Volume 28, Issue12 (October 2004)
Articles in the Current Issue:
Research Article
Modelling poroelastic hollow cylinder experiments with realistic boundary conditions
NASA Astrophysics Data System (ADS)
Jourine, S.; Valkó, P. P.; Kronenberg, A. K.
2004-10-01
A general poroelastic solution for axisymmetrical plane strain problems with time dependent boundary conditions is developed in Laplace domain. Time-domain results are obtained using numerical inversion of the Laplace transform. Previously published solutions can be considered as special cases of the proposed solution. In particular, we could reproduce numerical results for solid and hollow poroelastic cylinders with suddenly applied load/pressure (Rice and Cleary, Rev. Geophys. Space Phys. 1976; 14:227; Schmitt, Tait and Spann, Int. J. Rock Mech. Min. Sci. 1993; 30:1057; Cui and Abousleiman, ASCE J. Eng. Mech. 2001; 127:391).
Characterization of Unstable Rock Slopes Through Passive Seismic Measurements
NASA Astrophysics Data System (ADS)
Kleinbrod, Ulrike; Burjánek, Jan; Fäh, Donat
2014-05-01
Catastrophic rock slope failures have high social impact, causing significant damage to infrastructure and many casualties throughout the world each year. Both detection and characterization of rock instabilities are therefore of key importance. Analysing unstable rock slopes by means of ambient vibrations might be a new alternative to the already existing methods as for example geotechnical displacement measurements. A systematic measurement campaign has been initiated recently in Switzerland in order to study the seismic response of potential rockslides concerning a broad class of slope failure mechanisms and material conditions. First results are presented in this contribution. Small aperture seismic arrays were deployed at sites of interest for a short period of time (several hours) in order to record ambient vibrations. During each measurement a reference station was installed on a stable part close to the instability. The total number of stations used varies from 16 down to 2, depending on the site scope and resource availability. Instable rock slopes show a highly directional ground motion which is significantly amplified with respect to stable areas. These effects are strongest at certain frequencies which are identified as eigenfrequencies of the unstable rock mass. The eigenfrequencies and predominant directions have been estimated by frequency dependent polarization analysis. Site-to-reference spectral ratios have been calculated as well in order to estimate the relative amplification of ground motion at unstable parts. The retrieved results were compared with independent in-situ observations and other available data. The directions of maximum amplification are in most cases perpendicular to open cracks mapped on the surface and in good agreement with the deformation directions obtained by geodetic measurements. The interpretation of the observed wave field is done through numerical modelling of seismic wave propagation in fractured media with complex topography. For example, a potential relation between eigenfrequencies and unstable rock mass volume is investigated.
-
On the convexity of ROC curves estimated from radiological test results.
Pesce, Lorenzo L; Metz, Charles E; Berbaum, Kevin S
2010-08-01
Although an ideal observer's receiver operating characteristic (ROC) curve must be convex-ie, its slope must decrease monotonically-published fits to empirical data often display "hooks." Such fits sometimes are accepted on the basis of an argument that experiments are done with real, rather than ideal, observers. However, the fact that ideal observers must produce convex curves does not imply that convex curves describe only ideal observers. This article aims to identify the practical implications of nonconvex ROC curves and the conditions that can lead to empirical or fitted ROC curves that are not convex. This article views nonconvex ROC curves from historical, theoretical, and statistical perspectives, which we describe briefly. We then consider population ROC curves with various shapes and analyze the types of medical decisions that they imply. Finally, we describe how sampling variability and curve-fitting algorithms can produce ROC curve estimates that include hooks. We show that hooks in population ROC curves imply the use of an irrational decision strategy, even when the curve does not cross the chance line, and therefore usually are untenable in medical settings. Moreover, we sketch a simple approach to improve any nonconvex ROC curve by adding statistical variation to the decision process. Finally, we sketch how to test whether hooks present in ROC data are likely to have been caused by chance alone and how some hooked ROCs found in the literature can be easily explained as fitting artifacts or modeling issues. In general, ROC curve fits that show hooks should be looked on with suspicion unless other arguments justify their presence. 2010 AUR. Published by Elsevier Inc. All rights reserved.
-
Lin, Bon-Jour; Lin, Meng-Chi; Lin, Chin; Lee, Meei-Shyuan; Feng, Shao-Wei; Ju, Da-Tong; Ma, Hsin-I; Liu, Ming-Ying; Hueng, Dueng-Yuan
2015-10-01
Previous studies have identified the factors affecting the surgical outcome of cervical spondylotic myelopathy (CSM) following laminoplasty. Nonetheless, the effect of these factors remains controversial. It is unknown about the association between pre-operative cervical spinal cord morphology and post-operative imaging result following laminoplasty. The goal of this study is to analyze the impact of pre-operative cervical spinal cord morphology on post-operative imaging in patients with CSM. Twenty-six patients with CSM undergoing open-door laminoplasty were classified according to pre-operative cervical spine bony alignment and cervical spinal cord morphology, and the results were evaluated in terms of post-operative spinal cord posterior drift, and post-operative expansion of the antero-posterior dura diameter. By the result of study, pre-operative spinal cord morphology was an effective classification in predicting surgical outcome - patients with anterior convexity type, description of cervical spinal cord morphology, had more spinal cord posterior migration than those with neutral or posterior convexity type after open-door laminoplasty. Otherwise, the interesting finding was that cervical spine Cobb's angle had an impact on post-operative spinal cord posterior drift in patients with neutral or posterior convexity type spinal cord morphology - the degree of kyphosis was inversely proportional to the distance of post-operative spinal cord posterior drift, but not in the anterior convexity type. These findings supported that pre-operative cervical spinal cord morphology may be used as screening for patients undergoing laminoplasty. Patients having neutral or posterior convexity type spinal cord morphology accompanied with kyphotic deformity were not suitable candidates for laminoplasty. Copyright © 2015 Elsevier B.V. All rights reserved.
-
Maximally dense packings of two-dimensional convex and concave noncircular particles.
Atkinson, Steven; Jiao, Yang; Torquato, Salvatore
2012-09-01
Dense packings of hard particles have important applications in many fields, including condensed matter physics, discrete geometry, and cell biology. In this paper, we employ a stochastic search implementation of the Torquato-Jiao adaptive-shrinking-cell (ASC) optimization scheme [Nature (London) 460, 876 (2009)] to find maximally dense particle packings in d-dimensional Euclidean space R(d). While the original implementation was designed to study spheres and convex polyhedra in d≥3, our implementation focuses on d=2 and extends the algorithm to include both concave polygons and certain complex convex or concave nonpolygonal particle shapes. We verify the robustness of this packing protocol by successfully reproducing the known putative optimal packings of congruent copies of regular pentagons and octagons, then employ it to suggest dense packing arrangements of congruent copies of certain families of concave crosses, convex and concave curved triangles (incorporating shapes resembling the Mercedes-Benz logo), and "moonlike" shapes. Analytical constructions are determined subsequently to obtain the densest known packings of these particle shapes. For the examples considered, we find that the densest packings of both convex and concave particles with central symmetry are achieved by their corresponding optimal Bravais lattice packings; for particles lacking central symmetry, the densest packings obtained are nonlattice periodic packings, which are consistent with recently-proposed general organizing principles for hard particles. Moreover, we find that the densest known packings of certain curved triangles are periodic with a four-particle basis, and we find that the densest known periodic packings of certain moonlike shapes possess no inherent symmetries. Our work adds to the growing evidence that particle shape can be used as a tuning parameter to achieve a diversity of packing structures.
-
Maximally dense packings of two-dimensional convex and concave noncircular particles
NASA Astrophysics Data System (ADS)
Atkinson, Steven; Jiao, Yang; Torquato, Salvatore
2012-09-01
Dense packings of hard particles have important applications in many fields, including condensed matter physics, discrete geometry, and cell biology. In this paper, we employ a stochastic search implementation of the Torquato-Jiao adaptive-shrinking-cell (ASC) optimization scheme [Nature (London)NATUAS0028-083610.1038/nature08239 460, 876 (2009)] to find maximally dense particle packings in d-dimensional Euclidean space Rd. While the original implementation was designed to study spheres and convex polyhedra in d≥3, our implementation focuses on d=2 and extends the algorithm to include both concave polygons and certain complex convex or concave nonpolygonal particle shapes. We verify the robustness of this packing protocol by successfully reproducing the known putative optimal packings of congruent copies of regular pentagons and octagons, then employ it to suggest dense packing arrangements of congruent copies of certain families of concave crosses, convex and concave curved triangles (incorporating shapes resembling the Mercedes-Benz logo), and “moonlike” shapes. Analytical constructions are determined subsequently to obtain the densest known packings of these particle shapes. For the examples considered, we find that the densest packings of both convex and concave particles with central symmetry are achieved by their corresponding optimal Bravais lattice packings; for particles lacking central symmetry, the densest packings obtained are nonlattice periodic packings, which are consistent with recently-proposed general organizing principles for hard particles. Moreover, we find that the densest known packings of certain curved triangles are periodic with a four-particle basis, and we find that the densest known periodic packings of certain moonlike shapes possess no inherent symmetries. Our work adds to the growing evidence that particle shape can be used as a tuning parameter to achieve a diversity of packing structures.
-
Convex geometry of quantum resource quantification
NASA Astrophysics Data System (ADS)
Regula, Bartosz
2018-01-01
We introduce a framework unifying the mathematical characterisation of different measures of general quantum resources and allowing for a systematic way to define a variety of faithful quantifiers for any given convex quantum resource theory. The approach allows us to describe many commonly used measures such as matrix norm-based quantifiers, robustness measures, convex roof-based measures, and witness-based quantifiers together in a common formalism based on the convex geometry of the underlying sets of resource-free states. We establish easily verifiable criteria for a measure to possess desirable properties such as faithfulness and strong monotonicity under relevant free operations, and show that many quantifiers obtained in this framework indeed satisfy them for any considered quantum resource. We derive various bounds and relations between the measures, generalising and providing significantly simplified proofs of results found in the resource theories of quantum entanglement and coherence. We also prove that the quantification of resources in this framework simplifies for pure states, allowing us to obtain more easily computable forms of the considered measures, and show that many of them are in fact equal on pure states. Further, we investigate the dual formulation of resource quantifiers, which provide a characterisation of the sets of resource witnesses. We present an explicit application of the results to the resource theories of multi-level coherence, entanglement of Schmidt number k, multipartite entanglement, as well as magic states, providing insight into the quantification of the four resources by establishing novel quantitative relations and introducing new quantifiers, such as a measure of entanglement of Schmidt number k which generalises the convex roof-extended negativity, a measure of k-coherence which generalises the \
-
Extended HFSE systematics of Apollo samples - wrenching further Secrets from the Lunar Mantle
NASA Astrophysics Data System (ADS)
Thiemens, M. M.; Sprung, P.; Munker, C.
