Science.gov

Sample records for rodent olfactory mucosa

  1. Profiling of Olfactory Receptor Gene Expression in Whole Human Olfactory Mucosa

    PubMed Central

    Tarabichi, Maxime; Gregoire, Françoise; Dumont, Jacques E.; Chatelain, Pierre

    2014-01-01

    Olfactory perception is mediated by a large array of olfactory receptor genes. The human genome contains 851 olfactory receptor gene loci. More than 50% of the loci are annotated as nonfunctional due to frame-disrupting mutations. Furthermore haplotypic missense alleles can be nonfunctional resulting from substitution of key amino acids governing protein folding or interactions with signal transduction components. Beyond their role in odor recognition, functional olfactory receptors are also required for a proper targeting of olfactory neuron axons to their corresponding glomeruli in the olfactory bulb. Therefore, we anticipate that profiling of olfactory receptor gene expression in whole human olfactory mucosa and analysis in the human population of their expression should provide an opportunity to select the frequently expressed and potentially functional olfactory receptors in view of a systematic deorphanization. To address this issue, we designed a TaqMan Low Density Array (Applied Biosystems), containing probes for 356 predicted human olfactory receptor loci to investigate their expression in whole human olfactory mucosa tissues from 26 individuals (13 women, 13 men; aged from 39 to 81 years, with an average of 67±11 years for women and 63±12 years for men). Total RNA isolation, DNase treatment, RNA integrity evaluation and reverse transcription were performed for these 26 samples. Then 384 targeted genes (including endogenous control genes and reference genes specifically expressed in olfactory epithelium for normalization purpose) were analyzed using the same real-time reverse transcription PCR platform. On average, the expression of 273 human olfactory receptor genes was observed in the 26 selected whole human olfactory mucosa analyzed, of which 90 were expressed in all 26 individuals. Most of the olfactory receptors deorphanized to date on the basis of sensitivity to known odorant molecules, which are described in the literature, were found in the

  2. Olfactory mucosa for transplant-mediated repair: a complex tissue for a complex injury?

    PubMed

    Lindsay, Susan L; Riddell, John S; Barnett, Susan C

    2010-01-15

    Damage to the brain and spinal cord leads to permanent functional disability because of the very limited capacity of the central nervous system (CNS) for repair. Transplantation of cells into regions of CNS damage represents one approach to enhancing this repair. At present, the ideal cell type for transplant-mediated repair has not been identified but autologous transplantation would be advantageous. Olfactory tissue, in part because of its capacity for regeneration, has emerged as a promising source of cells and several clinical centers are using olfactory cells or tissues in the treatment of CNS damage. Until now, the olfactory ensheathing cell, a specialized glial cell of the olfactory system has been the main focus of attention. Transplants of this cell have been shown to have a neuroprotective function, support axonal regeneration, and remyelinate demyelinated axons. However, the olfactory mucosa is a heterogeneous tissue, composed of a variety of cells supporting both its normal function and its regenerative capacity. It is therefore possible that it contains several cell types that could participate in CNS repair including putative stem cells as well as glia. Here we review the cellular composition of the olfactory tissue and the evidence that equivalent cell types exist in both rodent and human olfactory mucosa suggesting that it is potentially a rich source of autologous cells for transplant-mediated repair of the CNS.

  3. Method of expression of certain bacterial microflora mucosa olfactory area

    NASA Astrophysics Data System (ADS)

    Avrunin, Oleg G.; Nosova, Yana V.; Shushlyapina, Natalia O.; Surtel, Wojciech; Burlibay, Aron; Zhassandykyzy, Maral

    2015-12-01

    The article is devoted to the actual problem - the development of new express diagnostic methods, based on which a doctor-otolaryngologist can quickly and efficiently determine a violation of smell. The work is based on the methods of processing and analysis of medical images and signals. We have also identified informative indicators of endoscopic image of the olfactory region of the nasal mucosa of the upper course.

  4. Environmental Toxicants-Induced Immune Responses in the Olfactory Mucosa

    PubMed Central

    Imamura, Fumiaki; Hasegawa-Ishii, Sanae

    2016-01-01

    Olfactory sensory neurons (OSNs) are the receptor cells for the sense of smell. Although cell bodies are located in the olfactory mucosa (OM) of the nasal cavity, OSN axons directly project to the olfactory bulb (OB) that is a component of the central nervous system (CNS). Because of this direct and short connection from this peripheral tissue to the CNS, the olfactory system has attracted attention as a port-of-entry for environmental toxicants that may cause neurological dysfunction. Selected viruses can enter the OB via the OM and directly affect the CNS. On the other hand, environmental toxicants may induce inflammatory responses in the OM, including infiltration of immune cells and production of inflammatory cytokines. In addition, these inflammatory responses cause the loss of OSNs that are then replaced with newly generated OSNs that re-connect to the OB after inflammation has subsided. It is now known that immune cells and cytokines in the OM play important roles in both degeneration and regeneration of OSNs. Thus, the olfactory system is a unique neuroimmune interface where interaction between nervous and immune systems in the periphery significantly affects the structure, neuronal circuitry, and immunological status of the CNS. The mechanisms by which immune cells regulate OSN loss and the generation of new OSNs are, however, largely unknown. To help develop a better understanding of the mechanisms involved, we have provided a review of key research that has investigated how the immune response in the OM affects the pathophysiology of OSNs. PMID:27867383

  5. Environmental Toxicants-Induced Immune Responses in the Olfactory Mucosa.

    PubMed

    Imamura, Fumiaki; Hasegawa-Ishii, Sanae

    2016-01-01

    Olfactory sensory neurons (OSNs) are the receptor cells for the sense of smell. Although cell bodies are located in the olfactory mucosa (OM) of the nasal cavity, OSN axons directly project to the olfactory bulb (OB) that is a component of the central nervous system (CNS). Because of this direct and short connection from this peripheral tissue to the CNS, the olfactory system has attracted attention as a port-of-entry for environmental toxicants that may cause neurological dysfunction. Selected viruses can enter the OB via the OM and directly affect the CNS. On the other hand, environmental toxicants may induce inflammatory responses in the OM, including infiltration of immune cells and production of inflammatory cytokines. In addition, these inflammatory responses cause the loss of OSNs that are then replaced with newly generated OSNs that re-connect to the OB after inflammation has subsided. It is now known that immune cells and cytokines in the OM play important roles in both degeneration and regeneration of OSNs. Thus, the olfactory system is a unique neuroimmune interface where interaction between nervous and immune systems in the periphery significantly affects the structure, neuronal circuitry, and immunological status of the CNS. The mechanisms by which immune cells regulate OSN loss and the generation of new OSNs are, however, largely unknown. To help develop a better understanding of the mechanisms involved, we have provided a review of key research that has investigated how the immune response in the OM affects the pathophysiology of OSNs.

  6. Olfactory sensations produced by high-energy photon irradiation of the olfactory receptor mucosa in humans

    SciTech Connect

    Sagar, S.M.; Thomas, R.J.; Loverock, L.T.; Spittle, M.F. )

    1991-04-01

    During irradiation of volumes that incorporate the olfactory system, a proportion of patients have complained of a pungent smell. A retrospective study was carried out to determine the prevalence of this side-effect. A questionnaire was sent to 40 patients whose treatment volumes included the olfactory region and also to a control group treated away from this region. The irradiated tumor volumes included the frontal lobe, whole brain, nasopharynx, pituitary fossa, and maxillary antrum. Of the 25 patients who replied, 60% experienced odorous symptoms during irradiation. They described the odor as unpleasant and consistent with ozone. Stimulation of olfactory receptors is considered to be caused by the radiochemical formation of ozone and free radicals in the mucus overlying the olfactory mucosa.

  7. Engraftment and regenerative effects of bone marrow stromal cell transplantation on damaged rat olfactory mucosa.

    PubMed

    Kwon, Jang-Woo; Jo, Hyo Gyeong; Park, Sang Man; Ku, Cheol Hyo; Park, Dong-Joon

    2016-09-01

    To develop a new therapeutic method to treat olfactory deficits, we investigated the engraftment and regenerative effects of transplanted bone marrow stromal cells (BMSCs) on damaged rat olfactory mucosa. To induce olfactory nerve degeneration, one side of the olfactory mucosa of Sprague-Dawley rats was damaged via Triton X-100 irrigation. Phosphate-buffered saline containing syngeneic BMSCs was injected into the olfactory mucosa for transplantation. PKH fluorescent cell dye labeling of BMSCs was used to monitor the transplanted cells. After transplantation of BMSCs, the thickness and regeneration of olfactory mucosa were analyzed using hematoxylin-eosin (H&E) staining. S100 immunohistochemical staining was used to measure nerve sheath regeneration. The increase in NGF (nerve growth factor) level in the olfactory mucosa was measured by Western blot analysis. Transplanted bone marrow stromal cells were engrafted to the lamia propria of damaged mucosa. The mean time for normalization of thickness and morphological recovery of the olfactory mucosa was 4 weeks in the therapeutic group and 9 weeks in the control group. S100 immunoreactivity was higher on the BMSC-treated side than on the control side. During regeneration, the expression of NGF increased in the olfactory mucosa of the experimental group. Based on these results, BMSC transplantation accelerated regeneration of olfactory mucosa damaged by Triton X-100, and NGF may be essential to this regenerative process.

  8. Neuropathology of the olfactory mucosa in chronic rhinosinusitis.

    PubMed

    Yee, Karen K; Pribitkin, Edmund A; Cowart, Beverly J; Vainius, Aldona A; Klock, Christopher T; Rosen, David; Feng, Pu; McLean, Judith; Hahn, Chang-Gyu; Rawson, Nancy E

    2010-01-01

    Chronic rhinosinusitis (CRS) is a complex heterogeneous inflammatory disease that affects the nasal cavity, but the pathological examination of the olfactory mucosa (OM) in this disease has been limited. Nasal biopsy specimens were obtained from 20 control subjects and 50 CRS patients in conjunction with clinical assessments. Histopathology of these nasal biopsy specimens was performed and immunohistochemistry was used to characterize nonneuronal, neuronal, and inflammatory cells in the OM. These OM characteristics were then evaluated to determine the degree to which pathological features may be related to smell loss in CRS. Histopathological examination of control and CRS OM revealed changes in the normal pseudostratified olfactory epithelium (OE): intermixing of goblet cells, metaplasia to squamous-like cells, and erosion of the OE. Lower percentages of normal epithelium and olfactory sensory neurons were found in CRS OE compared with controls. Relative to other CRS patients, those with anosmia had the greatest amount of OE erosion, the highest density of eosinophils infiltrating the OE, and exhibited the most extensive abnormalities on CT and endoscopic examination, including being significantly more likely to exhibit nasal polyposis. Our results suggest that OM pathology observed in nasal biopsy specimens can assist in understanding the degree of epithelial change and sensorineural damage in CRS and the potential for olfactory loss.

  9. Neuropeptide Y enhances olfactory mucosa responses to odorant in hungry rats.

    PubMed

    Negroni, Julia; Meunier, Nicolas; Monnerie, Régine; Salesse, Roland; Baly, Christine; Caillol, Monique; Congar, Patrice

    2012-01-01

    Neuropeptide Y (NPY) plays an important role in regulating appetite and hunger in vertebrates. In the hypothalamus, NPY stimulates food intake under the control of the nutritional status. Previous studies have shown the presence of NPY and receptors in rodent olfactory system, and suggested a neuroproliferative role. Interestingly, NPY was also shown to directly modulate olfactory responses evoked by a food-related odorant in hungry axolotls. We have recently demonstrated that another nutritional cue, insulin, modulates the odorant responses of the rat olfactory mucosa (OM). Therefore, the aim of the present study was to investigate the potential effect of NPY on rat OM responses to odorants, in relation to the animal's nutritional state. We measured the potential NPY modulation of OM responses to odorant, using electro-olfactogram (EOG) recordings, in fed and fasted adult rats. NPY application significantly and transiently increased EOG amplitudes in fasted but not in fed rats. The effects of specific NPY-receptor agonists were similarly quantified, showing that NPY operated mainly through Y1 receptors. These receptors appeared as heterogeneously expressed by olfactory neurons in the OM, and western blot analysis showed that they were overexpressed in fasted rats. These data provide the first evidence that NPY modulates the initial events of odorant detection in the rat OM. Because this modulation depends on the nutritional status of the animal, and is ascribed to NPY, the most potent orexigenic peptide in the central nervous system, it evidences a strong supplementary physiological link between olfaction and nutritional processes.

  10. Neuropeptide Y Enhances Olfactory Mucosa Responses to Odorant in Hungry Rats

    PubMed Central

    Negroni, Julia; Meunier, Nicolas; Monnerie, Régine; Salesse, Roland; Baly, Christine; Caillol, Monique; Congar, Patrice

    2012-01-01

    Neuropeptide Y (NPY) plays an important role in regulating appetite and hunger in vertebrates. In the hypothalamus, NPY stimulates food intake under the control of the nutritional status. Previous studies have shown the presence of NPY and receptors in rodent olfactory system, and suggested a neuroproliferative role. Interestingly, NPY was also shown to directly modulate olfactory responses evoked by a food-related odorant in hungry axolotls. We have recently demonstrated that another nutritional cue, insulin, modulates the odorant responses of the rat olfactory mucosa (OM). Therefore, the aim of the present study was to investigate the potential effect of NPY on rat OM responses to odorants, in relation to the animal's nutritional state. We measured the potential NPY modulation of OM responses to odorant, using electro-olfactogram (EOG) recordings, in fed and fasted adult rats. NPY application significantly and transiently increased EOG amplitudes in fasted but not in fed rats. The effects of specific NPY-receptor agonists were similarly quantified, showing that NPY operated mainly through Y1 receptors. These receptors appeared as heterogeneously expressed by olfactory neurons in the OM, and western blot analysis showed that they were overexpressed in fasted rats. These data provide the first evidence that NPY modulates the initial events of odorant detection in the rat OM. Because this modulation depends on the nutritional status of the animal, and is ascribed to NPY, the most potent orexigenic peptide in the central nervous system, it evidences a strong supplementary physiological link between olfaction and nutritional processes. PMID:23024812

  11. Histological and lectin histochemical studies on the olfactory mucosae of the Korean roe deer, Capreolus pygargus.

    PubMed

    Park, Changnam; Ahn, Meejung; Kim, Jeongtae; Kim, Seungjoon; Moon, Changjong; Shin, Taekyun

    2015-04-01

    The morphological features of the olfactory mucosae of Korean roe deer, Capreolus pygargus, were histologically studied using the ethmoid turbinates containing the olfactory mucosae from six roe deer (male, 2-3 years old). The ethmoid turbinates were embedded in paraffin, and histochemically evaluated in terms of the mucosal characteristics. Lectin histochemistry was performed to investigate the carbohydrate-binding specificity on the olfactory mucosa. Lectins, including Triticum vulgaris wheat germ agglutinin (WGA), Ulex europaeus agglutinin I (UEA-I), and soybean agglutinin (SBA) were used for the N-acetylglucosamine, fucose and N-acetylgalactosamine carbohydrate groups, respectively. Histologically, the olfactory mucosa, positioned mainly in the caudal roof of the nasal cavity, consisted of the olfactory epithelium and the lamina propria. The olfactory epithelium consisted of protein gene product (PGP) 9.5-positive olfactory receptor cells, galectin-3-positive supporting cells and basal cells. Bowman's glands in the lamina propria were stained by both the periodic acid Schiff reagent and alcian blue (pH 2.5). Two types of lectin, WGA and SBA, were labeled in free border, receptor cells, supporting cells and Bowman's glands, with the exception of basal cells, while UEA-I was labeled in free border, supporting cells and Bowman's glands, but not in receptor cells and basal cells, suggesting that carbohydrate terminals on the olfactory mucosae of roe deer vary depending on cell type. This is the first morphological study of the olfactory mucosa of the Korean roe deer to evaluate carbohydrate terminals in the olfactory mucosae.

  12. Ultrastructural characterisation of the olfactory mucosa of the armadillo Dasypus hybridus (Dasypodidae, Xenarthra)

    PubMed Central

    FERRARI, C. C.; CARMANCHAHI, P. D.; ALDANA MARCOS, H. J.; AFFANNI, J. M.

    2000-01-01

    The ultrastructure of the olfactory mucosa of the armadillo Dasypus hybridus was studied. A comparison with the olfactory mucosa of another armadillo (Chaetophractus villosus) was made. The olfactory mucosa of D. hybridus shows many features which are similar to those of other mammals. Interestingly, it differs from the olfactory mucosa of the armadillo C. villosus. A suggestion is made that these differences may be due to differences in the digging habits of these species. In Dasypus, the supporting cells (SCs) showed dense vacuoles, multivesicular bodies and lysosome-like bodies probably related with the endocytotic system. The SCs show a dense network of SER presumably associated with xenobiotic mechanisms. The olfactory receptor neurons exhibit lysosome-like bodies and multivesicular bodies in their perikarya. These organelles suggest the presence of an endocytotic system. Duct cells of Bowman's glands exhibit secretory activities. Bowman's glands are compound-branched tubulo-acinar mixed glands with merocrine secretory mechanisms. PMID:10739023

  13. [Comparison of therapeutic effects of olfactory ensheathing cells derived from olfactory mucosa or olfactory bulb on spinal cord injury mouse models].

    PubMed

    Wang, Libin; Yang, Ping; Liang, Xueyun; Ma, Lijun; Wei, Jun

    2014-04-01

    To isolate and culture olfactory ensheathing cells from different origins, compare their different biological characteristics, and evaluate their therapeutic effect on spinal cord injury mouse models. The olfactory ensheathing cells from olfactory mucosa or olfactory bulb were isolated and cultured by differential adhesion method. The expressions of S100 and P75 proteins were examined by immunofluorescence staining; their growth curves were drawn by MTT colorimetric assay; the secretion of neurotrophic factors, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and neurotrophin-3 (NT-3) was measured by ELISA; the gene expressions of BDNF, NGF, NT-3, neurotrophin-4 (NT-4), growth-associated protein 43 (GAP-43), and microtubule-associated protein (MAP-2) were quantified by real-time PCR; the therapeutic effect on spinal cord injury mouse models was evaluated by Basso, Beattie and Bresnahan (BBB) locomotor rating scale, which had been carried out daily for 8 weeks after the olfactory ensheathing cells of the two different origins were respectively grafted to the mouse models. The two types of olfactory ensheathing cells showed bipolar or tripolar shape; both of them were S100 and P75 protein positive; both of them expressing the gene of BDNF, NGF, NT-3, and NT-4; the olfactory bulb-derived cells did not express MAP-2, but it highly expressed GAP-43 gene; the olfactory mucosa-derived cells displayed a low expression of MAP-2 and GAP-43; the growth speed of olfactory bulb-derived cells was faster than that of the olfactory mucosa-derived cells. Both of them could secrete BDNF, NGF, and NT-3, but the neurotrophic factor levels secreted in the olfactory mucosa-derived cells were higher. The daily neurological BBB scoring showed that the therapeutic effect of olfactory mucosa-derived cells on spinal cord injury mouse models was better than that of the olfactory bulb-derived cells. There exist biological differences between the olfactory mucosa

  14. Endothelin uncouples gap junctions in sustentacular cells and olfactory ensheathing cells of the olfactory mucosa.

    PubMed

    Le Bourhis, Mikaël; Rimbaud, Stéphanie; Grebert, Denise; Congar, Patrice; Meunier, Nicolas

    2014-09-01

    Several factors modulate the first step of odour detection in the rat olfactory mucosa (OM). Among others, vasoactive peptides such as endothelin might play multifaceted roles in the different OM cells. Like their counterparts in the central nervous system, the olfactory sensory neurons are encompassed by different glial-like non-neuronal OM cells; sustentacular cells (SCs) surround their cell bodies, whereas olfactory ensheathing cells (OECs) wrap their axons. Whereas SCs maintain both the structural and ionic integrity of the OM, OECs assure protection, local blood flow control and guiding of olfactory sensory neuron axons toward the olfactory bulb. We previously showed that these non-neuronal OM cells are particularly responsive to endothelin in vitro. Here, we confirmed that the endothelin system is strongly expressed in the OM using in situ hybridization. We then further explored the effects of endothelin on SCs and OECs using electrophysiological recordings and calcium imaging approaches on both in vitro and ex vivo OM preparations. Endothelin induced both robust calcium signals and gap junction uncoupling in both types of cells. This latter effect was mimicked by carbenoxolone, a known gap junction uncoupling agent. However, although endothelin is known for its antiapoptotic effect in the OM, the uncoupling of gap junctions by carbenoxolone was not sufficient to limit the cellular death induced by serum deprivation in OM primary culture. The functional consequence of the endothelin 1-induced reduction of the gap junctional communication between OM non-neuronal cells thus remains to be elucidated. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. [Biological characteristics of human olfactory mucosa mesenchymal stem cells].

    PubMed

    Ge, Lite; Zhuo, Yi; Duan, Da; Zhao, Zhenyu; Teng, Xiaohua; Wang, Lei; Lu, Ming

    2015-01-01

    To observe the biological characteristics of the human olfactory mucosa mesenchymal stem cells (hOM-MSCs). The hOM-MSCs were isolated, cultured and identified in vitro. Scanning electron microscope and transmission electron microscope were used to observe the ultrastructure of hOMMSCs. Th e cells were induced towards adipocyte, osteocyte, neural stem cells, neural-like-cells in vitro. The hOM-MSCs were mainly in spindle shape, arranged with radial colony. The hOMMSCs expressed CD73 and CD90 but no CD34 and CD45. Th e short and thick microvilli processes were seen at the surface of hOM-MSCs by scanning electron microscope, and 2 different cellular morphology of hOM-MSCs were seen under transmission electron microscope. Moreover, the hOMMSCs could be differentiated into adipocyte, osteocyte, neural stem cells and neural cells. The hOM-MSCs possess general biological characteristics of MSCs and display multiple differentiation functions. They can be served as ideal seed cells in tissue-engineering for injury repair.

  16. Anatomy and Cellular Constituents of the Human Olfactory Mucosa: A Review

    PubMed Central

    Chen, C. Russell; Kachramanoglou, Carolina; Li, Daqing; Andrews, Peter; Choi, David

    2014-01-01

    Studies using animal models have recently suggested that the olfactory mucosa may be a source of cells capable of stimulating and contributing to complex neurologic regeneration. Several groups have already transplanted cell derivatives from the olfactory mucosa into injury models, and the results so far have been promising. To fully appreciate the meaning of these experiments, a better understanding of the cellular biology and physiology of the olfactory system is necessary. It is therefore of utmost importance for us to first identify and understand its constituents. PMID:25302141

  17. Telomerase protects adult rodent olfactory ensheathing glia from early senescence.

    PubMed

    Llamusí, María-Beatriz; Rubio, Mari-Paz; Ramón-Cueto, Almudena

    2011-05-01

    Adult olfactory bulb ensheathing glia (OB-OEG) promote the repair of acute, subacute, and chronic spinal cord injuries and autologous transplantation is a feasible approach. There are interspecies differences between adult rodent and primate OB-OEG related to their longevity in culture. Whereas primate OB-OEG exhibit a relatively long life span, under the same culture conditions rodent OB-OEG divide just three to four times, are sensitive to oxidative stress and become senescent after the third week in vitro. Telomerase is a "physiological key regulator" of the life span of normal somatic cells and also has extratelomeric functions such as increased resistance to oxidative stress. To elucidate whether telomerase has a role in the senescence of rodent OB-OEG, we have introduced the catalytic subunit of telomerase mTERT into cultures of these cells by retroviral infection. Native and modified adult rat OB-OEG behaved as telomerase-competent cells as they divided while expressing mTERT but entered senescence once the gene switched off. After ectopic expression of mTERT, OB-OEG resumed division at a nonsenescent rate, expressed p75 and other OEG markers, and exhibited the morphology of nonsenescent OB-OEG. The nonsenescent period of mTERT-OEG lasted 9weeks and then ectopic mTERT switched off and cells entered senescence again. Our results suggest a role of telomerase in early senescence of adult rodent OB-OEG cultures and a protection from oxidative damage. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.

  18. Pre-birth sense of smell in the wild boar: the ontogeny of the olfactory mucosa.

    PubMed

    Fulgione, Domenico; Trapanese, Martina; Buglione, Maria; Rippa, Daniela; Polese, Gianluca; Maresca, Viviana; Maselli, Valeria

    2017-08-01

    Animals recognize their surrounding environments through the sense of smell by detecting thousands of chemical odorants. Wild boars (Sus scrofa) completely depend on their ability to recognize chemical odorants: to detect food, during scavenging and searching partners, during breeding periods and to avoid potential predators. Wild piglets must be prepared for the chemical universe that they will enter after birth, and they show intense neuronal activity in the olfactory mucosa. With this in mind, we investigated the morpho-functional embryonic development of the olfactory mucosa in the wild boar (in five stages before birth). Using mRNA expression analysis of olfactory marker protein and neuropeptide Y, involved in the function of olfactory sensory neurons, we show early activation of the appropriate genes in the wild boar. We hypothesize olfactory pre-birth development in wild boar is highly adaptive. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Histological and lectin histochemical studies on the olfactory and respiratory mucosae of the sheep.

    PubMed

    Ibrahim, Dalia; Nakamuta, Nobuaki; Taniguchi, Kazumi; Yamamoto, Yoshio; Taniguchi, Kazuyuki

    2014-03-01

    The olfactory and respiratory mucosae of the Corriedale sheep were examined using lectin histochemistry in order to clarify the histochemical and glycohistochemical differences between these two tissues. The olfactory epithelium was stained with 13 lectins out of 21 lectins examined, while the respiratory epithelium was positive to 16 lectins. The free border of both of the olfactory and respiratory epithelia was stained with 12 lectins: Wheat germ agglutinin (WGA), succinylated-wheat germ agglutinin (s-WGA), Lycopersicon esculentum lectin (LEL), Solanum tuberosum lectin (STL), Datura stramonium lectin (DSL), Soybean agglutinin (SBA), Bandeiraea simplicifolia lectin-I (BSL-I), Ricinus communis agglutinin-I (RCA-120), Erythrina cristagalli lectin (ECL), Concanavalin A (Con A), Phaseolus vulgaris agglutinin-E (PHA-E) and Phaseolus vulgaris agglutinin-L (PHA-L). The associated glands of the olfactory mucosa, Bowman's glands, were stained with 13 lectins. While both the goblet cells and mucous nasal glands were stained with 8 lectins; five of them (WGA, s-WGA, STL, Vicia villosa agglutinin (VVA) and ECL) were mutually positive among the Bowman's glands, mucous nasal glands and the goblet cells. These findings indicate that the glycohistochemical characteristics of the free borders of both olfactory and respiratory epithelia are similar to each other, suggesting that secretions from the Bowman's glands and those of the goblet cells and mucous nasal glands are partially exchanged between the surface of two epithelia to contribute the functions of the respiratory epithelium and the olfactory receptor cells, respectively.

  20. Neuregulin1 and ErbB expression in the uninjured and regenerating olfactory mucosa

    PubMed Central

    Gilbert, M.A.; Lin, B.; Peterson, J.; Jang, W.; Schwob, J.E.

    2015-01-01

    Neuregulin1, a protein involved in signaling through the ErbB receptors, is required for the proper development of multiple organ systems. A complete understanding of the expression profile of Neu-regulin1 is complicated by the presence of multiple isoform variants that result from extensive alternative splicing. Remarkably, these numerous protein products display a wide range of divergent functional roles, making the characterization of tissue-specific isoforms critical to understanding signaling. Recent evidence suggests an important role for Neuregulin1 signaling during olfactory epithelium development and regeneration. In order to understand the physiological consequences of this signaling, we sought to identify the isoform-specific and cell type-specific expression pattern of Neu-regulin1 in the adult olfactory mucosa using a combination of RT-qPCR, FACS, and immunohistochemistry. To complement this information, we also analyzed the cell-type specific expression patterns of the ErbB receptors using immunohistochemistry. We found that multiple Neuregulin1 isoforms, containing predominantly the Type I and Type III N-termini, are expressed in the uninjured olfactory mucosa. Specifically, we found that Type III Neuregulin1 is highly expressed in mature olfactory sensory neurons and Type I Neuregulin1 is highly expressed in duct gland cells. Surprisingly, the divergent localization of these Neuregulin isoforms and their corresponding ErbB receptors does not support a role for active signaling during normal turnover and maintenance of the olfactory mucosa. Conversely, we found that injury to the olfactory epithelium specifically upregulates the Neuregulin1 Type I isoform bringing the expression pattern adjacent to cells expressing both ErbB2 and ErbB3 which is compatible with active signaling, supporting a functional role for Neuregulin1 specifically during regeneration. PMID:26474499

  1. Isolation of putative stem cells present in human adult olfactory mucosa

    PubMed Central

    Tanos, Tamara; Saibene, Alberto Maria; Pipolo, Carlotta; Battaglia, Paolo

    2017-01-01

    The olfactory mucosa (OM) has the unique characteristic of performing an almost continuous and lifelong neurogenesis in response to external injuries, due to the presence of olfactory stem cells that guarantee the maintenance of the olfactory function. The easy accessibility of the OM in humans makes these stem cells feasible candidates for the development of regenerative therapies. In this report we present a detailed characterization of a patient-derived OM, together with a description of cell cultures obtained from the OM. In addition, we present a method for the enrichment and isolation of OM stem cells that might be used for future translational studies dealing with neuronal plasticity, neuro-regeneration or disease modeling. PMID:28719644

  2. Identification and localisation of glycoconjugates in the olfactory mucosa of the armadillo Chaetophractus villosus

    PubMed Central

    FERRARI, C. C.; CARMANCHAHI, P. D.; ALDANA MARCOS, H. J.; MUGNAINI, M. T.; AFFANNI, J. M.; PAZ, D. A.

    1999-01-01

    Conventional histochemistry and the binding patterns of 22 biotinylated lectins were examined for characterisation of glycoconjugates in the components of the olfactory mucosa of the armadillo Chaetophractus villosus. The mucous lining the olfactory epithelium showed binding sites for DSL, WGA, STL, LEL, PHA-E and JAC. Only the basilar processes of the supporting cells stained for Con-A and S-Con A. The olfactory receptor neurons stained with LEL, LCA, Con A, S-Con A, JAC and PNA. The layer of basal cells did not react with any of the lectins studied. Bowman's glands in the lamina propria showed subpopulations of acinar cells reacting with SBA, S-WGA, WGA, STL, Con A, PSA, PNA, SJA, VVA, JAC and S-Con A, but in our optical studies with lectins we were unable to differentiate between mucous and serous cells in the way that is possible on electron microscopy. The ducts of Bowman's glands were labelled with S-WGA, STL, LEL, PHA-E, BSL-I and JAC. This histochemical study on the glycoconjugates of the olfactory mucosa in the order Xenarthra provides a basis for further experimental investigations. PMID:10386777

  3. Olfactory Mucosa Autografts in Human Spinal Cord Injury: A Pilot Clinical Study

    PubMed Central

    Lima, Carlos; Pratas-Vital, José; Escada, Pedro; Hasse-Ferreira, Armando; Capucho, Clara; Peduzzi, Jean D

    2006-01-01

    Background/Objective: Olfactory mucosa is a readily accessible source of olfactory ensheathing and stem-like progenitor cells for neural repair. To determine the safety and feasibility of transplanting olfactory mucosa autografts into patients with traumatically injured spinal cords, a human pilot clinical study was conducted. Methods: Seven patients ranging from 18 to 32 years of age (American Spinal Injury Association [ASIA] class A) were treated at 6 months to 6.5 years after injury. Olfactory mucosa autografts were transplanted into lesions ranging from 1 to 6 cm that were present at C4–T6 neurological levels. Operations were performed from July 2001 through March 2003. Magnetic resonance imaging (MRI), electromyography (EMG), and ASIA neurological and otolaryngological evaluations were performed before and after surgery. Results: MRI studies revealed moderate to complete filling of the lesion sites. Two patients reported return of sensation in their bladders, and one of these patients regained voluntary contraction of anal sphincter. Two of the 7 ASIA A patients became ASIA C. Every patient had improvement in ASIA motor scores. The mean increase for the 3 subjects with tetraplegia in the upper extremities was 6.3 ± 1.2 (SEM), and the mean increase for the 4 subjects with paraplegia in the lower extremities was 3.9 ± 1.0. Among the patients who improved in their ASIA sensory neurological scores (all except one patient), the mean increase was 20.3 ± 5.0 for light touch and 19.7 ± 4.6 for pinprick. Most of the recovered sensation below the initial level of injury was impaired. Adverse events included sensory decrease in one patient that was most likely caused by difficulty in locating the lesion, and there were a few instances of transient pain that was relieved by medication. EMG revealed motor unit potential when the patient was asked to perform movement. Conclusion: This study shows that olfactory mucosa autograft transplantation into the human injured

  4. Translational potential of olfactory mucosa for the study of neuropsychiatric illness

    PubMed Central

    Borgmann-Winter, K; Willard, S L; Sinclair, D; Mirza, N; Turetsky, B; Berretta, S; Hahn, C-G

    2015-01-01

    The olfactory mucosa (OM) is a unique source of regenerative neural tissue that is readily obtainable from living human subjects and thus affords opportunities for the study of psychiatric illnesses. OM tissues can be used, either as ex vivo OM tissue or in vitro OM-derived neural cells, to explore parameters that have been difficult to assess in the brain of living individuals with psychiatric illness. As OM tissues are distinct from brain tissues, an understanding of the neurobiology of the OM is needed to relate findings in these tissues to those of the brain as well as to design and interpret ex vivo or in vitro OM studies. To that end, we discuss the molecular, cellular and functional characteristics of cell types within the olfactory mucosa, describe the organization of the OM and highlight its role in the olfactory neurocircuitry. In addition, we discuss various approaches to in vitro culture of OM-derived cells and their characterization, focusing on the extent to which they reflect the in vivo neurobiology of the OM. Finally, we review studies of ex vivo OM tissues and in vitro OM-derived cells from individuals with psychiatric, neurodegenerative and neurodevelopmental disorders. In particular, we discuss the concordance of this work with postmortem brain studies and highlight possible future approaches, which may offer distinct strengths in comparison to in vitro paradigms based on genomic reprogramming. PMID:25781226

  5. Changes in smell acuity induced by radiation exposure of the olfactory mucosa

    SciTech Connect

    Ophir, D.; Guterman, A.; Gross-Isseroff, R.

    1988-08-01

    The effects of ionizing radiation on smell acuity were assessed in 12 patients in whom the olfactory mucosa was exposed to radiation in the course of treatment for nasopharyngeal carcinoma or pituitary adenoma. Olfactory detection thresholds for two odorants (amyl acetate and eugenol) were determined before the start of radiation therapy, within a week of termination of therapy, and 1, 3, and 6 months later. The results show clearly that smell acuity is profoundly affected by therapeutic irradiation. Thresholds had increased in all 12 patients by the end of treatment and were still high one month later. Varying degrees of recovery were noted in most patients three to six months after cessation of treatment. The fate of the sense of smell deserves more attention when considering the disability caused by irradiation to certain head and neck tumors.

  6. An olfactory cocktail party: figure-ground segregation of odorants in rodents.

    PubMed

    Rokni, Dan; Hemmelder, Vivian; Kapoor, Vikrant; Murthy, Venkatesh N

    2014-09-01

    In odorant-rich environments, animals must be able to detect specific odorants of interest against variable backgrounds. However, studies have found that both humans and rodents are poor at analyzing the components of odorant mixtures, suggesting that olfaction is a synthetic sense in which mixtures are perceived holistically. We found that mice could be easily trained to detect target odorants embedded in unpredictable and variable mixtures. To relate the behavioral performance to neural representation, we imaged the responses of olfactory bulb glomeruli to individual odors in mice expressing the Ca(2+) indicator GCaMP3 in olfactory receptor neurons. The difficulty of segregating the target from the background depended strongly on the extent of overlap between the glomerular responses to target and background odors. Our study indicates that the olfactory system has powerful analytic abilities that are constrained by the limits of combinatorial neural representation of odorants at the level of the olfactory receptors.

  7. Regeneration and rewiring of rodent olfactory sensory neurons.

    PubMed

    Yu, C Ron; Wu, Yunming

    2017-01-01

    The olfactory sensory neurons are the only neurons in the mammalian nervous system that not only regenerate naturally and in response to injury, but also project to specific targets in the brain. The stem cells in the olfactory epithelium commit to both neuronal and non-neuronal lineages depending on the environmental conditions. They provide a continuous supply of new neurons. A newly generated neuron must express a specific odorant receptor gene and project to a central target consist of axons expressing the same receptor type. Recent studies have provided insights into this highly regulated, complex process. However, the molecular mechanisms that determine the regenerative capacity of stem cells, and the ability of newly generated neurons in directing their axons toward specific targets, remain elusive. Here we review progresses and controversies in the field and offer testable models. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Automated analyses of innate olfactory behaviors in rodents.

    PubMed

    Qiu, Qiang; Scott, Aaron; Scheerer, Hayley; Sapkota, Nirjal; Lee, Daniel K; Ma, Limei; Yu, C Ron

    2014-01-01

    Olfaction based behavioral experiments are important for the investigation of sensory coding, perception, decision making and memory formation. The predominant experimental paradigms employ forced choice operant assays, which require associative learning and reinforced training. Animal performance in these assays not only reflects odor perception but also the confidence in decision making and memory. In this study, we describe a versatile and automated setup, "Poking-Registered Olfactory Behavior Evaluation System" (PROBES), which can be adapted to perform multiple olfactory assays. In addition to forced choice assays, we employ this system to examine animal's innate ability for odor detection, discrimination and preference without elaborate training procedures. These assays provide quantitative measurements of odor discrimination and robust readouts of odor preference. Using PROBES, we find odor detection thresholds are at lower concentrations in naïve animals than those determined by forced choice assays. PROBES-based automated assays provide an efficient way of analyzing innate odor-triggered behaviors.

