties. Three-dimensional reconstruction of falling block is conducted with the help of spherical harmonic functions that have satisfactory mathematical properties such as orthogonality and rotation invariance. Numerical modeling of the block impact to the bedrock is analyzed with both the sphere-simplified model and the 3D reconstructed model. Comparisons of the obtained results suggest that the 3D reconstructed model is advantageous in considering the combination effects of rockfall velocity and rotations during colliding process. Verification of the modeling is carried out with the results obtained from other experiments. In addition, the effects of rockfall morphology, surface characteristics, velocity, and volume, colliding damping and relative angle are investigated. A three-dimensional reconstruction modulus of falling blocks is to be developed and incorporated into the rockfall simulation tools in order to extend the modeling results at block scale to slope scale.

  15. Rockfall Hazard Process Assessment : [Project Summary

    DOT National Transportation Integrated Search

    2017-10-01

    The Montana Department of Transportation (MDT) implemented its Rockfall Hazard Rating System (RHRS) between 2003 and 2005, obtaining information on the state's rock slopes and their associated hazards. The RHRS data facilitated decision-making in an ...

  16. An open source GIS-based tool to integrate the fragmentation mechanism in rockfall propagation

    NASA Astrophysics Data System (ADS)

    Matas, Gerard; Lantada, Nieves; Gili, Josep A.; Corominas, Jordi

    2015-04-01

    Rockfalls are frequent instability processes in road cuts, open pit mines and quarries, steep slopes and cliffs. Even though the stability of rock slopes can be determined using analytical approaches, the assessment of large rock cliffs require simplifying assumptions due to the difficulty of working with a large amount of joints, the scattering of both the orientations and strength parameters. The attitude and persistency of joints within the rock mass define the size of kinematically unstable rock volumes. Furthermore the rock block will eventually split in several fragments during its propagation downhill due its impact with the ground surface. Knowledge of the size, energy, trajectory… of each block resulting from fragmentation is critical in determining the vulnerability of buildings and protection structures. The objective of this contribution is to present a simple and open source tool to simulate the fragmentation mechanism in rockfall propagation models and in the calculation of impact energies. This tool includes common modes of motion for falling boulders based on the previous literature. The final tool is being implemented in a GIS (Geographic Information Systems) using open source Python programming. The tool under development will be simple, modular, compatible with any GIS environment, open source, able to model rockfalls phenomena correctly. It could be used in any area susceptible to rockfalls with a previous adjustment of the parameters. After the adjustment of the model parameters to a given area, a simulation could be performed to obtain maps of kinetic energy, frequency, stopping density and passing heights. This GIS-based tool and the analysis of the fragmentation laws using data collected from recent rockfall have being developed within the RockRisk Project (2014-2016). This project is funded by the Spanish Ministerio de Economía y Competitividad and entitled "Rockfalls in cliffs: risk quantification and its prevention"(BIA2013-42582-P).

  17. Research notes.

    DOT National Transportation Integrated Search

    1995-04-01

    As many of you already know, our new Rockfall Hazard Rating System (RHRS) has gained wide national acceptance and international interest. Our most recent effort, a study of rockfall over 1/4H:1V presplit slopes, represents the first installment in th...

  18. Rockfall Hazard Process Assessment : Implementation Report

    DOT National Transportation Integrated Search

    2017-10-01

    The Montana Department of Transportation (MDT) commissioned a new research program to improve assessment and management of its rock slope assets. The Department implemented a Rockfall Hazard Rating System (RHRS) program in 2005 and wished to add valu...

  19. Tree-ring based reconstruction of rockfalls at Cofre de Perote volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Franco-Ramos, Osvaldo; Stoffel, Markus; Vázquez-Selem, Lorenzo

    2017-08-01

    In this study, dendrogeomorphic techniques are employed to analyse the temporal frequency and spatial distribution of rockfalls on a talus slope of La Teta valley, located on the NW slopes of Cofre de Perote volcano at 4000 m above sea level. Based on the interpretation of disturbance signals in growth rings of old-growth Pinus hartwegii Lindl. trees, we identify 100 growth disturbances related with rockfall events dated between 1780 and 2011, with slightly more than half of these events being dated to the last 50 years. The sectors most susceptible to rockfall correspond with the young rock lobes located at the foot of scarps. Roughly three in ten events has been triggered by regional, M > 6 earthquakes, whereas half of the events activity coincides with periods characterized by severe, prolonged summer rainfalls such as the ones occurred in 1995, 1998, 2005 and 2011.

  20. Detection of precursory deformation using a TLS. Application to spatial prediction of rockfalls.

    NASA Astrophysics Data System (ADS)

    Abellán, Antonio; Vilaplana, Joan Manuel; Calvet, Jaume; Rodriguez, Xavier

    2010-05-01

    Different applications on the use of Terrestrial Laser Scanner (TLS) on rock slopes are undergoing rapid development, mainly in the characterization of 3D discontinuities and the monitoring of rock slopes. The emphasis of this research is on detection of precursory deformation and its application to spatial prediction of rockfalls. The pilot study area corresponds to the main scarp of an old slide located at Puigcercós (Catalonia, Spain). 3D temporal variations of the terrain were analyzed by comparing sequential TLS datasets. Five areas characterized by centimetric precursory deformations were detected in the study area. Of these deformations, (a) growing deformation across three areas culminated in a rockfall occurrence; and (b) another growing deformation across two areas was detected, making a subsequent rockfall likely. The areas with precursory deformations detected in Puigcercós showed the following characteristics: (a) a sub-vertical fracture delimiting the moving part from the rest of the slope; (b) an increase in the horizontal displacement upwards, typical of a toppling failure mechanism (Muller 1968; Goodman and Bray, 1976). In addition, decimetric-scale rockfalls were observed in the upper part of the moving areas, which is consistent with the observations of Rosser et al., (2007). TLS ILRIS 3D technical characteristics are as follows: high accuracy (7.2 mm at a range of 50 meters), high angular resolution (e.g. 1 point every few cm), fast data acquisition: 2,500 points/second; broad coverage; high maximum range on natural slopes: ~600m. The single point distances between the surface of reference and the successive data point clouds were computed using a conventional methodology (data vs. reference comparison). The direction of comparison was defined as the normal vector of the rock face at its central part. We focused in the study of the small scale displacements towards the origin of coordinates, which reflect the pre-failure deformation on part of the slope. A nearest neighbour (NN) filtering technique was applied to the RAW datasets (Abellán et al., 2009), enabling the accurate detection of centimetric displacements. The parameters of the precursory deformation correlated with the failure mechanism, lithology and volume of the rockfall: higher values of length and duration of the precursory deformation were found in the toppling failure mechanism, ductile materials and rockfalls that involved considerable volumes. These results are consistent with observations in the literature regarding rockfalls of higher magnitude and lower frequency (e.g.: Zvelebil and Moser, 2001; Crosta and Agliardi, 2004; Hungr et al., 2007). It is also important to mention that no precursory indicators were detected prior to each rockfall that occurred in the study areas. This could simply be due to infrequent data acquisition or insufficient instrument accuracy. The application of TLS for the spatial prediction of rockfalls should be validated through: (a) the continuation of the TLS monitoring campaign at the areas which currently show ongoing deformation; (b) the selection of new case studies at different geomorphological sites with different lithologies; and (c) the selection of new case studies with different failure mechanisms (e.g. fall, slide). These tasks are of paramount importance to understand the pre-failure behaviour of rockfalls and to implement these findings in an early warning system.

  1. Report on the "Shakedown" test of Oregon's rockfall hazard rating system.

    DOT National Transportation Integrated Search

    1989-04-01

    Oregon Rockfall Hazard Rating System (RHRS) was field tested at over 50 locations statewide to determine where clarification and improvements to the system were needed. Field use of the system demonstrated many areas where refinements were valuable. ...

  2. Estimation of the return period of rockfall blocks according to their size

    NASA Astrophysics Data System (ADS)

    De Biagi, Valerio; Lia Napoli, Maria; Barbero, Monica; Peila, Daniele

    2017-01-01

    With reference to the rockfall risk estimation and the planning of rockfall protection devices, one of the most critical and most discussed problems is the correct definition of the design block by taking into account its return period. In this paper, a methodology for the assessment of the design block linked with its return time is proposed and discussed, following a statistical approach. The procedure is based on the survey of the blocks that were already detached from the slope and had accumulated at the foot of the slope in addition to the available historical data.

  3. Very long period conduit oscillations induced by rockfalls at Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Chouet, Bernard A.; Dawson, Phillip B.

    2013-01-01

    Eruptive activity at the summit of Kilauea Volcano, Hawaii, beginning in 2010 and continuing to the present time is characterized by transient outgassing bursts accompanied by very long period (VLP) seismic signals triggered by rockfalls from the vent walls impacting a lava lake in a pit within the Halemaumau pit crater. We use raw data recorded with an 11-station broadband network to model the source mechanism of signals accompanying two large rockfalls on 29 August 2012 and two smaller average rockfalls obtained by stacking over all events with similar waveforms to improve the signal-to-noise ratio. To determine the source centroid location and source mechanism, we minimize the residual error between data and synthetics calculated by the finite difference method for a point source embedded in a homogeneous medium that takes topography into account. We apply a new waveform inversion method that accounts for the contributions from both translation and tilt in horizontal seismograms through the use of Green's functions representing the seismometer response to translation and tilt ground motions. This method enables a robust description of the source mechanism over the period range 1–1000 s. The VLP signals associated with the rockfalls originate in a source region ∼1 km below the eastern perimeter of the Halemaumau pit crater. The observed waveforms are well explained by a simple volumetric source with geometry composed of two intersecting cracks including an east striking crack (dike) dipping 80° to the north, intersecting a north striking crack (another dike) dipping 65° to the east. Each rockfall is marked by a similar step-like inflation trailed by decaying oscillations of the volumetric source, attributed to the efficient coupling at the source centroid location of the pressure and momentum changes induced by the rock mass impacting the top of the lava column. Assuming a simple lumped parameter representation of the shallow magmatic system, the observed pressure and volume variations can be modeled with the following attributes: rockfall volume (200–4500 m3), length of magma column (120–210 m), diameter of pipe connecting the Halemaumau pit crater to the subjacent dike system (6 m), average thickness of the two underlying dikes (3–6 m), and effective magma viscosity (30–210 Pa s). Most rockfalls occur during episodes of sustained deflation of the Kilauea summit. The mass loss rate in the shallow magmatic system is estimated to be 1400–15,000 kg s−1 based on measurements of the temporal variation of VLP period in the two large rockfalls that occurred on 29 August 2012.

  4. Seasonal rockfall risk assessment along transportation network: a sample from Mallorca (Spain)

    NASA Astrophysics Data System (ADS)

    Mateos, Rosa Maria; Garcia, Inmaculada; Reichenbach, Paola; Herrera, Gerardo; Rius, Joan; Aguilo, Raul; Roldan, Francisco J.

    2014-05-01

    In the literature there are numerous works focusing on rockfall risk assessment along transportation corridors which take into account several factors, including the annual average traffic volume. Few papers examine in detail examples with a strong seasonal distribution of people travelling along roads, in particular in regions with a great importance for tourism. In these areas, potential blockages along the road network can cause significant economic losses, considering not only direct costs, but also indirect ones related to a reduction in tourism arrivals, with the consequent loss of jobs and profits. In this work we present a methodology for rockfall risk assessment focusing on the reliability and applicability of the evaluation in a test site located in the island of Mallorca, a region which welcomes over 11.3 million visitors per year and where tourism represents the main source of income (83% of its GDP). The Ma-10 road (111 km), located in the north-western sector of the island along the coastal face of the Tramuntana range, has been affected by 85 rockfall events during the past 18 years, which caused repairing costs valued at approximately 2M Euro (Mateos et al., 2013). Rockfalls are triggered by heavy rainfall and freeze-thaw cycles and, for these reasons, autumn and winter can be considered as the most hazardous seasons (Mateos et al., 2012). The road has heavy traffic estimated at 7.200 vehicles per day on average, with a seasonal variation of people travelling in vehicles, the summer being most prominent- up to 6 times the average- due to the pattern of tourism arrivals. To analyse the seasonal rockfall hazard and risk along the Ma-10 road, we obtained the extent of the areas potentially subject to rockfall hazards using STONE, a physically-based rockfall simulation computer program (Guzzetti et al, 2002). The availability of historical rockfalls mapped in detail allowed checking the STONE results, and identifying a hazardous area on the southern section of the road. For the risk analysis, four scenarios depending on the seasonal people exposition have been taken into account, considering the autumn as the season with the highest risk. This methodology can be applied to highly touristy areas such Mallorca, where the safety of the population and its visitors must be the priority of all concerned. References : Guzzetti, F., Crosta G., Detti, R. Agliardi, F., 2002: STONE: A computer program for the three-dimensional simulation of rock-falls. Computers Geosciences 28 (2002) 1079-1093. Mateos, R.M., García-Moreno, I., Azañón, J.M., 2012. Freeze-thaw cycles and rainfall as triggering factors of mass movements in a warm Mediterranean region: the case of the Tramuntana Range (Majorca, Spain). Landslides (2012), 9: 417-432. Mateos, R.M., García- Moreno, I., Herrera, G., Mulas, J., 2013b. Damage caused by recent mass-movements in Majorca (Spain), a region with a high risk due to tourism. Landslide Science and Practice. Claudio Margottini, Paolo Canuti and Kyoji Sassa (Editors). Volume 7: Social and Economic Impact and Policies. 105-113.

  5. Rockfall hazard mapping along a mountainous road in Switzerland using a GIS-based parameter rating approach

    NASA Astrophysics Data System (ADS)

    Baillifard, F.; Jaboyedoff, M.; Sartori, M.

    A posteriori studies of rock slope instabilities generally show that rockfalls do not occur at random locations: the failure zone can be classified as sensitive from geomorphological evidence. Zones susceptible to failure can there-fore be detected. Effects resulting from degrading and triggering factors, such as groundwater circulation and freeze and thaw cycles, must then be assessed in order to evaluate the probability of failure. A simple method to detect rock slope instabilities was tested in a study involving a 2000 m3 rockfall that obstructed a mountainous road near Sion (Switzerland) on 9 January 2001. In order to locate areas from which a rock-fall might originate, areas were assessed with respect to the presence or absence of five criteria: (1) a fault, (2) a scree slope within a short distance, (3) a rocky cliff, (4) a steep slope, and (5) a road. These criteria were integrated into a Geographic Information System (GIS) using existing topo-graphic, geomorphological, and geological vector and raster digital data. The proposed model yields a rating from 0 to 5, and gives a relative hazard map. Areas yielding a high relative hazard have to meet two additional criteria if they are to be considered as locations from which a rockfall might originate: (1) the local structural pattern has to be unfavourable, and (2) the morphology has to be susceptible to the effects of degrading and triggering factors. The rockfall of 9 January 2001, has a score of 5. Applied to the entire length of the road (4 km), the present method reveals two additional areas with a high relative hazard, and allows the detection of the main instabilities of the site.

  6. Explosive eruptions triggered by rockfalls at Kīlauea volcano, Hawaii

    USGS Publications Warehouse

    Orr, Tim R.; Thelen, Weston A.; Patrick, Matthew R.; Swanson, Donald A.; Wilson, David C.

    2012-01-01

    Ongoing eruptive activity at Kīlauea volcano’s (Hawai‘i) summit has been controlled in part by the evolution of its vent from a 35-m-diameter opening into a collapse crater 150 m across. Geologic observations, in particular from a network of webcams, have provided an unprecedented look at collapse crater development, lava lake dynamics, and shallow outgassing processes. These observations show unequivocally that the hundreds of transient outgassing bursts and weak explosive eruptions that have punctuated the vent’s otherwise nearly steady-state behavior, and that are associated with composite seismic events, were triggered by rockfalls from the vent walls onto the top of the lava column. While the process by which rockfalls drive the explosive bursts is not fully understood, we believe that it is initiated by the generation of a rebound splash, or Worthington jet, which then undergoes fragmentation. The external triggering of low-energy outgassing events by rockfalls represents a new class of small transient explosive eruptions.

  7. An engineering rock classification to evaluate seismic rock-fall susceptibility and its application to the Wasatch Front

    USGS Publications Warehouse

    Harp, E.L.; Noble, M.A.

    1993-01-01

    Investigations of earthquakes world wide show that rock falls are the most abundant type of landslide that is triggered by earthquakes. An engineering classification originally used in tunnel design, known as the rock mass quality designation (Q), was modified for use in rating the susceptibility of rock slopes to seismically-induced failure. Analysis of rock-fall concentrations and Q-values for the 1980 earthquake sequence near Mammoth Lakes, California, defines a well-constrained upper bound that shows the number of rock falls per site decreases rapidly with increasing Q. Because of the similarities of lithology and slope between the Eastern Sierra Nevada Range near Mammoth Lakes and the Wasatch Front near Salt Lake City, Utah, the probabilities derived from analysis of the Mammoth Lakes region were used to predict rock-fall probabilities for rock slopes near Salt Lake City in response to a magnitude 6.0 earthquake. These predicted probabilities were then used to generalize zones of rock-fall susceptibility. -from Authors

  8. Quantitative rock-fall hazard and risk assessment for Yosemite Valley, Yosemite National Park, California

    USGS Publications Warehouse

    Stock, Greg M.; Luco, Nicolas; Collins, Brian D.; Harp, Edwin L.; Reichenbach, Paola; Frankel, Kurt L.

    2014-01-01

    Rock falls are common in Yosemite Valley, California, posing substantial hazard and risk to the approximately four million annual visitors to Yosemite National Park. Rock falls in Yosemite Valley over the past few decades have damaged structures and caused injuries within developed regions located on or adjacent to talus slopes highlighting the need for additional investigations into rock-fall hazard and risk. This assessment builds upon previous investigations of rock-fall hazard and risk in Yosemite Valley and focuses on hazard and risk to structures posed by relatively frequent fragmental-type rock falls as large as approximately 100,000 (cubic meters) in volume.

  9. Rockfall catchment area design guide : metric edition : appendices.

    DOT National Transportation Integrated Search

    2001-12-01

    The appendices belong to "Rockfall catchment area design guide : metric edition". : The data gathered from an exhaustive research project consisting of rolling a total of approximately 11,250 rocks off vertical; 4V:1H;2V;1H;1.33V:1H;1.0V:1.0H slopes ...

  10. Differences in experiences in rockfall hazard mapping in Switzerland and Principality of Andorra

    NASA Astrophysics Data System (ADS)

    Abbruzzese, J.; Labiouse, V.

    2009-04-01

    The need to cope with rockfall hazard and risk led many countries to adopt proper strategies for hazard mapping and risk management, based on their own social and political constraints. The experience of every single country in facing this challenge provides useful information and possible approaches to evaluate rockfall hazard and risk. More, with particular regard to the hazard mapping process, some important points are common to many methodologies in Europe, especially as for the use of rock fall intensity-frequency diagrams to define specific hazard levels. This aspect could suggest a starting point for comparing and possibly harmonising existing methodologies. On the other hand, the results obtained from methodologies used in different countries may be difficult to be compared, first because the existing national guidelines are established as a consequence of what has been learned in each country from dealing with past rockfall events. Particularly, diverse social and political considerations do influence the definition of the threshold values of the parameters which determine a given degree of hazard, and eventually the type of land-use accepted for each hazard level. Therefore, a change in the threshold values for rockfall intensity and frequency is already enough to produce completely different zoning results even if the same methodology is applied. In relation with this issue, the paper introduces some of the current challenges and difficulties in comparing hazard mapping results in Europe and, subsequently, in the chance to develop a common standard procedure to assess the rockfall hazard. The present work is part of an on-going research project whose aim is to improve methodologies for rockfall hazard and risk mapping at the local scale, in the framework of the European Project "Mountain Risks: from prediction to management and governance", funded by the European Commission. As a reference, two approaches will be considered, proposed in Switzerland and in the Principality of Andorra, respectively. At first, the guidelines applied in the two countries will be outlined, showing which way the correspondent procedures differ. For this purpose, in both cases, the main philosophy in facing rockfall hazard will be discussed, together with its consequences in terms of the resulting intensity-frequency threshold values proposed to determine different classes of hazard. Then, a simple case study carried out in Switzerland, in the Canton of Valais, will show an application of the discussed theoretical issues, by means of a comparison between the two approaches. A rockfall hazard mapping will be performed on a 2D slope profile, following both the Swiss energy-probability threshold values and the ones used in the Principality of Andorra. The analysis of the results will introduce some consequences the criteria for defining classes of hazard may have on land-use planning, depending on which guidelines are applied in a study site. This aspect involves not only differences in zoning concerning the extension of the areas in danger, but as well the influence on land-use that the meaning of the same hazard level may have, according to which threshold values for rockfall intensity and frequency are used. These considerations underline what role social and political decisions can play in the hazard assessment process, on the basis of the experiences and understandings of each country in this field. More precisely, it is rather evident that a possible comparison and/or harmonisation of hazard mapping results is closely linked to this aspect as well, and not only to more technical matters, such as computing and mapping techniques.

  11. Sampling of Stochastic Input Parameters for Rockfall Calculations and for Structural Response Calculations Under Vibratory Ground Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Gross

    2004-09-01

    The purpose of this scientific analysis is to define the sampled values of stochastic (random) input parameters for (1) rockfall calculations in the lithophysal and nonlithophysal zones under vibratory ground motions, and (2) structural response calculations for the drip shield and waste package under vibratory ground motions. This analysis supplies: (1) Sampled values of ground motion time history and synthetic fracture pattern for analysis of rockfall in emplacement drifts in nonlithophysal rock (Section 6.3 of ''Drift Degradation Analysis'', BSC 2004 [DIRS 166107]); (2) Sampled values of ground motion time history and rock mechanical properties category for analysis of rockfall inmore » emplacement drifts in lithophysal rock (Section 6.4 of ''Drift Degradation Analysis'', BSC 2004 [DIRS 166107]); (3) Sampled values of ground motion time history and metal to metal and metal to rock friction coefficient for analysis of waste package and drip shield damage to vibratory motion in ''Structural Calculations of Waste Package Exposed to Vibratory Ground Motion'' (BSC 2004 [DIRS 167083]) and in ''Structural Calculations of Drip Shield Exposed to Vibratory Ground Motion'' (BSC 2003 [DIRS 163425]). The sampled values are indices representing the number of ground motion time histories, number of fracture patterns and rock mass properties categories. These indices are translated into actual values within the respective analysis and model reports or calculations. This report identifies the uncertain parameters and documents the sampled values for these parameters. The sampled values are determined by GoldSim V6.04.007 [DIRS 151202] calculations using appropriate distribution types and parameter ranges. No software development or model development was required for these calculations. The calculation of the sampled values allows parameter uncertainty to be incorporated into the rockfall and structural response calculations that support development of the seismic scenario for the Total System Performance Assessment for the License Application (TSPA-LA). The results from this scientific analysis also address project requirements related to parameter uncertainty, as specified in the acceptance criteria in ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]). This document was prepared under the direction of ''Technical Work Plan for: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 170528]) which directed the work identified in work package ARTM05. This document was prepared under procedure AP-SIII.9Q, ''Scientific Analyses''. There are no specific known limitations to this analysis.« less

  12. Detection of morphological changes in cliff face surrounding a waterfall using terrestrial laser scanning and unmanned aerial system

    NASA Astrophysics Data System (ADS)

    Hayakawa, Yuichi S.; Obanawa, Hiroyuki

    2015-04-01

    Waterfall or bedrock knickpoint appears as an erosional front in bedrock rivers forming deep v-shaped valley downstream. Following the rapid fluvial erosion of waterfall, rockfalls and gravita-tional collapses often occur in surrounding steep cliffs. Although morphological changes of such steep cliffs are sometimes visually observed, quantitative and precise measurements of their spatio-temporal distribution have been limited due to the difficulties in direct access to such cliffs if with classical measurement methods. However, for the clarification of geomorphological processes oc-curring in the cliffs, multi-temporal mapping of the cliff face at a high resolution is necessary. Re-mote sensing approaches are therefore suitable for the topographic measurements and detection of changes in such inaccessible cliffs. To achieve accurate topographic mapping of cliffs around a wa-terfall, here we perform multi-temporal terrestrial laser scanning (TLS), as well as structure-from-motion multi-view stereo (SfM-MVS) photogrammetry based on unmanned aerial system (UAS). The study site is Kegon Falls in central Japan, having a vertical drop of surface water from top of its overhanging cliff, as well as groundwater outflows from its lower portions. The bedrock is composed of alternate layers of andesite lava and conglomerates. Minor rockfalls in the cliffs are often ob-served by local people. The latest major rockfall occurred in 1986, causing ca. 8-m upstream propa-gation of the waterfall lip. This provides a good opportunity to examine the changes in the surround-ing cliffs following the waterfall recession. Multi-time point clouds were obtained by TLS measure-ment over years, and the three-dimensional changes of the rock surface were detected, uncovering the locus of small rockfalls and gully developments. Erosion seems particularly frequent in relatively weak the conglomerates layer, whereas small rockfalls seems to have occurred in the andesite layers. Also, shadows in the TLS point clouds are effectively filled by complementary data of UAS-based SfM-MVS photogrammetry, which can improve the mapping quality of the cliff morphology. The point clouds are also projected on a vertical plane to generate a digital elevation model (DEM). Cross-sectional profiles extracted from the DEM show the presence of a distinct, 5-10-m depression at the mid of the cliff (bottom of the upper andesite layer), which appears to have been formed by freeze-thaw and/or wet-dry weathering following the waterfall recession in 1986.

  13. Rockfalls and Avalanches from Little Tahoma Peak on Mount Rainier, Washington

    USGS Publications Warehouse

    Crandell, Dwight Raymond; Fahnestock, Robert K.

    1965-01-01

    In December 1963 rockfalls from Little Tahoma Peak on the east side of Mount Rainier volcano fell onto Emmons Glacier and formed avalanches of rock debris that traveled about 4 miles down the glacier and the White River valley. In this distance, the rock debris descended as much as 6,200 feet in altitude. Minor lithologic differences and crosscutting relations indicate that the rockfalls caused at least seven separate avalanches, having an estimated total volume of 14 million cubic yards. The initial rockfall may have been caused by a small steam explosion near the base of Little Tahoma Peak. During movement, some of the avalanches were deflected from one side of the valley to the other. Calculations based on the height to which the avalanches rose on the valley walls suggest that their velocity reached at least 80 or 90 miles per hour. The unusually long distance some of the avalanches were transported is attributed to a cushion of trapped and compressed air at their base, which buoyed them up amid reduced friction.

  14. Identification of potential rockfall source areas at a regional scale using a DEM-based geomorphometric analysis

    NASA Astrophysics Data System (ADS)

    Loye, A.; Jaboyedoff, M.; Pedrazzini, A.

    2009-10-01

    The availability of high resolution Digital Elevation Models (DEM) at a regional scale enables the analysis of topography with high levels of detail. Hence, a DEM-based geomorphometric approach becomes more accurate for detecting potential rockfall sources. Potential rockfall source areas are identified according to the slope angle distribution deduced from high resolution DEM crossed with other information extracted from geological and topographic maps in GIS format. The slope angle distribution can be decomposed in several Gaussian distributions that can be considered as characteristic of morphological units: rock cliffs, steep slopes, footslopes and plains. A terrain is considered as potential rockfall sources when their slope angles lie over an angle threshold, which is defined where the Gaussian distribution of the morphological unit "Rock cliffs" become dominant over the one of "Steep slopes". In addition to this analysis, the cliff outcrops indicated by the topographic maps were added. They contain however "flat areas", so that only the slope angles values above the mode of the Gaussian distribution of the morphological unit "Steep slopes" were considered. An application of this method is presented over the entire Canton of Vaud (3200 km2), Switzerland. The results were compared with rockfall sources observed on the field and orthophotos analysis in order to validate the method. Finally, the influence of the cell size of the DEM is inspected by applying the methodology over six different DEM resolutions.

  15. Rock shape, restitution coefficients and rockfall trajectory modelling

    NASA Astrophysics Data System (ADS)

    Glover, James; Christen, Marc; Bühler, Yves; Bartelt, Perry

    2014-05-01

    Restitution coefficients are used in rockfall trajectory modelling to describe the ratio between incident and rebound velocities during ground impact. They are central to the problem of rockfall hazard analysis as they link rock mass characteristics to terrain properties. Using laboratory experiments as a guide, we first show that restitution coefficients exhibit a wide range of scatter, although the material properties of the rock and ground are constant. This leads us to the conclusion that restitution coefficients are poor descriptors of rock-ground interaction. The primary problem is that "apparent" restitution coefficients are applied at the rock's centre-of-mass and do not account for rock shape. An accurate description of the rock-ground interaction requires the contact forces to be applied at the rock surface with consideration of the momentary rock position and spin. This leads to a variety of rock motions including bouncing, sliding, skipping and rolling. Depending on the impact configuration a wide range of motions is possible. This explains the large scatter of apparent restitution coefficients. We present a rockfall model based on newly developed hard-contact algorithms which includes the effects of rock shape and therefore is able to reproduce the results of different impact configurations. We simulate the laboratory experiments to show that it is possible to reproduce run-out and dispersion of different rock shapes using parameters obtained from independent tests. Although this is a step forward in rockfall trajectory modelling, the problem of parametersing real terrain remains.

  16. Assessment of rockfall risk along roads

    NASA Astrophysics Data System (ADS)

    Budetta, P.

    2004-03-01

    This paper contains a method for the analysis of rockfall risk along roads and motorways. The method is derived from the Rockfall Hazard Rating System (RHRS) developed by Pierson et al. (1990) at the Oregon State Highway Division. The RHRS provides a rational way to make informed decisions on where and how to spend construction funds. Exponential scoring functions are used to represent the increases, respectively, in hazard and in vulnerability that are reflected in the nine categories forming the classification. The resulting total score contains the essential elements regarding the evaluation of the degree of the exposition to the risk along roads. In the modified method, the ratings for the categories "ditch effectiveness", "geologic characteristic", "volume of rockfall/block size", "climate and water circulation" and "rockfall history" have been rendered more easy and objective. The main modifications regard the introduction of Slope Mass Rating by Romana (1985, 1988, 1991) improving the estimate of the geologic characteristics, of the volume of the potentially unstable blocks and the underground water circulation. Other modifications regard the scoring for the categories "decision sight distance" and "road geometry". For these categories, the Italian National Council's standards (Consiglio Nazionale delle Ricerche - CNR) have been used (CNR, 1980). The method must be applied in both the traffic directions because the percentage of reduction in the decision sight distance greatly affects the results. An application of the modified method to a 2km long section of the Sorrentine road (no 145) in Southern Italy was developed. A high traffic intensity affects the entire section of the road and rockfalls periodically cause casualties, as well as a large amount of damage and traffic interruptions. The method was applied to seven cross sections of slopes adjacent to the Sorrentine road. For these slopes, the analysis shows that the risk is unacceptable and it should be reduced using urgent remedial works.

  17. The importance of source area mapping for rockfall hazard analysis

    NASA Astrophysics Data System (ADS)

    Valagussa, Andrea; Frattini, Paolo; Crosta, Giovanni B.

    2013-04-01

    A problem in the characterization of the area affected by rockfall is the correct source areas definition. Different positions or different size of the source areas along a cliff result in different possibilities of propagation and diverse interaction with passive countermeasures present in the area. Through the use of Hy-Stone (Crosta et al., 2004), a code able to perform 3D numerical modeling of rockfall processes, different types of source areas were tested on a case study slope along the western flank of the Mt. de La Saxe (Courmayeur, AO), developing between 1200 and 2055 m s.l.m. The first set of source areas consists of unstable rock masses identified on the basis of field survey and Terrestrial Laser Scanning (IMAGEO, 2011). A second set of source areas has been identified by using different thresholds of slope gradient. We tested slope thresholds between 50° and 75° at 5° intervals. The third source area dataset has been generating by performing a kinematic stability analysis. For this analysis, we mapped the join sets along the rocky cliff by means of the software COLTOP 3D (Jaboyedoff, 2004), and then we identified the portions of rocky cliff where planar/wedge and toppling failures are possible assuming an average friction angle of 35°. Through the outputs of the Hy-Stone models we extracted and analyzed the kinetic energy, height of fly and velocity of the blocks falling along the rocky cliff in order to compare the controls of different source areas. We observed strong variations of kinetic energy and fly height among the different models, especially when using unstable masses identified through Terrestrial Laser Scanning. This is mainly related to the size of the blocks identified as susceptible to failure. On the contrary, the slope gradient thresholds does not have a strong impact on rockfall propagation. This contribution highlights the importance of a careful and appropriate mapping of rockfall source area for rockfall hazard analysis and the design of passive countermeasures.

  18. GlacierRocks - Glacier-Headwall Interaction and its Influence on Rockfall Activity

    NASA Astrophysics Data System (ADS)

    Hartmeyer, Ingo; Keuschnig, Markus; Krautblatter, Michael; Helfricht, Kay; Leith, Kerry; Otto, Jan-Christoph

    2017-04-01

    Climate models predict continued climate warming and a decrease of Austrian glaciers to less than 20% of their present area by the end of this century. Rockfall from freshly exposed headwalls has been documented as an increasing risk factor with considerable significance for man and high-alpine infrastructure. Recent findings of a five-year terrestrial laserscanning campaign (2011-2016) monitoring glacial headwalls at the Kitzsteinhorn (3.203 m a.s.l.), Hohe Tauern Range, Austria, show the dramatic impact of glacier thinning on adjacent headwalls: 80 % of the detected rockfall volumes were triggered from areas located less than 20 m above the current glacier surface. Despite these implications, little is known about the thermal, mechanical and hydrological processes that operate at the glacier-headwall interface (randkluft). Systemic in-situ monitoring of stability-relevant parameters are lacking, leaving fundamental gaps in the understanding of rockfall preconditioning in glacial headwalls and the geomorphological evolution of glaciated catchments. In this contribution we introduce the recently approved research project 'GlacierRocks', which starts in 2017 and will run for at least three years. 'GlacierRocks' will establish the worldwide first research site for long-term monitoring of stability-relevant processes inside a randkluft system. Based on the acquired monitoring data 'GlacierRocks' is pursuing three overall aims at (1) gaining a better understanding of rockfall preconditioning in randklufts and related geomorphological shaping of headwalls, (2) analyzing poorly understood glacial thinning dynamics near headwalls, and (3) estimating present and future rockfall hazard potential in headwalls on a regional scale. The three system components (headwall, glacier, randkluft) will be investigated by combining geomorphological, glaciological and meteorological methods. 'GlacierRocks' will continuously monitor rock temperature, rock moisture, frost cracking, glacier ice temperature, glacier ice motion, randkluft depth/width changes and a series of meteorological parameters. The study site of 'GlacierRocks' is located in the summit region of the Kitzsteinhorn (3.203 m a.s.l.), which is home to an interdisciplinary Open Air Lab (OPAL) focusing on permafrost and rockfall monitoring. Utilizing the existing infrastructure of the OPAL and collaborating with several Kitzsteinhorn-based partner projects, 'GlacierRocks' will make a concerted effort to shed light on poorly understood processes operating at the transition zone between subglacial and subaerial process domains.

  19. Rockfall hazard assessment integrating probabilistic physically based rockfall source detection (Norddal municipality, Norway).

    NASA Astrophysics Data System (ADS)

    Yugsi Molina, F. X.; Oppikofer, T.; Fischer, L.; Hermanns, R. L.; Taurisano, A.

    2012-04-01

    Traditional techniques to assess rockfall hazard are partially based on probabilistic analysis. Stochastic methods has been used for run-out analysis of rock blocks to estimate the trajectories that a detached block will follow during its fall until it stops due to kinetic energy loss. However, the selection of rockfall source areas is usually defined either by multivariate analysis or by field observations. For either case, a physically based approach is not used for the source area detection. We present an example of rockfall hazard assessment that integrates a probabilistic rockfall run-out analysis with a stochastic assessment of the rockfall source areas using kinematic stability analysis in a GIS environment. The method has been tested for a steep more than 200 m high rock wall, located in the municipality of Norddal (Møre og Romsdal county, Norway), where a large number of people are either exposed to snow avalanches, rockfalls, or debris flows. The area was selected following the recently published hazard mapping plan of Norway. The cliff is formed by medium to coarse-grained quartz-dioritic to granitic gneisses of Proterozoic age. Scree deposits product of recent rockfall activity are found at the bottom of the rock wall. Large blocks can be found several tens of meters away from the cliff in Sylte, the main locality in the Norddal municipality. Structural characterization of the rock wall was done using terrestrial laser scanning (TLS) point clouds in the software Coltop3D (www.terranum.ch), and results were validated with field data. Orientation data sets from the structural characterization were analyzed separately to assess best-fit probability density functions (PDF) for both dip angle and dip direction angle of each discontinuity set. A GIS-based stochastic kinematic analysis was then carried out using the discontinuity set orientations and the friction angle as random variables. An airborne laser scanning digital elevation model (ALS-DEM) with 1 m resolution was used for the analysis. Three failure mechanisms were analyzed: planar and wedge sliding, as well as toppling. Based on this kinematic analysis, areas where failure is feasible were used as source areas for run out analysis using Rockyfor3D v. 4.1 (www.ecorisq.org). The software calculates trajectories of single falling blocks in three dimensions using physically based algorithms developed under a stochastic approach. The ALS-DEM was down-scaled to 5 m resolution to optimize processing time. Results were compared with run-out simulations using Rockyfor3D with the whole rock wall as source area, and with maps of deposits generated from field observations and aerial photo interpretation. The results product of our implementation show a better correlation with field observations, and help to produce more accurate rock fall hazard assessment maps by a better definition of the source areas. It reduces the time processing for the analysis as well. The findings presented in this contribution are part of an effort to produce guidelines for natural hazard mapping in Norway. Guidelines will be used in upcoming years for hazard mapping in areas where larger groups of population are exposed to mass movements from steep slopes.

  20. MONTE GENEROSO ROCKFALL FIELD TEST (SWITZERLAND): Real size experiment to constraint 2D and 3D rockfall simulations

    NASA Astrophysics Data System (ADS)

    Humair, F.; Matasci, B.; Carrea, D.; Pedrazzini, A.; Loye, A.; Pedrozzi, G.; Nicolet, P.; Jaboyedoff, M.

    2012-04-01

    In numerical rockfall simulation, the runout of rockfall is highly dependent of the restitution coefficients which are one of the key parameters to estimate the energy and simulate the rebounds of the blocks during their travel. Restitution coefficients values derived from literature may however not be adapted to every rockfall area as they do not integrate some of the influencing parameters as, among others, block shape rock size, soil cover… The aim is to illustrate how real size rockfall experiment can improve the reliability of computational trajectory simulations of rockfall propagation by calibrating these latter with experiment extracted results. Experimental rockfall tests were performed in the slopes of Monte Generoso area (lat 720850/ long 84830) which is located in the canton of Ticino in south Switzerland above a highway. The field site is a forested area with a thin soil cover on a bedrock characterized by massive carbonates. The elevation ranges between 894m and 322m above see level with a slope of 35 to 40° in the upper part, 60 to 89° in the medium part and 28 to 38° in the lower part. 22 blocks with different size and shape were manually released down, imparting little or no initial velocity. The failing blocks were coloured to make the impacts easier to recognize. The paths of the failing blocks are recorded using two high speed cameras and the impacts of the blocks were sampled using dGNSS. The rockfall trajectories were analysed based on the movies. As the movies have to be referenced in x and y direction, the distance between two known point in the terrain as well as the position of the cameras were measured prior to the blocks throws. Measurements of bounce height, angular and translational velocity (as well as energy) and restitution coefficients (normal kn and tangential kt) were attempt to be deduced from the movies. First, a-priori simulations are compared with the real size experiment throw. Then a-fortiori simulations taking into account the results of the experimental testing are performed and compared with the a-priori simulations. 3D simulations were performed using a software that takes into account the effect of the forest cover in the blocky trajectory (RockyFor 3D) and an other that neglects this aspect (Rotomap; geo&soft international). 2D simulation (RocFall; Rocscience) profiles were located in the blocks paths deduced from 3D simulations. The preliminary results show that: (1) high speed movies are promising and allow us to track the blocks using video software, (2) the a-priori simulations tend to overestimate the runout distance which is certainly due to an underestimation of the obstacles as well as the breaking of the failing rocks which is not taken into account in the models, (3) the trajectories deduced from both a-priori simulation and real size experiment highlights the major influence of the channelized slope morphology on rock paths as it tends to follow the flow direction. This indicates that the 2D simulation have to be performed along the line of flow direction.

  1. Modelling rock fragmentation of Extremely Energetic Rockfalls

    NASA Astrophysics Data System (ADS)

    De Blasio, Fabio; Dattola, Giuseppe; Battista Crosta, Giovanni

    2017-04-01

    Extremely energetic rockfalls (EER) are phenomena for which the combination of a large volume (at least some thousands of m ) and a free fall height of hundreds of metres, results in a large released energy. We fix a threshold value of around 1/50 of kilotons to define such a type of events. Documented examples include several events with dif-ferent size in the Alps (Dru, 2005, 2011, 265,000, 59,200 m3; val Fiscalina - Cima Una, 2007, 40,000 m3; Thurwieser 2004, ca 2 Mm3; Cengalo, 2011, 1.5*105 m3 in 2016, in Switzerland; Civetta, 2013, ca 50,000 m3;), in the Apennines (Gran Sasso, 2006, 30,000 m3), Rocky Mountains (Yosemite, Happy Isles, 38,000 m3), and Himalaya. EERs may become more frequent on steep and sharp mountain peaks as a consequence of permafrost thawing at higher altitudes. In contrast to low energy rockfalls where block disintegration is limited, in EERs the impact after free fall causes an immediate and efficient release of energy much like an explosion. The severe disintegration of the rock and the corresponding air blast are capable of snapping trees many hundreds of metres ahead of the fall area. Pulverized rock at high speed can abrade tree logs, and the resulting suspension flow may travel much further the impact zone, blanketing vast surrounding areas. Using both published accounts of some of these events and collecting direct data for some of them, we present some basic models to describe the involved processes based on analogies with explosions and explosive fragmentation. Of the initial energy, one part is used up in the rock disintegration, and the rest is shared between the shock wave and air blast. The fragmentation energy is calculated based on the fitting of the dust size spectrum by using different proba-bilistic distribution laws and the definition of a surface energy and by considering the involved strain rate. We find the fragmentation is around one third of the initial boulder energy. Finally, we evaluate the velocity of the corresponding cloud generated by the powder suspension and compare with the information available in literature. keywords: EER, Rockfalls, Disintegration number, Omographic distribution

  2. Development of Waterfall Cliff Face: An Implication from Multitemporal High-definition Topographic Data

    NASA Astrophysics Data System (ADS)

    Hayakawa, Y. S.; Obanawa, H.

    2015-12-01

    Bedrock knickpoints (waterfalls) often act as erosional front in bedrock rivers, whose geomorphological processes are various. In waterfalls with vertical cliffs, both fluvial erosion and mass movement are feasible to form the landscape. Although morphological changes of such steep cliffs are sometimes visually observed, quantitative and precise measurements of their spatiotemporal distribution have been limited due to poor accessibility to such cliffs. For the clarification of geomorphological processes in such cliffs, multi-temporal mapping of the cliff face at a high resolution can be advantaged by short-range remote sensing approaches. Here we carry out multi-temporal terrestrial laser scanning (TLS), as well as structure-from-motion multi-view stereo (SfM-MVS) photogrammetry based on unmanned aerial system (UAS) for accurate topographic mapping of cliffs around a waterfall. The study site is Kegon Falls in central Japan, having a vertical drop of surface water from top of its overhanging cliff and groundwater outflows from its lower portions. The bedrock consists of alternate layers of jointed andesite lava and conglomerates. The latest major rockfall in 1986 caused approximately 8-m recession of the waterfall lip. Three-dimensional changes of the rock surface were detected by multi-temporal measurements by TLS over years, showing the portions of small rockfalls and surface lowering in the bedrock. Erosion was frequently observed in relatively weak the conglomerates layer, whereas small rockfalls were often found in the andesite layers. Wider areas of the waterfall and cliff were also measured by UAS-based SfM-MVS photogrammetry, improving the mapping quality of the cliff morphology. Point clouds are also projected on a vertical plane to generate a digital elevation model (DEM), and cross-sectional profiles extracted from the DEM indicate the presence of a distinct, 5-10-m deep depression in the cliff face. This appears to have been formed by freeze-thaw and/or wet-dry weathering following the recession in 1986. The long-term development of the waterfall cliff face is then discussed comprising various processes of rockfalls, water pressure and weathering.

  3. The impact of overlapping processes on rockfall hazard analysis - the Bolonia Bay study (southern Spain)

    NASA Astrophysics Data System (ADS)

    Fernandez-Steeger, T.; Grützner, C.; Reicherter, K.; Braun, A.; Höbig, N.

    2009-04-01

    For rockfall simulations, competitive case studies and data sets are important to develop and evaluate the models or software. Especially for empirical or data driven stochastic modelling the quality of the reference data sets has a major impact on model skills and knowledge discovery. Therefore, rockfalls in the Bolonia Bay close to Tarifa (Spain) were mapped. Here, the siliciclastic Miocene rocks (megaturbidites) are intensively joined and disaggregated by a perpendicular joint system. Although bedding supports stability as the dip is not directed towards the rock face, the deposits indicate a continuous process of material loss from the 80 m high cliff of the San Bartolome mountain front by single large rock falls. For more than 300 blocks data on size, shape, type of rock, and location were collected. The work concentrated on rockfall blocks with a volume of more than 2 m³ and up to 350 m³. Occasionally very long "runout" distances of up to 2 km have been observed. For all major source areas and deposits, runout analysis using empirical models and a numerical trajectorian model has been performed. The most empirical models are principally based on the relation between fall height and travel distance. Beside the "Fahrböschung" from Heim (1932) the "shadow angle" introduced by Evans and Hungr (1993) is most common today. However, studies from different sites show a wide variance of the angle relations (Dorren 2003, Corominas 1996). The reasons for that might be different environments and trigger mechanisms, or varying secondary effects such as post-depositional movement. Today, "semi" numerical approaches based on trajectorian models are quite common to evaluate the rockfall energy and the runout distance for protection measures and risk evaluations. The results of the models highly depend on the quality of the input parameters. One problem here might be that some of the parameters, especially the dynamic ones, are not easy to determine and the quality of the digital elevation model has an large impact on energy estimations and travel paths. In the course of this study the model of "shadow angel", "Fahrböschung" and a numerical simulation using "Rockfall 6.2" (Spang & Sonser 1995) have been applied to the mapped rockfall deposits. The results revealed a good coherence of all three modeling attempts in some cases. Especially for deposition areas where many single rockfall events could be identified as young all models performed well and showed nearly identical results. In other areas with large deposits and long travel distances, the model predictions vary strongly and the shadow angles do not fit the usual ranges at all. Here, post-depositional transport by surface-near landslides in a piggy-back style is postulated. Medium- and large-scaled landslides and creep in soils are proven in the whole bay. Landslide bodies can be observed in the deposition areas and were proved with GPR. Additionally, the weathered marls and clays of the Flysch deposits below the rock face are highly active and likely to be subject to sliding after heavy rainfalls. Another reason for the extraordinary long runout distances might be seismic triggering. Paleoseismological and archeoseismological investigations already showed that the study area suffered destructive earthquakes even in historical times (Silva et al 2009). This trigger mechanism was simulated for various blocks, but did not lead to the expected results in all cases. Strong winds have also to be considered as an additionally trigger mechanism for rockfalls by leverage as wind forces > 5 Bft are present in the forested study area more than 300 days per year. The results show that simple stochastic analysis using large data sets without taking triggering mechanism and geological environment in consideration may lead to mere general models. More data sets and comparative studies are necessary to evaluate the threshold values for the empirical models like the shadow angle. Anyhow the results from the described investigation show that on a screening and planning level the results of the empirical methods are quite good. Especially for numerical simulation, where back analysis is common to parameterize the models, the identification of "ideal" rockfalls is essential for a good simulation performance and subsequently for an appropriate planning of protection measures. References Corominas, J. 1996. The angle of reach as a mobility index for small and large landslides. Canadian Geotechnical Journal, 33, 260 - 271. Dorren, L.K. 2003. A review of rockfall mechanics and modeling approaches. Progress in Physical Geography, 27 (1), 69 - 87. Evans, S. & Hungr, O. 1993. The assessment of rockfall hazard at the base of talus slopes. Canadian Geotechnical Journal, 30, 620 - 636. Heim, A. 1932. Bergsturz und Menschenleben. Vjschr. d. Naturforsch Ges. Zürich, 216 pp. Silva P.G., Reicherter K., Grützner C., Bardají T., Lario J., Goy J.L., Zazo C., & Becker-Heidmann P. 2009. Surface and subsurface paleoseismic records at the ancient Roman city of Baelo Claudia and the Bolonia Bay area, Cádiz (South Spain). Geol Soc of London Spec. Vol.: Paleoseismology: Historical and prehistorical records of earthquake ground effects for seismic hazard assessment. In press. Spang, R. M. & Sonser, Th. 1995. Optimized rockfall protection by "ROCKFALL". Proc 8th Int Congress Rock Mechanics, 3, 1233-1242.

  4. Development of a 3D rockfall simulation model for point cloud topography

    NASA Astrophysics Data System (ADS)

    Noël, François; Wyser, Emmanuel; Jaboyedoff, Michel; Clouthier, Catherine; Locat, Jacques

    2017-04-01

    Rockfall simulations are generally used, for example, as input data to generate rockfall susceptibility map, to evaluate the reach probability of an infrastructure or to define input parameter values for mitigation designs. During the simulations, the lateral and vertical deviations of the particle and the change of velocity happening during the impacts have to be evaluated. Numerous factors control rockfall paths and velocities, like the particle's and terrain's shapes and compositions. Some models, especially the ones using discrete element methods, can consider a lot of physical factors. However, a compromise often has to be done between the time needed to produce a sufficient amount of 2D or 3D rockfall trajectories and the level of complexity of the model. In this presentation, the current version of our rockfall model in development is detailed and the compromises that were made are explained. For example, it is hard to predict the sizes and shapes of the components that could fall from a developing rock instability, or if they will break after the first impact or stay as massive blocks. For this reason, we decided for now to simplify the particle's shape to a sphere which can vary in size and to use a cubical shape to compute the 3D rotational inertia. In contrast to the particle's characteristics, the terrain's shape is known and can be acquired in detail using current topographical acquisition methods, e.g. airborne and terrestrial laser scans and aerial based structure from motion. We made no sacrifice on that side and developed our model so it can simulate rockfalls directly on 3D point clouds topographical data. It is also been shown that calibrating velocity weighting factors, often called restitution coefficients, is not an easy task. Divergent results could be obtained by different users using the same simulation program simply because they use different weighting factors, which are hard to evaluate and quantify from field work. Moreover, the normal velocity weighting factor does not seems to be constant as the impact conditions change, even if the terrain composition does not change. It could be correlated with the incident angle. We then decided for now to let impact characteristics control velocity changes with some variability and to use the detailed topographic representation to control the direction after a rebound. As a high topographical level of detail is used, less random variability is needed. Therefore, it would be easier for different users working on the same study area to get similar results as long as detailed enough topographical data are used. Some applications cases are also shown. Further development should focus on more calibration with known rockfall events, taking into account impact against trees and fragmentation of rock blocks, and improving the impact model by studying impacts on different terrain compositions from a mechanical approach using discrete element method based simulations.

  5. The Sasso Pizzuto landslide dam and seismically induced rockfalls along the Nera River gorge (Central Italy).

    NASA Astrophysics Data System (ADS)

    Romeo, Saverio; Di Matteo, Lucio; Melelli, Laura; Cencetti, Corrado; Dragoni, Walter; Fredduzzi, Andrea; De Rosa, Pierluigi

    2017-04-01

    The seismically induced landslides are among the most destructive and dangerous effects of an earthquake. In the Italian contest, this is also documented by a national catalogue that collects data related to earthquake-induced ground failures in the last millennium (CEDIT database). In particular, Central Italy has been affected by several historical landslides triggered by significant earthquakes, the last of which occurred in August-October 2016, representing the Italian strongest event after the 1980 Irpinia earthquake (Mw 6.9). The study presents the effects of recent seismically induced rockfalls occurred within the Central Italy seismic sequence (October 30, 2016) along the Nera River gorge between Umbria and Marche. The study area is completely included in the Monti Sibillini National Park, where the highest mountain chain in the Umbrian-Marchean Apennine is located. Most of rockfalls have affected the "Maiolica" formation, a stratified and fractured pelagic limestone dating to the Early Cretaceous. The seismic sequence produced diffuse instabilities along the SP 209 road within the Nera River gorge: boulders, debris accumulations and diffuse rockfalls have been mapped. Most of boulders have size ranging from 0.3 to 2.0 m in diameter. Although several strong quakes (Mw > 5) occurred during the August-October sequence, only the main quake triggered the Sasso Pizzuto rockfall producing a landslide dam along the Nera River. The landslide appears to have originated as a wedge failure, which evolved to free fall when the rock block lost the contact with the stable rock mass. In other words, the quake produced the "explosion" of the rock wall allowing the rockfall process. Once the rock mass reached the toe of the slope, it was broken triggering a rock avalanche that obstructed both the Nera River and SP 209 road. With the aim to estimate the total volume of involved rock, a field survey was carried out by using a laser rangefinder. Remote measures were acquired taking into account the inclination, horizontal, vertical and slope distance. Through topographical calculations and GIS analysis, it has been possible to reconstruct the size and shape of debris accumulation estimating a volume of about 70000 m3 (±8000 m3 due to measurements accuracy). This agrees with qualitative measures independently performed. The maximum distance between the debris accumulation and rockfall source area is about 200 m; the altitude difference is 270 m. The landslide debris partially dammed the Nera River, generating a lake upstream: currently the stream is flowing on the road among debris.

  6. Terrestrial Laser Scanner for assessing rockfall susceptibility in the Cilento rocky coast (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Sorrentino, Valerio; Matasci, Battista; Abellan, Antonio; Jaboyedoff, Michel; Marino, Ermanno; Pignalosa, Antonio; Santo, Antonio

    2016-04-01

    Rockfalls and other types of landslides are the dominant processes causing a retreat of sea cliffs. The coastal areas constitute an important tourist attraction and a large number of people rest beneath the cliffs on a daily basis, considerably increasing the risk associated to rockfalls. We present an approach to assess rockfall susceptibility at the cliff scale based on terrestrial laser scanner (TLS) point clouds. The test area is a coastal cliff situated in the southern part of the Cilento (Centola Municipality, Campania Region), in which a natural arch was formed. This cliff is constituted by heavy fractured carbonate rock mass with a strong structural control. In June 2015 TLS data were acquired with long-range scanner RIEGL VZ1000®. The structural analysis of the cliff was performed in the field and using Coltop 3D software on the point cloud. As a result, 10 discontinuity sets (joint, faults and bedding planes) were individuated and the different characteristics such as orientation, spacing and persistence were measured. The kinematically unstable areas were highlighted using a script that computes an index of susceptibility to rockfalls based on the spatial distribution of failure mechanisms. The susceptibility index computation is based on the average surface that every joint set (or combinations of two joint sets in the case of wedge failure) forms on the topography according to its spacing, trace length, and incidence angle. This susceptibility index also depends on the steepness of the joint set (or of the intersection line in the case of wedge failure). As a result the most important discontinuity sets in terms of potential planar failure, wedge failure and toppling were individuated and an assessment of rockfall susceptibility at the cliff scale was achieved. Results show that the kinematically feasible failures are not equally distributed along the cliff but concentrated on certain areas. The most susceptible areas for planar failure are related to the discontinuity set K10 (71/097), whereas for toppling the highest susceptibility is reached with K1 (60/218). Concerning wedge failure, the combination of K10 and K1 yields the highest susceptibility values. It shows also clustering with higher density which is probably related to regional structures. More detailed investigations of the rockfall susceptibility and failure mechanisms will be performed during the forthcoming months. The relationship with regional structures will be also investigated in more detail. Perspectives also include using the methodology on the other side of the natural arch in order to provide a global susceptibility assessment of the area.