2016-12-01
As Earth's intimate companion, the Moon provides a close extraterrestrial view on planetary differentiation. In turn, investigating chemical and isotopic compositions of lunar rocks for traces of a putative crystallizing Lunar Magma Ocean (LMO) provides a better understanding of the evolution and differentiation of infant planetary bodies.We expand on high-precision extended High Field Strength Element (HFSE) observations of Münker [1]. In detail, we investigate if the HFSE systematics of low- and high- Ti basalts, KREEPy basalts and breccias, soils, and ferroan anorthosites (FAN) are consistent with their formation from the LMO (FAN, KREEP) or mantle sources comprising mixtures of primary LMO products [2] (mare basalts). Of particular interest is the recently discovered dependence of HFSE partitioning on the Ti-concentration of co-existing melts [3] and that of W partitioning on oxygen fugacity [3,4].Our data form a positively correlated array in Zr/Hf vs. Nb/Ta space, similar to previous high-precision [1] but unlike lower-precision data. The HFSE systematics of different rock types from the Apollo missions mostly form distinct groups. High-Ti and some Apollo 12 low-Ti mare basalts form the lower end of the array, KREEPy samples its upper end. Low Zr/Nb in most high-Ti mare basalts and the globally highest Hf/W confirm involvement of Ti-rich-oxide-bearing cumulates in high-Ti formation [e.g., 1,2]. No global lunar trends exist for Hf/W vs. Zr/Nb. Overall, the composition of KREEPy samples agrees reasonably well with model KREEP-compositions assuming a LMO below IW-1 [1,4].Clearly distinct groupings observed for the various rock types and the lack of a global trend in Hf/W vs. Zr/Nb calls for melting of distinct ultramafic sources [1]. The HFSE systematics of Apollo rocks tend to support a LMO scenario, setting the stage for more detailed petrogenetic modeling. Initial modeling suggests that the lunar mantle must possess residual metal to reconcile the HFSE systematics of Apollo rocks within an LMO-scenario, providing an alternative explanation for the very low abundances of HSE in the lunar crust [5].[1] Münker, C. (2010) GCA 74, 7340-7361. [2] Snyder et al. (1992) GCA 56, 3809-3823. [3] Leitzke et al. (in press) Chem. Geol. [4] Fonseca et al. (2014) EPSL 404, 1-13. [5] Day & Walker (2015) EPSL 423, 114-124
-
Riemannian and Lorentzian flow-cut theorems
NASA Astrophysics Data System (ADS)
Headrick, Matthew; Hubeny, Veronika E.
2018-05-01
We prove several geometric theorems using tools from the theory of convex optimization. In the Riemannian setting, we prove the max flow-min cut (MFMC) theorem for boundary regions, applied recently to develop a ‘bit-thread’ interpretation of holographic entanglement entropies. We also prove various properties of the max flow and min cut, including respective nesting properties. In the Lorentzian setting, we prove the analogous MFMC theorem, which states that the volume of a maximal slice equals the flux of a minimal flow, where a flow is defined as a divergenceless timelike vector field with norm at least 1. This theorem includes as a special case a continuum version of Dilworth’s theorem from the theory of partially ordered sets. We include a brief review of the necessary tools from the theory of convex optimization, in particular Lagrangian duality and convex relaxation.
-
Non-convex Statistical Optimization for Sparse Tensor Graphical Model
Sun, Wei; Wang, Zhaoran; Liu, Han; Cheng, Guang
2016-01-01
We consider the estimation of sparse graphical models that characterize the dependency structure of high-dimensional tensor-valued data. To facilitate the estimation of the precision matrix corresponding to each way of the tensor, we assume the data follow a tensor normal distribution whose covariance has a Kronecker product structure. The penalized maximum likelihood estimation of this model involves minimizing a non-convex objective function. In spite of the non-convexity of this estimation problem, we prove that an alternating minimization algorithm, which iteratively estimates each sparse precision matrix while fixing the others, attains an estimator with the optimal statistical rate of convergence as well as consistent graph recovery. Notably, such an estimator achieves estimation consistency with only one tensor sample, which is unobserved in previous work. Our theoretical results are backed by thorough numerical studies. PMID:28316459
-
Distance majorization and its applications.
Chi, Eric C; Zhou, Hua; Lange, Kenneth
2014-08-01
The problem of minimizing a continuously differentiable convex function over an intersection of closed convex sets is ubiquitous in applied mathematics. It is particularly interesting when it is easy to project onto each separate set, but nontrivial to project onto their intersection. Algorithms based on Newton's method such as the interior point method are viable for small to medium-scale problems. However, modern applications in statistics, engineering, and machine learning are posing problems with potentially tens of thousands of parameters or more. We revisit this convex programming problem and propose an algorithm that scales well with dimensionality. Our proposal is an instance of a sequential unconstrained minimization technique and revolves around three ideas: the majorization-minimization principle, the classical penalty method for constrained optimization, and quasi-Newton acceleration of fixed-point algorithms. The performance of our distance majorization algorithms is illustrated in several applications.
-
Optimal Micropatterns in 2D Transport Networks and Their Relation to Image Inpainting
NASA Astrophysics Data System (ADS)
Brancolini, Alessio; Rossmanith, Carolin; Wirth, Benedikt
2018-04-01
We consider two different variational models of transport networks: the so-called branched transport problem and the urban planning problem. Based on a novel relation to Mumford-Shah image inpainting and techniques developed in that field, we show for a two-dimensional situation that both highly non-convex network optimization tasks can be transformed into a convex variational problem, which may be very useful from analytical and numerical perspectives. As applications of the convex formulation, we use it to perform numerical simulations (to our knowledge this is the first numerical treatment of urban planning), and we prove a lower bound for the network cost that matches a known upper bound (in terms of how the cost scales in the model parameters) which helps better understand optimal networks and their minimal costs.
-
A Walking Method for Non-Decomposition Intersection and Union of Arbitrary Polygons and Polyhedrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, M.; Yao, J.
We present a method for computing the intersection and union of non- convex polyhedrons without decomposition in O(n log n) time, where n is the total number of faces of both polyhedrons. We include an accompanying Python package which addresses many of the practical issues associated with implementation and serves as a proof of concept. The key to the method is that by considering the edges of the original ob- jects and the intersections between faces as walking routes, we can e ciently nd the boundary of the intersection of arbitrary objects using directional walks, thus handling the concave casemore » in a natural manner. The method also easily extends to plane slicing and non-convex polyhedron unions, and both the polyhedron and its constituent faces may be non-convex.« less
-
Liu, Jing; Duan, Yongrui; Sun, Min
2017-01-01
This paper introduces a symmetric version of the generalized alternating direction method of multipliers for two-block separable convex programming with linear equality constraints, which inherits the superiorities of the classical alternating direction method of multipliers (ADMM), and which extends the feasible set of the relaxation factor α of the generalized ADMM to the infinite interval [Formula: see text]. Under the conditions that the objective function is convex and the solution set is nonempty, we establish the convergence results of the proposed method, including the global convergence, the worst-case [Formula: see text] convergence rate in both the ergodic and the non-ergodic senses, where k denotes the iteration counter. Numerical experiments to decode a sparse signal arising in compressed sensing are included to illustrate the efficiency of the new method.
-
Teichroeb, Julie Annette; Smeltzer, Eve Ann
2018-01-01
Animal paths are analogous to intractable mathematical problems like the Traveling Salesman Problem (TSP) and the shortest path problem (SPP). Both the TSP and SPP require an individual to find the shortest path through multiple targets but the TSP demands a return to the start, while the SPP does not. Vervet monkeys are very efficient in solving TSPs but this species is a multiple central place forager that does not always return to the same sleeping site and thus theoretically should be selected to find solutions to SPPs rather than TSPs. We examined path choice by wild vervets in an SPP experimental array where the shortest paths usually differed from those consistent with common heuristic strategies, the nearest-neighbor rule (NNR-go to the closest resource that has not been visited), and the convex hull (put a mental loop around sites, adding inner targets in order of distance from the edge)-an efficient strategy for TSPs but not SPPs. In addition, humans solving SPPs use an initial segment strategy (ISS-choose the straightest path at the beginning, only turning when necessary) and we looked at vervet paths consistent with this strategy. In 615 trials by single foragers, paths usually conformed to the NNR and rarely the slightly more efficient convex hull, supporting that vervets may be selected to solve SPPs. Further, like humans solving SPPs, vervets showed a tendency to use the ISS. Paths consistent with heuristics dropped off sharply, and use of the shortest path increased, when heuristics led to longer paths showing trade-offs in efficiency versus cognitive load. Two individuals out of 17, found the shortest path most often, showing inter-individual variation in path planning. Given support for the NNR and the ISS, we propose a new rule-of-thumb termed the "region heuristic" that vervets may apply in multi-destination routes.
-
Smeltzer, Eve Ann
2018-01-01
Animal paths are analogous to intractable mathematical problems like the Traveling Salesman Problem (TSP) and the shortest path problem (SPP). Both the TSP and SPP require an individual to find the shortest path through multiple targets but the TSP demands a return to the start, while the SPP does not. Vervet monkeys are very efficient in solving TSPs but this species is a multiple central place forager that does not always return to the same sleeping site and thus theoretically should be selected to find solutions to SPPs rather than TSPs. We examined path choice by wild vervets in an SPP experimental array where the shortest paths usually differed from those consistent with common heuristic strategies, the nearest-neighbor rule (NNR–go to the closest resource that has not been visited), and the convex hull (put a mental loop around sites, adding inner targets in order of distance from the edge)–an efficient strategy for TSPs but not SPPs. In addition, humans solving SPPs use an initial segment strategy (ISS–choose the straightest path at the beginning, only turning when necessary) and we looked at vervet paths consistent with this strategy. In 615 trials by single foragers, paths usually conformed to the NNR and rarely the slightly more efficient convex hull, supporting that vervets may be selected to solve SPPs. Further, like humans solving SPPs, vervets showed a tendency to use the ISS. Paths consistent with heuristics dropped off sharply, and use of the shortest path increased, when heuristics led to longer paths showing trade-offs in efficiency versus cognitive load. Two individuals out of 17, found the shortest path most often, showing inter-individual variation in path planning. Given support for the NNR and the ISS, we propose a new rule-of-thumb termed the “region heuristic” that vervets may apply in multi-destination routes. PMID:29813105
-
2016-05-01
Algorithm for Overcoming the Curse of Dimensionality for Certain Non-convex Hamilton-Jacobi Equations, Projections and Differential Games Yat Tin...subproblems. Our approach is expected to have wide applications in continuous dynamic games , control theory problems, and elsewhere. Mathematics...differential dynamic games , control theory problems, and dynamical systems coming from the physical world, e.g. [11]. An important application is to
-
Reflective optical imaging system
Shafer, David R.
2000-01-01
An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements are characterized in order from object to image as convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention increases the slit dimensions associated with ringfield scanning optics, improves wafer throughput and allows higher semiconductor device density.
-
Reflective optical imaging method and circuit
Shafer, David R.
2001-01-01
An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements are characterized in order from object to image as convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention increases the slit dimensions associated with ringfield scanning optics, improves wafer throughput and allows higher semiconductor device density.
-
NASA Technical Reports Server (NTRS)
Shukla, R. P.; Perera, G. M.; George, M. C.; Venkateswarlu, P.
1990-01-01
A nondestructive technique for measuring the refractive index of a negative lens using a wedged plate interferometer is described. The method can be also used for measuring the refractive index of convex or zero power lenses. Schematic diagrams are presented for the use of a wedged plate interferometer for measuring the refractive index of a concave lens and of a convex lens.