  9. Experimental and numerical determination of odorant solubility in nasal and olfactory mucosa.

    PubMed

    Kurtz, Daniel B; Zhao, Kai; Hornung, David E; Scherer, Peter

    2004-11-01

    Odorant deposition in the nasal and olfactory mucosas is dependent on a number of factors including local air/odorant flow distribution patterns, odorant mucosal solubility and odorant diffusive transport in the mucosa. Although many of these factors are difficult to measure, mucosal solubility in the bullfrog mucus has been experimentally determined for a few odorants. In the present study an experimental procedure was combined with computational fluid dynamic (CFD) techniques to further describe some of the factors that govern odorant mucosal deposition. The fraction of odorant absorbed by the nasal mucosa (eta) was experimentally determined for a number of odorants by measuring the concentration drop between odorant 'blown' into one nostril and that exiting the contralateral nostril while the subject performed a velopharyngeal closure. Odorant concentrations were measured with a photoionization detector. Odorants were delivered to the nostrils at flow rates of 3.33 and 10 l/min. The velopharyngeal closure nasal air/odorant flows were then simulated using CFD techniques in a 3-D anatomically accurate human nose modeland the mucosal odorant uptake was numerically calculated. The comparison between the numerical simulations and the experimental results lead to an estimation of the human mucosal odorant solubility and the mucosal effective diffusive transport resistance. The results of the study suggest that the increase in diffusive resistance of the mucosal layer over that of a thin layer of water seemed to be general and non-odorant-specific; however, the mucosa solubility was odorant specific and usually followed the trend that odorants with lower water solubility were more soluble in the mucosa than would be predicted from water solubility alone. The ability of this approach to model odorant movement in the nasal cavity was evaluated by comparison of the model output with known values of odorant mucosa solubility.

  10. Patient-derived olfactory mucosa for study of the non-neuronal contribution to amyotrophic lateral sclerosis pathology

    PubMed Central

    García-Escudero, Vega; Rosales, María; Muñoz, José Luis; Scola, Esteban; Medina, Javier; Khalique, Hena; Garaulet, Guillermo; Rodriguez, Antonio; Lim, Filip

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron disease which currently has no cure. Research using rodent ALS models transgenic for mutant superoxide dismutase 1 (SOD1) has implicated that glial–neuronal interactions play a major role in the destruction of motor neurons, but the generality of this mechanism is not clear as SOD1 mutations only account for less than 2% of all ALS cases. Recently, this hypothesis was backed up by observation of similar effects using astrocytes derived from post-mortem spinal cord tissue of ALS patients which did not carry SOD1 mutations. However, such necropsy samples may not be easy to obtain and may not always yield viable cell cultures. Here, we have analysed olfactory mucosa (OM) cells, which can be easily isolated from living ALS patients. Disease-specific changes observed when ALS OM cells were co-cultured with human spinal cord neurons included decreased neuronal viability, aberrant neuronal morphology and altered glial inflammatory responses. Our results show the potential of OM cells as new cell models for ALS. PMID:25807871

  11. Olfactory mucosa-expressed organic anion transporter, Oat6, manifests high affinity interactions with odorant organic anions

    PubMed Central

    Kaler, Gregory; Truong, David M.; Sweeney, Derina E.; Logan, Darren W.; Nagle, Megha; Eraly, Satish A.; Nigam, Sanjay K.

    2007-01-01

    We have characterized the expression of organic anion transporter 6, Oat6 (slc22a20), in olfactory mucosa, as well as its interaction with several odorant organic anions. In situ hybridization reveals diffuse Oat6 expression throughout olfactory epithelium, yet olfactory neurons laser-capture microdissected from either the main olfactory epithelium (MOE) or the vomeronasal organ (VNO) did not express Oat6 mRNA. These data suggest that Oat6 is expressed in non-neuronal cells of olfactory tissue, such as epithelial and/or other supporting cells. We next investigated interaction of Oat6 with several small organic anions that have previously been identified as odortype components in mouse urine. We find that each of these compounds, propionate, 2- and 3-methylbutyrate, benzoate, heptanoate and 2-ethylhexanoate, inhibits Oat6-mediated uptake of a labeled tracer, estrone sulfate, consistent with their being Oat6 substrates. Previously, we noted defects in the renal elimination of odortype and odortype-like molecules in Oat1 knockout mice. The finding that such molecules interact with Oat6 raises the possibility that odorants secreted into the urine through one OAT-mediated mechanism are transported through the olfactory mucosa through another OAT-mediated mechanism. Oat6 might play a direct or indirect role in olfaction, such as modulation of the availability of odorant organic anions at the mucosal surface for presentation to olfactory neurons or facilitation of delivery to a distal site of chemosensation, among other possibilities that we discuss. PMID:17094945

  12. An olfactory cocktail party: figure-ground segregation of odorants in rodents

    PubMed Central

    Rokni, Dan; Hemmelder, Vivian; Kapoor, Vikrant; Murthy, Venkatesh N.

    2014-01-01

    In odorant-rich environments, animals must be able to detect specific odorants of interest against variable backgrounds. However, several studies have suggested that both humans and rodents are very poor at analyzing the components of odorant mixtures, leading to the idea that olfaction is a synthetic sense in which mixtures are perceived holistically. We have developed a behavioral task to directly measure the ability of mice to perceive mixture components and found that mice can be easily trained to detect target odorants embedded in unpredictable and variable mixtures. We imaged the responses of olfactory bulb glomeruli to the individual odors used in the task in mice expressing the Ca++ indicator GCaMP3 in olfactory receptor neurons. By relating behavioral performance to the glomerular response patterns, we found that the difficulty of segregating the target from the background was strongly dependent on the extent of overlap between the representations of the target and the background odors by olfactory receptors. Our study indicates that the olfactory system has powerful analytic abilities that are constrained by the limits of combinatorial neural representation of odorants at the level of the olfactory receptors. PMID:25086608

  13. Detection of prion seeding activity in the olfactory mucosa of patients with Fatal Familial Insomnia.

    PubMed

    Redaelli, Veronica; Bistaffa, Edoardo; Zanusso, Gianluigi; Salzano, Giulia; Sacchetto, Luca; Rossi, Martina; De Luca, Chiara Maria Giulia; Di Bari, Michele; Portaleone, Sara Maria; Agrimi, Umberto; Legname, Giuseppe; Roiter, Ignazio; Forloni, Gianluigi; Tagliavini, Fabrizio; Moda, Fabio

    2017-04-07

    Fatal Familial Insomnia (FFI) is a genetic prion disease caused by a point mutation in the prion protein gene (PRNP) characterized by prominent thalamic atrophy, diffuse astrogliosis and moderate deposition of PrP(Sc) in the brain. Here, for the first time, we demonstrate that the olfactory mucosa (OM) of patients with FFI contains trace amount of PrP(Sc) detectable by PMCA and RT-QuIC. Quantitative PMCA analysis estimated a PrP(Sc) concentration of about 1 × 10(-14) g/ml. In contrast, PrP(Sc) was not detected in OM samples from healthy controls and patients affected by other neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease and frontotemporal dementia. These results indicate that the detection limit of these assays is in the order of a single PrP(Sc) oligomer/molecule with a specificity of 100%.

  14. Detection of prion seeding activity in the olfactory mucosa of patients with Fatal Familial Insomnia

    PubMed Central

    Redaelli, Veronica; Bistaffa, Edoardo; Zanusso, Gianluigi; Salzano, Giulia; Sacchetto, Luca; Rossi, Martina; De Luca, Chiara Maria Giulia; Di Bari, Michele; Portaleone, Sara Maria; Agrimi, Umberto; Legname, Giuseppe; Roiter, Ignazio; Forloni, Gianluigi; Tagliavini, Fabrizio; Moda, Fabio

    2017-01-01

    Fatal Familial Insomnia (FFI) is a genetic prion disease caused by a point mutation in the prion protein gene (PRNP) characterized by prominent thalamic atrophy, diffuse astrogliosis and moderate deposition of PrPSc in the brain. Here, for the first time, we demonstrate that the olfactory mucosa (OM) of patients with FFI contains trace amount of PrPSc detectable by PMCA and RT-QuIC. Quantitative PMCA analysis estimated a PrPSc concentration of about 1 × 10−14 g/ml. In contrast, PrPSc was not detected in OM samples from healthy controls and patients affected by other neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease and frontotemporal dementia. These results indicate that the detection limit of these assays is in the order of a single PrPSc oligomer/molecule with a specificity of 100%. PMID:28387370

  15. A Pilot Clinical Study of Olfactory Mucosa Autograft for Chronic Complete Spinal Cord Injury.

    PubMed

    Iwatsuki, Koichi; Tajima, Fumihiro; Ohnishi, Yu-Ichiro; Nakamura, Takeshi; Ishihara, Masahiro; Hosomi, Koichi; Ninomiya, Koshi; Moriwaki, Takashi; Yoshimine, Toshiki

    2016-06-15

    Recent studies of spinal cord axon regeneration have reported good long-term results using various types of tissue scaffolds. Olfactory tissue allows autologous transplantation and can easily be obtained by a simple biopsy that is performed through the external nares. We performed a clinical pilot study of olfactory mucosa autograft (OMA) for chronic complete spinal cord injury in eight patients according to the procedure outlined by Lima et al. Our results showed no serious adverse events and improvement in both the American Spinal Injury Association (ASIA) Impairment Scale (AIS) grade and ASIA motor score in five patients. The preoperative post-rehabilitation ASIA motor score improved from 50 in all cases to 52 in case 2, 60 in case 4, 52 in case 6, 55 in case 7, and 58 in case 8 at 96 weeks after OMA. The AIS improved from A to C in four cases and from B to C in one case. Motor evoked potentials (MEPs) were also seen in one patient, reflecting conductivity in the central nervous system, including the corticospinal tract. The MEPs induced with transcranial magnetic stimulation allow objective assessment of the integrity of the motor circuitry comprising both the corticospinal tract and the peripheral motor nerves.We show the feasibility of OMA for chronic complete spinal cord injury.

  16. Direct transport of inhaled xylene and its metabolites from the olfactory mucosa to the glomeruli of the olfactory bulbs

    SciTech Connect

    Lewis, J.L.; Dahl, A.R.; Kracko, D.A.

    1994-11-01

    The olfactory epithelium is a unique tissue in that single receptor neurons have dendrites in contact with the external environment at the nasal airway, and axon terminals that penetrate the cribriform plate and synapse in the olfactory bulb. The Central Nervous System (CNS) is protected from systematically circulating toxicants by a blood-brain barrier primarily composed of tight junctions between endothelial cells in cerebral vessels and a high metabolic capacity within these cells. No such barrier has yet been defined to protect the CNS from inhaled toxicants. Because all inhalants do not seem to access the CNS directly, a nose-brain barrier seems plausible. The purpose of the work described here is to determine whether or not a nose-brain barrier exists and to define its components. Although such a barrier is likely to be multi-faceted, the present work focuses only on the importance of gross histologic and metabolic characteristics of the olfactory epithelium in olfactory transport.

  17. Amyloid-aβ Peptide in olfactory mucosa and mesenchymal stromal cells of mild cognitive impairment and Alzheimer's disease patients.

    PubMed

    Ayala-Grosso, Carlos A; Pieruzzini, Rosalinda; Diaz-Solano, Dylana; Wittig, Olga; Abrante, Ligia; Vargas, Leslie; Cardier, Jose

    2015-03-01

    Patients with mild cognitive impairment (MCI) or Alzheimer's disease (AD) might develop olfactory dysfunction that correlates with progression of disease. Alteration of olfactory neuroepithelium associated with MCI may be useful as predictor of cognitive decline. Biomarkers with higher sensitivity and specificity would allow to understand the biological progression of the pathology in association with the clinical course of the disease. In this study, magnetic resonance images, apolipoprotein E (ApoE) load, Olfactory Connecticut test and Montreal Cognitive Assessment (MoCA) indices were obtained from noncognitive impaired (NCI), MCI and AD patients. We established a culture of patient-derived olfactory stromal cells from biopsies of olfactory mucosa (OM) to test whether biological properties of mesenchymal stromal cells (MSC) are concurrent with MCI and AD psychophysical pathology. We determined the expression of amyloid Aβ peptides in the neuroepithelium of tissue sections from MCI and AD, as well as in cultured cells of OM. Reduced migration and proliferation of stromal (CD90(+) ) cells in MCI and AD with respect to NCI patients was determined. A higher proportion of anosmic MCI and AD cases were concurrent with the ApoE ε4 allele. In summary, dysmetabolism of amyloid was concurrent with migration and proliferation impairment of patient-derived stem cells. © 2014 International Society of Neuropathology.

  18. Nav1.7 is the predominant sodium channel in rodent olfactory sensory neurons

    PubMed Central

    2011-01-01

    Background Voltage-gated sodium channel Nav1.7 is preferentially expressed in dorsal root ganglion (DRG) and sympathetic neurons within the peripheral nervous system. Homozygous or compound heterozygous loss-of-function mutations in SCN9A, the gene which encodes Nav1.7, cause congenital insensitivity to pain (CIP) accompanied by anosmia. Global knock-out of Nav1.7 in mice is neonatal lethal reportedly from starvation, suggesting anosmia. These findings led us to hypothesize that Nav1.7 is the main sodium channel in the peripheral olfactory sensory neurons (OSN, also known as olfactory receptor neurons). Methods We used multiplex PCR-restriction enzyme polymorphism, in situ hybridization and immunohistochemistry to determine the identity of sodium channels in rodent OSNs. Results We show here that Nav1.7 is the predominant sodium channel transcript, with low abundance of other sodium channel transcripts, in olfactory epithelium from rat and mouse. Our in situ hybridization data show that Nav1.7 transcripts are present in rat OSNs. Immunostaining of Nav1.7 and Nav1.6 channels in rat shows a complementary accumulation pattern with Nav1.7 in peripheral presynaptic OSN axons, and Nav1.6 primarily in postsynaptic cells and their dendrites in the glomeruli of the olfactory bulb within the central nervous system. Conclusions Our data show that Nav1.7 is the dominant sodium channel in rat and mouse OSN, and may explain anosmia in Nav1.7 null mouse and patients with Nav1.7-related CIP. PMID:21569247

  19. Carrier mediated transport of chlorpheniramine and chlorcyclizine across bovine olfactory mucosa: implications on nose-to-brain transport.

    PubMed

    Kandimalla, Karunya K; Donovan, Maureen D

    2005-03-01

    Delivery to the CNS via the nasal cavity has been pursued as a means to circumvent the blood-brain barrier (BBB), yet the mechanism of drug transport across this novel route is not well understood. Hydroxyzine and triprolidine have been reported to readily reach the CNS following nasal administration, whereas no measurable amounts of chlorcyclizine or chlorpheniramine, structurally similar antihistamines, were observed in the CSF. The permeation of chlorpheniramine and chlorcyclizine in vitro across the bovine olfactory mucosa was studied to investigate the biological and physicochemical characteristics that contribute to the limited CNS disposition of these compounds following nasal administration. The submucosal to mucosal fluxes (J(s-m)) of chlorcyclizine and chlorpheniramine across the olfactory mucosa were significantly greater than the mucosal to submucosal fluxes (J(m-s)). Moreover, the submucosal-mucosal permeability of both compounds was temperature dependent and saturable. In the presence of metabolic inhibitors (ouabain and 2,4-dinitrophenol) and P-glycoprotein (P-gp)/multidrug resistance protein 1 (MRP1) inhibitors (quinidine and verapamil), the J(m-s) increased and J(s-m) decreased significantly. These results indicate that chlorpheniramine and chlorcyclizine are effluxed from the olfactory mucosa by efflux transporters such as P-gp and MRP1. Transport studies across inert polymeric membranes demonstrated that the permeability of chlorpheniramine and chlorcyclizine decreased at donor concentrations higher than 3 mM suggesting that physicochemical properties such as self-aggregation also play a role in the reduced olfactory mucosal permeability of these compounds at higher concentrations.

  20. Human Olfactory Mucosa Multipotent Mesenchymal Stromal Cells Promote Survival, Proliferation, and Differentiation of Human Hematopoietic Cells

    PubMed Central

    Diaz-Solano, Dylana; Wittig, Olga; Ayala-Grosso, Carlos; Pieruzzini, Rosalinda

    2012-01-01

    Multipotent mesenchymal stromal cells (MSCs) from the human olfactory mucosa (OM) are cells that have been proposed as a niche for neural progenitors. OM-MSCs share phenotypic and functional properties with bone marrow (BM) MSCs, which constitute fundamental components of the hematopoietic niche. In this work, we investigated whether human OM-MSCs may promote the survival, proliferation, and differentiation of human hematopoietic stem cells (HSCs). For this purpose, human bone marrow cells (BMCs) were co-cultured with OM-MSCs in the absence of exogenous cytokines. At different intervals, nonadherent cells (NACs) were harvested from BMC/OM-MSC co-cultures, and examined for the expression of blood cell markers by flow cytometry. OM-MSCs supported the survival (cell viability >90%) and proliferation of BMCs, after 54 days of co-culture. At 20 days of co-culture, flow cytometric and microscopic analyses showed a high percentage (73%) of cells expressing the pan-leukocyte marker CD45, and the presence of cells of myeloid origin, including polymorphonuclear leukocytes, monocytes, basophils, eosinophils, erythroid cells, and megakaryocytes. Likewise, T (CD3), B (CD19), and NK (CD56/CD16) cells were detected in the NAC fraction. Colony-forming unit–granulocyte/macrophage (CFU-GM) progenitors and CD34+ cells were found, at 43 days of co-culture. Reverse transcriptase–polymerase chain reaction (RT-PCR) studies showed that OM-MSCs constitutively express early and late-acting hematopoietic cytokines (i.e., stem cell factor [SCF] and granulocyte- macrophage colony-stimulating factor [GM-CSF]). These results constitute the first evidence that OM-MSCs may provide an in vitro microenvironment for HSCs. The capacity of OM-MSCs to support the survival and differentiation of HSCs may be related with the capacity of OM-MSCs to produce hematopoietic cytokines. PMID:22471939

  1. Organisation and tyrosine hydroxylase and calretinin immunoreactivity in the main olfactory bulb of paca (Cuniculus paca): a large caviomorph rodent.

    PubMed

    Sasahara, Tais Harumi de Castro; Leal, Leonardo Martins; Spillantini, Maria Grazia; Machado, Márcia Rita Fernandes

    2015-04-01

    The majority of neuroanatomical and chemical studies of the olfactory bulb have been performed in small rodents, such as rats and mice. Thus, this study aimed to describe the organisation and the chemical neuroanatomy of the main olfactory bulb (MOB) in paca, a large rodent belonging to the Hystricomorpha suborder and Caviomorpha infraorder. For this purpose, histological and immunohistochemical procedures were used to characterise the tyrosine hydroxylase (TH) and calretinin (CR) neuronal populations and their distribution. The paca MOB has eight layers: the olfactory nerve layer (ONL), the glomerular layer (GL), the external plexiform layer (EPL; subdivided into the inner and outer sublayers), the mitral cell layer (MCL), the internal plexiform layer (IPL), the granule cell layer (GCL), the periventricular layer and the ependymal layer. TH-ir neurons were found mostly in the GL, and moderate numbers of TH-ir neurons were scattered in the EPL. Numerous varicose fibres were distributed in the IPL and in the GCL. CR-ir neurons concentrated in the GL, around the base of the olfactory glomeruli. Most of the CR-ir neurons were located in the MCL, IPL and GCL. Some of the granule cells had an apical dendrite with a growth cone. The CR immunoreactivity was also observed in the ONL with olfactory nerves strongly immunostained. This study has shown that the MOB organisation in paca is consistent with the description in other mammals. The characterisation and distribution of the population of TH and CR in the MOB is not exclusively to this species. This large rodent shares common patterns to other caviomorph rodent, as guinea pig, and to the myomorph rodents, as mice, rats and hamsters.

  2. Study of orexins signal transduction pathways in rat olfactory mucosa and in olfactory sensory neurons-derived cell line Odora: multiple orexin signalling pathways.

    PubMed

    Gorojankina, Tatiana; Grébert, Denise; Salesse, Roland; Tanfin, Zahra; Caillol, Monique

    2007-06-07

    Orexins A and B (OxA and OxB) are multifunctional neuropeptides implicated in the regulation of energy metabolism, wakefulness but also in a broad range of motivated behaviours. They signal through two G-protein-coupled receptors: orexin receptor 1 and 2 (Ox1R and Ox2R). The orexins and their receptors are present at all levels of the rat olfactory system: epithelium, bulb, piriform cortex but their signalling mechanisms remain unknown. We have studied orexins signal transduction pathways in the rat olfactory mucosa (OM) and in the Odora cell line derived from olfactory sensory neurons and heterologously expressing Ox1R or Ox2R. We have demonstrated by western blot and RT-PCR that multiple components of adenylyl cyclase (AC) and phospholipase C (PLC) signalling pathways were identical in OM and Odora cells. OxA and OxB induced a weak increase in IP3 in OM; they induced a significant rise in cAMP and IP3 in Odora transfected cells, suggesting the activation of AC and PLC pathways. Both OxA and OxB induced intracellular calcium elevation and transient activation of MAP kinases (ERK42/44) in Odora/Ox1R and Odora/Ox2R cells. These results suggest the existence of multiple orexins signalling pathways in Odora cells and probably in OM, corresponding to different possible roles of these peptides.

  3. Optical recordings from the human nasal mucosa in response to olfactory stimulation.

    PubMed

    Ishimaru, Tadashi; Reden, Jens; Krone, Franziska; Scheibe, Mandy

    2007-08-23

    Using the intrinsic optical signal the present study aimed to investigate changes in blood flow at the nasal epithelium in response to specific olfactory stimulation. Recording equipment included an endoscope, a CCD camera, and a light source of 617 nm. Two concentrations of the specific olfactory stimulant H(2)S (2.8 and 5.6 ppm), generated by a computer-controlled olfactometer, were used for olfactory stimulation. Eight healthy normosmic volunteers participated. Using 5.6 ppm H(2)S stimuli, responses were typically recorded from the olfactory cleft, middle turbinate, and middle meatus while responses were less pronounced for 2.8 ppm H(2)S stimuli. Response areas were significantly larger for the 5.6 ppm H(2)S stimuli. While further experiments are needed, recordings of the intrinsic optical signal may be used to obtain responses from the nasal cavity to specific olfactory stimuli.

  4. Hierarchical deconstruction of mouse olfactory sensory neurons: from whole mucosa to single-cell RNA-seq

    PubMed Central

    Saraiva, Luis R.; Ibarra-Soria, Ximena; Khan, Mona; Omura, Masayo; Scialdone, Antonio; Mombaerts, Peter; Marioni, John C.; Logan, Darren W.

    2015-01-01

    The mouse olfactory mucosa is a complex chemosensory tissue composed of multiple cell types, neuronal and non-neuronal. We have here applied RNA-seq hierarchically, in three steps of decreasing cellular heterogeneity: starting with crude tissue samples dissected from the nose, proceeding to flow-cytometrically sorted pools of mature olfactory sensory neurons (OSNs), and finally arriving at single mature OSNs. We show that 98.9% of intact olfactory receptor (OR) genes are expressed in mature OSNs. We uncover a hitherto unknown bipartition among mature OSNs. We find that 19 of 21 single mature OSNs each express a single intact OR gene abundantly, consistent with the one neuron-one receptor rule. For the 9 single OSNs where the two alleles of the abundantly expressed OR gene exhibit single-nucleotide polymorphisms, we demonstrate that monoallelic expression of the abundantly expressed OR gene is extremely tight. The remaining two single mature OSNs lack OR gene expression but express Trpc2 and Gucy1b2. We establish these two cells as a neuronal cell type that is fundamentally distinct from canonical, OR-expressing OSNs and that is defined by the differential, higher expression of 55 genes. We propose this tiered experimental approach as a paradigm to unravel gene expression in other cellularly heterogeneous systems. PMID:26670777

  5. Hierarchical deconstruction of mouse olfactory sensory neurons: from whole mucosa to single-cell RNA-seq.

    PubMed

    Saraiva, Luis R; Ibarra-Soria, Ximena; Khan, Mona; Omura, Masayo; Scialdone, Antonio; Mombaerts, Peter; Marioni, John C; Logan, Darren W

    2015-12-16

    The mouse olfactory mucosa is a complex chemosensory tissue composed of multiple cell types, neuronal and non-neuronal. We have here applied RNA-seq hierarchically, in three steps of decreasing cellular heterogeneity: starting with crude tissue samples dissected from the nose, proceeding to flow-cytometrically sorted pools of mature olfactory sensory neurons (OSNs), and finally arriving at single mature OSNs. We show that 98.9% of intact olfactory receptor (OR) genes are expressed in mature OSNs. We uncover a hitherto unknown bipartition among mature OSNs. We find that 19 of 21 single mature OSNs each express a single intact OR gene abundantly, consistent with the one neuron-one receptor rule. For the 9 single OSNs where the two alleles of the abundantly expressed OR gene exhibit single-nucleotide polymorphisms, we demonstrate that monoallelic expression of the abundantly expressed OR gene is extremely tight. The remaining two single mature OSNs lack OR gene expression but express Trpc2 and Gucy1b2. We establish these two cells as a neuronal cell type that is fundamentally distinct from canonical, OR-expressing OSNs and that is defined by the differential, higher expression of 55 genes. We propose this tiered experimental approach as a paradigm to unravel gene expression in other cellularly heterogeneous systems.

  6. Dendritic Arborization Patterns of Small Juxtaglomerular Cell Subtypes within the Rodent Olfactory Bulb

    PubMed Central

    Bywalez, Wolfgang G.; Ona-Jodar, Tiffany; Lukas, Michael; Ninkovic, Jovica; Egger, Veronica

    2017-01-01

    Within the glomerular layer of the rodent olfactory bulb, numerous subtypes of local interneurons contribute to early processing of incoming sensory information. Here we have investigated dopaminergic and other small local juxtaglomerular cells in rats and mice and characterized their dendritic arborization pattern with respect to individual glomeruli by fluorescent labeling via patching and reconstruction of dendrites and glomerular contours from two-photon imaging data. Dopaminergic neurons were identified in a transgenic mouse line where the expression of dopamine transporter (DAT) was labeled with GFP. Among the DAT+ cells we found a small short-axon cell (SAC) subtype featuring hitherto undescribed dendritic specializations. These densely ramifying structures clasped mostly around somata of other juxtaglomerular neurons, which were also small, non-dopaminergic and to a large extent non-GABAergic. Clasping SACs were observed also in wild-type mice and juvenile rats. In DAT+ SAC dendrites, single backpropagating action potentials evoked robust calcium entry throughout both clasping and non-clasping compartments. Besides clasping SACs, most other small neurons either corresponded to the classical periglomerular cell type (PGCs), which was never DAT+, or were undersized cells with a small dendritic tree and low excitability. Aside from the presence of clasps in SAC dendrites, many descriptors of dendritic morphology such as the number of dendrites and the extent of branching were not significantly different between clasping SACs and PGCs. However, a detailed morphometric analysis in relation to glomerular contours revealed that the dendrites of clasping SACs arborized mostly in the juxtaglomerular space and never entered more than one glomerulus (if at all), whereas most PGC dendrites were restricted to their parent glomerulus, similar to the apical tufts of mitral cells. These complementary arborization patterns might underlie a highly complementary functional

  7. [Localization and distribution of human olfactory mucosa in the nasal cavities].

    PubMed

    Escada, Pedro

    2013-01-01

    Introdução: A distribuição da mucosa olfactiva humana só pode ser determinada em estudos que avaliem a totalidade da região olfactiva. O objectivo deste trabalho é determinar a distribuição da mucosa olfactiva humana a partir do estudo histológico, por microscopia óptica, de peças anatómicas da região olfactiva obtidas do cadáver.Material e Métodos: Utilizaram-se peças anatómicas da região olfactiva colhidas durante a autópsia de cadáveres recentes. Em cada uma das peças foi determinada a distância entre a lâmina crivosa e o limite inferior da região olfactiva em três localizações diferentes da parede septal e da parede lateral.Resultados: das 230 peças anatómicas disponíveis, 217 foram excluídas por razões clínicas ou técnicas. Realizaram-se estudosmorfométricos em 13 peças num total de 156 medições. O limite inferior da mucosa olfactiva no septo nasal estava a 15,9 ± 3,2 mm, a 15,3 ± 3 mm e a 16 ± 2,8 mm nas porções anterior, média e posterior da região olfactiva. O limite inferior da mucosa olfactiva na parede turbinal estava a 15,3 ± 2,4 mm, a 14,8 ± 2,3 mm e a 12,3 ± 1,9 mm nas mesmas localizações. O valor mínimo observado foi de 12 mm.Conclusões: A mucosa olfactiva estende-se pelo corneto superior e médio e pelo septo nasal confrontante numa distância que nunca é inferior a 12 mm e que pode ultrapassar os 16 mm. O conhecimento da distribuição exacta da mucosa olfactiva nas fossas nasais pode ser útil para orientar a colheita em seres humanos, com propósitos diagnósticos ou terapêuticos.

  8. A Mathematical Model of the Olfactory Bulb for the Selective Adaptation Mechanism in the Rodent Olfactory System.

    PubMed

    Soh, Zu; Nishikawa, Shinya; Kurita, Yuichi; Takiguchi, Noboru; Tsuji, Toshio

    2016-01-01

    To predict the odor quality of an odorant mixture, the interaction between odorants must be taken into account. Previously, an experiment in which mice discriminated between odorant mixtures identified a selective adaptation mechanism in the olfactory system. This paper proposes an olfactory model for odorant mixtures that can account for selective adaptation in terms of neural activity. The proposed model uses the spatial activity pattern of the mitral layer obtained from model simulations to predict the perceptual similarity between odors. Measured glomerular activity patterns are used as input to the model. The neural interaction between mitral cells and granular cells is then simulated, and a dissimilarity index between odors is defined using the activity patterns of the mitral layer. An odor set composed of three odorants is used to test the ability of the model. Simulations are performed based on the odor discrimination experiment on mice. As a result, we observe that part of the neural activity in the glomerular layer is enhanced in the mitral layer, whereas another part is suppressed. We find that the dissimilarity index strongly correlates with the odor discrimination rate of mice: r = 0.88 (p = 0.019). We conclude that our model has the ability to predict the perceptual similarity of odorant mixtures. In addition, the model also accounts for selective adaptation via the odor discrimination rate, and the enhancement and inhibition in the mitral layer may be related to this selective adaptation.

  9. A Mathematical Model of the Olfactory Bulb for the Selective Adaptation Mechanism in the Rodent Olfactory System

    PubMed Central

    Nishikawa, Shinya; Kurita, Yuichi; Takiguchi, Noboru; Tsuji, Toshio

    2016-01-01

    To predict the odor quality of an odorant mixture, the interaction between odorants must be taken into account. Previously, an experiment in which mice discriminated between odorant mixtures identified a selective adaptation mechanism in the olfactory system. This paper proposes an olfactory model for odorant mixtures that can account for selective adaptation in terms of neural activity. The proposed model uses the spatial activity pattern of the mitral layer obtained from model simulations to predict the perceptual similarity between odors. Measured glomerular activity patterns are used as input to the model. The neural interaction between mitral cells and granular cells is then simulated, and a dissimilarity index between odors is defined using the activity patterns of the mitral layer. An odor set composed of three odorants is used to test the ability of the model. Simulations are performed based on the odor discrimination experiment on mice. As a result, we observe that part of the neural activity in the glomerular layer is enhanced in the mitral layer, whereas another part is suppressed. We find that the dissimilarity index strongly correlates with the odor discrimination rate of mice: r = 0.88 (p = 0.019). We conclude that our model has the ability to predict the perceptual similarity of odorant mixtures. In addition, the model also accounts for selective adaptation via the odor discrimination rate, and the enhancement and inhibition in the mitral layer may be related to this selective adaptation. PMID:27992433

  10. Phosphoinositide and Erk signaling pathways mediate activity-driven rodent olfactory sensory neuronal survival and stress mitigation

    PubMed Central

    Kim, So Yeun; Mammen, Alex; Yoo, Seung-Jun; Cho, Bong Ki; Kim, Eun-Kyoung; Park, Jong-In; Moon, Cheil; Ronnett, Gabriele V.

    2015-01-01

    Olfactory sensory neurons (OSNs) are the initial site for olfactory signal transduction. Therefore, their survival is essential to olfactory function. In the current study, we demonstrated that while odorant stimulation promoted rodent OSN survival, it induced generation of reactive oxygen species in a dose- and time-dependent manner as well as loss of membrane potential and fragmentation of mitochondria. The MEK-Erk pathway played a critical role in mediating these events, as its inhibition decreased odorant stimulation-dependent OSN survival and exacerbated intracellular stress measured by reactive oxygen species generation and heat shock protein 70 (Hsp70) expression. The phosphoinositide pathway, rather than the cyclic AMP pathway, mediated the odorant-induced activation of the MEK-Erk pathway. These findings provide important insights into the mechanisms of activity-driven OSN survival, the role of the phosphoinositide pathway in odorant signaling, and demonstrate that odorant detection and odorant stimulation-mediated survival proceed via independent signaling pathways. This mechanism, which permits independent regulation of odorant detection from survival signaling, may be advantageous if not diminished by repeated or prolonged odor exposure. PMID:25903517

  11. Olfactory detection of caches containing wildland versus cultivated seeds by granivorous rodents

    USDA-ARS?s Scientific Manuscript database

    We conducted a study to examine the ability of rodents to detect caches made with wildland (native and non-native) and cultivated seeds at three locations in western Nevada with different vegetation types and rodent community structures. We established artificial caches containing either one of two...

  12. Mainstream cigarette smoke exposure alters cytochrome P4502G1 expression in F344 rat olfactory mucosa

    SciTech Connect

    Hotchkiss, J.A.; Nikula, K.J.; Lewis, J.L.; Finch, G.L.; Belinsky, S.A.; Dahl, A.R.

    1994-11-01

    Inhalation of mainstream cigarette smoke (MCS) by rats results in multifocal rhinitis, mucous hypersecretion, nasal epithelial hyperplasia and metaplasia, and focal olfactory mucosal atrophy. In humans, cigarette smoking causes long-term, dose-related alterations in olfactory function in both current and former smokers. An olfactory-specific cytochrome P450 has been identified in rabbits and rats. The presence of olfactory-specific P450s, as well as relatively high levels of other biotransformation enzymes, such as NADPH-cytochrome P450 reductase and UDP-glucuronosyl transferase, in the olfactory neuroepithelium suggest that these enzyme systems may play a role in olfaction. This hypothesis is strengthened by the observation that, in rats, the temporal gene activation of P4502G1 coincides with the postnatal increase in the sensitivity of olfactory response to odorants. The purpose of this investigation was to examine the effect of MCS exposure on P4502G1 protein expression.

  13. Safety Profile, Feasibility and Early Clinical Outcome of Cotransplantation of Olfactory Mucosa and Bone Marrow Stem Cells in Chronic Spinal Cord Injury Patients

    PubMed Central

    Goni, Vijay G; Chhabra, Rajesh; Gupta, Ashok; Marwaha, Neelam; Dhillon, Mandeep S; Pebam, Sudesh; Gopinathan, Nirmal Raj

    2014-01-01

    Study Design Prospective case series. Purpose To study the safety and feasibility of cotransplantation of bone marrow stem cells and autologous olfactory mucosa in chronic spinal cord injury. Overview of Literature Stem cell therapies are a novel method in the attempt to restitute heavily damaged tissues. We discuss our experience with this modality in postspinal cord injury paraplegics. Methods The study includes 9 dorsal spine injury patients with American Spinal Injury Association (ASIA) Impairment Scale (AIS) A neurological impairment who underwent de-tethering of the spinal cord followed by cotransplantation with bone marrow stem cells and an olfactory mucosal graft. Participants were evaluated at the baseline and at 6 monthly intervals. Safety and tolerability were evaluated through the monitoring for adverse events and magnetic resonance imaging evaluation. Efficacy assessment was done through neurological and functional outcome measures. Results Surgery was tolerated well by all participants. No significant difference in the ASIA score was observed, although differences in the Functional Independence Measure and Modified Ashworth Scale were statistically significant. No significant complication was observed in any of our patients, except for neurogenic pain in one participant. The follow-up magnetic resonance imaging evaluation revealed an increase in the length of myelomalacia in seven participants. Conclusions The cotransplantation of bone marrow stem cells and olfactory mucosa is a safe, feasible and viable procedure in AIS A participants with thoracic level injuries, as assessed at the 24-month follow-up. No efficacy could be demonstrated. For application, further large-scale multicenter studies are needed. PMID:25187866

  14. Concise review: Patient-derived olfactory stem cells: new models for brain diseases.

    PubMed

    Mackay-Sim, Alan

    2012-11-01

    Traditional models of brain diseases have had limited success in driving candidate drugs into successful clinical translation. This has resulted in large international pharmaceutical companies moving out of neuroscience research. Cells are not brains, obviously, but new patient-derived stem models have the potential to elucidate cell biological aspects of brain diseases that are not present in worm, fly, or rodent models, the work horses of disease investigations and drug discovery. Neural stem cells are present in the olfactory mucosa, the organ of smell in the nose. Patient-derived olfactory mucosa has demonstrated disease-associated differences in a variety of brain diseases and recently olfactory mucosa stem cells have been generated from patients with schizophrenia, Parkinson's disease, and familial dysautonomia. By comparison with cells from healthy controls, patient-derived olfactory mucosa stem cells show disease-specific alterations in gene expression and cell functions including: a shorter cell cycle and faster proliferation in schizophrenia, oxidative stress in Parkinson's disease, and altered cell migration in familial dysautonomia. Olfactory stem cell cultures thus reveal patient-control differences, even in complex genetic diseases such as schizophrenia and Parkinson's disease, indicating that multiple genes of small effect can converge on shared cell signaling pathways to present as a disease-specific cellular phenotype. Olfactory mucosa stem cells can be maintained in homogeneous cultures that allow robust and repeatable multiwell assays suitable for screening libraries of drug candidate molecules. Copyright © 2012 AlphaMed Press.

