Science.gov

Sample records for rocky mountain spotted

  1. Rocky Mountain spotted fever

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000654.htm Rocky Mountain spotted fever To use the sharing features on this page, please enable JavaScript. Rocky Mountain spotted fever is a disease caused by a type of ...

  2. Rocky Mountain Spotted Fever.

    PubMed

    Phillips, Jennan

    2017-01-01

    The tick-borne disease Rocky Mountain spotted fever (RMSF) can have deadly outcomes unless treated appropriately, yet nonspecific flu-like symptoms complicate diagnosis. Occupational health nurses must have a high index of suspicion with symptomatic workers and recognize that recent recreational or occupational activities with potential tick exposure may suggest RMSF.

  3. Rocky Mountain spotted fever.

    PubMed

    Lacz, N L; Schwartz, R A; Kapila, R

    2006-04-01

    Rocky Mountain spotted fever (RMSF) is an unusual but important dermatological condition to identify without hesitation. The classic triad of headache, fever, and a rash that begins on the extremities and travels proximally to involve the trunk is found in a majority of patients. The cutaneous centripetal pattern is a result of cell to cell migration by the causative organism Rickettsia rickettsii. Such individuals should receive prompt antimicrobial therapy and supportive care to avoid serious and potentially fatal complications.

  4. Rocky Mountain spotted fever.

    PubMed

    Kamper, C A; Chessman, K H; Phelps, S J

    1988-02-01

    The epidemiology, pathogenesis, clinical features, and treatment of Rocky Mountain spotted fever are reviewed. Rocky Mountain spotted fever is a severe infection caused by Rickettsia rickettsii transmitted to man by various species of ticks. High-incidence areas exist in the southeast and south central United States. Only 60-70% of patients with the disease report a history of tick bite or exposure to tick-infested areas. The disease is initially characterized by fever, headache, gastrointestinal complaints, myalgia, and a generalized rash. In several days generalized vasculitis may lead to periorbital edema and nonpitting edema of the face and extremities. Central nervous system involvement is common. Because signs and symptoms associated with the disease are nonspecific, the diagnosis is often delayed or missed. Traditionally diagnostic confirmation relied on serologic testing, but an indirect fluorescent antibody assay will soon be commercially available. Rocky Mountain spotted fever is usually treated with the rickettsiostatic agents chloramphenicol or tetracycline, but few comparative data on these agents in patients with the disease are available. For patients who cannot tolerate oral medications, intravenous chloramphenicol sodium succinate is the preferred treatment; chloramphenicol is also the drug of choice for children less than eight years of age. Otherwise, oral tetracycline hydrochloride is the drug of choice. Antibiotic therapy should be continued for 7-10 days or until the patient is afebrile for two to five days. All cases of Rocky Mountain spotted fever must be reported to the Centers for Disease Control. The best ways to decrease the morbidity and mortality of the disease are to increase awareness of its signs and symptoms and to prevent exposure to ticks.

  5. [Rocky Mountain spotted fever].

    PubMed

    Reinauer, K M; Jaschonek, K; Kusch, G; Heizmann, W R; Döller, P C; Jenss, H

    1990-01-12

    After returning from a holiday in the USA a 24-year-old man fell ill with diarrhoea, high fever and marked rash including the palms of the hands and soles of the feet. When a history of a tick bite in the USA was elicited, a rickettsial infection was suspected. Treatment with doxycycline, 100 mg twice daily, was instituted finally and the fever slowly resolved. The patient became completely well again within four weeks. Serological tests confirmed the diagnosis of Rocky Mountain spotted fever.

  6. Rocky Mountain spotted fever.

    PubMed

    Dantas-Torres, Filipe

    2007-11-01

    Rocky Mountain spotted fever (RMSF) is a life-threatening disease caused by Rickettsia rickettsii, an obligately intracellular bacterium that is spread to human beings by ticks. More than a century after its first clinical description, this disease is still among the most virulent human infections identified, being potentially fatal even in previously healthy young people. The diagnosis of RMSF is based on the patient's history and a physical examination, and often presents a dilemma for clinicians because of the non-specific presentation of the disease in its early course. Early empirical treatment is essential to prevent severe complications or a fatal outcome, and treatment should be initiated even in unconfirmed cases. Because there is no vaccine available against RMSF, avoidance of tick-infested areas is still the best way to prevent the infection.

  7. Rocky Mountain spotted fever, Colombia.

    PubMed

    Hidalgo, Marylin; Orejuela, Leonora; Fuya, Patricia; Carrillo, Pilar; Hernandez, Jorge; Parra, Edgar; Keng, Colette; Small, Melissa; Olano, Juan P; Bouyer, Donald; Castaneda, Elizabeth; Walker, David; Valbuena, Gustavo

    2007-07-01

    We investigated 2 fatal cases of Rocky Mountain spotted fever that occurred in 2003 and 2004 near the same locality in Colombia where the disease was first reported in the 1930s. A retrospective serosurvey of febrile patients showed that > 21% of the serum samples had antibodies aaainst spotted fever group rickettsiae.

  8. Rocky Mountain spotted fever, Panama.

    PubMed

    Estripeaut, Dora; Aramburú, María Gabriela; Sáez-Llorens, Xavier; Thompson, Herbert A; Dasch, Gregory A; Paddock, Christopher D; Zaki, Sherif; Eremeeva, Marina E

    2007-11-01

    We describe a fatal pediatric case of Rocky Mountain spotted fever in Panama, the first, to our knowledge, since the 1950s. Diagnosis was established by immunohistochemistry, PCR, and isolation of Rickettsia rickettsii from postmortem tissues. Molecular typing demonstrated strong relatedness of the isolate to strains of R. rickettsii from Central and South America.

  9. Managing Rocky Mountain spotted fever.

    PubMed

    Minniear, Timothy D; Buckingham, Steven C

    2009-11-01

    Rocky Mountain spotted fever is caused by the tick-borne bacterium Rickettsia rickettsii. Symptoms range from moderate illness to severe illness, including cardiovascular compromise, coma and death. The disease is prevalent in most of the USA, especially during warmer months. The trademark presentation is fever and rash with a history of tick bite, although tick exposure is unappreciated in over a third of cases. Other signature symptoms include headache and abdominal pain. The antibiotic therapy of choice for R. rickettsii infection is doxycycline. Preventive measures for Rocky Mountain spotted fever and other tick-borne diseases include: wearing long-sleeved, light colored clothing; checking for tick attachment and removing attached ticks promptly; applying topical insect repellent; and treating clothing with permethrin.

  10. Rocky Mountain spotted fever in children.

    PubMed

    Woods, Charles R

    2013-04-01

    Rocky Mountain spotted fever is typically undifferentiated from many other infections in the first few days of illness. Treatment should not be delayed pending confirmation of infection when Rocky Mountain spotted fever is suspected. Doxycycline is the drug of choice even for infants and children less than 8 years old.

  11. Rocky Mountain Spotted Fever: Statistics and Epidemiology

    MedlinePlus

    ... Search The CDC Cancel Submit Search The CDC Rocky Mountain Spotted Fever (RMSF) Note: Javascript is disabled or is not ... message, please visit this page: About CDC.gov . Rocky Mountain Spotted Fever (RMSF) Symptoms, Diagnosis, and Treatment Statistics and Epidemiology ...

  12. Fatal Rocky Mountain spotted fever.

    PubMed

    Hattwick, M A; Retailliau, H; O'Brien, R J; Slutzker, M; Fontaine, R E; Hanson, B

    1978-09-29

    Forty-four fatal cases of Rocky Mountain spotted fever (RMSF) occurring in 1974 were compared with 50 nonfatal cases of similar age, sex, date of onset, and place of occurrence. Diagnosis and initiation of treatment in fatal cases were substantially delayed compared with nonfatal cases. Several reasons for this delay were identified: (1) the rash appeared later in the course of illness in the fatal cases, often not until the patient was terminal, (2) a history of tick bite was less often obtained during life or obtained late in the clinical course in fatal cases, and (3) initial nonspecific symptoms or unexpected symptoms led to an initial diagnosis of more common diseases. Only two fatal cases were treated with either tetracycline or chloramphenicol before the sixth day of illness. Presumptive diagnosis of RMSF and initiation of tetracycline therapy before onset of rash may be necessary to reduce mortality.

  13. Rocky Mountain Spotted Fever (For Parents)

    MedlinePlus

    ... Safety for the Whole Family Evaluate Your Child's Lyme Disease Risk Lyme Disease Lyme Disease Hey! A Tick Bit Me! Bug Bites and Stings Rocky Mountain Spotted Fever Lyme Disease Contact Us Print Resources Send to a friend ...

  14. Rocky Mountain Spotted Fever in Argentina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We describe the first molecular confirmation of Rickettsia rickettsii, the cause of Rocky Mountain spotted fever (RMSF), from a tick vector, Amblyomma cajennense, and from a cluster of fatal spotted fever cases in Argentina. Questing A. cajennense ticks were collected at or near sites of presumed or...

  15. Rocky Mountain spotted fever in Argentina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cases of epidemic typhus have been documented in Argentina since 1919; however, no confirmed reports of spotted fever rickettsiosis were described in this country until 1999. We describe the first molecular confirmation of Rickettsia rickettsii, the etiologic agent of Rocky Mountain spotted fever (R...

  16. A case of Rocky Mountain spotted fever.

    PubMed

    Rubel, Barry S

    2007-01-01

    Rocky Mountain spotted fever is a serious, generalized infection that is spread to humans through the bite of infected ticks. It can be lethal but it is curable. The disease gets its name from the Rocky Mountain region where it was first identified in 1896. The fever is caused by the bacterium Rickettsia rickettsii and is maintained in nature in a complex life cycle involving ticks and mammals. Humans are considered to be accidental hosts and are not involved in the natural transmission cycle of this pathogen. The author examined a 47-year-old woman during a periodic recall appointment. The patient had no dental problems other than the need for routine prophylaxis but mentioned a recent problem with swelling of her extremities with an accompanying rash and general malaise and soreness in her neck region. Tests were conducted and a diagnosis of Rocky Mountain spotted fever was made.

  17. Rocky Mountain spotted fever in dogs, Brazil.

    PubMed

    Labruna, Marcelo B; Kamakura, Orson; Moraes-Filho, Jonas; Horta, Mauricio C; Pacheco, Richard C

    2009-03-01

    Clinical illness caused by Rickettsia rickettsii in dogs has been reported solely in the United States. We report 2 natural clinical cases of Rocky Mountain spotted fever in dogs in Brazil. Each case was confirmed by seroconversion and molecular analysis and resolved after doxycycline therapy.

  18. Rocky Mountain spotted fever: a clinician's dilemma.

    PubMed

    Masters, Edwin J; Olson, Gary S; Weiner, Scott J; Paddock, Christopher D

    2003-04-14

    Rocky Mountain spotted fever is still the most lethal tick-vectored illness in the United States. We examine the dilemmas facing the clinician who is evaluating the patient with possible Rocky Mountain spotted fever, with particular attention to the following 8 pitfalls in diagnosis and treatment: (1) waiting for a petechial rash to develop before diagnosis; (2) misdiagnosing as gastroenteritis; (3) discounting a diagnosis when there is no history of a tick bite; (4) using an inappropriate geographic exclusion; (5) using an inappropriate seasonal exclusion; (6) failing to treat on clinical suspicion; (7) failing to elicit an appropriate history; and (8) failing to treat with doxycycline. Early diagnosis and proper treatment save lives.

  19. Rocky Mountain spotted fever in Argentina.

    PubMed

    Paddock, Christopher D; Fernandez, Susana; Echenique, Gustavo A; Sumner, John W; Reeves, Will K; Zaki, Sherif R; Remondegui, Carlos E

    2008-04-01

    We describe the first molecular confirmation of Rickettsia rickettsii, the cause of Rocky Mountain spotted fever (RMSF), from a tick vector, Amblyomma cajennense, and from a cluster of fatal spotted fever cases in Argentina. Questing A. cajennense ticks were collected at or near sites of presumed or confirmed cases of spotted fever rickettsiosis in Jujuy Province and evaluated by polymerase chain reaction assays for spotted fever group rickettsiae. DNA of R. rickettsii was amplified from a pool of A. cajennense ticks and from tissues of one of four patients who died during 2003-2004 after illnesses characterized by high fever, severe headache, myalgias, and petechial rash. The diagnosis of spotted fever rickettsiosis was confirmed in the other patients by indirect immunofluorescence antibody and immunohistochemical staining techniques. These findings show the existence of RMSF in Argentina and emphasize the need for clinicians throughout the Americas to consider RMSF in patients with febrile rash illnesses.

  20. What's new in Rocky Mountain spotted fever?

    PubMed

    Chen, Luke F; Sexton, Daniel J

    2008-09-01

    Rocky Mountain spotted fever (RMSF) remains an important illness despite an effective therapy because it is difficult to diagnose and is capable of producing a fatal outcome. The pathogenesis of RMSF remains, in large part, an enigma. However, recent research has helped shed light on this mystery. Importantly, the diagnosis of RMSF must be considered in all febrile patients who have known or possible exposure to ticks, especially if they live in or have traveled to endemic regions during warmer months. Decisions about giving empiric therapy to such patients are difficult and require skill and careful judgement.

  1. Why sulfonamides are contraindicated in Rocky Mountain spotted fever.

    PubMed

    Ren, Vicky; Hsu, Sylvia

    2014-02-18

    Sulfonamide antibiotics are not effective for the treatment of Rocky Mountain spotted fever (RMSF). Patients suspected of having RMSF based on history and physical exam should be treated with doxycycline and not a sulfonamide to avoid increased morbidity and mortality.

  2. Rocky Mountain spotted fever: a seasonal alert.

    PubMed

    Walker, D H

    1995-05-01

    Rocky Mountain spotted fever occurs during seasonal tick activity. A history of exposure to tick-containing habitats within the 3- to 12-day incubation period is a key epidemiological factor. The signs of fever, headache, myalgia, nausea, vomiting, and anorexia at onset of infection are difficult to distinguish from those of self-limited viral infections. Rash usually appears later and, if present, progresses through a sequence of stages and distribution that are never pathognomonic. The effects of disseminated Rickettsia rickettsii infection of endothelial cells include increased vascular permeability, edema, hypovolemia, hypotension, prerenal azotemia, and, in life-threatening cases, pulmonary edema, shock, acute tubular necrosis, and meningoencephalitis. In severe cases, fluid management is a challenge. The clinical diagnosis, which is difficult, is rarely assisted by laboratory findings because antibodies are usually detected only in convalescence, and immunohistologic methods for detection of rickettsiae are unavailable in most clinics. Doxycycline is the treatment of choice except for pregnant or allergic patients, who are treated with chloramphenicol.

  3. Cutaneous histopathology of Rocky Mountain spotted fever.

    PubMed

    Kao, G F; Evancho, C D; Ioffe, O; Lowitt, M H; Dumler, J S

    1997-11-01

    The dermatologic diagnosis of Rocky Mountain spotted fever (RMSF) is often presumptive; the clinical presentation includes skin rash and febrile illness with or without a clear history of tick bite. The characteristic cutaneous manifestations include a generalized skin eruption with purpuric, blanching or non-blanching macules and papules usually involving the extremities. Although skin biopsies are often performed to confirm the diagnosis, the spectrum of cutaneous histopathology in RMSF has not been well described. We studied a series of 26 cases of RMSF, of which 10 were surgical specimens and 16 were autopsies. The microscopic changes were correlated with the duration of illness. The main histopathologic feature was lymphohistiocytic capillaritis and venulitis with extravasation of erythrocytes, edema, predominantly perivascular and some interstitial infiltrate. Leukocytoclastic vasculitis (LCV) with neutrophilic infiltrate and nuclear dust was seen in 11 of 15 (73%) specimens from involved skin. These lesions with LCV also showed notable epidermal change including basal layer vacuolar degeneration with mild dermoepidermal interface lymphocytic exocytosis. Six lesions with LCV displayed focal fibrin thrombi and capillary wall necrosis. Apoptotic keratinocytes were noted in 3 lesions with LCV. Subepidermal blister was observed in the skin lesion of an autopsied patient with LCV changes. Another lesion of a fatal case with LCV also contained features of acute neutrophilic eccrine hidradenitis. Focal small nerve twig inflammation was noted in a third autopsy case with LCV. Plasma cells were seen in 6 of 34 specimens (18%); and eosinophils were observed in 3 (9%). The subcutaneous fat contained a mild perivascular inflammation and one case revealed focal lobular neutrophilic inflammation. Immunohistologic (IH) staining using polyclonal rabbit anti-Rickettsia rickettsii demonstrated positive staining of the organisms in the affected endothelial cells in all 12 cases

  4. Rocky Mountain spotted fever in Mexico: past, present, and future.

    PubMed

    Álvarez-Hernández, Gerardo; Roldán, Jesús Felipe González; Milan, Néstor Saúl Hernández; Lash, R Ryan; Behravesh, Casey Barton; Paddock, Christopher D

    2017-03-29

    Rocky Mountain spotted fever, a tick-borne zoonosis caused by Rickettsia rickettsii, is among the most lethal of all infectious diseases in the Americas. In Mexico, the disease was first described during the early 1940s by scientists who carefully documented specific environmental determinants responsible for devastating outbreaks in several communities in the states of Sinaloa, Sonora, Durango, and Coahuila. These investigators also described the pivotal roles of domesticated dogs and Rhipicephalus sanguineus sensu lato (brown dog ticks) as drivers of epidemic levels of Rocky Mountain spotted fever. After several decades of quiescence, the disease re-emerged in Sonora and Baja California during the early 21st century, driven by the same environmental circumstances that perpetuated outbreaks in Mexico during the 1940s. This Review explores the history of Rocky Mountain spotted fever in Mexico, current epidemiology, and the multiple clinical, economic, and social challenges that must be considered in the control and prevention of this life-threatening illness.

  5. Roentgenographic abnormalities in Rocky Mountain Spotted Fever.

    PubMed

    McCook, T A; Briley, C; Ravin, C E

    1982-02-01

    Rock Mountain spotted fever (RMSF) is a tick-borne rickettsial disease which produces a widespread vasculitis. A mortality of 7% to 13% has been reported in the United States which is due at least in part to delay in diagnosis and appropriate treatment. The classic features of this disease include a history of tick bite with the clinical presentation of skin rash and fever in association with thrombocytopenia. Few reports have emphasized the radiologic chest abnormalities in this disease or their relationship to thrombocytopenia. We review 70 cases of RMSF with abnormal roentgenographic features and their pathologic correlation.

  6. Adult Onset Still's Disease and Rocky Mountain Spotted Fever.

    PubMed

    Persad, Paul; Patel, Rajendrakumar; Patel, Niki

    2010-01-01

    Adult Still's Disease was first described in 1971 by Bywaters in fourteen adult female patients who presented with symptoms indistinguishable from that of classic childhood Still's Disease (Bywaters, 1971). George Still in 1896 first recognized this triad of quotidian (daily) fevers, evanescent rash, and arthritis in children with what later became known as juvenile inflammatory arthritis (Still, 1990). Adult Onset Still's Disease (AOSD) is an inflammatory condition of unknown etiology characterized by an evanescent rash, quotidian fevers, and arthralgias. Numerous infectious agents have been associated with its presentation. This case is to our knowledge the first presentation of AOSD in the setting of Rocky Mountain Spotted Fever. Although numerous infectious agents have been suggested, the etiology of this disorder remains elusive. Nevertheless, infection may in fact play a role in triggering the onset of symptoms in those with this disorder. Our case presentation is, to our knowledge, the first case of Adult Onset Still's Disease associated with Rocky Mountain spotted fever (RMSF).

  7. Orchitis in two dogs with Rocky Mountain spotted fever.

    PubMed

    Ober, Christopher P; Spaulding, Kathy; Breitschwerdt, Edward B; Malarkey, David E; Hegarty, Barbara C

    2004-01-01

    Two dogs with testicular swelling were sonographically diagnosed with orchitis and were subsequently diagnosed with Rocky Mountain spotted fever (RMSF). Use of both gray scale and color Doppler sonography allowed for differentiation of orchitis from neoplasia and torsion. While only experimentally induced RMSF is reported to cause orchitis in dogs, it should be considered in any dog with vascular insult to the testes, especially when other signs of systemic illness are involved.

  8. Rocky Mountain spotted fever acquired in Florida, 1973-83.

    PubMed

    Sacks, J J; Janowski, H T

    1985-12-01

    From 1973 to 1983, 49 Florida residents were reported with confirmed Rocky Mountain spotted fever (RMSF), 25 of whom were considered to have had Florida-acquired disease. Although there was no history of tick exposure for six of these 25 persons, all had contact with dogs or outdoor activities during the incubation period. The tick vectors of RMSF are widely distributed throughout Florida. We conclude that RMSF, although rare in Florida, can be acquired in the state.

  9. [Rocky Mountain spotted fever in an American tourist].

    PubMed

    de Pender, A M G; Bauer, A G C; van Genderen, P J J

    2005-04-02

    In a 28-year-old male American tourist who presented in the hospital with fever, cold shivers, headache, nausea, myalgia and arthralgia, Rocky Mountain spotted fever was suspected, partly because he came from an endemic region (the state of Georgia). The patient was treated with doxycycline, 100 mg b.i.d.; 9 days after the first appearance of the symptoms, the diagnosis was confirmed by the report of a positive antibody titre against Rickettsia rickettsii. The patient did not have exanthema. He was discharged in good general condition after two weeks of treatment. Rocky Mountain spotted fever, caused by the Gram-negative bacterium R. rickettsii, is a serious rickettsiosis. The disease is seen only sporadically in the Netherlands because the ticks in the Netherlands do not carry the bacterium. The travel history is still not a standard component of the anamnesis and is therefore often forgotten. This can lead to under-diagnosis and delayed treatment of diseases that were formerly limited to the continent. The early recognition and treatment of Rocky Mountain spotted fever is important since delayed treatment is associated with a clear increase in both morbidity and mortality.

  10. [Rocky Mountain spotted fever in Brazil].

    PubMed

    del Sá DelFiol, Fernando; Junqueira, Fábio Miranda; da Rocha, Maria Carolina Pereira; de Toledo, Maria Inês; Filho, Silvio Barberato

    2010-06-01

    Although the number of confirmed cases of spotted fever has been declining in Brazil since 2005, the mortality rate (20% to 30%) is still high in comparison to other countries. This high mortality rate is closely related to the difficulty in making the diagnosis and starting the correct treatment. Only two groups of antibiotics have proven clinical effectiveness against spotted fever: chloramphenicol and tetracyclines. Until recently, the use of tetracyclines was restricted to adults because of the associated bone and tooth changes in children. Recently, however, the American Academy of Pediatrics and various researchers have recommended the use of doxycycline in children. In more severe cases, chloramphenicol injections are often preferred in Brazil because of the lack of experience with injectable tetracycline. Since early diagnosis and the adequate drug treatment are key to a good prognosis, health care professionals must be better prepared to recognize and treat spotted fever.

  11. [Rocky mountain spotted fever: report of two cases].

    PubMed

    Martínez-Medina, Miguel Angel; Padilla-Zamudio, Guillermo; Solís-Gallardo, Lilia Patricia; Guevara-Tovar, Marcela

    2005-01-01

    Rocky Mountain spotted fever (RMSF) is an acute febrile illness caused by infection with Ricketsia Rickettsii, characterized by the presence of petechial rash. Even though the etiology, clinical characteristics and availability of effective antibiotics are known, RMSF related deaths have a prevalence of 4%. In its early stages RMFS can resemble many others infectious conditions and the diagnosis can be difficult. The present paper reports two patients with RMSF; these cases underscore the importance of prompt diagnosis and appropriate antimicrobial therapy, and consider RMSF as a differential diagnosis in any patient who develops fever and rash in an endemic area.

  12. Rocky Mountain spotted fever: epidemiology of an increasing problem.

    PubMed

    Hattwick, M A; O'Brien, R J; Hanson, B F

    1976-06-01

    Reported cases of Rocky Mountain spotted fever in the United States have been increasing since 1960 and reached an all-time high of 754 cases in 1974. Detailed clinical and epidemiologic information was obtained on 1522 (55%) of the 2757 cases reported in the 5-year period 1970 through 1974. Fifty-one percent of cases were confirmed by one or more laboratory test. The increase has occurred predominantly in the southeastern part of the United States. A comparison of laboratory-confirmed and unconfirmed cases suggests that a variety of febrile exanthems may be confused with Rocky Mountain spotted fever. Neither a history of tick bite nor rash was universally present, and both were significantly less frequent in fatal cases. The overall death-to-case ratio during this period was 6.8%. Death-to-case ratios were significantly higher for nonwhites (13.9) than whites (5.8), for male patients (8.2) than female patients (4.5), and for person older than 30 (13.9) than persons younger than 30 (5.4).

  13. Association between sepsis and Rocky Mountain spotted fever.

    PubMed

    Bacci, Marcelo Rodrigues; Namura, José Jorge

    2012-12-06

    Rocky Mountain spotted fever (RMSF) is a disease caused by the Gram-negative coccobacillus Rickettsia ricketsii which has been on the rise since the last decade in the USA. The symptoms are common to the many viral diseases, and the classic triad of fever, rash and headache is not always present when RMSF is diagnosed. It may progress to severe cases such as renal failure, disseminated intravascular coagulation and septicaemia. This report aims to present a fulminant case of RMSF associated with sepsis. It describes a female patient's case that quickly progressed to sepsis and death. The patient showed non-specific symptoms for 5 days before being admitted to a hospital. The fact that she lived in an area highly infested with Amblyomma aureolatum ticks was unknown to the medical staff until the moment she died.

  14. Rocky Mountain spotted fever in Panama: a cluster description.

    PubMed

    Tribaldos, Maribel; Zaldivar, Yamitzel; Bermudez, Sergio; Samudio, Franklyn; Mendoza, Yaxelis; Martinez, Alexander A; Villalobos, Rodrigo; Eremeeva, Marina E; Paddock, Christopher D; Page, Kathleen; Smith, Rebecca E; Pascale, Juan Miguel

    2011-10-13

    Rocky Mountain spotted fever (RMSF) is a tick-borne infection caused by Rickettsia rickettsii. We report a cluster of fatal cases of RMSF in 2007 in Panama, involving a pregnant woman and two children from the same family.  The woman presented with a fever followed by respiratory distress, maculopapular rash, and an eschar at the site from which a tick had been removed.  She died four days after disease onset.  This is the second published report of an eschar in a patient confirmed by PCR to be infected with R. rickettsii.  One month later, the children presented within days of one another with fever and rash and died three and four days after disease onset. The diagnosis was confirmed by immunohistochemistry, PCR and sequencing of the genes of R. rickettsii in tissues obtained at autopsy. 

  15. Persisting impairment following Rocky Mountain Spotted Fever: a case report.

    PubMed

    Bergeron, J W; Braddom, R L; Kaelin, D L

    1997-11-01

    A patient initially presented in the emergency room with fever, confusion, and a petechial rash. Rocky Mountain Spotted Fever (RMSF) was diagnosed and appropriate treatment was initiated. He subsequently became obtunded and required mechanical ventilation and temporary cardiac pacing. Four weeks later, he presented to our rehabilitation unit with ataxia, hyperreflexia and upper motor neuron signs, dysesthesias, sensorimotor axonopathy demonstrated by electrodiagnostic studies, and a global decrement in cognitive capability. Although he significantly improved in functional mobility and self-care, he exhibited little improvement in his cognitive impairment at 6-month follow-up. An understanding of the natural history of, and long-term impairments associated with, RMSF will be helpful to physiatrists in developing rehabilitation care plans and in assisting such patients with community re-entry.

  16. Rocky mountain spotted fever hospitalizations among American Indians.

    PubMed

    Demma, Linda J; Holman, Robert C; Mikosz, Christina A; Curns, Aaron T; Swerdlow, David L; Paisano, Edna L; Cheek, James E

    2006-09-01

    To describe the epidemiology of Rocky Mountain spotted fever (RMSF) among American Indians/Alaska Natives (AI/ANs), we conducted a retrospective analysis of hospitalization records with an RMSF diagnosis using Indian Health Service (IHS) hospital discharge data for calendar years 1980-2003. A total of 261 RMSF hospitalizations were reported among AIs, for an average annual hospitalization rate of 1.21 per 100,000 persons; two deaths were reported (0.8%). Most hospitalizations (88.5%) occurred in the Southern Plains region, where the rate was 4.23 per 100,000 persons. Children 1-4 years of age had the highest age-specific hospitalization rate of 2.50 per 100,000 persons. The overall annual RMSF hospitalization rate declined during the study period. Understanding the epidemiology of RMSF among AI/ANs and educating IHS/tribal physicians on the diagnosis of tick-borne diseases remain important for the prompt treatment of RMSF and the reduction of the disease occurrence among AI/ANs, particularly in high-risk areas.

  17. Outbreak of Rocky Mountain spotted fever in Córdoba, Colombia.

    PubMed

    Hidalgo, Marylin; Miranda, Jorge; Heredia, Damaris; Zambrano, Pilar; Vesga, Juan Fernando; Lizarazo, Diana; Mattar, Salim; Valbuena, Gustavo

    2011-02-01

    Rocky Mountain spotted fever (RMSF) is a tick-borne disease caused by the obligate intracellular bacterium Rickettsia rickettsii. Although RMSF was first reported in Colombia in 1937, it remains a neglected disease. Herein, we describe the investigation of a large cluster of cases of spotted fever rickettsiosis in a new area of Colombia.

  18. Self-reported treatment practices by healthcare providers could lead to death from Rocky Mountain spotted fever.

    PubMed

    Zientek, Jillian; Dahlgren, F Scott; McQuiston, Jennifer H; Regan, Joanna

    2014-02-01

    Among 2012 Docstyle survey respondents, 80% identified doxycycline as the appropriate treatment for Rocky Mountain spotted fever in patients ≥ 8 years old, but only 35% correctly chose doxycycline in patients <8 years old. These findings raise concerns about the higher pediatric case-fatality rate of Rocky Mountain spotted fever observed nationally. Targeted education efforts are needed.

  19. Case report: Co-infection of Rickettsia rickettsii and Streptococcus pyogenes: is fatal Rocky Mountain spotted fever underdiagnosed?

    PubMed

    Raczniak, Gregory A; Kato, Cecilia; Chung, Ida H; Austin, Amy; McQuiston, Jennifer H; Weis, Erica; Levy, Craig; Carvalho, Maria da Gloria S; Mitchell, Audrey; Bjork, Adam; Regan, Joanna J

    2014-12-01

    Rocky Mountain spotted fever, a tick-borne disease caused by Rickettsia rickettsii, is challenging to diagnose and rapidly fatal if not treated. We describe a decedent who was co-infected with group A β-hemolytic streptococcus and R. rickettsii. Fatal cases of Rocky Mountain spotted fever may be underreported because they present as difficult to diagnose co-infections.

  20. Rocky Mountain spotted fever. Serological evidence of previous subclinical infection in children.

    PubMed

    Marx, R S; McCall, C E; Abramson, J S; Harlan, J E

    1982-01-01

    Serological tests for Rocky Mountain spotted fever were performed on single serum specimens from sixth graders from Forsyth County, North Carolina, an area highly endemic for this disease. Five of 508 *.098%) sera were positive (titer greater than or equal to 1:64) using the indirect fluorescent antibody method. Elevated Proteus agglutination antibody titers (greater than 1:160) to OX-19, but not ot OX-2, were common (19.6%) in these children. No correlation of those with positive OX-19 titers could be made with the cases demonstrating elevated indirect fluorescent antibody titers or with a history of urinary tract infection. These data suggest that the increased prevalence of elevated Proteus OX-19 antibody levels makes a single high titer unreliable in the diagnosis of Rocky Mountain spotted fever and that naturally acquired mild or asymptomatic subclinical cases of Rickettsia rickttsii infection occur.

  1. Rocky Mountain spotted fever and pregnancy: a case report and review of the literature.

    PubMed

    Stallings, S P

    2001-01-01

    The classic triad of fever, headache, and characteristic rash occurring 1 to 2 weeks after a tick bite in an endemic area should raise suspicions for Rocky Mountain spotted fever (RMSF). All providers with primary care responsibility for women should be familiar with the diagnosis and treatment of this illness. As a recent case illustrates, the diagnosis of Rocky Mountain spotted fever may be complicated by pregnancy. Several conditions of pregnancy have similar presentations to the initial, often nonspecific manifestations of RMSF. Although doxycycline is the recommended therapy for children and nonpregnant women, chloramphenicol remains the recommended therapy for women during pregnancy. The time of year, local prevalence, and patient's exposure history may be taken into account when deciding to treat during pregnancy. Vertical transmission of RMSF has not been documented in humans. Prevention of RMSF by avoidance of tick-infested areas or by the use of insect repellents and long clothing is recommended for all patients.

  2. Rocky Mountain Spotted Fever in a patient treated with anti-TNF-alpha inhibitors.

    PubMed

    Mays, Rana M; Gordon, Rachel A; Durham, K Celeste; LaPolla, Whitney J; Tyring, Stephen K

    2013-03-15

    Rocky Mountain Spotted Fever (RMSF) is a tick-bourne illness, which can be fatal if unrecognized. We discuss the case of a patient treated with an anti-TNF-alpha inhibitor for rheumatoid arthritis who later developed a generalized erythematous macular eruption accompanied by fever. The clinical findings were suggestive of RMSF, which was later confirmed with serology. Prompt treatment with doxyclycine is recommended for all patients with clinical suspicion of RMSF.

  3. Rocky mountain spotted fever in the United States, 1997-2002.

    PubMed

    Chapman, Alice S; Murphy, Staci M; Demma, Linda J; Holman, Robert C; Curns, Aaron T; McQuiston, Jennifer H; Krebs, John W; Swerdlow, David L

    2006-10-01

    The increased incidence of Rocky Mountain spotted fever (RMSF) in 1997-2002 compared with previous years may be related to enhanced awareness and reporting of RMSF as well as changes in human-vector interaction. However, reports on RMSF mortality underscore the need for physician vigilance in considering a diagnosis of RMSF for febrile individuals potentially exposed to ticks and stress the importance of treating such persons regardless of the presence of a rash.

  4. Rocky Mountain spotted fever: 'starry sky' appearance with diffusion-weighted imaging in a child.

    PubMed

    Crapp, Seth; Harrar, Dana; Strother, Megan; Wushensky, Curtis; Pruthi, Sumit

    2012-04-01

    We present a case of Rocky Mountain spotted fever encephalitis in a child imaged utilizing diffusion-weighted MRI. Although the imaging and clinical manifestations of this entity have been previously described, a review of the literature did not reveal any such cases reported in children utilizing diffusion-weighted imaging. The imaging findings and clinical history are presented as well as a brief review of this disease.

  5. A fatal urban case of rocky mountain spotted fever presenting an eschar in San Jose, Costa Rica.

    PubMed

    Argüello, Ana Patricia; Hun, Laya; Rivera, Patricia; Taylor, Lizeth

    2012-08-01

    This study reports the first urban human case of Rocky Mountain spotted fever caused by Rickettsia rickettsii, in Costa Rica. An 8-year-old female who died at the National Children's Hospital 4 days after her admission, and an important and significant observation was the presence of an "eschar" (tache noire), which is typical in some rickettsial infections but not frequent in Rocky Mountain spotted fever cases.

  6. Inadequacy of IgM antibody tests for diagnosis of Rocky Mountain Spotted Fever.

    PubMed

    McQuiston, Jennifer H; Wiedeman, Caleb; Singleton, Joseph; Carpenter, L Rand; McElroy, Kristina; Mosites, Emily; Chung, Ida; Kato, Cecilia; Morris, Kevin; Moncayo, Abelardo C; Porter, Susan; Dunn, John

    2014-10-01

    Among 13 suspected Rocky Mountain spotted fever (RMSF) cases identified through an enhanced surveillance program in Tennessee, antibodies to Rickettsia rickettsii were detected in 10 (77%) patients using a standard indirect immunofluorescent antibody (IFA) assay. Immunoglobulin M (IgM) antibodies were observed for 6 of 13 patients (46%) without a corresponding development of IgG, and for 3 of 10 patients (30%) at least 1 year post-onset. However, recent infection with a spotted fever group rickettsiae could not be confirmed for any patient, based on a lack of rising antibody titers in properly timed acute and convalescent serologic specimens, and negative findings by polymerase chain reaction testing. Case definitions used in national surveillance programs lack specificity and may capture cases that do not represent current rickettsial infections. Use of IgM antibodies should be reconsidered as a basis for diagnosis and public health reporting of RMSF and other spotted fever group rickettsiae in the United States.

  7. A focus of Rocky Mountain spotted fever within New York City.

    PubMed

    Salgo, M P; Telzak, E E; Currie, B; Perlman, D C; Litman, N; Levi, M; Nathenson, G; Benach, J L; Al-Hafidh, R; Casey, J

    1988-05-26

    In the spring and summer of 1987, four persons acquired Rocky Mountain spotted fever within New York City, an area in which the disease had not previously been known to be endemic. Three of the four patients were residents of the Soundview area of the Bronx. All diagnoses were confirmed by indirect fluorescent-antibody tests. Environmental investigation revealed that the tick vector for Rickettsia rickettsii, Dermacentor variabilis, was present in a local park. Of the 66 specimens of D. variabilis collected, 5 (8 percent) were positive for rickettsiae from the spotted fever group. Of an additional 96 specimens of D. variabilis, 5 (5 percent) were found positive for rickettsiae by a more specific monoclonal antibody assay. Eight additional New York City parks in all five boroughs were searched for ticks. D. variabilis was found in only one other park; of the 147 ticks collected there, none were positive for rickettsiae. These findings emphasize the focal nature of Rocky Mountain spotted fever and the need to consider that disease in the differential diagnosis of any obscure acute febrile illness, even in the absence of a history of travel to known endemic areas.

  8. Fever and rash in a 3-year-old girl: Rocky Mountain spotted fever.

    PubMed

    Kaufmann, Julie M; Zaenglein, Andrea L; Kaul, Aditya; Chang, Mary Wu

    2002-09-01

    Initial symptoms of Rocky Mountain spotted fever (RMSF), a tick-borne illness caused by Rickettsia rickettsii, are nonspecific and include headache, gastrointestinal disturbances, malaise, and myalgias, followed by fever and rash. The classic triad of fever, rash, and history of tick exposure is uncommon at presentation. Clinical manifestations of RMSF range from virtually asymptomatic to severe. Because of the potentially fatal outcome of RMSF, presumptive clinical diagnosis and empiric antimicrobial therapy can be critical. We present the case of a 3-year-old girl from New York State who presented with fever and rash.

  9. Central nervous system dysfunction associated with Rocky Mountain spotted fever infection in five dogs.

    PubMed

    Mikszewski, Jessica S; Vite, Charles H

    2005-01-01

    Five dogs from the northeastern United States were presented with clinical signs of neurological disease associated with Rocky Mountain spotted fever (RMSF) infection. Four of the five dogs had vestibular system dysfunction. Other neurological signs included paresis, tremors, and changes in mentation. All of the dogs had an elevated indirect fluorescent antibody titer or a positive semiquantitative enzyme screening immunoassay titer for Rickettsia rickettsii at the time of presentation. Although a higher mortality rate has been reported for dogs with neurological symptoms and RMSF infection, all of the dogs in this study improved with appropriate medical therapy and supportive care.

  10. Fatal viscerotropic Rocky Mountain spotted fever. Report of a case diagnosed by immunofluorescence.

    PubMed

    Green, W R; Walker, D H; Cain, B G

    1978-03-01

    A case of fatal viscerotropic Rocky Mountain spotted fever with virtual absence of cutaneous lesions was diagnosed at autopsy by specific immunofluorescent demonstration of Rickettsia rickettsii in spleen, kidney, epididymis and skin. The clinical presentation was that of insidious onset of fever, renal failure, hypotension, hyponatremia and obtundation over a 10 day period. The patient had respiratory insufficiency, hypocalcemia, increases in creatinine phosphokinase (CPK), serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), lactic dehydrogenase (LDH), alkaline phosphatase, billirubin and serum phosphate, grand mal seizure, myalgia and unremitting shock with death occurring on day 12 of illness. Postmortem examination revealed severe vasculitis with interstitial nephritis and multifocal tubular necrosis, pericholangitis with bile stasis, glial nodules in the brain, multifocal rhabdomyonecrosis, interstitial pneumonitis and mild interstitial myocarditis. Risk factors which this patient shared with other patients with fatal Rocky Mountain spotted fever were failure to recognize a rash, failure to obtain a tick bite history, male sex, black race and age greater than 30 years.

  11. The clinical presentations of Rocky Mountain spotted fever. Comments on recognition and management based on a study of 63 patients.

    PubMed

    Linnemann, C C; Janson, P J

    1978-09-01

    Rocky Mountain spotted fever continues to increase in the United States and the case-fatality ratio remains unchanged despite the availability of effective antibiotics. The apparent reason for the continuing deaths from this disease is the failure of physicians to consider the diagnosis in patients presenting with febrile exanthems in the late spring and summer months. A clinical diagnosis should be based on the history of tick exposure and the presence of fever and the typical exanthem. Serologic tests are useful mainly in retrospect. This article reviews the clinical experience with Rocky Mountain spotted fever in an endemic area in recent years and discusses problems in the diagnosis and management.

  12. Phylogeography of Rickettsia rickettsii Genotypes Associated with Fatal Rocky Mountain Spotted Fever

    PubMed Central

    Paddock, Christopher D.; Denison, Amy M.; Lash, R. Ryan; Liu, Lindy; Bollweg, Brigid C.; Dahlgren, F. Scott; Kanamura, Cristina T.; Angerami, Rodrigo N.; Pereira dos Santos, Fabiana C.; Brasil Martines, Roosecelis; Karpathy, Sandor E.

    2014-01-01

    Rocky Mountain spotted fever (RMSF), a tick-borne zoonosis caused by Rickettsia rickettsii, is among the deadliest of all infectious diseases. To identify the distribution of various genotypes of R. rickettsii associated with fatal RMSF, we applied molecular typing methods to samples of DNA extracted from formalin-fixed, paraffin-embedded tissue specimens obtained at autopsy from 103 case-patients from seven countries who died of RMSF. Complete sequences of one or more intergenic regions were amplified from tissues of 30 (29%) case-patients and revealed a distribution of genotypes consisting of four distinct clades, including the Hlp clade, regarded previously as a non-pathogenic strain of R. rickettsii. Distinct phylogeographic patterns were identified when composite case-patient and reference strain data were mapped to the state and country of origin. The phylogeography of R. rickettsii is likely determined by ecological and environmental factors that exist independently of the distribution of a particular tick vector. PMID:24957541

  13. Myocardial involvement in rocky mountain spotted fever: a case report and review.

    PubMed

    Doyle, Amy; Bhalla, Karan S; Jones, James M; Ennis, David M

    2006-10-01

    Rocky Mountain Spotted Fever (RMSF), caused by Rickettia rickettsii, is a serious tickborne illness that is endemic in the southeastern United States. Although it is most commonly known as a cause of fever and rash, it can have systemic manifestations. The myocardium may rarely be involved, with symptoms that can mimic those of acute coronary syndromes. This report describes a case of serologically proven RMSF causing symptomatic myocarditis, manifested by chest pain, elevated cardiac enzyme levels, and decrease myocardial function. After treatment with antibiotics, the myocarditis resolved. Thus, although unusual, the clinician should be aware of myocardial disease in patients with appropriate exposure histories or other clinical signs of RMSF. Close monitoring and an aggressive approach are essential to reduce mortality rates.

  14. "Rickettsia amblyommii" induces cross protection against lethal Rocky Mountain spotted fever in a guinea pig model.

    PubMed

    Blanton, Lucas S; Mendell, Nicole L; Walker, David H; Bouyer, Donald H

    2014-08-01

    Rocky Mountain spotted fever (RMSF) is a severe illness caused by Rickettsia rickettsii for which there is no available vaccine. We hypothesize that exposure to the highly prevalent, relatively nonpathogenic "Rickettsia amblyommii" protects against R. rickettsii challenge. To test this hypothesis, guinea pigs were inoculated with "R. amblyommii." After inoculation, the animals showed no signs of illness. When later challenged with lethal doses of R. rickettsii, those previously exposed to "R. amblyommii" remained well, whereas unimmunized controls developed severe illness and died. We conclude that "R. amblyommii" induces an immune response that protects from illness and death in the guinea pig model of RMSF. These results provide a basis for exploring the use of low-virulence rickettsiae as a platform to develop live attenuated vaccine candidates to prevent severe rickettsioses.

  15. Rocky mountain spotted fever in the United States, 2000-2007: interpreting contemporary increases in incidence.

    PubMed

    Openshaw, John J; Swerdlow, David L; Krebs, John W; Holman, Robert C; Mandel, Eric; Harvey, Alexis; Haberling, Dana; Massung, Robert F; McQuiston, Jennifer H

    2010-07-01

    Rocky Mountain spotted fever (RMSF), a potentially fatal tick-borne infection caused by Rickettsia rickettsii, is considered a notifiable condition in the United States. During 2000 to 2007, the annual reported incidence of RMSF increased from 1.7 to 7 cases per million persons from 2000 to 2007, the highest rate ever recorded. American Indians had a significantly higher incidence than other race groups. Children 5-9 years of age appeared at highest risk for fatal outcome. Enzyme-linked immunosorbent assays became more widely available beginning in 2004 and were used to diagnose 38% of cases during 2005-2007. The proportion of cases classified as confirmed RMSF decreased from 15% in 2000 to 4% in 2007. Concomitantly, case fatality decreased from 2.2% to 0.3%. The decreasing proportion of confirmed cases and cases with fatal outcome suggests that changes in diagnostic and surveillance practices may be influencing the observed increase in reported incidence rates.

  16. Phylogeography of Rickettsia rickettsii genotypes associated with fatal Rocky Mountain spotted fever.

    PubMed

    Paddock, Christopher D; Denison, Amy M; Lash, R Ryan; Liu, Lindy; Bollweg, Brigid C; Dahlgren, F Scott; Kanamura, Cristina T; Angerami, Rodrigo N; Pereira dos Santos, Fabiana C; Brasil Martines, Roosecelis; Karpathy, Sandor E

    2014-09-01

    Rocky Mountain spotted fever (RMSF), a tick-borne zoonosis caused by Rickettsia rickettsii, is among the deadliest of all infectious diseases. To identify the distribution of various genotypes of R. rickettsii associated with fatal RMSF, we applied molecular typing methods to samples of DNA extracted from formalin-fixed, paraffin-embedded tissue specimens obtained at autopsy from 103 case-patients from seven countries who died of RMSF. Complete sequences of one or more intergenic regions were amplified from tissues of 30 (29%) case-patients and revealed a distribution of genotypes consisting of four distinct clades, including the Hlp clade, regarded previously as a non-pathogenic strain of R. rickettsii. Distinct phylogeographic patterns were identified when composite case-patient and reference strain data were mapped to the state and country of origin. The phylogeography of R. rickettsii is likely determined by ecological and environmental factors that exist independently of the distribution of a particular tick vector.

  17. Fatal Rocky Mountain spotted fever in the United States, 1999-2007.

    PubMed

    Dahlgren, F Scott; Holman, Robert C; Paddock, Christopher D; Callinan, Laura S; McQuiston, Jennifer H

    2012-04-01

    Death from Rocky Mountain spotted fever (RMSF) is preventable with prompt, appropriate treatment. Data from two independent sources were analyzed to estimate the burden of fatal RMSF and identify risk factors for fatal RMSF in the United States during 1999-2007. Despite increased reporting of RMSF cases to the Centers for Disease Control and Prevention, no significant changes in the estimated number of annual fatal RMSF cases were found. American Indians were at higher risk of fatal RMSF relative to whites (relative risk [RR] = 3.9), and children less than 10 years of age (RR=5.1) [corrected] and adults ≥ 70 years of age (RR = 3.0) were also at increased risk relative to other ages. Persons with cases of RMSF with an immunosuppressive condition were at increased risk of death (RR = 4.4). Delaying treatment of RMSF was also associated with increased deaths. These results may indicate a gap between recommendations and practice.

  18. Knowledge, attitudes, and practices regarding Rocky Mountain spotted fever among healthcare providers, Tennessee, 2009.

    PubMed

    Mosites, Emily; Carpenter, L Rand; McElroy, Kristina; Lancaster, Mary J; Ngo, Tue H; McQuiston, Jennifer; Wiedeman, Caleb; Dunn, John R

    2013-01-01

    Tennessee has a high incidence of Rocky Mountain spotted fever (RMSF), the most severe tick-borne rickettsial illness in the United States. Some regions in Tennessee have reported increased illness severity and death. Healthcare providers in all regions of Tennessee were surveyed to assess knowledge, attitudes, and perceptions regarding RMSF. Providers were sent a questionnaire regarding knowledge of treatment, diagnosis, and public health reporting awareness. Responses were compared by region of practice within the state, specialty, and degree. A high proportion of respondents were unaware that doxycycline is the treatment of choice in children ≤ 8 years of age. Physicians practicing in emergency medicine, internal medicine, and family medicine; and nurse practitioners, physician assistants, and providers practicing for < 20 years demonstrated less knowledge regarding RMSF. The gaps in knowledge identified between specialties, designations, and years of experience can help target education regarding RMSF.

  19. Rocky Mountain Spotted Fever as a cause of macular star figure.

    PubMed

    Vaphiades, Michael S

    2003-12-01

    An 86-year-old woman with a history of tick bites in the previous months developed subnormal visual acuity in both eyes, keratic precipitates, anterior chamber and vitreous cells, optic disc edema, retinal hemorrhages, and retinal arteriolar sheathing. She had no fever or skin rash. Three weeks later, binocular macular star figures appeared. Brain imaging was negative; cerebrospinal fluid disclosed a lymphocytic pleocytosis and elevated protein. The serum Rickettsia rickettsii antibody test was markedly positive, establishing a diagnosis of Rocky Mountain Spotted Fever (RMSF) as the cause of the ophthalmic findings. Despite treatment with oral doxycycline, these findings improved only modestly. Although neuroretinitis has been previously described in RMSF, macular star has not been documented.

  20. Rocky Mountain spotted fever: clinical, laboratory, and epidemiological features of 262 cases.

    PubMed

    Helmick, C G; Bernard, K W; D'Angelo, L J

    1984-10-01

    Most previous reports of Rocky Mountain spotted fever (RMSF) have included cases either not laboratory confirmed or confirmed by relatively weak diagnostic criteria. In the present study detailed epidemiological, clinical, and laboratory features of 262 confirmed or highly probable cases of RMSF reported from six states from 1977 to 1980 were analyzed. This analysis revealed that early clinical diagnosis of RMSF is difficult because the illness may have a gradual or an abrupt onset, the symptoms and signs may be unusual in timing or frequency, and the clinical appearance may vary depending on such factors as age and location of residence. RMSF was diagnosed later in those who died than in survivors, primarily because of atypical initial symptoms and the late onset of rash. RMSF should be considered in any individual who, during the spring and summer, has been in RMSF-endemic areas and develops a fever, regardless of the absence of rash or history of tick exposure.

  1. Rocky Mountain spotted fever: a disease in need of microbiological concern.

    PubMed Central

    Walker, D H

    1989-01-01

    Rocky Mountain spotted fever, a life-threatening tick-transmitted infection, is the most prevalent rickettsiosis in the United States. This zoonosis is firmly entrenched in the tick host, which maintains the rickettsiae in nature by transovarian transmission. Although the incidence of disease fluctuates in various regions and nationwide, the problems of a deceptively difficult clinical diagnosis and little microbiologic diagnostic effort persist. Many empiric antibiotic regimens lack antirickettsial activity. There is neither an effective vaccine nor a generally available assay that is diagnostic during the early stages of illness, when treatment is most effective. Microbiology laboratories that offer only the archaic retrospective Weil-Felix serologic tests should review the needs of their patients. Research microbiologists who tackle these challenging organisms have an array of questions to address regarding rickettsial surface composition, structure-function analysis, and pathogenic and immune mechanisms, as well as laboratory diagnosis. PMID:2504480

  2. Dose-response model of Rocky Mountain spotted fever (RMSF) for human.

    PubMed

    Tamrakar, Sushil B; Haas, Charles N

    2011-10-01

    Rickettsia rickettsii is the causative agent of Rocky Mountain spotted fever (RMSF) and is the prototype bacterium in the spotted fever group of rickettsiae, which is found in North, Central, and South America. The bacterium is gram negative and an obligate intracellular pathogen. The disease is transmitted to humans and vertebrate host through tick bites; however, some cases of aerosol transmission also have been reported. The disease can be difficult to diagnose in the early stages, and without prompt and appropriate treatment, it can be fatal. This article develops dose-response models of different routes of exposure for RMSF in primates and humans. The beta-Poisson model provided the best fit to the dose-response data of aerosol-exposed rhesus monkeys, and intradermally inoculated humans (morbidity as end point of response). The average 50% infectious dose among (ID₅₀) exposed human population, N₅₀, is 23 organisms with 95% confidence limits of 1 to 89 organisms. Similarly, ID₁₀ and ID₂₀ are 2.2 and 5.0, respectively. Moreover, the data of aerosol-exposed rhesus monkeys and intradermally inoculated humans could be pooled. This indicates that the dose-response models fitted to different data sets are not significantly different and can be described by the same relationship.

  3. Implications of presumptive fatal Rocky Mountain spotted fever in two dogs and their owner.

    PubMed

    Elchos, Brigid N; Goddard, Jerome

    2003-11-15

    A dog was examined because of petechiation, an inability to stand, pale mucous membranes, a possible seizure, and thrombocytopenia. Tick-borne illness was suspected, but despite treatment, the dog died. Eight days later, a second dog owned by the same individual also died. The dog was not examined by a veterinarian, but Rocky Mountain spotted fever (RMSF) was suspected on the basis of clinical signs. Two weeks after the second dog died, the owner was examined because of severe headache, fever, nausea, vomiting, decreased appetite, lethargy, and a fine rash on the body, face, and trunk. Despite intensive treatment for possible RMSF, the owner died. Although results of an assay for antibodies to Rickettsia rickettsii were negative, results of polymerase chain reaction assays of liver, spleen, and kidney samples collected at autopsy were positive for spotted fever group Rickettsia spp. These cases illustrate how dogs may serve as sentinels for RMSF in humans and point out the need for better communication between physicians and veterinarians when cases of potentially zoonotic diseases are seen.

  4. Rocky Mountain spotted fever at Koair Children's Hospital, 1990-2002.

    PubMed

    Hayden, Amy M; Marshall, Gary S

    2004-05-01

    The reported average annual incidence of Rocky Mountain spotted fever (RMSF) in Kentucky is less than 5 per million population, although seroprevalence studies suggest that exposure to Rickettsia riskettsii, the causative agent, is relatively common among children. The experience with RMSF at Kosair Children's Hospital over a 12-year period was reviewed. Fifteen cases were identified (5 boys and 10 girls). Illness onset ranged from April to October, and 4 patients resided in Jefferson County. The classic triad of fever, rash, and headache was present in only 60% of cases, and tick attachment was reported in only 40%. On average, 6 days elapsed from onset of symptoms to initiation of appropriate antibiotic therapy. One patient suffered splenic infarction and necrosis of the digits due to shock and disseminated intravascular coagulopathy, and 2 patients died. RMSF is a significant cause of pediatric morbidity and mortality in this region of Kentucky. Affected children may reside in relatively urban parts of the state. Initial clinical features may be nonspecific. This, as well as decreased awareness of disease and (unjustified) reluctance to use doxycycline may contribute to delays in initiating therapy.

  5. Trends in clinical diagnoses of Rocky Mountain spotted fever among American Indians, 2001-2008.

    PubMed

    Folkema, Arianne M; Holman, Robert C; McQuiston, Jennifer H; Cheek, James E

    2012-01-01

    American Indians are at greater risk for Rocky Mountain spotted fever (RMSF) than the general U.S. population. The epidemiology of RMSF among American Indians was examined by using Indian Health Service inpatient and outpatient records with an RMSF International Classification of Diseases, Ninth Revision, Clinical Modification diagnosis. For 2001-2008, 958 American Indian patients with clinical diagnoses of RMSF were reported. The average annual RMSF incidence was 94.6 per 1,000,000 persons, with a significant increasing incidence trend from 24.2 in 2001 to 139.4 in 2008 (P = 0.006). Most (89%) RMSF hospital visits occurred in the Southern Plains and Southwest regions, where the average annual incidence rates were 277.2 and 49.4, respectively. Only the Southwest region had a significant increasing incidence trend (P = 0.005), likely linked to the emergence of brown dog ticks as an RMSF vector in eastern Arizona. It is important to continue monitoring RMSF infection to inform public health interventions that target RMSF reduction in high-risk populations.

  6. Rocky Mountain spotted fever in the United States, 1997-2002.

    PubMed

    Chapman, Alice S; Murphy, Staci M; Demma, Linda J; Holman, Robert C; Curns, Aaron T; McQuiston, Jennifer H; Krebs, John W; Swerdlow, David L

    2006-01-01

    Rocky Mountain spotted fever (RMSF) is the most commonly reported fatal tick-borne disease in the United States. During 1997-2002, 3,649 cases of RMSF were reported to the Centers for Disease Control and Prevention via the National Electronic Telecommunications System for Surveillance; 2,589 case report forms, providing supplemental information, were also submitted. The average annual RMSF incidence during 1997-2002 was 2.2 cases/million persons. The annual incidence increased during 1997-2002 to a rate of 3.8 cases/million persons in 2002. The incidence was lowest among persons aged<5 and 10-29 years, and highest among adults aged 60-69 years. The overall case-fatality rate was 1.4%; the rate peaked in 1998 at 2.9% and declined to 0.7% in 2001 and 2002. Children<5 years of age had a case-fatality rate (5%) that was significantly greater than the rates for age groups<60 years of age, except for that for 40-49 years of age. Continued national surveillance is needed to assess the effectiveness of prevention efforts and early treatment in decreasing severe morbidity and mortality associated with RMSF.

  7. Increasing incidence of Rocky Mountain spotted fever among the American Indian population in the United States.

    PubMed

    Holman, Robert C; McQuiston, Jennifer H; Haberling, Dana L; Cheek, James E

    2009-04-01

    To examine trends of Rocky Mountain spotted fever (RMSF) incidence among American Indians compared with other race groups, a retrospective analysis of national RMSF surveillance data reported to the National Electronic Telecommunications System for Surveillance and the Tickborne Rickettsial Disease Case Report Forms system were used. The RMSF incidence for American Indians, which was comparable to those for other race groups during 1990-2000, increased at a disproportionate rate during 2001-2005. The average annual incidence of RMSF reported among American Indians for 2001-2005 was 16.8 per 1,000,000 persons compared with 4.2, 2.6, and 0.5 for white, black, and Asian/Pacific Islander persons, respectively. Most cases in American Indians were reported from Oklahoma (113.1 cases per 1,000,000), North Carolina (60.0), and Arizona (17.2). The incidence of RMSF increased dramatically among American Indians disproportionately to trends for other race groups. Education about tick-borne disease and prevention measures should be addressed for high-risk American Indian populations.

  8. Surveillance of Rocky Mountain spotted fever in the United States, 1981-1983.

    PubMed

    Fishbein, D B; Kaplan, J E; Bernard, K W; Winkler, W G

    1984-10-01

    Surveillance of Rocky Mountain spotted fever (RMSF) in the United States has revealed a stable incidence of the disease from 1981 to 1983, with a median of 0.48 cases/100,000 population per year (range, 0.42-0.52). During this three-year period an increase in both the number and the percentage of total cases reported from the West South Central states was observed when compared with previous three-year periods. An expanded case report form, which was introduced in 1981 for use by state health departments, was received for 2,850 (87%) of the 3,294 cases reported in 1981-1983. Of these 2850 cases, 1375 (48%) were laboratory confirmed. Death from RMSF was more common in persons greater than or equal to 30 years of age (case-fatality ratio of 8.4%) than in persons less than 30 years (2.2%, P less than .001). Fatality was also associated with failure to obtain a history of a tick bite within 14 days before onset of illness (P less than .05) and with lack of treatment with tetracycline or chloramphenicol (P less than .01).

  9. Notes from the Field: Community-Based Prevention of Rocky Mountain Spotted Fever - Sonora, Mexico, 2016.

    PubMed

    Straily, Anne; Drexler, Naomi; Cruz-Loustaunau, Denica; Paddock, Christopher D; Alvarez-Hernandez, Gerardo

    2016-11-25

    Rocky Mountain spotted fever (RMSF), a life-threatening tickborne zoonosis caused by Rickettsia rickettsii, is a reemerging disease in Mexico (1,2). R. rickettsii is an intracellular bacterium that infects vascular endothelium and can cause multisystem organ failure and death in the absence of timely administration of a tetracycline-class antibiotic, typically doxycycline. Epidemic RMSF, as described in parts of Arizona and Mexico, is associated with massive local infestations of the brown dog tick (Rhiphicephalus sanguineus sensu lato) on domestic dogs and in peridomestic settings that result in high rates of human exposure; for example, during 2003-2012, in Arizona the incidence of RMSF in the three most highly affected communities was 150 times the U.S. national average (3,4). In 2015, the Mexico Ministry of Health (MOH) declared an epidemiologic emergency because of high and sustained rates of RMSF in several states in northern Mexico, including the state of Sonora. During 2004-2015, a total of 1,129 cases and 188 RMSF deaths were reported from Sonora (Sonora MOH, unpublished data, 2016). During 2009-2015, one impoverished community (community A) in Sonora reported 56 cases of RMSF involving children and adolescents, with a case-fatality rate of 40% (Sonora MOH, unpublished data, 2016). Poverty and lack of timely access to health services are risk factors for severe RMSF. Children are especially vulnerable to infection, because they might have increased contact with dogs and spend more time playing around spaces where ticks survive (5). In Sonora, case fatality rates for children aged <10 years can be as high as 30%, which is almost four times the aggregate case-fatality rate reported for the general population of the state (8%) (2), and 10-13 times higher than the case-fatality rate described for this age group in the United States (2.4%) (6).

  10. Canine Rocky Mountain Spotted fever: a retrospective study of 30 cases.

    PubMed

    Gasser, A M; Birkenheuer, A J; Breitschwerdt, E B

    2001-01-01

    Rocky Mountain spotted fever (RMSF) was diagnosed in 30 dogs examined at North Carolina State University, Veterinary Teaching Hospital between 1984 and 1997. Historical, physical examination, and laboratory abnormalities were reviewed. Diagnostic criteria included a four-fold rise in antibody titer to Rickettsia rickettsii (R. rickettsii) (n=15) or a single R. rickettsii antibody titer of 1:1,024 or greater (n=15; when this initial titer was determined one week or more after the onset of clinical signs). Fifteen (50%) dogs were greater than seven years of age, and 13 (43%) dogs were between two and seven years of age. There was no sex predilection. Only five (17%) dogs had a history of known tick exposure. Presumably due to delayed diagnosis, dogs with antibody titers of 1:1,024 or greater at the time of presentation had a higher incidence of more severe neurological dysfunction (e.g., ataxia, hyperesthesia, vestibular disease, and seizures) and cutaneous lesions (e.g., hyperemia, edema, petechiae, ecchymoses, and necrosis). Laboratory findings included anemia, leukocytosis accompanied by toxic granulation of neutrophils, hypoalbuminemia, and coagulation abnormalities; signs were generally more severe in the 15 dogs with R. rickettsii antibody titers of 1:1,024 or greater at the time of presentation. Twelve (40%) dogs in this study were severely thrombocytopenic (less than 75 x10(3) platelets/microl; reference range, 200 to 450 x 10(3)/microl), without clinical evidence of fulminant disseminated intravascular coagulation. In this study, the survival rate following R. rickettsii infection was 100%.

  11. S. Burt Wolbach, Rocky Mountain spotted fever, and blood-sucking arthropods: triumph of an early investigative pathologist.

    PubMed

    Musser, James M

    2013-02-01

    In a series of four articles published between 1916 and 1919 in The Journal of Medical Research, precursor to The American Journal of Pathology, the investigative pathologist S. Burt Wolbach unambiguously showed that Rocky Mountain spotted fever has a tick-borne mode of transmission, the causative agent replicates intracellularly, and the disease is fundamentally a vasculitis. Although underappreciated, Wolbach's tour-de-force work epitomized investigative pathology. These four articles should be mandatory reading for young investigators and are recommended also to seasoned investigators who seek reinvigoration in the beauty in their craft.

  12. Rocky Mountain spotted fever in Arizona: documentation of heavy environmental infestations of Rhipicephalus sanguineus at an endemic site.

    PubMed

    Nicholson, William L; Paddock, Christopher D; Demma, Linda; Traeger, Marc; Johnson, Brian; Dickson, Jeffrey; McQuiston, Jennifer; Swerdlow, David

    2006-10-01

    A recent epidemiologic investigation identified 16 cases and 2 deaths from Rocky Mountain spotted fever (RMSF) in two eastern Arizona communities. Prevalence studies were conducted by collecting free-living ticks (Acari: Ixodidae) from the home sites of RMSF patients and from other home sites within the community. Dry ice traps and flagging confirmed heavy infestations at many of the home sites. Only Rhipicephalus sanguineus ticks were identified and all developmental stages were detected. It is evident that under certain circumstances, this species does transmit Rickettsia rickettsii to humans and deserves reconsideration as a vector in other geographic areas.

  13. Medical and Indirect Costs Associated with a Rocky Mountain Spotted Fever Epidemic in Arizona, 2002-2011.

    PubMed

    Drexler, Naomi A; Traeger, Marc S; McQuiston, Jennifer H; Williams, Velda; Hamilton, Charlene; Regan, Joanna J

    2015-09-01

    Rocky Mountain spotted fever (RMSF) is an emerging public health issue on some American Indian reservations in Arizona. RMSF causes an acute febrile illness that, if untreated, can cause severe illness, permanent sequelae requiring lifelong medical support, and death. We describe costs associated with medical care, loss of productivity, and death among cases of RMSF on two American Indian reservations (estimated population 20,000) between 2002 and 2011. Acute medical costs totaled more than $1.3 million. This study further estimated $181,100 in acute productivity lost due to illness, and $11.6 million in lifetime productivity lost from premature death. Aggregate costs of RMSF cases in Arizona 2002-2011 amounted to $13.2 million. We believe this to be a significant underestimate of the cost of the epidemic, but it underlines the severity of the disease and need for a more comprehensive study.

  14. Clinical Presentation, Convalescence, and Relapse of Rocky Mountain Spotted Fever in Dogs Experimentally Infected via Tick Bite

    PubMed Central

    Levin, Michael L.; Killmaster, Lindsay F.; Zemtsova, Galina E.; Ritter, Jana M.; Langham, Gregory

    2014-01-01

    Rocky Mountain spotted fever (RMSF) is a tick-borne disease caused by R. rickettsii in North and South America. Domestic dogs are susceptible to infection and canine RMSF can be fatal without appropriate treatment. Although clinical signs of R. rickettsii infection in dogs have been described, published reports usually include descriptions of either advanced clinical cases or experimental infections caused by needle-inoculation of cultured pathogen rather than by tick bite. The natural progression of a tick-borne R. rickettsii infection has not been studied in sufficient detail. Here, we provide a detailed description of clinical, hematological, molecular, and serological dynamics of RMSF in domestic dogs from the day of experimental exposure to infected ticks through recovery. Presented data indicate that neither the height/duration of fever nor detection of rickettsial DNA in dogs' blood by PCR are good indicators for clinical prognosis. Only the apex and subsequent subsidence of neutrophilia seem to mark the beginning of recovery and allow predicting a favorable outcome in Rickettsia-infected dogs, even despite the continuing persistence of mucosal petechiae and skin rash. On the other hand the appropriate (doxycycline) antibiotic therapy of sufficient duration is crucial in prevention of RMSF relapses in dogs. PMID:25542001

  15. Clinical presentation, convalescence, and relapse of rocky mountain spotted fever in dogs experimentally infected via tick bite.

    PubMed

    Levin, Michael L; Killmaster, Lindsay F; Zemtsova, Galina E; Ritter, Jana M; Langham, Gregory

    2014-01-01

    Rocky Mountain spotted fever (RMSF) is a tick-borne disease caused by R. rickettsii in North and South America. Domestic dogs are susceptible to infection and canine RMSF can be fatal without appropriate treatment. Although clinical signs of R. rickettsii infection in dogs have been described, published reports usually include descriptions of either advanced clinical cases or experimental infections caused by needle-inoculation of cultured pathogen rather than by tick bite. The natural progression of a tick-borne R. rickettsii infection has not been studied in sufficient detail. Here, we provide a detailed description of clinical, hematological, molecular, and serological dynamics of RMSF in domestic dogs from the day of experimental exposure to infected ticks through recovery. Presented data indicate that neither the height/duration of fever nor detection of rickettsial DNA in dogs' blood by PCR are good indicators for clinical prognosis. Only the apex and subsequent subsidence of neutrophilia seem to mark the beginning of recovery and allow predicting a favorable outcome in Rickettsia-infected dogs, even despite the continuing persistence of mucosal petechiae and skin rash. On the other hand the appropriate (doxycycline) antibiotic therapy of sufficient duration is crucial in prevention of RMSF relapses in dogs.

  16. Spatial clustering by disease severity among reported Rocky Mountain spotted fever cases in the United States, 2001-2005.

    PubMed

    Adjemian, Jennifer Zipser; Krebs, John; Mandel, Eric; McQuiston, Jennifer

    2009-01-01

    Rocky Mountain spotted fever (RMSF) occurs throughout much of the United States, ranging in clinical severity from moderate to fatal infection. Yet, little is known about possible differences among severity levels across geographic locations. To identify significant spatial clusters of severe and non-severe disease, RMSF cases reported to Centers for Disease Control and Prevention (CDC) were geocoded by county and classified by severity level. The statistical software program SaTScan was used to detect significant spatial clusters. Of 4,533 RMSF cases reported, 1,089 hospitalizations (168 with complications) and 23 deaths occurred. Significant clusters of 6 deaths (P = 0.05, RR = 11.4) and 19 hospitalizations with complications (P = 0.02, RR = 3.45) were detected in southwestern Tennessee. Two geographic areas were identified in north-central North Carolina with unusually low rates of severity (P = 0.001, RR = 0.62 and P = 0.001, RR = 0.45, respectively). Of all hospitalizations, 20% were clustered in central Oklahoma (P = 0.02, RR = 1.43). Significant geographic differences in severity were observed, suggesting that biologic and/or anthropogenic factors may be impacting RMSF epidemiology in the United States.

  17. Hierarchical Bayesian Spatio-Temporal Analysis of Climatic and Socio-Economic Determinants of Rocky Mountain Spotted Fever.

    PubMed

    Raghavan, Ram K; Goodin, Douglas G; Neises, Daniel; Anderson, Gary A; Ganta, Roman R

    2016-01-01

    This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF) prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio-economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio-temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio-economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main-effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C) in the region, and the relevance of these factors in the context of climate-change impacts on tick-borne diseases are discussed.

  18. National surveillance for Rocky Mountain spotted fever, 1981-1992: epidemiologic summary and evaluation of risk factors for fatal outcome.

    PubMed

    Dalton, M J; Clarke, M J; Holman, R C; Krebs, J W; Fishbein, D B; Olson, J G; Childs, J E

    1995-05-01

    Between 1981 and 1992, the Centers for Disease Control collected and summarized 9,223 cases of Rocky Mountain spotted fever (RMSF) reported from 46 states. Four states (North Carolina, Oklahoma, Tennessee, and South Carolina) accounted for 48% of the reports. The annual incidence per million U.S. population decreased from a high in 1981 of 5.2 to a low in 1992 of 2.0, primarily due to decreased incidence in the southeast. Case report forms were filed on 7,650 patients, of whom 4,217 had laboratory-confirmed RMSF. The age group with the highest incidence was those 5-9 years of age. Most cases (90.0%) occurred between April 1 and September 30 and included a history of tick attachment (59.6%). Reported symptoms included fever (94.0%), headache (86.2%), myalgia (82.5%), and rash (80.2%). The case-fatality ratio was 4.0%. Risk factors associated with death included older age, delay in treatment or no treatment, and treatment with chloramphenicol (compared with tetracycline); however, insufficient data existed to fully assess the confounding effect of severity of illness on antibiotic choice.

  19. Hierarchical Bayesian Spatio–Temporal Analysis of Climatic and Socio–Economic Determinants of Rocky Mountain Spotted Fever

    PubMed Central

    Raghavan, Ram K.; Goodin, Douglas G.; Neises, Daniel; Anderson, Gary A.; Ganta, Roman R.