-
NASA Astrophysics Data System (ADS)
Rizzatti, Eduardo O.; Barbosa, Marco Aurélio A.; Barbosa, Marcia C.
2018-02-01
The pressure versus temperature phase diagram of a system of particles interacting through a multiscale shoulder-like potential is exactly computed in one dimension. The N-shoulder potential exhibits N density anomaly regions in the phase diagram if the length scales can be connected by a convex curve. The result is analyzed in terms of the convexity of the Gibbs free energy.
-
Performance Analysis of the Unitree Central File
NASA Technical Reports Server (NTRS)
Pentakalos, Odysseas I.; Flater, David
1994-01-01
This report consists of two parts. The first part briefly comments on the documentation status of two major systems at NASA#s Center for Computational Sciences, specifically the Cray C98 and the Convex C3830. The second part describes the work done on improving the performance of file transfers between the Unitree Mass Storage System running on the Convex file server and the users workstations distributed over a large georgraphic area.
-
Survey and Assessment of the Cultural Resources, Toronto Lake Project.
1981-01-01
impressions, cross hatching, rocker stamping, cord- wrapped stick impressions, and roulette impressions generally con- fined within incised zoning...Its surface collection included one fragment of a plano -convex end scraper, one biface midsection probably from a large point (Fig. 3b), one possible...recovered during the entire survey. Eight point or knife tips were found and seven midsections. Scrapers included five plano - convex end scrapers, three
-
Morphological decomposition of 2-D binary shapes into convex polygons: a heuristic algorithm.
Xu, J
2001-01-01
In many morphological shape decomposition algorithms, either a shape can only be decomposed into shape components of extremely simple forms or a time consuming search process is employed to determine a decomposition. In this paper, we present a morphological shape decomposition algorithm that decomposes a two-dimensional (2-D) binary shape into a collection of convex polygonal components. A single convex polygonal approximation for a given image is first identified. This first component is determined incrementally by selecting a sequence of basic shape primitives. These shape primitives are chosen based on shape information extracted from the given shape at different scale levels. Additional shape components are identified recursively from the difference image between the given image and the first component. Simple operations are used to repair certain concavities caused by the set difference operation. The resulting hierarchical structure provides descriptions for the given shape at different detail levels. The experiments show that the decomposition results produced by the algorithm seem to be in good agreement with the natural structures of the given shapes. The computational cost of the algorithm is significantly lower than that of an earlier search-based convex decomposition algorithm. Compared to nonconvex decomposition algorithms, our algorithm allows accurate approximations for the given shapes at low coding costs.
-
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valentino, Eleonora Di; Mersini-Houghton, Laura, E-mail: valentin@iap.fr, E-mail: mersini@physics.unc.edu
The 2015 Planck data release tightened the region of the allowed inflationary models. Inflationary models with convex potentials have now been ruled out since they produce a large tensor to scalar ratio. Meanwhile the same data offers interesting hints on possible deviations from the standard picture of CMB perturbations. Here we revisit the predictions of the theory of the origin of the universe from the landscape multiverse for the case of exponential inflation, for two reasons: firstly to check the status of the anomalies associated with this theory, in the light of the recent Planck data; secondly, to search formore » a counterexample whereby new physics modifications may bring convex inflationary potentials, thought to have been ruled out, back into the region of potentials allowed by data. Using the exponential inflation as an example of convex potentials, we find that the answer to both tests is positive: modifications to the perturbation spectrum and to the Newtonian potential of the universe originating from the quantum entanglement, bring the exponential potential, back within the allowed region of current data; and, the series of anomalies previously predicted in this theory, is still in good agreement with current data. Hence our finding for this convex potential comes at the price of allowing for additional thermal relic particles, equivalently dark radiation, in the early universe.« less
-
Towards reproducible experimental studies for non-convex polyhedral shaped particles
NASA Astrophysics Data System (ADS)
Wilke, Daniel N.; Pizette, Patrick; Govender, Nicolin; Abriak, Nor-Edine
2017-06-01
The packing density and flat bottomed hopper discharge of non-convex polyhedral particles are investigated in a systematic experimental study. The motivation for this study is two-fold. Firstly, to establish an approach to deliver quality experimental particle packing data for non-convex polyhedral particles that can be used for characterization and validation purposes of discrete element codes. Secondly, to make the reproducibility of experimental setups as convenient and readily available as possible using affordable and accessible technology. The primary technology for this study is fused deposition modeling used to 3D print polylactic acid (PLA) particles using readily available 3D printer technology. A total of 8000 biodegradable particles were printed, 1000 white particles and 1000 black particles for each of the four particle types considered in this study. Reproducibility is one benefit of using fused deposition modeling to print particles, but an extremely important additional benefit is that specific particle properties can be explicitly controlled. As an example in this study the volume fraction of each particle can be controlled i.e. the effective particle density can be adjusted. In this study the particle volumes reduces drastically as the non-convexity is increased, however all printed white particles in this study have the same mass within 2% of each other.
-
Testing predictions of the quantum landscape multiverse 2: the exponential inflationary potential
NASA Astrophysics Data System (ADS)
Di Valentino, Eleonora; Mersini-Houghton, Laura
2017-03-01
The 2015 Planck data release tightened the region of the allowed inflationary models. Inflationary models with convex potentials have now been ruled out since they produce a large tensor to scalar ratio. Meanwhile the same data offers interesting hints on possible deviations from the standard picture of CMB perturbations. Here we revisit the predictions of the theory of the origin of the universe from the landscape multiverse for the case of exponential inflation, for two reasons: firstly to check the status of the anomalies associated with this theory, in the light of the recent Planck data; secondly, to search for a counterexample whereby new physics modifications may bring convex inflationary potentials, thought to have been ruled out, back into the region of potentials allowed by data. Using the exponential inflation as an example of convex potentials, we find that the answer to both tests is positive: modifications to the perturbation spectrum and to the Newtonian potential of the universe originating from the quantum entanglement, bring the exponential potential, back within the allowed region of current data; and, the series of anomalies previously predicted in this theory, is still in good agreement with current data. Hence our finding for this convex potential comes at the price of allowing for additional thermal relic particles, equivalently dark radiation, in the early universe.
-
Jiang, Peng; Liu, Shuai; Liu, Jun; Wu, Feng; Zhang, Le
2016-07-14
Most of the existing node depth-adjustment deployment algorithms for underwater wireless sensor networks (UWSNs) just consider how to optimize network coverage and connectivity rate. However, these literatures don't discuss full network connectivity, while optimization of network energy efficiency and network reliability are vital topics for UWSN deployment. Therefore, in this study, a depth-adjustment deployment algorithm based on two-dimensional (2D) convex hull and spanning tree (NDACS) for UWSNs is proposed. First, the proposed algorithm uses the geometric characteristics of a 2D convex hull and empty circle to find the optimal location of a sleep node and activate it, minimizes the network coverage overlaps of the 2D plane, and then increases the coverage rate until the first layer coverage threshold is reached. Second, the sink node acts as a root node of all active nodes on the 2D convex hull and then forms a small spanning tree gradually. Finally, the depth-adjustment strategy based on time marker is used to achieve the three-dimensional overall network deployment. Compared with existing depth-adjustment deployment algorithms, the simulation results show that the NDACS algorithm can maintain full network connectivity with high network coverage rate, as well as improved network average node degree, thus increasing network reliability.
-
Jiang, Peng; Liu, Shuai; Liu, Jun; Wu, Feng; Zhang, Le
2016-01-01
Most of the existing node depth-adjustment deployment algorithms for underwater wireless sensor networks (UWSNs) just consider how to optimize network coverage and connectivity rate. However, these literatures don’t discuss full network connectivity, while optimization of network energy efficiency and network reliability are vital topics for UWSN deployment. Therefore, in this study, a depth-adjustment deployment algorithm based on two-dimensional (2D) convex hull and spanning tree (NDACS) for UWSNs is proposed. First, the proposed algorithm uses the geometric characteristics of a 2D convex hull and empty circle to find the optimal location of a sleep node and activate it, minimizes the network coverage overlaps of the 2D plane, and then increases the coverage rate until the first layer coverage threshold is reached. Second, the sink node acts as a root node of all active nodes on the 2D convex hull and then forms a small spanning tree gradually. Finally, the depth-adjustment strategy based on time marker is used to achieve the three-dimensional overall network deployment. Compared with existing depth-adjustment deployment algorithms, the simulation results show that the NDACS algorithm can maintain full network connectivity with high network coverage rate, as well as improved network average node degree, thus increasing network reliability. PMID:27428970
-
Convex Hull Aided Registration Method (CHARM).
Fan, Jingfan; Yang, Jian; Zhao, Yitian; Ai, Danni; Liu, Yonghuai; Wang, Ge; Wang, Yongtian
2017-09-01
Non-rigid registration finds many applications such as photogrammetry, motion tracking, model retrieval, and object recognition. In this paper we propose a novel convex hull aided registration method (CHARM) to match two point sets subject to a non-rigid transformation. First, two convex hulls are extracted from the source and target respectively. Then, all points of the point sets are projected onto the reference plane through each triangular facet of the hulls. From these projections, invariant features are extracted and matched optimally. The matched feature point pairs are mapped back onto the triangular facets of the convex hulls to remove outliers that are outside any relevant triangular facet. The rigid transformation from the source to the target is robustly estimated by the random sample consensus (RANSAC) scheme through minimizing the distance between the matched feature point pairs. Finally, these feature points are utilized as the control points to achieve non-rigid deformation in the form of thin-plate spline of the entire source point set towards the target one. The experimental results based on both synthetic and real data show that the proposed algorithm outperforms several state-of-the-art ones with respect to sampling, rotational angle, and data noise. In addition, the proposed CHARM algorithm also shows higher computational efficiency compared to these methods.
-
Kotwicki, Tomasz; Napiontek, Marek; Nowakowski, Andrzej
2006-01-01
CT transversal scans of the trunk provided at the level of Th8 or Th9 (apical vertebra) of 23 patients with structural thoracic scoliosis were reviewed. The following parameters were studied: 1) alpha angle formed by the axis of vertebra and the axis of spinous process, 2) beta concave and beta convex angle between the spinous process and the left and right transverse process respectively, 3) gamma concave and gamma convex angle between the axis of vertebra and the left and right transverse process respectively, 4) rotation angle to the sagittal plane according to Aaro and Dahlborn, 5) Cobb angle. Values of measured parameters demonstrated a common pattern of intravertebral deformity: counter clockwise deviation of the spinous process (alpha angle 15,0 +/-8,5 degrees), beta concave (69,8 +/-8,5 degrees) significantly greater than beta convex (38,8 +/-8,5 degrees), gamma concave (54,3 +/-7,8 degrees) not different from gamma convex (56,0 +/-8,0 degrees). Strong linear positive correlation between alpha angle and Aaro-Dahlborn angle was observed (r=0,78, p<0,05). Changes in morphology of apical vertebra due to intravertebral bone remodelling followed the vertebral spatial displacement and there existed a linear correlation in between. The two processes develop in opposite directions.