  7. High morphogenic activity in the permafrost-affected rock walls of the Mont Blanc massif during the 2015 summer heat wave

    NASA Astrophysics Data System (ADS)

    Ravanel, Ludovic; Magnin, Florence; Deline, Philip

    2016-04-01

    In order to test the geomorphological hypothesis on the link between permafrost degradation and rock wall destabilisation, we survey all the rockfalls that occur in the central part of the Mont-Blanc massif using a network of observers since 2007. 511 rockfalls (100 < V < 45,000 m3) have been documented, year 2015 included. Between 2007 and 2014, the average number of destabilizations was 44 (from 17 in 2014 with a cold summer to 72 in 2009 with a relatively hot summer). In 2015, 160 events were recorded i.e. 4 times more than the annual average of the previous years. That makes the year 2015 similar to 2003 that was characterized by its summer heatwave triggering 152 rockfalls in the area currently covered by the network of observers, as shown by the analysis of a SPOT-5 image. Observations of 2015 are discussed and crossed with a statistical model of the Mean Annual Rock Surface Temperature (MARST) for the 1961-1990 period, implemented on a 4-m-resolution DEM of the Mont Blanc massif, and temperature measurements in three 10-m-deep boreholes at the Aiguille du Midi (3842 m a.s.l.), where the summer 2015 active layers have been the thickest since the start of measurements in 2009 (e.g. 3.6 m in the NE face against 2.9 m in average during the previous years). Before 2015, 90 % of the inventoried rockfalls occurred in areas where MARST is in the range -5 to 1°C, whereas only 50 % of the whole rock wall area above 2000 m a.s.l. covers this temperature range. With an air 0°C isotherm which sometimes exceeded the summit of Mont Blanc (4809 m a.s.l.) during the 2015 Summer, conditions were particularly unfavorable for mountaineering. Numerous rescues were carried out to climbers technically blocked by uncommon conditions or injured by rockfalls. On the normal route to the summit of Mont Blanc, two administrative closures of the Goûter hut (3835 m a.s.l.) were necessary to prevent climbers from the huge risk of rockfalls in the access couloir, known for its rockfall activity since its snow/ice cover thaws earlier and earlier in the hot season. This raises the question of the future of mountaineering in certain high altitude areas in the context of global warming.

  8. Seismic and mechanical studies of the artificially triggered rockfall at the Mount Néron (French Alps, December 2011)

    NASA Astrophysics Data System (ADS)

    Bottelin, P.; Jongmans, D.; Daudon, D.; Mathy, A.; Helmstetter, A.; Bonilla-Sierra, V.; Cadet, H.; Amitrano, D.; Richefeu, V.; Lorier, L.; Baillet, L.; Villard, P.; Donzé, F.

    2014-02-01

    The eastern limestone cliff of Mount Néron (French Alps) was the theatre of two medium-size rockfalls between summer and winter 2011. On 14 August 2011, a ~ 2000 m3 rock compartment detached from the cliff, fell 100 m below and propagated down the slope. Although most of the fallen rocks deposited in the upper part of the slope, about 15 meter-size blocks were stopped by a ditch and an earthen barrier after a runout of 800 m. An unstable overhanging ~ 2600 m3 compartment remained attached to the cliff and was blasted on 13 December 2011. During this artificially triggered event, 7 blocks reached the same ditch, with volumes ranging from 0.8 to 12 m3. A semi-permanent seismic array located about 2.5 km from the site recorded the two events, providing a unique opportunity to understand and to compare the seismic phases generated during natural and artificially triggered rockfalls. Both events have signal duration of ~ 100 s with comparable maximum amplitudes recorded at large distances (computed local magnitude of 1.14 and 1.05, respectively), most of the energy lying below 20 Hz. Remote sensing techniques (photogrammetry and LiDAR) were employed before and after the provoked rockfall, allowing the volume and fracturing to be characterized. This event was filmed by two video cameras and the generated ground motions were recorded using two temporary 3C seismic sensors and 3 seismic arrays deployed at the slope toe. Movie and seismogram processing provided estimates of the propagation velocity during the successive rockfall phases, which ranges from 12 m s-1 to 30 m s-1. The main seismic phases were obtained from combined video and seismic signal analyses. The two most energetic phases are related to the ground impact of fallen material after free-fall, and to individual rock block impacts into the ditch and the earthen barrier. These two phases are characterized by similar low-frequency content but show very different particle motions. The discrete element technique allowed reproducing the key features of the rockfall dynamics, yielding propagation velocities compatible with experimental observations.

  9. Experiences from full-scale rockfall testing of protection gallery

    NASA Astrophysics Data System (ADS)

    Volkwein, Axel; Fergg, Daniel; Hess, Reto; Schellenberg, Kristian

    2017-04-01

    Vertical drop tests have been performed at the Swiss Oberalppass road. The planned deconstruction of two avalanche protection galleries enabled a precedent evaluation of one gallery (Parde 1} regarding its capacity against rockfall. The background for this evaluation was also to evaluate an existing model for predicting the protection capacity of a rockfall gallery. Based on this model existing galleries can be evaluated whether their residual capacity is sufficient or if it is necessary to strengthen the structureaccording to the current guidelines. This contribution focusses the conduction of the experiments and the experiences obtained from. The presentation gives details on experimental setup, impact characterization, gallery performance, weather implications, data retrieval and data analysis.According to the limited time span for testing and the resources available, a compact testing series has been setup. Three fields of the gallery were tested with drop weights of 800, 1600 and 3200 kg falling from up to 25 m height. The blocks were lifted by a mobil crane. The concrete roof is supported by columns on the valley side and on the mountainside simply supported on the retention wall. The roof slabspans approximately 6x5 m with a thickness of about 0.60 m and is covered by a soil cushion, which has been unified to 0.40 m thickness previous to the test. Additional wooden columns have been installed at the roof's valleyside to avoid a failure of the concrete columns and to favorize a failure of the roof itself due to bending or punching. The measurements performed consist of high speed video records, accelerations within the impactors and on the bottom surface of the gallery roof.

  10. Hydrogeology of an alpine rockfall aquifer system and its role in flood attenuation and maintaining baseflow

    NASA Astrophysics Data System (ADS)

    Lauber, U.; Kotyla, P.; Morche, D.; Goldscheider, N.

    2014-06-01

    The frequency and intensity of extreme hydrological events in alpine regions is projected to increase with climate change. The goal of this study was to better understand the functioning of aquifers composed of complex alluvial and rockfall deposits in alpine valleys and to quantify the role of these natural storage spaces in flood attenuation and baseflow maintenance. Geomorphological and hydrogeological mapping, tracer tests, and continuous flow measurements were conducted in the Reintal valley (German Alps), where runoff from a karst spring infiltrates into a series of postglacial alluvial/rockfall aquifers. During high-flow conditions, groundwater velocities of 30 m h-1 were determined along 500 m; hydrograph analyses revealed short lag times (5 h) between discharge peaks upstream and downstream from the aquifer series; the maximum discharge ratio downstream (22) and the peak recession coefficient (0.196 d-1) are low compared with other alpine catchments. During low-flow conditions, the underground flow path length increased to 2 km and groundwater velocities decreased to 13 m h-1. Downstream hydrographs revealed a delayed discharge response after 101 h and peaks dampened by a factor of 1.5. These results indicate that alluvial/rockfall aquifers might play an important role in the flow regime and attenuation of floods in alpine regions.

  11. Hydrogeology of an Alpine rockfall aquifer system and its role in flood attenuation and maintaining baseflow

    NASA Astrophysics Data System (ADS)

    Lauber, U.; Kotyla, P.; Morche, D.; Goldscheider, N.

    2014-11-01

    The frequency and intensity of extreme hydrological events in Alpine regions is projected to increase with climate change. The goal of this study is to better understand the functioning of aquifers composed of complex alluvial and rockfall deposits in Alpine valleys and to quantify the role of these natural storage spaces in flood attenuation and baseflow maintenance. Geomorphological and hydrogeological mapping, tracer tests, and continuous flow measurements were conducted in the Reintal (German Alps), where runoff from a karst spring infiltrates a series of postglacial alluvial/rockfall aquifers. During high-flow conditions, groundwater velocities of 30 m h-1 were determined along 500 m; hydrograph analyses revealed short lag times (5 h) between discharge peaks upstream and downstream from the aquifer series; the maximum discharge ratio downstream (22) and the peak recession coefficient (0.196 d-1) are low compared with other Alpine catchments. During low-flow conditions, the underground flow path length increased to 2 km and groundwater velocities decreased to 13 m h-1. Downstream hydrographs revealed a delayed discharge response after 101 h and peaks damped by a factor of 1.5. These results indicate that alluvial/rockfall aquifers might play an important role in the flow regime and attenuation of floods in Alpine regions.

  12. Seismic and acoustic recordings of an unusually large rockfall at Mount St. Helens, Washington

    USGS Publications Warehouse

    Moran, Seth C.; Matoza, R.S.; Garces, M.A.; Hedlin, M.A.H.; Bowers, D.; Scott, William E.; Sherrod, David R.; Vallance, James W.

    2008-01-01

    On 29 May 2006 a large rockfall off the Mount St. Helens lava dome produced an atmospheric plume that was reported by airplane pilots to have risen to 6,000 m above sea level and interpreted to be a result of an explosive event. However, subsequent field reconnaissance found no evidence of a ballistic field, indicating that there was no explosive component. The rockfall produced complex seismic and infrasonic signals, with the latter recorded at sites 0.6 and 13.4 km from the source. An unusual, very long-period (50 s) infrasonic signal was recorded, a signal we model as the result of air displacement. Two high-frequency infrasonic signals are inferred to result from the initial contact of a rock slab with the ground and from interaction of displaced air with a depression at the base of the active lava dome.

  13. Evaluation of the rockfall susceptibility of the Solà D'Andorra using the Matterock methodology

    NASA Astrophysics Data System (ADS)

    Mavrouli, O.; Pedrazzini, A.; Loye, A.; Jaboyedoff, M.; Corominas, J.

    2010-05-01

    The rockfall susceptibility of a slope is directly linked to the topographical relief and the presence of favorable discontinuities for the detachment of rock volumes from the slope face. In order to rank the rockfall susceptibility throughout a slope so as to localize the zones which are the most probable to produce rockfalls, these parameters have to be taken into consideration. In this context, the objective of this work was the identification of susceptible areas on the Solà de Andorra, in Andorra. The susceptibility is evaluated implementing a GIS platform and the Matterock methodology (Rouiller et al., 1998) by superposition of four criteria that are related to the topographical relief and the presence of discontinuities. The used parameters and the related analyses to obtain them are the following and they are briefly described in the continue: 1. Comparison of the slope angle with the threshold value defined by slope angle analysis. 2. Average number of unfavorable discontinuities per surface unit. 3. Number of kinematically permitted plane or wedge failures. 4. Value in cubic meters of the potentially instable volumes using the Slope Local Base Level, SLBL, method. The slope angle analysis is used for the determination of an angle value above which rockfalls are very probable. It is based on the decomposition of the histogram of the present slope angles to different families, using a Gaussian distribution. The families represent the existing geo-morphological structures. The threshold value is determined by the angle characterizing the steepest family. The unfavorable discontinuities are detected using the Matterock software. The input data is the DEM and the principal discontinuity sets. The output is the average number of discontinuities counted in every topographic facet. The kinematic tests are also performed using the Matterock software. For each unfavorable discontinuity set, the number of potential plane or wedge failures is calculated. The volumes above a base level that is determined by the topographical relief are calculated using the SLBL method, also on a GIS platform. For the application at a local scale to the Solà de Andorra, the four analyses are performed and their outputs are ranked using appropriate rating. The susceptibility index that is used is equal to the sum of the ranked outputs and it is expressed on an increasing scale from 0 to 8. Historical rockfall events are superimposed on the topographic map to check the consistency of the results. It is indicated that areas characterized by high values of the susceptibility index coincide with past events, thus may be considered prone to also produce rockfalls in the future. References Rouiller, J.-D., Jaboyedoff, M., Marro, C., Phlippossian, F. and Mamin, M. (1998): Pentes instables dans le Pennique valaisan. Rapport final PNR31. VDF, Zürich.

  14. A discrete element modelling approach for block impacts on trees

    NASA Astrophysics Data System (ADS)

    Toe, David; Bourrier, Franck; Olmedo, Ignatio; Berger, Frederic

    2015-04-01

    These past few year rockfall models explicitly accounting for block shape, especially those using the Discrete Element Method (DEM), have shown a good ability to predict rockfall trajectories. Integrating forest effects into those models still remain challenging. This study aims at using a DEM approach to model impacts of blocks on trees and identify the key parameters controlling the block kinematics after the impact on a tree. A DEM impact model of a block on a tree was developed and validated using laboratory experiments. Then, key parameters were assessed using a global sensitivity analyse. Modelling the impact of a block on a tree using DEM allows taking into account large displacements, material non-linearities and contacts between the block and the tree. Tree stems are represented by flexible cylinders model as plastic beams sustaining normal, shearing, bending, and twisting loading. Root soil interactions are modelled using a rotation stiffness acting on the bending moment at the bottom of the tree and a limit bending moment to account for tree overturning. The crown is taken into account using an additional mass distribute uniformly on the upper part of the tree. The block is represented by a sphere. The contact model between the block and the stem consists of an elastic frictional model. The DEM model was validated using laboratory impact tests carried out on 41 fresh beech (Fagus Sylvatica) stems. Each stem was 1,3 m long with a diameter between 3 to 7 cm. Wood stems were clamped on a rigid structure and impacted by a 149 kg charpy pendulum. Finally an intensive simulation campaign of blocks impacting trees was done to identify the input parameters controlling the block kinematics after the impact on a tree. 20 input parameters were considered in the DEM simulation model : 12 parameters were related to the tree and 8 parameters to the block. The results highlight that the impact velocity, the stem diameter, and the block volume are the three input parameters that control the block kinematics after impact.

  15. Procedure for assessing the performance of a rockfall fragmentation model

    NASA Astrophysics Data System (ADS)

    Matas, Gerard; Lantada, Nieves; Corominas, Jordi; Gili, Josep Antoni; Ruiz-Carulla, Roger; Prades, Albert

    2017-04-01

    A Rockfall is a mass instability process frequently observed in road cuts, open pit mines and quarries, steep slopes and cliffs. It is frequently observed that the detached rock mass becomes fragmented when it impacts with the slope surface. The consideration of the fragmentation of the rockfall mass is critical for the calculation of block's trajectories and their impact energies, to further assess their potential to cause damage and design adequate preventive structures. We present here the performance of the RockGIS model. It is a GIS-Based tool that simulates stochastically the fragmentation of the rockfalls, based on a lumped mass approach. In RockGIS, the fragmentation initiates by the disaggregation of the detached rock mass through the pre-existing discontinuities just before the impact with the ground. An energy threshold is defined in order to determine whether the impacting blocks break or not. The distribution of the initial mass between a set of newly generated rock fragments is carried out stochastically following a power law. The trajectories of the new rock fragments are distributed within a cone. The model requires the calibration of both the runout of the resultant blocks and the spatial distribution of the volumes of fragments generated by breakage during their propagation. As this is a coupled process which is controlled by several parameters, a set of performance criteria to be met by the simulation have been defined. The criteria includes: position of the centre of gravity of the whole block distribution, histogram of the runout of the blocks, extent and boundaries of the young debris cover over the slope surface, lateral dispersion of trajectories, total number of blocks generated after fragmentation, volume distribution of the generated fragments, the number of blocks and volume passages past a reference line and the maximum runout distance Since the number of parameters to fit increases significantly when considering fragmentation, the final parameters selected after the calibration process are a compromise which meet all considered criteria. This methodology has been tested in some recent rockfall where high fragmentation was observed. The RockGIS tool and the fragmentation laws using data collected from recent rockfall have been developed within the RockRisk project (2014-2016, BIA2013-42582-P). This project was funded by the Spanish Ministerio de Economía y Competitividad.

  16. 4D monitoring of actively failing rockslopes

    NASA Astrophysics Data System (ADS)

    Rosser, Nick; Williams, Jack; Hardy, Richard; Brain, Matthew

    2017-04-01

    Assessing the conditions which promote rockfall to collapse relies upon detailed monitoring, ideally before, during and immediately after failure. With standard repeat surveys it is common that surveys do not coincide with or capture precursors, or that surveys are widely spaced relative to the timing and duration of driving forces such as storms. As a result gaining insight into the controls on failure and the timescales over which precursors operate remains difficult to establish with certainty, and establishing direct links between environmental conditions and rock-falls, or sequences of events prior to rockfall, remain difficult to define. To address this, we present analysis of a high-frequency 3D laser scan dataset captured using a new permanently installed system developed to constantly monitor actively failing rock slopes. The system is based around a time of flight laser scanner, integrated with and remotely controlled by dedicated controls and analysis software. The system is configured to capture data at 0.1 m spacing across > 22,000 m3 at up to 30 minute intervals. Here we present results captured with this system over a period of 9 months, spanning spring to winter 2015. Our analysis is focussed upon improving the understanding of the nature of small (< 1m^3) rockfalls falling from near vertical rock cliffs. We focus here on the development of a set of algorithms for differencing that trade-off the temporal resolution of frequent surveys (hourly) against high spatial resolution point clouds (< 0.05 m) to enhance the precision of change detection, allowing both deformation and detachments to be monitored through time. From this dataset we derive rockfall volume frequency distributions based upon short-interval surveys, and identify the presence and/or absence of precursors, in what we believe to be the first constant volumetric measurement of rock face erosion. The results hold implications for understanding of rockfall mechanics, but also for how actively eroding surfaces can be monitored at high temporal frequency. Whilst high frequency data is ideal for describing processes that evolve rapidly through time, the cumulative errors that accumulate when monitored changes are dominated by inverse power-law distributed volumes are significant. To conclude we consider the benefits of defining survey frequency on the basis of the changes being detected relative to the accumulation of errors that inevitably arises when comparing high numbers of sequential surveys.

  17. Rockfall monitoring by Terrestrial Laser Scanning - case study of the basaltic rock face at Castellfollit de la Roca (Catalonia, Spain)

    NASA Astrophysics Data System (ADS)

    Abellán, A.; Vilaplana, J. M.; Calvet, J.; García-Sellés, D.; Asensio, E.

    2011-03-01

    This case study deals with a rock face monitoring in urban areas using a Terrestrial Laser Scanner. The pilot study area is an almost vertical, fifty meter high cliff, on top of which the village of Castellfollit de la Roca is located. Rockfall activity is currently causing a retreat of the rock face, which may endanger the houses located at its edge. TLS datasets consist of high density 3-D point clouds acquired from five stations, nine times in a time span of 22 months (from March 2006 to January 2008). The change detection, i.e. rockfalls, was performed through a sequential comparison of datasets. Two types of mass movement were detected in the monitoring period: (a) detachment of single basaltic columns, with magnitudes below 1.5 m3 and (b) detachment of groups of columns, with magnitudes of 1.5 to 150 m3. Furthermore, the historical record revealed (c) the occurrence of slab failures with magnitudes higher than 150 m3. Displacements of a likely slab failure were measured, suggesting an apparent stationary stage. Even failures are clearly episodic, our results, together with the study of the historical record, enabled us to estimate a mean detachment of material from 46 to 91.5 m3 year-1. The application of TLS considerably improved our understanding of rockfall phenomena in the study area.

  18. Seismic Stability Evaluation of Ririe Dam and Reservoir Project. Report 2. Stability Calculations, Analysis, and Evaluations. Volume 1. Main Text

    DTIC Science & Technology

    1991-09-01

    Army (i #Awleable) Engineer istrict. Walls Welli NPW-EN- GI _____________________ Bc DRSSW4~Sse.adZPa 10 SOURCE OF FUNDING NUMBERS Bldg. 602, City...cracks induced by ground motions. Z. Overtopping of dam due to seiches in reservoir. h. Overtopping of dam due to slides or rockfalls into reservoir. j...overtopping due to slides or rockfalls is not likely. Three potential modes of failure remain from the original list: (c) slope failures induced by

  19. Quantitative rock-fall hazard and risk assessment for Yosemite Valley, Yosemite National Park, California

    USGS Publications Warehouse

    Stock, Greg M.; Luco, Nicolas; Collins, Brian D.; Harp, Edwin L.; Reichenbach, Paola; Frankel, Kurt L.

    2012-01-01

    caused injuries within developed regions located on or adjacent to talus slopes, highlighting the need for additional investigations into rock-fall hazard and risk. This assessment builds upon previous investigations of rock fall hazard and risk in Yosemite Valley (Wieczorek et al., 1998, 1999; Guzzetti et al., 2003; Wieczorek et al., 2008), and focuses on hazard and risk to structures posed by relatively frequent fragmental-type rock falls (Evans and Hungr, 1999), up to approximately 100,000 m3 in volume.

  20. Geological, geomechanical and geostatistical assessment of rockfall hazard in San Quirico Village (Abruzzo, Italy)

    NASA Astrophysics Data System (ADS)

    Chiessi, Vittorio; D'Orefice, Maurizio; Scarascia Mugnozza, Gabriele; Vitale, Valerio; Cannese, Christian

    2010-07-01

    This paper describes the results of a rockfall hazard assessment for the village of San Quirico (Abruzzo region, Italy) based on an engineering-geological model. After the collection of geological, geomechanical, and geomorphological data, the rockfall hazard assessment was performed based on two separate approaches: i) simulation of detachment of rock blocks and their downhill movement using a GIS; and ii) application of geostatistical techniques to the analysis of georeferenced observations of previously fallen blocks, in order to assess the probability of arrival of blocks due to potential future collapses. The results show that the trajectographic analysis is significantly influenced by the input parameters, with particular reference to the coefficients of restitution values. In order to solve this problem, the model was calibrated based on repeated field observations. The geostatistical approach is useful because it gives the best estimation of point-source phenomena such as rockfalls; however, the sensitivity of results to basic assumptions, e.g. assessment of variograms and choice of a threshold value, may be problematic. Consequently, interpolations derived from different variograms have been used and compared among them; hence, those showing the lowest errors were adopted. The data sets which were statistically analysed are relevant to both kinetic energy and surveyed rock blocks in the accumulation area. The obtained maps highlight areas susceptible to rock block arrivals, and show that the area accommodating the new settlement of S. Quirico Village has the highest level of hazard according to both probabilistic and deterministic methods.

  1. Fast rockfall hazard assessment along a road section using the new LYNX Mobile Mapper Lidar

    NASA Astrophysics Data System (ADS)

    Dario, Carrea; Celine, Longchamp; Michel, Jaboyedoff; Marc, Choffet; Marc-Henri, Derron; Clement, Michoud; Andrea, Pedrazzini; Dario, Conforti; Michael, Leslar; William, Tompkinson

    2010-05-01

    The terrestrial laser scanning (TLS) is an active remote sensing technique providing high resolution point clouds of the topography. The high resolution digital elevations models (HRDEM) derived of these point clouds are an important tool for the stability analysis of slopes. The LYNX Mobile Mapper is a new TLS generation developed by Optech. Its particularity is to be mounted on a vehicle and providing a 360° high density point cloud at 200-khz measurement rate in a very short acquisition time. It is composed of two sensors improving the resolution and reducing the laser shadowing. The spatial resolution is better than 10 cm at 10 m range and at a velocity of 50 km/h and the reflectivity of the signal is around 20% at a distance of 200 m. The Lidar is also equipped with a DGPS and an inertial measurement unit (IMU) which gives real time position and georeferences directly the point cloud. Thanks to its ability to provide a continuous data set from an extended area along a road, this TLS system is useful for rockfall hazard assessment. In addition, this new scanner decrease considerably the time spent in the field and the postprocessing is reduced thanks to resultant georeferenced data. Nevertheless, its application is limited to an area close to the road. The LYNX has been tested near Pontarlier (France) along roads sections affected by rockfall. Regarding to the tectonic context, the studied area is located in the Folded Jura mainly composed of limestone. The result is a very detailed point cloud with a point spacing of 4 cm. The LYNX presents detailed topography on which a structural analysis has been carried out using COLTOP-3D. It allows obtaining a full structural description along the road. In addition, kinematic tests coupled with probabilistic analysis give a susceptibility map of the road cut or natural cliffs above the road. Comparisons with field survey confirm the Lidar approach.

  2. Developing effective rockfall protection barriers for low energy impacts

    NASA Astrophysics Data System (ADS)

    Mentani, Alessio; Giacomini, Anna; Buzzi, Olivier; Govoni, Laura; Gottardi, Guido; Fityus, Stephen

    2016-04-01

    Recently, important progresses have been made towards the development of high capacity rockfall barriers (100 kJ - 8000 kJ). The interest of researchers and practitioners is now turning to the development of fences of minor capacity, whose use becomes essential in areas where rockfall events generally have low intensity and the use of high capacity barriers would be accompanied by excessive costs and high environmental impact. Low energy barriers can also provide a cost-effective solution even in areas where high energies events are expected. Results of full-scale tests are vital to any investigation on the behaviour of these structures. An experimental set-up has been developed at The University of Newcastle (AUS), to investigate the response of low energy rockfall barrier prototypes to low energy impacts. The Australian territory, and in particular New South Wales, is in fact characterised by rockfall events of low-to-medium intensity (50 kJ - 500 kJ) and the need of protection structures working within such energy range, is particularly felt [1]. The experiments involved the impact of a test block onto three spans, low energy barrier prototypes, made of steel structural posts, fully fixed at the base, side cables and a steel meshwork constituted by a double twist hexagonal wire net [2]. Test data enabled the development, calibration and assessment of FE models [3], on which non-linear and dynamic analyses have been performed addressing the effect of the block size. Results have shown that the response of the structure is strongly governed by the net. Data from tests conducted on the sole net and on the entire barrier showed in fact a similar trend, different to what typically observed for high capacity barriers, whose behaviour is also led by the presence of uphill cables and brakes. In particular, the numerical analyses have demonstrated a dependence of the net performance on the block size. In particular, a loss of capacity in the order of 50% occurred as the block size dropped from 1000 to 450 mm, with a realistic velocity observed to get the perforation of the net. The results of the study provide an important insight on the behaviour of low energy barriers. Data also shed an important light on the testing procedures which should be followed when full-scale experiments are performed on these structures, highlighting the need of considering the whole spectrum of potential block sizes. References [1] Spadari M, Kardani M, De Carteret R, Giacomini A, Buzzi O, Fityus S, Sloan S W (2013) Statistical evaluation of rockfall energy ranges for different geological settings of New South Wales, Australia. Eng Geol 158:57-65. [2] Thoeni K, Lambert C, Giacomini A, Sloan S W (2013) Discrete modelling of hexagonal wire meshes with a stochastically distorted contact model. Comp Geotech 49: 158-169. [3] Mentani A, Giacomini A, Buzzi O, Govoni L, Gottardi G, Fityus S (2015) Numerical Modelling of a Low-Energy Rockfall Barrier: New Insight into the Bullet Effect, Rock Mech Rock Eng, DOI10.1007/s00603-015-0803-1

  3. The modified "Rockfall Hazard Rating System": a new tool for roads risk assessment

    NASA Astrophysics Data System (ADS)

    Budetta, P.

    2003-04-01

    This paper contains a modified method for the analysis of rockfall hazard along roads and motorways. The method is derived from that one developed by Pierson et alii at the Oregon State Highway Division. The Rockfall Hazard Rating System (RHRS) provides a rational way to make informed decisions on where and how to spend construction funds. An exponential scoring graph is used to represent the increase in hazard that is reflected in the nine categories forming the classification (slope height, ditch effectiveness, average vehicle risk, percent of decision site distance, roadway width, geological character, quantity of rockfall/event, climate and rock fall history). The resulting total score contains the essential elements regarding the evaluation of the consequences ("cost of failure"). In the modified method, the rating for the categories "ditch effectiveness", "decision sight distance", "rodway width", "geologic characteristic" and "climate and water circulation" have been rendered more easy and objective. The main modifications regard the introduction of the Romana's Slope Mass Rating improving the estimate of the geologic characteristics, of the volume of the potentially unstable blocks and underground water circulation. Other modifications regard the scoring determination for the categories "decision sight distance" and "road geometry". For these categories, the Italian National Council's standards (CNR) have been used. The method must be applied in both the traffic directions because the percentage of reduction in the "decision sight distance" greatly affects the results. An application of the method to a 2-km-long section of the Sorrentine road (n° 145) in Southern Italy was pointed out. A high traffic intensity affects the entire section of the road and rockfalls periodically cause casualties, as well as a large amount of damage and traffic interruptions. The method was applied on seven cross section traces of slopes adjacent to the Sorrentine road and the total final scores range between 275 and 450. For these slopes, the analysis shows that the risk is unacceptable and it must reduced using urgent remedial works. Further applications in other geological environments are welcomed.

  4. Optimising 4-D surface change detection: an approach for capturing rockfall magnitude-frequency

    NASA Astrophysics Data System (ADS)

    Williams, Jack G.; Rosser, Nick J.; Hardy, Richard J.; Brain, Matthew J.; Afana, Ashraf A.

    2018-02-01

    We present a monitoring technique tailored to analysing change from near-continuously collected, high-resolution 3-D data. Our aim is to fully characterise geomorphological change typified by an event magnitude-frequency relationship that adheres to an inverse power law or similar. While recent advances in monitoring have enabled changes in volume across more than 7 orders of magnitude to be captured, event frequency is commonly assumed to be interchangeable with the time-averaged event numbers between successive surveys. Where events coincide, or coalesce, or where the mechanisms driving change are not spatially independent, apparent event frequency must be partially determined by survey interval.The data reported have been obtained from a permanently installed terrestrial laser scanner, which permits an increased frequency of surveys. Surveying from a single position raises challenges, given the single viewpoint onto a complex surface and the need for computational efficiency associated with handling a large time series of 3-D data. A workflow is presented that optimises the detection of change by filtering and aligning scans to improve repeatability. An adaptation of the M3C2 algorithm is used to detect 3-D change to overcome data inconsistencies between scans. Individual rockfall geometries are then extracted and the associated volumetric errors modelled. The utility of this approach is demonstrated using a dataset of ˜ 9 × 103 surveys acquired at ˜ 1 h intervals over 10 months. The magnitude-frequency distribution of rockfall volumes generated is shown to be sensitive to monitoring frequency. Using a 1 h interval between surveys, rather than 30 days, the volume contribution from small (< 0.1 m3) rockfalls increases from 67 to 98 % of the total, and the number of individual rockfalls observed increases by over 3 orders of magnitude. High-frequency monitoring therefore holds considerable implications for magnitude-frequency derivatives, such as hazard return intervals and erosion rates. As such, while high-frequency monitoring has potential to describe short-term controls on geomorphological change and more realistic magnitude-frequency relationships, the assessment of longer-term erosion rates may be more suited to less-frequent data collection with lower accumulative errors.

  5. Susceptibility analysis for slides and rockfall: an example from the Northern Calcareous Alps (Vorarlberg, Austria)

    NASA Astrophysics Data System (ADS)

    Ruff, Michael; Rohn, Joachim

    2008-07-01

    In this paper a tool for semi-quantitative susceptibility assessment at a regional scale is presented which is applicable at areas with complex geological setting. At a study area within the Northern Calcareous Alps geotechnical mappings were implemented into a Geographical Information System and analysed as grid data with a cell size of 25 m. The susceptibility to sliding and falling processes was considered according to five classes (very low, low, medium, high, very high). Susceptibility to sliding was analysed using an index method. The layers of lithology, bedding conditions, tectonic faults, slope angle, slope aspect, vegetation and erosion were combined iteratively. Dropout zones of rockfall material were determined with help of a Digital Elevation Model. The movement of rolling rock samples was modelled by a cost analysis of all potential rockfall trajectories. These trajectories were also divided into five susceptibility classes. The susceptibility maps are presented in a general way to be used by communities and spatial planners. Conflict areas of susceptibility and landuse were located and can be presented destinctively.

  6. Rock cliffs hazard analysis based on remote geostructural surveys: The Campione del Garda case study (Lake Garda, Northern Italy)

    NASA Astrophysics Data System (ADS)

    Ferrero, A. M.; Migliazza, M.; Roncella, R.; Segalini, A.

    2011-02-01

    The town of Campione del Garda (located on the west coast of Lake Garda) and its access road have been historically subject to rockfall phenomena with risk for public security in several areas of the coast. This paper presents a study devoted to the determination of risk for coastal cliffs and the design of mitigation measures. Our study was based on statistical rockfall analysis performed with a commercial code and on stability analysis of rock slopes based on the key block method. Hazard from block kinematics and rock-slope failure are coupled by applying the Rockfall Hazard Assessment Procedure (RHAP). Because of the huge dimensions of the slope, its morphology and the geostructural survey were particularly complicated and demanding. For these reasons, noncontact measurement methods, based on aerial photogrammetry by helicopter, were adopted. A special software program, developed by the authors, was applied for discontinuity identification and for their orientation measurements. The potentially of aerial photogrammetic survey in rock mechanic application and its improvement in the rock mass knowledge is analysed in the article.

  7. Implementation of numerical simulations for rockfall hazard mapping in the Norddal municipality, Norway.

    NASA Astrophysics Data System (ADS)

    Yugsi Molina, Freddy Xavier; Oppikofer, Thierry; Otterå, Solveig; Hermanns, Reginald; Taurisano, Andrea; Wasrud, Jaran; Are Jensen, Odd; Rødseth Kvakland, Marte

    2013-04-01

    The Norwegian Water Resources and Energy Directorate (NVE) in cooperation with the Geological Survey of Norway (NGU) are implementing a nationwide program to systematically produce hazard maps for rockfalls, debris flows and snow avalanches in steep terrains. Activities during this program mapping are being carried out by both institutions, and for some areas, outsourced to the private sector. The results presented in this contribution focus on the rockfall component only, and are part of the hazard mapping activities carried out by NGU. Results from all parties involved will further lead in future, in combination with the components on debris flows and snow avalanches, to the preparation of guidelines for landslide hazard mapping. Those will be presented and recommended for the use of private consultants that work on municipality level. The first goal of the project is the preparation of hazard maps for critical areas where a large number of people are exposed to the threat of such type of mass movements. Results from a pilot area in Sylte (Norddal municipality) were presented in the EGU general assembly in 2012. The main objective of this contribution is to present the first finished rockfall hazard maps generated by NGU during the execution of the program. The results presented in this contribution were obtained for the Norddal municipality (Møre og Romsdal county). The area was selected based on the hazard mapping plan of Norway published in 2011, where Norddal is considered a priority area. The area is located in a valley over-steepened by glacial erosion that is characterized by high cliffs of medium to coarse-grained quartz-dioritic to granitic gneisses of Proterozoic age. Multiple scree deposits product of older and recent rockfall activity can be seen along the bottom at both valley flanks. Sylte, the main locality in the Norddal municipality, is located at the valley outlet to the fjord. Several other smaller localities are found along the valley. A spatial geodatabase containing information regarding block sources, block shape and size, rock type, geometry and material properties along the potential rockfall tracks, and presence of natural energy attenuators (i.e. forest) was generated with data obtained during field work. Remote sensing imagery (high resolution aerial photographs), and a high resolution airborne LiDAR-based terrain model (1 m of spatial resolution) were used to extrapolate the information collected during field work to the full extent of the study area. Based on statistical analysis of the observed rock blocks a probability density function of the block size was obtained. This information was used to define the frequency of rockfall events of different sizes. Three scenarios were generated that follow the Norwegian regulations for construction (the Norwegian Building Act) for three different return periods: 100, 1000, and 5000 years. Numerical simulations using Rockyfor3D v. 5.0 (www.ecorisq.org) were performed for the three selected scenarios. Curves representing the maximum reach of blocks for every defined scenario with the sufficient energy to cause enough damage on buildings and houses that could threat the life of their inhabitants were used to define the hazard maps. Results show a good fit with the location of scree deposits found during field recognition. According to the results for events corresponding to the 100 year return period, populated areas are out of the hazardous zones except for the area of Sylte due to the proximity of the village to a large rock cliff. 1000 and 5000 year scenarios show some other localities along the valley prone to be affected by rockfalls. Maps will be communicated to local authorities to help defining short and long term policies regarding land use.

  8. Some Open Issues on Rockfall Hazard Analysis in Fractured Rock Mass: Problems and Prospects

    NASA Astrophysics Data System (ADS)

    Ferrero, Anna Maria; Migliazza, Maria Rita; Pirulli, Marina; Umili, Gessica

    2016-09-01

    Risk is part of every sector of engineering design. It is a consequence of the uncertainties connected with the cognitive boundaries and with the natural variability of the relevant variables. In soil and rock engineering, in particular, uncertainties are linked to geometrical and mechanical aspects and the model used for the problem schematization. While the uncertainties due to the cognitive gaps could be filled by improving the quality of numerical codes and measuring instruments, nothing can be done to remove the randomness of natural variables, except defining their variability with stochastic approaches. Probabilistic analyses represent a useful tool to run parametric analyses and to identify the more significant aspects of a given phenomenon: They can be used for a rational quantification and mitigation of risk. The connection between the cognitive level and the probability of failure is at the base of the determination of hazard, which is often quantified through the assignment of safety factors. But these factors suffer from conceptual limits, which can be only overcome by adopting mathematical techniques with sound bases, not so used up to now (Einstein et al. in rock mechanics in civil and environmental engineering, CRC Press, London, 3-13, 2010; Brown in J Rock Mech Geotech Eng 4(3):193-204, 2012). The present paper describes the problems and the more reliable techniques used to quantify the uncertainties that characterize the large number of parameters that are involved in rock slope hazard assessment through a real case specifically related to rockfall. Limits of the existing approaches and future developments of the research are also provided.

  9. Rockfall hazard assessment, risk quantification, and mitigation options for reef cove resort development, False Cape, Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Schlotfeldt, P.

    2009-04-01

    GIS and 2-D rock fall simulations were used as the primary tools during a rock fall hazard assessment and analyses for a major resort and township development near Cairns, Queensland in Australia. The methods used included 1) the development of a digital elevation model (DEM); undertaking rock fall trajectory analyses to determine the end points of rockfalls, the distribution of kinetic energy for identified rock fall runout Zones, and 3) undertaking event tree analyses based on a synthesis of all data in order to establish Zones with the highest risk of fatalities. This paper describes the methodology used and the results of this work. Recommendations to mitigate the hazard included having exclusions zones with no construction, scaling (including trim blasting), construction of berms and rockfall catch fences. Keywords: GIS, rockfall simulation, rockfall runout Zones, mitigation options INTRODUCTION False Cape is located on the east side of the Trinity inlet near Cairns (Figure 1). Construction is underway for a multi-million dollar development close the beach front. The development will ultimately cover about 1.5 km of prime coast line. The granite slopes above the development are steep and are covered with a number of large, potentially unstable boulders. Sheet jointing is present in the in-situ bedrock and these combined with other tectonic joint sets have provided a key mechanism for large side down slope on exposed bedrock. With each rock fall (evidence by boulders strew in gullies, over the lower parts of the slope, and on the beach) the failure mechanism migrates upslope. In order for the Developer to proceed with construction he needs to mitigate the identified rock fall hazard. The method used to study the hazard and key finding are presented in this paper. Discussion is provided in the conclusion on mitigation options. KEY METHODS USED TO STUDY THE HAZARD In summary the methods used to study the hazard for the False Cape project include; 1. The development of a digital elevation model (DEM) used to delineate rock fall runout Zones [1] that included the spatial location of boulder fields mapped within Zones(Figure 2). A Zone is defined as an area above the development on steep sided slopes where falling rocks are channeled into gullies / and or are contained between topographic features such as ridges and spurs that extend down the mountainside. These natural barriers generally ensure that falling rocks do not fall or roll into adjacent Zones; 2. The use of ‘Flow Path Tracing Tool' in Arc GIS spatial analyst to confirm typical descents of boulders in Zones. These were shown to correlated strongly with the endpoints of boulders observed within the development and major clusters of boulders on the beach front; 3. The use of 2-D rockfall trajectory analyses [2] using sections cut along typical 3-D trajectory paths mapped out in ARC GIS per Zone. Sections along typical paths in Zones simulated, to some degree, the 3-D affect or path of rocks as they bounce roll down slope (Figure 3); 4. The calibration of rockfall input parameters (coefficients of normal and tangential restitution, slope roughness, friction angle, etc.) using field identified endpoints and size of fallen rock and boulder; and 5. Undertaking risk evolutions in order to quantify the potential risk for each independent rockfall Zone. KEY FINDINGS FROM THE STUDIES The key findings from the study include; 1. Multiple potentially unstable in-situ boulders (some in excess of several thousand tonnes) are present above the development. 2. Similar geological structures (dykes, jointing, etc.) are present in the boulders on the beach front and within the development exposed in-situ bedrock located above the development. Measurement and comparison of the orientation of these geological structures present in boulders with that observed in the in-situ bedrock provided strong evidence that that the boulders have mitigated down slope. 3. Eight discrete Rockfall Runout Zones were identified using the digital elevation model set up in ARC GIS (Figure 4). The boundaries were field verified as far as possible. The identified Zones formed the basis of all subsequent work. 4. Once calibrated the rockfall trajectory modeling showed that only between 1% and in the worst case 28% of falling rocks (percentage of 1000 seeding events) per Zones would actually reach the development. While this indicated a reduced likelihood of an incident and hence the risk, the kinetic energy in the case of an impact in most Zones was so high (for the given design block size) that the consequence would be untenable without some form of mitigation. 5. An event tree analysis showed that five out of the eight Zones identified had risk profiles that fell above or very close to what was considered to be an acceptable annual probability of occurrence of a fatality or fatalities. CONCLUSIONS Each Zone has unique characteristics that influence the risk profile associated with the rock fall hazard to the development. Mitigation options and recommendations needed to be adjusted accordingly to fit the physical characteristics and assessed risk profile of each Zone. These included: 1. The possible implantation of exclusion zones (no build areas); 2. Scaling (including controlled blasting) to reduce the potential kinetic energy associated with identified potentially unstable boulders; and 3. The design and construction of Berms and rockfall catch fences.

  10. National Program for Inspection of Non-Federal Dams. Winsor Dam (MA 00588), Quabbin Spillway (MA 00589), Goodnough Dike (MA 00590), Connecticut River Basin, Ware, Massachusetts. Phase I Inspection Report.

    DTIC Science & Technology

    1978-09-01

    at the en- trance to the channel. Another rockfall occurs along the right side of the channel, about 280 ft. downstream from the channel entrance. The...new level survey on seven settlement observation points at Goodnough Dike, in particular to check the 1973 data at * 27 ,nn lnmnnnm u u ~ l I • lI gI ...Spillway weir masonry to maintain the structure in good condition. 3. Periodically remove brush, saplings and rockfalls from the I spiliway discharge

  11. Comparing Newmark

    NASA Astrophysics Data System (ADS)

    Rodríguez-Peces, M. J.; García-Mayordomo, J.; Azañón-Hernández, J. M.; Jabaloy-Sánchez, A.

    2009-04-01

    The Lorca Basin (Eastern Betic Cordillera, SE Spain) is one of the most seismically active regions of Spain. In this area there are well known cases of earthquake-induced slope instabilities associated to specific earthquakes (e.g., Bullas 2002, La Paca 2005). Furthermore, this area is characterized by moderate magnitude seismicity which mainly produces rock-falls and avalanches. In this work we present the results of our research at regional and site scales. For the regional scale, we have used a geographic information system (GIS) to develop an implementation of the Newmark's sliding rigid block method. We have particularly proposed a new variation of Newmark's method to consider soil and topographic amplification effects. Subsequently, we produced "Newmark displacement" maps for both probabilistic and deterministic seismic scenarios in the Lorca Basin. Probabilistic seismic scenarios consider three hazard maps in terms of peak ground acceleration (PGA) on rock corresponding to the 475-, 975- and 2475-year return periods (exceedance probability of 10, 5 and 2% in 50 years, respectively) in the Murcia Region. Deterministic seismic scenarios consider the occurrence of the most probable earthquake for a 475-year return period (Mw=5.0) at every location, or either a complete rupture of Lorca-Totana (Mw=6.7) or Puerto Lumbreras-Lorca (Mw=6.8) segments of Alhama de Murcia Fault. The Newmark displacement maps allowed us to identify areas with the highest potential seismic hazard, and also locate areas for future particular studies. We have found that rock-falls produced during the last earthquakes in Lorca Basin (e.g., Bullas 2002, La Paca 2005) match very well with areas with values of Newmark displacement lower than 2 cm in all the seismic scenarios considered. Therefore, it seems that low values of Newmark displacements are very likely associated with rock-falls. To support this hypothesis we have applied the Newmark method at a site scale. To do this, we have selected La Paca rock-fall which was generated during La Paca 2005 earthquake (mbLg=4.7, IEMS=VI-VII). We have used a terrestrial laser scanner in order to obtain a high resolution digital elevation model of La Paca rock-fall area. Moreover, we have performed a back-analysis based on field data to estimate the static safety factor previous to the earthquake and the critical acceleration. Furthermore, we have selected a representative strong ground motion record for La Paca earthquake from international databases. The critical acceleration and the peak ground acceleration values obtained from the strong ground motion record allowed us to estimate the actual soil and topographic amplification effects. Finally, we have calculated analytically the real Newmark displacement at La Paca rock-fall and we have compared this displacement with our GIS estimation in order to improve the calibration of Newmark's method at the regional scale.

  12. Large-scale field testing on flexible shallow landslide barriers

    NASA Astrophysics Data System (ADS)

    Bugnion, Louis; Volkwein, Axel; Wendeler, Corinna; Roth, Andrea

    2010-05-01

    Open shallow landslides occur regularly in a wide range of natural terrains. Generally, they are difficult to predict and result in damages to properties and disruption of transportation systems. In order to improve the knowledge about the physical process itself and to develop new protection measures, large-scale field experiments were conducted in Veltheim, Switzerland. Material was released down a 30° inclined test slope into a flexible barrier. The flow as well as the impact into the barrier was monitored using various measurement techniques. Laser devices recording flow heights, a special force plate measuring normal and shear basal forces as well as load cells for impact pressures were installed along the test slope. In addition, load cells were built in the support and retaining cables of the barrier to provide data for detailed back-calculation of load distribution during impact. For the last test series an additional guiding wall in flow direction on both sides of the barrier was installed to achieve higher impact pressures in the middle of the barrier. With these guiding walls the flow is not able to spread out before hitting the barrier. A special constructed release mechanism simulating the sudden failure of the slope was designed such that about 50 m3 of mixed earth and gravel saturated with water can be released in an instant. Analysis of cable forces combined with impact pressures and velocity measurements during a test series allow us now to develop a load model for the barrier design. First numerical simulations with the software tool FARO, originally developed for rockfall barriers and afterwards calibrated for debris flow impacts, lead already to structural improvements on barrier design. Decisive for the barrier design is the first dynamic impact pressure depending on the flow velocity and afterwards the hydrostatic pressure of the complete retained material behind the barrier. Therefore volume estimation of open shallow landslides by assessing the thickness of the failure layer and the width of the possible failure are essential for the required barrier design parameter height and width. First results of the calculated drag coefficients of dynamic impact pressure measurements showed that the dynamic coefficient cw is much lower than 1.0 which is contradictory to most of existing dimensioning property protection guidelines. It appears to us that special adaptation to the system like smaller mesh sizes and special ground-barrier interface compared to normal rock-fall barriers and channelised debris flow barriers are necessary to improve the retention behavior of shallow landslide barriers. Detailed analysis of the friction coefficient in relationship with pore water pressure measurements gives interesting insights into the dynamic of fluid-solid mixed flows. Impact pressures dependencies on flow features are analyzed and discussed with respect to existing models and guidelines for shallow landslides.

  13. Terminal Area Forecasts, Fiscal Years 1981-1992,

    DTIC Science & Technology

    1981-02-01

    4 51 181 191 REAICN-STATE: AGL-IL LOCID: SOl NONTOWERED CITY: STERLING ROCKFALLS AIRPORT: hIdITESIOE CO ARPT-JOS H 8ITTORF BASED AIRCRAFT: 51 I...T AL 1119 4 0 U U Li Li u U .3 a 0 u + 1AIN , .1 U 4 ii 4 U U L 0 Gi I 0 31 181 . 3 a a a 4 U 0 0 U 6 2 33 19) J a u a 0 a J a 0 0 33 J9 u u u u 0 1 0...3 12 31 1 48 14 2 17 64 38 192 Il A1 11 305 j Ii 3. 1 50 15 l 17 66 39 LaNtLNTS: ESIsNAIt AlA TAXI LOAD FAITUK. Rt ,3UM-N1ATEI A.S3-NS LUCIUSl GI

  14. Is rock slope instability in high-mountain systems driven by topo-climatic, paraglacial or rock mechanical factors? - A question of scale!

    NASA Astrophysics Data System (ADS)

    Messenzehl, Karoline; Dikau, Richard

    2016-04-01

    Due to the emergent and (often non-linear) complex nature of mountain systems the key small-scale system properties responsible for rock slope instability contrast to those being dominant at larger spatial scales. This geomorphic system behaviour has major epistemological consequences for the study of rockfalls and associated form-process-relationships. As each scale requires its own scientific explanation, we cannot simply upscale bedrock-scale findings and, in turn, we cannot downscale the valley-scale knowledge to smaller phenomena. Here, we present a multi-scale study from the Turtmann Valley (Swiss Alps), that addresses rock slope properties at three different geomorphic levels: (i) regional valley scale, (ii) the hillslope scale and (iii) the bedrock scale. Using this hierarchical approach, we aim to understand the key properties of high-mountain systems responsible for rockfall initiation with respect to the resulting form-process-relationship at each scale. (i) At the valley scale (110 km2) rock slope instability was evaluated using a GIS-based modelling approach. Topo-climatic parameters, i.e. the permafrost distribution and the time since deglaciation after LGM were found to be the key variables causative for the regional-scale bedrock erosion and the storage of 62.3 - 65.3 x 106 m3 rockfall sediments in the hanging valleys (Messenzehl et al. 2015). (ii) At the hillslope scale (0.03 km2) geotechnical scanline surveys of 16 rock slopes and one-year rock temperature data of 25 ibuttons reveal that the local rockfall activity and the resulting deposition of individual talus slope landforms is mainly controlled by the specific rock mass strength with respect to the slope aspect, than being a paraglacial reaction. Permafrost might be only of secondary importance for the present-day rock mechanical state as geophysical surveys disprove the existence of frozen bedrock below 2600 m asl. (Messenzehl & Draebing 2015). (iii) At the bedrock scale (0.01 mm - 10 m) the spacing, persistence and orientation of joints turned out to be the most causative bedrock properties for the higher-scale rock mass strength. Rock temperature data suggest that high-frequent, surficial thermal processes, daily freeze-thaw cycles and seasonal ice segregation coupled with a winter snow cover are the major rock breakdown mechanisms. By linking the rockwalls' joint geometric pattern to the size and shape of rockfall blocks lying on the corresponding talus slopes, different rockfall magnitudes and frequencies were identified. Here we show, that the decrease in spatial scale is linked with a shift in variable importance, from topo-climatic and paraglacial factors at the largest scale to rock mechanical parameters at the smallest scale. Therefore, to understand the key destabilising factors of rock slopes in mountain systems and the resulting landforms, a holistic research approach is needed which considers the nested, hierarchical structure of geomorphic systems. Messenzehl, K., Meyer, H., Otto, J.-C., Hoffmann, T., Dikau, R., 2015. Regional-scale controls on the spatial activity of rockfalls. (Turtmann valley, Swiss Alps) - A multivariate modelling approach. In: Geomorphology. Messenzehl, K., Draebing, D., 2015. Multidisciplinary investigations on coupled rockwall talus-systems (Turtmann valley, Swiss Alps). Geophysical Research Abstracts, 17 (EGU2015-1935, 2015).

  15. Specific analysis of the recent rockfall activity in the southeast face of the Piz Lischana (Engadin Valley, Graubünden, Switzerland)

    NASA Astrophysics Data System (ADS)

    Büsing, Susanna; Guerin, Antoine; Derron, Marc-Henri; Jaboyedoff, Michel; Phillips, Marcia

    2016-04-01

    The study of permafrost is now attracting more and more researchers because the warming observed in the Alps since the beginning of last century is causing changes in active layer depth and in the thermal state of this climate indicator. In mountain regions, permafrost degradation is becoming critical for the whole population since slopes and rock walls are being destabilized, thus increasing risk for infrastructure and inhabitants of mountain valleys. To anticipate the triggering of future events better, it is necessary to improve understanding on the relation between permafrost thaw and slope instabilities. A rockfall of about 7000 m3 occurred in the upper part of the southeast face of the Piz Lischana (3105 m), in the Engadin Valley (Graubünden, Switzerland) around noon on 31 July 2011. Luckily, this event was filmed and ice could be observed on the failure plane after analysis of the images. In September 2014 and in the same area, another rockfall of 2340 m3 occurred along a prominent open fracture which was apparent since the failure of the rock mass in 2011. In order to characterize and analyze these two events, three 3D high density point clouds have been made using Structure from Motion (SfM) and LiDAR, one before and two after the September 2014 rockfall. For this purpose, 120 photos were taken during a helicopter flight in July 2014 to produce the first SfM point cloud, and more than 400 terrestrial photos were taken at the end of September to produce the second SfM point cloud. In July 2015 a third point cloud was created from three LiDAR scans, taken from two different positions. The point clouds were georeferenced with a 2 m resolution digital elevation model and compared to each other in order to calculate the volume of the rockfalls. A detailed structural analysis of the two rockfalls was made and compared to the geological structures of the whole southeast face. The structural analysis also allowed to improve the understanding of the failure mechanisms of the past events and to better assess the probability of future rockfalls. Furthermore, valuable information about the velocity of the failure mechanisms could be extracted from the July 2011 video, using a Particle Image Velocimetry method (Matlab script developed by Thielicke and Stamhuis, 2014). These results, combined with analyses of potential triggering factors (permafrost, freeze-thaw cycles, thermomechanical processes, rainfall, radiation, glacier decompression and seismics) show that many of them contributed towards destabilization. It seems that the "special" structural situation led to the failure of Piz Lischana, but it also highlights the influence of permafrost. This study also provided the opportunity to perform a comparison of both LiDAR - SfM. The point clouds have been analyzed regarding their general quality, the quality of their meshes, the quantity of instrumental noise, the point density of different discontinuities, the structural analysis and kinematic tests. Results show the SfM also allows detailed structural analysis and that a good choice of the parameters allows to approach the quality of the LiDAR data. However, several factors (focal length, variation of distance to object, image resolution) may increase the uncertainty of the photo alignment. This study confirms that the coupling of the two techniques is possible and provides reliable results. This shows that SfM is one of the possible cheap methods to monitor rock summits that are subject to permafrost thaw.