    2016-01-01

    This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF) prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio–economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio–temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio–economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main–effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C) in the region, and the relevance of these factors in the context of climate–change impacts on tick–borne diseases are discussed. PMID:26942604

  20. Developmental profiles in tick water balance with a focus on the new Rocky Mountain spotted fever vector, Rhipicephalus sanguineus.

    PubMed

    Yoder, J A; Benoit, J B; Rellinger, E J; Tank, J L

    2006-12-01

    Recent reports indicate that the common brown dog tick, or kennel tick, Rhipicephalus sanguineus (Latreille) (Acari: Ixodidae) is a competent vector of Rocky Mountain spotted fever in the U.S.A. This tick is of concern to public health because of its high frequency of contact, as it has a unique ability to thrive within human homes. To assess the moisture requirements necessary for survival, water balance characteristics were determined for each developmental stage, from egg to adult. This is the first time that water relations in ticks have been assessed throughout the complete lifecycle. Notably, R. sanguineus is differentially adapted for life in a dry environment, as characterized by a suppressed water loss rate distinctive for each stage that distinguishes it from other ticks. Analysis of its dehydration tolerance limit and percentage body water content provides no evidence to suggest that the various stages of this tick can function more effectively containing less water, indicating that this species is modified for water conservation, not desiccation hardiness. All stages, eggs excepted, absorb water vapour from the air and can drink free water to replenish water stores. Developmentally, a shift in water balance strategies occurs in the transition from the larva, where the emphasis is on water gain (water vapour absorption from drier air), to the adult, where the emphasis is on water retention (low water loss rate). These results on the xerophilic-nature of R. sanguineus identify overhydration as the primary water stress, indicating that this tick is less dependent upon a moisture-rich habitat for survival, which matches its preference for a dry environment. We suggest that the controlled, host-confined conditions of homes and kennels have played a key role in promoting the ubiquitous distribution of R. sanguineus by creating isolated arid environments that enable this tick to establish within regions that are unfavourable for maintaining water balance.

  1. Rocky Mountain Spotted Fever

    MedlinePlus

    ... D. James C. Hill, Ph.D. History Dr. Joseph J. Kinyoun: Father of the NIH Kinyoun: NIH ... 2012 Overview The Indispensable Forgotten Man: Video Dr. Joseph Kinyoun The Indispensable Forgotten Man Authors Forward Background ...

  2. Rocky Mountain Arsenal NPDES Permit

    EPA Pesticide Factsheets

    Under NPDES permit CO-0035009, the U.S. Department of Interior's Fish and Wildlife Service is authorized to discharge from the Rocky Mountain Arsenal recycled water pipeline to Lower Derby Lake in Adams County, Colo.

  3. Atmospheric deposition maps for the Rocky Mountains

    USGS Publications Warehouse

    Nanus, L.; Campbell, D.H.; Ingersoll, G.P.; Clow, D.W.; Mast, M.A.

    2003-01-01

    Variability in atmospheric deposition across the Rocky Mountains is influenced by elevation, slope, aspect, and precipitation amount and by regional and local sources of air pollution. To improve estimates of deposition in mountainous regions, maps of average annual atmospheric deposition loadings of nitrate, sulfate, and acidity were developed for the Rocky Mountains by using spatial statistics. A parameter-elevation regressions on independent slopes model (PRISM) was incorporated to account for variations in precipitation amount over mountainous regions. Chemical data were obtained from the National Atmospheric Deposition Program/National Trends Network and from annual snowpack surveys conducted by the US Geological Survey and National Park Service, in cooperation with other Federal, State and local agencies. Surface concentration maps were created by ordinary kriging in a geographic information system, using a local trend and mathematical model to estimate the spatial variance. Atmospheric-deposition maps were constructed at 1-km resolution by multiplying surface concentrations from the kriged grid and estimates of precipitation amount from the PRISM model. Maps indicate an increasing spatial trend in concentration and deposition of the modeled constituents, particularly nitrate and sulfate, from north to south throughout the Rocky Mountains and identify hot-spots of atmospheric deposition that result from combined local and regional sources of air pollution. Highest nitrate (2.5-3.0kg/ha N) and sulfate (10.0-12.0kg/ha SO4) deposition is found in northern Colorado.

  4. Occurrence of pathogenic fungi to Amblyomma cajennense in a rural area of Central Brazil and their activities against vectors of Rocky Mountain spotted fever.

    PubMed

    D'Alessandro, Walmirton B; Humber, Richard A; Luz, Christian

    2012-08-13

    Two isolates of Beauveria bassiana and one of Purpureocillium lilacinum (=Paecilomyces lilacinus) were found infecting Amblyomma cajennense engorged females collected on horses (0.15% infection rate from a total of 1982 specimens) and another two isolates of P. lilacinum and one Metarhizium anisopliae detected in soils (2.1% from 144 samples) collected in typical pasture habitats of this tick in Central Brazil from October 2009 to March 2011. Fungi were isolated from soils with Rhipicephalus sanguineus as surrogate baits. No fungi were found in ticks or soils during the driest months (May to August). Testing pathogenicity of fungi all R. sanguineus females were killed regardless of the isolate and fungi sporulated abundantly on the cadavers. A. cajennense was less susceptible to infection with P. lilacinum within 20 days than R. sanguineus. All three fungal species probably act as natural antagonists of A. cajennense particularly in the rainy season and have interest for integrate control of vectors of Rocky Mountain spotted fever.

  5. Consequences of delayed diagnosis of Rocky Mountain spotted fever in children--West Virginia, Michigan, Tennessee, and Oklahoma, May-July 2000.

    PubMed

    2000-10-06

    Patients with Rocky Mountain spotted fever (RMSF), a tickborne infection caused by Rickettsia rickettsii, respond quickly to tetracycline-class antibiotics (e.g., doxycycline) when therapy is started within the first few days of illness; however, untreated RMSF may result in severe illness and death. Persons aged <10 years have the highest age-specific incidence of RMSF. This report summarizes the clinical course and outcome of RMSF in four children from four regions of the United States and underscores the need for clinicians throughout the United States to consider RMSF in children with rash and fever, particularly those with a history of tick bite or who present during April-September when approximately 90% of RMSF cases occur.

  6. Rocky Mountain High.

    ERIC Educational Resources Information Center

    Hill, David

    2001-01-01

    Describes Colorado's Eagle Rock School, which offers troubled teens a fresh start by transporting them to a tuition- free campus high in the mountains. The program encourages spiritual development as well as academic growth. The atmosphere is warm, loving, structured, and nonthreatening. The article profiles several students' experiences at the…

  7. Epidemiology of Rocky Mountain spotted fever in Ohio, 1981: serologic evaluation of canines and rickettsial isolation from ticks associated with human case exposure sites.

    PubMed

    Gordon, J C; Gordon, S W; Peterson, E; Philip, R N

    1984-09-01

    A survey for the prevalence of Rocky Mountain spotted fever (RMSF) antibodies in dogs associated with confirmed human cases in Ohio was conducted during 1981. Twelve of 14 confirmed cases (85%) had a history of dog association prior to onset of RMSF. A total of 29 dogs were included in the study, with 16 dogs providing serum samples for antibody testing and the remainder providing tick samples. Serum samples tested by indirect microimmunofluorescence techniques revealed 12/16 dogs (75%) to be seropositive for Rickettsia rickettsii. A total of 310 ticks were collected from study dogs and the vegetation surrounding RMSF case exposure sites. Twenty-two (7.1%) of these ticks (all Dermacentor variabilis) were found to be infected with spotted fever group rickettsiae. Four ticks (1.3%) were infected with R. rickettsii, 13 (4.2%) with Rickettsia montana, and four (1.3%) with Rickettsia bellii. R. montana, a nonpathogen, was the only rickettsia found in dogs (antibodies) and ticks (isolation) associated with human cases in Southern Ohio.

  8. Serologic evidence for exposure to Rickettsia rickettsii in eastern Arizona and recent emergence of Rocky Mountain spotted fever in this region.

    PubMed

    Demma, Linda J; Traeger, Marc; Blau, Dianna; Gordon, Rondeen; Johnson, Brian; Dickson, Jeff; Ethelbah, Rudy; Piontkowski, Stephen; Levy, Craig; Nicholson, William L; Duncan, Christopher; Heath, Karen; Cheek, James; Swerdlow, David L; McQuiston, Jennifer H

    2006-01-01

    During 2002 through 2004, 15 patients with Rocky Mountain spotted fever (RMSF) were identified in a rural community in Arizona where the disease had not been previously reported. The outbreak was associated with Rickettsia rickettsii in an unexpected tick vector, the brown dog tick (Rhipicephalus sanguineus), which had not been previously associated with RMSF transmission in the United States. We investigated the extent of exposure to R. rickettsii in the local area through serologic evaluations of children and dogs in 2003-2004, and in canine sera from 1996. Antibodies to R. rickettsii at titers > or = 32 were detected in 10% of children and 70% of dogs in the outbreak community and 16% of children and 57% of dogs in a neighboring community. In comparison, only 5% of canine samples from 1996 had anti-R. rickettsii antibodies at titers > or = 32. These results suggest that exposures to RMSF have increased over the past 9 years, and that RMSF may now be endemic in this region.

  9. Modelling spatial concordance between Rocky Mountain spotted fever disease incidence and habitat probability of its vector Dermacentor variabilis (American dog tick).

    PubMed

    Atkinson, Samuel F; Sarkar, Sahotra; Aviña, Aldo; Schuermann, Jim A; Williamson, Phillip

    2012-11-01

    The spatial distribution of Dermacentor variabilis, the most commonly identified vector of the bacterium Rickettsia rickettsii which causes Rocky Mountain spotted fever (RMSF) in humans, and the spatial distribution of RMSF, have not been previously studied in the south central United States of America, particularly in Texas. From an epidemiological perspective, one would tend to hypothesise that there would be a high degree of spatial concordance between the habitat suitability for the tick and the incidence of the disease. Both maximum-entropy modelling of the tick's habitat suitability and spatially adaptive filters modelling of the human incidence of RMSF disease provide reliable portrayals of the spatial distributions of these phenomenons. Even though rates of human cases of RMSF in Texas and rates of Dermacentor ticks infected with Rickettsia bacteria are both relatively low in Texas, the best data currently available allows a preliminary indication that the assumption of high levels of spatial concordance would not be correct in Texas (Kappa coefficient of agreement = 0.17). It will take substantially more data to provide conclusive findings, and to understand the results reported here, but this study provides an approach to begin understanding the discrepancy.

  10. Tick-borne diseases in North Carolina: is "Rickettsia amblyommii" a possible cause of rickettsiosis reported as Rocky Mountain spotted fever?

    PubMed

    Apperson, Charles S; Engber, Barry; Nicholson, William L; Mead, Daniel G; Engel, Jeffrey; Yabsley, Michael J; Dail, Kathy; Johnson, Joey; Watson, D Wesley

    2008-10-01

    Cases of Rocky Mountain spotted fever (RMSF) in North Carolina have escalated markedly since 2000. In 2005, we identified a county in the Piedmont region with high case numbers of RMSF. We collected ticks and examined them for bacterial pathogens using molecular methods to determine if a novel tick vector or spotted fever group rickettsiae (SFGR) might be emerging. Amblyomma americanum, the lone star tick, comprised 99.6% of 6,502 specimens collected in suburban landscapes. In contrast, Dermacentor variabilis, the American dog tick, a principal vector of Rickettsia rickettsii, comprised < 1% of the ticks collected. Eleven of 25 lone star tick pools tested were infected with "Rickettsia amblyommii," an informally named SFGR. Sera from patients from the same county who were presumptively diagnosed by local physicians with a tick-borne illness were tested by an indirect immunofluorescence antibody (IFA) assay to confirm clinical diagnoses. Three of six patients classified as probable RMSF cases demonstrated a fourfold or greater rise in IgG class antibody titers between paired acute and convalescent sera to "R. amblyommii" antigens, but not to R. rickettsii antigens. White-tailed deer, Odocoileus virginianus, are preferred hosts of lone star ticks. Blood samples collected from hunter-killed deer from the same county were tested by IFA test for antibodies to Ehrlichia chaffeensis and "R. amblyommii." Twenty-eight (87%) of 32 deer were positive for antibodies to E. chaffeensis, but only 1 (3%) of the deer exhibited antibodies to "R. amblyommii," suggesting that deer are not the source of "R. amblyommii" infection for lone star ticks. We propose that some cases of rickettsiosis reported as RMSF may have been caused by "R. amblyommii" transmitted through the bite of A. americanum.

  11. Community-based control of the brown dog tick in a region with high rates of Rocky Mountain spotted fever, 2012-2013.

    PubMed

    Drexler, Naomi; Miller, Mark; Gerding, Justin; Todd, Suzanne; Adams, Laura; Dahlgren, F Scott; Bryant, Nelva; Weis, Erica; Herrick, Kristen; Francies, Jessica; Komatsu, Kenneth; Piontkowski, Stephen; Velascosoltero, Jose; Shelhamer, Timothy; Hamilton, Brian; Eribes, Carmen; Brock, Anita; Sneezy, Patsy; Goseyun, Cye; Bendle, Harty; Hovet, Regina; Williams, Velda; Massung, Robert; McQuiston, Jennifer H

    2014-01-01

    Rocky Mountain spotted fever (RMSF) transmitted by the brown dog tick (Rhipicephalus sanguineus sensu lato) has emerged as a significant public health risk on American Indian reservations in eastern Arizona. During 2003-2012, more than 250 RMSF cases and 19 deaths were documented among Arizona's American Indian population. The high case fatality rate makes community-level interventions aimed at rapid and sustained reduction of ticks urgent. Beginning in 2012, a two year pilot integrated tick prevention campaign called the RMSF Rodeo was launched in a ∼ 600-home tribal community with high rates of RMSF. During year one, long-acting tick collars were placed on all dogs in the community, environmental acaricides were applied to yards monthly, and animal care practices such as spay and neuter and proper tethering procedures were encouraged. Tick levels, indicated by visible inspection of dogs, tick traps and homeowner reports were used to monitor tick presence and evaluate the efficacy of interventions throughout the project. By the end of year one, <1% of dogs in the RMSF Rodeo community had visible tick infestations five months after the project was started, compared to 64% of dogs in Non-Rodeo communities, and environmental tick levels were reduced below detectable levels. The second year of the project focused on use of the long-acting collar alone and achieved sustained tick control with fewer than 3% of dogs in the RMSF Rodeo community with visible tick infestations by the end of the second year. Homeowner reports of tick activity in the domestic and peridomestic setting showed similar decreases in tick activity compared to the non-project communities. Expansion of this successful project to other areas with Rhipicephalus-transmitted RMSF has the potential to reduce brown dog tick infestations and save human lives.

  12. Folding above faults, Rocky Mountains

    SciTech Connect

    McConnell, D.A. . Dept. of Geology)

    1992-01-01

    Asymmetric folds formed above basement faults can be observed throughout the Rocky Mountains. Several previous interpretations of the folding process made the implicit assumption that one or both fold hinges migrated or rolled'' through the steep forelimb of the fold as the structure evolved (rolling hinge model). Results of mapping in the Bighorn and Seminoe Mountains, WY, and Sangre de Cristo Range, CO, do not support this hypothesis. An alternative interpretation is presented in which fold hinges remained fixed in position during folding (fixed hinge model). Mapped folds share common characteristics: (1) axial traces of the folds intersect faults at or near the basement/cover interface, and diverge from faults upsection; (2) fold hinges are narrow and interlimb angles cluster around 80--100[degree] regardless of fold location; (3) fold shape is typically angular, despite published cross sections that show concentric folds; and, (4) beds within the folds show thickening and/or thinning, most commonly adjacent to fold hinges. The rolling hinge model requires that rocks in the fold forelimbs bend through narrow fold hinges as deformation progressed. Examination of massive, competent rock units such as the Ord. Bighorn Dolomite, Miss. Madison Limestone, and, Penn. Tensleep Sandstone reveals no evidence of the extensive internal deformation that would be expected if hinges rolled through rocks of the forelimb. The hinges of some folds (e.g. Golf Creek anticline, Bighorn Mountains) are offset by secondary faults, effectively preventing the passage of rocks from backlimb to forelimb. The fixed hinge model proposes that the fold hinges were defined early in fold evolution, and beds were progressively rotated and steepened as the structure grew.

  13. Rocky Mountain futures: An ecological perspective

    USGS Publications Warehouse

    Baron, Jill S.

    2002-01-01

    The United Nations has proclaimed 2002 as the International Year of Mountains to increase international awareness of the global importance of mountain ecosystems. The case-based multidisciplinary approach of this book constitutes an important new model for understanding the implications of land-use practices and economic activity on mountains, and will serve a vital role in improving decisionmaking both in the Rocky Mountains and in other parts of the world that face similar challenges.

  14. Late glacial aridity in southern Rocky Mountains

    SciTech Connect

    Davis, O.K.; Pitblado, B.L.

    1995-09-01

    While the slopes of the present-day Colorado Rocky Mountains are characterized by large stands of subalpine and montane conifers, the Rockies of the late glacial looked dramatically different. Specifically, pollen records suggest that during the late glacial, Artemisia and Gramineae predominated throughout the mountains of Colorado. At some point between 11,000 and 10,000 B.P., however, both Artemisia and grasses underwent a dramatic decline, which can be identified in virtually every pollen diagram produced for Colorado mountain sites, including Como Lake (Sangre de Cristo Mountains), Copley Lake and Splains; Gulch (near Crested Butte), Molas Lake (San Juan Mountains), and Redrock Lake (Boulder County). Moreover, the same pattern seems to hold for pollen spectra derived for areas adjacent to Colorado, including at sites in the Chuska Mountains of New Mexico and in eastern Wyoming. The implications of this consistent finding are compelling. The closest modem analogues to the Artemisia- and Gramineae-dominated late-glacial Colorado Rockies are found in the relatively arid northern Great Basin, which suggests that annual precipitation was much lower in the late-glacial southern Rocky Mountains than it was throughout the Holocene.

  15. Consequences of early snowmelt in Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-01-01

    Snow melted significantly earlier in the Rocky Mountains in 2012 than in previous years, with serious consequences for plants and animals, scientists reported at the AGU Fall Meeting. David Inouye of the University of Maryland, College Park, and the Rocky Mountain Biological Laboratory said that "the timing of winter's end is changing." He has been observing snowmelt dates and flowering of plants at a site at 2900 meters altitude. This year's snowmelt occurred 23 April, whereas the previous year, snow melted 19 June, he reported.

  16. Transportation Fuels Markets, Midwest and Rocky Mountain

    EIA Publications

    2017-01-01

    A new study commissioned by the U.S. Energy Information Administration (EIA), finds that changes in North American energy markets over the past decade have strengthened the supply of transportation fuels including motor gasoline, distillates, and jet fuel in the Midwest and Rocky Mountain regions.

  17. Symposium 9: Rocky Mountain futures: preserving, utilizing, and sustaining Rocky Mountain ecosystems

    USGS Publications Warehouse

    Baron, Jill S.; Seastedt, Timothy; Fagre, Daniel B.; Hicke, Jeffrey A.; Tomback, Diana; Garcia, Elizabeth; Bowen, Zachary H.; Logan, Jesse A.

    2013-01-01

    In 2002 we published Rocky Mountain Futures, an Ecological Perspective (Island Press) to examine the cumulative ecological effects of human activity in the Rocky Mountains. We concluded that multiple local activities concerning land use, hydrologic manipulation, and resource extraction have altered ecosystems, although there were examples where the “tyranny of small decisions” worked in a positive way toward more sustainable coupled human/environment interactions. Superimposed on local change was climate change, atmospheric deposition of nitrogen and other pollutants, regional population growth, and some national management policies such as fire suppression.

  18. 76 FR 9350 - Patient Safety Organizations: Voluntary Delisting From Rocky Mountain Patient Safety Organization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ... Delisting From Rocky Mountain Patient Safety Organization AGENCY: Agency for Healthcare Research and Quality (AHRQ), HHS. ACTION: Notice of Delisting. SUMMARY: Rocky Mountain Patient Safety Organization: AHRQ has accepted a notification of voluntary relinquishment from Rocky Mountain Patient Safety Organization,...

  19. The oldest known Rocky Mountain bristlecone pines (Pinus aristata Engelm.)

    USGS Publications Warehouse

    Brunstein, F.C.; Yamaguchi, D.K.

    1992-01-01

    The authors have found 12 living Rocky Mountain bristlecone pines >1600 yr old, including four that are >2100 yr old, on Black Mountain, near South Park, and on Almagre Mountain, in the S Front Range, Colorado. A core from the oldest of these trees has an inner-ring date of 442 BC. This tree is therefore at least 2435 yr old and exceeds the age of the oldest previously reported Rocky Mountain bristlecone pine by 846 yr. -from Authors

  20. 36 CFR 7.7 - Rocky Mountain National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Rocky Mountain National Park. 7.7 Section 7.7 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.7 Rocky Mountain National Park....

  1. 36 CFR 7.7 - Rocky Mountain National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Rocky Mountain National Park. 7.7 Section 7.7 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.7 Rocky Mountain National Park....

  2. 36 CFR 7.7 - Rocky Mountain National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Rocky Mountain National Park. 7.7 Section 7.7 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.7 Rocky Mountain National Park....

  3. 36 CFR 7.7 - Rocky Mountain National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Rocky Mountain National Park. 7.7 Section 7.7 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.7 Rocky Mountain National Park....

  4. 36 CFR 7.7 - Rocky Mountain National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Rocky Mountain National Park. 7.7 Section 7.7 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.7 Rocky Mountain National Park....

  5. Diagnosis and management of tickborne rickettsial diseases: Rocky Mountain spotted fever, ehrlichioses, and anaplasmosis--United States: a practical guide for physicians and other health-care and public health professionals.

    PubMed

    Chapman, Alice S; Bakken, Johan S; Folk, Scott M; Paddock, Christopher D; Bloch, Karen C; Krusell, Allan; Sexton, Daniel J; Buckingham, Steven C; Marshall, Gary S; Storch, Gregory A; Dasch, Gregory A; McQuiston, Jennifer H; Swerdlow, David L; Dumler, Stephen J; Nicholson, William L; Walker, David H; Eremeeva, Marina E; Ohl, Christopher A

    2006-03-31

    Tickborne rickettsial diseases (TBRD) continue to cause severe illness and death in otherwise healthy adults and children, despite the availability of low cost, effective antimicrobial therapy. The greatest challenge to clinicians is the difficult diagnostic dilemma posed by these infections early in their clinical course, when antibiotic therapy is most effective. Early signs and symptoms of these illnesses are notoriously nonspecific or mimic benign viral illnesses, making diagnosis difficult. In October 2004, CDC's Viral and Rickettsial Zoonoses Branch, in consultation with 11 clinical and academic specialists of Rocky Mountain spotted fever, human granulocytotropic anaplasmosis, and human monocytotropic ehrlichiosis, developed guidelines to address the need for a consolidated source for the diagnosis and management of TBRD. The preparers focused on the practical aspects of epidemiology, clinical assessment, treatment, and laboratory diagnosis of TBRD. This report will assist clinicians and other health-care and public health professionals to 1) recognize epidemiologic features and clinical manifestations of TBRD, 2) develop a differential diagnosis that includes and ranks TBRD, 3) understand that the recommendations for doxycycline are the treatment of choice for both adults and children, 4) understand that early empiric antibiotic therapy can prevent severe morbidity and death, and 5) report suspect or confirmed cases of TBRD to local public health authorities to assist them with control measures and public health education efforts.

  6. Landscape Morphology of the Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Quinlan, K. T.; Barnes, J. B.; Pavelsky, T.

    2013-12-01

    Glaciers and rivers can significantly modify the shape of mountain landscapes. Following deformation and glaciation, bedrock river form and incision patterns are primarily controlled by variations in geologic structure, the glacial preconditioning of the landscape, and climate. However, the extent to which these factors integrate to affect Holocene patterns and rates of fluvial processes is poorly understood. Fluvial processes dominate the morphology of the Canadian Rocky Mountains today, though the inherited imprint of glaciers remains substantial. This study of fluvial geomorphology in the Athabasca River watershed in Jasper National Park, Alberta, addresses two primary ideas: (1) the fluvial response to deglaciation in alpine environments, and (2) the role of thrust belt geology affecting differential erosion in shaping post-orogenic topography. We use the 0.75 arc-second GeoBase Digital Elevation Model (~18m resolution) to analyze patterns of river concavity (θ) and normalized steepness index (ksn), estimate rock erodibility with field-based proxy measurements, and determine basin-averaged erosion rates using existing river gauge data. We find that bedrock geology and glacial preconditioning exhibit different yet recognizable morphological signatures and that they appear to be related to basin erosion rate. The principal differences we observe include the shape and scale of knickzones, magnitude of channel steepness values, channel concavity patterns, and relationship to bedrock geology. We find that lithologically controlled channel steepness patterns are contained to local spatial scales (<500m) and feature sharp increases in channel steepness at or near contacts between lithologies with differences in measured erodibility. By contrast, glacially controlled steepness patterns are expansive in spatial extent (1-10km), are insensitive to bedrock geology, and have higher overall channel steepness values than areas of lithologically controlled channel steepness

  7. Exploring groundwater processes in Rocky Mountain headwaters

    NASA Astrophysics Data System (ADS)

    Janzen, D.; Ireson, A. M.; Yassin, F. A.

    2014-12-01

    More than one-sixth of the Earth's human population relies on freshwater originating in mountain headwaters, which is understood to be generated largely from snowpacks that melt throughout the spring and summer. Annual hydrographs in these regions are characterized by large peaks occurring in the spring, followed by slow recession towards winter baseflow conditions. However, atmospheric warming trends are found to coincide with earlier periods of snowmelt, leading to increased flows in spring and decreased flows in summer. This decreased ability of our 'water towers' to store snow late into the summer suggests that other mechanisms of storage and release may become more important in sustaining baseflows. In particular, subsurface processes leading to late summer and winter flow will become increasingly important earlier on, but are as yet poorly understood. By utilising historical data to inform a better understanding of late-season subsurface processes, we will be better prepared to predict how these mountains will temporarily store and release groundwater in a warmer climate. Here, we analyse long-term data sets from a small (Marmot Creek, Alberta ~10 km2) and a large (Bow River at Banff, Alberta ~1000 km2) basinwithin the Canadian Rocky Mountains, comparing observations with model outputs, to investigate late-season hydrological responses, and particularly the role of groundwater as a temporary storage mechanism.

  8. Terrestrial ecosystem biomonitoring at Rocky Mountain Arsenal

    SciTech Connect

    Roy, R.; Matiatos, D.; Seery, D.; Hetrick, M.; Griess, J.; Henry, C.; Vaughn, S.; Miesner, J.

    1994-12-31

    In 1987 the Fish and Wildlife Service became actively involved in wildlife population monitoring at the Arsenal because of the discovery of a bald eagle roost on the site. Since that time the Service has conducted or funded a variety of investigations to inventory the wildlife species present at the Arsenal and determine their population status. As time progressed and as a result of the passage of the Rocky Mountain Arsenal Refuge legislation in 1992, the Service developed a biomonitoring strategy to determine the current effects of contaminants on terrestrial wildlife resources at the Arsenal and evaluate the efficacy of remediation to ensure the protection and restoration of wildlife resources at the future refuge. This poster will present an overview of the species being studied, measurement and assessment endpoints, strategies, and methods being used by the Service to assess wildlife health as it relates to contaminant exposure.

  9. Rocky Mountain Basins Produced Water Database

    DOE Data Explorer

    Historical records for produced water data were collected from multiple sources, including Amoco, British Petroleum, Anadarko Petroleum Corporation, United States Geological Survey (USGS), Wyoming Oil and Gas Commission (WOGC), Denver Earth Resources Library (DERL), Bill Barrett Corporation, Stone Energy, and other operators. In addition, 86 new samples were collected during the summers of 2003 and 2004 from the following areas: Waltman-Cave Gulch, Pinedale, Tablerock and Wild Rose. Samples were tested for standard seven component "Stiff analyses", and strontium and oxygen isotopes. 16,035 analyses were winnowed to 8028 unique records for 3276 wells after a data screening process was completed. [Copied from the Readme document in the zipped file available at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the Zipped file to your PC. When opened, it will contain four versions of the database: ACCESS, EXCEL, DBF, and CSV formats. The information consists of detailed water analyses from basins in the Rocky Mountain region.

  10. Utility of microfossils in Rocky Mountain exploration

    SciTech Connect

    Wornardt, W.W. Jr.

    1983-08-01

    Prior to 1960, exploration geologists in the Rocky Mountain area primarily used lithology, E-logs, geophysics, and a few microfossil groups (fusulinids, invertebrates) for stratigraphic correlations. From 1960 to about 1968, these exploration geologists added several additional groups of microfossils (spores, pollen, and foraminifers) to their tools for correlation. During the past 15 yrs, there has been an explosion in the scientific study of microfossils ranging in age from Cambrian to Holocene. Currently, oil finders are integrating the age-dates and paleoenvironmental information obtained from analyzing 20 different groups of microfossils with the stratigraphy, sedimentology, structure, and geophysical data to create a synergistic exploration program. The addition of micropaleontology and paleoenvironmental data into an exploration program has helped managers make better management decisions, save millions of dollars for the company, and find economical pools of hydrocarbons.

  11. Effective discharge in Rocky Mountain headwater streams

    NASA Astrophysics Data System (ADS)

    Bunte, Kristin; Abt, Steven R.; Swingle, Kurt W.; Cenderelli, Dan A.

    2014-11-01

    Whereas effective discharge (Qeff) in mountain streams is commonly associated with a moderate flow such as bankfull discharge (Qbf), this study found that the maximum discharge (Qmax), and not bankfull discharge, is the channel forming or effective flow for gravel transport in plane-bed streams where partial bed mobility causes steep gravel transport rating curves. Qeff may approach bankfull flow in some step-pool channels where gravel moves over a static cobble/boulder bed. Our conclusions are based on magnitude-frequency analyses conducted at 41 gauged Rocky Mountain headwater streams. Because these gauged streams lacked gravel transport data, as is typical, comparable streams with measured transport rates were used to develop scaling relations for rating curve exponents with stream and watershed characteristics. Those scaling relations were then used to estimate the steepness of gravel rating curves at the 41 gauged but unsampled sites. The measured flow frequency distributions were characterized by two fitted power functions. The steepness of the flow frequency distributions and the estimated steepness of gravel transport relations were combined in magnitude-frequency analyses to compute Qeff.

  12. 3. FIRSTFLOOR LABORATORY. VIEW TO SOUTHWEST. Rocky Mountain Arsenal, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. FIRST-FLOOR LABORATORY. VIEW TO SOUTHWEST. - Rocky Mountain Arsenal, Administration-Laboratory- Change House-Bomb Rail, 420 feet South of December Seventh Avenue; 530 feet West of D Street, Commerce City, Adams County, CO

  13. 1. SUBMERGED QUENCH INCINERATOR. VIEW TO SOUTHEAST. Rocky Mountain ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SUBMERGED QUENCH INCINERATOR. VIEW TO SOUTHEAST. - Rocky Mountain Arsenal, Submerged Quench Incinerator, 3940 feet South of Ninth Avenue; 930 feet West of Road NS-4, Commerce City, Adams County, CO

  14. 1. BUILDING 411A. VIEW TO NORTHEAST. Rocky Mountain Arsenal, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. BUILDING 411A. VIEW TO NORTHEAST. - Rocky Mountain Arsenal, Sulfur Monochloride & Dichloride Manufacturing, 1003 feet South of December Seventh Avenue; 412 feet East of D Street, Commerce City, Adams County, CO

  15. Planned Parenthood of Rocky Mountains v. Owens.

    PubMed

    2002-01-01

    Court Decision: 287 Federal Reporter, 3d Series 910; 2002 Apr 17 (date of decision). The U.S. Court of Appeals for the Tenth Circuit agreed with a lower court that Colorado's Parental Notification Act (PNA) was unconstitutional because it failed to provide an exception for a minor's health. Planned Parenthood of the Rocky Mountain Services brought an action challenging the constitutionality of the PNA which required parental notice and a waiting period before a minor could obtain an abortion. The PNA granted an exception in cases where a physician reports that the minor is a victim of child abuse or neglect at the hands of the persons entitled to notice and where an immediate abortion is necessary to prevent the minor's imminent death. The Tenth Circuit held that state abortion regulations must provide an exception to protect maternal health. Noting that medical complications could result in significant harm to the the health of a pregnant woman without constituting a threat of imminent death, the court held that the PNA infringed on the ability of any pregnant woman to protect her health because it failed to provide adequate exceptions to parental notice in cases where maternal health was at risk. The court rejected the defendant's argument that Colorado's Children's Code could be read as superseding the PNA and providing a maternal health exception, and held that the PNA superseded other Colorado law.

  16. The oldest know Rocky Mountain bristlecone pines (Pinus aristata Engelm. )

    SciTech Connect

    Brunstein, F.C. ); Yamaguchi, D.K. )

    1992-08-01

    We have found 12 living Rocky Mountain bristlecone pines (Pinus aristata) more than 1600 yr old, including four that are more than 2 1 00 yr old, on Black Mountain, near South Park, and on Almagre Mountain, in the southern Front Range, Colorado. A core from the oldest of these trees has an inner-ring date of 442 B.C. This tree is therefore at least 2435 yr old and exceeds the age of the oldest previously reported Rocky Mountain bristlecone pine by 846 yr, The ages of these trees show that Rocky Mountain bristlecone pines, under arid environmental conditions, achieve much older ages than have been previously reported. The ages also show that previously inferred trends in bristlecone pine ages, where maximum ages in the eastern range of Rocky Mountain bristlecone pines are much less than maximum ages in the western range of Great Basin bristlecone pines (Pinus longaea), are less strong than previously supposed. Ancient Rocky Mountain bristlecone pines, such as those found in this study, have the potential to expand our knowledge of late Holocene climatic conditions in western North America.

  17. 18. Rocky Mountain Viaduct. This view shows the stone faced ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Rocky Mountain Viaduct. This view shows the stone faced arched piers. It is the only structure on the parkway with this feature. View is facing east. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  18. 245. Rocky Mountain Viaduct. This steel girder viaduct was built ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    245. Rocky Mountain Viaduct. This steel girder viaduct was built in 1942. All of the reinforced concrete was faced with a rusticated stone. It is the only structure on the parkway with stone faced arched piers. The view is facing east. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  19. 17. Rocky Mountain viaduct. This steel girder viaduct was built ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Rocky Mountain viaduct. This steel girder viaduct was built in 1942. All of the reinforced concrete was faced with a rustic stone facade. View is to east. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  20. Rocky Mountain Spotted Fever (For Parents)

    MedlinePlus

    ... a serious disease if not treated properly . The bacteria Rickettsia rickettsii that causes RMSF is transmitted by the dog tick ( Dermacentor variabilis ) in the eastern United States and by the wood tick ( ... can transmit the bacteria. RMSF gets its name from the trademark rash ...

  1. Inversion Breakup in Small Rocky Mountain and Alpine Basins

    SciTech Connect

    Whiteman, Charles D.; Pospichal, Bernhard; Eisenbach, Stefan; Weihs, P.; Clements, Craig B.; Steinacker, Reinhold; Mursch-Radlgruber, Erich; Dorninger, Manfred

    2004-08-01

    Comparisons are made between the post-sunrise breakup of temperature inversions in two similar closed basins in quite different climate settings, one in the eastern Alps and one in the Rocky Mountains. The small, high-altitude, limestone sinkholes have both experienced extreme temperature minima below -50°C. On undisturbed clear nights, temperature inversions reach to 120 m heights in both sinkholes, but are much stronger in the drier Rocky Mountain basin (24K versus 13K). Inversion destruction takes place 2.6 to 3 hours after sunrise and is accomplished primarily by subsidence warming associated with the removal of air from the base of the inversion by the upslope flows that develop over the sidewalls. Differences in inversion strengths and post-sunrise heating rates are caused by differences in the surface energy budget, with drier soil and a higher sensible heat flux in the Rocky Mountain sinkhole.

  2. An exhumed Late Paleozoic canyon in the rocky mountains

    USGS Publications Warehouse

    Soreghan, G.S.; Sweet, D.E.; Marra, K.R.; Eble, C.F.; Soreghan, M.J.; Elmore, R.D.; Kaplan, S.A.; Blum, M.D.

    2007-01-01

    Landscapes are thought to be youthful, particularly those of active orogenic belts. Unaweep Canyon in the Colorado Rocky Mountains, a large gorge drained by two opposite-flowing creeks, is an exception. Its origin has long been enigmatic, but new data indicate that it is an exhumed late Paleozoic landform. Its survival within a region of profound late Paleozoic orogenesis demands a reassessment of tectonic models for the Ancestral Rocky Mountains, and its form and genesis have significant implications for understanding late Paleozoic equatorial climate. This discovery highlights the utility of paleogeomorphology as a tectonic and climatic indicator. ?? 2007 by The University of Chicago. All rights reserved.

  3. Coal-bed gas resources of the Rocky Mountain region

    USGS Publications Warehouse

    Schenk, C.J.; Nuccio, V.F.; Flores, R.M.; Johnson, R.C.; Roberts, S.B.; Collett, T.S.

    2001-01-01

    The Rocky Mountain region contains several sedimentary provinces with extensive coal deposits and significant accumulations of coal-bed gas. This summary includes coal-bed gas resources in the Powder River Basin (Wyoming and Montana), Wind River Basin (Wyoming), Southwest Wyoming (Greater Green River Basin of Wyoming, Colorado, and Utah), Uinta-Piceance Basin (Colorado and Utah), Raton Basin (Colorado and New Mexico), and San Juan Basin (Colorado and New Mexico). Other provinces in the Rocky Mountain region may contain significant coal-bed gas resources, but these resource estimates are not available at this time.

  4. Wolf-livestock interactions in the northern Rocky Mountains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since reintroduction in 1995, gray wolf populations in the northern Rocky Mountains have increased dramatically. Although rough tallies of livestock death/injury losses resulting from wolf predation are made each year, we know almost nothing about the indirect effects of wolf-livestock interactions...

  5. Teacher Contract Non-Renewal: Midwest, Rocky Mountains, and Southeast

    ERIC Educational Resources Information Center

    Nixon, Andy; Dam, Margaret; Packard, Abbot L.

    2012-01-01

    This quantitative study investigated reasons that school principals recommend non-renewal of probationary teachers' contracts. Principal survey results from three regions of the US (Midwest, Rocky Mountains, & Southeast) were analyzed using the Kruskal-Wallis and Mann-Whitney U statistical procedures, while significance was tested applying a…

  6. Natural Gas in the Rocky Mountains: Developing Infrastructure

    EIA Publications

    2007-01-01

    This Supplement to the Energy Information Administration's Short-Term Energy Outlook analyzes current natural gas production, pipeline and storage infrastructure in the Rocky Mountains, as well as prospective pipeline projects in these states. The influence of these factors on regional prices and price volatility is examined.

  7. "Rocky Mountain Talent Search" at the University of Denver

    ERIC Educational Resources Information Center

    Rigby, Kristin

    2005-01-01

    The "Rocky Mountain Talent Search" (RMTS) at the University of Denver was developed based on the talent search model developed by Dr Julian Stanley of Johns Hopkins University. This article summarizes the establishment of RMTS and outlines its contemporary programs. Guided by the philosophy that gifted students have unique needs, require academic…

  8. Observations of captive Rocky Mountain mule deer behavior

    SciTech Connect

    Halford, D.K.; Arthur, W.J. III; Alldredge, A.W.

    1987-01-31

    Observations were made near Fort Collins, Colorado on the behavior of a captive herd of Rocky Mountain mule deer (Odocoileus hemionus hemionus). Comparisons in general behavior patterns were made between captive and wild deer. Similar behavior was exhibited by captive and wild deer. Captive deer (as well as other species) may be useful for study of certain behavioral aspects of their wild counterparts.

  9. 7. Photographic copy of photograph (Source: National Archives, Rocky Mountain ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photographic copy of photograph (Source: National Archives, Rocky Mountain Region, Denver, Salt River Project History, Final History to 1916. p. 506) Interior view of transformer house. No date. CA. 1916. - Theodore Roosevelt Dam, Transformer House, Salt River, Tortilla Flat, Maricopa County, AZ

  10. 7. Photographic copy of photograph (Source: National Archives, Rocky Mountain ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photographic copy of photograph (Source: National Archives, Rocky Mountain Region, Denver, Salt River Project History, Final History to 1916. p. 504) Inside Roosevelt power plant showing size of valve. CA. 1916. - Theodore Roosevelt Dam, Power Plant, Salt River, Tortilla Flat, Maricopa County, AZ

  11. Zoonotic Infections Among Employees from Great Smoky Mountains and Rocky Mountain National Parks, 2008–2009

    PubMed Central

    Weber, Ingrid B.; McQuiston, Jennifer; Griffith, Kevin S.; Mead, Paul S.; Nicholson, William; Roche, Aubree; Schriefer, Martin; Fischer, Marc; Kosoy, Olga; Laven, Janeen J.; Stoddard, Robyn A.; Hoffmaster, Alex R.; Smith, Theresa; Bui, Duy; Wilkins, Patricia P.; Jones, Jeffery L.; Gupton, Paige N.; Quinn, Conrad P.; Messonnier, Nancy; Higgins, Charles; Wong, David

    2012-01-01

    Abstract U.S. National Park Service employees may have prolonged exposure to wildlife and arthropods, placing them at increased risk of infection with endemic zoonoses. To evaluate possible zoonotic risks present at both Great Smoky Mountains (GRSM) and Rocky Mountain (ROMO) National Parks, we assessed park employees for baseline seroprevalence to specific zoonotic pathogens, followed by evaluation of incident infections over a 1-year study period. Park personnel showed evidence of prior infection with a variety of zoonotic agents, including California serogroup bunyaviruses (31.9%), Bartonella henselae (26.7%), spotted fever group rickettsiae (22.2%), Toxoplasma gondii (11.1%), Anaplasma phagocytophilum (8.1%), Brucella spp. (8.9%), flaviviruses (2.2%), and Bacillus anthracis (1.5%). Over a 1-year study period, we detected incident infections with leptospirosis (5.7%), B. henselae (5.7%), spotted fever group rickettsiae (1.5%), T. gondii (1.5%), B. anthracis (1.5%), and La Crosse virus (1.5%) in staff members at GRSM, and with spotted fever group rickettsiae (8.5%) and B. henselae (4.3%) in staff at ROMO. The risk of any incident infection was greater for employees who worked as resource managers (OR 7.4; 95% CI 1.4,37.5; p=0.02), and as law enforcement rangers/rescue crew (OR 6.5; 95% CI 1.1,36.5; p=0.03), relative to those who worked primarily in administration or management. The results of this study increase our understanding of the pathogens circulating within both parks, and can be used to inform the development of effective guidelines and interventions to increase visitor and staff awareness and help prevent exposure to zoonotic agents. PMID:22835153

  12. Zoonotic infections among employees from Great Smoky Mountains and Rocky Mountain National Parks, 2008-2009.

    PubMed

    Adjemian, Jennifer; Weber, Ingrid B; McQuiston, Jennifer; Griffith, Kevin S; Mead, Paul S; Nicholson, William; Roche, Aubree; Schriefer, Martin; Fischer, Marc; Kosoy, Olga; Laven, Janeen J; Stoddard, Robyn A; Hoffmaster, Alex R; Smith, Theresa; Bui, Duy; Wilkins, Patricia P; Jones, Jeffery L; Gupton, Paige N; Quinn, Conrad P; Messonnier, Nancy; Higgins, Charles; Wong, David

    2012-11-01

    U.S. National Park Service employees may have prolonged exposure to wildlife and arthropods, placing them at increased risk of infection with endemic zoonoses. To evaluate possible zoonotic risks present at both Great Smoky Mountains (GRSM) and Rocky Mountain (ROMO) National Parks, we assessed park employees for baseline seroprevalence to specific zoonotic pathogens, followed by evaluation of incident infections over a 1-year study period. Park personnel showed evidence of prior infection with a variety of zoonotic agents, including California serogroup bunyaviruses (31.9%), Bartonella henselae (26.7%), spotted fever group rickettsiae (22.2%), Toxoplasma gondii (11.1%), Anaplasma phagocytophilum (8.1%), Brucella spp. (8.9%), flaviviruses (2.2%), and Bacillus anthracis (1.5%). Over a 1-year study period, we detected incident infections with leptospirosis (5.7%), B. henselae (5.7%), spotted fever group rickettsiae (1.5%), T. gondii (1.5%), B. anthracis (1.5%), and La Crosse virus (1.5%) in staff members at GRSM, and with spotted fever group rickettsiae (8.5%) and B. henselae (4.3%) in staff at ROMO. The risk of any incident infection was greater for employees who worked as resource managers (OR 7.4; 95% CI 1.4,37.5; p=0.02), and as law enforcement rangers/rescue crew (OR 6.5; 95% CI 1.1,36.5; p=0.03), relative to those who worked primarily in administration or management. The results of this study increase our understanding of the pathogens circulating within both parks, and can be used to inform the development of effective guidelines and interventions to increase visitor and staff awareness and help prevent exposure to zoonotic agents.

  13. 76 FR 21425 - Rocky Mountain Railcar and Repair, Inc.-Acquisition and Operation Exemption-Line of Railroad in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... Surface Transportation Board Rocky Mountain Railcar and Repair, Inc.--Acquisition and Operation Exemption--Line of Railroad in Tooele County, UT Rocky Mountain Railcar and Repair, Inc. (Rocky Mountain), a... line. \\1\\ Rocky Mountain states that it currently operates a railcar repair facility, but that it...

  14. Epidemiology of Spotted Fever Group and Typhus Group Rickettsial Infection in the Amazon Basin of Peru

    DTIC Science & Technology

    2010-01-01

    Rocky Mountain spotted fever and Brazilian spotted ...65: 329-334. 9. de Lemos ER, Machado RD, Coura JR. 1994. Rocky Mountain spotted fever in an endemic area in Minas Gerais, Brazil. Mem lnst Oswaldo...P, Carrillo P, Hernandez J, Parra E, Keng C. Small M, Olano JP, Bouyer D, Castaneda E, Walker D, Valbuena G. 2007. Rocky Mountain spotted fever

  15. Rapid Oligocene Exhumation of the Western Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Szameitat, A.; Parrish, R. R.; Stuart, F. M.; Carter, A.; Fishwick, S.

    2014-12-01

    As part of the North American Cordillera the Rocky Mountains of Canada impact the deflection of weather systems and the jet stream and form a distinct barrier to Pacific moisture reaching the continental interior. The extent to which this climatic pattern extended into the past is at present uncertain, so improving our understanding of the elevation history of the Rockies is critical to determining the controls on climate change within the Northern Hemisphere. We have undertaken a comprehensive apatite (U-Th-Sm)/He and fission track study of the southeastern Canadian Cordillera, i.e. the southern Canadian Rocky Mountains, in order to provide insight into the mid to late Cenozoic uplift and exhumation history of this region. Thermal history and exhumation models of widespread low elevation samples in combination with 6 vertical profiles covering elevations from 500 up to 3100 m a.s.l. show at least 1500 m of rapid exhumation west of the Rocky Mountain Trench (RMT) during the Oligocene (Figure 1). In contrast, the ranges east of the RMT low elevation samples provide Eocene ages throughout. The data show a very different history of recent uplift of the Canadian Rockies compared to what is currently known from published work, which mostly infer that the eastern Canadian Cordillera has not experienced significant uplift since the Eocene. We propose that the most likely cause of this rock uplift was upwelling of asthenosphere around the eastward subducting Farallon Plate. This also led to the eruption of the nearby mainly Miocene Chilcotin Group flood basalts and could have caused underplating of the thin lithosphere west of the RMT, adding to the buoyancy of the plate and lifting the range. Because the Trench marks the edge of the normal thickness craton which was underthrust beneath the Rocky Mountains during the initial upper Cretaceous orogeny, the eastern Rockies have a normal lithosperic thickness. This would impede recent uplift and provides an explanation for the

  16. Rocky Mountain Arsenal Offpost Contamination Assessment. Technical Plan A003.

    DTIC Science & Technology

    1984-11-09

    AND DATES COVERED S..... 11/09/84 .... 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS ROCKY MOUNTAIN ARSENAL OFFPOST CONTAMINATION ASSESSMENT, TECHNICAL PLAN...A003 6. AUTHOR(S) DAAK11 83 D 0007 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER ENVIRONAIENTAL SCIENCE...AND ENGINEERING DENVER, CO 8512*7R04 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING AGENCY REPORT NUMBER ARMY

  17. 78 FR 7852 - Notice of Intent To Rule on Request To Release Airport Property at the Rocky Mountain...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... Rocky Mountain Metropolitan Airport, Broomfield, CO AGENCY: Federal Aviation Administration (FAA), DOT... public comment on the release of land at the Rocky Mountain Metropolitan Airport under the provisions of..., Manager, Federal Aviation Administration, Northwest Mountain Region, Airports Division, Denver...

  18. Cascading effects of fire exclusion in Rocky Mountain ecosystems: a literature review

    USGS Publications Warehouse

    Keane, R.E.; Ryan, K.C.; Veblen, T.T.; Allen, C.D.; Logan, J.; Hawkes, B.

    2002-01-01

    The health of many Rocky Mountain ecosystems is in decline because of the policy of excluding fire in the management of these ecosystems. Fire exclusion has actually made it more difficult to fight fires, and this poses greater risks to the people who fight fires and for those who live in and around Rocky Mountain forests and rangelands. This paper discusses the extent of fire exclusion in the Rocky Mountains, then details the diverse and cascading effects of suppressing fires in the Rocky Mountain landscape by spatial scale, ecosystem characteristic, and vegetation type. Also discussed are the varied effects of fire exclusion on some important, keystone ecosystems and human concerns.

  19. State geothermal commercialization programs in seven Rocky Mountain states

    NASA Astrophysics Data System (ADS)

    Lunis, B. C.

    1982-08-01

    The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. The period covered is July through December 1981. Background information is provided, program objectives and the technical approach used are discussed, and the benefits of the program are described. Prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are covered and findings and recommendations are summarized.

  20. Dynamics of Rocky Mountain Lee Waves Observed During Success

    NASA Technical Reports Server (NTRS)

    Dean-Day, J.; Chan, K. R.; Bowen, S. W.; Bui, T. P.; Gary, B. L.; Chan, K. Roland (Technical Monitor)

    1997-01-01

    On two days during SUCCESS, the DC-8 sampled wave clouds which formed downstream of the ridges east of the Rocky Mountains. Wave morphology for both flights is deduced from temperature and 3-dimensional wind measurements from the MMS, isentrope profiles from the MTP, and linear perturbation theory. The waves observed on 960430 are smaller and found to be decaying with altitude, while the waves sampled on 960502 are vertically propagating and consist of larger, multiple wave scales. Wave orientations are consistent with the underlying topography and regions of high ice crystal concentration. Updraft velocities were estimated from the derived wave properties and are consistent with MMS vertical winds.

  1. Northeast-southwest structural transect: Rocky Mountain foreland, Wyoming

    SciTech Connect

    Stone, D.S.

    1987-08-01

    A northeast-southwest structural transect has been constructed across the Rocky Mountain foreland in Wyoming, a distance of about 400 mi. The line of transect begins in the northern Black Hills and traverses the northern Powder River basin, the Bighorn Mountains from Buffalo to Bonanza, the Big Horn basin from Worland to Hamilton dome, the Owl Creek Mountains, the northern Wind River basin at Maverick Springs, the Wind River Mountains to Pinedale in the Green River basin, the Moxa Arch at Big Piney and Riley Ridge, and into the thrust belt, ending at the Idaho border. In terms of a vertical and horizontal scale of 1 in. = 2000 ft, the section is about 90 ft long (i.e., the section is approximately 409 mi long). The data base for the transect includes published geologic maps, commercial photogeologic mapping, well data, and modern seismic data through critical parts of the basin areas. The data base provides an excellent found for analyzing structural relationships on both a regional and a local scale. Regional horizontal shortening of the foreland has occurred primarily through basement-involved displacements on basin-boundary megathrusts, which separate the mountain ranges from sedimentary basins, and on the smaller, intrabasin thrusts, which produced the anticlinal traps for Paleozoic oil accumulations.

  2. 76 FR 29264 - Minor Boundary Revision at Rocky Mountain National Park

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... National Park Service Minor Boundary Revision at Rocky Mountain National Park AGENCY: National Park Service....S.C. 4601-9(c)(1), the boundary of Rocky Mountain National Park is modified to include an additional... National Park and northeast of Grand Lake. The boundary revision is depicted on Map No. 121/105,475...

  3. 78 FR 60309 - Minor Boundary Revision at Rocky Mountain National Park

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ... National Park Service Minor Boundary Revision at Rocky Mountain National Park AGENCY: National Park Service, Interior. ACTION: Notification of Boundary Revision. SUMMARY: The boundary of Rocky Mountain National Park... depicting this boundary revision is available for inspection at the following locations: National...

  4. 76 FR 47577 - Rocky Mountain Natural Gas LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Rocky Mountain Natural Gas LLC; Notice of Filing Take notice that on July 28, 2011, Rocky Mountain Natural Gas LLC filed a revised Statement of Operating Conditions to comply...

  5. Rocky Mountain National Park reduced nitrogen source apportionment

    NASA Astrophysics Data System (ADS)

    Thompson, Tammy M.; Rodriguez, Marco A.; Barna, Michael G.; Gebhart, Kristi A.; Hand, Jennifer L.; Day, Derek E.; Malm, William C.; Benedict, Katherine B.; Collett, Jeffrey L., Jr.; Schichtel, Bret A.

    2015-05-01

    Excess wet and dry deposition of nitrogen-containing compounds are a concern at a number of national parks. The Rocky Mountain Atmospheric Nitrogen and Sulfur Study Part II (RoMANS II) campaign was conducted from November 2008 to November 2009 to characterize the composition of reactive nitrogen and sulfur deposited in Rocky Mountain National Park (RMNP). RoMANS II identified reduced nitrogen as the major contributor to reactive nitrogen deposition in RMNP, making up over 50% of the total. Motivated by this finding, the particulate source apportionment technology within the Comprehensive Air Quality Model with extensions was used here to estimate source apportionment of reduced nitrogen concentrations at RMNP. Source apportionment results suggest that approximately 40% of reduced nitrogen deposition to RMNP comes from ammonia sources within Colorado. However, the model evaluation also suggests that this number could be underrepresenting ammonia sources in eastern Colorado due to the difficulty of capturing upslope airflow on the eastern side of the Continental Divide with meteorological models. Emissions from California, the western model boundary, and the Snake River Valley in Idaho, the next three most influential sources, contribute approximately 15%, 8%, and 7%, respectively, to total reduced nitrogen measured in RMNP. Within Colorado, about 61%, 26%, and 13% of the total Colorado contribution comes from sources to the east of the Continental Divide, sources to the west of the Continental Divide, and from the park itself.

  6. The chemical agent experience at Rocky Mountain Arsenal

    SciTech Connect

    Mohrman, G.

    1995-06-01

    Rocky Mountain Arsenal (RMA) was constructed and commissioned in 1942 for the production of sulfur mustard and other chemical munitions for possible use in World War II. RMA also became a production site for Lewisite and Sarin, including synthesis and munition filling. Other chemical agents such as Phosgene were routinely handled, filled into munitions and demilitarized. During the 1970`s and the early 1980`s, RMA served as a primary demilitarization facility for the destruction of chemical agents. Throughout its chemical weapons history, RMA generated waste materials from production, neutralization, decontamination and testing. These operations led to the possibility of chemical agent contamination in soils, process equipment and structures that have required special attention as part of the overall Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) environmental cleanup operations being conducted by the Program Manager Rocky Mountain Arsenal (PMRMA). Adjusting normal sampling operations associated with CERCLA-type activities for the special Army regulations covering chemical agents has been a difficult task. This presentation will describe the evolution of chemical agent related efforts and operations as they pertain to RMA environmental cleanup activities, to include field sampling requirements, analytical methods, commercial laboratory use and the role of the on-site PMRMA laboratory.

  7. A Regional Atmospheric Continuous CO2 Network In The Rocky Mountains (Rocky RACCOON)

    NASA Astrophysics Data System (ADS)

    Stephens, B.; de Wekker, S.; Watt, A.; Schimel, D.

    2005-12-01

    We have established a continuous CO2 observing network in the Rocky Mountains, building on technological and modeling advances made during the Carbon in the Mountains Experiment (CME), to improve our understanding of regional carbon fluxes and to fill key gaps in the North American Carbon Program (NACP). We will present a description of the Rocky RACCOON network and early results from the first three sites. There are strong scientific and societal motivations for determining CO2 exchanges on regional scales. NACP aims to address these concerns through a dramatic expansion in observations and modeling capabilities over North America. Mountain forests in particular represent a significant potential net CO2 sink in the U.S. and are highly sensitive to land-use practices and climate change. However, plans for new continuous CO2 observing sites have omitted the mountain west. This resulted from expensive instrumentation in the face of limited resources, and a perception that current atmospheric transport models are not sophisticated enough to interpret CO2 measurements made in complex terrain. Through our efforts in CME, we have a new autonomous, inexpensive, and robust CO2 analysis system and are developing mountain CO2 modeling tools that will help us to overcome these obstacles. Preliminary observational and modeling results give us confidence that continuous CO2 observations from mountain top observatories will provide useful constraints on regional carbon cycling and will be valuable in the continental inverse modeling efforts planned for NACP. We began at three Colorado sites in August 2005 and hope to add three to six sites in other western states in subsequent years, utilizing existing observatories to the maximum extent possible. The first three sites are at Niwot Ridge, allowing us to have an ongoing intercomparison with flask measurements made by NOAA CMDL; at Storm Peak Laboratory near Steamboat Springs, allowing us to investigate comparisons between these

  8. A tectonic redefinition of the Southern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Eaton, Gordon P.

    1986-12-01

    The Southern Rocky Mountains of the Western United States, physiographically defined and described by N.M. Fenneman nearly 60 yrs ago, are tectonically redefined and extended. They are shown to constitute the crestal range of a mammoth, continental, arch-like feature here named the Alvarado ridge. Its axis trends south from Casper, Wyoming at least as far south as El Paso, Texas, beyond which the ridge begins to lose morphological identity. Maximum elevations along the crest of the ridge exceed 4.2 km. The summit ranges are bordered on either side by gently sloping rises that extend outward for at least 1300 km, falling to elevations of less than 400 m. Modest rift structures along the ridge axis continue beyond the southern terminus of the mountains before playing out. A major sediment-filled axial graben exists over the southern two-thirds of the ridge, but equivalent parts of it farther north were stripped of their Neogene fill by erosion in the headwaters areas of the Colorado and North Platte rivers. The maximum elevation of earlier Laramide mountains in this area has been estimated to have been no more than 2 km in Colorado, half that of the present range. Related topography was nearly obliterated by erosion prior to late Eocene time. Lateral stream planation produced a southeast-sloping, major late Eocene erosion surface across the region that had what was probably an isostatically adjusted, average maximum elevation of less than 900 m. Present day elevations and relief on the ridge crest are the result of steep crestal normal faulting, pronounced block uplift, and regional arching, with extensional strain limited to an axial corridor less than 200 km wide. This episode of mountain building began in middle Miocene time (17 to 12 Ma), culminating in latest Miocene and early Pliocene time, between 7 and 4 Ma ago. Debris from the newly elevated range (the Southern Rocky Mountains, sensu lato) was shed along the full length of the Neogene Alvarado ridge down

  9. Major-ion chemistry of the Rocky Mountain snowpack, USA

    USGS Publications Warehouse

    Turk, J.T.; Taylor, H.E.; Ingersoll, G.P.; Tonnessen, K.A.; Clow, D.W.; Mast, M.A.; Campbell, D.H.; Melack, J.M.

    2001-01-01

    During 1993-97, samples of the full depth of the Rocky Mountain snowpack were collected at 52 sites from northern New Mexico to Montana and analyzed for major-ion concentrations. Concentrations of acidity, sulfate, nitrate, and calcium increased from north to south along the mountain range. In the northern part of the study area, acidity was most correlated (negatively) with calcium. Acidity was strongly correlated (positively) with nitrate and sulfate in the southern part and for the entire network. Acidity in the south exceeded the maximum acidity measured in snowpack of the Sierra Nevada and Cascade Mountains. Principal component analysis indicates three solute associations we characterize as: (1) acid (acidity, sulfate, and nitrate), (2) soil (calcium, magnesium, and potassium), and (3) salt (sodium, chloride, and ammonium). Concentrations of acid solutes in the snowpack are similar to concentrations in nearby wetfall collectors, whereas, concentrations of soil solutes are much higher in the snowpack than in wetfall. Thus, dryfall of acid solutes during the snow season is negligible, as is gypsum from soils. Snowpack sampling offers a cost-effective complement to sampling of wetfall in areas where wetfall is difficult to sample and where the snowpack accumulates throughout the winter. Copyright ?? 2001 .

  10. Field trips in the southern Rocky Mountains, USA

    SciTech Connect

    Nelson, E.P.; Erslev, E.A.

    2004-07-01

    The theme of the 2004 GSA Annual Meeting and Exposition, 'Geoscience in a Changing World' covers both new and traditional areas of the earth sciences. The Front Range of the Rocky Mountains and the High Plains preserve an outstanding record of geological processes from Precambrian through Quaternary times, and thus served as excellent educational exhibits for the meeting. The chapters in this field guide all contain technical content as well as a field trip log describing field trip routes and stops. Of the 25 field trips offered at the Meeting. 14 are described in the guidebook, covering a wide variety of geoscience disciplines, with chapters on tectonics (Precambrian and Laramide), stratigraphy and paleoenvironments (e.g., early Paleozoic environments, Jurassic eolian environments, the K-T boundary, the famous Oligocene Florissant fossil beds), economic deposits (coal and molybdenum), geological hazards, and geoarchaeology. Two papers have been abstracted separately for the Coal Abstracts database.

  11. Rocky Mountain Snowpack Chemistry at Selected Sites, 2004

    USGS Publications Warehouse

    Ingersoll, George P.; Mast, M. Alisa; Nanus, Leora; Handran, Heather H.; Manthorne, David J.; Hultstrand, Douglas M.

    2007-01-01

    During spring 2004, the U.S. Geological Survey in cooperation with the National Park Service and the U.S. Department of Agriculture, Forest Service collected and analyzed snowpack samples for 65 sites in the Rocky Mountain region from New Mexico to Montana. Snowpacks were sampled from late February through early April and generally had well-below-average- to near-average snow-water equivalent. Regionally, on April 1, snow-water equivalent ranged from 50 to 89 percent. At most regional sites monitored during 1993-2004, snowpack ammonium, nitrate, and sulfate concentrations for 2004 were lower than the 12-year averages. Snowpack ammonium concentrations in the region were lower than average concentrations for the period at 61 percent of sites in the region, but showed a new pattern compared to previous years with three of the four highest 2004 concentrations observed in northern Colorado. Nitrate concentrations in 2004 were lower than the 12-year average for the year at 53 percent of regional sites, and typically occurred at sites in Wyoming, Idaho, and Montana where powerplants and large industrial areas were limited. A regional decrease in sulfate concentrations across most of the Rocky Mountains (with concentrations lower than the 12-year average at 84 percent of snowpack sites) was consistent with other monitoring of atmospheric deposition in the Western United States. Total mercury concentrations, although data are only available for the past 3 years, decreased slightly for the region as a whole in 2004 relative to 2003. Ratios of stable sulfur isotopes indicated a similar regional pattern as observed in recent years with sulfur-34 (d34S) values generally increasing northward from northern New Mexico and southern Colorado to northern Colorado, Wyoming, Idaho, and Montana.

  12. Geologic settings and controls of shallow gas, Rocky Mountain area

    SciTech Connect

    Rice, D.D. )

    1991-06-01

    Shallow gas is generated by the degradation of organic matter by anaerobic bacteria and is referred to as microbial or bacterial gas. Bacterial gas can be generated and can accumulate in significant quantities and is an important resource in the Rocky Mountain area. Factors controlling bacterial gas generation after sediment burial are anoxic conditions, low sulfate content, low temperatures, abundant organic matter, sufficient pore space, and rapid sediment deposition. Bacterial gas is distinguished by its chemical and isotopic composition; the hydrocarbon fraction generally contains more than 98% methane, and {delta}{sup 13}C{sub 1} values are generally lighter than {minus}55{per thousand}. In the Rocky Mountain area, bacterial gas accumulations occur in three main geologic settings: clastic shelves, carbonate shelves, and coal swamps. In the clastic shelf setting, bacterial gas occurs in thick (200 ft) sequences of sandstone, siltstone, and shale. The siltsone and sandstone occur as thin (a few inches thick), discontinuous lenses and laminae that serve as low-permeability reservoirs because of their small grain size. The enclosing shales are organic rich (average 2% total organic carbon (TOC)), contain type 3 kerogen, and serve as the source of and seal for the bacterial gas. The carbonate shelf setting is analogous to the clastic shelf with rythmically bedded couplets (a few inches thick) of low-permeability chalk (reservoir) and shale (source and seal). These shales are also organic rich (average 3.2% TOC) but contain type 2 kerogen. In the swamp setting, thick (as much as 200 ft), humic (type 3 kerogen) coal beds serve as both the source of and reservoir for the bacterial gas. The gas is trapped by the low porosity and permeability of coal and gas adsorption enhanced by hydrostatic pressure.

  13. 4. FIRSTFLOOR SHOWER/LOCKER ROOM. VIEW TO NORTHEAST. Rocky Mountain ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. FIRST-FLOOR SHOWER/LOCKER ROOM. VIEW TO NORTHEAST. - Rocky Mountain Arsenal, Administration-Laboratory- Change House-Bomb Rail, 420 feet South of December Seventh Avenue; 530 feet West of D Street, Commerce City, Adams County, CO

  14. 4. BUILDING 741/742. VIEW TO NORTHWEST. Rocky Mountain Arsenal, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. BUILDING 741/742. VIEW TO NORTHWEST. - Rocky Mountain Arsenal, Refrigeration Napalm & Incendiary Bomb Warehouse-Bomb Filling, 825 feet South of December Seventh Avenue; 2425 feet East of D Street, Commerce City, Adams County, CO

  15. 6. BUILDING 741/742. VIEW TO SOUTHEAST. Rocky Mountain Arsenal, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. BUILDING 741/742. VIEW TO SOUTHEAST. - Rocky Mountain Arsenal, Refrigeration Napalm & Incendiary Bomb Warehouse-Bomb Filling, 825 feet South of December Seventh Avenue; 2425 feet East of D Street, Commerce City, Adams County, CO

  16. 3. BUILDING 741/742. VIEW TO WEST. Rocky Mountain Arsenal, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. BUILDING 741/742. VIEW TO WEST. - Rocky Mountain Arsenal, Refrigeration Napalm & Incendiary Bomb Warehouse-Bomb Filling, 825 feet South of December Seventh Avenue; 2425 feet East of D Street, Commerce City, Adams County, CO

  17. 2. BUILDING 741/742. VIEW TO SOUTHWEST. Rocky Mountain Arsenal, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. BUILDING 741/742. VIEW TO SOUTHWEST. - Rocky Mountain Arsenal, Refrigeration Napalm & Incendiary Bomb Warehouse-Bomb Filling, 825 feet South of December Seventh Avenue; 2425 feet East of D Street, Commerce City, Adams County, CO

  18. 5. BUILDING 741/742. VIEW TO NORTHEAST. Rocky Mountain Arsenal, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. BUILDING 741/742. VIEW TO NORTHEAST. - Rocky Mountain Arsenal, Refrigeration Napalm & Incendiary Bomb Warehouse-Bomb Filling, 825 feet South of December Seventh Avenue; 2425 feet East of D Street, Commerce City, Adams County, CO

  19. 1. BUILDING 741/742. VIEW TO SOUTH. Rocky Mountain Arsenal, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. BUILDING 741/742. VIEW TO SOUTH. - Rocky Mountain Arsenal, Refrigeration Napalm & Incendiary Bomb Warehouse-Bomb Filling, 825 feet South of December Seventh Avenue; 2425 feet East of D Street, Commerce City, Adams County, CO

  20. Estimating Longwave Atmospheric Emissivity in the Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Ebrahimi, S.; Marshall, S. J.

    2014-12-01

    Incoming longwave radiation is an important source of energy contributing to snow and glacier melt. However, estimating the incoming longwave radiation from the atmosphere is challenging due to the highly varying conditions of the atmosphere, especially cloudiness. We analyze the performance of some existing models included a physically-based clear-sky model by Brutsaert (1987) and two different empirical models for all-sky conditions (Lhomme and others, 2007; Herrero and Polo, 2012) at Haig Glacier in the Canadian Rocky Mountains. Models are based on relations between readily observed near-surface meteorological data, including temperature, vapor pressure, relative humidity, and estimates of shortwave radiation transmissivity (i.e., clear-sky or cloud-cover indices). This class of models generally requires solar radiation data in order to obtain a proxy for cloud conditions. This is not always available for distributed models of glacier melt, and can have high spatial variations in regions of complex topography, which likely do not reflect the more homogeneous atmospheric longwave emissions. We therefore test longwave radiation parameterizations as a function of near-surface humidity and temperature variables, based on automatic weather station data (half-hourly and mean daily values) from 2004 to 2012. Results from comparative analysis of different incoming longwave radiation parameterizations showed that the locally-calibrated model based on relative humidity and vapour pressure performs better than other published models. Performance is degraded but still better than standard cloud-index based models when we transfer the model to another site, roughly 900 km away, Kwadacha Glacier in the northern Canadian Rockies.

  1. Model Study of Diisopropylmethylphosphonate (DIMP) Contamination, Rocky Mountain Arsenal Near Denver, Colorado. Phase 1

    DTIC Science & Technology

    1976-02-01

    8217, < ," ’ ,• , • - - " , • . ,:... u.•..... , - - • ’- - .... ’ " ,/ •N OIL 10 COLORADO WATER RESOURCESI *v j,/N"u \\ \\I ’K t3 MODEL STUDY OF DIMP...Gruundwater study of the Rocky Mountain Arsenal and some surrounding area: Colorado Dept. Health, Water Quality Control Div., 21 p. Smith, R. 0., Schneider...COVERED 4. TITLE AND SUBTITLE .5 FUNDING NUMBERSMODEL STUDY OF DIISOPROPYLMETHYLPHOSPHONATE (DIMP) CONTAMINATION, ROCKY MOUNTAIN ARSENAL NEAR DENVER

  2. Convective transport of pollutants from eastern Colorado concentrated animal feeding operations into the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Pina, A.; Denning, A.; Schumacher, R. S.

    2013-12-01

    As the population of the urban corridor along the eastern Front Range grows at an unprecedented rate, concern about pollutant transport into the Rocky Mountains is on the rise. The confluence of mountain meteorology and major pollution sources conspire to transport pollutants across the Front Range, especially nitrogen species (NH3, NH4+, orgN, and NO3-) from concentrated animal feeding operations and urban regions, into the Rocky Mountains. The Rocky Mountains have coarse-textured soils which disallow the uptake nitrogen-rich precipitation, allowing most ions in precipitation to reach, be stored in, and eutrophicate alpine terrestrial and aquatic ecosystems. The focus of this study was to examine the meteorological conditions in which atmospheric deposition of pollutants at two mountain sites was anomalously high due to convective transport. We looked at 19 years (1994-2013) of precipitation and wet deposition data from two National Atmospheric Deposition Program (NAPD) sites in the Rocky Mountains: Beaver Meadows (CO19) and Loch Vale (CO98). Loch Vale (3159 m) and Beaver Meadows (2477 m) are located approximately 11 km apart but differ in height by 682 m resulting in different seasonal precipitation composition and totals. The Advanced Research WRF model was used to simulate the meteorology at a high resolution for the progression of the upslope event that led to high nitrogen deposition in the Rocky Mountains. Data from the North American Regional Reanalysis (NARR) was used to observe and verify synoptic conditions produced by the WRF model that influenced the high-deposition events. Dispersion plumes showed a mesoscale mountain circulation caused by differential heating between mountains-tops and the plains was the main driver of the westward convective transport towards the mountains. Additionally and unexpectedly, a lee trough and high precipitable water values associated with a cold front played significant roles in the nitrogen deposition into the Rocky

  3. Sufentanil and xylazine immobilization of Rocky Mountain elk.

    PubMed

    Kreeger, Terry J; Huizenga, Matthew; Hansen, Cole; Wise, Benjamin L

    2011-07-01

    From October 2009 through July 2010, five captive, 3-yr-old, female Rocky Mountain elk (Cervus elaphus) and nine free-ranging elk (one male, eight female) were immobilized with 0.1 mg/kg sufentanil plus 0.5 mg/kg xylazine which was antagonized with 1 mg/kg naltrexone and 2 mg/kg tolazoline. Induction and recovery times averaged 4.9 ± 0.3 min and 3.9 ± 0.4 min, respectively. Physiologic and blood gas parameters as well as bispectral index (BIS) were measured on the captive elk every 10 min for 30 min. Immobilization induced profound hypoxemia via hypoventilation and ventilation-perfusion mismatching as demonstrated by depressed partial pressure of arterial oxygen (P(a)O(2)) and increased partial pressure of arterial carbon dioxide (P(a)CO(2)). The only values to significantly (P<0.05) change over time were base excess (BE), bicarbonate (HCO(3)), and lactate. Bispectral index is a measure of anesthetic depth. The average BIS value over the 30 min period (59.1 ± 2.4) was higher than the BIS value at the approximate point where elk lose consciousness, which indicated that this drug combination produced neuroleptanalgesia but not general anesthesia. Sufentanil and xylazine provided effective remote immobilization in elk and could be substituted for carfentanil or thiafentanil and xylazine should the need arise.