-
Chang, Il-Chi; Wei, Yuan-Yaw; Chou, Fong-In; Hwang, Pung-Pung
2003-01-01
The purpose of the present article is to examine the relationships between ion uptakes and morphologies of gill mitochondria-rich (MR) cells in freshwater tilapia. Tilapia were acclimated to three different artificial freshwaters (high Na [10 mM], high Cl [7.5 mM]; high Na, low Cl [0.02-0.07 mM], and low Na [0.5 mM], low Cl) for 1 wk, and then morphological measurements of gill MR cells were made and ion influxes were determined. The number and the apical size of wavy-convex MR cells positively associated with the level of Cl(-) influx. Conversely, Na(+) influx showed no positive correlation with the morphologies of MR cells. The dominant MR cell type in tilapia gills changed from deep-hole to wavy-convex within 6 h after acute transfer from a high-Cl(-) to a low-Cl(-) environment. Deep-hole MR cells became dominant 24-96 h after acute transfer from a low-Cl(-) to a high-Cl(-) environment. We conclude that wavy-convex MR cells associate with Cl(-) uptake but not Na(+) uptake, and the rapid formation of wavy-convex MR cells reflects the timely stimulation of Cl(-) uptake to recover the homeostasis of internal Cl(-) levels on acute challenge with low environmental Cl(-).
-
Measurement system for diffraction efficiency of convex gratings
NASA Astrophysics Data System (ADS)
Liu, Peng; Chen, Xin-hua; Zhou, Jian-kang; Zhao, Zhi-cheng; Liu, Quan; Luo, Chao; Wang, Xiao-feng; Tang, Min-xue; Shen, Wei-min
2017-08-01
A measurement system for diffraction efficiency of convex gratings is designed. The measurement system mainly includes four components as a light source, a front system, a dispersing system that contains a convex grating, and a detector. Based on the definition and measuring principle of diffraction efficiency, the optical scheme of the measurement system is analyzed and the design result is given. Then, in order to validate the feasibility of the designed system, the measurement system is set up and the diffraction efficiency of a convex grating with the aperture of 35 mm, the curvature-radius of 72mm, the blazed angle of 6.4°, the grating period of 2.5μm and the working waveband of 400nm-900nm is tested. Based on GUM (Guide to the Expression of Uncertainty in Measurement), the uncertainties in the measuring results are evaluated. The measured diffraction efficiency data are compared to the theoretical ones, which are calculated based on the grating groove parameters got by an atomic force microscope and Rigorous Couple Wave Analysis, and the reliability of the measurement system is illustrated. Finally, the measurement performance of the system is analyzed and tested. The results show that, the testing accuracy, the testing stability and the testing repeatability are 2.5%, 0.085% and 3.5% , respectively.
-
Seamless lamination of a concave-convex architecture with single-layer graphene.
Park, Ji-Hoon; Lim, Taekyung; Baik, Jaeyoon; Seo, Keumyoung; Moon, Youngkwon; Park, Noejung; Shin, Hyun-Joon; Kwak, Sang Kyu; Ju, Sanghyun; Ahn, Joung Real
2015-11-21
Graphene has been used as an electrode and channel material in electronic devices because of its superior physical properties. Recently, electronic devices have changed from a planar to a complicated three-dimensional (3D) geometry to overcome the limitations of planar devices. The evolution of electronic devices requires that graphene be adaptable to a 3D substrate. Here, we demonstrate that chemical-vapor-deposited single-layer graphene can be transferred onto a silicon dioxide substrate with a 3D geometry, such as a concave-convex architecture. A variety of silicon dioxide concave-convex architectures were uniformly and seamlessly laminated with graphene using a thermal treatment. The planar graphene was stretched to cover the concave-convex architecture, and the resulting strain on the curved graphene was spatially resolved by confocal Raman spectroscopy; molecular dynamic simulations were also conducted and supported the observations. Changes in electrical resistivity caused by the spatially varying strain induced as the graphene-silicon dioxide laminate varies dimensionally from 2D to 3D were measured by using a four-point probe. The resistivity measurements suggest that the electrical resistivity can be systematically controlled by the 3D geometry of the graphene-silicon dioxide laminate. This 3D graphene-insulator laminate will broaden the range of graphene applications beyond planar structures to 3D materials.
-
Campos, José N B; Lima, Iran E; Studart, Ticiana M C; Nascimento, Luiz S V
2016-05-31
This study investigates the relationships between yield and evaporation as a function of lake morphology in semi-arid Brazil. First, a new methodology was proposed to classify the morphology of 40 reservoirs in the Ceará State, with storage capacities ranging from approximately 5 to 4500 hm3. Then, Monte Carlo simulations were conducted to study the effect of reservoir morphology (including real and simplified conical forms) on the water storage process at different reliability levels. The reservoirs were categorized as convex (60.0%), slightly convex (27.5%) or linear (12.5%). When the conical approximation was used instead of the real lake form, a trade-off occurred between reservoir yield and evaporation losses, with different trends for the convex, slightly convex and linear reservoirs. Using the conical approximation, the water yield prediction errors reached approximately 5% of the mean annual inflow, which is negligible for large reservoirs. However, for smaller reservoirs, this error became important. Therefore, this paper presents a new procedure for correcting the yield-evaporation relationships that were obtained by assuming a conical approximation rather than the real reservoir morphology. The combination of this correction with the Regulation Triangle Diagram is useful for rapidly and objectively predicting reservoir yield and evaporation losses in semi-arid environments.
-
Scalable Metropolis Monte Carlo for simulation of hard shapes
NASA Astrophysics Data System (ADS)
Anderson, Joshua A.; Eric Irrgang, M.; Glotzer, Sharon C.
2016-07-01
We design and implement a scalable hard particle Monte Carlo simulation toolkit (HPMC), and release it open source as part of HOOMD-blue. HPMC runs in parallel on many CPUs and many GPUs using domain decomposition. We employ BVH trees instead of cell lists on the CPU for fast performance, especially with large particle size disparity, and optimize inner loops with SIMD vector intrinsics on the CPU. Our GPU kernel proposes many trial moves in parallel on a checkerboard and uses a block-level queue to redistribute work among threads and avoid divergence. HPMC supports a wide variety of shape classes, including spheres/disks, unions of spheres, convex polygons, convex spheropolygons, concave polygons, ellipsoids/ellipses, convex polyhedra, convex spheropolyhedra, spheres cut by planes, and concave polyhedra. NVT and NPT ensembles can be run in 2D or 3D triclinic boxes. Additional integration schemes permit Frenkel-Ladd free energy computations and implicit depletant simulations. In a benchmark system of a fluid of 4096 pentagons, HPMC performs 10 million sweeps in 10 min on 96 CPU cores on XSEDE Comet. The same simulation would take 7.6 h in serial. HPMC also scales to large system sizes, and the same benchmark with 16.8 million particles runs in 1.4 h on 2048 GPUs on OLCF Titan.
-
Geng, Zhigeng; Wang, Sijian; Yu, Menggang; Monahan, Patrick O.; Champion, Victoria; Wahba, Grace
2017-01-01
Summary In many scientific and engineering applications, covariates are naturally grouped. When the group structures are available among covariates, people are usually interested in identifying both important groups and important variables within the selected groups. Among existing successful group variable selection methods, some methods fail to conduct the within group selection. Some methods are able to conduct both group and within group selection, but the corresponding objective functions are non-convex. Such a non-convexity may require extra numerical effort. In this article, we propose a novel Log-Exp-Sum(LES) penalty for group variable selection. The LES penalty is strictly convex. It can identify important groups as well as select important variables within the group. We develop an efficient group-level coordinate descent algorithm to fit the model. We also derive non-asymptotic error bounds and asymptotic group selection consistency for our method in the high-dimensional setting where the number of covariates can be much larger than the sample size. Numerical results demonstrate the good performance of our method in both variable selection and prediction. We applied the proposed method to an American Cancer Society breast cancer survivor dataset. The findings are clinically meaningful and may help design intervention programs to improve the qualify of life for breast cancer survivors. PMID:25257196
-
Explosion source strong ground motions in the Mississippi embayment
Langston, C.A.; Bodin, P.; Powell, C.; Withers, M.; Horton, S.; Mooney, W.
2006-01-01
Two strong-motion arrays were deployed for the October 2002 Embayment Seismic Excitation Experiment to study the spatial variation of strong ground motions in the deep, unconsolidated sediments of the Mississippi embayment because there are no comparable strong-motion data from natural earthquakes in the area. Each linear array consisted of eight three-component K2 accelerographs spaced 15 m apart situated 1.2 and 2.5 kin from 2268-kg and 1134-kg borehole explosion sources, respectively. The array data show distinct body-wave and surface-wave arrivals that propagate within the thick, unconsolidated sedimentary column, the high-velocity basement rocks, and small-scale structure near the surface. Time-domain coherence of body-wave and surface-wave arrivals is computed for acceleration, velocity, and displacement time windows. Coherence is high for relatively low-frequency verticalcomponent Rayleigh waves and high-frequency P waves propagating across the array. Prominent high-frequency PS conversions seen on radial components, a proxy for the direct S wave from earthquake sources, lose coherence quickly over the 105-m length of the array. Transverse component signals are least coherent for any ground motion and appear to be highly scattered. Horizontal phase velocity is computed by using the ratio of particle velocity to estimates of the strain based on a plane-wave-propagation model. The resulting time-dependent phase-velocity map is a useful way to infer the propagation mechanisms of individual seismic phases and time windows of three-component waveforms. Displacement gradient analysis is a complementary technique for processing general spatial-array data to obtain horizontal slowness information.
-
Identification of mineral composition and weathering product of tuff using reflectance spectroscopy
NASA Astrophysics Data System (ADS)
Hyun, C.; Park, H.
2009-12-01
Tuff is intricately composed of various types of rock blocks and ash matrixes during volcanic formation processes. Qualitative identification and quantitative assessment of mineral composition of tuff usually have been done using manual inspection with naked-eyes and various chemical analyses. Those conventional methods are destructive to objects, time consuming and sometimes carry out biased results from subjective decision making. To overcome limits from conventional methods, assessment technique using reflectance spectroscopy was applied to tuff specimens. Reflectance spectroscopy measures electromagnetic reflectance on rock surface and can extract diagnostic absorption features originated from chemical composition and crystal structure of constituents in the reflectance curve so mineral species can be discriminated qualitatively. The intrinsic absorption feature from particular mineral can be converted to absorption depth representing relative coverage of the mineral in the measurement area by removing delineated convex hull from raw reflectance curve. The spectral measurements were performed with field spectrometer FieldSpec®3 of ASD Inc. and the wavelength range of measurement was form 350nm to 2500nm. Three types of tuff blocks, ash tuff, green lapilli tuff and red lapilli tuff, were sampled from Hwasun County in Korea and the types of tuffs. The differences between green tuff and red tuff are from the color of their matrixes. Ash tuff consists of feldspars and quartz and small amount of chalcedony, calcite, dolomite, epidote and basalt fragments. Green lapilli tuff consists of feldspar, quartz and muscovite and small amount of calcite, chalcedony, sericite, chlorite, quartzite and basalt fragments. Red lapilli tuff consists of feldspar, quartz and muscovite and small amount of calcite, chalcedony, limonite, zircon, chlorite, quartzite and basalt fragments. The tuff rocks were coarsely crushed and blocks and matrixes were separated to measure standard spectral reflectance of each constituent. Unmixing of mineral composition and their weathering products of blocks and matrixes in tuff were conducted and the ratio of mineral composition was calculated for each specimen. This study was supported by National Research Institute of Cultural Heritage (project title: Development on Evaluation Technology for Weathering Degree of Stone Cultural Properties, project no.: 09B011Y-00150-2009).