  16. Thin-skinned Mass-wasting Responsible for Rapid, Edifice-wide Deformation at Arenal Volcano

    NASA Astrophysics Data System (ADS)

    Ebmeier, S. K.; Biggs, J.; Muller, C.; Avard, G.

    2014-12-01

    Volcanic edifices are built rapidly, at rates far exceeding those of erosion. The resulting mechanical failure of the edifices of both active and quiescent volcanoes can result in hazards on a range of scales, from rockfall to sector collapse. The stability of a volcanic edifice depends on the ratio of its exogenous growth to mass loss due to erosion, deformation and mass wasting. Geodetic measurements of edifice spreading have mostly been associated with local zones of extension at island volcanoes and relatively few observations have been made at continental stratovolcanoes. We present measurements of displacement and surface property changes at Arenal, Costa Rica, a continental stratovolcano that stopped erupting in 2010 after almost 42 years of activity. High resolution TerraSAR-X data (2011-2013) have increased the area covered geodetically by ~40%, allowing us to make measurements of displacements close to Arenal's summit for the first time. InSAR and intensity change observations provide evidence of frequent rockfalls and of shallow landslides (5-11 m thick, total volume = 1.9×107 m3 DRE). Rockfall and shallow translational landsliding have a stabilizing effect on Volcán Arenal's edifice that reduces the potential for external triggering of slope failure. We map 16 shallow landslides (5-11 m depth, 4% of post-1968 deposits) and expect failure planes to be associated with layers of blocky debris and lava crust. Unstable material on Arenal's upper slopes is removed steadily, potentially reducing sensitivity to external triggers: the 2012 Nicoya Earthquake (Mw 7.6) had no measurable impact on the velocities of sliding units, but did result in an elevated area of rockfall. This demonstrates the importance of mass wasting for the stability of young volcanic edifices.

  17. Investigation and hazard assessment of the 2003 and 2007 Staircase Falls rock falls, Yosemite National Park, California, USA

    USGS Publications Warehouse

    Wieczorek, G.F.; Stock, Gregory M.; Reichenbach, P.; Snyder, J.B.; Borchers, J.W.; Godt, J.W.

    2008-01-01

    Since 1857 more than 600 rock falls, rock slides, debris slides, and debris flows have been documented in Yosemite National Park, with rock falls in Yosemite Valley representing the majority of the events. On 26 December 2003, a rock fall originating from west of Glacier Point sent approximately 200 m 3 of rock debris down a series of joint-controlled ledges to the floor of Yosemite Valley. The debris impacted talus near the base of Staircase Falls, producing fragments of flying rock that struck occupied cabins in Curry Village. Several years later on 9 June 2007, and again on 26 July 2007, smaller rock falls originated from the same source area. The 26 December 2003 event coincided with a severe winter storm and was likely triggered by precipitation and/or frost wedging, but the 9 June and 26 July 2007 events lack recognizable triggering mechanisms. We investigated the geologic and hydrologic factors contributing to the Staircase Falls rock falls, including bedrock lithology, weathering, joint spacing and orientations, and hydrologic processes affecting slope stability. We improved upon previous geomorphic assessment of rock-fall hazards, based on a shadow angle approach, by using STONE, a three-dimensional rock-fall simulation computer program. STONE produced simulated rock-fall runout patterns similar to the mapped extent of the 2003 and 2007 events, allowing us to simulate potential future rock falls from the Staircase Falls detachment area. Observations of recent rock falls, mapping of rock debris, and simulations of rock fall runouts beneath the Staircase Falls detachment area suggest that rock-fall hazard zones extend farther downslope than the extent previously defined by mapped surface talus deposits.

  18. Characterization of Joint Sets Through UAV Photogrammetry on Sedimentary Rock Sea Cliffs and Abrasion Platforms in Northern Taiwan

    NASA Astrophysics Data System (ADS)

    Hsieh, P. C.; LU, A.; Yeh, C. H.; Huang, W. K.; Lin, H. H.; Lin, M. L.

    2017-12-01

    Rockfall hazards are very common in obsequent slope and oblique slope. In the coastal area of northern Taiwan, many sea cliffs are formed by obsequent slope and oblique slope. A famous case of rockfall failure happened on Aug. 31, 2013, a 150-ton rock block fell on the highway in Badouzi, Keelung, during a high intensity rainfall event which was caused by Typhoon No.15 (Kong-rey). To reduce this kind of rockfall hazard, it is important to characterize discontinuous planes in the bedrock because rock blocks are mainly divided from bedrock by two or more sets of discontinuous planes including joint planes and the bedding plane. For doing characterization of those fracture patterns of joint sets, it is necessary to do detailed field investigations. However, the survey of discontinuous planes, especially joint sets, are usually difficult and cannot get enough characterization data about joint sets. The first reason is that doing field investigations on the surface of sea cliffs is very dangerous and difficult for engineers or geologists to approach the upper part of outcrop. The second reason is the complexity of joint sets. In Badouzi area, each cliff is constituted by many different layers such as sandstone, shale, or alternations of sandstone and shale, and each layer has different fracture pattern of joint sets. In this study, we use UAV photogrammetry as a solution of these difficulties. UAV photogrammetry can produce a high-resolution digital surface model (DSM), orthophoto, and anaglyph of sea cliffs and abrasion platforms. Than we use self-developed geoprocessing toolsets to auto-trace joint planes with DSM data and produce fracture pattern of joint sets semi-automatically and systematically. Our method can provide basic information for rock mass rating on rock slope stability and rockfall hazards evaluation.

  19. The altitudinal temperature lapse rates applied to high elevation rockfalls studies in the Western European Alps

    NASA Astrophysics Data System (ADS)

    Nigrelli, Guido; Fratianni, Simona; Zampollo, Arianna; Turconi, Laura; Chiarle, Marta

    2018-02-01

    Temperature is one of the most important aspects of mountain climates. The relationships between air temperature and rockfalls at high-elevation sites are very important to know, but are also very difficult to study. In relation to this, a reliable method to estimate air temperatures at high-elevation sites is to apply the altitudinal temperature lapse rates (ATLR). The aims of this work are to quantify the values and the variability of the hourly ATLR and to apply this to estimated temperatures at high-elevation sites for rockfalls studies. To calculate ATLR prior the rockfalls, we used data acquired from two automatic weather stations that are located at an elevation above 2500 m. The sensors/instruments of these two stations are reliable because subjected to an accurate control and calibration once for year and the raw data have passed two automatic quality controls. Our study has yielded the following main results: (i) hourly ATLR increases slightly with increasing altitude, (ii) it is possible to estimate temperature at high-elevation sites with a good level of accuracy using ATLR, and (iii) temperature plays an important role on slope failures that occur at high-elevation sites and its importance is much more evident if the values oscillate around 0 °C with an amplitude of ±5 °C during the previous time-period. For these studies, it is not enough to improve the knowledge on air temperature, but it is necessary to develop an integrated knowledge of the thermal conditions of different materials involved in these processes (rock, debris, ice, water). Moreover, this integrated knowledge must be acquired by means of sensors and acquisition chains with known metrological traceability and uncertainty of measurements.

  20. UNESCO World Heritage Site Hallstatt: Rockfall hazard and risk assessment as basis for a sustainable land-use planning- a case study from the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Melzner, Sandra; Mölk, Michael; Schiffer, Michael; Gasperl, Wolfgang

    2015-04-01

    In times of decreasing financial resources, the demand for the investment in protection measures with a positive return on investment is of high importance. Hazard and risk assessments are essential tools in order to ensure an economically justifiable application of money in the implementation of preventive measures. Many areas in the Eastern Alps are recurrently affected by rockfall processes which pose a significant hazard to settlements and infrastructures. Complex tectonic, lithological and geomorphologic settings require a sufficient amount of effort to map and collect high quality data to perform a reliable hazard and risk analysis. The present work summarizes the results of a detailed hazard and risk assessment performed in a community in the Northern Calcareous Alps (Upper Austroalpine Unit). The community Hallstatt is exposed to very steep limestone cliffs, which are highly susceptible towards future, in many parts high magnitude rock failures. The analysis of the record of former events shows that since 1652 several rockfall events damaged or destroyed houses and killed or injured some people. Hallstatt as a Unesco World Heritage Site represents a very vulnerable settlement, the risk being elevated by a high frequency tourism with greater one million visitors per year. Discussion will focus on the applied methods to identify and map the rockfall hazard and risk, including a magnitude-frequency analysis of events in the past and an extrapolation in the future as well as a vulnerability analysis for the existing infrastructure under the assumed events for the determined magnitude-frequency scenarios. Furthermore challenges for a decision making in terms of a sustainable land use planning and implementation of preventive measures will be discussed.

  1. Rock Slope Monitoring from 4D Time-Lapse Structure from Motion Analysis

    NASA Astrophysics Data System (ADS)

    Kromer, Ryan; Abellan, Antonio; Chyz, Alex; Hutchinson, Jean

    2017-04-01

    Structure from Motion (SfM) photogrammetry has become an important tool for studying earth surface processes because of its flexibility, ease of use, low cost and its capability of producing high quality 3-D surface models. A major benefit of SfM is that model accuracy is fit for purpose and surveys can be designed to meet a large range of spatial and temporal scales. In the Earth sciences, research in time-lapse SfM photogrammetry or videogrammetry is an area that is difficult to undertake due to complexities in acquiring, processing and managing large 4D datasets and represents an area with significant advancement potential (Eltner et al. 2016). In this study, we investigate the potential of 4D time-lapse SfM to monitor unstable rock slopes. We tested an array of statically mounted cameras collecting time-lapse photos of a limestone rock slope located along a highway in Canada. Our setup consisted of 8 DSLR cameras with 50 mm prime lenses spaced 2-3 m apart at a distance of 10 m from the slope. The portion of the rock slope monitored was 20 m wide and 6 m high. We collected data in four phases, each having 50 photographs taken simultaneously by each camera. The first phase of photographs was taken of the stable slope. In each successive phase, we gradually moved small, discrete blocks within the rock slope by 5-15 mm, simulating pre-failure deformation of rockfall. During the last phase we also removed discrete rock blocks, simulating rockfall. We used Agisoft Photoscan's 4D processing functionality and timeline tools to create 3D point clouds from the time-lapse photographs. These tools have the benefit of attaining better accuracy photo alignments as a greater number of photos are used. For change detection, we used the 4D filtering and calibration technique proposed by Kromer et al. (2015), which takes advantage of high degrees of spatial and temporal point redundancy to decrease measurement uncertainty. Preliminary results show that it is possible to attain more accurate 3D models using time-lapse photos taken from an array of cameras than photos taken from a single camera from multiple positions. For this survey setup, it was possible to detect mm to cm level of changes, which is of sufficient accuracy to detect the pre-failure stage of rockfalls, as well as small rockfall events. Additionally, cameras mounted in a static array can be operated remotely and automatically. Time-lapse SfM photogrammetry can be a cost effective alternative to terrestrial laser scanning for rockfall prone areas and facilitates the study of surface processes with high spatial and temporal detail. We gratefully acknowledge support from the NSERC collaborative research and development grant. References Eltner, A., Kaiser, A., Castillo, C.; Rock, G., Neugirg, F., Abellán, A. Image-based surface reconstruction in geomorphometry—Merits, limits and developments. Earth Surf. Dyn. 2016, 4, 359-389. Kromer, R. A., Abellán, A., Hutchinson, D. J., Lato, M., Edwards, T., & Jaboyedoff, M. A 4D filtering and calibration technique for small-scale point cloud change detection with a terrestrial laser scanner. Remote Sensing 2015, 7(10), 13029-13052.

  2. Temporal variation of mass-wasting activity in Mount St. Helens crater, Washington, U. S. A. indicated by seismic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, H.H.

    1991-11-01

    In the crater of Mount St. Helens, formed during the eruption of 18 May 1980, thousands of rockfalls may occur in a single day, and some rock and dirty-snow avalanches have traveled more than 1 km from their source. Because most seismic activity in the crater is produced by mass wasting, the former can be used to monitor the latter. The number and amplitude of seismic events per unit time provide a generalized measure of mass-wasting activity. In this study 1-min averages of seismic amplitudes were used as an index of rockfall activity during summer and early fall. Plots ofmore » this index show the diurnal cycle of rockfall activity and establish that the peak in activity occurs in mid to late afternoon. A correlation coefficient of 0.61 was found between daily maximum temperature and average seismic amplitude, although this value increases to 0.72 if a composite temperature variable that includes the maximum temperature of 1 to 3 preceding days as well as the present day is used. Correlation with precipitation is much weaker.« less

  3. A tool for the calculation of rockfall fragility curves for masonry buildings

    NASA Astrophysics Data System (ADS)

    Mavrouli, Olga

    2017-04-01

    Masonries are common structures in mountainous and coastal areas and they exhibit substantial vulnerability to rockfalls. For big rockfall events or precarious structures the damage is very high and the repair is not cost-effective. Nonetheless, for small or moderate rockfalls, the damage may vary in function of the characteristics of the impacting rock blocks and of the buildings. The evaluation of the expected damage for masonry buildings, and for different small and moderate rockfall scenarios, is useful for assessing the expected direct loss at constructed areas, and its implications for life safety. A tool for the calculation of fragility curves for masonry buildings which are impacted by rock blocks is presented. The fragility curves provide the probability of exceeding a given damage state (low, moderate and high) for increasing impact energies of the rock blocks on the walls. The damage states are defined according to a damage index equal to the percentage of the damaged area of a wall, as being proportional to the repair cost. Aleatoric and epistemic uncertainties are incorporated with respect to the (i) rock block velocity, (ii) rock block size, (iii) masonry width, and (iv) masonry resistance. The calculation of the fragility curves is applied using a Monte Carlo simulation. Given user-defined data for the average value of these four parameters and their variability, random scenarios are developed, the respective damage index is assessed for each scenario, and the probability of exceedance of each damage state is calculated. For the assessment of the damage index, a database developed by the results of 576 analytical simulations is used. The variables range is: wall width 0.4 - 1.0 m, wall tensile strength 0.1 - 0.6 MPa, rock velocity 1-20 m/s, rock size 1-20 m3. Nonetheless this tool permits the use of alternative databases, on the condition that they contain data that correlate the damage with the four aforementioned variables. The fragility curves can be calculated using this tool either for single or for groups of buildings, as long as their characteristics are properly reflected in the variability of the input parameters. Selected examples of fragility curves sets are presented demonstrating the effect of the input parameters on the calculated probability of exceeding a given damage state, for different masonry typologies (stone and brick).

  4. Modelling mass movement susceptibility for Alpine infrastructure in the Karavank Mountains (Austria/Slovenia)

    NASA Astrophysics Data System (ADS)

    Bauer, C.; Kern, K.; Lieb, G. K.

    2012-12-01

    The aim of this study is the generation of indicative susceptibility maps on a regional scale that can be used as a decision support tool for land use management (i.e. risk potential on alpine infrastructure). The study in particular focuses on geomorphological processes (rockfall and debris flows in unconsolidated rock) that reshape the land surface by erosion, transport and deposition. When interacting with human activity (e.g. road, alpine trails) such naturally occurring processes can quickly become natural hazards. The study area is located in the Karavank Mountains, a border region between Austria and Slovenia, and covers approx. 200 sq km with maximum altitudes above 2.000 m a.s.l. (Hochstuhl: 2.237 m a.s.l.). The Karavanks form an east-west striking mountain chain (approx. 120 km total length) of the southeastern Alps that consists mainly of thick Triassic carbonate sequences and, with less extent, Paleozoic carbonate rocks crystalline rocks. The mountain chain is separated into the Northern Karavanks and the Southern Karavanks by a structural boundary (Periadriatic Line). In addition, the area is known for extreme weather events due to Adriatic cyclones with daily accumulated precipitation of more than 200 mm that regularly trigger hazardous and torrential processes like rockfall events and debris flows. To assess the triggering factors and trajectories, two different disposition and process models (one for rockfall and one for debris flow, respectively) were developed. The information about potential source areas was obtained by combining various types of information (e.g. DTM derivatives, geotechnical units, vegetation). Threshold slope values for potential rockfall source areas were attributed to different lithological units according to field observations. The defined threshold slope angles cover values from 42° in Triassic carbonates up to 46° in massive crystalline rocks. For debris flows areas with a slope inclination < 20° as well as areas with dense vegetation were excluded as potential source areas. In the next step, the rockfall runout zones were estimated empirically using the cone method. This model is based on the idea that an individual falling rock can reach any place in the area situated inside a cone of given aperture. In contrast, for modelling debris flows, a multiple flow directions method was used to calculate potential pathways and velocities. The method is implemented as a random walk in conjunction with a Monte Carlo approach (using 1000 iterations). Both models were calibrated with field observation data (e.g. GPS measurements) and in addition, model results were validated with high resolution aerial photographs. By overlaying the modelling results with road and trail network information, susceptibility maps were created. These maps clearly show that large parts of the existing Alpine infrastructure are potentially affected by the modelled processes. Therefore, the resulting susceptibility maps provide as a useful tool to indicate areas prone to rockfall and debris flow as well as for the maintenance of the road and trail networks.

  5. Rock falls from Glacier Point above Camp Curry, Yosemite National Park, California

    USGS Publications Warehouse

    Wieczorek, Gerald F.; Snyder, James B.

    1999-01-01

    A series of rock falls from the north face of Glacier Point above Camp Curry, Yosemite National Park, California, have caused reexamination of the rock-fall hazard because beginning in June, 1999 a system of cracks propagated through a nearby rock mass outlining a future potential rock fall. If the estimated volume of the potential rock fall fails as a single piece, there could be a risk from rock-fall impact and airborne rock debris to cabins in Camp Curry. The role of joint plane orientation and groundwater pressure in the fractured rock mass are discussed in light of the pattern of developing cracks and potential modes of failure.

  6. Was The 01.09.2001 Etarpas Rockfall Detectable? Answer Using A Gis Approach

    NASA Astrophysics Data System (ADS)

    Baillifard, F.; Jaboyedoff, M.; Rouiller, J.-D.; Sartori, M.

    As a general rule, "a posteriori" studies of rock slope instabilities show that rock- falls don't occur in casual locations. First, many geomorphologic arguments allow to identify the rupture zone as sensitive; secondly, external factors such as groundwa- ter circulations, freezing and thaw cycles, etc., induce long-term solicitations of the rock mass, and thus the diminution of the resistance along the discontinuities and the probably progressive rupture of the thrust. Once the sensitive zones are detected, the global activity induced by the external factors must be assessed, and the probability of rupture may be evaluated. Taking the opportunity of a 2'000 m3 rockfall that occurred on January, 9th, 2001, along a mountain road near Sion (Switzerland), a simple method to detect rock slope instabilities was tested. In order to locate sensitive areas, a set of five criterions was chosen, using available GIS formatted data such as vectorized topographic and geological maps, and a 25 m grid DTM. The chosen criterions are: the presence of faults and screes within a short distance, the presence of a rock face, a steep slope and a road. This scaling leads to a linear rating from 0 to 5. The location of the 01.09.01 rockfall obtains a score of 5. Once applied to the entire length of the road (4 km), the present method indicates two others areas which are highly sensitive to rupture, allowing to detect the main instabilities along this road. Such methods based on rough available parameters have now to be applied to larger areas. They also must be calibrated using a survey of past events. The studied rockfall area is affected by a high probability of rupture, as far as some necessary criteria are respected: first, the structural pattern has to be unfavorable; sec- ondly, the morphological conditions have to be favorable to the action of external factors.

  7. Air blasts generated by rockfall impacts: Analysis of the 1996 Happy Isles event in Yosemite National Park

    USGS Publications Warehouse

    Morrissey, M.M.; Savage, W.Z.; Wieczorek, G.F.

    1999-01-01

    The July 10, 1996, Happy Isles rockfall in Yosemite National Park, California, released 23,000 to 38,000 m3 of granite in four separate events. The impacts of the first two events which involved a 550-m free fall, generated seismic waves and atmospheric pressure waves (air blasts). We focus on the dynamic behavior of the second air blast that downed over 1000 trees, destroyed a bridge, demolished a snack bar, and caused one fatality and several injuries. Calculated velocities for the air blast from a two-phase, finite difference model are compared to velocities estimated from tree damage. From tornadic studies of tree damage, the air blast is estimated to have traveled <108-120 m/s within 50 m from the impact and decreased to <10-20 m/s within 500 m from the impact. The numerical model simulates the two-dimensional propagation of an air blast through a dusty atmosphere with initial conditions defined by the impact velocity and pressure. The impact velocity (105-107 m/s) is estimated from the Colorado Rockfall Simulation Program that simulates rockfall trajectories. The impact pressure (0.5 MPa) is constrained by the kinetic energy of the impact (1010-1012 J) estimated from the seismic energy generated by the impact. Results from the air blast simulations indicate that the second Happy Isles air blast (weak shock wave) traveled with an initial velocity above the local sound speed. The size and location of the first impact are thought to have injected <50 wt % dust into the atmosphere. This amount of dust lowered the local atmospheric sound speed to ???220 m/s. The discrepancy between calculated velocity data and field estimated velocity data (???220 m/s versus ???110 m/s) is attributed to energy dissipated by the downing of trees and additional entrainment of debris into the atmosphere not included in the calculations. Copyright 1999 by the American Geophysical Union.

  8. Lava dome growth and mass wasting measured by a time series of ground-based radar and seismicity observations

    NASA Astrophysics Data System (ADS)

    Wadge, G.; Macfarlane, D. G.; Odbert, H. M.; James, M. R.; Hole, J. K.; Ryan, G.; Bass, V.; de Angelis, S.; Pinkerton, H.; Robertson, D. A.; Loughlin, S. C.

    2008-08-01

    Exogenous growth of Peléean lava domes involves the addition of lava from a central summit vent and mass wasting on the flanks as rockfalls and pyroclastic flows. These processes were investigated at the Soufrière Hills Volcano, Montserrat, between 30 March and 10 April 2006, using a ground-based imaging millimeter-wave radar, AVTIS, to measure the shape of the dome and talus surface and rockfall seismicity combined with camera observations to infer pyroclastic flow deposit volumes. The topographic evolution of the lava dome was recorded in a time series of radar range and intensity measurements from a distance of 6 km, recording a southeastward shift in the locus of talus deposition with time, and an average height increase for the talus surface of about 2 m a day. The AVTIS measurements show an acceleration in lava extrusion rate on 5 April, with a 2-day lag in the equivalent change in the rockfall seismicity record. The dense rock equivalent volumetric budget of lava added and dispersed, including the respective proportions of the total for each component, was calculated using: (1) AVTIS range and intensity measurements of the change in summit lava (˜1.5 × 106 m3, 22%), (2) AVTIS range measurements to measure the talus growth (˜3.9 × 106 m3, 57%), and (3) rockfall seismicity to measure the pyroclastic flow deposit volumes (˜1.4 × 106 m3, 21%), which gives an overall dense rock equivalent extrusion rate of about 7 m3·s-1. These figures demonstrate how efficient nonexplosive lava dome growth can be in generating large volumes of primary clastic deposits, a process that, by reducing the proportion of erupted lava stored in the summit region, will reduce the likelihood of large hazardous pyroclastic flows.

  9. Air blasts generated by rockfall impacts: Analysis of the 1996 Happy Isles event in Yosemite National Park

    NASA Astrophysics Data System (ADS)

    Morrissey, M. M.; Savage, W. Z.; Wieczorek, G. F.

    1999-10-01

    The July 10, 1996, Happy Isles rockfall in Yosemite National Park, California, released 23,000 to 38,000 m3 of granite in four separate events. The impacts of the first two events which involved a 550-m free fall, generated seismic waves and atmospheric pressure waves (air blasts). We focus on the dynamic behavior of the second air blast that downed over 1000 trees, destroyed a bridge, demolished a snack bar, and caused one fatality and several injuries. Calculated velocities for the air blast from a two-phase, finite difference model are compared to velocities estimated from tree damage. From tornadic studies of tree damage, the air blast is estimated to have traveled <108-120 m/s within 50 m from the impact and decreased to <10-20 m/s within 500 m from the impact. The numerical model simulates the two-dimensional propagation of an air blast through a dusty atmosphere with initial conditions defined by the impact velocity and pressure. The impact velocity (105-107 m/s) is estimated from the Colorado Rockfall Simulation Program that simulates rockfall trajectories. The impact pressure (0.5 MPa) is constrained by the kinetic energy of the impact (1010-1012 J) estimated from the seismic energy generated by the impact. Results from the air blast simulations indicate that the second Happy Isles air blast (weak shock wave) traveled with an initial velocity above the local sound speed. The size and location of the first impact are thought to have injected <50 wt% dust into the atmosphere. This amount of dust lowered the local atmospheric sound speed to ˜220 m/s. The discrepancy between calculated velocity data and field estimated velocity data (˜220 m/s versus ˜110 m/s) is attributed to energy dissipated by the downing of trees and additional entrainment of debris into the atmosphere not included in the calculations.

  10. Analysis of the seismic signals generated by controlled single-block rockfalls on soft clay shales sediments: the Rioux Bourdoux slope experiment (French Alps).

    NASA Astrophysics Data System (ADS)

    Hibert, Clément; Provost, Floriane; Malet, Jean-Philippe; Bourrier, Franck; Berger, Frédéric; Bornemann, Pierrick; Borgniet, Laurent; Tardif, Pascal; Mermin, Eric

    2016-04-01

    Understanding the dynamics of rockfalls is critical to mitigate the associated hazards but is made very difficult by the nature of these natural disasters that makes them hard to observe directly. Recent advances in seismology allow to determine the dynamics of the largest landslides on Earth from the very low-frequency seismic waves they generate. However, the vast majority of rockfalls that occur worldwide are too small to generate such low-frequency seismic waves and thus these methods cannot be used to reconstruct their dynamics. However, if seismic sensors are close enough, these events will generate high-frequency seismic signals. Unfortunately we cannot yet use these high-frequency seismic records to infer parameters synthetizing the rockfall dynamics as the source of these waves is not well understood. One of the first steps towards understanding the physical processes involved in the generation of high-frequency seismic waves by rockfalls is to study the link between the dynamics of a single block propagating along a well-known path and the features of the seismic signal generated. We conducted controlled releases of single blocks of limestones in a gully of clay-shales (e.g. black marls) in the Rioux Bourdoux torrent (French Alps). 28 blocks, with masses ranging from 76 kg to 472 kg, were released. A monitoring network combining high-velocity cameras, a broadband seismometer and an array of 4 high-frequency seismometers was deployed near the release area and along the travel path. The high-velocity cameras allow to reconstruct the 3D trajectories of the blocks, to estimate their velocities and the position of the different impacts with the slope surface. These data are compared to the seismic signals recorded. As the distance between the block and the seismic sensors at the time of each impact is known, we can determine the associated seismic signal amplitude corrected from propagation and attenuation effects. We can further compare the velocity, the energy and the momentum of the block at each impact to the true amplitude and the energy of the corresponding part of the seismic signal. Finding potential correlations and scaling laws between the dynamics of the source and the high-frequency seismic signal features constitutes an important breakthrough to understand more complex slope movements that involve multiple blocks or granular flows. This approach may lead to future developments of methods able to determine the dynamics of a large variety of slope movements directly from the seismic signals they generate.

  11. Rockfall exposures in Montserrat mountain

    NASA Astrophysics Data System (ADS)

    Fontquerni Gorchs, Sara; Vilaplana Fernández, Joan Manuel; Guinau Sellés, Marta; Jesús Royán Cordero, Manuel

    2015-04-01

    This study shows the developed methodology to analyze the exposure level on a 1:25000 scale, and the results obtained by applying it to an important part of the Monataña de Montserrat Natural Park for vehicles with and without considering their occupants. The development of this proposal is part of an ongoing study which focuses more in-depth in the analysis of the rockfall risk exposure in different scales and in different natural and social contexts. This research project applies a methodology to evaluate the rockfall exposure level based on the product of the frequency of occurrence of the event by an exposure function of the vulnerable level on a 1:25,000 scale although the scale used for the study was 1:10,000. The proposed methodology to calculate the exposure level is based on six phases: 1- Identification, classification and inventory of every element potentially under risk. 2- Zoning of the frequency of occurrence of the event in the studied area. 3- Design of the exposure function for each studied element. 4- Obtaining the Exposure index, it can be defined as the product of the frequency of occurrence by the exposure function of the vulnerable element through SIG analysis obtained with ArcGis software (ESRI) 5- Obtaining exposure level by grouping into categories the numerical values of the exposure index. 6- Production of the exposition zoning map. The different types of vulnerable elements considered in the totality of the study are: Vehicles in motion, people in vehicles in motion, people on paths, permanent elements and people in buildings. Each defined typology contains all elements with same characteristics and an exposure function has been designed for each of them. For the exposure calculation, two groups of elements have been considered; firstly the group of elements with no people involved and afterwards same group of elements but with people involved. This is a first comprehensive and synthetic work about rockfall exposure on the Montserrat Mountain. It is important to mention that the exposure level calculation has been obtained from natural hazard data do not protected by defense works. Results of this work enable us to consider best strategies to reduce rockfalls risk in the PNMM. It is clear that, apart from the required structural defense works, some of them already made, implementation of strategies not involving structural defense is, in the medium and long term, the best policy to mitigate the risk. In the PNMM case, rethinking of mobility and traffic management on the mountain access would be definitely helpful to achieve a minimized geological risk.

  12. Rockfall monitoring of a poorly consolidated marly sandstone cliff by TLS and IR thermography

    NASA Astrophysics Data System (ADS)

    Lefeuvre, Caroline; Guérin, Antoine; Carrea, Dario; Derron, Marc-Henri; Jaboyedoff, Michel

    2017-04-01

    The study area of La Cornalle (Vaud, Switzerland) is a 40 m high south-west facing cliff which is also part of a larger landslide (Bersier 1975 ; Parriaux, 1998). The cliff is formed by an alternation of marls and sandstones. The thicknesses of sandstone layers range from 0.5 to 4 meters. The rockfall activity of this cliff is high, with an average of one event per day. The aim of this study is to better understand the links between rockfall activity, cliff's structures, and weather and thermal conditions. The 3D surface evolution of the Cornalle cliff is monitored approximately every month since September 2012 using a Terrestrial Laser Scanning (TLS) data in order to get a monthly inventory of rockfall events. Since November 2013, a weather station located 150 meters away from the cliff collects data such as temperature, humidity, atmospheric pressure, rain and solar radiation every 15 minutes. Furthermore, we also fixed a thermic probe in the sandstone at 10 cm deep which measures temperature every 10 minutes. A detailed analysis has been performed during a short period (01/29/2016-04/08/2016) and pointed out a correlation between daily rainfall and rockfall. We found that a fall occurred the day or the day after a cumulative daily rainfall of at least 10 mm/day.In parallel to this monthly monitoring, the northwest part of La Cornalle cliff (the most active part) was monitored for 24 consecutive hours in July 2016 (from 12:30 to 12:30) using infrared thermography and crackmeters with a precision of 0.01mm. We collected a series of thermal pictures every 20 minutes, and measured the opening of a crack in sandstone layers every hour. We observed that marls are more affected by external changes of temperature than sandstones. Their surface temperature rises (resp. falls) more with an increase (resp. decrease) of external temperature than sandstones. Crackmeters measured an opening of the crack with an increase of the rock temperature and the opposite displacement (crack closing) happened with a decrease of temperature. The maximal amplitude of cumulated displacements measured is 0.15 mm. In terms of uncertainty, note that until 30% of the measured displacement can be related to instrument thermal dilatation. Finally, a multilayer model of daily thermal variations, including air temperature, solar radiation, rock temperature and thermal imaging is in development to assess the effect of temperature on unstable blocks and fracture opening, as demonstrated recently by Collins and Stock (2016). References Bersier A., Blanc P., Weidmann M. (1975). Le glissement de terrain de La Cornalle-Les Luges (Epesses, Vaud, Suisse). Bulletin de la société vaudoise des sciences naturelles, 72, fasc. 4 Collins B. D., Stock G. M. (2016). Rockfall triggering by cyclic thermal stressing of exfoliation fractures. Nature Geoscience. Published online March 28, 2016. Doi 10.1038/NGEO2686 Parriaux A. (1998): Glissement de la Cornalle: Bull. Géol. appl.,3 (1), 49-56

  13. Multicriteria Analysis model for the comparison of different rockfalls protection devices

    NASA Astrophysics Data System (ADS)

    Mignelli, C.; Pomarico, S.; Peila, D.

    2012-04-01

    In mountain regions roads and railways as well as urbanized areas, can often be endangered by rockfalls and need to be protected against the impact of falling blocks. The effects of rockfall events can be the damage of road, vehicles, injuries or death of drivers or passengers and economic loss due to road closure. The cost of a single car accident can be significant since it can involve the hospitalization of the driver and passengers, the repair of the vehicle, the legal costs and compensation. The public administrations must manage the roads in order to protect the areas at risk and therefore make choices that take into account both technical and social aspects. The fulfillment of safety requirements for routes in mountainside areas is therefore a multidimensional concept that includes socio-economic, environmental, technical and ethical perspectives and thus leads to issue that are characterized simultaneously by a high degree of conflict, complexity and uncertainty. Multicriteria Analysis (MCA) is an adequate approach that can deal with these kind of issues. It behaves as an umbrella term since it includes a large series of evaluation techniques able to take into explicit consideration simultaneously several criteria, in order to support the Decision Maker through a rational approach to make a comparative assessment of alternative projects. A very large and consolidated amount of MCA literature exists, in which it is possible to find a wide range of techniques and application fields such as waste management, transport infrastructures, strategic policy planning, environmental impact assessment of territorial transformations, market and logistics, economics and finance, industrial management and civil engineering. This paper address the problem of rockfall risk induced on a road using the Analytic Hierarchy Process (AHP), a Multicriteria Analysis technique suitable for dealing with complex problems related to making a choice from among several alternatives and which provides a comparison of the considered options. The developed model takes into account five different aspects of the decision-making process (economic, environmental, design, transport and social aspects) that have been organized according the hierarchical framework of the AHP technique. The criteria that were identified in the analysis and their weights, in the decision-making process, have been discussed and determined by means of specific focus groups with technical experts in the geo-engineering field. Three different protection devices, usually used for rockfall protection (embankment, shelter topped by rockfall barrier and tunnel), are compared through the AHP method, in a specific "geo" environment to show the feasibility of the method. The application of the AHP technique, which was performed using the Expert Choice software, allowed the most relevant aspects of the decision-making process to be highlighted and showing how the proposed method can be a valuable tool for public administration. Furthermore, in order to test the robustness of the proposed model a sensitivity analysis was carried out. The research has an originality value since it focuses on a participative methodological approach thus making the decision process more traceable and reliable.

  14. The 2012 Seti River flood disaster and alpine cryospheric hazards facing Pokhara, Nepal

    NASA Astrophysics Data System (ADS)

    Kargel, Jeffrey; Leonard, Gregory; Paudel, Lalu; Regmi, Dhananjay; Bajracharya, Samjwal; Fort, Monique; Joshi, Sharad; Poudel, Khagendra; Thapa, Bhabana; Watanabe, Teiji

    2014-05-01

    We have identified the likeliest cause of the Seti River disaster of May 5, 2012, in which a flash flood killed or left missing 72 people. A cascade of deadly physical Earth processes combined with imprudent habitation on the lowest flood terraces and floodplain. The process cascade started with rockfalls into the Seti River gorge (observed via repeat ASTER imaging). The last rockfall-one to several weeks prior to the disaster-affected a knickpoint in the Seti River gorge and impounded glacial meltwater and spring snowmelt. The trigger was a large rock/ice avalanche originating from cornice ice on Annapurna IV, where part of the mass was channeled into the impoundment reservoir. That violent ground-surge event, plus possibly an air blast caused by a violent gravity flow of airborne debris-then burst the rockfall dam. This was not a glacier lake outburst flood. Glaciers were involved in the disaster by supplying meltwater, which was impounded by the rockfall dam, by triggering the disaster with collapse of cornice ice, and by contributing ice to the landslide and outburst flood. Debuttressing of moraine debris and ancient glacial lake sediment by retreat and thinning of glaciers also may have played a role-this is the only possible indirect link of the disaster to climate change. The rockfall and avalanche mass movements occurred independently of climate change. The narrow and easily blocked Seti River gorge was a key factor in the 2012 disaster, and it remains a unique component of this physiographic setting. A similar flood in this area may happen by a different cascade of Earth surface processes. An enormous mass of ancient unconsolidated glaciolacustrine and moraine sediment-many cubic kilometers-was discovered and is vulnerable to production of debris flows and hyperconcentrated slurry flows. Some aggravating processes occurring in the Sabche Cirque are related to climate change. Glaciers in that area are melting, and small lakes are forming. Although the lakes were not implicated in the 2012 disaster, the possibility exists for a small glacial lake outburst flood to trigger a larger mass movement. Such a debris flow could reach Pokhara directly. More likely, a debris flow in the Sabche Cirque could form another temporary and potentially dangerous impoundment dam in the gorge. Furthermore, the type of rockfall blockage that produced 2012's natural impoundment reservoir is likely to happen repeatedly. Hence, there is a high capacity of the Earth system in this area to produce comparable or even bigger flash floods or mass flows. The likelihood of a further disaster is magnified by imprudent habitation of the river channel and lower floodplain. Of all the changes to the Pokhara Valley, human encroachment on the flood plain is the factor most related to increasing vulnerability, but it is also the one factor that could be remedied by a complete ban on construction on lower terraces, if that is politically feasible. Warning systems could help, but fairly relocating people in jeopardy would be more effective. Supported by NASA/USAID SERVIR Applied Sciences and USAID Climbers' Science.

  15. Rockfall hazard assessment by means of the magnitude-frequency curves in the Montserrat Massif (central Catalonia, Spain): first insights

    NASA Astrophysics Data System (ADS)

    Janeras, Marc; Domènech, Guillem; Pons, Judit; Prat, Elisabet; Buxó, Pere

    2016-04-01

    Montserrat Massif is located about 50 km North-West of Barcelona (Catalonia, North-Eastern Spain). The rock massif is constituted by an intercalation of conglomerate and fine layers of siltstones due to the Montserrat fan-delta sedimentation within the Eocene age. The current relief is consequence of the several depositional episodes and the later tectonic uplift, leading to stepped slopes up to 250 m high, and a total height difference close to 1000 m. Montserrat Mountain has been a pilgrimage place since the settlement of the monastery, around the year 1025, and a spot of touristic interest, mostly within the last 150 years, when the first rack railway was inaugurated to reach the sanctuary. The amount of 2.4 M visitors in 2014 reveals the potential risk derived from rockfalls. To assess and mitigate this risk, a plan funded by the Catalan government is currently under development. Three rockfall mechanisms and magnitude ranges have been identified (Janeras et al. 2011): 1) physicochemical weathering causing the detachment of pebbles and aggregates (0.0001 - 0.1 m3); 2) thermic-induced tensions responsible for the generation of slabs and plates (0.1 - 10 m3); and 3) intersection of structural joints within the rock mass resulting in blocks of 10 - 10,000 m3. In order to quantify the rockfall hazard, a magnitude-frequency analysis has been performed starting from an event-based inventory gathered from field surveillance and historical research. A methodology has been applied to take the maximum profit of only 30 registers with information on volume and date. The massif has been split into several domains with sampling homogeneity. For each one, there have been defined several periods of time during which, all the rockfall events of a given volume have been recorded. Thus, the magnitude-frequency relationship, for each domain, has been calculated. Results show that the curves are well fitted by a power law with exponents ranging from -0.59 to -0.68 for magnitudes between 1 and 1000 m3. For the Monastery area, one event of a volume equal or higher than 1 m3 is expected within 6 years; for the parking area, a similar return period corresponds to a volume of 10 m3. These spatial differences detected between areas of the Montserrat massif (up to one order of magnitude) must be further explored. Extrapolation of these results to the whole massif leads to 9 events per year equal or larger than 10 m3. Finally, results have been compared with those obtained by TLS campaigns, in two pilot zones, capable of detecting small-sized rockfalls activity (Janeras et al. 2015), as well as by photointerpretation of noticeable events (Royán & Vilaplana, 2012) obtaining a satisfactory agreement. References: Janeras, Jara, López, Marturià, Royán, Vilaplana, Aguasca, Fàbregas, Cabranes, Gili; 2015. Using several monitoring techniques to measure the rock mass deformation in the Montserrat Massif. ISGG2015: Earth and Environmental Science 26 (2015) 012030. Royán & Vilaplana; 2012. Distribución espacio-temporal de los desprendimientos de rocas en la montaña de Montserrat. Cuaternario y Geomorfología (2012), 26 (1-2), 151-170.

  16. A generalized model for stability of trees under impact conditions

    NASA Astrophysics Data System (ADS)

    Dattola, Giuseppe; Crosta, Giovanni; Castellanza, Riccardo; di Prisco, Claudio; Canepa, Davide

    2016-04-01

    Stability of trees to external actions involve the combined effects of stem and tree root systems. A block impacting on the stem or an applied force pulling the stem can cause a tree instability involving stem bending or failure and tree root rotation. So different contributions are involved in the stability of the system. The rockfalls are common natural phenomena that can be unpredictable in terms of frequency and magnitude characteristics, and this makes difficult the estimate of potential hazard and risk for human lives and activities. In mountain areas a natural form of protection from rockfalls is provided by forest growing. The difficulties in the assessment of the real capability of this natural barrier by means of models is an open problem. Nevertheless, a large amount of experimental data are now available which provides support for the development of advanced theoretical framework and corresponding models. The aim of this contribution consists in presenting a model developed to predict the behavior of trees during a block impact. This model describes the tree stem by means of a linear elastic beam system consisting of two beams connected in series and with an equivalent geometry. The tree root system is described via an equivalent foundation, whose behavior is modelled through an elasto-plastic macro-element model. In order to calibrate the model parameters, simulations reproducing a series of winching tests, are performed. These numerical simulations confirm the capability of the model to predict the mechanical behavior of the stem-root system in terms of displacement vs force curves. Finally, numerical simulations of the impact of a boulder with a tree stem are carried out. These simulations, done under dynamic regime and with the model parameters obtained from the previous set of simulations, confirm the capability of the model to reproduce the effects on the stem-roots system generated by impulsive loads.

  17. Analysis of microseismic signals collected on an unstable rock face in the Italian Prealps

    NASA Astrophysics Data System (ADS)

    Arosio, Diego; Longoni, Laura; Papini, Monica; Boccolari, Mauro; Zanzi, Luigi

    2018-04-01

    In this work we present the analysis of more than 9000 signals collected from February 2013 to January 2016 by a microseismic monitoring network installed on a 300 m high limestone cliff in the Italian Prealps. The investigated area was affected by a major rockfall in 1969 and several other minor events up to nowadays. The network features five three-component geophones and a weather station and can be remotely accessed thanks to a dedicated radio link. We first manually classified all the recorded signals and found out that 95 per cent of them are impulsive broad-band disturbances, while about 2 per cent may be related to rockfalls or fracture propagation. Signal parameters in the time and frequency domains were computed during the classification procedure with the aim of developing an automatic classification routine based on linear discriminant analysis. The algorithm proved to have a hit rate higher than 95 per cent and a tolerable false alarm rate and it is now running on the field PC of the acquisition board to autonomously discard useless events. Analysis of lightning data sets provided by the Italian Lightning Detection Network revealed that the large majority of broad-band signals are caused by electromagnetic activity during thunderstorms. Cross-correlation between microseismic signals and meteorological parameters suggests that rainfalls influence the hydrodynamic conditions of the rock mass and can trigger rockfalls and fracture propagation very quickly since the start of a rainfall event. On the other hand, temperature seems to have no influence on the stability conditions of the monitored cliff. The only sensor deployed on the rock pillar next to the 1969 rockfall scarp typically recorded events with higher amplitude as well as energy. We deem that this is due to seismic amplification phenomena and we performed ambient noise recording sessions to validate this hypothesis. Results confirm that seismic amplification occurs, although we were not able to identify any spectral peak with confidence because the sensors used are not suitable for this task. In addition, we found out that there is a preferential polarization of the wave field along the EW direction and this is in agreement with the geological analysis according to which the pillar is overhanging towards the 1969 rockfall scarp and may preferentially evolve in a wedge failure. Event location was not possible because of the lack of a velocity model of the rock mass. We tried to distinguish between near and far events by analysing the covariance matrix of the three-component recordings. Although the parameters and the outcomes of this analysis should be evaluated very carefully, it seems that about 90 per cent of the considered microseismic signals are related to the stability conditions of the monitored area.

  18. Automatic Processing and Interpretation of Long Records of Endogenous Micro-Seismicity: the Case of the Super-Sauze Soft-Rock Landslide.

    NASA Astrophysics Data System (ADS)

    Provost, F.; Malet, J. P.; Hibert, C.; Doubre, C.

    2017-12-01

    The Super-Sauze landslide is a clay-rich landslide located the Southern French Alps. The landslide exhibits a complex pattern of deformation: a large number of rockfalls are observed in the 100 m height main scarp while the deformation of the upper part of the accumulated material is mainly affected by material shearing along stable in-situ crests. Several fissures are locally observed. The shallowest layer of the accumulated material tends to behave in a brittle manner but may undergo fluidization and/or rapid acceleration. Previous studies have demonstrated the presence of a rich endogenous micro-seismicity associated to the deformation of the landslide. However, the lack of long-term seismic records and suitable processing chains prevented a full interpretation of the links between the external forcings, the deformation and the recorded seismic signals. Since 2013, two permanent seismic arrays are installed in the upper part of the landslide. We here present the methodology adopted to process this dataset. The processing chain consists of a set of automated methods for automatic and robust detection, classification and location of the recorded seismicity. Thousands of events are detected and further automatically classified. The classification method is based on the description of the signal through attributes (e.g. waveform, spectral content properties). These attributes are used as inputs to classify the signal using a Random Forest machine-learning algorithm in four classes: endogenous micro-quakes, rockfalls, regional earthquakes and natural/anthropogenic noises. The endogenous landslide sources (i.e. micro-quake and rockfall) are further located. The location method is adapted to the type of event. The micro-quakes are located with a 3D velocity model derived from a seismic tomography campaign and an optimization of the first arrival picking with the inter-trace correlation of the P-wave arrivals. The rockfalls are located by optimizing the inter-trace correlation of the whole signal. We analyze the temporal relationships of the endogenous seismic events with rainfall and landslide displacements. Sub-families of landslide micro-quakes are also identified and an interpretation of their source mechanism is proposed from their signal properties and spatial location.

  19. Modeling the Rock Glacier Cycle

    NASA Astrophysics Data System (ADS)

    Anderson, R. S.; Anderson, L. S.

    2016-12-01

    Rock glaciers are common in many mountain ranges in which the ELA lies above the peaks. They represent some of the most identifiable components of today's cryosphere in these settings. Their oversteepened snouts pose often-overlooked hazards to travel in alpine terrain. Rock glaciers are supported by avalanches and by rockfall from steep headwalls. The winter's avalanche cone must be sufficiently thick not to melt entirely in the summer. The spatial distribution of rock glaciers reflects this dependence on avalanche sources; they are most common on lee sides of ridges where wind-blown snow augments the avalanche source. In the absence of rockfall, this would support a short, cirque glacier. Depending on the relationship between rockfall and avalanche patterns, "talus-derived" and "glacier-derived" rock glaciers are possible. Talus-derived: If the spatial distribution of rock delivery is similar to the avalanche pattern, the rock-ice mixture will travel an englacial path that is downward through the short accumulation zone before turning upward in the ablation zone. Advected debris is then delivered to the base of a growing surface debris layer that reduces the ice melt rate. The physics is identical to the debris-covered glacier case. Glacier-derived: If on the other hand rockfall from the headwall rolls beyond the avalanche cone, it is added directly to the ablation zone of the glacier. The avalanche accumulation zone then supports a pure ice core to the rock glacier. We have developed numerical models designed to capture the full range of glacier to debris-covered glacier to rock glacier behavior. The hundreds of meter lengths, tens of meters thicknesses, and meter per year speeds of rock glaciers are well described by the models. The model can capture both "talus-derived" and "glacier-derived" rock glaciers. We explore the dependence of glacier behavior on climate histories. As climate warms, a pure ice debris-covered glacier can transform to a much shorter rock glacier, leaving in its wake a thinning ice-cored moraine. Rock glaciers have much longer response times to climate change than their pure ice cousins.

  20. Slope failures in Northern Vermont, USA

    USGS Publications Warehouse

    Lee, F.T.; Odum, J.K.; Lee, J.D.

    1997-01-01

    Rockfalls and debris avalanches from steep hillslopes in northern Vermont are a continuing hazard for motorists, mountain climbers, and hikers. Huge blocks of massive schist and gneiss can reach the valley floor intact, whereas others may trigger debris avalanches on their downward travel. Block movement is facilitated by major joints both parallel and perpendicular to the glacially over-steepened valley walls. The slope failures occur most frequently in early spring, accompanying freeze/thaw cycles, and in the summer, following heavy rains. The study reported here began in August 1986 and ended in June 1989. Manual and automated measurements of temperature and displacement were made at two locations on opposing valley walls. Both cyclic-reversible and permanent displacements occurred during the 13-month monitoring period. The measurements indicate that freeze/thaw mechanisms produce small irreversible incremental movements, averaging 0.53 mm/yr, that displace massive blocks and produce rockfalls. The initial freeze/thaw weakening of the rock mass also makes slopes more susceptible to attrition by water, and heavy rains have triggered rockfalls and consequent debris flows and avalanches. Temperature changes on the rock surface produced time-dependent cyclic displacements of the rock blocks that were not instantaneous but lagged behind the temperature changes. Statistical analyses of the data were used to produce models of cyclic time-dependent rock block behavior. Predictions based solely on temperature changes gave poor results. A model using time and temperature and incorporating the lag effect predicts block displacement more accurately.

  1. Slope stability and rockfall assessment of volcanic tuffs using RPAS with 2-D FEM slope modelling

    NASA Astrophysics Data System (ADS)

    Török, Ákos; Barsi, Árpád; Bögöly, Gyula; Lovas, Tamás; Somogyi, Árpád; Görög, Péter

    2018-02-01

    Steep, hardly accessible cliffs of rhyolite tuff in NE Hungary are prone to rockfalls, endangering visitors of a castle. Remote sensing techniques were employed to obtain data on terrain morphology and to provide slope geometry for assessing the stability of these rock walls. A RPAS (Remotely Piloted Aircraft System) was used to collect images which were processed by Pix4D mapper (structure from motion technology) to generate a point cloud and mesh. The georeferencing was made by Global Navigation Satellite System (GNSS) with the use of seven ground control points. The obtained digital surface model (DSM) was processed (vegetation removal) and the derived digital terrain model (DTM) allowed cross sections to be drawn and a joint system to be detected. Joint and discontinuity system was also verified by field measurements. On-site tests as well as laboratory tests provided additional engineering geological data for slope modelling. Stability of cliffs was assessed by 2-D FEM (finite element method). Global analyses of cross sections show that weak intercalating tuff layers may serve as potential slip surfaces. However, at present the greatest hazard is related to planar failure along ENE-WSW joints and to wedge failure. The paper demonstrates that RPAS is a rapid and useful tool for generating a reliable terrain model of hardly accessible cliff faces. It also emphasizes the efficiency of RPAS in rockfall hazard assessment in comparison with other remote sensing techniques such as terrestrial laser scanning (TLS).

  2. Analysing rockfall processes on alpine rockfaces and the corresponding talus cones using Terrestrial Laserscanning

    NASA Astrophysics Data System (ADS)

    Haas, Florian; Heckmann, Tobias; Klein, Thomas; Becht, Michael

    2010-05-01

    In high mountain regions, rockfall plays a major role as a geomorphic process, both in terms of sediment budget and natural hazard. During the last two years, high-resolution Terrestrial Laserscanning (TLS) was applied to study (a) detachment zones and sizes of rock fall events within steep rockfaces, (b) characteristics of rockfall deposits such as surface roughness, size distribution and fragment morphology, and (c) their influence on rockfall run-out length. The investigations were carried out in three study areas located in the Northern, Central and Southern Alps (Val di Funes, Northern Dolomites/Italy; Horlachtal, Central Alps/Austria; Höllental, Northern Calcareous Alps/Germany). Within this project (funded by the German Science Foundation, DFG), rockfaces and corresponding talus cones were scanned twice a year with two scanning resolutions. Larger events were investigated by scanning large areas of rockfaces and talus cones from a great distance (~500 m). In contrast, detailed scans from shorter distances (<250m) were used to investigate the capability of the approach to detect smaller events. With this approach, it was possible to record three large and several smaller events in the three catchments. The largest event occurred in the Dolomite Alps (Val di Funes/Italy) with a volume of nearly 3300 cubic meters (8900 tons). Both the detachment zone and the depositional zones could be defined very well by a cut-and-fill analysis of the digital elevation models generated from the TLS data. In addition, ground based LIDAR data are also a very helpful tool to characterize the surface properties of talus cones and the runout distances of large boulders. The surface roughness of talus cones in all three catchments was derived from the TLS point clouds by a GIS approach according to the roughness-length method. The resulting detailed rougness maps of the talus cones will help in the future to improve existing process models which are able to model runout distances on the talus cones using friction parameters. It has often been mentioned that not only the surface roughness of the talus cone, but also the shape of the boulders itself have an influence on the runout distance. The interrelationship between rock fragment morphology (characterised by shape parameters) and runout distance was analysed at the site of a large rockfall event (>10 000 cubic meters) from the year 2003 in the northern Dolomite Alps. For these analyses, the axial ratio of 618 rocks (>50 cm long axis) in the depositional zone and their corresponding runout distance were measured using TLS data and the software RiscanPro. Results show a significant correlation between the axial ratio of the particles and their runout distance. Rocks with a "round" shape (axial ratio around 1) have a longer runout distance than elongated or irregularly shaped particles (axial ratio greater than 1).

  3. Toward a better integration of roughness in rockfall simulations - a sensitivity study with the RockyFor3D model

    NASA Astrophysics Data System (ADS)

    Monnet, Jean-Matthieu; Bourrier, Franck; Milenkovic, Milutin

    2017-04-01

    Advances in numerical simulation and analysis of real-size field experiments have supported the development of process-based rockfall simulation models. Availability of high resolution remote sensing data and high-performance computing now make it possible to implement them for operational applications, e.g. risk zoning and protection structure design. One key parameter regarding rock propagation is the surface roughness, sometimes defined as the variation in height perpendicular to the slope (Pfeiffer and Bowen, 1989). Roughness-related input parameters for rockfall models are usually determined by experts on the field. In the RockyFor3D model (Dorren, 2015), three values related to the distribution of obstacles (deposited rocks, stumps, fallen trees,... as seen from the incoming rock) relatively to the average slope are estimated. The use of high resolution digital terrain models (DTMs) questions both the scale usually adopted by experts for roughness assessment and the relevance of modeling hypotheses regarding the rock / ground interaction. Indeed, experts interpret the surrounding terrain as obstacles or ground depending on the overall visibility and on the nature of objects. Digital models represent the terrain with a certain amount of smoothing, depending on the sensor capacities. Besides, the rock rebound on the ground is modeled by changes in the velocities of the gravity center of the block due to impact. Thus, the use of a DTM with resolution smaller than the block size might have little relevance while increasing computational burden. The objective of this work is to investigate the issue of scale relevance with simulations based on RockyFor3D in order to derive guidelines for roughness estimation by field experts. First a sensitivity analysis is performed to identify the combinations of parameters (slope, soil roughness parameter, rock size) where the roughness values have a critical effect on rock propagation on a regular hillside. Second, a more complex hillside is simulated by combining three components: a) a global trend (planar surface), b) local systematic components (sine waves), c) random roughness (Gaussian, zero-mean noise). The parameters for simulating these components are estimated for three typical scenarios of rockfall terrains: soft soil, fine scree and coarse scree, based on expert knowledge and available airborne and terrestrial laser scanning data. For each scenario, the reference terrain is created and used to compute input data for RockyFor3D simulations at different scales, i.e. DTMs with resolutions from 0.5 m to 20 m and associated roughness parameters. Subsequent analysis mainly focuses on the sensitivity of simulations both in terms of run-out envelope and kinetic energy distribution. Guidelines drawn from the results are expected to help experts handle the scale issue while integrating remote sensing data and field measurements of roughness in rockfall simulations.