  4. Trace fossils as environment indicators in the Rocky Mountains

    SciTech Connect

    Shepard, B.

    1983-08-01

    Throughout time, organisms have left various types of traces while engaged in different activities. The two major types of lebensspuren were made by suspension feeders found in turbulent water where organic matter is held in suspension, and by deposit feeders whose habitat is found in quiet, deeper waters where large quantities of organic matter settle from suspension. The different activities which occur in these two environments are the cause of the traces found in sediments. These include escape structures resulting from degradation or aggradation of sediments, feeding structures, dwelling structures, grazing traces, crawling traces, and resting traces. The use of trace fossils in hydrocarbon exploration is especially helpful in the Cretaceous sandstones of the Rocky Mountains because of the relative abundance of outcrops and the scarcity of body fossils. By combining the interpretation of physical processes with the biological traces, one more tool is made available in the determination of rock environments as an aid in hydrocarbon exploration. Materials exhibited include 8 x 10 color prints of different Cretaceous lebensspuren, hand-drawn cartoons of the six different trace activities, and a regional cross section of the Eagle sandstone illustrated by photographs of different traces near each location, as well as a variety of rock samples.

  5. Rocky Mountain Snowpack Chemistry at Selected Sites, 2002

    USGS Publications Warehouse

    Ingersoll, George P.; Mast, M. Alisa; Nanus, Leora; Manthorne, David J.; Clow, David W.; Handran, Heather M.; Winterringer, Jesse A.; Campbell, Donald H.

    2004-01-01

    During spring 2002, the chemical composition of annual snowpacks in the Rocky Mountain region of the Western United States was analyzed. Snow samples were collected at 75 geographically distributed sites extending from New Mexico to Montana. Near the end of the 2002 snowfall season, the snow-water equivalent (SWE) in annual snowpacks sampled generally was below average in most of the region. Regional patterns in the concentrations of major ions (including ammonium, nitrate, and sulfate), mercury, and stable sulfur isotope ratios are presented. The 2002 snowpack chemistry in the region differed from the previous year. Snowpack ammonium concentrations were higher at 66 percent of sites in Montana compared to concentrations in the 2001 snowpack but were lower at 74 percent of sites in Wyoming, Colorado, and New Mexico. Nitrate was lower at all Montana sites and lower at all but one Wyoming site; nitrate was higher at all but two Colorado sites and higher at all New Mexico sites. Sulfate was lower across the region at 77 percent of sites. The range of mercury concentrations for the region was similar to those of 2001 but showed more variability than ammonium, nitrate, and sulfate concentrations. Concentrations of stable sulfur isotope ratios exhibited a strong regional pattern with values increasing northward from southern Colorado to northern Colorado and Wyoming.

  6. Trail impact monitoring in Rocky Mountain National Park, USA

    NASA Astrophysics Data System (ADS)

    Svajda, J.; Korony, S.; Brighton, I.; Esser, S.; Ciapala, S.

    2015-11-01

    This paper examines impacts of increased visitation leading to human trampling of vegetation and soil along several trails in Rocky Mountain National Park (RMNP) to understand how abiotic factors and level of use can influence trail conditions. RMNP is one of the most visited national parks in the USA with 3.3 million visitors in 2012 across 1075 km2 and 571 km of hiking trails. 95 % of the park is designated wilderness making the balance between preservation and visitor use challenging. This research involves the application of trail condition assessments to 56 km of trails to determine prevailing factors and what, if any, connection between them exist. The study looked at a variety of inventory and impact indicators and standards to determine their importance and to develop a baseline condition of trails. The data can be used for future comparison and evaluation of development trends. We found that trail widening (mean trail width 88.9 cm) and soil loss (cross sectional area 172.7 cm2) are the most visible effects of trail degradation. Further statistical analyses of data identified the role and influence of various factors (e.g. use level and topography). Insights into the influence of these factors can lead to the selection of appropriate management measures to avoid or minimize negative consequences from increased visitation.

  7. Trail impact monitoring in Rocky Mountain National Park, USA

    NASA Astrophysics Data System (ADS)

    Svajda, J.; Korony, S.; Brighton, I.; Esser, S.; Ciapala, S.

    2016-01-01

    This paper examines impacts of increased visitation leading to human trampling of vegetation and soil along several trails in Rocky Mountain National Park (RMNP) to understand how abiotic factors and level of use can influence trail conditions. RMNP is one of the most visited national parks in the USA, with 3.3 million visitors in 2012 across 1075 km2 and 571 km of hiking trails. 95 % of the park is designated wilderness, making the balance between preservation and visitor use challenging. This research involves the application of trail condition assessments to 56 km of trails to determine prevailing factors and what, if any, connection between them exist. The study looked at a variety of inventory and impact indicators and standards to determine their importance and to develop a baseline condition of trails. The data can be used for future comparison and evaluation of development trends. We found that trail widening (mean trail width 88.9 cm) and soil loss (cross-sectional area 172.7 cm2) are the most visible effects of trail degradation. Further statistical analyses of data identified the role and influence of various factors (e.g., use level and topography). Insights into the influence of these factors can lead to the selection of appropriate management measures to avoid or minimize negative consequences from increased visitation.

  8. Disturbance regime and disturbance interactions in Rocky Mountain subalpine forest

    USGS Publications Warehouse

    Veblen, Thomas T.; Hadley, Keith S.; Nel, Elizabeth M.; Kitzberger, Thomas; Reid, Marion; Villalba, Ricardo

    1994-01-01

    1 The spatial and temporal patterns of fire, snow avalanches and spruce beetle out-breaks were investigated in Marvine Lakes Valley in the Colorado Rocky Mountains in forests of Picea engelmannii, Abies lasiocarpa, Pseudotsuga menziesiiand Populus tremuloides. Dates and locations of disturbances were determined by dendrochronological techniques. A geographic information system (GIS) was used to calculate areas affected by the different disturbance agents and to examine the spatial relationships of the different disturbances. 2 In the Marvine Lakes Valley, major disturbance was caused by fire in the 1470s, the 1630s and the 1870s and by spruce beetle outbreak in c. 1716, 1827 and 1949. 3 Since c. 1633, 9% of the Marvine Lakes Valley has been affected by snow avalanches, 38.6% by spruce beetle outbreak and 59.1% by fire. At sites susceptible to avalanches, avalanches occur at a near-annual frequency. The mean return intervals for fire and spruce beetle outbreaks are 202 and 116.5 years, respectively. Turnover times for fire and spruce beetle outbreaks are 521 and 259 years, respectively. 4 Several types of disturbance interaction were identified. For example, large and severe snow avalanches influence the spread of fire. Similarly, following a stand-devastating fire or avalanche, Picea populations will not support a spruce beetle outbreak until individual trees reach a minimum diameter which represents at least 70 years' growth. Thus, recent fires and beetle outbreaks have nonoverlapping distributions.

  9. Status and health of biota at the Rocky Mountain Arsenal

    SciTech Connect

    Macrander, A.M.; Mackey, C.V.; Reagen, D.P.; Tate, D.J.

    1994-12-31

    Field studies have been conducted on the populations and communities of the biota at Rocky Mountain Arsenal (RMA) since the late 1950`s. While earlier studies were primarily documentation of mortality events, a diverse program of studies conducted since 1982 has assessed a number of relevant endpoints. Studies of sedentary species (e.g. plants, earthworm, grasshoppers) focused on contaminated areas within RMA to identify potential contaminant effects. Studies on more mobile species (e.g. deer, great horned owls, kestrels) were conducted throughout RMA to evaluate effects on their RMA-wide populations. Both on- and off-post reference sites were used in some of the studies. Ecological endpoints were selected that were focused upon the population-level effects that could have a causal relationship to the RMA contaminants, such as population abundance and reproductive success, biomarkers, and community organization. Current EPA guidance on conducting ecological risk assessment encourages the use of observational field studies. Although many of these studies were conducted prior to the issuance of this guidance, they are consistent with its scope and intent. Investigators on the effects of contamination at RMA during the past decade indicate that while some effects may still be present in biota at RMA, the wildlife communities and populations are viable and appear healthy.

  10. Hydrogeologic data for the northern Rocky Mountains intermontane basins, Montana

    USGS Publications Warehouse

    Dutton, DeAnn M.; Lawlor, Sean M.; Briar, D.W.; Tresch, R.E.

    1995-01-01

    The U.S. Geological Survey began a Regional Aquifer- System Analysis of the Northern Rocky Mountains Intermontane Basins of western Montana and central and central and northern Idaho in 1990 to establish a regional framework of information for aquifers in 54 intermontane basins in an area of about 77,500 square miles. Selected hydrogeologic data have been used as part of this analysis to define the hydro- logic systems. Records of 1,376 wells completed in 31 of the 34 intermontane basins in the Montana part of the study area are tabulated in this report. Data consist of location, alttiude of land surface, date well constructed, geologic unit, depth of well, diameter of casing, type of finish, top of open interval, primary use of water, water level, date water level measured, discharge, specific capacity, source of discharge data, type of log available, date water-quality parameters measured, specific conductance, pH, and temperature. Hydrographs for selected wells also are included. Locations of wells and basins are shown on the accompanying plate.

  11. Trends in Rocky Mountain amphibians and the role of beaver as a keystone species

    USGS Publications Warehouse

    Hossack, Blake R.; Gould, William R.; Patla, Debra A.; Muths, Erin L.; Daley, Rob; Legg, Kristin; Corn, P. Stephen

    2015-01-01

    Despite prevalent awareness of global amphibian declines, there is still little information on trends for many widespread species. To inform land managers of trends on protected landscapes and identify potential conservation strategies, we collected occurrence data for five wetland-breeding amphibian species in four national parks in the U.S. Rocky Mountains during 2002–2011. We used explicit dynamics models to estimate variation in annual occupancy, extinction, and colonization of wetlands according to summer drought and several biophysical characteristics (e.g., wetland size, elevation), including the influence of North American beaver (Castor canadensis). We found more declines in occupancy than increases, especially in Yellowstone and Grand Teton national parks (NP), where three of four species declined since 2002. However, most species in Rocky Mountain NP were too rare to include in our analysis, which likely reflects significant historical declines. Although beaver were uncommon, their creation or modification of wetlands was associated with higher colonization rates for 4 of 5 amphibian species, producing a 34% increase in occupancy in beaver-influenced wetlands compared to wetlands without beaver influence. Also, colonization rates and occupancy of boreal toads (Anaxyrus boreas) and Columbia spotted frogs (Rana luteiventris) were ⩾2 times higher in beaver-influenced wetlands. These strong relationships suggest management for beaver that fosters amphibian recovery could counter declines in some areas. Our data reinforce reports of widespread declines of formerly and currently common species, even in areas assumed to be protected from most forms of human disturbance, and demonstrate the close ecological association between beaver and wetland-dependent species.

  12. Rocky Mountain evolution: Tying Continental Dynamics of the Rocky Mountains and Deep Probe seismic experiments with receiver functions

    USGS Publications Warehouse

    Rumpfhuber, E.-M.; Keller, Gordon R.; Sandvol, E.; Velasco, A.A.; Wilson, D.C.

    2009-01-01

    In this study, we have determined the crustal structure using three different receiver function methods using data collected from the northern transect of the Continental Dynamics of the Rocky Mountains (CD-ROM) experiment. The resulting migrated image and crustal thickness determinations confirm and refine prior crustal thickness measurements based on the CD-ROM and Deep Probe experiment data sets. The new results show a very distinct and thick lower crustal layer beneath the Archean Wyoming province. In addition, we are able to show its termination at 42??N latitude, which provides a seismic tie between the CD-ROM and Deep Probe seismic experiments and thus completes a continuous north-south transect extending from New Mexico into Alberta, Canada. This new tie is particularly important because it occurs close to a major tectonic boundary, the Cheyenne belt, between an Archean craton and a Proterozoic terrane. We used two different stacking techniques, based on a similar concept but using two different ways to estimate uncertainties. Furthermore, we used receiver function migration and common conversion point (CCP) stacking techniques. The combined interpretation of all our results shows (1) crustal thinning in southern Wyoming, (2) strong northward crustal thickening beginning in central Wyoming, (3) the presence of an unusually thick and high-velocity lower crust beneath the Wyoming province, and (4) the abrupt termination of this lower crustal layer north of the Cheyenne belt at 42??N latitude. Copyright 2009 by the American Geophysical Union.

  13. Long-term shifts in the phenology of rare and endemic Rocky Mountain plants

    USGS Publications Warehouse

    Munson, Seth M.; Sher, Anna A

    2015-01-01

    CONCLUSIONS: These results provide evidence for large shifts in the phenology of rare Rocky Mountain plants related to climate, which can have strong effects on plant fitness, the abundance of associated wildlife, and the future of plant conservation in mountainous regions.                   

  14. Isotopes in Rocky Mountain Snowpack 1993-2014

    NASA Astrophysics Data System (ADS)

    Anderson, L.; Berkelhammer, M. B.; Mast, A.

    2015-12-01

    We present ~1300 new isotopic measurements (δ18O and δ2H) from a network of snowpack sites in the Rocky Mountains (IRMS) that have been sampled since 1993. The network includes 177 locations where depth-integrated snow samples are collected each spring near peak accumulation. At 57 of these locations snowpack samples were obtained for 10 to 21 years and their isotopic measurements provide unprecedented spatial and temporal documentation of snowpack isotope values at mid-latitudes. For environments where snowfall accounts for the majority of annual precipitation, snowmelt is likely to have the strongest influence on isotope values retained in proxy archives. In this first presentation of the dataset we (1) describe the basic features of the isotope values in relation to the Global Meteoric Water Line (GMWL), (2) evaluate space for time substitutions traditionally used to establish δ18O-temperature relations, (3) evaluate site-to-site similarities across the network and identify those that are the most regionally representative, (4) examine atmospheric circulation patterns for several years with spatially coherent isotope patterns, and (5) provide examples of the implications this new dataset has for interpreting paleoclimate records (Bison Lake, Colorado and Minnetonka Cave, Idaho). Results indicate that snowpack δ18O is rarely a simple proxy of temperature. Instead, it exhibits a high degree of spatial heterogeneity and temporal variance that reflect additional processes such as vapor transport and post-depositional modification. Despite these complexities we identify consistent climate-isotope patterns and regionally representative locations that serve to better define Holocene hydroclimate estimates and their uncertainty. Climate change has and will affect western U.S. snowpack and we suggest these changes can be better understood and anticipated by hydrogen and oxygen isotope-based reconstructions of Holocene hydroclimate using a process-based understanding

  15. Isotopes in North American Rocky Mountain Snowpack 1993-2014

    NASA Astrophysics Data System (ADS)

    Anderson, Lesleigh; Berkelhammer, Max; Mast, M. Alisa

    2016-01-01

    We present ∼1300 new isotopic measurements (δ18O and δ2H) from a network of snowpack sites in the Rocky Mountains that have been sampled since 1993. The network includes 177 locations where depth-integrated snow samples are collected each spring near peak accumulation. At 57 of these locations snowpack samples were obtained for 10-21 years and their isotopic measurements provide unprecedented spatial and temporal documentation of snowpack isotope values at mid-latitudes. For environments where snowfall accounts for the majority of annual precipitation, snowmelt is likely to have the strongest influence on isotope values retained in proxy archives. In this first presentation of the dataset we (1) describe the basic features of the isotope values in relation to the Global Meteoric Water Line (GMWL), (2) evaluate space for time substitutions traditionally used to establish δ18O-temperature relations, (3) evaluate site-to-site similarities across the network and identify those that are the most regionally representative, (4) examine atmospheric circulation patterns for several years with spatially coherent isotope patterns, and (5) provide examples of the implications this new dataset has for interpreting paleoclimate records (Bison Lake, Colorado and Minnetonka Cave, Idaho). Results indicate that snowpack δ18O is rarely a simple proxy of temperature. Instead, it exhibits a high degree of spatial heterogeneity and temporal variance that reflect additional processes such as vapor transport and post-depositional modification. Despite these complexities we identify consistent climate-isotope patterns and regionally representative locations that serve to better define Holocene hydroclimate estimates and their uncertainty. Climate change has and will affect western U.S. snowpack and we suggest these changes can be better understood and anticipated by oxygen and hydrogen isotope-based reconstructions of Holocene hydroclimate using a process-based understanding of the

  16. Science and management of Rocky Mountain grizzly bears

    USGS Publications Warehouse

    Mattson, D.J.; Herrero, S.; Wright, R.G.; Pease, C.M.

    1996-01-01

    The science and management of grizzly bears (Ursus arctos horribilis) in the Rocky Mountains of North America have spawned considerable conflict and controversy. Much of this can be attributed to divergent public values, but the narrow perceptions and incomplete and fragmented problem definitions of those involved have exacerbated an inherently difficult situation. We present a conceptual model that extends the traditional description of the grizzly bear conservation system to include facets of the human domain such as the behavior of managers, elected officials, and the public. The model focuses on human-caused mortality, the key determinant of grizzly bear population growth in this region and the interactions and feedback loops among humans that have a major potential influence on bear mortality. We also briefly evaluate existing information and technical methods relevant to understanding this complex human-biophysical system. We observe not only that the extant knowledge is insufficient for prediction (and in some cases for description), but also that traditional positivistic science alone is not adequate for dealing with the problems of grizzly bear conservation. We recommend changes in science and management that could improve learning and responsiveness among the involved individuals and organizations, clarify some existing uncertainty, and thereby increase the effectiveness of grizzly bear conservation and management. Although adaptive management is a promising approach, we point out some keya??as yet unfulfilleda??contingencies for implementation of a method such as this one that relies upon social processes and structures that promote open learning and flexibility in all facets of the policy process.

  17. Habitat selection of Rocky Mountain elk in a nonforested environment

    USGS Publications Warehouse

    Sawyer, H.; Nielson, R.M.; Lindzey, F.G.; Keith, L.; Powell, J.H.; Abraham, A.A.

    2007-01-01

    Recent expansions by Rocky Mountain elk (Cervus elaphus) into nonforested habitats across the Intermountain West have required managers to reconsider the traditional paradigms of forage and cover as they relate to managing elk and their habitats. We examined seasonal habitat selection patterns of a hunted elk population in a nonforested high-desert region of southwestern Wyoming, USA. We used 35,246 global positioning system locations collected from 33 adult female elk to model probability of use as a function of 6 habitat variables: slope, aspect, elevation, habitat diversity, distance to shrub cover, and distance to road. We developed resource selection probability functions for individual elk, and then we averaged the coefficients to estimate population-level models for summer and winter periods. We used the population-level models to generate predictive maps by assigning pixels across the study area to 1 of 4 use categories (i.e., high, medium-high, medium-low, or low), based on quartiles of the predictions. Model coefficients and predictive maps indicated that elk selected for summer habitats characterized by higher elevations in areas of high vegetative diversity, close to shrub cover, northerly aspects, moderate slopes, and away from roads. Winter habitat selection patterns were similar, except elk shifted to areas with lower elevations and southerly aspects. We validated predictive maps by using 528 locations collected from an independent sample of radiomarked elk (n = 55) and calculating the proportion of locations that occurred in each of the 4 use categories. Together, the high- and medium-high use categories of the summer and winter predictive maps contained 92% and 74% of summer and winter elk locations, respectively. Our population-level models and associated predictive maps were successful in predicting winter and summer habitat use by elk in a nonforested environment. In the absence of forest cover, elk seemed to rely on a combination of shrubs

  18. Rocky Mountain snowpack chemistry at selected sites for 2001

    USGS Publications Warehouse

    Ingersoll, George P.; Mast, M. Alisa; Clow, David W.; Nanus, Leora; Campbell, Donald H.; Handran, Heather

    2003-01-01

    Because regional-scale atmospheric deposition data in the Rocky Mountains are sparse, a program was designed by the U.S. Geological Survey, in cooperation with the National Park Service, U.S. Department of Agriculture Forest Service, and other agencies, to more thoroughly determine the chemical composition of precipitation and to identify sources of atmospherically deposited contaminants in a network of high-elevation sites. Samples of seasonal snowpacks at 57 geographically distributed sites, in a regional network from New Mexico to Montana, were collected and analyzed for major ions (including ammonium, nitrate, and sulfate), alkalinity, and dissolved organic carbon during 2001. Sites selected in this report have been sampled annually since 1993, enabling identification of increases or decreases in chemical concentrations from year to year. Spatial patterns in snowpack-chemical data for concentrations of ammonium, nitrate, and sulfate indicate that concentrations of these acid precursors in less developed areas of the region are lower than concentrations in the heavily developed areas. Results for the 2001 snowpack-chemistry analyses, however, indicate increases in concentrations of ammonium and nitrate in particular at sites where past concentrations typically were lower. Since 1993, concentrations of nitrate and sulfate were highest from snowpack samples in northern Colorado that were collected from sites adjacent to the Denver metropolitan area to the east and the coal-fired powerplants to the west. In 2001, relatively high concentrations of nitrate (12.3 to 23.0 microequivalents per liter (?eq/L) and sulfate (7.7 to 12.5 ?eq/L) were detected in Montana and Wyoming. Ammonium concentrations were highest in north-central Colorado (14.5 to 16.9 ?eq/L) and southwestern Montana (12.8 to 14.2 ?eq/L).

  19. Isotopes in North American Rocky Mountain snowpack 1993–2014

    USGS Publications Warehouse

    Anderson, Lesleigh; Max Berkelhammer,; Mast, M. Alisa

    2015-01-01

    We present ∼1300 new isotopic measurements (δ18O and δ2H) from a network of snowpack sites in the Rocky Mountains that have been sampled since 1993. The network includes 177 locations where depth-integrated snow samples are collected each spring near peak accumulation. At 57 of these locations snowpack samples were obtained for 10–21 years and their isotopic measurements provide unprecedented spatial and temporal documentation of snowpack isotope values at mid-latitudes. For environments where snowfall accounts for the majority of annual precipitation, snowmelt is likely to have the strongest influence on isotope values retained in proxy archives. In this first presentation of the dataset we (1) describe the basic features of the isotope values in relation to the Global Meteoric Water Line (GMWL), (2) evaluate space for time substitutions traditionally used to establish δ18O-temperature relations, (3) evaluate site-to-site similarities across the network and identify those that are the most regionally representative, (4) examine atmospheric circulation patterns for several years with spatially coherent isotope patterns, and (5) provide examples of the implications this new dataset has for interpreting paleoclimate records (Bison Lake, Colorado and Minnetonka Cave, Idaho). Results indicate that snowpack δ18O is rarely a simple proxy of temperature. Instead, it exhibits a high degree of spatial heterogeneity and temporal variance that reflect additional processes such as vapor transport and post-depositional modification. Despite these complexities we identify consistent climate-isotope patterns and regionally representative locations that serve to better define Holocene hydroclimate estimates and their uncertainty. Climate change has and will affect western U.S. snowpack and we suggest these changes can be better understood and anticipated by oxygen and hydrogen isotope-based reconstructions of Holocene hydroclimate using a process-based understanding of the

  20. Nutritional condition of elk in rocky mountain national park

    USGS Publications Warehouse

    Bender, L.C.; Cook, J.G.

    2005-01-01

    We tested the hypothesis that elk in Rocky Mountain National Park (RMNP) were at ecological carrying capacity by determining herd-specific levels of nutritional condition and fecundity. Ingesta-free body fat levels in adult cows that were lactating were 10.6% (s = 1.7; range = 6.2-15.4) and 7.7% (s = 0.5; range = 5.9-10.1) in November 2001 for the Horseshoe and Moraine Park herds, respectively. Cows that were not lactating were able to accrue significantly more body fat: 14.0% (s = 1.1; range = 7.7-19.3) and 11.5% (s = 0.8; range = 8.6-15.1) for the Horseshoe and Moraine Park herds, respectively. Cow elk lost most of their body fat over winter (April 2002 levels were 3.9% [s = 0.4] and 2.9% [s = 0.4] for the Horseshoe and Moraine Park herds, respectively). Nutritional condition indicated that both Horseshoe Park and Moraine Park elk were well below condition levels elk can achieve on very good-excellent nutrition (i.e., >15% body fat; Cook et al. 2004) and were comparable to other free-ranging elk populations. However, condition levels were higher than those expected at a "food-limited" carrying capacity, and a proportion of elk in each herd were able to achieve condition levels indicative of very good-excellent nutrition. Elk in RMNP are likely regulated and/or limited by a complex combination of density-independent (including significant heterogeneity in forage conditions across RMNP's landscape) and density-dependent processes, as condition levels contradict a simple density-dependent model of a population at ecological carrying capacity.

  1. Body mass and antler development patterns of Rocky Mountain elk (Cervus elaphus nelsoni) in Michigan

    USGS Publications Warehouse

    Bender, L.C.; Carlson, E.; Schmitt, S.M.; Haufler, J.B.

    2003-01-01

    We documented mean and maximum body mass, mass accretion patterns and ander development patterns of Rocky Mountain elk in Michigan. Mean body mass of bulls averaged 9-11% heavier, and maximum body mass 23-27% heavier, in Michigan than in other Rocky Mountain elk populations. Mean live body mass of cows averaged 11% heavier in Michigan, but mean eviscerated body mass did not differ. Maximum body mass of cows was 10-24% heavier in Michigan. Body mass peaked at age 7.5 for bulls and 8.5 for cows, similar to other Rocky Mountain elk populations despite the greater body mass achieved in Michigan. Sexual dimorphism in bull and cow body mass increased until peak body mass was attained, whereupon bulls were ???38% heavier than cows. Antler development of bull elk peaked at age 10.5, comparable to other Rocky Mountain elk populations. Relations between antler development and body mass within age classes were highly variable, but generally weak. Greater body mass seen in Michigan, and the peaking of antler development well after body mass in bulls, suggested a phenotypic response to nutritional conditions that allow Rocky Mountain elk in Michigan to maximize the species growth potential.

  2. Transport of pollutants from eastern Colorado into the Rocky Mountains via upslope winds

    NASA Astrophysics Data System (ADS)

    Pina, Aaron J.

    The confluence of mountain meteorology and major pollution sources come together to transport pollutants across the Front Range, especially nitrogen species (NH3, NH4+, orgN, NO3 -, and HNO3) from agricultural and urban regions, into the Rocky Mountains. The focus of this study was to examine the meteorological conditions in which atmospheric wet deposition of inorganic nitrogen in the Rocky Mountains was anomalously high. We analyzed 19 years (1994-2013) of precipitation and concentrations of wet inorganic nitrogen data from three National Atmospheric Deposition Program (NAPD) sites in the Rocky Mountains: Beaver Meadows (CO19), Loch Vale (CO98), and Niwot Ridge (CO02). Beaver Meadows (2477 m), Loch Vale (3159 m), and Niwot Ridge (3520 m) are all within 40 km but differ in elevation, resulting in different seasonal precipitation composition and totals. The North American Regional Reanalysis (NARR) was used to observe synoptic conditions that influenced two high wet deposition events from August 18-20, 2006 and July 6-8, 2012. Interestingly, anti-cyclones in southern Canada and high precipitable water values associated with monsoonal flow played significant roles in initiating convection that caused high values of wet deposition of inorganic nitrogen in the Rocky Mountains. The Advanced Research WRF model was then used to simulate the meteorology at a high spatial and temporal resolution for the two time periods to examine the contribution of cloud-scale convection to wet nitrogen deposition in the Rocky Mountains. A mesoscale mountain circulation caused by differential heating between mountains slopes and the plains was the main driver of the slow westward transport towards the mountains while cloud-scale convection contributed greatly to the transport of nitrogen along the Colorado Front Range.

  3. Climate insensitivity of treeline in the Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Johnson, E. A.; Macias Fauria, M.

    2011-12-01

    Successful modelling efforts demonstrate that tree presence over a ~ 200 km2 alpine/subalpine area in the Front Ranges of the Canadian Rocky Mountains results from a multi-scale spatiotemporal process competition involving not only growing season temperatures but also topographical shelter, water availability, and substrate stability and availability. The study area was selected to represent the diversity of substrates and geomorphologic processes found in the Canadian Rockies, and ranges in elevation from 1400 to > 2800 meters above sea level. Tree presence was mapped at 10m resolution using a combination of remote sensing imagery (taken in 2008) and intensive ground truthing, and modelled with an ensemble of state-of-the-art environmental envelope models. Explanatory variables chosen represented not only temperature and moisture availability (computed over 1971-2000 climate normals), but also substrate diversity, slope angle and type, geomorphologic features, modelled regolith depth, and concavity/convexity of the terrain. Such variables were meant to serve as proxies for known convergent and divergent processes that occur on steep landscapes and that have profound influence on tree establishment and survival. Model performance was very high and revealed substrate and geomorphology to be the most important explanatory variables for tree presence in the area. Available high-resolution imagery for 1954 enabled the mapping of tree presence over most of the study area and the identification of changes in the distribution of trees over the last nearly six decades. Overall, the only major observed changes were related to post-fire stand recovery, and areas with treeline advance were insignificant at the landscape scale. Tree suitable sites were projected onto high resolution grids of late 21st century climatic conditions predicted by regional climate models driven by atmosphere-ocean general circulation models. Emissions scenario was A2 (as defined in the Special

  4. A Natural Resource Condition Assessment for Rocky Mountain National Park

    USGS Publications Warehouse

    Theobald, D.M.; Baron, J.S.; Newman, P.; Noon, B.; Norman, J. B.; Leinwand, I.; Linn, S.E.; Sherer, R.; Williams, K.E.; Hartman, M.

    2010-01-01

    We conducted a natural resource assessment of Rocky Mountain National Park (ROMO) to provide a synthesis of existing scientific data and knowledge to address the current conditions for a subset of important park natural resources. The intent is for this report to help provide park resource managers with data and information, particularly in the form of spatially-explicit maps and GIS databases, about those natural resources and to place emerging issues within a local, regional, national, or global context. With an advisory team, we identified the following condition indicators that would be useful to assess the condition of the park: Air and Climate: Condition of alpine lakes and atmospheric deposition Water: Extent and connectivity of wetland and riparian areas Biotic Integrity: Extent of exotic terrestrial plant species, extent of fish distributions, and extent of suitable beaver habitat Landscapes: Extent and pattern of major ecological systems and natural landscapes connectivity These indicators are summarized in the following pages. We also developed two maps of important issues for use by park managers: visitor use (thru accessibility modeling) and proportion of watersheds affected by beetle kill. Based on our analysis, we believe that there is a high degree of concern for the following indicators: condition of alpine lakes; extent and connectivity of riparian/wetland areas; extent of exotic terrestrial plants (especially below 9,500’); extent of fish distributions; extent of suitable beaver habitat; and natural landscapes and connectivity. We found a low degree of concern for: the extent and pattern of major ecological systems. The indicators and issues were also summarized by the 34 watershed units (HUC12) within the park. Generally, we found six watersheds to be in “pristine” condition: Black Canyon Creek, Comanche Creek, Middle Saint Vrain Creek, South Fork of the Cache la Poudre, Buchanan Creek, and East Inlet. Four watersheds were found to have

  5. Professional School Counseling in the Rocky Mountain Region: Graduation Rates of CACREP vs. Non-CACREP Accredited Programs

    ERIC Educational Resources Information Center

    Hancock, Mary D.; Boes, Susan R.; Snow, Brent M.; Chibbaro, Julia S.

    2010-01-01

    School Counseling in the Rocky Mountain region of the United States was explored with a focus on the production of professional school counselors in the Rocky Mountain region of the Association for Counselor Education and Supervision (RMACES). Comparisons of program graduates are made by state and program as well as by accreditation status. State…

  6. 76 FR 77224 - Rocky Mountain Natural Gas LLC; Notice of Petition for Rate Approval and Revised Statement of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Rocky Mountain Natural Gas LLC; Notice of Petition for Rate Approval and Revised Statement of Operating Conditions Take notice that on November 30, 2011, Rocky Mountain...

  7. Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region (RMCCS)

    SciTech Connect

    McPherson, Brian; Matthews, Vince

    2013-09-30

    The primary objective of the “Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region” project, or RMCCS project, is to characterize the storage potential of the most promising geologic sequestration formations within the southwestern U.S. and the Central Rocky Mountain region in particular. The approach included an analysis of geologic sequestration formations under the Craig Power Station in northwestern Colorado, and application or extrapolation of those local-scale results to the broader region. A ten-step protocol for geologic carbon storage site characterization was a primary outcome of this project.

  8. Paratuberculosis (Johne's disease) in bighorn sheep and a Rocky Mountain goat in Colorado.

    PubMed

    Williams, E S; Spraker, T R; Schoonveld, G G

    1979-04-01

    Between May, 1972 and February, 1978, six cases of paratuberculosis (Johne's Disease) caused by Mycobacterium paratuberculosis were diagnosed in free-ranging Rocky Mountain bighorn sheep (Ovis canadensis) and one Rocky Mountain goat (Oreamnos americanus) on or near Mt. Evans in Colorado. Diagnosis of paratuberculosis was based on gross and histopathologic examination of the animals and by isolation of M. paratuberculosis from three sheep and the goat. The clinical signs and pathologic changes seen in the bighorn sheep resembled those described in cattle, while the lesions in the goat were similar to those described for domestic sheep and goats.

  9. Mountain Pine Beetle Host Selection Between Lodgepole and Ponderosa Pines in the Southern Rocky Mountains.

    PubMed

    West, Daniel R; Briggs, Jennifer S; Jacobi, William R; Negrón, José F

    2016-02-01

    Recent evidence of range expansion and host transition by mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) has suggested that MPB may not primarily breed in their natal host, but will switch hosts to an alternate tree species. As MPB populations expanded in lodgepole pine forests in the southern Rocky Mountains, we investigated the potential for movement into adjacent ponderosa pine forests. We conducted field and laboratory experiments to evaluate four aspects of MPB population dynamics and host selection behavior in the two hosts: emergence timing, sex ratios, host choice, and reproductive success. We found that peak MPB emergence from both hosts occurred simultaneously between late July and early August, and the sex ratio of emerging beetles did not differ between hosts. In two direct tests of MPB host selection, we identified a strong preference by MPB for ponderosa versus lodgepole pine. At field sites, we captured naturally emerging beetles from both natal hosts in choice arenas containing logs of both species. In the laboratory, we offered sections of bark and phloem from both species to individual insects in bioassays. In both tests, insects infested ponderosa over lodgepole pine at a ratio of almost 2:1, regardless of natal host species. Reproductive success (offspring/female) was similar in colonized logs of both hosts. Overall, our findings suggest that MPB may exhibit equally high rates of infestation and fecundity in an alternate host under favorable conditions.

  10. How the Mountain Pine Beetle (Dendroctonus ponderosae) Breached the Canadian Rocky Mountains

    PubMed Central

    Janes, Jasmine K.; Li, Yisu; Keeling, Christopher I.; Yuen, Macaire M.S.; Boone, Celia K.; Cooke, Janice E.K.; Bohlmann, Joerg; Huber, Dezene P.W.; Murray, Brent W.; Coltman, David W.; Sperling, Felix A.H.

    2014-01-01

    The mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins), a major pine forest pest native to western North America, has extended its range north and eastward during an ongoing outbreak. Determining how the MPB has expanded its range to breach putative barriers, whether physical (nonforested prairie and high elevation of the Rocky Mountains) or climatic (extreme continental climate where temperatures can be below −40 °C), may contribute to our general understanding of range changes as well as management of the current epidemic. Here, we use a panel of 1,536 single nucleotide polymorphisms (SNPs) to assess population genetic structure, connectivity, and signals of selection within this MPB range expansion. Biallelic SNPs in MPB from southwestern Canada revealed higher genetic differentiation and lower genetic connectivity than in the northern part of its range. A total of 208 unique SNPs were identified using different outlier detection tests, of which 32 returned annotations for products with putative functions in cholesterol synthesis, actin filament contraction, and membrane transport. We suggest that MPB has been able to spread beyond its previous range by adjusting its cellular and metabolic functions, with genome scale differentiation enabling populations to better withstand cooler climates and facilitate longer dispersal distances. Our study is the first to assess landscape-wide selective adaptation in an insect. We have shown that interrogation of genomic resources can identify shifts in genetic diversity and putative adaptive signals in this forest pest species. PMID:24803641

  11. Indicators for elevated risk of human exposure to host-seeking adults of the Rocky Mountain wood tick (Dermacentor andersoni) in Colorado.

    PubMed

    Eisen, Lars; Ibarra-Juarez, Luis A; Eisen, Rebecca J; Piesman, Joseph

    2008-06-01

    The human-biting adult stage of the Rocky Mountain wood tick (Dermacentor andersoni) can cause tick paralysis in humans and domestic animals and is the primary tick vector in the intermountain west of the pathogens causing Colorado tick fever, Rocky Mountain spotted fever, and tularemia. We conducted drag sampling studies in Poudre Canyon and Rocky Mountain National Park of Larimer County, CO, to determine microhabitat use patterns by host-seeking D. andersoni adults and find environmental factors signaling elevated risk of tick exposure. Big sagebrush (Artemisia tridentata) was found to serve as a general indicator of areas with elevated risk of exposure to host-seeking D. andersoni adults; this likely results from a shared climate tolerance of big sagebrush and D. andersoni. Grass was the favored substrate for host-seeking ticks. Drag sampling of open grass or grass bordering rock or shrub produced abundances of D. andersoni adults significantly higher than sampling of brush. Sampling sites in Rocky Mountain National Park, relative to Poudre Canyon, were characterized by more intense usage by elk (Cervus elaphus) but decreased brush coverage, smaller brush size, and lower abundances of host-seeking D. andersoni adults. There has been a tremendous increase in the population of elk in Rocky Mountain National Park over the last decades and we speculate that this has resulted in an ecological cascade where overgrazing of vegetation by elk is followed by suppression of rodent populations, decreased tick abundance, and, ultimately, reduced risk of human exposure to D. andersoni and its associated pathogens.

  12. [Relationships between soil and rocky desertification in typical karst mountain area based on redundancy analysis].

    PubMed

    Long, Jian; Liao, Hong-Kai; Li, Juan; Chen, Cai-Yun

    2012-06-01

    Redundancy analysis (RDA) was employed to reveal the relationships between soil and rocky desertification through vegetation investigation and analysis of soil samples collected in typical karst mountain area of southwest Guizhou Province. The results showed that except TP, TK and ACa, all other variables including SOC, TN, MBC, ROC, DOC, available nutrients and basal respiration showed significant downward trends during the rocky desertification process. RDA results showed significant correlations between different types of desertification and soil variables, described as non-degraded > potential desertification > light desertification > moderate desertification > severe desertification. Moreover, RDA showed that using SOC, TN, AN, and BD as soil indicators, 74.4% of the variance information on soil and rocky desertification could be explained. Furthermore, the results of correlation analysis showed that soil variables were significantly affected by surface vegetation. Considering the ecological function of the aboveground vegetation and the soil quality, Zanthoxylum would be a good choice for restoration of local vegetation in karst mountain area.

  13. The characterization and manipulation of the bacterial microbiome of the Rocky Mountain wood tick, Dermacentor andersoni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: In North America, ticks are the most economically impactful vectors of human and animal pathogens. The Rocky Mountain wood tick, Dermacentor andersoni (Acari: Ixodidae), transmits Rickettsia rickettsii and Anaplasma marginale to humans and cattle, respectively. In recent years, studies h...

  14. Forest Fire Vulnerability in the Northern Rocky Mountains under Climate Change

    NASA Astrophysics Data System (ADS)

    Dalla Vicenza, S. A.; Byrne, J. M.; Letts, M. G.; MacDonald, R. J.

    2011-12-01

    Forest fires are becoming an increasing concern as a result of ongoing and projected climate changes. Rising temperatures, coupled with changes in precipitation patterns and intensities may lead to substantial increases in forest fire vulnerability for many areas, including the Rocky Mountains. Increased soil moisture deficits and longer periods of summer dryness are key controls on forest fires. The main objectives of this research are to assess and quantify the impacts of climate change on forest fire hazard in the northern Rocky Mountains. Ensemble climate scenarios were selected from General Circulation Model (GCM) outputs to represent the possible range of future climates. The Canadian Forest Fire Weather Index System has been integrated with the GENESYS (Generate Earth Systems Science input) hydrometeorological model to assess potential changes in forest fire hazard in the Rocky Mountains. A wind model was developed to estimate daily wind speed variation with elevation. Modelled changes in forest fire hazard are presented for a range of future climate scenarios through 2099 for study regions in the northern Rocky Mountains.

  15. THE EFFECTS OF ELEVATED METALS ON BENTHIC COMMUNITY METABOLISM IN A ROCKY MOUNTAIN STREAM

    EPA Science Inventory

    The effects of elevated metals (dissolved Zn, Mn and/or Fe) in a Rocky Mountain stream were assessed using measures of primary productivity, community respiration and water-column toxicity. Primary productivity was measured as rates of O2 evolution from natural substrates incubat...

  16. Adolescent Drug Use in Three Small Rural Communities in the Rocky Mountain Region.

    ERIC Educational Resources Information Center

    Swaim, Randall; And Others

    1986-01-01

    Differences were found among three small Rocky Mountain towns in both lifetime prevalence and frequency of occurrence of different types of drug users, indicating that small, rural communities are likely to develop idiosyncratic patterns of drug use. These differences were more evident among eighth-grade than among twelfth-grade students.…

  17. Current and historical deposition of PBDEs, pesticides, PCBs, and PAHs to Rocky Mountain National Park

    EPA Science Inventory

    An analytical method was developed for the trace analysis of 98 semi-volatile organic compounds (SOCs) in remote, high elevation lake sediment. Sediment cores from Lone Pine Lake (West of the Continental Divide) and Mills Lake (East of the Continental Divide) in Rocky Mountain Na...

  18. Association analysis of PRNP gene region with chronic wasting disease in Rocky Mountain elk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) of cervids including whitetail (Odocoileus virginianus) and mule deer (Odocoileus hemionus), Rocky Mountain elk (Cervus elaphus nelsoni), and moose (Alces alces). A leucine variant at position 132 (132L) in...

  19. Effect of lunar phase on diurnal activity of Rocky Mountain Elk (Cervus Elaphus Nelsonii)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rocky Mountain elk (Cervus elaphus nelsonii) are important components in many ecosystems across the western US and are integral with both Native American and contemporary western culture. They are prized by hunters and are the object of countless works of art. These magnificent creatures are studi...

  20. Geographic patterns of genetic variation and population structure in Pinus aristata, Rocky Mountain bristlecone pine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pinus aristata Engelm., Rocky Mountain bristlecone pine, has a narrow core geographic and elevational distribution, occurs in disjunct populations and is threatened by multiple stresses, including rapid climate change, white pine blister rust, and bark beetles. Knowledge of genetic diversity and pop...

  1. SUPERFUND TREATABILITY CLEARINGHOUSE: LITIGATION TECHNICAL SUPPORT AND SERVICES, ROCKY MOUNTAIN ARSENAL (BASIS F WASTES)

    EPA Science Inventory

    This report consists of 5 documents which cover incineration tests at the Rocky Mountain Arsenal (RMA), Denver, CO, ranging from a labor- atory test plan and bench-scale test to full-scale testing. This abstract reports only on the results of bench-scale incineration test...

  2. 77 FR 14418 - Grand Ditch Breach Restoration Draft Environmental Impact Statement, Rocky Mountain National Park...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... National Park Service Grand Ditch Breach Restoration Draft Environmental Impact Statement, Rocky Mountain National Park, CO AGENCY: National Park Service, Department of the Interior. ACTION: Notice of Availability... National Park. SUMMARY: Pursuant to the National Environmental Policy Act of 1969, 42 U.S.C....

  3. Effect of lunar phase on summer activity budgets of Rocky Mountain elk (Cervus elaphus nelsonii)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rocky Mountain elk (Cervus elaphus) exist in a complex biological and social environment that is marked by necessary diurnal activities such as foraging, ruminating, and resting. It has long been understood that elk demonstrate circadian rhythms. One of the most predictable variables that could af...

  4. Spatiotemporal patterns of mountain pine beetle activity in the southern Rocky Mountains.

    PubMed

    Chapman, Teresa B; Veblen, Thomas T; Schoennagel, Tania

    2012-10-01

    The current mountain pine beetle (MPB; Dendroctonus ponderosae) outbreak in the southern Rocky Mountains has impacted approximately 750 000 ha of forest. Weather and habitat heterogeneity influence forest insect population dynamics at multiple spatial and temporal scales. Comparison of forest insect population dynamics in two principal host species may elucidate the relative contribution of weather and landscape factors in initiating and driving extensive outbreaks. To investigate potential drivers of the current MPB outbreak, we compared broadscale spatiotemporal patterns of MPB activity in lodgepole pine (Pinus contorta) and ponderosa pine (Pinus ponderosa) from 1996 to 2010 in Colorado and southern Wyoming with regional weather fluctuations, and then tracked the annual meso-scale progression of the epidemic in lodgepole pine with respect to weather, topographic, previous MPB activity, and forest stand attributes. MPB activity in lodgepole pine compared to ponderosa pine showed higher magnitude and extent of spatial synchrony. Warm temperatures and low annual precipitation favorable to beetle populations showed high regional synchrony across areas of both pine species, suggesting that habitat interacts with weather in synchronizing MPB populations. Cluster analysis of time series patterns identified multiple, disjunct locations of incipient MPB activity (epicenters) in lodgepole pine, which overlapped an earlier 1980s MPB outbreak, and suggests a regional trigger (drought) across this homogenous forest type. Negative departures from mean annual precipitation played a key role in subsequent spread of MPB outbreak. Development of the outbreak was also associated with lower elevations, greater dominance by lodgepole pine, stands of larger tree size, and stands with higher percentage canopy cover. After epidemic levels of MPB activity were attained, MPB activity was less strongly associated with stand and weather variables. These results emphasize the importance of

  5. Rocky Mountain snowpack chemistry network; history, methods, and the importance of monitoring mountain ecosystems

    USGS Publications Warehouse

    Ingersoll, George P.; Turk, John T.; Mast, M. Alisa; Clow, David W.; Campbell, Donald H.; Bailey, Zelda C.

    2002-01-01

    Because regional-scale atmospheric deposition data in the Rocky Mountains are sparse, a program was designed by the U.S. Geological Survey to more thoroughly determine the quality of precipitation and to identify sources of atmospherically deposited pollution in a network of high-elevation sites. Depth-integrated samples of seasonal snowpacks at 52 sampling sites, in a network from New Mexico to Montana, were collected and analyzed each year since 1993. The results of the first 5 years (1993?97) of the program are discussed in this report. Spatial patterns in regional data have emerged from the geographically distributed chemical concentrations of ammonium, nitrate, and sulfate that clearly indicate that concentrations of these acid precursors in less developed areas of the region are lower than concentrations in the heavily developed areas. Snowpacks in northern Colorado that lie adjacent to both the highly developed Denver metropolitan area to the east and coal-fired powerplants to the west had the highest overall concentrations of nitrate and sulfate in the network. Ammonium concentrations were highest in northwestern Wyoming and southern Montana.

  6. The Response of Vegetation Zonation in Rocky Mountain Ecotones to Climate Change

    NASA Astrophysics Data System (ADS)

    Foster, A.; Shuman, J. K.; Shugart, H. H., Jr.

    2014-12-01

    Mean annual temperatures in the western United States have increased in the last few decades, and during the 21st century, it is predicted that this warming trend will continue. This change in climate may create shifts in the optimal ranges of vegetation within the Rocky Mountains, requiring species migration. For a species at the top of a mountain there may be little room for upward migration. These forests are a crucial part of the US's carbon budget, thus it is important to analyze how climate change will affect the zonation and species composition of vegetation in Rocky Mountain landscapes. UVAFME is an individual-based gap model that simulates biomass and species composition of a forest. Originally developed for northeast China and applied across all of Russia, this model has accurately simulated diverse forests in a range of climates, as well as the response of these forests to climate change. UVAFME is first calibrated to several sites along the Colorado and Wyoming Rocky Mountains using species, soil, and climate data from the US Forest Service. The initial model output of biomass and species composition is tested against forest inventory data and expected forest type ecotone along an elevational gradient. The model is then run with a linear increase in temperature of 3°C over 200 years, corresponding to the A1B IPPC climate scenario. These results are compared to current forest inventory data and to model runs without climate change. We project that with climate change species ranges will shift up the mountain, leading to an increase in the deciduous species Populus tremuloides, and a decrease in coniferous species at high elevations. These results are an important step in evaluating the response of Rocky Mountain vegetation to climate change and will help predict the future of these crucial ecosystems.

  7. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains

    USGS Publications Warehouse

    Nanus, L.; Williams, M.W.; Campbell, D.H.; Tonnessen, K.A.; Blett, T.; Clow, D.W.

    2009-01-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration 3000 m, with 80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world.

  8. Satellite Spots Turbulence Producing Mountain Waves in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Britt, Robert Roy

    2002-01-01

    When masses of air flow over massive mountains, invisible waves often roil high into the stratosphere, affecting weather and mixing the chemicals that contribute to ozone depletion. The waves also create turbulence that can be a danger to high-altitude research missions by NASA's lightweight ER-2 aircraft, as well as shuttle flights upon reentry. In Friday's issue of the journal Science, researchers report for the first time a technique that allows them to see temperature signatures from these invisible mountain waves. The method, involving high-resolution, satellite-based measurement of adjacent pockets of the atmosphere, is expected to aid in spotting turbulence and, one day, improve weather forecasts.

  9. Travelers' Health: Rickettsial (Spotted and Typhus Fevers) and Related Infections (Anaplasmosis and Ehrlichiosis)

    MedlinePlus

    ... Mediterranean spotted fever), R. rickettsii (known as both Rocky Mountain spotted fever and Brazilian spotted fever), O. tsutsugamushi (scrub typhus), ... and lymphadenopathy R. raoultii Tick Unknown Europe, Asia ... Mountain spotted fever, Brazilian spotted fever, febre maculosa, São Paulo exanthematic ...

  10. Translating science into policy: using ecosystem thresholds to protect resources in Rocky Mountain National Park.

    PubMed

    Porter, Ellen; Johnson, Susan

    2007-10-01

    Concern over impacts of atmospheric nitrogen deposition to ecosystems in Rocky Mountain National Park, Colorado, has prompted the National Park Service, the State of Colorado Department of Public Health and Environment, the Environmental Protection Agency, and interested stakeholders to collaborate in the Rocky Mountain National Park Initiative, a process to address these impacts. The development of a nitrogen critical load for park aquatic resources has provided the basis for a deposition goal to achieve resource protection, and parties to the Initiative are now discussing strategies to meet that goal by reducing air pollutant emissions that contribute to nitrogen deposition in the Park. Issues being considered include the types and locations of emissions to be reduced, the timeline for emission reductions, and the impact of emission reductions from programs already in place. These strategies may serve as templates for addressing ecosystem impacts from deposition in other national parks.

  11. Wind energy resource atlas. Volume 8. The southern Rocky Mountain region

    SciTech Connect

    Andersen, S.R.; Freeman, D.L.; Hadley, D.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-03-01

    The Southern Rocky Mountain atlas assimilates five collections of wind resource data: one for the region and one for each of the four states that compose the Southern Rocky Mountain region (Arizona, Colorado, New Mexico, and Utah). At the state level, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

  12. Mapping critical loads of nitrogen deposition for aquatic ecosystems in the Rocky Mountains, USA

    USGS Publications Warehouse

    Nanus, Leora; Clow, David W.; Saros, Jasmine E.; Stephens, Verlin C.; Campbell, Donald H.

    2012-01-01

    Spatially explicit estimates of critical loads of nitrogen (N) deposition (CLNdep) for nutrient enrichment in aquatic ecosystems were developed for the Rocky Mountains, USA, using a geostatistical approach. The lowest CLNdep estimates (-1 yr-1) occurred in high-elevation basins with steep slopes, sparse vegetation, and abundance of exposed bedrock and talus. These areas often correspond with areas of high N deposition (>3 kg N ha-1 yr-1), resulting in CLNdep exceedances ≥1.5 ± 1 kg N ha-1 yr-1. CLNdep and CLNdep exceedances exhibit substantial spatial variability related to basin characteristics and are highly sensitive to the NO3- threshold at which ecological effects are thought to occur. Based on an NO3- threshold of 0.5 μmol L-1, N deposition exceeds CLNdep in 21 ± 8% of the study area; thus, broad areas of the Rocky Mountains may be impacted by excess N deposition, with greatest impacts at high elevations.

  13. Rate of woody residue incorporation into Northern Rocky Mountain forest soils. Forest service research paper

    SciTech Connect

    Harvey, A.E.; Larsen, M.J.; Jurgensen, M.F.

    1981-08-01

    The important properties contributed to forest soils by decayed wood in the Northern Rocky Mountains make it desirable to determine the time required to reconstitute such materials in depleted soils. The ratio of fiber production potential (growth) to total quantity of wood in a steady state ecosystem provides estimates varying from approximately 100 to 300 years, depending on habitat type, for replacement of decayed soil wood. Radiocarbon dating of decayed wood in various stages of incorporation into the soil ranged from 100 to 550 years, depending on site and depth in soil. Species identification of decayed wood indicated that Douglas-fir residue is the most persistent woody material in these Northern Rocky Mountain soils.

  14. Peneplains of the Front Range and Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Lee, Willis T.

    1923-01-01

    The purpose of this paper is to call attention to some of the major surface features in the Rocky Mountain National Park and to point out their probable correlation with similar features in neighboring regions. The observations on which the paper is based were made in the summer of 1916, during an investigation in which other work demanded first consideration. This paper may therefore be considered a by-product. For the same reason many of the observations were not followed to conclusions, yet the data obtained seem to be sufficient to establish a certain order of events, the recognition of which may be of assistance in working out in detail the geologic and geographic history of the Rocky Mountain region.

  15. Growth-Form Characteristics of Ancient Rocky Mountain Bristlecone Pines (Pinus aristata), Colorado

    USGS Publications Warehouse

    Brunstein, F. Craig

    2006-01-01

    This report describes and illustrates growth-form characteristics of Rocky Mountain bristlecone pines (Pinus aristata) at several sites in the Rocky Mountains in Colorado. Most of this study concentrates on 1,000- to 2,500-year-old bristlecone pines; however, the report also describes some of the growth-form characteristics of younger trees (about 20 to less than 1,000 years old) in order to show the continuous changes in tree form from youth to old age. To better describe the trees in this study, some tree-structure nomenclature is introduced and a growth-form classification system is provided. Other topics include the relationship of the trees to their substrate and the potential changes in the growth forms of some bristlecone pines due to damage caused by fire, porcupines, impacts from tumbling boulders, and lightning strikes.

  16. The importance of atmospheric ammonia in the Rocky Mountain region of the western U.S

    NASA Astrophysics Data System (ADS)

    Collett, J. L.; Benedict, K. B.; Chen, D.; Day, D.; Prenni, A. J.; Li, Y.; Kreidenweis, S. M.; Schichtel, B. A.; McDade, C.; Malm, W. C.

    2013-12-01

    Although it is not a regulated pollutant, ammonia is an important contributor to several air quality problems. Included among these are the formation of fine particles that contribute to visibility degradation and adverse health effects as well as contributions to excess nitrogen deposition to sensitive ecosystems. Because it is not regulated, gaseous ammonia and fine particle ammonium have traditionally not been routinely measured in many air quality monitoring networks. Measurements of ammonium wet deposition by the National Atmospheric Deposition Program, however, clearly indicate an increasing contribution to reactive nitrogen deposition. Here we report observations of several recent research efforts to characterize atmospheric ammonia and ammonium in the Rocky Mountain region of the western United States. These include measurements made as part of the Rocky Mountain Atmospheric Nitrogen and Sulfur (RoMANS) deposition study (2006-10), the Grand Teton Reactive Nitrogen Deposition Study (GrandTReNDS) (2011), and through pilot-scale operation of an NHx (NHx = gaseous NH3 plus fine particle NH4+) monitoring effort at 9 sites within the Interagency Monitoring of PROtected Visual Environments (IMPROVE) program (2011-12). Measurements during RoMANS clearly reveal the importance of agricultural source emission contributions to both dry and wet reactive nitrogen deposition in Rocky Mountain National Park. The importance of ammonia and ammonium deposition is even greater at Grand Teton National Park, which often sits downwind of extensive agricultural operations in central Idaho and northern Utah. Over a year of measurements in the IMPROVE NHx pilot network reveals strong spatial gradients in reduced nitrogen concentrations across the Rocky Mountain region, with higher concentrations in regions closer to agricultural sources and at locations and times strongly impacted by wildfires. These observations, along with additional observations from other related studies in the

  17. Distribution of corticolous noncrustose lichens on trunks of Rocky Mountain junipers in Boulder County, Colorado.

    USGS Publications Warehouse

    Peard, J.L.

    1983-01-01

    Nineteen species of noncrustose lichens were found on Juniperus scopulorum bark; 3 species had relatively high cover and frequency values and were characterized as typical lichens of Rocky Mountain junipers: Xanthoria fallax, Phaeophyscia hirsuta and Physcia caesia. Total cover per tree was low (4%) and most species preferred the N and E sides of trunk bases. These distributional trends may reflect gradients of exposure to wind, insolation, and rate of bark exfoliation. -Author Juniperus scopulorum Phaeophyscia hirsuta Physcia caesia Xanthoria fallax.

  18. On the palynomorph-based biozones in paleogene strata of rocky mountain basins

    USGS Publications Warehouse

    Nichols, D.J.

    2009-01-01

    In a paper published in this journal, and in five previous papers published elsewhere, Lillegraven and McKenna (2008) criticize the research of Nichols and Ott (1978) and Nichols and Flores (2006). They attempt to cast doubt on the validity of the palynomorph-based biozones (the "P- zone" system) applied in strata of Paleocene age throughout the Rocky Mountain region. Their conclusions are without merit.

  19. Proceedings, 95th regular meeting: The Rocky Mountain Coal Mining Institute

    SciTech Connect

    Finnie, D.G.

    1999-07-01

    In addition to the nine convention papers published in these proceedings, information is given on the membership and organization of the Rocky Mountain Coal Mining Institute. The papers are concerned with the economics and management of coal companies, occupational safety of their employees, public anxiety of the environmental impacts of surface mining, and contracting for mining equipment maintenance. Papers have been processed separately for inclusion on the data base.

  20. Late Paleozoic deformation of interior North America: The greater Ancestral Rocky Mountains

    SciTech Connect

    Ye, Hongzhuan |; Royden, L.; Burchfiel, C.; Schuepbach, M.

    1996-09-01

    Late Paleozoic deformation within interior North America has produced a series of north-northwest- to northwest-trending elongate basins that cover much of Oklahoma, Texas, New Mexico, Colorado, and Utah. Each basin thickens asymmetrically toward an adjacent region of coeval basement uplift from which it is separated by synsedimentary faults with great vertical relief. The remarkable coincidence in timing, geometry, and apparent structural style throughout the region of late Paleozoic deformation strongly suggests that these paired regions of basin subsidence and basement uplift form a unified system of regional deformation, the greater Ancestral Rocky Mountains. Over this region, basin subsidence and basement uplift were approximately synchronous, beginning in the Chesterian-Morrowan, continuing through the Pennsylvanian, and ending in the Wolfcampian (although minor post-Wolfcampian deformation occurs locally). The basement uplifts show evidence for folding and faulting in the Pennsylvanian and Early Permian. Reverse faults and thrust faults have been drilled over many of the uplifts, but only in the Anadarko region has thrusting of the basement uplifts over the adjacent basin been clearly documented. Extensive basement-involved thrusting also occurs along the margins of the Delaware and Midland basins, and suggests that the entire greater Ancestral Rocky Mountains region probably formed as the result of northeast-southwest-directed-intraplate shortening. Deformation within the greater Ancestral Rocky Mountains was coeval with late Paleozoic subduction along much of the North American plate margin, and has traditionally been related to emplacement of thrust sheets within the Ouachita-Marathon orogenic belt. The nature, timing, and orientation of events along the Ouachita-Marathon belt make it difficult to drive the deformation of the greater Ancestral Rocky Mountains by emplacement of the Ouachita-Marathon belt along the southern margin of North America.

  1. Hydrological Trends in a High Alpine Watershed in Rocky Mountain National Park

    NASA Astrophysics Data System (ADS)

    Pina, A.; Moore, C. E.; Records, R.; Medina, I. D.; Miner, G. L.

    2014-12-01

    Recent studies reveal amplified air temperature warming trends in the Rocky Mountains than global averages, as well as earlier snowmelt timing and decreased snow-water equivalent (SWE) relative to past records in this region. Changes in SWE and snowmelt runoff timing directly impact water availability in alpine watersheds as well as downstream ecosystem services. In this study we evaluated local trends in air temperature, precipitation, snowpack, and streamflow timing to look for similarities to regional trends reported in literature. We assessed two long-term alpine data collection sites in Rocky Mountain National Park: Bear Lake SNOTEL site (2896 m; 1981-2013) and Loch Vale Watershed (3159 m; 1984-2011), using the Mann-Kendall test to examine trends in average monthly temperature, number of days above freezing, peak SWE depth and timing, number of snow-free days, and total precipitation at Bear Lake, as well as streamflow volume and timing metrics at the outlet of Loch Vale. We found seasonal patterns and magnitudes of warming similar to regional trend findings, with significant increasing trends in average monthly mean air temperatures for most months. The average number of days below 0ºC also significantly decreased in fall and winter. However, we found no significant trends in peak SWE, discharge rate, precipitation, accumulated snowfall, or the number of snow-free days at Bear Lake or Loch Vale sites. These results suggest reported regional warming trends are not reflected in localized snowmelt trends in alpine Rocky Mountain watersheds.

  2. Rocky Mountain snowpack physical and chemical data for selected sites, 2010

    USGS Publications Warehouse

    Ingersoll, George P.; Mast, M. Alisa; Swank, James M.; Campbell, Chelsea D.

    2010-01-01

    The Rocky Mountain Snowpack program established a network of snowpack-sampling sites in the Rocky Mountain region, from New Mexico to Montana, to monitor the chemical content of snow and to understand the effects of regional atmospheric deposition on freshwater systems. Scientists with the U.S. Geological Survey, in cooperation with the National Park Service; the U.S. Department of Agriculture Forest Service; the Colorado Department of Public Health and Environment; Teton County, Wyoming; and others, annually collected and analyzed snow-pack samples at 48 or more sites in the Rocky Mountain region during 1993-2010. Sixty-three snowpack-sampling sites were each sampled once in 2010, and those data are presented in this report. Data include acid-neutralization capacity, specific conductance, pH, hydrogen ion concentrations, dissolved concentrations of major constituents (calcium, magnesium, sodium, potassium, ammonium, chloride, sulfate, and nitrate), dissolved organic carbon concentrations, snow-water equivalent, snow depth, total mercury concentrations, and ionic charge balance. Quality-assurance data for field and laboratory blanks and field replicates for 2010 also are included.

  3. Rocky Mountain Snowpack Physical and Chemical Data for Selected Sites, 1993-2008

    USGS Publications Warehouse

    Ingersoll, George P.; Mast, M. Alisa; Campbell, Donald H.; Clow, David W.; Nanus, Leora; Turk, John T.

    2009-01-01

    The Rocky Mountain Snowpack program established a network of snowpack-sampling sites in the Rocky Mountain region from New Mexico to Montana to monitor the chemical content of snow to help in the understanding of the effects of atmospheric deposition to this region. The U.S. Geological Survey, in cooperation with the National Park Service, the USDA Forest Service, Teton County in Wyoming, Rio Blanco County in Colorado, Pitkin County in Colorado, and others, collected and analyzed snowpack samples annually for 48 or more sites in the Rocky Mountain region during 1993-2008. Forty-eight of the 162 snow-sampling sites have been sampled annually since 1993. Data include acid-neutralization capacity, specific conductance, pH, hydrogen ion concentrations, dissolved concentrations of major constituents (calcium, magnesium, sodium, potassium, ammonium, chloride, sulfate, and nitrate), dissolved organic carbon concentrations, snow/ water equivalent, snow depth, stable sulfur isotope ratios, total mercury concentrations (beginning in 2001), and ionic charge balance. Quality-assurance data for field and laboratory blanks and field replicates for individual years (1993-2008) also are included.

  4. Rocky Mountain snowpack physical and chemical data for selected sites, 2009

    USGS Publications Warehouse

    Ingersoll, George P.; Mast, M. Alisa; Swank, James M.; Campbell, Chelsea D.

    2010-01-01

    The Rocky Mountain Snowpack program established a network of snowpack-sampling sites in the Rocky Mountain region from New Mexico to Montana to monitor the chemical content of snow and to understand the effects of regional atmospheric deposition. The U.S. Geological Survey, in cooperation with the National Park Service; the U.S. Department of Agriculture Forest Service; the Colorado Department of Public Health and Environment; Teton County, Wyoming; and others, collected and analyzed snowpack samples annually for 48 or more sites in the Rocky Mountain region during 1993-2009. Sixty-three snowpack-sampling sites were sampled once each in 2009 and data are presented in this report. Data include acid-neutralization capacity, specific conductance, pH, hydrogen ion concentrations, dissolved concentrations of major constituents (calcium, magnesium, sodium, potassium, ammonium, chloride, sulfate, and nitrate), dissolved organic carbon concentrations, snow-water equivalent, snow depth, total mercury concentrations, and ionic charge balance. Quality-assurance data for field and laboratory blanks and field replicates for 2009 also are included.

  5. Differential insect and mammalian response to Late Quaternary climate change in the Rocky Mountain region of North America

    NASA Astrophysics Data System (ADS)

    Elias, Scott A.

    2015-07-01

    Of the 200 beetle species identified from Rocky Mountain Late Pleistocene insect faunal assemblages, 23% are no longer resident in this region. None of the 200 species is extinct. In contrast to this, only 8% of 73 identified mammal species from Rocky Mountain Late Pleistocene assemblages are no longer resident in the Rockies, and 12 species are now extinct. Since both groups of organisms are highly mobile, it would appear that their responses to the large-scale fluctuations of climate associated with the last 125,000 years have been considerably different. Most strikingly contrasting with the insects, there are no mammals in the Rocky Mountain Late Pleistocene fossil record that are found exclusively today in the Pacific Northwest (PNW) region. The PNW does have a distinctive modern mammalian fauna, but only one of these, Keen's Myotis, has a fossil record outside the PNW region, in the eastern and central United States. No modern PNW vertebrate species have been found in any Rocky Mountain fossil assemblages. Based on these data, it appears that there has been little or no mammalian faunal exchange between the PNW region and the Rocky Mountains during the Late Pleistocene or Holocene. This is in stark contrast to the fossil beetle record, where PNW species are a substantial component in many faunas, right through to the Late Holocene.

  6. Subsurface Complexity of Rocky Mountain Peatlands Regulates Carbon and Nitrogen Dynamics

    NASA Astrophysics Data System (ADS)

    Westbrook, C.; Morrison, A.; Wang, X.; Bedard-Haughn, A.

    2014-12-01

    Mountain wetlands, most commonly fens in the Rocky Mountains of North America, provide many important hydrologic, biogeochemical, and biological functions. Since these functions are often governed by subsurface structure, understanding the complexities of fen stratigraphy is critical. We used a 200 MHz ground penetrating radar (GPR) and soil core analysis to study the stratigraphy of nine fens in the southern Canadian Rocky Mountains. We discovered that wetlands that appear as fens at the land surface had a stratigraphy that ranged from pure peat to heavily stratified with silt, sand or marl mineral layers. We then evaluated, in one of these peatlands, how the presence of buried mineral horizons regulated peat carbon (C) and nitrogen (N) distributions and mineralization rates. Revealed was that cumulative C mineralization rates (after a 63 d lab incubation) in peat soils with silt and marl horizons were significantly lower than in those without mineral horizons, owing to variations in water content and TOC concentrations. Differences in TOC concentrations among varying stratigraphic configurations were most apparent deeper in the peat column implying that transport via groundwater may be important. Peat underlain by marl had the lowest net ammonification rates, likely due to the high pH. Our results suggest the development history of mountain fens is complex and highly spatially variable, dependent on the effects of local and regional geomorphic and environmental factors, and has important implications for peatland biogeochemical functioning.

  7. Relation of the Cretaceous formations to the Rocky Mountains in Colorado and New Mexico

    USGS Publications Warehouse

    Lee, Willis T.

    1916-01-01

    Some time ago, while working on a problem that involved the question of the presence or absence of islands near the close of the Cretaceous period in the region now occupied by the southern part of the Rocky Mountains, I was forced to the conclusion that no land masses or islands of any considerable size persisted there throughout the Cretaceous period, for I found no sedimentary rocks that were clearly derived from such islands. This result led to a reexamination of available information to see what evidence the sedimentary rocks in other areas near the present mountains could furnish, and I found rather unexpected confirmation of my conclusion. In the course of this study it became evident t that there is apparent conflict of testimony between different classes of fossils and that the physical evidence, including lithology, structure, and sequence of beds, is at variance with some of the commonly accepted correlations. In this state of uncertainty I tried to apply physiographic principles to see if they would throw any light on the interrelations of the interrelations of the Cretaceous formations of the Rocky Mountain region and on the events that opened and closed the period. This led me to a conclusion similar to that reached by the paleontologist C. A. White many years ago, namely, that the Upper Cretaceous formations up to and including the Laramie extended across the site of the mountains.

  8. Land-atmosphere carbon cycle research in the southern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Bowling, D. R.; Blanken, P.; Brooks, P. D.; Ehleringer, J. R.; Ewers, B. E.; Lehman, S.; Litvak, M. E.; Massman, W. J.; Miller, J. B.; Stephens, B. B.; Vaughn, B. H.

    2013-12-01

    The majority of land-atmosphere carbon exchange in the southern U.S. Rocky Mountains (Wyoming, Utah, Colorado, Arizona, and New Mexico) occurs in mid- to high-elevation forests, and in urban metropolitan areas. Forest-atmosphere carbon exchange is highly variable from year to year due to fluctuations in environmental conditions (particularly water availability) and following disturbances by insects and fire. A wide variety of long-term carbon cycle datasets from many locations are freely available to the scientific community from this region, varying in length from a few years to several decades. These include flask observations from the NOAA Cooperative Air Sampling Network (UTA, NWR, NWF, and BAO sites) which include CO2, CO2 stable and radioisotopes, CH4, and CO, continuous CO2 observations from the Rocky RACCOON mountaintop and Salt Lake Valley urban CO2 monitoring sites, forest flux observations from several AmeriFlux towers (GLEES, Niwot Ridge, and Valles Caldera sites), and continuous CO2 isotope observations (Niwot Ridge). Many of these sites include measurements before and after major ecological disturbances. This presentation will describe the publicly available datasets that exist, examining some of the features of these datasets that highlight the regional carbon cycle in the southern Rocky Mountains. Our goal is to encourage use and synthesis of these data by the observational, modeling, and remote sensing communities.

  9. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains.

    PubMed

    Nanus, L; Williams, M W; Campbell, D H; Tonnessen, K A; Blett, T; Clow, D W

    2009-06-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration <100 microeq/L, and therefore sensitive to acidic deposition, are located in basins with elevations >3000 m, with <30% of the catchment having northeast aspect and with >80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world.

  10. Is there biomagnification of organochlorines in a Rocky Mountain aquatic food web?

    SciTech Connect

    Campbell, L.M.; Schindler, D.W.; Kidd, K.; Donald, D.D.; Muir, D.

    1995-12-31

    In 1991--92, 14 lakes in the Canadian Rocky Mountains were surveyed for organochlorine contamination (PCBs, DDT isomers, toxaphene, and other pesticides) of water and lake trout. Lake trout from Bow Lake, near the Continental Divide, in Banff National Park, contained particularly high concentrations of organochlorines, notably toxaphene, in their tissue compared to other mountain lake trout populations. The hypothesis that the high degree of contamination in fish is caused by biomagnification is being tested by analysis of lake trout (Salveninus namaycush), mountain whitefish (Propsopium williamsoni), benthic invertebrates, and zooplankton for organochlorine compounds and stable nitrogen isotopes (15N/14N). Fish, invertebrates, sediments and water collected from Bow Lake in 1994 were all found to contain organochlorines, and the authors are investigating the apparent patterns of contamination present. The possibility that contaminants deposited in past decades on the glaciers that feed Bow Lake contributes to the high values is also being examined.