-
Automated extraction and analysis of rock discontinuity characteristics from 3D point clouds
NASA Astrophysics Data System (ADS)
Bianchetti, Matteo; Villa, Alberto; Agliardi, Federico; Crosta, Giovanni B.
2016-04-01
A reliable characterization of fractured rock masses requires an exhaustive geometrical description of discontinuities, including orientation, spacing, and size. These are required to describe discontinuum rock mass structure, perform Discrete Fracture Network and DEM modelling, or provide input for rock mass classification or equivalent continuum estimate of rock mass properties. Although several advanced methodologies have been developed in the last decades, a complete characterization of discontinuity geometry in practice is still challenging, due to scale-dependent variability of fracture patterns and difficult accessibility to large outcrops. Recent advances in remote survey techniques, such as terrestrial laser scanning and digital photogrammetry, allow a fast and accurate acquisition of dense 3D point clouds, which promoted the development of several semi-automatic approaches to extract discontinuity features. Nevertheless, these often need user supervision on algorithm parameters which can be difficult to assess. To overcome this problem, we developed an original Matlab tool, allowing fast, fully automatic extraction and analysis of discontinuity features with no requirements on point cloud accuracy, density and homogeneity. The tool consists of a set of algorithms which: (i) process raw 3D point clouds, (ii) automatically characterize discontinuity sets, (iii) identify individual discontinuity surfaces, and (iv) analyse their spacing and persistence. The tool operates in either a supervised or unsupervised mode, starting from an automatic preliminary exploration data analysis. The identification and geometrical characterization of discontinuity features is divided in steps. First, coplanar surfaces are identified in the whole point cloud using K-Nearest Neighbor and Principal Component Analysis algorithms optimized on point cloud accuracy and specified typical facet size. Then, discontinuity set orientation is calculated using Kernel Density Estimation and principal vector similarity criteria. Poles to points are assigned to individual discontinuity objects using easy custom vector clustering and Jaccard distance approaches, and each object is segmented into planar clusters using an improved version of the DBSCAN algorithm. Modal set orientations are then recomputed by cluster-based orientation statistics to avoid the effects of biases related to cluster size and density heterogeneity of the point cloud. Finally, spacing values are measured between individual discontinuity clusters along scanlines parallel to modal pole vectors, whereas individual feature size (persistence) is measured using 3D convex hull bounding boxes. Spacing and size are provided both as raw population data and as summary statistics. The tool is optimized for parallel computing on 64bit systems, and a Graphic User Interface (GUI) has been developed to manage data processing, provide several outputs, including reclassified point clouds, tables, plots, derived fracture intensity parameters, and export to modelling software tools. We present test applications performed both on synthetic 3D data (simple 3D solids) and real case studies, validating the results with existing geomechanical datasets.
-
The carotenoid pigments of a marine Bacillus firmus strain.
Pane, L; Radin, L; Franconi, G; Carli, A
1996-01-01
As carotenoids have important biological functions, it is important to discover new natural sources of these pigments. The bacterial strains isolated from a sea water rock pool were cultivated on marine agar containing yeast extract and identified by conventional methods. The bacterial pigments were extracted with methanol and analyzed by reversed-phase HPLC with diode array detection. The major pigment of a Bacillus firmus strain was identified as astaxanthin; the results obtained suggest potential use of this bacterium in aquaculture and in pharmaceutical field.
-
NASA Astrophysics Data System (ADS)
Lesin, Yu V.; Hellmer, M. C.
2016-08-01
Among all industries in Kuzbass (Western Siberia, Russia) the coal industry provides the most environmental threat. However, the construction of new and maintenance of existing open pit mines do not often correspond to the tasks of improving the environmental safety of surface mining. So the article describes the use of innovative quarry waste water purifying technology implemented in Kuzbass open pit mine «Shestaki». This technology is based on using artificial filter arrays made of overburden rock.
-
Self-ordering and complexity in epizonal mineral deposits
Henley, Richard W.; Berger, Byron R.
2000-01-01
Giant deposits are relatively rare and develop where efficient metal deposition is spatially focused by repetitive brittle failure in active fault arrays. Some brief case histories are provided for epithermal, replacement, and porphyry mineralization. These highlight how rock competency contrasts and feedback between processes, rather than any single component of a hydrothermal system, govern the size of individual deposits. In turn, the recognition of the probabilistic nature of mineralization provides a firmer foundation through which exploration investment and risk management decisions can be made.
-
The GCT camera for the Cherenkov Telescope Array
NASA Astrophysics Data System (ADS)
Lapington, J. S.; Abchiche, A.; Allan, D.; Amans, J.-P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J.-J.; Bose, R.; Brown, A. M.; Bryan, M.; Buchholtz, G.; Buckley, J.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Daniel, M. K.; De Franco, A.; De Frondat, F.; Dournaux, J.-L.; Dumas, D.; Ernenwein, J.-P.; Fasola, G.; Funk, S.; Gironnet, J.; Graham, J. A.; Greenshaw, T.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J.-M.; Jankowsky, D.; Jegouzo, I.; Jogler, T.; Kawashima, T.; Kraus, M.; Laporte, P.; Leach, S.; Lefaucheur, J.; Markoff, S.; Melse, T.; Minaya, I. A.; Mohrmann, L.; Molyneux, P.; Moore, P.; Nolan, S. J.; Okumura, A.; Osborne, J. P.; Parsons, R. D.; Rosen, S.; Ross, D.; Rowell, G.; Rulten, C. B.; Sato, Y.; Sayede, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Sol, H.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Trichard, C.; Varner, G.; Vink, J.; Watson, J. J.; White, R.; Yamane, N.; Zech, A.; Zink, A.; Zorn, J.; CTA Consortium
2017-12-01
The Gamma Cherenkov Telescope (GCT) is one of the designs proposed for the Small Sized Telescope (SST) section of the Cherenkov Telescope Array (CTA). The GCT uses dual-mirror optics, resulting in a compact telescope with good image quality and a large field of view with a smaller, more economical, camera than is achievable with conventional single mirror solutions. The photon counting GCT camera is designed to record the flashes of atmospheric Cherenkov light from gamma and cosmic ray initiated cascades, which last only a few tens of nanoseconds. The GCT optics require that the camera detectors follow a convex surface with a radius of curvature of 1 m and a diameter of 35 cm, which is approximated by tiling the focal plane with 32 modules. The first camera prototype is equipped with multi-anode photomultipliers, each comprising an 8×8 array of 6×6 mm2 pixels to provide the required angular scale, adding up to 2048 pixels in total. Detector signals are shaped, amplified and digitised by electronics based on custom ASICs that provide digitisation at 1 GSample/s. The camera is self-triggering, retaining images where the focal plane light distribution matches predefined spatial and temporal criteria. The electronics are housed in the liquid-cooled, sealed camera enclosure. LED flashers at the corners of the focal plane provide a calibration source via reflection from the secondary mirror. The first GCT camera prototype underwent preliminary laboratory tests last year. In November 2015, the camera was installed on a prototype GCT telescope (SST-GATE) in Paris and was used to successfully record the first Cherenkov light of any CTA prototype, and the first Cherenkov light seen with such a dual-mirror optical system. A second full-camera prototype based on Silicon Photomultipliers is under construction. Up to 35 GCTs are envisaged for CTA.
-
NASA Astrophysics Data System (ADS)
Pérez, Francisco L.
2017-10-01
This study examines biogeomorphic interactions between nurse rocks, slope processes, and 300 kūpaoa (Dubautia menziesii) shrubs in Haleakalā Crater (Maui, Hawai'i). Research objectives were to: assess the association of kūpaoa with substrates upslope and downslope of plants, and proximity to the closest rock uphill; contrast shrub/substrate relationships with site frequency of sediment types; measure surface soil shear-strength and compressibility on 50 paired locations near boulders; and investigate the aggregation characteristics and spatial patterns of kūpaoa in relation to rock and substrate variation. Data analyzed came from three 100-plant surveys at 3 sites: a plant census at 2720-2975 m altitude, and wandering-quarter transects (WQTs) across two areas (2610-2710 m); ground sediment cover was estimated along four phototransects on these sites. Data for the three 100-plant surveys included substrate type-outcrops, blocks, cobbles, pebbles, exposed soil, organic litter-upslope from each plant, and distance to the largest rock upslope. The two surveys examined along WQTs included substrate type found downslope from kūpaoa, plant height, plant diameters across and along the slope, and distance between successively censused plants. Most plants grew downslope of nurse rocks; > 74% were adjacent to blocks or outcrops, and > 17% near cobbles. Plants showed avoidance for finer substrates; only 5.3% and 2.7% grew on/near bare soils and pebbles, respectively. About 92% of kūpaoa were ≤ 10 cm downslope of rocks; > 89% grew ≤ 2 cm away, and 83% in direct contact with a rock. Some seedlings also grew on pukiawe (Leptecophylla tameiameiae) nurse plants. Several stable rock microsites protected plants from disturbance by slope processes causing debris shift. Site sediments were significantly finer than substrates near plants; shrubs grew preferentially adjacent to boulders > 20 cm wide, which were more common near plants than across sites. Soils downslope of 50 boulders-mean 41.3 cm-showed higher shear strength and compressibility than soils along rock sides. These boulder dams stop descending debris, steadily deflecting them toward rock sides, whereas protected soils downslope of blocks are infrequently disturbed and develop into downslope elongated, clast-free fine-earth flags. Kūpaoa were uniformly dispersed across slopes, showing a single-phase mosaic arrangement, without apparent aggregation. Slopes where kūpaoa grows had a relatively uniform distribution of surface sediments; observed kūpaoa patterns may have resulted from the array of microsites generated by surface rocks and sediments, as shrubs simply responded to such spatial structure.
-
1983-04-11
existing ones. * -37- !I T-472 REFERENCES [1] Avriel, M., W. E. Diewert, S. Schaible and W. T. Ziemba (1981). Introduction to concave and generalized concave...functions. In Generalized Concavity in Optimization and Economics (S. Schaible and W. T. Ziemba , eds.), Academic Press, New York, pp. 21-50. (21 Bank...Optimality conditions involving generalized convex mappings. In Generalized Concavity in Optimization and Economics (S. Schaible and W. T. Ziemba
-
Inequalities of extended beta and extended hypergeometric functions.
Mondal, Saiful R
2017-01-01
We study the log-convexity of the extended beta functions. As a consequence, we establish Turán-type inequalities. The monotonicity, log-convexity, log-concavity of extended hypergeometric functions are deduced by using the inequalities on extended beta functions. The particular cases of those results also give the Turán-type inequalities for extended confluent and extended Gaussian hypergeometric functions. Some reverses of Turán-type inequalities are also derived.
-
The Role of Hellinger Processes in Mathematical Finance
NASA Astrophysics Data System (ADS)
Choulli, T.; Hurd, T. R.
2001-09-01
This paper illustrates the natural role that Hellinger processes can play in solving problems from ¯nance. We propose an extension of the concept of Hellinger process applicable to entropy distance and f-divergence distances, where f is a convex logarithmic function or a convex power function with general order q, 0 6= q < 1. These concepts lead to a new approach to Merton's optimal portfolio problem and its dual in general L¶evy markets.