  4. Discrete modelling of drapery systems

    NASA Astrophysics Data System (ADS)

    Thoeni, Klaus; Giacomini, Anna

    2016-04-01

    Drapery systems are an efficient and cost-effective measure in preventing and controlling rockfall hazards on rock slopes. The simplest form consists of a row of ground anchors along the top of the slope connected to a horizontal support cable from which a wire mesh is suspended down the face of the slope. Such systems are generally referred to as simple or unsecured draperies (Badger and Duffy 2012). Variations such as secured draperies, where a pattern of ground anchors is incorporated within the field of the mesh, and hybrid systems, where the upper part of an unsecured drapery is elevated to intercept rockfalls originating upslope of the installation, are becoming more and more popular. This work presents a discrete element framework for simulation of unsecured drapery systems and its variations. The numerical model is based on the classical discrete element method (DEM) and implemented into the open-source framework YADE (Šmilauer et al., 2010). The model takes all relevant interactions between block, drapery and slope into account (Thoeni et al., 2014) and was calibrated and validated based on full-scale experiments (Giacomini et al., 2012).The block is modelled as a rigid clump made of spherical particles which allows any shape to be approximated. The drapery is represented by a set of spherical particle with remote interactions. The behaviour of the remote interactions is governed by the constitutive behaviour of the wire and generally corresponds to a piecewise linear stress-strain relation (Thoeni et al., 2013). The same concept is used to model wire ropes. The rock slope is represented by rigid triangular elements where material properties (e.g., normal coefficient of restitution, friction angle) are assigned to each triangle. The capabilities of the developed model to simulate drapery systems and estimate the residual hazard involved with such systems is shown. References Badger, T.C., Duffy, J.D. (2012) Drapery systems. In: Turner, A.K., Schuster R.L., editors. Rockfall: Characterization and Control. Washington, DC: Transportation Research Board, 554-576. Giacomini, A., Thoeni, K., Lambert, C., Booth, S., Sloan, S.W. (2012) Experimental study on rockfall drapery systems for open pit highwalls. International Journal of Rock Mechanics and Mining Sciences 56, 171-181. Šmilauer, V., Catalano, E., Chareyre, B., Dorofenko, S., Duriez, J., Gladky, A., Kozicki, J., Modenese, C., Scholtès, L., Sibille, L., Stránskỳ, J., Thoeni, K. (2010) Yade Documentation. The Yade Project, 1st ed., http://yade-dem.org/doc/. Thoeni, K., Giacomini, A., Lambert, C., Sloan, S.W., Carter, J.P. (2014) A 3D discrete element modelling approach for rockfall analysis with drapery systems. International Journal of Rock Mechanics and Mining Sciences 68, 107-119. Thoeni, K., Lambert, C., Giacomini, A., Sloan, S.W. (2013) Discrete modelling of hexagonal wire meshes with a stochastically distorted contact model. Computers and Geotechnics, 49, 158-69.

  5. Energy Dissipating Devices in Falling Rock Protection Barriers

    NASA Astrophysics Data System (ADS)

    Castanon-Jano, L.; Blanco-Fernandez, E.; Castro-Fresno, D.; Ballester-Muñoz, F.

    2017-03-01

    Rockfall is a phenomenon which, when uncontrolled, may cause extensive material damage and personal injury. One of the structures used to avoid accidents caused by debris flows or rockfalls is flexible barriers. The energy dissipating devices which absorb the energy generated by rock impact and reduce the mechanical stresses in the rest of the elements of the structure are an essential part of these kinds of structures. This document proposes an overview of the performance of energy dissipating devices, as well as of the role that they fulfil in the barrier. Furthermore, a compilation and a description of the dissipating elements found in the literature are proposed. Additionally, an analysis has been performed of the aspects taken into account in the design, such as experimental (quasi-static and dynamic) tests observing the variation of the behaviour curve depending on the test speed and numerical simulations by means of several finite element software packages.

  6. Simulation of rockfalls triggered by earthquakes

    USGS Publications Warehouse

    Kobayashi, Y.; Harp, E.L.; Kagawa, T.

    1990-01-01

    A computer program to simulate the downslope movement of boulders in rolling or bouncing modes has been developed and applied to actual rockfalls triggered by the Mammoth Lakes, California, earthquake sequence in 1980 and the Central Idaho earthquake in 1983. In order to reproduce a movement mode where bouncing predominated, we introduced an artificial unevenness to the slope surface by adding a small random number to the interpolated value of the mid-points between the adjacent surveyed points. Three hundred simulations were computed for each site by changing the random number series, which determined distances and bouncing intervals. The movement of the boulders was, in general, rather erratic depending on the random numbers employed, and the results could not be seen as deterministic but stochastic. The closest agreement between calculated and actual movements was obtained at the site with the most detailed and accurate topographic measurements. ?? 1990 Springer-Verlag.

  7. Historical analysis of rainfall-triggered rockfalls: the case study of the disaster of the ancient hydrothermal Sclafani Spa (Madonie Mts, northern-central Sicily, Italy) in 1851

    NASA Astrophysics Data System (ADS)

    Contino, Antonio; Bova, Patrizia; Esposito, Giuseppe; Giuffré, Ignazio; Monteleone, Salvatore

    2017-12-01

    In 1851, the region of Sicily experienced many rainstorm-induced landslides. On 13 March 1851, a rainstorm brought about a severe rockfall disaster near the small town of Sclafani (Madonie Mountains, northern-central Sicily, Italy). Rocks detached from the carbonate crest of Mt Sclafani (813 m above sea level) and fell downslope, causing the collapse of the ancient hydrothermal spa (about 430 m above sea level) and burying it. Fortunately, there were no injuries or victims. Given its geological, geomorphological and tectonic features, the calcareous-dolomitic and carbonate-siliciclastic relief of Mt Sclafani is extremely prone to landsliding. This study combines the findings of detailed geological and geomorphological field surveys and of a critical review of documentary data. A thorough analysis of documentary sources and historical maps made it possible to identify the location (previously unknown) of the ancient spa. The rockfall dynamics was reconstructed by comparing field reconnaissance data and documentary sources. The 1851 event reconstruction is an example of the application of an integrated methodological approach, which can yield a propaedeutic, yet meaningful picture of a natural disaster, paving the way for further research (e.g. slope failure susceptibility, future land-use planning, protection of thermal springs and mitigation of the impact of similar disasters in this area). Indeed, the intensification of extreme weather events, caused by global warming induced by climate change, has increased the risk of recurrence of a catastrophic event, like that of the ancient Sclafani spa, which is always a potential threat.

  8. Time Series Radar Observations of a Growing Lava Dome

    NASA Astrophysics Data System (ADS)

    Wadge, G.; Macfarlane, D. G.; Odbert, H. M.; James, M. R.; Hole, J. K.; Ryan, G.; Bass, V.; de Angelis, S.; Pinkerton, H.; Robertson, D. A.; Loughlin, S. C.

    2007-12-01

    Exogenous growth of Peléean lava domes occurs by addition of lava from a central summit vent and mass wasting on the flanks as rockfalls and pyroclastic flows, forming an apron of talus. We observed this process at the Soufrière Hills Volcano, Montserrat between 30 March and 10 April 2006 using a ground-based imaging mm-wave radar, AVTIS, to measure the shape of the dome surface.From a time series of range and intensity measurements at a distance of six kilometres we measured the topographic evolution of the lava dome. The locus of talus deposition moved to the southeast with time and the talus surface grew upwards on average at about 2 metres per day. The AVTIS measurements show an acceleration in lava extrusion rate on 5 April, with a 2-day lag in the equivalent rockfall seismicity record. We account for the budget of lava addition and dispersal during the eleven days of measurements using: AVTIS range measurements to measure the talus growth (7.2 Mm3, 67%), AVTIS range and intensity measurements to measure the summit lava growth (1.7 Mm3, 16%), and rockfall seismicity and visual observations to measure the pyroclastic flow deposits (1.8 Mm3, 17%). This gives an overall dense rock equivalent extrusion rate of about 9.7 m3s-1. These figures demonstrate how efficient non-explosive lava dome growth can be in generating large volumes of primary clastic deposits, and how this process could also reduce the propensity for large hazardous pyroclastic flows. andrews.ac.uk/~mmwave/mmwave/avtis.shtml

  9. Guide for Preparation of Waterways Experiment Station Technical Information Reports

    DTIC Science & Technology

    1993-01-01

    Printing .......................... F1 Appendix G: Index .................................... GI SF 298 List of Figures Figure 1. Distribution statements...dimensional R rainwater riverside Ramm river wall Range 5 roadbed rattail rockbound (adj) real-time rockfall (n) reentrants rock-fill (adj

  10. Quantification of rock slope terrain properties

    NASA Astrophysics Data System (ADS)

    Volkwein, Axel; Gerber, Werner

    2017-04-01

    Rockfall trajectory simulation codes need information on the terrain properties to formulate appropriate rebound models. Usually, the manuals of rockfall simulation codes give sketches or photographs of terrain samples [1,2]. Based on these the user can select suitable terrains for the simulation area. We now would like to start a discussion whether it is possible to numerically quantify the terrain properties which would make the ground assignment more objective. Different ground properties play a role for the interaction between a falling rock and the ground: • Elastic deformation • plastic deformation • Energy absorption • friction • hardness • roughness • surface vs. underground • etc. The question is now whether it is possible to quantify above parameters and to finally provide tables that contain appropriate simulation parameters. In a first attempt we suggest different methods or parameters that might be evaluated in situ: • Small scale drop tests • Light weight deflectometer (LWD) • Particle sizes • Sliding angle • Particle distribution • Soil cover • Water content Of course, above measurements will never perfectly fit to different mountain slopes. However, if a number of measurements has been made their spreading will give an idea on the natural variability of the ground properties. As an example, the following table gives an idea on how the ME and Evd values vary for different soils. Table 1: LWD measurements on different soil types [3] Ground type Soil layer Soil humidityEvd (median)σ (median)Evd (average) Humus-carb. < 10cm dry 17.4 6.8 15.6 Regosol 10 - 30cm dry 8.6 3.9 9.4 Brownish 30 - 50cm dry 12.1 3.2 11.7 Calcaric 30 - 50cm dry 7.5 3.3 7.0 Acid brownish70 - 100cmdry 7.8 2.1 7.7 Fahlgley 10 - 30cm dry 9.2 4.0 7.7 References [1] Bartelt P et al (2016) RAMMS::rockfall user manual v1.6. SLF, Davos. [2] Dorren L.K.A., 2015. Rockyfor3D (v5.2) revealed - Transparent description of the complete 3D rockfall model. ecorisQ paper (www.ecorisq.org): 32 p. [3] Hoffmann P. (2015) Härte von Böden. Bsc thesis, ZHAW Waedenswil.

  11. Development of a rockfall hazard rating matrix for the State of Ohio : executive summary report.

    DOT National Transportation Integrated Search

    2005-06-30

    The geology in Ohio is characterized by the : presence of gently dipping, harder, more competent : strata (siltstones, sandstones, limestones) alternating : with softer, less competent strata (claystones, : mudstones, sha les). This type of stratigra...

  12. Development of a Rockfall Hazard Rating Matrix for the State of Ohio : Executive Summary Report

    DOT National Transportation Integrated Search

    2005-06-01

    The geology in Ohio is characterized by the : presence of gently dipping, harder, more competent : strata (siltstones, sandstones, limestones) alternating : with softer, less competent strata (claystones, : mudstones, sha les). This type of stratigra...

  13. Risk Management for Wilderness Programs.

    ERIC Educational Resources Information Center

    Schimelpfenig, Tod

    This paper discusses subjective hazards in wilderness activities and suggests means of assessing and managing related risks. Wilderness educators conveniently group hazards into objective and subjective ones. Objective hazards such as rockfall, moving water, and weather, while not necessarily predictable, are visible and understandable. Subjective…

  14. High-resolution three-dimensional imaging and analysis of rock falls in Yosemite valley, California

    USGS Publications Warehouse

    Stock, Gregory M.; Bawden, G.W.; Green, J.K.; Hanson, E.; Downing, G.; Collins, B.D.; Bond, S.; Leslar, M.

    2011-01-01

    We present quantitative analyses of recent large rock falls in Yosemite Valley, California, using integrated high-resolution imaging techniques. Rock falls commonly occur from the glacially sculpted granitic walls of Yosemite Valley, modifying this iconic landscape but also posing signifi cant potential hazards and risks. Two large rock falls occurred from the cliff beneath Glacier Point in eastern Yosemite Valley on 7 and 8 October 2008, causing minor injuries and damaging structures in a developed area. We used a combination of gigapixel photography, airborne laser scanning (ALS) data, and ground-based terrestrial laser scanning (TLS) data to characterize the rock-fall detachment surface and adjacent cliff area, quantify the rock-fall volume, evaluate the geologic structure that contributed to failure, and assess the likely failure mode. We merged the ALS and TLS data to resolve the complex, vertical to overhanging topography of the Glacier Point area in three dimensions, and integrated these data with gigapixel photographs to fully image the cliff face in high resolution. Three-dimensional analysis of repeat TLS data reveals that the cumulative failure consisted of a near-planar rock slab with a maximum length of 69.0 m, a mean thickness of 2.1 m, a detachment surface area of 2750 m2, and a volume of 5663 ?? 36 m3. Failure occurred along a surfaceparallel, vertically oriented sheeting joint in a clear example of granitic exfoliation. Stress concentration at crack tips likely propagated fractures through the partially attached slab, leading to failure. Our results demonstrate the utility of high-resolution imaging techniques for quantifying far-range (>1 km) rock falls occurring from the largely inaccessible, vertical rock faces of Yosemite Valley, and for providing highly accurate and precise data needed for rock-fall hazard assessment. ?? 2011 Geological Society of America.

  15. Automated terrestrial laser scanning with near-real-time change detection - monitoring of the Séchilienne landslide

    NASA Astrophysics Data System (ADS)

    Kromer, Ryan A.; Abellán, Antonio; Hutchinson, D. Jean; Lato, Matt; Chanut, Marie-Aurelie; Dubois, Laurent; Jaboyedoff, Michel

    2017-05-01

    We present an automated terrestrial laser scanning (ATLS) system with automatic near-real-time change detection processing. The ATLS system was tested on the Séchilienne landslide in France for a 6-week period with data collected at 30 min intervals. The purpose of developing the system was to fill the gap of high-temporal-resolution TLS monitoring studies of earth surface processes and to offer a cost-effective, light, portable alternative to ground-based interferometric synthetic aperture radar (GB-InSAR) deformation monitoring. During the study, we detected the flux of talus, displacement of the landslide and pre-failure deformation of discrete rockfall events. Additionally, we found the ATLS system to be an effective tool in monitoring landslide and rockfall processes despite missing points due to poor atmospheric conditions or rainfall. Furthermore, such a system has the potential to help us better understand a wide variety of slope processes at high levels of temporal detail.

  16. Report of Accomplishments Under the Airport Improvement Program.

    DTIC Science & Technology

    1986-01-01

    CONTINUED) STERLING ROCKFALLS 04 $540,800 OVERLAY RUNWAY, TAXIWAY AND APRON; WHITESIDE CO ARPT-JOS H BITTORF FLD REHABILITATE TAXIWAY LIGHTING; INSTALL...PLACED UNDER GRANT AGREEMENT - FISCAL YEAR 1986 LOCATION AND PROJECT FLDERAL NAME OF AIRPORT NUMBER FUNDS DESCRIPTION OF WORK WEST v !R GI NIA

  17. Site-specific landslide assessment in Alpine area using a reliable integrated monitoring system

    NASA Astrophysics Data System (ADS)

    Romeo, Saverio; Di Matteo, Lucio; Kieffer, Daniel Scott

    2016-04-01

    Rockfalls are one of major cause of landslide fatalities around the world. The present work discusses the reliability of integrated monitoring of displacements in a rockfall within the Alpine region (Salzburg Land - Austria), taking into account also the effect of the ongoing climate change. Due to the unpredictability of the frequency and magnitude, that threatens human lives and infrastructure, frequently it is necessary to implement an efficient monitoring system. For this reason, during the last decades, integrated monitoring systems of unstable slopes were widely developed and used (e.g., extensometers, cameras, remote sensing, etc.). In this framework, Remote Sensing techniques, such as GBInSAR technique (Groung-Based Interferometric Synthetic Aperture Radar), have emerged as efficient and powerful tools for deformation monitoring. GBInSAR measurements can be useful to achieve an early warning system using surface deformation parameters as ground displacement or inverse velocity (for semi-empirical forecasting methods). In order to check the reliability of GBInSAR and to monitor the evolution of landslide, it is very important to integrate different techniques. Indeed, a multi-instrumental approach is essential to investigate movements both in surface and in depth and the use of different monitoring techniques allows to perform a cross analysis of the data and to minimize errors, to check the data quality and to improve the monitoring system. During 2013, an intense and complete monitoring campaign has been conducted on the Ingelsberg landslide. By analyzing both historical temperature series (HISTALP) recorded during the last century and those from local weather stations, temperature values (Autumn-Winter, Winter and Spring) are clearly increased in Bad Hofgastein area as well as in Alpine region. As consequence, in the last decades the rockfall events have been shifted from spring to summer due to warmer winters. It is interesting to point out that temperature values recorded in the valley and on the slope show a good relationship indicating that the climatic monitoring is reliable. In addition, the landslide displacement monitoring is reliable as well: the comparison between displacements in depth by extensometers and in surface by GBInSAR - referred to March-December 2013 - shows ad high reliability as confirmed by the inter-rater reliability analysis (Pearson correlation coefficient higher than 0.9). In conclusion, the reliability of the monitoring system confirms that data can be useful to improve the knowledge on rockfall kinematic and to develop an accurate early warning system useful for civil protection issues.

  18. Landslide database dominated by rainfall triggered events

    NASA Astrophysics Data System (ADS)

    Devoli, G.; Strauch, W.; Álvarez, A.

    2009-04-01

    A digital landslide database has been created for Nicaragua to provide the scientific community and national authorities with a tool for landslide hazard assessment. Valuable information on landslide events has been obtained from a great variety of sources. On the basis of the data stored in the database, preliminary analyses performed at national scale aimed to characterize landslides in terms of spatial and temporal distribution, types of slope movements, triggering mechanisms, number of casualties and damage to infrastructure. A total of about 17000 events spatially distributed in mountainous and volcanic terrains have been collected in the database. The events are temporally distributed between 1826 and 2003, but a large number of the records (62% of the total number) occurred during the disastrous Hurricane Mitch in October 1998. The results showed that debris flows are the most common types of landslides recorded in the database (66% of the total amount), but other types, including rockfalls and slides, have also been identified. Rainfall, also associated with tropical cyclones, is the most frequent triggering mechanism of landslides in Nicaragua, but also seismic and volcanic activities are important triggers or, especially, the combination of one of them with rainfall. Rainfall has caused all types of failures, but debris flows and translational shallow slides are more frequent types. Earthquakes have most frequently triggered rockfalls and slides, while volcanic eruptions rockfalls and debris flows. Landslides triggered by rainfall were limited in time to the wet season that lasts from May to October and an increase in the number of events is observed during the months of September and October, which is in accord with the period of the rainy season in the Pacific and Northern and Central regions and when the country has the highest probability of being impacted by hurricanes. Both Atlantic and Pacific tropical cyclones have triggered landslides. At the medium scale, the influence of topographic and lithologic parameters on the occurrence of landslides was also analyzed and the physical characterization of landslides was done to better understand the landslide dynamics and run-out distances in both volcanic and non-volcanic areas. Data from fairly well documented events in Nicaragua were compared with other similar events in Central America and elsewhere and treated statistically to search for possible correlations and empirical relationships to predict run-out distances for different types of landslides, knowing the height of fall or the volume. The empirical relationships showed that debris flows and debris avalanches at volcanoes have the highest mobility and reach longer distances compared to other types of landslides. Because of their characteristics and downstream behaviour (long run-out distances and large volumes) both types of landslides have produced the highest number of victims in the country being the most dangerous to life and property.

  19. Landslides and the weathering of granitic rocks

    Treesearch

    Philip B. Durgin

    1977-01-01

    Abstract - Granitic batholiths around the Pacific Ocean basin provide examples of landslide types that characterize progressive stages of weathering. The stages include (1) fresh rock, (2) corestones, (3) decomposed granitoid, and (4) saprolite. Fresh granitoid is subject to rockfalls, rockslides, and block glides. They are all controlled by factors related to...

  20. Reply to comment received from J. C. Knight regarding "Last Glacial Maximum cirque glaciation in Ireland and implications for reconstructions of the Irish Ice Sheet" by Barth et al. (2016), Quaternary Science Reviews 141, 85-93

    NASA Astrophysics Data System (ADS)

    Barth, Aaron M.; Clark, Peter U.; Clark, Jorie; McCabe, A. Marshall; Caffee, Marc

    2016-10-01

    We concluded that our new 10Be chronology records onset of retreat of a cirque glacier within the Alohart basin of southwestern Ireland 24.5 ± 1.4 ka, placing limiting constraints on reconstructions of the Irish Ice Sheet (IIS) and Kerry-Cork Ice Cap (KCIC) during the Last Glacial Maximum (LGM) (Barth et al., 2016). Knight (2016) raises two main arguments against our interpretation: (1) the glacier in the Alohart basin was not a cirque glacier, but instead a southern-sourced ice tongue from the KCIC overtopping the MacGillycuddy's Reeks, and (2) that the boulders we sampled for 10Be exposure dating were derived from supraglacial rockfall rather than transported subglacially, experienced nuclide inheritance, and are thus too old. In the following, we address both of these arguments.

  1. Rockfall catchment area design guide : final report.

    DOT National Transportation Integrated Search

    2001-11-01

    The data gathered from an extensive research project consisting of rolling approximately 11,250 rocks off vertical; 0.25H:1V; 0.5H:1V; 0.75H:1V; and 1.0H:1.0V slopes of three different heights (40, 60 and 80 feet) into three differently inclined catc...

  2. Rockfall catchment area design guide : final report : appendices.

    DOT National Transportation Integrated Search

    2001-11-01

    The data gathered from an extensive research project consisting of rolling approximately 11,250 rocks off vertical; 0.25H:1V; 0.5H:1V; 0.75H:1V; and 1.0H:1.0V slopes of three different heights (40, 60 and 80 feet) into three differently inclined catc...

  3. Rockfall catchment area design guide : final report

    DOT National Transportation Integrated Search

    2001-12-01

    The data gathered from an exhaustive research project consisting of rolling a total of approximately 11,250 rocks off vertical; 4V:1H;2V;1H;1.33V:1H;1.0V:1.0H slopes of three different heights (12.2, 18.3, and 24.4 meters) into three differently incl...

  4. A comparison of artifical and natural slope failures: the Santa Barbara earthquake of August 13, 1978.

    USGS Publications Warehouse

    Harp, E.L.; Keefer, D.K.; Wilson, R.C.

    1980-01-01

    The earthquake triggered rockfalls and rockslides from steep road cuts and coastal cliffs. The landslide reconnaissance survey which was carried out is described, with separate comments on each landslide site recorded. The general regional slope response to the earthquake is briefly considered. -R. House

  5. The role of forests in reducing hydrogeomorphic hazards.

    Treesearch

    Matt E. Sakals; John L. Innes; David J. Wilford; Roy C. Sidle; Gordon E. Grant

    2006-01-01

    Increasingly, forests are being valued for goods and services beyond wood fibre; one of these is protection forests. Functions provided by natural and managed forests have been associated with reduced hazards from floods, debris floods, debris flows, snow avalanches and rockfalls. Maintaining a high level of protection may require active management, as forests are...

  6. Search and rescue response to a large-scale rockfall disaster.

    PubMed

    Procter, Emily; Strapazzon, Giacomo; Balkenhol, Karla; Fop, Ernst; Faggionato, Alessandro; Mayr, Karl; Falk, Markus; Brugger, Hermann

    2015-03-01

    To describe the prehospital management and safety of search and rescue (SAR) teams involved in a large-scale rockfall disaster and monitor the acute and chronic health effects on personnel with severe dolomitic dust exposure. SAR personnel underwent on-site medical screening and lung function testing 3 months and 3 years after the event. The emergency dispatch center was responsible for central coordination of resources. One hundred fifty SAR members from multidisciplinary air- and ground-based teams as well as geotechnical experts were dispatched to a provisionary operation center. Acute exposure to dolomite dust with detectable silicon and magnesium concentrations was not associated with (sub)acute or chronic sequelae or a clinically significant impairment in lung function in exposed personnel. The risk for personnel involved in mountain SAR operations is rarely reported and not easily investigated or quantified. This case exemplifies the importance of a multiskilled team and additional considerations for prehospital management during natural hazard events. Safety plans should include compulsory protective measures and medical monitoring of personnel. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  7. GIS- and field based mapping of geomorphological changes in a glacier retreat area: A case study from the Kromer valley, Silvretta Alps (Austria)

    NASA Astrophysics Data System (ADS)

    Guttmann, Markus; Pöppl, Ronald

    2017-04-01

    Global warming results in an ongoing retreat of Alpine glaciers, leaving behind large amounts of easily erodible sediments. As a consequence processes like rockfalls, landslides and debris flows as well as fluvial processes occur more frequently in pro- and paraglacial areas, often involving catastrophic consequences for humans and infrastructure in the affected valleys. The main objective of the presented work was to map and spatially quantify glacier retreat and geomorphological changes in the Kromer valley, Silvretta Alps (Austria) by applying GIS- and field-based geomorphological mapping. In total six geomorphological maps (1950s, 1970s, 2001, 2006, 2012, and 2016) were produced and analyzed in the light of the study aim. First results have shown a significant decrease of total glaciated area from 96 ha to 53 ha which was accompanied by increased proglacial geomorphic activity (i.e. fluvial processes, rockfalls, debris flows, shallow landslides) in the last 15 years. More detailed results will be presented at the EGU General Assembly 2017.

  8. Spatial distribution of sediment storage types and quantification of valley fill deposits in an alpine basin, Reintal, Bavarian Alps, Germany

    NASA Astrophysics Data System (ADS)

    Schrott, Lothar; Hufschmidt, Gabi; Hankammer, Martin; Hoffmann, Thomas; Dikau, Richard

    2003-09-01

    Spatial patterns of sediment storage types and associated volumes using a novel approach for quantifying valley fill deposits are presented for a small alpine catchment (17 km 2) in the Bavarian Alps. The different sediment storage types were analysed with respect to geomorphic coupling and sediment flux activity. The most landforms in the valley in terms of surface area were found to be talus slopes (sheets and cones) followed by rockfall deposits and alluvial fans and plains. More than two-thirds of the talus slopes are relict landforms, completely decoupled from the geomorphic system. Notable sediment transport is limited to avalanche tracks, debris flows, and along floodplains. Sediment volumes were calculated using a combination of polynomial functions of cross sections, seismic refraction, and GIS modelling. A total of, 66 seismic refraction profiles were carried out throughout the valley for a more precise determination of sediment thicknesses and to check the bedrock data generated from geomorphometric analysis. We calculated the overall sediment volume of the valley fill deposits to be 0.07 km 3. This corresponds to a mean sediment thickness of 23.3 m. The seismic refraction data showed that large floodplains and sedimentation areas, which have been developed through damming effects from large rockfalls, are in general characterised by shallow sediment thicknesses (<20 m). By contrast, the thickness of several talus slopes is more than twice as much. For some locations (e.g., narrow sections of valley), the polynomial-generated cross sections resulted in overestimations of up to one order of magnitude; whereas in sections with a moderate valley shape, the modelled cross sections are in good accordance with the obtained seismic data. For the quantification of valley fill deposits, a combined application of bedrock data derived from polynomials and geophysical prospecting is highly recommended.

  9. Analysis of geohazards events along Swiss roads from autumn 2011 to present

    NASA Astrophysics Data System (ADS)

    Voumard, Jérémie; Jaboyedoff, Michel; Derron, Marc-Henri

    2014-05-01

    In Switzerland, roads and railways are threatened throughout the year by several natural hazards. Some of these events reach transport infrastructure many time per year leading to the closing of transportation corridors, loss of access, deviation travels and sometimes infrastructures damages and loss of human lives (3 fatalities during the period considered). The aim of this inventory of events is to investigate the number of natural events affecting roads and railways in Switzerland since autumn 2011 until now. Natural hazards affecting roads and railway can be classified in five categories: rockfalls, landslides, debris flows, snow avalanches and floods. They potentially cause several important direct damages on transportation infrastructure (roads, railway), vehicles (slightly or very damaged) or human life (slightly or seriously injured person, death). These direct damages can be easily evaluated from press articles or from Swiss police press releases. Indirect damages such as deviation cost are not taken into account in this work. During the two a half last years, about 50 events affecting the Swiss roads and Swiss railways infrastructures were inventoried. The proportion of events due to rockfalls is 45%, to landslides 25%, to debris flows 15%, to snow avalanches 10% and to floods 5%. During this period, three fatalities and two persons were injured while 23 vehicles (car, trains and coach) and 24 roads and railways were damaged. We can see that floods occur mainly on the Swiss Plateau whereas rockfalls, debris flow, snow avalanches and landslides are mostly located in the Alpine area. Most of events occur on secondary mountain roads and railways. The events are well distributed on the whole Alpine area except for the Gotthard hotspot, where an important European North-South motorway (hit in 2003 with two fatalities) and railway (hit three times in 2012 with one fatalities) are more frequently affected. According to the observed events in border regions of Switzerland, the trend in the Alps is similar.

  10. Characterization of Fluid Oscillations at Kilauea Volcano Through Time-Dependent Modeling of Seismic Displacements from Rockfall Events

    NASA Astrophysics Data System (ADS)

    Karlstrom, L.; Dunham, E. M.; Thelen, W. A.; Patrick, M. R.; Liang, C.; Prochnow, B. N.

    2015-12-01

    Beginning with the opening of a summit vent in 2008, Kilauea's (Hawaíi) summit eruption has exhibited frequent rockfalls from the crater walls into the active lava lake. These events perturb the lake surface, causing vigorous outgassing and sometimes explosions. A network of broadband seismometers records these events as a combination of high-frequency, long-period, and very long period (VLP) oscillations. The VLP portion of the signal has varied in period from 20-40 s since the summit vent opened and has a duration of 10-15 min. These seismic signals reflect the coupling of fluid motion in the conduit to elastic wall rocks. Oscillatory flow can be quantified in terms of the eigenmodes of a magma-filled conduit. Wave motion is affected by conduit geometry, multiphase fluid compressibility, viscosity, and pressure dependent H2O and CO2 solubility. Background stratification and a large impedance contrast at the depth where volatiles first exsolve gives rise to spatially localized families of conduit eigenmodes. The longest period modes are sensitive to properties of bubbly magma and to the length of the conduit above exsolution (which is set by total volatile content). To study the VLP events, we linearize the conduit flow equations assuming small perturbations to an initially magmastatic column, accounting for non-equilibrium multiphase fluid properties, stratification and buoyancy, and conduit width changes. We solve for conduit eigenmodes and associated eigenfrequencies, as well as for the time-domain conduit response to forces applied to the surface of the lava lake. We use broadband records of rockfalls from 2011-2015 that exhibit consistent periods along with lake level measurements to estimate conduit parameters. Preliminary results suggest that VLP periods can be matched with volatile contents similar to those inferred from melt inclusions from Halemaumau explosions. We are currently conducting a more thorough exploration of the parameter space to investigate this further.

  11. Rockfall trajectory modelling by the integration of Digital Terrestrial Photogrammetry, Laser Scanning and GIS

    NASA Astrophysics Data System (ADS)

    Francioni, Mirko; Salvini, Riccardo; Riccucci, Silvia; Guastaldi, Enrico; Ortolano, Fabrizio; Bonciani, Filippo; Callegari, Ivan; Fantozzi, Pierlorenzo

    2010-05-01

    The present paper describes the runout analysis of rocky unstable blocks on the slope, 500 m wide and 600 m high, overhanging the railroad line Domodossola - Iselle, Italy. In addition to the traditional geological, geomorphological and engineering-geological surveys, DTP (Digital Terrestrial Photogrammetry) by means of an helicopter was used to perform a detailed analysis of rocky blocks sited in inaccessible areas. In order to accomplish the analysis, DTP was combined with LS (Laser Scanning) to build the DDSM (Digital Dense Surface Model) of the slope. Aim of the work is the assessment of the rockfalls potentially dangerous for the railroad line, the assessment of the efficiency of existing protection measures and the prompt of mitigation strategies and monitoring. In order to collect the exact position and size of blocks and wedges, a digital interpretation of stereopairs coming from DTP has been carried out. The photointerpretation has been used to realize the land cover map (ex. outcropping rock, soil covered by vegetation) and to recognize the mitigation and protection measures already installed. Starting from blocks position the DDSM has allowed to determine the probable trajectories of rockfall along the slope. These have been calculated by means of a GIS procedure by the use of the ArcHydro module of EsriTM ArcMap assuming a correspondence between probable trajectories and flowdirection. The morphologic profile of rock falling paths has been obtained by the interpolation of 3D points coming from a properly procedure developed inside EsriTM Arcinfo Workstation environment integrated with the Easy Profiler tool of EsriTM ArcMap. The physical-mechanical characteristics of blocks, the morphologic profile, the land cover and the location of the protection barriers (classified according to the height - from 2 to 4 m - and to the preservation status), have been used as input data in RocFall2D (RoscienceTM) software to calculate the runout analysis. Local slope land cover has been managed by a statistical approach utilizing the coefficient of normal and tangential restitution; in this way probabilistic results about rockfall end point and kinetic energy along the falling path and on the barriers have been obtained. Considering the railroad line proximity, the analysis has shown the high probability to reach the train track for some unstable block. Some other ends their fall mainly in correspondence of vegetated and less steep areas; the remaining blocks are stopped by the existing protection measures. Results from this work have allowed the hazard zoning in respect to the railway; moreover, comparing them with results coming from the rock slope stability analysis, it has been possible to suggest the proper protection methods in different areas.

  12. A quality assessment of 3D video analysis for full scale rockfall experiments

    NASA Astrophysics Data System (ADS)

    Volkwein, A.; Glover, J.; Bourrier, F.; Gerber, W.

    2012-04-01

    Main goal of full scale rockfall experiments is to retrieve a 3D trajectory of a boulder along the slope. Such trajectories then can be used to calibrate rockfall simulation models. This contribution presents the application of video analysis techniques capturing rock fall velocity of some free fall full scale rockfall experiments along a rock face with an inclination of about 50 degrees. Different scaling methodologies have been evaluated. They mainly differ in the way the scaling factors between the movie frames and the reality and are determined. For this purpose some scale bars and targets with known dimensions have been distributed in advance along the slope. The single scaling approaches are briefly described as follows: (i) Image raster is scaled to the distant fixed scale bar then recalibrated to the plane of the passing rock boulder by taking the measured position of the nearest impact as the distance to the camera. The distance between the camera, scale bar, and passing boulder are surveyed. (ii) The image raster was scaled using the four nearest targets (identified using frontal video) from the trajectory to be analyzed. The average of the scaling factors was finally taken as scaling factor. (iii) The image raster was scaled using the four nearest targets from the trajectory to be analyzed. The scaling factor for one trajectory was calculated by balancing the mean scaling factors associated with the two nearest and the two farthest targets in relation to their mean distance to the analyzed trajectory. (iv) Same as previous method but with varying scaling factors during along the trajectory. It has shown that a direct measure of the scaling target and nearest impact zone is the most accurate. If constant plane is assumed it doesn't account for the lateral deviations of the rock boulder from the fall line consequently adding error into the analysis. Thus a combination of scaling methods (i) and (iv) are considered to give the best results. For best results regarding the lateral rough positioning along the slope, the frontal video must also be scaled. The error in scaling the video images can be evaluated by comparing the data by additional combination of the vertical trajectory component over time with the theoretical polynomial trend according to gravity. The different tracking techniques used to plot the position of the boulder's center of gravity all generated positional data with minimal error acceptable for trajectory analysis. However, when calculating instantaneous velocities an amplification of this error becomes un acceptable. A regression analysis of the data is helpful to optimize trajectory and velocity, respectively.

  13. A rockfall hazard assessment for a residential area by using 2D and 3D simulation models: A case study from North Turkey

    NASA Astrophysics Data System (ADS)

    Akgün, Aykut; Yakut, Mehmet

    2017-04-01

    Rockfalls are one of the most common and important mass movement type encountered throughout both the World and Turkey. In Turkey, especially in Black Sea Region, rock fall cases frequently occur due to the steep topography, lithological characteristics, improper land use and structural elements such as discontinuity density. As a consequence of rock fall cases, serious injury and loss of lives can be observed in the area. In this study, a residential area located in Trabzon city (Northeast part of Black Sea Region, Turkey) was handled in point of rock fall hazard assessment. In the area, several rock fall cases occurred, and one of them occurred in year of 2009, resulted two people died. The last one also occurred in year of 2016, and the source of both cases are the same location. In the area, several houses and working places are available, and up to now any effective protection measurements have been installed. The area is also located near a highway connecting Trabzon city to the southeast region of Turkey, and daily vehicle number is highly considerable. Due to all these sensitive issues, the area was selected to be study location. In order to make a rock fall hazard assessment in the area to determine and propose an effective mitigation system, a 2D and 3D simulation models were applied. Initially a digital elevation model (DEM) of the area was obtained by a 1:1000 scale digital topographical sheets. By using the obtained digital terrain data, detailed cross sections of the slope profiles were created. Then, a detailed field and photo survey was carried out to detect the dangerous and hanging rock blocks that may be source for a possible rock fall cases. The physico-mechanical properties of the intact rock material were determined so that they can be used to be input parameters for the rock fall simulation models. To create simulation models, Rocfall 6.0®, Rockfall Analyst for ArcGIS and CONEFALL softwares were used. Using the Rockfall Analyst extension for ArcGIS and CONEFALL software, propagation and runout distances of possible rock fall cases were evaluated. By Rocfall 6.0® software, possible rock fall paths and proper mitigation measurements such as protection barriers or ditches were also assessed. At the end of the assessment processes, a detailed rock fall hazard map was produced for the area. With the help of this map, an important extent of area was determined to be under rock fall threat. This obtained map is also expected to be considered by the local governmental authorities to make persistent hazard mitigation measurements in the area. Keywords: Rock fall, simulation, hazard, Turkey

  14. Rockfall catchment area design guide : final report : metric edition.

    DOT National Transportation Integrated Search

    2001-12-01

    The data gathered from an exhaustive research project consisting of rolling a total of approximately 11,250 rocks off vertical; 4V:1H;2V;1H;1.33V:1H;1.0V:1.0H slopes of three different heights (12.2, 18.3, and 24.4 meters) into three differently incl...

  15. Rockfall Milepoint 49 Monitoring Plan for Check Dams on Mt. Hood Highway (US 26) (M.P. 49.10 to M.P. 49.23)

    DOT National Transportation Integrated Search

    2003-07-31

    This Stormwater BMP Monitoring Plan details the approach to be used for monitoring : roadside ditch sediment traps located on Highway 26 in the Mt. Hood National Forest. : These sediment traps were designed and installed by ODOT for the capture of se...

  16. 14 CFR 23.337 - Limit maneuvering load factors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit maneuvering load factors. 23.337... Flight Loads § 23.337 Limit maneuvering load factors. (a) The positive limit maneuvering load factor n... airplanes; or (3) 6.0 for acrobatic category airplanes. (b) The negative limit maneuvering load factor may...

  17. Evaluation of Commercially Available Open Circuit Scuba Regulators

    DTIC Science & Technology

    1987-08-01

    ANNEX B LIST OF MANUFACTURERS 1. AGA/IISIERSPIRO U.S. Distributor Intersiro AB AGA/INTERSPIRO S-181 81 Lidingo Sweden Pistol Shop Road Rockfall ...RWV--*-- 40.0 RWV DACOR PACER XLE360 --G- 2.5 OW 600 80 1000 psig Supply Pressure -=70 -- 500 6050 7040 . GI "C - 300 , 𔄃° 4O- 30 200 0100 1030 0 0 0

  18. The nature of rockfall as the basis for a new fallout area design criteria for 0.25:1 slopes.

    DOT National Transportation Integrated Search

    1994-09-01

    The data gathered from rolling nearly 2800 rocks off several 0.25H:1V slopes into three differently shaped ditches (flat, 6H:1V and 4H:1V) was used to develop 12 design charts for rock fallout areas. The data were analyzed using simple statistical an...

  19. Anomalous concentrations of seismically triggered rock falls in Pacoima Canyon: Are they caused by highly susceptible slopes or local amplification of seismic shaking?

    USGS Publications Warehouse

    Harp, Edwin L.; Jibson, Randall W.

    2002-01-01

    Anomalously high concentrations of rock falls were triggered in Pacoima Canyon (Los Angeles, California) during the 1994 Northridge earthquake. Similar concentrations were also documented from the 1971 San Fernando earthquake. Using an engineering rock-mass classification that evaluates the susceptibility of rock slopes to seismic failure based on the fracture properties of a rock mass (in terms of a numerical "Q-value" that describes rock quality), the rock slopes in Pacoima Canyon were compared with rock slopes in sorrounding areas where topography and lithology are similar, but rock-fall concentrations from the earthquakes were much lower. A statistical comparison of Q-values from five sites surrounding Pacoima Canyon indicates that seismic susceptibilities are similar to those within Pacoima Canyon; differences in the characteristics of rock slopes between these sites are not sufficient to account for the relatively high concentrations of rock falls within Pacoima Canyon as compared to low concentrations elsewhere. By eliminating susceptibility differences as a cause, the most likely explanations for the differences in rock-fall concentrations is anomalously high shaking levels in Pacoima Canyon, possibly resulting from topographic amplification within the canyon.

  20. 14 CFR 27.337 - Limit maneuvering load factor.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit maneuvering load factor. 27.337... Limit maneuvering load factor. The rotorcraft must be designed for— (a) A limit maneuvering load factor... load factor not less than 2.0 and any negative limit maneuvering load factor of not less than −0.5 for...

  1. 14 CFR 29.337 - Limit maneuvering load factor.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit maneuvering load factor. 29.337... Limit maneuvering load factor. The rotorcraft must be designed for— (a) A limit maneuvering load factor... load factor not less than 2.0 and any negative limit maneuvering load factor of not less than −0.5 for...

  2. Characterization of past landslides and slope susceptibility analysis for Lima and Callao provinces, Peru

    NASA Astrophysics Data System (ADS)

    Tatard, Lucile; Villacorta, Sandra; Metzger, Pascale

    2013-04-01

    85% of people exposed to earthquakes, hurricanes, floods and drought live in developing countries (IPU, 2010). This population is also exposed to the landslide risk as this phenomenon is mainly triggered by earthquakes and rainfall. There is an urgent need to propose methods to evaluate and mitigate the landslide risk for developing countries, where few studies were undergone and data, and information on data, are scarce. In this study, we characterize a landslide inventory set up for the megalopolis of Lima, Peru, by the local geological bureau (INGEMMET). This inventory was set up using satellite images and includes landslides of all ages. It is composed of two landslide types: rockfalls and debris flows (huaycos) that we investigate together and separately. First, we describe qualitatively the landslide occurrences in terms of geology, slope steepness, altitude, etc. We notably find that debris flows occur at altitudes larger than the ones of the rockfalls, probably due to the climatic conditions. Then we find that the rockfalls and debris flows area distributions follow a power law when investigated separately whereas it does not follow a power law when investigated together. This highlights a logical difference of mechanics between the two landslide types. Then, using the dimension of correlation D (Grassberger and Procaccia, 1983) we show that the event spatial occurrences are not uniformly distributed but clustered. It supports the existence of controlling parameters on the spatial occurrence of landslides and the research to identify them. Last, we investigate the relationships between different landslide parameters (geology, altitude, slope steepness, ...) using the linear correlation coefficient r, and we find that all these parameters are independent to each other. This allows us to investigate each parameter separately in terms of landslide susceptibility and to define values for which the landslide susceptibility is low, medium or high for each parameter. The characterization of the landslide database is a necessary step to assess the good quality of the data. It then allows us to pursue our investigation and set up a robust landslide susceptibility analysis using our good-quality inventory.

  3. Methods for combining payload parameter variations with input environment. [calculating design limit loads compatible with probabilistic structural design criteria

    NASA Technical Reports Server (NTRS)

    Merchant, D. H.

    1976-01-01

    Methods are presented for calculating design limit loads compatible with probabilistic structural design criteria. The approach is based on the concept that the desired limit load, defined as the largest load occurring in a mission, is a random variable having a specific probability distribution which may be determined from extreme-value theory. The design limit load, defined as a particular of this random limit load, is the value conventionally used in structural design. Methods are presented for determining the limit load probability distributions from both time-domain and frequency-domain dynamic load simulations. Numerical demonstrations of the method are also presented.

  4. Limit load solution for electron beam welded joints with single edge weld center crack in tension

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Shi, Yaowu; Li, Xiaoyan; Lei, Yongping

    2012-05-01

    Limit loads are widely studied and several limit load solutions are proposed to some typical geometry of weldments. However, there are no limit load solutions exist for the single edge crack weldments in tension (SEC(T)), which is also a typical geometry in fracture analysis. The mis-matching limit load for thick plate with SEC(T) are investigated and the special limit load solutions are proposed based on the available mis-matching limit load solutions and systematic finite element analyses. The real weld configurations are simplified as a strip, and different weld strength mis-matching ratio M, crack depth/width ratio a/ W and weld width 2H are in consideration. As a result, it is found that there exists excellent agreement between the limit load solutions and the FE results for almost all the mis-matching ration M, a/ W and ligament-to-weld width ratio ( W-a)/ H. Moreover, useful recommendations are given for evaluating the limit loads of the EBW structure with SEC(T). For the EBW joints with SEC(T), the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal, when M changing from 1.6 to 0.6. When M decreasing to 0.4, the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal only for large value of ( W-a)/ H. The recommendations may be useful for evaluating the limit loads of the EBW structures with SEC(T). The engineering simplifications are given for assessing the limit loads of electron beam welded structure with SEC(T).

  5. Methods for Combining Payload Parameter Variations with Input Environment

    NASA Technical Reports Server (NTRS)

    Merchant, D. H.; Straayer, J. W.

    1975-01-01

    Methods are presented for calculating design limit loads compatible with probabilistic structural design criteria. The approach is based on the concept that the desired limit load, defined as the largest load occuring in a mission, is a random variable having a specific probability distribution which may be determined from extreme-value theory. The design limit load, defined as a particular value of this random limit load, is the value conventionally used in structural design. Methods are presented for determining the limit load probability distributions from both time-domain and frequency-domain dynamic load simulations. Numerical demonstrations of the methods are also presented.

  6. Completion of Embankment, Spillway and Outlet Works

    DTIC Science & Technology

    1990-08-01

    Protection Against Slides and Rockfalls 42 5 PILE DRIVING AND SPECIAL FOUNDATIONS 42 6 TUNNELS, SHAFTS, AND UNDERGROUND STRUCTURES 42 7 FOUNDATION ANCHOR TEST...TW r tyVs.. l ti rs 80 .S0.90 R 4oeS . 14.0-..19.01 Noe 2ale 3" 0 34. lattafro14 600.0j 33.0’ S. 38.0-.39.01 631.0 for gi . x 0% WI APnbdcE

  7. Interpretation and misinterpretation of warning signage: perceptions of rockfalls in a naturalistic setting.

    PubMed

    Aucote, Helen M; Miner, Anthony; Dahlhaus, Peter

    2012-01-01

    The aim of the present study was to investigate the factors relating to non-adherence to warning signs about falling rocks from coastal cliff faces. Face-to-face interviews (n = 62) in a naturalistic setting (in the vicinity of a high-risk rockfall area) were conducted to investigate attention to and comprehension of warning signs, as well as beliefs relating to non-adherence of the signage. It was found that, while most participants could correctly identify the danger in the area and had noticed the warning signage, less than half of the participants could correctly interpret the signage. The perception of danger did not differ significantly between the participants who had, or had not, entered the high-risk zone. Differences in knowledge and beliefs between local residents and visitors to the area were identified. It was concluded that the warning signs did not provide enough detail for people to make informed decisions about safe behaviours. Comprehension of the signage may have been hampered by a lack of prior-knowledge of the particular risk, a failure to think carefully about the situation (i.e. low-effort processing), and the pictorial representation on the signs misleading the participants as to the true danger.

  8. 36 CFR § 1004.11 - Load, weight and size limits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... designate more restrictive limits when appropriate for traffic safety or protection of the road surface. The... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Load, weight and size limits... TRAFFIC SAFETY § 1004.11 Load, weight and size limits. (a) Vehicle load, weight and size limits...

  9. 36 CFR 1004.11 - Load, weight and size limits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... limits when appropriate for traffic safety or protection of the road surface. The Board may require a... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Load, weight and size limits... § 1004.11 Load, weight and size limits. (a) Vehicle load, weight and size limits established by State law...

  10. 36 CFR 1004.11 - Load, weight and size limits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... limits when appropriate for traffic safety or protection of the road surface. The Board may require a... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Load, weight and size limits... § 1004.11 Load, weight and size limits. (a) Vehicle load, weight and size limits established by State law...

  11. 36 CFR 1004.11 - Load, weight and size limits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... limits when appropriate for traffic safety or protection of the road surface. The Board may require a... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Load, weight and size limits... § 1004.11 Load, weight and size limits. (a) Vehicle load, weight and size limits established by State law...

  12. 14 CFR 25.337 - Limit maneuvering load factors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit maneuvering load factors. 25.337... Conditions § 25.337 Limit maneuvering load factors. (a) Except where limited by maximum (static) lift... maneuvering load factors prescribed in this section. Pitching velocities appropriate to the corresponding pull...

  13. 78 FR 28896 - Design Limits and Loading Combinations for Metal Primary Reactor Containment System Components

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0095] Design Limits and Loading Combinations for Metal... Regulatory Guide (RG) 1.57, ``Design Limits and Loading Combinations for Metal Primary Reactor Containment... the NRC staff considers acceptable for design limits and loading combinations for metal primary...

  14. 14 CFR 25.1531 - Maneuvering flight load factors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Maneuvering flight load factors. 25.1531... Operating Limitations § 25.1531 Maneuvering flight load factors. Load factor limitations, not exceeding the positive limit load factors determined from the maneuvering diagram in § 25.333(b), must be established. ...

  15. Initiation and Frequency of Debris Flows in Grand Canyon, Arizona

    DTIC Science & Technology

    1996-01-01

    illustrations. Ed Holroyd, U.S. Bureau of Reclamation in Denver, Colorado, gave extensive technical help and advice with the GIS software. Steve Sutley, of the...value. Drainage-basin boundaries were drawn by hand on topographic maps, digitized, and entered into a GIS , which calculated drainage areas and centroids...overlying cliffs of more indurated sandstones and limestones. These processes result in rockfalls and rock avalanches that occur in all seasons, and under a

  16. Natural hazard risk assessment and management in the Matter valley, Swiss Alps

    NASA Astrophysics Data System (ADS)

    Herz, T.; King, L.; Philippi, S.

    2003-04-01

    The Matter valley has a length of about 40 km and is surrounded by some of the highest peaks of the Alps resulting in extreme altitudinal differences and a continental character of the climate. These climatic conditions cause a high glacier equilibrium line and therefore a periglacial belt of a large vertical extend. Due to the high relief energy, all kinds of natural hazards typical for high mountain environments occur. The steep western slopes are dominated by rockfalls, slope instabilities in bedrock and avalanches. A widespread cover of unconsolidated sediments on the eastern slopes induces landslides and debris flows, which often reach down to the valley bottom where they can dam up the river. Increasing population and modern land use forms required a more and more sensitive attitude towards natural hazard potentials in this endangered area. Assessment and management of natural hazard risks have been much improved during the last fifteen years and increasing amounts of money are spent each year in order to safeguard settlements, traffic lines, and other objects of the technical infrastructure. Numerous investigations concerning natural hazard risks have been made and the results are considered in the actual land use planning of the Canton. The planning law of the Canton Valais defines risk zones as areas, which are endangered by natural hazards like avalanches, rockfalls, landslides and floodings. Risk assessment is done by overview maps (scale 1:25,000) which are specified by detailed risk analyses consisting of registers and detailed maps (scale 1:2,000 to 1:10,000). These analyses are integrated in the land zoning by defining zones of high, medium and low danger, associated with corresponding prohibitions, restrictions and conditions for utilisation. At present, the incorporation of the avalanche and rockfall register in local zoning plans is completed in most communities of the Canton Valais. An additional inventory of 200 slope instabilities was elaborated and must be considered in present and future local zonation updates. However, zones threatened by floods are only indicated on maps of overview and no planning standards for the management of debris flow hazards exist so far. The Canton is currently carrying out numerous projects of active disaster prevention comprising measurements and constructional precautions against avalanches and slope instabilities as well as monitoring systems and early warning stations.

  17. Changes in Mass Flux of Tephra from the Lava Lake in Overlook Crater, Kīlauea Volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Swanson, D. A.; Orr, T. R.; Patrick, M. R.

    2016-12-01

    The mass flux of tephra (mostly Pele's hair and tears, hollow spherules, and lithic clasts) from the lava lake in Overlook crater varies on short (seconds-minutes), intermediate (hours-days), and long (months) time scales. The tephra is collected almost daily from a network of 10 buckets within 400 m of, and 100-150 m above, the lava lake; bucket locations have not changed during the eruption. A mass accumulation rate (AR) is calculated for the network; since April 2008, the AR averages 0.17 g/m2/h ( 5×10-8 kg/m2/s). The tephra forms during almost constant spattering at the SE sink (the main downwelling site) and ephemeral sites along the crater wall, as well as from sporadic, rockfall-induced violent outgassing that can eject decimeter-size spatter clots onto the crater rim; the average AR excludes these violent events. The rockfalls, and nearly constant raveling from the crater wall, introduce lithic clasts into the tephra. The lithic content of the tephra has decreased with time, reflecting both greater wall stability and higher lake level, and was usually <10 mass percent in 2014-2015 and <5 percent in 2016. At short time scales, juvenile AR increases during episodic gas-piston events, rockfalls, and strong winds (>7 m/s). At intermediate and long time scales, juvenile AR shows no correlation with measured SO2 output and only weak or no correlation with wind speed, but it often tracks the elevation of the lake surface—higher when lava is nearer the buckets. For example, both lava level and juvenile AR were unusually high in January-July 2016. Before 2016, however, 7-9 periods of heightened juvenile production (see figure below), each lasting several months, show no correlation with other monitored parameters—lake level, SO2, wind speed and direction, or downwelling location. Often AR gradually increased to a peak before falling off, sometimes to nearly zero. We speculate that such long-term variations result from changes in magma supply rate, gas concentration, or rise frequency of decoupled gas slugs. These changes may be too small or slow to detect by current geodetic and gas monitoring. They suggest a slowly pulsing rate of gas delivery or magma supply on a several-month time scale at Kīlauea.