  11. Spatiotemporal analysis of Quaternary normal faults in the Northern Rocky Mountains, USA

    NASA Astrophysics Data System (ADS)

    Davarpanah, A.; Babaie, H. A.; Reed, P.

    2010-12-01

    The mid-Tertiary Basin-and-Range extensional tectonic event developed most of the normal faults that bound the ranges in the northern Rocky Mountains within Montana, Wyoming, and Idaho. The interaction of the thermally induced stress field of the Yellowstone hot spot with the existing Basin-and-Range fault blocks, during the last 15 my, has produced a new, spatially and temporally variable system of normal faults in these areas. The orientation and spatial distribution of the trace of these hot-spot induced normal faults, relative to earlier Basin-and-Range faults, have significant implications for the effect of the temporally varying and spatially propagating thermal dome on the growth of new hot spot related normal faults and reactivation of existing Basin-and-Range faults. Digitally enhanced LANDSAT 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 4 and 5 Thematic Mapper (TM) bands, with spatial resolution of 30 m, combined with analytical GIS and geological techniques helped in determining and analyzing the lineaments and traces of the Quaternary, thermally-induced normal faults in the study area. Applying the color composite (CC) image enhancement technique, the combination of bands 3, 2 and 1 of the ETM+ and TM images was chosen as the best statistical choice to create a color composite for lineament identification. The spatiotemporal analysis of the Quaternary normal faults produces significant information on the structural style, timing, spatial variation, spatial density, and frequency of the faults. The seismic Quaternary normal faults, in the whole study area, are divided, based on their age, into four specific sets, which from oldest to youngest include: Quaternary (>1.6 Ma), middle and late Quaternary (>750 ka), latest Quaternary (>15 ka), and the last 150 years. A density map for the Quaternary faults reveals that most active faults are near the current Yellowstone National Park area (YNP), where most seismically active faults, in the past 1.6 my

  12. Experimental repatriation of boreal toad (Bufo boreas) eggs, metamorphs, and adults in Rocky Mountain National Park

    USGS Publications Warehouse

    Muths, E.; Johnson, T.L.; Corn, P.S.

    2001-01-01

    The boreal toad (Bufo boreas) is an endangered species in Colorado and is considered a candidate species for federal listing by the United States Fish and Wildlife Service. Boreal toads are absent from many areas of suitable habitat in the Southern Rocky Mountains of Colorado presumably due to a combination of causes. We moved boreal toads from existing populations and from captive rearing facilities to habitat which was historically, but is not currently, occupied by toads to experimentally examine methods of repatriation for this species. Repatriation is defined as the release of individuals into areas currently of historically occupied by that species (Dodd and Seigel, 1991). This effort was in response to one of the criteria for delisting the boreal toad in Colorado stated in the conservation plan and agreement for the management and recovery of the Southern Rocky Mountain population of the boreal toad (Loeffler, 1998:16); a??a?|there must be at least 2 viable breeding populations of boreal toads in each of at least 9 of 11 mountain ranges of its historic distribution.a?? Without moving eggs from established wild populations, or from captivity to historical localities, it is doubtful whether the recovery team will attain this ambitions goal.

  13. Water soluble organic aerosols in the Colorado Rocky Mountains, USA: composition, sources and optical properties

    PubMed Central

    Xie, Mingjie; Mladenov, Natalie; Williams, Mark W.; Neff, Jason C.; Wasswa, Joseph; Hannigan, Michael P.

    2016-01-01

    Atmospheric aerosols have been shown to be an important input of organic carbon and nutrients to alpine watersheds and influence biogeochemical processes in these remote settings. For many remote, high elevation watersheds, direct evidence of the sources of water soluble organic aerosols and their chemical and optical characteristics is lacking. Here, we show that the concentration of water soluble organic carbon (WSOC) in the total suspended particulate (TSP) load at a high elevation site in the Colorado Rocky Mountains was strongly correlated with UV absorbance at 254 nm (Abs254, r = 0.88 p < 0.01) and organic carbon (OC, r = 0.95 p < 0.01), accounting for >90% of OC on average. According to source apportionment analysis, biomass burning had the highest contribution (50.3%) to average WSOC concentration; SOA formation and motor vehicle emissions dominated the contribution to WSOC in the summer. The source apportionment and backward trajectory analysis results supported the notion that both wildfire and Colorado Front Range pollution sources contribute to the summertime OC peaks observed in wet deposition at high elevation sites in the Colorado Rocky Mountains. These findings have important implications for water quality in remote, high-elevation, mountain catchments considered to be our pristine reference sites. PMID:27991554

  14. Water soluble organic aerosols in the Colorado Rocky Mountains, USA: composition, sources and optical properties

    NASA Astrophysics Data System (ADS)

    Xie, Mingjie; Mladenov, Natalie; Williams, Mark W.; Neff, Jason C.; Wasswa, Joseph; Hannigan, Michael P.

    2016-12-01

    Atmospheric aerosols have been shown to be an important input of organic carbon and nutrients to alpine watersheds and influence biogeochemical processes in these remote settings. For many remote, high elevation watersheds, direct evidence of the sources of water soluble organic aerosols and their chemical and optical characteristics is lacking. Here, we show that the concentration of water soluble organic carbon (WSOC) in the total suspended particulate (TSP) load at a high elevation site in the Colorado Rocky Mountains was strongly correlated with UV absorbance at 254 nm (Abs254, r = 0.88 p < 0.01) and organic carbon (OC, r = 0.95 p < 0.01), accounting for >90% of OC on average. According to source apportionment analysis, biomass burning had the highest contribution (50.3%) to average WSOC concentration; SOA formation and motor vehicle emissions dominated the contribution to WSOC in the summer. The source apportionment and backward trajectory analysis results supported the notion that both wildfire and Colorado Front Range pollution sources contribute to the summertime OC peaks observed in wet deposition at high elevation sites in the Colorado Rocky Mountains. These findings have important implications for water quality in remote, high-elevation, mountain catchments considered to be our pristine reference sites.

  15. Acute toxicity of zinc to several aquatic species native to the Rocky Mountains.

    PubMed

    Brinkman, Stephen F; Johnston, Walter D

    2012-02-01

    National water-quality criteria for the protection of aquatic life are based on toxicity tests, often using organisms that are easy to culture in the laboratory. Species native to the Rocky Mountains are poorly represented in data sets used to derive national water-quality criteria. To provide additional data on the toxicity of zinc, several laboratory acute-toxicity tests were conducted with a diverse assortment of fish, benthic invertebrates, and an amphibian native to the Rocky Mountains. Tests with fish were conducted using three subspecies of cutthroat trout (Colorado River cutthroat trout Oncorhynchus clarkii pleuriticus, greenback cutthroat trout O. clarkii stomias, and Rio Grande cutthroat trout O. clarkii virginalis), mountain whitefish (Prosopium williamsoni), mottled sculpin (Cottus bairdi), longnose dace (Rhinichthys cataractae), and flathead chub (Platygobio gracilis). Aquatic invertebrate tests were conducted with mayflies (Baetis tricaudatus, Drunella doddsi, Cinygmula sp. and Ephemerella sp.), a stonefly (Chloroperlidae), and a caddis fly (Lepidostoma sp.). The amphibian test was conducted with tadpoles of the boreal toad (Bufo boreas). Median lethal concentrations (LC(50)s) ranged more than three orders of magnitude from 166 μg/L for Rio Grande cutthroat trout to >67,000 μg/L for several benthic invertebrates. Of the organisms tested, vertebrates were the most sensitive, and benthic invertebrates were the most tolerant.

  16. Bark-beetle infestation affects water quality in the Rocky Mountains of Colorado

    NASA Astrophysics Data System (ADS)

    Mikkelson, K.; Dickenson, E.; Maxwell, R. M.; McCray, J. E.; Sharp, J. O.

    2012-12-01

    In the previous decade, millions of acres in the Rocky Mountains of Colorado have been infested by the mountain pine beetle (MPB) leading to large-scale tree mortality. These vegetation changes can impact hydrological and biogeochemical processes, possibly altering the leaching of natural organic matter to surrounding waters and increasing the potential for harmful disinfection byproducts (DBP) during water treatments. To investigate these adverse outcomes, we have collected water quality data sets from local water treatment facilities in the Rocky Mountains of Colorado that have either been infested with MPB or remain a control. Results demonstrate significantly more total organic carbon (TOC) and DBPs in water treatment facilities receiving their source water from infested watersheds as compared to the control sites. Temporal DBP concentrations in MPB-watersheds also have increased significantly in conjunction with the bark-beetle infestation. Interestingly, only modest increases in TOC concentrations were observed in infested watersheds despite more pronounced increases in DBP concentrations. Total trihalomethanes, a heavily regulated DBP, was found to approach the regulatory limit in two out of four reporting quarters at facilities receiving their water from infested forests. These findings indicate that bark-beetle infestation alters TOC composition and loading in impacted watersheds and that this large-scale phenomenon has implications on the municipal water supply in the region.

  17. Analyzing Whitebark Pine Distribution in the Northern Rocky Mountains in Support of Grizzly Bear Recovery

    NASA Astrophysics Data System (ADS)

    Lawrence, R.; Landenburger, L.; Jewett, J.

    2007-12-01

    Whitebark pine seeds have long been identified as the most significant vegetative food source for grizzly bears in the Greater Yellowstone Ecosystem (GYE) and, hence, a crucial element of suitable grizzly bear habitat. The overall health and status of whitebark pine in the GYE is currently threatened by mountain pine beetle infestations and the spread of whitepine blister rust. Whitebark pine distribution (presence/absence) was mapped for the GYE using Landsat 7 Enhanced Thematic Mapper (ETM+) imagery and topographic data as part of a long-term inter-agency monitoring program. Logistic regression was compared with classification tree analysis (CTA) with and without boosting. Overall comparative classification accuracies for the central portion of the GYE covering three ETM+ images along a single path ranged from 91.6% using logistic regression to 95.8% with See5's CTA algorithm with the maximum 99 boosts. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales.

  18. Transport of pollutants from cow feedlots in eastern Colorado into Rocky Mountain alpine lakes

    NASA Astrophysics Data System (ADS)

    Pina, A.; Denning, S.; Schumacher, R. S.

    2012-12-01

    Concentrated Animal Feeding Operations (CAFOs), also called factory farms, are known for raising tens of millions head of livestock including cows (beef and dairy), swine, and poultry. With as many as 250 head of cattle per acre, a United States Department of Agriculture's (USDA) Agricultural Research Service (ARS) report showed beef cattle from CAFOs in the United States produce as much as 24.1 million tons of manure annually. Gases released from cow manure include methane (CH4), nitrous oxide (N2O), hydrogen sulfide (H2S), and ammonia (NH3). During boreal summers Colorado experiences fewer synoptic weather systems, allowing the diurnal cycle to exert greater control of meteorological events along the mountain-plains interface. Anabatic, or upslope winds induced by the diurnal cycle, contribute largely to the transport of gases and particulates from feedlots in eastern Colorado into the Rocky Mountains, presenting a potential harm to natural alpine ecosystems. This study focuses on locating the source of transport of gases from feedlots along the eastern Front Range of Colorado into alpine lakes of the Rocky Mountains. Source regions are approximated using backward time simulation of a Lagrangian Transport model.

  19. Survey and assessment of amphibian populations in Rocky Mountain National Park

    USGS Publications Warehouse

    Corn, Paul Stephen; Jennings, Michael L.; Muths, Erin L.

    1997-01-01

    We conducted surveys in Rocky Mountain National Park, Colorado for amphibians in 1987-1994. Four species, Ambystoma tigrinum, Bufo boreas, Pseudacris maculata, and Rana sylvatica, were recorded. Pseudacris maculata was the most widely distributed and abundant species in the Park. Two populations of E maculata were estimated to contain 161 and 136 breeding males in 1988. There was no evidence of a decline of A. tigrinum or R. sylvatica, but these species were found at relatively few locations. We did not detect Rana pipiens, which had been known previously from 3 locations in the Park. We found 7 breeding populations of B. boreas, which has declined recently elsewhere in the southern Rocky Mountains, but all but 2 of these populations were small and may not reproduce annually. At least one of these small populations is thought to have been extirpated. Estimated numbers of males in the 2 large populations, which are 6.4 km apart in the same drainage, were stable or increasing slightly from 1992 to 1995, averaging 189 and 239 individuals. Current and known locations of amphibians did not differ in elevation, size, lake type, presence of shallow water or emergent vegetation on the north shore, or presence of trout. Water chemistry at amphibian breeding sites was variable, but pH decreased significantly with increasing elevation. Causes of declines of B. boreas and R. pipiens are not known. Populations of B. boreas in the North Fork of the Big Thompson River are critically important to the conservation of this species in the Rocky Mountains.

  20. A new reference section for palynostratigraphic zonation of Paleocene rocks in the Rocky Mountain region

    USGS Publications Warehouse

    Nichols, D.J.; Flores, R.M.

    2006-01-01

    A biostratigraphic (palynostratigraphic) zonation of Paleocene rocks was established in the northeastern Wind River Basin near Waltman, Natrona County, Wyoming, in 1978 and subsequently applied extensively by various workers throughout the Rocky Mountain region. Because the original study on which the zonation was based was proprietary, precise details about the locations of the two reference sections and the samples on which the zonation was based were not published and are no longer retrievable. Therefore, it is useful (although not required) to designate formally a new reference section for the Paleocene biozones. Accordingly, exposures of Paleocene and associated strata within and west of the Castle Gardens Petroglyph Site in Fremont County, Wyoming, in the east-central part of the Wind River Basin, were selected for this purpose. At this location, composite stratigraphic sections encompassing 740 m of strata were measured, described, and sampled. Productive samples yielded characteristic Maastrichtian palynomorphs from the lower part of the sampled interval and diagnostic species of the six palynological biozones zones widely known as P1 (lower Paleocene) through P6 (upper Paleocene), through an interval of about 580 m. The Paleocene biozones are present in the same consistent stratigraphic order in the Castle Gardens area as observed in the 1978 study and subsequent studies throughout the Rocky Mountain region. In accordance with the North American Stratigraphic Code, the historical background is presented; intent to establish the Castle Gardens reference section is declared; the category, rank, and formal names of biostratigraphic units within it are specified; and the features of the biozonation are described, including biozone boundaries, ages, and regional relations. Occurrences of biostratigraphically significant palynological species within each biozone in the reference section are tabulated, and presence of these and other species in correlative

  1. Area change of glaciers in the Canadian Rocky Mountains, 1919 to 2006

    NASA Astrophysics Data System (ADS)

    Tennant, C.; Menounos, B.; Wheate, R.; Clague, J. J.

    2012-12-01

    Glaciers in the Canadian Rocky Mountains constitute an important freshwater resource. To enhance our understanding of the influence climate and local topography have on glacier area, large numbers of glaciers of different sizes and attributes need to be monitored over periods of many decades. We used Interprovincial Boundary Commission Survey (IBCS) maps of the Alberta-British Columbia (BC) border (1903-1924), BC Terrain Resource Information Management (TRIM) data (1982-1987), and Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) imagery (2000-2002 and 2006) to document planimetric changes in glacier cover in the central and southern Canadian Rocky Mountains between 1919 and 2006. Over this period, glacier cover in the study area decreased by 590 ± 70 km2 (40 ± 5%), 17 of 523 glaciers disappeared and 124 glaciers fragmented into multiple ice masses. Glaciers smaller than 1.0 km2 experienced the greatest relative area loss (64 ± 8%), and relative area loss is more variable with small glaciers, suggesting that the local topographic setting controls the response of these glaciers to climate change. Small glaciers with low slopes, low mean/median elevations, south to west aspects, and high insolation experienced the largest reduction in area. Similar rates of area change characterize the periods 1919-1985 and 1985-2001; -6.3 ± 0.6 km2 yr-1 (-0.4 ± 0.1% yr-1) and -5.0 ± 0.5 km2 yr-1 (-0.5 ± 0.1% yr-1), respectively. The rate of area loss, however, increased over the period 2001-2006; -19.3 ± 2.4 km2 yr-1 (-2.0 ± 0.2% yr-1). Applying size class-specific scaling factors, we estimate a total reduction in glacier cover in the central and southern Canadian Rocky Mountains for the period 1919-2006 of 750 km2 (30%).

  2. Fatal Caprine arthritis encephalitis virus-like infection in 4 Rocky Mountain goats (Oreamnos americanus).

    PubMed

    Patton, Kristin M; Bildfell, Robert J; Anderson, Mark L; Cebra, Christopher K; Valentine, Beth A

    2012-03-01

    Over a 3.5-year period, 4 Rocky Mountain goats (Oreamnos americanus), housed at a single facility, developed clinical disease attributed to infection by Caprine arthritis encephalitis virus (CAEV). Ages ranged from 1 to 10 years. Three of the goats, a 1-year-old female, a 2-year-old male, and a 5-year-old male, had been fed raw domestic goat milk from a single source that was later found to have CAEV on the premises. The fourth animal, a 10-year-old male, had not ingested domestic goat milk but had been housed with the other 3 Rocky Mountain goats. All 4 animals had clinical signs of pneumonia prior to death. At necropsy, findings in lungs included marked diffuse interstitial pneumonia characterized histologically by severe lymphoplasmacytic infiltrates with massive alveolar proteinosis, interstitial fibrosis, and type II pneumocyte hyperplasia. One animal also developed left-sided hemiparesis, and locally extensive lymphoplasmacytic myeloencephalitis was present in the cranial cervical spinal cord. Two animals had joint effusions, as well as severe lymphoplasmacytic and ulcerative synovitis. Immunohistochemical staining of fixed sections of lung tissue from all 4 goats, as well as spinal cord in 1 affected animal, and synovium from 2 affected animals were positive for CAEV antigen. Serology testing for anti-CAEV antibodies was positive in the 2 goats tested. The cases suggest that Rocky Mountain goats are susceptible to naturally occurring CAEV infection, that CAEV from domestic goats can be transmitted to this species through infected milk and by horizontal transmission, and that viral infection can result in clinically severe multisystemic disease.

  3. DNA replication in the sex chromosomes of the pronghorn and the Rocky Mountain goat.

    PubMed

    Dain, A

    1977-01-01

    The X chromosomes of the male pronghorn (Antilocapra americana) is larger than the "original" type and carries a large segment of late-labelling chromatin. The Y chromosome has a late-labelling segment that appears to duplicate synchronously with that of the X. Both chromosomes have segments that label throughout the period of observation; that the X is about 4.7% of the haploid complement and approaches "original" proportions. The X chromosomes of the Rocky Mountain goat (Oreamnos americanus) appear to be of the "original" type, without marked late-labelling regions, and the Y chromosomes is small. The structure and origin of extra-large sex chromosomes are discussed.

  4. State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, January-July 1981

    SciTech Connect

    Lunis, B.C.; Toth, W.J.

    1982-05-01

    The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. For each state (Colorado, Montana, New Mexico, North and South Dakota, Utah, and Wyoming), prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are also covered, and findings and recommendations are given for each state. Some background information about the program is provided. (LEW)

  5. Ecological risk characterization based on exposure to contaminants through the Rocky Mountain Arsenal aquatic food chains

    SciTech Connect

    Toll, J.E.; Cothern, K.A.; Pavlou, S.; Tate, D.J.; Armstrong, J.P.

    1994-12-31

    This paper describes ecological risk characterization methods and results for characterizing potential risk from exposure to bioaccumulative contaminants of concern (aldrin, dieldrin, endrin, DDT, DDE, and mercury) through the lake food chains at Rocky Mountain Arsenal (RMA). Aquatic risks were estimated for the bald eagle, great blue heron, shorebird, and water bird using a prey-tissue-concentration-based food web model. Methods for estimating missing tissue concentration data were developed on a case-by-case basis and will be described. A sediment-based food web model was also considered and the reasons for its rejection will be described. Generalizable insights from the aquatic ecological risk characterization will be discussed.

  6. State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1981

    SciTech Connect

    Lunis, B.C.

    1982-08-01

    The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. The period covered is July through December 1981. Background information is provided, program objectives and the technical approach used are discussed, and the benefits of the program are described. Prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are covered and findings and recommendations are summarized.

  7. Variation in fire regimes of the rocky mountains: Implications for avian communities and fire management

    USGS Publications Warehouse

    Saab, V.A.; Powell, H.D.W.; Kotliar, N.B.; Newlon, K.R.

    2005-01-01

    Information about avian responses to fire in the U.S. Rocky Mountains is based solely on studies of crown fires. However, fire management in this region is based primarily on studies of low-elevation ponderosa pine (Pinus ponderosa) forests maintained largely by frequent understory fires. In contrast to both of these trends, most Rocky Mountain forests are subject to mixed severity fire regimes. As a result, our knowledge of bird responses to fire in the region is incomplete and skewed toward ponderosa pine forests. Research in recent large wildfires across the Rocky Mountains indicates that large burns support diverse avifauna. In the absence of controlled studies of bird responses to fire, we compared reproductive success for six cavity-nesting species using results from studies in burned and unburned habitats. Birds in ponderosa pine forests burned by stand-replacement fire tended to have higher nest success than individuals of the same species in unburned habitats, but unburned areas are needed to serve species dependent upon live woody vegetation, especially foliage gleaners. Over the last century, fire suppression, livestock grazing, and logging altered the structure and composition of many low-elevation forests, leading to larger and more severe burns. In higher elevation forests, changes have been less marked. Traditional low-severity prescribed fire is not likely to replicate historical conditions in these mixed or high-severity fire regimes, which include many mixed coniferous forests and all lodgepole pine (Pinus contorta) and spruce-fir (Picea-Abies) forests. We suggest four research priorities: (1) the effects of fire severity and patch size on species' responses to fire, (2) the possibility that postfire forests are ephemeral sources for some bird species, (3) the effect of salvage logging prescriptions on bird communities, and (4) experiments that illustrate bird responses to prescribed fire and other forest restoration methods. This research is

  8. State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1980

    SciTech Connect

    Lunis, B. C.; Toth, W. J.

    1981-10-01

    The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. Background information is provided; program objectives and the technical approach that is used are discussed; and the benefits of the program are described. The summary of findings is presented. Prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are covered and findings and recommendations are summarized. The commercialization activities carried out by the respective state teams are described for the following: Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming.

  9. Remedy risk evaluation for the shell section 36 trench area of the Rocky Mountain Arsenal

    SciTech Connect

    1993-08-01

    The Rocky Mountain Arsenal (RMA) is a 17,000-acre U.S. Army facility located in Adams County, Colorado. Liquid and solid wastes produced by Shell operations in the South Plants area were disposed of in an on-post section of the RMA known as the Shell Section 36 Trench (Shell Trench) Area. While there is considerable uncertainty regarding the composition of these wastes, historical process records and environmental sampling results indicate the presence of a heterogeneous mixture of chemicals consisting primarily of organochlorine pesticides and volatile organic compounds. The Army may have also used this area of the RMA for the disposal of munitions and chemical agents.

  10. GEOLOGIC ASPECTS OF TIGHT GAS RESERVOIRS IN THE ROCKY MOUNTAIN REGION.

    USGS Publications Warehouse

    Spencer, Charles W.

    1985-01-01

    The authors describe some geologic characteristics of tight gas reservoirs in the Rocky Mountain region. These reservoirs usually have an in-situ permeability to gas of 0. 1 md or less and can be classified into four general geologic and engineering categories: (1) marginal marine blanket, (2) lenticular, (3) chalk, and (4) marine blanket shallow. Microscopic study of pore/permeability relationships indicates the existence of two varieties of tight reservoirs. One variety is tight because of the fine grain size of the rock. The second variety is tight because the rock is relatively tightly cemented and the pores are poorly connected by small pore throats and capillaries.

  11. Sarcoptic mange found in wolves in the Rocky Mountains in western United States.

    PubMed

    Jimenez, Michael D; Bangs, Edward E; Sime, Carolyn; Asher, Valpa J

    2010-10-01

    We documented sarcoptic mange caused by mites (Sarcoptes scabiei) in 22 gray wolves (Canis lupus) in the northern Rocky Mountain states of Montana (n=16) and Wyoming (n=6), from 2002 through 2008. To our knowledge, this is the first report of sarcoptic mange in wolves in Montana or Wyoming in recent times. In addition to confirming sarcoptic mange, we recorded field observations of 40 wolves in Montana and 30 wolves in Wyoming displaying clinical signs of mange (i.e., alopecia, hyperkeratosis, and seborrhea). Therefore, we suspect sarcoptic mange may be more prevalent than we were able to confirm.

  12. Ecology of tick vectors of American spotted fever.

    PubMed

    Burgdorfer, W

    1969-01-01

    The author reviews the natural history of the tick vectors of American spotted fever. The discussion concerns the ecology of the Rocky Mountain wood tick, Dermacentor andersoni, the American dog tick, Dermacentor variabilis, and the lone-star tick, Amblyomma americanum, all of which are proven vectors of Rocky Mountain spotted fever to man. Also included are the rabbit tick, Haemaphysalis leporispalustris and Dermacentor parumapertus, which very rarely bite man but which are considered of importance in maintaining and distributing Rickettsia rickettsi, the etiological agent of Rocky Mountain spotted fever, in nature. Brief reference is also made to recently developed techniques for studying the ecology of tick vectors.

  13. Comparison of precipitation chemistry in the Central Rocky Mountains, Colorado, USA

    USGS Publications Warehouse

    Heuer, K.; Tonnessen, K.A.; Ingersoll, G.P.

    2000-01-01

    Volume-weighted mean concentrations of nitrate (NO3-), ammonium (NH4+), and sulfate (SO42-) in precipitation were compared at high-elevation sites in Colorado from 1992 to 1997 to evaluate emission source areas to the east and west of the Rocky Mountains. Precipitation chemistry was measured by two sampling methods, the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) and snowpack surveys at maximum accumulation. Concentrations of NO3- and SO42- in winter precipitation were greater on the western slope of the Rockies, and concentrations of NO3- and NH4+ in summer precipitation were greater on the eastern slope. Summer concentrations in general were almost twice as high as winter concentrations. Seasonal weather patterns in combination with emission source areas help to explain these differences. This comparison shows that high-elevation ecosystems in Colorado are influenced by air pollution emission sources located on both sides of the Continental Divide. It also suggests that sources of nitrogen and sulfur located east of the Divide have a greater influence on precipitation chemistry in the Colorado Rockies. Copyright (C) 2000.

  14. Numerical Modeling of Rocky Mountain Paleoglaciers - Insights into the Climate of the Last Glacial Maximum and the Subsequent Deglaciation

    NASA Astrophysics Data System (ADS)

    Leonard, E. M.; Laabs, B. J. C.; Plummer, M. A.

    2014-12-01

    Numerical modeling of paleoglaciers can yield information on the climatic conditions necessary to sustain those glaciers. In this study we apply a coupled 2-d mass/energy balance and flow model (Plummer and Phillips, 2003) to reconstruct local last glacial maximum (LLGM) glaciers and paleoclimate in ten study areas along the crest of the U.S. Rocky Mountains between 33°N and 49°N. In some of the areas, where timing of post-LLGM ice recession is constrained by surface exposure ages on either polished bedrock upvalley from the LLGM moraines or post-LLGM recessional moraines, we use the model to assess magnitudes and rates of climate change during deglaciation. The modeling reveals a complex pattern of LLGM climate. The magnitude of LLGM-to-modern climate change (temperature and/or precipitation change) was greater in both the northern (Montana) Rocky Mountains and southern (New Mexico) Rocky Mountains than in the middle (Wyoming and Colorado) Rocky Mountains. We use temperature depression estimates from global and regional climate models to infer LLGM precipitation from our glacier model results. Our results suggest a reduction of precipitation coupled with strongly depressed temperatures in the north, contrasted with strongly enhanced precipitation and much more modest temperature depression in the south. The middle Rocky Mountains of Colorado and Wyoming appear to have experienced a reduction in precipitation at the LLGM without the strong temperature depression of the northern Rocky Mountains. Preliminary work on modeling of deglaciation in the Sangre de Cristo Range in southern Colorado suggests that approximately half of the LLGM-to-modern climate change took place during the initial ~2400 years of deglaciation. If increasing temperature and changing solar insolation were the sole drivers of this initial deglaciation, then temperature would need to have risen by slightly more than 1°C/ky through this interval to account for the observed rate of ice recession.

  15. 36 CFR 261.72 - Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2. 261.72 Section 261.72 Parks, Forests, and Public... Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2....

  16. 36 CFR 261.72 - Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2. 261.72 Section 261.72 Parks, Forests, and Public... Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2....

  17. 36 CFR 261.72 - Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2. 261.72 Section 261.72 Parks, Forests, and Public... Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2....

  18. 36 CFR 261.72 - Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2. 261.72 Section 261.72 Parks, Forests, and Public... Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2....

  19. 36 CFR 261.72 - Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2. 261.72 Section 261.72 Parks, Forests, and Public... Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2....

  20. Aerosol species concentrations and source apportionment of ammonia at Rocky Mountain National Park.

    PubMed

    Malm, William C; Schichtel, Bret A; Barna, Michael G; Gebhart, Kristi A; Rodriguez, Marco A; Collett, Jeffrey L; Carrico, Christian M; Benedict, Katherine B; Prenni, Anthony J; Kreidenweis, Sonia M

    2013-11-01

    Changes in ecosystem function at Rocky Mountain National Park (RMNP) are occurring because of emissions of nitrogen and sulfate species along the Front Range of the Colorado Rocky Mountains, as well as sources farther east and west. The nitrogen compounds include both oxidized and reduced nitrogen. A year-long monitoring program of various oxidized and reduced nitrogen species was initiated to better understand their origins as well as the complex chemistry occurring during transport from source to receptor. Specifically the goals of the study were to characterize the atmospheric concentrations of nitrogen species in gaseous, particulate, and aqueous phases (precipitation and clouds) along the east and west sides of the Continental Divide; identify the relative contributions to atmospheric nitrogen species in RMNP from within and outside of the state of Colorado; identify the relative contributions to atmospheric nitrogen species in RMNP from emission sources along the Colorado Front Range versus other areas within Colorado; and identify the relative contributions to atmospheric nitrogen species from mobile sources, agricultural activities, and large and small point sources within the state of Colorado. Measured ammonia concentrations are combined with modeled releases of conservative tracers from ammonia source regions around the United States to apportion ammonia to its respective sources, using receptor modeling tools.

  1. Social and economic assessment: A technical report used in amending the Rocky Mountain regional guide

    SciTech Connect

    Not Available

    1992-05-01

    The purpose of the Socio-economic Assessment is threefold in nature: to describe the socio-economic forces at work within the rural and urban areas throughout the Rocky Mountain Region (the Region); to develop social and economic profiles for the Region as a whole and each of its eight subregions; and, finally, to describe the potential impacts of the above mentioned forces on the Region and to make recommendations for developing future strategies to facilitate coordination between the Forest Service, the various state, local, and other federal agencies, and Native American Indian tribes. This project involved the analysis of various social and economic variables in an attempt to determine the social and economic situation in the Rocky Mountain Region, and how it has been altered over the last three decades. To this end, data was collected on demographic changes, income growth, employment and unemployment, payrolls, number and size of firms, and SIC industrial breakdowns for various industries within each subregion and economic impact area.

  2. Fish assemblage structure and relations with environmental conditions in a Rocky Mountain watershed

    USGS Publications Warehouse

    Quist, M.C.; Hubert, W.A.; Isaak, D.J.

    2004-01-01

    Fish and habitat were sampled from 110 reaches in the Salt River basin (Idaho and Wyoming) during 1996 and 1997 to assess patterns in fish assemblage structure across a Rocky Mountain watershed. We identified four distinct fish assemblages using cluster analysis: (1) allopatric cutthroat trout (Oncorhynchus clarki (Richardson, 1836)); (2) cutthroat trout - brook trout (Salvelinus fontinalis (Mitchell, 1814)) - Paiute sculpin (Cottus beldingi Eigenmann and Eigenmann, 1891); (3) cutthroat trout - brown trout (Salmo trutta L., 1758) - mottled sculpin (Cottus bairdi Girard, 1850); and (4) Cyprinidae-Catostomidae. The distribution of fish assemblages was explained by thermal characteristics, stream geomorphology, and local habitat features. Reaches with allopatric cutthroat trout and the cutthroat trout - brook trout - Paiute sculpin assemblage were located in high-elevation, high-gradient streams. The other two fish assemblages were generally located in low-elevation streams. Associations between habitat gradients, locations of reaches in the watershed, and occurrence of species were further examined using canonical correspondence analysis. The results suggest that stream geomorphology, thermal conditions, and local habitat characteristics influence fish assemblage structure across a Rocky Mountain watershed, and they provide information on the ecology of individual species that can guide conservation activities. ?? 2004 NRC Canada.

  3. Mapping critical loads of nitrogen deposition for aquatic ecosystems in the Rocky Mountains, USA

    USGS Publications Warehouse

    Nanus, Leora; Clow, David W.; Saros, Jasmine E.; Stephens, Verlin C.; Campbell, Donald H.

    2012-01-01

    Spatially explicit estimates of critical loads of nitrogen (N) deposition (CLNdep) for nutrient enrichment in aquatic ecosystems were developed for the Rocky Mountains, USA, using a geostatistical approach. The lowest CLNdep estimates (−1 yr−1) occurred in high-elevation basins with steep slopes, sparse vegetation, and abundance of exposed bedrock and talus. These areas often correspond with areas of high N deposition (>3 kg N ha−1 yr−1), resulting in CLNdep exceedances ≥1.5 ± 1 kg N ha−1 yr−1. CLNdep and CLNdep exceedances exhibit substantial spatial variability related to basin characteristics and are highly sensitive to the NO3− threshold at which ecological effects are thought to occur. Based on an NO3− threshold of 0.5 μmol L−1, N deposition exceeds CLNdep in 21 ± 8% of the study area; thus, broad areas of the Rocky Mountains may be impacted by excess N deposition, with greatest impacts at high elevations.

  4. Detection ratios on winter surveys of Rocky Mountain Trumpeter Swans Cygnus buccinator

    USGS Publications Warehouse

    Bart, J.; Mitchell, C.D.; Fisher, M.N.; Dubovsky, J.A.

    2007-01-01

    We estimated the detection ratio for Rocky Mountain Trumpeter Swans Cygnus buccinator that were counted during aerial surveys made in winter. The standard survey involved counting white or grey birds on snow and ice and thus might be expected to have had low detection ratios. On the other hand, observers were permitted to circle areas where the birds were concentrated multiple times to obtain accurate counts. Actual numbers present were estimated by conducting additional intensive aerial counts either immediately before or immediately after the standard count. Surveyors continued the intensive surveys at each area until consecutive counts were identical. The surveys were made at 10 locations in 2006 and at 19 locations in 2007. A total of 2,452 swans were counted on the intensive surveys. Detection ratios did not vary detectably with year, observer, which survey was conducted first, age of the swans, or the number of swans present. The overall detection ratio was 0.93 (90% confidence interval 0.82-1.04), indicating that the counts were quite accurate. Results are used to depict changes in population size for Rocky Mountain Trumpeter Swans from 1974-2007. ?? Wildfowl & Wetlands Trust.

  5. How climate changes in the Rocky Mountains contribute to changes in an alpine lake's phytoplankton community

    NASA Astrophysics Data System (ADS)

    Guido, A. S.; Garland, D.; McKnight, D. M.

    2011-12-01

    It is important to track algae in potable water supplies as they are a factor in the production of dissolved organic matter (DOM) that can result in the formation of disinfection byproducts. Disinfection byproducts have been identified by the Environmental Protection Agency (EPA) as a potential carcinogen and have been linked to reproductive and developmental effects in lab animals. Green Lake 4 is located in the Rocky Mountains and is part of the Silver Lake Watershed which provides 40% of Boulder, CO's potable water supply. In 2002, the Rocky Mountain region had below average precipitation and consequently Green Lake experienced a change in its physical and chemical conditions. As a result of the changes experienced in Green Lake 4, a change in the composition of the phytoplankton community was seen. Along with reduced precipitation levels, this area has also experienced an earlier ice-out date. As part of this research, chemical changes, physical changes, and algae changes in Green Lake 4 will be analyzed. Data from 2007 to 2010 will be analyzed; this study will be looking at both the chemical and physical changes of Green Lake 4 as they relate to the change in ice out of the lake and precipitation in the region.

  6. Aspen Ecology in Rocky Mountain National Park: Age Distribution, Genetics, and the Effects of Elk Herbivory

    SciTech Connect

    Tuskan, Gerald A; Yin, Tongming

    2008-10-01

    Lack of aspen (Populus tremuloides) recruitment and canopy replacement of aspen stands that grow on the edges of grasslands on the low-elevation elk (Cervus elaphus) winter range of Rocky Mountain National Park (RMNP) in Colorado has been a cause of concern for more than 70 years (Packard, 1942; Olmsted, 1979; Stevens, 1980; Hess, 1993; R.J. Monello, T.L. Johnson, and R.G. Wright, Rocky Mountain National Park, 2006, written commun.). These aspen stands are a significant resource since they are located close to the park's road system and thus are highly visible to park visitors. Aspen communities are integral to the ecological structure of montane and subalpine landscapes because they contain high native species richness of plants, birds, and butterflies (Chong and others, 2001; Simonson and others, 2001; Chong and Stohlgren, 2007). These low-elevation, winter range stands also represent a unique component of the park's plant community diversity since most (more than 95 percent) of the park's aspen stands grow in coniferous forest, often on sheltered slopes and at higher elevations, while these winter range stands are situated on the low-elevation ecotone between the winter range grasslands and some of the park's drier coniferous forests.

  7. Relational Database for the Geology of the Northern Rocky Mountains - Idaho, Montana, and Washington

    USGS Publications Warehouse

    Causey, J. Douglas; Zientek, Michael L.; Bookstrom, Arthur A.; Frost, Thomas P.; Evans, Karl V.; Wilson, Anna B.; Van Gosen, Bradley S.; Boleneus, David E.; Pitts, Rebecca A.

    2008-01-01

    A relational database was created to prepare and organize geologic map-unit and lithologic descriptions for input into a spatial database for the geology of the northern Rocky Mountains, a compilation of forty-three geologic maps for parts of Idaho, Montana, and Washington in U.S. Geological Survey Open File Report 2005-1235. Not all of the information was transferred to and incorporated in the spatial database due to physical file limitations. This report releases that part of the relational database that was completed for that earlier product. In addition to descriptive geologic information for the northern Rocky Mountains region, the relational database contains a substantial bibliography of geologic literature for the area. The relational database nrgeo.mdb (linked below) is available in Microsoft Access version 2000, a proprietary database program. The relational database contains data tables and other tables used to define terms, relationships between the data tables, and hierarchical relationships in the data; forms used to enter data; and queries used to extract data.

  8. Estimation of geomorphically significant flows in alpine streams of the Rocky Mountains, Colorado (USA)

    USGS Publications Warehouse

    Surian, N.; Andrews, E.D.

    1999-01-01

    Streamflows recorded at 24 gauging stations in the Rocky Mountains of Colorado were analyzed to derive regional regression equations for estimating the natural flow duration and flood frequency in reaches where the natural flows are unknown or have been altered by diversion or regulation. The principal objective of this analysis is to determine whether the relatively high, infrequent, but geomorphically and ecologically important flows in the Rocky Mountains can be accurately estimated by regional flow duration equations. The region considered in this study is an area of relatively abundant runoff, and, consequently, intense water resources development. The specific streams analyzed here, however, are unaltered and remain nearly pristine. Regional flow duration equations are derived for two situations. When the mean annual discharge is known, flows ??? 10% of the time can be estimated with an uncertainty of ??9% for the 10% exceedance flow, to ??11%forthe 1.0% exceedance flow. When the mean annual discharge is unknown, the relatively high, infrequent flow can be estimated using the mean basin precipitation rate (in m3/s), and basin relief with an uncertainty of ??23% for the 10% exceedance flow to ??21% for the 1.0% exeedance flow. The uncertainty in estimated discharges using the equations derived in this analysis is substantially smaller than has been previously reported, especially for the geomorphically significant flows which are relatively large and infrequent. The improvement is due primarily to the quality of streamflow records analyzed and a well-defined hydrologic region.

  9. Understanding Groundwater-Surface Water Interactions Using a Paired Tracer Approach in Alberta's Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Spencer, S. A.; Silins, U.; Anderson, A.; Collins, A.; Williams, C.

    2015-12-01

    The eastern slopes of the Rocky Mountains produce the majority of Alberta's surface water supply. While land disturbance affects hydrologic processes governing runoff and water quality, groundwater-surface water interactions may be an important component of catchment resistance to hydrological change. The objectives of this study were to describe reach and sub-catchment coupling of groundwater and surface water processes and to characterize the role of groundwater contribution to surface discharge across spatial and temporal scales. This research is part of Phase II of the Southern Rockies Watershed Project investigating the hydrological effects of three forest harvest treatments (clear-cutting with retention, strip cutting, and partial-cutting) in the front-range Rocky Mountains in the Crowsnest Pass, Alberta. Six nested hydrometric stations in Star Creek (10.4 km2) were used to collect pre-disturbance stream discharge and water quality data (2009-2014). Instantaneous differential streamflow gauging was conducted on reaches ~700 m in length to define stream reaches that were gaining or losing water. Constant rate tracer injection was conducted on gaining reaches to further refine regions of groundwater inputs during high flows, the recession limb of the annual hydrograph, and summer baseflows. Despite being a snow-dominated catchment, groundwater is a major contributor to annual streamflow (60 - 70 %). In general, locations of gaining and losing reaches were consistent across spatial and temporal scales of investigation. A strong losing reach in one sub-basin was observed where underflow may be responsible for the loss of streamflow along this section of the stream. However, strong groundwater upwelling was also observed in a reach lower in the catchment likely due to a "pinch-point" in topographic relief. Spatial and temporal variations in groundwater-surface water interactions are likely important factors in hydrologic resistance to land disturbance.

  10. Morphological variation and zoogeography of racers (Coluber constrictor) in the central Rocky Mountains

    USGS Publications Warehouse

    Corn, Paul Stephen; Bury, R. Bruce

    1986-01-01

    We examined 63 specimens of Coluber constrictor from Colorado and Utah using eight external morphological characters that have been used to distinguish C. c. mormon from C. c. flaviventris. We grouped the snakes into three Operational Taxonomic Units (OTU's) in a transect across the Rocky Mountains: the eastern Front Range foothills in Colorado; the inter-mountain region (western slope of Colorado and northeastern Utah); and the western foothills of the Wasatch Mountains in Utah. Statistically significant variation among the OTU's was discovered for ration of tail length to total length, number of central and subcaudal scales, and number of dentary teeth. However, variation is clinal with nearly complete overlap from one end f the transect to the other for each character, suggesting a wide zone of intergradiation in the inter-mountain region. We do not believe reported differences in reproductive parameters between Great Plains and Great Basin racers are sufficient grounds for recognition of species, because clutch size is both geographically variable and dependent on the environment. The distribution of C. constrictor is similar to that of other reptiles with transmontane distributions in the western United States, and we suggest two possible routes of dispersal across the Continental Divide in southwestern Wyoming. Thus, elevation of C. c. mormon to species status is not supported by morphological, reproductive, or zoogeographic evidence.

  11. Geologic history and hydrogeologic units of intermontane basins of the northern Rocky Mountains, Montana and Idaho

    USGS Publications Warehouse

    Tuck, L.K.; Briar, David W.; Clark, David W.

    1996-01-01

    The Regional Aquifer-System Analysis (RASA) program is a series of studies by the U.S. Geological Survey (USGS) to analyze regional ground-water systems that compose a major portion of the Nation’s water supply (Sun, 1986). The Northern Rocky Mountains Intermontane Basins is one of the study regions in this national program. The main objectives of the RASA studies are to: (1) describe the ground-water systems as they exist today, (2) analyze the known changes that have led to the system's present condition, (3) combine results of previous studies in a regional analysis, where possible, and (4) provide means by which effects of future ground-water development can be estimated.The purpose of this study, which began in 1990, was to increase understanding of the hydrogeology of the intermontane basins of the Northern Rocky Mountains area. This report is Chapter Cofa three-part series and describes the quality of ground-water and surface water in the study area. Chapter A (Tück and others, 1996) describes the geologic history and generalized hydrogeologic units. Chapter B (Briar and others, 1996) describes the general distribution of ground-watcrlcwels in basin-fill deposits,Water-quality data illustrated in this report represent the distribution of concentrations and composition of dissolved solids in ground-water and surface water in the intermontane areas. The chemistry of ground and surface water in the intermontane areas is influenced by the chemical and physical nature of the rocks in the basin deposits of the valleys and surrounding bedrock in the mountains.

  12. Forest disturbance interactions and successional pathways in the Southern Rocky Mountains

    USGS Publications Warehouse

    Lu Liang,; Hawbaker, Todd J.; Zhu, Zhiliang; Xuecao Li,; Peng Gong,

    2016-01-01

    The pine forests in the southern portion of the Rocky Mountains are a heterogeneous mosaic of disturbance and recovery. The most extensive and intensive stress and mortality are received from human activity, fire, and mountain pine beetles (MPB;Dendroctonus ponderosae). Understanding disturbance interactions and disturbance-succession pathways are crucial for adapting management strategies to mitigate their impacts and anticipate future ecosystem change. Driven by this goal, we assessed the forest disturbance and recovery history in the Southern Rocky Mountains Ecoregion using a 13-year time series of Landsat image stacks. An automated classification workflow that integrates temporal segmentation techniques and a random forest classifier was used to examine disturbance patterns. To enhance efficiency in selecting representative samples at the ecoregion scale, a new sampling strategy that takes advantage of the scene-overlap among adjacent Landsat images was designed. The segment-based assessment revealed that the overall accuracy for all 14 scenes varied from 73.6% to 92.5%, with a mean of 83.1%. A design-based inference indicated the average producer’s and user’s accuracies for MPB mortality were 85.4% and 82.5% respectively. We found that burn severity was largely unrelated to the severity of pre-fire beetle outbreaks in this region, where the severity of post-fire beetle outbreaks generally decreased in relation to burn severity. Approximately half the clear-cut and burned areas were in various stages of recovery, but the regeneration rate was much slower for MPB-disturbed sites. Pre-fire beetle outbreaks and subsequent fire produced positive compound effects on seedling reestablishment in this ecoregion. Taken together, these results emphasize that although multiple disturbances do play a role in the resilience mechanism of the serotinous lodgepole pine, the overall recovery could be slow due to the vast area of beetle mortality.

  13. The Effects of Long Term Nitrogen Fertilization on Soil Respiration in Rocky Mountain National Park

    NASA Astrophysics Data System (ADS)

    Allen, J.; Denning, S.; Baron, J.

    2015-12-01

    Anthropogenic activities contribute to increased levels of nitrogen deposition and elevated CO2 concentrations in terrestrial ecosystems. The role that soils play in biogeochemical cycles is an important area of uncertainty in ecosystem ecology. One of the main reasons for this uncertainty is that we have limited understanding of belowground microbial activity and how this activity is linked to soil processes. In particular, elevated CO2 may influence soil nitrogen processes that regulate nitrogen availability to plants. Warming and nitrogen fertilization may both contribute to loss of stored carbon from mountain ecosystems, because they contribute to microbial decomposition of organic matter. To study the effects of long-term nitrogen fertilization on soil respiration, we analyzed results from a 25-year field experiment in Rocky Mountain National Park. Field treatments are in old growth Engelmann spruce forests. Soil respiration responses to the effects of nitrogen fertilization on soil carbon cycling, via respiration, were investigated during the 2013 growing season. Soil moisture, temperature, and respiration rates were measured in six 30 x 30 m plots, of the six plots three are fertilized with 25 kg N ha-1 yr-1 as ammonium nitrate (NH4NO3) pellets and three receives ambient atmospheric nitrogen deposition (1-6 kg N/ha/yr) in Rocky Mountain National Park. We found that respirations rates in the fertilized plots were not significantly higher than respiration rates in the unfertilized plots. We speculate that acclimation to long-term fertilization and relatively high levels of nitrogen deposition in the control plots both contribute to the insensitivity of soil respiration to fertilization at this site.

  14. Guidance and control, 1993; Annual Rocky Mountain Guidance and Control Conference, 16th, Keystone, CO, Feb. 6-10, 1993

    NASA Technical Reports Server (NTRS)

    Culp, Robert D. (Editor); Bickley, George (Editor)

    1993-01-01

    Papers from the sixteenth annual American Astronautical Society Rocky Mountain Guidance and Control Conference are presented. The topics covered include the following: advances in guidance, navigation, and control; control system videos; guidance, navigation and control embedded flight control systems; recent experiences; guidance and control storyboard displays; and applications of modern control, featuring the Hubble Space Telescope (HST) performance enhancement study.

  15. Diurnal activity of Rocky Mountain elk (Cervus elaphus) and beef cattle (Bos taurus) grazing a northeastern Oregon summer range

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rocky Mountain elk (Cervus elaphus) and beef cattle (Bos taurus) exist in a complex social environment that is marked by diurnal activities such as periods of foraging, ruminating, resting, and sheltering. Elk unlike cattle, must be continually alert to potential predators. We hypothesize that elk...

  16. REGIONAL ANALYSIS OF INORGANIC NITROGEN YIELD AND RETENTION IN HIGH-ELEVATION ECOSYSTEMS OF THE SIERRA NEVADA AND ROCKY MOUNTAINS

    EPA Science Inventory

    Yields and retention of inorganic nitrogen (DIN) and nitrate concentrations in surface runoff are summarized for 28 high elevation watersheds in the Sierra Nevada, California and Rocky Mountains of Wyoming and Colorado. Catchments ranged in elevation from 2475 to 3603 m and from...

  17. 14 CFR 136.35 - Prohibition of commercial air tour operations over the Rocky Mountain National Park.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... operations over the Rocky Mountain National Park. 136.35 Section 136.35 Aeronautics and Space FEDERAL... COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS COMMERCIAL AIR TOURS AND NATIONAL PARKS AIR TOUR MANAGEMENT National Parks Air Tour Management § 136.35 Prohibition of commercial air tour operations over the...

  18. 14 CFR 136.35 - Prohibition of commercial air tour operations over the Rocky Mountain National Park.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... operations over the Rocky Mountain National Park. 136.35 Section 136.35 Aeronautics and Space FEDERAL... COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS COMMERCIAL AIR TOURS AND NATIONAL PARKS AIR TOUR MANAGEMENT National Parks Air Tour Management § 136.35 Prohibition of commercial air tour operations over the...

  19. 14 CFR 136.35 - Prohibition of commercial air tour operations over the Rocky Mountain National Park.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... operations over the Rocky Mountain National Park. 136.35 Section 136.35 Aeronautics and Space FEDERAL... COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS COMMERCIAL AIR TOURS AND NATIONAL PARKS AIR TOUR MANAGEMENT National Parks Air Tour Management § 136.35 Prohibition of commercial air tour operations over the...

  20. 14 CFR 136.35 - Prohibition of commercial air tour operations over the Rocky Mountain National Park.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... operations over the Rocky Mountain National Park. 136.35 Section 136.35 Aeronautics and Space FEDERAL... COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS COMMERCIAL AIR TOURS AND NATIONAL PARKS AIR TOUR MANAGEMENT National Parks Air Tour Management § 136.35 Prohibition of commercial air tour operations over the...

  1. 14 CFR 136.35 - Prohibition of commercial air tour operations over the Rocky Mountain National Park.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... operations over the Rocky Mountain National Park. 136.35 Section 136.35 Aeronautics and Space FEDERAL... COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS COMMERCIAL AIR TOURS AND NATIONAL PARKS AIR TOUR MANAGEMENT National Parks Air Tour Management § 136.35 Prohibition of commercial air tour operations over the...

  2. Structural analysis of Boat Mountain area in Rocky Mountain foreland, Madison Range, Montana

    SciTech Connect

    Sablock, J.M.

    1987-08-01

    Detailed mapping, together with stereographic analysis of over 400 field measurements, has been used to determine the geological structure of the Boat Mountain area in southern Madison Range, Gallatin County, Montana. The principal structure is a north-plunging, north-northwest-trending, overturned and thrusted synform, termed the Bear Creek syncline. Thrusting consists of a duplex of roof and sole thrusts enclosing an imbricate stack of horses in the southwest part of Boat Mountain. Precambrian to Cretaceous (Kootenai Formation) strata are involved in the deformation, which is interpreted as Laramide and of a Foothills Family type, involving several separate pulses of deformation. Stereographic determinations of maximum principal stress directions have shown that an initial northeast-directed stress formed and overturned the synform, caused movement on the out-of-syncline sole thrust, and imbricated the overturned limb. A later, easterly directed stress moved the back-limb roof thrust over the already folded and thrust-faulted rocks of Boat Mountain. Thrusting was succeeded by sinistrally directed tear (or strike-slip) faulting along a northeast-striking fault at the southern end of Boat Mountain. Listric normal faulting on Laramide thrust-fault planes is interpreted as a response to Tertiary extension. Recent normal faulting, on steep-dipping, east-west-striking fault planes and continuing to the present, is interpreted as a response to Yellowstone doming.

  3. Postglacial adjustment of steep, low-order drainage basins, Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Hoffmann, T.; Müller, T.; Johnson, E. A.; Martin, Y. E.

    2013-12-01

    is generally argued that Pleistocene glaciation results in increased sediment flux in mountain systems. An important, but not well constrained, aspect of Pleistocene glacial erosion is the geomorphic decoupling of cirque basins from main river systems. This study provides a quantitative link between glacier-induced basin morphology, postglacial erosion, and sediment delivery for mountain headwaters (with basin area <10 km2). We analyze the morphology of 57 headwater basins in the Canadian Rockies and establish postglacial sediment budgets for select basins. Notable differences in headwater morphology suggest different degrees of erosion by cirque glaciers, which we classify into headwater basins with either cirque or noncirque morphology. Despite steeper slope gradients in cirque basins, higher-mean postglacial erosion rates in basins with noncirque morphology (0.43-0.6 mm a-1) compared to those in cirques (0.19-0.39 mm a-1) suggest a more complex relationship between hillslope erosion and slope gradient in calcareous mountain environments than implied by the threshold hillslope concept. Higher values of channel profile concavity and lower channel gradients in cirques imply lower transport capacities and, thus, lower sediment delivery ratios (SDR). These results are supported by (i) postglacial SDR values for cirques and noncirque basins of <15% and >28%, respectively, and (ii) larger fan sizes at outlets of noncirque basins compared to cirques. Although small headwater basins represent the steepest part of mountain environments and erode significant postglacial sediment, the majority of sediment remains in storage under interglacial climatic conditions and does not affect large-scale mountain river systems.

  4. Recent mountain pine beetle outbreaks, wildfire severity, and postfire tree regeneration in the US Northern Rockies.

    PubMed

    Harvey, Brian J; Donato, Daniel C; Turner, Monica G

    2014-10-21

    Widespread tree mortality caused by outbreaks of native bark beetles (Circulionidae: Scolytinae) in recent decades has raised concern among scientists and forest managers about whether beetle outbreaks fuel more ecologically severe forest fires and impair postfire resilience. To investigate this question, we collected extensive field data following multiple fires that burned subalpine forests in 2011 throughout the Northern Rocky Mountains across a spectrum of prefire beetle outbreak severity, primarily from mountain pine beetle (Dendroctonus ponderosae). We found that recent (2001-2010) beetle outbreak severity was unrelated to most field measures of subsequent fire severity, which was instead driven primarily by extreme burning conditions (weather) and topography. In the red stage (0-2 y following beetle outbreak), fire severity was largely unaffected by prefire outbreak severity with few effects detected only under extreme burning conditions. In the gray stage (3-10 y following beetle outbreak), fire severity was largely unaffected by prefire outbreak severity under moderate conditions, but several measures related to surface fire severity increased with outbreak severity under extreme conditions. Initial postfire tree regeneration of the primary beetle host tree [lodgepole pine (Pinus contorta var. latifolia)] was not directly affected by prefire outbreak severity but was instead driven by the presence of a canopy seedbank and by fire severity. Recent beetle outbreaks in subalpine forests affected few measures of wildfire severity and did not hinder the ability of lodgepole pine forests to regenerate after fire, suggesting that resilience in subalpine forests is not necessarily impaired by recent mountain pine beetle outbreaks.

  5. Modeling the Impacts of the Mountain Pine Beetle on Water and Energy fluxes in the Rocky Mountain West

    NASA Astrophysics Data System (ADS)

    Mikkelson, K. M.; Maxwell, R. M.; Ferguson, I. J.; McCray, J. E.; Sharp, J. O.

    2011-12-01

    The mountain pine beetle (MPB) epidemic in Western North America has generated growing concern in recent years. Increasing numbers of outbreaks have affected an estimated two million acres of forest in Colorado and Wyoming alone during 2008. Given the substantial acreage of prematurely dying forests within Colorado and Wyoming, it has been hypothesized that the effects of the MPB outbreak will be similar to those observed after forest harvesting. High tree mortality rates of recent MPB infestations have the potential to induce significant changes in forest canopy, impacting several aspects of the local water and energy cycle, including canopy interception of precipitation and radiation, snow accumulation, melt and sublimation and evapotranspiration (ET). Parflow, a variably saturated groundwater flow model was coupled with the Common Land Model (CLM) to incorporate physical processes related to energy at the land surface and used to investigate the changing hydrologic and energy regime associated with MPB infestations. Specifically, Parflow-CLM was used to model daily and annual fluctuations of ET, snow pack, groundwater storage and ground temperatures throughout the four phases of MPB attack (green, red, gray and dieback phases), at sites typical of the Rocky Mountain West. Our results demonstrate that MPB infested watersheds will experience a decrease in evapotranspiration and an increase in snow accumulation accompanied by earlier and faster snowmelt. Impacts are similar to those projected under climate change, yet with a systematically higher snowpack. These results have implications for water resource management due to higher tendencies for flooding in the spring and drought in the summer.

  6. Determinants of pika population density vs. occupancy in the Southern Rocky Mountains.

    PubMed

    Erb, Liesl P; Ray, Chris; Guralnick, Robert

    2014-04-01

    Species distributions are responding rapidly to global change. While correlative studies of local extinction have been vital to understanding the ecological impacts of global change, more mechanistic lines of inquiry are needed for enhanced forecasting. The current study assesses whether the predictors of local extinction also explain population density for a species apparently impacted by climate change. We tested a suite of climatic and habitat metrics as predictors of American pika (Ochotona princeps) relative population density in the Southern Rocky Mountains, USA. Population density was indexed as the density of pika latrine sites. Negative binomial regression and AICc showed that the best predictors of pika latrine density were patch area followed by two measures of vegetation quality: the diversity and relative cover of forbs. In contrast with previous studies of habitat occupancy in the Southern Rockies, climatic factors were not among the top predictors of latrine density. Populations may be buffered from decline and ultimately from extirpation at sites with high-quality vegetation. Conversely, populations at highest risk for declining density and extirpation are likely to be those in sites with poor-quality vegetation.

  7. Unconformity related traps and production, Lower Cretaceous through Mississippian Strata, central and northern Rocky Mountains

    SciTech Connect

    Dolson, J. )

    1990-05-01

    Unconformities provide a useful means of equating stratigraphic traps between basins. Systematic mapping can define new concepts through analogy, often from geographically separate areas. Lower Cretaceous through Mississippian surfaces in the central and northern Rockies provide examples. Late Mississippian and Early Pennsylvanian surfaces formed at least four paleodrainage basins separated by the Transcontinental arch. Tyler Formation valley fills (Montana, North Dakota) have produced more than 100 million BOE. Analogous targets in Utah remain untested, but the Mid-Continent Morrow trend continues to yield new reserves. Permian and Triassic paleodrainages filled primarily with seals and form regional traps. A breached Madison trap (Mississippian, Colorado), more than 350 million BOE (Permian Minnelusa, Wyoming), more than 8 billion BOE (from the White Rim Sandstone tar deposits Permian Utah), and eastern Williston basin (Mississippian) are examples. Minor basal valley fill trapping also occurs. Transgressive carbonate facies changes have trapped more than 40 million BOE (Permian Phosphoria Formation, Wyoming). Additional deep gas potential exists. Jurassic unconformities control seal distribution over Nugget Sandstone (Jurassic) reservoirs and partially control Mississippian porosity on the Sweetgrass arch (Montana). Minor paleohill trapping also occurs. Lower Cretaceous surfaces have trapped nearly 2 billion BOE hydrocarbons in 10 paleodrainage networks. Undrilled paleodrainage basins remain deep gas targets. The systematic examination of Rocky Mountain unconformities has been understudied. New exploration concepts and reserve additions await the creative interpreter.

  8. Comparison of pulmonary defense mechanisms in Rocky Mountain bighorn (Ovis canadensis canadensis) and domestic sheep.

    PubMed

    Silflow, R M; Foreyt, W J; Taylor, S M; Laegreid, W W; Liggitt, H D; Leid, R W

    1989-10-01

    Alveolar macrophages were obtained from Rocky Mountain bighorn sheep (Ovis canadensis canadensis) and domestic sheep for the purpose of comparing pulmonary host defense mechanisms in the two species. Specific variables studied included (1) characterization of the cell types present in the lung, (2) alveolar macrophage phagocytic and bactericidal functions, (3) measurement of protein levels in lavage fluid, and (4) measurement of cortisol levels in lavage fluid. While phagocytic cell populations were similar between bighorn and domestic sheep, a significantly higher percentage of lymphocytes were present in bighorns than domestics (20% in bighorn versus 6% in domestic sheep). Significant differences were not observed in the phagocytic or bactericidal functions of macrophages between the two species. Significant differences were not observed in either lavage fluid protein levels or in cortisol levels.

  9. Surface coal mining influences on macroinvertebrate assemblages in streams of the Canadian Rocky Mountains.

    PubMed

    Kuchapski, Kathryn A; Rasmussen, Joseph B

    2015-09-01

    To determine the region-specific impacts of surface coal mines on macroinvertebrate community health, chemical and physical stream characteristics and macroinvertebrate family and community metrics were measured in surface coal mine-affected and reference streams in the Canadian Rocky Mountains. Water chemistry was significantly altered in mine-affected streams, which had elevated conductivity, alkalinity, and selenium and ion concentrations compared with reference conditions. Multivariate redundancy analysis (RDA) indicated alterations in macroinvertebrate communities downstream of mine sites. In RDA ordination, Ephemeroptera family densities, family richness, Ephemeroptera, Plecoptera, Trichoptera (EPT) richness, and % Ephemeroptera declined, whereas densities of Capniidae stoneflies increased along environmental gradients defined by variables associated with mine influence including waterborne Se concentration, alkalinity, substrate embeddedness, and interstitial material size. Shifts in macroinvertebrate assemblages may have been the result of multiple region-specific stressors related to mining influences including selenium toxicity, ionic toxicity, or stream substrate modifications.

  10. Risk Assessment of Geologic Formation Sequestration in The Rocky Mountain Region, USA

    SciTech Connect

    Lee, Si-Yong; McPherson, Brian

    2013-08-01

    The purpose of this report is to describe the outcome of a targeted risk assessment of a candidate geologic sequestration site in the Rocky Mountain region of the USA. Specifically, a major goal of the probabilistic risk assessment was to quantify the possible spatiotemporal responses for Area of Review (AoR) and injection-induced pressure buildup associated with carbon dioxide (CO₂) injection into the subsurface. Because of the computational expense of a conventional Monte Carlo approach, especially given the likely uncertainties in model parameters, we applied a response surface method for probabilistic risk assessment of geologic CO₂ storage in the Permo-Penn Weber formation at a potential CCS site in Craig, Colorado. A site-specific aquifer model was built for the numerical simulation based on a regional geologic model.

  11. Northern Rocky Mountain streamflow records: Global warming trends, human impacts or natural variability?

    NASA Astrophysics Data System (ADS)

    St. Jacques, Jeannine-Marie; Sauchyn, David J.; Zhao, Yang

    2010-03-01

    The ˜60 year Pacific Decadal Oscillation (PDO) is a major factor controlling streamflow in the northern Rocky Mountains, causing dryness during its positive phase, and wetness during its negative phase. If the PDO’s influence is not incorporated into a trend analysis of streamflows, it can produce detected declines that are actually artifacts of this low-frequency variability. Further difficulties arise from the short length and discontinuity of most gauge records, human impacts, and residual autocorrelation. We analyze southern Alberta and environs instrumental streamflow data, using void-filled datasets from unregulated and regulated gauges and naturalized records, and Generalized Least Squares regression to explicitly model the impacts of the PDO and other climate oscillations. We conclude that streamflows are declining at most gauges due to hydroclimatic changes (probably from global warming) and severe human impacts, which are of the same order of magnitude as the hydroclimate changes, if not greater.

  12. Rapid hydrologic shifts and prolonged droughts in Rocky Mountain headwaters during the Holocene

    NASA Astrophysics Data System (ADS)

    Shuman, Bryan; Pribyl, Paul; Minckley, Thomas A.; Shinker, Jacqueline J.

    2010-03-01

    Rapid hydroclimatic shifts repeatedly generated centuries to millennia of extensive aridity across the headwaters of three of North America's largest river systems during the Holocene. Evidence of past lake-level changes at the headwaters of the Snake-Columbia, Missouri-Mississippi, and Green-Colorado Rivers in the Rocky Mountains shows that aridity as extensive and likely as severe as the CE 1930s Dust Bowl developed within centuries or less at ca. 9 ka (thousand years before CE 1950), and persisted across large areas of the watersheds until ca. 3 ka. Regional water levels also shifted abruptly at >11.3 and 1.8-1.2 ka. The record of low water levels during the mid-Holocene on the Continental Divide links similar evidence from the Great Basin and the Midwestern U.S., and shows that extensive aridity was the Holocene norm even though few GCMs have simulated such a pattern.

  13. Hydrology of area 51, northern Great Plains and Rocky Mountain coal provinces, Wyoming and Montana

    USGS Publications Warehouse

    Peterson, David A.; Mora, K.L.; Lowry, Marlin E.; Rankl, James G.; Wilson, James F.; Lowham, H.W.; Ringen, Bruce H.

    1987-01-01

    This report is one of a series designed to characterize the hydrology of drainage basins within coal provinces, nationwide. Area 51 (in the Rocky Mountain Coal Province) includes all or part of the Shoshone, Bighorn, Greybull, Wind, and Popo Agie River drainage basins - a total of 11,800 sq mi. Area 51 contains more than 18 million tons of strippable bituminous coal and extensive deposits of subbituminous coal, in the arid and semiarid basins. The report represents a summary of results of water resources investigations of the U.S. Geological Survey, some of which were conducted in cooperation with State and other Federal agencies. More than 30 individual topics are discussed in brief texts that are accompanied by maps, graphs, photographs , and illustrations. Primary topics in the reports are physiography, resources and economy, surface-water quantity and quality, and groundwater. (USGS)

  14. Abbreviated bibliography on energy development—A focus on the Rocky Mountain Region

    USGS Publications Warehouse

    Montag, Jessica M.; Willis, Carolyn J.; Glavin, Levi W.

    2011-01-01

    Energy development of all types continues to grow in the Rocky Mountain Region of the western United States. Federal resource managers increasingly need to balance energy demands, effects on the natural landscape and public perceptions towards these issues. To assist in efficient access to valuable information, this abbreviated bibliography provides citations to relevant information for myriad of issues for which resource managers must contend. The bibliography is organized by seven large topics with various sup-topics: broad energy topics (energy crisis, conservation, supply and demand, etc.); energy sources (fossil fuel, nuclear, renewable, etc.); natural landscape effects (climate change, ecosystem, mitigation, restoration, and reclamation, wildlife, water, etc.); human landscape effects (attitudes and perceptions, economics, community effects, health, Native Americans, etc.); research and technology; international research; and, methods and modeling. A large emphasis is placed on the natural and human landscape effects.

  15. Appraisal of the future climate of the Holocene in the Rocky Mountains

    USGS Publications Warehouse

    Richmond, G.M.

    1972-01-01

    Consideration of the history of Holocene climate in the Rocky Mountains indicates that the over-all trend during the past 2500 yr has been toward increasing warmth, interrupted by cooler times of minor advances of cirque glaciers. Comparison of Holocene climatic history with the record of past interglacials in the region suggests that the present interglacial is not complete and that the climate may become first warmer and subsequently wetter before it is completed. Correlation of the timing of the regional glacial-interglacial record for the past 140,000 yr with the record of major sea level changes and with the calculated changes in the earth's insolation suggest that the present interglacial may be completed within a few millenia and that it may be followed by a significant cooling of the climate. ?? 1972.

  16. Hydrology of area 52, Rocky Mountain coal province Wyoming, Colorado, Idaho, and Utah

    USGS Publications Warehouse

    Lowham, H.W.; Peterson, D.A.; Larson, L.R.; Zimmerman, E.A.; Ringen, B.H.; Mora, K.L.

    1985-01-01

    This report is one of a series designed to characterize the hydrology of drainage basins within coal provinces, nationwide. Area 52 (in the Rocky Mountain Coal Province) includes the Green River Basin upstream from the Yampa River, and the Bear River upstream from the Bear Lake - a total of 23,870 sq mi. Area 52 contains over 3 billion tons of strippable coal, most of which is located in the arid and semiarid plains. The report represents a summary of results of the water resources investigations of the U.S. Geological Survey, carried out in cooperation with State and other Federal agencies. More than 40 individual topics are discussed in a brief text that is accompanied by maps, graphs, photographs, and other illustrations. Primary topics in the report are: general features, resources and economy, surface-water quantity and quality, and groundwater. (USGS)

  17. Den-site characteristics of black bears in Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Baldwin, R.A.; Bender, L.C.

    2008-01-01

    We compared historic (1985-1992) and contemporary (2003-2006) black bear (Ursus americanus) den locations in Rocky Mountain National Park (RMNP), Colorado, USA, for habitat and physiographic attributes of den sites and used maximum entropy modeling to determine which factors were most influential in predicting den-site locations. We observed variability in the relationship between den locations and distance to trails and elevation over rime. Locations of historic den sites were most associated with slope, elevation, and covertype, whereas contemporary sites were associated with slope, distance to roads, aspect, and canopy height. Although relationships to covariates differed between historic and contemporary periods, preferred den-site characteristics consistently included steep slopes and factors associated with greater snow depth. Distribution of den locations shifted toward areas closer to human developments, indicating little negative influence of this factor on den-site selection by black bears in RMNP.

  18. Removal of n-nitrosodimethylamine from Rocky Mountain Arsenal waters using innovative adsorption technologies. Final report

    SciTech Connect

    Fleming, E.C.; Pennington, J.C.; Francingues, N.R.; Felt, D.R.; Wachob, B.G.

    1996-08-01

    The Rocky Mountain Arsenal (RMA) occupies 27 square miles in Adams County, Colorado, and is located adjacent to the Stapleton Airport. Figure 1 illustrates a general map of the RMA. The U.S. Department of the Army established the RMA in 1942 for the purpose of producing chemicals such as napalm, mustard agent, lewisite, and chlorine. After World War II, a number of private organizations leased the arsenal from the Army for a variety of manufacturing purposes. Most of the manufacturing activities were conducted in the South Plants area (see Figure 1). The North Plants were constructed in 1951 for GB nerve agent production, munitions filling, and demilitarization of munitions and used until 1957. During the 1950s and 1960s, the Air Force operated the hydrazine blending and storage facility (HBSF) of symmetrical and unsymmetrical dimethyl hydrazine (UDMH). The hydrazine produced at the HBSF was used for the Titan Missile and Lunar Lander programs.

  19. Rocky Mountain hydroclimate: Holocene variability and the role of insolation, ENSO, and the North American Monsoon

    USGS Publications Warehouse

    Anderson, Lesleigh

    2012-01-01

    Over the period of instrumental records, precipitation maximum in the headwaters of the Colorado Rocky Mountains has been dominated by winter snow, with a substantial degree of interannual variability linked to Pacific ocean–atmosphere dynamics. High-elevation snowpack is an important water storage that is carefully observed in order to meet increasing water demands in the greater semi-arid region. The purpose here is to consider Rocky Mountain water trends during the Holocene when known changes in earth's energy balance were caused by precession-driven insolation variability. Changes in solar insolation are thought to have influenced the variability and intensity of the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and North American Monsoon and the seasonal precipitation balance between rain and snow at upper elevations. Holocene records are presented from two high elevation lakes located in northwest Colorado that document decade-to-century scale precipitation seasonality for the past ~ 7000 years. Comparisons with sub-tropical records of ENSO indicate that the snowfall-dominated precipitation maxima developed ~ 3000 and 4000 years ago, coincident with evidence for enhanced ENSO/PDO dynamics. During the early-to-mid Holocene the records suggest a more monsoon affected precipitation regime with reduced snowpack, more rainfall, and net moisture deficits that were more severe than recent droughts. The Holocene perspective of precipitation indicates a far broader range of variability than that of the past century and highlights the non-linear character of hydroclimate in the U.S. west.