-
A convex penalty for switching control of partial differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clason, Christian; Rund, Armin; Kunisch, Karl
2016-01-19
A convex penalty for promoting switching controls for partial differential equations is introduced; such controls consist of an arbitrary number of components of which at most one should be simultaneously active. Using a Moreau–Yosida approximation, a family of approximating problems is obtained that is amenable to solution by a semismooth Newton method. In conclusion, the efficiency of this approach and the structure of the obtained controls are demonstrated by numerical examples.
-
NASA Technical Reports Server (NTRS)
Oakley, Celia M.; Barratt, Craig H.
1990-01-01
Recent results in linear controller design are used to design an end-point controller for an experimental two-link flexible manipulator. A nominal 14-state linear-quadratic-Gaussian (LQG) controller was augmented with a 528-tap finite-impulse-response (FIR) filter designed using convex optimization techniques. The resulting 278-state controller produced improved end-point trajectory tracking and disturbance rejection in simulation and experimentally in real time.
-
A Maximal Element Theorem in FWC-Spaces and Its Applications
Hu, Qingwen; Miao, Yulin
2014-01-01
A maximal element theorem is proved in finite weakly convex spaces (FWC-spaces, in short) which have no linear, convex, and topological structure. Using the maximal element theorem, we develop new existence theorems of solutions to variational relation problem, generalized equilibrium problem, equilibrium problem with lower and upper bounds, and minimax problem in FWC-spaces. The results represented in this paper unify and extend some known results in the literature. PMID:24782672
-
Central Schemes for Multi-Dimensional Hamilton-Jacobi Equations
NASA Technical Reports Server (NTRS)
Bryson, Steve; Levy, Doron; Biegel, Bryan (Technical Monitor)
2002-01-01
We present new, efficient central schemes for multi-dimensional Hamilton-Jacobi equations. These non-oscillatory, non-staggered schemes are first- and second-order accurate and are designed to scale well with an increasing dimension. Efficiency is obtained by carefully choosing the location of the evolution points and by using a one-dimensional projection step. First-and second-order accuracy is verified for a variety of multi-dimensional, convex and non-convex problems.
-
Method and Apparatus for Powered Descent Guidance
NASA Technical Reports Server (NTRS)
Acikmese, Behcet (Inventor); Blackmore, James C. L. (Inventor); Scharf, Daniel P. (Inventor)
2013-01-01
A method and apparatus for landing a spacecraft having thrusters with non-convex constraints is described. The method first computes a solution to a minimum error landing problem for a convexified constraints, then applies that solution to a minimum fuel landing problem for convexified constraints. The result is a solution that is a minimum error and minimum fuel solution that is also a feasible solution to the analogous system with non-convex thruster constraints.
-
Image restoration by the method of convex projections: part 2 applications and numerical results.
Sezan, M I; Stark, H
1982-01-01
The image restoration theory discussed in a previous paper by Youla and Webb [1] is applied to a simulated image and the results compared with the well-known method known as the Gerchberg-Papoulis algorithm. The results show that the method of image restoration by projection onto convex sets, by providing a convenient technique for utilizing a priori information, performs significantly better than the Gerchberg-Papoulis method.
-
An evaluation of the zircon method of isotopic dating in the Southern Arabian Craton
Cooper, J.A.; Stacey, J.S.; Stoeser, D.G.; Fleck, R.J.
1979-01-01
A zircon study has been made on eleven samples of igneous rocks from the Saudi Arabian Craton. Ages of sized and magnetic fractions of zircon concentrates show variable degrees of discordance which seem to result from a very young disturbance that produces linear arrays in the Concordia plot. Model age calculations based on a statistically and geologically reasonable lower intercept produce very consistent internal relationships. The Pan African Orogeny, considered to be responsible for loss of radiogenic argon and strontium from minerals of many rocks, does not appear to have affected the zircon data, even though uplift had exposed the rocks of the Arabian Shield at that time. Tonalite, granodiorite, and crosscutting leucoadamellite bodies in the southern part of the An Nimas Bathylith yield ages in the time range 820-760 Ma. A narrow time range of 660 to 665 million years was indicated for ages of widely separated and compositionally different intrusive bodies all to the east of the An Nimas Bathylith. This work suggests that the younger end of the age spectrum established from regional K-Ar and Rb-Sr measurements may be underestimated, and that magmatic activity could be more episodic than previously assumed.
-
Park, Peter J; Bell, M A
2010-06-01
We tested the hypothesis that increased telencephalon size has evolved in threespine stickleback fish (Gasterosteus aculeatus) from structurally complex habitats using field-caught samples from one sea-run (ancestral) and 18 ecologically diverse freshwater (descendant) populations. Freshwater habitats ranged from shallow, structurally complex lakes with benthic-foraging stickleback (benthics), to deeper, structurally simple lakes in which stickleback depend more heavily on plankton for prey (generalists). Contrary to our expectations, benthics had smaller telencephala than generalists, but the shape of the telencephalon of the sea-run and benthic populations were more convex laterally. Convex telencephalon shape may indicate enlargement of the dorsolateral region, which is homologous with the tetrapod hippocampus. Telencephalon morphology is also sexually dimorphic, with larger, less convex telencephala in males. Freshwater stickleback from structurally complex habitats have retained the ancestral telencephalon morphology, but populations that feed more in open habitats on plankton have evolved larger, laterally concave telencephala.
-
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Kuo -Ling; Mehrotra, Sanjay
We present a homogeneous algorithm equipped with a modified potential function for the monotone complementarity problem. We show that this potential function is reduced by at least a constant amount if a scaled Lipschitz condition (SLC) is satisfied. A practical algorithm based on this potential function is implemented in a software package named iOptimize. The implementation in iOptimize maintains global linear and polynomial time convergence properties, while achieving practical performance. It either successfully solves the problem, or concludes that the SLC is not satisfied. When compared with the mature software package MOSEK (barrier solver version 6.0.0.106), iOptimize solves convex quadraticmore » programming problems, convex quadratically constrained quadratic programming problems, and general convex programming problems in fewer iterations. Moreover, several problems for which MOSEK fails are solved to optimality. In addition, we also find that iOptimize detects infeasibility more reliably than the general nonlinear solvers Ipopt (version 3.9.2) and Knitro (version 8.0).« less
-
Non-Convex Sparse and Low-Rank Based Robust Subspace Segmentation for Data Mining.
Cheng, Wenlong; Zhao, Mingbo; Xiong, Naixue; Chui, Kwok Tai
2017-07-15
Parsimony, including sparsity and low-rank, has shown great importance for data mining in social networks, particularly in tasks such as segmentation and recognition. Traditionally, such modeling approaches rely on an iterative algorithm that minimizes an objective function with convex l ₁-norm or nuclear norm constraints. However, the obtained results by convex optimization are usually suboptimal to solutions of original sparse or low-rank problems. In this paper, a novel robust subspace segmentation algorithm has been proposed by integrating l p -norm and Schatten p -norm constraints. Our so-obtained affinity graph can better capture local geometrical structure and the global information of the data. As a consequence, our algorithm is more generative, discriminative and robust. An efficient linearized alternating direction method is derived to realize our model. Extensive segmentation experiments are conducted on public datasets. The proposed algorithm is revealed to be more effective and robust compared to five existing algorithms.
-
Fast globally optimal segmentation of 3D prostate MRI with axial symmetry prior.
Qiu, Wu; Yuan, Jing; Ukwatta, Eranga; Sun, Yue; Rajchl, Martin; Fenster, Aaron
2013-01-01
We propose a novel global optimization approach to segmenting a given 3D prostate T2w magnetic resonance (MR) image, which enforces the inherent axial symmetry of the prostate shape and simultaneously performs a sequence of 2D axial slice-wise segmentations with a global 3D coherence prior. We show that the proposed challenging combinatorial optimization problem can be solved globally and exactly by means of convex relaxation. With this regard, we introduce a novel coupled continuous max-flow model, which is dual to the studied convex relaxed optimization formulation and leads to an efficient multiplier augmented algorithm based on the modern convex optimization theory. Moreover, the new continuous max-flow based algorithm was implemented on GPUs to achieve a substantial improvement in computation. Experimental results using public and in-house datasets demonstrate great advantages of the proposed method in terms of both accuracy and efficiency.
-
Distance majorization and its applications
Chi, Eric C.; Zhou, Hua; Lange, Kenneth
2014-01-01
The problem of minimizing a continuously differentiable convex function over an intersection of closed convex sets is ubiquitous in applied mathematics. It is particularly interesting when it is easy to project onto each separate set, but nontrivial to project onto their intersection. Algorithms based on Newton’s method such as the interior point method are viable for small to medium-scale problems. However, modern applications in statistics, engineering, and machine learning are posing problems with potentially tens of thousands of parameters or more. We revisit this convex programming problem and propose an algorithm that scales well with dimensionality. Our proposal is an instance of a sequential unconstrained minimization technique and revolves around three ideas: the majorization-minimization principle, the classical penalty method for constrained optimization, and quasi-Newton acceleration of fixed-point algorithms. The performance of our distance majorization algorithms is illustrated in several applications. PMID:25392563
-
Convex Arrhenius plots and their interpretation
Truhlar, Donald G.; Kohen, Amnon
2001-01-01
This paper draws attention to selected experiments on enzyme-catalyzed reactions that show convex Arrhenius plots, which are very rare, and points out that Tolman's interpretation of the activation energy places a fundamental model-independent constraint on any detailed explanation of these reactions. The analysis presented here shows that in such systems, the rate coefficient as a function of energy is not just increasing more slowly than expected, it is actually decreasing. This interpretation of the data provides a constraint on proposed microscopic models, i.e., it requires that any successful model of a reaction with a convex Arrhenius plot should be consistent with the microcanonical rate coefficient being a decreasing function of energy. The implications and limitations of this analysis to interpreting enzyme mechanisms are discussed. This model-independent conclusion has broad applicability to all fields of kinetics, and we also draw attention to an analogy with diffusion in metastable fluids and glasses. PMID:11158559
-
A trait-based test for habitat filtering: Convex hull volume
Cornwell, W.K.; Schwilk, D.W.; Ackerly, D.D.
2006-01-01
Community assembly theory suggests that two processes affect the distribution of trait values within communities: competition and habitat filtering. Within a local community, competition leads to ecological differentiation of coexisting species, while habitat filtering reduces the spread of trait values, reflecting shared ecological tolerances. Many statistical tests for the effects of competition exist in the literature, but measures of habitat filtering are less well-developed. Here, we present convex hull volume, a construct from computational geometry, which provides an n-dimensional measure of the volume of trait space occupied by species in a community. Combined with ecological null models, this measure offers a useful test for habitat filtering. We use convex hull volume and a null model to analyze California woody-plant trait and community data. Our results show that observed plant communities occupy less trait space than expected from random assembly, a result consistent with habitat filtering. ?? 2006 by the Ecological Society of America.