  18. National Dam Inspection Program. Locklin Pond Dam (NDI ID Number PA-00139, DER ID Number 64-31), Delaware River Basin, Lakeville Creek, Wayne County, Pennsylvania. Phase I Inspection Report.

    DTIC Science & Technology

    1980-07-01

    3 - C-L lz - gI Ado 00 V.,nw e. 232 "is. BRUSH, DEBRIS, AND SOIL COVERING CREST, CREST IS SHORTER THAN ~DELN AUXILIARY SPILLWAY -~Z Z KNOLL LOCKLIN...some rockfall from vertical and high-angle cut slopes. Bedrock is entirely overlain by glacial till of Late Wisconsin Age. This till is an unsorted

  19. Glaciohydrologic and Glaciohydraulic Effects on Runoff and Sediment Yield in Glacierized Basins

    DTIC Science & Technology

    1993-11-01

    3 (17) wateron ice layers(Colbeck 1979). These complex- ities can be somewhat simplified by considering where (x = a constant = p, gi ...debris is reworked and modified ited on the ice by mass movements- rockfalls , by weathering, especially freeze-thaw, and by avalanches, slushflows (e.g...hydrological and glaciological studies have been supported by Grande Dixence over the last 40 where gi is the viscosity of water. As stated in an years at

  20. The Prehistory and Paleoenvironment of Hominy Creek Valley. 1979 Field Season,

    DTIC Science & Technology

    1982-01-01

    study of Hiominy Creek Valley (Henry, 1977a:1-5). The program focuses on the definition of adaptive strate- gies throughout the prehistoric occupation...area of the shelter is estimated 75m 2 with approximately one-fifth of this area covered by rockfall . The cellng is generally level with a height...greater rates of deposition than fewer numbers Gi occupants. These open floodplain sites may LW -98- well have represented alternative encampments to the

  1. Summary of geologic effects of the Boxcar event, Nevada Test Site

    USGS Publications Warehouse

    Dickey, Dayton Delbert; McKeown, F.A.; Ellis, William L.

    1969-01-01

    A high-yield underground nuclear explosion at the U20i site, formed a sink 1,000 feet in diameter above the explosion point. Fractures opened as far as 20,000 feet from the explosion and rock-falls occurred as far as 15 miles. Most fractures were coincidental with north-trending naturally occurring faults. Maximum displacement along a fault was 3 feet vertically with the downthrown side the same as that on the original fault.

  2. 14 CFR 23.681 - Limit load static tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.681 Limit load static tests. (a) Compliance with the limit load requirements of this... loading in the control system; and (2) Each fitting, pulley, and bracket used in attaching the system to...

  3. 14 CFR 23.681 - Limit load static tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.681 Limit load static tests. (a) Compliance with the limit load requirements of this... loading in the control system; and (2) Each fitting, pulley, and bracket used in attaching the system to...

  4. 14 CFR 23.681 - Limit load static tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.681 Limit load static tests. (a) Compliance with the limit load requirements of this... loading in the control system; and (2) Each fitting, pulley, and bracket used in attaching the system to...

  5. 14 CFR 23.681 - Limit load static tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.681 Limit load static tests. (a) Compliance with the limit load requirements of this... loading in the control system; and (2) Each fitting, pulley, and bracket used in attaching the system to...

  6. 14 CFR 23.681 - Limit load static tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.681 Limit load static tests. (a) Compliance with the limit load requirements of this... loading in the control system; and (2) Each fitting, pulley, and bracket used in attaching the system to...

  7. Characterization of the deformation and thermal behavior of granitic exfoliation sheets with LiDAR and infrared thermography (Yosemite Valley, USA)

    NASA Astrophysics Data System (ADS)

    Guerin, Antoine; Derron, Marc-Henri; Jaboyedoff, Michel; Collins, Brian D.; Stock, Greg M.

    2017-04-01

    Yosemite Valley is a long (11 km) and deep ( 1 km) glacier-carved valley, bounded by steep granitic cliffs cutting the western slope of the central Sierra Nevada mountain range (California, USA). These cliffs produce numerous rockfalls every year (925 events reported between 1857 and 2011) and this rockfall activity is often linked to the presence of sheeting joints (Stock et al., 2013), also called exfoliation joints, formed in response to stress changes associated with changes in the topography (Martel, 2011). Furthermore, the historical rockfall inventory indicates that many events occurred without recognized triggers (Austin et al., 2014), in summer time, and on sunny days in particular. This suggests that thermal stress changes are involved in triggering of rockfalls (Collins and Stock, 2016). To further characterize the relationship between thermal stresses and rock face deformation, we carried out three experiments in Yosemite Valley during October 2015: (i) monitoring of a sub-vertical granodiorite exfoliation sheet on the Rhombus Wall for 24 consecutive hours (from 8:00 p.m. to 8:00 p.m.) using terrestrial LiDAR, crackmeters and infrared thermal sensors; (ii) monitoring the El Capitan rockwall composed of tens of exfoliation sheets for 8 consecutive hours (from 5:30 p.m. to 1:30 a.m.) with terrestrial LiDAR and thermal imaging; (iii) collecting several sequences of thermal GigaPan panoramas during periods of rock cooling on both cliffs (Rhombus Wall and El Capitan). In parallel to these experiments, we also developed a method for calibrating and correcting the raw apparent temperature measured by our thermal imager (a FLIR T660 infrared camera) from thermoresistances, reflective and black papers and by using some information given by the LiDAR point clouds (range, dip and dip direction). LiDAR monitoring of experiments (i) and (ii) allowed us to detect millimetric deformations for the exfoliations sheets whose crack aperture is persistent, deep and greater than 9 cm, confirming the results of Collins and Stock (2016). Then, the LiDAR - infrared thermography coupling allowed us to establish a link between the contraction - expansion cycles observed and daily thermal variations: the cycles of contraction (crack closure) occur between 3:00 p.m. and 8:00 a.m. and are associated with cooling, whereas the opposite is true for the expansion cycles (crack opening). In addition, in the case of experiment (i), we observe a delay of about 40 minutes between the time when surface temperatures are minimum and the maximum closure of the crack (-5.33 +/- 0.01 mm), which occurs a little before 8:00 a.m. Concerning the thermal behavior of the exfoliation sheets, the experiments (i) and (ii) show that the exfoliation sheets are almost always colder than surrounding stable areas, except during the hottest hours of the day when the temperatures are similar. At the end of the night, the temperature deviation between an exfoliation sheet and a stable part can reach 5 to 6 Celsius degrees (values valid for October) and this thermal contrast makes it possible to remotely detect the presence of exfoliation sheets in a rockwall. This result was then confirmed by the experiment (iii) which shows that a whole series of exfoliation sheets could be detected at a distance of 1 km, by means of thermal comparisons. Coupled to the LiDAR, infrared thermography can thus be useful for drawing a 3D map of exfoliation sheets in a cliff of several hundred meters high.

  8. National Dam Inspection Program. Freethy Dam (NDI ID Number PA-00171, DER ID Number 64-160), Delaware River Basin, Carley Brook, Wayne County, Pennsylvania. Phase I Inspection Report,

    DTIC Science & Technology

    1981-03-01

    Rignt; End of Damn. P. sp LI Tway Stah. "’nt.. - -JZIL E. e efz Abutment. of’ Damn. 74". I I~ 1t 1 1 of Darnm Downstream Side. ~ 4L Gi Ex ir End~ of...susceptible to slope failure; however, the presence of well-developed bedding and Joint planes will result in some rockfall from vertical and high

  9. National Dam Safety Program. Garnerville Dam (Inventory Number N.Y. 744), Hudson River Basin, Rockland County, New York. Phase I Inspection Report,

    DTIC Science & Technology

    1980-08-01

    drain and the 8-inch pipeline are in good operating condition and appear to be well maintained. e. Reservoir Area There are neither slides, rockfalls ...Stability fOpcrc c- ,k- I p. Miscellaneous 1 1I I L Project ._Dheet___ _.. Subject ABy Gi ___ A _ A _Chk. by I 0 Q I 40 CiQI /" e6dn-r-f/aa /Ortf e / 7, 4 o

  10. 14 CFR 31.23 - Flight load factor.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight load factor. 31.23 Section 31.23... STANDARDS: MANNED FREE BALLOONS Strength Requirements § 31.23 Flight load factor. In determining limit load, the limit flight load factor must be at least 1.4. ...

  11. 14 CFR 31.23 - Flight load factor.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight load factor. 31.23 Section 31.23... STANDARDS: MANNED FREE BALLOONS Strength Requirements § 31.23 Flight load factor. In determining limit load, the limit flight load factor must be at least 1.4. ...

  12. 14 CFR 31.23 - Flight load factor.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight load factor. 31.23 Section 31.23... STANDARDS: MANNED FREE BALLOONS Strength Requirements § 31.23 Flight load factor. In determining limit load, the limit flight load factor must be at least 1.4. ...

  13. 36 CFR 4.11 - Load, weight and size limits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERIOR VEHICLES AND TRAFFIC SAFETY § 4.11 Load, weight and size limits. (a) Vehicle load, weight and size limits established by State law apply to a vehicle operated on a park road. However, the superintendent may designate more restrictive limits when appropriate for traffic safety or protection of the road...

  14. Verifying the new luminescence surface-exposure dating technique--rock falls in Canyonlands National Park, Utah

    NASA Astrophysics Data System (ADS)

    Pederson, J. L.; Sohbati, R.; Murray, A. S.; Jain, M.

    2015-12-01

    Recent studies have helped develop the optically stimulated luminescence (OSL) dating of rock surfaces, as applied to the age of the famous Great Gallery rock art panel in Canyonlands National Park. Chapot et al. (2012) dated a key rock fall to ~900 yrs ago by applying OSL to the outer 1-mm buried surface of a sandstone talus boulder, an age confirmed by independent radiocarbon dating. Later, in a novel approach and with the use of a local known-age calibration sample, Sohbati et al. (2012) modelled the millimeter-scale OSL-depth profile to determine a pre-burial exposure duration of ~700 years for the same rock fall. This combination of rock-fall dating and exposure dating--an approach with broad potential to date Holocene mass movements--constrains the creation of the Great Gallery rock art to a time window of 900 to ~1600 years ago (Pederson et al., 2014), a result met with some controversy. Here we report on a new phase of research to verify these results and further refine OSL-profile exposure dating for mass movements. New analyses from within and near the Great Gallery alcove include: i) exposure dating of the same alcove surface upon which the rock art is painted with a predicted exposure age of ~1600 years; ii) exposure dating of the top (light-exposed) side of the same rock-fall boulder whose buried side was previously dated to test for reproduction of the known age; and iii) an improved calibration sample from a nearby trail/road-cut for verification. The residual OSL signal is measured with depth in millimeter-thick increments of all samples. We first determine the site-specific luminescence reduction rate at the rock surface by fitting the OSL surface-exposure dating model to the calibration profile from the trail/road-cut. This parameterized model then provides exposure ages for the bleaching profiles observed in the other samples. Results have implications for the application of OSL rock-surface and exposure-profile dating in other settings where quartz-rich rock is available. We discuss how the light-exposed top and buried underside of clasts can be used in tandem for calibration. The technique has particular relevance to younger timescales over which cosmogenic nuclides are of limited application.

  15. Risk analysis for roadways subjected to multiple landslide-related hazards

    NASA Astrophysics Data System (ADS)

    Corominas, Jordi; Mavrouli, Olga

    2014-05-01

    Roadways through mountainous terrain often involve cuts and landslide areas whose stability is precarious and require protection and stabilization works. To optimize the allocation of resources, government and technical offices are increasingly interested in both the risk analysis and assessment. Risk analysis has to consider the hazard occurrence and the consequences. The consequences can be both direct and indirect. The former include the costs regarding the repair of the roadway, the damage of vehicles and the potential fatalities, while the latter refer to the costs related to the diversion of vehicles, the excess of distance travelled, the time differences, and tolls. The type of slope instabilities that may affect a roadway may vary and its effects as well. Most current approaches either consider a single hazardous phenomenon each time, or if applied at small (for example national) scale, they do not take into account local conditions at each section of the roadway. The objective of this work is the development of a simple and comprehensive methodology for the assessment of the risk due to multiple hazards along roadways, integrating different landslide types that include rockfalls, debris flows and considering as well the potential failure of retaining walls. To quantify risk, all hazards are expressed with a common term: their probability of occurrence. The methodology takes into consideration the specific local conditions along the roadway. For rockfalls and debris flow a variety of methods for assessing the probability of occurrence exists. To assess the annual probability of failure of retaining walls we use an indicator-based model that provides a hazard index. The model parameters consist in the design safety factor, and further anchorage design and construction parameters. The probability of failure is evaluated in function of the hazard index and next corrected (in terms of order of magnitude) according to in situ observations for increase of two dynamic factors: the service load and the wall deformation. The consequences are then calculated for each hazard type according to its characteristics (mechanism, magnitude, frequency). The difference of this method in comparison with other methodologies for landslide-related hazards lies in the hazard scenarios and consequence profiles that are investigated. The depth of analysis permits to account for local conditions either concerning the hazard or the consequences (the latter with respect to the very particular characteristics of the roadway such as traffic, number of lanes, velocity…). Furthermore it provides an extensive list of quantitative risk descriptors, including both individual and collective ones. The methodology was made automatic using the data sheets by Microsoft Excel. The results can be used to support decision-taking for the planning of protection measures. Gaps in knowledge and restrictions are discussed as well.

  16. Comprehensive Seismological Monitoring of Geomorphic Processes in Taiwan

    NASA Astrophysics Data System (ADS)

    Chao, W. A.; Chen, C. H.

    2016-12-01

    Geomorphic processes such as hillslope mass wasting and river sediment transport are important for studying landscape dynamics. Mass movements induced from geomorphic events can generate seismic waves and be recorded by seismometers. Recent studies demonstrate that seismic monitoring techniques not only fully map the spatiotemporal patterns of geomorphic activity but also allow for exploration of the dynamic links between hillslope failures and channel processes, which may not be resolved by conventional techniques (e.g., optical remote sensing). We have recently developed a real-time landquake monitoring system (RLMS, here we use the term `landquake' to represent all hillslope failures such as rockfall, rock avalanche and landslide), which has been continuously monitoring landquake activities in Taiwan since June 2015 based on broadband seismic records, yielding source information (e.g., location, occurrence time, magnitude and mechanism) for large-sized events (http://140.112.57.117/main.html). Several seismic arrays have also been deployed over the past few years around the catchments and along the river channels in Taiwan for monitoring erosion processes at catchment scale, improving the spatiotemporal resolution in exploring the interaction between geomorphic events and specific meteorological conditions. Based on a forward model accounting for the impulsive impacts of saltating particles, we can further invert for the sediment load flux, a critical parameter in landscape evolution studies, by fitting the seismic observations only. To test the validity of the seismologically determined sediment load flux, we conduct a series of controlled dam breaking experiments that are advantageous in well constraining the spatiotemporal variations of the sediment transport. Incorporating the seismological constrains on geomorphic processes with the effects of tectonic and/or climate perturbations can provide valuable and quantitative information for more fully understanding and modeling of the dynamics of erosional mountain landscapes. Comprehensive seismic monitoring also yields important information for the evaluation, assessment and emergency response of hazardous geomorphic events.

  17. 14 CFR 23.725 - Limit drop tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... assumed wing lift to the airplane weight, but not more than 0.667. (c) The limit inertia load factor must... test. (e) The limit inertia load factor must be determined from the drop test in paragraph (b) of this... paragraph (e) may not be more than the limit inertia load factor used in the landing conditions in § 23.473...

  18. 14 CFR 23.725 - Limit drop tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... assumed wing lift to the airplane weight, but not more than 0.667. (c) The limit inertia load factor must... test. (e) The limit inertia load factor must be determined from the drop test in paragraph (b) of this... paragraph (e) may not be more than the limit inertia load factor used in the landing conditions in § 23.473...

  19. 14 CFR 23.725 - Limit drop tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... assumed wing lift to the airplane weight, but not more than 0.667. (c) The limit inertia load factor must... test. (e) The limit inertia load factor must be determined from the drop test in paragraph (b) of this... paragraph (e) may not be more than the limit inertia load factor used in the landing conditions in § 23.473...

  20. 14 CFR 23.725 - Limit drop tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... assumed wing lift to the airplane weight, but not more than 0.667. (c) The limit inertia load factor must... test. (e) The limit inertia load factor must be determined from the drop test in paragraph (b) of this... paragraph (e) may not be more than the limit inertia load factor used in the landing conditions in § 23.473...

  1. Limits to Open Class Performance?

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H.

    2008-01-01

    This presentation discusses open or unlimited class aircraft performance limitations and design solutions. Limitations in this class of aircraft include slow climbing flight which requires low wing loading, high cruise speed which requires high wing loading, gains in induced or viscous drag alone which result in only half the gain overall and other structural problems (yaw inertia and spins, flutter and static loads integrity). Design solutions include introducing minimum induced drag for a given span (elliptical span load or winglets) and introducing minimum induced drag for a bell shaped span load. It is concluded that open class performance limits (under current rules and technologies) is very close to absolute limits, though some gains remain to be made from unexplored areas and new technologies.

  2. Low cost electronic ultracapacitor interface technique to provide load leveling of a battery for pulsed load or motor traction drive applications

    DOEpatents

    King, Robert Dean; DeDoncker, Rik Wivina Anna Adelson

    1998-01-01

    A battery load leveling arrangement for an electrically powered system in which battery loading is subject to intermittent high current loading utilizes a passive energy storage device and a diode connected in series with the storage device to conduct current from the storage device to the load when current demand forces a drop in battery voltage. A current limiting circuit is connected in parallel with the diode for recharging the passive energy storage device. The current limiting circuit functions to limit the average magnitude of recharge current supplied to the storage device. Various forms of current limiting circuits are disclosed, including a PTC resistor coupled in parallel with a fixed resistor. The current limit circuit may also include an SCR for switching regenerative braking current to the device when the system is connected to power an electric motor.

  3. Analysis of Low-Light and Night-Time Stereo-Pair Images for Photogrammetric Reconstruction

    NASA Astrophysics Data System (ADS)

    Santise, M.; Thoeni, K.; Roncella, R.; Diotri, F.; Giacomini, A.

    2018-05-01

    Rockfalls and rockslides represent a significant risk to human lives and infrastructures because of the high levels of energy involved in the phenomena. Generally, these events occur in accordance to specific environmental conditions, such as temperature variations between day and night, that can contribute to the triggering of structural instabilities in the rock-wall and the detachment of blocks and debris. The monitoring and the geostructural characterization of the wall are required for reducing the potential hazard and to improve the management of the risk at the bottom of the slopes affected by such phenomena. In this context, close range photogrammetry is largely used for the monitoring of high-mountain terrains and rock walls in mine sites allowing for periodic survey of rockfalls and wall movements. This work focuses on the analysis of low-light and night-time images of a fixed-base stereo pair photogrammetry system. The aim is to study the reliability of the images acquired over the night to produce digital surface models (DSMs) for change detection. The images are captured by a high-sensitivity DLSR camera using various settings accounting for different values of ISO, aperture and time of exposure. For each acquisition, the DSM is compared to a photogrammetric reference model produced by images captured in optimal illumination conditions. Results show that, with high level of ISO and maintaining the same grade of aperture, extending the exposure time improves the quality of the point clouds in terms of completeness and accuracy of the photogrammetric models.

  4. 14 CFR 27.681 - Limit load static tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.681 Limit load... which— (1) The direction of the test loads produces the most severe loading in the control system; and... requirements for control system joints subject to angular motion. ...

  5. 14 CFR 25.1531 - Maneuvering flight load factors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Maneuvering flight load factors. 25.1531 Section 25.1531 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 25.1531 Maneuvering flight load factors. Load factor limitations, not exceeding the...

  6. 14 CFR 25.1531 - Maneuvering flight load factors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Maneuvering flight load factors. 25.1531 Section 25.1531 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 25.1531 Maneuvering flight load factors. Load factor limitations, not exceeding the...

  7. 77 FR 45518 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... structure not supporting the limit load condition, which could lead to loss of structural integrity of the... wing structure not supporting the limit load condition, which could lead to loss of the structural... wing structure not supporting the limit load condition, which could lead to loss of structural...

  8. Capillary Limit in a Loop Heat Pipe with Dual Evaporators

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Birur, Gajanana; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This paper describes a study on the capillary limit of a loop heat pipe (LHP) with two evaporators and two condensers. Both theoretical analysis and experimental investigation are conducted. Tests include heat load to one evaporator only, even heat loads to both evaporators and uneven heat load to both evaporators. Results show that after the capillary limit is exceeded, vapor will penetrate through the wick of the weaker evaporator and the compensation chamber (CC) of that evaporator will control the loop operating temperature regardless of which CC has been in control prior to the event Because the evaporator can tolerate vapor bubbles, the loop may continue to work and reach a new steady state at a higher operating temperature. The loop may even function with a modest increase in the heat load past the capillary limit With a heat load to only one evaporator, the capillary limit can be identified by rapid increases in the operating temperature and in the temperature difference between the evaporator and the CC. However, it is more difficult to tell when the capillary limit is exceeded if heat loads are applied to both evaporators. In all cases, the loop can recover by reducing the heat load to the loop.

  9. 49 CFR 393.108 - How is the working load limit of a tiedown, or the load restraining value of a friction mat...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... that for polypropylene fiber rope. (d) Welded steel chain which is not marked or labeled to enable... load limit shall be considered to have a working load limit equal to one-fourth of the nominal strength... Grade 43 high test Grade 70 transport Grade 80 alloy Grade 100 alloy 1. 7 (1/4) 580 (1,300) 1,180 (2,600...

  10. 49 CFR 393.108 - How is the working load limit of a tiedown, or the load restraining value of a friction mat...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... that for polypropylene fiber rope. (d) Welded steel chain which is not marked or labeled to enable... load limit shall be considered to have a working load limit equal to one-fourth of the nominal strength... Grade 43 high test Grade 70 transport Grade 80 alloy Grade 100 alloy 1. 7 (1/4) 580 (1,300) 1,180 (2,600...

  11. 49 CFR 393.108 - How is the working load limit of a tiedown, or the load restraining value of a friction mat...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... that for polypropylene fiber rope. (d) Welded steel chain which is not marked or labeled to enable... load limit shall be considered to have a working load limit equal to one-fourth of the nominal strength... Grade 43 high test Grade 70 transport Grade 80 alloy Grade 100 alloy 1. 7 (1/4) 580 (1,300) 1,180 (2,600...

  12. Current limiting remote power control module

    NASA Technical Reports Server (NTRS)

    Hopkins, Douglas C.

    1990-01-01

    The power source for the Space Station Freedom will be fully utilized nearly all of the time. As such, any loads on the system will need to operate within expected limits. Should any load draw an inordinate amount of power, the bus voltage for the system may sag and disrupt the operation of other loads. To protect the bus and loads some type of power interface between the bus and each load must be provided. This interface is most crucial when load faults occur. A possible system configuration is presented. The proposed interface is the Current Limiting Remote Power Controller (CL-RPC). Such an interface should provide the following power functions: limit overloading and resulting undervoltage; prevent catastrophic failure and still provide for redundancy management within the load; minimize cable heating; and provide accurate current measurement. A functional block diagram of the power processing stage of a CL-RPC is included. There are four functions that drive the circuit design: rate control of current; current sensing; the variable conductance switch (VCS) technology; and the algorithm used for current limiting. Each function is discussed separately.

  13. 14 CFR 27.681 - Limit load static tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.681 Limit load... which— (1) The direction of the test loads produces the most severe loading in the control system; and (2) Each fitting, pulley, and bracket used in attaching the system to the main structure is included...

  14. 29 CFR 1917.111 - Maintenance and load limits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... maintained. (b) Maximum safe load limits, in pounds per square foot (kilograms per square meter), of floors elevated above ground level, and pier structures over the water shall be conspicuously posted in all cargo areas. (c) Maximum safe load limits shall not be exceeded. (d) All walking and working surfaces in the...

  15. 77 FR 45515 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... could result in the wing structure not supporting the limit load condition, which could lead to loss of... the limit load condition, which could lead to loss of the structural integrity of the wing. Relevant... could result in the wing structure not supporting the limit load condition, which could lead to loss of...

  16. Laboratory Reconstructions of Real World Frontal Crash Configurations using the Hybrid III and THOR Dummies and PMHS.

    PubMed

    Petitjean, Audrey; Lebarbe, Matthieu; Potier, Pascal; Trosseille, Xavier; Lassau, Jean-Pierre

    2002-11-01

    Load-limiting belt restraints have been present in French cars since 1995. An accident study showed the greater effectiveness in thorax injury prevention using a 4 kN load limiter belt with an airbag than using a 6 kN load limiter belt without airbag. The criteria for thoracic tolerance used in regulatory testing is the sternal deflection for all restraint types, belt and/or airbag restraint. This criterion does not assess the effectiveness of the restraint 4 kN load limiter belt with airbag observed in accidentology. To improve the understanding of thoracic tolerance, frontal sled crashes were performed using the Hybrid III and THOR dummies and PMHS. The sled configuration and the deceleration law correspond to those observed in the accident study. Restraint conditions evaluated are the 6 kN load-limiting belt and the 4 kN load-limiting belt with an airbag. Loads between the occupant and the sled environment were recorded. Various measurements (including thoracic deflections and head, thorax and pelvis accelerations and angular velocities on the dummies) characterize the dummy and PMHS behavior. PMHS anthropometry and injuries were noted. This study presents the test methodology and the results used to evaluate dummy ability to discriminate both restraint types and dummy measurement ability to be representative of thoracic injury risk for all restraint types. The injury results of the PMHS tests showed the same tendency as the accident study. Some of the criteria proposed in the literature did not show a better protection of the 4 kN load limiter belt with airbag restraint, in particular thoracic deflection maxima for both dummies. The four thoracic deflections measured on the THOR and Hybrid III dummies may allow more accurate analysis of the loading pattern and therefore of injury risk.

  17. 14 CFR 135.63 - Recordkeeping requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of gravity limits; (5) The center of gravity of the loaded aircraft, except that the actual center of gravity need not be computed if the aircraft is loaded according to a loading schedule or other approved method that ensures that the center of gravity of the loaded aircraft is within approved limits. In those...

  18. 14 CFR 135.63 - Recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of gravity limits; (5) The center of gravity of the loaded aircraft, except that the actual center of gravity need not be computed if the aircraft is loaded according to a loading schedule or other approved method that ensures that the center of gravity of the loaded aircraft is within approved limits. In those...

  19. 14 CFR 135.63 - Recordkeeping requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of gravity limits; (5) The center of gravity of the loaded aircraft, except that the actual center of gravity need not be computed if the aircraft is loaded according to a loading schedule or other approved method that ensures that the center of gravity of the loaded aircraft is within approved limits. In those...

  20. 14 CFR 135.63 - Recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of gravity limits; (5) The center of gravity of the loaded aircraft, except that the actual center of gravity need not be computed if the aircraft is loaded according to a loading schedule or other approved method that ensures that the center of gravity of the loaded aircraft is within approved limits. In those...

  1. 14 CFR 135.63 - Recordkeeping requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of gravity limits; (5) The center of gravity of the loaded aircraft, except that the actual center of gravity need not be computed if the aircraft is loaded according to a loading schedule or other approved method that ensures that the center of gravity of the loaded aircraft is within approved limits. In those...

  2. 78 FR 79074 - Technical Report Evaluating Seat Belt Pretensioners and Load Limiters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... effectiveness of pretensioners and load limiters for seat belts in the front seats of passenger cars and LTVs... cars and LTVs sold in the United States were equipped with pretensioners and load limiters at the... at those seats. In passenger cars, CUVs, and minivans, a belted driver or right-front passenger has...

  3. 14 CFR 27.473 - Ground loading conditions and assumptions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... through the center of gravity throughout the landing impact. This lift may not exceed two-thirds of the... rotorcraft must be designed for a limit load factor of not less than the limit inertia load factor...

  4. 14 CFR 27.473 - Ground loading conditions and assumptions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... through the center of gravity throughout the landing impact. This lift may not exceed two-thirds of the... rotorcraft must be designed for a limit load factor of not less than the limit inertia load factor...

  5. 14 CFR 27.473 - Ground loading conditions and assumptions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... through the center of gravity throughout the landing impact. This lift may not exceed two-thirds of the... rotorcraft must be designed for a limit load factor of not less than the limit inertia load factor...

  6. Fiber Bundle Model Under Heterogeneous Loading

    NASA Astrophysics Data System (ADS)

    Roy, Subhadeep; Goswami, Sanchari

    2018-03-01

    The present work deals with the behavior of fiber bundle model under heterogeneous loading condition. The model is explored both in the mean-field limit as well as with local stress concentration. In the mean field limit, the failure abruptness decreases with increasing order k of heterogeneous loading. In this limit, a brittle to quasi-brittle transition is observed at a particular strength of disorder which changes with k. On the other hand, the model is hardly affected by such heterogeneity in the limit where local stress concentration plays a crucial role. The continuous limit of the heterogeneous loading is also studied and discussed in this paper. Some of the important results related to fiber bundle model are reviewed and their responses to our new scheme of heterogeneous loading are studied in details. Our findings are universal with respect to the nature of the threshold distribution adopted to assign strength to an individual fiber.

  7. Age-related changes in selective attention and perceptual load during visual search.

    PubMed

    Madden, David J; Langley, Linda K

    2003-03-01

    Three visual search experiments were conducted to test the hypothesis that age differences in selective attention vary as a function of perceptual load (E. A. Maylor & N. Lavie, 1998). Under resource-limited conditions (Experiments 1 and 2), the distraction from irrelevant display items generally decreased as display size (perceptual load) increased. This perceptual load effect was similar for younger and older adults, contrary to the findings of Maylor and Lavie. Distraction at low perceptual loads appeared to reflect both general and specific inhibitory mechanisms. Under more data-limited conditions (Experiment 3), an age-related decline in selective attention was evident, but the age difference was not attributable to capacity limitations as predicted by the perceptual load theory.

  8. ALP-RISK, a smartphone app for collecting data on geomorphic phenomena at high altitude in the Mont Blanc region

    NASA Astrophysics Data System (ADS)

    Ravanel, Ludovic; Deline, Philip

    2014-05-01

    A network of observers (mountain guides, hut keepers and mountaineers) has been created from 2005 for the Mont Blanc massif in order to acquire data on rockfall in permafrost-affected rock walls. This network, fully operational since 2007, is based on observation sheets or oral communications and has documented nearly 350 events with volume between 100 and 45,000 m3. Their analysis confirmed and helped to better understand the role of the permafrost degradation as main triggering factor. To i) reinforce this network, ii) facilitate its observation work and iii) develop it as well in space (the whole Mont Blanc region, or eventually the whole western Alps) as in a thematic point of view (all glacial and periglacial brutal phenomena), the Alp-Risk app has been created in the framework of the Alcotra PrévRisk Mont-Blanc project. The latter (2011-13) has been developed to improve the prevention of individual and collective natural hazards around the Mont Blanc massif. The app was created for I-Phones and Androids in three languages (French, English and Italian) and allows, as intuitively and quickly as possible, transmitting data on natural hazards in high mountain (snow and ice avalanche, landslides and rockfalls, landslides, moraine destabilization, water pocket outburst flood, torrential flood, and others) to both practitioners (observations available directly on the app via an interface web), scientists, and possibly local managers. Alp-Risk thus constitutes a new step for participatory science in the Mont Blanc region.

  9. Externally triggered renewed bubble nucleation in basaltic magma: the 12 October 2008 eruption at Halema‘uma‘u Overlook vent, Kīlauea, Hawai‘i, USA

    USGS Publications Warehouse

    Carey, Rebecca J.; Manga, Michael; Degruyter, Wim; Swanson, Donald; Houghton, Bruce F.; Orr, Tim R.; Patrick, Matthew R.

    2012-01-01

    From October 2008 until present, dozens of small impulsive explosive eruptions occurred from the Overlook vent on the southeast side of Halema‘uma‘u Crater, at Kīlauea volcano, USA. These eruptions were triggered by rockfalls from the walls of the volcanic vent and conduit onto the top of the lava column. Here we use microtextural observations and data from clasts erupted during the well-characterized 12 October 2008 explosive eruption at Halema‘uma‘u to extend existing models of eruption triggering. We present a potential mechanism for this eruption by combining microtextural observations with existing geophysical and visual data sets. We measure the size and number density of bubbles preserved in juvenile ejecta using 2D images and X-ray microtomography. Our data suggest that accumulations of large bubbles with diameters of >50μm to at least millimeters existed at shallow levels within the conduit prior to the 12 October 2008 explosion. Furthermore, a high number density of small bubbles <50 μm is measured in the clasts, implying very rapid nucleation of bubbles. Visual observations, combined with preexisting geophysical data, suggest that the impact of rockfalls onto the magma free surface induces pressure changes over short timescales that (1) nucleated new additional bubbles in the shallow conduit leading to high number densities of small bubbles and (2) expanded the preexisting bubbles driving upward acceleration. The trigger of eruption and bubble nucleation is thus external to the degassing system.

  10. Numerical and analytical investigation towards performance enhancement of a newly developed rockfall protective cable-net structure

    NASA Astrophysics Data System (ADS)

    Dhakal, S.; Bhandary, N. P.; Yatabe, R.; Kinoshita, N.

    2012-04-01

    In a previous companion paper, we presented a three-tier modelling of a particular type of rockfall protective cable-net structure (barrier), developed newly in Japan. Therein, we developed a three-dimensional, Finite Element based, nonlinear numerical model having been calibrated/back-calculated and verified with the element- and structure-level physical tests. Moreover, using a very simple, lumped-mass, single-degree-of-freedom, equivalently linear analytical model, a global-displacement-predictive correlation was devised by modifying the basic equation - obtained by combining the principles of conservation of linear momentum and energy - based on the back-analysis of the tests on the numerical model. In this paper, we use the developed models to explore the performance enhancement potential of the structure in terms of (a) the control of global displacement - possibly the major performance criterion for the proposed structure owing to a narrow space available in the targeted site, and (b) the increase in energy dissipation by the existing U-bolt-type Friction-brake Devices - which are identified to have performed weakly when integrated into the structure. A set of parametric investigations have revealed correlations to achieve the first objective in terms of the structure's mass, particularly by manipulating the wire-net's characteristics, and has additionally disclosed the effects of the impacting-block's parameters. Towards achieving the second objective, another set of parametric investigations have led to a proposal of a few innovative improvements in the constitutive behaviour (model) of the studied brake device (dissipator), in addition to an important recommendation of careful handling of the device based on the identified potential flaw.

  11. Genesis and geomorphic evolution of the Velké pinky stopes in the Zlatohorská Highlands, Eastern Sudetes

    NASA Astrophysics Data System (ADS)

    Lenart, Jan; Tichavský, Radek; Večeřa, Josef; Kapustová, Veronika; Šilhán, Karel

    2017-11-01

    Montanogenic landforms are commonly viewed as hazards by society, but they are also holders of specific and uncommon morphology with unique dynamics that act as remarks on landscape history. The Velké pinky stopes in the Zlatohorská Highlands, Eastern Sudetes, are naturally revitalized post-mining landforms with long-term geoecological succession. Their genetic origin is diverse but recent processes, such as deep-seated slope deformations, rockfalls and ground subsidence, have resulted in a distinct morphology dominated by rock walls and the accumulation of blocks and debris wedges. This morphology predisposes the stopes to become the core area of the most recent dynamic geomorphic activity within the wider, relatively homogenous area. By dendrogeomorphic techniques, we identified more than 20 rockfall events within three of the stopes with increased activity since the 1980s. Only the 1991 and 2006 events were identical for all three stopes. We obtained the years of exposures from 10 roots, revealing the ground subsidence and opening of tension cracks or even the lateral retreat of the flanks of minor depressions. The Schmidt hammer test revealed the most recent and fresh gravitational activity in one of the stopes. A relationship between the superficial morphology and underground structure was proven by electrical resistivity profiling. Compared to the previous studies engaged with the abandoned mines, we presented how complex their evolution can be. Our study brings new information about the historical development of anthropogenic relief forms. Moreover, our results suggest that standard research approaches can be successfully applied for development analysis of these specific forms.

  12. Geologic and seismic investigation for southeast expressway, stations 600-603 in Quincy, Mass.

    USGS Publications Warehouse

    May, James E.

    1954-01-01

    At this site the southbound lane of the proposed highway will be located approximately 75 feet to the left (south) of the base line. This will place it close to the base of a mound of granite quarry waste with very steep slopes. As a cut of considerable depth will be required for the road, the mound of waste with its unstable slope constitutes a very hazardous condition, especially with respect to the possibility of rock-falls and slides. Seismic work was performed at the site with the two aims in view; firstly, to obtain information on depths to bedrock that would aid in estimating the quantities of materials to be removed from the proposed cut, secondly, to obtain data that might aid in estimating the quantity of material in the mound of quarry waste with the object of obtaining estimates for its removal. Transverses A-13 and C-D were made for this latter purpose. Additional transverses would have been of value, but they were not made because of the possibility of starting rock-falls or slides, a situation that would have exposed personnel to unwarranted danger, and equipment to avoidable risk. Mr. M. E. Chandler and Me. W. L. Carney, Massachusetts Department of Public Works' Engineers, performed pertinent survey work required for this project, and prepared the essential plans and profiles. Mr. Chandler also operated the seismic equipment and assisted in the preparation of the seismic velocity data. The work was performed in June 1953 as part of a cooperative program of the Massachusetts Department of Public Works and the United States Geological Survey.

  13. 14 CFR 25.681 - Limit load static tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.681 Limit... in which— (1) The direction of the test loads produces the most severe loading in the control system... requirements for control system joints subject to angular motion. ...

  14. 14 CFR 25.681 - Limit load static tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.681 Limit... in which— (1) The direction of the test loads produces the most severe loading in the control system... requirements for control system joints subject to angular motion. ...

  15. 14 CFR 29.681 - Limit load static tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.681 Limit... in which— (1) The direction of the test loads produces the most severe loading in the control system... requirements for control system joints subject to angular motion. ...

  16. 14 CFR 25.681 - Limit load static tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.681 Limit... in which— (1) The direction of the test loads produces the most severe loading in the control system... requirements for control system joints subject to angular motion. ...

  17. 14 CFR 25.681 - Limit load static tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.681 Limit... in which— (1) The direction of the test loads produces the most severe loading in the control system... requirements for control system joints subject to angular motion. ...

  18. 14 CFR 23.301 - Loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... load would significantly change the distribution of external or internal loads, this redistribution...) and ultimate loads (limit loads multiplied by prescribed factors of safety). Unless otherwise provided...

  19. Moving Aerospace Structural Design Practice to a Load and Resistance Factor Approach

    NASA Technical Reports Server (NTRS)

    Larsen, Curtis E.; Raju, Ivatury S.

    2016-01-01

    Aerospace structures are traditionally designed using the factor of safety (FOS) approach. The limit load on the structure is determined and the structure is then designed for FOS times the limit load - the ultimate load. Probabilistic approaches utilize distributions for loads and strengths. Failures are predicted to occur in the region of intersection of the two distributions. The load and resistance factor design (LRFD) approach judiciously combines these two approaches by intensive calibration studies on loads and strength to result in structures that are efficient and reliable. This paper discusses these three approaches.

  20. 14 CFR 27.337 - Limit maneuvering load factor.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Limit maneuvering load factor. 27.337 Section 27.337 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.337...

  1. Mobile Laser Scanning along Dieppe coastal cliffs: reliability of the acquired point clouds applied to rockfall assessments

    NASA Astrophysics Data System (ADS)

    Michoud, Clément; Carrea, Dario; Augereau, Emmanuel; Cancouët, Romain; Costa, Stéphane; Davidson, Robert; Delacourt, Chirstophe; Derron, Marc-Henri; Jaboyedoff, Michel; Letortu, Pauline; Maquaire, Olivier

    2013-04-01

    Dieppe coastal cliffs, in Normandy, France, are mainly formed by sub-horizontal deposits of chalk and flintstone. Largely destabilized by an intense weathering and the Channel sea erosion, small and large rockfalls are regularly observed and contribute to retrogressive cliff processes. During autumn 2012, cliff and intertidal topographies have been acquired with a Terrestrial Laser Scanner (TLS) and a Mobile Laser Scanner (MLS), coupled with seafloor bathymetries realized with a multibeam echosounder (MBES). MLS is a recent development of laser scanning based on the same theoretical principles of aerial LiDAR, but using smaller, cheaper and portable devices. The MLS system, which is composed by an accurate dynamic positioning and orientation (INS) devices and a long range LiDAR, is mounted on a marine vessel; it is then possible to quickly acquire in motion georeferenced LiDAR point clouds with a resolution of about 15 cm. For example, it takes about 1 h to scan of shoreline of 2 km long. MLS is becoming a promising technique supporting erosion and rockfall assessments along the shores of lakes, fjords or seas. In this study, the MLS system used to acquire cliffs and intertidal areas of the Cap d'Ailly was composed by the INS Applanix POS-MV 320 V4 and the LiDAR Optech Ilirs LR. On the same day, three MLS scans with large overlaps (J1, J21 and J3) have been performed at ranges from 600 m at 4 knots (low tide) up to 200 m at 2.2 knots (up tide) with a calm sea at 2.5 Beaufort (small wavelets). Mean scan resolutions go from 26 cm for far scan (J1) to about 8.1 cm for close scan (J3). Moreover, one TLS point cloud on this test site has been acquired with a mean resolution of about 2.3 cm, using a Riegl LMS Z390i. In order to quantify the reliability of the methodology, comparisons between scans have been realized with the software Polyworks™, calculating shortest distances between points of one cloud and the interpolated surface of the reference point cloud. A MatLab™ routine was also written to extract interesting statistics. First, mean distances between points of the reference point clouds (J21) and its interpolated surface are about 0.35 cm with a standard deviation of 15 cm; errors introduced during the surface interpolation step, especially in vegetated areas, may explain those differences. Then, mean distances between J1's points (resp. J3) and the J21's reference surface are about 4 cm (resp. -17 cm) with a standard deviation of 53 cm (resp. 55 cm). After a best fit alignment of J1 and J3 on J21, mean distances between J1 (resp. J3) and the J21's reference surface decrease to about 0.15 cm (resp. 1.6 cm) with a standard deviation of 41 cm (resp. 21 cm). Finally, mean distances between the TLS point clouds and the J21's reference surface are about 3.2 cm with a standard deviation of 26 cm. In conclusion, MLS devices are able to quickly scan long shoreline with a resolution up to about 10 cm. The precision of the acquired data is relatively small enough to investigate on geomorphological features of coastal cliffs. The ability of the MLS technique to detect and monitor small and large rockfalls will be investigated thanks to new acquisitions of the Dieppe cliffs in a close future and enhanced adapted post-processing steps.

  2. Alpine Cliff Backwearing Rates Derived From Cosmogenic 10-Be in Active Medial Moraines

    NASA Astrophysics Data System (ADS)

    Ward, D. J.; Anderson, R. S.

    2008-12-01

    We use cosmogenic 10Be concentrations in rock samples from an active, ice-cored medial moraine to constrain glacial valley sidewall backwearing rates in the Kichatna Mountains, Alaska Range, Alaska. Kilometer-tall granite walls that tower over active glaciers are some of the most dramatic landscape features of the Alaska Range. The sheer scale of the relief speaks to the relative rates of valley incision by glaciers and rockwall retreat, but these rates are difficult to determine independently of one another. We present a method that uses cosmogenic nuclides to measure rockwall backwearing rates in glaciated settings on timescales of 103 yr, with a straightforward sampling strategy that exploits active medial moraines. Ablation-dominated medial moraines form by exhumation of debris-rich ice in the ablation zone of a glacier. Exhumed debris insulates the underlying ice and reduces its ablation rate relative to bare ice, promoting formation of a ridge-like, ice cored moraine. The rock debris is primarily derived from supraglacial rockfalls, which become incorporated in the ice along the glacier margins in the accumulation area. These lateral bands of debris-rich ice merge to form a medial debris band when glacial tributaries converge. The debris is minimally mixed until it is exhumed on the moraine crest. In the simplest case, such a system serves as a conveyor belt, bringing material from a specific part of the ablation zone valley wall to a specific point on a medial moraine in the ablation zone. We collected 5 grab samples, each consisting of ~30 2-10 cm rock fragments of the same lithology, from a 4.5 km longitudinal transect on the crest of the medial moraine of the Shadows glacier. We sampled the crest to minimize the amount of post-exhumation transport and mixing that may have occurred; each sample probably contains rocks from only one to a few rockfall events. Measured 10Be concentrations range from 1.5x104 to 3x104 at/g-qtz and are higher downvalley. First-order interpretation of these results yields minimum erosion rates of 0.2 to 0.5 mm/yr, consistent with erosion rates measured by various means in other glacial environments. This interpretation assumes a simple source area geometry and 10Be production rate scaling. To interpret these measurements in their full geological and topographic context, we present numerical models to describe how the expected distribution of 10Be concentrations should vary with erosion rate. This relationship is affected by source area hypsography and the distributions of size and recurrence interval of rockfall events. We randomly sample events based on a power-law size-recurrence relationship (constrained by field observations) from a numerical grid of production rates derived from a DEM of the source area. This yields the expected probability distribution of 10Be concentrations in the rockfall debris for a given mean erosion rate, weighted by event volume and source hypsography. The measured 10Be concentrations are low enough that accumulation during burial, exhumation, and transport in the medial moraine could account for up to ~1/4 of the signal, given our best estimates of glacier's surface speed (~30 m/yr). The slight downvalley increase in the concentrations supports a component of exposure in the moraine during transport. The amount of exposure depends on factors such as the entry and exit points of debris incorporated into the glacial ice, and the glacial mass balance pattern, and downvalley surface speed. We assess these effects with analytical and numerical models of debris transport in medial moraines, following Anderson (2000).

  3. The 2010-2011 Canterbury Earthquake Sequence: Environmental effects, seismic triggering thresholds and geologic legacy

    NASA Astrophysics Data System (ADS)

    Quigley, Mark C.; Hughes, Matthew W.; Bradley, Brendon A.; van Ballegooy, Sjoerd; Reid, Catherine; Morgenroth, Justin; Horton, Travis; Duffy, Brendan; Pettinga, Jarg R.

    2016-03-01

    Seismic shaking and tectonic deformation during strong earthquakes can trigger widespread environmental effects. The severity and extent of a given effect relates to the characteristics of the causative earthquake and the intrinsic properties of the affected media. Documentation of earthquake environmental effects in well-instrumented, historical earthquakes can enable seismologic triggering thresholds to be estimated across a spectrum of geologic, topographic and hydrologic site conditions, and implemented into seismic hazard assessments, geotechnical engineering designs, palaeoseismic interpretations, and forecasts of the impacts of future earthquakes. The 2010-2011 Canterbury Earthquake Sequence (CES), including the moment magnitude (Mw) 7.1 Darfield earthquake and Mw 6.2, 6.0, 5.9, and 5.8 aftershocks, occurred on a suite of previously unidentified, primarily blind, active faults in the eastern South Island of New Zealand. The CES is one of Earth's best recorded historical earthquake sequences. The location of the CES proximal to and beneath a major urban centre enabled rapid and detailed collection of vast amounts of field, geospatial, geotechnical, hydrologic, biologic, and seismologic data, and allowed incremental and cumulative environmental responses to seismic forcing to be documented throughout a protracted earthquake sequence. The CES caused multiple instances of tectonic surface deformation (≥ 3 events), surface manifestations of liquefaction (≥ 11 events), lateral spreading (≥ 6 events), rockfall (≥ 6 events), cliff collapse (≥ 3 events), subsidence (≥ 4 events), and hydrological (10s of events) and biological shifts (≥ 3 events). The terrestrial area affected by strong shaking (e.g. peak ground acceleration (PGA) ≥ 0.1-0.3 g), and the maximum distances between earthquake rupture and environmental response (Rrup), both generally increased with increased earthquake Mw, but were also influenced by earthquake location and source characteristics. However, the severity of a given environmental response at any given site related predominantly to ground shaking characteristics (PGA, peak ground velocities) and site conditions (water table depth, soil type, geomorphic and topographic setting) rather than earthquake Mw. In most cases, the most severe liquefaction, rockfall, cliff collapse, subsidence, flooding, tree damage, and biologic habitat changes were triggered by proximal, moderate magnitude (Mw ≤ 6.2) earthquakes on blind faults. CES environmental effects will be incompletely preserved in the geologic record and variably diagnostic of spatial and temporal earthquake clustering. Liquefaction feeder dikes in areas of severe and recurrent liquefaction will provide the best preserved and potentially most diagnostic CES features. Rockfall talus deposits and boulders will be well preserved and potentially diagnostic of the strong intensity of CES shaking, but challenging to decipher in terms of single versus multiple events. Most other phenomena will be transient (e.g., distal groundwater responses), not uniquely diagnostic of earthquakes (e.g., flooding), or more ambiguous (e.g. biologic changes). Preliminary palaeoseismic investigations in the CES region indicate recurrence of liquefaction in susceptible sediments of 100 to 300 yr, recurrence of severe rockfall event(s) of ca. 6000 to 8000 yr, and recurrence of surface rupturing on the largest CES source fault of ca. 20,000 to 30,000 yr. These data highlight the importance of utilising multiple proxy datasets in palaeoearthquake studies. The severity of environmental effects triggered during the strongest CES earthquakes was as great as or equivalent to any historic or prehistoric effects recorded in the geologic record. We suggest that the shaking caused by rupture of local blind faults in the CES comprised a 'worst case' seismic shaking scenario for parts of the Christchurch urban area. Moderate Mw blind fault earthquakes may contribute the highest proportion of seismic hazard, be the most important drivers of landscape evolution, and dominate the palaeoseismic record in some locations on Earth, including locations distal from any identified active faults. A high scientific priority should be placed on improving the spatial extent and quality of 'off-fault' shaking records of strong earthquakes, particularly near major urban centres.

  4. An Evaluation Technique for an F/A-18 Aircraft Loads Model Using F/A-18 Systems Research Aircraft Flight Data

    NASA Technical Reports Server (NTRS)

    Olney, Candida D.; Hillebrandt, Heather; Reichenbach, Eric Y.

    2000-01-01

    A limited evaluation of the F/A-18 baseline loads model was performed on the Systems Research Aircraft at NASA Dryden Flight Research Center (Edwards, California). Boeing developed the F/A-18 loads model using a linear aeroelastic analysis in conjunction with a flight simulator to determine loads at discrete locations on the aircraft. This experiment was designed so that analysis of doublets could be used to establish aircraft aerodynamic and loads response at 20 flight conditions. Instrumentation on the right outboard leading edge flap, left aileron, and left stabilator measured the hinge moment so that comparisons could be made between in-flight-measured hinge moments and loads model-predicted values at these locations. Comparisons showed that the difference between the loads model-predicted and in-flight-measured hinge moments was up to 130 percent of the flight limit load. A stepwise regression technique was used to determine new loads derivatives. These derivatives were placed in the loads model, which reduced the error to within 10 percent of the flight limit load. This paper discusses the flight test methodology, a process for determining loads coefficients, and the direct comparisons of predicted and measured hinge moments and loads coefficients.

  5. Forward Skirt Structural Testing on the Space Launch System (SLS) Program

    NASA Technical Reports Server (NTRS)

    Lohrer, J. D.; Wright, R. D.

    2016-01-01

    Structural testing was performed to evaluate heritage forward skirts from the Space Shuttle program for use on the Space Launch System (SLS) program. One forward skirt is located in each solid rocket booster. Heritage forward skirts are aluminum 2219 welded structures. Loads are applied at the forward skirt thrust post and ball assembly. Testing was needed because SLS ascent loads are roughly 40% higher than Space Shuttle loads. Testing objectives were to determine margins of safety, demonstrate reliability, and validate analytical models. Two forward skirts were structurally tested using the test configuration. The test stand applied loads to the thrust post. Four hydraulic actuators were used to apply axial load and two hydraulic actuators were used to apply radial and tangential loads. The first test was referred to as FSTA-1 (Forward Skirt Structural Test Article) and was performed in April/May 2014. The purpose of FSTA-1 was to verify the ultimate capability of the forward skirt subjected to ascent ultimate loads. Testing consisted of two liftoff load cases taken to 100% limit load followed by an ascent load case taken to 110% limit load. The forward skirt was unloaded to no load after each test case. Lastly, the forward skirt was tested to 140% limit and then to failure using the ascent loads. The second test was referred to as FSTA-2 and performed in July/August of 2014. The purpose of FSTA-2 was to verify the ultimate capability of the forward skirt subjected to liftoff ultimate loads. Testing consisted of six liftoff load cases taken to 100% limit load followed by the six liftoff cases taken to 140% limit load. Two ascent load cases were then tested to 100% limit load. The forward skirt was unloaded to no load after each test case. Lastly, the forward skirt was tested to 140% limit and then to failure using the ascent loads. The forward skirts on FSTA-1 and FSTA-2 successfully carried all applied liftoff and ascent load cases. Both FSTA-1 and FSTA-2 were tested to failure by increasing the ascent loads. Failure occurred in the forward skirt thrust post radius. The forward skirts on FSTA-1 and FSTA-2 had nearly identical failure modes. FSTA-1 failed at 1.72 times limit load and FSTA-2 failed at 1.62 times limit load. This difference is primarily attributed to variation in material properties in the thrust post region. Test data were obtained from strain gages, deflection gages, ARAMIS digital strain measurement, acoustic emissions, and high-speed video. Strain gage data and ARAMIS strain were compared to finite element (FE) analysis predictions. Both the forward skirt and tooling were modeled. This allows the analysis to simulate the loading as close as possible to actual test configuration. FSTA-1 and FSTA-2 were instrumented with over 200 strain gages to ensure all possible failure modes could be captured. However, it turned out that three gages provided critical strain data. One was located in the post bore and two on the post radius. More gages were not specified due to space limitations and the desire to not interfere with the use of the ARAMIS system on the post radius. Measured strains were compared to analysis results for the load cycle to failure. Note that FSTA-1 gages were lost before failure was reached. FSTA-2 gages made it to the failure load but one of the radius gages was lost before testing began. This gage was not replaced because of the time and cost associated with disassembly of the test structure. Correlation to analysis was excellent for FSTA-1. FSTA-2 was not quite as good because there was more residual strain from previous load cycles. FSTA-2 was loaded and unloaded with 12 liftoff cases and two ascent cases before taking the skirt to failure. FSTA-1 only had two liftoff cases and one ascent case before taking the skirt to failure. The ARAMIS system was used to determine strain at the post radius by processing digital images of a speckled paint pattern. Digital cameras recorded images of the speckled paint pattern. ARAMIS strain results for FSTA-2 just prior to failure. Note a high strain location develops near the left side. This high strain compares well to analysis prediction for both FSTA-1 and FSTA-2. The strain at this location was also plotted versus limit load. Both FSTA-1 and FSTA-2 had excellent correlation between ARAMIS and analysis strains. Acoustic emission (AE) sensors were used to monitor for damage formation that may occur during testing (e.g., crack formation and growth or propagation). AE was very important because after disassembly of FSTA-1, a crack was observed in the ball fitting radius. The ball fitting did not crack on FSTA-2. AE data was used to reconstruct when the crack occurred. The AE energy versus time plot for FSTA. The energy increased considerably at 850 seconds (152% limit load), indicating a crack could have formed at this point. The only visual evidence found that could have corresponded to this was the crack that initiated in the ball fitting. The cracks in the forward skirt aluminum structures would likely have been lower energy due to a lower modulus and all that were found after failure correlated to occurring after the initial crack in the post radius. This was verified by high-speed cameras used to record the failure.