  20. Use of stable sulfur isotopes to identify sources of sulfate in Rocky Mountain snowpacks

    USGS Publications Warehouse

    Mast, M.A.; Turk, J.T.; Ingersoll, G.P.; Clow, D.W.; Kester, C.L.

    2001-01-01

    Stable sulfur isotope ratios and major ions in bulk snowpack samples were monitored at a network of 52 high-elevation sites along and near the Continental Divide from 1993 to 1999. This information was collected to better define atmospheric deposition to remote areas of the Rocky Mountains and to help identify the major source regions of sulfate in winter deposition. Average annual ??34S values at individual sites ranged from + 4.0 to + 8.2??? and standard deviations ranged from 0.4 to 1.6???. The chemical composition of all samples was extremely dilute and slightly acidic; average sulfate concentrations ranged from 2.4 to 12.2 ??eql-1 and pH ranged from 4.82 to 5.70. The range of ??34S values measured in this study indicated that snowpack sulfur in the Rocky Mountains is primarily derived from anthropogenic sources. A nearly linear relation between ??34S and latitude was observed for sites in New Mexico, Colorado, and southern Wyoming, which indicates that snowpack sulfate in the southern part of the network was derived from two isotopically distinct source regions. Because the major point sources of SO2 in the region are coal-fired powerplants, this pattern may reflect variations in the isotopic composition of coals burned by the plants. The geographic pattern in ??34S for sites farther to the north in Wyoming and Montana was much less distinct, perhaps rflecting the paucity of major point sources of SO2 in the northern part of the network.

  1. Deposition of Sulphate and Nitrogen in Alpine Precipitation of the Southern Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Wasiuta, V. L.; Lafreniere, M. J.

    2011-12-01

    Atmospheric nitrogen (N) and sulphur (S) are the main contributors to acid precipitation which causes regionally persistent ecological problems. Enhanced deposition of reactive N, mainly as nitrate (NO3-) and ammonium (NH4+), also contributes to major ecological problems associated with ecosystem N saturation. Alpine ecosystems, which are generally nutrient poor and exist under extreme climatic conditions, are sensitive to environmental and climatic stressors. Studies in the USA Rocky Mountains and European Alps have shown alpine ecosystems have a particularly sensitivity to enhanced deposition of reactive N and can show ecologically destructive responses at relatively low levels of N deposition. However, evaluation of atmospheric sulphur and nitrogen deposition in mid latitude alpine Western Canada has been initiated only very recently and at only a few locations. There is little comprehension of current atmospheric flux to high altitudes or the importance of contributions from major emission sources This work quantifies the atmospheric deposition of SO42- NH4+ and NO3- to a remote alpine site in the Southern Canadian Rocky Mountains by characterizing alpine precipitation. The effect of elevation and aspect on deposition are assessed using sampling sites along elevational transects in the adjacent Haig and Robertson Valleys. Seasonal variations in deposition of SO42- NH4+ and NO3- are evaluated using the autumn, winter, and spring precipitation accumulated in the seasonal snowpack at glacial and fore glacial locations, along with collected bulk summer precipitation. Preliminary results show lower precipitation volumes, which are associated with higher SO42- and NH4+ loads, in the north west facing Robertson Valley than the south east facing Haig Glacier. However trends in deposition of SO42- NH4+ and NO3- with elevation and aspect are inconsistent over the 2008-2009 and 2009-2010 snow accumulation seasons, and 2010 bulk summer precipitation seasons that were

  2. Relationships between nutritional condition of adult females and relative carrying capacity for rocky mountain Elk

    USGS Publications Warehouse

    Piasecke, J.R.; Bender, L.C.

    2009-01-01

    Lactation can have significant costs to individual and population-level productivity because of the high energetic demands it places on dams. Because the difference in condition between lactating and dry Rocky Mountain elk (Cervus elaphus nelsoni) cows tends to disappear as nutritional quality rises, the magnitude of that difference could be used to relate condition to habitat quality or the capability of habitats to support elk. We therefore compared nutritional condition of ???2.5-yr-old lactating and dry cows from six free-ranging RockyMountain elk populations throughout the United States.Our goal was to quantify differential accrual of body fat (BF) reserves to determine whether the condition of dry and lactating cows could be used to define relevant management thresholds of habitat quality (i.e., relative carrying capacity) and consequently potential performance of elk populations. Levels of BF that lactating cows were able to accrue in autumn and the proportional difference in BF between dry and lactating cows in autumn were related (F 1-2,10???16.2, P<0.001). Models indicated that elk experienced no negative effects of reproduction on condition when lactating cows were able to accrue ???13.7%BF in autumn.When lactating cows are accruing ???7.9%BF, elk are in a nutritionally stressed condition, which may be limiting population performance. Using the logistic model to predict relative proximity to ecological carrying capacity (ECC), our population-years ranged from3-97%ofECCand proportion of the population lactating (an index of calf survival) was negatively related to proportion of ECC. Results indicate that the proportional difference in accrual of BF between lactating and dry cows can provide a sensitive index to where elk populations reside relative to the quality of their range.

  3. Stress hormone concentration in Rocky Mountain populations of the American pika (Ochotona princeps)

    PubMed Central

    Wilkening, Jennifer L.; Ray, Chris; Sweazea, Karen L.

    2013-01-01

    The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, but previous studies have focused only on local pika extinction as a metric of change. We designed a procedure which can provide an earlier warning signal, based on non-invasive sampling and analysis of physiological stress in living pikas. Pikas were sampled at several locations in the Rocky Mountains for the measurement of glucocorticoid metabolites (GCMs) in faeces. Using a time series of faecal pellets from 12 individuals, we detected a significant increase in faecal GCM level in response to capture, thus biologically validating the use of a corticosterone enzyme immunoassay. We also established baseline, peak, and post-peak GCM concentrations for pikas in the Rocky Mountains, which varied according to gender and individual. This is the first study to measure stress hormone metabolites in any species of pika. The methods developed and validated in this study can be used to add non-invasive measurements of physiological stress to pika monitoring programmes and other research designed to assess pika vulnerability to predicted changes in climate. Pika monitoring programmes currently in place use a protocol that relates current site use by pikas with data on local habitat characteristics, such as elevation, to infer potential effects of climate change. Data generated by these monitoring studies can be used to identify the trends in site use by pikas in relationship to habitat covariates. However, this approach does not take into account the role of behavioural thermoregulation and the pika's use of microhabitats to ameliorate variations in climate. Incorporating a stress metric, such as GCM concentration, will provide relatively direct evidence for or against the hypothesis that pikas can be stressed by climate regardless of behavioural adaptations. PMID:27293611

  4. Provenance record of Paleogene exhumation and Laramide basin evolution along the southern Rocky Mountain front

    NASA Astrophysics Data System (ADS)

    Bush, M. A.; Horton, B. K.; Murphy, M. A.; Stockli, D. F.

    2015-12-01

    The Sangre de Cristo and Nacimiento uplifts of the southern Rocky Mountains formed key parts of a major Paleogene topographic boundary separating the Cordilleran orogenic system from the North American plate interior. This barrier largely isolated interior Laramide basins from a broad Laramide foreland with fluvial systems draining to the Gulf of Mexico, and thereby played a critical role in the evolution of continental-scale paleodrainage patterns. New detrital zircon U-Pb geochronology and heavy mineral provenance analyses of Cretaceous-Paleogene siliciclastic strata in the Raton, Galisteo-El Rito, and San Juan basins record the partitioning of the broad Cordilleran (Sevier) foreland basin by Laramide basement uplifts. These trends are recognized both in provenance signals and depositional styles corresponding to cratonward (eastward) propagation of the Laramide deformation front and resultant advance of flexural depocenters in the North American interior. Along the eastern flank of the deformation front, the Raton basin shows a mix of Cordilleran, Appalachian, and Grenville age zircons restricted to the Cretaceous Dakota and Vermejo formations, marine units of the Western Interior Seaway. Upsection, the Cordilleran age peaks are absent from Paleocene-Eocene units, consistent with significant Laramide drainage reorganization and isolation from Cordilleran sources to the west. In the Galisteo-El Rito basin system, a shift to dominantly Mazatzal-Yavapai basement ages is recognized in the Paleocene El Rito and Oligocene Ritito formations. The heavy mineral results show a corresponding shift to less mature, dominantly metamorphic source compositions. These new datasets bear upon Cretaceous-Cenozoic reconstructions of North American paleodrainage and have implications for potential linkages between major fluvial systems of the southern Rocky Mountains and Paleogene deepwater reservoir units in the Gulf of Mexico basin.

  5. Rocky Mountain Tertiary coal-basin models and their applicability to some world basins

    USGS Publications Warehouse

    Flores, R.M.

    1989-01-01

    Tertiary intermontane basins in the Rocky Mountain region of the United States contain large amounts of coal resources. The first major type of Tertiary coal basin is closed and lake-dominated, either mud-rich (e.g., North Park Basin, Colorado) or mud plus carbonate (e.g., Medicine Lodge Basin, Montana), which are both infilled by deltas. The second major type of Tertiary coal basin is open and characterized by a preponderance of sediments that were deposited by flow-through fluvial systems (e.g., Raton Basin, Colorado and New Mexico, and Powder River Basin, Wyoming and Montana). The setting for the formation of these coals varies with the type of basin sedimentation, paleotectonism, and paleoclimate. The mud-rich lake-dominated closed basin (transpressional paleotectonism and warm, humid paleoclimate), where infilled by sandy "Gilbert-type" deltas, contains thick coals (low ash and low sulfur) formed in swamps of the prograding fluvial systems. The mud- and carbonate-rich lake-dominated closed basin is infilled by carbonate precipitates plus coarse-grained fan deltas and fine-grained deltas. Here, thin coals (high ash and high sulfur) formed in swamps of the fine-grained deltas. The coarse-clastic, open basins (compressional paleotectonism and warm, paratropical paleoclimate) associated with flow-through fluvial systems contain moderately to anomalously thick coals (high to low ash and low sulfur) formed in swamps developed in intermittently abandoned portions of the fluvial systems. These coal development patterns from the Tertiary Rocky Mountain basins, although occurring in completely different paleotectonic settings, are similar to that found in the Tertiary, Cretaceous, and Permian intermontane coal basins in China, New Zealand, and India. ?? 1989.

  6. Investigating types and sources of organic aerosol in Rocky Mountain National Park using aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schurman, M. I.; Lee, T.; Sun, Y.; Schichtel, B. A.; Kreidenweis, S. M.; Collett, J. L., Jr.

    2015-01-01

    The environmental impacts of atmospheric particles are highlighted in remote areas where visibility and ecosystem health can be degraded by even relatively low particle concentrations. Submicron particle size, composition, and source apportionment were explored at Rocky Mountain National Park using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer. This summer campaign found low average, but variable, particulate mass (PM) concentrations (max = 93.1 μg m-3, avg. = 5.13 ± 2.72 μg m-3) of which 75.2 ± 11.1% is organic. Low-volatility oxidized organic aerosol (LV-OOA, 39.3% of PM1 on average) identified using Positive Matrix Factorization appears to be mixed with ammonium sulfate (3.9% and 16.6% of mass, respectively), while semi-volatile OOA (27.6%) is correlated with ammonium nitrate (nitrate: 4.3%); concentrations of these mixtures are enhanced with upslope (SE) surface winds from the densely populated Front Range area, indicating the importance of transport. A local biomass burning organic aerosol (BBOA, 8.4%) source is suggested by mass spectral cellulose combustion markers (m/z 60 and 73) limited to brief, high-concentration, polydisperse events (suggesting fresh combustion), a diurnal maximum at 22:00 local standard time when campfires were set at adjacent summer camps, and association with surface winds consistent with local campfire locations. The particle characteristics determined here represent typical summertime conditions at the Rocky Mountain site based on comparison to ~10 years of meteorological, particle composition, and fire data.

  7. Investigating types and sources of organic aerosol in Rocky Mountain National Park using aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schurman, M. I.; Lee, T.; Sun, Y.; Schichtel, B. A.; Kreidenweis, S. M.; Collett, J. L., Jr.

    2014-07-01

    The environmental impacts of atmospheric particles are highlighted in remote areas where visibility and ecosystem health can be degraded by even relatively low particle concentrations. Submicron particle size, composition, and source apportionment were explored at Rocky Mountain National Park using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer. This summer campaign found low average, but variable, particulate mass (PM) concentrations (max = 93.1 μg m-3, avg. = 5.13 ± 2.72 μg m-3) of which 75.2 ± 11.1% is organic. Low-volatility oxidized organic aerosol (LV-OOA, 39.3% of PM1 on average) identified using Positive Matrix Factorization appears to be mixed with ammonium sulfate (3.9 and 16.6% of mass, respectively), while semi-volatile OOA (27.6%) is correlated with ammonium nitrate (nitrate: 4.3%); concentrations of these mixtures are enhanced with upslope (SE) surface winds from the densely populated Front Range area, indicating the importance of transport. A local biomass burning organic aerosol (BBOA, 8.4%) source is suggested by mass spectral cellulose combustion markers (m/zs 60 and 73) limited to brief, high-concentration, polydisperse events (suggesting fresh combustion), a diurnal maximum at 22:00 local standard time (LST) when campfires were set at adjacent summer camps, and association with surface winds consistent with local campfire locations. The particle characteristics determined here represent typical summertime conditions at the Rocky Mountain site based on comparison to ∼10 years of meteorological, particle composition, and fire data.

  8. Distribution and environmental limitations of an amphibian pathogen in the Rocky Mountains, USA

    USGS Publications Warehouse

    Muths, E.; Pilliod, D.S.; Livo, L.J.

    2008-01-01

    Amphibian populations continue to be imperiled by the chytrid fungus (Batrachochytrium dendrobatidis). Understanding where B. dendrobatidis (Bd) occurs and how it may be limited by environmental factors is critical to our ability to effectively conserve the amphibians affected by Bd. We sampled 1247 amphibians (boreal toads and surrogates) at 261 boreal toad (Bufo boreas) breeding sites (97 clusters) along an 11?? latitudinal gradient in the Rocky Mountains to determine the distribution of B. dendrobatidis and examine environmental factors, such as temperature and elevation, that might affect its distribution. The fungus was detected at 64% of all clusters and occurred across a range of elevations (1030-3550 m) and latitudes (37.6-48.6??) but we detected it in only 42% of clusters in the south (site elevations higher), compared to 84% of clusters in the north (site elevations lower). Maximum ambient temperature (daily high) explained much of the variation in Bd occurrence in boreal toad populations and thus perhaps limits the occurrence of the pathogen in the Rocky Mountains to areas where climatic conditions facilitate optimal growth of the fungus. This information has implications in global climate change scenarios where warming temperatures may facilitate the spread of disease into previously un- or little-affected areas (i.e., higher elevations). This study provides the first regional-level, field-based effort to examine the relationship of environmental and geographic factors to the distribution of B. dendrobatidis in North America and will assist managers to focus on at-risk populations as determined by the local temperature regimes, latitude and elevation.

  9. Declining summer flows of Rocky Mountain rivers: Changing seasonal hydrology and probable impacts on floodplain forests

    NASA Astrophysics Data System (ADS)

    Rood, Stewart B.; Pan, Jason; Gill, Karen M.; Franks, Carmen G.; Samuelson, Glenda M.; Shepherd, Anita

    2008-02-01

    SummaryIn analyzing hydrologic consequences of climate change, we previously found declining annual discharges of rivers that drain the hydrographic apex of North America, the Rocky Mountain headwaters region for adjacent streams flowing to the Arctic, Atlantic and Pacific oceans. In this study we investigated historic changes in seasonal patterns of streamflows, by comparing mean monthly flows and analyzing cumulative hydrographs over the periods of record of about a century. We tested predictions of change due to winter and spring warming that would increase the proportion of rain versus snow, and alter snow accumulation and melt. We analyzed records from 14 free-flowing, snow-melt dominated rivers that drained relatively pristine parks and protected areas, thus avoiding the effects of river damming, flow regulation, or watershed development. The collective results indicated that: (1) winter flows (especially March) were often slightly increased, (2) spring run-off and (3) peak flows occurred earlier, and most substantially, (4) summer and early autumn flows (July-October) were considerably reduced. The greatest changes were observed for the rivers draining the east-slope of the Rocky Mountains toward the northern prairies and Hudson Bay, with late summer flow decline rates of about 0.2%/year. This would have considerable ecological impact since this is the warm and dry period when evaporative demand is maximal and reduced instream flows would reduce riparian groundwater recharge, imposing drought stress on floodplain forests. In combination with the decline in annual discharge, earlier peaks and reduced summer flows would provide chronic stress on riparian cottonwoods and willows and especially restrict seedling recruitment. We predict a loss of floodplain forests along some river reaches, the narrowing of forest bands along other reaches, and increased vulnerability of these ecosystems to other impacts including livestock grazing, encroachment of upland

  10. Ground-water levels in intermontane basins of the northern Rocky Mountains, Montana and Idaho

    USGS Publications Warehouse

    Briar, David W.; Lawlor, S.M.; Stone, M.A.; Parliman, D.J.; Schaefer, J.L.; Kendy, Eloise

    1996-01-01

    The Regional Aquifer-System Analysis (RASA) program is a series of studies by the U.S. Geological Survey (USGS) to analyze regional ground-water systems that compose a major portion of the Nation's water supply (Sun, 1986). The Northern Rocky Mountains Intermontane Basins is one of the study regions in this national program. The main objectives of the RASA studies are to (1) describe the groundwater systems as they exist today, (2) analyze the known changes that have led to the systems present condition, (3) combine results of previous studies in a regional analysis, where possible, and (4) provide means by which effects of future ground-water development can be estimated.The purpose of this study, which began in 1990, was to increase understanding of the hydrogeology of the intermontane basins of the Northern Rocky Mountains area. This report is Chapter B of a three-part series and shows the general distribution of ground-water levels in basin-fill deposits in the study area. Chapter A (Tuck and others, 1996) describes the geologic history and generalized hydrogeologic units. Chapter C (Clark and Dutton, 1996) describes the quality of ground and surface waters in the study area.Ground-water levels shown in this report were measured primarily during summer 1991 and summer 1992; however, historical water levels were used for areas where more recent data could not be obtained. The information provided allows for the evaluation of general directions of ground-water flow, identification of recharge and discharge areas, and determination of hydraulic gradients within basin-fill deposits.

  11. Recreational trails as corridors for alien plants in the Rocky Mountains, USA

    USGS Publications Warehouse

    Wells, Floye H.; Lauenroth, William K.; Bradford, John B.

    2012-01-01

    Alien plant species often use areas of heavy human activity for habitat and dispersal. Roads and utility corridors have been shown to harbor more alien species than the surrounding vegetation and are therefore believed to contribute to alien plant persistence and spread. Recreational trails represent another corridor that could harbor alien species and aid their spread. Effective management of invasive species requires understanding how alien plants are distributed at trailheads and trails and how their dispersal may be influenced by native vegetation. Our overall goal was to investigate the distribution of alien plants at trailheads and trails in the Rocky Mountains of Colorado. At trailheads, we found that although the number of alien species was less than the number of native species, alien plant cover ( x̄=50%) did not differ from native plant cover, and we observed a large number of alien seedlings in the soil seed bank, suggesting that alien plants are a large component of trailhead communities and will continue to be so in the future. Along trails, we found higher alien species richness and cover on trail (as opposed to 4 m from the trail) in 3 out of 4 vegetation types, and we observed higher alien richness and cover in meadows than in other vegetation types. Plant communities at both trailheads and trails, as well as seed banks at trailheads, contain substantial diversity and abundance of alien plants. These results suggest that recreational trails in the Rocky Mountains of Colorado may function as corridors that facilitate the spread of alien species into wildlands. Our results suggest that control of alien plants should begin at trailheads where there are large numbers of aliens and that control efforts on trails should be prioritized by vegetation type.

  12. Hydrology of area 54, Northern Great Plains, and Rocky Mountain coal provinces, Colorado and Wyoming

    USGS Publications Warehouse

    Kuhn, Gerhard; Daddow, P.D.; Craig, G.S.; ,

    1983-01-01

    A nationwide need for information characterizing hydrologic conditions in mined and potential mine areas has become paramount with the enactment of the Surface Mining Control and Reclamation Act of 1977. This report, one in a series covering the coal provinces nationwide, presents information thematically by describing single hydrologic topics through the use of brief texts and accompanying maps, graphs, or other illustrations. The summation of the topical discussions provides a description of the hydrology of the area. Area 54, in north-central Colorado and south-central Wyoming, is 1 of 20 hydrologic reporting areas of the Northern Great Plains and Rocky Mountain coal provinces. Part of the Southern Rocky Mountains and Wyoming Basin physiographic provinces, the 8,380-square-mile area is one of contrasting geology, topography, and climate. This results in contrasting hydrologic characteristics. The major streams, the North Platte, Laramie, and Medicine Bow Rivers, and their principal tributaries, all head in granitic mountains and flow into and through sedimentary basins between the mountain ranges. Relief averages 2,000 to 3,000 feet. Precipitation in the mountains may exceed 40 inches annually, much of it during the winter, which produces deep snowpacks. Snowmelt in spring and summer provides most streamflow. Precipitation in the basins averages 10 to 16 inches annually, insufficient for sustained streamflow; thus, streams originating in the basins are ephemeral. Streamflow quality is best in the mountains where dissolved-solids concentrations generally are least. These concentrations increase as streams flow through sedimentary basins. The increases are mainly natural, but some may be due to irrigation in and adjacent to the flood plains. In the North Platte River, dissolved-solids concentrations are usually less than 300 milligrams per liter; in the Laramie and the Medicine Bow Rivers, the concentrations may average 500 to 850 milligrams per liter. However

  13. The Spatial and Temporal Distribution of Melt Rates Across the Southern Rocky Mountains, USA

    NASA Astrophysics Data System (ADS)

    Weber, A. N.; Fassnacht, S. R.

    2015-12-01

    About 20% of the world's population relies on melting snow for their main water supply. Many of these areas are mountainous and there is limited in situ monitoring of snow accumulation and melt due to few stations and the lack of representativeness of these stations in this complex terrain. Most of the existing stations only collect precipitation and temperature data, thus modeling of snowmelt often uses temperature as an index for the full energy balance needed to physically model melt. Across the Western United States (U.S.), there are currently about 700 snow telemetry (SNOTEL) stations that monitor precipitation and temperature, as well as snow water equivalent (SWE) and snow depth. Across the Southern Rocky Mountains in the central-western U.S., 90 SNOTEL stations have been operating since the late 1970s or mid-1980s. These stations were used to estimate the daily snowmelt rate as a function of the daily average air temperature, in millimeters of snow melt per day per degrees Celsius, over half-month periods to consider the seasonality of incoming solar radiation. The spatio-temporal variability of melt was then evaluated based on the location, topography, and canopy characteristics for each station. It is expected that this melt rate spatio-temporal variability can applied to other continental regions across the globe.

  14. Hydraulics and sediment transport processes in a pool-riffle rocky mountain stream

    USGS Publications Warehouse

    Thompson, Douglas M.

    1994-01-01

    Sediment transport processes related to varying channel-bed morphology were investigated from April to November, 1993 along a 1 km pool-riffle and step-pool reach of North Saint Vrain Creek, a small mountain stream in the Northern Colorado Rocky Mountains. Three hundred sixteen 16-256 mm tracer particles placed in two separate pool-riffle-pool sequences, forty-three direct bedload measurements at three separate cross-sections in discharges ranging between 0.27-8.8 m3/s, and indirect velocity measurements at thirteen cross-sections in 23 discharges ranging between 0.23-9.2 m3/s are used to assess sediment sorting patterns and sediment transport capacity variations. An investigation of secondary flow features and wave patterns provides preliminary evidence of turbulent controls on sediment entrainment and transport, and was used to develop a conceptual model of bedload transport and channel-bed maintenance on North Saint Vrain Creek. Recirculating eddy systems provide a means to constrict flow in pools, leading to modeled velocity-reversals at high flows. Tracer particle depositional evidence also indicates higher sediment transport capacities in pools versus riffles at high flow. Modeled hydraulic conditions and depositional evidence of tracers indicates that high-flow recirculating-eddy-influenced velocity-reversals and associated turbulence may provide the primary pool maintenance processes in this channel.

  15. Detrital record of initial basement exhumation along the Laramide deformation front, southern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Bush, Meredith A.; Horton, Brian K.; Murphy, Michael A.; Stockli, Daniel F.

    2016-09-01

    New geochronological constraints on upper crustal exhumation in the southern Rocky Mountains help delineate the latest Cretaceous-Paleogene history of drainage reorganization and landscape evolution during Laramide flat-slab subduction beneath western North America. Detrital zircon U-Pb results for the Raton basin of southern Colorado and northern New Mexico define the inception of coarse-grained siliciclastic sedimentation and a distinctive shift in provenance, from distal to proximal sources, that recorded shortening-related uplift and unroofing along the Laramide deformation front of the northern Sangre de Cristo Mountains. This Maastrichtian-early Paleocene ( 70-65 Ma) change—from distal foreland accumulation of sediment derived from the thin-skinned Cordilleran (Sevier) fold-thrust belt to coarse-grained sedimentation proximal to a Laramide basement block uplift—reflects cratonward (eastward) deformation advance and reorganization of drainage systems that supplied a large volume of Paleocene-lower Eocene sediments to the Gulf of Mexico. The timing of unroofing along the eastern deformation front is synchronous with basement-involved shortening across the interior of the Laramide province, suggesting abrupt wholesale uplift rather than a systematic inboard advance of deformation. The growth and infilling of broken foreland basins within the interior and margins of the Laramide province had a significant impact on continental-scale drainage systems, as several ponded/axial Laramide basins trapped large volumes of sediment and induced reorganization of major source-to-sink sediment pathways.

  16. Linking biophysical models and public preferences for ecosystem service assessments: a case study for the Southern Rocky Mountains

    USGS Publications Warehouse

    Bagstad, Kenneth J.; Reed, James; Semmens, Darius J.; Sherrouse, Ben C.; Troy, Austin

    2016-01-01

    Through extensive research, ecosystem services have been mapped using both survey-based and biophysical approaches, but comparative mapping of public values and those quantified using models has been lacking. In this paper, we mapped hot and cold spots for perceived and modeled ecosystem services by synthesizing results from a social-values mapping study of residents living near the Pike–San Isabel National Forest (PSI), located in the Southern Rocky Mountains, with corresponding biophysically modeled ecosystem services. Social-value maps for the PSI were developed using the Social Values for Ecosystem Services tool, providing statistically modeled continuous value surfaces for 12 value types, including aesthetic, biodiversity, and life-sustaining values. Biophysically modeled maps of carbon sequestration and storage, scenic viewsheds, sediment regulation, and water yield were generated using the Artificial Intelligence for Ecosystem Services tool. Hotspots for both perceived and modeled services were disproportionately located within the PSI’s wilderness areas. Additionally, we used regression analysis to evaluate spatial relationships between perceived biodiversity and cultural ecosystem services and corresponding biophysical model outputs. Our goal was to determine whether publicly valued locations for aesthetic, biodiversity, and life-sustaining values relate meaningfully to results from corresponding biophysical ecosystem service models. We found weak relationships between perceived and biophysically modeled services, indicating that public perception of ecosystem service provisioning regions is limited. We believe that biophysical and social approaches to ecosystem service mapping can serve as methodological complements that can advance ecosystem services-based resource management, benefitting resource managers by showing potential locations of synergy or conflict between areas supplying ecosystem services and those valued by the public.

  17. Recent mountain pine beetle outbreaks, wildfire severity, and postfire tree regeneration in the US Northern Rockies

    PubMed Central

    Harvey, Brian J.; Donato, Daniel C.; Turner, Monica G.

    2014-01-01

    Widespread tree mortality caused by outbreaks of native bark beetles (Circulionidae: Scolytinae) in recent decades has raised concern among scientists and forest managers about whether beetle outbreaks fuel more ecologically severe forest fires and impair postfire resilience. To investigate this question, we collected extensive field data following multiple fires that burned subalpine forests in 2011 throughout the Northern Rocky Mountains across a spectrum of prefire beetle outbreak severity, primarily from mountain pine beetle (Dendroctonus ponderosae). We found that recent (2001–2010) beetle outbreak severity was unrelated to most field measures of subsequent fire severity, which was instead driven primarily by extreme burning conditions (weather) and topography. In the red stage (0–2 y following beetle outbreak), fire severity was largely unaffected by prefire outbreak severity with few effects detected only under extreme burning conditions. In the gray stage (3–10 y following beetle outbreak), fire severity was largely unaffected by prefire outbreak severity under moderate conditions, but several measures related to surface fire severity increased with outbreak severity under extreme conditions. Initial postfire tree regeneration of the primary beetle host tree [lodgepole pine (Pinus contorta var. latifolia)] was not directly affected by prefire outbreak severity but was instead driven by the presence of a canopy seedbank and by fire severity. Recent beetle outbreaks in subalpine forests affected few measures of wildfire severity and did not hinder the ability of lodgepole pine forests to regenerate after fire, suggesting that resilience in subalpine forests is not necessarily impaired by recent mountain pine beetle outbreaks. PMID:25267633

  18. Atmospheric Deposition and Fate of Mercury in High-altitude Watersheds of the Rocky Mountains.

    NASA Astrophysics Data System (ADS)

    Campbell, D. H.; Mast, M. A.; Ingersoll, G. P.; Manthorne, D. J.; Krabbenhoft, D. P.; Taylor, H. E.; Aiken, G. R.; Schuster, P. F.; Reddy, M. M.

    2003-12-01

    Despite the potential for cold high-altitude ecosystems to act as sinks in the global mercury cycle, atmospheric deposition and fate of mercury have not been measured extensively at mountain sites in the Western United States. At Buffalo Pass in northwestern Colorado (the highest site in the national Mercury Deposition Network at 3234 m elevation), mercury in wet deposition was 9 μ gm-2 in 2000, comparable to many sites in the upper Midwestern United States where fish consumption advisories are widespread because of elevated levels of mercury from atmospheric deposition. Similar levels of mercury deposition were measured about 90 km east of Buffalo Pass at Loch Vale in Rocky Mountain National Park (RMNP) during 2002. Concentrations of total mercury in headwater streams in RMNP averaged 2-4 ngL-1 during spring and summer of 2001-2002. Higher concentrations were observed during snowmelt and rainfall events. Dissolved mercury was generally greater than particulate mercury in these clear mountain streams. Mercury and dissolved organic carbon peaked as soils were flushed during early snowmelt and rainy summer periods. Overall, mercury deposition was greater than mercury export, indicating accumulation in alpine/subalpine ecosystems; however, the mercury exported in streamflow may contribute substantially to mercury loading in downstream lakes and reservoirs where fish consumption advisories have increased. Methyl mercury concentrations measured in the streams in 2002 were generally near or less than detection limits, however, extreme drought conditions limited hydrologic flushing of soils and wetlands that may be sources of methyl mercury. In 2003, surface and ground water from various alpine and subalpine landscapes were sampled to determine sources and transport of total and methyl mercury. The elevated levels of mercury in atmospheric deposition indicate a need for better understanding of mercury cycling and transport in high-altitude ecosystems of Western North

  19. Climatic controls on the snowmelt hydrology of the northern Rocky Mountains

    USGS Publications Warehouse

    Pederson, G.T.; Gray, S.T.; Ault, T.; Marsh, W.; Fagre, D.B.; Bunn, A.G.; Woodhouse, C.A.; Graumlich, L.J.

    2011-01-01

    The northern Rocky Mountains (NRMs) are a critical headwaters region with the majority of water resources originating from mountain snowpack. Observations showing declines in western U.S. snowpack have implications for water resources and biophysical processes in high-mountain environments. This study investigates oceanic and atmospheric controls underlying changes in timing, variability, and trends documented across the entire hydroclimatic-monitoring system within critical NRM watersheds. Analyses were conducted using records from 25 snow telemetry (SNOTEL) stations, 148 1 April snow course records, stream gauge records from 14 relatively unimpaired rivers, and 37 valley meteorological stations. Over the past four decades, midelevation SNOTEL records show a tendency toward decreased snowpack with peak snow water equivalent (SWE) arriving and melting out earlier. Temperature records show significant seasonal and annual decreases in the number of frost days (days ???0??C) and changes in spring minimum temperatures that correspond with atmospheric circulation changes and surface-albedo feedbacks in March and April. Warmer spring temperatures coupled with increases in mean and variance of spring precipitation correspond strongly to earlier snowmeltout, an increased number of snow-free days, and observed changes in streamflow timing and discharge. The majority of the variability in peak and total annual snowpack and streamflow, however, is explained by season-dependent interannual-to-interdecadal changes in atmospheric circulation associated with Pacific Ocean sea surface temperatures. Over recent decades, increased spring precipitation appears to be buffering NRM total annual streamflow from what would otherwise be greater snow-related declines in hydrologic yield. Results have important implications for ecosystems, water resources, and long-lead-forecasting capabilities. ?? 2011 American Meteorological Society.

  20. Characterizing recent and projecting future potential patterns of mountain pine beetle outbreaks in the Southern Rocky Mountains

    USGS Publications Warehouse

    Liang, Lu; Hawbaker, Todd J.; Chen, Yanlei; Zhu, Zhi-Liang; Gong, Peng

    2014-01-01

    The recent widespread mountain pine beetle (MPB) outbreak in the Southern Rocky Mountains presents an opportunity to investigate the relative influence of anthropogenic, biologic, and physical drivers that have shaped the spatiotemporal patterns of the outbreak. The aim of this study was to quantify the landscape-level drivers that explained the dynamic patterns of MPB mortality, and simulate areas with future potential MPB mortality under projected climate-change scenarios in Grand County, Colorado, USA. The outbreak patterns of MPB were characterized by analysis of a decade-long Landsat time-series stack, aided by automatic attribution of change detected by the Landsat-based Detection of Trends in Disturbance and Recovery algorithm (LandTrendr). The annual area of new MPB mortality was then related to a suite of anthropogenic, biologic, and physical predictor variables under a general linear model (GLM) framework. Data from years 2001–2005 were used to train the model and data from years 2006–2011 were retained for validation. After stepwise removal of non-significant predictors, the remaining predictors in the GLM indicated that neighborhood mortality, winter mean temperature anomaly, and residential housing density were positively associated with MPB mortality, whereas summer precipitation was negatively related. The final model had an average area under the curve (AUC) of a receiver operating characteristic plot value of 0.72 in predicting the annual area of new mortality for the independent validation years, and the mean deviation from the base maps in the MPB mortality areal estimates was around 5%. The extent of MPB mortality will likely expand under two climate-change scenarios (RCP 4.5 and 8.5) in Grand County, which implies that the impacts of MPB outbreaks on vegetation composition and structure, and ecosystem functioning are likely to increase in the future.

  1. Trends in snowpack chemistry and comparison to National Atmospheric Deposition Program results for the Rocky Mountains, US, 1993-2004

    USGS Publications Warehouse

    Ingersoll, G.P.; Mast, M.A.; Campbell, D.H.; Clow, D.W.; Nanus, L.; Turk, J.T.

    2008-01-01

    Seasonal snowpack chemistry data from the Rocky Mountain region of the US was examined to identify long-term trends in concentration and chemical deposition in snow and in snow-water equivalent. For the period 1993-2004, comparisons of trends were made between 54 Rocky Mountain Snowpack sites and 16 National Atmospheric Deposition Program wetfall sites located nearby in the region. The region was divided into three subregions: Northern, Central, and Southern. A non-parametric correlation method known as the Regional Kendall Test was used. This technique collectively computed the slope, direction, and probability of trend for several sites at once in each of the Northern, Central, and Southern Rockies subregions. Seasonal Kendall tests were used to evaluate trends at individual sites. Significant trends occurred during the period in wetfall and snowpack concentrations and deposition, and in precipitation. For the comparison, trends in concentrations of ammonium, nitrate, and sulfate for the two networks were in fair agreement. In several cases, increases in ammonium and nitrate concentrations, and decreases in sulfate concentrations for both wetfall and snowpack were consistent in the three subregions. However, deposition patterns between wetfall and snowpack more often were opposite, particularly for ammonium and nitrate. Decreases in ammonium and nitrate deposition in wetfall in the central and southern rockies subregions mostly were moderately significant (p<0.11) in constrast to highly significant increases in snowpack (p<0.02). These opposite trends likely are explained by different rates of declining precipitation during the recent drought (1999-2004) and increasing concentration. Furthermore, dry deposition was an important factor in total deposition of nitrogen in the region. Sulfate deposition decreased with moderate to high significance in all three subregions in both wetfall and snowpack. Precipitation trends consistently were downward and significant for

  2. Atmospheric deposition of nutrients, pesticides, and mercury in Rocky Mountain National Park, Colorado, 2002

    USGS Publications Warehouse

    Mast, M. Alisa; Campbell, Donald H.; Ingersoll, George P.; Foreman, William T.; Krabbenhoft, David P.

    2003-01-01

    Nutrients, current-use pesticides, and mercury were measured in atmospheric deposition during summer in Rocky Mountain National Park in Colorado to improve understanding of the type and magnitude of atmospheric contaminants being deposited in the park. Two deposition sites were established on the east side of the park: one at an elevation of 2,902 meters near Bear Lake for nutrients and pesticides, and one at an elevation of 3,159 meters in the Loch Vale watershed for mercury. Concentrations of nutrients in summer precipitation at Bear Lake ranged from less than 0.007 to 1.29 mg N/L (milligrams of nitrogen per liter) for ammonium and 0.17 to 4.59 mg N/L for nitrate and were similar to those measured at the Loch Vale National Atmospheric Deposition Network station, where nitrogen concentrations in precipitation are among the highest in the Rocky Mountains. Atrazine, dacthal, and carbaryl were the most frequently detected pesticides at Bear Lake, with carbaryl present at the highest concentrations (0.0079 to 0.0952 ?g/L (micrograms per liter), followed by atrazine (less than 0.0070 to 0.0604 ?g/L), and dacthal (0.0030 to 0.0093 ?g/L). Mercury was detected in weekly bulk deposition samples from Loch Vale in concentrations ranging from 2.6 to 36.2 ng/L (nanograms per liter). Concentrations in summer precipitation were combined with snowpack data from a separate study to estimate annual deposition rates of these contaminants in 2002. Annual bulk nitrogen deposition in 2002 was 2.28 kg N/ha (kilograms of nitrogen per hectare) at Bear Lake and 3.35 kg N/ha at Loch Vale. Comparison of wet and bulk deposition indicated that dry deposition may account for as much as 28 percent of annual nitrogen deposition, most of which was deposited during the summer months. Annual deposition rates for three pesticides were estimated as 45.8 mg/ha (milligrams per hectare) of atrazine, 14.2 mg/ha of dacthal, and 54.8 mg/ha of carbaryl. Because of much higher pesticide concentrations in

  3. The Rocky Mountain population of the western Canada goose: its distribution, habitats, and management

    USGS Publications Warehouse

    Krohn, William B.; Bizeau, Elwood G.

    1980-01-01

    The western Canada goose (Branta canadensis moffitti) was divided into a Rocky Mountain population (RMP) and a Pacific population (PP) on the basis of band recovery patterns examined in this study and recovery data from other investigators. Habitat information obtained from nine cooperating wildlife agencies within the RMP's range provided a base line for evaluating future changes in nesting, molting, and wintering areas. The habitat inventory indicated that none of the seasonal habitats were currently limiting the size of the RMP. The RMP's range is divided into 15 reference areas and these are briefly described. Past studies of Canada geese in the Intermountain Region are reviewed. Topics covered in the discussion of breeding biology are nesting chronology, spring population composition, breeding age, clutch size, nesting success. artificial nesting structures, and gosling survival. Much of the mortality of Canada geese occurs before the birds are fledged. Man-made nesting structures reduce losses during incubation. but research is needed on the relations between brooding sites and gosling survival. Some western Canada geese, mainly prebreeders and unsuccessful nesters, make molt migrations to and from molting areas during and after the brood-rearing season. More than half of these molt-migrants are yearlings too young to nest; there are indications that even some successful nesters leave nesting areas to molt before the fledging of their offspring. Geese 2 years old or older may serve as guides to traditional molting areas for the first-time migrants (i.e., yearlings). Lack of disturbance appears to influence selection of specific molting areas within the nesting range of moffitti, whereas movements of molters out of the Intermountain Region may be related to the evolution of this subspecies. Apparently. molters of both the PP and RMP that leave the Region go to the Northwest Territories of Canada. Although the taxonomic status of moffitti as related to the

  4. Increased risk of chronic wasting disease in Rocky Mountain elk associated with decreased magnesium and increased manganese in brain tissue.

    PubMed

    White, Stephen N; O'Rourke, Katherine I; Gidlewski, Thomas; VerCauteren, Kurt C; Mousel, Michelle R; Phillips, Gregory E; Spraker, Terry R

    2010-01-01

    Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) of Rocky Mountain elk in North America. Recent studies suggest that tissue and blood mineral levels may be valuable in assessing TSE infection in sheep and cattle. The objectives of this study were to examine baseline levels of copper, manganese, magnesium, zinc, selenium, and molybdenum in the brains of Rocky Mountain elk with differing prion genotypes and to assess the association of mineral levels with CWD infection. Elk with leucine at prion position 132 had significantly lower magnesium levels than elk with 2 copies of methionine. Chronic wasting disease-positive elk had significantly lower magnesium than control elk. The incorporation of manganese levels in addition to magnesium significantly refined explanatory ability, even though manganese alone was not significantly associated with CWD. This study demonstrated that mineral analysis may provide an additional disease correlate for assessing CWD risk, particularly in conjunction with genotype.

  5. A Ten Step Protocol and Plan for CCS Site Characterization, Based on an Analysis of the Rocky Mountain Region, USA

    SciTech Connect

    McPherson, Brian; Matthews, Vince

    2013-09-15

    This report expresses a Ten-Step Protocol for CO2 Storage Site Characterization, the final outcome of an extensive Site Characterization analysis of the Rocky Mountain region, USA. These ten steps include: (1) regional assessment and data gathering; (2) identification and analysis of appropriate local sites for characterization; (3) public engagement; (4) geologic and geophysical analysis of local site(s); (5) stratigraphic well drilling and coring; (6) core analysis and interpretation with other data; (7) database assembly and static model development; (8) storage capacity assessment; (9) simulation and uncertainty assessment; (10) risk assessment. While the results detailed here are primarily germane to the Rocky Mountain region, the intent of this protocol is to be portable or generally applicable for CO2 storage site characterization.

  6. Hydraulic compensation in northern Rocky Mountain conifers: does successional position and life history matter?

    PubMed

    Sala, Anna

    2006-08-01

    As trees grow tall and the resistance of the hydraulic pathway increases, water supply to foliage may decrease forcing stomata to close and CO2 uptake to decline. Several structural (e.g. biomass allocation) and physiological adjustments, however, may partially or fully compensate for such hydraulic constraints and prevent limitations on CO2 uptake and growth. The degree to which trees compensate for hydraulic constraints as they grow tall may depend on the costs and benefits associated with hydraulic compensation according to their ecology and life history. Because later successional Rocky Mountain conifers are more shade tolerant, optimization of CO2 uptake as trees grow tall and shade increases may confer greater benefits than in earlier successional species. If so, higher compensation for hydraulic constraints is expected in later successional species relative to co-occurring earlier successional species. I have examined height-related changes of crown stomatal conductance on a leaf area basis (G(LA)) and leaf to sapwood ratios (A(L):A(S)) for five conifer species in the northern Rocky Mountains. Species were arranged in pairs, each pair consisting of an early and late successional species. For high elevations I used, respectively, whitebark pine (Pinus albicaulis) and subalpine fir (Abies lasiocarpa); for mid-elevations, western larch (Larix occidentalis) and Douglas-fir (Pseudotsuga menziesii); for lower elevations, ponderosa pine (Pinus ponderosa) and Douglas-fir. A(L):A(S) either decreased (subalpine fir, ponderosa pine), remained constant (Douglas-fir, western larch) or increased (whitebark pine) with tree height. As hypothesized, earlier successional species (ponderosa pine, whitebark pine and western larch) exhibited significantly stronger decreases of G(LA) with tree height relative to their later successional pairs (Douglas-fir and subalpine fir), which fully compensated for height-related hydraulic constraints on G(LA). A life history approach that

  7. High concentrations of regional dust from deserts to plains across the central Rocky Mountains, USA

    NASA Astrophysics Data System (ADS)

    Reynolds, R. L.; Munson, S. M.; Fernandez, D. P.; Neff, J. C.

    2015-12-01

    Regional mineral dust in the American Southwest affects snow-melt rates, biogeochemical cycling, visibility, and public health. We measured total suspended particulates (TSP) across a 500-km-long sampling network of five remote sites in Utah and Colorado, USA, forming a gradient in distance from major dust emitting areas. The two westernmost sites on the Colorado Plateau desert had similar TSP concentrations (2008-2012, daily average=126 μg m-3; max. daily average over a two-week period=700 μg m-3 at Canyonlands National Park, Utah), while the easternmost High Plains site, close to cropped and grazed areas in northeastern Colorado, had an average concentration of 143 μg m-3 in 2011-2012 (max. daily average=656 μg m-3). Such concentrations rank comparably with those of TSP in several African and Asian cities in the paths of frequent dust storms. Dust loadings at the two intervening montane sites decreased from the western slope of the Rocky Mountains (Telluride, daily average=68 μg m-3) to an eastern site (Niwot Ridge, daily average=58 μg m-3). Back-trajectory analyses and satellite retrievals indicated that the three westernmost sites received most dust from large desert-source regions as far as 300 km to their southwest. These sources also sometimes sent dust to the two easternmost sites, which additionally captured dust from sources north and northwest of the central Rocky Mountains as well as locally at the Plains site. The PM10 fraction accounted for <15% of TSP, but most TSP is only slightly larger (typical median size, 15-20 μm) after about 100-800 km transport distances. Correlations between TSP and PM10 values indicate increases in both fractions during regional wind storms, especially related to Pacific frontal systems during late winter to late spring. These measurements and observations indicate that most dust deposition and associated air-quality problems in the interior American West are connected to regional dust sources and not to those in

  8. Spatial and temporal patterns of ozone in the high elevation ecosystems of the Colorado Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Liptzin, D.; Helmig, D.

    2015-12-01

    Tropospheric ozone is regulated by the US EPA to protect human health and welfare. Because the precursors to ozone formation largely come from transportation and industrial activity, ozone has typically been thought of as an urban pollution problem. However, there is growing concern about increased ozone concentrations in rural areas. Surprisingly high ozone concentrations have been measured in the high elevation Rocky Mountain ecosystems in the Front Range of Colorado. The annual median ozone mixing ratios over the past decade at three high elevation monitoring stations ranged from 47 to 53 ppbv. The hourly ozone mixing ratio typically exceeds 100 ppbv at some point every year at these sites. The number of days where the ozone mixing ratio exceeded the current 8 hour US EPA National Ambient Air Quality Standard of 75 ppb has ranged from 0 to 25 since 1987 at the monitoring site in Rocky Mountain National Park. A comparison with lower elevation sites suggests that ozone mixing ratios generally increase with elevation. In addition, the diurnal and seasonal variability of ozone decreases with elevation. Along an elevational gradient from the plains to the tundra, the tundra site had the highest median values and the least variability of any site. The seasonal pattern at these high elevation sites is also distinct as the maximum mixing ratios occur in the spring in contrast to the summer maximum typically observed in urban areas. While there have been relatively small changes in concentration in the measured data record going back a few decades, modeling suggests that ozone mixing ratios have almost doubled over the last one hundred years in Colorado. A plethora of studies has shown that elevated ozone damages foliage, with sensitive species showing effect at levels exceeding 35-40 ppbv. Since ozone levels in these high elevation ecosystems are clearly above that, we believe that they have been and will continue to be severely affected by elevated ozone. It is not

  9. Monitoring plan for vegetation responses to elk management in Rocky Mountain National Park

    USGS Publications Warehouse

    Zeigenfuss, Linda C.; Johnson, Therese L.; Wiebe, Zachary

    2011-01-01

    Rocky Mountain National Park (RMNP) in north-central Colorado supports numerous species of wildlife, including several large ungulate species among which Rocky Mountain elk (Cervus elaphus) are the most abundant. Elk are native to RMNP but were extirpated from the area by the late 1800s. They were reintroduced to the area in 1913-1914, and the elk herd grew to the point that it was actively managed from 1944 until 1968. In 1969, the active control of elk was discontinued and since then the herd has increased to a high point ranging from 2,800 to 3,500 between 1997 and 2001. In recent years, there has been growing concern over the condition of vegetation in the park and conflicts between elk and humans, both inside and outside the park. In response to these concerns, RMNP implemented an Elk and Vegetation Management Plan (EVMP) in 2009 to guide management actions in the park over a 20-year time period with the goal of reducing the impacts of elk on vegetation and restoring the natural range of variability in the elk population and affected plant and animal communities. The EVMP outlines the desired future condition for three vegetation communities where the majority of elk herbivory impacts are being observed: aspen, montane riparian willow, and upland herbaceous communities. The EVMP incorporates the principle of adaptive management whereby the effectiveness of management actions is assessed and adjusted as needed to successfully achieve objectives. Determination of whether vegetation objectives are being achieved requires monitoring and evaluation of target vegetation communities. The current report describes the design and implementation of a vegetation-monitoring program to help RMNP managers assess the effectiveness of their management actions and determine when and where to alter actions to achieve the EVMP's vegetation objectives. This monitoring plan details the process of selecting variables to be monitored, overall sampling design and structure, site

  10. Connecting Topographic Analysis With Colorado River Incision History: Sensitive Gauges of Neotectonics in the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Sandoval, M.; Coblentz, D.; Karlstrom, K.; Sussman, A.

    2005-12-01

    The topography of the Earth's surface provides important information for regional and global geomorphic studies because it reflects the interplay between tectonic-associated processes of uplift and climate-associated processes of erosion. The tectonic provinces of the Western U.S. are readily identifiable based on numerous geologic and geophysical investigations - however, it has proved difficult to arrive at measures of the differences between landscapes and to deduce quantitative information about the underlying tectonics using the traditional qualitative approach to evaluating topographic fabrics. By combining a rigorous quantitative topographic analysis approach with an analysis of the Colorado River drainage, we seek to improve our understanding of the relationship between present topography and active tectonics, as well as the time dimension for effects of tectonics on landscape evolution. The Colorado River drainage provides a unique natural laboratory to evaluate to relationship between lithospheric-scale tectonic processes and the observed physiography. The drainage, extending more than 1400 km from the Gulf of California to the heart of the Rocky Mountains in Colorado, traverses the Southern Basin and Range, Colorado Plateau and Rocky Mountain provinces. We hypothesize that changes in the topographic character of the river profile as well as the adjacent drainage areas correspond to differences in bedrock geology, tectonic genesis, ongoing faulting, and drainage reorganization events that themselves may be tectonically influenced. We test this hypothesis through the use of a quantitative topographic analysis that extracts information about the topographic roughness organization, grain orientation, and spectral power. The analysis is applied at two scales; for the regional analysis a 30-arc-second resolution DEM is used, and areas of particular interested are also evaluated with an analysis of a 3-arc-second DEM. A particular topographic feature of

  11. Distributional changes and range predictions of downy brome (Bromus tectorum) in Rocky Mountain National Park

    USGS Publications Warehouse

    Bromberg, J.E.; Kumar, S.; Brown, C.S.; Stohlgren, T.J.

    2011-01-01

    Downy brome (Bromus tectorum L.), an invasive winter annual grass, may be increasing in extent and abundance at high elevations in the western United States. This would pose a great threat to high-elevation plant communities and resources. However, data to track this species in high-elevation environments are limited. To address changes in the distribution and abundance of downy brome and the factors most associated with its occurrence, we used field sampling and statistical methods, and niche modeling. In 2007, we resampled plots from two vegetation surveys in Rocky Mountain National Park for presence and cover of downy brome. One survey was established in 1993 and had been resampled in 1999. The other survey was established in 1996 and had not been resampled until our study. Although not all comparisons between years demonstrated significant changes in downy brome abundance, its mean cover increased nearly fivefold from 1993 (0.7%) to 2007 (3.6%) in one of the two vegetation surveys (P = 0.06). Although the average cover of downy brome within the second survey appeared to be increasing from 1996 to 2007, this slight change from 0.5% to 1.2% was not statistically significant (P = 0.24). Downy brome was present in 50% more plots in 1999 than in 1993 (P = 0.02) in the first survey. In the second survey, downy brome was present in 30% more plots in 2007 than in 1996 (P = 0.08). Maxent, a species-environmental matching model, was generally able to predict occurrences of downy brome, as new locations were in the ranges predicted by earlier generated models. The model found that distance to roads, elevation, and vegetation community influenced the predictions most. The strong response of downy brome to interannual environmental variability makes detecting change challenging, especially with small sample sizes. However, our results suggest that the area in which downy brome occurs is likely increasing in Rocky Mountain National Park through increased frequency and cover

  12. Effect of Mid-summer Drought on Carbon Exchange in Subalpine Rocky Mountain Meadows

    NASA Astrophysics Data System (ADS)

    Sloat, L. L.; Henderson, A.; Enquist, B. J.

    2013-12-01

    Summer climate in the subalpine of the Rocky Mountains in Colorado is characterized by a variable mid-summer drought after snowmelt and before the summer monsoon. Many climate change models predict an increase in the variability, length and severity of this dry period due to earlier snowmelt dates, rising air temperatures, and changes in the timing and amount of the summer monsoon. But how will changes in the midsummer drought effect carbon exchange in this system? We conducted a watering experiment aimed at incrementally decreasing the length of the summer drought in a severe drought year (2012) at the Rocky Mountain Biological Laboratory in Gothic, Colorado. Plots that were watered in May and June, and plots that were watered in May, June, and July, had a significantly higher cumulative Net Ecosystem Exchange (NEE) of carbon throughout the growing season than plots that were watered only in May and the un-watered control plots (ANOVA, P=0.0402). This was likely due to higher rates of peak Net Primary Productivity (NPP), and not due to a lengthening of the growing season. Ecosystem-level respiration was not significantly different between treatments. Additionally, we analyzed data from ten years of carbon flux measurements over an elevation gradient that spans from 2475m to 3380m in order to see if there was a relationship between the strength of the midsummer drought and peak rates of carbon intake. All five sites along the gradient showed a positive relationship between the June Palmer Drought Index and peak NEE. The relationship was significant in three of the five sites (p<0.05). A slope test indicated that higher elevation sites had steeper slopes than lower elevation sites (p<0.05), suggesting that higher elevation sites may be more sensitive to changes in the strength of the midsummer drought than lower elevation sites. Additionally we found a significant positive relationship between melt date and peak NEE, indicating that years with later melt dates had

  13. Reprocessing and Interpretation of Vintage Seismic Reflection Data: Evidence for the Tectonic History of the Rocky Mountain Trench, Northwest Montana.

    NASA Astrophysics Data System (ADS)

    Porter, M.; Speece, M. A.; Rutherford, B. S.; Constenius, K. N.

    2014-12-01

    In 1983 Techno, Inc. collected five seismic reflection profiles in the region between Whitefish, Montana and the United States-Canada border. The poulter method was used to gather four of these profiles and one profile was collected using a vibroseis source. We are currently reprocessing these data in order to construct a regional geological interpretation. The profiles cover a key position in the hinterland of the Cordillera in the lee of the Lewis thrust salient where the east-northeast verging Lewis thrust fault system translated (horizontal displacement >100 km) and inverted a thick, strong slab of primarily Belt-Purcell rocks out of a deep Precambrian depositional basin onto a cratonic platform. In this event, Belt-Purcell rocks were thrust over complexly imbricated Phanerozoic strata in the foreland. Late Mesozoic compressional deformation was followed by Cenozoic extensional collapse of the over-thickened Cordillera and subsequent basin and range style deformation that produced an array of northwest trending grabens. Three of the seismic profiles cross the Rocky Mountain Trench; the Trench is a linear structure of regional dimension that is an expression of the extensional fragmentation of the Cordillera. Strong reflections, interpreted as sills encased within Lower Belt rocks (encountered in the Arco-Marathon 1 Paul Gibbs borehole), outline the complexly folded and faulted structure of the eastern limb of the Purcell anticlinorium. East of the Rocky Mountain Trench stratified reflections within Belt rocks clearly outline the Wigwam Thrust. Beneath the Whitefish Range, an apparent inflection in the strongly reflective basal Cambrian veneer marks the westerly increase in dip of the Rocky Mountain Basal Detachment. The dip contrast between the foreland and hinterland might be a manifestation of the tectonic loading of the Belt basin margin and the loading might have localized extension across the Rocky Mountain Trench.

  14. State geothermal commercialization programs in ten Rocky Mountain states. Semi-annual progress report, July-December 1979

    SciTech Connect

    Griffith, J.L.

    1980-08-01

    The activities and findings of the ten state teams participating in the Rocky Mountain Basin and Range Regional Hydrothermal Commercialization Program for the period are described. A summary of the state projects, compilation of project accomplishments, summary of findings, and a description of the major conclusions and recommendations are presented. Also included are chapters on the commercialization activities carried out by individual teams in each state: Arizona, Colorado, Idaho, Montana, Nevada, New-Mexico, North Dakota, South Dakota, Utah, and Wyoming. (MHR)

  15. 75 FR 62519 - Rocky Mountain Natural Gas LLC; KeySpan Gas East Corporation; ECOP Gas Company, LLC; MGTC, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-130-000; PR10-131-000; PR10-132-000; PR10-133-000; PR10-134-000; PR10-135-000; PR10-136-000 (Not Consolidated)] Rocky Mountain Natural Gas LLC; KeySpan Gas...

  16. Guidance and control, 1993; Annual Rocky Mountain Guidance and Control Conference, 16th, Keystone, CO, Feb. 6-10, 1993

    NASA Astrophysics Data System (ADS)

    Culp, Robert D.; Bickley, George

    Papers from the sixteenth annual American Astronautical Society Rocky Mountain Guidance and Control Conference are presented. The topics covered include the following: advances in guidance, navigation, and control; control system videos; guidance, navigation and control embedded flight control systems; recent experiences; guidance and control storyboard displays; and applications of modern control, featuring the Hubble Space Telescope (HST) performance enhancement study. For individual titles, see A95-80390 through A95-80436.

  17. Capturing season-specific precipitation signals in the northern Rocky Mountains, USA, using earlywood and latewood tree rings

    NASA Astrophysics Data System (ADS)

    Crawford, Christopher J.; Griffin, Daniel; Kipfmueller, Kurt F.

    2015-03-01

    Douglas-fir (Pseudotsuga menziesii Mirb. Franco) total width, earlywood, and latewood tree ring chronologies were developed from six lower forest border sites in the northern Rocky Mountain region of central Idaho and southwestern Montana, USA, to assess the potential for season-specific moisture reconstructions. These long-lived arid-site trees share strong between-tree and between-site coherence, and subannual tree ring chronologies reliably span the past seven centuries. Mapping spatiotemporal patterns in northern Rocky Mountain precipitation highlighted winter- and summer-dominated precipitation regimes that transition along a west to east gradient. When Douglas-fir tree rings were compared with instrumental climate records, season-specific correlations emerged between earlywood and latewood. Total width, earlywood, and latewood shared the most statistically significant monthly correlations with April-June precipitation, whereas variability in adjusted latewood was tuned to June-August precipitation. Principal component analysis indicated that the leading mode of common variance for earlywood and adjusted latewood explained 65% and 55% variance in the chronologies, respectively. Pearson's correlations between earlywood principal component one and the northern Rocky Mountain precipitation field showed that annual (July-June) and spring (April-June) precipitation exhibited the strongest pattern of significance in central Idaho and southwestern Montana valleys and the Snake River Plain. Summer precipitation (June-August) was correlated with adjusted latewood principal component one and was particularly pronounced along and east of the continental divide in southwestern Montana. These results indicate that Douglas-fir earlywood and adjusted latewood tree rings in the northern Rocky Mountains retain season-specific precipitation signals and may be helpful for studying historical precipitation within the winter-summer transition zone.

  18. Was Late Cretaceous Magmatism in the Northern Rocky Mountains Really Arc-Related?

    NASA Astrophysics Data System (ADS)

    Farmer, G.

    2011-12-01

    Calc-alkaline, Cretaceous magmatism affected much of the northern Rocky Mountain region in the western U.S. and is generally interpreted as continental arc magmatism despite the fact that it occurred as far east into the continental interior as the Late Cretaceous (75 Ma to 78 Ma) Sliderock Mountain volcanoplutonic complex in south-central Montana. Magmatism may have migrated so far inboard as a response to shallowing of the dip angle of underthrust oceanic lithosphere, but the exact sources, tectonic setting and trigger mechanisms for the Late Cretaceous igneous activity remain unclear. In this study, new trace element and Nd and Sr isotopic data, combined with existing age and major element data (duBray et al., 1998, USGS Prof. Paper 1602), from the most mafic lavas present at the Sliderock Mountain Volcano were used to further define the source regions of the Late Cretaceous magmatism. The most mafic lava flows are high K (~2-3 wt. % K2O), low Ti (< 1 wt. % TiO2), low Ni (< 20 ppm) basaltic andesites. Major element oxide contents for these rocks are only weakly correlated with increasing wt. % SiO2 on conventional Harker diagrams. All of the rocks are characterized by high LILE/HFSE ratios and high Pb contents (17-20 ppm), as expected for arc-related magmatism. The rocks also have high (La/Yb)N (7-20) but show decreasing (Dy/Yb)N with increasing wt.% SiO2, suggesting a cryptic role for amphibole fractionation during evolution of their parental magmas. Initial ɛNd values range from -19 to -29 but do not covary with rock bulk composition and as a result are unlikely to represent the result of interaction with local Archean continental crust. Initial 87Sr/86Sr, in contrast, vary over a restricted range from 0.7045 to 0.7065. The lowest 87Sr/86Sr correspond to samples with the highest Sr/Y (120-190). The low ɛNd values for the basaltic andesites suggest that if these volcanic rocks were ultimately derived from ultramafic mantle sources, melting must have occurred

  19. Emissions implications of future natural gas production and use in the U.S. and in the Rocky Mountain region.

    PubMed

    McLeod, Jeffrey D; Brinkman, Gregory L; Milford, Jana B

    2014-11-18

    Enhanced prospects for natural gas production raise questions about the balance of impacts on air quality, as increased emissions from production activities are considered alongside the reductions expected when natural gas is burned in place of other fossil fuels. This study explores how trends in natural gas production over the coming decades might affect emissions of greenhouse gases (GHG), volatile organic compounds (VOCs) and nitrogen oxides (NOx) for the United States and its Rocky Mountain region. The MARKAL (MARKet ALlocation) energy system optimization model is used with the U.S. Environmental Protection Agency's nine-region database to compare scenarios for natural gas supply and demand, constraints on the electricity generation mix, and GHG emissions fees. Through 2050, total energy system GHG emissions show little response to natural gas supply assumptions, due to offsetting changes across sectors. Policy-driven constraints or emissions fees are needed to achieve net reductions. In most scenarios, wind is a less expensive source of new electricity supplies in the Rocky Mountain region than natural gas. U.S. NOx emissions decline in all the scenarios considered. Increased VOC emissions from natural gas production offset part of the anticipated reductions from the transportation sector, especially in the Rocky Mountain region.

  20. Effect of vegetation on the energy balance and melting of snow in the Rocky Mountains (Invited)

    NASA Astrophysics Data System (ADS)

    Mahat, V.; Tarboton, D. G.

    2013-12-01

    Forest canopy interception of snowfall results in smaller snow accumulation in forest area than in open area. The forest canopy also modifies the energy exchange between the snow surface and the atmosphere, and alters the sublimation and melting of sub-canopy snow relative to open area. To better quantify snow-vegetation-atmosphere interactions we developed theory and model parameterizations for what are essentially three new contributions to modeling snow accumulation and melt in heterogeneous mountain watersheds. These are a component for the representation of the transmission/attenuation of radiation through a forest canopy including absorption and scattering, a component for snow interception and unloading, including melt and sublimation of intercepted snow, and a component for the turbulent energy exchanges between the snow surface, canopy and atmosphere above that incorporates aspects of the two source model developed for evapotranspiration. These three components represent new functionality which we added to the Utah Energy Balance snowmelt model to provide improved capability to predict the surface water input and runoff from snowmelt in heterogeneous watersheds. The model was evaluated by comparing model simulated values with observations made in different vegetation classes at forest study areas in the Rocky Mountains of Utah and Colorado, USA. The model was able to capture the sensitivity of beneath canopy net radiation and turbulent fluxes, and snowmelt to vegetation class consistent with observations and achieve satisfactory predictions of snow accumulation and melt from forested areas from parsimonious practically available information. The model is simple enough to be applied in a spatially distributed way, but to still relatively rigorously and explicitly represent variability in canopy properties in the simulation of snowmelt over a watershed.

  1. The influence of Precambrian rock compositions and fabrics on the development of Rocky Mountain foreland folds

    SciTech Connect

    Chase, R.B.; Schmidt, C.J. . Dept. of Geology); Genovese, P.W. . Dept. of Geophysical Sciences)

    1992-01-01

    The distribution of Laramide strain in the Precambrian basement rocks of four small Rocky Mountain foreland folds was controlled by lithologies and orientations of pre-existing foliation in the faulted forelimbs. Features of brittle deformation include faults, sets of parallel, conjugate, or anastomosing fractures, zones of penetrative grain cracking and intergrain slip without grain size reduction, and local zones of cataclasis or incipient mylonitization. In the London Hills anticline, Montana, foliation was nearly parallel to bedding in cover rocks prior to folding. The foliation in the forelimb was rotated and deformed by layer-parallel slip between a forelimb thrust and a hinge-controlling fault. In the Sheephead Mountain anticline, Wyoming, the forelimb fault cut foliation at a high angle. Penetrative brittle deformation occurred along a wide zone of fractures parallel to a forelimb thrust at the basement-cover contact. In the Gnat Hollow anticline, Colorado, foliation dipped about 20[degree] more steeply than the forelimb thrust. Brittle deformation was confined mainly to the fault zone. In the Romero Hills anticline, New Mexico, foliation in the basement was parallel to thrusts that cut both basement and cover rocks. Slip on foliation surfaces near the thrusts was pervasive and simple shear on foliation was distributed in both the forelimb and backlimb. Pre-existing foliation surfaces were most active where they paralleled forelimb faults and least active where foliation was at a high angle to forelimb faults or was not rotated into the forelimb orientation. If the angle between faults and foliation is 10[degree] [+-] or more, pre-existing foliation appears to have exerted little influence on Laramide strain patterns.

  2. Upland Processes and Controls on September 2013 Debris Flows, Rocky Mountain National Park, Colorado

    NASA Astrophysics Data System (ADS)

    Patton, A. I.; Rathburn, S. L.; Bilderback, E. L.

    2015-12-01

    The extreme rainstorms that occurred in Colorado in September 2013 initiated numerous debris flows in the northern Front Range. These flows delivered sediment to upland streams, impacted buildings and infrastructure in and near Rocky Mountain National Park (RMNP), and underscored the importance of ongoing hazards in mountainous areas. Slope failures occurred primarily at elevations above 2600 m on south facing slopes >40 degrees. The 2013 failures provide a valuable opportunity to better understand site-specific geomorphic variables that control slope failure in the interior United States and the frequency of debris flows in steep terrain. Slope characteristics including soil depth, vegetation type and prevalence, contributing area, slope convexity/concavity and soil texture were compared between 11 debris flow sites and 30 control sites that did not fail in RMNP. This analysis indicates that slope morphology is the primary controlling factor: 45% of the debris flow sites initiated in or below a colluvial hollow and 36% of the failed sites initiated in other areas of convergent hillslope topography. Only one of the 30 control sites (3%) was located within a colluvial hollow and only two control sites (6%) were located in other areas of convergent topography. Difference in the average maximum soil thickness between debris flow sites (0.9 m) and control sites (0.7 m) is not significant but may reflect the difficulty of using a soil probe in glacially derived soils. Additional research includes field mapping and geochronologic study at one 2013 debris deposit with evidence of multiple mass movements. Preliminary results from the mapping indicate that up to six debris flows have occurred at this site. Radiocarbon analysis of organic material and 10Be analysis of quartz from boulders in old debris levees indicate the timing of past events in this area. Future land management in RMNP will utilize this understanding of controls on slope failure and event frequency.

  3. Bighorn sheep response to road-related disturbances in Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Keller, B.J.; Bender, L.C.

    2007-01-01

    Bighorn sheep (Ovis canadensis) use of Sheep Lakes mineral site, Rocky Mountain National Park, Colorado, USA, has decreased since 1996. Officials were concerned that human disturbance may have been contributing to this decline in use. We evaluated effects of vehicular traffic and other road-related disturbance on bighorn use of Sheep Lakes in the summers of 2002 and 2003. We found that the time and number of attempts required by bighorn to reach Sheep Lakes was positively related to the number of vehicles and people present at Sheep Lakes. Further, the number of bighorn individuals and groups attempting to visit Sheep Lakes were negatively affected by disturbance associated with the site. The number of vehicles recorded the hour before bighorn tried to access Sheep Lakes best predicted an animal's failure to cross Fall River Road and reach Sheep Lakes. We conclude that human and road-related disturbance at Sheep Lakes negatively affected bighorn use of the mineral site. Because Sheep Lakes may be important for bighorn sheep, especially for lamb production and survival, the negative influence of disturbance may compromise health and productivity of the Mummy Range bighorn sheep.

  4. Effects of supplemental feeding on gastrointestinal parasite infection in Rocky Mountain Elk (Cervus elaphus)

    USGS Publications Warehouse

    Hines, Alicia M.; Ezenwa, Vanessa O.; Cross, Paul C.; Rogerson, Jared D.

    2007-01-01

    The effects of management practices on the spread and impact of parasites and infectious diseases in wildlife and domestic animals are of increasing concern worldwide, particularly in cases where management of wild species can influence disease spill-over into domestic animals. In the Greater Yellowstone Ecosystem, USA, winter supplemental feeding of Rocky Mountain elk (Cervus elaphus) may enhance parasite and disease transmission by aggregating elk on feedgrounds. In this study, we tested the effect of supplemental feeding on gastrointestinal parasite infection in elk by comparing fecal egg/oocyst counts of fed and unfed elk. We collected fecal samples from fed and unfed elk at feedground and control sites from January to April 2006, and screened all samples for parasites. Six different parasite types were identified, and 48.7% of samples were infected with at least one parasite. Gastrointenstinal (GI) nematodes (Nematoda: Strongylida), Trichuris spp., and coccidia were the most common parasites observed. For all three of these parasites, fecal egg/oocyst counts increased from January to April. Supplementally fed elk had significantly higher GI nematode egg counts than unfed elk in January and February, but significantly lower counts in April. These patterns suggest that supplemental feeding may both increase exposure and decrease susceptibility of elk to GI nematodes, resulting in differences in temporal patterns of egg shedding between fed and unfed elk.

  5. Observations and methodology of atmospheric ammonia within the Colorado Rocky Mountain pine forest

    NASA Astrophysics Data System (ADS)

    Hrdina, Amy; Moravek, Alexander; Murphy, Jennifer

    2016-04-01

    Concentrations of trace gases (HCl, HNO3, HONO, NH3, SO2) and particle phase constituents from fine particulate matter (PM2.5) were continuously measured using an online ambient ion monitor ion chromatograph (AIM-IC) within the canopy at the Rocky Mountain Research Station (Manitou Experimental Forest) in Woodland Park, Colorado, from July 31 - August 12 2015. A consistent diurnal pattern of ammonia mixing ratios was observed, ranging from 0.1 - 2.6 ppb. Analysis of PM2.5ammonium was below the 130 ng m-3 detection limit of the instrument, which was corroborated by parallel particle concentration data also gathered at the site showing extremely low overall particle concentrations in the order of 103. As a result, variability in gas phase ammonia can be attributed to surface-atmosphere exchange and/or transport rather than gas particle partitioning. Complimentary analysis of ammonium found within the pine needles and the soil was also performed on site using established extraction methods and analysis by ion chromatography. Emissions potentials calculated from observed ammonium levels were generally consistent in the pine needles showing stomatal emission potentials within the range of 28 - 60, whereas the soil data varied widely, spanning 5 - 2100. The measurements are used to quantify compensation points of ammonia representative of the canopy and ground at the site to better predict the biosphere-atmosphere exchange of ammonia within the forest.