-
NASA Astrophysics Data System (ADS)
Yu, Ying; Zhan, Qingfeng; Wei, Jinwu; Wang, Jianbo; Dai, Guohong; Zuo, Zhenghu; Zhang, Xiaoshan; Liu, Yiwei; Yang, Huali; Zhang, Yao; Xie, Shuhong; Wang, Baomin; Li, Run-Wei
2015-04-01
Magnetostrictive FeGa thin films were deposited on the bowed flexible polyethylene terephthalate (PET) substrates, which were fixed on the convex mold. A compressive stress was induced in FeGa films when the PET substrates were shaped from convex to flat. Due to the effect of magnetostriction, FeGa films exhibit an obvious in-plane uniaxial magnetic anisotropy which could be enhanced by increasing the applied pre-strains on the substrates during growth. Consequently, the ferromagnetic resonance frequency of the films was significantly increased, but the corresponding initial permeability was decreased. Moreover, the films with pre-strains less than 0.78% exhibit a working bandwidth of microwave absorption about 2 GHz. Our investigations demonstrated a convenient method via the pre-strained substrates to tune the high frequency properties of magnetic thin films which could be applied in flexible microwave devices.
-
Yu, Jimin; Yang, Chenchen; Tang, Xiaoming; Wang, Ping
2018-03-01
This paper investigates the H ∞ control problems for uncertain linear system over networks with random communication data dropout and actuator saturation. The random data dropout process is modeled by a Bernoulli distributed white sequence with a known conditional probability distribution and the actuator saturation is confined in a convex hull by introducing a group of auxiliary matrices. By constructing a quadratic Lyapunov function, effective conditions for the state feedback-based H ∞ controller and the observer-based H ∞ controller are proposed in the form of non-convex matrix inequalities to take the random data dropout and actuator saturation into consideration simultaneously, and the problem of non-convex feasibility is solved by applying cone complementarity linearization (CCL) procedure. Finally, two simulation examples are given to demonstrate the effectiveness of the proposed new design techniques. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
-
NASA Astrophysics Data System (ADS)
Song, Weitao; Weng, Dongdong; Feng, Dan; Li, Yuqian; Liu, Yue; Wang, Yongtian
2015-05-01
As one of popular immersive Virtual Reality (VR) systems, stereoscopic cave automatic virtual environment (CAVE) system is typically consisted of 4 to 6 3m-by-3m sides of a room made of rear-projected screens. While many endeavors have been made to reduce the size of the projection-based CAVE system, the issue of asthenopia caused by lengthy exposure to stereoscopic images in such CAVE with a close viewing distance was seldom tangled. In this paper, we propose a light-weighted approach which utilizes a convex eyepiece to reduce visual discomfort induced by stereoscopic vision. An empirical experiment was conducted to examine the feasibility of convex eyepiece in a large depth of field (DOF) at close viewing distance both objectively and subjectively. The result shows the positive effects of convex eyepiece on the relief of eyestrain.
-
Turbulent boundary layer on a convex, curved surface
NASA Technical Reports Server (NTRS)
Gillis, J. C.; Johnston, J. P.; Kays, W. M.; Moffat, R. J.
1980-01-01
The effects of strong convex curvature on boundary layer turbulence were investigated. The data gathered on the behavior of Reynolds stress suggested the formulation of a simple turbulence model. Three sets of data were taken on two separate facilities. Both rigs had flow from a flat surface, over a convex surface with 90 deg of turning, and then onto a flat recovery surface. The geometry was adjusted so that, for both rigs, the pressure gradient along the test surface was zero - thus avoiding any effects of streamwise acceleration on the wall layers. Results show that after a sudden introduction of curvature, the shear stress in the outer part of the boundary layer is sharply diminished and is even slightly negative near the edge. The wall shear also drops off quickly downstream. In contrast, when the surface suddenly becomes flat again, the wall shear and shear stress profiles recover very slowly towards flat wall conditions.
-
Bergeest, Jan-Philip; Rohr, Karl
2012-10-01
In high-throughput applications, accurate and efficient segmentation of cells in fluorescence microscopy images is of central importance for the quantification of protein expression and the understanding of cell function. We propose an approach for segmenting cell nuclei which is based on active contours using level sets and convex energy functionals. Compared to previous work, our approach determines the global solution. Thus, the approach does not suffer from local minima and the segmentation result does not depend on the initialization. We consider three different well-known energy functionals for active contour-based segmentation and introduce convex formulations of these functionals. We also suggest a numeric approach for efficiently computing the solution. The performance of our approach has been evaluated using fluorescence microscopy images from different experiments comprising different cell types. We have also performed a quantitative comparison with previous segmentation approaches. Copyright © 2012 Elsevier B.V. All rights reserved.
-
High numerical aperture ring field projection system for extreme ultraviolet lithography
Hudyma, Russell; Shafer, David R.
2001-01-01
An all-reflective optical system for a projection photolithography camera has a source of EUV radiation, a wafer and a mask to be imaged on the wafer. The optical system includes a first convex mirror, a second mirror, a third convex mirror, a fourth concave mirror, a fifth convex mirror and a sixth concave mirror. The system is configured such that five of the six mirrors receive a chief ray at an incidence angle of less than substantially 9.degree., and each of the six mirrors receives a chief ray at an incidence angle of less than substantially 14.degree.. Four of the six reflecting surfaces have an aspheric departure of less than substantially 12 .mu.m. Five of the six reflecting surfaces have an aspheric departure of less than substantially 12 .mu.m. Each of the six reflecting surfaces has an aspheric departure of less than substantially 16 .mu.m.
-
High numerical aperture ring field projection system for extreme ultraviolet lithography
Hudyma, Russell; Shafer, David
2001-01-01
An all-reflective optical system for a projection photolithography camera has a source of EUV radiation, a wafer and a mask to be imaged on the wafer. The optical system includes a first convex mirror, a second mirror, a third convex mirror, a fourth concave mirror, a fifth convex mirror and a sixth concave mirror. The system is configured such that five of the six mirrors receives a chief ray at an incidence angle of less than substantially 9.degree., and each of the six mirrors receives a chief ray at an incidence angle of less than substantially 14.degree.. Four of the six reflecting surfaces have an aspheric departure of less than substantially 12 .mu.m. Five of the six reflecting surfaces have an aspheric departure of less than substantially 12 .mu.m. Each of the six reflecting surfaces has an aspheric departure of less than substantially 16 .mu.m.
-
Relative entropy of steering: on its definition and properties
NASA Astrophysics Data System (ADS)
Kaur, Eneet; Wilde, Mark M.
2017-11-01
In Gallego and Aolita (2015 Phys. Rev. X 5 041008), the authors proposed a definition for the relative entropy of steering and showed that the resulting quantity is a convex steering monotone. Here we advocate for a different definition for relative entropy of steering, based on well grounded concerns coming from quantum Shannon theory. We prove that this modified relative entropy of steering is a convex steering monotone. Furthermore, we establish that it is uniformly continuous and faithful, in both cases giving quantitative bounds that should be useful in applications. We also consider a restricted relative entropy of steering which is relevant for the case in which the free operations in the resource theory of steering have a more restricted form (the restricted operations could be more relevant in practical scenarios). The restricted relative entropy of steering is convex, monotone with respect to these restricted operations, uniformly continuous, and faithful.
-
NASA Astrophysics Data System (ADS)
Weber, R. C.; Dimech, J. L.; Phillips, D.; Molaro, J.; Schmerr, N. C.
2017-12-01
Apollo 17's Lunar Seismic Profiling Experiment's (LSPE) primary objective was to constrain the near-surface velocity structure at the landing site using active sources detected by a 100 m-wide triangular geophone array. The experiment was later operated in "listening mode," and early studies of these data revealed the presence of thermal moonquakes - short-duration seismic events associated with terminator crossings. However, the full data set has never been systematically analyzed for natural seismic signal content. In this study, we analyze 8 months of continuous LSPE data using an automated event detection technique that has previously successfully been applied to the Apollo 16 Passive Seismic Experiment data. We detected 50,000 thermal moonquakes from three distinct event templates, representing impulsive, intermediate, and emergent onset of seismic energy, which we interpret as reflecting their relative distance from the array. Impulsive events occur largely at sunrise, possibly representing the thermal "pinging" of the nearby lunar lander, while emergent events occur at sunset, possibly representing cracking or slumping in more distant surface rocks and regolith. Preliminary application of an iterative event location algorithm to a subset of the impulsive waveforms supports this interpretation. We also perform 3D modeling of the lunar surface to explore the relative contribution of the lander, known rocks and surrounding topography to the thermal state of the regolith in the vicinity of the Apollo 17 landing site over the course of the lunar diurnal cycle. Further development of both this model and the event location algorithm may permit definitive discrimination between different types of local diurnal events e.g. lander noise, thermally-induced rock breakdown, or fault creep on the nearby Lee-Lincoln scarp. These results could place important constraints on both the contribution of seismicity to regolith production, and the age of young lobate scarps.
-
NASA Astrophysics Data System (ADS)
Mitchell, Roger; Chudy, Thomas; McFarlane, Christopher R. M.; Wu, Fu-Yuan
2017-08-01
Apatites from the Verity, Fir, Gum, Howard Creek and Felix carbonatites of the Blue River (British Columbia, Canada) area have been investigated with respect to their paragenesis, cathodoluminescence, trace element and Sr-Nd isotopic composition. Although all of the Blue River carbonatites were emplaced as sills prior to amphibolite grade metamorphism and have undergone deformation, in many instances magmatic textures and mineralogy are retained. Attempts to constrain the U-Pb age of the carbonatites by SIMS, TIMS and LA-ICP-MS studies of zircon and titanite were inconclusive as all samples investigated have experienced significant Pb loss during metamorphism. The carbonatites are associated with undersaturated calcite-titanite amphibole nepheline syenite only at Howard Creek although most contain clasts of disaggregated phoscorite-like rocks. Apatite from each intrusion is characterized by distinct, but wide ranges, in trace element composition. The Sr and Nd isotopic compositions define an array on a 87Sr/86Sr vs²Nd diagram at 350 Ma indicating derivation from depleted sub-lithospheric mantle. This array could reflect mixing of Sr and Nd derived from HIMU and EM1 mantle sources, and implies that depleted mantle underlies the Canadian Cordillera. Although individual occurrences of carbonatites in the Blue River region are mineralogically and geochemically similar they are not identical and thus cannot be considered as rocks formed from a single batch of parental magma at the same stage of magmatic evolution. However, a common origin is highly probable. The variations in the trace element content and isotopic composition of apatite from each occurrence suggest that each carbonatite represents a combination of derivation of the parental magma(s) from mineralogically and isotopically heterogeneous depleted mantle sources coupled with different stages of limited differentiation and mixing of these magmas. We do not consider these carbonatites as primary direct partial melts of the sub-lithospheric mantle which have ascended from the asthenosphere without modification of their composition.
-
What does tremor really look like? Initial results from an 84-element array
NASA Astrophysics Data System (ADS)
Vidale, J. E.; Sweet, J.; Creager, K. C.; Ghosh, A.