  6. Comparison of Thoracic Injury Risk in Frontal Car Crashes for Occupant Restrained without Belt Load Limiters and Those Restrained with 6 kN and 4 kN Belt Load Limiters.

    PubMed

    Foret-Bruno, J Y; Trosseille, X; Page, Y; Huère, J F; Le Coz, J Y; Bendjellal, F; Diboine, A; Phalempin, T; Villeforceix, D; Baudrit, P; Guillemot, H; Coltat, J C

    2001-11-01

    In France, as in other countries, accident research studies show that a large proportion of restrained occupants who sustain severe or fatal injuries are involved in frontal impacts (65% and 50%, respectively). In severe frontal impacts with restrained occupants and where intrusion is not preponderant, the oldest occupants very often sustain severe thoracic injuries due to the conventional seat belt. As we have been observing over the last years, we will expect in the coming years developments which include more solidly-built cars, as offset crash test procedures are widely used to evaluate the passive safety of production vehicles. The reduction of intrusion for the most severe frontal impacts, through optimization of car deformation, usually translates into an increase in restraint forces and hence thoracic injury risk with a conventional retractor seat belt for a given impact severity. It is, therefore essential to limit the restraint forces exerted by the seat belt on the thorax in order to reduce the number of road casualties. In order to address thoracic injury risk in frontal impact, Renault cars have been equipped with the Programmed Restraint System (PRS) since 1995. The PRS is a restraint system that combines belt load limitation and pyrotechnic belt pretension. In an initial design of the Programmed Restraint System (PRS1), the belt load limiter was a steel component designed to shear at a given shoulder force, namely 6 kN. It was mounted between the retractor and the lower anchorage point of the belt. The design of the PRS was modified in 1998 (PRS2), but the principle of load limitation was maintained. The threshold was decreased to 4 kN and this lower belt belt-force limiter has been combined with a specially designed airbag. This paper reports on 347 real-world frontal accidents where the EES (Equivalent Energy Speed) ranged from 35 to 75 km/h. One hundred and ninety-eight (198) of these accidents involved cars equipped with the 6 kN load limiter, and 149 involved cars equipped with the 4 kN load limiter. Based on this accident data, the study compares the thoracic injury risk for two occupant populations: belted occupants involved in accidents in which the vehicle was not equipped with a load limiter (378 cases with pyrotechnic pretensioners), and belted occupants involved in accidents in which the vehicles were equipped with 4 or 6 kN load limiters and pyrotechnic pretensioners (347 cases). One observes that a 4 kN load limitation results in a very important reduction of thoracic injury risk for all AIS levels, compared to others samples. 50 to 60% reduction for AIS 2+ was observed, as well as 75 to 85% for AIS 3+. The complete absence of AIS 4+ with a 4 kN load limiter must be stressed, though it remains more than 8% for the other samples (no limiter and 6 kN limiter).

  7. A method for improving predictions of bed-load discharges to reservoirs

    USGS Publications Warehouse

    Lopes, V.L.; Osterkamp, W.R.; Bravo-Espinosa, M.

    2007-01-01

    Effective management options for mitigating the loss of reservoir water storage capacity to sedimentation depend on improved predictions of bed-load discharges into the reservoirs. Most predictions of bed-load discharges, however, are based on the assumption that the rates of bed-load sediment availability equal the transport capacity of the flow, ignoring the spatio-temporal variability of the sediment supply. This paper develops a semiquantitative method to characterize bed-load sediment transport in alluvial channels, assuming a channel reach is non-supply limited when the bed-load discharge of a given sediment particle-size class is functionally related to the energy that is available to transport that fraction of the total bed-load. The method was applied to 22 alluvial stream channels in the USA to determine whether a channel reach had a supply-limited or non-supply-limited bed-load transport regime. The non-supply-limited transport regime was further subdivided into two groups on the basis of statistical tests. The results indicated the pattern of bed-load sediment transport in alluvial channels depends on the complete spectrum of sediment particle sizes available for transport rather than individual particle-size fractions represented by one characteristic particle size. The application of the method developed in this paper should assist reservoir managers in selecting bed-load sediment transport equations to improve predictions of bed-load discharge in alluvial streams, thereby significantly increasing the efficiency of management options for maintaining the storage capacity of waterbodies. ?? 2007 Blackwell Publishing Asia Pty Ltd.

  8. Linear Quadratic Tracking Design for a Generic Transport Aircraft with Structural Load Constraints

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Frost, Susan A.; Taylor, Brian R.

    2011-01-01

    When designing control laws for systems with constraints added to the tracking performance, control allocation methods can be utilized. Control allocations methods are used when there are more command inputs than controlled variables. Constraints that require allocators are such task as; surface saturation limits, structural load limits, drag reduction constraints or actuator failures. Most transport aircraft have many actuated surfaces compared to the three controlled variables (such as angle of attack, roll rate & angle of side slip). To distribute the control effort among the redundant set of actuators a fixed mixer approach can be utilized or online control allocation techniques. The benefit of an online allocator is that constraints can be considered in the design whereas the fixed mixer cannot. However, an online control allocator mixer has a disadvantage of not guaranteeing a surface schedule, which can then produce ill defined loads on the aircraft. The load uncertainty and complexity has prevented some controller designs from using advanced allocation techniques. This paper considers actuator redundancy management for a class of over actuated systems with real-time structural load limits using linear quadratic tracking applied to the generic transport model. A roll maneuver example of an artificial load limit constraint is shown and compared to the same no load limitation maneuver.

  9. Performance of two load-limiting subfloor concepts in full-scale general aviation airplane crash tests

    NASA Technical Reports Server (NTRS)

    Carden, H. D.

    1984-01-01

    Three six-place, low wing, twin-engine general aviation airplane test specimens were crash tested at the langley Impact Dynamics research Facility under controlled free-flight conditions. One structurally unmodified airplane was the baseline airplane specimen for the test series. The other airplanes were structurally modified to incorporate load-limiting (energy-absorbing) subfloor concepts into the structure for full scale crash test evaluation and comparison to the unmodified airplane test results. Typically, the lowest floor accelerations and anthropomorphic dummy occupant responses, and the least seat crushing of standard and load-limiting seats, occurred in the modified load-limiting subfloor airplanes wherein the greatest structural crushing of the subfloor took place. The better performing of the two load-limiting subfloor concepts reduced the peak airplane floor accelerations at the pilot and four seat/occupant locations to -25 to -30 g's as compared to approximately -50 to -55 g's acceleration magnitude for the unmodified airplane structure.

  10. Destruction of tungsten limiters in the T-10 Tokamak under high plasma heat loads

    NASA Astrophysics Data System (ADS)

    Grashin, S. A.; Arkhipov, I. I.; Budaev, V. P.; Giniyatulin, R. N.; Karpov, A. V.; Klyuchnikov, L. A.; Krupin, V. A.; Litunovskiy, N. V.; Masul, I. V.; Makhankov, F. N.; Martynenko, Yu V.; Sarytchev, D. V.; Solomatin, R. Yu; Khimchenko, L. N.

    2017-10-01

    Tungsten limiters were tested in the T-10 tokamak. The limiters were made from the ITER-grade WMP “POLEMA” tungsten. The influence of the edge tokamak plasma on tungsten limiters leads to significant cracking of tungsten. The heat load of up to 2 MW · m-2 leads to the micro-crack development at the grain boundaries accompanied by the loss of grains. The heat loads that exceed 5 MW · m-2 lead to the macro crack development. Under the present T-10 tokamak conditions, the heat and particle fluxes in the edge plasma lead to the significant destruction of tungsten limiters during the experimental campaign. During the disruption and runaway electron formation, extreme heat loads of more than 1 GW/m2 cause strong melting of tungsten on the inner and outer part of the ring limiter.

  11. Competition explains limited attention and perceptual resources: implications for perceptual load and dilution theories.

    PubMed

    Scalf, Paige E; Torralbo, Ana; Tapia, Evelina; Beck, Diane M

    2013-01-01

    Both perceptual load theory and dilution theory purport to explain when and why task-irrelevant information, or so-called distractors are processed. Central to both explanations is the notion of limited resources, although the theories differ in the precise way in which those limitations affect distractor processing. We have recently proposed a neurally plausible explanation of limited resources in which neural competition among stimuli hinders their representation in the brain. This view of limited capacity can also explain distractor processing, whereby the competitive interactions and bias imposed to resolve the competition determine the extent to which a distractor is processed. This idea is compatible with aspects of both perceptual load and dilution models of distractor processing, but also serves to highlight their differences. Here we review the evidence in favor of a biased competition view of limited resources and relate these ideas to both classic perceptual load theory and dilution theory.

  12. 14 CFR 25.23 - Load distribution limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Ranges of weights and centers of gravity within which the airplane may be safely operated must be established. If a weight and center of gravity combination is allowable only within certain load distribution... and center of gravity combinations must be established. (b) The load distribution limits may not...

  13. 14 CFR 25.23 - Load distribution limits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Ranges of weights and centers of gravity within which the airplane may be safely operated must be established. If a weight and center of gravity combination is allowable only within certain load distribution... and center of gravity combinations must be established. (b) The load distribution limits may not...

  14. 14 CFR 25.23 - Load distribution limits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Ranges of weights and centers of gravity within which the airplane may be safely operated must be established. If a weight and center of gravity combination is allowable only within certain load distribution... and center of gravity combinations must be established. (b) The load distribution limits may not...

  15. 14 CFR 25.23 - Load distribution limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Ranges of weights and centers of gravity within which the airplane may be safely operated must be established. If a weight and center of gravity combination is allowable only within certain load distribution... and center of gravity combinations must be established. (b) The load distribution limits may not...

  16. 14 CFR 25.23 - Load distribution limits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Ranges of weights and centers of gravity within which the airplane may be safely operated must be established. If a weight and center of gravity combination is allowable only within certain load distribution... and center of gravity combinations must be established. (b) The load distribution limits may not...

  17. Postglacial trends of hillslope development in two glacially formed mountain valleys in western Norway

    NASA Astrophysics Data System (ADS)

    Laute, K.; Beylich, A. A.

    2012-04-01

    Although rockfall talus slopes occur in all regions where rock weathering products accumulate beneath rock faces and cliffs, they are particularly common in glacially formed mountain landscapes. The retreat of glacier ice from glaciated valleys which have probably experienced oversteepening of rock slopes by glacial erosion causes paraglacial destabilization of the valley sidewalls related to stress-relief, unloading, frost weathering and / or degradation of mountain permafrost. Large areas of the Norwegian fjord landscapes are occupied by hillslopes which are owned by the influences of the glacial inheritance of the last glacial maximum (LGM). This study focuses on Postglacial trends of hillslope development in two glacially formed mountain valleys in western Norway (Erdalen and Bødalen). The research is part of a doctoral thesis, which is integrated in the Norwegian Research Council (NFR) funded SedyMONT-Norway project within the ESF TOPO-EUROPE SedyMONT (Timescales of sediment dynamics, climate and topographic change in mountain landscapes) Programme. The main aspects addressed in this study are: (i) the spatio-temporal variability of denudative slope processes over the Holocene and (ii) the Postglacial modification of the glacial relief. The applied process-based approach includes detailed geomorphological fieldmapping combined with terrestrial laser scans (LIDAR) of slope deposits in order to identify possible deposition processes and their spatial variability, relative dating techniques (tree rings and lichens) to analyze subrecent temporal variations, detailed surface mapping with additional geophysical subsurface investigations to estimated regolith thicknesses as well as CIR- and orthophoto delineation combined with GIS and DEM computing for calculating estimates of average valley-wide rockwall retreat rates. Results show Holocene rockwall retreat rates for the two valleys which are in a comparable range with other estimates of rockwall retreat rates in other cold mountain environments worldwide. Further on the results indicate probably higher accumulation rates of slope deposits mainly throughout an enhanced rockfall activity shortly after the glacier retreat (at about 10.000 yr BP) as compared to subrecent and contemporary rates. The overall tendency of landscape development is a Postglacial modification of the defined U-shaped valley morphometry (valley widening) throughout rockwall retreat and connected accumulation of debris material beneath these rockwalls. Active fluvial material removal at the base of slopes is almost negligible due to a very limited hillslope-channel coupling in both valleys. So far, the glacially sculptured relief has not adapted to the denudative surface processes occurring under recent environmental conditions.

  18. Multirisk analysis along the Road 7, Mendoza Province, Argentina

    NASA Astrophysics Data System (ADS)

    Wick, Emmanuel; Baumann, Valérie; Michoud, Clément; Derron, Marc-Henri; Jaboyedoff, Michel; Rune Lauknes, Tom; Marengo, Hugo; Rosas, Mario

    2010-05-01

    The National Road 7 crosses Argentina from East to West, linking Buenos Aires to the Chile border. This road is an extremely important corridor crossing the Andes Cordillera, but it is exposed to numerous natural hazards, such as rockfalls, debris flows and snow avalanches. The study area is located in the Mendoza Province, between Potrerillos and Las Cuevas in the Chilean border. This study has for main goals to achieve a regional mapping of geohazards susceptibility along the Road 7 corridor using modern remote sensing and numerical modelling techniques completed by field investigations. The main topics are: - Detection and monitoring of deep-seated gravitational slope deformations by time-series satellite radar interferometry (InSAR) methods. The area of interest is mountainous with almost no vegetation permitting an optimized InSAR processing. Our results are based on applying the small-baseline subset (SBAS) method to a time-series of Envisat ASAR images. - Rockfalls susceptibility mapping is realized using statistical analysis of the slope angle distribution, including external knowledge on the geology and land cover, to detect the potential source areas (quantitative DEM analysis). The run-outs are assessed with numerical methods based on the shallow angle method with Conefall. A second propagation is performed using the alpha-beta methodology (3D numerical modelling) with RAS and is compared to the first one. - Debris flow susceptibility mapping is realized using DF-IGAR to detect starting and spreading areas. Slope, flow accumulations, contributive surfaces, plan curvature, geological and land use dataset are used. The spreading is simulated by a multiple flow algorithm (rules the path that the debris flow will follow) coupled to a run-out distance calculation (energy-based). - Snow avalanches susceptibility mapping is realized using DF-IGAR to map sources areas and propagations. To detect the sources areas, slope, altitude, land-use and minimum surfaces are needed. DF-IGAR simulates the spreading by means of the "Perla" methodology. Furthermore, RAS performs the spreading based on the "alpha-beta" method. All these methods are based on Aster and SRTM DEM (grid 30 m) and observations of both optical and radar satellite imagery (Aster, Quickbird, Worldview, Ikonos, Envisat ASAR) and aerial photographs. Several field campaigns are performed to calibrate the regional models with adapted parameters. Susceptibility maps of the entire area for rockfalls, debris flows and snow avalanches at a scale of 1:100'000 are created. Those maps and the field investigations are cross-checked to identify and prioritize hotspots. It appears that numerous road sectors are subject to highly active phenomena. Some mitigation works already exist but they are often under-dimensioned, inadequate or neglected. Recommendations for priority and realistic mitigation measures along the endangered road sectors identified are proposed.

  19. Rock-fall hazard in the Etruscan archaeological site of Norchia (Central Italy)

    NASA Astrophysics Data System (ADS)

    Margottini, Claudio; Spizzichino, Daniele; Argento, Alessia; Russo, Alfonsina

    2016-04-01

    The ancient Etruscan town of Norchia (Central Italy, 80 km North of Rome) is situated on a long volcanic plateau surrounded by steep slopes, at the confluence of rivers Pile and Acqua Alta into the river Biedano. It has been constructed along the ancient Via Clodia, a short-range route intended for commercial traffic between Rome and the colonies in Etruscan lands. The flourishing of the town, evidenced by the beautiful necropolis, is placed between the end of the fourth and half of the second century BC. With its necropolis Norchia is the most significant example of funerary architecture rock Hellenistic period (IV-II century BC.). Its rock-cut tombs, are among the most important archaeological sites of Etruscan civilisation. They are an important and rare example of rock architecture and one of the few preserved in Italy. Also, the necropolis, with an extension of more than 100 hectares, is composed of rock-cut tombs of various types (façade, half-cube, false-cube and temple type) and dimensions (4-10 m in height), exhibiting a remarkable similarity with Asian tombs. From geological point of view, the area is exhibiting the overly of rigid volcanic products from both Vico and Volsini volcanic apparatus; as a bedrock, a plastic clay formation is positioned. The rock-cut tombs were excavated on two main volcanic levels, following the natural profile of tuff outcrops. The tombs located in the upper part of the necropolis have been excavated in a Red Tuff from Vico volcanic district, while those in lower level are dug in a grey tuff (Nenfro) from Vulsini volcanic apparatus. Recent investigations revealed the presence of many threats affecting the conservation of the site, that are including: surface rock weathering, water percolation and infiltration, surface vegetation and biological colonisation, instability and collapse of the cliff. The purpose of this study is mainly focused to verify whether the geological, geomorphological and geomechanical processes that have allowed the creation of a typical "butte" landscape, later inhabited by Etruscans, are still active. Field survey and historical data collection revealed the presence of many rock slope instabilities that have affected the site. Particularly meaningful is the presence of a large debris fan, just at the toe of the most relevant archaeological place, where the half-cube rock-cut tombs are positioned, testifying important rock-falls after the excavation of the necropolis. The preliminary investigation is revealing the importance of rock-fall hazard as well as the other environmental threats for the future conservation of the site. An integrated approach among different experts is now required, to define processes and causative factors and then to establish priorities for conservation

  20. Application of dimensional analysis to predict the performance of rockfall barrier

    NASA Astrophysics Data System (ADS)

    Spadari, M.; Giacomini, A.; Buzzi, O.; Hambleton, J.

    2012-04-01

    Natural hazards involving rocks or rock slopes are responsible for loss of life and damage to infrastructure and are consequently widely studied. Rock fall barriers are a common type of protection structures that is usually designed on the basis of total impact energy. However, the systems are usually tested in free fall where the predominant component of energy is kinematic and it has been shown that there is not a unique relationship between the response of a barrier and the kinetic energy of the impacting block. In particular, recent studies have discussed the so called "bullet effect" i.e. relatively small blocks traveling at high speed can perforate the barriers yet having acceptable level of energy. This effect compromises the use of kinetic energy as an adequate design criterion since there is not a threshold value defining clearly acceptable and unacceptable values of energy. This issue can be addressed empirically by using different block sizes when it comes to test a system. However, the literature still lacks a characterization of a rockfall barrier performance regarding the bullet effect. This note presents the results of the application of dimensional analysis to the physical problem of the bullet effect. This latter has been formulated as a function involving eight key variables: v = f(ρ, K, σy, H, A, Db,Dw) where v is the minimum speed of a given block to break the barrier, ρgs the density of the block, Kis the stiffness of the system, σy is the strength of the wires, H is the height of the barrier, A is the aperture of the mesh, Db is the dimension of the block and Dw is the diameter of the wire. Applying the Buckingham Pi theorem allows reducing the equation above to a simpler problem involving only three dimensionless parameters: E*=F(S*, G*) Where E* is the performance parameter, S* is the strength-stiffness parameter and G* is the geometrical parameters defined as: E*= (ρ.v2.H)/K S*=K/(H.gσy) And G*=A-0.25.Db-0.75.Db F in the simplified equation is referred to as the Rockfall Barrier Performance, or RoBaP, Model. Results suggest that the dimensional analysis can satisfactorily be used to assess the performance of a barrier when impacted by variable block size. A calibration-prediction exercise has been conducted using data form the literature to assess the predictive capability of the RoBaP model. It has been found that the RoBaP model gives satisfactory results. In particular, the progressive loss of performance of the rock fall barrier as the block size diminishes has been well captured.

  1. Enhancement of archaeological heritage. El Risco de las Cuevas at Perales de Tajuña, Madrid (Spain)

    NASA Astrophysics Data System (ADS)

    Freire-Lista, David Martin; Alvarez de Buergo, Mónica; Fort, Rafael

    2016-04-01

    Heritage conservation has a great impact on the economy of a country. The enhancement of archaeological sites is an investment that promotes tourism and culture. The interdisciplinary knowledge of heritage should be the basis of its management. Preventive actions, non-destructive analytical techniques and monitoring for the conservation of these assets should be promoted. "El Risco de las Cuevas" is a highly decayed and nearly vertical gypsum escarpment which contains a series of dwellings excavated during the Chalcolithic and much more recent times. It is located at Perales de Tajuña, 40 km southeast of Madrid, Spain. This monument is approximately 70 metres high and 500 metres wide. It was listed as a cultural and monumental heritage site by the regional government of Madrid in 1998. The gypsum escarpment housing the dwellings forms part of a lower Miocene unit (Madrid Basin). Debris cones with a mixture of debris from the lower, medium and upper units are found at the bottom of the rockwall. The vulnerability of this monument to atmospheric agents has been studied using "in situ" monitoring techniques of humidity, temperature and rate of rockfalls. Drones have been used for aerial photography in the highest areas of the escarpment and have provided an information network of fractures likely to cause rockfall. Gypsum artificial accelerated ageing has been carried out in the laboratory, including freeze/thaw, wet/dry, thermal shock and dissolution tests. To determine the response of these accelerated ageing processes, density, micro-roughness, ultrasound velocities (Vp and Vs), air permeability and microscopy measurements were made before, during and after ageing tests. Geomorphological studies, rates of decay, material characteristics and durability tests indicate that the decay is controlled by the mineralogy, clay content and porosity of the gypsum rock, as well as microclimate, temperature changes and rock fractures. Rockfalls are particularly relevant in the safety of the monument and visitors. The enhancement of El Risco de las Cuevas has involved both local government (City council of Perales de Tajuña) and regional one (General Directorate of Historical Heritage of the Community of Madrid), besides the Institute of Geosciences IGEO (CSIC-UCM). Thanks to the collaboration of these agencies an interpretation centre has been created, preserving El Risco de las Cuevas in an educational and user-friendly manner. By conducting tours during the Science week of Madrid this promotes citizen participation, dissemination and social transfer, which are essential to preserve heritage. A project has been designed to monitor and ensure control and stability of the monument Acknowledgements: Community of Madrid for financing Geomateriales2 program (P2013/MIT2914), CEI-Moncloa UCM-UPM, Applied Petrology for Heritage Stone Materials Conservation Research Group and local government of Perales de Tajuña.

  2. 14 CFR 29.471 - General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... equilibrium. For limit ground loads— (1) The limit ground loads obtained in the landing conditions in this part must be considered to be external loads that would occur in the rotorcraft structure if it were acting as a rigid body; and (2) In each specified landing condition, the external loads must be placed in...

  3. 14 CFR 29.681 - Limit load static tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.681 Limit... in which— (1) The direction of the test loads produces the most severe loading in the control system; and (2) Each fitting, pulley, and bracket used in attaching the system to the main structure is...

  4. 14 CFR 125.383 - Load manifest.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... airplane; (3) The maximum allowable takeoff and landing weights for that flight; (4) The center of gravity limits; (5) The center of gravity of the loaded airplane, except that the actual center of gravity need... that ensures that the center of gravity of the loaded airplane is within approved limits. In those...

  5. 14 CFR 125.383 - Load manifest.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... airplane; (3) The maximum allowable takeoff and landing weights for that flight; (4) The center of gravity limits; (5) The center of gravity of the loaded airplane, except that the actual center of gravity need... that ensures that the center of gravity of the loaded airplane is within approved limits. In those...

  6. 14 CFR 125.383 - Load manifest.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... airplane; (3) The maximum allowable takeoff and landing weights for that flight; (4) The center of gravity limits; (5) The center of gravity of the loaded airplane, except that the actual center of gravity need... that ensures that the center of gravity of the loaded airplane is within approved limits. In those...

  7. 14 CFR 125.383 - Load manifest.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... airplane; (3) The maximum allowable takeoff and landing weights for that flight; (4) The center of gravity limits; (5) The center of gravity of the loaded airplane, except that the actual center of gravity need... that ensures that the center of gravity of the loaded airplane is within approved limits. In those...

  8. 14 CFR 125.383 - Load manifest.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... airplane; (3) The maximum allowable takeoff and landing weights for that flight; (4) The center of gravity limits; (5) The center of gravity of the loaded airplane, except that the actual center of gravity need... that ensures that the center of gravity of the loaded airplane is within approved limits. In those...

  9. Aircraft Survivability: Rotorcraft Survivability. Summer 2010

    DTIC Science & Technology

    2010-01-01

    Loading of the shafts was conducted using two techniques. The first tech- nique applied a torsion load up to the design limit load after the article...show the ballistic impact and impact damage. Figure 11 shows a 45-degree shaft failure, a common failure type, when loaded to design limit after...SUMMER 2010 ROTORCRAFT Survivability STUDY ON ROTORCRAFT SURVIVABILITY V-22 INTEGRATED SURVIVABILITY DESIGN CH-53K HEAVY LIFT HELICOPTER 9 20 25

  10. Microgrids for Service Restoration to Critical Load in a Resilient Distribution System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yin; Liu, Chen-Ching; Schneider, Kevin P.

    icrogrids can act as emergency sources to serve critical loads when utility power is unavailable. This paper proposes a resiliency-based methodology that uses microgrids to restore critical loads on distribution feeders after a major disaster. Due to limited capacity of distributed generators (DGs) within microgrids, dynamic performance of the DGs during the restoration process becomes essential. In this paper, the stability of microgrids, limits on frequency deviation, and limits on transient voltage and current of DGs are incorporated as constraints of the critical load restoration problem. The limits on the amount of generation resources within microgrids are also considered. Bymore » introducing the concepts of restoration tree and load group, restoration of critical loads is transformed into a maximum coverage problem, which is a linear integer program (LIP). The restoration paths and actions are determined for critical loads by solving the LIP. A 4-feeder, 1069-bus unbalanced test system with four microgrids is utilized to demonstrate the effectiveness of the proposed method. The method is applied to the distribution system in Pullman, WA, resulting in a strategy that uses generators on the Washington State University campus to restore service to the Hospital and City Hall in Pullman.« less

  11. Holocene hillslope processes and deposits in two U-shaped mountain valleys in western Norway

    NASA Astrophysics Data System (ADS)

    Laute, K.; Beylich, A. A.

    2012-04-01

    This doctoral research project is integrated in the Norwegian Research Council (NFR) funded SedyMONT-Norway Project within the ESF EUROCORES TOPO-EUROPE SedyMONT (Timescales of sediment dynamics, climate and topographic change in mountain landscapes) Programme. Research is carried out within two steep, U-shaped and glacier-connected tributary valleys (Erdalen and Bødalen) on the western side of the Jostedalsbreen ice cap in western Norway. Contemporary denudative processes in both valley systems include rock and boulder falls, avalanches, slush flows, debris flows, creep processes, wash- and chemical denudation and fluvial transport of solutes, suspended sediments and bedload. The main aims of this research project which are approached within a Holocene to contemporary timescale are: (i) to investigate the spatio-temporal variability of Holocene hillslope development, (ii) to analyse more specificly the morphometric influences and geomorphic consequences of the Little Ice Age (LIA) glacier advance on selected hillslope systems within defined headwater areas in both valleys, (iii) to study morphometric and meteorological controls of contemporary denudative slope processes as well as (iv) to quantify the rates of sediment delivery from headwater areas and its changes over time. A process-based approach is applied using a variety of different methods and techniques. Focus is on different temporal (Holocene to contemporary) and spatial (selected hillslope systems, headwater areas and entire valley system) scales. The applied methods include orthophoto- and topographical map interpretation, GIS and DEM computing, geomorphological fieldmapping and hillslope profile surveying complemented by relative dating techniques (lichenometry and dendrochronology), geophysical investigations and terrestrial laser scanning (LIDAR). For monitoring contemporary rates of slope processes a designed monitoring programme (running since 2009) with a wide spectrum of instrumentation; e.g. installed nets for collecting freshly accumulated rockfall debris, continuous photo-monitoring of rapid mass movement events (avalanches, slush- and debris flows) as well as installed temperature loggers both in rock walls and talus slopes for analysing rock temperatures and mechanical weathering is applied at selected hillslope test sites within the two valley systems. The overall tendency of landscape development is a Postglacial modification of the defined U-shaped valley morphometry (valley widening) throughout rockwall retreat and connected accumulation of debris material beneath these rockwalls. Active fluvial material removal at the base of slopes is almost negligible due to a very limited hillslope-channel coupling in both valleys. Results regarding the spatio-temporal variability of Holocene hillslope development show Holocene rockwall retreat rates for the two valleys which are in a comparable range with other estimates of rockwall retreat rates in other cold mountain environments worldwide. Further on the findings indicate probably higher accumulation rates of slope deposits mainly throughout an enhanced rockfall activity shortly after the glacier retreat as compared to subrecent and contemporary rates. Within the LIA period a recognizable modification of hillslopes in proximity to the outlet glaciers of the Jostedalsbreen is noticeable. A more complex hillslope morphometry (steepening of lower hillslope segments) as well as a more complex composition (inherited by a combination of debris from gravitational processes and lateral moraine ridges) of loose material generating a higher intensity of currently acting slope processes within the hillslope systems located inside of the LIA glacial advance limit as compared to hillslopes situated outside of this limit is found.

  12. 36 CFR 4.11 - Load, weight and size limits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... limits established by State law apply to a vehicle operated on a park road. However, the superintendent may designate more restrictive limits when appropriate for traffic safety or protection of the road... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Load, weight and size limits...

  13. 36 CFR 4.11 - Load, weight and size limits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... limits established by State law apply to a vehicle operated on a park road. However, the superintendent may designate more restrictive limits when appropriate for traffic safety or protection of the road... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Load, weight and size limits...

  14. 36 CFR 4.11 - Load, weight and size limits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... limits established by State law apply to a vehicle operated on a park road. However, the superintendent may designate more restrictive limits when appropriate for traffic safety or protection of the road... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Load, weight and size limits...

  15. 36 CFR 4.11 - Load, weight and size limits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... limits established by State law apply to a vehicle operated on a park road. However, the superintendent may designate more restrictive limits when appropriate for traffic safety or protection of the road... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Load, weight and size limits...

  16. Long Duration Exposure Facility (LDEF) structural verification test report

    NASA Technical Reports Server (NTRS)

    Jones, T. C.; Lucy, M. H.; Shearer, R. L.

    1983-01-01

    Structural load tests on the Long Duration Exposure Facility's (LDEF) primary structure were conducted. These tests had three purposes: (1) demonstrate structural adequacy of the assembled LDEF primary structure when subjected to anticipated flight loads; (2) verify analytical models and methods used in loads and stress analysis; and (3) perform tests to comply with the Space Transportation System (STS) requirements. Test loads were based on predicted limit loads which consider all flight events. Good agreement is shown between predicted and observed load, strain, and deflection data. Test data show that the LDEF structure was subjected to 1.2 times limit load to meet the STS requirements. The structural adequacy of the LDEF is demonstrated.

  17. 14 CFR 25.301 - Loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... significantly change the distribution of external or internal loads, this redistribution must be taken into... loads multiplied by prescribed factors of safety). Unless otherwise provided, prescribed loads are limit...

  18. Non-linear programming in shakedown analysis with plasticity and friction

    NASA Astrophysics Data System (ADS)

    Spagnoli, A.; Terzano, M.; Barber, J. R.; Klarbring, A.

    2017-07-01

    Complete frictional contacts, when subjected to cyclic loading, may sometimes develop a favourable situation where slip ceases after a few cycles, an occurrence commonly known as frictional shakedown. Its resemblance to shakedown in plasticity has prompted scholars to apply direct methods, derived from the classical theorems of limit analysis, in order to assess a safe limit to the external loads applied on the system. In circumstances where zones of plastic deformation develop in the material (e.g., because of the large stress concentrations near the sharp edges of a complete contact), it is reasonable to expect an effect of mutual interaction of frictional slip and plastic strains on the load limit below which the global behaviour is non dissipative, i.e., both slip and plastic strains go to zero after some dissipative load cycles. In this paper, shakedown of general two-dimensional discrete systems, involving both friction and plasticity, is discussed and the shakedown limit load is calculated using a non-linear programming algorithm based on the static theorem of limit analysis. An illustrative example related to an elastic-plastic solid containing a frictional crack is provided.

  19. Anomalous winter-snow-amplified earthquake-induced disaster of the 2015 Langtang avalanche in Nepal

    NASA Astrophysics Data System (ADS)

    Fujita, Koji; Inoue, Hiroshi; Izumi, Takeki; Yamaguchi, Satoru; Sadakane, Ayako; Sunako, Sojiro; Nishimura, Kouichi; Immerzeel, Walter W.; Shea, Joseph M.; Kayastha, Rijan B.; Sawagaki, Takanobu; Breashears, David F.; Yagi, Hiroshi; Sakai, Akiko

    2017-05-01

    Coseismic avalanches and rockfalls, as well as their simultaneous air blast and muddy flow, which were induced by the 2015 Gorkha earthquake in Nepal, destroyed the village of Langtang. In order to reveal volume and structure of the deposit covering the village, as well as sequence of the multiple events, we conducted an intensive in situ observation in October 2015. Multitemporal digital elevation models created from photographs taken by helicopter and unmanned aerial vehicles reveal that the deposit volumes of the primary and succeeding events were 6.81 ± 1.54 × 106 and 0.84 ± 0.92 × 106 m3, respectively. Visual investigations of the deposit and witness statements of villagers suggest that the primary event was an avalanche composed mostly of snow, while the collapsed glacier ice could not be dominant source for the total mass. Succeeding events were multiple rockfalls which may have been triggered by aftershocks. From the initial deposit volume and the area of the upper catchment, we estimate an average snow depth of 1.82 ± 0.46 m in the source area. This is consistent with anomalously large snow depths (1.28-1.52 m) observed at a neighboring glacier (4800-5100 m a.s.l.), which accumulated over the course of four major snowfall events between October 2014 and the earthquake on 25 April 2015. Considering long-term observational data, probability density functions, and elevation gradients of precipitation, we conclude that this anomalous winter snow was an extreme event with a return interval of at least 100 years. The anomalous winter snowfall may have amplified the disastrous effects induced by the 2015 Gorkha earthquake in Nepal.

  20. Progressive failure of sheeted rock slopes: the 2009–2010 Rhombus Wall rock falls in Yosemite Valley, California, USA

    USGS Publications Warehouse

    Stock, Greg M.; Martel, Stephen J.; Collins, Brian D.; Harp, Edwin L.

    2012-01-01

    Progressive rock-fall failures in natural rock slopes are common in many environments, but often elude detailed quantitative documentation and analysis. Here we present high-resolution photography, video, and laser scanning data that document spatial and temporal patterns of a 15-month-long sequence of at least 14 rock falls from the Rhombus Wall, a sheeted granitic cliff in Yosemite Valley, California. The rock-fall sequence began on 26 August 2009 with a small failure at the tip of an overhanging rock slab. Several hours later, a series of five rock falls totaling 736 m3progressed upward along a sheeting joint behind the overhanging slab. Over the next 3 weeks, audible cracking occurred on the Rhombus Wall, suggesting crack propagation, while visual monitoring revealed opening of a sheeting joint adjacent to the previous failure surface. On 14 September 2009 a 110 m3 slab detached along this sheeting joint. Additional rock falls between 30 August and 20 November 2010, totaling 187 m3, radiated outward from the initial failure area along cliff (sub)parallel sheeting joints. We suggest that these progressive failures might have been related to stress redistributions accompanying propagation of sheeting joints behind the cliff face. Mechanical analyses indicate that tensile stresses should occur perpendicular to the cliff face and open sheeting joints, and that sheeting joints should propagate parallel to a cliff face from areas of stress concentrations. The analyses also account for how sheeting joints can propagate to lengths many times greater than their depths behind cliff faces. We posit that as a region of failure spreads across a cliff face, stress concentrations along its margin will spread with it, promoting further crack propagation and rock falls.

  1. Headwater sediment dynamics in a debris flow catchment constrained by high-resolution topographic surveys

    NASA Astrophysics Data System (ADS)

    Loye, Alexandre; Jaboyedoff, Michel; Theule, Joshua Isaac; Liébault, Frédéric

    2016-06-01

    Debris flows have been recognized to be linked to the amounts of material temporarily stored in torrent channels. Hence, sediment supply and storage changes from low-order channels of the Manival catchment, a small tributary valley with an active torrent system located exclusively in sedimentary rocks of the Chartreuse Massif (French Alps), were surveyed periodically for 16 months using terrestrial laser scanning (TLS) to study the coupling between sediment dynamics and torrent responses in terms of debris flow events, which occurred twice during the monitoring period. Sediment transfer in the main torrent was monitored with cross-section surveys. Sediment budgets were generated seasonally using sequential TLS data differencing and morphological extrapolations. Debris production depends strongly on rockfall occurring during the winter-early spring season, following a power law distribution for volumes of rockfall events above 0.1 m3, while hillslope sediment reworking dominates debris recharge in spring and autumn, which shows effective hillslope-channel coupling. The occurrence of both debris flow events that occurred during the monitoring was linked to recharge from previous debris pulses coming from the hillside and from bedload transfer. Headwater debris sources display an ambiguous behaviour in sediment transfer: low geomorphic activity occurred in the production zone, despite rainstorms inducing debris flows in the torrent; still, a general reactivation of sediment transport in headwater channels was observed in autumn without new debris supply, suggesting that the stored debris was not exhausted. The seasonal cycle of sediment yield seems to depend not only on debris supply and runoff (flow capacity) but also on geomorphic conditions that destabilize remnant debris stocks. This study shows that monitoring the changes within a torrent's in-channel storage and its debris supply can improve knowledge on recharge thresholds leading to debris flow.

  2. Interesting insights into instability of slopes and rock fall in the morphodynamic Himalayan terrane

    NASA Astrophysics Data System (ADS)

    Singh, T. N.; Vishal, V.; Pradhan, S. P.

    2015-12-01

    Himalayan mountain ranges are tectonically and seismically very active and experience many disastrous events with time due to slope failure. Frequent failures of rock cut slopes cause obstruction in traffic and often lead to fatalities. In recent years, the number of tragedies has increased when associated with regional phenomena such at the Kedarnath tragedy of 2013 and the Gorkha earthquake of 2015. The influence of such phenomena on the stability of slopes along important national highways and key settlement areas only raise the risk to lives and property. We conducted a multi-approach investigation for some key slopes along the National Highway 58 in Uttarakhand Himalaya, India. A very detailed field work was conducted to identify the unstable slopes and those with some history of failure. The pertinent geomechanical characteristics of the representative rock samples were determined in the laboratory. Based on the structural data, kinematic analysis was carried out. Finally the slopes were simulated using FDM based simulator, Flac/Slope for analysing the health of the slopes and Rockfall 4.0 to investigate the phenomenon of rockfall along the Highway. It was found that few slopes were weak due to the inherent weak rock materials while few slopes made up of high strength rocks were effectively weak due to prone-to-failure orientation of the joints. Quantification of bounce-height of rock blocks during fall, their energy, velocity and displacement along the slope was also done. Using 3-D simulations, few critically-stable slopes that appear to be stable, were identified. Little ground movement could be capable of triggering a large scale failure in the area. Slopes in the studied region are under threat to failure and need immediate proper planning using the suggested remedial measures.

  3. Three-dimensional analysis of the anatomical growth response of European conifers to mechanical disturbance.

    PubMed

    Schneuwly, Dominique M; Stoffel, Markus; Dorren, Luuk K A; Berger, Frédéric

    2009-10-01

    Studies on tree reaction after wounding were so far based on artificial wounding or chemical treatment. For the first time, type, spread and intensity of anatomical responses were analyzed and quantified in naturally disturbed Larix decidua Mill., Picea abies (L.) Karst. and Abies alba Mill. trees. The consequences of rockfall impacts on increment growth were assessed at the height of the wounds, as well as above and below the injuries. A total of 16 trees were selected on rockfall slopes, and growth responses following 54 wounding events were analyzed on 820 cross-sections. Anatomical analysis focused on the occurrence of tangential rows of traumatic resin ducts (TRD) and on the formation of reaction wood. Following mechanical disturbance, TRD production was observed in 100% of L. decidua and P. abies wounds. The radial extension of TRD was largest at wound height, and they occurred more commonly above, rather than below, the wounds. For all species, an intra-annual radial shift of TRD was observed with increasing axial distance from wounds. Reaction wood was formed in 87.5% of A. alba following wounding, but such cases occurred only in 7.7% of L. decidua. The results demonstrate that anatomical growth responses following natural mechanical disturbance differ significantly from the reactions induced by artificial stimuli or by decapitation. While the types of reactions remain comparable between the species, their intensity, spread and persistence disagree considerably. We also illustrate that the external appearance of wounds does not reflect an internal response intensity. This study reveals that disturbance induced under natural conditions triggers more intense and more widespread anatomical responses than that induced under artificial stimuli, and that experimental laboratory tests considerably underestimate tree response.

  4. Analysing the spatial patterns of erosion scars using point process theory at the coastal chalk cliff of Mesnil-Val, (Normandy, Northern France)

    NASA Astrophysics Data System (ADS)

    Rohmer, J.; Dewez, D.

    2014-09-01

    Over the last decade, many cliff erosion studies have focused on frequency-size statistics using inventories of sea cliff retreat sizes. By comparison, only a few paid attention to quantifying the spatial and temporal organisation of erosion scars over a cliff face. Yet, this spatial organisation carries essential information about the external processes and the environmental conditions that promote or initiate sea-cliff instabilities. In this article, we use summary statistics of spatial point process theory as a tool to examine the spatial and temporal pattern of a rockfall inventory recorded with repeated terrestrial laser scanning surveys at the chalk coastal cliff site of Mesnil-Val (Normandy, France). Results show that: (1) the spatial density of erosion scars is specifically conditioned alongshore by the distance to an engineered concrete groin, with an exponential-like decreasing trend, and vertically focused both at wave breaker height and on strong lithological contrasts; (2) small erosion scars (10-3-10-2 m3) aggregate in clusters within a radius of 5 to 10 m, which suggests some sort of attraction or focused causative process, and disperse above this critical distance; (3) on the contrary, larger erosion scars (10-2-101 m3) tend to disperse above a radius of 1 to 5 m, possibly due to the spreading of successive failures across the cliff face; (4) large scars significantly occur albeit moderately, where previous large rockfalls have occurred during preceeding winter; (5) this temporal trend is not apparent for small events. In conclusion, this study shows, with a worked example, how spatial point process summary statistics are a tool to test and quantify the significance of geomorphological observation organisation.

  5. Analysing the spatial patterns of erosion scars using point process theory at the coastal chalk cliff of Mesnil-Val, Normandy, northern France

    NASA Astrophysics Data System (ADS)

    Rohmer, J.; Dewez, T.

    2015-02-01

    Over the last decade, many cliff erosion studies have focused on frequency-size statistics using inventories of sea cliff retreat sizes. By comparison, only a few paid attention to quantifying the spatial and temporal organisation of erosion scars over a cliff face. Yet, this spatial organisation carries essential information about the external processes and the environmental conditions that promote or initiate sea-cliff instabilities. In this article, we use summary statistics of spatial point process theory as a tool to examine the spatial and temporal pattern of a rockfall inventory recorded with repeated terrestrial laser scanning surveys at the chalk coastal cliff site of Mesnil-Val (Normandy, France). Results show that: (1) the spatial density of erosion scars is specifically conditioned alongshore by the distance to an engineered concrete groyne, with an exponential-like decreasing trend, and vertically focused both at wave breaker height and on strong lithological contrasts; (2) small erosion scars (10-3 to 10-2 m3) aggregate in clusters within a radius of 5 to 10 m, which suggests some sort of attraction or focused causative process, and disperse above this critical distance; (3) on the contrary, larger erosion scars (10-2 to 101 m3) tend to disperse above a radius of 1 to 5 m, possibly due to the spreading of successive failures across the cliff face; (4) large scars significantly occur albeit moderately, where previous large rockfalls have occurred during preceding winter; (5) this temporal trend is not apparent for small events. In conclusion, this study shows, with a worked example, how spatial point process summary statistics are a tool to test and quantify the significance of geomorphological observation organisation.

  6. Rock falls landslides in Abruzzo (Central Italy) after recent earthquakes: morphostructural control

    NASA Astrophysics Data System (ADS)

    Piacentini, T.; Miccadei, E.; Di Michele, R.; Esposito, G.

    2012-04-01

    Recent earthquakes show that damages due to collateral effects could, in some cases exceed the economic and social losses directly connected to the seismic shaking. The earthquake heavily damaged urban areas and villages and induced several coseismic deformations and geomorphologic effects, including different types of instability such as: rock falls, debris falls, sink holes, ground collapses, liquefaction, etc. Among the effects induced by the seismic energy release, landslides are one of the most significant in terms of hazard and related risk, owing to the occurrence of exposed elements. This work analyzes the geomorphological effects, and particularly the rock falls, which occurred in the L'Aquila area during and immediately after the April 2009 earthquake. The analysis is focused mainly on the rock fall distribution related to the local morphostructural setting. Rock falls occurred mostly on calcareous bedrock slopes or on scarps developed on conglomerates and breccias of Quaternary continental deposits. Geological and geomorphological surveys have outlined different types of rock falls on different morpho-structural settings, which can be summarized as follow: 1)rock falls on calcareous faulted homoclinal ridges; 2)rock falls on calcareous rock slopes of karst landforms; 3)rock falls on structural scarps on conglomerates and breccias of Quaternary continental deposits. The first type of rockfall occurred particularly along main gorges carved on calcareous rocks and characterised by very steep fault slopes and structural slopes (i.e. San Venanzio Gorges, along the Aterno river). In these cases already unstable slopes due to lithological and structural control were triggered as rockfalls also at high distance from the epicentre area. These elements provide useful indications both at local scale, for seismic microzonation studies and seismic risk prevention, and at regional scale, for updating studies and inventory of landslides.

  7. Optimizing the analysis of routing oversize/overweight loads to provide efficient freight corridors.

    DOT National Transportation Integrated Search

    2012-07-01

    The subject of this report is limited specifically to Kansas highways. Current features of the State : Highway System were looked at to determine corridors that do not limit Oversize/Overweight (OS/OW) : vehicles, or that limit loads to varying de...

  8. The temporal evolution of electromagnetic markers sensitive to the capacity limits of visual short-term memory.

    PubMed

    Mitchell, Daniel J; Cusack, Rhodri

    2011-01-01

    An electroencephalographic (EEG) marker of the limited contents of human visual short-term memory (VSTM) has previously been described. Termed contralateral delay activity, this consists of a sustained, posterior, negative potential that correlates with memory load and is greatest contralateral to the remembered hemifield. The current investigation replicates this finding and uses magnetoencephalography (MEG) to characterize its magnetic counterparts and their neural generators as they evolve throughout the memory delay. A parametric manipulation of memory load, within and beyond capacity limits, allows separation of signals that asymptote with behavioral VSTM performance from additional responses that contribute to a linear increase with set-size. Both EEG and MEG yielded bilateral signals that track the number of objects held in memory, and contralateral signals that are independent of memory load. In MEG, unlike EEG, the contralateral interaction between hemisphere and item load is much weaker, suggesting that bilateral and contralateral markers of memory load reflect distinct sources to which EEG and MEG are differentially sensitive. Nonetheless, source estimation allowed both the bilateral and the weaker contralateral capacity-limited responses to be localized, along with a load-independent contralateral signal. Sources of global and hemisphere-specific signals all localized to the posterior intraparietal sulcus during the early delay. However the bilateral load response peaked earlier and its generators shifted later in the delay. Therefore the hemifield-specific response may be more closely tied to memory maintenance while the global load response may be involved in initial processing of a limited number of attended objects, such as their individuation or consolidation into memory.

  9. Fatigue limits of monolithic Y-TZP three-unit-fixed dental prostheses: effect of grinding at the gingival zone of the connector

    PubMed Central

    Amaral, Marina; Rocha, Regina FV; Melo, Renata Marques; Pereira, Gabriel KR; Zhang, Yu; Valandro, Luiz Felipe; Bottino, Marco Antonio

    2017-01-01

    Objectives To determine the fatigue limits of three-unit monolithic zirconia FDPs before and after grinding of the gingival areas of connectors with diamond burs. Material and Methods FDPs were milled from pre-sintered blocks of zirconia simulating the absence of the first mandibular molar. Half of the specimens were subjected to grinding, simulating clinical adjustment, and all of them were subjected to glazing procedure. Additional specimens were manufactured for roughness analysis. FDPs were adhesively cemented onto glass-fiber reinforced epoxy resin abutments. Fatigue limits and standard deviations were obtained using a staircase fatigue method (n = 20, 100,000 loading cycles/5 Hz). The initial test load was 70% of the mean load-to-fracture (n = 3) and load increments were 5% of the initial test load for both the control and ground specimens. Data were compared by Student’s T-test (α ≤ 0.05). Results Both the control and ground groups exhibited similar values of load-to-fracture and fatigue limits. Neither the surface treatments nor ageing affected the surface roughness of the specimens. Conclusions The damage induced by grinding with fine-grit diamond bur in the gingival area of the connectors did not decrease the fatigue limit of the three-unit monolithic zirconia FDP. PMID:28494273

  10. Nitrogen and the Baltic Sea: managing nitrogen in relation to phosphorus.

    PubMed

    Elmgren, R; Larsson, U

    2001-10-26

    The Baltic is a large, brackish sea (4 x 10(5) km2) extending from 54N to approximately 66N, with a fourfold larger drainage area (population 8 x 10(7). Surface salinity (2 to 8 PSU) and hence biodiversity is low. In the last century, annual nutrient loads increased to 10(6) metric tons N and 5 x 10(4) ton P. Eutrophication is evident in the N-limited south, where cyanobacteria fix 2 to 4 x 10(5) ton N each summer, Secchi depths have been halved, and O2-deficient bottom areas have spread. Production remains low in the P-limited north. In nutrient-enriched coastal areas, phytoplankton blooms, toxic at times, and filamentous macroalgae reduce amenity values. Loads need to be reduced of both N, to reduce production, and P, to limit N-fixing cyanobacterial blooms. When large N-load reductions have been achieved locally, algal biomass has declined. So far, P loads have been reduced more than N loads. If this continues, a P-limited Baltic proper may result, very different from previous N-limited conditions. Reaching the management goal of halved anthropogenic N and P loads at minimum cost will require better understanding of biogeochemical nutrient cycles, economic evaluation of proposed measures, and improved stakeholder participation.

  11. 14 CFR 23.23 - Load distribution limits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... distribution limits. (a) Ranges of weights and centers of gravity within which the airplane may be safely operated must be established. If a weight and center of gravity combination is allowable only within... established for the corresponding weight and center of gravity combinations. (b) The load distribution limits...

  12. 14 CFR 23.23 - Load distribution limits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... distribution limits. (a) Ranges of weights and centers of gravity within which the airplane may be safely operated must be established. If a weight and center of gravity combination is allowable only within... established for the corresponding weight and center of gravity combinations. (b) The load distribution limits...

  13. 14 CFR 23.23 - Load distribution limits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... distribution limits. (a) Ranges of weights and centers of gravity within which the airplane may be safely operated must be established. If a weight and center of gravity combination is allowable only within... established for the corresponding weight and center of gravity combinations. (b) The load distribution limits...

  14. 14 CFR 23.23 - Load distribution limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... distribution limits. (a) Ranges of weights and centers of gravity within which the airplane may be safely operated must be established. If a weight and center of gravity combination is allowable only within... established for the corresponding weight and center of gravity combinations. (b) The load distribution limits...

  15. 14 CFR 23.23 - Load distribution limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... distribution limits. (a) Ranges of weights and centers of gravity within which the airplane may be safely operated must be established. If a weight and center of gravity combination is allowable only within... established for the corresponding weight and center of gravity combinations. (b) The load distribution limits...

  16. Optimizing the analysis of routing oversize/overweight loads to provide efficient freight corridors : technical summary.

    DOT National Transportation Integrated Search

    2012-07-01

    The subject of this report is limited specifically to Kansas highways. Current features of the State Highway System were looked at to determine corridors that do not limit Oversize/Overweight (OS/OW) vehicles, or that limit loads to varying degree...

  17. FUTURE AQUATIC NUTRIENT LIMITATIONS. (R827785E02)

    EPA Science Inventory

    Nutrient limitation of phytoplankton growth in aquatic systems is moving towards a higher incidence of P and Si limitation as a result of increased nitrogen loading, a N:P fertilizer use of 26:1 (molar basis), population growth, and relatively stable silicate loading. This res...

  18. 76 FR 44245 - Special Conditions: Gulfstream Model GVI Airplane; Limit Engine Torque Loads for Sudden Engine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... Conditions No. 25-441-SC] Special Conditions: Gulfstream Model GVI Airplane; Limit Engine Torque Loads for... transient dynamic loads resulting from: (a) The loss of any fan, compressor, or turbine blade; and (b...;Federal Register / Vol. 76, No. 142 / Monday, July 25, 2011 / Rules and Regulations#0;#0; [[Page 44245...

  19. 76 FR 32323 - Limited Service Domestic Voyage Load Lines for River Barges on Lake Michigan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-06

    ...-AA17 Limited Service Domestic Voyage Load Lines for River Barges on Lake Michigan AGENCY: Coast Guard... for certain river barges operating on Lake Michigan, as established in the final rule published on... in the Federal Register (75 FR 70595) (2010 final rule) that finalized the special Lake Michigan load...

  20. 14 CFR 29.473 - Ground loading conditions and assumptions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... through the center of gravity throughout the landing impact. This lift may not exceed two-thirds of the... rotorcraft must be designed for a limit load factor of not less than the limit inertia load factor... factor of safety prescribed in § 29.303 need not be used. [Amdt. 29-3, 33 FR 966, Jan. 26, 1968] ...

  1. 14 CFR 29.473 - Ground loading conditions and assumptions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... through the center of gravity throughout the landing impact. This lift may not exceed two-thirds of the... rotorcraft must be designed for a limit load factor of not less than the limit inertia load factor... factor of safety prescribed in § 29.303 need not be used. [Amdt. 29-3, 33 FR 966, Jan. 26, 1968] ...

  2. 14 CFR 29.473 - Ground loading conditions and assumptions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... through the center of gravity throughout the landing impact. This lift may not exceed two-thirds of the... rotorcraft must be designed for a limit load factor of not less than the limit inertia load factor... factor of safety prescribed in § 29.303 need not be used. [Amdt. 29-3, 33 FR 966, Jan. 26, 1968] ...

  3. Use of Flexible Body Coupled Loads in Assessment of Day of Launch Flight Loads

    NASA Technical Reports Server (NTRS)

    Starr, Brett R.; Yunis, Isam; Olds, Aaron D.