  6. Current and historical deposition of PBDEs, pesticides, PCBs, and PAHs to Rocky Mountain National Park.

    PubMed

    Usenko, Sascha; Landers, Dixon H; Appleby, Peter G; Simonich, Staci L

    2007-11-01

    An analytical method was developed for the trace analysis of 98 semivolatile organic compounds (SOCs) in remote, high-elevation lake sediment. Sediment cores from Lone Pine Lake (west of the Continental Divide) and Mills Lake (east of the Continental Divide) in Rocky Mountain National Park, CO, were dated using 210Pb and 137Cs and analyzed for polybrominated diphenyl ethers (PBDEs), organochlorine pesticides, phosphorothioate pesticides, thiocarbamate pesticides, amide herbicides, triazine herbicides, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) using this method. SOC deposition profiles were reconstructed, and deposition half-lives and doubling times were calculated, for U.S. historic-use pesticides (HUPs) and current-use pesticides (CUPs) as well as PBDEs, PCBs, and PAHs. Sediment records indicate that the deposition of CUPs has increased in recent years, while the deposition of HUPs has decreased since U.S. restriction, but has not been eliminated. This is likely due to the revolatilization of HUPs from regional soils, atmospheric transport, and deposition. Differences in the magnitude of SOC sediment fluxes, flux profiles, time trends within those profiles, and isomeric ratios suggest that SOC deposition in high-elevation ecosystems is dependent on regional upslope wind directions and site location with respect to regional sources and topographic barriers.

  7. Foods and nutritional components of diets of black bear in Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Baldwin, R.A.; Bender, L.C.

    2009-01-01

    We used scat analysis to determine diets and relative nutritional values of diets for black bears (Ursus americanus Pallas, 1780) in Rocky Mountain National Park, Colorado, from 2003 to 2006, and compared foods consumed and nutritional components to identify important sources of fecal gross energy (GE), crude fat (CF), and fecal nitrogen (FN) in annual and seasonal diets. Patterns of use of food classes followed typical seasonal patterns for bears, although use of animal matter was among the highest reported (>49% annually). Use of animal matter increased after spring, although crude protein levels in bear diets were always >25%. GE was typically lowest for grasses and other herbaceous plants and highest for ants and ungulates; FN was strongly positively related to most animal sources, but negatively correlated with vegetative matter; and CF showed the strongest positive relationship with ungulates and berries, with the latter likely influenced by the presence of seeds. Compared with historic data (1984-1991), contemporary diets included substantially greater prevalence of anthropogenic foods, which likely contributed to increases in size, condition, and productivity of the contemporary bear population. Management strategies are needed to increase quantity and quality of natural foods while minimizing dependence on anthropogenic sources.

  8. Restoration advisory board expanding public involvement process at Rocky Mountain Arsenal

    SciTech Connect

    Mecham, R.; Blose, K.

    1995-12-31

    The Rocky Mountain Arsenal (Arsenal) is a federal enclave covering more than 17,000 acres (27 square miles) bounded by Adams County, Colorado, on the north and west, and the City and County of Denver on the south and east. In February 1989, two administrative agreements were signed to ensure the Arsenal cleanup program was carried out in a smooth and responsible manner. The Federal Facility Agreement (FFA) and the Settlement Agreement (SA) define how appropriate remedial actions Will be determined and the technical and financial responsibilities for each party involved. The FFA also defines how Interim Response Actions (IRAs) will be carried out, consistent with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the National Contingency Plan (NCP). The IRAs are designed to support and be consistent with the final Record of Decision (ROD), which describes the final remediation plan for the Arsenal. When this decision is made in 1996, the IRAs will either be completed or be incorporated as part of the final cleanup plan.

  9. Summer deposition of sulfate and reactive nitrogen to two alpine valleys in the Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Wasiuta, Vivian; Lafrenière, Melissa J.; Norman, Ann-Lise; Hastings, Meredith G.

    2015-01-01

    Summer deposition of sulfate and reactive nitrogen (mainly nitrate, and ammonium) to two alpine valleys in the Southern Canadian Rocky Mountains was investigated to constrain their major sources and evaluate physiographic influences on deposition. The effects of elevation, aspect, and air mass trajectory were evaluated using stable isotope composition (δ15N-NO3-, δ18O-NO3-, and δ34S-SO42-) and major ion concentrations for bulk precipitation. Deposition in the two valleys was related to synoptic scale weather conditions and the route the air mass followed, the location of major emission sources relative to the study site, and atmospheric residence time. Distinct differences in deposition at a relatively small scale between two opposing alpine valleys was mainly related to the orientation of the two valleys relative to the physiography of the Western Canadian Cordillera and the dominant pathways of air mass transport. Sulfate was found to be dominantly from distant sources, while NO3- was strongly enhanced by emissions from local to regional combustion. Local to regional pollutants were preferentially transported to the NNW facing Robertson Valley during NW-upslope synoptic conditions while precipitation in the SE facing Haig Valley was from relatively clean air with minimal influence from local and regional pollutants particularly at the highest elevation site.

  10. Bayesian time series analysis of segments of the Rocky Mountain trumpeter swan population

    USGS Publications Warehouse

    Wright, Christopher K.; Sojda, Richard S.; Goodman, Daniel

    2002-01-01

    A Bayesian time series analysis technique, the dynamic linear model, was used to analyze counts of Trumpeter Swans (Cygnus buccinator) summering in Idaho, Montana, and Wyoming from 1931 to 2000. For the Yellowstone National Park segment of white birds (sub-adults and adults combined) the estimated probability of a positive growth rate is 0.01. The estimated probability of achieving the Subcommittee on Rocky Mountain Trumpeter Swans 2002 population goal of 40 white birds for the Yellowstone segment is less than 0.01. Outside of Yellowstone National Park, Wyoming white birds are estimated to have a 0.79 probability of a positive growth rate with a 0.05 probability of achieving the 2002 objective of 120 white birds. In the Centennial Valley in southwest Montana, results indicate a probability of 0.87 that the white bird population is growing at a positive rate with considerable uncertainty. The estimated probability of achieving the 2002 Centennial Valley objective of 160 white birds is 0.14 but under an alternative model falls to 0.04. The estimated probability that the Targhee National Forest segment of white birds has a positive growth rate is 0.03. In Idaho outside of the Targhee National Forest, white birds are estimated to have a 0.97 probability of a positive growth rate with a 0.18 probability of attaining the 2002 goal of 150 white birds.

  11. Hydrology of Area 61, Northern Great Plains and Rocky Mountain Coal Provinces, Colorado and New Mexico

    USGS Publications Warehouse

    Abbott, P.O.; Geldon, Arthur L.; Cain, Doug; Hall, Alan P.; Edelmann, Patrick

    1983-01-01

    Area 61 is located on the Colorado-New Mexico boundary in Huerfano and Las Animas Counties, Colorado, and Colfax County, New Mexico, and includes the Raton Mesa coal region. The 5 ,900-square-mile area is an asymmetrical structural trough bounded by the Rocky Mountains on the west and the Great Plains on the east. The area is drained by the Huerfano, Apishapa, Purgatoire, and Canadian Rivers (and their tributaries), all tributary to the Arkansas River. The principal coal-bearing formations are the Vermejo Formation of Late Cretaceous age and the Raton Formation of Late Cretaceous and Paleocene age. Much of the coal in the area is of coking quality, important to the metallurgical industry. Topographic relief in the area is greater than 8,700 feet, and this influences the climate which in turn affects the runoff pattern of area streams. Summer thunderstorms often result in flash floods. Virtually all geologic units in the region yield water. Depth to ground water ranges from land surface to 400 feet. Surface and ground water in the area contain mostly bicarbonate and sulfate ions; locally in the ground water, chloride ions predominate. Potential hydrologic problems associated with surface coal mining in the area are water-quality degradation, water-table decline, and increased erosion and sedimentation. (USGS)

  12. Waterfalls on the eastern side of Rocky Mountain National Park, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Ortega, Jose A.; Wohl, Ellen; Livers, Bridget

    2013-09-01

    We examined 30 waterfalls on the eastern side of Rocky Mountain National Park in Colorado, USA, to evaluate whether drainage area or bedrock properties as reflected in joint characteristics correlate more strongly with the location and characteristics of individual waterfalls. Longitudinal profiles tend to be more concave for larger drainages, to have a smaller proportion of total elevation loss in waterfalls, and to have vertical drops rather than angled or ramp waterfalls: we interpret these trends to indicate greater overall incisional capability for larger catchments. Shape of individual waterfalls and height of drop correlate more strongly with bedrock properties: waterfalls in bedrock lacking prominent vertical joints perpendicular to flow are more likely to have a single drop rather than multiple drops, and taller waterfalls correlate with more widely spaced horizontal joints. Waterfalls also noticeably correspond to resistant bedrock outcrops that form steep segments along hillslopes adjacent to the channel. We interpret these results to indicate that the location and characteristics of waterfalls along headwater streams in the study area reflect primarily a limited ability to incise through more resistant segments of the underlying bedrock.

  13. Permian tectonism in Rocky Mountain foreland and its importance in Exploration for Minnelusa and Lyons sandstones

    SciTech Connect

    Moore, W.R.

    1985-05-01

    Permian sandstones are important producers of oil in the Powder River and Denver basins of the Rocky Mountain foreland region. In the Powder River basin, Wolfcampian Minnelusa Sandstone produces oil from structural and stratigraphic traps on both sides of the basin axis, whereas in Denver basin, the Leonardian Lyons Sandstone produces oil mainly from structural traps on the west flank of the basin. Two fields, North Fork-Cellars Ranch in the Powder River basin, and Black Hollow in the Denver basin, are examples of Permian growth of structural features. At North Fork-Cellars Ranch, a period of Permian structural growth and resultant differential sedimentation is documented by structure and isopach maps of the Minnelusa and overlying Goose Egg Formation. Structural growth began at the end of Minnelusa deposition and resulted in deposition of a much thicker Goose Egg section on the west flank of the field. At Black Hollow, mapping indicates structural growth was initiated before deposition of the Lyons Sandstone and continued throughout Leonardian time. In both fields growth abruptly ceased in the Late Permian. Both North Fork-Cellars Ranch and Black Hollow are located on structural highs, or arches, which trend east-west across the Powder River and Denver basins. These arches were present during the pre-Laramide migration of Paleozoic-sourced hydrocarbons into the basins and acted as pathways for migration. Exploration for Permian reservoirs in the two basins should be concentrated on the arches, as the early formed traps were present when migration began.

  14. Paranasal sinus masses of Rocky Mountain bighorn sheep (Ovis canadensis canadensis).

    PubMed

    Fox, K A; Wootton, S K; Quackenbush, S L; Wolfe, L L; Levan, I K; Miller, M W; Spraker, T R

    2011-05-01

    This article describes 10 cases of paranasal sinus masses in Rocky Mountain bighorn sheep (Ovis canadensis canadensis). Among 21 bighorns that were examined from 11 herds in Colorado, 10 individuals (48%) from 4 herds (36%) had masses arising from the paranasal sinuses. Affected animals included 9 of 17 females (53%) and 1 of 4 males (25%), ranging in age from approximately 2 years to greater than 10 years. Defining gross features of these masses included unilateral or bilateral diffuse thickening of the respiratory lining of the maxillary and/or frontal sinuses, with abundant seromucinous exudate in the affected sinus cavities. Defining histologic features of these masses included chronic inflammation and proliferation of mesenchymal and epithelial cells of the mucosa and submucosa. Epithelial changes included hyperplasia of mucosal epithelium, hyperplasia of submucosal glands and ducts, and neoplasia (adenocarcinoma). Mesenchymal changes included submucosal myxedema, submucosal fibroplasia/fibrosis, bone destruction, and neoplasia (myxomatous fibroma). Specific immunohistochemistry and polymerase chain reaction for Jaagsiekte sheep retrovirus and enzootic nasal tumor virus were performed with negative results.

  15. Distribution limits of Batrachochytrium dendrobatidis: a case study in the Rocky Mountains, USA.

    PubMed

    Hossack, Blake R; Muths, Erin; Anderson, Chauncey W; Kirshtein, Julie D; Corn, Paul Stephen

    2009-10-01

    Knowledge of the environmental constraints on a pathogen is critical to predicting its dynamics and effects on populations. Batrachochytrium dendrobatidis (Bd), an aquatic fungus that has been linked with widespread amphibian declines, is ubiquitous in the Rocky Mountains. As part of assessing the distribution limits of Bd in our study area, we sampled the water column and sediments for Bd zoospores in 30 high-elevation water bodies that lacked amphibians. All water bodies were in areas where Bd has been documented from neighboring, lower-elevation areas. We targeted areas lacking amphibians because existence of Bd independent of amphibians would have both ecologic and management implications. We did not detect Bd, which supports the hypothesis that it does not live independently of amphibians. However, assuming a detection sensitivity of 59.5% (based on sampling of water where amphibians tested positive for Bd), we only had 95% confidence of detecting Bd if it was in > or =16% of our sites. Further investigation into potential abiotic reservoirs is needed, but our results provide a strategic step in determining the distributional and environmental limitations of Bd in our study region.

  16. The Trans-Rocky Mountain Fault System - A Fundamental Precambrian Strike-Slip System

    USGS Publications Warehouse

    Sims, P.K.

    2009-01-01

    Recognition of a major Precambrian continental-scale, two-stage conjugate strike-slip fault system - here designated as the Trans-Rocky Mountain fault system - provides new insights into the architecture of the North American continent. The fault system consists chiefly of steep linear to curvilinear, en echelon, braided and branching ductile-brittle shears and faults, and local coeval en echelon folds of northwest strike, that cut indiscriminately across both Proterozoic and Archean cratonic elements. The fault system formed during late stages of two distinct tectonic episodes: Neoarchean and Paleoproterozoic orogenies at about 2.70 and 1.70 billion years (Ga). In the Archean Superior province, the fault system formed (about 2.70-2.65 Ga) during a late stage of the main deformation that involved oblique shortening (dextral transpression) across the region and progressed from crystal-plastic to ductile-brittle deformation. In Paleoproterozoic terranes, the fault system formed about 1.70 Ga, shortly following amalgamation of Paleoproterozoic and Archean terranes and the main Paleoproterozoic plastic-fabric-producing events in the protocontinent, chiefly during sinistral transpression. The postulated driving force for the fault system is subcontinental mantle deformation, the bottom-driven deformation of previous investigators. This model, based on seismic anisotropy, invokes mechanical coupling and subsequent shear between the lithosphere and the asthenosphere such that a major driving force for plate motion is deep-mantle flow.

  17. The role of colloids in the transport of contaminants at the Rocky Mountain Arsenal, Denver, CO

    SciTech Connect

    Honeyman, B.D.; Mackay, D.M.

    1993-12-31

    A forced-gradient, pilot-study of ground contaminant transport in an existing plume was conducted at the Rocky Mountain Arsenal in November 1991. Plume contaminants included halogenated VOCs, aromatic hydrocarbons, organchlorine pesticides and other more polar organic compounds. The pilot system consisted of an injection well screened over the entire saturated zone, an extraction well located 30 feet away and granulated activated carbon canisters for the treatment of extracted water. Treated water was spiked with bromide prior to reinjection. A series of observation wells was established between the injection and extraction wells. Organic analysis of extracted colloidal material (10K daltons - 0.1{mu}m) showed the colloids to be with substantional amounts of a number of the target analytes including atrazine (100{mu}g/g colloids), dde (3200{mu}g/g) and DDT (400{mu}g/g). In addition, colloidal material was found to be mobile, although slightly retarded (R{sub f} = 1.5 - 2.0) relativeomide tracer.

  18. Distribution, occupancy, and habitat correlates of American martens (Martes americana) in Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Baldwin, R.A.; Bender, L.C.

    2008-01-01

    A clear understanding of habitat associations of martens (Martes americana) is necessary to effectively manage and monitor populations. However, this information was lacking for martens in most of their southern range, particularly during the summer season. We studied the distribution and habitat correlates of martens from 2004 to 2006 in Rocky Mountain National Park (RMNP) across 3 spatial scales: site-specific, home-range, and landscape. We used remote-sensored cameras from early August through late October to inventory occurrence of martens and modeled occurrence as a function of habitat and landscape variables using binary response (BR) and binomial count (BC) logistic regression, and occupancy modeling (OM). We also assessed which was the most appropriate modeling technique for martens in RMNP. Of the 3 modeling techniques, OM appeared to be most appropriate given the explanatory power of derived models and its incorporation of detection probabilities, although the results from BR and BC provided corroborating evidence of important habitat correlates. Location of sites in the western portion of the park, riparian mixed-conifer stands, and mixed-conifer with aspen patches were most frequently positively correlated with occurrence of martens, whereas more xeric and open sites were avoided. Additionally, OM yielded unbiased occupancy values ranging from 91% to 100% and 20% to 30% for the western and eastern portions of RMNP, respectively. ?? 2008 American Society of Mammalogists.

  19. Field testing of new multilateral drilling and completion technology at the Rocky Mountain Oilfield Testing Center

    SciTech Connect

    Giangiacomo, L.A.

    1998-12-31

    The Rocky Mountain Oilfield Testing Center (RMOTC) has played an important role in bringing new multilateral well technology to the marketplace. Multilateral technology is more complex than most new technologies being brought to the oilfield. It is very difficult to test new designs in the laboratory or conventional test wells. They must be tested downhole in specialized wells to work out design and procedural details. Most of the applications for multilateral technology are in high cost drilling areas, such as offshore or in remote, environmentally sensitive areas. For this reason, opportunities for testing the new technology in the course of routine drilling and completion operations are scarce. Operators are not willing to risk expensive rig time, or losing a wellbore itself, on a test. RMOTC offers a neutral site where the technology can be tested in a relatively low cost environment. There are two drilling rigs and three workover and completion rigs available. Most associated services such as warehouse, roustabouts, backhoe, welders, and mechanics are also available on site, while specialized oilfield services and machine shops are available in nearby Casper. Technologies such as the hollow whipstock, adjustable stabilizer, downhole kickoff assembly, single trip sidetrack tool, stacked multidrain system, rotary steerable systems, and procedures for abandoning an open hole lateral have benefited through the use of RMOTC`s facilities. This paper details the capabilities of the new technologies and the benefits of testing them in a real oilfield environment before taking them to market.

  20. Effect of storm trajectories on snowfall chemistry in Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Ingersoll, G.P.; Tonnessen, K.A.; Campbell, D.H.; Glass, B.R.; Torizzo, A.O.

    2001-01-01

    Snowfall samples from snowstorms lasting 1 to 4 days were collected near the Bear Lake snow telemetry (SnoTel) site in Rocky Mountain National Park, Colorado (ROMO), during the 1998-99 snowfall season to determine if storms moving in from different directions affect the chemistry of precipitation in the park. Storm pathways to Bear Lake during snowfall events were estimated using the HYSPLIT4 backward-trajectory model developed by the National Oceanic and Atmospheric Administration. Deposition of acidic ions of nitrate and sulfate in snowfall during the study varied substantially (two- to threefold) depending on storm trajectory because air masses traversing the park originated from different surrounding areas, including some having large sources of emissions of nitrate and sulfate. Concentrations of nitrate and sulfate in samples were lowest when storms reached ROMO from north and east of the park and were elevated when air masses traveled from the west where a number of power plants are located. Concentrations were highest in storms reaching ROMO from the south, a region with urban areas including Metropolitan Denver.

  1. Nitrogen dynamics in two high elevation catchments during spring snowmelt 1996, Rocky Mountains, Colorado

    NASA Astrophysics Data System (ADS)

    Heuer, Kristi; Brooks, Paul D.; Tonnessen, Kathy A.

    1999-10-01

    Snowpack, soil, soil leachate, and streamwater samples were analyzed for inorganic nitrogen (N) to quantify the net effect of soil processes on N export during spring snowmelt. The two catchments used for this work, Snake River and Deer Creek, are located in Summit County, Colorado and range in elevation from 3350 to 4120 m. Atmospheric N loading to the snowpack, 88 mg N m-2 (=0·88 kg N ha-1), was representative of low N deposition sites in the Rocky Mountains. Potentially mobile inorganic N in soil, 1252 to 1868 mg N m-2, was much greater than N inputs from snow. During spring snowmelt, nitrate (NO) leachate from alpine soil, 702 mg N m-2, was significantly greater than from sub-alpine forest and meadow soils (p<0·001). This pattern in soil leachate was consistent with streamwater N concentrations in Deer Creek, indicating the importance of soil processes in regulating N export from these high elevation catchments. Soils may function as sources or sinks of N during spring snowmelt; alpine soils were a significant source of N to the stream, while sub-alpine soils were possible N sinks.

  2. Bison grazing ecology at the Rocky Mountain Arsenal National Wildlife Refuge, Colorado

    USGS Publications Warehouse

    Germaine, Stephen S.; Zeigenfuss, Linda C.; Schoenecker, Kathryn A.

    2013-01-01

    The Rocky Mountain Arsenal (RMA) National Wildlife Refuge reintroduced bison to a small pasture in 2007. Refuge managers needed information on the effects of bison grazing on vegetation communities in the bison pasture as well as information on how bison might affect other management priorities at RMA. In particular, RMA managers were interested in bison grazing effects on vegetation productivity, amount of vegetation utilization by bison, and habitat selection by bison to inform RMA herd managers and for potential expansion of bison range on the refuge. In 2007, U.S. Geological Survey (USGS) designed a study to investigate bison grazing effects through measurement of vegetation in the 600-hectare enclosure where the bison are currently pastured. This research was a collaborative effort between USGS and RMA refuge staff and had active field components in 2007 and 2010. We found that the effects and intensity of bison grazing on vegetation in the RMA bison pasture is linked to prairie dog presence. Where both species were present, they were removing a significant amount of biomass compared to areas where only bison were present. Also, prairie dogs appeared to enhance the greater production of native forbs, but we were not able to identify the mechanism for this increased production. We were not able, however, to generate an accurate vegetation map for the bison pasture, and this limited our ability to achieve the level of statistical precision necessary to identify grazing impacts and habitat selection of bison.

  3. Geologic and geomorphic controls of coal development in some Tertiary Rocky Mountain basins, USA

    USGS Publications Warehouse

    Flores, R.M.

    1993-01-01

    Previous investigations have not well defined the controls on the development of minable coals in fluvial environments. This study was undertaken to provide a clearer understanding of these controls, particularly in of the lower Tertiary coal-bearing deposits of the Raton and Powder River basins in the Rocky Mountain region of the United States. In this region, large amounts of coals accumulated in swamps formed in the flow-through fluvial systems that infilled these intermontane basins. Extrabasinal and intrabasinal tectonism partly controlled the stratigraphic and facies distributions of minable coal deposits. The regional accumulation of coals was favored by the rapid basin subsidence coupled with minimal uplift of the source area. During these events, coals developed in swamps associated with anastomosed and meandering fluvial systems and alluvial fans. The extensive and high rate of sediment input from these fluvial systems promoted the formation of ombrotrophic, raised swamps, which produced low ash and anomalously thick coals. The petrology and palynology of these coals, and the paleobotany of the associated sediments, suggest that ombrotrophic, raised swamps were common in the Powder River Basin, where the climate during the early Tertiary was paratropical. The paleoecology of these swamps is identical to that of the modern ombrotrophic, raised swamps of the Baram and Mahakam Rivers of Borneo. ?? 1993.

  4. Morphological and physiological determinants of local adaptation to climate in Rocky Mountain butterflies

    PubMed Central

    MacLean, Heidi J.; Higgins, Jessica K.; Buckley, Lauren B.; Kingsolver, Joel G.

    2016-01-01

    Flight is a central determinant of fitness in butterflies and other insects, but it is restricted to a limited range of body temperatures. To achieve these body temperatures, butterflies use a combination of morphological, behavioural and physiological mechanisms. Here, we used common garden (without direct solar radiation) and reciprocal transplant (full solar radiation) experiments in the field to determine the thermal sensitivity of flight initiation for two species of Colias butterflies along an elevation gradient in the southwestern Rocky Mountains. The mean body temperature for flight initiation in the field was lower (24–26°C) than indicated by previous studies (28–30°C) in these species. There were small but significant differences in thermal sensitivity of flight initiation between species; high-elevation Colias meadii initiated flight at a lower mean body temperature than lower-elevation Colias eriphyle. Morphological differences (in wing melanin and thoracic setae) drive body temperature differences between species and contributed strongly to differences in the time and probability of flight and air temperatures at flight initiation. Our results suggest that differences both in thermal sensitivity (15% contribution) and in morphology (85% contribution) contribute to the differences in flight initiation between the two species in the field. Understanding these differences, which influence flight performance and fitness, aids in forecasting responses to climate change. PMID:27668080

  5. Factors influencing successful eradication of nonnative brook trout from four small Rocky Mountain streams using electrofishing

    USGS Publications Warehouse

    Shepard, Bradley B.; Nelson, Lee M.; Taper, Mark L.; Zale, Alexander V.

    2014-01-01

    We successfully eradicated nonnative Brook Trout Salvelinus fontinalis by electrofishing from 2.4- to 3.0-km treatment reaches of four Rocky Mountain streams in Montana to conserve sympatric populations of native Westslope Cutthroat Trout Oncorhynchus clarkii lewisi. At least 6, and as many as 14, removal treatments of two to four electrofishing passes per treatment were required to successfully eradicate Brook Trout from these treatment reaches. We increased success by modifying our treatment efforts during this study from single annual treatments to several treatments a year to take advantage of autumn spawning and winter aggregating behavior. Eradication by electrofishing cost US \\$3,500 to \\$5,500 per kilometer where no riparian vegetation or woody debris clearing was necessary, increasing to \\$8,000 to \\$9,000 per kilometer where clearing was needed. Treatment costs without stream clearing were similar to costs of eradication using piscicides. Eradication by electrofishing may be preferable where native fish occur in sympatry with nonnative fish in smaller streams (base flow wetted widths

  6. Modeling chloride movement in the alluvial aquifer at the Rocky Mountain Arsenal, Colorado

    USGS Publications Warehouse

    Konikow, Leonard F.

    1977-01-01

    A solute-transport model that can be used to predict the movement of dissolved chemicals in flowing ground water was applied to a problem of ground-water contamination at the Rocky Mountain Arsenal, near Denver, Colo. The model couples a finite-difference solution to the ground-water flow equation with the method-of-characteristics solution to the solute-transport equation. From 1943 to 1956 liquid industrial wastes containing high chloride concentrations were disposed into unlined ponds at the Arsenal. Wastes seeped out of the unlined disposal ponds and spread for many square miles in the underlying shallow alluvial aquifer. Since 1956 disposal has been into an asphalt-lined reservoir, which contributed to a decline in ground-water contamination by 1972. The simulation model quantitatively integrated the effects of the major factors that controlled changes in chloride concentrations and accurately reproduced the 30-year history of chloride ground-water contamination. Analysis of the simulation results indicates that the geologic framework of the area markedly restricted the transport and dispersion of dissolved chemicals in the alluvium. Dilution, from irrigation recharge and seepage from unlined canals, was an important factor in reducing the level of chloride concentrations downgradient from the Arsenal. Similarly, recharge of uncontaminated water from the unlined ponds since 1956 has helped to dilute and flush the contaminated ground water.

  7. Seismic activity during the 1968 test pumping at the Rocky Mountain Arsenal disposal well

    USGS Publications Warehouse

    Hoover, Donald B.; Dietrich, J.A.

    1969-01-01

    During the 1968 pumping tests at the Rocky Mountain Arsenal disposal welt, the U.S. Geological Survey was responsible for monitoring earthquakes occurring in the area of the arsenal and making chemical analysis of the fluids removed, three criteria were established to suspend the pumping if anomalous earthquake activity occurred during the pumping test. These criteria were based on the frequency, magnitude, and location of the local earthquakes. The pumping program consisted of four tests which occurred between September 3 and October 26, 1968. During periods of pumping, earthquake activity remained within acceptable limits and no suspensions of the pumping were required. After each of the two major pumping periods an increase in the frequency of small earthquakes occurred. During the first of these two periods of high seismic activity the Geological Survey recommended a delay in the start of the next phase of the pumping until the activity subsided. Most of the earthquakes during 1968 occurred northwest of the arsenal; however, in the 2? month period after the start of the test, a larger percent of the earthquakes occurred on the arsenal than in the previous 8-month period. The temperature in the cooled zone at the bottom of the well was 12?F warmer 2 weeks after pumping stopped than it was in January 1968. Preliminary chemical analyses indicate that very little mixing between waste fluids and connate water bas occurred.

  8. Composite geochemical database for coalbed methane produced water quality in the Rocky Mountain region.

    PubMed

    Dahm, Katharine G; Guerra, Katie L; Xu, Pei; Drewes, Jörg E

    2011-09-15

    Coalbed methane (CBM) or coalbed natural gas (CBNG) is an unconventional natural gas resource with large reserves in the United States (US) and worldwide. Production is limited by challenges in the management of large volumes of produced water. Due to salinity of CBM produced water, it is commonly reinjected into the subsurface for disposal. Utilization of this nontraditional water source is hindered by limited knowledge of water quality. A composite geochemical database was created with 3255 CBM wellhead entries, covering four basins in the Rocky Mountain region, and resulting in information on 64 parameters and constituents. Database water composition is dominated by sodium bicarbonate and sodium chloride type waters with total dissolved solids concentrations of 150 to 39,260 mg/L. Constituents commonly exceeding standards for drinking, livestock, and irrigation water applications were total dissolved solids (TDS), sodium adsorption ratio (SAR), temperature, iron, and fluoride. Chemical trends in the basins are linked to the type of coal deposits, the rank of the coal deposits, and the proximity of the well to fresh water recharge. These water composition trends based on basin geology, hydrogeology, and methane generation pathway are relevant to predicting water quality compositions for beneficial use applications in CBM-producing basins worldwide.

  9. Analysis of nitrogen saturation potential in Rocky Mountain tundra and forest: implications for aquatic systems

    USGS Publications Warehouse

    Baron, Jill S.; Ojima, Dennis S.; Holland, Elisabeth A.; Parton, William J.

    1994-01-01

    We employed grass and forest versions of the CENTURY model under a range of N deposition values (0.02–1.60 g N m−2 y−1) to explore the possibility that high observed lake and stream N was due to terrestrial N saturation of alpine tundra and subalpine forest in Loch Vale Watershed, Rocky Mountain National Park, Colorado. Model results suggest that N is limiting to subalpine forest productivity, but that excess leachate from alpine tundra is sufficient to account for the current observed stream N. Tundra leachate, combined with N leached from exposed rock surfaces, produce high N loads in aquatic ecosystems above treeline in the Colorado Front Range. A combination of terrestrial leaching, large N inputs from snowmelt, high watershed gradients, rapid hydrologic flushing and lake turnover times, and possibly other nutrient limitations of aquatic organisms constrain high elevation lakes and streams from assimilating even small increases in atmospheric N. CENTURY model simulations further suggest that, while increased N deposition will worsen the situation, nitrogen saturation is an ongoing phenomenon.

  10. Future petroleum resource potential of northern Rocky Mountain-Great Plains area

    SciTech Connect

    Peterson, J.A. )

    1989-09-01

    The northern Rocky Mountain-Great Plains area includes nine main petroleum exploration provinces: (1) Wyoming-Utah-Idaho thrust belt; (2) southwestern Wyoming basins, (3) Big Horn basin, (4) Wind River basin, (5) Powder River basin, (6) western Montana province, (7) Sweetgrass arch province, (8) central Montana province, and (9) Williston basin-Sioux uplift province. More than 2,500 oil and gas fields have been discovered in these provinces, with cumulative production up to 1986 of approximately 8 billion bbl of oil and more than 15 tcf of gas. Twenty-five giants fields (> 100 million bbl of oil), many of which were discovered early in the century, account for more than half of the cumulative production. Oil and gas production is from carbonate and sandstone reservoirs ranging in age from Cambrian to Tertiary. Organic-rich petroleum source rocks are present in the Ordovician, Devonian, Mississippian, Pennsylvanian, Permian, Cretaceous, and Tertiary stratigraphic sections. US Geological Survey mean estimates of undiscovered conventional recoverable petroleum resources in the region are approximately 4.4 billion bbl of oil and 29 tcf of gas. Significant resources of unconventional gas in low-permeability reservoirs and as coal-bed methane also are present in the region. The future potential is encouraging, depending on economic factors, but increasingly refined exploration and production technology will be necessary to explore for the remaining resources, a large part of which is expected to be in relatively small accumulations.

  11. Morphological and physiological determinants of local adaptation to climate in Rocky Mountain butterflies.

    PubMed

    MacLean, Heidi J; Higgins, Jessica K; Buckley, Lauren B; Kingsolver, Joel G

    2016-01-01

    Flight is a central determinant of fitness in butterflies and other insects, but it is restricted to a limited range of body temperatures. To achieve these body temperatures, butterflies use a combination of morphological, behavioural and physiological mechanisms. Here, we used common garden (without direct solar radiation) and reciprocal transplant (full solar radiation) experiments in the field to determine the thermal sensitivity of flight initiation for two species of Colias butterflies along an elevation gradient in the southwestern Rocky Mountains. The mean body temperature for flight initiation in the field was lower (24-26°C) than indicated by previous studies (28-30°C) in these species. There were small but significant differences in thermal sensitivity of flight initiation between species; high-elevation Colias meadii initiated flight at a lower mean body temperature than lower-elevation Colias eriphyle. Morphological differences (in wing melanin and thoracic setae) drive body temperature differences between species and contributed strongly to differences in the time and probability of flight and air temperatures at flight initiation. Our results suggest that differences both in thermal sensitivity (15% contribution) and in morphology (85% contribution) contribute to the differences in flight initiation between the two species in the field. Understanding these differences, which influence flight performance and fitness, aids in forecasting responses to climate change.

  12. Factors associated with pathogen seroprevalence and infection in Rocky Mountain cougars.

    PubMed

    Biek, Roman; Ruth, Toni K; Murphy, Kerry M; Anderson, Charles R; Johnson, Mark; DeSimone, Richard; Gray, Rachel; Hornocker, Maurice G; Gillin, Colin M; Poss, Mary

    2006-07-01

    Serological and genetic material collected over 15 years (1990-2004) from 207 cougars (Puma concolor) in four populations in the Rocky Mountains were examined for evidence of current or prior exposure to feline immunodeficiency virus (FIV), feline parvovirus (FPV), feline coronavirus (FCoV), feline calicivirus (FCV), canine distemper virus (CDV), feline herpesvirus (FHV), and Yersinia pestis. Serologic data were analyzed for annual variation in seroconversions to assess whether these pathogens are epidemic or endemic in cougars, and to determine whether family membership, age, sex, or location influence risk of exposure. FIV and FPV were clearly endemic in the studied populations, whereas exposure to FCoV, FCV, CDV, and Y. pestis was more sporadic. No evidence was found for FHV. Age was the most consistent predictor of increased exposure risk, often with no other important factors emerging. Evidence for transmission within family groups was limited to FIV and FCoV, whereas some indication for host sex affecting exposure probability was found for FIV and Y. pestis. Overall, cougar populations exhibited few differences in terms of pathogen presence and prevalence, suggesting the presence of similar risk factors throughout the study region.

  13. Development of an expert system for assessing trumpeter swan breeding habitat in the Northern Rocky Mountains.

    USGS Publications Warehouse

    Sojda, Richard S.; Cornely, John E.; Howe, Adele E.

    2002-01-01

    A decision support system for the management of the Rocky Mountain Population of Trumpeter Swans (Cygnus buccinators) is being developed. As part of this, three expert systems are also in development: one for assessing the quality of Trumpeter Swan breeding habitat; one for making water level recommendations in montane, palustrine wetlands; and one for assessing the contribution a particular site can make towards meeting objectives from as flyway perspective. The focus of this paper is the development of the breeding habitat expert system, which currently consists of 157 rules. Out purpose is to provide decision support for issues that appear to be beyond the capability of a single persons to conceptualize and solve. We propose that by involving multiple experts in the development and use of the systems, management will be significantly improved. The knowledge base for the expert system has been developed using standard knowledge engineering techniques with a small team of ecological experts. Knowledge was then coded using production rules organized in decision trees using a commercial expert system development shell. The final system has been deployed on the world wide web.

  14. Response of Rocky Mountain elk (Cervus elaphus) to wind-power development

    USGS Publications Warehouse

    Walter, W. David; Leslie, David M.; Jenks, J.A.

    2006-01-01

    Wind-power development is occurring throughout North America, but its effects on mammals are largely unexplored. Our objective was to determine response (i.e., home-range, diet quality) of Rocky Mountain elk (Cervus elaphus) to wind-power development in southwestern Oklahoma. Ten elk were radiocollared in an area of wind-power development on 31 March 2003 and were relocated bi-weekly through March 2005. Wind-power construction was initiated on 1 June 2003 and was completed by December 2003 with 45 active turbines. The largest composite home range sizes (>80 km2) occurred April-June and September, regardless of the status of wind-power facility development. The smallest home range sizes (<50 km2) typically occurred in October-February when elk aggregated to forage on winter wheat. No elk left the study site during the study and elk freely crossed the gravel roads used to access the wind-power facility. Carbon and nitrogen isotopes and percent nitrogen in feces suggested that wind-power development did not affect nutrition of elk during construction. Although disturbance and loss of some grassland habitat was apparent, elk were not adversely affected by wind-power development as determined by home range and dietary quality.

  15. Modeling the convective transport of pollutants from eastern Colorado, USA into Rocky Mountain National Park

    NASA Astrophysics Data System (ADS)

    Pina, A.; Schumacher, R. S.; Denning, S.

    2015-12-01

    Rocky Mountain National Park (RMNP) is a Class I Airshed designated under the Clean Air Act. Atmospheric nitrogen (N) deposition in the Park has been a known problem since weekly measurements of wet deposition of inorganic N began in the 1980s by the National Atmospheric Deposition Program (NADP). The addition of N from urban and agriculture emissions along the Colorado Front Range to montane ecosystems degrades air quality/visibility, water quality, and soil pH levels. Based on NADP data during summers 1994-2014, wet N deposition at Beaver Meadows in RMNP exhibited a bimodal gamma distribution. In this study, we identified meteorological transport mechanisms for 3 high wet-N deposition events (all events were within the secondary peak of the gamma distribution) using the North American Regional Reanalysis (NARR) and the Weather Research and Forecasting (WRF) model. The NARR was used to identify synoptic-scale influences on the transport; the WRF model was used to analyze the convective transport of pollutants from a concentrated animal feeding operation near Greeley, Colorado, USA. The WRF simulation included a passive tracer from the feeding operation and a convection-permitting horizontal spacing of 4/3 km. The three cases suggest (a) synoptic-scale moisture and flow patterns are important for priming summer transport events and (b) convection plays a vital role in the transport of Front Range pollutants into RMNP.

  16. Health status of mule deer and white-tailed deer herds on the Rocky Mountain Arsenal

    SciTech Connect

    Creekmore, T.E.; Franson, J.C.; Sileo, L.; Griess, J.M.; Roy, R.R.; Baker, D.L.

    1994-12-31

    The Rocky Mountain Arsenal is a fenced, 6,900-ha Superfund site under remediation by the US Army and the Shell Oil Company. A variety of environmental contaminants including organochlorine pesticides, metals, and nerve-gas-production by-products are in the soil or in the water on the site. The authors evaluated the health of 18 radio-collared deer (13 mule deer [Odocoileus hemionus] and 5 white-tailed deer [O. virginianus]) collected by gunshot. Prior to collection, more than 4,000 locations of the 18 deer were plotted during a period of more than 2 years. Blood samples from the euthanized animals were collected for serologic, hematologic, and contaminant evaluations. Necropsies were preformed and tissues collected for histopathologic examinations and environmental contaminants analyses. Results indicate that the physical conditions of the mule deer were fair/good and of the white-tailed deer were good. Antibody prevalence against epizootic hemorrhagic disease serotype 2 was 85% and bovine virus diarrhea 56%. Two mule deer had severe testicular atrophy, and one of these animals also had antler deformities. Three mule deer had alopecia with dermatitis and hyperkeratosis. Results of heavy metal, and organochlorine pesticide analyses from blood and tissue samples and other analyses will be presented.

  17. Rapid ascent: Rocky Mountain National Park in the Great Acceleration, 1945-present

    NASA Astrophysics Data System (ADS)

    Boxell, Mark

    After the Second World War's conclusion, Rocky Mountain National Park (RMNP) experienced a massive rise in visitation. Mobilized by an affluent economy and a growing, auto-centric infrastructure, Americans rushed to RMNP in droves, setting off new concerns over the need for infrastructure improvements in the park. National parks across the country experienced similar explosions in visitation, inspiring utilities- and road-building campaigns throughout the park units administered by the National Park Service. The quasi-urbanization of parks like RMNP implicated the United States' public lands in a process of global change, whereby wartime technologies, cheap fossil fuels, and a culture of techno-optimism--epitomized by the Mission 66 development program--helped foster a "Great Acceleration" of human alterations of Earth's natural systems. This transformation culminated in worldwide turns toward mass-urbanization, industrial agriculture, and globalized markets. The Great Acceleration, part of the Anthropocene--a new geologic epoch we have likely entered, which proposes that humans have become a force of geologic change--is used as a conceptual tool for understanding the connections between local and global changes which shaped the park after World War II. The Great Acceleration and its array of novel technologies and hydrocarbon-powered infrastructures produced specific cultures of tourism and management techniques within RMNP. After World War II, the park increasingly became the product and distillation of a fossil fuel-dependent society.

  18. Distribution limits of Batrachochytrium dendrobatidis: a case study in the Rocky Mountains, USA.

    USGS Publications Warehouse

    Hossack, B.R.; Muths, E.; Anderson, C.W.; Kirshtein, J.D.; Corn, P.S.

    2009-01-01

    Knowledge of the environmental constraints on a pathogen is critical to predicting its dynamics and effects on populations. Batrachochytrium dendrobatidis (Bd), an aquatic fungus that has been linked with widespread amphibian declines, is ubiquitous in the Rocky Mountains. As part of assessing the distribution limits of Bd in our study area, we sampled the water column and sediments for Bd zoospores in 30 high-elevation water bodies that lacked amphibians. All water bodies were in areas where Bd has been documented from neighboring, lower-elevation areas. We targeted areas lacking amphibians because existence of Bd independent of amphibians would have both ecologic and management implications. We did not detect Bd, which supports the hypothesis that it does not live independently of amphibians. However, assuming a detection sensitivity of 59.5% (based on sampling of water where amphibians tested positive for Bd), we only had 95% confidence of detecting Bd if it was in > or =16% of our sites. Further investigation into potential abiotic reservoirs is needed, but our results provide a strategic step in determining the distributional and environmental limitations of Bd in our study region.

  19. A hybrid modeling approach for estimating reactive nitrogen deposition in Rocky Mountain National Park

    NASA Astrophysics Data System (ADS)

    Malm, William C.; Rodriguez, Marco A.; Schichtel, Bret A.; Gebhart, Kristi A.; Thompson, Tammy M.; Barna, Michael G.; Benedict, Katherine B.; Carrico, Christian M.; Collett, Jeffrey L.

    2016-02-01

    Changes in ecosystem function at Rocky Mountain National Park (RMNP) are occurring because of nitrogen deposition associated with emissions of nitrogen from sources in Colorado as well as other areas of the North American continent and beyond. Nitrogen species are in both reduced and oxidized forms. A year-long monitoring program was initiated to better understand their origins as well as the complex chemistry occurring during transport from source to receptor. Specifically, the goals of the study were to characterize the atmospheric concentrations of nitrogen species in gaseous, particulate, and aqueous phases in RMNP and to identify the emission sources of these various species. The apportionment strategy was designed to focus on differentiating between sources within and outside the state of Colorado and then further differentiate between sources along the Front Range of Colorado and the rest of Colorado. It was also desirous to identify the relative contributions to atmospheric nitrogen species from mobile sources, agricultural activities, and large and small point sources within the state of Colorado. The Particle Source Apportionment Technology (PSAT) module available in the chemical transport model, the Comprehensive Air quality Model with extensions (CAMx), is used to develop first-principle estimates of the contributions from different areas of North America. The CAMx_PSAT results are combined with measured species concentrations in a receptor modeling approach to develop final estimates of source apportionment of the various species' concentrations and deposition.

  20. Adapting Natural Resource Management to Climate Change: The Blue Mountains and Northern Rockies Adaptation Partnerships

    NASA Astrophysics Data System (ADS)

    Halofsky, J.; Peterson, D. L.

    2014-12-01

    Concrete ways to adapt to climate change are needed to help natural resource managers take the first steps to incorporate climate change into management and take advantage of opportunities to balance the negative effects of climate change. We recently initiated two science-management climate change adaptation partnerships, one with three national forests and other key stakeholders in the Blue Mountains region of northeastern Oregon, and the other with 16 national forests, three national parks and other stakeholders in the northern Rockies region. Goals of both partnerships were to: (1) synthesize published information and data to assess the exposure, sensitivity, and adaptive capacity of key resource areas, including water use, infrastructure, fisheries, and vegetation and disturbance; (2) develop science-based adaptation strategies and tactics that will help to mitigate the negative effects of climate change and assist the transition of biological systems and management to a warmer climate; (3) ensure adaptation strategies and tactics are incorporated into relevant planning documents; and (4) foster an enduring partnership to facilitate ongoing dialogue and activities related to climate change in the partnerships regions. After an initial vulnerability assessment by agency and university scientists and local resource specialists, adaptation strategies and tactics were developed in a series of scientist-manager workshops. The final vulnerability assessments and adaptation actions are incorporated in technical reports. The partnerships produced concrete adaptation options for national forest and other natural resource managers and illustrated the utility of place-based vulnerability assessments and scientist-manager workshops in adapting to climate change.

  1. From both sides now: librarians' experiences at the Rocky Mountain Evidence-Based Health Care Workshop

    PubMed Central

    Traditi, Lisa K.; Le Ber, Jeanne Marie; Beattie, Michelle; Meadows, Susan E.

    2004-01-01

    The Colorado Health Outcomes (COHO) Department of the School of Medicine at the University of Colorado Health Sciences Center (UCHSC) coordinates the Rocky Mountain Evidence-Based Health Care (EBHC) Workshop, which has been held annually since 1999. The goals of the workshop include helping participants—physicians, pharmacists, health care policy makers, journalists and librarians—learn and apply skills for critically appraising medical research literature and for effective use of evidence-based information resources. Participants are encouraged to share ideas and to plan local services and instruction for those working in clinical settings. Each year, librarians from UCHSC Denison Memorial Library participate as faculty by teaching searching skills (PubMed, Cochrane Library, ACP Journal Club, etc.), providing support to small groups, and staffing two computer labs. In 2002, Denison Library received a National Network of Libraries of Medicine (NN/LM) MidContinental Region Impact Award to fund the attendance of three health sciences librarians from the MidContinental Region, an academic education librarian, a clinical medical librarian, and a department librarian. In this paper, the participating librarians share the lessons they learned about how health care practitioners approach evidence-based practice. The participating librarians also share how they incorporated these lessons into their support of evidence-based practice related to teaching about evidence-based resources, assisting health care practitioners with developing answerable questions, enhancing the clinician-librarian partnership, and assisting practitioners in selecting evidence-based resources for quick answers to clinical questions. PMID:14762465

  2. Determining Spatial and Temporal Variation in Sources of Nitrogen Deposition in the Rocky Mountains using Nitrogen Isotopes

    NASA Astrophysics Data System (ADS)

    Nanus, L.; Campbell, D. H.; Ingersoll, G.; Lehmann, C.; Kendall, C.; Elliott, E. M.; Bohlke, J. K.

    2009-12-01

    Variations in nitrogen (N) deposition sources to high-elevation ecosystems in the Rocky Mountains were evaluated using spatially and temporally distributed N isotope data for water years 1995-2006. This unique dataset links N in wet deposition and snowpack to source emissions, and enhances understanding of the impacts of anthropogenic activities and environmental policies that affect N cycling in the Rocky Mountains. At 50 U.S. Geological Survey-Rocky Mountain Snowpack(USGS-RMS) sites, d15N(NO3) ranged from -3.3 permil to +6.5 permil, with a mean value of +1.4 permil for 2006. At 15 National Atmospheric Deposition Program/National Trends Network(NADP/NTN) wet-deposition sites in the Rocky Mountains, d15N(NO3) values ranged from -7.6 permil to +5.5 permil with a mean value of +0.7 permil during the cool season. The wet deposition values generally had lower d15N(NO3) values than snowpack, possibly due to the influence of dry deposition in the snowpack samples. Spatial patterns in d15N(NO3) are similar for NADP/NTN wet-only deposition and USGS-RMS winter snowpack for water year 2006, with higher d15N(NO3) values and increased NO3 concentrations in the Southern Rockies, where there are larger anthropogenic N emission sources compared to the Northern Rockies. Temporal trends in annual snowpack d15N(NO3) from USGS-RMS for 1995-2006 indicate that source signatures changed over time. Regional-Kendall statistical tests for d15N(NO3) indicate a highly significant positive temporal trend in the Southern Rockies (p = 0.006, median d15N(NO3) = +2.3 permil), a moderately significant positive trend in the Central Rockies (p = 0.08, median d15N(NO3) = -1.1 permil), and no trend in Northern Rockies (p = 1, median d15N(NO3) = -4.0 permil). Quarterly, volume-weighted mean d15N(NO3) values of precipitation at NADP/NTN sites show a strong seasonal pattern due to variation in the proportion of N originating from source regions at different times of the year due to seasonal changes in

  3. Particulate carbonate matter in snow from selected sites in the south-central Rocky Mountains

    USGS Publications Warehouse

    Clow, David W.; Ingersoll, George P.

    1994-01-01

    Trends in snow acidity reflect the balance between strong acid inputs and reactions with neutralizing materials. Carbonate dust can be an important contributor of buffering capacity to snow however, its concentration in snow is difficult to quantify because it dissolves rapidly in snowmelt. In snow with neutral or acidic pH, most calcite would dissolve during sample melting if snow samples were processed using standard techniques. Here a method is described for separating particulate carbonate matter from snow. Snow samples were melted in solutions close to saturation with calcite, decreasing the dissolution rate by a factor of 100-200 compared with natural melting of snow. Particulate matter larger than 0.45 ??m in diameter was then filtered from solution and analysed for carbonate content. Particulate carbonate matter concentrations are reported for 25 sites in the south-central Rocky Mountains. Results are compared with Ca2+ and H+ concentrations and regional trends are evaluated. In Colorado, mean particulate carbonate in snow was 43 ??g kg-1 at sampling sites in the southern mountains and only 4 ??g kg-1 at sites in the northern mountains. The higher calcite concentrations in the south probably are related to the proximity of sampling sites to major outcrops of limestone. Particulate carbonate at sampling sites in Utah and Wyoming ranged from 3-35 ??g kg-1. The levels of particulate calcite measured in snow samples are sufficient to neutralize an average of 0.4 ??eq H+ kg-1 snow. Strong acid anion concentrations in samples from east of Craig, Colorado, were 30-50% higher than in samples from the Colorado Front Range, but H+ concentrations were 400-600% higher east of Craig. Relatively low Ca2+ concentrations in the samples from east of Craig indicate that the difference in snow acidity was due mostly to lower concentrations of neutralizing materials.Trends in snow acidity reflect the balance between strong acid inputs and reactions with neutralizing materials

  4. Intraplate mountain building in response to continent continent collision—the Ancestral Rocky Mountains (North America) and inferences drawn from the Tien Shan (Central Asia)

    NASA Astrophysics Data System (ADS)

    Dickerson, Patricia Wood

    2003-04-01

    The intraplate Ancestral Rocky Mountains of western North America extend from British Columbia, Canada, to Chihuahua, Mexico, and formed during Early Carboniferous through Early Permian time in response to continent-continent collision of Laurentia with Gondwana—the conjoined masses of Africa and South America, including Yucatán and Florida. Uplifts and flanking basins also formed within the Laurentian Midcontinent. On the Gondwanan continent, well inboard from the marginal fold belts, a counterpart structural array developed during the same period. Intraplate deformation began when full collisional plate coupling had been achieved along the continental margin; the intervening ocean had been closed and subduction had ceased—that is, the distinction between upper versus lower plates became moot. Ancestral Rockies deformation was not accompanied by volcanism. Basement shear zones that formed during Mesoproterozoic rifting of Laurentia were reactivated and exerted significant control on the locations, orientations, and modes of displacement on late Paleozoic faults. Ancestral Rocky Mountain uplifts extend as far south as Chihuahua and west Texas (28° to 33°N, 102° to 109°W) and include the Florida-Moyotes, Placer de Guadalupe-Carrizalillo, Ojinaga-Tascotal and Hueco Mountain blocks, as well as the Diablo and Central Basin Platforms. All are cored with Laurentian Proterozoic crystalline basement rocks and host correlative Paleozoic stratigraphic successions. Pre-late Paleozoic deformational, thermal, and metamorphic histories are similar as well. Southern Ancestral Rocky Mountain structures terminate along a line that trends approximately N 40°E (present coordinates), a common orientation for Mesoproterozoic extensional structures throughout southern to central North America. Continuing Tien Shan intraplate deformation (Central Asia) has created an analogous array of uplifts and basins in response to the collision of India with Eurasia, beginning in late

  5. Assessment of climate change and freshwater ecosystems of the Rocky Mountains, USA and Canada

    USGS Publications Warehouse

    Hauer, F. Richard; Baron, J.S.; Campbell, D.H.; Fausch, K.D.; Hostetler, S.W.; Leavesley, G.H.; Leavitt, P.R.; McKnight, Diane M.; Stanford, J.A.

    1997-01-01

    The Rocky Mountains in the USA and Canada encompass the interior cordillera of western North America, from the southern Yukon to northern New Mexico. Annual weather patterns are cold in winter and mild in summer. Precipitation has high seasonal and interannual variation and may differ by an order of magnitude between geographically close locales, depending on slope, aspect and local climatic and orographic conditions. The region's hydrology is characterized by the accumulation of winter snow, spring snowmelt and autumnal baseflows. During the 2-3-month 'spring runoff' period, rivers frequently discharge >70% of their annual water budget and have instantaneous discharges 10-100 times mean low flow. Complex weather patterns characterized by high spatial and temporal variability make predictions of future conditions tenuous. However, general patterns are identifiable; northern and western portions of the region are dominated by maritime weather patterns from the North Pacific, central areas and eastern slopes are dominated by continental air masses and southern portions receive seasonally variable atmospheric circulation from the Pacific and the Gulf of Mexico. Significant interannual variations occur in these general patterns, possibly related to ENSO (El Nin??o-Southern Oscillation) forcing. Changes in precipitation and temperature regimes or patterns have significant potential effects on the distribution and abundance of plants and animals. For example, elevation of the timber-line is principally a function of temperature. Palaeolimnological investigations have shown significant shifts in phyto- and zoo-plankton populations as alpine lakes shift between being above or below the timber-line. Likewise, streamside vegetation has a significant effect on stream ecosystem structure and function. Changes in stream temperature regimes result in significant changes in community composition as a consequence of bioenergetic factors. Stenothermic species could be extirpated as

  6. Assessment of Climate Change and Freshwater Ecosystems of the Rocky Mountains, USA and Canada

    NASA Astrophysics Data System (ADS)

    Hauer, F. Richard; Baron, Jill S.; Campbell, Donald H.; Fausch, Kurt D.; Hostetler, Steve W.; Leavesley, George H.; Leavitt, Peter R.; McKnight, Diane M.; Stanford, Jack A.

    1997-06-01

    The Rocky Mountains in the USA and Canada encompass the interior cordillera of western North America, from the southern Yukon to northern New Mexico. Annual weather patterns are cold in winter and mild in summer. Precipitation has high seasonal and interannual variation and may differ by an order of magnitude between geographically close locales, depending on slope, aspect and local climatic and orographic conditions. The region's hydrology is characterized by the accumulation of winter snow, spring snowmelt and autumnal baseflows. During the 2-3-month spring runoff period, rivers frequently discharge > 70% of their annual water budget and have instantaneous discharges 10-100 times mean low flow.Complex weather patterns characterized by high spatial and temporal variability make predictions of future conditions tenuous. However, general patterns are identifiable; northern and western portions of the region are dominated by maritime weather patterns from the North Pacific, central areas and eastern slopes are dominated by continental air masses and southern portions receive seasonally variable atmospheric circulation from the Pacific and the Gulf of Mexico. Significant interannual variations occur in these general patterns, possibly related to ENSO (El Niño-Southern Oscillation) forcing.Changes in precipitation and temperature regimes or patterns have significant potential effects on the distribution and abundance of plants and animals. For example, elevation of the timber-line is principally a function of temperature. Palaeolimnological investigations have shown significant shifts in phyto- and zoo-plankton populations as alpine lakes shift between being above or below the timber-line. Likewise, streamside vegetation has a significant effect on stream ecosystem structure and function. Changes in stream temperature regimes result in significant changes in community composition as a consequence of bioenergetic factors. Stenothermic species could be extirpated as

  7. Mycorrhizal and Dark-Septate Fungi in Plant Roots above 4270 Meters Elevation in the Andes and Rocky Mountains

    SciTech Connect

    Schmidt, Steven K.; Sobieniak-Wiseman, L. Cheyanne; Kageyama, Stacy A.; Halloy, Stephen; Schadt, Christopher Warren

    2008-01-01

    Arbuscular mycorrhizal (AM) and dark-septate endophytic (DSE) fungi were quantified in plant roots from high-elevation sites in the Cordillera Vilcanota of the Andes (Per ) and the Front Range of the Colorado Rocky Mountains (U.S.A.). At the highest sites in the Andes (5391 m) AM fungi were absent in the two species of plants sampled (both Compositae) but roots of both were heavily colonized by DSE fungi. At slightly lower elevations (5240 5250 m) AM fungi were present in roots while DSE fungi were rare in plants outside of the composite family. At the highest sites sampled in Colorado (4300 m) AM fungi were present, but at very low levels and all plants sampled contained DSE fungi. Hyphae of coarse AM fungi decreased significantly in plant roots at higher altitude in Colorado, but no other structures showed significant decreases with altitude. These new findings indicate that the altitudinal distribution of mycorrhizal fungi observed for European mountains do not necessarily apply to higher and drier mountains that cover much of the Earth (e.g. the Himalaya, Hindu Kush, Andes, and Rockies) where plant growth is more limited by nutrients and water than in European mountains. This paper describes the highest altitudinal records for both AM and DSE fungi, surpassing previous reported altitudinal maxima by about 1500 meters.

  8. Holocene vegetation and fire regimes in subalpine and mixed conifer forests, southern Rocky Mountains, USA

    USGS Publications Warehouse

    Anderson, R. Scott; Allen, C.D.; Toney, J.L.; Jass, R.B.; Bair, A.N.

    2008-01-01

    Our understanding of the present forest structure of western North America hinges on our ability to determine antecedent forest conditions. Sedimentary records from lakes and bogs in the southern Rocky Mountains of Colorado and New Mexico provide information on the relationships between climate and vegetation change, and fire history since deglaciation. We present a new pollen record from Hunters Lake (Colorado) as an example of a high-elevation vegetation history from the southern Rockies. We then present a series of six sedimentary records from ???2600 to 3500-m elevation, including sites presently at the alpine?subalpine boundary, within the Picea engelmannii?Abies lasiocarpa forest and within the mixed conifer forest, to determine the history of fire in high-elevation forests there. High Artemisia and low but increasing percentages of Picea and Pinus suggest vegetation prior to 13 500 calendar years before present (cal yr BP) was tundra or steppe, with open spruce woodland to ???11 900 cal yr BP. Subalpine forest (Picea engelmannii, Abies lasiocarpa) existed around the lake for the remainder of the Holocene. At lower elevations, Pinus ponderosa and/or contorta expanded 11 900 to 10 200 cal yr BP; mixed conifer forest expanded ???8600 to 4700 cal yr BP; and Pinus edulis expanded after ???4700 cal yr BP. Sediments from lake sites near the alpine?subalpine transition contained five times less charcoal than those entirely within subalpine forests, and 40 times less than bog sites within mixed conifer forest. Higher fire episode frequencies occurred between ???12 000 and 9000 cal yr BP (associated with the initiation or expansion of south-west monsoon and abundant lightning, and significant biomass during vegetation turnover) and at ???2000?1000 cal yr BP (related to periodic droughts during the long-term trend towards wetter conditions and greater biomass). Fire episode frequencies for subalpine?alpine transition and subalpine sites were on average 5 to 10 fire

  9. Seismic tomography of the Colorado Rocky Mountains upper mantle from CREST: Lithosphere-asthenosphere interactions and mantle support of topography

    NASA Astrophysics Data System (ADS)

    MacCarthy, J. K.; Aster, R. C.; Dueker, K.; Hansen, S.; Schmandt, B.; Karlstrom, K.

    2014-09-01

    The CREST experiment (Colorado Rocky Mountains Experiment and Seismic Transects) integrated the EarthScope USArray Transportable Array with portable and permanent stations to provide detailed seismic imaging of crust and mantle properties beneath the highest topography region of the Rocky Mountains. Inverting approximately 14,600 P- and 3600 S-wave arrival times recorded at 160 stations for upper mantle Vp and Vs structure, we find that large Vp perturbations relative to AK135 of 7% and Vs variations of 8% take place over very short (approaching tens of kilometers) lateral distances. Highest heterogeneity is observed in the upper 300 km of the mantle, but well resolved low velocity features extend to the top of the transition zone in portions of these images. The previously noted low velocity upper mantle Aspen Anomaly is resolved into multiple features. The lowest Vp and Vs velocities in the region are found beneath the San Juan Mountains, which is clearly distinguished from other low velocity features of the northern Rio Grande Rift, Taos/Latir region, Aspen region, and below the Never Summer Mountains. We suggest that the San Juan anomaly, and a similar feature below the Taos/Latir region of northern New Mexico, are related to delamination and remnant heat (and melt) beneath these sites of extraordinarily voluminous middle-Cenozoic volcanism. We interpret a northeast-southwest grain in velocity structure that parallels the Colorado Mineral belt to depths near 150 km as being reflective of control by uppermost mantle Proterozoic accretionary lithospheric architecture. Further to the north and west, the Wyoming province and northern Colorado Plateau show high velocity features indicative of thick (∼150 km) preserved Archean and Proterozoic lithosphere, respectively. Overall, we interpret the highly heterogeneous uppermost mantle velocity structure beneath the southern Rocky Mountains as reflecting interfingered chemical Proterozoic lithosphere that has been, is

  10. Ecology of porcupines (Erethizon dorsatum) and Colorado tick fever virus in Rocky Mountain National Park, 1975-1977.

    PubMed

    McLean, R G; Carey, A B; Kirk, L J; Francy, D B

    1993-01-01

    The involvement of porcupines, Erethizon dorsatum (L.), in the ecology of Colorado tick fever (CTF) virus in Rocky Mountain National Park was investigated from 1975 to 1977. Porcupine dens and feeding activity were found mostly on rocky knolls or on south-facing slopes within open stands of the montane coniferous forest, and 20 adult porcupines were trapped or captured by hand at those locations. An average of 24.6 +/- 5.4 adult Dermacentor andersoni Stiles ticks were found per animal (annual range, 17.5-31.4 ticks). The minimum CTF virus infection rate of the ticks removed from porcupines varied from 129 to 257, whereas for questing adult D. andersoni ticks from the same geographic area was 205 in 1976. No virus was isolated from the 20 animals, but 85% had neutralizing antibody against CTF virus. Porcupines utilize the same habitats described for the CTF ecosystem in Rocky Mountain National Park and appear to be an important host for adult D. andersoni.

  11. Primitive and contaminated basalts from the Southern Rocky Mountains, U.S.A

    USGS Publications Warehouse

    Doe, B.R.; Lipman, P.W.; Hedge, C.E.; Kurasawa, H.

    1969-01-01

    Basalts in the Southern Rocky Mountains province have been analyzed to determine if any of them are primitive. Alkali plagioclase xenocrysts armored with calcic plagioclase seem to be the best petrographic indicator of contamination. The next best indicator of contamination is quartz xenocrysts armored with clinopyroxene. On the rocks and the region studied, K2O apparently is the only major element with promise of separating primitive basalt from contaminated basalt inasmuch as it constitutes more than 1 % in all the obviously contaminated basalts. K2O: lead (> 4 ppm) and thorium (> 2 ppm) contents and Rb/Sr (> 0.035) are the most indicative of the trace elements studied. Using these criteria, three basalt samples are primitive (although one contains 1.7% K2O) and are similar in traceelement contents to Hawaiian and Eastern Honshu, Japan, primitive basalts. Contamination causes lead isotope ratios, 206Pb/204Pb and 208Pb/204Pb, to become less radiogenic, but it has little or no effect on 87Sr/86Sr. We interpret the effect on lead isotopes to be due to assimilation either of lower crustal granitic rocks, which contain 5-10 times as much lead as basalt and which have been low in U/Pb and Th/Pb since Precambrian times, or of upper crustal Precambrian or Paleozoic rocks, which have lost much of their radiogenic lead because of heating prior to assimilation. The lack of definite effects on strontium isotopes may be due to the lesser strontium contents of granitic crustal rocks relative to basaltic rocks coupled with lack of a large radiogenic enrichment in the crustal rocks. Lead isotope ratios were found to be less radiogenic in plagioclase separates from an obviously contaminated basalt than in the primitive basalts. The feldspar separate that is rich in sodic plagioclase xenocrysts was found to be similar to the whole-rock composition for 206Pb/204Pb and 208Pb/204Pb whereas a more dense fraction probably enriched in more calcic plagioclase phenocrysts is more similar

  12. FRACTURED RESERVOIR E&P IN ROCKY MOUNTAIN BASINS: A 3-D RTM MODELING APPROACH

    SciTech Connect

    P. Ortoleva; J. Comer; A. Park; D. Payne; W. Sibo; K. Tuncay

    2001-11-26

    Key natural gas reserves in Rocky Mountain and other U.S. basins are in reservoirs with economic producibility due to natural fractures. In this project, we evaluate a unique technology for predicting fractured reservoir location and characteristics ahead of drilling based on a 3-D basin/field simulator, Basin RTM. Recommendations are made for making Basin RTM a key element of a practical E&P strategy. A myriad of reaction, transport, and mechanical (RTM) processes underlie the creation, cementation and preservation of fractured reservoirs. These processes are often so strongly coupled that they cannot be understood individually. Furthermore, sedimentary nonuniformity, overall tectonics and basement heat flux histories make a basin a fundamentally 3-D object. Basin RTM is the only 3-D, comprehensive, fully coupled RTM basin simulator available for the exploration of fractured reservoirs. Results of Basin RTM simulations are presented, that demonstrate its capabilities and limitations. Furthermore, it is shown how Basin RTM is a basis for a revolutionary automated methodology for simultaneously using a range of remote and other basin datasets to locate reservoirs and to assess risk. Characteristics predicted by our model include reserves and composition, matrix and fracture permeability, reservoir rock strength, porosity, in situ stress and the statistics of fracture aperture, length and orientation. Our model integrates its input data (overall sedimentation, tectonic and basement heat flux histories) via the laws of physics and chemistry that describe the RTM processes to predict reservoir location and characteristics. Basin RTM uses 3-D, finite element solutions of the equations of rock mechanics, organic and inorganic diagenesis and multi-phase hydrology to make its predictions. As our model predicts reservoir characteristics, it can be used to optimize production approaches (e.g., assess the stability of horizontal wells or vulnerability of fractures to

  13. Phenological and ecological consequences of changes in winter snowpack in the Colorado Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Inouye, D. W.; McKinney, A. M.

    2012-12-01

    The date the snowpack disappears in spring is an important seasonal event at high altitudes because it determines the beginning of the growing season, which in turn influences the phenology of plant growth and flowering, and thus the availability of these resources for animal consumers. At our study site at 2,900m in the Colorado Rocky Mountains, the Rocky Mountain Biological Laboratory, snowmelt now averages two weeks earlier than in 1975. Earlier snowmelt results from a combination of lower snowfall (38 cm less since 1975), dust storms (increasing in frequency, which reduces the snowpack albedo), and warmer spring temperatures (April minimum temperature has increased 3.1°C since 1973; 2012 April mean temperature was 3.4°C above the 38-year mean). There is also a trend of increasing annual precipitation falling as rain instead of snow. We have monitored flowering phenology and abundance for about 100 species of plants in permanent plots since 1973, and use this record to look at how the change in timing of snowmelt has affected flowering. There is significant variation among years in flowering phenology (e.g., about six weeks difference between 2011 and 2012), with a mid-season decline in flowering abundance becoming apparent as the growing season starts earlier. The date of the last hard frost has not been changing in concert with the earlier growing season, with the consequence that many species now have flower buds developed that are then damaged or killed by frost. In 2012, snowmelt date was 23 April, and frost events on 27 May (-11.7°C) and 11 June (-5.6°C) did significant damage to vegetation of some species and to flower buds of many species. For example, flower abundance of the aspen sunflower Helianthella quinquenervis was 0.002% of 2011's flowering. In the absence of seed production, the demography of some plant species is likely being affected. Some animal species are also being affected by the changes in length and temperature of winter. New

  14. Paleoclimate from fossil plants and application to the early Cenozoic Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Wing, S. L.

    2011-12-01

    analysis of early Cenozoic floras from the Rocky Mountain region. Paleocene climates across the region were warm with warm winters. Mean annual temperature estimates vary from 10-18 °C depending on the time and place, and ground-freezing climates occurred only north of 40-45 °N. Plants and sedimentary environments suggest low altitude deposition, though floras are not as homogeneous as once thought, suggesting barriers existed. Eocene climates were warmer, with mean annual temperature estimates of 14-25 °C, and ground-freezing climates occurring only north of the Canadian border. Paleobotanical evidence for substantial paleoelevations in basinal areas is weak, but volcanic terrains to the west preserve floras that suggest higher paleoelevations, even in the early and middle Eocene. The terms "frost-free" and "tropical" have sometimes been used to describe Eocene climate and vegetation of the northern U.S. Rocky Mountains, but are probably not justified, with the possible exception of the the warmest early Eocene hyperthermal events at low paleoelevation.

  15. Why replication is important in landscape genetics: American black bear in the Rocky Mountains.

    PubMed

    Bull, R A Short; Cushman, S A; Mace, R; Chilton, T; Kendall, K C; Landguth, E L; Schwartz, M K; McKelvey, K; Allendorf, Fred W; Luikart, G

    2011-03-01

    We investigated how landscape features influence gene flow of black bears by testing the relative support for 36 alternative landscape resistance hypotheses, including isolation by distance (IBD) in each of 12 study areas in the north central U.S. Rocky Mountains. The study areas all contained the same basic elements, but differed in extent of forest fragmentation, altitude, variation in elevation and road coverage. In all but one of the study areas, isolation by landscape resistance was more supported than IBD suggesting gene flow is likely influenced by elevation, forest cover, and roads. However, the landscape features influencing gene flow varied among study areas. Using subsets of loci usually gave models with the very similar landscape features influencing gene flow as with all loci, suggesting the landscape features influencing gene flow were correctly identified. To test if the cause of the variability of supported landscape features in study areas resulted from landscape differences among study areas, we conducted a limiting factor analysis. We found that features were supported in landscape models only when the features were highly variable. This is perhaps not surprising but suggests an important cautionary note - that if landscape features are not found to influence gene flow, researchers should not automatically conclude that the features are unimportant to the species' movement and gene flow. Failure to investigate multiple study areas that have a range of variability in landscape features could cause misleading inferences about which landscape features generally limit gene flow. This could lead to potentially erroneous identification of corridors and barriers if models are transferred between areas with different landscape characteristics.

  16. Increased Flight Altitudes among Migrating Golden Eagles Suggest Turbine Avoidance at a Rocky Mountain Wind Installation

    PubMed Central

    Johnston, Naira N.; Bradley, James E.; Otter, Ken A.

    2014-01-01

    Potential wind-energy development in the eastern Rocky Mountain foothills of British Columbia, Canada, raises concerns due to its overlap with a golden eagle (Aquila chrysaetos) migration corridor. The Dokie 1 Wind Energy Project is the first development in this area and stands as a model for other projects in the area because of regional consistency in topographic orientation and weather patterns. We visually tracked golden eagles over three fall migration seasons (2009–2011), one pre- and two post-construction, to document eagle flight behaviour in relation to a ridge-top wind energy development. We estimated three-dimensional positions of eagles in space as they migrated through our study site. Flight tracks were then incorporated into GIS to ascertain flight altitudes for eagles that flew over the ridge-top area (or turbine string). Individual flight paths were designated to a category of collision-risk based on flight altitude (e.g. flights within rotor-swept height; ≤150 m above ground) and wind speed (winds sufficient for the spinning of turbines; >6.8 km/h at ground level). Eagles were less likely to fly over the ridge-top area within rotor-swept height (risk zone) as wind speed increased, but were more likely to make such crosses under headwinds and tailwinds compared to western crosswinds. Most importantly, we observed a smaller proportion of flights within the risk zone at wind speeds sufficient for the spinning of turbines (higher-risk flights) during post-construction compared to pre-construction, suggesting that eagles showed detection and avoidance of turbines during migration. PMID:24671199

  17. Carbon gas exchange at a southern Rocky Mountain wetland, 1996-1998

    USGS Publications Warehouse

    Wickland, K.P.; Striegl, R.G.; Mast, M.A.; Clow, D.W.