  15. Shared and differential traits in the accessory olfactory bulb of caviomorph rodents with particular reference to the semiaquatic capybara.

    PubMed

    Suárez, Rodrigo; Santibáñez, Rodrigo; Parra, Daniela; Coppi, Antonio A; Abrahão, Luciana M B; Sasahara, Tais H C; Mpodozis, Jorge

    2011-05-01

    The vomeronasal system is crucial for social and sexual communication in mammals. Two populations of vomeronasal sensory neurons, each expressing Gαi2 or Gαo proteins, send projections to glomeruli of the rostral or caudal accessory olfactory bulb, rAOB and cAOB, respectively. In rodents, the Gαi2- and Gαo-expressing vomeronasal pathways have shown differential responses to small/volatile vs. large/non-volatile semiochemicals, respectively. Moreover, early gene expression suggests predominant activation of rAOB and cAOB neurons in sexual vs. aggressive contexts, respectively. We recently described the AOB of Octodon degus, a semiarid-inhabiting diurnal caviomorph. Their AOB has a cell indentation between subdomains and the rAOB is twice the size of the cAOB. Moreover, their AOB receives innervation from the lateral aspect, contrasting with the medial innervation of all other mammals examined to date. Aiming to relate AOB anatomy with lifestyle, we performed a morphometric study on the AOB of the capybara, a semiaquatic caviomorph whose lifestyle differs remarkably from that of O. degus. Capybaras mate in water and scent-mark their surroundings with oily deposits, mostly for male-male communication. We found that, similar to O. degus, the AOB of capybaras shows a lateral innervation of the vomeronasal nerve, a cell indentation between subdomains and heterogeneous subdomains, but in contrast to O. degus the caudal portion is larger than the rostral one. We also observed that four other caviomorph species present a lateral AOB innervation and a cell indentation between AOB subdomains, suggesting that those traits could represent apomorphies of the group. We propose that although some AOB traits may be phylogenetically conserved in caviomorphs, ecological specializations may play an important role in shaping the AOB.

  16. Shared and differential traits in the accessory olfactory bulb of caviomorph rodents with particular reference to the semiaquatic capybara

    PubMed Central

    Suárez, Rodrigo; Santibáñez, Rodrigo; Parra, Daniela; Coppi, Antonio A; Abrahão, Luciana M B; Sasahara, Tais H C; Mpodozis, Jorge

    2011-01-01

    The vomeronasal system is crucial for social and sexual communication in mammals. Two populations of vomeronasal sensory neurons, each expressing Gαi2 or Gαo proteins, send projections to glomeruli of the rostral or caudal accessory olfactory bulb, rAOB and cAOB, respectively. In rodents, the Gαi2- and Gαo-expressing vomeronasal pathways have shown differential responses to small/volatile vs. large/non-volatile semiochemicals, respectively. Moreover, early gene expression suggests predominant activation of rAOB and cAOB neurons in sexual vs. aggressive contexts, respectively. We recently described the AOB of Octodon degus, a semiarid-inhabiting diurnal caviomorph. Their AOB has a cell indentation between subdomains and the rAOB is twice the size of the cAOB. Moreover, their AOB receives innervation from the lateral aspect, contrasting with the medial innervation of all other mammals examined to date. Aiming to relate AOB anatomy with lifestyle, we performed a morphometric study on the AOB of the capybara, a semiaquatic caviomorph whose lifestyle differs remarkably from that of O. degus. Capybaras mate in water and scent-mark their surroundings with oily deposits, mostly for male–male communication. We found that, similar to O. degus, the AOB of capybaras shows a lateral innervation of the vomeronasal nerve, a cell indentation between subdomains and heterogeneous subdomains, but in contrast to O. degus the caudal portion is larger than the rostral one. We also observed that four other caviomorph species present a lateral AOB innervation and a cell indentation between AOB subdomains, suggesting that those traits could represent apomorphies of the group. We propose that although some AOB traits may be phylogenetically conserved in caviomorphs, ecological specializations may play an important role in shaping the AOB. PMID:21457258

  17. Nasal toxicity, carcinogenicity, and olfactory uptake of metals.

    PubMed

    Sunderman, F W

    2001-01-01

    Occupational exposures to inhalation of certain metal dusts or aerosols can cause loss of olfactory acuity, atrophy of the nasal mucosa, mucosal ulcers, perforated nasal septum, or sinonasal cancer. Anosmia and hyposmia have been observed in workers exposed to Ni- or Cd-containing dusts in alkaline battery factories, nickel refineries, and cadmium industries. Ulcers of the nasal mucosa and perforated nasal septum have been reported in workers exposed to Cr(VI) in chromate production and chrome plating, or to As(III) in arsenic smelters. Atrophy of the olfactory epithelium has been observed in rodents following inhalation of NiSO4 or alphaNi3S2. Cancers of the nose and nasal sinuses have been reported in workers exposed to Ni compounds in nickel refining, cutlery factories, and alkaline battery manufacture, or to Cr(VI) in chromate production and chrome plating. In animals, several metals (eg, Al, Cd, Co, Hg, Mn, Ni, Zn) have been shown to pass via olfactory receptor neurons from the nasal lumen through the cribriform plate to the olfactory bulb. Some metals (eg, Mn, Ni, Zn) can cross synapses in the olfactory bulb and migrate via secondary olfactory neurons to distant nuclei of the brain. After nasal instillation of a metal-containing solution, transport of the metal via olfactory axons can occur rapidly, within hours or a few days (eg, Mn), or slowly over days or weeks (eg, Ni). The olfactory bulb tends to accumulate certain metals (eg, Al, Bi, Cu, Mn, Zn) with greater avidity than other regions of the brain. The molecular mechanisms responsible for metal translocation in olfactory neurons and deposition in the olfactory bulb are unclear, but complexation by metal-binding molecules such as carnosine (beta-alanyl-L-histidine) may be involved.

  18. Effectiveness of intense, activity-based physical therapy for individuals with spinal cord injury in promoting motor and sensory recovery: Is olfactory mucosa autograft a factor?

    PubMed Central

    Larson, Cathy A.; Dension, Paula M.

    2013-01-01

    Background/objectives Rehabilitation for individuals with spinal cord injury (SCI) is expanding to include intense, activity-based, out-patient physical therapy (PT). The study's primary purposes were to (i) examine the effectiveness of intense PT in promoting motor and sensory recovery in individuals with SCI and (ii) compare recovery for individuals who had an olfactory mucosa autograft (OMA) with individuals who did not have the OMA while both groups participated in the intense PT program. Methods Prospective, non-randomized, non-blinded, intervention study. Using the American Spinal Injury Association examination, motor and sensory scores for 23 (7 OMA, 6 matched control and 10 other) participants were recorded. Results Mean therapy dosage was 137.3 total hours. The participants’ total, upper and lower extremity motor scores improved significantly while sensory scores did not improve during the first 60 days and from initial to discharge examination. Incomplete SCI or paraplegia was associated with greater motor recovery. Five of 14 participants converted from motor-complete to motor-incomplete SCI. Individuals who had the OMA and participated in intense PT did not have greater sensory or greater magnitude or rate of motor recovery as compared with participants who had intense PT alone. Conclusion This study provides encouraging evidence as to the effectiveness of intense PT for individuals with SCI. Future research is needed to identify the optimal therapy dosage and specific therapeutic activities required to generate clinically meaningful recovery for individuals with SCI including those who elect to undergo a neural recovery/regenerative surgical procedure and those that elect intense therapy alone. PMID:23433335

  19. Fine structure of bacterial adhesion to the epithelial cell membranes of the filiform papillae of tongue and palatine mucosa of rodents: a morphometric, TEM, and HRSEM study.

    PubMed

    Watanabe, Ii-Sei; Ogawa, Koichi; Cury, Diego Pulzatto; Dias, Fernando José; Sosthenes, Marcia Consentino Kronka; Issa, João Paulo Mardegan; Iyomasa, Mamie Mizusaki

    2013-12-01

    The palatine mucosa and filiform papillae of the dorsal tongue mucosae of rodents were examined using transmission electron microscopy (TEM) and high resolution scanning electron microscopy (HRSEM). In the HRSEM method, the samples were fixed in 2% osmium tetroxide, dehydrated in alcohol, critical point-dried, and coated with gold-palladium. In addition, the HRSEM technique was used for morphometric analysis (length, width, and length/width ratio of cocci and bacilli). For the TEM method, the tissues were fixed in modified Karnovsky solution (2.5% glutaraldehyde, 2% formalin in 0.1M sodium phosphate buffer, pH 7.4) and embedded in Spurr resin. The results demonstrated that there are thick polygonal keratinized epithelial cells where groups of bacteria are revealed in three-dimensional images on the surface of filiform papillae in these animals. The bacterial membranes are randomly attached to the microplicae surface of epithelial cells. Morphometrics showed higher values of length and width of cocci in newborn (0 day) as compared to newborn (7 days) and adults animals, the bacilli showed no differences in these measurements. At high magnification, the TEM images revealed the presence of glycocalyx microfilaments that constitute a fine adhesion area between bacterial membranes and the membranes of epithelial microplicae cells. In conclusion, the present data revealed the fine fibrillar structures of bacteria that facilitate adhesion to the epithelial cell membranes of the oral cavity and morphometric changes in newborn (0 day) rats as compared with other periods. Copyright © 2013 Wiley Periodicals, Inc.

  20. Recovery of olfactory function after bilateral bulbectomy.

    PubMed

    Wright, J W; Harding, J W

    1982-04-16

    Mice were trained to discriminate between scented and unscented air. After olfactory bulbs were removed, discrimination was lost, but returned with the formation of synaptic connections between regenerated primary olfactory neurons and the cortex of the forebrain. The acquisition of a second olfactory-mediated task by long-term bulbectomized mice and controls was indistinguishable. The results emphasize the plasticity of the nervous system, correlate the presence of neural connections between olfactory mucosa and forebrain with the recovery of olfactory function, suggest that olfactory-mediated memory resides at least in part outside the olfactory bulbs, and demonstrate that the bulbs are not required for the acquisition of olfactory tasks.

  1. Diagnosis of Human Prion Disease Using Real-Time Quaking-Induced Conversion Testing of Olfactory Mucosa and Cerebrospinal Fluid Samples.

    PubMed

    Bongianni, Matilde; Orrù, Christina; Groveman, Bradley R; Sacchetto, Luca; Fiorini, Michele; Tonoli, Giovanni; Triva, Giorgio; Capaldi, Stefano; Testi, Silvia; Ferrari, Sergio; Cagnin, Annachiara; Ladogana, Anna; Poleggi, Anna; Colaizzo, Elisa; Tiple, Dorina; Vaianella, Luana; Castriciano, Santina; Marchioni, Daniele; Hughson, Andrew G; Imperiale, Daniele; Cattaruzza, Tatiana; Fabrizi, Gian Maria; Pocchiari, Maurizio; Monaco, Salvatore; Caughey, Byron; Zanusso, Gianluigi

    2017-02-01

    Early and accurate in vivo diagnosis of Creutzfeldt-Jakob disease (CJD) is necessary for quickly distinguishing treatable from untreatable rapidly progressive dementias and for future therapeutic trials. This early diagnosis is becoming possible using the real-time quaking-induced conversion (RT-QuIC) seeding assay, which detects minute amounts of the disease-specific pathologic prion protein in cerebrospinal fluid (CSF) or olfactory mucosa (OM) samples. To develop an algorithm for accurate and early diagnosis of CJD by using the RT-QuIC assay on CSF samples, OM samples, or both. In this case-control study, samples of CSF and OM were collected from 86 patients with a clinical diagnosis of probable (n = 51), possible (n = 24), or suspected (n = 11) CJD and 104 negative control samples (54 CSF and 50 OM). The CSF and OM samples were analyzed using conventional RT-QuIC. The CSF samples underwent further testing using improved RT-QuIC conditions. In addition, the diagnostic performance of a novel, easy-to-use, gentle flocked swab for sampling of OM was evaluated. Data were collected from January 1 to June 30, 2015. Correlations between RT-QuIC results and the final diagnosis of recruited patients. Among the 86 patients (37 men [43%] and 49 women [57%]; mean [SD] age, 65.7 [11.5] years) included for analysis, all 61 patients with sporadic CJD had positive RT-QuIC findings using OM or CSF samples or both for an overall RT-QuIC diagnostic sensitivity of 100% (95% CI, 93%-100%). All patients with a final diagnosis of non-prion disease (71 CSF and 67 OM samples) had negative RT-QuIC findings for 100% specificity (95% CI, 94%-100%). Of 8 symptomatic patients with various mutations causing CJD or Gerstmann-Sträussler-Scheinker syndrome, 6 had positive and 2 had negative RT-QuIC findings for a sensitivity of 75% (95% CI, 36%-96%). A proposed diagnostic algorithm for sporadic CJD combines CSF and OM RT-QuIC testing to provide virtually 100% diagnostic sensitivity

  2. Pharmacological inhibition of DNA methyltransferase 1 promotes neuronal differentiation from rodent and human nasal olfactory stem/progenitor cell cultures.

    PubMed

    Franco, I; Ortiz-López, L; Roque-Ramírez, B; Ramírez-Rodríguez, G B; Lamas, M

    2017-05-01

    Nasal olfactory stem and neural progenitor cells (NOS/PCs) are considered possible tools for regenerative stem cell therapies in neurodegenerative diseases. Neurogenesis is a complex process regulated by extrinsic and intrinsic signals that include DNA-methylation and other chromatin modifications that could be experimentally manipulated in order to increase neuronal differentiation. The aim of the present study was the characterization of primary cultures and consecutive passages (P2-P10) of NOS/PCs isolated from male Swiss-Webster (mNOS/PCs) or healthy humans (hNOS/PCs). We evaluated and compared cellular morphology, proliferation rates and the expression pattern of pluripotency-associated markers and DNA methylation-associated gene expression in these cultures. Neuronal differentiation was induced by exposure to all-trans retinoic acid and forskolin for 7 days and evaluated by morphological analysis and immunofluorescence against neuronal markers MAP2, NSE and MAP1B. In response to the inductive cues mNOS/PCs expressed NSE (75.67%) and MAP2 (35.34%); whereas the majority of the hNOS/PCs were immunopositive to MAP1B. Treatment with procainamide, a specific inhibitor of DNA methyltransferase 1 (DNMT1), increases in the number of forskolin'/retinoic acid-induced mature neuronal marker-expressing mNOS/PCs cells and enhances neurite development in hNOS/PCs. Our results indicate that mice and human nasal olfactory stem/progenitors cells share pluripotency-related gene expression suggesting that their application for stem cell therapy is worth pursuing and that DNA methylation inhibitors could be efficient tools to enhance neuronal differentiation from these cells.

  3. Long-Lasting Metabolic Imbalance Related to Obesity Alters Olfactory Tissue Homeostasis and Impairs Olfactory-Driven Behaviors.

    PubMed

    Lacroix, Marie-Christine; Caillol, Monique; Durieux, Didier; Monnerie, Régine; Grebert, Denise; Pellerin, Luc; Repond, Cendrine; Tolle, Virginie; Zizzari, Philippe; Baly, Christine

    2015-10-01

    Obesity is associated with chronic food intake disorders and binge eating. Food intake relies on the interaction between homeostatic regulation and hedonic signals among which, olfaction is a major sensory determinant. However, its potential modulation at the peripheral level by a chronic energy imbalance associated to obese status remains a matter of debate. We further investigated the olfactory function in a rodent model relevant to the situation encountered in obese humans, where genetic susceptibility is juxtaposed on chronic eating disorders. Using several olfactory-driven tests, we compared the behaviors of obesity-prone Sprague-Dawley rats (OP) fed with a high-fat/high-sugar diet with those of obese-resistant ones fed with normal chow. In OP rats, we reported 1) decreased odor threshold, but 2) poor olfactory performances, associated with learning/memory deficits, 3) decreased influence of fasting, and 4) impaired insulin control on food seeking behavior. Associated with these behavioral modifications, we found a modulation of metabolism-related factors implicated in 1) electrical olfactory signal regulation (insulin receptor), 2) cellular dynamics (glucorticoids receptors, pro- and antiapoptotic factors), and 3) homeostasis of the olfactory mucosa and bulb (monocarboxylate and glucose transporters). Such impairments might participate to the perturbed daily food intake pattern that we observed in obese animals. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Greater addition of neurons to the olfactory bulb than to the cerebral cortex of eulipotyphlans but not rodents, afrotherians or primates

    PubMed Central

    Ribeiro, Pedro F. M.; Manger, Paul R.; Catania, Kenneth C.; Kaas, Jon H.; Herculano-Houzel, Suzana

    2014-01-01

    The olfactory bulb is an evolutionarily old structure that antedates the appearance of a six-layered mammalian cerebral cortex. As such, the neuronal scaling rules that apply to scaling the mass of the olfactory bulb as a function of its number of neurons might be shared across mammalian groups, as we have found to be the case for the ensemble of non-cortical, non-cerebellar brain structures. Alternatively, the neuronal scaling rules that apply to the olfactory bulb might be distinct in those mammals that rely heavily on olfaction. The group previously referred to as Insectivora includes small mammals, some of which are now placed in Afrotheria, a base group in mammalian radiation, and others in Eulipotyphla, a group derived later, at the base of Laurasiatheria. Here we show that the neuronal scaling rules that apply to building the olfactory bulb differ across eulipotyphlans and other mammals such that eulipotyphlans have more neurons concentrated in an olfactory bulb of similar size than afrotherians, glires and primates. Most strikingly, while the cerebral cortex gains neurons at a faster pace than the olfactory bulb in glires, and afrotherians follow this trend, it is the olfactory bulb that gains neurons at a faster pace than the cerebral cortex in eulipotyphlans, which contradicts the common view that the cerebral cortex is the fastest expanding structure in brain evolution. Our findings emphasize the importance of not using brain structure size as a proxy for numbers of neurons across mammalian orders, and are consistent with the notion that different selective pressures have acted upon the olfactory system of eulipotyphlans, glires and primates, with eulipotyphlans relying more on olfaction for their behavior than glires and primates. Surprisingly, however, the neuronal scaling rules for primates predict that the human olfactory bulb has as many neurons as the larger eulipotyphlan olfactory bulbs, which questions the classification of humans as microsmatic

  5. The pharmacological characterization of the bicarbonate, proton, and mucus transport systems of the rodent gastric mucosa and their significance in cytoprotection

    SciTech Connect

    Casciano, C.N.

    1988-01-01

    The ability of 2-methyl-8-(phenyl-methoxy) imidazo (1,2{alpha}) pyridine-3-acetonitrile (MPIPA) to inhibit acid secretion and to promote a HCO{sub 3}{sup {minus}} secretion response was examined. MPIPA at 5 {times} 10{sup {minus}6} M inhibited histamine, methacholine, and db{prime} cAMP stimulated acid secretion. MPIPA induced a dose-dependent increase in HCO{sub 3}{sup {minus}} secretion at doses from 100{sup {minus}6} to 10{sup {minus}3} M in both isolated gastric mucosa and fundic slice preparations. An evaluation of ion flux responses associated with the secretion of HCO{sub 3}{sup {minus}} induced by MPIPA revealed a high positive correlation between assayed HCO{sub 3}{sup {minus}} and K{sup +} in the luminal medium of isolated gastric mucosa. Using autoradiography {sup 14}C-MPIPA was localized in both surface epithelia cells and parietal cells within the gastric mucosa, which is consistent with the observed dual action of the compound.

  6. Respective Roles of CYP2A5 and CYP2F2 in the Bioactivation of 3-Methylindole in Mouse Olfactory Mucosa and Lung: Studies Using Cyp2a5-Null and Cyp2f2-Null Mouse Models

    PubMed Central

    Zhou, Xin; D'Agostino, Jaime; Li, Lei; Moore, Chad D.; Yost, Garold S.

    2012-01-01

    The aim of this study was to determine whether mouse CYP2A5 and CYP2F2 play critical roles in the bioactivation of 3-methylindole (3MI), a tissue-selective toxicant, in the target tissues, the nasal olfactory mucosa (OM) and lung. Five metabolites of 3MI were identified in NADPH- and GSH-fortified microsomal reactions, including 3-glutathionyl-S-methylindole (GS-A1), 3-methyl-2-glutathionyl-S-indole (GS-A2), 3-hydroxy-3-methyleneindolenine (HMI), indole-3-carbinol (I-3-C), and 3-methyloxindole (MOI). The metabolite profiles and enzyme kinetics of the reactions were compared between OM and lung, and among wild-type, Cyp2a5-null, and Cyp2f2-null mice. In lung reactions, GS-A1, GS-A2, and HMI were detected as major products, and I-3-C and MOI, as minor metabolites. In OM reactions, all five metabolites were detected in ample amounts. The loss of CYP2F2 affected formation of all 3MI metabolites in the lung and formation of HMI, GS-A1, and GS-A2 in the OM. In contrast, loss of CYP2A5 did not affect formation of 3MI metabolites in the lung but caused substantial decreases in I-3-C and MOI formation in the OM. Thus, whereas CYP2F2 plays a critical role in the 3MI metabolism in the lung, both CYP2A5 and CYP2F2 play important roles in 3MI metabolism in the OM. Furthermore, the fate of the reactive metabolites produced by the two enzymes through common dehydrogenation and epoxidation pathways seemed to differ with CYP2A5 supporting direct conversion to stable metabolites and CYP2F2 supporting further formation of reactive iminium ions. These results provide the basis for understanding the respective roles of CYP2A5 and CYP2F2 in 3MI's toxicity in the respiratory tract. PMID:22228748

  7. Multispectral reflectance imaging of brain activation in rodents: methodological study of the differential path length estimations and first in vivo recordings in the rat olfactory bulb

    NASA Astrophysics Data System (ADS)

    Renaud, Rémi; Martin, Claire; Gurden, Hirac; Pain, Frédéric

    2012-01-01

    Dynamic maps of relative changes in blood volume and oxygenation following brain activation are obtained using multispectral reflectance imaging. The technique relies on optical absorption modifications linked to hemodynamic changes. The relative variation of hemodynamic parameters can be quantified using the modified Beer-Lambert Law if changes in reflected light intensities are recorded at two wavelengths or more and the differential path length (DP) is known. The DP is the mean path length in tissues of backscattered photons and varies with wavelength. It is usually estimated using Monte Carlo simulations in simplified semi-infinite homogeneous geometries. Here we consider the use of multilayered models of the somatosensory cortex (SsC) and olfactory bulb (OB), which are common physiological models of brain activation. Simulations demonstrate that specific DP estimation is required for SsC and OB, specifically for wavelengths above 600 nm. They validate the hypothesis of a constant path length during activation and show the need for specific DP if imaging is performed in a thinned-skull preparation. The first multispectral reflectance imaging data recorded in vivo during OB activation are presented, and the influence of DP on the hemodynamic parameters and the pattern of oxymetric changes in the activated OB are discussed.

  8. Notch1 activity in the olfactory bulb is odour-dependent and contributes to olfactory behaviour.

    PubMed

    Brai, Emanuele; Marathe, Swananda; Zentilin, Lorena; Giacca, Mauro; Nimpf, Johannes; Kretz, Robert; Scotti, Alessandra; Alberi, Lavinia

    2014-11-01

    Notch signalling plays an important role in synaptic plasticity, learning and memory functions in both Drosophila and rodents. In this paper, we report that this feature is not restricted to hippocampal networks but also involves the olfactory bulb (OB). Odour discrimination and olfactory learning in rodents are essential for survival. Notch1 expression is enriched in mitral cells of the mouse OB. These principal neurons are responsive to specific input odorants and relay the signal to the olfactory cortex. Olfactory stimulation activates a subset of mitral cells, which show an increase in Notch activity. In Notch1cKOKln mice, the loss of Notch1 in mitral cells affects the magnitude of the neuronal response to olfactory stimuli. In addition, Notch1cKOKln mice display reduced olfactory aversion to propionic acid as compared to wildtype controls. This indicates, for the first time, that Notch1 is involved in olfactory processing and may contribute to olfactory behaviour. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Subarachnoid space of the CNS, nasal mucosa, and lymphatic system.

    PubMed

    Jackson, R T; Tigges, J; Arnold, W

    1979-04-01

    We have briefly reviewed the literature pertaining to the movement of tracer molecules and infectious organisms within the olfactory nerve. There is a body of evidence indicating that tracers placed in the CSF will quickly move via the olfactory nerve to the nasal mucosa and then to the cervical lymph nodes. Organic and inorganic tracer materials and organisms as diverse as viruses, a bacillus, and an amoeba, when placed in the nasal cavity, have been shown to move from the nasal mucosa via the olfactory nerve to the olfactory bulb and the CSF. We think that a portion of the data on tracer movement is due to incorporation of tracer materials and organisms into the axoplasm of the olfactory neurons with subsequent anterograde or retrograde axoplasmic transport. However, some of the movement of tracers may occur within the olfactory perineural space. This space may be continuous with a subarachnoid extension that surrounds the olfactory nerve as it penetrates the cribriform plate. To our knowledge, no one has yet followed the perineural space to determine if it is continuous from olfactory receptor to olfactory bulb. The consideration of this space and its role is the main reason for this review.

  10. Olfactory epithelium changes in germfree mice

    PubMed Central

    François, Adrien; Grebert, Denise; Rhimi, Moez; Mariadassou, Mahendra; Naudon, Laurent; Rabot, Sylvie; Meunier, Nicolas

    2016-01-01

    Intestinal epithelium development is dramatically impaired in germfree rodents, but the consequences of the absence of microbiota have been overlooked in other epithelia. In the present study, we present the first description of the bacterial communities associated with the olfactory epithelium and explored differences in olfactory epithelium characteristics between germfree and conventional, specific pathogen-free, mice. While the anatomy of the olfactory epithelium was not significantly different, we observed a thinner olfactory cilia layer along with a decreased cellular turn-over in germfree mice. Using electro-olfactogram, we recorded the responses of olfactory sensitive neuronal populations to various odorant stimulations. We observed a global increase in the amplitude of responses to odorants in germfree mice as well as altered responses kinetics. These changes were associated with a decreased transcription of most olfactory transduction actors and of olfactory xenobiotic metabolising enzymes. Overall, we present here the first evidence that the microbiota modulates the physiology of olfactory epithelium. As olfaction is a major sensory modality for most animal species, the microbiota may have an important impact on animal physiology and behaviour through olfaction alteration. PMID:27089944

  11. Human olfactory mesenchymal stromal cell transplants promote remyelination and earlier improvement in gait co‐ordination after spinal cord injury

    PubMed Central

    Lindsay, Susan L.; Toft, Andrew; Griffin, Jacob; M. M. Emraja, Ahmed

    2017-01-01

    Autologous cell transplantation is a promising strategy for repair of the injured spinal cord. Here we have studied the repair potential of mesenchymal stromal cells isolated from the human olfactory mucosa after transplantation into a rodent model of incomplete spinal cord injury. Investigation of peripheral type remyelination at the injury site using immunocytochemistry for P0, showed a more extensive distribution in transplanted compared with control animals. In addition to the typical distribution in the dorsal columns (common to all animals), in transplanted animals only, P0 immunolabelling was consistently detected in white matter lateral and ventral to the injury site. Transplanted animals also showed reduced cavitation. Several functional outcome measures including end‐point electrophysiological testing of dorsal column conduction and weekly behavioural testing of BBB, weight bearing and pain, showed no difference between transplanted and control animals. However, gait analysis revealed an earlier recovery of co‐ordination between forelimb and hindlimb stepping in transplanted animals. This improvement in gait may be associated with the enhanced myelination in ventral and lateral white matter, where fibre tracts important for locomotion reside. Autologous transplantation of mesenchymal stromal cells from the olfactory mucosa may therefore be therapeutically beneficial in the treatment of spinal cord injury. GLIA 2017 GLIA 2017;65:639–656 PMID:28144983

  12. Olfactory Behavioral Testing in the Adult Mouse

    PubMed Central

    M. Witt, Rochelle; M. Galligan, Meghan; R. Despinoy, Jennifer; Segal, Rosalind

    2009-01-01

    The rodent olfactory system is of increasing interest to scientists, studied, in part, in systems biology because of its stereotyped, yet accessible circuitry. In addition, this area's unique ability to generate new neurons throughout an organism's lifetime makes it an attractive system for developmental and regenerative biologists alike. Such interest necessitates a means for a quick, yet reliable assessment of olfactory function. Many tests of olfactory ability are complex, variable or not specifically designed for mice. Also, some tests are sensitive to memory deficits as well as defects in olfactory abilities, confounding obtained results. Here, we describe a simple battery of tests designed to identify defects in olfactory sensitivity and preference. First, an initial general health assessment allows for the identification of animals suitable for further testing. Second, mice are exposed to various dilutions of scents to ascertain whether there is a threshold difference. Third, mice are presented with various scents, both attractive and aversive, that allow for the assessment of olfactory preference. These simple studies should make the initial characterization of olfactory behavior accessible for labs of varied resources and expertise. PMID:19229182

  13. Olfactory behavioral testing in the adult mouse.

    PubMed

    Witt, Rochelle M; Galligan, Meghan M; Despinoy, Jennifer R; Segal, Rosalind

    2009-01-28

    The rodent olfactory system is of increasing interest to scientists, studied, in part, in systems biology because of its stereotyped, yet accessible circuitry. In addition, this area's unique ability to generate new neurons throughout an organism's lifetime makes it an attractive system for developmental and regenerative biologists alike. Such interest necessitates a means for a quick, yet reliable assessment of olfactory function. Many tests of olfactory ability are complex, variable or not specifically designed for mice. Also, some tests are sensitive to memory deficits as well as defects in olfactory abilities, confounding obtained results. Here, we describe a simple battery of tests designed to identify defects in olfactory sensitivity and preference. First, an initial general health assessment allows for the identification of animals suitable for further testing. Second, mice are exposed to various dilutions of scents to ascertain whether there is a threshold difference. Third, mice are presented with various scents, both attractive and aversive, that allow for the assessment of olfactory preference. These simple studies should make the initial characterization of olfactory behavior accessible for labs of varied resources and expertise.

  14. Photoperiod mediated changes in olfactory bulb neurogenesis and olfactory behavior in male white-footed mice (Peromyscus leucopus).

    PubMed

    Walton, James C; Pyter, Leah M; Weil, Zachary M; Nelson, Randy J

    2012-01-01

    Brain plasticity, in relation to new adult mammalian neurons generated in the subgranular zone of the hippocampus, has been well described. However, the functional outcome of new adult olfactory neurons born in the subventricular zone of the lateral ventricles is not clearly defined, as manipulating neurogenesis through various methods has given inconsistent and conflicting results in lab mice. Several small rodent species, including Peromyscus leucopus, display seasonal (photoperiodic) brain plasticity in brain volume, hippocampal function, and hippocampus-dependent behaviors; plasticity in the olfactory system of photoperiodic rodents remains largely uninvestigated. We exposed adult male P. leucopus to long day lengths (LD) and short day lengths (SD) for 10 to 15 weeks and then examined olfactory bulb cell proliferation and survival using the thymidine analog BrdU, olfactory bulb granule cell morphology using Golgi-Cox staining, and behavioral investigation of same-sex conspecific urine. SD mice did not differ from LD counterparts in granular cell morphology of the dendrites or in dendritic spine density. Although there were no differences due to photoperiod in habituation to water odor, SD mice rapidly habituated to male urine, whereas LD mice did not. In addition, short day induced changes in olfactory behavior were associated with increased neurogenesis in the caudal plexiform and granule cell layers of the olfactory bulb, an area known to preferentially respond to water-soluble odorants. Taken together, these data demonstrate that photoperiod, without altering olfactory bulb neuronal morphology, alters olfactory bulb neurogenesis and olfactory behavior in Peromyscus leucopus.

  15. Photoperiod Mediated Changes in Olfactory Bulb Neurogenesis and Olfactory Behavior in Male White-Footed Mice (Peromyscus leucopus)

    PubMed Central

    Weil, Zachary M.; Nelson, Randy J.

    2012-01-01

    Brain plasticity, in relation to new adult mammalian neurons generated in the subgranular zone of the hippocampus, has been well described. However, the functional outcome of new adult olfactory neurons born in the subventricular zone of the lateral ventricles is not clearly defined, as manipulating neurogenesis through various methods has given inconsistent and conflicting results in lab mice. Several small rodent species, including Peromyscus leucopus, display seasonal (photoperiodic) brain plasticity in brain volume, hippocampal function, and hippocampus-dependent behaviors; plasticity in the olfactory system of photoperiodic rodents remains largely uninvestigated. We exposed adult male P. leucopus to long day lengths (LD) and short day lengths (SD) for 10 to 15 weeks and then examined olfactory bulb cell proliferation and survival using the thymidine analog BrdU, olfactory bulb granule cell morphology using Golgi-Cox staining, and behavioral investigation of same-sex conspecific urine. SD mice did not differ from LD counterparts in granular cell morphology of the dendrites or in dendritic spine density. Although there were no differences due to photoperiod in habituation to water odor, SD mice rapidly habituated to male urine, whereas LD mice did not. In addition, short day induced changes in olfactory behavior were associated with increased neurogenesis in the caudal plexiform and granule cell layers of the olfactory bulb, an area known to preferentially respond to water-soluble odorants. Taken together, these data demonstrate that photoperiod, without altering olfactory bulb neuronal morphology, alters olfactory bulb neurogenesis and olfactory behavior in Peromyscus leucopus. PMID:22912730

  16. Organization and distribution of glomeruli in the bowhead whale olfactory bulb

    PubMed Central

    Thewissen, JGM; Usip, Sharon; Suydam, Robert S.; George, John C.

    2015-01-01

    Although modern baleen whales (Mysticeti) retain a functional olfactory system that includes olfactory bulbs, cranial nerve I and olfactory receptor genes, their olfactory capabilities have been reduced to a great degree. This reduction likely occurred as a selective response to their fully aquatic lifestyle. The glomeruli that occur in the olfactory bulb can be divided into two non-overlapping domains, a dorsal domain and a ventral domain. Recent molecular studies revealed that all modern whales have lost olfactory receptor genes and marker genes that are specific to the dorsal domain. Here we show that olfactory bulbs of bowhead whales (Balaena mysticetus) lack glomeruli on the dorsal side, consistent with the molecular data. In addition, we estimate that there are more than 4,000 glomeruli elsewhere in the bowhead whale olfactory bulb, which is surprising given that bowhead whales possess only 80 intact olfactory receptor genes. Olfactory sensory neurons that express the same olfactory receptors in rodents generally project to two specific glomeruli in an olfactory bulb, implying an approximate 1:2 ratio of the number of olfactory receptors to the number of glomeruli. Here we show that this ratio does not apply to bowhead whales, reiterating the conceptual limits of using rodents as model organisms for understanding the initial coding of odor information among mammals. PMID:25945304

  17. Neural Sensitivity to Odorants in Deprived and Normal Olfactory Bulbs

    PubMed Central

    Rodríguez, Francisco B.; Huerta, Ramón; Aylwin, Maria de la Luz

    2013-01-01

    Early olfactory deprivation in rodents is accompanied by an homeostatic regulation of the synaptic connectivity in the olfactory bulb (OB). However, its consequences in the neural sensitivity and discrimination have not been elucidated. We compared the odorant sensitivity and discrimination in early sensory deprived and normal OBs in anesthetized rats. We show that the deprived OB exhibits an increased sensitivity to different odorants when compared to the normal OB. Our results indicate that early olfactory stimulation enhances discriminability of the olfactory stimuli. We found that deprived olfactory bulbs adjusts the overall excitatory and inhibitory mitral cells (MCs) responses to odorants but the receptive fields become wider than in the normal olfactory bulbs. Taken together, these results suggest that an early natural sensory stimulation sharpens the receptor fields resulting in a larger discrimination capability. These results are consistent with previous evidence that a varied experience with odorants modulates the OB's synaptic connections and increases MCs selectivity. PMID:23580211

  18. Lesion of the olfactory epithelium accelerates prion neuroinvasion and disease onset when prion replication is restricted to neurons.

    PubMed

    Crowell, Jenna; Wiley, James A; Bessen, Richard A

    2015-01-01

    Natural prion diseases of ruminants are moderately contagious and while the gastrointestinal tract is the primary site of prion agent entry, other mucosae may be entry sites in a subset of infections. In the current study we examined prion neuroinvasion and disease induction following disruption of the olfactory epithelium in the nasal mucosa since this site contains environmentally exposed olfactory sensory neurons that project directly into the central nervous system. Here we provide evidence for accelerated prion neuroinvasion and clinical onset from the olfactory mucosa after disruption and regeneration of the olfactory epithelium and when prion replication is restricted to neurons. In transgenic mice with neuron restricted replication of prions, there was a reduction in survival when the olfactory epithelium was disrupted prior to intranasal inoculation and there was >25% decrease in the prion incubation period. In a second model, the neurotropic DY strain of transmissible mink encephalopathy was not pathogenic in hamsters by the nasal route, but 50% of animals exhibited brain infection and/or disease when the olfactory epithelium was disrupted prior to intranasal inoculation. A time course analysis of prion deposition in the brain following loss of the olfactory epithelium in models of neuron-restricted prion replication suggests that neuroinvasion from the olfactory mucosa is via the olfactory nerve or brain stem associated cranial nerves. We propose that induction of neurogenesis after damage to the olfactory epithelium can lead to prion infection of immature olfactory sensory neurons and accelerate prion spread to the brain.