2008-12-01
Aspiring to see more intimate details, we placed an 84-element short-period vertical-component array with an aperture of 1km on a hard rock mountain over the path of Cascadia tremor. This site is coincident with a stellar 6-station three-component CAFE array (see talk by K. Creager). Texans, which are convenient to deploy but require recycling for fresh batteries every four days, recorded the seismograms. We recorded 8 days in March and 17 days in May 2008. We find most of the arrivals at high frequencies, especially in the stacks, are P-waves, due to the network constitution. The March week contains only six intermittent hours of tremor detectable by the usual envelope analysis of data from the regional network, but array beamforming shows much more continuous activity, and extending about a half day longer. We also pick up a later episode of weak tremor that contains probably the first glance of low-frequency earthquake in Cascadia (see abstract by J. Sweet). The May field season recorded full-blown tremor passing directly underneath in startling detail. The tremor source region in preliminary images is more compact than the cloud of locations determined from envelope correlation, but also with an apparently persistent patchwork of regions that do and do not generate tremor. Further analysis and future deployments with multiple dense arrays show great promise for getting to the bottom of the issue of tremor generation.
-
Preoperative Embolization of Extra-axial Hypervascular Tumors with Onyx
Fusco, Matthew R.; Salem, Mohamed M.; Reddy, Arra S.; Ogilvy, Christopher S.; Kasper, Ekkehard M.; Thomas, Ajith J.
2016-01-01
Objective Preoperative endovascular embolization of intracranial tumors is performed to mitigate anticipated intraoperative blood loss. Although the usage of a wide array of embolic agents, particularly polyvinyl alcohol (PVA), has been described for a variety of tumors, literature detailing the efficacy, safety and complication rates for the usage of Onyx is relatively sparse. Materials and Methods We reviewed our single institutional experience with pre-surgical Onyx embolization of extra-axial tumors to evaluate its efficacy and safety and highlight nuances of individualized cases. Results Five patients underwent pre-surgical Onyx embolization of large or giant extra-axial tumors within 24 hours of surgical resection. Four patients harbored falcine or convexity meningiomas (grade I in 2 patients, grade II in 1 patient and grade III in one patient), and one patient had a grade II hemangiopericytoma. Embolization proceeded uneventfully in all cases and there were no complications. Conclusion This series augments the expanding literature confirming the safety and efficacy of Onyx in the preoperative embolization of extra-axial tumors, underscoring its advantage of being able to attain extensive devascularization via only one supplying pedicle. PMID:27114961
-
Preoperative Embolization of Extra-axial Hypervascular Tumors with Onyx.
Fusco, Matthew R; Salem, Mohamed M; Gross, Bradley A; Reddy, Arra S; Ogilvy, Christopher S; Kasper, Ekkehard M; Thomas, Ajith J
2016-03-01
Preoperative endovascular embolization of intracranial tumors is performed to mitigate anticipated intraoperative blood loss. Although the usage of a wide array of embolic agents, particularly polyvinyl alcohol (PVA), has been described for a variety of tumors, literature detailing the efficacy, safety and complication rates for the usage of Onyx is relatively sparse. We reviewed our single institutional experience with pre-surgical Onyx embolization of extra-axial tumors to evaluate its efficacy and safety and highlight nuances of individualized cases. Five patients underwent pre-surgical Onyx embolization of large or giant extra-axial tumors within 24 hours of surgical resection. Four patients harbored falcine or convexity meningiomas (grade I in 2 patients, grade II in 1 patient and grade III in one patient), and one patient had a grade II hemangiopericytoma. Embolization proceeded uneventfully in all cases and there were no complications. This series augments the expanding literature confirming the safety and efficacy of Onyx in the preoperative embolization of extra-axial tumors, underscoring its advantage of being able to attain extensive devascularization via only one supplying pedicle.
-
NASA Astrophysics Data System (ADS)
Schneider, Simon; Thomas, Christine; Dokht, Ramin M. H.; Gu, Yu Jeffrey; Chen, Yunfeng
2018-02-01
Due to uneven earthquake source and receiver distributions, our abilities to isolate weak signals from interfering phases and reconstruct missing data are fundamental to improving the resolution of seismic imaging techniques. In this study, we introduce a modified frequency-wavenumber (fk) domain based approach using a `Projection Onto Convex Sets' (POCS) algorithm. POCS takes advantage of the sparsity of the dominating energies of phase arrivals in the fk domain, which enables an effective detection and reconstruction of the weak seismic signals. Moreover, our algorithm utilizes the 2-D Fourier transform to perform noise removal, interpolation and weak-phase extraction. To improve the directional resolution of the reconstructed data, we introduce a band-stop 2-D Fourier filter to remove the energy of unwanted, interfering phases in the fk domain, which significantly increases the robustness of the signal of interest. The effectiveness and benefits of this method are clearly demonstrated using both simulated and actual broadband recordings of PP precursors from an array located in Tanzania. When used properly, this method could significantly enhance the resolution of weak crust and mantle seismic phases.
-
NASA Astrophysics Data System (ADS)
Wu, Xiaohua; Hu, Xiaosong; Teng, Yanqiong; Qian, Shide; Cheng, Rui
2017-09-01
Hybrid solar-battery power source is essential in the nexus of plug-in electric vehicle (PEV), renewables, and smart building. This paper devises an optimization framework for efficient energy management and components sizing of a single smart home with home battery, PEV, and potovoltatic (PV) arrays. We seek to maximize the home economy, while satisfying home power demand and PEV driving. Based on the structure and system models of the smart home nanogrid, a convex programming (CP) problem is formulated to rapidly and efficiently optimize both the control decision and parameters of the home battery energy storage system (BESS). Considering different time horizons of optimization, home BESS prices, types and control modes of PEVs, the parameters of home BESS and electric cost are systematically investigated. Based on the developed CP control law in home to vehicle (H2V) mode and vehicle to home (V2H) mode, the home with BESS does not buy electric energy from the grid during the electric price's peak periods.
-
Manipulating and Visualizing Molecular Interactions in Customized Nanoscale Spaces
NASA Astrophysics Data System (ADS)
Stabile, Francis; Henkin, Gil; Berard, Daniel; Shayegan, Marjan; Leith, Jason; Leslie, Sabrina
We present a dynamically adjustable nanofluidic platform for formatting the conformations of and visualizing the interaction kinetics between biomolecules in solution, offering new time resolution and control of the reaction processes. This platform extends convex lens-induced confinement (CLiC), a technique for imaging molecules under confinement, by introducing a system for in situ modification of the chemical environment; this system uses a deep microchannel to diffusively exchange reagents within the nanoscale imaging region, whose height is fixed by a nanopost array. To illustrate, we visualize and manipulate salt-induced, surfactant-induced, and enzyme-induced reactions between small-molecule reagents and DNA molecules, where the conformations of the DNA molecules are formatted by the imposed nanoscale confinement. By using nanofabricated, nonabsorbing, low-background glass walls to confine biomolecules, our nanofluidic platform facilitates quantitative exploration of physiologically and biotechnologically relevant processes at the nanoscale. This device provides new kinetic information about dynamic chemical processes at the single-molecule level, using advancements in the CLiC design including a microchannel-based diffuser and postarray-based dialysis slit.
-
Superhydrophobic surface prepared by micro-milling and WEDM on aluminum alloy
NASA Astrophysics Data System (ADS)
Yanling, Wan; Jian, Yang; Huadong, Yu
2018-06-01
To simulate the hydrophobic microstructure of rice leaf surface, high-speed precision micro-milling machine was used to fabricate micro groove array structure on the surface of aluminum alloy. The micro-and nanostructure was constructed on the surface of the grooved convex platform by Wire Cut Electrical Discharge Machining (WEDM). The surface morphology and hydrophobic properties of the aluminum alloy microstructures fabricated by two processing methods were observed respectively, and the hydrophobic mechanism was analyzed. The results show that the contact angle was effectively improved from 49° up to 158.4° in the vertical direction, and 146.7° in the parallel direction. The change of surface wettability from hydrophilic to hydrophobic was realized. By comparison, the micro-and nanostructure fabricated by WEDM had improved the hydrophobic stability of the aluminum alloy surface while enlarging the contact Angle, and the micro-milling groove structure further amplified the contact angle and greatly reduced the contact area of the water droplet, it was also observed that the drop took longer to completely spread on the sample after WEDM.
-
Mechanical characterization of disordered and anisotropic cellular monolayers
NASA Astrophysics Data System (ADS)
Nestor-Bergmann, Alexander; Johns, Emma; Woolner, Sarah; Jensen, Oliver E.
2018-05-01
We consider a cellular monolayer, described using a vertex-based model, for which cells form a spatially disordered array of convex polygons that tile the plane. Equilibrium cell configurations are assumed to minimize a global energy defined in terms of cell areas and perimeters; energy is dissipated via dynamic area and length changes, as well as cell neighbor exchanges. The model captures our observations of an epithelium from a Xenopus embryo showing that uniaxial stretching induces spatial ordering, with cells under net tension (compression) tending to align with (against) the direction of stretch, but with the stress remaining heterogeneous at the single-cell level. We use the vertex model to derive the linearized relation between tissue-level stress, strain, and strain rate about a deformed base state, which can be used to characterize the tissue's anisotropic mechanical properties; expressions for viscoelastic tissue moduli are given as direct sums over cells. When the base state is isotropic, the model predicts that tissue properties can be tuned to a regime with high elastic shear resistance but low resistance to area changes, or vice versa.
-
Compliant deformable mirror approach for wavefront improvement
NASA Astrophysics Data System (ADS)
Clark, James H.; Penado, F. Ernesto
2016-04-01
We describe a compliant static deformable mirror approach to reduce the wavefront concavity at the Navy Precision Optical Interferometer (NPOI). A single actuator pressing on the back surface of just one of the relay mirrors deforms the front surface in a correcting convex shape. Our design uses the mechanical advantage gained from a force actuator sandwiched between a rear flexure plate and the back surface of the mirror. We superimpose wavefront contour measurements with our finite element deformed mirror model. An example analysis showed improvement from 210-nm concave-concave wavefront to 51-nm concave-concave wavefront. With our present model, a 100-nm actuator increment displaces the mirror surface by 1.1 nm. We describe the need for wavefront improvement that arises from the NPOI reconfigurable array, offer a practical design approach, and analyze the support structure and compliant deformable mirror using the finite element method. We conclude that a 20.3-cm-diameter, 1.9-cm-thick Zerodur® mirror shows that it is possible to deform the reflective surface and cancel out three-fourths of the wavefront deformation without overstressing the material.
-
Zhang, Lin; Sánchez del Río, Manuel; Monaco, Giulio; Detlefs, Carsten; Roth, Thomas; Chumakov, Aleksandr I.; Glatzel, Pieter
2013-01-01
X-ray crystal monochromators exposed to white-beam X-rays in third-generation synchrotron light sources are subject to thermal deformations that must be minimized using an adequate cooling system. A new approach was used to measure the crystal shape profile and slope of several cryogenically cooled (liquid nitrogen) silicon monochromators as a function of beam power in situ and under heat load. The method utilizes multiple angular scans across the Bragg peak (rocking curve) at various vertical positions of a narrow-gap slit downstream from the monochromator. When increasing the beam power, the surface of the liquid-nitrogen-cooled silicon crystal deforms from a concave shape at low heat load to a convex shape at high heat load, passing through an approximately flat shape at intermediate heat load. Finite-element analysis is used to calculate the crystal thermal deformations. The simulated crystal profiles and slopes are in excellent agreement with experiments. The parameters used in simulations, such as material properties, absorbed power distribution on the crystal and cooling boundary conditions, are described in detail as they are fundamental for obtaining accurate results. PMID:23765298