    2001-01-01

    Carbon dioxide (CO2) and methane (CH4) exchange between the atmosphere and a subalpine wetland located in Rocky Mountain National Park, Colorado, at 3200 m elevation were measured during 1996-1998. Respiration, net CO2 flux, and CH4 flux were measured using the closed chamber method during snow-free periods and using gas diffusion calculations during snow-covered periods. The ranges of measured flux were 1.2-526 mmol CO2 m-2 d-1 (respiration), -1056-100 mmol CO2 m-2 d-1 (net CO2 exchange), and 0.1-36.8 mmol CH4 m-2 d-1 (a positive value represents efflux to the atmosphere). Respiration and CH4 emission were significantly correlated with 5 cm soil temperature. Annual respiration and CH4 emission were modeled by applying the flux-temperature relationships to a continuous soil temperature record during 1996-1998. Gross photosynthesis was modeled using a hyperbolic equation relating gross photosynthesis, photon flux density, and soil temperature. Modeled annual flux estimates indicate that the wetland was a net source of carbon gas to the atmosphere each of the three years: 8.9 mol C m-2 yr-1 in 1996, 9.5 mol C m-2 yr-1 in 1997, and 9.6 mol C m-2 yr-1 in 1998. This contrasts with the long-term carbon accumulation of ???0.7 mol m-2 yr-1 determined from 14C analyses of a peat core collected from the wetland.

  18. Surface energy balance sensitivity to meteorological variability on Haig Glacier, Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Samaneh; Marshall, Shawn J.

    2016-11-01

    Energy exchanges between the atmosphere and the glacier surface control the net energy available for snow and ice melt. This paper explores the response of a midlatitude glacier in the Canadian Rocky Mountains to daily and interannual variations in the meteorological parameters that govern the surface energy balance. We use an energy balance model to run sensitivity tests to perturbations in temperature, specific humidity, wind speed, incoming shortwave radiation, glacier surface albedo, and winter snowpack depth. Variables are perturbed (i) in isolation, (ii) including internal feedbacks, and (iii) with co-evolution of meteorological perturbations, derived from the North American regional climate reanalysis (NARR) over the period 1979-2014. Summer melt at this site has the strongest sensitivity to interannual variations in temperature, albedo, and specific humidity, while fluctuations in cloud cover, wind speed, and winter snowpack depth have less influence. Feedbacks to temperature forcing, in particular summer albedo evolution, double the melt sensitivity to a temperature change. When meteorological perturbations covary through the NARR forcing, summer temperature anomalies remain important in driving interannual summer energy balance and melt variability, but they are reduced in importance relative to an isolated temperature forcing. Covariation of other variables (e.g., clear skies, giving reduced incoming longwave radiation) may be partially compensating for the increase in temperature. The methods introduced in this paper provide a framework that can be extended to compare the sensitivity of glaciers in different climate regimes, e.g., polar, maritime, or tropical environments, and to assess the importance of different meteorological parameters in different regions.

  19. Methane flux in subalpine wetland and unsaturated soils in the southern Rocky Mountains

    USGS Publications Warehouse

    Wickland, K.P.; Striegl, R.G.; Schmidt, S.K.; Mast, M.A.

    1999-01-01

    Methane exchange between the atmosphere and subalpine wetland and unsaturated soils was evaluated over a 15-month period during 1995-1996. Four vegetation community types along a moisture gradient (wetland, moist-grassy, moist-mossy, and dry) were included in a 100 m sampling transect situated at 3200 m elevation in Rocky Mountain National Park, Colorado. Methane fluxes and soil temperature were measured during snow-free and snow-covered periods, and soil moisture content was measured during snow-free periods. The range of mean measured fluxes through all seasons (a positive value represents CH4 efflux to the atmosphere) were: 0.3 to 29.2 mmol CH4 m-2 d-1 wetland area; 0.1 to 1.8 mmol CH4 m-2 d-1, moist-grassy area; -0.04 to 0.7 mmol CH4 m-2 d-1, moist-mossy area; and -0.6 to 0 mmol CH4 m-2 d-1, dry area. Methane efflux was significantly correlated with soil temperature (5 cm) at the continuously saturated wetland area during snow-free periods. Consumption of atmospheric methane was significantly correlated with moisture content in the upper 5 cm of soil at the dry area. A model based on the wetland flux-temperature relationship estimated an annual methane emission of 2.53 mol CH4 m-2 from the wetland. Estimates of annual methane flux based on field measurements at the other sites were 0.12 mol CH4 m-2, moist-grassy area; 0.03 mol CH4 m-2, moist-mossy area; and -0.04 mol CH4 m-2, dry area. Methane fluxes during snow-covered periods were responsible for 25, 73, 23, and 43% of the annual fluxes at the wetland, moist-grassy, moist-mossy, and dry sites, respectively.

  20. Estimation of successful breeding pairs for wolves in the Northern Rocky Mountains, USA

    USGS Publications Warehouse

    Mitchell, M.S.; Ausband, D.E.; Sime, C.A.; Bangs, E.E.; Gude, J.A.; Jimenez, M.D.; Mack, C.M.; Meier, T.J.; Nadeau, M.S.; Smith, D.W.

    2008-01-01

    Under the Endangered Species Act, documenting recovery and federally mandated population levels of wolves (Canis lupus) in the Northern Rocky Mountains (NRM) requires monitoring wolf packs that successfully recruit young. United States Fish and Wildlife Service regulations define successful breeding pairs as packs estimated to contain an adult male and female, accompanied by ???2 pups on 31 December of a given year. Monitoring successful breeding pairs will become more difficult following proposed delisting of NRM wolves; alternatives to historically intensive methods, appropriate to the different ecological and regulatory context following delisting, are required. Because pack size is easier to monitor than pack composition, we estimated probability a pack would contain a successful breeding pair based on its size for wolf populations inhabiting 6 areas in the NRM. We also evaluated the extent to which differences in demography of wolves and levels of human-caused mortality among the areas influenced the probability of packs of different sizes would contain successful breeding pairs. Probability curves differed among analysis areas, depending primarily on levels of human-caused mortality, secondarily on annual population growth rate, and little on annual population density. Probabilities that packs contained successful breeding pairs were more uniformly distributed across pack sizes in areas with low levels of human mortality and stable populations. Large packs in areas with high levels of human-caused mortality and high annual growth rates had relatively high probabilities of containing breeding pairs whereas those for small packs were relatively low. Our approach can be used by managers to estimate number of successful breeding pairs in a population where number of packs and their sizes are known. Following delisting of NRM wolves, human-caused mortality is likely to increase, resulting in more small packs with low probabilities of containing breeding pairs

  1. Why replication is important in landscape genetics: American black bear in the Rocky Mountains

    USGS Publications Warehouse

    Short, Bull R.A.; Cushman, S.A.; MacE, R.; Chilton, T.; Kendall, K.C.; Landguth, E.L.; Schwartz, M.K.; McKelvey, K.; Allendorf, F.W.; Luikart, G.

    2011-01-01

    We investigated how landscape features influence gene flow of black bears by testing the relative support for 36 alternative landscape resistance hypotheses, including isolation by distance (IBD) in each of 12 study areas in the north central U.S. Rocky Mountains. The study areas all contained the same basic elements, but differed in extent of forest fragmentation, altitude, variation in elevation and road coverage. In all but one of the study areas, isolation by landscape resistance was more supported than IBD suggesting gene flow is likely influenced by elevation, forest cover, and roads. However, the landscape features influencing gene flow varied among study areas. Using subsets of loci usually gave models with the very similar landscape features influencing gene flow as with all loci, suggesting the landscape features influencing gene flow were correctly identified. To test if the cause of the variability of supported landscape features in study areas resulted from landscape differences among study areas, we conducted a limiting factor analysis. We found that features were supported in landscape models only when the features were highly variable. This is perhaps not surprising but suggests an important cautionary note - that if landscape features are not found to influence gene flow, researchers should not automatically conclude that the features are unimportant to the species' movement and gene flow. Failure to investigate multiple study areas that have a range of variability in landscape features could cause misleading inferences about which landscape features generally limit gene flow. This could lead to potentially erroneous identification of corridors and barriers if models are transferred between areas with different landscape characteristics. ?? 2011 Blackwell Publishing Ltd.

  2. Defective eosinophil hematopoiesis ex vivo in inbred Rocky Mountain White (IRW) mice.

    PubMed

    Dyer, Kimberly D; Garcia-Crespo, Katia E; Percopo, Caroline M; Bowen, Aaron B; Ito, Tomonobu; Peterson, Karin E; Gilfillan, Alasdair M; Rosenberg, Helene F

    2011-12-01

    We examine the proliferation and differentiation of bone marrow (BM) progenitors from inbred Rocky Mountain White (IRW) mice, a strain used primarily for retrovirus infection studies. In contrast to findings with BALB/c and C57BL/6 strains, IRW BM cells cannot proliferate or generate pure eosinophil cultures ex vivo in response to a defined cytokine regimen. Analysis of IRW BM at baseline was unremarkable, including 0.08 ± 0.03% Lin(-)Sca-1(+)c-kit(+) (LSK) hematopoietic stem cells and 5.2 ± 0.3% eosinophils; the percentage of eosinophil progenitors (EoPs; Lin(-)Sca-1(-)c-kit(+)CD34(+)IL-5Rα(+)) was similar in all three mouse strains. Transcripts encoding GM-CSFRα and the IL-3/IL-5/GM-CSF common β chain were detected at equivalent levels in IRW and BALB/c BM, whereas expression of transcripts encoding IL-5Rα, IL-3Rα, and GATA-2 was diminished in IRW BM compared with BALB/c. Expression of membrane-bound IL-5Rα and intracellular STAT5 proteins was also diminished in IRW BM cells. Diminished expression of transcripts encoding IL-5Rα and GATA-2 and immunoreactive STAT5 in IRW BM persisted after 4 days in culture, along with diminished expression of GATA-1. Western blot revealed that cells from IRW BM overexpress nonsignaling soluble IL-5Rα protein. Interestingly, OVA sensitization and challenge resulted in BM and airway eosinophilia in IRW mice; however, the responses were significantly blunted. These results suggest that IRW mice have diminished capacity to generate eosinophils in culture and in vivo, likely as a result of diminished signaling via IL-5Rα.

  3. Ambient Nitrogen Deposition Gradients in the Rocky Mountains and the Effect on Alpine Moist Meadow Ecosystems

    NASA Astrophysics Data System (ADS)

    Churchill, A. C.; Bowman, W. D.

    2012-12-01

    The chronic ambient deposition of nitrogen (N) in alpine ecosystems can have cascading effects on plants, soils and hydrology in both the alpine and areas downstream through leaching and ecosystem export. Nitrogen is traditionally a nutrient limiting for plant growth in the alpine zone and the addition of anthropogenically derived nitrogen has the potential to alter nutrient composition and interactions between soil, plants and hydrology. While deposition is globally widespread its spatial impacts are associated with a proximity to agriculture (fertilizers) and industry (hydrocarbon byproducts), creating gradients of deposition with distance from point sources. Consequently, N deposition levels and potential environmental impacts on ecosystem processes increase in regions with expanding populations and changes in land use. The Rocky Mountains face both enhanced deposition associated with high levels of precipitation at high elevations and increases in anthropogenic sources of nitrogen from conversion of prairie to agricultural fields or development of new roads and housing communities. Our study focuses on linking gradients of ambient nitrogen deposition to responses within the alpine ecosystem, in particular the interactions between plants and soils within moist meadow communities. Previous studies have focused on the effects of N deposition within alpine dry meadows, as these are abundant and generally higher in elevation than other alpine meadow community types. Within these systems critical loads have been estimated to determine at what level N addition directly alters the ecosystem. Alpine moist meadows, however, also cover a substantial portion of the alpine zone, and support a very different plant community with naturally lower species richness. These areas receive heavier snowfall, and are more dependent on the snowpack for ephemeral water availability making them potentially more susceptible to nutrient loading within the snowpack. Along our ambient N

  4. Climate, Demography, and Zoogeography Predict Introgression Thresholds in Salmonid Hybrid Zones in Rocky Mountain Streams.

    PubMed

    Young, Michael K; Isaak, Daniel J; McKelvey, Kevin S; Wilcox, Taylor M; Bingham, Daniel M; Pilgrim, Kristine L; Carim, Kellie J; Campbell, Matthew R; Corsi, Matthew P; Horan, Dona L; Nagel, David E; Schwartz, Michael K

    2016-01-01

    Among the many threats posed by invasions of nonnative species is introgressive hybridization, which can lead to the genomic extinction of native taxa. This phenomenon is regarded as common and perhaps inevitable among native cutthroat trout and introduced rainbow trout in western North America, despite that these taxa naturally co-occur in some locations. We conducted a synthetic analysis of 13,315 genotyped fish from 558 sites by building logistic regression models using data from geospatial stream databases and from 12 published studies of hybridization to assess whether environmental covariates could explain levels of introgression between westslope cutthroat trout and rainbow trout in the U.S. northern Rocky Mountains. A consensus model performed well (AUC, 0.78-0.86; classification success, 72-82%; 10-fold cross validation, 70-82%) and predicted that rainbow trout introgression was significantly associated with warmer water temperatures, larger streams, proximity to warmer habitats and to recent sources of rainbow trout propagules, presence within the historical range of rainbow trout, and locations further east. Assuming that water temperatures will continue to rise in response to climate change and that levels of introgression outside the historical range of rainbow trout will equilibrate with those inside that range, we applied six scenarios across a 55,234-km stream network that forecast 9.5-74.7% declines in the amount of habitat occupied by westslope cutthroat trout populations of conservation value, but not the wholesale loss of such populations. We conclude that introgression between these taxa is predictably related to environmental conditions, many of which can be manipulated to foster largely genetically intact populations of westslope cutthroat trout and help managers prioritize conservation activities.

  5. Climate, Demography, and Zoogeography Predict Introgression Thresholds in Salmonid Hybrid Zones in Rocky Mountain Streams

    PubMed Central

    Young, Michael K.; Isaak, Daniel J.; McKelvey, Kevin S.; Wilcox, Taylor M.; Pilgrim, Kristine L.; Carim, Kellie J.; Campbell, Matthew R.; Corsi, Matthew P.; Horan, Dona L.; Nagel, David E.; Schwartz, Michael K.

    2016-01-01

    Among the many threats posed by invasions of nonnative species is introgressive hybridization, which can lead to the genomic extinction of native taxa. This phenomenon is regarded as common and perhaps inevitable among native cutthroat trout and introduced rainbow trout in western North America, despite that these taxa naturally co-occur in some locations. We conducted a synthetic analysis of 13,315 genotyped fish from 558 sites by building logistic regression models using data from geospatial stream databases and from 12 published studies of hybridization to assess whether environmental covariates could explain levels of introgression between westslope cutthroat trout and rainbow trout in the U.S. northern Rocky Mountains. A consensus model performed well (AUC, 0.78–0.86; classification success, 72–82%; 10-fold cross validation, 70–82%) and predicted that rainbow trout introgression was significantly associated with warmer water temperatures, larger streams, proximity to warmer habitats and to recent sources of rainbow trout propagules, presence within the historical range of rainbow trout, and locations further east. Assuming that water temperatures will continue to rise in response to climate change and that levels of introgression outside the historical range of rainbow trout will equilibrate with those inside that range, we applied six scenarios across a 55,234-km stream network that forecast 9.5–74.7% declines in the amount of habitat occupied by westslope cutthroat trout populations of conservation value, but not the wholesale loss of such populations. We conclude that introgression between these taxa is predictably related to environmental conditions, many of which can be manipulated to foster largely genetically intact populations of westslope cutthroat trout and help managers prioritize conservation activities. PMID:27828980

  6. Mercury transport in a high-elevation watershed in Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Mast, M.A.; Campbell, D.H.; Krabbenhoft, D.P.; Taylor, H.E.

    2005-01-01

    Mercury (Hg) was measured in stream water and precipitation in the Loch Vale watershed in Rocky Mountain National Park, Colorado, during 2001-2002 to investigate processes controlling Hg transport in high-elevation ecosystems. Total Hg concentrations in precipitation ranged from 2.6 to 36.2 ng/L and showed a strong seasonal pattern with concentrations that were 3 to 4 times higher during summer months. Annual bulk deposition of Hg was 8.3 to 12.4 ?? g/m 2 and was similar to deposition rates in the Midwestern and Northeastern U.S. Total Hg concentrations in streams ranged from 0.8 to 13.5 ng/L and were highest in mid-May on the rising limb of the snowmelt hydrograph. Stream-water Hg was positively correlated with dissolved organic carbon suggesting organically complexed Hg was flushed into streams from near-surface soil horizons during the early stages of snowmelt. Methylmercury (MeHg) in stream water peaked at 0.048 ng/L just prior to peak snowmelt but was at or below detection (< 0.040 ng/L) for the remainder of the snowmelt season. Annual export of total Hg in Loch Vale streams ranged from 1.2 to 2.3 ?? g/m2, which was less than 20% of wet deposition, indicating the terrestrial environment is a net sink of atmospheric Hg. Concentrations of MeHg in stream water and corresponding watershed fluxes were low, indicating low methylation rates or high demethylation rates or both. ?? Springer 2005.

  7. Wildfire and Salvage Logging Impacts on Stream Water Nitrogen in Southern Alberta's Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Bladon, K. D.; Silins, U.; Wagner, M. J.; Stone, M.; Emelko, M. B.; Mendoza, C. A.; Devito, K. J.; Boon, S.

    2008-12-01

    Increased size and frequency of wildfires in North America has been linked to changing climate over the past 2-3 decades, raising concerns over impacts of wildfire on downstream water quality. In 2003, the Lost Creek wildfire burned more than 21,000 ha in the highest water yielding area of the Rocky Mountain region of southwestern Alberta (Crowsnest Pass). The objective of this study was to examine initial effects of the fire and post-fire salvage logging on concentrations, yield, and total export of several nitrogen (N) species, and to explore initial recovery of these effects within the first four years after the fire. Streams draining burned and post-fire salvage logged watersheds produced much higher concentrations of total nitrogen (TN), total dissolved nitrogen (TDN), and nitrate (NO3-) compared to reference streams in the first two years following the fire (p < 0.001). This resulted in average nutrient yields that were considerably greater for TN (6-fold), TDN (6-fold), and NO3- (9-fold) in burned streams than in reference streams. Salvage logging produced generally similar effects on the concentrations and yields for most N species. The temporal trend for TN, TDN, and NO3- in stream water from burned watersheds was a rapid decline in mean watershed exports over the four seasons after the fire to levels similar to those of the reference watersheds. However, exports of TN were still elevated in the fourth post-fire year in watersheds impacted by the additional disturbance of salvage logging. The effects of the burn were most noticeable (i.e., produced the greatest N concentrations, yields, and exports) during or following higher discharge periods (snowmelt freshet and storm flows) (p < 0.001). Small differences were still evident during base-flow periods, emphasizing the importance of groundwater and subsurface contributions to the headwater streams in this study.

  8. Increased flight altitudes among migrating golden eagles suggest turbine avoidance at a Rocky Mountain wind installation.

    PubMed

    Johnston, Naira N; Bradley, James E; Otter, Ken A

    2014-01-01

    Potential wind-energy development in the eastern Rocky Mountain foothills of British Columbia, Canada, raises concerns due to its overlap with a golden eagle (Aquila chrysaetos) migration corridor. The Dokie 1 Wind Energy Project is the first development in this area and stands as a model for other projects in the area because of regional consistency in topographic orientation and weather patterns. We visually tracked golden eagles over three fall migration seasons (2009-2011), one pre- and two post-construction, to document eagle flight behaviour in relation to a ridge-top wind energy development. We estimated three-dimensional positions of eagles in space as they migrated through our study site. Flight tracks were then incorporated into GIS to ascertain flight altitudes for eagles that flew over the ridge-top area (or turbine string). Individual flight paths were designated to a category of collision-risk based on flight altitude (e.g. flights within rotor-swept height; ≤150 m above ground) and wind speed (winds sufficient for the spinning of turbines; >6.8 km/h at ground level). Eagles were less likely to fly over the ridge-top area within rotor-swept height (risk zone) as wind speed increased, but were more likely to make such crosses under headwinds and tailwinds compared to western crosswinds. Most importantly, we observed a smaller proportion of flights within the risk zone at wind speeds sufficient for the spinning of turbines (higher-risk flights) during post-construction compared to pre-construction, suggesting that eagles showed detection and avoidance of turbines during migration.

  9. Evaluation of SNODAS snow depth and snow water equivalent estimates for the Colorado Rocky Mountains, USA

    USGS Publications Warehouse

    Clow, David W.; Nanus, Leora; Verdin, Kristine L.; Schmidt, Jeffrey

    2012-01-01

    The National Weather Service's Snow Data Assimilation (SNODAS) program provides daily, gridded estimates of snow depth, snow water equivalent (SWE), and related snow parameters at a 1-km2 resolution for the conterminous USA. In this study, SNODAS snow depth and SWE estimates were compared with independent, ground-based snow survey data in the Colorado Rocky Mountains to assess SNODAS accuracy at the 1-km2 scale. Accuracy also was evaluated at the basin scale by comparing SNODAS model output to snowmelt runoff in 31 headwater basins with US Geological Survey stream gauges. Results from the snow surveys indicated that SNODAS performed well in forested areas, explaining 72% of the variance in snow depths and 77% of the variance in SWE. However, SNODAS showed poor agreement with measurements in alpine areas, explaining 16% of the variance in snow depth and 30% of the variance in SWE. At the basin scale, snowmelt runoff was moderately correlated (R2 = 0.52) with SNODAS model estimates. A simple method for adjusting SNODAS SWE estimates in alpine areas was developed that uses relations between prevailing wind direction, terrain, and vegetation to account for wind redistribution of snow in alpine terrain. The adjustments substantially improved agreement between measurements and SNODAS estimates, with the R2 of measured SWE values against SNODAS SWE estimates increasing from 0.42 to 0.63 and the root mean square error decreasing from 12 to 6 cm. Results from this study indicate that SNODAS can provide reliable data for input to moderate-scale to large-scale hydrologic models, which are essential for creating accurate runoff forecasts. Refinement of SNODAS SWE estimates for alpine areas to account for wind redistribution of snow could further improve model performance. Published 2011. This article is a US Government work and is in the public domain in the USA.

  10. Water quality changes as a result of coalbed methane development in a Rocky mountain watershed

    SciTech Connect

    Wang, X.; Melesse, A.M.; McClain, M.E.; Yang, W.

    2007-12-15

    Coalbed methane (CBM) development raises serious environmental concerns. In response, concerted efforts have been made to collect chemistry, salinity, and sodicity data on CBM produced water. However, little information on changes of stream water quality resulting from directly and/or indirectly received CBM produced water is available in the literature. The objective of this study was to examine changes in stream water quality, particularly sodicity and salinity, due to CBM development in the Powder River watershed, which is located in the Rocky Mountain Region and traverses the states of Wyoming and Montana. To this end, a retrospective analysis of water quality trends and patterns was conducted using data collected from as early as 1946 up to and including 2002 at four U.S. Geological Survey gauging stations along the Powder River. Trend analysis was conducted using linear regression and Seasonal Kendall tests, whereas, Tukey's test for multiple comparisons was used to detect changes in the spatial pattern. The results indicated that the CBM development adversely affected the water quality in the Powder River. First, the development elevated the stream sodicity, as indicated by a significant increase trend of the sodium adsorption ratio. Second, the development tended to shrink the water quality differences among the three downstream stations but to widen the differences between these stations and the farthest upstream station. In contrast, the development had only a minor influence on stream salinity. Hence, the CBM development is likely an important factor that can be managed to lower the stream sodicity. The management may need to take into account that the effects of the CBMdevelopment were different from one location to another along the Powder River.

  11. Rates and environmental controls of aeolian dust accumulation, Athabasca River Valley, Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Hugenholtz, Chris H.; Wolfe, Stephen A.

    2010-09-01

    Despite an abundance of sedimentary archives of mineral dust (i.e. loess) accumulations from cold, humid environments, the absence of contemporary process investigations limits paleoenvironmental interpretations in these settings. Dust accumulations measured at Jasper Lake, a seasonally-filled reach of the glacially-fed Athabasca River in the Canadian Rocky Mountains, are some of the highest contemporary rates recorded to date. High deposition rates, including a maximum of 27,632 kg ha -1 month -1, occur during river low-flow periods, but even the lowest deposition rates, occurring during bankfull periods, exceed other contemporary rates of deposition. High rates of dust deposition may be attributed to geomorphic and climatic controls affecting sediment supply, availability and transport, and biologic factors affecting accumulation. Localized confinement of the Jasper River by tributary river alluvial fans has caused channel expansion upstream, and formation of the shallow depositional basin known as Jasper Lake. This localized sedimentary basin, coupled with large seasonal water level fluctuations and suitably high wind speeds, favors seasonal dust production. In addition, a dense source-proximal coniferous forest stand encourages high dust accumulation, via increased aerodynamic roughness and airflow deceleration. The forest stand also appears to act as an efficient dust filter, with the interception and storage of dust by the forest canopy playing a significant role with regards to secondary fallout and sediment accumulation. Overall, these results provide new insights on the environmental controls of dust entrainment and accumulation in cold, humid settings, and help clarify controls on the formation of Holocene river-sourced loess deposits.

  12. Simulating long-term landcover change and forest hydrology dynamics in a Rocky Mountain watershed

    NASA Astrophysics Data System (ADS)

    Ahl, R. S.; Zuuring, H. R.

    2008-05-01

    Snow is the dominant source of water in the Rocky Mountains. In forested watersheds, patterns of snow accumulation, melt and evapotranspiration are strongly influenced by canopy and other vegetation characteristics. Changes in the extent, composition, and configuration of the forest canopy over time due to succession or disturbance processes can lead to measurable changes in streamflow and water yield. Removal of forest cover generally increases streamflow due to reduced canopy interception and evapotranspiration. Water, yield increases and advanced peak discharge are attributed to increased snow accumulation, and enhanced melt rates in forest openings. Because knowledge of long-term watershed-level streamflow responses to landcover dynamics is limited by relatively short-term gauge data, a modeling approach that takes advantage of existing data and combines vegetation and hydrologic simulation systems to evaluate these interactions is presented. Time-series vegetation changes were simulated with the SIMPPLLE (Simulating Patterns and Processes at Landscape ScaLEs), and integrated into hydrologic simulations performed with SWAT (Soil and Water Assessment Tool). Results suggest that both vegetation and hydrologic characteristics of the research watershed are at the limits of their estimated natural ranges. Although simulated species composition remained fairly stable over time, the size and connectivity of current landcover patches are at the upper end of their estimated temporal distribution. The large proportion and continuous extent of forest cover associated with current conditions coincide with water yield, peak discharge rates, and flow variability that are at the low end of their modeled distributions. The integrated modeling approach described herein should be applicable in other ecosystems given knowledge of biophysical interactions and availability of appropriate data. By gaining an understanding of the possible range of variability due to natural

  13. Health evaluation of amphibians in and near Rocky Mountain National Park (Colorado, USA)

    USGS Publications Warehouse

    Green, D.E.; Muths, E.

    2005-01-01

    We conducted a health survey of amphibians in and adjacent to Rocky Mountain National Park (RMNP) to document current disease presence inside RMNP and identify disease outside RMNP with the potential to spread to the Park's amphibians. Amphibians from five sites within RMNP and seven sites within 60 km of Park boundaries were collected and examined. Necropsies (n - 238), virus isolation, bacterial and fungal cultures, and histological examinations were carried out on amphibian egg masses (outside RMNP/within RMNP: 26/22), larvae (30/42), imagos (recently metamorphosed individuals) (0/3) and adults (61/67) of five species. Marked infections by a pathogenic chytrid fungus (chyridiomycosis), Batrachochytrium dendrobatidis, were detected in three species (Bufo boreas, Pseudacris maculata and Rana sylvatica) from three of five sites within RMNP and in one of three species (P. maculata) from three sites outside RMNP. Of the fully metamorphosed individuals tested (B. boreas, P. maculata and R. sylvatica), chytridiomycosis was found in 60 % (n = 3), 46 % (n = 37) and 54 % (n = 7), respectively. Chytridiomycosis was the principal lethal pathogenic infectious disease detected in three amphibian species within or adjacent to RMNP. Higher fungi were isolated from the cloaca and skin of all five amphibian species. Watermolds (Oomycetes) were isolated from amphibian eggs or skin of all five species. No evidence of Ranavirus was found in cultures and histological examinations of 176 and 142 amphibians, respectively. Fifteen genera of bacteria were identified in larval and just metamorphosed amphibians, and a potentially pathogenic lungworm, Rhabdias sp, was identified in 61.1 % (n = 11) of B. woodhousii outside RMNP, but in only 2 (15.4 %) R. sylvatica within the Park.

  14. Biotic drivers of anastomosing channel pattern in headwater streams of the Colorado Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Wohl, E. E.

    2010-12-01

    Most of the headwater rivers in the Colorado Rocky Mountains, USA occur as single channels in steep, narrow valleys. Where variations in bedrock erodibility create segments of wider, lower gradient valleys, however, anastomosing channels can occur if one of two biotic drivers is present. Where a disturbance such as a forest fire or windstorm allows pioneer woody species to colonize valley bottoms, beavers can establish colonies. Beavers build dams that enhance overbank flooding and raise the local water table, limiting the return of conifers and promoting aspen-willow (Populus-Salix) forests that provide food for the beavers. Beavers facilitate the formation of multiple channels by digging small canal-like features across the floodplain and by damming the main channel and promoting channel avulsion. In old-growth conifer forests, channel-spanning logjams can enhance overbank flows that facilitate the development of multiple (sub)parallel channels that extend for 50-300 m downstream. Enhanced overbank flows and multiple channels increase the retention of instream wood, creating a self-enhancing feedback of more jams. At least two thresholds must be crossed for anastomosing driven by logjams to develop; a valley morphology threshold and a wood load threshold. Anastomosing channels are present where stream gradient < 4% and the ratio of (channel width/valley-bottom width) < 0.2; only single channels flow through old-growth forests in valley segments that are steeper and narrower. The average wood piece diameter in old-growth anastomosing channel segments > 20 cm, whereas average piece diameter in forests that have not been disturbed in a century is 10-20 cm; channels in these younger forests do not exhibit anastomosing planforms. Wood load in old-growth anastomosing channels averages 200 m3/ha; old-growth and younger forest single channels average < 100 m3/ha.

  15. Flood moderation: Declining peak flows along some Rocky Mountain rivers and the underlying mechanism

    NASA Astrophysics Data System (ADS)

    Rood, Stewart B.; Foster, Stephen G.; Hillman, Evan J.; Luek, Andreas; Zanewich, Karen P.

    2016-05-01

    It has been proposed that global warming will amplify the water cycle and intensify river floods. We tested this hypothesis by investigating historic trends in magnitudes, durations and timing of the annual peak flows of rivers that drain the Rocky Mountains around the North American hydrographic apex, the source for rivers flowing to the Pacific, Arctic (including Hudson Bay) and Atlantic Oceans. We sought century-long records and to reduce influences from land-use we assessed drainages from parks and protected areas. Of 30 rivers and reaches that were free-flowing or slightly regulated, seven displayed declining peak flows (7 p < 0.1, 4 p < 0.05), and one showed increase (p < 0.05); three of five moderately regulated rivers displayed decline (p < 0.05). Substantial floods, exceeding the 1-in-5 year recurrence (Q5), were more common in the early versus latter halves of the records for some Arctic drainages and were more common during the Pacific Decadal Oscillation negative phase for all regions. The timing of peak flows was relatively unchanged and Q5 flood durations declined for a few rivers. These results indicate flood moderation rather than flood intensification, particularly for Arctic Ocean drainages. This could reflect regional hydrological consequences from climate change including: (1) declining overall annual river flows; (2) winter warming that would increase the rain versus snow proportion, thus reducing snow accumulation and melt; and (3) spring warming that advances snow melt, lengthening the melt interval before peak flows. These changes would shift the seasonality of river flows and reduce annual peaks. We might expect continuing moderation of peak flows but there will probably still be occasional major floods from exceptional rain events such as occurred in northern Montana in 1964 and in southern Alberta in 2013.

  16. Background atmospheric sulfate deposition at a remote alpine site in the Southern Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Wasiuta, Vivian; Norman, Ann-Lise; Lafrenière, Melissa J.; Hastings, Meredith G.

    2015-11-01

    We report observations of stable isotope ratios and ion concentrations from seasonal snowpack and summer bulk precipitation from remote alpine sites in the Southern Canadian Rocky Mountains. Spatial deposition patterns for sulfur (S) and δ34S-SO42- values indicate dominantly distant sources with little impact from local to regional pollution. Comparable S loads and total snowpack δ34S-SO42- values for glacier snowpack indicates S emissions were well mixed prior to dry deposition or incorporation into snowfall. A uniform S load and similar δ34S-SO42- values in a detailed study of summer bulk precipitation implies well-mixed distant emissions. We interpret the deposited 0.9 kg S ha-1yr-1 as atmospheric background deposition in midlatitude Western Canada. This study will improve calculations for sites impacted by point source emissions and provide a baseline for attributing changes associated with climate change, industrialization, and urban growth. Field evidence from this study supports theoretical and laboratory research on the relative importance of oxidation pathways on atmospheric δ34S-SO42- values for long-range transported sulfate. δ34S-SO42- of the dominant S source in summer bulk precipitation (~ +2‰) versus snowpack (≥ +9‰) cannot be explained by seasonal emission sources, temperature effects on fractionation, or Rayleigh distillation. The study supports a seasonal difference in the relative importance of the different SO2 to SO42- oxidation pathways with homogeneous oxidation by OH and heterogeneous oxidation by H2O2 most important in summer, and O2 catalyzed by transition metal ions in a radical chain reaction pathway more significant in winter.

  17. Nitrate and Anion Behavior in Alpine Tundra Soil in the Colorado Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Evans, A.; Janke, J. R.

    2014-12-01

    Anthropogenic nitrogen deposition can potentially alter soil biogeochemistry in alpine tundra ecosystems by soil acidification, resulting in accelerated nutrient leaching as well as reduced microbial and plant diversity. Several field studies have simulated various atmospheric nitrogen loading rates and observed changes in above ground biomass, species diversity, and soil buffering capacity. Few studies to date have examined the biogeochemical behavior and transport of nitrogen in alpine tundra soil. The objective of this study is to evaluate nitrate transport in soil and the chemical behavior of associated leached ionic species. To accomplish this, a soil leaching study was conducted using both composite soil columns and intact soil cores collected in Rocky Mountain National Park, CO, USA (3,658 m). Soil columns were leached in a temperature controlled environmental chamber with DI water adjusted for pH and ionic strength. Leachates were collected using a fraction collector and analyzed using IC and ICP-MS. Analysis of collected leachates for intact soil cores indicated a complex mixture of inorganic and organic anions moving in the soil wetting front, with elevated NO3- concentration > 15 mg/L. Nitrate concentration decreased rapidly after initial column breakthrough. Leaching of individual soil horizons indicated high NO3- concentrations > 15 mg/L in collected pore volumes for both the organic and subsurface horizons. Elevated concentrations of both inorganic (SO42-, F-) and organic anions (acetate, oxalate) were found in these horizons. Fluctuation of approximately 1-1.5 pH units for the intact soil column leachates and the anion elution order suggests possible complex anion exchange processes in the soil wetting front between various soil solid phases.

  18. Landscape-Scale Factors Affecting Feral Horse Habitat Use During Summer Within The Rocky Mountain Foothills

    NASA Astrophysics Data System (ADS)

    Girard, Tisa L.; Bork, Edward W.; Neilsen, Scott E.; Alexander, Mike J.

    2013-02-01

    Public lands occupied by feral horses in North America are frequently managed for multiple uses with land use conflict occurring among feral horses, livestock, wildlife, and native grassland conservation. The factors affecting habitat use by horses is critical to understand where conflict may be greatest. We related horse presence and abundance to landscape attributes in a GIS to examine habitat preferences using 98 field plots sampled within a portion of the Rocky Mountain Forest Reserve of SW Alberta, Canada. Horse abundance was greatest in grassland and cut block habitats, and lowest in conifer and mixedwood forest. Resource selection probability functions and count models of faecal abundance indicated that horses preferred areas closer to water, with reduced topographic ruggedness, situated farther from forests, and located farther away from primary roads and trails frequented by recreationalists, but closer to small linear features (i.e. cut lines) that may be used as beneficial travel corridors. Horse presence and abundance were closely related to cattle presence during summer, suggesting that both herbivores utilise the same habitats. Estimates of forage biomass removal (44 %) by mid-July were near maximum acceptable levels. In contrast to horse-cattle associations, horses were negatively associated with wild ungulate abundance, although the mechanism behind this remains unclear and warrants further investigation. Our results indicate that feral horses in SW Alberta exhibit complex habitat selection patterns during spring and summer, including overlap in use with livestock. This finding highlights the need to assess and manage herbivore populations consistent with rangeland carrying capacity and the maintenance of range health.

  19. Concentrations of mineral aerosol from desert to plains across the central Rocky Mountains, western United States

    NASA Astrophysics Data System (ADS)

    Reynolds, Richard L.; Munson, Seth M.; Fernandez, Daniel; Goldstein, Harland L.; Neff, Jason C.

    2016-12-01

    Mineral dusts can have profound effects on climate, clouds, ecosystem processes, and human health. Because regional dust emission and deposition in western North America are not well understood, measurements of total suspended particulate (TSP) from 2011 to 2013 were made along a 500-km transect of five remote sites in Utah and Colorado, USA. The TSP concentrations in μg m-3 adjusted to a 24-h period were relatively high at the two westernmost, dryland sites at Canyonlands National Park (mean = 135) and at Mesa Verde National Park (mean = 99), as well as at the easternmost site on the Great Plains (mean = 143). The TSP concentrations at the two intervening montane sites were less, with more loading on the western slope of the Rocky Mountains (Telluride, mean = 68) closest to the desert sites compared with the site on the eastern slope (Niwot Ridge, mean = 58). Dust concentrations were commonly highest during late winter-late spring, when Pacific frontal storms are the dominant causes of regional wind. Low concentrations (<7 wt%) of organic matter indicated that rock-derived mineral particles composed most TSP. Most TSP mass was carried by particle sizes larger than 10 μm (PM>10), as revealed by relatively low average daily concentrations of fine (<5 μg m-3; PM2.5) and coarse (<10 μg m-3; PM2.5-10) fractions monitored at or near four sites. Standard air-quality measurements for PM2.5 and PM10 apparently do not capture the large majority of mineral-particulate pollution in the remote western interior U.S.

  20. Dispersion by chemical reaction of Rocky Mountain Arsenal Basin F waste soils

    SciTech Connect

    Payne, J.R.; Marion, G.M.

    1997-02-01

    Many military installations have soil contamination problems that range from heavy metals to petroleum products. Rocky Mountain Arsenal (RMA) Basin F contains high concentrations of salts, heavy metals, ammonia, urea, and organics. The Dispersion by Chemical Reaction (DCR) process leads to a reduction in the mobility of the organic and inorganic constituents by first removing volatile constituents via steam stripping and volatilization, then trapping the nonvolatile contaminants in a nonmobile phase (microencapsulation), and finally compacting the treated material into large soil bodies (macroencapsulation). This report summarizes the results of the DCR testing of soil-amended Basin F sludge from RMA. The primary focus of this study is on pesticide leachability. The DCR process used to treat the Basin F waste soil produced a dry, homogeneous, soil-like material with desirable physical properties that on compaction achieved the following remediation goals: reduction of all leachable volatiles to nondetectable levels, confinement of all metals to below RCRA TCLP levels, and a decrease in pesticide leachability to levels approaching RCRA standards. For example, endrin TCLP concentration was reduced from 74 microgram/L to 20-28 microgram/L (regulatory limit = 20 ug/L). In several cases, reductions in pesticide leachability could be attributed to simple dilution with the calcium oxide (CaO) reagent. However in other cases, microencapsulation and/or macroencapsulation also played a role in reducing pesticide leachability. Additional work is necessary to optimize the amounts of lime-milk, hydrophobic CaO, and benign oil used in the processing of RMA Basin F waste soils. Ideally, the optimum design should achieve the regulatory and client goals, while minimizing materials handling, energy, and reagent inputs.

  1. Concentrations of mineral aerosol from desert to plains across the central Rocky Mountains, western United States

    USGS Publications Warehouse

    Reynolds, Richard L.; Munson, Seth M.; Fernandez, Daniel; Goldstein, Harland L.; Neff, Jason C.

    2016-01-01

    Mineral dusts can have profound effects on climate, clouds, ecosystem processes, and human health. Because regional dust emission and deposition in western North America are not well understood, measurements of total suspended particulate (TSP) from 2011 to 2013 were made along a 500-km transect of five remote sites in Utah and Colorado, USA. The TSP concentrations in μg m−3 adjusted to a 24-h period were relatively high at the two westernmost, dryland sites at Canyonlands National Park (mean = 135) and at Mesa Verde National Park (mean = 99), as well as at the easternmost site on the Great Plains (mean = 143). The TSP concentrations at the two intervening montane sites were less, with more loading on the western slope of the Rocky Mountains (Telluride, mean = 68) closest to the desert sites compared with the site on the eastern slope (Niwot Ridge, mean = 58). Dust concentrations were commonly highest during late winter-late spring, when Pacific frontal storms are the dominant causes of regional wind. Low concentrations (<7 wt%) of organic matter indicated that rock-derived mineral particles composed most TSP. Most TSP mass was carried by particle sizes larger than 10 μm (PM>10), as revealed by relatively low average daily concentrations of fine (<5 μg m−3; PM2.5) and coarse (<10 μg m−3; PM2.5–10) fractions monitored at or near four sites. Standard air-quality measurements for PM2.5 and PM10 apparently do not capture the large majority of mineral-particulate pollution in the remote western interior U.S.

  2. Predictive Modeling and Mapping of Fish Distributions in Small Streams of the Canadian Rocky Mountain Foothills

    NASA Astrophysics Data System (ADS)

    McCleary, R. J.; Hassan, M. A.

    2006-12-01

    reach-scale maps indicate specific reaches where interactions between these two species are likely to occur. With regional calibration, this automated modeling and mapping procedure could apply in headwater catchments throughout the Rocky Mountain Foothills and other areas where sporadic waterfalls or other natural migration barriers are not an important feature limiting fish distribution.

  3. Land-Cover Change Within the Peatlands Along the Rocky Mountain Front, Montana: 1937-2009

    NASA Astrophysics Data System (ADS)

    Klene, A. E.; Milbrath, J. T.; Shelly, J. S.

    2013-12-01

    While peatlands are globally abundant, the fens of the Rocky Mountain Front (RMF), are the eastern-most, rich, peatlands in Montana, and are unique wetland habitats in this region of semi-arid continental climate. The peatlands provide critical riparian connectivity between the mountains and the plains and are habitat for grizzly bears, wolves, and within just the 450 ha Pine Butte Fen at least 93 species of vascular plants, including seven of Montana's Plant Species of Concern. Aerial photographs of the nine peatlands along the RMF in Montana were analyzed in a GIS. The boundary of each wetland was hand-digitized and the area within was classified into land-cover types: total area, open fen, open water, woody vegetation, and non-wetland/agriculture. Changes in wetland extent and land-cover categories were evaluated from the earliest available imagery in 1937 to the last available imagery in 2009. Images prior to 1995 were orthorectified, and all georectified. Climate change, wildlife, and agriculture were examined as potential drivers of land-cover change at these sites. Results indicate little change in overall peatland area between 1937 and 2009 despite increasing air temperatures in the region. Approximately 16% of these peatlands is 'open fen' and that proportion remained stable over the last seventy years. Area of open water quadrupled and the number of ponds which could be delineated tripled over the study period, reflecting a recovering beaver population. The non-wetland/agricultural area halved over the course of the study, primarily due to declines in agriculture within the three largest remaining peatlands: Pine Butte Fen, McDonald Swamp, and the Blackleaf Creek wetland complex. Most of the first two fens were purchased outright by the Nature Conservancy (TNC) and they hold a conservation easement on the third (as well as two other fens), all of which have been been put in place since the late 1970s. One fen is owned by the State of Montana and another

  4. Hydrology of Area 62, Northern Great Plains and Rocky Mountain Coal Provinces, New Mexico and Arizona

    USGS Publications Warehouse

    Roybal, F.E.; Wells, J.G.; Gold, R.L.; Flager, J.V.

    1984-01-01

    This report summarizes available hydrologic data for Area 62 and will aid leasing decisions, and the preparation and appraisal of environmental impact studies and mine-permit applications. Area 62 is located at the southern end of the Rocky Mountain Coal Province in parts of New Mexico and Arizona and includes approximately 9,500 square miles. Surface mining alters, at least temporarily, the environment; if the areas are unreclaimed, there can be long-term environmental consequences. The land-ownership pattern in Area 62 is complicated. The checkerboard pattern created by several types of ownership makes effective management of these lands difficult. The climate generally is semiarid with average annual precipitation ranging from 10 to 20 inches. Pinons, junipers, and grasslands cover most of the area, and much of it is used for grazing by livestock. Soils vary with landscape, differing from flood plains and hillslopes to mountain slopes. The major structural features of this area were largely developed during middle Tertiary time. The main structural features are the southern San Juan Basin and the Mogollon slope. Coal-bearing rocks are present in four Cretaceous rock units of the Mesaverde Group: the Gallup Sandstone, the Dileo Coal Member, and the Gibson Coal Member of the Crevasse Canyon Formation, and the Cleary Coal Member of the Menefee Formation. Area 62 is drained by Black Creek, the Puerco River, the Zuni River, Carrizo Wash-Largo Creek, and the Rio San Jose. Only at the headwaters of the Zuni River is the flow perennial. The streamflow-gaging station network consists of 25 stations operated for a variety of needs. Streamflow changes throughout the year with variation related directly to rainfall and snowmelt. Base flow in Area 62 is zero indicating no significant ground-water discharge. Mountainous areas contribute the highest mean annual runoff of 1.0 inch. Very few water-quality data are available for the surface-water stations. Of the nine surface

  5. Evaluating regional patterns in nitrate sources to watersheds in National Parks of the Rocky Mountains using nitrate isotopes.

    PubMed

    Nanus, Leora; Williams, Mark W; Campbell, Donald H; Elliott, Emily M; Kendall, Carol

    2008-09-01

    In the Rocky Mountains, there is uncertainty about the source areas and emission types that contribute to nitrate (NO3) deposition, which can adversely affect sensitive aquatic habitats of high-elevation watersheds. Regional patterns in NO3 deposition sources were evaluated using NO3 isotopes in five National Parks, including 37 lakes and 7 precipitation sites. Results indicate that lake NO3 ranged from detection limit to 38 microeq/L, delta18O (NO3) ranged from -5.7 to +21.3% per thousand, and delta15N (NO3) ranged from -6.6 to +4.6 per thousand. delta18O (NO3) in precipitation ranged from +71 to +78% per thousand. delta15N (NO3) in precipitation and lakes overlap; however, delta15N (NO3) in precipitation is more depleted than delta15N (NO3) in lakes, ranging from -5.5 to -2.0 per thousand. delta15N (NO3) values are significantly related (p < 0.05) to wet deposition of inorganic N, sulfate, and acidity, suggesting that spatial variability of delta15N (NO3) over the Rocky Mountains may be related to source areas of these solutes. Regional patterns show that NO3 and delta15N (NO3) are more enriched in lakes and precipitation from the southern Rockies and at higher elevations compared to the northern Rockies. The correspondence of high NO3 and enriched delta15N (NO3) in precipitation with high NO3 and enriched delta15N (NO3) in lakes, suggests that deposition of inorganic N in wetfall may affect the amount of NO3 in lakes through a combination of direct and indirect processes such as enhanced nitrification.

  6. Evaluating regional patterns in nitrate sources to watersheds in national parks of the Rocky Mountains using nitrate isotopes

    USGS Publications Warehouse

    Nanus, L.; Williams, M.W.; Campbell, D.H.; Elliott, E.M.; Kendall, C.

    2008-01-01

    In the Rocky Mountains, there is uncertainty about the source areas and emission types that contribute to nitrate (NO3) deposition, which can adversely affect sensitive aquatic habitats of high-elevation watersheds. Regional patterns in NO3 deposition sources were evaluated using NO3 isotopes in five National Parks, including 37 lakes and 7 precipitation sites. Results indicate that lake NO3 ranged from detection limit to 38 μeq/L, δ18O (NO3) ranged from −5.7 to +21.3‰, and δ15N (NO3) ranged from −6.6 to +4.6‰. δ18O (NO3) in precipitation ranged from +71 to +78‰. δ15N (NO3) in precipitation and lakes overlap; however, δ15N (NO3) in precipitation is more depleted than δ15N (NO3) in lakes, ranging from −5.5 to −2.0‰. δ15N (NO3) values are significantly related (p < 0.05) to wet deposition of inorganic N, sulfate, and acidity, suggesting that spatial variability of δ15N (NO3) over the Rocky Mountains may be related to source areas of these solutes. Regional patterns show that NO3 and δ15N (NO3) are more enriched in lakes and precipitation from the southern Rockies and at higher elevations compared to the northern Rockies. The correspondence of high NO3 and enriched δ15N (NO3) in precipitation with high NO3and enriched δ15N (NO3) in lakes, suggests that deposition of inorganic N in wetfall may affect the amount of NO3 in lakes through a combination of direct and indirect processes such as enhanced nitrification.

  7. Survey of glaciers in the northern Rocky Mountains of Montana and Wyoming; Size response to climatic fluctuations 1950-1996

    SciTech Connect

    Chatelain, E.E.

    1997-09-01

    An aerial survey of Northern Rocky Mountain glaciers in Montana and Wyoming was conducted in late summer of 1996. The Flathead, Swan, Mission, and Beartooth Mountains of Montana were covered, as well as the Teton and Wind River Ranges of Wyoming. Present extent of glaciers in this study were compared to limits on recent USGS 15 and 7.5 topographic maps, and also from selected personal photos. Large cirque and hanging glaciers of the Flathead and Wind River Ranges did not display significant decrease in size or change in terminus position. Cirque glaciers in the Swan, Mission, Beartooth and Teton Ranges were markedly smaller in size; with separation of the ice body, growth of the terminus lake, or cover of the ice terminus with rockfalls. A study of annual snowfall, snowdepths, precipitation, and mean temperatures for selected stations in the Northern Rocky Mountains indicates no extreme variations in temperature or precipitation between 1950-1996, but several years of low snowfall and warmer temperatures in the 1980`s appear to have been sufficient to diminish many of the smaller cirque glaciers, many to the point of extinction. The disappearance of small cirque glaciers may indicate a greater sensitivity to overall climatic warming than the more dramatic fluctuations of larger glaciers in the same region.

  8. Effects of urban development on stream ecosystems alongthe Front Range of the Rocky Mountains, Colorado and Wyoming

    USGS Publications Warehouse

    Sprague, Lori A.; Zuellig, Robert E.; Dupree, Jean A.

    2006-01-01

    The U.S. Geological Survey (USGS) conducted a study from 2002 through 2003 through its National Water-Quality Assessment (NAWQA) Program to determine the effects of urbanization on the physical, chemical, and biological characteristics of stream ecosystems along the Front Range of the Rocky Mountains. The objectives of the study were to (1) examine physical, chemical, and biological responses at sites ranging from minimally to highly developed; (2) determine the major physical, chemical, and landscape variables affecting aquatic communities at these sites; and (3) evaluate the relevance of the results to the management of water resources in the South Platte River Basin.

  9. Developmental geology of coalbed methane from shallow to deep in Rocky Mountain basins and in Cook Inlet-Matanuska Basin, Alaska, USA and Canada

    USGS Publications Warehouse

    Johnson, R.C.; Flores, R.M.

    1998-01-01

    The Rocky Mountain basins of western North America contain vast deposits of coal of Cretaceous through early Tertiary age. Coalbed methane is produced in Rocky Mountain basins at depths ranging from 45 m (150 ft) to 1981 m (6500 ft) from coal of lignite to low-volatile bituminous rank. Although some production has been established in almost all Rocky Mountain basins, commercial production occurs in only a few. despite more than two decades of exploration for coalbed methane in the Rocky Mountain region, it is still difficult to predict production characteristics of coalbed methane wells prior to drilling. Commonly cited problems include low permeabilities, high water production, and coals that are significantly undersaturated with respect to methane. Sources of coalbed gases can be early biogenic, formed during the early stages of coalification, thermogenic, formed during the main stages of coalification, or late stage biogenic, formed as a result of the reintroduction of methane-gnerating bacteria by groundwater after uplift and erosion. Examples of all three types of coalbed gases, and combinations of more than one type, can be found in the Rocky Mountain region. Coals in the Rocky Mountain region achieved their present ranks largely as a result of burial beneath sediments that accumulated during the Laramide orogeny (Late Cretaceous through the end of the eocene) or shortly after. Thermal events since the end of the orogeny have also locally elevated coal ranks. Coal beds in the upper part of high-volatile A bituminous rank or greater commonly occur within much more extensive basin-centered gas deposits which cover large areas of the deeper parts of most Rocky Mountain basins. Within these basin-centered deposits all lithologies, including coals, sandstones, and shales, are gas saturated, and very little water is produced. The interbedded coals and carbonaceous shales are probably the source of much of this gas. Basin-centered gas deposits become overpressured

  10. MULTIVARIATE ANALYSIS OF MACROINVERTEBRATE ASSEMBLAGES TO DETERMINE IMPACTS ON ROCKY MOUNTAIN STREAM ECOSYSTEMS

    EPA Science Inventory

    Using reduncancy (RDA) and canonical correlation analysis (CCA) we assessed relationships between chemical and physical characteristics and periphyton at 105 stream sites sampled by REMAP in the mineral belt of the southern Rockies ecoregion in Colorado. We contrasted results ob...

  11. Aspen Ecology in Rocky Mountain National Park: Age Distribution, Genetics, and the Effects of Elk Herbivory

    USGS Publications Warehouse

    Zeigenfuss, Linda C.; Binkley, Dan; Tuskan, Gerald A.; Romme, William H.; Yin, Tongming; DiFazio, Stephen; Singer, Francis J.

    2008-01-01

    Lack of recruitment and canopy replacement of aspen (Populus tremuloides) stands that grow on the edges of grasslands on the low-elevation elk (Cervus elaphus) winter range of Rocky Mountain National Park (RMNP) in Colorado have been a cause of concern for more than 70 years. We used a combination of traditional dendrochronology and genetic techniques as well as measuring the characteristics of regenerating and nonregenerating stands on the elk winter range to determine when and under what conditions and estimated elk densities these stands established and through what mechanisms they may regenerate. The period from 1975 to 1995 at low elevation on the east side had 80-95 percent fewer aspen stems than would be expected based on the trend from 1855 through 1965. The age structure of aspen in the park indicates that the interacting effects of fires, elk population changes, and livestock grazing had more-or-less consistent effects on aspen from 1855 to 1965. The lack of a significant change in aspen numbers in recent decades in the higher elevation and west side parts of the park supports the idea that the extensive effects of elk browsing have been more important in reducing aspen numbers than other factors. The genetic variation of aspen populations in RMNP is high at the molecular level. We expected to find that most patches of aspen in the park were composed of a single clone of genetically identical trees, but in fact just 7 percent of measured aspen patches consisted of a single clone. A large frequency of polyploid (triploid and tetraploid) genotypes were found on the low elevation, east-side elk winter range. Nonregenerating aspen stands on the winter range had greater annual offtake, shorter saplings, and lower density of mid-height (1.5-2.5 m) saplings than regenerating stands. Overwinter elk browsing, however, did not appear to inhibit the leader length of aspen saplings. The winter range aspen stands of RMNP appear to be highly resilient in the face of

  12. Forest Fire Effects on Mercury and Other Trace Metal Concentrations in a Rocky Mountain Forest Ecosystem

    NASA Astrophysics Data System (ADS)

    Biswas, A.; Blum, J. D.; Keeler, G. J.

    2003-12-01

    US anthropogenic flux of 144 Mg. Past fire suppression practices in the US have caused a buildup of flammable materials, which combined with the legacy of pollution in the 20th century, suggests that modern fires may release more mercury than in the past. This study reinforces the importance of wildfires to the global mercury cycle and indicates that forests in the Rocky Mountain region may contain large reservoirs of Hg that can be released during fires and add to the global budget of mercury emissions.

  13. Land use change and nitrogen enrichment of a Rocky Mountain watershed.

    PubMed

    Kaushal, Sujay S; Lewis, William M; McCutchan, James H

    2006-02-01

    Headwater ecosystems may have a limited threshold for retaining and removing nutrients delivered by certain types of land use. Nitrogen enrichment was studied in a Rocky Mountain watershed undergoing rapid expansion of population and residential development. Study sites were located along a 30-km transect from the headwaters of the Blue River to Lake Dillon, a major source of drinking water for Denver, Colorado. Ground water in residential areas with septic systems showed high concentrations of nitrate-N (4.96 +/- 1.22 mg/L, mean +/- SE), and approximately 40% of wells contained nitrate with delta15N values in the range of wastewater. Concentrations of dissolved inorganic nitrogen (DIN) in tributaries with residential development peaked during spring snowmelt as concentrations of DIN declined to below detection limits in undeveloped tributaries. Annual export of dissolved organic nitrogen (DON) was considerably lower in residential streams, suggesting a change in forms of N with development. The seasonal delta15N of algae in residential streams was intermediate between baseline values from undeveloped streams and stream algae grown on wastewater. Between 19% and 23% of the annual N export from developed tributaries was derived from septic systems, as estimated from the delta15N of algae. This range was similar to the amount of N export above background determined independently from mass-balance estimates. From a watershed perspective, total loading of N to the Blue River catchment from septic and municipal wastewater (2 kg x ha(-1) x yr(-1)) is currently less than the amount from background atmospheric sources (3 kg x ha(-1) x yr(-1)). Nonetheless, nitrate-N concentrations exceeded limits for safe drinking water in some groundwater wells (10 mg/L), residential streams showed elevated seasonal patterns of nitrate-N concentration and ratios of DIN to total dissolved phosphorus, and seasonal minimum concentrations of nitrate-N in Lake Dillon have increased

  14. Molecular Characterization of Cryoconite Organic Matter from the Athabasca Glacier, Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Simpson, M. J.; Eyles, N.; Simpson, A.; Baer, A. J.

    2009-05-01

    Cryoconite is a dark-colored, dust-like material found on the surfaces of glaciers. Cryoconite holes, which are produced by accelerated ice melt due to more solar radiation absorption by cryoconite than bare ice, act as habitats for microbial life and biologically mediated chemical reactions on otherwise relatively inert glacier surfaces. Cryoconite holes may behave as bacterial shelters during "Snowball Earth" events postulated for the Neoproterozoic Earth. In this study organic matter (OM) biomarkers and a host of one- and two-dimensional NMR techniques were used to characterize cryoconite organic matter (COM) collected from the Athabasca Glacier in the Canadian Rocky Mountains. Solvent extracts contain large quantities of fatty acids, n-alkanols, n- alkanes, wax esters and sterols. A large contribution of C23 and C25 relative to C29 and C31 n-alkanes ([C23/(C23+C29)] = 0.51) suggests that allochthonous COM is derived mainly from lower order plants such as mosses and lichens. This is confirmed by the absence of lignin-derived phenols, a biomarker of terrestrial vascular plants, after copper (II) oxidation in extracts and NMR analyses of COM. Solution-state 1H NMR reveals prominent peptide/protein structures which are characteristic of microbial inputs, while solid-state 13C CP/MAS NMR analysis shows a very high alkyl/O-alkyl ratio (2.16), suggesting that COM is unique compared to organic matter found in nearby soils which have alkyl/O-alkyl ratio of ~0.39. Our NMR results suggest that COM is dominated by microbial-derived compounds, which is also confirmed by phospholipid fatty acid results (6,950µg/gOC) which show significant microbial contributions to COM primarily from bacteria and minor microeukaryotes. Both biomarker and NMR data suggest that COM likely supports active microbial communities on the Athabasca Glacier. Given that such material is incorporated within the glacier in the accumulation zone or flushed by meltwaters into subglacial environments

  15. Mercury and Selenium in a Mining-Affected Watershed of the Rocky Mountain Northwest

    NASA Astrophysics Data System (ADS)

    Langner, H.

    2011-12-01

    mercury in the food web of a large river system in the Rocky Mountain Northwest.

  16. Horizontal and Vertical Velocities across the Rio Grande Rift and Southern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Choe, C.; Nerem, R.; Sheehan, A. F.; Blewitt, G.; Murray, M. H.

    2012-12-01

    We analyze over 5 years of continuous GPS measurements from 26 GPS sites across the Rio Grande Rift (RGR) and Southern Rocky Mountains in New Mexico and Colorado. Over 40 Plate Boundary Observatory (PBO) GPS sites in adjoining eastern Colorado Plateau and western Great Plains are also included in the analysis. Surface velocities for the GPS sites are computed by JPL's GIPSY/OASIS II software in the NA12 reference frame - a 300-station IGS08 North America-fixed reference frame developed by the University of Nevada (Blewitt et al., 2012 Fall AGU abstract). The horizontal velocities over the RGR generally agree with previous analysis performed by Berglund et al. (2012) using MIT's GAMIT software although the latter results are represented in an IGS05 North America-fixed reference frame. The GPS time series are also examined to assess RGR site vertical displacement rates. An attempt is made to estimate the surface loading correction due to hydrology from Gravity Recovery and Climate Experiment (GRACE) measurements by fitting a linear trend simultaneously with the annual and semiannual terms over the same time period as the GPS measurements. This correction is applied to the GPS vertical displacement time series to better model seasonal vertical displacement and to reduce the uncertainty in the estimation of vertical velocity. A post-glacial rebound model developed by Paulson et al. (2007) is taken into account for both GPS vertical time series and GRACE gravity time series. The resultant vertical displacement rate shows predominantly negative rates over the northern RGR and much smaller yet positive rates over the southern RGR. The comparison of PBO vertical displacement rates over the RGR to those provided by UNAVCO's PBO Analysis Centers shows a similar pattern. Paulson, A., S. Zhong, and J. Wahr (2007), Inference of mantle viscosity from GRACE and relative sea level data, Geophys. J. Int., 171, 497-508, doi: 10.1111/j.1365-246X.2007.03556.x Berglund, H. T., A. F

  17. Wilderness experience in Rocky Mountain National Park 2002; report to respondents

    USGS Publications Warehouse

    Schuster, Elke; Johnson, S. Shea; Taylor, Jonathan G.

    2003-01-01

    A substantial amount of backcountry (about 250,000 acres) in Rocky Mountain National Park [RMNP of the Park] may be designated as wilderness areas in the coming years. Currently, over 3 million visitors drives through the park on Trail Ridge Road, camp in designated campgrounds, day hike, etc. each year. Many of those visitors also report using the backcountry-wilderness areas that are not easily accessible by roads or trails. Use of the backcountry is growing at RMNP and is accompanied by changing visitor expectations and preferences for wilderness management. For these reasons it is of great importance for the Park to periodically assess what types of environments and conditions wilderness users seek to facilitate a quality experience. To assist in this effort, the Political Analysis and Science Assistance [PSAS] program / Fort Collins Center / U.S. Geological Survey, in close collaboration with personnel and volunteers from RMNP, as well as the Natural Resource Recreation and Tourism [NRRT] Department at Colorado State University, launched a research effort in the summer of 2002 to investigate visitorsa?? wilderness experiences in the Park. Specifically, the purpose of this research was: (1) To determine what constitutes a wilderness experience; (2) To identify important places, visual features, and sounds essential to a quality wilderness experience and; (3) To determine what aspects may detract from wilderness experience. Thus, answers to these questions should provide insight for Park managers about visitorsa?? expectation for wilderness recreation and the conditions they seek for quality wilderness experiences. Ultimately, this information can be used to support wilderness management decisions within RMNP. The social science technique of Visitor Employed Photography [VEP] was used to obtain information from visitors about wilderness experiences. Visitors were selected at random from Park-designated wilderness trails, in proportion to their use, and asked to

  18. Spatially explicit power analyses for occupancy-based monitoring of wolverine in the U.S. Rocky Mountains.

    PubMed

    Ellis, Martha M; Ivan, Jacob S; Schwartz, Michael K

    2014-02-01

    Conservation scientists and resource managers often have to design monitoring programs for species that are rare or patchily distributed across large landscapes. Such programs are frequently expensive and seldom can be conducted by one entity. It is essential that a prospective power analysis be undertaken to ensure stated monitoring goals are feasible. We developed a spatially based simulation program that accounts for natural history, habitat use, and sampling scheme to investigate the power of monitoring protocols to detect trends in population abundance over time with occupancy-based methods. We analyzed monitoring schemes with different sampling efforts for wolverine (Gulo gulo) populations in 2 areas of the U.S. Rocky Mountains. The relation between occupancy and abundance was nonlinear and depended on landscape, population size, and movement parameters. With current estimates for population size and detection probability in the northern U.S. Rockies, most sampling schemes were only able to detect large declines in abundance in the simulations (i.e., 50% decline over 10 years). For small populations reestablishing in the Southern Rockies, occupancy-based methods had enough power to detect population trends only when populations were increasing dramatically (e.g., doubling or tripling in 10 years), regardless of sampling effort. In general, increasing the number of cells sampled or the per-visit detection probability had a much greater effect on power than the number of visits conducted during a survey. Although our results are specific to wolverines, this approach could easily be adapted to other territorial species.

  19. Looking for the Edge of the Rocky Mountains During the Late Eocene: A Stable Isotope Map from Mammalian Tooth Enamel

    NASA Astrophysics Data System (ADS)

    Fricke, H.

    2006-12-01

    The question of how high the Rocky Mountain plateau of western North America was during the early Cenozoic remains an enduring one, despite years of study. Recently, stable isotope data from the central part of this plateau, in particular low oxygen isotope ratios, have been used to argue that the plateau may have been high since the early Eocene, and that it remained so until more recent times. Interpretations of such data, however, are complicated by uncertainties regarding the source of air masses and their rainout histories among other factors. In this study, an attempt was made to overcome some of these uncertainties by collecting stable isotope data from a wide geographic range, particularly from the eastern margin of the plateau rather than the center. By doing so, it was hoped that a steep isotopic gradient, such as that associated with the margins of the present day Rocky Mountain, might be recognized, thus supporting the hypothesis that such a plateau existed during the early Eocene. Isotope data were obtained from the tooth enamel of several mammalian taxa that were collected from 10 Chadronian-aged sites in Colorado, Wyoming, and Nebraska which span a modern latitudinal range of ~5 degrees longitude (103 to 108), ~5 degrees latitude (38 to 43), and an elevational range of ~1800 meters. Average oxygen isotope ratios for 8 of these sites are indistinguishable, while 2 located on the flanks of the Laramie Mountains have lower ratios. Oxygen isotope variability, however, does increase from east to west. These results can be compared to oxygen isotope data from modern rivers in the Rocky Mountain region, and do not seem to be consistent with the existence in this area of steep elevational gradient along the eastern margin of a mountainous plateau. Nevertheless, locally low oxygen isotope ratios are consistent with locally modest relief, while increased isotopic variability to the west may indicate that the eastern edge of the plateau was located further west

  20. Non-Native Plant Invasion along Elevation and Canopy Closure Gradients in a Middle Rocky Mountain Ecosystem.

    PubMed

    Averett, Joshua P; McCune, Bruce; Parks, Catherine G; Naylor, Bridgett J; DelCurto, Tim; Mata-González, Ricardo

    2016-01-01

    and mid elevations. Current management objectives including restoration to more open canopies in dry Rocky Mountain forests, may increase immigration pressure of non-native plants from lower elevations into the montane and subalpine zones.

  1. Non-Native Plant Invasion along Elevation and Canopy Closure Gradients in a Middle Rocky Mountain Ecosystem

    PubMed Central

    Averett, Joshua P.; McCune, Bruce; Parks, Catherine G.; Naylor, Bridgett J.; DelCurto, Tim; Mata-González, Ricardo

    2016-01-01

    and mid elevations. Current management objectives including restoration to more open canopies in dry Rocky Mountain forests, may increase immigration pressure of non-native plants from lower elevations into the montane and subalpine zones. PMID:26824750

  2. Use of passive UAS imaging to measure biophysical parameters in a southern Rocky Mountain subalpine forest

    NASA Astrophysics Data System (ADS)

    Caldwell, M. K.; Sloan, J.; Mladinich, C. S.; Wessman, C. A.

    2013-12-01

    Unmanned Aerial Systems (UAS) can provide detailed, fine spatial resolution imagery for ecological uses not otherwise obtainable through standard methods. The use of UAS imagery for ecology is a rapidly -evolving field, where the study of forest landscape ecology can be augmented using UAS imagery to scale and validate biophysical data from field measurements to spaceborne observations. High resolution imagery provided by UAS (30 cm2 pixels) offers detailed canopy cover and forest structure data in a time efficient and inexpensive manner. Using a GoPro Hero2 (2 mm focal length) camera mounted in the nose cone of a Raven unmanned system, we collected aerial and thermal data monthly during the summer 2013, over two subalpine forests in the Southern Rocky Mountains in Colorado. These forests are dominated by lodgepole pine (Pinus ponderosae) and have experienced insect-driven (primarily mountain pine beetle; MPB, Dendroctonus ponderosae) mortality. Objectives of this study include observations of forest health variables such as canopy water content (CWC) from thermal imagery and leaf area index (LAI), biomass and forest productivity from the Normalized Difference Vegetation Index (NDVI) from UAS imagery. Observations were, validated with ground measurements. Images were processed using a combination of AgiSoft Photoscan professional software and ENVI remote imaging software. We utilized the software Leaf Area Index Calculator (LAIC) developed by Córcoles et al. (2013) for calculating LAI from digital images and modified to conform to leaf area of needle-leaf trees as in Chen and Cihlar (1996) . LAIC uses a K-means cluster analysis to decipher the RGB levels for each pixel and distinguish between green aboveground vegetation and other materials, and project leaf area per unit of ground surface area (i.e. half total needle surface area per unit area). Preliminary LAIC UAS data shows summer average LAI was 3.8 in the most dense forest stands and 2.95 in less dense

  3. Increasing aeolian dust deposition to snowpacks in the Rocky Mountains inferred from snowpack, wet deposition, and aerosol chemistry

    NASA Astrophysics Data System (ADS)

    Clow, David W.; Williams, Mark W.; Schuster, Paul F.

    2016-12-01

    Mountain snowpacks are a vital natural resource for ∼1.5 billion people in the northern Hemisphere, helping to meet human and ecological demand for water in excess of that provided by summer rain. Springtime warming and aeolian dust deposition accelerate snowmelt, increasing the risk of water shortages during late summer, when demand is greatest. While climate networks provide data that can be used to evaluate the effect of warming on snowpack resources, there are no established regional networks for monitoring aeolian dust deposition to snow. In this study, we test the hypothesis that chemistry of snow, wet deposition, and aerosols can be used as a surrogate for dust deposition to snow. We then analyze spatial patterns and temporal trends in inferred springtime dust deposition to snow across the Rocky Mountains, USA, for 1993-2014. Geochemical evidence, including strong correlations (r2 ≥ 0.94) between Ca2+, alkalinity, and dust concentrations in snow deposited during dust events, indicate that carbonate minerals in dust impart a strong chemical signature that can be used to track dust deposition to snow. Spatial patterns in chemistry of snow, wet deposition, and aerosols indicate that dust deposition increases from north to south in the Rocky Mountains, and temporal trends indicate that winter/spring dust deposition increased by 81% in the southern Rockies during 1993-2014. Using a multivariate modeling approach, we determined that increases in dust deposition and decreases in springtime snowfall combined to accelerate snowmelt timing in the southern Rockies by approximately 7-18 days between 1993 and 2014. Previous studies have shown that aeolian dust emissions may have doubled globally during the 20th century, possibly due to drought and land-use change. Climate projections for increased aridity in the southwestern U.S., northern Africa, and other mid-latitude regions of the northern Hemisphere suggest that aeolian dust emissions may continue to increase

  4. Increasing aeolian dust deposition to snowpacks in the Rocky Mountains inferred from snowpack, wet deposition, and aerosol chemistry

    USGS Publications Warehouse

    Clow, David W.; Williams, Mark W.; Schuster, Paul F.