    2011-01-01

    A Day of Launch flight loads assessment technique that determines running loads calculated from flexible body coupled loads was developed for the Ares I-X Flight Test Vehicle. The technique was developed to quantify DOL flight loads in terms of structural load components rather than the typically used q-alpha metric to provide more insight into the DOL loads. In this technique, running loads in the primary structure are determined from the combination of quasi-static aerodynamic loads and dynamic loads. The aerodynamic loads are calculated as a function of time using trajectory parameters passed from the DOL trajectory simulation and are combined with precalculated dynamic loads using a load combination equation. The potential change in aerodynamic load due to wind variability during the countdown is included in the load combination. In the event of a load limit exceedance, the technique allows the identification of what load component is exceeded, a quantification of how much the load limit is exceeded, and where on the vehicle the exceedance occurs. This technique was used to clear the Ares I-X FTV for launch on October 28, 2009. This paper describes the use of coupled loads in the Ares I-X flight loads assessment and summarizes the Ares I-X load assessment results.

  4. Optimal Control Allocation with Load Sensor Feedback for Active Load Suppression, Experiment Development

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.; Goodrick, Dan

    2017-01-01

    The problem of control command and maneuver induced structural loads is an important aspect of any control system design. The aircraft structure and the control architecture must be designed to achieve desired piloted control responses while limiting the imparted structural loads. The classical approach is to utilize high structural margins, restrict control surface commands to a limited set of analyzed combinations, and train pilots to follow procedural maneuvering limitations. With recent advances in structural sensing and the continued desire to improve safety and vehicle fuel efficiency, it is both possible and desirable to develop control architectures that enable lighter vehicle weights while maintaining and improving protection against structural damage. An optimal control technique has been explored and shown to achieve desirable vehicle control performance while limiting sensed structural loads. The subject of this paper is the design of the optimal control architecture, and provides the reader with some techniques for tailoring the architecture, along with detailed simulation results.

  5. 14 CFR 29.471 - General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... equilibrium. For limit ground loads— (1) The limit ground loads obtained in the landing conditions in this... equilibrium with linear and angular inertia loads in a rational or conservative manner. (b) Critical centers...

  6. 14 CFR 133.45 - Operating limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Operating limitations. 133.45 Section 133...-LOAD OPERATIONS Airworthiness Requirements § 133.45 Operating limitations. In addition to the operating... established in accordance with § 133.43(c). (b) The rotorcraft-load combination may not be operated with an...

  7. Empirical Investigations of the Opportunity Limits of Automatic Residential Electric Load Shaping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruickshank, Robert F.; Henze, Gregor P.; Balaji, Rajagopalan

    Residential electric load shaping is often modeled as infrequent, utility-initiated, short-duration deferral of peak demand through direct load control. In contrast, modeled herein is the potential for frequent, transactive, intraday, consumer-configurable load shaping for storage-capable thermostatically controlled electric loads (TCLs), including refrigerators, freezers, and hot water heaters. Unique to this study are 28 months of 15-minute-interval observations of usage in 101 homes in the Pacific Northwest United States that specify exact start, duration, and usage patterns of approximately 25 submetered loads per home. The magnitudes of the load shift from voluntarily-participating TCL appliances are aggregated to form hourly upper andmore » lower load-shaping limits for the coordination of electrical generation, transmission, distribution, storage, and demand. Empirical data are statistically analyzed to define metrics that help quantify load-shaping opportunities.« less

  8. Empirical Investigations of the Opportunity Limits of Automatic Residential Electric Load Shaping: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruickshank, Robert F.; Henze, Gregor P.; Balaji, Rajagopalan

    Residential electric load shaping is often modeled as infrequent, utility-initiated, short-duration deferral of peak demand through direct load control. In contrast, modeled herein is the potential for frequent, transactive, intraday, consumer-configurable load shaping for storage-capable thermostatically controlled electric loads (TCLs), including refrigerators, freezers, and hot water heaters. Unique to this study are 28 months of 15-minute-interval observations of usage in 101 homes in the Pacific Northwest United States that specify exact start, duration, and usage patterns of approximately 25 submetered loads per home. The magnitudes of the load shift from voluntarily-participating TCL appliances are aggregated to form hourly upper andmore » lower load-shaping limits for the coordination of electrical generation, transmission, distribution, storage, and demand. Empirical data are statistically analyzed to define metrics that help quantify load-shaping opportunities.« less

  9. Passive Orbital Disconnect Strut (PODS 3) structural test program

    NASA Technical Reports Server (NTRS)

    Parmley, R. T.

    1985-01-01

    A passive orbital disconnect strut (PODS-3) was analyzed structurally and thermally. Development tests on a graphite/epoxy orbit tube and S glass epoxy launch tube provided the needed data to finalize the design. A detailed assembly procedure was prepared. One strut was fabricated. Shorting loads in both the axial and lateral direction (vs. load angle and location) were measured. The strut was taken to design limit loads at both ambient and 78 K (cold end only). One million fatigue cycles were performed at predicted STS loads (half in tension, half in compression) with the cold end at 78 K. The fatigue test was repeated at design limit loads. Six struts were then fabricated and tested as a system. Axial loads, side loads, and simulated asymmetric loads due to temperature gradients around the vacuum shell were applied. Shorting loads were measured for all tests.

  10. Centaur Standard Shroud (CSS) static limit load structural tests

    NASA Technical Reports Server (NTRS)

    Eastwood, C.

    1975-01-01

    The structural capabilities of the jettisonable metal shroud were tested and the interaction of the shroud with the Centaur stage was evaluated. A flight-configured shroud and the assemblies of the associated Centaur stage were tested for applied axial and shear loads to flight limit values. The tests included various thermal, pressure, and load conditions to verify localized strength capabilities, to evaluate subsystem performance, and to determine the aging effect on insulation system properties. The tests series verified the strength capabilities of the shroud and of all associated flight assembles. Shroud deflections were shown to remain within allowable limits so long as load sharing members were connected between the shroud and the Centaur stage.

  11. 29 CFR 1919.29 - Limitations on safe working loads and proof loads.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) GEAR CERTIFICATION Certification of Vessels: Tests and Proof... pertinent limitations based on stability and/or on structural competence at particular radii. Safe working...

  12. 29 CFR 1919.29 - Limitations on safe working loads and proof loads.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) GEAR CERTIFICATION Certification of Vessels: Tests and Proof... pertinent limitations based on stability and/or on structural competence at particular radii. Safe working...

  13. 29 CFR 1919.29 - Limitations on safe working loads and proof loads.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) GEAR CERTIFICATION Certification of Vessels: Tests and Proof... pertinent limitations based on stability and/or on structural competence at particular radii. Safe working...

  14. 29 CFR 1919.29 - Limitations on safe working loads and proof loads.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) GEAR CERTIFICATION Certification of Vessels: Tests and Proof... pertinent limitations based on stability and/or on structural competence at particular radii. Safe working...

  15. 29 CFR 1919.29 - Limitations on safe working loads and proof loads.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) GEAR CERTIFICATION Certification of Vessels: Tests and Proof... pertinent limitations based on stability and/or on structural competence at particular radii. Safe working...

  16. Force Limit System

    NASA Technical Reports Server (NTRS)

    Pawlik, Ralph; Krause, David; Bremenour, Frank

    2011-01-01

    The Force Limit System (FLS) was developed to protect test specimens from inadvertent overload. The load limit value is fully adjustable by the operator and works independently of the test system control as a mechanical (non-electrical) device. When a test specimen is loaded via an electromechanical or hydraulic test system, a chance of an overload condition exists. An overload applied to a specimen could result in irreparable damage to the specimen and/or fixturing. The FLS restricts the maximum load that an actuator can apply to a test specimen. When testing limited-run test articles or using very expensive fixtures, the use of such a device is highly recommended. Test setups typically use electronic peak protection, which can be the source of overload due to malfunctioning components or the inability to react quickly enough to load spikes. The FLS works independently of the electronic overload protection.

  17. An Evolutionary Upgrade of Cognitive Load Theory: Using the Human Motor System and Collaboration to Support the Learning of Complex Cognitive Tasks

    ERIC Educational Resources Information Center

    Paas, Fred; Sweller, John

    2012-01-01

    Cognitive load theory is intended to provide instructional strategies derived from experimental, cognitive load effects. Each effect is based on our knowledge of human cognitive architecture, primarily the limited capacity and duration of a human working memory. These limitations are ameliorated by changes in long-term memory associated with…

  18. Interpreting ASME limits and philosophy in FEA of pressure vessel parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezerra, L.M.; Cruz, J.R.B.; Miranda, C.A.J.

    1995-12-01

    In recent years there has been an effort to interpret finite element (FE) stress results on the light of the ASME B and PV rules and philosophy. Many task groups have issued guidelines on stress linearization and classifications. All those attempts have come up trying to cope modern FE techniques with the rules imposed by the ASME Code. This paper is an independent contribution to the Pressure Vessel Research Council (PVRC) groups which are studying the stress classification and the failure mechanism in a FE framework. This work tries to complement the interesting work by Hollinger and Hechmer presented inmore » the PVP-94 in Minneapolis. In that paper, the authors examined a typical support skirt and showed relations between the skirt collapse load obtained by finite element analysis and the loads allowed from the ASME stress limits. To complement such paper, in the present article, different skirt geometry configurations are analyzed. The configurations here investigated consist of similar support skirts but with different angles of attachments between cylinder and cone parts. It will be possible to observe the influence of the bending stress in the collapse load and its relation to the allowable loads inferred from the ASME limits. A pressure vessel with torispherical head under internal pressure is also examined. Using elastic and limit load FEA, the present paper determines the collapse loads of the configurations. It sets up the relations between these collapse loads, stress categories, and limits dictated by the ASME Code Subsection NB. On the light of NB rules and philosophy, this paper shows how different methods of stress assessment, classification, and limits may influence in the design of a pressure vessel.« less

  19. Creep-induced residual stress strengthening in a Nicalon-fiber-reinforced BMAS-glass-ceramic-matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widjaja, S.; Jakus, K.; Ritter, J.E.

    The feasibility of inducing a compressive residual stress in the matrix of a Nicalon-fiber-reinforced BMAS-glass-ceramic-matrix composite through a creep-load transfer treatment was studied. Specimens were crept at 1100 C under constant tensile load to cause load transfer from the matrix to the fibers, then cooled under load. Upon removal of the load at room temperature, the matrix was put into compression by the elastic recovery of the fibers. This compressive residual stress in the matrix increased the room-temperature proportional limit stress of the composite. The increase in the proportional limit stress was found to be dependent upon the applied creepmore » stress, with an increase in creep stress resulting in an increase in the proportional limit stress. Acoustic emission results showed that the onset of significant matrix cracking correlated closely to the proportional limit stress. Changes in the state of residual stress in the matrix were supported by X-ray diffraction results. Fracture surfaces of all specimens exhibited fiber pullout behavior, indicating that the creep-load transfer process did not embrittle the fiber/matrix interface.« less

  20. The eastern front of the Sierra Nevada; prone to earthquakes and volcanic eruption

    USGS Publications Warehouse

    Rinehart, C.D.; Smith, W.C.

    1981-01-01

    On Sunday morning, May 25, 1980, the weather at Mammoth Lakes, Calif., was sunny and brisk. Suddenly, just before 9:33 a.m, the world became a jarring, lurching, unstable place. Along the front of the Sierra Nevada, the muffled thunder of rockfalls and avalanches prolonged the confusion of sound and motion and added the spectacle of large, rising dust clouds. Three geysers, one 30 ft high, suddenly roared into the air at Hot Creek, although none survived more than a few hours. Some new boiling pools appeared, while many existing hot springs and pools became hotter and more active. 

  1. The Klamath Falls, Oregon, earthquakes on September 20, 1993

    USGS Publications Warehouse

    Brantley, S.R.

    1993-01-01

    The mainshocks caused light moderate damage at Klamath Falls, a town of about 18,000 residents located only about 20 km east of the epicentral area. Damage included toppled chimneys, cracked masonry, and fallen parapets. Power outages occurred after the strongest shocks. In addition, strong shaking broke water mains, and landslides temporarily blocked highways. the earthquakes also caused two fatalities. A rockfall crushed an automobile, killing a motorist, and an elderly lady had a heart attack. the low population density in the epicentral area- less than five people per sq km- kept the toatl dollar loss to about 7.5 million dollars. 

  2. 29 CFR 1917.111 - Maintenance and load limits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... maintained. (b) Maximum safe load limits, in pounds per square foot (kilograms per square meter), of floors elevated above ground level, and pier structures over the water shall be conspicuously posted in all cargo...

  3. Fatigue limit of monolithic Y-TZP three-unit-fixed dental prostheses: Effect of grinding at the gingival zone of the connector.

    PubMed

    Amaral, Marina; Villefort, Regina F; Melo, Renata Marques; Pereira, Gabriel K R; Zhang, Yu; Valandro, Luiz Felipe; Bottino, Marco Antonio

    2017-08-01

    To determine the fatigue limits of three-unit monolithic zirconia fixed dental prosthesis (FDPs) before and after grinding of the gingival areas of connectors with diamond burs. FDPs were milled from pre-sintered blocks of zirconia simulating the absence of the first mandibular molar. Half of the specimens were subjected to grinding, simulating clinical adjustment, and all of them were subjected to glazing procedure. Additional specimens were manufactured for roughness analysis. FDPs were adhesively cemented onto glass-fiber reinforced epoxy resin abutments. Fatigue limits and standard deviations were obtained using a staircase fatigue method (n=20, 100,000 loading cycles/5Hz). The initial test load was 70% of the mean load-to-fracture (n=3) and load increments were 5% of the initial test load for both the control and ground specimens. Data were compared by Student's T-test (α≤0.05). Both the control and ground groups exhibited similar values of load-to-fracture and fatigue limits. Neither the surface treatments nor ageing affected the surface roughness of the specimens. The damage induced by grinding with fine-grit diamond bur in the gingival area of the connectors did not decrease the fatigue limit of the three-unit monolithic zirconia FDP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Fault current limiter and alternating current circuit breaker

    DOEpatents

    Boenig, Heinrich J.

    1998-01-01

    A solid-state circuit breaker and current limiter for a load served by an alternating current source having a source impedance, the solid-state circuit breaker and current limiter comprising a thyristor bridge interposed between the alternating current source and the load, the thyristor bridge having four thyristor legs and four nodes, with a first node connected to the alternating current source, and a second node connected to the load. A coil is connected from a third node to a fourth node, the coil having an impedance of a value calculated to limit the current flowing therethrough to a predetermined value. Control means are connected to the thyristor legs for limiting the alternating current flow to the load under fault conditions to a predetermined level, and for gating the thyristor bridge under fault conditions to quickly reduce alternating current flowing therethrough to zero and thereafter to maintain the thyristor bridge in an electrically open condition preventing the alternating current from flowing therethrough for a predetermined period of time.

  5. Fault current limiter and alternating current circuit breaker

    DOEpatents

    Boenig, H.J.

    1998-03-10

    A solid-state circuit breaker and current limiter are disclosed for a load served by an alternating current source having a source impedance, the solid-state circuit breaker and current limiter comprising a thyristor bridge interposed between the alternating current source and the load, the thyristor bridge having four thyristor legs and four nodes, with a first node connected to the alternating current source, and a second node connected to the load. A coil is connected from a third node to a fourth node, the coil having an impedance of a value calculated to limit the current flowing therethrough to a predetermined value. Control means are connected to the thyristor legs for limiting the alternating current flow to the load under fault conditions to a predetermined level, and for gating the thyristor bridge under fault conditions to quickly reduce alternating current flowing therethrough to zero and thereafter to maintain the thyristor bridge in an electrically open condition preventing the alternating current from flowing therethrough for a predetermined period of time. 9 figs.

  6. Optimal Control Allocation with Load Sensor Feedback for Active Load Suppression, Flight-Test Performance

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.; Goodrick, Dan

    2017-01-01

    The problem of control command and maneuver induced structural loads is an important aspect of any control system design. The aircraft structure and the control architecture must be designed to achieve desired piloted control responses while limiting the imparted structural loads. The classical approach is to utilize high structural margins, restrict control surface commands to a limited set of analyzed combinations, and train pilots to follow procedural maneuvering limitations. With recent advances in structural sensing and the continued desire to improve safety and vehicle fuel efficiency, it is both possible and desirable to develop control architectures that enable lighter vehicle weights while maintaining and improving protection against structural damage. An optimal control technique has been explored and shown to achieve desirable vehicle control performance while limiting sensed structural loads to specified values. This technique has been implemented and flown on the National Aeronautics and Space Administration Full-scale Advanced Systems Testbed aircraft. The flight tests illustrate that the approach achieves the desired performance and show promising potential benefits. The flights also uncovered some important issues that will need to be addressed for production application.

  7. Impact of adherence on duration of virological suppression among patients receiving combination antiretroviral therapy.

    PubMed

    Raboud, J M; Harris, M; Rae, S; Montaner, J S G

    2002-04-01

    To assess the effect of adherence to antiretroviral therapy on the duration of virological suppression after controlling for whether or not the patient ever attained a plasma viral load below the limit of detection of sensitive HIV-1 RNA assays. Data were combined from three randomized, blinded clinical trials (INCAS, AVANTI-2, and AVANTI-3) that compared the antiviral effects of two- and three-drug antiretroviral regimens. Virological suppression was defined as maintaining a plasma viral load below 1000 copies/mL. Adherence was defined prospectively and measured by patient self-report. Adherence did not have a major impact on the probability of achieving virological suppression for patients receiving dual therapy. However, for patients receiving triple therapy, adherence increased the probability of virological suppression, whether the plasma viral load nadir was above or below the lower limit of quantification. Compared to adherent patients with a plasma viral load nadir below the lower limit of quantification, the relative risk of virological failure was 3.0 for non-adherent patients with a nadir below the limit, 18.1 for adherent patients with a nadir above the limit, and 32.1 for non-adherent patients with a nadir above the limit. For patients receiving current three-drug antiretroviral regimens, adherence to therapy and plasma viral load nadir are important factors determining the duration of virological suppression.

  8. Numerical investigation of plasma edge transport and limiter heat fluxes in Wendelstein 7-X startup plasmas with EMC3-EIRENE

    NASA Astrophysics Data System (ADS)

    Effenberg, F.; Feng, Y.; Schmitz, O.; Frerichs, H.; Bozhenkov, S. A.; Hölbe, H.; König, R.; Krychowiak, M.; Pedersen, T. Sunn; Reiter, D.; Stephey, L.; W7-X Team

    2017-03-01

    The results of a first systematic assessment of plasma edge transport processes for the limiter startup configuration at Wendelstein 7-X are presented. This includes an investigation of transport from intrinsic and externally injected impurities and their impact on the power balance and limiter heat fluxes. The fully 3D coupled plasma fluid and kinetic neutral transport Monte Carlo code EMC3-EIRENE is used. The analysis of the magnetic topology shows that the poloidally and toroidally localized limiters cause a 3D helical scrape-off layer (SOL) consisting of magnetic flux tubes of three different connection lengths L C. The transport in the helical SOL is governed by L C as topological scale length for the parallel plasma loss channel to the limiters. A clear modulation of the plasma pressure with L C is seen. The helical flux tube topology results in counter streaming sonic plasma flows. The heterogeneous SOL plasma structure yields an uneven limiter heat load distribution with localized peaking. Assuming spatially constant anomalous transport coefficients, increasing plasma density yields a reduction of the maximum peak heat loads from 12 MWm-2 to 7.5 MWm-2 and a broadening of the deposited heat fluxes. The impact of impurities on the limiter heat loads is studied by assuming intrinsic carbon impurities eroded from the limiter surfaces with a gross chemical sputtering yield of 2 % . The resulting radiative losses account for less than 10% of the input power in the power balance with marginal impact on the limiter heat loads. It is shown that a significant mitigation of peak heat loads, 40-50%, can be achieved with controlled impurity seeding with nitrogen and neon, which is a method of particular interest for the later island divertor phase.

  9. Random spectrum loading of dental implants: An alternative approach to functional performance assessment.

    PubMed

    Shemtov-Yona, K; Rittel, D

    2016-09-01

    The fatigue performance of dental implants is usually assessed on the basis of cyclic S/N curves. This neither provides information on the anticipated service performance of the implant, nor does it allow for detailed comparisons between implants unless a thorough statistical analysis is performed, of the kind not currently required by certification standards. The notion of endurance limit is deemed to be of limited applicability, given unavoidable stress concentrations and random load excursions, that all characterize dental implants and their service conditions. We propose a completely different approach, based on random spectrum loading, as long used in aeronautical design. The implant is randomly loaded by a sequence of loads encompassing all load levels it would endure during its service life. This approach provides a quantitative and comparable estimate of its performance in terms of lifetime, based on the very fact that the implant will fracture sooner or later, instead of defining a fatigue endurance limit of limited practical application. Five commercial monolithic Ti-6Al-4V implants were tested under cyclic, and another 5 under spectrum loading conditions, at room temperature and dry air. The failure modes and fracture planes were identical for all implants. The approach is discussed, including its potential applications, for systematic, straightforward and reliable comparisons of various implant designs and environments, without the need for cumbersome statistical analyses. It is believed that spectrum loading can be considered for the generation of new standardization procedures and design applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. 29 CFR 1910.180 - Crawler locomotive and truck cranes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... readily available. (iv) No cranes shall be rerated in excess of the original load ratings unless such...) No crane shall be loaded beyond the rated load, except for test purposes as provided in paragraph (e... limited to freely suspended loads. Cranes shall not be used for dragging loads sideways. (v) No hoisting...

  11. 29 CFR 1910.180 - Crawler locomotive and truck cranes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... readily available. (iv) No cranes shall be rerated in excess of the original load ratings unless such...) No crane shall be loaded beyond the rated load, except for test purposes as provided in paragraph (e... limited to freely suspended loads. Cranes shall not be used for dragging loads sideways. (v) No hoisting...

  12. 29 CFR 1910.180 - Crawler locomotive and truck cranes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... readily available. (iv) No cranes shall be rerated in excess of the original load ratings unless such...) No crane shall be loaded beyond the rated load, except for test purposes as provided in paragraph (e... limited to freely suspended loads. Cranes shall not be used for dragging loads sideways. (v) No hoisting...

  13. 29 CFR 1910.180 - Crawler locomotive and truck cranes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... readily available. (iv) No cranes shall be rerated in excess of the original load ratings unless such...) No crane shall be loaded beyond the rated load, except for test purposes as provided in paragraph (e... limited to freely suspended loads. Cranes shall not be used for dragging loads sideways. (v) No hoisting...

  14. 29 CFR 1910.180 - Crawler locomotive and truck cranes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... readily available. (iv) No cranes shall be rerated in excess of the original load ratings unless such...) No crane shall be loaded beyond the rated load, except for test purposes as provided in paragraph (e... limited to freely suspended loads. Cranes shall not be used for dragging loads sideways. (v) No hoisting...

  15. Analysis of a school building damaged by the 2015 Ranau earthquake Malaysia

    NASA Astrophysics Data System (ADS)

    Takano, Shugo; Saito, Taiki

    2017-10-01

    On June 5th, 2015 a severe earthquake with a moment Magnitude of 6.0 occurred in Ranau, Malaysia. Depth of the epicenter is 10 km. Due to the earthquake, many facilities were damaged and 18 people were killed due to rockfalls [1]. Because the British Standard (BS) is adopted as a regulation for built buildings in Malaysia, the seismic force is not considered in the structural design. Therefore, the seismic resistance of Malaysian buildings is unclear. To secure the human life and building safety, it is important to grasp seismic resistance of the building. The objective of this study is to evaluate the seismic resistance of the existing buildings in Malaysia built by the British Standard. A school building that was damaged at the Ranau earthquake is selected as the target building. The building is a four story building and the ground floor is designed to be a parking space for the staff. The structural types are infill masonries where main frame is configured by reinforced concrete columns and beams and brick is installed inside the frame as walls. Analysis is performed using the STERA_3D software that is the software to analyze the seismic performance of buildings developed by one of the authors. Firstly, the natural period of the building is calculated and compared with the result of micro-tremor measurement. Secondly, the nonlinear push-over analysis was conducted to evaluate the horizontal load bearing capacity of the building. Thirdly, the earthquake response analysis was conducted using the time history acceleration data measured at the Ranau earthquake by the seismograph installed at Kota Kinabalu. By comparing the results of earthquake response analysis and the actual damage of the building, the reason that caused damage to the building is clarified.

  16. New early warning system for gravity-driven ruptures based on codetection of acoustic signal

    NASA Astrophysics Data System (ADS)

    Faillettaz, J.

    2016-12-01

    Gravity-driven rupture phenomena in natural media - e.g. landslide, rockfalls, snow or ice avalanches - represent an important class of natural hazards in mountainous regions. To protect the population against such events, a timely evacuation often constitutes the only effective way to secure the potentially endangered area. However, reliable prediction of imminence of such failure events remains challenging due to the nonlinear and complex nature of geological material failure hampered by inherent heterogeneity, unknown initial mechanical state, and complex load application (rainfall, temperature, etc.). Here, a simple method for real-time early warning that considers both the heterogeneity of natural media and characteristics of acoustic emissions attenuation is proposed. This new method capitalizes on codetection of elastic waves emanating from microcracks by multiple and spatially separated sensors. Event-codetection is considered as surrogate for large event size with more frequent codetected events (i.e., detected concurrently on more than one sensor) marking imminence of catastrophic failure. Simple numerical model based on a Fiber Bundle Model considering signal attenuation and hypothetical arrays of sensors confirms the early warning potential of codetection principles. Results suggest that although statistical properties of attenuated signal amplitude could lead to misleading results, monitoring the emergence of large events announcing impeding failure is possible even with attenuated signals depending on sensor network geometry and detection threshold. Preliminary application of the proposed method to acoustic emissions during failure of snow samples has confirmed the potential use of codetection as indicator for imminent failure at lab scale. The applicability of such simple and cheap early warning system is now investigated at a larger scale (hillslope). First results of such a pilot field experiment are presented and analysed.

  17. Dynamic strength of cylindrical fiber-glass shells and basalt plastic shells under multiple explosive loading

    NASA Astrophysics Data System (ADS)

    Syrunin, M. A.; Fedorenko, A. G.

    2006-08-01

    We have shown experimentally that, for cylindrical shells made of oriented fiberglass platic and basalt plastic there exists a critical level of deformations, at which a structure sustains a given number of explosions from the inside. The magnitude of critical deformation for cylindrical fiberglass shells depends linearly on the logarithm of the number of loads that cause failure. For a given type of fiberglass, there is a limiting level of explosive action, at which the number of loads that do not lead to failure can be sufficiently large (more than ˜ 102). This level is attained under loads, which are an order of magnitude lower than the limiting loads under a single explosive action. Basalt plastic shells can be repeatedly used even at the loads, which cause deformation by ˜ 30-50% lower than the safe value ˜ 3.3.5% at single loading.

  18. Compressive Failure of Fiber Composites under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Basu, Shiladitya; Waas, Anthony M.; Ambur, Damodar R.

    2006-01-01

    This paper examines the compressive strength of a fiber reinforced lamina under multi-axial stress states. An equilibrium analysis is carried out in which a kinked band of rotated fibers, described by two angles, is sandwiched between two regions in which the fibers are nominally straight. Proportional multi-axial stress states are examined. The analysis includes the possibility of bifurcation from the current equilibrium state. The compressive strength of the lamina is contingent upon either attaining a load maximum in the equilibrium response or satisfaction of a bifurcation condition, whichever occurs first. The results show that for uniaxial loading a non-zero kink band angle beta produces the minimum limit load. For multi-axial loading, different proportional loading paths show regimes of bifurcation dominated and limit load dominated behavior. The present results are able to capture the beneficial effect of transverse compression in raising the composite compressive strength as observed in experiments.

  19. NCAP test improvements with pretensioners and load limiters.

    PubMed

    Walz, Marie

    2004-03-01

    New Car Assessment Program (NCAP) test scores, measured by the United States Department of Transportation's (USDOT) National Highway Traffic Safety Administration (NHTSA), were analyzed in order to assess the benefits of equipping safety belt systems with pretensioners and load limiters. Safety belt pretensioners retract the safety belt almost instantly in a crash to remove excess slack. They tie the occupant to the vehicle's deceleration early during the crash, reducing the peak load experienced by the occupant. Load limiters and other energy management systems allow safety belts to yield in a crash, preventing the shoulder belt from directing too much energy on the chest of the occupant. In NCAP tests, vehicles are crashed into a fixed barrier at 35 mph. During the test, instruments measure the accelerations of the head and chest, as well as the force on the legs of anthropomorphic dummies secured in the vehicle by safety belts. NCAP data from model year 1998 through 2001 cars and light trucks were examined. The combination of pretensioners and load limiters is estimated to reduce Head Injury Criterion (HIC) by 232, chest acceleration by an average of 6.6 g's, and chest deflection (displacement) by 10.6 mm, for drivers and right front passengers. The unit used to measure chest acceleration (g) is defined as a unit of force equal to the force exerted by gravity. All of these reductions are statistically significant. When looked at individually, pretensioners are more effective in reducing HIC scores for both drivers and right front passengers, as well as chest acceleration and chest deflection scores for drivers. Load limiters show greater reductions in chest acceleration and chest deflection scores for right front passengers. By contrast, in make-models for which neither load limiters nor pretensioners have been added, there is little change during 1998 to 2001 in HIC, chest acceleration, or chest deflection values in NCAP tests.

  20. National Launch System cycle 1 loads and models data book

    NASA Technical Reports Server (NTRS)

    Bugg, F.; Brunty, J.; Ernsberger, G.; Mcghee, D.; Gagliano, L.; Harrington, F.; Meyer, D.; Blades, E.

    1992-01-01

    This document contains preliminary cycle 1 loads for the National Launch System (NLS) 1 and 2 vehicles. The loads provided and recommended as design loads represent the maximum load expected during prelaunch and flight regimes, i.e., limit loads, except that propellant tank ullage pressure has not been included. Ullage pressure should be added to the loads book values for cases where the addition results in higher loads. The loads must be multiplied by the appropriate factors of safety to determine the ultimate loads for which the structure must be capable.

  1. Limited Investigation of Active Feel Control Stick System (Active Stick)

    DTIC Science & Technology

    2009-06-01

    contained no limit protection and was the baseline system. The second system was “F-16 like” and contained angle -of-attack and load factor limiting...system. The second system was “F-16 like” and contained angle of attack (AOA) and load factor limiting features built into the flight control system...Force PTI at VLO .......................... 13 Figure 9: Pitch Angle Response to 1.5 g Commanded Force PTI at VLO ........................ 14 Figure 10

  2. Hues in a Crater Slope

    NASA Image and Video Library

    2017-01-02

    Impact craters expose the subsurface materials on steep slopes. However, these slopes often experience rockfalls and debris avalanches that keep the surface clean of dust, revealing a variety of hues, like in this enhanced-color image, representing different rock types. The bright reddish material at the top of the crater rim is from a coating of the Martian dust. The long streamers of material are from downslope movements. Also revealed in this slope are a variety of bedrock textures, with a mix of layered and jumbled deposits. This sample is typical of the Martian highlands, with lava flows and water-lain materials depositing layers, then broken up and jumbled by many impact events. http://photojournal.jpl.nasa.gov/catalog/PIA14454

  3. Influence of tectonic disturbances on the parameters of excavation support with rock anchor

    NASA Astrophysics Data System (ADS)

    Dyomin, V. F.; Yavorsky, V. V.; Demina, T. V.; Baidikova, N. V.; Protsenko, A. V.

    2017-10-01

    The mechanism of deformation, movement and rockfalls in structurally disturbed nonuniform rock mass using analytical modeling operation for assessment of the strain-stress state (SSS) of the rock mass around mining has been investigated. The SSS research of the rock masses by means of the ANSYS program of the excavation in the “Saransk” mine of coal mining JSC “ArselorMittal Temirtau” in the Karaganda coal basin has been conducted. The parameters of the exploitation of the anchor support on the mines for fixing the rock bolts in the workings to ensure the safety of mining operations in the areas of geological disturbances have been determined.

  4. Geologic map of the eastern half of the Vail 30' x 60' quadrangle, Eagle, Summit, and Grand Counties, Colorado

    USGS Publications Warehouse

    Kellogg, Karl S.; Shroba, Ralph R.; Premo, Wayne R.; Bryant, Bruce

    2011-01-01

    The map is intended as a database for a variety of land-use and scientific purposes, including (1) assessment of geologically stable building sites, (2) planning for road and highway construction, (3) assessment of groundwater resources, (4) assessment of mineral resources, (5) determining geologic-hazard potential (flooding, landslide, rockfall, and seismic risk), (6) evaluating the structure of the northern Rio Grande rift in the Blue River valley, (7) improvement in understanding of the sedimentary section, which spans the period from the Cambrian to the Holocene, and (8) new insights into the geologic history of the Proterozoic basement rocks, including a number of new radiometric dates.

  5. Heterogeneous upper-bound finite element limit analysis of masonry walls out-of-plane loaded

    NASA Astrophysics Data System (ADS)

    Milani, G.; Zuccarello, F. A.; Olivito, R. S.; Tralli, A.

    2007-11-01

    A heterogeneous approach for FE upper bound limit analyses of out-of-plane loaded masonry panels is presented. Under the assumption of associated plasticity for the constituent materials, mortar joints are reduced to interfaces with a Mohr Coulomb failure criterion with tension cut-off and cap in compression, whereas for bricks both limited and unlimited strength are taken into account. At each interface, plastic dissipation can occur as a combination of out-of-plane shear, bending and torsion. In order to test the reliability of the model proposed, several examples of dry-joint panels out-of-plane loaded tested at the University of Calabria (Italy) are discussed. Numerical results are compared with experimental data for three different series of walls at different values of the in-plane compressive vertical loads applied. The comparisons show that reliable predictions of both collapse loads and failure mechanisms can be obtained by means of the numerical procedure employed.

  6. Critical acid load limits in a changing climate: implications and solutions

    Treesearch

    Steven G. McNulty

    2010-01-01

    The federal agencies of the United States are currently developing guidelines for critical nitrogen load limits for U.S. forest ecosystems. These guidelines will be used to develop regulations designed to maintain pollutant inputs below the level shown to damage specified ecosystems.

  7. 14 CFR 23.363 - Side load on engine mount.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Side load on engine mount. 23.363 Section....363 Side load on engine mount. (a) Each engine mount and its supporting structure must be designed for a limit load factor in a lateral direction, for the side load on the engine mount, of not less than...

  8. 14 CFR 23.363 - Side load on engine mount.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Side load on engine mount. 23.363 Section....363 Side load on engine mount. (a) Each engine mount and its supporting structure must be designed for a limit load factor in a lateral direction, for the side load on the engine mount, of not less than...

  9. 14 CFR 23.363 - Side load on engine mount.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Side load on engine mount. 23.363 Section....363 Side load on engine mount. (a) Each engine mount and its supporting structure must be designed for a limit load factor in a lateral direction, for the side load on the engine mount, of not less than...

  10. 14 CFR 23.363 - Side load on engine mount.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Side load on engine mount. 23.363 Section....363 Side load on engine mount. (a) Each engine mount and its supporting structure must be designed for a limit load factor in a lateral direction, for the side load on the engine mount, of not less than...

  11. 14 CFR 23.363 - Side load on engine mount.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Side load on engine mount. 23.363 Section....363 Side load on engine mount. (a) Each engine mount and its supporting structure must be designed for a limit load factor in a lateral direction, for the side load on the engine mount, of not less than...

  12. Effects of Heat of Vaporization and Octane Sensitivity on Knock-Limited Spark Ignition Engine Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratcliff, Matthew A; Burton, Jonathan L; Sindler, Petr

    Knock-limited loads for a set of surrogate gasolines all having nominal 100 research octane number (RON), approximately 11 octane sensitivity (S), and a heat of vaporization (HOV) range of 390 to 595 kJ/kg at 25 degrees C were investigated. A single-cylinder spark-ignition engine derived from a General Motors Ecotec direct injection (DI) engine was used to perform load sweeps at a fixed intake air temperature (IAT) of 50 degrees C, as well as knock-limited load measurements across a range of IATs up to 90 degrees C. Both DI and pre-vaporized fuel (supplied by a fuel injector mounted far upstream ofmore » the intake valves and heated intake runner walls) experiments were performed to separate the chemical and thermal effects of the fuels' knock resistance. The DI load sweeps at 50 degrees C intake air temperature showed no effect of HOV on the knock-limited performance. The data suggest that HOV acts as a thermal contributor to S under the conditions studied. Measurement of knock-limited loads from the IAT sweeps for DI at late combustion phasing showed that a 40 vol% ethanol (E40) blend provided additional knock resistance at the highest temperatures, compared to a 20 vol% ethanol blend and hydrocarbon fuel with similar RON and S. Using the pre-vaporized fuel system, all the high S fuels produced nearly identical knock-limited loads at each temperature across the range of IATs studied. For these fuels RON ranged from 99.2 to 101.1 and S ranged from 9.4 to 12.2, with E40 having the lowest RON and highest S. The higher knock-limited loads for E40 at the highest IATs examined were consistent with the slightly higher S for this fuel, and the lower engine operating condition K values arising from use of this fuel. The study highlights how fuel HOV can affect the temperature at intake valve closing, and consequently the pressure-temperature history of the end gas leading to more negative values of K, thereby enhancing the effect of S on knock resistance.« less

  13. Composite Materials and Meta Materials for a New Approach to ITER ICRH Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bottollier-Curtet, H.; Argouarch, A.; Vulliez, K.

    Preliminary laboratory testing of ICRH antennas is a very useful step before their commissioning. Traditionally, pure water, salt water or baking soda water loads are used. These 'water' loads are convenient but strongly limited in terms of performance testing. We have started two feasibility studies for advanced ICRH loads made of ferroelectric ceramics (passive loads) and meta materials (active loads). Preliminary results are very encouraging.

  14. Landslide Hazard in Georgia

    NASA Astrophysics Data System (ADS)

    Gaprindashvili, G.; Tsereteli, E.; Gaprindashvili, M.

    2013-12-01

    In the last decades of the XX century, protect the population from geological hazards, to maintain land and safe operation of the engineering facilities has become the most important social - economic, demographic, political and environmental problems for the whole world. Georgia, with its scales of origination of the natural-catastrophic processes (landslide, mudflow, rockfall, erosion and etc.), their re-occurrence and with the negative results inflicted by these processes to the population, agricultural lands and engineering objects, is one of the most complex mountainous region. The extremely sensitive conditions were conditioned by: 1. Activation of highly intense earthquakes; 2. Activation of the negative meteorological events provoking the disaster processes on the background of global climatic changes and their abnormally frequent occurrence (mostly increased atmospheric precipitations, temperature and humidity); 3. Large-scale Human impact on the environment. Following the problem urgency, a number of departmental and research institutions have made their operations more intense in the given direction within the limits of their competence. First of all, the activity of the Department of Geology of Georgia (which is at present included in the National Environmental Agency of the Ministry of Environment and Natural Resources Protection), which mapped, identified and cataloged the hazardous processes on the territory of the country and identified the spatial limits and developmental regularities of these processes for tens of years. The increased risk of Geological catastrophes in Georgia first of all is caused by insufficient information between society and responsible persons toward this event. The existed situation needs the base assessment of natural disasters level, the identification of events, to determine their caused reasons, to develop special maps in GIS system, and continuous functioning of geo monitoring researches for develop safety early warning system.

  15. Landslide Hazard in Georgia

    NASA Astrophysics Data System (ADS)

    Gaprindashvili, George; Tsereteli, Emil; Gaprindashvili, Merab

    2014-05-01

    In the last decades of the XX century, protect the population from geological hazards, to maintain land and safe operation of the engineering facilities has become the most important social - economic, demographic, political and environmental problems for the whole world. Georgia, with its scales of origination of the natural-catastrophic processes (landslide, mudflow, rockfall, erosion and etc.), their re-occurrence and with the negative results inflicted by these processes to the population, agricultural lands and engineering objects, is one of the most complex mountainous region. The extremely sensitive conditions were conditioned by: 1. Activation of highly intense earthquakes; 2. Activation of the negative meteorological events provoking the disaster processes on the background of global climatic changes and their abnormally frequent occurrence (mostly increased atmospheric precipitations, temperature and humidity); 3. Large-scale Human impact on the environment. Following the problem urgency, a number of departmental and research institutions have made their operations more intense in the given direction within the limits of their competence. First of all, the activity of the Department of Geology of Georgia (which is at present included in the National Environmental Agency of the Ministry of Environment and Natural Resources Protection), which mapped, identified and cataloged the hazardous processes on the territory of the country and identified the spatial limits and developmental regularities of these processes for tens of years. The increased risk of Geological catastrophes in Georgia first of all is caused by insufficient information between society and responsible persons toward this event. The existed situation needs the base assessment of natural disasters level, the identification of events, to determine their caused reasons, to develop special maps in GIS system, and continuous functioning of geo monitoring researches for develop safety early warning system.

  16. Optimal Control Allocation with Load Sensor Feedback for Active Load Suppression

    NASA Technical Reports Server (NTRS)

    Miller, Christopher

    2017-01-01

    These slide sets describe the OCLA formulation and associated algorithms as a set of new technologies in the first practical application of load limiting flight control utilizing load feedback as a primary control measurement. Slide set one describes Experiment Development and slide set two describes Flight-Test Performance.

  17. Effect of Variation of Speed Limits on Intercity Bus Fuel Consumption, Coach and Driver Utilization, and Corporate Profitability

    DOT National Transportation Integrated Search

    1975-11-01

    The effect of speed limit and passenger load on fuel consumption was determined using actual intercity buses with simulated passenger loads over different types of terrain. In addition to road tests, laboratory type measurements were made on four int...

  18. 77 FR 26948 - Airworthiness Directives; Fokker Services B.V. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ... sliding member cracks is high compressive stress during braking at higher deceleration levels outside the regular fatigue load spectrum. Starting at deceleration stress levels somewhat below limit load, the high compressive stress locally exceeds the elasticity limit of the material, leaving a residual tensile stress at...

  19. 76 FR 39763 - Special Conditions: Boeing Model 787-8 Airplane; Interaction of Systems and Structures...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ...) Protection, Limit Engine Torque Loads for Sudden Engine Stoppage, and Design Roll Maneuver Requirement AGENCY... design features when compared to the state of technology envisioned in the airworthiness standards for transport category airplanes. These design features include limit engine torque loads for sudden engine...

  20. Processing capacity under perceptual and cognitive load: a closer look at load theory.

    PubMed

    Fitousi, Daniel; Wenger, Michael J

    2011-06-01

    Variations in perceptual and cognitive demands (load) play a major role in determining the efficiency of selective attention. According to load theory (Lavie, Hirst, Fockert, & Viding, 2004) these factors (a) improve or hamper selectivity by altering the way resources (e.g., processing capacity) are allocated, and (b) tap resources rather than data limitations (Norman & Bobrow, 1975). Here we provide an extensive and rigorous set of tests of these assumptions. Predictions regarding changes in processing capacity are tested using the hazard function of the response time (RT) distribution (Townsend & Ashby, 1978; Wenger & Gibson, 2004). The assumption that load taps resource rather than data limitations is examined using measures of sensitivity and bias drawn from signal detection theory (Swets, 1964). All analyses were performed at two levels: the individual and the aggregate. Hypotheses regarding changes in processing capacity were confirmed at the level of the aggregate. Hypotheses regarding resource and data limitations were not completely supported at either level of analysis. And in all of the analyses, we observed substantial individual differences. In sum, the results suggest a need to expand the theoretical vocabulary of load theory, rather than a need to discard it.

  1. Fatigue evaluation of composite-reinforced, integrally stiffened metal panels

    NASA Technical Reports Server (NTRS)

    Dumesnil, C. E.

    1973-01-01

    The fatigue behavior of composite-reinforced, integrally stiffened metal panels was investigated in combined metal and composite materials subjected to fatigue loading. The systems investigated were aluminum-graphite/epoxy, and aluminum-S glass/epoxy. It was found that the composite material would support the total load at limit stress after the metal had completely failed, and the weight of the composite-metal system would be equal to that of an all metal system which would carry the same total load at limit stress.

  2. METHODS OF ANALYSIS FOR WASTE LOAD ALLOCATION

    EPA Science Inventory

    This research has addressed several unresolved questions concerning the allocation of allowable waste loads among multiple wastewater dischargers within a water quality limited stream segment. First, the traditional assumptions about critical design conditions for waste load allo...

  3. A method to approximate a closest loadability limit using multiple load flow solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yorino, Naoto; Harada, Shigemi; Cheng, Haozhong

    A new method is proposed to approximate a closest loadability limit (CLL), or closest saddle node bifurcation point, using a pair of multiple load flow solutions. More strictly, the obtainable points by the method are the stationary points including not only CLL but also farthest and saddle points. An operating solution and a low voltage load flow solution are used to efficiently estimate the node injections at a CLL as well as the left and right eigenvectors corresponding to the zero eigenvalue of the load flow Jacobian. They can be used in monitoring loadability margin, in identification of weak spotsmore » in a power system and in the examination of an optimal control against voltage collapse. Most of the computation time of the proposed method is taken in calculating the load flow solution pair. The remaining computation time is less than that of an ordinary load flow.« less

  4. Stability of Molasse: TLS for structural analysis in the valley of Gotteron-Fribourg, Switzerland

    NASA Astrophysics Data System (ADS)

    Ben Hammouda, Mariam; Jaboyedoff, Michel; Derron, Marc Henri; Bouaziz, Samir; Mazotti, Benoit

    2016-04-01

    The marine molasses of Fribourg (Switzerland) is an area where the cliff collapses and rockfalls are quite frequent and difficult to predict due to this particular lithology, a poorly consolidated greywacke. Because of some recent rockfall events, the situation became critical especially in the valley of Gotteron where a big block has slightly moved down and might destroy a house in case of rupture. The cliff made of jointed sandstone and thin layers of clay and siltstone presents many fractures, joints and massive cross bedding surfaces which increases the possibility of slab failure. This paper presents a detailed structural analysis of the cliff and the identification of the potential failure mechanisms. The methodology is about combining field observation and terrestrial LiDAR scanning point cloud in order to assess the stability of potential slope instabilities of molasses. Three LiDAR scans were done i) to extract discontinuity families depending to the dip and the dip direction of joints and ii) to run kinematic tests in order to identify responsible sets for each potential failure mechanisms. Raw point clouds were processed using IMAlign module of Polyworks and CloudCompare software. The structural analysis based on COLTOP 3D (Jaboyedoff et al. 2007) allowed the identification of four discontinuity sets that were not measured in the field. Two different failure mechanisms have been identified as critical: i) planar sliding which is the main responsible mechanism of the present fallen block and ii) wedge sliding. The planar sliding is defined by the discontinuity sets J1 and J5 with a direction parallel to the slope and with a steep dip angle. The wedges, defined by couples of discontinuity sets, contribute to increase cracks' opening and to the detachment of slabs. The use of TLS combined with field survey provides us a first interpretation of instabilities and a very promising structural analysis.

  5. Detection of Slope Instabilities Along the National Road 7, Mendoza Province, Argentina, Using Multi-Temporal InSAR

    NASA Astrophysics Data System (ADS)

    Michoud, Clément; Derron, Marc-Henri; Baumann, Valérie; Jaboyedoff, Michel; Rune Lauknes, Tom

    2013-04-01

    About 2'230 vehicles per day pass through the National Road 7 that link Buenos Aires to Santiago de Chile, crossing Andes Cordillera. This extremely important corridor, being the most important land pass between Argentina and Chile, is exposed to numerous natural hazards, such as snow avalanches, rockfalls and debris flows and remains closed by natural hazards several days per year. This goal of this study is to perform a regional mapping of geohazard susceptibilities along the Road 7 corridor, as started by Baumann et al. (2005), using modern remote sensing and numerical approaches with field checking. The area of interest is located in the Mendoza Province, between the villages Potrerillos and Las Cuevas near the Chilean border. The diversity of soil and rock conditions, the active geomorphological processes associated to post-glacial decompression, seasonal freeze and thaw and severe storms along the road corridor, increase the risk to natural hazard. With the support of the European Space Agency (ESA Category-1 Project 7154), we have in this study processed a large number of ERS and Envisat ASAR scenes, covering the period from 1995 to 2000. We applied both the small-baseline (SB) and the persistent scatterer (PSI) multi-temporal interferometric SAR (InSAR) techniques. The study area contains sparse vegetation, and the SB InSAR method is therefore well suited to map the area containing mainly distributed scatterers. Furthermore, PSI algorithms are also used for comparison for selected landslides in the inventory. Both approaches show a relatively good coherence within mountain areas, which is a good point for the landslide detections along the road. Indeed, the authors identified several large slope instabilities even active scree deposits. This inventory is finally compared with field observations and with existing susceptibility maps regarding snow avalanches, debris-flows and rockfalls. The final objective of this project is to develop a risk strategy that will help local authorities to manage the risk along this highway and also to provide guidelines.

  6. High-resolution seismic monitoring of rockslide activity in the Illgraben, Switzerland

    NASA Astrophysics Data System (ADS)

    Burtin, Arnaud; Hovius, Niels; Dietze, Michael; McArdell, Brian

    2014-05-01

    Rockfalls and rockslides are important geomorphic processes in landscape dynamics. They contribute to the evolution of slopes and supply rock materials to channels, enabling fluvial incision. Hillslope processes are also a natural hazard that we need to quantify and, if possible, predict. For these reasons, it is necessary to determine the triggering conditions and mechanisms involved in rockfalls. Rainfall is a well-known contributor since water, through soil moisture or pore pressure, may lead to the inception and propagation of cracks and can induce slope failure. Water can also affect slope stability through effects of climatic conditions such as the fluctuations of temperature around the freezing point. During the winter of 2012, we have recorded with a seismic array of 8 instruments substantial rockslide activity that affected a gully in the Illgraben catchment in the Swiss Alps. Three stations were positioned directly around the gully with a nearest distance of 400 m. The period of intense activity did not start during a rainstorm as it is common in summer but during a period of oscillation of temperatures around the freezing point. The activity did not occur in a single event but lasted about a week with a decay in time of the event frequency. Many individual events had two distinct seismic signals, with first, a short duration phase of about 10 s at frequencies below 5 Hz that we interpret as a slope failure signature, followed by a second long duration signal of > 60 s at frequencies above 10 Hz that we attribute to the propagation of rock debris down the slope. Thanks to the array of seismic sensors, we can study the fine details of this rockslide sequence by locating the different events, determining their distribution in time, and systematic quantification of seismic metrics (energy, duration, intensity...). These observations are compared to independent meteorological constrains and laser scan data to obtain an estimate of the volume mobilized by the event.

  7. What's the Point of a Raster ? Advantages of 3D Point Cloud Processing over Raster Based Methods for Accurate Geomorphic Analysis of High Resolution Topography.

    NASA Astrophysics Data System (ADS)

    Lague, D.

    2014-12-01

    High Resolution Topographic (HRT) datasets are predominantly stored and analyzed as 2D raster grids of elevations (i.e., Digital Elevation Models). Raster grid processing is common in GIS software and benefits from a large library of fast algorithms dedicated to geometrical analysis, drainage network computation and topographic change measurement. Yet, all instruments or methods currently generating HRT datasets (e.g., ALS, TLS, SFM, stereo satellite imagery) output natively 3D unstructured point clouds that are (i) non-regularly sampled, (ii) incomplete (e.g., submerged parts of river channels are rarely measured), and (iii) include 3D elements (e.g., vegetation, vertical features such as river banks or cliffs) that cannot be accurately described in a DEM. Interpolating the raw point cloud onto a 2D grid generally results in a loss of position accuracy, spatial resolution and in more or less controlled interpolation. Here I demonstrate how studying earth surface topography and processes directly on native 3D point cloud datasets offers several advantages over raster based methods: point cloud methods preserve the accuracy of the original data, can better handle the evaluation of uncertainty associated to topographic change measurements and are more suitable to study vegetation characteristics and steep features of the landscape. In this presentation, I will illustrate and compare Point Cloud based and Raster based workflows with various examples involving ALS, TLS and SFM for the analysis of bank erosion processes in bedrock and alluvial rivers, rockfall statistics (including rockfall volume estimate directly from point clouds) and the interaction of vegetation/hydraulics and sedimentation in salt marshes. These workflows use 2 recently published algorithms for point cloud classification (CANUPO) and point cloud comparison (M3C2) now implemented in the open source software CloudCompare.

  8. Failure modes of vacuum plasma spray tungsten coating created on carbon fibre composites under thermal loads

    NASA Astrophysics Data System (ADS)

    Hirai, T.; Bekris, N.; Coad, J. P.; Grisolia, C.; Linke, J.; Maier, H.; Matthews, G. F.; Philipps, V.; Wessel, E.

    2009-07-01

    Vacuum plasma spray tungsten (VPS-W) coating created on a carbon fibre reinforced composite (CFC) was tested under two thermal load schemes in the electron beam facility to examine the operation limits and failure modes. In cyclic ELM-like short transient thermal loads, the VPS-W coating was destroyed sub-layer by sub-layer at 0.33 GW/m 2 for 1 ms pulse duration. At longer single pulses, simulating steady-state thermal loads, the coating was destroyed at surface temperatures above 2700 °C by melting of the rhenium containing multilayer at the interface between VPS-W and CFC. The operation limits and failure modes of the VPS-W coating in the thermal load schemes are discussed in detail.

  9. 14 CFR 23.529 - Hull and main float landing conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... landing. For symmetrical step, bow, and stern landings, the limit water reaction load factors are those....25 tan β times the resultant load in the corresponding symmetrical landing condition; and (2) The... at one float times the step landing load reached under § 23.527. The side load is directed inboard...

  10. 14 CFR 23.529 - Hull and main float landing conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... landing. For symmetrical step, bow, and stern landings, the limit water reaction load factors are those....25 tan β times the resultant load in the corresponding symmetrical landing condition; and (2) The... at one float times the step landing load reached under § 23.527. The side load is directed inboard...

  11. 14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...

  12. 14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...

  13. 14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...

  14. 14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...

  15. 14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...

  16. 49 CFR 175.75 - Quantity limitations and cargo location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... hazardous material may be loaded in an inaccessible manner. Loaded in an inaccessible manner means cargo that is loaded in such a manner that a crew member or other authorized person cannot handle, and when... loaded in an inaccessible manner. These requirements do not apply to Class 9 and ORM-D materials. (d...