  19. Lesion of the Olfactory Epithelium Accelerates Prion Neuroinvasion and Disease Onset when Prion Replication Is Restricted to Neurons

    PubMed Central

    Crowell, Jenna; Wiley, James A.; Bessen, Richard A.

    2015-01-01

    Natural prion diseases of ruminants are moderately contagious and while the gastrointestinal tract is the primary site of prion agent entry, other mucosae may be entry sites in a subset of infections. In the current study we examined prion neuroinvasion and disease induction following disruption of the olfactory epithelium in the nasal mucosa since this site contains environmentally exposed olfactory sensory neurons that project directly into the central nervous system. Here we provide evidence for accelerated prion neuroinvasion and clinical onset from the olfactory mucosa after disruption and regeneration of the olfactory epithelium and when prion replication is restricted to neurons. In transgenic mice with neuron restricted replication of prions, there was a reduction in survival when the olfactory epithelium was disrupted prior to intranasal inoculation and there was >25% decrease in the prion incubation period. In a second model, the neurotropic DY strain of transmissible mink encephalopathy was not pathogenic in hamsters by the nasal route, but 50% of animals exhibited brain infection and/or disease when the olfactory epithelium was disrupted prior to intranasal inoculation. A time course analysis of prion deposition in the brain following loss of the olfactory epithelium in models of neuron-restricted prion replication suggests that neuroinvasion from the olfactory mucosa is via the olfactory nerve or brain stem associated cranial nerves. We propose that induction of neurogenesis after damage to the olfactory epithelium can lead to prion infection of immature olfactory sensory neurons and accelerate prion spread to the brain. PMID:25822718

  20. Rodent Control

    ERIC Educational Resources Information Center

    Indian Journal of Adult Education, 1975

    1975-01-01

    Strategies for rodent control in crop fields, threshing yards, and rural residential areas are presented together with an operational plan for implementing a program for rodent control at the national level. Training personnel in rodent control procedures and procedures for educating the public in the necessity for control are covered. (EC)

  1. Rodent Control

    ERIC Educational Resources Information Center

    Indian Journal of Adult Education, 1975

    1975-01-01

    Strategies for rodent control in crop fields, threshing yards, and rural residential areas are presented together with an operational plan for implementing a program for rodent control at the national level. Training personnel in rodent control procedures and procedures for educating the public in the necessity for control are covered. (EC)

  2. Olfactory neuroblastoma

    SciTech Connect

    O'Connor, T.A.; McLean, P.; Juillard, G.J.; Parker, R.G.

    1989-06-15

    Fifteen patients with olfactory neuroblastoma were treated during the 17-year period of 1969 to 1986. Data was analyzed with respect to age at presentation, sex, presenting signs and symptoms, stage, and results of treatment. Age ranged from 4 to 67 years with the median age being 27 years. Median follow-up was 8 years. Local control was achieved in nine of nine patients or 100% with successful surgical resection, i.e., minimal residual disease, followed by postoperative radiation therapy (45 to 65 Gy) was employed. There were no distant failures when the primary site was controlled. Regional lymph node metastases were infrequent: only 13% (two of 15 patients) presented with positive nodes. Three of four patients treated initially with surgery alone had a local recurrence, two of which were successfully salvaged by combined therapy. There were four patients treated with radiation therapy alone: three had persistent disease after radiation therapy, and one patient was controlled with 65 Gy. Olfactory neuroblastoma has a propensity to recur locally when treated with surgery alone. The authors' experience suggests excellent local control can be achieved with surgery immediately followed by radiation therapy. Thus the authors recommend planned combined treatment for all resectable lesions.

  3. The fine-structural distribution of G-protein receptor kinase 3, beta-arrestin-2, Ca2+/calmodulin-dependent protein kinase II and phosphodiesterase PDE1C2, and a Cl(-)-cotransporter in rodent olfactory epithelia.

    PubMed

    Menco, Bert Ph M

    2005-03-01

    The sequentially activated molecules of olfactory signal-onset are mostly concentrated in the long, thin distal parts of olfactory epithelial receptor cell cilia. Is this also true for molecules of olfactory signal-termination and -regulation? G-protein receptor kinase 3 (GRK3) supposedly aids in signal desensitization at the level of odor receptors, whereas beta-arrestin-2, Ca2+/calmodulin-dependent protein kinase II (CaMKII) and phosphodiesterase (PDE) PDE1C2 are thought to do so at the level of the adenylyl cyclase, ACIII. The Na+, K(+)-2Cl(-)-cotransporter NKCC1 regulates Cl(-)-channel activity. In an attempt to localize the subcellular sites olfactory signal-termination and -regulation we used four antibodies to GRK3, two to beta-arrestin-2, five to CaMKII (one to both the alpha and beta form, and two each specific to CaMKII alpha and beta), two to PDE1C2, and three to Cl(-)-cotransporters. Only antibodies to Cl(-)-cotransporters labeled cytoplasmic compartments of, especially, supporting cells but also those of receptor cells. For all other antibodies, immunoreactivity was mostly restricted to the olfactory epithelial luminal border, confirming light microscopic studies that had shown that antibodies to GRK3, beta- arrestin-2, CaMKII, and PDE1C2 labeled this region. Labeling did indeed include receptor cell cilia but occurred in microvilli of neighboring supporting cells as well. Apical parts of microvillous cells that are distinct from supporting cells, and also of ciliated respiratory cells, immunoreacted slightly with most antibodies. When peptides were available, antibody preabsorption with an excess of peptide reduced labeling intensities. Though some of the antibodies did label apices and microvilli of vomeronasal (VNO) supporting cells, none immunoreacted with VNO sensory structures.

  4. Making scent of the presence and local translation of odorant receptor mRNAs in olfactory axons.

    PubMed

    Dubacq, Caroline; Fouquet, Coralie; Trembleau, Alain

    2014-03-01

    Rodents contain in their genome more than 1000 functional odorant receptor genes, which are specifically expressed by the olfactory sensory neurons projecting from the olfactory epithelium to the olfactory bulb. Strong evidence for the presence and local translation of odorant receptor mRNAs in the axon of olfactory sensory neurons was obtained, but no function has been assigned to these axonal mRNAs yet. The aim of this review is to discuss the evidence for the presence and local translation of odorant receptor mRNAs in olfactory sensory axons, and to speculate on their possible function in the wiring of the mouse olfactory sensory projections.

  5. Anatomy, histochemistry, and immunohistochemistry of the olfactory subsystems in mice.

    PubMed

    Barrios, Arthur W; Núñez, Gonzalo; Sánchez Quinteiro, Pablo; Salazar, Ignacio

    2014-01-01

    The four regions of the murine nasal cavity featuring olfactory neurons were studied anatomically and by labeling with lectins and relevant antibodies with a view to establishing criteria for the identification of olfactory subsystems that are readily applicable to other mammals. In the main olfactory epithelium and the septal organ the olfactory sensory neurons (OSNs) are embedded in quasi-stratified columnar epithelium; vomeronasal OSNs are embedded in epithelium lining the medial interior wall of the vomeronasal duct and do not make contact with the mucosa of the main nasal cavity; and in Grüneberg's ganglion a small isolated population of OSNs lies adjacent to, but not within, the epithelium. With the exception of Grüneberg's ganglion, all the tissues expressing olfactory marker protein (OMP) (the above four nasal territories, the vomeronasal and main olfactory nerves, and the main and accessory olfactory bulbs) are also labeled by Lycopersicum esculentum agglutinin, while Ulex europaeus agglutinin I labels all and only tissues expressing Gαi2 (the apical sensory neurons of the vomeronasal organ, their axons, and their glomerular destinations in the anterior accessory olfactory bulb). These staining patterns of UEA-I and LEA may facilitate the characterization of olfactory anatomy in other species. A 710-section atlas of the anatomy of the murine nasal cavity has been made available on line.

  6. Anatomy, histochemistry, and immunohistochemistry of the olfactory subsystems in mice

    PubMed Central

    Barrios, Arthur W.; Núñez, Gonzalo; Sánchez Quinteiro, Pablo; Salazar, Ignacio

    2014-01-01

    The four regions of the murine nasal cavity featuring olfactory neurons were studied anatomically and by labeling with lectins and relevant antibodies with a view to establishing criteria for the identification of olfactory subsystems that are readily applicable to other mammals. In the main olfactory epithelium and the septal organ the olfactory sensory neurons (OSNs) are embedded in quasi-stratified columnar epithelium; vomeronasal OSNs are embedded in epithelium lining the medial interior wall of the vomeronasal duct and do not make contact with the mucosa of the main nasal cavity; and in Grüneberg's ganglion a small isolated population of OSNs lies adjacent to, but not within, the epithelium. With the exception of Grüneberg's ganglion, all the tissues expressing olfactory marker protein (OMP) (the above four nasal territories, the vomeronasal and main olfactory nerves, and the main and accessory olfactory bulbs) are also labeled by Lycopersicum esculentum agglutinin, while Ulex europaeus agglutinin I labels all and only tissues expressing Gαi2 (the apical sensory neurons of the vomeronasal organ, their axons, and their glomerular destinations in the anterior accessory olfactory bulb). These staining patterns of UEA-I and LEA may facilitate the characterization of olfactory anatomy in other species. A 710-section atlas of the anatomy of the murine nasal cavity has been made available on line. PMID:25071468

  7. The olfactory fascia: an evo-devo concept of the fibrocartilaginous nose.

    PubMed

    Jankowski, Roger; Rumeau, Cécile; de Saint Hilaire, Théophile; Tonnelet, Romain; Nguyen, Duc Trung; Gallet, Patrice; Perez, Manuela

    2016-12-01

    Evo-devo is the science that studies the link between evolution of species and embryological development. This concept helps to understand the complex anatomy of the human nose. The evo-devo theory suggests the persistence in the adult of an anatomical entity, the olfactory fascia, that unites the cartilages of the nose to the olfactory mucosa. We dissected two fresh specimens. After resecting the superficial tissues of the nose, dissection was focused on the disarticulation of the fibrocartilaginous noses from the facial and skull base skeleton. Dissection shows two fibrocartilaginous sacs that were invaginated side-by-side in the midface and attached to the anterior skull base. These membranous sacs were separated in the midline by the perpendicular plate of the ethmoid. Their walls contained the alar cartilages and the lateral expansions of the septolateral cartilage, which we had to separate from the septal cartilage. The olfactory mucosa was located inside their cranial ends. The olfactory fascia is a continuous membrane uniting the nasal cartilages to the olfactory mucosa. Its origin can be found in the invagination and differentiation processes of the olfactory placodes. The fibrous portions of the olfactory fascia may be described as ligaments that unit the different components of the olfactory fascia one to the other and the fibrocartilaginous nose to the facial and skull base skeleton. The basicranial ligaments, fixing the fibrocartilaginous nose to the skull base, represent key elements in the concept of septorhinoplasty by disarticulation.

  8. Species differences in amphibian olfactory neuron reactivity to a monoclonal antibody.

    PubMed

    Crowe, M J; Pixley, S K

    1992-05-01

    A monoclonal antibody immunostained a subpopulation of olfactory sensory neurons in cryostat sections of the olfactory mucosa of the grass frog, Rana pipiens, and the bullfrog, Rana catesbeiana. However, in the olfactory tissues of the African clawed frog, Xenopus laevis, only mucus and mucus-secreting components were stained, and no cell-specific immunoreactivity was seen in the tiger salamander, Ambystoma tigrinum. This antibody is a useful marker of olfactory neuronal subpopulations in some amphibians and illustrates the difficulties in cross-species immunocytochemistry.

  9. Cellular basis for the olfactory response to nicotine.

    PubMed

    Bryant, Bruce; Xu, Jiang; Audige, Valery; Lischka, Fritz W; Rawson, Nancy E

    2010-03-17

    Smokers regulate their smoking behavior on the basis of sensory stimuli independently of the pharmacological effects of nicotine (Rose J. E., et al. (1993) Pharmacol., Biochem. Behav.44 (4), 891-900). A better understanding of sensory mechanisms underlying smoking behavior may help to develop more effective smoking alternatives. Olfactory stimulation by nicotine makes up a considerable part of the flavor of tobacco smoke, yet our understanding of the cellular mechanisms responsible for olfactory detection of nicotine remains incomplete. We used biophysical methods to characterize the nicotine sensitivity and response mechanisms of neurons from olfactory epithelium. In view of substantial differences in the olfactory receptor repertoire between rodent and human (Mombaerts P. (1999) Annu. Rev. Neurosci.22, 487-509), we studied biopsied human olfactory sensory neurons (OSNs), cultured human olfactory cells (Gomez G., et al. (2000) J. Neurosci. Res.62 (5), 737-749), and rat olfactory neurons. Rat and human OSNs responded to S(-)-nicotine with a concentration dependent influx of calcium and activation of adenylate cyclase. Some rat OSNs displayed some stereoselectivity, with neurons responding to either enantiomer alone or to both. Freshly biopsied and primary cultured human olfactory neurons were less stereoselective. Nicotinic cholinergic antagonists had no effect on the responses of rat or human OSNs to nicotine. Patch clamp recording of rat OSNs revealed a nicotine-activated, calcium-sensitive nonspecific cation channel. These results indicate that nicotine activates a canonical olfactory receptor pathway rather than nicotinic cholinergic receptors on OSNs. Further, because the nicotine-sensitive mechanisms of rodents appear generally similar to those of humans, this animal model is an appropriate one for studies of nicotine sensation.

  10. Pharmacology of mammalian olfactory receptors.

    PubMed

    Smith, Richard S; Peterlin, Zita; Araneda, Ricardo C

    2013-01-01

    Mammalian species have evolved a large and diverse number of odorant receptors (ORs). These proteins comprise the largest family of G-protein-coupled receptors (GPCRs) known, amounting to ~1,000-different receptors in the rodent. From the perspective of olfactory coding, the availability of such a vast number of chemosensory receptors poses several fascinating questions; in addition, such a large repertoire provides an attractive biological model to study ligand-receptor interactions. The limited functional expression of these receptors in heterologous systems, however, has greatly hampered attempts to deorphanize them. We have employed a successful approach that combines electrophysiological and imaging techniques to analyze the response profiles of single sensory neurons. Our approach has enabled us to characterize the "odor space" of a population of native aldehyde receptors and the molecular range of a genetically engineered receptor, OR-I7.

  11. Caffeine and the olfactory bulb.

    PubMed

    Hadfield, M G

    1997-08-01

    Caffeine, a popular CNS stimulant, is the most widely used neuroactive drug. Present in coffee, tea, chocolate, and soft drinks as well as over-the-counter and prescription medications, it influences millions of users. This agent has achieved recent notoriety because its dependency consequences and addictive potential have been re-examined and emphasized. Caffeine's central actions are thought to be mediated through adenosine (A) receptors and monoamine neurotransmitters. The present article suggests that the olfactory bulb (OB) may be an important site in the brain that is responsible for caffeine's central actions in several species. This conclusion is based on the extraordinarily robust and selective effects of caffeine on norepinephrine (NE), dopamine (DA), and particularly serotonin (5HT) utilization in the OB of mice. We believe that these phenomena should be given appropriate consideration as a basis for caffeine's central actions, even in primates. Concurrently, we review a rich rodent literature concerned with A, 5HT, NE, and DA receptors in the OB and related structures along with other monoamine parameters. We also review a more limited literature concerned with the primate OB. Finally, we cite the literature that treats the dependency and addictive effects of caffeine in humans, and relate the findings to possible olfactory mechanisms.

  12. Intranasal administration of rotenone in mice attenuated olfactory functions through the lesion of dopaminergic neurons in the olfactory bulb.

    PubMed

    Sasajima, Hitoshi; Miyazono, Sadaharu; Noguchi, Tomohiro; Kashiwayanagi, Makoto

    2015-12-01

    Many environmental chemicals are thought to affect brain function. It was reported that chemicals in the nasal cavity directly reach the brain through the connection between olfactory neurons and the olfactory bulb (OB). In this 'olfactory transport,' xenobiotics absorbed at the nasal mucosa reach the brain by bypassing some physical barriers and defenses, and thus olfactory transport is suspected to be a vulnerable mechanism of the brain against invasion threats of environmental chemicals. In this study, we focused on the neuronal toxicity of rotenone administered intranasally to mice. The results showed that the mice that were administered rotenone had attenuated olfactory functions. We also found that intranasally administered rotenone induced acute mitochondrial stress at the OB. The repeated administration of rotenone resulted in a decrease in the number of dopaminergic neurons, which are inhibitory interneurons in the OB. Taken together, our findings suggest that the inhalation of environmental toxins induces the neurodegeneration of cranial neurons through olfactory transport, and that olfactory dysfunction may be induced as an earliest symptom of neurodegeneration caused by inhaled neurotoxins. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Olfactory and solitary chemosensory cells: two different chemosensory systems in the nasal cavity of the American alligator, Alligator mississippiensis

    PubMed Central

    Hansen, Anne

    2007-01-01

    Background The nasal cavity of all vertebrates houses multiple chemosensors, either innervated by the Ist (olfactory) or the Vth (trigeminal) cranial nerve. Various types of receptor cells are present, either segregated in different compartments (e.g. in rodents) or mingled in one epithelium (e.g. fish). In addition, solitary chemosensory cells have been reported for several species. Alligators which seek their prey both above and under water have only one nasal compartment. Information about their olfactory epithelium is limited. Since alligators seem to detect both volatile and water-soluble odour cues, I tested whether different sensory cell types are present in the olfactory epithelium. Results Electron microscopy and immunocytochemistry were used to examine the sensory epithelium of the nasal cavity of the American alligator. Almost the entire nasal cavity is lined with olfactory (sensory) epithelium. Two types of olfactory sensory neurons are present. Both types bear cilia as well as microvilli at their apical endings and express the typical markers for olfactory neurons. The density of these olfactory neurons varies along the nasal cavity. In addition, solitary chemosensory cells innervated by trigeminal nerve fibres, are intermingled with olfactory sensory neurons. Solitary chemosensory cells express components of the PLC-transduction cascade found in solitary chemosensory cells in rodents. Conclusion The nasal cavity of the American alligator contains two different chemosensory systems incorporated in the same sensory epithelium: the olfactory system proper and solitary chemosensory cells. The olfactory system contains two morphological distinct types of ciliated olfactory receptor neurons. PMID:17683564

  14. Adrenergic modulation of olfactory bulb circuitry affects odor discrimination.

    PubMed

    Doucette, Wilder; Milder, Julie; Restrepo, Diego

    2007-08-01

    A rodent's survival depends upon its ability to perceive odor cues necessary to guide mate selection, sexual behavior, foraging, territorial formation, and predator avoidance. Arguably, the need to discriminate odor cues in a complex olfactory environment requires a highly adaptable olfactory system. Indeed, it has been proposed that context-dependent modulation of the initial sensory relay could alter olfactory perception. Interestingly, 40% of the adrenergic innervation from the locus coeruleus, fibers that are activated by contextual cues, innervates the first relay station in the olfactory system (the main olfactory bulb). Here we utilize restricted pharmacological inhibition of olfactory bulb noradrenergic receptors in awake-behaving animals. We show that combined blockade of alpha and beta adrenergic receptors does not impair two-odor discrimination behavior per se but does impair the ability to discriminate perceptually similar odors. Thus, contextual cues conveyed by noradrenergic fibers alter processing before the second synapse in the olfactory cortex, resulting in tuning of the ability to discriminate between similar odors.

  15. Encoding olfactory signals via multiple chemosensory systems.

    PubMed

    Ma, Minghong

    2007-01-01

    Most animals have evolved multiple olfactory systems to detect general odors as well as social cues. The sophistication and interaction of these systems permit precise detection of food, danger, and mates, all crucial elements for survival. In most mammals, the nose contains two well described chemosensory apparatuses (the main olfactory epithelium and the vomeronasal organ), each of which comprises several subtypes of sensory neurons expressing distinct receptors and signal transduction machineries. In many species (e.g., rodents), the nasal cavity also includes two spatially segregated clusters of neurons forming the septal organ of Masera and the Grueneberg ganglion. Results of recent studies suggest that these chemosensory systems perceive diverse but overlapping olfactory cues and that some neurons may even detect the pressure changes carried by the airflow. This review provides an update on how chemosensory neurons transduce chemical (and possibly mechanical) stimuli into electrical signals, and what information each system brings into the brain. Future investigation will focus on the specific ligands that each system detects with a behavioral context and the processing networks that each system involves in the brain. Such studies will lead to a better understanding of how the multiple olfactory systems, acting in concert, offer a complete representation of the chemical world.

  16. High Fructose Diet inducing diabetes rapidly impacts olfactory epithelium and behavior in mice

    PubMed Central

    Rivière, Sébastien; Soubeyre, Vanessa; Jarriault, David; Molinas, Adrien; Léger-Charnay, Elise; Desmoulins, Lucie; Grebert, Denise; Meunier, Nicolas; Grosmaitre, Xavier

    2016-01-01

    Type 2 Diabetes (T2D), a major public health issue reaching worldwide epidemic, has been correlated with lower olfactory abilities in humans. As olfaction represents a major component of feeding behavior, its alteration may have drastic consequences on feeding behaviors that may in turn aggravates T2D. In order to decipher the impact of T2D on the olfactory epithelium, we fed mice with a high fructose diet (HFruD) inducing early diabetic state in 4 to 8 weeks. After only 4 weeks of this diet, mice exhibited a dramatic decrease in olfactory behavioral capacities. Consistently, this decline in olfactory behavior was correlated to decreased electrophysiological responses of olfactory neurons recorded as a population and individually. Our results demonstrate that, in rodents, olfaction is modified by HFruD-induced diabetes. Functional, anatomical and behavioral changes occurred in the olfactory system at a very early stage of the disease. PMID:27659313

  17. Olfactory receptors are displayed on dog mature sperm cells

    PubMed Central

    1993-01-01

    Olfactory receptors constitute a huge family of structurally related G protein-coupled receptors, with up to a thousand members expected. We have shown previously that genes belonging to this family were expressed in the male germ line from both dog and human. The functional significance of this unexpected site of expression was further investigated in the present study. We demonstrate that a few dog genes representative of various subfamilies of olfactory receptors are expressed essentially in testis, with little or no expression in olfactory mucosa. Other randomly selected members of the family show the expected site of expression, restricted to the olfactory system. Antibodies were generated against the deduced amino acid sequence of the most abundantly expressed olfactory receptor gene in dog testis. The purified serum was able to detect the gene product (DTMT receptor) in late round and elongated spermatids, as well as in the cytoplasmic droplet that characterizes the maturation of dog sperm cells, and on the tail midpiece of mature spermatozoa. Western blotting further confirmed the presence of a 40-kD immunoreactive protein in the membrane of mature sperm cells. Altogether , these results demonstrate that the main expression site of a subset of the large olfactory receptor gene family is not olfactory mucosa but testis. This expression correlates with the presence of the corresponding protein during sperm cell maturation, and on mature sperm cells. The pattern of expression is consistent with a role as sensor for unidentified chemicals possibly involved in the control of mammalian sperm maturation, migration, and/or fertilization. PMID:8253843

  18. Olfactory bulb and retrobulbar regions in the hedgehog tenrec: organization and interconnections.

    PubMed

    Radtke-Schuller, S; Künzle, H

    2000-08-07

    The Madagascan lesser hedgehog tenrec (Echinops telfairi) is a terrestrial, nocturnal insectivore with a low encephalization index and a huge olfactory bulb. To gain insight into the organization and evolution of olfactory regions in placental mammals, the cytoarchitecture (Nissl), neurochemical attributes [zinc and acetylcholinesterase stain, nicotinamide adenine dinucleotide phosphate (NADPh)-diaphorase, and calcium-binding proteins], and interconnections (injections of wheat germ agglutinin-horseradish peroxidase and biotinylated dextran amine) of tenrec bulbar and retrobulbar regions were examined. The tenrec has a well-laminated main olfactory bulb, and modified (atypical) glomeruli are found that, to date, have been demonstrated only in murine rodents. Compared with the main olfactory bulb, the accessory bulb is relatively small, with clearly different staining characteristics, particularly with respect to NADPh-diaphorase, anticalbindin, and anticalretinin. External and central anterior olfactory nuclei also show characteristic cytoarchitectural and chemoarchitectural features. The medial olfactory peduncle seems to differ considerably from that in rodents. A small taenial structure can be separated from the hippocampal continuation. This taenia tecti presumably corresponds to the superior part of the tenia tecti in rodents, but no homologue of the rodent's prominent inferior taenia tecti could be found. The connections of bulbar and retrobulbar regions are similar to those seen in other mammals. Interbulbar projection systems connect the two olfactory bulbs through an external (topographic) and central (nontopographic) anterior nucleus; however, the topographic arrangement of the intrabulbar association system seems to differ from that seen in rodents. A reciprocity of direct olfactory bulb connections with the frontal (sulcal/orbital) cortex was found in the tenrec that has not been reported so far in other species. Copyright 2000 Wiley-Liss, Inc.

  19. Effects of P450 inhibition and induction on the olfactory toxicity of beta,beta'-iminodipropionitrile (IDPN) in the rat.

    PubMed

    Genter, M B; Deamer, N J; Cao, Y; Levi, P E

    1994-02-01

    In addition to the neurotoxic effects of beta,beta'-iminodipropionitrile (IDPN) which have been previously reported by other investigators, the olfactory toxicity of this compound has recently been uncovered in this laboratory. Due to the apparently conflicting observations that the IDPN-induced lesion in the olfactory mucosa is very focal in nature (suggesting site-specific activation) and the observation by other investigators that the behavioral effects of IDPN appear to be due to the parent compound, we initiated studies into the possible role of the cytochrome P450 enzymes in the olfactory toxicity of IDPN. Immunohistochemical studies with antibodies raised against several different P450 isoforms revealed good correlation between IDPN-induced olfactory mucosal degeneration and the localization of a protein immunoreacting with an antibody to P450 2E1. Enzymatic studies revealed that there is approximately five-fold more p-nitrophenol hydroxylation activity in the olfactory mucosa than in the liver on a per milligram microsomal protein basis. Administration of 1% acetone in the drinking water increased the levels of olfactory mucosal 2E1, and the increase in enzyme levels corresponded to increased olfactory toxicity of IDPN; inhibition of P450 activities with either metyrapone or carbon tetrachloride eliminated or significantly decreased the olfactory toxicity of IDPN, respectively. These studies suggest a role for cytochrome P450, specifically the 2E1 isoform, in the activation of IDPN within the nasal mucosa.

  20. Olfactory Perceptual Learning Requires Action of Noradrenaline in the Olfactory Bulb: Comparison with Olfactory Associative Learning

    ERIC Educational Resources Information Center

    Vinera, Jennifer; Kermen, Florence; Sacquet, Joëlle; Didier, Anne; Mandairon, Nathalie; Richard, Marion

    2015-01-01

    Noradrenaline contributes to olfactory-guided behaviors but its role in olfactory learning during adulthood is poorly documented. We investigated its implication in olfactory associative and perceptual learning using local infusion of mixed a1-ß adrenergic receptor antagonist (labetalol) in the adult mouse olfactory bulb. We reported that…

  1. Olfactory Perceptual Learning Requires Action of Noradrenaline in the Olfactory Bulb: Comparison with Olfactory Associative Learning

    ERIC Educational Resources Information Center

    Vinera, Jennifer; Kermen, Florence; Sacquet, Joëlle; Didier, Anne; Mandairon, Nathalie; Richard, Marion

    2015-01-01

    Noradrenaline contributes to olfactory-guided behaviors but its role in olfactory learning during adulthood is poorly documented. We investigated its implication in olfactory associative and perceptual learning using local infusion of mixed a1-ß adrenergic receptor antagonist (labetalol) in the adult mouse olfactory bulb. We reported that…

  2. Posttraumatic olfactory dysfunction.

    PubMed

    Coelho, Daniel H; Costanzo, Richard M

    2016-04-01

    Impairment of smell may occur following injury to any portion of the olfactory tract, from nasal cavity to brain. A thorough understanding of the anatomy and pathophysiology combined with comprehensively obtained history, physical exam, olfactory testing, and neuroimaging may help to identify the mechanism of dysfunction and suggest possible treatments. Although most olfactory deficits are neuronal mediated and therefore currently unable to be corrected, promising technology may provide novel treatment options for those most affected. Until that day, patient counseling with compensatory strategies and reassurance is essential for the maintenance of safety and QoL in this unique and challenging patient population.

  3. Olfactory epithelium destruction by ZnSO4 modified sulfhydryl oxidase expression in mice.

    PubMed

    Bon, Karine; Adami, Pascale; Esnard, Frédéric; Jouvenot, Michèle; Versaux-Bottéri, Claudine

    2005-02-08

    Experimental destruction of olfactory neurons stimulates proliferation and differentiation of local neural precursors and is used as a model to study in vivo mechanisms for degeneration and regeneration of the nervous system. Quiescin-sulfhydryl oxidases (QSOX) have a potential role in the control of the cell cycle or growth regulation and have recently been described in the central nervous system. In mice, we show an expression of QSOX in olfactory mucosa. Northern- and western-blot analysis show that the destruction of olfactory epithelium is associated with a reversible reduction in QSOX expression. Interestingly, QSOX is not localized in olfactory neurons (ON) but in cells of the lamina propria, suggesting that olfactory epithelium destruction may act as a signal of down-regulation of QSOX expression.

  4. Ionotropic Crustacean Olfactory Receptors

    PubMed Central

    Corey, Elizabeth A.; Bobkov, Yuriy; Ukhanov, Kirill; Ache, Barry W.

    2013-01-01

    The nature of the olfactory receptor in crustaceans, a major group of arthropods, has remained elusive. We report that spiny lobsters, Panulirus argus, express ionotropic receptors (IRs), the insect chemosensory variants of ionotropic glutamate receptors. Unlike insects IRs, which are expressed in a specific subset of olfactory cells, two lobster IR subunits are expressed in most, if not all, lobster olfactory receptor neurons (ORNs), as confirmed by antibody labeling and in situ hybridization. Ligand-specific ORN responses visualized by calcium imaging are consistent with a restricted expression pattern found for other potential subunits, suggesting that cell-specific expression of uncommon IR subunits determines the ligand sensitivity of individual cells. IRs are the only type of olfactory receptor that we have detected in spiny lobster olfactory tissue, suggesting that they likely mediate olfactory signaling. Given long-standing evidence for G protein-mediated signaling in activation of lobster ORNs, this finding raises the interesting specter that IRs act in concert with second messenger-mediated signaling. PMID:23573266

  5. Rodent repellency

    USGS Publications Warehouse

    DeWitt, J.B.; Welch, J.F.; Bellack, E.

    1950-01-01

    In the course of studies involving more than 2,500 chemical repellents, it has been found that certain groups of- compounds containing nitrogen or sulfur are repellent to rats under the , test conditions and it appears probable that some of these compounds might be used for the protection of packaged goods against rodent attacks. Additional tests to determine optimum methods of application will be necessary before final evaluation of these compounds will be possible and extensive field trials will be required to establish the degree of protection which may be afforded by the use of these materials. Pending such final evaluation, it may be assumed that the results,to date offer a means of selecting the most promising types of'materials for further trial....On the basis of the test data, it appears that some amine derivative, such as a salt of some organic, acid, or a complex with trinitrobenzene or with a metallic salt of a dialkyl dithiocarbamic acid might offer promise of protection of packaging materials against rodent attacks....Protection might be obtained through the use of certain 'physical deterrents' such as plastics, waxes or drying oils.

  6. Formulation of olfactory-targeted microparticles with tamarind seed polysaccharide to improve nose-to-brain transport of drugs.

    PubMed

    Yarragudi, Sasi B; Richter, Robert; Lee, Helen; Walker, Greg F; Clarkson, Andrew N; Kumar, Haribalan; Rizwan, Shakila B

    2017-05-01

    Targeted delivery and retention of drug formulations in the olfactory mucosa, the target site for nose-to-brain drug absorption is a major challenge due to the geometrical complexity of the nose and nasal clearance. Recent modelling data indicates that 10μm-sized microparticles show maximum deposition in the olfactory mucosa. In the present study we tested the hypothesis that 10μm-sized mucoadhesive microparticles would preferentially deposit on, and increase retention of drug on, the olfactory mucosa in a novel 3D-printed human nasal-replica cast under simulated breathing. The naturally occurring mucoadhesive polymer, tamarind seed polysaccharide (TSP) was used to formulate the microparticles using a spray drying technique. Physicochemical properties of microparticles such as size, morphology and mucoadhesiveness was investigated using a combination of laser diffraction, electron microscopy and texture-analysis. Furthermore, FITC-dextrans (5-40kDa) were incorporated in TSP-microparticles as model drugs. Size-dependent permeability of the FITC-dextrans was observed ex vivo using porcine nasal mucosa. Using the human nasal-replica cast, greater deposition of 10μm TSP-microparticles in the olfactory region was observed compared to TSP-microparticles 2μm in size. Collectively, these findings support our hypothesis that 10μm-sized mucoadhesive microparticles can achieve selective deposition and retention of drug in the olfactory mucosa.

  7. Subicular and CA1 hippocampal projections to the accessory olfactory bulb.

    PubMed

    de la Rosa-Prieto, C; Ubeda-Banon, I; Mohedano-Moriano, A; Pro-Sistiaga, P; Saiz-Sanchez, D; Insausti, R; Martinez-Marcos, A

    2009-02-01

    The hippocampal formation is anatomically and functionally related to the olfactory structures especially in rodents. The entorhinal cortex (EC) receives afferent projections from the main olfactory bulb; this constitutes an olfactory pathway to the hippocampus. In addition to the olfactory system, most mammals possess an accessory olfactory (or vomeronasal) system. The relationships between the hippocampal formation and the vomeronasal system are virtually unexplored. Recently, a centrifugal projection from CA1 to the accessory olfactory bulb has been identified using anterograde tracers. In the study reported herein, experiments using anterograde tracers confirm this projection, and injections of retrograde tracers show the distribution and morphology of a population of CA1 and ventral subicular neurons projecting to the accessory olfactory bulb of rats. These results extend previous descriptions of hippocampal projections to the accessory olfactory bulb by including the ventral subiculum and characterizing the morphology, neurochemistry (double labeling with somatostatin), and distribution of such neurons. These data suggest feedback hippocampal control of chemosensory stimuli in the accessory olfactory bulb. Whether this projection processes spatial information on conspecifics or is involved in learning and memory processes associated with chemical stimuli remains to be elucidated.

  8. Olfactory assays for mouse models of neurodegenerative disease.

    PubMed

    Lehmkuhl, Andrew M; Dirr, Emily R; Fleming, Sheila M

    2014-08-25

    In many neurodegenerative diseases and particularly in Parkinson's disease, deficits in olfaction are reported to occur early in the disease process and may be a useful behavioral marker for early detection. Earlier detection in neurodegenerative disease is a major goal in the field because this is when neuroprotective therapies have the best potential to be effective. Therefore, in preclinical studies testing novel neuroprotective strategies in rodent models of neurodegenerative disease, olfactory assessment could be highly useful in determining therapeutic potential of compounds and translation to the clinic. In the present study we describe a battery of olfactory assays that are useful in measuring olfactory function in mice. The tests presented in this study were chosen because they measure olfaction abilities in mice related to food odors, social odors, and non-social odors. These tests have proven useful in characterizing novel genetic mouse models of Parkinson's disease as well as in testing potential disease-modifying therapies.

  9. Long-term depression at olfactory nerve synapses.

    PubMed

    Mutoh, Hiroki; Yuan, Qi; Knöpfel, Thomas

    2005-04-27

    The synapses formed by the olfactory nerve (ON) convey sensory information to olfactory glomeruli, the first stage of central odor processing. Morphological and behavioral studies suggest that glomerular odor processing is plastic in neonate rodents. However, long-term synaptic plasticity, a cellular correlate of functional and structural plasticity, has not yet been demonstrated in this system. Here, we report that ON-->mitral cell (MC) synapses of 5- to 8-d-old mice express long-term depression (LTD) after brief low-frequency ON stimulation. Pharmacological techniques and imaging of presynaptic calcium signals demonstrate that ON-MC LTD is expressed presynaptically and requires the activation of metabotropic glutamate receptors but does not require fast synaptic transmission. LTD at the ON--> MC synapse is potentially relevant for the establishment, maintenance, and experience-dependent refinement of odor maps in the olfactory bulb.

  10. Diverse systems for pheromone perception: multiple receptor families in two olfactory systems.

    PubMed

    Hagino-Yamagishi, Kimiko

    2008-12-01

    Traditionally, the olfactory epithelium is considered to recognize conventional odors, while the vomeronasal organ detects pheromones. However, recent advances suggest that vertebrate pheromones can also be detected by the olfactory epithelium. In the vomeronasal organ and the olfactory epithelium, structurally distinct multiple receptor families are expressed. In rodents, two of these receptor families, V1R and V2R, are expressed specifically in the vomeronasal organ and detect pheromones and pheromone candidates. A newly isolated trace amine-associated receptor detects some of the putative pheromones in the mouse olfactory epithelium. In addition, distinct second-messenger pathways and neural circuits are used for pheromone perception mediated by each receptor family. Furthermore, the function of these receptor families in these olfactory organs appears to differ among various vertebrate species. The systems for pheromone perception in vertebrates are far more complex than previously predicted.

  11. Results of examination of the nasal mucosa. [in Apollo 17 BIOCORE pocket mice

    NASA Technical Reports Server (NTRS)

    Kraft, L. M.; Vogel, F. S.; Lloyd, B.; Benton, E. V.; Cruty, M. R.; Haymaker, W.; Leon, H. A.; Billingham, J.; Turnbill, C. E.; Teas, V.