    2016-01-01

    Mountain snowpacks are a vital natural resource for ∼1.5 billion people in the northern Hemisphere, helping to meet human and ecological demand for water in excess of that provided by summer rain. Springtime warming and aeolian dust deposition accelerate snowmelt, increasing the risk of water shortages during late summer, when demand is greatest. While climate networks provide data that can be used to evaluate the effect of warming on snowpack resources, there are no established regional networks for monitoring aeolian dust deposition to snow. In this study, we test the hypothesis that chemistry of snow, wet deposition, and aerosols can be used as a surrogate for dust deposition to snow. We then analyze spatial patterns and temporal trends in inferred springtime dust deposition to snow across the Rocky Mountains, USA, for 1993–2014. Geochemical evidence, including strong correlations (r2 ≥ 0.94) between Ca2+, alkalinity, and dust concentrations in snow deposited during dust events, indicate that carbonate minerals in dust impart a strong chemical signature that can be used to track dust deposition to snow. Spatial patterns in chemistry of snow, wet deposition, and aerosols indicate that dust deposition increases from north to south in the Rocky Mountains, and temporal trends indicate that winter/spring dust deposition increased by 81% in the southern Rockies during 1993–2014. Using a multivariate modeling approach, we determined that increases in dust deposition and decreases in springtime snowfall combined to accelerate snowmelt timing in the southern Rockies by approximately 7–18 days between 1993 and 2014. Previous studies have shown that aeolian dust emissions may have doubled globally during the 20th century, possibly due to drought and land-use change. Climate projections for increased aridity in the southwestern U.S., northern Africa, and other mid-latitude regions of the northern Hemisphere suggest that aeolian dust emissions may continue to

  5. Nitrogen saturation in the Rocky Mountains: Linking emissions, deposition, and ecosystem effects using stable isotopes of nitrogen compounds

    USGS Publications Warehouse

    Campbell, D.H.; Nanus, L.; Böhlke, J.K.; Harlin, K.; Collett, J.

    2007-01-01

    Elevated levels of atmospheric N deposition are affecting terrestrial and aquatic ecosystems at high elevations in Rocky Mountain National Park and adjacent areas of the Front Range of Colorado. Federal and state agencies are now working together to develop cost-effective means for reducing atmospheric N deposition. A discussion on N saturation covers the need for better understanding of N emission source areas and source types that contribute to N deposition in the Rocky Mountains Front Range of Colorado; reductions in NO emissions that resulted from Clean Air Act Amendments, which caused NO3 deposition to decrease between 1984 and 2003; factors contributing to N deposition, e.g., rapid population growth and energy development; origins of NO3, e.g., as NO emissions from fossil fuel combustion, including stationary sources (e.g. emission from coal combustion in electric generating units), and mobile sources (vehicle emissions); disperse stationary sources from energy resource development, e.g., natural gas production; and the importance of incorporating local source characterization and finer spatial and temporal sampling into future studies, which could provide additional insight into N deposition source attribution. This is an abstract of a paper presented at the 100th Annual Conference and Exhibition of the Air and Waste Management Association (Pittsburgh, PA 6/26-29/2007).

  6. Drought tolerance of leaves from plants exposed to a global warming manipulation in the Rocky Mountains of Colorado

    SciTech Connect

    Loik, M.E.

    1995-06-01

    Drought tolerance was compared for leaves of Artemisia tridentata, Festuca thurberi and Potentilla gracilis exposed to a global warming manipulation at the Rocky Mountain Biological Laboratory, near Crested Butte, CO. Leaves of the three species were collected from plants growing in situ in heated and control plots then dried for various periods of time up to 24 h. Tolerance was compared in terms of reduction of relative water content, change in water potential, and changes in chlorophyll a fluorescence quenching kinetics. Relative water content decreased by about 80% for F. thurberi and P. gracilis, but by less than 50% for A. tridentata. Also, plants from heated plots lost water faster than controls for F. thurberi and P. gracilis; for A. tridentata the opposite was true. Water potential for both control and heated-plot leaves decreased below -10 MPa after 24 h drying for F. thurberi and P. gracilis; water potential for A. tridentata decreased little and averaged -2.0 MPa. Quenching of chlorophyll a fluorescence was abolished for F. thurberi and P. gracilis leaves after 8 h drying, and there was little difference between heated and control leaves. Quenching decreased for A. tridentata, but was slower for leaves from heated plots. Leaves from A. tridentata may be better adapted than F. thurberi and P. gracilis to a drier climate in the Rocky Mountains under global warming.

  7. Regional patterns and proximal causes of the recent snowpack decline in the Rocky Mountains, U.S.

    NASA Astrophysics Data System (ADS)

    Pederson, Gregory T.; Betancourt, Julio L.; McCabe, Gregory J.

    2013-05-01

    used a first-order, monthly snow model and observations to disentangle seasonal influences on 20th century,regional snowpack anomalies in the Rocky Mountains of western North America, where interannual variations in cool-season (November-March) temperatures are broadly synchronous, but precipitation is typically antiphased north to south and uncorrelated with temperature. Over the previous eight centuries, regional snowpack variability exhibits strong, decadally persistent north-south (N-S) antiphasing of snowpack anomalies. Contrary to the normal regional antiphasing, two intervals of spatially synchronized snow deficits were identified. Snow deficits shown during the 1930s were synchronized north-south by low cool-season precipitation, with spring warming (February-March) since the 1980s driving the majority of the recent synchronous snow declines, especially across the low to middle elevations. Spring warming strongly influenced low snowpacks in the north after 1958, but not in the south until after 1980. The post-1980, synchronous snow decline reduced snow cover at low to middle elevations by ~20% and partly explains earlier and reduced streamflow and both longer and more active fire seasons. Climatologies of Rocky Mountain snowpack are shown to be seasonally and regionally complex, with Pacific decadal variability positively reinforcing the anthropogenic warming trend.

  8. Regional patterns and proximal causes of the recent snowpack decline in the Rocky Mountains, U.S.

    USGS Publications Warehouse

    Pederson, Gregory T.; Betancourt, Julio L.; McCabe, Gregory J.

    2013-01-01

    We used a first-order, monthly snow model and observations to disentangle seasonal influences on 20th century,regional snowpack anomalies in the Rocky Mountains of western North America, where interannual variations in cool-season (November–March) temperatures are broadly synchronous, but precipitation is typically antiphased north to south and uncorrelated with temperature. Over the previous eight centuries, regional snowpack variability exhibits strong, decadally persistent north-south (N-S) antiphasing of snowpack anomalies. Contrary to the normal regional antiphasing, two intervals of spatially synchronized snow deficits were identified. Snow deficits shown during the 1930s were synchronized north-south by low cool-season precipitation, with spring warming (February–March) since the 1980s driving the majority of the recent synchronous snow declines, especially across the low to middle elevations. Spring warming strongly influenced low snowpacks in the north after 1958, but not in the south until after 1980. The post-1980, synchronous snow decline reduced snow cover at low to middle elevations by ~20% and partly explains earlier and reduced streamflow and both longer and more active fire seasons. Climatologies of Rocky Mountain snowpack are shown to be seasonally and regionally complex, with Pacific decadal variability positively reinforcing the anthropogenic warming trend.

  9. The ecological effect of acid conditions and precipitation of hydrous metal oxides in a Rocky Mountain stream

    USGS Publications Warehouse

    McKnight, Diane M.; Feder, G.L.

    1984-01-01

    Periphyton and benthic invertebrates assemblages were studied at the confluence of two Rocky Mountain streams, Deer Creek and the Snake River near Montezuma, Colorado. Upstream from the confluence the Snake River is acidic and enriched in dissolved trace metals, while Deer Creek is a typical Rocky Mountain stream. In the Snake River, downstream from the confluence, the pH increases and hydrous metal oxides precipitate and cover the streambed. The algal and benthic invertebrate communities in the upstream reaches of the Snake River and in Deer Creek were very different. A liverwort, Scapania undulata var. undulata, was abundant in the Snake River, and although periphyton were very sparse, there were as many benthic invertebrates as in Deer Creek. Downstream from the confleunce, the precipitation of hydrous metal oxides greatly decreased the abundance of periphyton and benthic invertebrates. This study shows that in streams metal precipitates covering the streambed may have a more deleterious effect on stream communities than high metal-ion activities. ?? 1984 Dr. W. Junk Publishers.

  10. Remote continental aerosol characteristics in the Rocky Mountains of Colorado and Wyoming

    NASA Astrophysics Data System (ADS)

    Levin, Ezra J. T.

    The Rocky Mountains of Colorado and Wyoming enjoy some of the cleanest air in the United States, with few local sources of particulate matter or its precursors apart from fire emissions, windblown dust, and biogenic emissions. However, anthropogenic influences are also present with sources as diverse as the populated Front Range, large isolated power plants, agricultural emissions, and more recently emissions from increased oil and gas exploration and production. While long-term data exist on the bulk composition of background fine particulate matter at remote sites in the region, few long-term observations exist of aerosol size distributions, number concentrations and size resolved composition, although these characteristics are closely tied to important water resource issues through the potential aerosol impacts on clouds and precipitation. Recent modeling work suggests sensitivity of precipitation-producing systems to the availability of aerosols capable of serving as cloud condensation nuclei (CCN); however, model inputs for these aerosols are not well constrained due to the scarcity of data. In this work I present aerosol number and volume concentrations, size distributions, chemical composition and hygroscopicity measurements from long-term field campaigns. I also explore the volatility of organic material from biomass burning and the potential impacts on aerosol loading. Relevant aerosol observations were obtained in several long-term field studies: the Rocky Mountain Atmospheric Nitrogen and Sulfur study (RoMANS, Colorado), the Grand Tetons Reactive Nitrogen Deposition Study (GrandTReNDS, Wyoming) and as part of the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen project (BEACHON, Colorado). Average number concentrations (0.04 < Dp < 20 mum) measured during the field studies ranged between 1000 -- 2000 cm-3 during the summer months and decreased to 200 -- 500 cm-3 during the winter. These seasonal changes in aerosol

  11. Rapid Transport of Stratospheric Ozone into the Planetary Boundary Layer over the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Skerlak, B.; Sprenger, M.; Pfahl, S.; Wernli, H.

    2013-12-01

    Stratosphere-troposphere exchange (STE) has important impacts on atmospheric chemistry: it changes the oxidative capacity of the troposphere and affects the climate system through the exchange of water vapor and ozone. Although a large part of tropospheric ozone is produced photochemically, significant amounts of stratospheric ozone can be brought into the troposphere during STE events. The relative importance of these two sources depends on the location of interest and transport characteristics. Of particular interest are so-called deep exchange events where ozone-rich stratospheric air reaches the planetary boundary layer (PBL) within a few days (deep STT). This rapid vertical transport can contribute to ozone concentrations at ground level which can impair plant and human physiology. It is therefore not only important to quantify the ozone flux across the tropopause but also to investigate the transport pathways after the crossing to identify affected areas at ground. Using a Lagrangian methodology and 33 years of ERA-Interim reanalysis data, we have compiled a global climatology of STE from which the mountainous areas in western North America can be identified as a 'hot spot' of deep STT, especially in boreal spring. To address the question of how the stratospheric air masses are transported into the PBL in more detail, we investigate case studies in this region with the mesoscale numerical weather prediction model COSMO. On this account, we initialize a passive tracer in the stratosphere using an elaborated 3D-labeling algorithm which applies the dynamical 2 pvu/380 K tropopause definition. This tracer is then advected by both resolved and parameterized processes and allows us to follow the stratospheric air masses along their journey into the mountainous PBL. Although this tracer does not directly represent a specific chemical species, its concentrations at the lowest model level can indicate when and where ozone levels at ground are likely to be influenced

  12. Water quality in alluvial aquifers of the southern Rocky Mountains Physiographic Province, upper Colorado River basin, Colorado, 1997

    USGS Publications Warehouse

    Apodaca, Lori Estelle; Bails, Jeffrey B.

    2000-01-01

    Water-quality samples were collected in the summer of 1997 from 45 sites (43 wells and 2 springs) in selected alluvial aquifers throughout the Southern Rocky Mountains physiographic province of the Upper Colorado River Basin study unit as part of the U.S. Geological Survey National Water-Quality Assessment Program. The objective of this study was to assess the water-quality conditions in selected alluvial aquifers in the Southern Rocky Mountains physiographic province. Alluvial aquifers are productive aquifers in the Southern Rocky Mountains physiographic province and provide for easily developed wells. Water-quality samples were collected from areas where ground water is used predominantly for domestic or public water supply. Twenty-three of the 45 sites sampled were located in or near mining districts. No statistical differences were observed between the mining sites and sites not associated with mining activities for the majority of the constituents analyzed. Water samples were analyzed for major ions, nutrients, dissolved organic carbon, trace elements, radon-222, pesticides, volatile organic compounds, bacteria, and methylene blue active substances. In addition, field parameters consisting of water temperature, specific conductance, dissolved oxygen, pH, turbidity, and alkalinity were measured at all sites.Specific conductance for the ground-water sites ranged from 57 to 6,650 microsiemens per centimeter and had higher concentrations measured in areas such as the northwestern part of the study unit. Dissolved oxygen ranged from 0.1 to 6.0 mg/L (milligrams per liter) and had a median concentration of 2.9 mg/L. The pH field values ranged from 6.1 to 8.1; about 4 percent of the sites (2 of 45) had pH values outside the range of 6.5 to 8.5 and so did not meet the U.S. Environmental Protection Agency secondary maximum contaminant level standard for drinking water. About 5 percent (2 of 43) of the samples exceeded the U.S. Environmental Protection Agency recommended

  13. Quality of ground water and surface water in intermontane basins of the northern Rocky Mountains, Montana and Idaho

    USGS Publications Warehouse

    Clark, David W.; Dutton, DeAnn M.

    1996-01-01

    The Regional Aquifer-System Analysis (RASA) program is a series of studies by the U.S. Geological Survey (USGS) to analyze regional ground-water systems that compose a major portion of the Nations water supply (Sun, 1986). The Northern Rocky Mountains Intermontane Basins is one of the study regions in this national program. The main objectives of the RASA studies are to: (1) describe the ground-water systems as they exist today, (2) analyze the known changes that have led to the system's present condition, (3) combine results of previous studies in a regional analysis, where possible, and (4) provide means by which effects of future ground-water development can be estimated.The purpose of this study, which began in 1990, was to increase understanding of the hydrogeology of the intermontane basins of the Northern Rocky Mountains area. This report is Chapter C of a three-part series and describes the quality of ground water and surface water in the study area. Chapter A (Tuck and others, 1996) describes the geologic history and generalized hydrogeologic units. Chapter B (Briar and others, 1996) describes the general distribution of ground-water levels in basin-fill deposits.Water-quality data illustrated in this report represent the distribution of concentrations and composition of dissolved solids in ground water and surface water in the intermontane areas. The chemistry of ground and surface water in the intermontane areas is influenced by the chemical and physical nature of the rocks in the basin deposits of the valleys and surrounding bedrock in the mountains.

  14. Regional and Local Carbon Flux Information from a Continuous Atmospheric CO2 Network in the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Heck, S. L.; Stephens, B.; Watt, A.

    2007-12-01

    We will present preliminary carbon flux estimates from the Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON). In order to improve our understanding of regional carbon fluxes in the Rocky Mountain West, we have developed and deployed autonomous, inexpensive, and robust CO2 analyzers (AIRCOA) at five sites throughout Colorado and Utah, and plan additional deployments on the Navajo Reservation, Arizona in September 2007 and atop Mount Kenya, Africa in November 2007. We have used a one- dimensional CO2 budget equation, following Bakwin et al. (2004), to estimate regional monthly-mean fluxes from our continuous CO2 concentrations. These comparisons between our measurements and estimates of free- tropospheric background concentrations reveal regional-scale CO2 flux signals that are generally consistent with one another across the Rocky RACCOON sites. We will compare the timing and magnitude of these estimates with expectations from local-scale eddy-correlation flux measurements and bottom-up ecosystem models. We will also interpret the differences in monthly-mean flux signals between our sites in terms of their varying upwind areas of influence and inferred regional variations in CO2 fluxes. Our measurements will be included in future CarbonTracker assimilation runs and other planned model-data fusion efforts. However, questions still exist concerning the ability of these models to accurately represent the various influences on CO2 concentrations in continental boundary layers, and at mountaintop sites in particular. We will present an analysis of the diurnal cycles in CO2 concentration and CO2 variability at our sites, and compare these to various model estimates. Several of our sites near major population centers reflect the influence of industrial CO2 sources in afternoon upslope flows, with CO2 concentration increasing and variable in the mid to late afternoon. Other more remote sites show more consistent and decreasing CO2

  15. Sustainability of vegetation communities grazed by elk in Rocky Mountain National Park

    USGS Publications Warehouse

    Schoenecker, K.A.; Singer, F.J.; Menezes, R.S.C.; Zeigenfuss, L.C.; Binkley, D.; Singer, F.J.; Zeigenfuss, L.C.

    2002-01-01

    Current management of the worldsa?? grazing lands in either based on changes in plant species composition or on other management evaluation programs that emphasize changes in net aboveground production. Management is based solely on changes in aboveground production has been criticized as too limited in view, because it ignores root production, nitrogen pools, nutrient processes, and the long-term sustainability of the ecosystem. The purpose of this study was to compare the effects of elk (Cervus elaphus) grazing on aboveground production, internal nitrogen (N) fluxes, N pools and inputs, and elk nutrient transfers across the landscape in different vegetation types in Rocky Mountain National Park (RMNP), Colorado. Nitrogen processes and possibly N pools were significantly reduced in the willow community, but not in the upland grass/shrub community. Nitrogen mineralization rates were lower in grazed versus ungrazed short willow sites (P = 0.07; n = 4 sites), as were nitrate (NO3) pools (P = 0.10), but not in tall willow sites (P > 1.10 n = 4 sites) after 4 years. There was about half the annual N inputs to the soil surface in grazed willow sites (5.79g N/m2/yr = annual herbaceous biomass a?? offtake + litterfall + elk urine and feces) compared to ungrazed sites (9.66 g N/m2/yr = annual herbaceous biomass + litterfall), suggesting elk herbivory and movement led to a net loss of N in the willow vegetation type. Elk substantially reduced the annual growth of willows (Salix spp.) by 98% after 35 years and 66% after 4 years of treatment. Thus, height and canopy and N yield of willows were reduced as well as willow litter biomass (65 g/m2/yr in ungrazed versus 33 g/m2/yr in grazed), and N yield of willows was 64% less in grazed plots. Elk grazing had no significant effect on other soil N pools (NH4) or litter decomposition rates in either of the two willow types, nor on any nitrogen process rates or pools in the upland grass/shrub type (P > 0.10). Nitrogen concentrations

  16. Geologic and geomorphic controls of altitudinal treeline in the Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Macias Fauria, M.; Johnson, E. A.

    2010-12-01

    We hypothesize that a multi-scale (in both time and space) process competition affecting topographical shelter (e.g. sites favoring snow accumulation which prevents dissecation and abrasion), and substrate and water availability, ultimately set the distribution of suitable sites where trees can establish and survive in the altitudinal treeline. Terrain characteristics on which altitudinal treelines occur are ultimately set by geological history, which determines the distribution of slope aspects, angles, and lengths, as well as the distribution, depth, transport, and texture of the regolith on which trees grow. Erosive processes (landscape evolution) create concave features where flow converges (water, avalanches, debris) - channels - and convex or planar slopes. A spatially explicit model is presented at 1m resolution which predicts tree presence on a ~ 200 km2 area in the Front Ranges of the Canadian Rocky Mountains as a function of landscape topographical variables key in water and energy balances and surface transport/instability. The model was validated with independent data from an adjacent area and successfully captures tree presence/absence. Subalpine forests form a mosaic of stand ages which is a function of the last disturbance (mostly wildfire), where the main differences from their lowland counterparts are 1) a higher portion of areas where stand dynamics are affected by disturbances linked to the presence of slopes (i.e. gravitational: avalanches, flooding/flushing events), and 2) an upslope declining frequency of sites favorable for tree establishment and survival. Thus, the presence of trees in the uppermost part of these forests largely depends on the existence of suitable conditions largely linked to topography. Such places are the result of geomorphologic processes acting on a framework set by the structural geology of the region, and thus the appearance of new sites suitable for tree growth does not depend on short (i.e. yearly to decadal) time

  17. The Natural Terrestrial Carbon Sequestration Potential of Rocky Mountain Soils Derived From Volcanic Bedrock

    NASA Astrophysics Data System (ADS)

    Yager, D. B.; Burchell, A.; Johnson, R. H.

    2008-12-01

    The possible economic and environmental ramifications of climate change have stimulated a range of atmospheric carbon mitigation actions, as well as, studies to understand and quantify potential carbon sinks. However, current carbon management strategies for reducing atmospheric emissions underestimate a critical component. Soils represent between 18 - 30% of the terrestrial carbon sink needed to prevent atmospheric doubling of CO2 by 2050 and a crucial element in mitigating climate change, natural terrestrial sequestration (NTS), is required. NTS includes all naturally occurring, cumulative, biologic and geologic processes that either remove CO2 from the atmosphere or prevent net CO2 emissions through photosynthesis and microbial fixation, soil formation, weathering and adsorption or chemical reactions involving principally alumino- ferromagnesium minerals, volcanic glass and clays. Additionally, NTS supports ecosystem services by improving soil productivity, moisture retention, water purification and reducing erosion. Thus, 'global climate triage' must include the protection of high NTS areas, purposeful enhancement of NTS processes and reclamation of disturbed and mined lands. To better understand NTS, we analyzed soil-cores from Colorado, Rocky Mountain Cordillera sites. North-facing, high-plains to alpine sites in non-wetland environments were selected to represent temperate soils that may be less susceptible to carbon pool declines due to global warming than soils in warmer regions. Undisturbed soils sampled have 2 to 6 times greater total organic soil carbon (TOSC) than global TOSC averages (4 - 5 Wt. %). Forest soils derived from weathering of intermediate to mafic volcanic bedrock have the highest C (34.15 Wt. %), C:N (43) and arylsulfatase (ave. 278, high 461 μg p-nitrophenol/g/h). Intermediate TOSC was identified in soils derived from Cretaceous shale (7.2 Wt. %) and Precambrian, felsic gneiss (6.2 Wt. %). Unreclaimed mine-sites have the lowest C (0

  18. Background continental atmospheric deposition from a remote alpine site in the Canadian Southern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Wasiuta, V. L.; Norman, A. L.; Lafreniere, M. J.; Hastings, M. G.

    2013-12-01

    Precipitation from the remote alpine Haig Valley in the Canadian Southern Rocky Mountains provides a useful baseline for background atmospheric sulphur (S) and nitrogen (N) deposition. Major controls on deposition were evaluated using seasonal glacier snowpack, reflecting atmospheric deposition from Sept. 2008 to April 2009, and Sept. 2009 to May 2010, along with June 28-August 22 2010, bulk summer precipitation. A narrow range in δ34S-SO42- values in bulk summer precipitation (6.1-8.7‰, n=12) with uniform S loads, at varied elevations, across the Haig Valley indicate atmospheric sulphate (SO42-) was well-mixed prior to deposition and dominantly from long range transport. Uniform ammonium (NH4+) loads also indicated well mixed dominantly distant sources for this N aerosol. Snowpack loads varied closely with snow water equivalent, which was orographically controlled. Deposition patterns for nitrate (NO3-) and nitrite (NO2-) along with δ15N-NO3- and δ18O-NO3- from summer bulk precipitation (with elevation in the SE facing Haig Valley and opposing NNW facing Robertson Valley), showed δ18O-NO3- values and [NO2-] to be effective tracers of regional (within 24 hours of atmospheric transport) NOx combustion emissions. Distant emissions (> 1 day transport), with high δ18O-NO3 values consistent with NOx oxidation dominantly by ozone, were associated with relatively high δ15N-NO3- values. In contrast, lower δ18O-NO3- values that reflect a higher proportion of NOx oxidation by atmospheric H2O and O2 and are consistent with an increased proportion of regional combustion emissions, were accompanied by lower δ15N-NO3- values. Combined analytical results from snowpack and summer precipitation showed a negative covariance of δ18O-NO3- values with [NO3-]. Summer precipitation formed the high [NO3-], low δ18O-NO3- segment of a trend with snowpack at the other end with low concentrations and high δ18O-NO3-values. [NO2-] and δ18O-NO3-values also negatively covaried

  19. College-Bound Seniors, 1979. [College Board ATP Summary Reports for: National, New England, Middle States, Southern, Midwestern, Southwestern, Rocky Mountain, and Western Regions.

    ERIC Educational Resources Information Center

    College Entrance Examination Board, Princeton, NJ.

    The Admissions Testing Program (ATP) is a service of the College Board. The 1979 ATP summary reports on college-bound seniors were produced for each region of the United States, including New England, the Middle, Southern, Midwestern, Southwestern, Rocky Mountain, and Western States. The national and each regional report are in separate booklets.…

  20. Free-ranging Rocky Mountain bighorn sheep and an outbreak of inflammatory bowel disease along the Clark Fork River in Plains, Montana.

    PubMed

    Pierce, Ellen S

    2012-10-01

    Nine individuals with ulcerative colitis or Crohn disease grew up or lived in Plains, Montana, a 1,200-person community adjacent to the Clark Fork River near herds of free ranging Rocky Mountain bighorn sheep. This inflammatory bowel disease outbreak is similar to others that have occurred along rivers contaminated by animal feces.

  1. Use of acepromazine and medetomidine in combination for sedation and handling of Rocky Mountain elk (Cervus elaphus nelsoni) and black bears (Ursus americanus).

    PubMed

    Wolfe, Lisa L; Johnson, Heather E; Fisher, Mark C; Sirochman, Michael A; Kraft, Benjamin; Miller, Michael W

    2014-10-01

    We opportunistically evaluated a combination of acepromazine maleate and medetomidine HCl for use in sedating Rocky Mountain elk (Cervus elaphus nelsoni) and black bears (Ursus americanus) as an alternative to scheduled drug combinations. This combination was safe and effective with limitations inherent in its sedative rather than anesthetic properties.

  2. FIELD ACTIVITIES AND PRELIMINARY RESULTS FROM THE INVESTIGATION OF WESTERN AIRBORNE CONTAMINANTS IN TWO HIGH ELEVATION WATERSHEDS OF ROCKY MOUNTAIN NATIONAL PARK

    EPA Science Inventory

    The National Park Service initiated the Western Airborne Contaminants Assessment Project (WACAP) in 2002 to determine if airborne contaminants from long-range transport and/or regional sources are having an impact on remote western ecosystems, including AK. Rocky Mountain Nation...

  3. Last glacial-interglacial environments in the southern Rocky Mountains, USA and implications for Younger Dryas-age human occupation

    NASA Astrophysics Data System (ADS)

    Briles, Christy E.; Whitlock, Cathy; Meltzer, David J.

    2012-01-01

    The last glacial-interglacial transition (LGIT; 19-9 ka) was characterized by rapid climate changes and significant ecosystem reorganizations worldwide. In western Colorado, one of the coldest locations in the continental US today, mountain environments during the late-glacial period are poorly known. Yet, archaeological evidence from the Mountaineer site (2625 m elev.) indicates that Folsom-age Paleoindians were over-wintering in the Gunnison Basin during the Younger Dryas Chronozone (YDC; 12.9-11.7 ka). To determine the vegetation and fire history during the LGIT, and possible explanations for occupation during a period thought to be harsher than today, a 17-ka-old sediment core from Lily Pond (3208 m elev.) was analyzed for pollen and charcoal and compared with other high-resolution records from the southern Rocky Mountains. Widespread tundra and Picea parkland and low fire activity in the cold wet late-glacial period transitioned to open subalpine forest and increased fire activity in the Bølling-Allerød period as conditions became warmer and drier. During the YDC, greater winter snowpack than today and prolonged wet springs likely expanded subalpine forest to lower elevations than today, providing construction material and fuel for the early inhabitants. In the early to middle Holocene, arid conditions resulted in xerophytic vegetation and frequent fire.

  4. Studies on ’Macaca mulatta’ Infected with Rocky Mountain Spotted Fever

    DTIC Science & Technology

    1976-09-10

    significant chhnges were observed in arterial P02- Cholesterol remained unchanged. The increase in arterial pH1 and decrease in PCO2 indicated that respiratory ...that respiratory alkalosis was present in monkeys acutely infected with Rickettsia rickettsii. .’ 4 k.,,. + ++PJ." ~1sf- <, +>+, +’?+’A , -I...bacterial sepsis in man, respiratory , metabolic, or mixed 13alkalosis has been noted. Moreover, serial sampling of rats during pneumococcal sepsis

  5. Murine cutaneous responses to the rocky mountain spotted fever vector, Dermacentor andersoni, feeding.

    PubMed

    Heinze, Dar M; Carmical, J Russ; Aronson, Judith F; Alarcon-Chaidez, Franscisco; Wikel, Stephen; Thangamani, Saravanan

    2014-01-01

    Tick salivary glands produce complex cocktails of bioactive molecules that facilitate blood feeding and pathogen transmission by modulating host hemostasis, pain/itch responses, wound healing, and both innate and adaptive immunity. In this study, cutaneous responses at Dermacentor andersoni bite-sites were analyzed using Affymetrix mouse genome arrays and histopathology at 12, 48, 96 and 120 h post- infestation (hpi) during primary infestations and 120 hpi during secondary infestations. The microarray data suggests: (1) chemotaxis of neutrophils, monocytes, and other cell types; (2) production and scavenging of reactive oxygen species; and, (3) keratin- based wound healing responses. Histological analysis supported the microarray findings. At 12 hpi, a mild inflammatory infiltrate was present in the dermis, especially concentrated at the junction between dermal connective tissue and underlying adipose tissue. A small lesion was located immediately under the hypostome and likely represents the feeding "pool." Surprisingly, at 48 hpi, the number of inflammatory cells had not increased from 12 hpi, perhaps mirroring the reduction in gene expression seen at this time point. The feeding lesion is very well defined, and extravasated erythrocytes are readily evident around the hypostome. By 96 hpi, the inflammatory infiltrate has increased dramatically and the feeding lesion appears to have moved deeper into the dermis. At 120 hpi, most of the changes at 96 hpi are intensified. The infiltrate is very dense, the epidermis is markedly thickened, the feeding lesion is poorly defined and the dermal tissue near the hypostome appears to be loosing its normal architecture. In conclusion, during D. andersoni feeding infiltration of inflammatory cells increases across time concurrent with significant changes in the epidermal and dermal compartments near the feeding tick. The importance of changes in the epidermal layer in the host response to ticks is not known, however, it is possible the host attempts to "slough off" the tick by greatly increasing epithelial cell replication.

  6. Epidemiology of Rocky Mountain spotted fever in South Carolina, 1985-1990.

    PubMed

    Smathers, B R; Jones, J L; Sy, F S; Meyer, P

    1992-08-01

    By analyzing three different sources of data including DHEC reported cases, hospital discharge data, and death certificates, our study reveals that RMSF is endemic in South Carolina particularly in the Piedmont area and that underreporting of RMSF in South Carolina is likely. The incidence and case fatality rates of RMSF derived from hospital discharge data are higher than these rates derived from cases reported to DHEC. Physicians should be aware of the endemicity of RMSF in South Carolina and should include it in the differential diagnosis of any case of fever of unknown origin especially during the spring and summer seasons regardless of the history of a tick bite.

  7. Lake-specific responses to elevated atmospheric nitrogen deposition in the Colorado Rocky Mountains, U.S.A.

    USGS Publications Warehouse

    Nydick, K.R.; LaFrancois, B.M.; Baron, J.S.; Johnson, B.M.

    2003-01-01

    We explored variability among subalpine lakes sharing very similar climate and atmospheric conditions, but differing in watershed characteristics, hydrology, and food web structure. Special attention was given to nitrogen (N) dynamics because the study area receives some of the highest levels of atmospheric N deposition in the Rocky Mountains. We asked if the effect of regional N deposition would be manifested uniformly among neighboring lakes both in terms of ambient conditions and responses to greater nutrient inputs. Catchment vegetation appeared to be the main determinant of ambient nitrate (NO3), phosphate (PO4), and dissolved organic carbon (DOC) concentrations, although in-lake differences in recycling produced variable and contrasting NH4 levels. Phytoplankton chlorophyll a temporarily responded to early season NO3 peaks in the lakes with rocky watersheds, but chlorophyll means over the ice-free season were remarkably similar among lakes despite differences in both nutrient supply and zooplankton grazing. In most cases, phosphorus was limiting to phytoplankton growth, although the importance of N deficiencies was greater in lakes with forested watersheds and fringing wetlands.

  8. Spring stopover food resources and land use patterns of Rocky Mountain population Sandhill Carnes in the San Luis Valley, Colorado

    USGS Publications Warehouse

    Laubhan, M.K.; Gammonley, J.H.; Dolton, D.D.

    2001-01-01

    Virtually the entire Rocky Mountain population (RMP) of greater sandhill cranes uses the San Luis Valley (SLV) of Colorado as a spring stopover area. RMP cranes in the SLV depend on unharvested grain provided on Monte Vista National Wildlife Refuge, and on waste grain in privately owned fields. In recent years, however, fall tillage and irrigation of grain fields has become increasingly widespread in the SLV. These changes in farming practices have resulted in an unmeasured reduction in waste grain availability for RMP cranes during spring and have prompted concern over whether current or projected foods are adequate to meet spring demands of the target population size of 18,000-20,000 RMP cranesa?|

  9. 1999 resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region

    USGS Publications Warehouse

    ,

    1999-01-01

    The USGS has assessed resources of selected coal of the Fort Union Formation and equivalent units in the Northern Rocky Mountains and Great Plains region. The assessment focused on coal in the Powder River, Williston, Hanna-Carbon, and Greater Green River basins most likely to be utilized in the next few decades. In other basins in the region Tertiary coal resources are summarized but not assessed. Disc 1, in PDF files, includes results of the assessment and chapters on coal geology, quantity and quality, and land use and ownership. Disc 2 provides GIS files for land use and ownership maps and geologic maps, and basic GIS data for the assessed basins. ArcView shapefiles, PDF files for cross sections and TIFF files are included along with ArcView Datapublisher software for Windows-based computer systems.

  10. Genetic structure in the Anaxyrus boreas species group (anura, Bufonidae): an evaluation of the Southern Rocky Mountain population

    USGS Publications Warehouse

    Switzer, John F.; Johnson, Robin L.; Lubinski, Barbara A.; King, Tim L.

    2009-01-01

    The Anaxyrus boreas species group is comprised of four species endemic to the western United States: A. boreas, A. canorus, A. exsul, and A. nelsoni. Disjunct populations of the widespread western toad Anaxyrus boreas from Colorado and southern Wyoming, the southern rocky mountain population (SRMP), were previously candidates for listing under the United States Endangered Species Act (ESA) as a distinct population segment (DPS), but were removed due to a lack of significant genetic differentiation in preliminary studies. The purpose of this study was to conduct phylogeographic and population genetic analyses of A. boreas and three related species using mitochondrial DNA sequence data and nuclear microsatellite genotype data. The study is specifically focused on testing the evolutionary significance of the SRMP.

  11. Interactive effects of winter weather variation and nitrogen deposition on alpine moist meadow ecosystem processes in the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Churchill, A. C.

    2015-12-01

    Alpine climate change in the Rocky Mountains has been linked to changes in precipitation patterns between summer and winter periods, and in total amounts of accumulation over the year. Annual variation in alpine snowpack can have important effects on concentrations and amounts of nitrogen (N) deposition entering the alpine from the atmosphere, as between one third to one half of N deposition occurs in association with precipitation, and high elevations primarily receive precipitation in the form of winter snow. Variation in snowpack further affects the amount and timing of water available to vegetation during the growing season, which can have large implications for alpine ecosystem responses in association with N deposition. To examine the potential interactive effects of variation in winter weather and N deposition, we established five sites along an ambient gradient of N deposition in the Rocky Mountains and collected measurements of N cycling between 2012 and 2014. This time frame included a year with low snow pack (2012), a year with average snow pack (2013), and a year with high snow pack (2014) among sites in the study, and allowed for us to examine candidate dynamic climatic drivers that may create variation in ecosystem processes associated with N. We found that soil water nitrate concentrations following snow melt were highly different for 4 sites along the N deposition gradient between 2013 and 2014. Growing season resin extractable N, however, was unaffected by inter-annual changes in winter precipitation. One possible explanation for no change in resin N may be associated with high inter-annual variation in plant community composition. There were significant differences in the species composition between 2012 and 2013, as well as shifts in the concentrations of N found in dominant plant species tissue. Our results suggest that plants will be important controls on biogeochemical responses of alpine moist meadows under variation in winter precipitation.

  12. Molecular detection of vertebrates in stream water: A demonstration using rocky mountain tailed frogs and Idaho giant salamanders

    USGS Publications Warehouse

    Goldberg, C.S.; Pilliod, D.S.; Arkle, R.S.; Waits, L.P.

    2011-01-01

    Stream ecosystems harbor many secretive and imperiled species, and studies of vertebrates in these systems face the challenges of relatively low detection rates and high costs. Environmental DNA (eDNA) has recently been confirmed as a sensitive and efficient tool for documenting aquatic vertebrates in wetlands and in a large river and canal system. However, it was unclear whether this tool could be used to detect low-density vertebrates in fast-moving streams where shed cells may travel rapidly away from their source. To evaluate the potential utility of eDNA techniques in stream systems, we designed targeted primers to amplify a short, species-specific DNA fragment for two secretive stream amphibian species in the northwestern region of the United States (Rocky Mountain tailed frogs, Ascaphus montanus, and Idaho giant salamanders, Dicamptodon aterrimus). We tested three DNA extraction and five PCR protocols to determine whether we could detect eDNA of these species in filtered water samples from five streams with varying densities of these species in central Idaho, USA. We successfully amplified and sequenced the targeted DNA regions for both species from stream water filter samples. We detected Idaho giant salamanders in all samples and Rocky Mountain tailed frogs in four of five streams and found some indication that these species are more difficult to detect using eDNA in early spring than in early fall. While the sensitivity of this method across taxa remains to be determined, the use of eDNA could revolutionize surveys for rare and invasive stream species. With this study, the utility of eDNA techniques for detecting aquatic vertebrates has been demonstrated across the majority of freshwater systems, setting the stage for an innovative transformation in approaches for aquatic research.

  13. Regional and Local Carbon Flux Information from a Continuous Atmospheric CO2 Network in the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Heck, S.; Stephens, B.; Watt, A.; Schimel, D.; Aulenbach, S.

    2006-12-01

    We have established a Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON) to improve our understanding of regional carbon fluxes and to fill key gaps in the North American Carbon Program (NACP). There are strong scientific and societal motivations for determining CO2 exchanges on regional scales. Mountain forests in particular represent a significant potential net CO2 sink in the U.S. and are highly sensitive to land-use practices and climate change. We have developed a new autonomous, inexpensive, and robust CO2 analysis system (AIRCOA) and have deployed these systems at 4 sites: Niwot Ridge (NWR), near Ward, Colorado (August, 2005); Storm Peak Laboratory (SPL) near Steamboat Springs, Colorado (September, 2005); Fraser Experimental Forest (FEF), near Fraser Colorado (August, 2005); and Hidden Peak (HDP), near Snowbird, Utah (April, 2006). We will deploy a fifth site in Northeastern Arizona in September 2006. Measurements of surveillance gas cylinders, and an ongoing intercomparison with flask measurements made by NOAA GMD at Niwot Ridge, show measurement biases of 0.2 ppm or better. Preliminary analysis of CO2 variability at our sites provides valuable information on the usefulness of mountaintop observations in data-assimilation and inverse modeling. Comparisons between our sites and to background sites can give direct regional-scale flux estimates, and analysis of the nocturnal CO2 build-ups at FEF provides unique insights into valley-scale respiration rates. We will present results of these preliminary analyses and plans for future integration with the NACP effort.

  14. Comparison of snowpack and winter wet-deposition chemistry in the Rocky Mountains, USA: Implications for winter dry deposition

    USGS Publications Warehouse

    Clow, David W.; Ingersoll, George P.; Mast, M. Alisa; Turk, John T.; Campbell, Donald H.

    2002-01-01

    Depth-integrated snowpack chemistry was measured just prior to maximum snowpack depth during the winters of 1992-1999 at 12 sites co-located with National Atmospheric Deposition Program/National Trend Network (NADP/NTN) sites in the central and southern Rocky Mountains, USA. Winter volume-weighted mean wet-deposition concentrations were calculated for the NADP/NTN sites, and the data were compared to snowpack concentrations using the paired t-test and the Wilcoxon signed-rank test. No statistically significant differences were indicated in concentrations of SO42- or NO3- (p>0.1). Small, but statistically significant differences (p???0.03) were indicated for all other solutes analyzed. Differences were largest for Ca2+ concentrations, which on average were 2.3??eql-1 (43%) higher in the snowpack than in winter NADP/NTN samples. Eolian carbonate dust appeared to influence snowpack chemistry through both wet and dry deposition, and the effect increased from north to south. Dry deposition of eolian carbonates was estimated to have neutralized an average of 6.9??eql-1 and a maximum of 12??eql-1 of snowpack acidity at the southernmost sites. The good agreement between snowpack and winter NADP/NTN SO42- and NO3- concentrations indicates that for those solutes the two data sets can be combined to increase data density in high-elevation areas, where few NADP/NTN sites exist. This combination of data sets will allow for better estimates of atmospheric deposition of SO42- and NO3- across the Rocky Mountain region.

  15. Differential recovery of water quality parameters eight years after severe wildfire and salvage logging in Alberta's southern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Silins, U.; Bladon, K. D.; Stone, M.; Emelko, M. B.; Collins, A.; Boon, S.; Williams, C.; Wagner, M. J.; Martens, A. M.; Anderson, A.

    2012-12-01

    Broad regions of western North America rely on water supplies that originate from forested regions of the Rocky Mountain cordillera where landuse pressures, and stresses including changing natural disturbance regimes associated with shifting climates has been impacting critical source water supplies from this region. Increases in magnitude and severity of wildfires along with impacts on downstream water supplies has been observed along the length of the North American Rocky Mountain chain, however, the longevity of these impacts (including impacts to important water quality parameters) remain highly uncertain because processes regulating recovery from such disturbances can span a range of timescales from a few years to decades depending on both the hydro-climatic regime, and which water quality parameters are important. Studies document such long-term changes are few. The Southern Rockies Watershed Project (SRWP) was established to document the magnitude and recovery from the severe 2003 Lost Creek wildfire in the Crowsnest Pass region of southwest Alberta, Canada. Hydrology, water quality (physical & chemical) have been studies in 9 instrumented catchments (4-14 km2) encompassing burned, burned and salvage logged, prescribed burned, and unburned (reference) conditions since late winter 2004. While most important water quality parameters were strongly elevated in burned and burned-salvage logged catchments after the fire, strongly differential rates of recovery were observed for contaminant concentration, export, and yield across a range of water quality parameters (2004-2011). For example, while various nitrogen (N) species (total nitrogen, dissolved nitrogen, NO3-, NH4+) showed 2-7 fold increases in concentration the first 1-2 years after the wildfire, N recovered back to baseline concentrations 4-5 years after the wildfire. In contrast, eight full years after the wildfire (2011), no recovery of sediment or phosphorus (P) production (soluble reactive, total

  16. How grazing and soil quality affect native and exotic plant diversity in Rocky Mountain grasslands

    USGS Publications Warehouse

    Stohlgren, T.J.; Schell, L.D.; Vanden, Heuvel B.

    1999-01-01

    (adjacent and distant 1000-m2 plots) in the same vegetation type overlapped just 48.6 ?? 3.6%, and the ungrazed plots and distant grazed plots overlapped 49.4 ?? 3.6%. Differences in vegetation and soils between grazed and ungrazed sites were minimal in most cases, but soil characteristics and elevation were strongly correlated with native and exotic plant diversity in the study region. For the 78 1000-m2 plots, 59.4% of the variance in total species richness was explained by percentage of silt (coefficient = 0.647, t = 5.107, P < 0.001), elevation (coefficient = 0.012, t = 5.084, P < 0.001), and total foliar cover (coefficient = 0.110, t = 2.104, P < 0.039). Only 12.8% of the variance in exotic species cover (log10cover) was explained by percentage of clay (coefficient = -0.011, t = -2.878, P < 0.005), native species richness (coefficient = -0.011, t = -2.156, P < 0.034), and log10N (coefficient = 2.827, t = 1.860, P < 0.067). Native species cover and exotic species richness and frequency were also significantly positively correlated with percentage of soil N at the 1000-m2 plot scale. Our research led to five broad generalizations about current levels of grazing in these Rocky Mountain grasslands: (1) grazing probably has little effect on native species richness at landscape scales; (2) grazing probably has little effect on the accelerated spread of most exotic plant species at landscape scales; (3) grazing affects local plant species and life-form composition and cover, but spatial variation is considerable; (4) soil characteristics, climate, and disturbances may have a greater effect on plant species diversity than do current levels of grazing; and (5) few plant species show consistent, directional responses to grazing or cessation of grazing.

  17. Host associations and incidence of Diuraphis spp. in the Rocky Mountain region of the United States, and pictorial key for their identification.

    PubMed

    Puterka, Gary J; Hammon, Robert W; Burd, John D; Peairs, Frank B; Randolph, Terri; Cooper, W Rodney

    2010-10-01

    The Russian wheat aphid, Diuraphis noxia Kurdjumov, is an introduced species first identified in 1986 into the United States. It has since become a major pest of wheat, Triticum aestivum L., and other small grains in the western United States. Three other Diuraphis species, Diuraphis frequens (Walker), Diuraphis mexicana (McVicar Baker), and Diuraphis tritici (Gillette), were already endemic to the United States before the introduction of D. noxia. The objective of this study was to determine the occurrence and host associations of these four Diuraphis spp. in the Rocky Mountain region that borders the western Great Plains to better understand their distribution and ecological interactions. In addition, a key to these species with photographs of live or fresh preparations of specimens is presented to aid in their identification. D. noxia was the most widely distributed species in the study area spanning the Rocky Mountain areas of Wyoming, New Mexico, Utah, and Colorado. This species was most common in the cereal-producing areas of the Colorado Plateau ecoregion. D. frequens was found to be the predominant species in the Alpine/Aspen Mountain areas of the South Central Rockies and Colorado Rockies ecoregions. The other Diuraphis species were rarely encountered even though their plant hosts occurred in the ecoregions sampled. D. noxia shared common hosts and was found co-infesting grasses with other Diuraphis species. Therefore, the potential exists for D. noxia to impact the other native Diuraphis species.

  18. Rapid response of alpine timberline vegetation to the Younger Dryas climate oscillation in the Colorado Rocky Mountains, USA

    SciTech Connect

    Reasoner, M.A.; Jodry, M.A.

    2000-01-01

    Paleobotanical records from two high-altitude (>3,300 m) sites in Colorado show a clear and immediate response to the Younger Dryas climate oscillation. The Black Mountain Lake and Sky Pond records indicate that alpine timberline migrated upslope to near-modern elevations during the late Bolling-Allerod (13.6--12.9 ka). Subsequent declines in arboreal pollen percentages and accumulation rates during the Younger Dryas interval (12.9--11.7 ka) reflect a downslope displacement of the alpine timberline ecotone of 60--120 m in elevation. This change translates to a cooling of summer temperature by {approximately}0.4--0.9 C and is consistent with proposed Younger Dryas advances of alpine glaciers in the Rocky Mountains to positions close to Little Ice Age maxima. Alpine timberline readvanced upslope to elevations above both sites between 11.7 and 11.4 ka. The concomitant response of temperature-sensitive alpine timberline vegetation in Colorado and late-glacial changes in North Atlantic thermohaline circulating implicates a rapid, widespread atmospheric transmission of the Younger Dryas climate oscillation.

  19. Estimates of evapotranspiration or effective moisture in Rocky Mountain watersheds from chloride ion concentrations in stream baseflow

    USGS Publications Warehouse

    Claassen, H.C.; Halm, D.R.

    1996-01-01

    The principle that atmospherically derived chloride is a conservative tracer in many watersheds can be used to calculate average annual evapotranspiration or effective moisture if estimates are available for (1) the average annual chloride input to the watershed, (2) the average annual precipitation, and (3) the baseflow chloride concentration are known. The method assumes that no long-term storage of chloride occurs and there is no lithologic source of chloride, or that such source releases only insignificant amounts to groundwater compared to the atmospheric source. National Atmospheric Deposition Program estimates of chloride wet deposition, watershed precipitation records or hyetal map estimates of precipitation input to watersheds, and a single sample of chloride concentration in base flow were used to calculate evapotranspiration for diverse Rocky Mountain watersheds. This estimate was compared to evapotranspiration determined by subtracting mean discharge from precipitation. Of the 19 watersheds used to test the method, 13 agreed within 10%, 2 appear to have not met the lithology criterion, 1 appears to have not met the flow criterion, and 1 neither criterion. The method's greatest strength is the minimal data requirements and its greatest weakness is that for some watersheds it may be difficult to obtain reliable estimates of precipitation and chloride deposition. If reliable discharge data are available, the method may be used to estimate watershed-average precipitation; this is especially useful in high-altitude mountain watersheds where little or no precipitation data are available.

  20. Assessing accuracy of a probabilistic model for very large fire in the Rocky Mountains: A High Park Fire case study

    NASA Astrophysics Data System (ADS)

    Stavros, E.; Abatzoglou, J. T.; Larkin, N.; McKenzie, D.; Steel, A.

    2012-12-01

    Across the western United States, the largest wildfires account for a major proportion of the area burned and substantially affect mountain forests and their associated ecosystem services, among which is pristine air quality. These fires commandeer national attention and significant fire suppression resources. Despite efforts to understand the influence of fuel loading, climate, and weather on annual area burned, few studies have focused on understanding what abiotic factors enable and drive the very largest wildfires. We investigated the correlation between both antecedent climate and in-situ biophysical variables and very large (>20,000 ha) fires in the western United States from 1984 to 2009. We built logistic regression models, at the spatial scale of the national Geographic Area Coordination Centers (GACCs), to estimate the probability that a given day is conducive to a very large wildfire. Models vary in accuracy and in which variables are the best predictors. In a case study of the conditions of the High Park Fire, neighboring Fort Collins, Colorado, occurring in early summer 2012, we evaluate the predictive accuracy of the Rocky Mountain model.

  1. Microhabitat differences impact phylogeographic concordance of codistributed species: genomic evidence in montane sedges (Carex L.) from the Rocky Mountains.

    PubMed

    Massatti, Rob; Knowles, L Lacey

    2014-10-01

    By selecting codistributed, closely related montane sedges from the Rocky Mountains that are similar in virtually all respects but one-their microhabitat affinities-we test predictions about how patterns of genetic variation are expected to differ between Carex nova, an inhabitant of wetlands, and Carex chalciolepis, an inhabitant of drier meadows, slopes, and ridges. Although contemporary populations of the taxa are similarly isolated, the distribution of glacial moraines suggests that their past population connectedness would have differed. Sampling of codistributed population pairs from different mountain ranges combined with the resolution provided by over 24,000 single nucleotide polymorphism loci supports microhabitat-mediated differences in the sedges' patterns of genetic variation that are consistent with their predicted differences in the degree of isolation of ancestral source populations. Our results highlight how microhabitat preferences may interact with glaciations to produce fundamental differences in the past distributions of presently codistributed species. We discuss the implications of these findings for generalizing the impacts of climate-induced distributional shifts for communities, as well as for the prospects of gaining insights about species-specific deterministic processes, not just deterministic community-level responses, from comparative phylogeographic study.

  2. Beaver dams and overbank floods influence groundwater-surface water interactions of a Rocky Mountain riparian area

    USGS Publications Warehouse

    Westbrook, C.J.; Cooper, D.J.; Baker, B.W.

    2006-01-01

    Overbank flooding is recognized by hydrologists as a key process that drives hydrogeomorphic and ecological dynamics in mountain valleys. Beaver create dams that some ecologists have assumed may also drive riparian hydrologic processes, but empirical evidence is lacking. We examined the influence of two in-channel beaver dams and a 10 year flood event on surface inundation, groundwater levels, and flow patterns in a broad alluvial valley during the summers of 2002-2005. We studied a 1.5 km reach of the fourth-order Colorado River in Rocky Mountain National Park (RMNP), Colorado, USA. The beaver dams and ponds greatly enhanced the depth, extent, and duration of, inundation associated with floods; they also elevate the water table during both high and low flows. Unlike previous studies we found the main effects of beaver on hydrologic processes occurred downstream of the dam rather than being confined to the near-pond area. Beaver dams on the Colorado River caused river water to move around them as surface runoff and groundwater seepage during both high- and low-flow periods. The beaver dams attenuated the expected water table decline in the drier summer months for 9 and 12 ha of the 58 ha study area. Thus we provide empirical evidence that beaver can influence hydrologic processes during the peak flow and low-flow periods on some streams, suggesting that beaver can create and maintain hydrologic regimes suitable for the formation and persistence of wetlands. Copyright 2006 by the American Geophysical Union.

  3. Natural gas production and consumption and new pipeline developments in the central and northern Rocky Mountain region

    SciTech Connect

    Tonnsen, J.J. )

    1991-06-01

    An extensive natural gas transmission pipeline system now exists on the North American continent and in the central and northern Rocky Mountain region embracing Wyoming, Montana, the Dakotas, Idaho, Utah, and Colorado. The regional interstate pipeline capacity is dominated by two major systems: Northwest Pipeline Corporation and Colorado Interstate Gas Company. In addition, there are over a dozen important area and intrastate systems. Not counting the lease, plant, and pipline fuel gas, the marketed produciton in the region totals nearly 1 tcf annually of 6% of the national total. Making some allowance for local import and export imbalances across state lines, approximately 45%, or 450 bcf, is consumed locally. Over 500 bcf (almost 1.5 bcf/day) are transported out of the region. Production and consumption in New Mexico, Arizone, and Nevada are not included in these figures. Regional natural gas enters the interstate and continental pipeline system at seven interconnecting points around the periphery of the mountain states. The regional gas must compete for capacity on the major pipelines. Several new projects are expanding pipeline capacity for transportation both within the region and to points outside the region.

  4. Prevalence of antibodies to canine parvovirus and distemper virus in wolves in the Canadian Rocky Mountains.

    PubMed

    Nelson, Brynn; Hebblewhite, Mark; Ezenwa, Vanessa; Shury, Todd; Merrill, Evelyn H; Paquet, Paul C; Schmiegelow, Fiona; Seip, Dale; Skinner, Geoff; Webb, Nathan

    2012-01-01

    Wild carnivores are often exposed to diseases via contact with peridomestic host species that travel through the wildland-urban interfaces. To determine the antibody prevalences and relationships to human activity for two common canid pathogens, we sampled 99 wolves (Canis lupus) from 2000 to 2008 for antibodies to canine parvovirus (CPV) and canine distemper virus (CDV) in Banff and Jasper National Parks and surrounding areas of the Canadian Rockies. This population was the source for wolves reintroduced into the Northern Rockies of the US. Of 99 wolves sampled, 94 had detectable antibody to CPV (95%), 24 were antibody-positive for CDV (24%), and 24 had antibodies to both pathogens (24%). We tested whether antibody prevalences for CPV and CDV were higher closer to human activity (roads, town sites, First Nation reserves) and as a function of sex and age class. Wolves ≥2 yr old were more likely to be have antibodies to CPV. For CDV, male wolves, wolves ≥2 yr, and those closer to First Nation reserves were more likely to have antibodies. Overall, however, we found minimal support for human influence on antibody prevalence for CDV and CPV. The similarity between our antibody prevalence results and results from recent studies in Yellowstone National Park suggests that at least in the case of CDV, and perhaps CPV, these could be important pathogens with potential effects on wolf populations.

  5. A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains

    DOE PAGES

    Lee, W.-L.; Gu, Y.; Liou, K. N.; ...

    2015-05-19

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model – CAM4/CLM4) with a 0.23° × 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D–PP (plane-parallel)) adjustment to ensure that the energy balance atmore » the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.« less

  6. A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains

    SciTech Connect

    Lee, W. -L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H. -H.

    2015-05-19

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model – CAM4/CLM4) with a 0.23° × 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D–PP (plane-parallel)) adjustment to ensure that the energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.

  7. Impacts of insect-related forest mortality on hydrologic partitioning and forest productivity in the Southern Rocky Mountains, USA

    NASA Astrophysics Data System (ADS)

    Molotch, N. P.

    2014-12-01

    Recent large-scale changes in forest cover over Western North America associated with insect-related forest mortality may have widespread impacts on water availability. These changes have potentially varied impacts on water availability as forest mortality influences rates of snow accumulation, snowmelt, and evapotranspiration. These changes may significantly alter runoff production and gross primary productivity in mountain forests. Analysis of remotely sensed vegetation greenness data indicate strong forest and understory growth dependencies associated with snow accumulation and snowmelt with peak snow water equivalent explaining 40-50% of inter-annual greenness variability in the Rocky Mountains. Examples of these dependencies will be presented based on the 2012 drought in the Southwestern US whereby near record low snow accumulation and record high potential evapotranspiration have resulted in record low forest greening as evident in the 30+ year satellite record. Forest response to aridity in 2012 was exacerbated by forest disturbance with greenness anomalies 90% greater in magnitude in Bark Beetle and Spruce Budworm affected areas versus undisturbed areas and 182% greater in magnitude in areas impacted by fire. Growing season length was inversely proportional to peak greenness with record high Normalized Difference Vegetation Index (NDVI) values in April (14% above average) corresponding with record low NDVI values in July (7% below average). Gross primary productivity (GPP) estimates from the Moderate Resolution Imaging Spectroradiometer (MODIS) and from the Niwot Ridge, Colorado Ameriflux tower indicate record high April GPP (30% and 90% above average for MODIS and the tower, respectively) correspodning with record low July GPP (19% and 30% below average, respectively). Differences in these energy, water, ecosystem relationships among difference distrurbance regimes indicate that the sensitivity of ecosystems to changes in climate is heavily dependent on

  8. Structural and Geomorphic Controls in Altitudinal Treeline: a Case Study in the Front Ranges of the Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Macias Fauria, M.; Johnson, E. A.

    2009-12-01

    Altitudinal treelines occur on mountain slopes. The geological history of mountain systems sets both the distribution of slope angles, aspects and lengths, and the physical characteristics of the bedrock and regolith on which trees have to establish and grow. We show that altitudinal treeline is largely controlled at an ecosystem level by structural and slope (i.e. gravitational) geomorphic processes operating at a range of temporal and spatial scales, which have direct influence on the hydrological properties of the substrate (affecting the trees’ water and energy budget), as well as on substrate stability, both of which affect recruitment and growth of trees. The study was conducted over a relatively large area of > 200 km2 in the Front Ranges of the Canadian Rocky Mountains, selected to contain the regional diversity of slopes and substrates, which is the result of hundreds of millions of years of sea deposition, subsequent mountain building, and deep erosion by glaciations. Very high-resolution remote sensing data (LiDAR), aerial orthophotos taken at several times since the late 1940s, and ground truthing were employed to classify the terrain into process-based geomorphic units. High resolution, landscape-scale treeline studies are able avoid potential biases in site selection (i.e. selection of sites that are not representative of the overall regional treeline), and consequently capture the coupling between trees and the environment at an ecosystem (regional) level. Moreover, explicitly accounting for slope and substrate-related processes occurring in the studied mountain region is paramount in order to understand the dynamics of trees at their altitudinal distribution limit. Presence of trees in each unit was found to be controlled by a set of parameters relevant to both hydrological and slope processes, such as contributing area, slope angle, regolith transmissivity, and aspect. Our results show no treeline advance over the last 60 years in the region, as

  9. Deep crustal imaging of thick-skinned foreland fold and thrust belts: The Rocky Mountains and the Sierras Pampeanas

    NASA Astrophysics Data System (ADS)

    Sheehan, A.; Anderson, M. L.; Alvarado, P. M.; Beck, S. L.; Erslev, E.; Gilbert, H. J.; Miller, K. C.; Ridgway, K. D.; Worthington, L. L.; Yeck, W. L.; Zandt, G.

    2013-05-01

    Foreland mountain belts consisting of basement-involved arches are major features of many modern and ancient contractional orogens. They occur most prominently during low-angle subduction (e.g., the Rocky Mountains of North America and Sierras Pampeanas of South America) and continental collision. The dissimilarity between thick-skinned, arch-dominated and more thin-skinned fold and thrust belts as well as their placement far from active tectonic boundaries prompts the following question: do these arches form due to the lithospheric rheology inherent to the zone between mobile belts and cratons, or are they driven by deeper processes such as low-angle subduction? Previous geologic studies have shown that the upper crustal geometries bounding these arches are broadly similar, however the manifestation of shortening at depth and the rheology of the lower crust and upper mantle has been uncertain due to the absence of detailed geophysical imaging. This situation is changing rapidly, as foreland arches are the target of deep seismological investigations in both North and South America. In this presentation we will compare and contrast recent results from seismological experiments in the Sierras Pampeanas of Argentina and the Bighorn Mountains in Wyoming, USA. Late Cretaceous to Early Eocene Laramide orogenesis produced the Bighorn arch, deforming a sequence of platformal sediments which can be used as stratigraphic markers in tectonic reconstructions. The Bighorn Arch Seismic Experiment (BASE) took place in 2009-10 and included a passive-source seismic experiment, a crustal-scale active-source seismic experiment, a hybrid active-passive experiment, and kinematic investigations. The Pampean flat-slab region of Argentina and Chile is considered a modern analogue for Laramide flat-slab subduction of North America. The Sierras de Cordoba is one of the largest arches comprising the Sierras Pampeanas, lacks much platformal sediment to define deformation geometries, and is

  10. Climate Change and Water Quality in the Rocky Mountains: challenges of too much summer for addressing acid rock drainage (Invited)

    NASA Astrophysics Data System (ADS)

    McKnight, D. M.; Crouch, C. M.; Rue, G. P.

    2013-12-01

    A major water quality concern in the Rocky Mountains is acid rock drainage, which causes acidic conditions and high metal concentrations. The 30-year water quality record for the Snake River watershed in Colorado, USA, shows that for the summer low-flow period zinc concentrations have increased four- to six-fold concurrently with a two- to three week advancement in spring snowmelt. We found that the main source of acidity, zinc and other metals, including rare earth elements to the upper Snake River was a tributary draining an alpine area rich in disseminated pyrite. By conducting a tracer experiment in this tributary, we demonstrated that more than half of the trace metal and acidity loading entered in an upper steep, rocky reach where the tributary is fed by an alpine spring. Another increase in flow and metal loading occurred where the tributary flows through a gently-sloped wetland area containing a bog iron deposit. Analysis of the tracer experiment indicated a significant increase in hyporheic exchange along this wetland reach, where decreases in pH of the water exchanging in the hyporheic zone may be mobilizing metals that had been sequestered in the wetland through sorption to iron oxides. One possible scenario is that decreasing pH in the upper reach has reached a threshold, resulting in mobilization of metals from the hyporheic zone of the wetland. This study illustrates how changes in hydrologic regime may cause changes in biogeochemical processes that exacerbate the danger to aquatic ecosystems associated with acid rock drainage.

  11. Combustion efficiency and emission factors for wildfire-season fires in mixed conifer forests of the northern Rocky Mountains, US

    NASA Astrophysics Data System (ADS)

    Urbanski, S. P.

    2013-07-01

    In the US, wildfires and prescribed burning present significant challenges to air regulatory agencies attempting to achieve and maintain compliance with air quality regulations. Fire emission factors (EF) are essential input for the emission models used to develop wildland fire emission inventories. Most previous studies quantifying wildland fire EF of temperate ecosystems have focused on emissions from prescribed burning conducted outside of the wildfire season. Little information is available on EF for wildfires in temperate forests of the conterminous US. The goal of this work is to provide information on emissions from wildfire-season forest fires in the northern Rocky Mountains, US. In August 2011, we deployed airborne chemistry instruments and sampled emissions over eight days from three wildfires and a prescribed fire that occurred in mixed conifer forests of the northern Rocky Mountains. We measured the combustion efficiency, quantified as the modified combustion efficiency (MCE), and EF for CO2, CO, and CH4. Our study average values for MCE, EFCO2, EFCO, and EFCH4 were 0.883, 1596 g kg-1, 135 g kg-1, 7.30 g kg-1, respectively. Compared with previous field studies of prescribed fires in temperate forests, the fires sampled in our study had significantly lower MCE and EFCO2 and significantly higher EFCO and EFCH4. The fires sampled in this study burned in areas reported to have moderate to heavy components of standing dead trees and down dead wood due to insect activity and previous fire, but fuel consumption data was not available. However, an analysis of MCE and fuel consumption data from 18 prescribed fires reported in the literature indicates that the availability of coarse fuels and conditions favorable for the combustion of these fuels favors low MCE fires. This analysis suggests that fuel composition was an important factor contributing to the low MCE of the fires measured in this study. This study only measured EF for CO2, CO, and CH4; however, we

  12. Biotic and abiotic processes controlling water chemistry during snowmelt at rabbit ears pass, Rocky Mountains, Colorado, U.S.A.

    USGS Publications Warehouse

    Peters, N.E.; Leavesley, G.H.

    1995-01-01

    The chemical composition of snowmelt, groundwater, and streamwater was monitored during the spring of 1991 and 1992 in a 200-ha subalpine catchment on the western flank of the Rocky Mountains near Steamboat Springs, Colorado. Most of the snowmelt occurred during a one-month period annually that began in mid-May 1991 and mid-April 1992. The average water quality characteristics of individual sampling sites (meltwater, streamwater, and groundwater) were similar in 1991 and 1992. The major ions in meltwater were differentially eluted from the snowpack, and meltwater was dominated by Ca2+, SO4/2-, and NO3/-. Groundwater and streamwater were dominated by weathering products, including Ca2+, HCO3/- (measured as alkalinity), and SiO2, and their concentrations decreased as snowmelt progressed. One well had extremely high NO3/- concentrations, which were balanced by Ca2+ concentrations. For this well, hydrogen ion was hypothesized to be generated from nitrification in overlying soils, and subsequently exchanged with other cations, particularly Ca2+. Solute concentrations in streamwater also decreased as snowmelt progressed. Variations in groundwater levels and solute concentrations indicate thai most of the meltwater traveled through the surficial materials. A mass balance for 1992 indicated that the watershed retained H+, NH4/+, NO3/-, SO4/2- and Cl- and was the primary source of base cations and other weathering products. Proportionally more SO4/2- was deposited with the unusually high summer rainfall in 1992 compared to that released from snowmelt, whereas NO3/- was higher in snowmelt and Cl- was the same. The sum of snowmelt and rainfall could account for greater than 90% of the H+ and NH4/+ retained by the watershed and greater than 50% of the NO3/-.The chemical composition of snowmelt, groundwater, and streamwater was monitored during the spring of 1991 and 1992 in a 200-ha subalpine catchment on the western flank of the Rocky Mountains near Steamboat Springs

  13. Numerical Modeling of the Snowmass Creek Paleoglacier, Colorado: Implications for Middle and Late Pleistocene climate in the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Leonard, E. M.; Plummer, M. A.; Carrara, P. E.

    2013-12-01

    Well-preserved moraines from the last two glaciations of the Snowmass Creek valley in the Elk Range of Colorado present an opportunity to examine the character of the high-altitude climate in the Rocky Mountains during marine isotope stages 6 and 2. This study employs a 2-D coupled energy/mass balance and flow model (Plummer and Phillips, 2003) to assess the magnitudes of temperature and precipitation change that could have sustained the glacier in mass-balance equilibrium at its maximum extents during the penultimate (MIS 6 or Bull Lake) glaciation and the last glacial maximum (MIS 2 or Pinedale). Variable substrate effects on glacier flow and ice thickness make the modeling somewhat more complex than in geologically simpler settings. Model results indicate that a temperature depression of about 6.4°C compared to the modern (1971-2000AD) would have been necessary to sustain the 26 km-long Snowmass Creek glacier in mass balance equilibrium during the Bull Lake glaciation, assuming no change from the modern in precipitation amount or seasonality. Uncertainty in the modeling is about 1°C. A 50 percent increase or decrease from modern precipitation would have been coupled with 4.8°C and 8.8°C Bull Lake temperature depressions respectively. The maximum extent of the glacier during MIS 2 or Pinedale glaciation is somewhat less clear. Moraines confidently assigned to the Pinedale glaciation indicate a temperature depression of about 6.1°C, assuming no change in precipitation. An intermediate set of moraines which may be Pinedale in age, would suggest a Pinedale temperature depression very close to that of the Bull Lake glaciation. These Pinedale temperature depression estimates are comparable to those obtained using the same model in three other Colorado ranges (5.5 - 6.8°C with no change in precipitation) and slightly less than those previously obtained using a variety of other paleoglaciological methods (6.4 to 8.5°C with no change in precipitation). The Bull

  14. Cripple Creek and other alkaline-related gold deposits in the Southern Rocky Mountains, USA: Influence of regional tectonics

    USGS Publications Warehouse

    Kelley, K.D.; Ludington, S.

    2002-01-01

    Alkaline-related epithermal vein, breccia, disseminated, skarn, and porphyry gold deposits form a belt in the southern Rocky Mountains along the eastern edge of the North American Cordillera. Alkaline igneous rocks and associated hydrothermal deposits formed at two times. The first was during the Laramide orogeny (about 70-40 Ma), with deposits restricted spatially to the Colorado mineral belt (CMB). Other alkaline igneous rocks and associated gold deposits formed later, during the transition from a compressional to an extensional regime (about 35-27 Ma). These younger rocks and associated deposits are more widespread, following the Rocky Mountain front southward, from Cripple Creek in Colorado through New Mexico. All of these deposits are on the eastern margin of the Cordillera, with voluminous calc-alkaline rocks to the west. The largest deposits in the belt include Cripple Creek and those in the CMB. The most important factor in the formation of all of the gold deposits was the near-surface emplacement of relatively oxidized volatile-rich alkaline magmas. Strontium and lead isotope compositions suggest that the source of the magmas was subduction-modified subcontinental lithosphere. However, Cripple Creek alkaline rocks and older Laramide alkaline rocks in the CMB that were emplaced through hydrously altered LREE-enriched rocks of the Colorado (Yavapai) province have 208Pb/204Pb ratios that suggest these magmas assimilated and mixed with significant amounts of lower crust. The anomalously hot, thick, and light crust beneath Colorado may have been a catalyst for large-scale transfer of volatiles and crustal melting. Increased dissolved H2O (and CO2, F, Cl) of these magmas may have resulted in more productive gold deposits due to more efficient magmatic-hydrothermal systems. High volatile contents may also have promoted Te and V enrichment, explaining the presence of fluorite, roscoelite (vanadium-rich mica) and tellurides in the CMB deposits and Cripple Creek as

  15. The Western Edge of Cratonic North America and Topography of the Northern U.S. Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Foster, D. A.; Russo, R. M.; van der Lee, S.; Mueller, P. A.

    2009-12-01

    We used seismic structure of the upper mantle determined via waveform inversions of surface and regional shear waves (Beadle and van der Lee, 2007) to examine the 3-D geometry of the base of North American lithosphere at the junction between thick, stable cratonic eastern North America and the thinner, recently tectonized western part of the continent. This boundary has been affected by long-term subduction beneath North America. Variability in convergence rates and directions, and especially in slab dip, have been postulated as important controls on the configuration of the transition from thick to thin lithosphere, and on the distribution and degree of crustal deformation and volcanism in the western U.S. We show that the lithospheric thickness transition at depths of 70-130 km - defined as contours of zero shear velocity anomaly - correlates strongly with the high topography of Laramide uplifts in the northern Rockies, which lie west of this seismically defined craton edge. The transition from thick to thin lithosphere also includes an embayment symmetrically centered on the Yellowstone hotspot, offset cratonward from the surface position of the hotspot by ca. 140-180 km at depths of 130-150 km. We interpret this structure as a reduction of cratonic seismic velocities reflecting the thermal halo around the hotspot, and perhaps associated with the separation of the lower lithosphere. The steep velocity gradient (boundary) east of the hotspot occurs along the Big Horn Mountains, and distributed mountain ranges of southwestern Montana. The steep transition between thin and thick lithosphere turns sharply west along the northern margin of the Helena thrust salient-Lewis and Clark fault zone, where it may reflect the edge of the Archean Medicine Hat Block and/or the northern termination of the influence shallow Farallon slab subduction the during Laramide time. Laramide-style basement uplifts are absent north of this zone and the eastern front ranges of the Rockies