  17. N and P as ultimate and proximate limiting nutrients in the northern Gulf of Mexico: implications for hypoxia reduction strategies

    NASA Astrophysics Data System (ADS)

    Fennel, Katja; Laurent, Arnaud

    2018-05-01

    The occurrence of hypoxia in coastal oceans is a long-standing and growing problem worldwide and is clearly linked to anthropogenic nutrient inputs. While the need for reducing anthropogenic nutrient loads is generally accepted, it is costly and thus requires scientifically sound nutrient-reduction strategies. Issues under debate include the relative importance of nitrogen (N) and phosphorus (P) as well as the magnitude of the reduction requirements. The largest anthropogenically induced hypoxic area in North American coastal waters (of 15 000 ± 5000 km2) forms every summer in the northern Gulf of Mexico where the Mississippi and Atchafalaya rivers deliver large amounts of freshwater and nutrients to the shelf. A 2001 plan for reducing this hypoxic area by nutrient management in the watershed called for a reduction of N loads. Since then evidence of P limitation during the time of hypoxia formation has arisen, and a dual nutrient-reduction strategy for this system has been endorsed. Here we report the first systematic analysis of the effects of single and dual nutrient load reductions from a spatially explicit physical-biogeochemical model for the northern Gulf of Mexico. The model has been shown previously to skillfully represent the processes important for hypoxic formation. Our analysis of an ensemble of simulations with stepwise reductions in N, P, and N and P loads provides insight into the effects of both nutrients on primary production and hypoxia, and it allows us to estimate what nutrient reductions would be required for single and dual nutrient-reduction strategies to reach the hypoxia target. Our results show that, despite temporary P limitation, N is the ultimate limiting nutrient for primary production in this system. Nevertheless, a reduction in P load would reduce hypoxia because primary production is P limited in the region where density stratification is conducive to hypoxia development, but reductions in N load have a bigger effect. Our simulations show that, at present loads, the system is almost saturated with N, in the sense that the sensitivity of primary production and hypoxia to N load is much lower than it would be at lower N loads. We estimate that reductions of 63±18 % in total N load or 48±21 % in total N and P load are necessary to reach a hypoxic area of 5000 km2, which is consistent with previous estimates from statistical regression models and highly simplified mechanistic models.

  18. Technical Study on Improvement of Endurance Capability of Limit Short-circuit Current of Charge Control SMART Meter

    NASA Astrophysics Data System (ADS)

    Li, W. W.; Du, Z. Z.; Yuan, R. m.; Xiong, D. Z.; Shi, E. W.; Lu, G. N.; Dai, Z. Y.; Chen, X. Q.; Jiang, Z. Y.; Lv, Y. G.

    2017-10-01

    Smart meter represents the development direction of energy-saving smart grid in the future. The load switch, one of the core parts of smart meter, should be of high reliability, safety and endurance capability of limit short-circuit current. For this reason, this paper discusses the quick simulation of relationship between attraction and counterforce of load switch without iteration, establishes dual response surface model of attraction and counterforce and optimizes the design scheme of load switch for charge control smart meter, thus increasing electromagnetic attraction and spring counterforce. In this way, this paper puts forward a method to improve the withstand capacity of limit short-circuit current.

  19. Measuring cognitive load: mixed results from a handover simulation for medical students.

    PubMed

    Young, John Q; Irby, David M; Barilla-LaBarca, Maria-Louise; Ten Cate, Olle; O'Sullivan, Patricia S

    2016-02-01

    The application of cognitive load theory to workplace-based activities such as patient handovers is hindered by the absence of a measure of the different load types. This exploratory study tests a method for measuring cognitive load during handovers. The authors developed the Cognitive Load Inventory for Handoffs (CLI4H) with items for intrinsic, extraneous, and germane load. Medical students completed the measure after participating in a simulated handover. Exploratory factor and correlation analyses were performed to collect evidence for validity. Results yielded a two-factor solution for intrinsic and germane load that explained 50 % of the variance. The extraneous load items performed poorly and were removed from the model. The score for intrinsic load correlated with the Paas Cognitive Load scale (r = 0.31, p = 0.004) and was lower for students with more prior handover training (p = 0.036). Intrinsic load did not, however, correlate with performance. Germane load did not correlate with the Paas Cognitive Load scale but did correlate as expected with performance (r = 0.30, p = 0.005) and was lower for those students with more prior handover training (p = 0.03). The CLI4H yielded mixed results with some evidence for validity of the score from the intrinsic load items. The extraneous load items performed poorly and the use of only a single item for germane load limits conclusions. The instrument requires further development and testing. Study results and limitations provide guidance to future efforts to measure cognitive load during workplace-based activities, such as handovers.

  20. Incidence of mass movement processes after an historical episode of heavy snowfall in the Asturian Massif (Northern Spain)

    NASA Astrophysics Data System (ADS)

    Garcia-Hernandez, Cristina; Ruiz-Fernández, Jesús; Gallinar, David

    2015-04-01

    This research examines a mass movement event caused in the context of the Great Blizzard of 1888, one of the most severe recorded blizzards in the history of Europe, whose implications go far beyond. In the Asturian Massif the episode consisted in four linked and consecutive snowstorms that took place between the 14th of February 1888 and the 8th of April 1888, creating snow covers with a depth ranging between 5 and 7 m, snow avalanches and flooding, causing dozens of deaths and large material damage. The Asturian Massif belongs to the Atlantic-climate area and is composed mainly by sedimentary and metamorphic paleozoic rocks. Many sectors of the Massif are between 1.000 and 2.000 m a.s.l., and its topography is characterized by a great height difference and steep slopes. Because of the lack of deep soils suitable for farming, the main traditional activity has been livestock keeping, and goods traffic. We have devised a method that enables the reconstruction of this event on the basis of nivo-meteorogical conditions, geographical location and socio-economic impact. The mass movement episode has been studied through the issues of 6 newspapers published in Asturias between the 20th of January and 30th of May 1888, the ancient meteorological station data of the University of Oviedo, and field work. A logical database structure has been designed with the aim to store and cross the information for statistical analysis. Thirty six mass movement worthy of consideration were documented, 28 of them causing material damage (six homes destroyed and at least 22 interruptions with the traffic flow on roads, highways and railways). Ten high- and mid-elevation mountain municipalities were affected by mass movement. We must consider that only the most important events, or those that happened in crowded places, have been considered by the newspapers, so the total number of mass movements should be considered as a minimum figure. We have got to identify and classify 27 of them; 16 as landslides, 5 as rockfalls, 4 as mixed typology of rockfalls with a big amount of mud, and 2 as debris flow. One person died as a consecuence of a rockfall. Thirty out of thirty six events anthropic intervention is proved. It acted as a prior conditioning where the previous topography has been modified (in 29 cases), either as a direct triggering mechanism at least in one landslide episode. The sequence analysis of the events shows that their number and frequency increases with episodes of snow melting during the snowstorm breaks, announcing the highest instabilities on 10th and 11th of March, coinciding with a rainfall peak. However the connection with the rainfall episode seems weak compared with the one than can be settled with the rise of temperatures and the resulting melting intensification. It caused the progressive water saturation of surface formations, that reached a maximum during the second break, triggering 20 events during the 11th of March 1888.

  1. A platform for actively loading cargo RNA to elucidate limiting steps in EV-mediated delivery.

    PubMed

    Hung, Michelle E; Leonard, Joshua N

    2016-01-01

    Extracellular vesicles (EVs) mediate intercellular communication through transfer of RNA and protein between cells. Thus, understanding how cargo molecules are loaded and delivered by EVs is of central importance for elucidating the biological roles of EVs and developing EV-based therapeutics. While some motifs modulating the loading of biomolecular cargo into EVs have been elucidated, the general rules governing cargo loading and delivery remain poorly understood. To investigate how general biophysical properties impact loading and delivery of RNA by EVs, we developed a platform for actively loading engineered cargo RNAs into EVs. In our system, the MS2 bacteriophage coat protein was fused to EV-associated proteins, and the cognate MS2 stem loop was engineered into cargo RNAs. Using this Targeted and Modular EV Loading (TAMEL) approach, we identified a configuration that substantially enhanced cargo RNA loading (up to 6-fold) into EVs. When applied to vesicles expressing the vesicular stomatitis virus glycoprotein (VSVG) - gesicles - we observed a 40-fold enrichment in cargo RNA loading. While active loading of mRNA-length (>1.5 kb) cargo molecules was possible, active loading was much more efficient for smaller (~0.5 kb) RNA molecules. We next leveraged the TAMEL platform to elucidate the limiting steps in EV-mediated delivery of mRNA and protein to prostate cancer cells, as a model system. Overall, most cargo was rapidly degraded in recipient cells, despite high EV-loading efficiencies and substantial EV uptake by recipient cells. While gesicles were efficiently internalized via a VSVG-mediated mechanism, most cargo molecules were rapidly degraded. Thus, in this model system, inefficient endosomal fusion or escape likely represents a limiting barrier to EV-mediated transfer. Altogether, the TAMEL platform enabled a comparative analysis elucidating a key opportunity for enhancing EV-mediated delivery to prostate cancer cells, and this technology should be of general utility for investigations and applications of EV-mediated transfer in other systems.

  2. Dried blood spot HIV-1 RNA quantification: A useful tool for viral load monitoring among HIV-infected individuals in India

    PubMed Central

    Neogi, Ujjwal; Gupta, Soham; Rodridges, Rashmi; Sahoo, Pravat Nalini; Rao, Shwetha D.; Rewari, Bharat B.; Shastri, Suresh; De Costa, Ayesha; Shet, Anita

    2012-01-01

    Background & objectives: Monitoring of HIV-infected individuals on antiretroviral treatment (ART) ideally requires periodic viral load measurements to ascertain adequate response to treatment. While plasma viral load monitoring is widely available in high-income settings, it is rarely used in resource-limited regions because of high cost and need for sophisticated sample transport. Dried blood spot (DBS) as source specimens for viral load measurement has shown promise as an alternative to plasma specimens and is likely to be a useful tool for Indian settings. The present study was undertaken to investigate the performance of DBS in HIV-1 RNA quantification against the standard plasma viral load assay. Methods: Between April-June 2011, 130 samples were collected from HIV-1-infected (n=125) and non-infected (n=5) individuals in two district clinics in southern India. HIV-1 RNA quantification was performed from DBS and plasma using Abbott m2000rt system after manual RNA extraction. Statistical analysis included correlation, regression and Bland-Altman analysis. Results: The sensitivity of DBS viral load was 97 per cent with viral loads >3.0 log10 copies/ml. Measurable viral load (>3.0 log 10 copies/ml) results obtained for the 74 paired plasma-DBS samples showed positive correlation between both the assays (r=0.96). For clinically acceptable viral load threshold values of >5,000 copies/ml, Bland-Altman plots showed acceptable limits of agreement (−0.21 to +0.8 log10 copies/ml). The mean difference was 0.29 log10 copies/ml. The cost of DBS was $2.67 lower compared to conventional plasma viral load measurement in the setting Interpretation & conclusions: The significant positive correlation with standard plasma-based assay and lower cost of DBS viral load monitoring suggest that DBS sampling can be a feasible and economical means of viral load monitoring in HIV-infected individual in India and in other resource-limited settings globally. PMID:23391790

  3. 40 CFR 130.7 - Total maximum daily loads (TMDL) and individual water quality-based effluent limitations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Total maximum daily loads (TMDL) and individual water quality-based effluent limitations. 130.7 Section 130.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.7 Total...

  4. Heat resistant soy adhesives for structural wood products

    Treesearch

    Christopher G. Hunt; Charles Frihart; Jane O' Dell

    2009-01-01

    Because load-bearing bonded wood assemblies must support the structure during a fire, the limited softening and depolymerization of biobased polymers at elevated temperatures should be an advantage of biobased adhesives compared to fossil fuel-based adhesives. Because load-bearing bonded wood assemblies must support the structure during a fire, the limited softening...

  5. 76 FR 63822 - Special Conditions: Gulfstream Aerospace LP (GALP) Model G280 Airplane, Limit Engine Torque Loads...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 25 [Docket No. FAA-2011-1107; Special Conditions No. 25-447-SC] Special Conditions: Gulfstream Aerospace LP (GALP) Model G280 Airplane, Limit Engine Torque Loads for Sudden Engine Stoppage AGENCY: Federal Aviation Administration (FAA...

  6. 76 FR 25648 - Special Conditions: Gulfstream Model GVI Airplane; Limit Engine Torque Loads for Sudden Engine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-05

    ... dynamic loads resulting from: (a) The loss of any fan, compressor, or turbine blade; and (b) Separately... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 25 [Docket No. NM454 Special Conditions No. 25-11-11-SC] Special Conditions: Gulfstream Model GVI Airplane; Limit Engine Torque...

  7. 40 CFR 130.7 - Total maximum daily loads (TMDL) and individual water quality-based effluent limitations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Total maximum daily loads (TMDL) and individual water quality-based effluent limitations. 130.7 Section 130.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.7 Total...

  8. Foot Loading Characteristics of Different Graduations of Partial Weight Bearing

    ERIC Educational Resources Information Center

    Gusinde, Johannes; Pauser, Johannes; Swoboda, Bernd; Gelse, Kolja; Carl, Hans-Dieter

    2011-01-01

    Limited weight bearing of the lower extremity is a commonly applied procedure in orthopaedic rehabilitation after reconstructive forefoot surgery, trauma surgery and joint replacement. The most frequent limitations are given as percentage of body weight (BW) and represent 10 or 50% BW. The extent of foot loading under these graduations of partial…

  9. LabVIEW Serial Driver Software for an Electronic Load

    NASA Technical Reports Server (NTRS)

    Scullin, Vincent; Garcia, Christopher

    2003-01-01

    A LabVIEW-language computer program enables monitoring and control of a Transistor Devices, Inc., Dynaload WCL232 (or equivalent) electronic load via an RS-232 serial communication link between the electronic load and a remote personal computer. (The electronic load can operate at constant voltage, current, power consumption, or resistance.) The program generates a graphical user interface (GUI) at the computer that looks and acts like the front panel of the electronic load. Once the electronic load has been placed in remote-control mode, this program first queries the electronic load for the present values of all its operational and limit settings, and then drops into a cycle in which it reports the instantaneous voltage, current, and power values in displays that resemble those on the electronic load while monitoring the GUI images of pushbuttons for control actions by the user. By means of the pushbutton images and associated prompts, the user can perform such operations as changing limit values, the operating mode, or the set point. The benefit of this software is that it relieves the user of the need to learn one method for operating the electronic load locally and another method for operating it remotely via a personal computer.

  10. GeneXpert HIV-1 quant assay, a new tool for scale up of viral load monitoring in the success of ART programme in India.

    PubMed

    Kulkarni, Smita; Jadhav, Sushama; Khopkar, Priyanka; Sane, Suvarna; Londhe, Rajkumar; Chimanpure, Vaishali; Dhilpe, Veronica; Ghate, Manisha; Yelagate, Rajendra; Panchal, Narayan; Rahane, Girish; Kadam, Dilip; Gaikwad, Nitin; Rewari, Bharat; Gangakhedkar, Raman

    2017-07-21

    Recent WHO guidelines identify virologic monitoring for diagnosing and confirming ART failure. In view of this, validation and scale up of point of care viral load technologies is essential in resource limited settings. A systematic validation of the GeneXpert® HIV-1 Quant assay (a point-of-care technology) in view of scaling up HIV-1 viral load in India to monitor the success of national ART programme was carried out. Two hundred nineteen plasma specimens falling in nine viral load ranges (<40 to >5 L copies/ml) were tested by the Abbott m2000rt Real Time and GeneXpert HIV-1 Quant assays. Additionally, 20 seronegative; 16 stored specimens and 10 spiked controls were also tested. Statistical analysis was done using Stata/IC and sensitivity, specificity, PPV, NPV and %misclassification rates were calculated as per DHSs/AISs, WHO, NACO cut-offs for virological failure. The GeneXpert assay compared well with the Abbott assay with a higher sensitivity (97%), specificity (97-100%) and concordance (91.32%). The correlation between two assays (r = 0.886) was statistically significant (p < 0.01), the linear regression showed a moderate fit (R 2  = 0.784) and differences were within limits of agreement. Reproducibility showed an average variation of 4.15 and 3.52% while Lower limit of detection (LLD) and Upper limit of detection (ULD) were 42 and 1,740,000 copies/ml respectively. The misclassification rates for three viral load cut offs were not statistically different (p = 0.736). All seronegative samples were negative and viral loads of the stored samples showed a good fit (R 2  = 0.896 to 0.982). The viral load results of GeneXpert HIV-1 Quant assay compared well with Abbott HIV-1 m2000 Real Time PCR; suggesting its use as a Point of care assay for viral load estimation in resource limited settings. Its ease of performance and rapidity will aid in timely diagnosis of ART failures, integrated HIV-TB management and will facilitate the UNAIDS 90-90-90 target.

  11. Extremely low glacial headwall retreat rates quantified using debris-covered glaciers in the Transantarctic Mountains

    NASA Astrophysics Data System (ADS)

    Mackay, S. L.; Marchant, D. R.

    2017-12-01

    The McMurdo Dry Valleys (MDV) region of Antarctica is considered to be one of the most geomorphically stable regions on Earth. The extreme landscape stability is attributed primarily to persistent cold-polar desert conditions, and has enabled the multi-million-year preservation of near-surface terrestrial archives that are critical to our understanding of Antarctic ice sheet dynamics and climate change over at least the last 14 Ma. Correct interpretation of these archives requires well-constrained estimates of the rate of landscape alteration and erosion. Previous studies using tephrochronology of in situ ash deposits and terrestrial cosmogenic nuclides from bedrock and regolith on ridge crests, valley bottoms, and other low-angled, sub-horizontal surfaces have yielded inferred erosion rates of 5×10-5 to 9×10-4mm a-1 . However, estimates for erosion of cliff faces in topographically complex terrain that dominates the upland region of the MDV are largely unknown. Here we measure, for the first time in the MDV, the average rate of erosion and headwall-retreat for near-vertical glaciated cirques. To accomplish this, we analyze the sediment flux through the Mullins and Friedman glaciers; these are cold-based, topographically constrained, and slow-moving debris-covered alpine glaciers that collect and transport debris sourced entirely from rockfall at the headwall cirque. Using data from 15 km of ground penetrating radar profiles, 12 shallow ice cores, and 180 shallow surface excavations, we compile an estimated total sediment load for each glacier. We then combine this sediment load with measurements of the debris source area and a glacial chronology based on cosmogenic nuclide dating and measured ice flow velocities. Results indicate average headwall erosion rates of 1×10-3-5×10-3 mm a-1 and slope-adjusted headwall retreat rates of 9×10-4-4×10-3 mm a-1 over the past 225 ka. These values are the lowest yet reported and are several orders of magnitude lower than most headwall retreat rates in temperate, sub-arctic, and arctic mountain regions. Extrapolating this average erosion rate beyond the measured time period implies that less than 100 m of headwall retreat has occurred since the Middle Miocene and supports interpretations of the upland MDV region as a nearly static landscape.

  12. [Risk assessment of manual handling of loads: the choice of reference values in light of Leg. 81/2008].

    PubMed

    Baracco, A; Coggiola, M; Discalzi, G; Perrelli, F; Romano, C

    2009-01-01

    Italian law on safety at work does not clarify specific levels of load for safe manual material handling. For this reason professionals appointed for safety need to define new target range value for the correct application of D.Lgs. 81/2008 law. Authors, discussing about indication of the national laws and international rules, suggest the assumption of a load of 25 and 20 kg as reference values for male and female adult and healthy workers. They also examine the graduation of the acceptable loads in relation to workers' age and the Lifting Index values to be adopted as action limit and exposure limit.

  13. 14 CFR 27.865 - External loads.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... must be shown by analysis, test, or both, that the rotorcraft external load attaching means for rotorcraft-load combinations to be used for nonhuman external cargo applications can withstand a limit static...

  14. 14 CFR 27.865 - External loads.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... must be shown by analysis, test, or both, that the rotorcraft external load attaching means for rotorcraft-load combinations to be used for nonhuman external cargo applications can withstand a limit static...

  15. 14 CFR 27.865 - External loads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... must be shown by analysis, test, or both, that the rotorcraft external load attaching means for rotorcraft-load combinations to be used for nonhuman external cargo applications can withstand a limit static...

  16. 14 CFR 27.865 - External loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... must be shown by analysis, test, or both, that the rotorcraft external load attaching means for rotorcraft-load combinations to be used for nonhuman external cargo applications can withstand a limit static...

  17. 14 CFR 27.865 - External loads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... must be shown by analysis, test, or both, that the rotorcraft external load attaching means for rotorcraft-load combinations to be used for nonhuman external cargo applications can withstand a limit static...

  18. A Better ARED Squat

    NASA Technical Reports Server (NTRS)

    Caldwell, E. E.; Newby, N. J.; Ploutz-Snyder, L.

    2014-01-01

    The 0-G ARED squat under loads the legs relative to the 1g ARED squat. In 1g the knee extensor/flexor muscles are primarily engaged due to the body's center of gravity is behind the knees during the motion of the squat. As body weight does not play a sufficient role 0 G, a crewmember's load exposure is limited by the load delivered by ARED through the exercise bar. Prescription loads for lowerbody resistance exercise in microgravity aim to include 1-G exercise bar load in addition to the crewmember's Earth body weight (BW); however, pressure points from the bar and the 1BW increased load at the shoulders translating to higher loads on the back have been a historical limitation for shoulders, requiring a decrease in exercise load at the start of the mission. Analogous to crewmembers, bed rest subjects report limitations of exercising with high loads on the back while performing squats on the horizontal exercise fixture (HEF), a custom exercise device that serves as an analog to 0-G ARED. Improvements for increasing loads on the HEF squat were suggested by distributing total exercise load between the hips and the bar1. The same is recommended for the 0-G ARED squat, with using current equipment on the ISS, which include the T2 running harness and T2 bungees. Quantification of this improvement has been accessed through computational modeling. The purpose of this study is to characterize joint torque during a squat with a distribution in exercise load on the ARED in 0 G. The analysis used existing models from NASA's Digital Astronaut Project. The biomechanics squat model was integrated with the ARED model and T2 bungees. The spring constant for the bungees were derived from ground testing. Forward dynamic simulation was performed for various conditions including anchor point attachments on the footplate of the ARED, bar load, hip load, and gravitational environment. The model confirms joint torques at knees is lower relative to 1G conditions primarily because the load delivery system is just with the exercise bar in 0 G. By distributing partial loads through use of the bungees to the hips joint-torque profiles were altered during a squat and provided options to enhance targeting lower-body loading in aims as for an improved countermeasure.

  19. Saturating time-delay transformer for overcurrent protection. [Patent application

    DOEpatents

    Praeg, W.F.

    1975-12-18

    Electrical loads connected to dc supplies are protected from damage by overcurrent in the case of a load fault by connecting in series with the load a saturating transformer that detects a load fault and limits the fault current to a safe level for a period long enough to correct the fault or else disconnect the power supply.

  20. Decreasing Cognitive Load for Learners: Strategy of Web-Based Foreign Language Learning

    ERIC Educational Resources Information Center

    Zhang, Jianfeng

    2013-01-01

    Cognitive load is one of the important factors that influence the effectiveness and efficiency of web-based foreign language learning. Cognitive load theory assumes that human's cognitive capacity in working memory is limited and if it overloads, learning will be hampered, so that high level of cognitive load can affect the performance of learning…

  1. Saturating time-delay transformer for overcurrent protection

    DOEpatents

    Praeg, Walter F.

    1977-01-01

    Electrical loads connected to d-c supplies are protected from damage by overcurrent in the case of a load fault by connecting in series with the load a saturating transformer that detects a load fault and limits the fault current to a safe level for a period long enough to correct the fault or else disconnect the power supply.

  2. Conditioning monitoring by microstructural evaluation of cumulative fatigue damage

    NASA Astrophysics Data System (ADS)

    Fukuoka, C.; Nakagawa, Y. G.; Lance, J. J.; Pangborn, R. N.

    1996-12-01

    The objective of this work is to evaluate the damage induced below and above the fatigue limit (Δ σ t =360 MPa) in pressure vessel steels, such as SA508. Fatigue damage was induced in samples taken from an SA508 steel plate by various loading histories in order to examine the influence of prior cyclic loading below the fatigue limit. Cell-to-cell misorientation differences were measured by the selected area diffraction (SAD) method. Surface cracking was also studied by the replication method. Small cracks were observed after precycling both below and above the fatigue limit. It was, however, found that fatigue test bars had a longer lifetime after precycling below the fatigue limit, while precycling above the fatigue limit caused other specimens to fail even when subsequently cycled below the fatigue limit. Cell-to-cell misorientation usually increases with accumulation of fatigue damage, but it was found that the misorientations measured after precycling below the fatigue limit decreased again at the beginning of the subsequent cycling above the fatigue limit. It should be noted that the misorientation at failure was always about 4 to 5 deg, regardless of loading histories. Misorientation showed good correlation with the fatigue lifetime of the samples.

  3. An analysis of three new infrasound arrays around Kīlauea Volcano

    USGS Publications Warehouse

    Thelen, Weston A.; Cooper, Jennifer

    2015-01-01

    A network of three new infrasound station arrays was installed around Kīlauea Volcano between July 2012 and September 2012, and a preliminary analysis of open-vent monitoring has been completed by Hawaiian Volcano Observatory (HVO). Infrasound is an emerging monitoring method in volcanology that detects perturbations in atmospheric pressure at frequencies below 20 Hz, which can result from volcanic events that are not always observed optically or thermally. Each array has the capability to detect various infrasound events as small as 0.05 Pa as measured at the array site. The infrasound monitoring network capabilities are demonstrated through case studies of rockfalls, pit collapses, and rise-fall cycles at Halema'uma'u Crater and Pu'u 'Ōʻō.

  4. 40 CFR Table 2 to Subpart Bbbbbb... - Applicability Criteria, Emission Limits, and Management Practices for Loading Racks

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the TOC vapors displaced from cargo tanks during product loading; and(b) Reduce emissions of TOC to...) Design and operate the vapor collection system to prevent any TOC vapors collected at one loading rack...

  5. 14 CFR 29.865 - External loads.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) It must be shown by analysis, test, or both, that the rotorcraft external load attaching means for rotorcraft-load combinations to be used for nonhuman external cargo applications can withstand a limit static...

  6. 14 CFR 29.865 - External loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) It must be shown by analysis, test, or both, that the rotorcraft external load attaching means for rotorcraft-load combinations to be used for nonhuman external cargo applications can withstand a limit static...

  7. 14 CFR 29.865 - External loads.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) It must be shown by analysis, test, or both, that the rotorcraft external load attaching means for rotorcraft-load combinations to be used for nonhuman external cargo applications can withstand a limit static...

  8. 14 CFR 29.865 - External loads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) It must be shown by analysis, test, or both, that the rotorcraft external load attaching means for rotorcraft-load combinations to be used for nonhuman external cargo applications can withstand a limit static...

  9. 14 CFR 29.865 - External loads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) It must be shown by analysis, test, or both, that the rotorcraft external load attaching means for rotorcraft-load combinations to be used for nonhuman external cargo applications can withstand a limit static...

  10. The nature of operating flight loads and their effect on propulsion system structures

    NASA Technical Reports Server (NTRS)

    Dickenson, K. H.; Martin, R. L.

    1981-01-01

    Past diagnostics studies revealed the primary causes of performance deterioration of high by-pass turbofan engines to be flight loads, erosion, and thermal distortion. The various types of airplane loads that are imposed on the engine throughout the lifetime of an airplane are examined. These include flight loads from gusts and maneuvers and ground loads from takeoff, landing, and taxi conditions. Clarification is made in definitions of the airframer's limit and ultimate design loads and the engine manufacturer's operating design loads. Finally, the influence of these loads on the propulsion system structures is discussed.

  11. Comparison of computer codes for calculating dynamic loads in wind turbines

    NASA Technical Reports Server (NTRS)

    Spera, D. A.

    1977-01-01

    Seven computer codes for analyzing performance and loads in large, horizontal axis wind turbines were used to calculate blade bending moment loads for two operational conditions of the 100 kW Mod-0 wind turbine. Results were compared with test data on the basis of cyclic loads, peak loads, and harmonic contents. Four of the seven codes include rotor-tower interaction and three were limited to rotor analysis. With a few exceptions, all calculated loads were within 25 percent of nominal test data.

  12. 36 CFR 1234.10 - What are the facility requirements for all records storage facilities?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .../structural engineer that there are no obvious structural weaknesses that would indicate a high potential for... permit unrestricted access for emergency vehicles. (f) A floor load limit must be established for the..., etc. The allowable load limit must be posted in a conspicuous place and must not be exceeded. (g) The...

  13. 76 FR 10213 - Special Conditions: Embraer Model EMB-135BJ (Legacy 650) Airplanes, Limit Engine Torque Loads for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-24

    ... criteria for the more-severe events would no longer be a pure static torque-load condition, but would... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 25 [Docket No. NM449; Notice No. 25-420-SC] Special Conditions: Embraer Model EMB-135BJ (Legacy 650) Airplanes, Limit Engine...

  14. 36 CFR 1234.10 - What are the facility requirements for all records storage facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .../structural engineer that there are no obvious structural weaknesses that would indicate a high potential for... permit unrestricted access for emergency vehicles. (f) A floor load limit must be established for the..., etc. The allowable load limit must be posted in a conspicuous place and must not be exceeded. (g) The...

  15. 36 CFR § 1234.10 - What are the facility requirements for all records storage facilities?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .../structural engineer that there are no obvious structural weaknesses that would indicate a high potential for... permit unrestricted access for emergency vehicles. (f) A floor load limit must be established for the..., etc. The allowable load limit must be posted in a conspicuous place and must not be exceeded. (g) The...

  16. 36 CFR 1234.10 - What are the facility requirements for all records storage facilities?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .../structural engineer that there are no obvious structural weaknesses that would indicate a high potential for... permit unrestricted access for emergency vehicles. (f) A floor load limit must be established for the..., etc. The allowable load limit must be posted in a conspicuous place and must not be exceeded. (g) The...

  17. Static and Dynamic Analysis in Design of Exoskeleton Structure

    NASA Astrophysics Data System (ADS)

    Ivánkova, Ol'ga; Méri, Dávid; Vojteková, Eva

    2017-10-01

    This paper introduces a numerical experiment of creating the load bearing system of a high rise building. When designing the high-rise building, it is always an important task to find the right proportion between the height of the building and its perceptive width from the various angles of street view. Investigated high rise building in this article was designed according to these criteria. The load bearing structure of the analysed object consists of a reinforced core, plates and steel tubes of an exoskeleton. Eight models of the building were created using the spatial variant of FEM in Scia Engineer Software. Individual models varied in number and dimensions of diagrids in the exoskeleton. In the models, loadings due to the own weight, weight of external glass cladding, and due to the wind according to the Standard, have been considered. The building was loaded by wind load from all four main directions with respect to its shape. Wind load was calculated using the 3D wind generator, which is a part of the Scia Engineer Software. For each model the static analysis was performed. Its most important criterion was the maximum or minimum horizontal displacement (rotation) of the highest point of the building. This displacement was compared with the limit values of the displacement of the analysed high-rise building. By step-by-step adding diagrids and optimizing their dimensions the building model was obtained that complied with the criteria of the Limit Serviceability State. The last model building was assessed also for the Ultimate Limit State. This model was loaded also by seismic loads for comparison with the load due to the wind.

  18. Remembering Complex Objects in Visual Working Memory: Do Capacity Limits Restrict Objects or Features?

    PubMed Central

    Hardman, Kyle; Cowan, Nelson

    2014-01-01

    Visual working memory stores stimuli from our environment as representations that can be accessed by high-level control processes. This study addresses a longstanding debate in the literature about whether storage limits in visual working memory include a limit to the complexity of discrete items. We examined the issue with a number of change-detection experiments that used complex stimuli which possessed multiple features per stimulus item. We manipulated the number of relevant features of the stimulus objects in order to vary feature load. In all of our experiments, we found that increased feature load led to a reduction in change-detection accuracy. However, we found that feature load alone could not account for the results, but that a consideration of the number of relevant objects was also required. This study supports capacity limits for both feature and object storage in visual working memory. PMID:25089739

  19. Retractor-Based Stroking Seat System and Energy-Absorbing Floor to Mitigate High Shock and Vertical Acceleration

    DTIC Science & Technology

    2014-04-15

    Seat stroke, Lumbar loads, Accelerative load, M&S analysis, Blast , UBB, LS- DYNA , ATD 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...typical blast input load to the seat . Resulting crew injuries are monitored for various vertical accelerative loading scenarios. The retractor load...an enforced blast pulse, this hull structural thickness does not have any effect on the results. 2.2 Seatbelt model Automotive seat belts with

  20. 14 CFR 23.321 - General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Flight Loads § 23.321 General. (a) Flight load factors represent the ratio of the aerodynamic force component (acting normal to... distribution of disposable load within the operating limitations specified in §§ 23.1583 through 23.1589. (c...

  1. Optimization of Nanowire-Resistance Load Logic Inverter.

    PubMed

    Hashim, Yasir; Sidek, Othman

    2015-09-01

    This study is the first to demonstrate characteristics optimization of nanowire resistance load inverter. Noise margins and inflection voltage of transfer characteristics are used as limiting factors in this optimization. Results indicate that optimization depends on resistance value. Increasing of load resistor tends to increasing in noise margins until saturation point, increasing load resistor after this point will not improve noise margins significantly.

  2. Efficient field testing for load rating railroad bridges

    NASA Astrophysics Data System (ADS)

    Schulz, Jeffrey L.; Brett C., Commander

    1995-06-01

    As the condition of our infrastructure continues to deteriorate, and the loads carried by our bridges continue to increase, an ever growing number of railroad and highway bridges require load limits. With safety and transportation costs at both ends of the spectrum. the need for accurate load rating is paramount. This paper describes a method that has been developed for efficient load testing and evaluation of short- and medium-span bridges. Through the use of a specially-designed structural testing system and efficient load test procedures, a typical bridge can be instrumented and tested at 64 points in less than one working day and with minimum impact on rail traffic. Various techniques are available to evaluate structural properties and obtain a realistic model. With field data, a simple finite element model is 'calibrated' and its accuracy is verified. Appropriate design and rating loads are applied to the resulting model and stress predictions are made. This technique has been performed on numerous structures to address specific problems and to provide accurate load ratings. The merits and limitations of this approach are discussed in the context of actual examples of both rail and highway bridges that were tested and evaluated.

  3. Identification of critical equipment and determination of operational limits in helium refrigerators under pulsed heat load

    NASA Astrophysics Data System (ADS)

    Dutta, Rohan; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2014-01-01

    Large-scale helium refrigerators are subjected to pulsed heat load from tokamaks. As these plants are designed for constant heat loads, operation under such varying load may lead to instability in plants thereby tripping the operation of different equipment. To understand the behavior of the plant subjected to pulsed heat load, an existing plant of 120 W at 4.2 K and another large-scale plant of 18 kW at 4.2 K have been analyzed using a commercial process simulator Aspen Hysys®. A similar heat load characteristic has been applied in both quasi steady state and dynamic analysis to determine critical stages and equipment of these plants from operational point of view. It has been found that the coldest part of both the cycles consisting JT-stage and its preceding reverse Brayton stage are the most affected stages of the cycles. Further analysis of the above stages and constituting equipment revealed limits of operation with respect to variation of return stream flow rate resulted from such heat load variations. The observations on the outcome of the analysis can be used for devising techniques for steady operation of the plants subjected to pulsed heat load.

  4. Geomorphic analysis of the river response to sedimentation downstream of Mount Rainier, Washington

    USGS Publications Warehouse

    Czuba, Jonathan A.; Magirl, Christopher S.; Czuba, Christiana R.; Curran, Christopher A.; Johnson, Kenneth H.; Olsen, Theresa D.; Kimball, Halley K.; Gish, Casey C.

    2012-01-01

    A study of the geomorphology of rivers draining Mount Rainier, Washington, was completed to identify sources of sediment to the river network; to identify important processes in the sediment delivery system; to assess current sediment loads in rivers draining Mount Rainier; to evaluate if there were trends in streamflow or sediment load since the early 20th century; and to assess how rates of sedimentation might continue into the future using published climate-change scenarios. Rivers draining Mount Rainier carry heavy sediment loads sourced primarily from the volcano that cause acute aggradation in deposition reaches as far away as the Puget Lowland. Calculated yields ranged from 2,000 tonnes per square kilometer per year [(tonnes/km2)/yr] on the upper Nisqually River to 350 (tonnes/km2)/yr on the lower Puyallup River, notably larger than sediment yields of 50–200 (tonnes/km2)/yr typical for other Cascade Range rivers. These rivers can be assumed to be in a general state of sediment surplus. As a result, future aggradation rates will be largely influenced by the underlying hydrology carrying sediment downstream. The active-channel width of rivers directly draining Mount Rainier in 2009, used as a proxy for sediment released from Mount Rainier, changed little between 1965 and 1994 reflecting a climatic period that was relatively quiet hydrogeomorphically. From 1994 to 2009, a marked increase in geomorphic disturbance caused the active channels in many river reaches to widen. Comparing active-channel widths of glacier-draining rivers in 2009 to the distance of glacier retreat between 1913 and 1994 showed no correlation, suggesting that geomorphic disturbance in river reaches directly downstream of glaciers is not strongly governed by the degree of glacial retreat. In contrast, there was a correlation between active-channel width and the percentage of superglacier debris mantling the glacier, as measured in 1971. A conceptual model of sediment delivery processes from the mountain indicates that rockfalls, glaciers, debris flows, and main-stem flooding act sequentially to deliver sediment from Mount Rainier to river reaches in the Puget Lowland over decadal time scales. Greater-than-normal runoff was associated with cool phases of the Pacific Decadal Oscillation. Streamflow-gaging station data from four unregulated rivers directly draining Mount Rainier indicated no statistically significant trends of increasing peak flows over the course of the 20th century. The total sediment load of the upper Nisqually River from 1945 to 2011 was determined to be 1,200,000±180,000 tonnes/yr. The suspended-sediment load in the lower Puyallup River at Puyallup, Washington, was 860,000±300,000 tonnes/yr between 1978 and 1994, but the long-term load for the Puyallup River likely is about 1,000,000±400,000 tonnes/yr. Using a coarse-resolution bedload transport relation, the long-term average bedload was estimated to be about 30,000 tonnes/yr in the lower White River near Auburn, Washington, which was four times greater than bedload in the Puyallup River and an order of magnitude greater than bedload in the Carbon River. Analyses indicate a general increase in the sediment loads in Mount Rainier rivers in the 1990s and 2000s relative to the time period from the 1960s to 1980s. Data are insufficient, however, to determine definitively if post-1990 increases in sediment production and transport from Mount Rainier represent a statistically significant increase relative to sediment-load values typical from Mount Rainier during the entire 20th century. One-dimensional river-hydraulic and sediment-transport models simulated the entrainment, transport, attrition, and deposition of bed material. Simulations showed that bed-material loads were largest for the Nisqually River and smallest for the Carbon River. The models were used to simulate how increases in sediment supply to rivers transport through the river systems and affect lowland reaches. For each simulation, the input sediment pulse evolved through a combination of translation, dispersion, and attrition as it moved downstream. The characteristic transport times for the median sediment-size pulse to arrive downstream for the Nisqually, Carbon, Puyallup, and White Rivers were approximately 70, 300, 80, and 60 years, respectively.

  5. Projections of limiting states for load-bearing structures of reflectors made of polymer composites

    NASA Astrophysics Data System (ADS)

    Doronin, S. V.

    2017-12-01

    This paper deals with limiting states typical for reflector antennas for terrestrial satellite communication systems. Reflectors made of polymer composites are studied. These limiting states are projected by results of the numerical analysis of the stress and strain states. The analysis is executed for reflectors under conditions of static and dynamic loading. It takes into account both overshoot of the state variables of allowed level and the processes of long-term structural material degradation.

  6. Study of Stand-Alone Microgrid under Condition of Faults on Distribution Line

    NASA Astrophysics Data System (ADS)

    Malla, S. G.; Bhende, C. N.

    2014-10-01

    The behavior of stand-alone microgrid is analyzed under the condition of faults on distribution feeders. During fault since battery is not able to maintain dc-link voltage within limit, the resistive dump load control is presented to do so. An inverter control is proposed to maintain balanced voltages at PCC under the unbalanced load condition and to reduce voltage unbalance factor (VUF) at load points. The proposed inverter control also has facility to protect itself from high fault current. Existing maximum power point tracker (MPPT) algorithm is modified to limit the speed of generator during fault. Extensive simulation results using MATLAB/SIMULINK established that the performance of the controllers is quite satisfactory under different fault conditions as well as unbalanced load conditions.

  7. Effect of crash pulse shape on seat stroke requirements for limiting loads on occupants of aircraft

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.

    1992-01-01

    An analytical study was made to provide comparative information on various crash pulse shapes that potentially could be used to test seats under conditions included in Federal Regulations Part 23 Paragraph 23.562(b)(1) for dynamic testing of general aviation seats, show the effects that crash pulse shape can have on the seat stroke requirements necessary to maintain a specified limit loading on the seat/occupant during crash pulse loadings, compare results from certain analytical model pulses with approximations of actual crash pulses, and compare analytical seat results with experimental airplace crash data. Structural and seat/occupant displacement equations in terms of the maximum deceleration, velocity change, limit seat pan load, and pulse time for five potentially useful pulse shapes were derived; from these, analytical seat stroke data were obtained for conditions as specified in Federal Regulations Part 23 Paragraph 23.562(b)(1) for dynamic testing of general aviation seats.

  8. Response terminated displays unload selective attention

    PubMed Central

    Roper, Zachary J. J.; Vecera, Shaun P.

    2013-01-01

    Perceptual load theory successfully replaced the early vs. late selection debate by appealing to adaptive control over the efficiency of selective attention. Early selection is observed unless perceptual load (p-Load) is sufficiently low to grant attentional “spill-over” to task-irrelevant stimuli. Many studies exploring load theory have used limited display durations that perhaps impose artificial limits on encoding processes. We extended the exposure duration in a classic p-Load task to alleviate temporal encoding demands that may otherwise tax mnemonic consolidation processes. If the load effect arises from perceptual demands alone, then freeing-up available mnemonic resources by extending the exposure duration should have little effect. The results of Experiment 1 falsify this prediction. We observed a reliable flanker effect under high p-Load, response-terminated displays. Next, we orthogonally manipulated exposure duration and task-relevance. Counter-intuitively, we found that the likelihood of observing the flanker effect under high p-Load resides with the duration of the task-relevant array, not the flanker itself. We propose that stimulus and encoding demands interact to produce the load effect. Our account clarifies how task parameters differentially impinge upon cognitive processes to produce attentional “spill-over” by appealing to visual short-term memory as an additional processing bottleneck when stimuli are briefly presented. PMID:24399983

  9. Response terminated displays unload selective attention.

    PubMed

    Roper, Zachary J J; Vecera, Shaun P

    2013-01-01

    Perceptual load theory successfully replaced the early vs. late selection debate by appealing to adaptive control over the efficiency of selective attention. Early selection is observed unless perceptual load (p-Load) is sufficiently low to grant attentional "spill-over" to task-irrelevant stimuli. Many studies exploring load theory have used limited display durations that perhaps impose artificial limits on encoding processes. We extended the exposure duration in a classic p-Load task to alleviate temporal encoding demands that may otherwise tax mnemonic consolidation processes. If the load effect arises from perceptual demands alone, then freeing-up available mnemonic resources by extending the exposure duration should have little effect. The results of Experiment 1 falsify this prediction. We observed a reliable flanker effect under high p-Load, response-terminated displays. Next, we orthogonally manipulated exposure duration and task-relevance. Counter-intuitively, we found that the likelihood of observing the flanker effect under high p-Load resides with the duration of the task-relevant array, not the flanker itself. We propose that stimulus and encoding demands interact to produce the load effect. Our account clarifies how task parameters differentially impinge upon cognitive processes to produce attentional "spill-over" by appealing to visual short-term memory as an additional processing bottleneck when stimuli are briefly presented.

  10. Assessment of the transportation route of oversize and excessive loads in relation to the load-bearing capacity of existing bridges

    NASA Astrophysics Data System (ADS)

    Doležel, Jiří; Novák, Drahomír; Petrů, Jan

    2017-09-01

    Transportation routes of oversize and excessive loads are currently planned in relation to ensure the transit of a vehicle through critical points on the road. Critical points are level-intersection of roads, bridges etc. This article presents a comprehensive procedure to determine a reliability and a load-bearing capacity level of the existing bridges on highways and roads using the advanced methods of reliability analysis based on simulation techniques of Monte Carlo type in combination with nonlinear finite element method analysis. The safety index is considered as a main criterion of the reliability level of the existing construction structures and the index is described in current structural design standards, e.g. ISO and Eurocode. An example of a single-span slab bridge made of precast prestressed concrete girders of the 60 year current time and its load bearing capacity is set for the ultimate limit state and serviceability limit state. The structure’s design load capacity was estimated by the full probability nonlinear MKP analysis using a simulation technique Latin Hypercube Sampling (LHS). Load-bearing capacity values based on a fully probabilistic analysis are compared with the load-bearing capacity levels which were estimated by deterministic methods of a critical section of the most loaded girders.

  11. Centaur Standard Shroud (CSS) static ultimate load structural tests

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A series of tests were conducted on the jettisonable metallic shroud used on the Titan/Centaur launch vehicle to verify its structural capabilities and to evaluate its structural interaction with the Centaur stage. A flight configured shroud and the interfacing Titan/Centaur structural assemblies were subjected to tests consisting of combinations of applied axial and shear loads to design ultimate values, including a set of tests on thermal conditions and two dynamic response tests to verify the analytical stiffness model. The strength capabilities were demonstrated at ultimate (125 percent of design limit) loads. It was also verified that the spring rate of the flight configured shroud-to-Centaur forward structural deflections of the specimen became nonlinear, as expected, above limit load values. This test series qualification program verified that the Titan/Centaur shroud and the Centaur and Titan interface components are qualified structurally at design ultimate loads.

  12. Full Body Loading for Small Exercise Devices Project

    NASA Technical Reports Server (NTRS)

    Downs, Meghan; Hanson, Andrea; Newby, Nathaniel

    2015-01-01

    Protecting astronauts' spine, hip, and lower body musculoskeletal strength will be critical to safely and efficiently perform physically demanding vehicle egress, exploration, and habitat building activities necessary to expand human presence in the solar system. Functionally limiting decrements in musculoskeletal health are likely during Mars proving-ground and Earth-independent missions given extended transit times and the vehicle limitations for exercise devices (low-mass, small volume). Most small exercise device concepts are designed with single-cable loading, which inhibits the ability to perform full body exercises requiring two-point loading at the shoulders. Shoulder loading is critical to protect spine, hip, and lower body musculoskeletal strength. We propose a novel low-mass, low-maintenance, and rapid deploy pulley-based system that can attach to a single-cable small exercise device to enable two-point loading at the shoulders. This attachment could protect astronauts' health and save cost, space, and energy during all phases of the Journey to Mars.

  13. 29 CFR 1919.75 - Determination of crane or derrick safe working loads and limitations in absence of manufacturer's...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Determination of crane or derrick safe working loads and limitations in absence of manufacturer's data. 1919.75 Section 1919.75 Labor Regulations Relating to Labor... Certification of Shore-Based Material Handling Devices § 1919.75 Determination of crane or derrick safe working...

  14. 29 CFR 1919.75 - Determination of crane or derrick safe working loads and limitations in absence of manufacturer's...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Determination of crane or derrick safe working loads and limitations in absence of manufacturer's data. 1919.75 Section 1919.75 Labor Regulations Relating to Labor... Certification of Shore-Based Material Handling Devices § 1919.75 Determination of crane or derrick safe working...

  15. 75 FR 78928 - Limited Service Domestic Voyage Load Lines for River Barges on Lake Michigan, Delay of Effective...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... Advisories may also be issued when lake ice exists that could be hazardous to small boats. Although river...-AA17 Limited Service Domestic Voyage Load Lines for River Barges on Lake Michigan, Delay of Effective... Lake Michigan. This rule finalized interim regulations that have been in effect since 2002, with some...

  16. Comprehensive manual handling limits for lowering, pushing, pulling and carrying activities.

    PubMed

    Shoaf, C; Genaidy, A; Karwowski, W; Waters, T; Christensen, D

    1997-11-01

    The objective of this study was to develop a set of mathematical models for manual lowering, pushing, pulling and carrying activities that would result in establishing load capacity limits to protect the lower back against occupational low-back disorders. In order to establish safe guidelines, a three-stage process was used. First, psychophysical data was used to generate the models' discounting factors and recommended load capacities. Second, biomechanical analysis was used to refine the recommended load capacities. Third, physiological criteria were used to validate the models' discounting factors. Both task and personal factors were considered in the models' development. When compared to the results from prior psychophysical research for these activities, the developed load capacity values are lower than previously established limits. The results of this study allowed the authors to validate the hypothesis proposed and tested by Karwowski (1983) that states that the combination of physiological and biomechanical stresses should lead to the overall measure of task acceptability or the psychophysical stress. This study also found that some of the discounting factors for the task frequency parameters recommended in the prior psychophysical research should not be used as several of the high frequency factors violated physiological limits.

  17. Assessment of New Load Schedules for the Machine Calibration of a Force Balance

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; Gisler, R.; Kew, R.

    2015-01-01

    New load schedules for the machine calibration of a six-component force balance are currently being developed and evaluated at the NASA Ames Balance Calibration Laboratory. One of the proposed load schedules is discussed in the paper. It has a total of 2082 points that are distributed across 16 load series. Several criteria were applied to define the load schedule. It was decided, for example, to specify the calibration load set in force balance format as this approach greatly simplifies the definition of the lower and upper bounds of the load schedule. In addition, all loads are assumed to be applied in a calibration machine by using the one-factor-at-a-time approach. At first, all single-component loads are applied in six load series. Then, three two-component load series are applied. They consist of the load pairs (N1, N2), (S1, S2), and (RM, AF). Afterwards, four three-component load series are applied. They consist of the combinations (N1, N2, AF), (S1, S2, AF), (N1, N2, RM), and (S1, S2, RM). In the next step, one four-component load series is applied. It is the load combination (N1, N2, S1, S2). Finally, two five-component load series are applied. They are the load combination (N1, N2, S1, S2, AF) and (N1, N2, S1, S2, RM). The maximum difference between loads of two subsequent data points of the load schedule is limited to 33 % of capacity. This constraint helps avoid unwanted load "jumps" in the load schedule that can have a negative impact on the performance of a calibration machine. Only loadings of the single- and two-component load series are loaded to 100 % of capacity. This approach was selected because it keeps the total number of calibration points to a reasonable limit while still allowing for the application of some of the more complex load combinations. Data from two of NASA's force balances is used to illustrate important characteristics of the proposed 2082-point calibration load schedule.

  18. Numerical verification of two-component dental implant in the context of fatigue life for various load cases.

    PubMed

    Szajek, Krzysztof; Wierszycki, Marcin

    2016-01-01

    Dental implant designing is a complex process which considers many limitations both biological and mechanical in nature. In earlier studies, a complete procedure for improvement of two-component dental implant was proposed. However, the optimization tasks carried out required assumption on representative load case, which raised doubts on optimality for the other load cases. This paper deals with verification of the optimal design in context of fatigue life and its main goal is to answer the question if the assumed load scenario (solely horizontal occlusal load) leads to the design which is also "safe" for oblique occlussal loads regardless the angle from an implant axis. The verification is carried out with series of finite element analyses for wide spectrum of physiologically justified loads. The design of experiment methodology with full factorial technique is utilized. All computations are done in Abaqus suite. The maximal Mises stress and normalized effective stress amplitude for various load cases are discussed and compared with the assumed "safe" limit (equivalent of fatigue life for 5e6 cycles). The obtained results proof that coronial-appical load component should be taken into consideration in the two component dental implant when fatigue life is optimized. However, its influence in the analyzed case is small and does not change the fact that the fatigue life improvement is observed for all components within whole range of analyzed loads.

  19. Geomorphic feedbacks between hillslopes and valley glaciers - implications for climate reconstructions and landscape evolution (GM Division Outstanding ECS Award Lecture and Penck Lecture)

    NASA Astrophysics Data System (ADS)

    Scherler, Dirk

    2017-04-01

    Glacial landscapes respond rapidly to global warming: glaciers retreat, permafrost degrades, and snow cover diminishes. These changes affect the stability of glacial landscapes, manifested by enhanced rockfall activity and more frequent catastrophic slope failures. Similar changes have accompanied deglaciation after the last glacial maximum, albeit of much greater magnitude, and with potentially important feedbacks between the dynamics of mountain glaciers and the landscapes they reside in. Here, I summarize recent observations from debris-covered valley glaciers and put them into context with a more general conceptual model of how glacial landscapes respond to warming periods. I will identify key research problems and provide preliminary results from ongoing studies. Ice-free areas that are located above glaciers generally consist of steep bedrock hillslopes (headwalls), where ambient temperatures are low enough to form bedrock permafrost, but the topography is too steep to accumulate significant amounts of ice on the surface. Because headwalls erode by rockfalls and rock avalanches that mobilize fractured bedrock, the rate-limiting factor is the growth of bedrock fractures. Current theory posits that bedrock fractures in cold regions primarily expand by segregation ice growth at subfreezing temperatures, which is known as frost cracking. Because frost cracking is temperature sensitive, there exists a temperature window of high frost-cracking intensity, which is thought to correspond to an elevation zone of enhanced sediment production. During warming periods, changes in the frost-cracking intensity combine with permafrost degradation and changing stresses due to ice thinning to destabilize steep headwalls and likely increase the flux of rocks that is shed to valley glaciers below. Even if temporarily buried in the ice, most rocks eventually melt out at the ice surface and form a supraglacial debris cover. Because debris cover thicker than 2 cm reduces conductive heat transport and thus ice melt rates, heavily debris-covered glaciers are longer and extent to lower and warmer elevations compared to debris-free glaciers, all other things being equal. Therefore, if warming induces an increase in headwall erosion rates, the increased supply of rocks should lead to an increase in supraglacial debris cover, which would reduce ice melting and slow down glacier retreat. Theoretically this effect could offset part of the warming-induced glacier shrinking. Large slope failures that result in a sudden increase in debris cover may even trigger glacier advances, as has been proposed for a few glaciers already. Such geomorphic feedbacks between headwalls and valley glaciers ought to be most pronounced in steep landscapes like the Himalaya, where existing glacial chronologies often lack spatial coherence. Some heavily debris-covered valley glaciers can be found to lie entirely below the regional climatic snowline where they are sustained by snow avalanches. Such glaciers typically flow at low velocities and their key role in glacial landscape evolution may lie in keeping the base of headwalls free from talus deposits and thereby sustain a steep and retreating headwall.

  20. Effects of cognitive load on neural and behavioral responses to smoking cue distractors

    PubMed Central

    MacLean, R. Ross; Nichols, Travis T.; LeBreton, James M.; Wilson, Stephen J.

    2017-01-01

    Smoking cessation failures are frequently thought to reflect poor top-down regulatory control over behavior. Previous studies suggest that smoking cues occupy limited working memory resources, an effect that may contribute to difficulty achieving abstinence. Few studies have evaluated the effects of cognitive load on the ability to actively maintain information in the face of distracting smoking cues. The current study adapted an fMRI probed recall task under low and high cognitive load with three distractor conditions: control, neutral images, or smoking-related images. Consistent with a limited-resource model of cue reactivity, we predicted that performance of daily smokers (n=17) would be most impaired when high load was paired with smoking distractors. Results demonstrated a main effect of load, with decreased accuracy under high, compared to low, cognitive load. Surprisingly, an interaction revealed the effect of load was weakest in the smoking cue distractor condition. Along with this behavioral effect, we observed significantly greater activation of the right inferior frontal gyrus (rIFG) in the low load condition relative to the high load condition for trials containing smoking cue distractors. Furthermore, load-related changes in rIFG activation partially mediated the effects of load on task accuracy in the smoking cue distractor condition. These findings are discussed in the context of prevailing cognitive and cue reactivity theories. Results suggest that high cognitive load does not necessarily make smokers more susceptible to interference from smoking-related stimuli, and that elevated load may even have a buffering effect in the presence of smoking cues under certain conditions. PMID:27012714

Top