    1975-01-01

    The olfactory epithelium, but not the nasal respiratory epithelium, of the four pocket mice (Perognathus longimembris) that survived their flight on Apollo XVII showed both diffuse alterations and numerous disseminated focal lesions. The olfactory mucosa of the mouse that died during flight was also affected, but to a minor degree insofar as could be determined. All this was in contrast to the normal appearance of the olfactory mucosa of the numerous control animals. A number of possible causes were considered: systemic or regional infection; inhaled particulate material (seed dust); by-products from the KO2 bed in aerosol or particulate form; gas contaminants originating in the flight package; volatile substances from the dead mouse; weightlessness; and cosmic ray particle radiation. Where feasible, studies were conducted in an effort to rule in or rule out some of these potentially causative factors. No definitive conclusions were reached as to the cause of the lesions in the flight mice.

  12. Organotypic culture of neuroepithelium attached to olfactory bulb from adult mouse as a tool to study neuronal regeneration after ZnSO4 neuroepithelial trauma.

    PubMed

    Michel, V; Monnier, Z; Cvetkovic, V; Math, F

    1999-08-27

    Chemical destruction of the olfactory mucosa leads to a neuronal regeneration. A new organotypic culture model is perfected to improve the regenerating processes study. Explants of neuroepithelium attached to olfactory bulbs were removed from adult mice and cultured, 12 h after ZnSO4 intranasal application. After 3 days in culture, explants showed a necrosis in the olfactory epithelium and a thinning of the olfactory bulb nervous layer. From the fifth day of culture, and mostly the tenth, new cells showed positive immunoreactivity with the olfactory marker protein (OMP), meaning they were regenerating olfactory neurons. Simultaneously, OMP immunoreactivity increased in the nervous and glomerular layers of the olfactory bulb, indicating epithelio-bulbar reconnection. This organotypic culture model could allow further investigations on the regenerating process kinetic.

  13. Acetylcholine and Olfactory Perceptual Learning

    ERIC Educational Resources Information Center

    Wilson, Donald A.; Fletcher, Max L.; Sullivan, Regina M.

    2004-01-01

    Olfactory perceptual learning is a relatively long-term, learned increase in perceptual acuity, and has been described in both humans and animals. Data from recent electrophysiological studies have indicated that olfactory perceptual learning may be correlated with changes in odorant receptive fields of neurons in the olfactory bulb and piriform…

  14. Acetylcholine and Olfactory Perceptual Learning

    ERIC Educational Resources Information Center

    Wilson, Donald A.; Fletcher, Max L.; Sullivan, Regina M.

    2004-01-01

    Olfactory perceptual learning is a relatively long-term, learned increase in perceptual acuity, and has been described in both humans and animals. Data from recent electrophysiological studies have indicated that olfactory perceptual learning may be correlated with changes in odorant receptive fields of neurons in the olfactory bulb and piriform…

  15. Properties and mechanisms of olfactory learning and memory.

    PubMed

    Tong, Michelle T; Peace, Shane T; Cleland, Thomas A

    2014-01-01

    Memories are dynamic physical phenomena with psychometric forms as well as characteristic timescales. Most of our understanding of the cellular mechanisms underlying the neurophysiology of memory, however, derives from one-trial learning paradigms that, while powerful, do not fully embody the gradual, representational, and statistical aspects of cumulative learning. The early olfactory system-particularly olfactory bulb-comprises a reasonably well-understood and experimentally accessible neuronal network with intrinsic plasticity that underlies both one-trial (adult aversive, neonatal) and cumulative (adult appetitive) odor learning. These olfactory circuits employ many of the same molecular and structural mechanisms of memory as, for example, hippocampal circuits following inhibitory avoidance conditioning, but the temporal sequences of post-conditioning molecular events are likely to differ owing to the need to incorporate new information from ongoing learning events into the evolving memory trace. Moreover, the shapes of acquired odor representations, and their gradual transformation over the course of cumulative learning, also can be directly measured, adding an additional representational dimension to the traditional metrics of memory strength and persistence. In this review, we describe some established molecular and structural mechanisms of memory with a focus on the timecourses of post-conditioning molecular processes. We describe the properties of odor learning intrinsic to the olfactory bulb and review the utility of the olfactory system of adult rodents as a memory system in which to study the cellular mechanisms of cumulative learning.

  16. From chemical neuroanatomy to an understanding of the olfactory system.

    PubMed

    Oboti, L; Peretto, P; Marchis, S De; Fasolo, A

    2011-10-19

    The olfactory system is the appropriate model for studying several aspects of neuronal physiology spanning from the developmental stage to neural network remodelling in the adult brain. Both the morphological and physiological understanding of this system were strongly supported by classical histochemistry. It is emblematic the case of the Olfactory Marker Protein (OMP) staining, the first, powerful marker for fully differentiated olfactory receptor neurons and a key tool to investigate the dynamic relations between peripheral sensory epithelia and central relay regions given its presence within olfactory fibers reaching the olfactory bulb (OB). Similarly, the use of thymidine analogues was able to show neurogenesis in an adult mammalian brain far before modern virus labelling and lipophilic tracers based methods. Nowadays, a wealth of new histochemical techniques combining cell and molecular biology approaches is available, giving stance to move from the analysis of the chemically identified circuitries to functional research. The study of adult neurogenesis is indeed one of the best explanatory examples of this statement. After defining the cell types involved and the basic physiology of this phenomenon in the OB plasticity, we can now analyze the role of neurogenesis in well testable behaviours related to socio-chemical communication in rodents.

  17. From chemical neuroanatomy to an understanding of the olfactory system

    PubMed Central

    Oboti, L.; Peretto, P.; De Marchis, S.; Fasolo, A.

    2011-01-01

    The olfactory system of mammals is the appropriate model for studying several aspects of neuronal physiology spanning from the developmental stage to neural network remodelling in the adult brain. Both the morphological and physiological understanding of this system were strongly supported by classical histochemistry. It is emblematic the case of the Olfactory Marker Protein (OMP) staining, the first, powerful marker for fully differentiated olfactory receptor neurons and a key tool to investigate the dynamic relations between peripheral sensory epithelia and central relay regions given its presence within olfactory fibers reaching the olfactory bulb (OB). Similarly, the use of thymidine analogues was able to show neurogenesis in an adult mammalian brain far before modern virus labelling and lipophilic tracers based methods. Nowadays, a wealth of new histochemical techniques combining cell and molecular biology approaches is available, giving stance to move from the analysis of the chemically identified circuitries to functional research. The study of adult neurogenesis is indeed one of the best explanatory examples of this statement. After defining the cell types involved and the basic physiology of this phenomenon in the OB plasticity, we can now analyze the role of neurogenesis in well testable behaviours related to socio-chemical communication in rodents. PMID:22297441

  18. Early Olfactory Environment Influences Social Behaviour in Adult Octodon degus

    PubMed Central

    Márquez, Natalia; Martínez-Harms, Jaime; Vásquez, Rodrigo A.; Mpodozis, Jorge

    2015-01-01

    We evaluated the extent to which manipulation of early olfactory environment can influence social behaviours in the South American Hystricognath rodent Octodon degus. The early olfactory environment of newborn degus was manipulated by scenting all litter members with eucalyptol during the first month of life. The social behaviour of sexually mature animals (5–7 months old) towards conspecifics was then assessed using a y-maze to compare the response of control (naïve) and treated animals to two different olfactory configurations (experiment 1): (i) a non-familiarized conspecific impregnated with eucalyptol (eucalyptol arm) presented against (ii) a non-familiarized unscented conspecific (control arm). In addition, in dyadic encounters, we assessed the behaviour of control and eucalyptol treated animals towards a non-familiarized conspecific scented with eucalyptol (experiment 2). We found that control subjects explored and spent significantly less time in the eucalyptol arm, indicating neophobic behaviours towards the artificially scented conspecific. Treated subjects explored and spent similar time in both arms of the maze, showing the same interest for both olfactory stimuli presented. During dyadic encounters in experiment 2, an interaction effect between early experience and sex was observed. Control males escaped and avoided their scented partner more frequently than eucalyptol treated male subjects and than females. Both groups did not differ in the exploration of their scented partners, suggesting that avoidance within agonistic context does not relate to neophobic behaviours. Our results suggest that the exposure to eucalyptol during early ontogeny decreases evasive behaviours within an agonistic context as a result of olfactory learning. Altogether, these results indicate that olfactory cues learned in early ontogeny can influence olfactory-guided behaviours in adult degus. PMID:25671542

  19. Microdialysis pharmacokinetic study of scopolamine in plasma, olfactory bulb and vestibule after intranasal administration.

    PubMed

    Wei, Yan; Ying, Mingzhen; Xu, Shuai; Wang, Feng; Zou, Aifeng; Cao, Shilei; Jiang, Xinguo; Wang, Yajie

    2016-01-01

    The purpose of this study was to investigate the microdialysis pharmacokinetic of scopolamine in plasma, olfactory bulb and vestibule after intranasal administration. The pharmacokinetic study of subcutaneous and oral administration was also performed in rats. From the in vivo results, scopolamine intranasal administration can avoid hepatic first-pass effect. Tmax plasma samples after intranasal administration were significantly faster than oral administration and subcutaneous injection. The relative bioavailability of intranasal administrations was 51.8-70% when compared with subcutaneous injection. Moreover, one can see that in comparison with scopolamine subcutaneous administration, scopolamine intranasal gel and solutions can increased drug target index (DTI) with olfactory bulb 1.69 and 2.05, vestibule 1.80 and 2.15, respectively. The results indicated that scopolamine can be absorbed directly through the olfactory mucosa into the olfactory bulb, and then transported to various brain tissue after intranasal administration, with the characteristics of brain drug delivery.

  20. [Microsurgical removal of olfactory groove meningiomas].

    PubMed

    Liang, Ri-Sheng; Zhou, Liang-Fu; Mao, Ying; Zhang, Rong; Yang, Wei-Zhong

    2011-01-01

    To explore an effective method for further improving the surgical results of treatment of olfactory groove meningiomas. Sixty seven cases of olfactory groove meningiomas were treated by microneurosurgery, among which fifty seven were de novo cases, eight were recurrent tumors and the other two re-recurrent cases. Modified Derome approach was used in 12 cases, bilateral subfrontal approach in 28 cases, modified pterional approach in 21 cases and unilateral subfrontal approach in six cases. Tumors were resected microsurgically with radical removal of invaded dura, bone, and paranasal sinus mucosa. Reconstruction was performed in patients with skull base defect. Simpson grade I removal was accomplished in 59 cases, grade II in seven cases and grade IV in one case. Among 57 patients with de novo tumor, Simpson I resection was accomplished in 54 cases. Postoperative rhinorrhea and intracranial infection occurred in one case and was cured after temporal lumbar CSF drainage and antibiotic therapy. Two patients (2.9%) died within one month after operation, i.e.one aged patient of heart failure and the other of severe hypothalamus complication. Forty seven patients (72.3%) were followed up from one to ten years with an average of five years and four months. With the exception of two cases died, among the alive 45 patients, there were only three patients with tumor recurrence, which had undergone Simpson II or IV tumor resection. No recurrence was found in cases with Simpson I tumor removal. Previous blurred vision was not improved in three patients, hemiparalysis in two patients, and the other patients recovered well, resuming previous jobs or being able to take care themselves. Total tumor removal (Simpson I) should be the surgical goal for treatment of olfactory groove meningiomas, especially for de novo cases. An appropriate approach is fundamental in the effort to remove an OGM totally. Appropriate anterior skull base reconstruction with vascularized material is

  1. Biomechanics of oral mucosa

    PubMed Central

    Chen, Junning; Ahmad, Rohana; Li, Wei; Swain, Michael; Li, Qing

    2015-01-01

    The prevalence of prosthodontic treatment has been well recognized, and the need is continuously increasing with the ageing population. While the oral mucosa plays a critical role in the treatment outcome, the associated biomechanics is not yet fully understood. Using the literature available, this paper provides a critical review on four aspects of mucosal biomechanics, including static, dynamic, volumetric and interactive responses, which are interpreted by its elasticity, viscosity/permeability, apparent Poisson's ratio and friction coefficient, respectively. Both empirical studies and numerical models are analysed and compared to gain anatomical and physiological insights. Furthermore, the clinical applications of such biomechanical knowledge on the mucosa are explored to address some critical concerns, including stimuli for tissue remodelling (interstitial hydrostatic pressure), pressure–pain thresholds, tissue displaceability and residual bone resorption. Through this review, the state of the art in mucosal biomechanics and their clinical implications are discussed for future research interests, including clinical applications, computational modelling, design optimization and prosthetic fabrication. PMID:26224566

  2. How much does nasal cavity morphology matter? Patterns and rates of olfactory airflow in phyllostomid bats.

    PubMed

    Eiting, Thomas P; Perot, J Blair; Dumont, Elizabeth R

    2015-02-07

    The morphology of the nasal cavity in mammals with a good sense of smell includes features that are thought to improve olfactory airflow, such as a dorsal conduit that delivers odours quickly to the olfactory mucosa, an enlarged olfactory recess at the back of the airway, and a clear separation of the olfactory and respiratory regions of the nose. The link between these features and having a good sense of smell has been established by functional examinations of a handful of distantly related mammalian species. In this paper, we provide the first detailed examination of olfactory airflow in a group of closely related species that nevertheless vary in their sense of smell. We study six species of phyllostomid bats that have different airway morphologies and foraging ecologies, which have been linked to differences in olfactory ability or reliance. We hypothesize that differences in morphology correlate with differences in the patterns and rates of airflow, which in turn are consistent with dietary differences. To compare species, we make qualitative and quantitative comparisons of the patterns and rates of airflow through the olfactory region during both inhalation and exhalation across the six species. Contrary to our expectations, we find no clear differences among species in either the patterns of airflow through the airway or in rates of flow through the olfactory region. By and large, olfactory airflow seems to be conserved across species, suggesting that morphological differences appear to be driven by other mechanical demands on the snout, such as breathing and feeding. Olfactory ability may depend on other aspects of the system, such as the neurobiological processing of odours that work within the existing morphology imposed by other functional demands on the nasal cavity. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. How much does nasal cavity morphology matter? Patterns and rates of olfactory airflow in phyllostomid bats

    PubMed Central

    Eiting, Thomas P.; Perot, J. Blair; Dumont, Elizabeth R.

    2015-01-01

    The morphology of the nasal cavity in mammals with a good sense of smell includes features that are thought to improve olfactory airflow, such as a dorsal conduit that delivers odours quickly to the olfactory mucosa, an enlarged olfactory recess at the back of the airway, and a clear separation of the olfactory and respiratory regions of the nose. The link between these features and having a good sense of smell has been established by functional examinations of a handful of distantly related mammalian species. In this paper, we provide the first detailed examination of olfactory airflow in a group of closely related species that nevertheless vary in their sense of smell. We study six species of phyllostomid bats that have different airway morphologies and foraging ecologies, which have been linked to differences in olfactory ability or reliance. We hypothesize that differences in morphology correlate with differences in the patterns and rates of airflow, which in turn are consistent with dietary differences. To compare species, we make qualitative and quantitative comparisons of the patterns and rates of airflow through the olfactory region during both inhalation and exhalation across the six species. Contrary to our expectations, we find no clear differences among species in either the patterns of airflow through the airway or in rates of flow through the olfactory region. By and large, olfactory airflow seems to be conserved across species, suggesting that morphological differences appear to be driven by other mechanical demands on the snout, such as breathing and feeding. Olfactory ability may depend on other aspects of the system, such as the neurobiological processing of odours that work within the existing morphology imposed by other functional demands on the nasal cavity. PMID:25520358

  4. Olfactory toxicity in fishes.

    PubMed

    Tierney, Keith B; Baldwin, David H; Hara, Toshiaki J; Ross, Peter S; Scholz, Nathaniel L; Kennedy, Christopher J

    2010-01-21

    Olfaction conveys critical environmental information to fishes, enabling activities such as mating, locating food, discriminating kin, avoiding predators and homing. All of these behaviors can be impaired or lost as a result of exposure to toxic contaminants in surface waters. Historically, teleost olfaction studies have focused on behavioral responses to anthropogenic contaminants (e.g., avoidance). More recently, there has been a shift towards understanding the underlying mechanisms and functional significance of contaminant-mediated changes in fish olfaction. This includes a consideration of how contaminants affect the olfactory nervous system and, by extension, the downstream physiological and behavioral processes that together comprise a normal response to naturally occurring stimuli (e.g., reproductive priming or releasing pheromones). Numerous studies spanning several species have shown that ecologically relevant exposures to common pollutants such as metals and pesticides can interfere with fish olfaction and disrupt life history processes that determine individual survival and reproductive success. This represents one of the pathways by which toxic chemicals in aquatic habitats may increasingly contribute to the decline and at-risk status of many commercially and ecologically important fish stocks. Despite our emerging understanding of the threats that pollution poses for chemical communication in aquatic communities, many research challenges remain. These include: (1) the determination of specific mechanisms of toxicity in the fish olfactory sensory epithelium; (2) an understanding of the impacts of complex chemical mixtures; (3) the capacity to assess olfactory toxicity in fish in situ; (4) the impacts of toxins on olfactory-mediated behaviors that are still poorly understood for many fish species; and (5) the connections between sublethal effects on individual fish and the long-term viability of wild populations. This review summarizes and integrates

  5. Primary Events in Olfactory Reception

    DTIC Science & Technology

    1993-01-08

    sustentacular cells and Bowman’s glands and that it is deposited in the lower mucus layer of olfactory neuroepithelium. Next, we extracted mRNA from...protrude from the dendritic tips of olfactory receptor neurons. These cilia are surrounded by a layer of mucus that lines the olfactory...neuroepithelium. Odorants that enter the nasal cavity with the inspired air partition into and diffuse through this aqueous mucus layer on their way to odorant

  6. Rodents And Other Gnawers.

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Presents information about rodents and lagomorphs, including definitions and the characteristics of these animals. Contains teaching activities such as "Habitats for Hoppers,""Cartoon Gnawers," and "The Great Rodent Expedition." Reproducible handouts for two of the activities are provided. (TW)

  7. Sildenafil affects olfactory function.

    PubMed

    Gudziol, V; Mück-Weymann, M; Seizinger, O; Rauh, R; Siffert, W; Hummel, T

    2007-01-01

    Sildenafil is the first member of a new class of oral drugs effective for erectile dysfunction. However, approximately 20% of patients complain about nasal congestion after sildenafil administration. Because nasal airflow and olfaction are closely linked, the sense of smell was evaluated in 20 young, healthy volunteers after the administration of 50 and 100 mg sildenafil, and placebo in a double-blinded, crossover study. Olfactory function was evaluated using a standardized and validated test (Sniffin' Sticks). To investigate a possible impact of G-protein beta3 subunit C825T polymorphism on the effect of sildenafil on olfaction the genotype of all subjects was determined. The effect of sildenafil on olfaction was only present at a dose of 100 mg but not at a dose of 50 mg sildenafil. The genotypes TT, CC and TC of the G-protein beta3 C825T polymorphism had no impact on the change in olfactory function. Higher sildenafil doses may produce decreased olfactory sensitivity.

  8. Recent Trend in Development of Olfactory Displays

    NASA Astrophysics Data System (ADS)

    Yanagida, Yasuyuki

    An olfactory display is a device that generates scented air with desired concentration of aroma, and delivers it to the user's olfactory organ. In this article, the nature of olfaction is briefly described from the view point of how to configure olfactory displays. Next, component technologies to compose olfactory displays, i.e., making scents and delivering scents, are categorized. Several existing olfactory display systems are introduced to show the current status of research and development of olfactory displays.

  9. [Olfactory receptors and odour coding].

    PubMed

    Pernollet, Jean-Claude; Sanz, Guenhaël; Briand, Loïc

    2006-09-01

    The first step of olfactory detection involves interactions between odorant molecules and neuronal protein receptors. Odour coding results from the combinatory activation of a set of receptors and rests on their clonal expression and olfactory neurone connexion, which lead to formation of a specific sensory map in the cortex. This system, sufficient to discriminate myriads of odorants with a mere 350 different receptors, allows humans to smell molecules that are not natural (new cooking flavours, synthetic chemicals...). The extreme olfactory genome diversity explains the absence of odour semantics. Olfactory receptors are also involved in cellular chemotaxis.

  10. Immunohistochemical and histochemical characteristics of the olfactory system of the guppy, Poecilia reticulata (Teleostei, Poecilidae).

    PubMed

    Bettini, Simone; Lazzari, Maurizio; Ciani, Franco; Franceschini, Valeria

    2009-10-01

    Olfaction in fish has been studied using preferentially macrosmatic species as models. In the present research, the labelling patterns of different neuronal markers and lectins were analyzed in the olfactory neurons and in their bulbar axonal endings in the guppy Poecilia reticulata, belonging to the group of microsmatic fish. We observed that calretinin immunostaining was confined to a population of olfactory receptor cells localized in the upper layers of the sensory mucosa, probably microvillous neurons innervating the lateral glomerular layer. Immunoreactivity for S100 proteins was mainly evident in crypt cells, but also in other olfactory cells belonging to subtypes projecting in distinct regions of the bulbs. Protein gene product 9.5 (PGP 9.5) was not detected in the olfactory system of the guppy. Lectin binding revealed the presence of N-acetylglucosamine and alpha-N-acetylgalactosamine residues in the glycoconjugates of numerous olfactory neurons ubiquitously distributed in the mucosa. The low number of sugar types detected suggested a reduced glycosidic variability that could be an index of restricted odorant discrimination, in concordance with guppy visual-based behaviors. Finally, we counted few crypt cells which were immunoreactive for S100 and calretinin. Crypt cells were more abundant in guppy females. This difference is in accordance with guppy gender-specific responses to pheromones. Cells immunoreactive to calretinin showed no evidence of ventral projections in the bulbs. We assumed the hypothesis that their odorant sensitivity is not strictly limited to pheromones or sexual signals in general.

  11. Simple and Computer-assisted Olfactory Testing for Mice.

    PubMed

    Brai, Emanuele; Alberi, Lavinia

    2015-06-15

    Olfaction is highly conserved among species and is required for reproduction and survival. In humans, olfaction is also one of the senses that is affected with aging and is a strong predictor of neurodegenerative diseases. Thus, olfaction testing is used as a non-invasive diagnostic method to detect neurological deficits early on. In order to understand the mechanisms underlying olfactory network susceptibility, olfactory research in rodents has gained momentum in the past decade. Here, we present a very simple, time efficient and reproducible olfactory testing method of innate odor perception and sensitivity in mice without the need of any prior food or water restriction. The tests are performed in a familiar environment to the mice, require only the scents and a 2 min session of odorant exposure. The analysis is performed, post-hoc, using computer-assisted commands on ImageJ and can be, therefore, carried out from start to end by one researcher. This protocol does not require any special hardware or setup and is indicated for any laboratory interested in testing olfactory perception and sensitivity.

  12. Simple and Computer-assisted Olfactory Testing for Mice

    PubMed Central

    Brai, Emanuele; Alberi, Lavinia

    2015-01-01

    Olfaction is highly conserved among species and is required for reproduction and survival. In humans, olfaction is also one of the senses that is affected with aging and is a strong predictor of neurodegenerative diseases. Thus, olfaction testing is used as a non-invasive diagnostic method to detect neurological deficits early on. In order to understand the mechanisms underlying olfactory network susceptibility, olfactory research in rodents has gained momentum in the past decade. Here, we present a very simple, time efficient and reproducible olfactory testing method of innate odor perception and sensitivity in mice without the need of any prior food or water restriction. The tests are performed in a familiar environment to the mice, require only the scents and a 2 min session of odorant exposure. The analysis is performed, post-hoc, using computer-assisted commands on ImageJ and can be, therefore, carried out from start to end by one researcher. This protocol does not require any special hardware or setup and is indicated for any laboratory interested in testing olfactory perception and sensitivity. PMID:26131595

  13. Pheromone signal transduction in humans: what can be learned from olfactory loss.

    PubMed

    Savic, Ivanka; Hedén-Blomqvist, Ebba; Berglund, Hans

    2009-09-01

    Because humans seem to lack neuronal elements in the vomeronasal organ (VNO), many scientists believe that humans are unable to detect pheromones. This view is challenged by the observations that pheromone-like compounds, 4,16-androstadien-3-one (AND) and oestra-1,3,5(10),16-tetraen-3-ol (EST), activate the human hypothalamus. Whether these activations are mediated via VNO, venous blood or olfactory mucosa is presently unknown. To disentangle between the three alternatives, we conducted activation studies in 12 heterosexual males with chronic anosmia because of nasal polyps. Polyposis hampers signal transduction via the olfactory mucosa without interfering with the VNO or the pheromone transport via venous blood. Twelve healthy men served as controls. Subjects were investigated with (15)O-H(2)O PET during smelling of odorless air (base line), AND, EST, vanillin, and acetone. Smelling of EST activated the anterior hypothalamus in controls, but not anosmics. Neither did the anosmics display cerebral activations with AND or vanillin. Clusters were detected only with the trigeminal odorant acetone, and only in the thalamus, brainstem, the anterior cingulate, and parts of the sensorimotor cortex. Direct comparisons with controls (controls-anosmics) showed clusters in the olfactory cortex (amygdala and piriform cortex) with AND, vanillin, and acetone, and in the anterior hypothalamus with EST. The observed absence of olfactory and presence of trigeminal activations in anosmics indicates that polyposis primarily affected signal processing via the olfactory mucosa. The anosmics inability to activate the hypothalamus with EST, therefore, suggests that in healthy men EST signals were primarily transmitted via the olfactory system.

  14. The effects of cosmic particle radiation on pocket mice aboard Apollo XVII: IX Results of examination of the nasal mucosa.

    PubMed

    Kraft, L M; Vogel, F S; Lloyd, B; Benton, E V; Cruty, M R; Haymaker, W; Leon, A; Billingham, J; Turnbill, C E; Teas, V; Look, B C; Suri, K; Miquel, J; Ashley, W W; Behnke, A R; Samorajski, T; Bailey, O T; Zeman, W

    1975-04-01

    The olfactory epithelium, but not the nasal respiratory epithelium, of the four pocket mice (Perognathus longimembris) that survived their flight on Apollo XVII showed both diffuse alterations and numerous disseminated focal lesions. The olfactory mucosa of the mouse that died during flight was also affected, but to a minor degree insofar as could be determined. All this was in contrast to the normal appearance of the olfactory mucosa of the numerous control animals. A number of possible causes were considered: systemic or regional infection; inhaled particulate material (seed dust); by-products from the KO2 bed in aerosol or particulate form; gas contaminants originating in the flight package; volatile substances from the dead mouse; weightlessness; and cosmic ray particle radiation. Where feasible, studies were conducted in an effort to rule in or rule out some of these potentially causative factors. No definitive conclusions were reached as to the cause of the lesions in the flight mice.

  15. Immunocytochemical characterisation of ensheathing glia in the olfactory and vomeronasal systems of Ambystoma mexicanum (Caudata: Ambystomatidae).

    PubMed

    Lazzari, Maurizio; Bettini, Simone; Franceschini, Valeria

    2016-03-01

    The olfactory and vomeronasal systems of vertebrates are characterised by neurogenesis occurring throughout life. The regenerative ability of olfactory receptor neurons relies on specific glial cells, the olfactory and vomeronasal axon-surrounding cells. Numerous studies have examined mammalian olfactory ensheathing cells which are considered potential candidates for spinal cord injury repair using cell-based therapy. With regard to non-mammalian vertebrates, limited information is available on these glial cells in fish, and there is no information on them in terrestrial anamniotes, the amphibians. In the present research, we studied the immunocytochemical characteristics of axon-surrounding cells in Ambystoma mexicanum. Urodeles have relatively simple olfactory and vomeronasal systems, and represent a good model for studying ensheathing cells in extant representatives of basal tetrapods. Sections from the decalcified heads of A. mexicanum were immunocytochemically processed for the detection of proteins used in research on mammalian olfactory-ensheathing cells. S100, GFAP and NCAM were clearly observed. p75NTR, Gal-1 and PSA-NCAM showed weak staining. No vimentin immunopositivity was observed. The corresponding areas of the olfactory and vomeronasal pathways displayed the same staining characteristics, with the exception of Gal-1, p75NTR and PSA-NCAM in the mucosae. The degree of marker expression was not uniform throughout the sensory pathways. In contrast to fish, both olfactory and vomeronasal nerves displayed uniform staining intensity. This study showed that some markers for mammalian and fish-ensheathing glia are also applicable in urodeles. The olfactory systems of vertebrates show similarities, and also clear dissimilarities. Further investigations are required to ascertain the functional significance of these regional and interspecific differences.

  16. Olfactory dysfunction and daily life.

    PubMed

    Frasnelli, Johannes; Hummel, Thomas

    2005-03-01

    The objective of the present study was to investigate the hypothesis that subjects with parosmia suffer more in their daily life than patients who experience only quantitative olfactory loss. Two hundred five outpatients of the Smell and Taste Clinic and 25 healthy controls were included. The newly developed Questionnaire of Olfactory Disorders (QOD) was administered in combination with other psychometric tests (Beck Depression Inventory, "Befindlichkeitsskala" and the Short Form-36 Health Survey) along with an olfactory test ("Sniffin' Sticks"). Results of the QOD were found to be an appropriate and valid measure of the impact of olfactory dysfunction on daily life. Patients with parosmia and quantitative olfactory dysfunction show higher rates of daily life complaints when compared to patients suffering from quantitative olfactory impairment only (QOD-PS: P=0.005). In addition, hyposmic and anosmic patients indicated significantly more complaints compared to patients with normosmia. Further, female patients seemed to suffer more from olfactory dysfunction than male patients. In conclusion, the assessment of the degree of qualitative olfactory dysfunction may be possible by the use of instruments based on questionnaires regarding daily life problems.

  17. Rodent Research-1 Validation of Rodent Hardware

    NASA Technical Reports Server (NTRS)

    Globus, Ruth; Beegle, Janet

    2013-01-01

    To achieve novel science objectives, validation of a rodent habitat on ISS will enable - In-flight analyses during long duration spaceflight- Use of genetically altered animals- Application of modern analytical techniques (e.g. genomics, proteomics, and metabolomics)

  18. Olfactory illusions: where are they?

    PubMed

    Stevenson, Richard J

    2011-12-01

    It has been suggested that there maybe no olfactory illusions. This manuscript examines this claim and argues that it arises because olfactory illusions are not typically accompanied by an awareness of their illusory nature. To demonstrate that olfactory illusions do occur, the relevant empirical literature is reviewed, by examining instances of where the same stimulus results in different percepts, and of where different stimuli result in the same percept. The final part of the manuscript evaluates the evidence favoring the existence of olfactory illusions, and then examines why they may not typically be accompanied by awareness. Three contributory mechanisms are discussed, relating to difficulty of verification and paucity of olfactory knowledge, the role of change blindness, and restricted access consciousness in this sense.

  19. Imaging evolutionarily conserved neural networks: preferential activation of the olfactory system by food-related odor.

    PubMed

    Kulkarni, Praveen; Stolberg, Tara; Sullivanjr, J M; Ferris, Craig F

    2012-04-21

    Rodents routinely forge and rely on hippocampal-dependent spatial memory to guide them to sources of caloric rich food in their environment. Has evolution affected the olfactory system and its connections to the hippocampus and limbic cortex, so rodents have an innate sensitivity to energy rich food and their location? To test this notion, we used functional magnetic resonance imaging in awake rats to observe changes in brain activity in response to four odors: benzaldehyde (almond odor), isoamyl acetate (banana odor), methyl benzoate (rosy odor), and limonene (citrus odor). We chose the almond odor because nuts are high in calories and would be expected to convey greater valance as compared to the other odors. Moreover, the standard food chow is devoid of nuts, so laboratory bred rats would not have any previous exposure to this food. Activation maps derived from computational analysis using a 3D segmented rat MRI atlas were dramatically different between odors. Animals exposed to banana, rosy and citrus odors showed modest activation of the primary olfactory system, hippocampus and limbic cortex. However, animals exposed to almond showed a robust increase in brain activity in the primary olfactory system particularly the main olfactory bulb, anterior olfactory nucleus and tenia tecta. The most significant difference in brain activation between odors was observed in the hippocampus and limbic cortex. These findings show that fMRI can be used to identify neural circuits that have an innate sensitivity to environmental stimuli that may help in an animal's survival.

  20. Hyalinosis cutis et mucosae.

    PubMed

    Vago, Bernadette; Hausser, Ingrid; Hennies, Hans Christian; Enk, Alexander; Jappe, Uta

    2007-05-01

    Hyalinosis cutis et mucosae is a rare autosomal recessive disorder which is characterized by deposition of hyaline material around the basement membrane of the skin and mucous membranes. Typical clinical symptoms are hoarseness, infiltration of the mucous membranes and papular verrucous skin changes. Mutations within the extracellular matrix protein gene (ECM-1) are the underlying defect. We report on a 24-year-old man, who had first been seen in our department at the age of seven and had undergone the necessary diagnostic procedures and who revisited 17 years later with hoarseness and extensive verrucous skin changes at elbows and knees which were removed by excision. A new mutation of the ECM1 gene was identified.

  1. Surface coatings of ZnO nanoparticles mitigate differentially a host of transcriptional, protein and signalling responses in primary human olfactory cells

    PubMed Central

    2013-01-01

    Background Inhaled nanoparticles have been reported in some instances to translocate from the nostril to the olfactory bulb in exposed rats. In close proximity to the olfactory bulb is the olfactory mucosa, within which resides a niche of multipotent cells. Cells isolated from this area may provide a relevant in vitro system to investigate potential effects of workplace exposure to inhaled zinc oxide nanoparticles. Methods Four types of commercially-available zinc oxide (ZnO) nanoparticles, two coated and two uncoated, were examined for their effects on primary human cells cultured from the olfactory mucosa. Human olfactory neurosphere-derived (hONS) cells from healthy adult donors were analyzed for modulation of cytokine levels, activation of intracellular signalling pathways, changes in gene-expression patterns across the whole genome, and compromised cellular function over a 24 h period following exposure to the nanoparticles suspended in cell culture medium. Results ZnO nanoparticle toxicity in hONS cells was mediated through a battery of mechanisms largely related to cell stress, inflammatory response and apoptosis, but not activation of mechanisms that repair damaged DNA. Surface coatings on the ZnO nanoparticles mitigated these cellular responses to varying degrees. Conclusions The results indicate that care should be taken in the workplace to minimize generation of, and exposure to, aerosols of uncoated ZnO nanoparticles, given the adverse responses reported here using multipotent cells derived from the olfactory mucosa. PMID:24144420

  2. Intranasal Location and Immunohistochemical Characterization of the Equine Olfactory Epithelium

    PubMed Central

    Kupke, Alexandra; Wenisch, Sabine; Failing, Klaus; Herden, Christiane

    2016-01-01

    The olfactory epithelium (OE) is the only body site where neurons contact directly the environment and are therefore exposed to a broad variation of substances and insults. It can serve as portal of entry for neurotropic viruses which spread via the olfactory pathway to the central nervous system. For horses, it has been proposed and concluded mainly from rodent studies that different viruses, e.g., Borna disease virus, equine herpesvirus 1 (EHV-1), hendra virus, influenza virus, rabies virus, vesicular stomatitis virus can use this route. However, little is yet known about cytoarchitecture, protein expression and the intranasal location of the equine OE. Revealing differences in cytoarchitecture or protein expression pattern in comparison to rodents, canines, or humans might help to explain varying susceptibility to certain intranasal virus infections. On the other hand, disclosing similarities especially between rodents and other species, e.g., horses would help to underscore transferability of rodent models. Analysis of the complete noses of five adult horses revealed that in the equine OE two epithelial subtypes with distinct marker expression exist, designated as types a and b which resemble those previously described in dogs. Detailed statistical analysis was carried out to confirm the results obtained on the descriptive level. The equine OE was predominantly located in caudodorsal areas of the nasal turbinates with a significant decline in rostroventral direction, especially for type a. Immunohistochemically, olfactory marker protein and doublecortin (DCX) expression was found in more cells of OE type a, whereas expression of proliferating cell nuclear antigen and tropomyosin receptor kinase A was present in more cells of type b. Accordingly, type a resembles the mature epithelium, in contrast to the more juvenile type b. Protein expression profile was comparable to canine and rodent OE but equine types a and b were located differently within the nose and

  3. Nanoparticle transport across in vitro olfactory cell monolayers.

    PubMed

    Gartziandia, Oihane; Egusquiaguirre, Susana Patricia; Bianco, John; Pedraz, José Luis; Igartua, Manoli; Hernandez, Rosa Maria; Préat, Véronique; Beloqui, Ana

    2016-02-29

    Drug access to the CNS is hindered by the presence of the blood-brain barrier (BBB), and the intranasal route has risen as a non-invasive route to transport drugs directly from nose-to-brain avoiding the BBB. In addition, nanoparticles (NPs) have been described as efficient shuttles for direct nose-to-brain delivery of drugs. Nevertheless, there are few studies describing NP nose-to-brain transport. Thus, the aim of this work was (i) to develop, characterize and validate in vitro olfactory cell monolayers and (ii) to study the transport of polymeric- and lipid-based NPs across these monolayers in order to estimate NP access into the brain using cell penetrating peptide (CPPs) moieties: Tat and Penetratin (Pen). All tested poly(d,l-lactide-co-glycolide) (PLGA) and nanostructured lipid carrier (NLC) formulations were stable in transport buffer and biocompatible with the olfactory mucosa cells. Nevertheless, 0.7% of PLGA NPs was able to cross the olfactory cell monolayers, whereas 8% and 22% of NLC and chitosan-coated NLC (CS-NLC) were transported across them, respectively. Moreover, the incorporation of CPPs to NLC surface significantly increased their transport, reaching 46% of transported NPs. We conclude that CPP-CS-NLC represent a promising brain shuttle via nose-to-brain for drug delivery.

  4. Early survival factor deprivation in the olfactory epithelium enhances activity-driven survival

    PubMed Central

    François, Adrien; Laziz, Iman; Rimbaud, Stéphanie; Grebert, Denise; Durieux, Didier; Pajot-Augy, Edith; Meunier, Nicolas

    2013-01-01

    The neuronal olfactory epithelium undergoes permanent renewal because of environmental aggression. This renewal is partly regulated by factors modulating the level of neuronal apoptosis. Among them, we had previously characterized endothelin as neuroprotective. In this study, we explored the effect of cell survival factor deprivation in the olfactory epithelium by intranasal delivery of endothelin receptors antagonists to rat pups. This treatment induced an overall increase of apoptosis in the olfactory epithelium. The responses to odorants recorded by electroolfactogram were decreased in treated animal, a result consistent with a loss of olfactory sensory neurons (OSNs). However, the treated animal performed better in an olfactory orientation test based on maternal odor compared to non-treated littermates. This improved performance could be due to activity-dependent neuronal survival of OSNs in the context of increased apoptosis level. In order to demonstrate it, we odorized pups with octanal, a known ligand for the rI7 olfactory receptor (Olr226). We quantified the number of OSN expressing rI7 by RT-qPCR and whole mount in situ hybridization. While this number was reduced by the survival factor removal treatment, this reduction was abolished by the presence of its ligand. This improved survival was optimal for low concentration of odorant and was specific for rI7-expressing OSNs. Meanwhile, the number of rI7-expressing OSNs was not affected by the odorization in non-treated littermates; showing that the activity-dependant survival of OSNs did not affect the OSN population during the 10 days of odorization in control conditions. Overall, our study shows that when apoptosis is promoted in the olfactory mucosa, the activity-dependent neuronal plasticity allows faster tuning of the olfactory sensory neuron population toward detection of environmental odorants. PMID:24399931

  5. Early survival factor deprivation in the olfactory epithelium enhances activity-driven survival.

    PubMed

    François, Adrien; Laziz, Iman; Rimbaud, Stéphanie; Grebert, Denise; Durieux, Didier; Pajot-Augy, Edith; Meunier, Nicolas

    2013-01-01

    The neuronal olfactory epithelium undergoes permanent renewal because of environmental aggression. This renewal is partly regulated by factors modulating the level of neuronal apoptosis. Among them, we had previously characterized endothelin as neuroprotective. In this study, we explored the effect of cell survival factor deprivation in the olfactory epithelium by intranasal delivery of endothelin receptors antagonists to rat pups. This treatment induced an overall increase of apoptosis in the olfactory epithelium. The responses to odorants recorded by electroolfactogram were decreased in treated animal, a result consistent with a loss of olfactory sensory neurons (OSNs). However, the treated animal performed better in an olfactory orientation test based on maternal odor compared to non-treated littermates. This improved performance could be due to activity-dependent neuronal survival of OSNs in the context of increased apoptosis level. In order to demonstrate it, we odorized pups with octanal, a known ligand for the rI7 olfactory receptor (Olr226). We quantified the number of OSN expressing rI7 by RT-qPCR and whole mount in situ hybridization. While this number was reduced by the survival factor removal treatment, this reduction was abolished by the presence of its ligand. This improved survival was optimal for low concentration of odorant and was specific for rI7-expressing OSNs. Meanwhile, the number of rI7-expressing OSNs was not affected by the odorization in non-treated littermates; showing that the activity-dependant survival of OSNs did not affect the OSN population during the 10 days of odorization in control conditions. Overall, our study shows that when apoptosis is promoted in the olfactory mucosa, the activity-dependent neuronal plasticity allows faster tuning of the olfactory sensory neuron population toward detection of environmental odorants.

  6. Microvasculature of the Olfactory Organ in the Japanese Monkey (Macaca fuscata fuscata)

    NASA Astrophysics Data System (ADS)

    Okada, Shigenori; Schraufnagel, Dean E.

    2002-06-01

    Olfaction is an important and primitive sense. As its importance has changed with evolution, anatomic adjustments have occurred in its structure and vasculature. Primates are a family of vertebrates that have had to develop their visual system to adapt to the arboreal environment and have evolved from a macrosmatic to a microsmatic species as the optic system has enlarged. This has resulted in anatomic changes of a small but critical area at the base of the brain. This paper describes the three-dimensional vascular anatomy of the olfactory organ of the Japanese monkey (Macaca fuscata fuscata). This is best understood by dividing the organ into three parts: the olfactory tract, olfactory bulb, and olfactory nerves in the nasal mucosa. The bulb can be partitioned into an outer or cortical part and inner or medullary part. The vasculature and tissue were examined grossly and with light microscopy and scanning electron microscopy of vascular corrosion casts. The olfactory tract and bulb were supplied by an arteriole from the anterior cerebral artery on each side. The tract was supplied by capillaries running spirally with a coarse network. At the olfactory bulb, the arteriole ramified into the intracortical and medullary branches that formed capillary networks. The bulbar intracortical capillaries were divided into two layers with different densities and vascular patterns. The capillaries of the superficial layer had a ladder-like pattern. The branches that ran into the medulla of the olfactory bulb were more widely spaced. Twigs from the posterior ethmoidal artery ran along the nerve fiber and formed intra- and extrafascicular networks. Each region of the olfactory organ had characteristic three-dimensional vascular patterns that were related to their cellular architecture.

  7. Identification of a specific olfactory receptor for 2-isobutyl-3-methoxypyrazine.

    PubMed Central

    Pelosi, P; Baldaccini, N E; Pisanelli, A M

    1982-01-01

    2-Isobutyl-3-methoxypyrazine, a potent bell-pepper odorant, binds to cow olfactory mucosa homogenate. The receptor is saturable in the micromolar range and is competitively inhibited by other bell-pepper odourants, but not by other pyrazines of different odours. Other tissues do not bind 2-isobutyl-3-methoxypyrazine at a significant extent. We suggest that this receptor is involved in odour discrimination. PMID:7082286

  8. Olfactory receptor gene expression in tiger salamander olfactory epithelium.

    PubMed

    Marchand, James E; Yang, Xinhai; Chikaraishi, Dona; Krieger, Jurgen; Breer, Heinz; Kauer, John S

    2004-06-28

    Physiological studies of odor-elicited responses from the olfactory epithelium and bulb in the tiger salamander, Ambystoma tigrinum, have elucidated a number of features of olfactory coding that appear to be conserved across several vertebrate species. This animal model has provided an accessible in vivo system for observing individual and ensemble olfactory responses to odorant stimulation using biochemical, neurophysiological, and behavioral assays. In this paper we have complemented these studies by characterizing 35 candidate odorant receptor genes. These receptor sequences are similar to those of the large families of olfactory receptors found in mammals and fish. In situ hybridization, using RNA probes to 20 of these sequences, demonstrates differential distributions of labeled cells across the extent and within the depth of the olfactory epithelium. The distributions of cells labeled with probes to different receptors show spatially restricted patterns that are generally localized to different degrees in medial-lateral and anterior-posterior directions. The patterns of receptor expression in the ventral olfactory epithelium (OE) are mirrored in the dorsal OE. We present a hypothesis as to how the sensory neuron populations expressing different receptor types responding to a particular odorant may relate to the distribution patterns of epithelial and bulbar responses previously characterized using single-unit and voltage-sensitive dye recording methods. Copyright 2004 Wiley-Liss, Inc.

  9. Olfactory dysfunction in Parkinson's disease.

    PubMed

    Hawkes, C H; Shephard, B C; Daniel, S E

    1997-05-01

    To evaluate olfactory function in Parkinson's disease. A standardised odour identification test was used, together with an evoked potential assessment with hydrogen sulphide. In addition, histological analysis was performed on the olfactory bulbs of cadavers who died from Parkinson's disease. Over 70% of patients studied (71 of 96) were outside the 95% limit of normal on the identification test in an age matched sample and there was an unusual pattern of selective loss to certain odours, not hitherto described. The evoked potentials were significantly delayed but of comparable amplitude to a control matched population. Of the 73 patients studied only 37 had a technically satisfactory record containing a clear response to both gases and of these, 12 were delayed. For H2S there was more delay on stimulating the right nostril than the left. Some patients with normal smell identification test scores had delayed evoked potentials. In the pathological examination of olfactory bulbs from eight brains, changes characteristic of Parkinson's disease (Lewy bodies) were seen in every olfactory bulb, particularly in the anterior olfactory nucleus, and were sufficiently distinct to allow a presumptive diagnosis of Parkinson's disease. Olfactory damage in Parkinson's disease is consistent and severe and may provide an important clue to the aetiology of the disease.

  10. Olfactory dysfunction in Parkinson's disease.

    PubMed Central

    Hawkes, C H; Shephard, B C; Daniel, S E

    1997-01-01

    OBJECTIVE: To evaluate olfactory function in Parkinson's disease. METHODS: A standardised odour identification test was used, together with an evoked potential assessment with hydrogen sulphide. In addition, histological analysis was performed on the olfactory bulbs of cadavers who died from Parkinson's disease. RESULTS: Over 70% of patients studied (71 of 96) were outside the 95% limit of normal on the identification test in an age matched sample and there was an unusual pattern of selective loss to certain odours, not hitherto described. The evoked potentials were significantly delayed but of comparable amplitude to a control matched population. Of the 73 patients studied only 37 had a technically satisfactory record containing a clear response to both gases and of these, 12 were delayed. For H2S there was more delay on stimulating the right nostril than the left. Some patients with normal smell identification test scores had delayed evoked potentials. In the pathological examination of olfactory bulbs from eight brains, changes characteristic of Parkinson's disease (Lewy bodies) were seen in every olfactory bulb, particularly in the anterior olfactory nucleus, and were sufficiently distinct to allow a presumptive diagnosis of Parkinson's disease. CONCLUSIONS: Olfactory damage in Parkinson's disease is consistent and severe and may provide an important clue to the aetiology of the disease. Images PMID:9153598

  11. A Circadian Clock in the Olfactory Bulb Anticipates Feeding during Food Anticipatory Activity

    PubMed Central

    Nolasco, Nahum; Juárez, Claudia; Morgado, Elvira; Meza, Enrique; Caba, Mario

    2012-01-01

    Rabbit pups ingest food, in this case milk, once a day with circadian periodicity and are a natural model of food anticipatory activity. During nursing, several sensory systems receive information about properties of the food, one of them being the olfactory system, which has received little attention in relation to synchronization by food. In addition, the olfactory bulb has a circadian pacemaker that exhibits rhythms independently of the suprachiasmatic nucleus, but the biological functions of these rhythms are largely unknown. In the present contribution, we hypothesized that circadian suckling of milk synchronizes rhythms in the olfactory bulb. To this aim we explored by immunohistochemistry, rhythms of FOS and PER1 proteins, as indicators of activation and reporter of oscillations, respectively, through a complete 24-h cycle in periglomerular, mitral and granular cell layers of both the main and the accessory olfactory bulb. Subjects were 7-day-old rabbit pups scheduled to nurse during the night (02∶00 h) or day (10∶00 h), and also fasted subjects, to explore the possible persistence of oscillations. In the three layers of the main olfactory bulb, FOS was high at time of nursing, then further increased 1.5 h afterward, and then decreased to increase again in advance of the next nursing bout. This pattern persisted, without the postprandial increase, in fasted subjects with a shift in subjects nursed at 02∶00. PER1 was increased 2–8 h after nursing and this increase persisted in most cell layers, with a shift, in fasted subjects. In the accessory olfactory bulb we only observed a consistent pattern of FOS expression in the mitral cell layer of nursed subjects, similar to that of the main olfactory bulb. We conclude that the main olfactory bulb is synchronized during milk ingestion, but during fasting its oscillations perhaps are modulated by the suprachiasmatic nucleus, as proposed for rodents. PMID:23094084

  12. A circadian clock in the olfactory bulb anticipates feeding during food anticipatory activity.

    PubMed

    Nolasco, Nahum; Juárez, Claudia; Morgado, Elvira; Meza, Enrique; Caba, Mario

    2012-01-01

    Rabbit pups ingest food, in this case milk, once a day with circadian periodicity and are a natural model of food anticipatory activity. During nursing, several sensory systems receive information about properties of the food, one of them being the olfactory system, which has received little attention in relation to synchronization by food. In addition, the olfactory bulb has a circadian pacemaker that exhibits rhythms independently of the suprachiasmatic nucleus, but the biological functions of these rhythms are largely unknown. In the present contribution, we hypothesized that circadian suckling of milk synchronizes rhythms in the olfactory bulb. To this aim we explored by immunohistochemistry, rhythms of FOS and PER1 proteins, as indicators of activation and reporter of oscillations, respectively, through a complete 24-h cycle in periglomerular, mitral and granular cell layers of both the main and the accessory olfactory bulb. Subjects were 7-day-old rabbit pups scheduled to nurse during the night (02:00 h) or day (10:00 h), and also fasted subjects, to explore the possible persistence of oscillations. In the three layers of the main olfactory bulb, FOS was high at time of nursing, then further increased 1.5 h afterward, and then decreased to increase again in advance of the next nursing bout. This pattern persisted, without the postprandial increase, in fasted subjects with a shift in subjects nursed at 02:00. PER1 was increased 2-8 h after nursing and this increase persisted in most cell layers, with a shift, in fasted subjects. In the accessory olfactory bulb we only observed a consistent pattern of FOS expression in the mitral cell layer of nursed subjects, similar to that of the main olfactory bulb. We conclude that the main olfactory bulb is synchronized during milk ingestion, but during fasting its oscillations perhaps are modulated by the suprachiasmatic nucleus, as proposed for rodents.

  13. Trace amine-associated receptors are olfactory receptors in vertebrates.

    PubMed

    Liberles, Stephen D

    2009-07-01

    The mammalian nose is a powerful chemosensor, capable of detecting and distinguishing a myriad of chemicals. Sensory neurons in the olfactory epithelium contain two types of chemosensory G protein-coupled receptors (GPCRs): odorant receptors (ORs), which are encoded by the largest gene family in mammals, and trace amine-associated receptors (TAARs), a smaller family of receptors distantly related to biogenic amine receptors. Do TAARs play a specialized role in olfaction distinct from that of ORs? Genes encoding TAARs are found in diverse vertebrates, from fish to mice to humans. Like OR genes, each Taar gene defines a unique population of canonical sensory neurons dispersed in a single zone of the olfactory epithelium. Ligands for mouse TAARs include a number of volatile amines, several of which are natural constituents of mouse urine, a rich source of rodent social cues. One chemical, 2-phenylethylamine, is reported to be enriched in the urine of stressed animals, and two others, trimethylamine and isoamylamine, are enriched in male versus female urine. Furthermore, isoamylamine has been proposed to be a pheromone that induces puberty acceleration in young female mice. These data raise the possibility that some TAARs are pheromone receptors in the nose, a hypothesis consistent with recent data suggesting that the olfactory epithelium contains dedicated pheromone receptors, separate from pheromone receptors in the vomeronasal organ. Future experiments will clarify the roles of TAARs in olfaction.

  14. Olfactory bulb units - Activity correlated with inhalation cycles and odor quality.

    NASA Technical Reports Server (NTRS)

    Macrides, F.; Chorover, S. L.

    1972-01-01

    Single olfactory bulb units were studied in two macrosmatic species of rodents under conditions intended to preserve the cyclical stimulation which normally accompanies nasal breathing. Patterns of unit activity related to the inhalation cycle were observed in all animals, often in the absence of specific stimuli, and could not be explained in simple mechanical terms. Distinctive changes in these patterns occurred in response to certain odors, and were generally independent of changes in the overall firing frequency. These findings indicate that a change in the overall firing frequency of unit discharges is neither a necessary nor sufficient measure of responsiveness to odors in the rodent olfactory bulb, and that stimulus-specific temporal distributions of unit firing may be involved in olfacto-endocrine activities.

  15. Olfactory bulb units - Activity correlated with inhalation cycles and odor quality.

    NASA Technical Reports Server (NTRS)

    Macrides, F.; Chorover, S. L.

    1972-01-01

    Single olfactory bulb units were studied in two macrosmatic species of rodents under conditions intended to preserve the cyclical stimulation which normally accompanies nasal breathing. Patterns of unit activity related to the inhalation cycle were observed in all animals, often in the absence of specific stimuli, and could not be explained in simple mechanical terms. Distinctive changes in these patterns occurred in response to certain odors, and were generally independent of changes in the overall firing frequency. These findings indicate that a change in the overall firing frequency of unit discharges is neither a necessary nor sufficient measure of responsiveness to odors in the rodent olfactory bulb, and that stimulus-specific temporal distributions of unit firing may be involved in olfacto-endocrine activities.

  16. Differential response of olfactory sensory neuron populations to copper ion exposure in zebrafish.

    PubMed

    Lazzari, Maurizio; Bettini, Simone; Milani, Liliana; Maurizii, Maria Gabriella; Franceschini, Valeria

    2017-02-01

    The peripheral olfactory system of fish is in direct contact with the external aqueous environment, so dissolved contaminants can easily impair sensory functions and cause neurobehavioral injuries. The olfactory epithelium of fish is arranged in lamellae forming a rosette in the olfactory cavity and contains three main types of olfactory sensory neurons (OSNs): ciliated (cOSNs) and microvillous olfactory sensory neurons (mOSNs), common to all vertebrates, and a third minor group of olfactory neurons, crypt cells, absent in tetrapods. Since copper is a ubiquitously diffusing olfactory toxicant and a spreading contaminant in urban runoff, we investigated the effect of low copper concentration on the three different OSNs in the olfactory epithelium of zebrafish, a model system widely used in biological research. Image analysis was applied for morphometry and quantification of immunohistochemically detected OSNs. Copper exposure resulted in an evident decrease in olfactory epithelium thickness. Moreover, after exposure, the lamellae of the dorsal and ventral halves of the olfactory rosettes showed a different increase in their sensory areas, suggesting a lateral migration of new cells into non-sensory regions. The results of the present study provide clear evidence of a differential response of the three neural cell populations of zebrafish olfactory mucosa after 96h of exposure to copper ions at the sublethal concentration of 30μgL(-1). Densitometric values of cONS, immunostained with anti-G αolf, decreased of about 60% compared to the control. When the fish were transferred to water without copper addition and examined after 3, 10 and 30days, we observed a partial restoration of anti-G αolf staining intensity to normal condition. The recovery of cOSNs appeared sustained by neuronal proliferation, quantified with anti-PCNA immunostaining, in particular in the early days after exposure. The densitometric analysis applied to mOSNs, immunostained with anti-TRPC2

  17. Paced-Mating Increases the Number of Adult New Born Cells in the Internal Cellular (Granular) Layer of the Accessory Olfactory Bulb

    PubMed Central

    Corona, Rebeca; Larriva-Sahd, Jorge; Paredes, Raúl G.

    2011-01-01

    The continuous production and addition of new neurons during life in the olfactory bulb is well accepted and has been extensively studied in rodents. This process could allow the animals to adapt to a changing environment. Olfactory neurogenesis begins in the subventricular zone where stem cells proliferate and give rise to young undifferentiated neuroblasts that migrate along the rostral migratory stream to the olfactory bulb (OB). Olfaction is crucial for the expression of sexual behavior in rodents. In female rats, the ability to control the rate of sexual interactions (pacing) has important physiological and behavioral consequences. In the present experiment we evaluated if pacing behavior modifies the rate of new cells that reach the main and accessory olfactory bulb. The BrdU marker was injected before and after different behavioral tests which included: females placed in a mating cage (control), females allowed to pace the sexual interaction, females that mated but were not able to control the rate of the sexual interaction and females exposed to a sexually active male. Subjects were sacrificed fifteen days after the behavioral test. We observed a significant increase in the density of BrdU positive cells in the internal cellular layer of the accessory olfactory bulb when females paced the sexual interaction in comparison to the other 3 groups. No differences in the cell density in the main olfactory bulb were found. These results suggest that pacing behavior promotes an increase in density of the new cells in the accessory olfactory bulb. PMID:21637743

  18. Amyloid beta inhibits olfactory bulb activity and the ability to smell.

    PubMed

    Alvarado-Martínez, Reynaldo; Salgado-Puga, Karla; Peña-Ortega, Fernando

    2013-01-01

    Early olfactory dysfunction has been consistently reported in both Alzheimer's disease (AD) and in transgenic mice that reproduce some features of this disease. In AD transgenic mice, alteration in olfaction has been associated with increased levels of soluble amyloid beta protein (Aβ) as well as with alterations in the oscillatory network activity recorded in the olfactory bulb (OB) and in the piriform cortex. However, since AD is a multifactorial disease and transgenic mice suffer a variety of adaptive changes, it is still unknown if soluble Aβ, by itself, is responsible for OB dysfunction both at electrophysiological and behavioral levels. Thus, here we tested whether or not Aβ directly affects OB network activity in vitro in slices obtained from mice and rats and if it affects olfactory ability in these rodents. Our results show that Aβ decreases, in a concentration- and time-dependent manner, the network activity of OB slices at clinically relevant concentrations (low nM) and in a reversible manner. Moreover, we found that intrabulbar injection of Aβ decreases the olfactory ability of rodents two weeks after application, an effect that is not related to alterations in motor performance or motivation to seek food and that correlates with the presence of Aβ deposits. Our results indicate that Aβ disrupts, at clinically relevant concentrations, the network activity of the OB in vitro and can trigger a disruption in olfaction. These findings open the possibility of exploring the cellular mechanisms involved in early pathological AD as an approach to reduce or halt its progress.

  19. [Olfactory sensory perception].

    PubMed

    Fuentes, Aler; Fresno, María Javiera; Santander, Hugo; Valenzuela, Saúl; Gutiérrez, Mario Felipe; Miralles, Rodolfo

    2011-03-01

    The five senses have had a fundamental importance for survival and socialization of human beings. From an evolutionary point of view the sense of smell is the oldest. This sense has a strong representation within the genome, allowing the existence of many types of receptors that allow us to capture multiple volatile odor producing molecules, sending electrical signals to higher centers to report the outside world. Several cortical areas are activated in the brain, which are interconnected to form an extensive and complex neural network, linking for example, areas involved with memory and emotions, thus giving this sense of perceptual richness. While the concept of flavor is largely related to the sense of taste, smell provides the necessary integration with the rest of the senses and higher functions. Fully understanding the sense of smell is relevant to health professionals. Knowing the characteristics of the receptors, the transduction processes and convergence of information in the higher centers involved, we can properly detect olfactory disorders in our patients.

  20. Coding odor identity and odor value in awake rodents

    PubMed Central

    Nuñez-Parra, Alexia; Li, Anan; Restrepo, Diego

    2014-01-01

    In the last decade, drastic changes in the understanding of the role of the olfactory bulb and piriform cortex in odor detection have taken place through awake behaving recording in rodents. It is clear that odor responses in mitral and granule cells are strikingly different in the olfactory bulb of anesthetized vs. awake animals. In addition, sniff recording has evidenced that mitral cell responses to odors during the sniff can convey information on the odor identity and sniff phase. Moreover, we review studies that show that the mitral cell conveys not only information on odor identity but also on whether the odor is rewarded or not (odor value). Finally, we discuss how the substantial increase in awake behaving recording raises questions for future studies. PMID:24767484

  1. Evolution of insect olfactory receptors

    PubMed Central

    Missbach, Christine; Dweck, Hany KM; Vogel, Heiko; Vilcinskas, Andreas; Stensmyr, Marcus C; Hansson, Bill S; Grosse-Wilde, Ewald

    2014-01-01

    The olfactory sense detects a plethora of behaviorally relevant odor molecules; gene families involved in olfaction exhibit high diversity in different animal phyla. Insects detect volatile molecules using olfactory (OR) or ionotropic receptors (IR) and in some cases gustatory receptors (GRs). While IRs are expressed in olfactory organs across Protostomia, ORs have been hypothesized to be an adaptation to a terrestrial insect lifestyle. We investigated the olfactory system of the primary wingless bristletail Lepismachilis y-signata (Archaeognatha), the firebrat Thermobia domestica (Zygentoma) and the neopteran leaf insect Phyllium siccifolium (Phasmatodea). ORs and the olfactory coreceptor (Orco) are with very high probability lacking in Lepismachilis; in Thermobia we have identified three Orco candidates, and in Phyllium a fully developed OR/Orco-based system. We suggest that ORs did not arise as an adaptation to a terrestrial lifestyle, but evolved later in insect evolution, with Orco being present before the appearance of ORs. DOI: http://dx.doi.org/10.7554/eLife.02115.001 PMID:24670956

  2. Olfactory Ensheathing Cells Express α7 Integrin to Mediate Their Migration on Laminin

    PubMed Central

    Ingram, Norianne T.; Khankan, Rana R.; Phelps, Patricia E.

    2016-01-01

    The unique glia located in the olfactory system, called olfactory ensheathing cells (OECs), are implicated as an attractive choice for transplantation therapy following spinal cord injury because of their pro-regenerative characteristics. Adult OECs are thought to improve functional recovery and regeneration after injury by secreting neurotrophic factors and making cell-to-cell contacts with regenerating processes, but the mechanisms are not well understood. We show first that α7 integrin, a laminin receptor, is highly expressed at the protein level by OECs throughout the olfactory system, i.e., in the olfactory mucosa, olfactory nerve, and olfactory nerve layer of the olfactory bulb. Then we asked if OECs use the α7 integrin receptor directly to promote neurite outgrowth on permissive and neutral substrates, in vitro. We co-cultured α7+/+ and α7lacZ/lacZ postnatal cerebral cortical neurons with α7+/+ or α7lacZ/lacZ OECs and found that genotype did not effect the ability of OECs to enhance neurite outgrowth by direct contact. Loss of α7 integrin did however significantly decrease the motility of adult OECs in transwell experiments. Twice as many α7+/+ OECs migrated through laminin-coated transwells compared to α7+/+ OECs on poly-L-lysine (PLL). This is in contrast to α7lacZ/lacZ OECs, which showed no migratory preference for laminin substrate over PLL. These results demonstrate that OECs express α7 integrin, and that laminin and its α7 integrin receptor contribute to adult OEC migration in vitro and perhaps also in vivo. PMID:27078717

  3. Olfactory Ensheathing Cells Express α7 Integrin to Mediate Their Migration on Laminin.

    PubMed

    Ingram, Norianne T; Khankan, Rana R; Phelps, Patricia E

    2016-01-01

    The unique glia located in the olfactory system, called olfactory ensheathing cells (OECs), are implicated as an attractive choice for transplantation therapy following spinal cord injury because of their pro-regenerative characteristics. Adult OECs are thought to improve functional recovery and regeneration after injury by secreting neurotrophic factors and making cell-to-cell contacts with regenerating processes, but the mechanisms are not well understood. We show first that α7 integrin, a laminin receptor, is highly expressed at the protein level by OECs throughout the olfactory system, i.e., in the olfactory mucosa, olfactory nerve, and olfactory nerve layer of the olfactory bulb. Then we asked if OECs use the α7 integrin receptor directly to promote neurite outgrowth on permissive and neutral substrates, in vitro. We co-cultured α7+/+ and α7lacZ/lacZ postnatal cerebral cortical neurons with α7+/+ or α7lacZ/lacZ OECs and found that genotype did not effect the ability of OECs to enhance neurite outgrowth by direct contact. Loss of α7 integrin did however significantly decrease the motility of adult OECs in transwell experiments. Twice as many α7+/+ OECs migrated through laminin-coated transwells compared to α7+/+ OECs on poly-L-lysine (PLL). This is in contrast to α7lacZ/lacZ OECs, which showed no migratory preference for laminin substrate over PLL. These results demonstrate that OECs express α7 integrin, and that laminin and its α7 integrin receptor contribute to adult OEC migration in vitro and perhaps also in vivo.

  4. Karyometry of the colonic mucosa.

    PubMed

    Alberts, David S; Einspahr, Janine G; Krouse, Robert S; Prasad, Anil; Ranger-Moore, James; Hamilton, Peter; Ismail, Ayaaz; Lance, Peter; Goldschmid, Steven; Hess, Lisa M; Yozwiak, Michael; Bartels, Hubert G; Bartels, Peter H

    2007-12-01

    The study summarizes results of karyometric measurements in epithelial cells of the colorectal mucosa to document evidence of a field effect of preneoplastic development among patients with colorectal adenocarcinoma or adenoma. Karyometric analyses were done on high-resolution images of histologic sections from 48 patients with colorectal adenocarcinomas and 44 patients with adenomas and on images from matching normal-appearing mucosa directly adjacent to such lesions, at a 1-cm and 10-cm distance from the lesions or from the rectal mucosa of adenoma patients, as well as from 24 healthy normal controls with no family history of colonic disease. The nuclei recorded in the histologically normal-appearing mucosa of patients with either colorectal adenoma or adenocarcinoma exhibited differences in karyometric features in comparison with nuclei recorded in rectal mucosa from patients who were free of a colonic lesion. These differences were expressed to the same extent in tissue adjacent to the lesions and in normal-appearing tissue as distant as the rectum. The nuclear chromatin pattern may serve as an integrating biomarker for a preneoplastic development. The field effect might provide an end point in chemopreventive intervention trials.

  5. Paraneoplastic syndromes in olfactory neuroblastoma

    PubMed Central

    Gabrych, Anna; Czapiewski, Piotr; Sworczak, Krzysztof

    2015-01-01

    Olfactory neuroblastoma (ONB) is a rare malignant neoplasm of sinonasal tract, derived from olfactory epithelium. Unilateral nasal obstruction, epistaxis, sinusitis, and headaches are common symptoms. Olfactory neuroblastoma shows neuroendocrine differentiation and similarly to other neuroendocrine tumors can produce several types of peptic substances and hormones. Excess production of these substances can be responsible for different types of endocrinological paraneoplastic syndromes (PNS). Moreover, besides endocrinological, in ONB may also occur neurological PNS, caused by immune cross-reactivity between tumor and normal host tissues in the nervous system. Paraneoplastic syndromes in ONB include: syndrome of inappropriate ADH secretion (SIADH), ectopic ACTH syndrome (EAS), humoral hypercalcemia of malignancy (HHM), hypertension due to catecholamine secretion by tumor, opsoclonus-myoclonus-ataxia (OMA) and paraneoplastic cerebellar degeneration. Paraneoplastic syndromes in ONB tend to have atypical features, therefore diagnosis may be difficult. In this review, we described initial symptoms, patterns of presentation, treatment and outcome of paraneoplastic syndromes in ONB, reported in the literature. PMID:26199564

  6. Prenatal Alcohol Exposure Affects Progenitor Cell Numbers in Olfactory Bulbs and Dentate Gyrus of Vervet Monkeys

    PubMed Central

    Burke, Mark W.; Inyatkin, Alexey; Ptito, Maurice; Ervin, Frank R.; Palmour, Roberta M.

    2016-01-01

    Fetal alcohol exposure (FAE) alters hippocampal cell numbers in rodents and primates, and this may be due, in part, to a reduction in the number or migration of neuronal progenitor cells. The olfactory bulb exhibits substantial postnatal cellular proliferation and a rapid turnover of newly formed cells in the rostral migratory pathway, while production and migration of postnatal neurons into the dentate gyrus may be more complex. The relatively small size of the olfactory bulb, compared to the hippocampus, potentially makes this structure ideal for a rapid analysis. This study used the St. Kitts vervet monkey (Chlorocebus sabeus) to (1) investigate the normal developmental sequence of post-natal proliferation in the olfactory bulb and dentate gyrus and (2) determine the effects of naturalistic prenatal ethanol exposure on proliferation at three different ages (neonate, five months and two years). Using design-based stereology, we found an age-related decrease of actively proliferating cells in the olfactory bulb and dentate gyrus for both control and FAE groups. Furthermore, at the neonatal time point, the FAE group had fewer actively proliferating cells as compared to the control group. These data are unique with respect to fetal ethanol effects on progenitor proliferation in the primate brain and suggest that the olfactory bulb may be a useful structure for studies of cellular proliferation. PMID:27801790

  7. Olfactory epithelium in the olfactory recess: a case study in new world leaf-nosed bats.

    PubMed

    Eiting, Thomas P; Smith, Timothy D; Dumont, Elizabeth R

    2014-11-01

    The olfactory recess (OR) is a restricted space at the back of the nasal fossa in many mammals that is thought to improve olfactory function. Mammals that have an olfactory recess are usually described as keen-scented, while those that do not are typically thought of as less reliant on olfaction. However, the presence of an olfactory recess is not a binary trait. Many mammal families have members that vary substantially in the size and complexity of the olfactory recess. There is also variation in the amount of olfactory epithelium (OE) that is housed in the olfactory recess. Among New World leaf-nosed bats (family Phyllostomidae), species vary by over an order of magnitude in how much of their total OE lies within the OR. Does this variation relate to previously documented neuroanatomical proxies for olfactory reliance? Using data from 12 species of phyllostomid bats, we addressed the hypothesis that the amount of OE within the OR relates to a species' dependence on olfaction, as measured by two commonly used neuroanatomical metrics, the size of the olfactory bulb, and the number of glomeruli in the olfactory bulb, which are the first processing units within the olfactory signal cascade. We found that the percentage of OE within the OR does not relate to either measure of olfactory "ability." This suggests that olfactory reliance is not reflected in the size of the olfactory recess. We explore other roles that the olfactory recess may play. © 2014 Wiley Periodicals, Inc.

  8. The Magic Number 70 (Plus or Minus 20): Variables Determining Performance in the Rodent Odor Span Task

    ERIC Educational Resources Information Center

    April, L. Brooke; Bruce, Katherine; Galizio, Mark

    2013-01-01

    The olfactory span task (OST) uses an incrementing non-matching to sample procedure such that the number of stimuli to remember increases during the session. The number of consecutive correct responses (span length) and percent correct as a function of the memory load have been viewed as defining rodent working memory capacity limitations in…

  9. The Magic Number 70 (Plus or Minus 20): Variables Determining Performance in the Rodent Odor Span Task

    ERIC Educational Resources Information Center

    April, L. Brooke; Bruce, Katherine; Galizio, Mark

    2013-01-01

    The olfactory span task (OST) uses an incrementing non-matching to sample procedure such that the number of stimuli to remember increases during the session. The number of consecutive correct responses (span length) and percent correct as a function of the memory load have been viewed as defining rodent working memory capacity limitations in…

  10. Vermilion Reconstruction with Genital Mucosa.

    PubMed

    Müller-Richter, Urs D A; Weyandt, Gerhard H; Woeckel, Achim; Kübler, Alexander C

    2016-05-01

    Functional and aesthetical reconstruction, especially of the upper lip after ablative tumor surgery, can be very challenging. The skin of the lip might be sufficiently reconstructed by transpositional flaps from the nasolabial or facial area. Large defects of the lip mucosa, including the vestibule, are even more challenging due to the fact that flaps from the inner lining of the oral cavity often lead to functional impairments. We present a case of multiple vermilion and skin resections of the upper lip. At the last step, we had to resect even the whole vermilion mucosa, including parts of the oral mucosa of the vestibule, leaving a bare orbicularis oris muscle. To reconstruct the mucosal layer, we used a mucosal graft from the labia minora and placed it on the compromised lip and the former transpositional flaps for the reconstructed skin of the upper lip with very good functional and aesthetic results.

  11. Vermilion Reconstruction with Genital Mucosa

    PubMed Central

    Weyandt, Gerhard H.; Woeckel, Achim; Kübler, Alexander C.

    2016-01-01

    Summary: Functional and aesthetical reconstruction, especially of the upper lip after ablative tumor surgery, can be very challenging. The skin of the lip might be sufficiently reconstructed by transpositional flaps from the nasolabial or facial area. Large defects of the lip mucosa, including the vestibule, are even more challenging due to the fact that flaps from the inner lining of the oral cavity often lead to functional impairments. We present a case of multiple vermilion and skin resections of the upper lip. At the last step, we had to resect even the whole vermilion mucosa, including parts of the oral mucosa of the vestibule, leaving a bare orbicularis oris muscle. To reconstruct the mucosal layer, we used a mucosal graft from the labia minora and placed it on the compromised lip and the former transpositional flaps for the reconstructed skin of the upper lip with very good functional and aesthetic results. PMID:27579226

  12. Reproductive responses to photoperiod persist in olfactory bulbectomized Siberian hamsters (Phodopus sungorus).

    PubMed

    Prendergast, Brian J; Pyter, Leah M; Galang, Jerome; Kay, Leslie M

    2009-03-02

    In reproductively photoperiodic Syrian hamsters, removal of the olfactory bulbs (OBx) leads to a marked and sustained increase in gonadotrophin secretion which prevents normal testicular regression in short photoperiods. In contrast, among reproductively nonphotoperiodic laboratory strains of rats and mice, bulbectomy unmasks reproductive responses to photoperiod. The role of the olfactory bulbs has been proposed to have opposite effects on responsiveness to photoperiod, depending on the photoperiodicity of the reproductive system; however, Syrian hamsters are the only reproductively photoperiodic rodent species for which the role of the olfactory bulb in reproductive endocrinology has been assessed. This experiment evaluated the role of the olfactory bulbs in the photoperiodic control of reproduction in Siberian hamsters (Phodopus sungorus), an established model species for the study of neural substrates mediating seasonality. Relative to control hamsters housed in long days (15 h light/day), exposure of adult male hamsters to short days (9h light/day) for 8 weeks led to a temporal expansion of the pattern of nocturnal locomotor activity, testicular regression, decreases in testosterone (T) production, and undetectable levels of plasma follicle-stimulating hormone (FSH). Bilateral olfactory bulbectomy failed to affect any of these responses to short days. The patterns of entrainment to long and short days suggests that pre-pineal mechanisms involved in photoperiodic timekeeping are functioning normally in OBx hamsters. The absence of increases in FSH following bulbectomy in long days is incompatible with the hypothesis that the olfactory bulbs provide tonic inhibition of the HPG axis in this species. In marked contrast to Syrian hamsters, the olfactory bulbs of Siberian hamsters play essentially no role in the modulation of tonic gonadotrophin production or gonadotrophin responses to photoperiod.

  13. In vivo visualization of olfactory pathophysiology induced by intranasal cadmium instillation in mice

    PubMed Central

    Czarnecki, Lindsey A.; Moberly, Andrew H.; Rubinstein, Tom; Turkel, Daniel J.; Pottackal, Joseph; McGann, John P.

    2013-01-01

    Intranasal exposure to cadmium has been related to olfactory dysfunction in humans and to nasal epithelial damage and altered odorant-guided behavior in rodent models. The pathophysiology underlying these deficits has not been fully elucidated. Here we use optical imaging techniques to visualize odorant-evoked neurotransmitter release from the olfactory nerve into the brain’s olfactory bulbs in vivo in mice. Intranasal cadmium chloride instillations reduced this sensory activity by up to 91% in a dose-dependent manner. In the olfactory bulbs, afferents from the olfactory epithelium could be quantified by their expression of a genetically-encoded fluorescent marker for olfactory marker protein. At the highest dose tested, cadmium exposure reduced the density of these projections by 20%. In a behavioral psychophysical task, mice were trained to sample from an odor port and make a response when they detected an odorant against a background of room air. After intranasal cadmium exposure, mice were unable to detect the target odor. These experiments serve as proof of concept for a new approach to the study of the neural effects of inhaled toxicants. The use of in vivo functional imaging of the neuronal populations exposed to the toxicant permits the direct observation of primary pathophysiology. In this study optical imaging revealed significant reductions in odorant-evoked release from the olfactory nerve at a cadmium chloride dose two orders of magnitude less than that required to induce morphological changes in the nerve in the same animals, demonstrating that it is a more sensitive technique for assessing the consequences of intranasal neurotoxicant exposure. This approach is potentially useful in exploring the effects of any putative neurotoxicant that can be delivered intranasally. PMID:21443902

  14. Accessory and main olfactory systems influences on predator odor-induced behavioral and endocrine stress responses in rats

    PubMed Central

    Masini, Cher V.; Garcia, Robert J.; Sasse, Sarah K.; Nyhuis, Tara J.; Day, Heidi E.W.; Campeau, Serge

    2009-01-01

    Exposures to predator odors are very effective methods to evoke a variety of stress responses in rodents. We have previously found that ferret odor exposure leads to changes in endocrine hormones (corticosterone and ACTH) and behavior. To distinguish the contributions of the main and accessory olfactory systems in these responses, studies were designed to interfere with these two systems either independently, or simultaneously. Male Sprague-Dawley rats were treated with 10% zinc sulfate (ZnSO4), which renders rodents anosmic (unable to smell) while leaving the accessory olfactory areas intact, or saline, in experiment 1. In experiment 2, the vomeronasal organs of rats were surgically removed (VNX) to block accessory olfactory processing, while leaving the main olfactory system intact. And in the 3rd experiment both the main and accessory olfactory areas were disrupted by combining the two procedures in the same rats. Neither ZnSO4 treatment or VNX alone reliably reduced the increased corticosterone response to ferret odor compared to strawberry odor, but in combination, they did. This suggests that processing through the main or the accessory olfactory system can elicit the endocrine stress response to ferret odor. VNX alone also did not affect the behavioral responses to the ferret. ZnSO4 treatment, alone and in combination with VNX, led to changes in behavior in response to both ferret and strawberry odor, making the behavioral results less clearly interpretable. Overall these studies suggest that both the main and accessory olfactory systems mediate the neuroendocrine response to predator odor. PMID:19800371

  15. Antimicrobial compounds of porcine mucosa

    NASA Astrophysics Data System (ADS)

    Kotenkova, E. A.; Lukinova, E. A.; Fedulova, L. V.

    2017-09-01

    The aim of the study was to investigate porcine oral cavity mucosa (OCM), nasal cavity mucosa (NCM), rectal mucosa (RM) and tongue mucosa (TM) as sources of antimicrobial compounds. Ultrafiltrates with MW >30 kDa, MW 5-30 kDa and MW <5 kDa were obtained. All ultrafiltrates had antimicrobial activity against Escherichia coli and Proteus vulgaris. NCM ultrafiltrates revealed the highest antibacterial activity in respect to negative control: for the fraction with MW >30 kDa, the zone of microbial growth inhibition was 7.5 mm, for the MW<5 kDa fraction, it was 7 mm, and for MW 5-30 kDa fraction, it was 4.5 mm. No significant differences were found in high molecular weight proteomic profile, while qualitative and quantitative differences were observed in the medium and low molecular weight areas, especially in OCM and NCM. HPLC showed 221 tissue-specific peptides in OCM, 156 in NCM, 225 in RM, but only 5 in TM. The results observed confirmed porcine mucous tissues as a good source of antimicrobial compounds, which could be an actual alternative for reduction of microbial spoilage of foods.

  16. Hypothyroidism Affects Olfactory Evoked Potentials

    PubMed Central

    Świdziński, Teodor; Czerniejewska-Wolska, Hanna; Wiskirska-Woźnica, Bożena; Owecki, Maciej; Głowacka, Maria Danuta; Frankowska, Anna; Łącka, Katarzyna; Glapiński, Mariusz; Maciejewska-Szaniec, Zofia; Świdziński, Piotr

    2016-01-01

    Background. Objective electrophysiological methods for investigations of the organ of smell consist in recordings of olfactory cortex responses to specific, time restricted odor stimuli. In hypothyroidism have impaired sense of smell. Material and Methods. Two groups: control of 31 healthy subjects and study group of 21 with hypothyroidism. The inclusion criterion for the study group was the TSH range from 3.54 to 110 μIU/mL. Aim. Assessment of the latency time of evoked responses from the olfactory nerve N1 and the trigeminal nerve N5 using two smells of mint and anise in hypothyroidism. Results. The smell perception in subjective olfactory tests was normal in 85% of the hypothyroid group. Differences were noticed in the objective tests. The detailed intergroup analysis of latency times of recorded cortical responses PN5 and PN1 performed by means between the groups of patients with overt clinical hypothyroidism versus subclinical hypothyroidism demonstrated a significant difference (p < 0.05) whereas no such differences were found between the control group versus subclinical hypothyroidism group (p > 0.05). Conclusion. We can conclude that registration of cortex potentials at irritation of olfactory and trigeminal nerves offers possibilities for using this method as an objective indicator of hypothyroidism severity and prognostic process factor. PMID:27656655

  17. Hypothyroidism Affects Olfactory Evoked Potentials.

    PubMed

    Świdziński, Teodor; Linkowska-Świdzińska, Kamila; Czerniejewska-Wolska, Hanna; Wiskirska-Woźnica, Bożena; Owecki, Maciej; Głowacka, Maria Danuta; Frankowska, Anna; Łącka, Katarzyna; Glapiński, Mariusz; Maciejewska-Szaniec, Zofia; Świdziński, Piotr

    Background. Objective electrophysiological methods for investigations of the organ of smell consist in recordings of olfactory cortex responses to specific, time restricted odor stimuli. In hypothyroidism have impaired sense of smell. Material and Methods. Two groups: control of 31 healthy subjects and study group of 21 with hypothyroidism. The inclusion criterion for the study group was the TSH range from 3.54 to 110 μIU/mL. Aim. Assessment of the latency time of evoked responses from the olfactory nerve N1 and the trigeminal nerve N5 using two smells of mint and anise in hypothyroidism. Results. The smell perception in subjective olfactory tests was normal in 85% of the hypothyroid group. Differences were noticed in the objective tests. The detailed intergroup analysis of latency times of recorded cortical responses PN5 and PN1 performed by means between the groups of patients with overt clinical hypothyroidism versus subclinical hypothyroidism demonstrated a significant difference (p < 0.05) whereas no such differences were found between the control group versus subclinical hypothyroidism group (p > 0.05). Conclusion. We can conclude that registration of cortex potentials at irritation of olfactory and trigeminal nerves offers possibilities for using this method as an objective indicator of hypothyroidism severity and prognostic process factor.

  18. The largest fossil rodent

    PubMed Central

    Rinderknecht, Andrés; Blanco, R. Ernesto

    2008-01-01

    The discovery of an exceptionally well-preserved skull permits the description of the new South American fossil species of the rodent, Josephoartigasia monesi sp. nov. (family: Dinomyidae; Rodentia: Hystricognathi: Caviomorpha). This species with estimated body mass of nearly 1000 kg is the largest yet recorded. The skull sheds new light on the anatomy of the extinct giant rodents of the Dinomyidae, which are known mostly from isolated teeth and incomplete mandible remains. The fossil derives from San José Formation, Uruguay, usually assigned to the Pliocene–Pleistocene (4–2 Myr ago), and the proposed palaeoenvironment where this rodent lived was characterized as an estuarine or deltaic system with forest communities. PMID:18198140

  19. The largest fossil rodent.

    PubMed

    Rinderknecht, Andrés; Blanco, R Ernesto

    2008-04-22

    The discovery of an exceptionally well-preserved skull permits the description of the new South American fossil species of the rodent, Josephoartigasia monesi sp. nov. (family: Dinomyidae; Rodentia: Hystricognathi: Caviomorpha). This species with estimated body mass of nearly 1000kg is the largest yet recorded. The skull sheds new light on the anatomy of the extinct giant rodents of the Dinomyidae, which are known mostly from isolated teeth and incomplete mandible remains. The fossil derives from San José Formation, Uruguay, usually assigned to the Pliocene-Pleistocene (4-2Myr ago), and the proposed palaeoenvironment where this rodent lived was characterized as an estuarine or deltaic system with forest communities.

  20. 17β-estradiol enhances memory duration in the main olfactory bulb in CD-1 mice.

    PubMed

    Dillon, T Samuel; Fox, Laura C; Han, Crystal; Linster, Christiane

    2013-12-01

    Rodents rely heavily on odor detection, discrimination, and memory to locate food, find mates, care for pups, and avoid predators. Estrogens have been shown to increase memory retention in rodents performing spatial memory and object placement tasks. Here we evaluate the extent to which 17β-estradiol modulates memory formation and duration in the olfactory system. Adult CD-1 mice were gonadectomized and given either systemic 17β-estradiol replacement, local 17β-estradiol in the main olfactory bulb, or no replacement. Before performing the behavioral task the mice were given saline or PHTPP (an estrogen receptor β [ER-β] antagonist) via bilateral infusion into the main olfactory bulb. As the beta-type estrogen receptor (ER-β) is more abundant than the alpha-type estrogen receptor in the murine main olfactory bulb, the current study focuses on 17β-estradiol and its interactions with ERβ. Habituation, a simple, nonassociative learning task in which an animal is exposed to the same odor over successive presentations, was used to evaluate the animals' ability to detect odors and form an olfactory memory. To evaluate memory duration, we added a final trial of intertrial interval time (30 or 60 min) in which we presented the habituated odor. Neither surgical nor drug manipulation affected the ability of mice to detect or habituate to an odor. After habituation, gonadectomized 17β-estradiol-treated mice retained memory of an odor for 30 min, whereas non-estradiol-treated, 17β-estradiol+ERβ antagonist (PHTPP), and untreated male mice did not remember an odor 30 min after habituation. The results show that both systemic and local bulbar infusions of 17β-estradiol enhance odor memory duration in mice.

  1. Strong single-fiber sensory inputs to olfactory cortex: implications for olfactory coding.

    PubMed

    Franks, Kevin M; Isaacson, Jeffry S

    2006-02-02

    Olfactory information is first encoded in a combinatorial fashion by olfactory bulb glomeruli, which individually represent distinct chemical features of odors. This information is then transmitted to piriform (olfactory) cortex, via axons of olfactory bulb mitral and tufted (M/T) cells, where it is presumed to form the odor percept. However, mechanisms governing the integration of sensory information in mammalian olfactory cortex are unclear. Here we show that single M/T cells can make powerful connections with cortical pyramidal cells, and coincident input from few M/T cells is sufficient to elicit spike output. These findings suggest that odor coding is broad and distributed in olfactory cortex.

  2. Emx2 homeodomain transcription factor interacts with eukaryotic translation initiation factor 4E (eIF4E) in the axons of olfactory sensory neurons.

    PubMed

    Nédélec, Stéphane; Foucher, Isabelle; Brunet, Isabelle; Bouillot, Colette; Prochiantz, Alain; Trembleau, Alain

    2004-07-20

    We report that Emx2 homeogene is expressed at the mRNA and protein levels in the adult mouse olfactory neuroepithelium. As expected for a transcription factor, Emx2 is present in the nucleus of immature and mature olfactory sensory neurons. However, the protein is also detected in the axonal compartment of these neurons, both in the olfactory mucosa axon bundles and in axon terminals within the olfactory bulb. Emx2 axonal staining is heterogeneous, suggesting an association with particles. Subcellular fractionations of olfactory bulb synaptosomes, combined with chemical lesions of olfactory neurons, confirm the presence of Emx2 in axon terminals. Significant amounts of Emx2 protein cosediment with high density synaptosomal subfractions containing eukaryotic translation initiation factor 4E (eIF4E). Nonionic detergents and RNase treatments failed to detach eIF4E and Emx2 from these high-density fractions enriched in vesicles and granular structures. In addition, Emx2 and eIF4E can be coimmunoprecipitated from olfactory mucosa and bulb extracts and interact directly, as demonstrated in pull-down experiments. Emx2 axonal localization, association with high-density particles and interaction with eIF4E strongly suggest that this transcription factor has new nonnuclear functions most probably related to the local control of protein translation in the olfactory sensory neuron axons. Finally, we show that two other brain-expressed homeoproteins, Otx2 and Engrailed 2, also bind eIF4E, indicating that several homeoproteins may modulate eIF4E functions in the developing and adult nervous system.

  3. Colonisation and shedding of Lawsonia intracellularis in experimentally inoculated rodents and in wild rodents on pig farms.

    PubMed

    Collins, A M; Fell, S; Pearson, H; Toribio, J-A

    2011-06-02

    Lawsonia intracellularis is an intracellular bacterium causing proliferative enteropathy in various animal species, and is considered an economically important pathogen of pigs. Rats and mice have been implicated as external vectors for a wide range of pig pathogens, including L. intracellularis. Previous studies have demonstrated L. intracellularis infection and proliferative enteropathy in rodents, but did not show the duration of shedding or the number of L. intracellularis shed by infected rodents, and therefore the infection risk that rodents pose to pigs. In this study, the number of L. intracellularis shed in the faeces and intestinal mucosa of wild rats trapped on pig farms was determined by a quantitative real time polymerase chain reaction assay. The prevalence of L. intracellularis in wild rats trapped on pig farms with endemic proliferative enteropathy (PE) was very high (≥ 70.6%), and large numbers of L. intracellularis were shed (10(10)/g of faeces) in a small proportion of wild rats. The duration of colonisation in laboratory rats and mice challenged with porcine isolates of L. intracellularis was also shown. Faecal shedding of L. intracellularis persisted for 14-21 days in rats and mice that were mildly affected with histological lesions of PE. The humoral immune response to L. intracellularis persisted for 40 days in both species. This study demonstrates that rodents may be an important reservoir of L. intracellularis on piggeries, and hence rodent control is important in disease eradication programs on pig farms.

  4. Olfactory dysfunction, olfactory bulb pathology and urban air pollution

    PubMed Central

    Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Henríquez-Roldán, Carlos; Osnaya, Norma; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Herritt, Lou; Brooks, Diane; Keefe, Sheyla; Palacios-Moreno, Juan; Villarreal-Calderon, Rodolfo; Torres-Jardón, Ricardo; Medina-Cortina, Humberto; Delgado-Chávez, Ricardo; Aiello-Mora, Mario; Maronpot, Robert R.; Doty, Richard L

    2010-01-01

    Mexico City (MC) residents are exposed to severe air pollution and exhibit olfactory bulb inflammation. We compared the olfactory function of individuals living under conditions of extreme air pollution to that of controls from a relatively clean environment and explore associations between olfaction scores, apolipoprotein E (APOE) status, and pollution exposure. The olfactory bulbs (OBs) of 35 MC and 9 controls 20.8 ± 8.5 y were assessed by light and electron microscopy. The University of Pennsylvania Smell Identification Test (UPSIT) was administered to 62 MC / 25 controls 21.2 ±2.7 y. MC subjects had significantly lower UPSIT scores: 34.24 ± 0.42 versus controls 35.76 ± 0.40, p=0.03. Olfaction deficits were present in 35.5% MC and 12% of controls. MC APOE ε 4 carriers failed 2.4 ± 0.54 items in the 10-item smell identification scale from the UPSIT related to Alzheimer's disease, while APOE 2/3 and 3/3 subjects failed 1.36 ± 0.16 items, p = 0.01. MC residents exhibited OB endothelial hyperplasia, neuronal accumulation of particles (2/35), and immunoreactivity to beta amyloid βA42 (29/35) and/or α-synuclein (4/35) in neurons, glial cells and/or blood vessels. Ultrafine particles were present in OBs endothelial cytoplasm and basement membranes. Control OBs were unremarkable. Air pollution exposure is associated with olfactory dysfunction and OB pathology, APOE 4 may confer greater susceptibility to such abnormalities, and ultrafine particles could play a key role in the OB pathology. This study contributes to our understanding of the influences of air pollution on olfaction and its potential contribution to neurodegeneration. PMID:19297138

  5. Relative vascular permeability and vascularity across different regions of the rat nasal mucosa: implications for nasal physiology and drug delivery

    PubMed Central

    Kumar, Niyanta N.; Gautam, Mohan; Lochhead, Jeffrey J.; Wolak, Daniel J.; Ithapu, Vamsi; Singh, Vikas; Thorne, Robert G.

    2016-01-01

    Intranasal administration provides a non-invasive drug delivery route that has been proposed to target macromolecules either to the brain via direct extracellular cranial nerve-associated pathways or to the periphery via absorption into the systemic circulation. Delivering drugs to nasal regions that have lower vascular density and/or permeability may allow more drug to access the extracellular cranial nerve-associated pathways and therefore favor delivery to the brain. However, relative vascular permeabilities of the different nasal mucosal sites have not yet been reported. Here, we determined that the relative capillary permeability to hydrophilic macromolecule tracers is significantly greater in nasal respiratory regions than in olfactory regions. Mean capillary density in the nasal mucosa was also approximately 5-fold higher in nasal respiratory regions than in olfactory regions. Applying capillary pore theory and normalization to our permeability data yielded mean pore diameter estimates ranging from 13–17 nm for the nasal respiratory vasculature compared to <10 nm for the vasculature in olfactory regions. The results suggest lymphatic drainage for CNS immune responses may be favored in olfactory regions due to relatively lower clearance to the bloodstream. Lower blood clearance may also provide a reason to target the olfactory area for drug delivery to the brain. PMID:27558973

  6. Relative vascular permeability and vascularity across different regions of the rat nasal mucosa: implications for nasal physiology and drug delivery.

    PubMed

    Kumar, Niyanta N; Gautam, Mohan; Lochhead, Jeffrey J; Wolak, Daniel J; Ithapu, Vamsi; Singh, Vikas; Thorne, Robert G

    2016-08-25

    Intranasal administration provides a non-invasive drug delivery route that has been proposed to target macromolecules either to the brain via direct extracellular cranial nerve-associated pathways or to the periphery via absorption into the systemic circulation. Delivering drugs to nasal regions that have lower vascular density and/or permeability may allow more drug to access the extracellular cranial nerve-associated pathways and therefore favor delivery to the brain. However, relative vascular permeabilities of the different nasal mucosal sites have not yet been reported. Here, we determined that the relative capillary permeability to hydrophilic macromolecule tracers is significantly greater in nasal respiratory regions than in olfactory regions. Mean capillary density in the nasal mucosa was also approximately 5-fold higher in nasal respiratory regions than in olfactory regions. Applying capillary pore theory and normalization to our permeability data yielded mean pore diameter estimates ranging from 13-17 nm for the nasal respiratory vasculature compared to <10 nm for the vasculature in olfactory regions. The results suggest lymphatic drainage for CNS immune responses may be favored in olfactory regions due to relatively lower clearance to the bloodstream. Lower blood clearance may also provide a reason to target the olfactory area for drug delivery to the brain.

  7. Osteolipoma of the buccal mucosa.

    PubMed

    de Castro, Alvimar-Lima; de Castro, Eni-Vaz-Franco-Lima; Felipini, Renata-Callestini; Ribeiro, Ana-Carolina-Prado; Soubhia, Ana-Maria-Pires

    2010-03-01

    Lipomas are benign mesenchymal neoplasms of soft tissue that can be found in any part of the human body. Conversely, their presence in the oral mucosa is rather uncommon, with approximately 4% of the cases occurring in the oral cavity. In such cases, they are likely to have originated from mature adipose tissue and to be among several described histological variants of lipomas, which are identified according to the predominant type of tissue. There is a rare lipoma, known as an osteolipoma or an ossifying lipoma; however, little has been written this type of lipoma characterized by a classical lipoma with areas of osseous metaplasia. Considering the few cases of oral osteolipomas previously described in the English-related literature and the consequent risk of misdiagnosis and overtreatment, this paper describes an extreme case of an osteolipoma affecting the buccal mucosa of an adult patient. This paper focuses particularly on the pathogenesis of this lesion and the discussion of a correct diagnosis.

  8. Olfactory route for cerebrospinal fluid drainage into the cervical lymphatic system in a rabbit experimental model☆

    PubMed Central

    Liu, Haisheng; Ni, Zhili; Chen, Yetao; Wang, Dong; Qi, Yan; Zhang, Qiuhang; Wang, Shijie

    2012-01-01

    The present study analyzed the anatomical association between intracranial subarachnoid space and the cervical lymphatic system. X-ray contrast medium and Microfil® (Microfil compounds fill and opacify microvascular and other spaces of non-surviving animals and post-mortem tissue under physiological injection pressure) were injected into the cisterna magna of the rabbit, and perineural routes of cerebrospinal fluid outflow into the lymphatic system were visualized. Under a surgical operating microscope, Microfil was found within the subarachnoid space and along the olfactory nerves. At the nasal mucosa, a lymphatic network was identified near the olfactory nerves, which crossed the nasopharyngeal region and finally emptied into the superficial and deep cervical lymph nodes. Under a light microscope, Microfil was visible around the olfactory nerves and within lymphatic vessels. These results suggested that cerebrospinal fluid drained from the subarachnoid space along the olfactory nerves to nasal lymphatic vessels, which in turn, emptied into the cervical lymph nodes. This anatomical route, therefore, allowed connection between the central nervous system and the lymphatic system. PMID:25737700

  9. Allosteric Modulation of GABAA Receptors by an Anilino Enaminone in an Olfactory Center of the Mouse Brain

    PubMed Central

    Heinbockel, Thomas; Wang, Ze-Jun; Jackson-Ayotunde, Patrice L.

    2014-01-01

    In an ongoing effort to identify novel drugs that can be used as neurotherapeutic compounds, we have focused on anilino enaminones as potential anticonvulsant agents. Enaminones are organic compounds containing a conjugated system of an amine, an alkene and a ketone. Here, we review the effects of a small library of anilino enaminones on neuronal activity. Our experimental approach employs an olfactory bulb brain slice preparation using whole-cell patch-clamp recording from mitral cells in the main olfactory bulb. The main olfactory bulb is a key integrative center in the olfactory pathway. Mitral cells are the principal output neurons of the main olfactory bulb, receiving olfactory receptor neuron input at their dendrites within glomeruli, and projecting glutamatergic axons through the lateral olfactory tract to the olfactory cortex. The compounds tested are known to be effective in attenuating pentylenetetrazol (PTZ) induced convulsions in rodent models. One compound in particular, KRS-5Me-4-OCF3, evokes potent inhibition of mitral cell activity. Experiments aimed at understanding the cellular mechanism underlying the inhibitory effect revealed that KRS-5Me-4-OCF3 shifts the concentration-response curve for GABA to the left. KRS-5Me-4-OCF3 enhances GABA affinity and acts as a positive allosteric modulator of GABAA receptors. Application of a benzodiazepine site antagonist blocks the effect of KRS-5Me-4-OCF3 indicating that KRS-5Me-4-OCF3 binds at the classical benzodiazepine site to exert its pharmacological action. This anilino enaminone KRS-5Me-4-OCF3 emerges as a candidate for clinical use as an anticonvulsant agent in the battle against epileptic seizures. PMID:25525715

  10. Organization of the main olfactory bulb of lesser hedgehog tenrecs.

    PubMed

    Kosaka, Katsuko; Künzle, Heinz; Kosaka, Toshio

    2005-12-01

    Using a confocal laser scanning microscope (CLSM) and an electron microscope, we investigated the organization of the main olfactory bulb (MOB) of tenrecs, which were previously included into insectivores but now considered to be in a new order "Afrosoricida" in the superclade 'Afrotheria'. We confirmed that the overall structural organization of the tenrec MOB was similar to that of rodents: (1) the compartmental organization of glomeruli and two types of periglomerular cells we proposed as the common organizational principles were present; (2) there were characteristic dendrodendritic and axo-dendritic synapses in the glomerulus and external plexiform layer (EPL) and gap junctions in glomeruli; and (3) no nidi, particular synaptic regions reported only in laboratory musk shrew and mole MOBs, were encountered. However, instead of nidi, we often observed a few tangled olfactory nerves (ONs) with large irregular boutons in the glomerular-external plexiform layer border zone, with which dendrites of various displaced periglomerular cells were usually found to be intermingled. Electron microscopic (EM) examinations confirmed characteristic large mossy terminal-like ON terminals making asymmetrical synapses to presumed mitral/tufted cell and displaced periglomerular cell dendrites. In addition, gap junctions were also encountered between dendritic processes in these tiny particular regions, further showing their resemblance to glomeruli.

  11. Does iron deficiency anemia affect olfactory function?

    PubMed

    Dinc, Mehmet Emre; Dalgic, Abdullah; Ulusoy, Seckin; Dizdar, Denizhan; Develioglu, Omer; Topak, Murat

    2016-07-01

    Conclusion This study found a negative effect of IDA on olfactory function. IDA leads to a reduction in olfactory function, and decreases in hemoglobin levels result in further reduction in olfactory function. Objective This study examined the effects of iron-deficiency anemia (IDA) on olfactory function. Method The study enrolled 50 IDA patients and 50 healthy subjects. Olfactory function was evaluated using the Sniffin' Sticks olfactory test. The diagnosis of IDA was made according to World Health Organization (WHO) criteria. Results Patients with IDA had a significantly lower threshold, discrimination, and identification (TDI) value, and a lower threshold compared with the control group. However, there were no significant differences between the groups in terms of smell selectivity values.

  12. Olfactory Bulb Field Potentials and Respiration in Sleep-Wake States of Mice

    PubMed Central

    Jessberger, Jakob; Zhong, Weiwei; Brankačk, Jurij; Draguhn, Andreas

    2016-01-01

    It is well established that local field potentials (LFP) in the rodent olfactory bulb (OB) follow respiration. This respiration-related rhythm (RR) in OB depends on nasal air flow, indicating that it is conveyed by sensory inputs from the nasal epithelium. Recently RR was found outside the olfactory system, suggesting that it plays a role in organizing distributed network activity. It is therefore important to measure RR and to delineate it from endogenous electrical rhythms like theta which cover similar frequency bands in small rodents. In order to validate such measurements in freely behaving mice, we compared rhythmic LFP in the OB with two respiration-related biophysical parameters: whole-body plethysmography (PG) and nasal temperature (thermocouple; TC). During waking, all three signals reflected respiration with similar reliability. Peak power of RR in OB decreased with increasing respiration rate whereas power of PG increased. During NREM sleep, respiration-related TC signals disappeared and large amplitude slow waves frequently concealed RR in OB. In this situation, PG provided a reliable signal while breathing-related rhythms in TC and OB returned only during microarousals. In summary, local field potentials in the olfactory bulb do reliably reflect respiratory rhythm during wakefulness and REM sleep but not during NREM sleep. PMID:27247803

  13. Expression of Coxsackie-Adenovirus receptor (CAR) in the developing mouse olfactory system.

    PubMed

    Venkatraman, Giri; Behrens, Maik; Pyrski, Martina; Margolis, Frank L

    2005-09-01

    Interest in manipulating gene expression in olfactory sensory neurons (OSNs) has led to the use of adenoviruses (AdV) as gene delivery vectors. OSNs are the first order neurons in the olfactory system and the initial site of odor detection. They are highly susceptible to adenovirus infection although the mechanism is poorly understood. The Coxsackie-Adenovirus receptor (CAR) and members of the integrin family have been implicated in the process of AdV infection in various systems. Multiple serotypes of AdV efficiently bind to the CAR, leading to entry and infection of the host cell by a mechanism that can also involve integrins. Cell lines that do not express CAR are relatively resistant, but not completely immune to AdV infection, suggesting that other mechanisms participate in mediating AdV attachment and entry. Using in situ hybridization and western blot analyses, we show that OSNs and olfactory bulbs (OB) of mice express abundant CAR mRNA at embryonic and neonatal stages, with progressive diminution during postnatal development. By contrast to the olfactory epithelium (OE), CAR mRNA is still present in the adult mouse OB. Furthermore, despite a similar postnatal decline, CAR protein expression in the OE and OB of mice continues into adulthood. Our results suggest that the robust AdV infection observed in the postnatal olfactory system is mediated by CAR and that expression of even small amounts of CAR protein as seen in the adult rodent, permits efficient AdV infection and entry. CAR is an immunoglobulin domain-containing protein that bears homology to cell-adhesion molecules suggesting the possibility that it may participate in organization of the developing olfactory system.

  14. Olfactory neuroblastoma: A case report

    PubMed Central

    USLU, GONCA HANEDAN; CANYILMAZ, EMINE; ZENGIN, AHMET YASAR; MUNGAN, SEVDEGUL; YONEY, ADNAN; BAHADIR, OSMAN; GOCMEZ, HUSEYIN

    2015-01-01

    Olfactory neuroblastoma (ON) is a rare type of malignant neoplasm originating from the olfactory neuroepithelial cells of the nasal cavity. ON is also known as esthesioneuroblastoma or neuroendocrine carcinoma. The malignancy accounts for <3% of tumors originating in the nasal cavity. Through the nasal cavity, ON may infiltrate the sinuses, the orbit and the cranium. The tumor is characterized by a pattern of slow growth and local recurrences. Treatment options are surgical excision or surgery combined with a radiotherapy (RT) and/or chemotherapy combination treatment. The present study reports the case of a 69-year-old patient with a mass in the nasal cavity who was treated by combined surgical excision and RT. The literature for ON and the treatment of the tumor are also discussed. PMID:26788185

  15. OTX1 and OTX2 as Possible Molecular Markers of Sinonasal Carcinomas and Olfactory Neuroblastomas

    PubMed Central

    Pirrone, Cristina; Chiaravalli, Anna M.; Marando, Alessandro; Conti, Andrea; Rainero, Alessia; Pistochini, Andrea; Curto, Francesco Lo; Pasquali, Francesco; Castelnuovo, Paolo; Capella, Carlo; Porta, Giovanni

    2017-01-01

    OTX Homeobox genes are involved in embryonic morphogenesis and in the development of olfactory epithelium in adult. Mutations occurring in the OTX genes are reported to be associated to tumorigenisis in human. No reports correlate the expression of OTX genes and neoplasms of the nasal cavity. Thus, through immunohistochemical and Real-time PCR analysis we investigated OTX1 and OTX2 expression in the more frequent types of nasal and sinonasal tumours. Variable expression of both genes were found in normal sinonasal mucosa and in tumours. Interestingly, no expression of both OTX genes were detected in sinonasal intestinal-type adenocarcinomas; only OTX1 was found in non-intestinal-type adenocarcinomas and OTX2 was selectively expressed in olfactory neuroblastomas. In conclusion, OTX1 and OTX2 genes might have a role in the pathogenesis of different types of sinonasal neoplasms. PMID:28348423

  16. Linking local circuit inhibition to olfactory behavior: a critical role for granule cells in olfactory discrimination.

    PubMed

    Strowbridge, Ben W

    2010-02-11

    In this issue of Neuron, Abraham et al. report a direct connection between inhibitory function and olfactory behavior. Using molecular methods to alter glutamate receptor subunit composition in olfactory bulb granule cells, the authors found a selective modulation in the time required for difficult, but not simple, olfactory discrimination tasks.

  17. Role of Centrifugal Projections to the Olfactory Bulb in Olfactory Processing

    ERIC Educational Resources Information Center

    Kiselycznyk, Carly L.; Zhang, Steven; Linster, Christine

    2006-01-01

    While there is evidence that feedback projections from cortical and neuromodulatory structures to the olfactory bulb are crucial for maintaining the oscillatory dynamics of olfactory bulb processing, it is not clear how changes in dynamics are related to odor perception. Using electrical lesions of the olfactory peduncle, sparing output from the…

  18. Role of Centrifugal Projections to the Olfactory Bulb in Olfactory Processing

    ERIC Educational Resources Information Center

    Kiselycznyk, Carly L.; Zhang, Steven; Linster, Christine

    2006-01-01

    While there is evidence that feedback projections from cortical and neuromodulatory structures to the olfactory bulb are crucial for maintaining the oscillatory dynamics of olfactory bulb processing, it is not clear how changes in dynamics are related to odor perception. Using electrical lesions of the olfactory peduncle, sparing output from the…

  19. Human olfactory receptor responses to odorants

    PubMed Central

    Mainland, Joel D; Li, Yun R; Zhou, Ting; Liu, Wen Ling L; Matsunami, Hiroaki

    2015-01-01

    Although the human olfactory system is capable of discriminating a vast number of odors, we do not currently understand what chemical features are encoded by olfactory receptors. In large part this is due to a paucity of data in a search space covering the interactions of hundreds of receptors with billions of odorous molecules. Of the approximately 400 intact human odorant receptors, only 10% have a published ligand. Here we used a heterologous luciferase assay to screen 73 odorants against a clone library of 511 human olfactory receptors. This dataset will allow other researchers to interrogate the combinatorial nature of olfactory coding. PMID:25977809

  20. An argument for an olfactory thalamus.

    PubMed

    Kay, Leslie M; Sherman, S Murray

    2007-02-01

    The mammalian olfactory system is unique in that sensory receptors synapse directly into the olfactory bulb of the forebrain without the thalamic relay that is common to all other sensory pathways. We argue that the olfactory bulb has an equivalent role to the thalamus, because the two regions have very similar structures and functions. Both the thalamus and the olfactory bulb are the final stage in sensory processing before reaching target cortical regions, at which there is a massive increase in neuron and synapse numbers. Thus, both structures act as a bottleneck that is a target for various modulatory inputs, and this arrangement enables efficient control of information flow before cortical processing occurs.

  1. [Aerosol deposition in nasal passages of burrowing and ground rodents when breathing dust-laden air].

    PubMed

    Moshkin, M P; Petrovskiĭ, D V; Akulov, A E; Romashchenko, A V; Gerlinskaia, L A; Muchnaia, M I; Ganimedov, V L; Sadovskiĭ, A S; Savelov, A A; Koptiug, I V; Troitskiĭ, S Iu; Bukhtiiarov, V I; Kolchanov, N A; Sagdeev, R Z; Fomin, V M

    2014-01-01

    In subterranean rodents, which dig down the passages with frontal teeth, adaptation to the underground mode of life presumes forming of mechanisms that provide protection against inhaling dust particles of different size when digging. One of such mechanisms can be specific pattern of air flow organization in the nasal cavity. To test this assumption, comparative study of geometry and aerodynamics of nasal passages has been conducted with regard to typical representative of subterranean rodents, the mole vole, and a representative of ground rodents, the house mouse. Numerical modeling of air flows and deposition of micro- and nanoparticle aerosols indicates that sedimentation of model particles over the whole surface of nasal cavity is higher in mole vole than in house mouse. On the contrary, particles deposition on the surface of olfactory epithelium turns out to be substantially less in the burrowing rodent as compared to the ground one. Adaptive significance of the latter observation has been substantiated by experimental study on the uptake ofnanoparticles of hydrated manganese oxide MnO x (H2O)x and Mn ions from nasal cavity into brain. It has been shown with use of magnetic resonance tomography method that there is no difference between studied species with respect to intake of particles or ions by olfactory bulb when they are introduced intranasally. Meanwhile, when inhaling nanoparticle aerosol of MnCl2, deposition of Mn in mouse's olfactory bulbs surpasses markedly that in vole's bulbs. Thereby, the morphology of nasal passages as a factor determining the aerodynamics of upper respiratory tract ensures for burrowing rodents more efficient protection of both lungs and brain against inhaled aerosols than for ground ones.

  2. Increased olfactory search costs change foraging behaviour in an alien mustelid: a precursor to prey switching?

    PubMed

    Price, Catherine J; Banks, Peter B

    2016-09-01

    If generalist predators are to hunt efficiently, they must track the changing costs and benefits of multiple prey types. Decisions to switch from hunting preferred prey to alternate prey have been assumed to be driven by decreasing availability of preferred prey, with less regard for accessibility of alternate prey. Olfactory cues from prey provide information about prey availability and its location, and are exploited by many predators to reduce search costs. We show that stoats Mustela erminea, an alien olfactory predator in New Zealand, are sensitive to the search costs of hunting both their preferred rodent prey (mice) and a less desirable alternate prey (locust). We manipulated search costs for stoats using a novel form of olfactory camouflage of both prey, and found that stoats altered their foraging strategy depending on whether mice were camouflaged or conspicuous, but only when locusts were also camouflaged. Stoats gave up foraging four times more often when both prey were camouflaged, compared to when mice were conspicuous and locusts camouflaged. There were no differences in the foraging strategies used to hunt camouflaged or conspicuous mice when locusts were easy to find. Consequently, camouflaged mice survived longer than conspicuous mice when locusts were hard to find, but not when locusts were easy to find. Our results demonstrate that predators can integrate search costs from multiple prey types when making foraging decisions. Manipulating olfactory search costs to alter foraging strategies offers new methods for understanding the factors that foreshadow prey switching.

  3. Evaluation of the toxicity of zinc in the rat olfactory neuronal cell line, Odora.

    PubMed

    Hsieh, H; Amlal, H; Genter, M B

    2015-03-01

    Zinc (Zn) has long been touted as a panacea for common cold. Recently, there has been some controversy over whether an intranasal (IN) zinc gluconate gel, purported to fight colds, causes anosmia, or loss of the sense of smell, in humans. Previous evidence has shown that IN zinc sulfate (ZnSO4) solutions can cause anosmia in humans as well as significant damage to the olfactory epithelium in rodents. Using an in vitro olfactory neuron model (the rat Odora cell line), we tested the hypothesis that Zn toxicity was caused by inhibition of the hydrogen voltage-gated channel 1(HVCN1), leading to acidosis and apoptotic cell death. Following studies to characterize the toxicity of zinc gluconate and ZnSO4, Odora cells were grown on coverslips and loaded with 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester to measure intracellular pH in the presence and absence of Zn salts. While we found that HVCN1 is not functional in Odora cells, we found that olfactory neurons in vitro maintain their intracellular pH through a sodium/proton exchanger, specifically the sodium proton antiporter 1. ZnSO4, at nontoxic levels, had no impact on intracellular pH after acute exposure or after 24 h of incubation with the cells. In conclusion, Zn toxicity is not mediated through an acidification of intracellular pH in olfactory neurons in vitro. © The Author(s) 2015.

  4. Metabolism of tobacco-specific nitrosamines by cultured rat nasal mucosa

    SciTech Connect

    Brittebo, E.B.; Castonguay, A.; Furuya, K.; Hecht, S.S.

    1983-09-01

    The metabolism of two nasal carcinogens, N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), was investigated using cultured nasal septa of F344 rats. The explants were cultured with 14C-labeled N-nitrosamines, and unbound metabolites present in the medium were quantitated by high-performance liquid chromatography. The results indicated that the mucosa of the nasal septum had a marked capacity to metabolize NNN and NNK to hydroxylated products which were released into the culture media. Extensive activation by alpha-carbon hydroxylation of NNN (preferentially 2'-carbon hydroxylation) and NNK was observed, whereas no deactivation by pyridine N-oxidation could be detected. Microautoradiographic studies of explants showed that binding of radioactivity occurred preferentially in the respiratory and olfactory epithelia and in the subepithelial glands of the nasal mucosa. The results suggest that reactive metabolites of NNN and NNK are formed within the target tissue rather than being transported from the liver to the nasal mucosa. The results also show that the culture of nasal septa can be used to ascertain the role of the nasal mucosa in the activation of nasal-specific carcinogens.

  5. Microdialysis in Rodents

    PubMed Central

    Zapata, Agustin; Chefer, Vladimir I.; Shippenberg, Toni S.

    2010-01-01

    Microdialysis is an in vivo sampling technique that permits the quantification of various substances (e.g., neurotransmitters, peptides, electrolytes) in blood and tissue. It is also used to infuse substances into the brain and spinal cord. This unit describes methods for the construction and stereotaxic implantation of microdialysis probes into discrete brain regions of the rat and mouse. Procedures for the conduct of conventional and quantitative microdialysis experiments in the awake and anesthetized rodent are also provided. PMID:19340813

  6. Structure and diversity in mammalian accessory olfactory bulb.

    PubMed

    Meisami, E; Bhatnagar, K P

    1998-12-15

    The accessory olfactory bulb (AOB) is the first neural integrative center for the olfactory-like vomeronasal sensory system. In this article, we first briefly present an overview of vomeronasal system organization and review the history of the discovery of mammalian AOB. Next, we briefly review the evolution of the vomeronasal system in vertebrates, in particular the reptiles. Following these introductory aspects, the structure of the rodent AOB, as typical of the well-developed mammalian AOB, is presented, detailing laminar organization and cell types as well as aspects of the homology with the main olfactory bulb. Then, the evolutionary origin and diversity of the AOB in mammalian orders and species is discussed, describing structural, phylogenetic, and species-specific variation in the AOB location, shape, and size and morphologic differentiation and development. The AOB is believed to be absent in fishes but present in terrestrial tetrapods including amphibians; among the reptiles AOB is absent in crocodiles, present in turtles, snakes, and some lizards where it may be as large or larger than the main bulb. The AOB is absent in bird and in the aquatic mammals (whales, porpoises, manatees). Among other mammals, AOB is present in the monotremes and marsupials, edentates, and in the majority of the placental mammals like carnivores, herbivores, as well as rodents and lagomorphs. Most bat species do not have an AOB and among those where one is found, it shows marked variation in size and morphologic development. Among insectivores and primates, AOB shows marked variation in occurrence, size, and morphologic development. It is small in shrews and moles, large in hedgehogs and prosimians; AOB continues to persist in New World monkeys but is not found in the adults of the higher primates such as the Old World monkeys, apes, and humans. In many species where AOB is absent in the adult, it often develops in the embryo and fetus but regresses in later stages of

  7. Timberol® Inhibits TAAR5-Mediated Responses to Trimethylamine and Influences the Olfactory Threshold in Humans

    PubMed Central

    Wallrabenstein, Ivonne; Singer, Marco; Panten, Johannes; Hatt, Hanns; Gisselmann, Günter

    2015-01-01

    In mice, trace amine-associated receptors (TAARs) are interspersed in the olfactory epithelium and constitute a chemosensory subsystem that is highly specific for detecting volatile amines. Humans possess six putative functional TAAR genes. Human TAAR5 (hTAAR5) is highly expressed in the olfactory mucosa and was shown to be specifically activated by trimethylamine. In this study, we were challenged to uncover an effective blocker substance for trimethylamine-induced hTAAR5 activation. To monitor blocking effects, we recombinantly expressed hTAAR5 and employed a commonly used Cre-luciferase reporter gene assay. Among all tested potential blocker substances, Timberol®, an amber-woody fragrance, is able to inhibit the trimethylamine-induced hTAAR5 activation up to 96%. Moreover, human psychophysical data showed that the presence of Timberol® increases the olfactory detection threshold for the characteristic fishy odor of trimethylamine by almost one order of magnitude. In conclusion, our results show that among tested receptors Timberol® is a specific and potent antagonist for the hTAAR5-mediated response to trimethylamine in a heterologous system. Furthermore, our data concerning the observed shift of the olfactory detection threshold in vivo implicate that hTAAR5 or other receptors that may be inhibited by Timberol® could be involved in the high affinity olfactory perception of trimethylamine in humans. PMID:26684881

  8. Adult Born Olfactory Bulb Dopaminergic Interneurons: Molecular Determinants and Experience-Dependent Plasticity

    PubMed Central

    Bonzano, Sara; Bovetti, Serena; Gendusa, Claudio; Peretto, Paolo; De Marchis, Silvia

    2016-01-01

    The olfactory bulb (OB) is a highly plastic brain region involved in the early processing of olfactory information. A remarkably feature of the OB circuits in rodents is the constitutive integration of new neurons that takes place during adulthood. Newborn cells in the adult OB are mostly inhibitory interneurons belonging to chemically, morphologically and functionally heterogeneous types. Although there is general agreement that adult neurogenesis in the OB plays a key role in sensory information processing and olfaction-related plasticity, the contribution of each interneuron subtype to such functions is far to be elucidated. Here, we focus on the dopaminergic (DA) interneurons: we highlight recent findings about their morphological features and then describe the molecular factors required for the specification/differentiation and maintenance of the DA phenotype in adult born neurons. We also discuss dynamic changes of the DA interneuron population related to age, environmental stimuli and lesions, and their possible functional implications. PMID:27199651

  9. Effects of experimentally necessary changes in husbandry on olfactory memory: Chronic food restriction and social isolation.

    PubMed

    Manella, Laura; Woldeyohannes, Leuk; McMahon, Devon; Linster, Christiane

    2016-03-01

    Changes to typical procedures in animal husbandry are often necessary to accommodate the needs of behavioral experiments. Two common changes in husbandry for rodents are light chronic food restriction (to motivate animals in reward-association tasks) and social isolation (to accommodate individual feeding schedules or need to reduce interactions because of implants for example). Each of these intervention individually has been shown to modulate behavioral state and with it performance in behavioral tasks. We here systematically test how social isolation and light chronic food restriction modulate olfactory memory in rats. Our results show a strong modulation of olfactory memory after both types of husbandry interventions. These results suggest that common changes in animal husbandry promote distinct and relevant changes in animal behavior. Copyright © 2015. Published by Elsevier Inc.

  10. [Infections of the oral mucosa].

    PubMed

    Reibel, Jesper; Kragelund, Camilla

    2010-11-01

    The most common infections of the oral mucosa are those caused by Candida albicans and herpes simplex virus (HSV). Candidosis occurs as pseudomembraneous, erythematous and hyperplastic types with varying symptoms from no to a burning sensation. Treatment most importantly includes elimination of any predisposing factors such as smoking, sub-optimal denture hygiene and hyposalivation. A primary HSV infection results in a life-long latent infection recurring in some infected persons either intraorally or on the lip. If treatment is indicated, topical or systemic aciclovir and related drugs can be used.

  11. Induction of Associative Olfactory Memory by Targeted Activation of Single Olfactory Neurons in Drosophila Larvae

    PubMed Central

    Honda, Takato; Lee, Chi-Yu; Yoshida-Kasikawa, Maki; Honjo, Ken; Furukubo-Tokunaga, Katsuo

    2014-01-01

    It has been postulated that associative memory is formed by at least two sets of external stimuli, CS and US, that are transmitted to the memory centers by distinctive conversing pathways. However, whether associative memory can be induced by the activation of only the olfactory CS and a biogenic amine-mediated US pathways remains to be elucidated. In this study, we substituted the reward signals with dTrpA1-mediated thermogenetic activation of octopaminergic neurons and the odor signals by ChR2-mediated optical activation of a specific class of olfactory neurons. We show that targeted activation of the olfactory receptor and the octopaminergic neurons is indeed sufficient for the formation of associative olfactory memory in the larval brain. We also show that targeted stimulation of only a single type of olfactory receptor neurons is sufficient to induce olfactory memory that is indistinguishable from natural memory induced by the activation of multiple olfactory receptor neurons. PMID:24762789

  12. Amyloid Beta Inhibits Olfactory Bulb Activity and the Ability to Smell

    PubMed Central

    Peña-Ortega, Fernando

    2013-01-01

    Early olfactory dysfunction has been consistently reported in both Alzheimer’s disease (AD) and in transgenic mice that reproduce some features of this disease. In AD transgenic mice, alteration in olfaction has been associated with increased levels of soluble amyloid beta protein (Aβ) as well as with alterations in the oscillatory network activity recorded in the olfactory bulb (OB) and in the piriform cortex. However, since AD is a multifactorial disease and transgenic mice suffer a variety of adaptive changes, it is still unknown if soluble Aβ, by itself, is responsible for OB dysfunction both at electrophysiological and behavioral levels. Thus, here we tested whether or not Aβ directly affects OB network activity in vitro in slices obtained from mice and rats and if it affects olfactory ability in these rodents. Our results show that Aβ decreases, in a concentration- and time-dependent manner, the network activity of OB slices at clinically relevant concentrations (low nM) and in a reversible manner. Moreover, we found that intrabulbar injection of Aβ decreases the olfactory ability of rodents two weeks after application, an effect that is not related to alterations in motor performance or motivation to seek food and that correlates with the presence of Aβ deposits. Our results indicate that Aβ disrupts, at clinically relevant concentrations, the network activity of the OB in vitro and can trigger a disruption in olfaction. These findings open the possibility of exploring the cellular mechanisms involved in early pathological AD as an approach to reduce or halt its progress. PMID:24086624

  13. Use of buccal mucosa in hypospadias repair.

    PubMed

    Cruz-Diaz, Omar; Castellan, Miguel; Gosalbez, Rafael

    2013-08-01

    Hypospadias is an embryological disorder that results in an abnormal ventral positioning of the urethral meatus. Among multiple surgical techniques described to correct this anomaly, the use of buccal mucosa grafts has gained popularity among pediatric urologists, pediatric surgeons and plastic surgeons. Buccal mucosa grafts have shown favorable histological changes that result in an excellent scaffold for urethral reconstructive surgery. This review describes the evolution of the use of buccal mucosa grafts in hypospadias repair.

  14. Foreign Body in Jugal Mucosa.

    PubMed

    Serrano, Thiago Luís Infanger; Pauna, Henrique Furlan; Hazboun, Igor Moreira; Dal Rio, Ana Cristina; Correa, Maria Elvira Pizzigatti; Nicola, Ester Maria Danielli

    2015-10-01

    Introduction Foreign body in the oral cavity may be asymptomatic for long time and only sometimes it can lead to a typical granulomatous foreign body reaction. Some patients may complain of oral pain and present signs of inflammation with purulent discharge. A granuloma is a distinct, compact microscopic structure composed of epithelioid-shaped macrophages typically surrounded by a rim of lymphocytes and filled with fibroblasts and collagen. Nowadays, the increase of cosmetic invasive procedures such as injection of prosthetic materials in lips and cheeks may lead to unusual forms of inflammatory granulomas. Objectives Describe an unusual presentation of a foreign body reaction in the buccal mucosa due to previous injection of cosmetic agent. Resumed Report A 74-year-old woman was referred to the Department of Otorhinolaryngology, Head and Neck Surgery to investigate the presence of multiple painless, bilateral nodules in the buccal mucosa, with progressive growth observed during the previous 2 months. The histologic results showed a foreign body inflammatory reaction. Conclusion Oral granulomatosis lesions represent a challenging diagnosis for clinicians and a biopsy may be necessary. Patients may feel ashamed to report previous aesthetic procedures, and the clinicians must have a proactive approach.

  15. Nasal gel and olfactory cleft.

    PubMed

    Herranz González-Botas, Jesús; Padín Seara, Anselmo

    2012-01-01

    To evaluate whether a nasal gel, administrated using a radial-hole inhaler, reaches the olfactory cleft and if a different administration method influences distribution. Sixteen healthy volunteers underwent a nasal endoscopy at 1 and 7minutes after the administration of a intranasal gel, with a different method in each fossa. No dye deposition was identified at the olfactory cleft, middle turbinate or middle meatus. In all cases the gel was identified at the nasal vestibule. On the right side, the second most frequent dye identification area was the inferior turbinate, with a rate of 87% at the first minute and 75% at 7 minutes. It was followed by the septum (75 and 62%) and the inferior meatus (6.2 and 12.5%). On the left side, the second most frequent stained area was the septum (18.7 and 13.5%), followed by the inferior meatus (6.5 and 65%). No inferior turbinate staining was found in the left side. There was a significant difference in the deposition rate at the septum (P<.01) and inferior turbinate (P<.001), when both administration methods were compared. No nasal gel, administrated using a radial-hole inhaler, was found at the olfactory cleft, middle turbinate or middle meatus. Gel distribution was located at the anterior and inferior portion of the nose, independent of the administration method used. Significantly different gel distribution rates were found at the septum and inferior turbinate when the 2 administration methods were compared. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  16. Transplantation of olfactory ensheathing cells to evaluate functional recovery after peripheral nerve injury.

    PubMed

    Guerout, Nicolas; Paviot, Alexandre; Bon-Mardion, Nicolas; Honoré, Axel; Obongo, Rais; Duclos, Célia; Marie, Jean-Paul

    2014-02-23

    Olfactory ensheathing cells (OECs) are neural crest cells which allow growth and regrowth of the primary olfactory neurons. Indeed, the primary olfactory system is characterized by its ability to give rise to new neurons even in adult animals. This particular ability is partly due to the presence of OECs which create a favorable microenvironment for neurogenesis. This property of OECs has been used for cellular transplantation such as in spinal cord injury models. Although the peripheral nervous system has a greater capacity to regenerate after nerve injury than the central nervous system, complete sections induce misrouting during axonal regrowth in particular after facial of laryngeal nerve transection. Specifically, full sectioning of the recurrent laryngeal nerve (RLN) induces aberrant axonal regrowth resulting in synkinesis of the vocal cords. In this specific model, we showed that OECs transplantation efficiently increases axonal regrowth. OECs are constituted of several subpopulations present in both the olfactory mucosa (OM-OECs) and the olfactory bulbs (OB-OECs). We present here a model of cellular transplantation based on the use of these different subpopulations of OECs in a RLN injury model. Using this paradigm, primary cultures of OB-OECs and OM-OECs were transplanted in Matrigel after section and anastomosis of the RLN. Two months after surgery, we evaluated transplanted animals by complementary analyses based on videolaryngoscopy, electromyography (EMG), and histological studies. First, videolaryngoscopy allowed us to evaluate laryngeal functions, in particular muscular cocontractions phenomena. Then, EMG analyses demonstrated richness and synchronization of muscular activities. Finally, histological studies based on toluidine blue staining allowed the quantification of the number and profile of myelinated fibers. All together, we describe here how to isolate, culture, identify and transplant OECs from OM and OB after RLN section-anastomosis and how

  17. Exotic models may offer unique opportunities to decipher specific scientific question: the case of Xenopus olfactory system.

    PubMed

    Gascuel, Jean; Amano, Tosikazu

    2013-09-01

    The fact that olfactory systems are highly conserved in all animal species from insects to mammals allow the generalization of findings from one species to another. Most of our knowledge about the anatomy and physiology of the olfactory system comes from data obtained in a very limited number of biological models such as rodents, Zebrafish, Drosophila, and a worm, Caenorhabditis elegans. These models have proved useful to answer most questions in the field of olfaction, and thus concentrating on these few models appear to be a pragmatic strategy. However, the diversity of the organization and physiology of the olfactory system amongst phyla appear to be greater than generally assumed and the four models alone may not be sufficient to address all the questions arising from the study of olfaction. In this article, we will illustrate the idea that we should take advantage of biological diversity to address specific scientific questions and will show that the Xenopus olfactory system is a very good model to investigate: first, olfaction in aerial versus aquatic conditions and second, mechanisms underlying postnatal reorganization of the olfactory system especially those controlled by tyroxine hormone. Copyright © 2013 Wiley Periodicals, Inc.

  18. Calcium signals in olfactory neurons.

    PubMed

    Tareilus, E; Noé, J; Breer, H

    1995-11-09

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness.

  19. Rodent models of sleep apnea.

    PubMed

    Davis, Eric M; O'Donnell, Christopher P

    2013-09-15

    Rodent models of sleep apnea have long been used to provide novel insight into the generation and predisposition to apneas as well as to characterize the impact of sleep apnea on cardiovascular, metabolic, and psychological health in humans. Given the significant body of work utilizing rodent models in the field of sleep apnea, the aims of this review are three-fold: first, to review the use of rodents as natural models of sleep apnea; second, to provide an overview of the experimental interventions employed in rodents to simulate sleep apnea; third, to discuss the refinement of rodent models to further our understanding of breathing abnormalities that occur during sleep. Given mounting evidence that sleep apnea impairs cognitive function, reduces quality of life, and exacerbates the course of multiple chronic diseases, rodent models will remain a high priority as a tool to interrogate both the pathophysiology and sequelae of breathing related abnormalities during sleep and to improve approaches to diagnosis and therapy.

  20. Geomagnetic field detection in rodents

    SciTech Connect

    Olcese, J.; Reuss, S.; Semm, P.

    1988-01-01

    In addition to behavioral evidence for the detection of earth-strength magnetic fields (MF) by rodents, recent investigations have revealed that electrophysiological and biochemical responses to MF occur in the pineal organ and retina of rodents. In addition, ferrimagnetic deposits have been identified in the ethmoidal regions of the rodent skull. These findings point to a new sensory phenomenon, which interfaces with many fields of biology, including neuroscience, psychophysics, behavioral ecology, chronobiology and sensory physiology.

  1. Functional Sub-Circuits of the Olfactory System Viewed from the Olfactory Bulb and the Olfactory Tubercle.

    PubMed

    Yamaguchi, Masahiro

    2017-01-01

    Understanding of the olfactory neural circuits has progressed beyond analysis of how odor information from the external environment is processed in the brain. While spatially-organized sub-circuits were found to exist up to the olfactory bulb (OB), the arrangement in the olfactory cortex (OC), especially in its representative piriform cortex (PC), appears diffuse and dispersed. An emerging view is that the activity of OC neurons may not simply encode odor identity but rather encode plastic odor information such as odor value. Although many studies support this notion, odor value can be either positive or negative, and the existence of sub-circuits corresponding to individual value types is not well explored. To address this question, I introduce here two olfactory areas other than the PC, OB and olfactory tubercle (OT) whose analysis may facilitate understanding of functional sub-circuits related to different odor values. Peripheral and centrifugal inputs to the OB are considered to relate to odor identity and odor value, respectively and centrifugal inputs to the OB potentially represent different odor values during different behavioral periods. The OT has spatially-segregated functional domains related to distinct motivated and hedonic behaviors. Thus, the OT provides a good starting point from which functional sub-circuits across various olfactory regions can be traced. Further analysis across wide areas of the olfactory system will likely reveal the functional sub-circuits that link odor identity with distinct odor values and direct distinct odor-induced motivated and hedonic behaviors.

  2. Neuromodulation of olfactory sensitivity in the peripheral olfactory organs of the American cockroach, Periplaneta americana.

    PubMed

    Jung, Je Won; Kim, Jin-Hee; Pfeiffer, Rita; Ahn, Young-Joon; Page, Terry L; Kwon, Hyung Wook

    2013-01-01

    Olfactory sensitivity exhibits daily fluctuations. Several studies have suggested that the olfactory system in insects is modulated by both biogenic amines and neuropeptides. However, molecular and neural mechanisms underlying olfactory modulation in the periphery remain unclear since neuronal circuits regulating olfactory sensitivity have not been identified. Here, we investigated the structure and function of these signaling pathways in the peripheral olfactory system of the American cockroach, Periplaneta americana, utilizing in situ hybridization, qRT-PCR, and electrophysiological approaches. We showed that tachykinin was co-localized with the octopamine receptor in antennal neurons located near the antennal nerves. In addition, the tachykinin receptor was found to be expressed in most of the olfactory receptor neurons in antennae. Functionally, the effects of direct injection of tachykinin peptides, dsRNAs of tachykinin, tachykinin receptors, and octopamine receptors provided further support for the view that both octopamine and tachykinin modulate olfactory sensitivity. Taken together, these findings demonstrated that octopamine and tachykinin in antennal neurons are olfactory regulators in the periphery. We propose here the hypothesis that octopamine released from neurons in the brain regulates the release of tachykinin from the octopamine receptor neurons in antennae, which in turn modulates the olfactory sensitivity of olfactory receptor neurons, which house tachykinin receptors.

  3. Intravenous olfactory test latency correlates with improvement in post-infectious olfactory dysfunction.

    PubMed

    Horikiri, Kyohei; Kikuta, Shu; Kanaya, Kaori; Shimizu, Yuya; Nishijima, Hironobu; Yamasoba, Tatsuya; Kondo, Kenji

    2017-10-01

    This cohort study showed that onset latency in the intravenous olfactory test (IVO) may help predict when olfaction in patients with post-infectious olfactory dysfunction (PIOD) improves. To identify factors that predict the olfactory improvement period in patients with PIOD. All consecutive patients presenting with PIOD in 1994-2014 who were followed up for 2 years were identified retrospectively. The ability of demographic/clinical factors (age, sex, body mass index, presence/absence of allergic rhinitis, treatment/non-treatment with herbal medicines, patient dependence on herbal medicine treatment, presence/absence of diabetes mellitus, and smoking status) and olfactory test factors (response/no response and onset latency and duration in the IVO test, and detection and recognition scores on the T&T olfactory test) to predict the olfactory improvement period (defined respectively as the time from PIOD onset or olfactory testing to the first self-report of olfaction improvement) was analyzed by univariate and multivariate regression. Of the 187 PIOD patients, the prognostic ability of demographic/clinical factors was analyzed in 65. None predicted the olfactory improvement period. Of the 65 patients, 20 did not respond in the IVO test. In the remaining 45 patients, onset latency (but not the other olfactory test factors) was a significant prognosticator of olfactory improvement period (R(2)=0.24, p = 0.003).

  4. A Closer Look at Acid-Base Olfactory Titrations

    ERIC Educational Resources Information Center

    Neppel, Kerry; Oliver-Hoyo, Maria T.; Queen, Connie; Reed, Nicole

    2005-01-01

    Olfactory titrations using raw onions and eugenol as acid-base indicators are reported. An in-depth investigation on olfactory titrations is presented to include requirements for potential olfactory indicators and protocols for using garlic, onions, and vanillin as acid-base olfactory indicators are tested.

  5. A Closer Look at Acid-Base Olfactory Titrations

    ERIC Educational Resources Information Center

    Neppel, Kerry; Oliver-Hoyo, Maria T.; Queen, Connie; Reed, Nicole

    2005-01-01

    Olfactory titrations using raw onions and eugenol as acid-base indicators are reported. An in-depth investigation on olfactory titrations is presented to include requirements for potential olfactory indicators and protocols for using garlic, onions, and vanillin as acid-base olfactory indicators are tested.

  6. 21 CFR 874.1600 - Olfactory test device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1600 Olfactory test device. (a) Identification. An olfactory test device is used to determine whether an olfactory loss is present. The device... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Olfactory test device. 874.1600 Section...

  7. 21 CFR 874.1600 - Olfactory test device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1600 Olfactory test device. (a) Identification. An olfactory test device is used to determine whether an olfactory loss is present. The device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Olfactory test device. 874.1600 Section...

  8. Detection of Olfactory Dysfunction Using Olfactory Event Related Potentials in Young Patients with Multiple Sclerosis

    PubMed Central

    Caminiti, Fabrizia; De Salvo, Simona; De Cola, Maria Cristina; Russo, Margherita; Bramanti, Placido; Marino, Silvia; Ciurleo, Rosella

    2014-01-01

    Background Several studies reported olfactory dysfunction in patients with multiple sclerosis. The estimate of the incidence of olfactory deficits in multiple sclerosis is uncertain; this may arise from different testing methods that may be influenced by patients' response bias and clinical, demographic and cognitive features. Aims To evaluate objectively the olfactory function using Olfactory Event Related Potentials. Materials and Methods We tested the olfactory function of 30 patients with relapsing remitting multiple sclerosis (mean age of 36.03±6.96 years) and of 30 age, sex and smoking–habit matched healthy controls by using olfactory potentials. A selective and controlled stimulation of the olfactory system to elicit the olfactory event related potentials was achieved by a computer-controlled olfactometer linked directly with electroencephalograph. Relationships between olfactory potential results and patients' clinical characteristics, such as gender, disability status score, disease-modifying therapy, and disease duration, were evaluated. Results Seven of 30 patients did not show olfactory event related potentials. Sixteen of remaining 23 patients had a mean value of amplitude significantly lower than control group (p<0.01). The presence/absence of olfactory event related potentials was associated with dichotomous expanded disability status scale (p = 0.0433), as well as inversely correlated with the disease duration (r = −0.3641, p = 0.0479). Conclusion Unbiased olfactory dysfunction of different severity found in multiple sclerosis patients suggests an organic impairment which could be related to neuroinflammatory and/or neurodegenerative processes of olfactory networks, supporting the recent findings on neurophysiopathology of disease. PMID:25047369

  9. Rodent carcinogens: Setting priorities

    SciTech Connect

    Gold, L.S.; Slone, T.H.; Stern, B.R.; Manley, N.B.; Ames, B.N. )

    1992-10-09

    The human diet contains an enormous background of natural chemicals, such as plant pesticides and the products of cooking, that have not been a focus of carcinogenicity testing. A broadened perspective that includes these natural chemicals is necessary. A comparison of possible hazards for 80 daily exposures to rodent carcinogens from a variety of sources is presented, using an index (HERP) that relates human exposure to carcinogenic potency in rodents. A similar ordering would be expected with the use of standard risk assessment methodology for the same human exposure values. Results indicate that, when viewed against the large background of naturally occurring carcinogens in typical portions of common foods, the residues of synthetic pesticides or environmental pollutants rank low. A similar result is obtained in a separate comparison of 32 average daily exposures to natural pesticides and synthetic pesticides residues in the diet. Although the findings do not indicate that these natural dietary carcinogens are important in human cancer, they cast doubt on the relative importance for human cancer of low-dose exposures to synthetic chemicals.

  10. Preliminary Modeling and Simulation Study on Olfactory Cell Sensation

    SciTech Connect

    Zhou Jun; Chen Peihua; Liu Qingjun; Wang Ping; Yang Wei

    2009-05-23

    This paper introduced olfactory sensory neuron's whole-cell model with a concrete voltage-gated ionic channels and simulation. Though there are many models in olfactory sensory neuron and olfactory bulb, it remains uncertain how they express the logic of olfactory information processing. In this article, the olfactory neural network model is also introduced. This model specifies the connections among neural ensembles of the olfactory system. The simulation results of the neural network model are consistent with the observed olfactory biological characteristics such as 1/f-type power spectrum and oscillations.

  11. An olfactory subsystem that detects carbon disulfide and mediates food-related social learning

    PubMed Central

    Munger, Steven D.; Leinders-Zufall, Trese; McDougall, Lisa M.; Cockerham, Renee E.; Schmid, Andreas; Wandernoth, Petra; Wennemuth, Gunther; Biel, Martin; Zufall, Frank; Kelliher, Kevin R.

    2010-01-01

    Summary Olfactory signals influence social interactions in a variety of species [1, 2]. In mammals, pheromones and other social cues can promote mating or aggression behaviors, can communicate information about social hierarchies, genetic identity and health status, and can contribute to associative learning [1–5]. However, the molecular, cellular and neural mechanisms underlying many olfactory-mediated social interactions remain poorly understood. Here, we report that a specialized olfactory subsystem that includes olfactory sensory neurons (OSNs) expressing the receptor guanylyl cyclase GC-D, the cyclic nucleotide-gated channel subunit CNGA3 and the carbonic anhydrase isoform CAII (GC-D+ OSNs) [6–11] is required for the acquisition of socially transmitted food preferences (STFPs) in mice. Using electrophysiological recordings from gene-targeted mice, we show that GC-D+ OSNs are highly sensitive to the volatile semiochemical carbon disulfide (CS2), a component of rodent breath and a known social signal mediating the acquisition of STFPs [12–14]. Responses to sub-micromolar concentrations of CS2 in the main olfactory epithelium or in identified GC-D+ OSNs are absent in mice lacking CNGA3 or CAII and drastically reduced in mice lacking GC-D. Mice in which GC-D+ OSN transduction mechanisms have been disrupted fail to acquire STFPs from either live or surrogate demonstrator mice and do not exhibit neuronal activation of the ventral subiculum of the hippocampus, a brain region implicated in STFP retrieval [15]. Our findings indicate that GC-D+ OSNs detect chemosignals that facilitate food-related social interactions. PMID:20637621

  12. Predicted regional flux of hydrogen sulfide correlates with distribution of nasal olfactory lesions in rats.

    PubMed

    Moulin, Frederic J-M; Brenneman, Karrie A; Kimbell, Julia S; Dorman, David C

    2002-03-01

    Hydrogen sulfide (H(2)S) is a toxic gas that is released by both natural and industrial sources. H(2)S selectively targets the olfactory system in humans and rodents. The purpose of this study was to test the hypothesis that the distribution of H(2)S-induced nasal pathology is correlated with the location of high-flux areas within the upper respiratory tract. To investigate whether the location of the olfactory lesion is dependent on regional gas uptake patterns, a comparison was made between lesion locations and regions of high H(2)S flux predicted using a 3-dimensional, anatomically accurate computational fluid dynamics (CFD) model of rat nasal passages. Rats were exposed by inhalation to 0, 10, 30, or 80 ppm H(2)S for 6 h/day for 70 days. The regional incidence of olfactory lesions and predicted H(2)S flux were determined at the mid-dorsomedial meatus and the middle portion of the ethmoid recess, and their rank correlation was evaluated. At these 2 levels, regions lined by respiratory epithelium were predicted to exhibit the highest mass flux values; however, H(2)S exposure elicited little or no response in this tissue. In contrast, regions lined by olfactory epithelium showed a close correlation between H(2)S flux and lesion incidence (p < 0.005) for both the 30 and 80-ppm exposure groups. These results indicate that airflow-driven patterns of H(2)S uptake within the inherently sensitive olfactory epithelium play an important role in the distribution of H(2)S-induced lesions and should therefore be taken into consideration when extrapolating from nasal lesions in rats to estimates of risk to human health.

  13. [Odor sensing system and olfactory display].

    PubMed

    Nakamoto, Takamichi

    2014-01-01

    In this review, an odor sensing system and an olfactory display are introduced into people in pharmacy. An odor sensing system consists of an array of sensors with partially overlapping specificities and pattern recognition technique. One of examples of odor sensing systems is a halitosis sensor which quantifies the mixture composition of three volatile sulfide compounds. A halitosis sensor was realized using a preconcentrator to raise sensitivity and an electrochemical sensor array to suppress the influence of humidity. Partial least squares (PLS) method was used to quantify the mixture composition. The experiment reveals that the sufficient accuracy was obtained. Moreover, the olfactory display, which present scents to human noses, is explained. A multi-component olfactory display enables the presentation of a variety of smells. The two types of multi-component olfactory display are described. The first one uses many solenoid valves with high speed switching. The valve ON frequency determines the concentration of the corresponding odor component. The latter one consists of miniaturized liquid pumps and a surface acoustic wave (SAW) atomizer. It enables the wearable olfactory display without smell persistence. Finally, the application of the olfactory display is demonstrated. Virtual ice cream shop with scents was made as a content of interactive art. People can enjoy harmony among vision, audition and olfaction. In conclusion, both odor sensing system and olfactory display can contribute to the field of human health care.

  14. Information processing in the mammalian olfactory system.

    PubMed

    Lledo, Pierre-Marie; Gheusi, Gilles; Vincent, Jean-Didier

    2005-01-01

    Recently, modern neuroscience has made considerable progress in understanding how the brain perceives, discriminates, and recognizes odorant molecules. This growing knowledge took over when the sense of smell was no longer considered only as a matter for poetry or the perfume industry. Over the last decades, chemical senses captured the attention of scientists who started to investigate the different stages of olfactory pathways. Distinct fields such as genetic, biochemistry, cellular biology, neurophysiology, and behavior have contributed to provide a picture of how odor information is processed in the olfactory system as it moves from the periphery to higher areas of the brain. So far, the combination of these approaches has been most effective at the cellular level, but there are already signs, and even greater hope, that the same is gradually happening at the systems level. This review summarizes the current ideas concerning the cellular mechanisms and organizational strategies used by the olfactory system to process olfactory information. We present findings that exemplified the high degree of olfactory plasticity, with special emphasis on the first central relay of the olfactory system. Recent observations supporting the necessity of such plasticity for adult brain functions are also discussed. Due to space constraints, this review focuses mainly on the olfactory systems of vertebrates, and primarily those of mammals.

  15. Evaluation of olfactory function in Behçet’s disease

    PubMed Central

    Akyol, Lütfi; Günbey, Emre; Karlı, Rıfat; Önem, Soner; Özgen, Metin; Sayarlıoğlu, Mehmet

    2016-01-01

    Objective Behçet’s disease (BD) is a chronic, relapsing type of vasculitis of unknown etiology and is characterized by oral and urogenital ulcers and ocular inflammation with cutaneous, musculoskeletal, vascular, and nervous system manifestations. Few cases involving the nasal mucosa have been reported in the literature, and the true prevalence of BD remains unknown. Neurological involvement associated with BD might play a more important role in causing olfactory dysfunction than mucosal involvement, but sufficient clinical data are not available on the effect of BD on olfaction in adults. We therefore evaluated the olfactory function of patients diagnosed with BD. Material and Methods Patients were chosen from among a consecutive patient group population who visited the internal medicine rheumatology polyclinic and otolaryngology departments of Ondokuz Mayıs University Hospital. A total of 50 patients (both males and females) aged 18 to 60 years with a diagnosis of BD and 46 healthy controls (matched to the study group in terms of age and gender) were included. BD was diagnosed based on the criteria defined by the International Study Group for BD. A complete clinical history was taken for and a physical examination was performed in all participants. Patients with other rheumatic diseases; obstructive nasal pathologies leading to conductive-type olfactory dysfunction (e.g., septum deviation or nasal polyp); advanced systemic disease (e.g., hypertension or malignancy); a history of antithyroid, antihistamine, antidepressant, or steroid medication use within the past month; or who were current smokers, had an active upper respiratory infection, or had a history of otolaryngologic operations were excluded. The results of the “Sniffin’ Sticks” (SS) olfactory test were compared between the two groups. Results The mean age of the 50 BD patients was 35.3±10 years; that of the 46 health controls was 36.9±11 years. There was no significant group difference in

  16. Warty dyskeratoma of the oral mucosa.

    PubMed

    Laskaris, G; Sklavounou, A

    1985-10-01

    A case of oral warty dyskeratoma is presented and the literature is reviewed in brief. While warty dyskeratoma of the oral mucosa is rare, it appears to exhibit a variability of clinical appearance and to have a special predilection for keratinised mucosae exposed to friction and mechanical stress.

  17. Heterotopic Gastric Mucosa in the Umbilicus

    PubMed Central

    Heo, Young Soo; Jeong, Se Yeong; Son, Sang Wook; Kim, Il-Hwan

    2010-01-01

    Heterotopia refers to the finding of normal tissue in foreign sites, entirely separate from the main organ. Heterotopic gastric mucosa has been observed throughout the alimentary tract, everywhere from the oral cavity to the rectum. However, occurrences in the umbilicus are an extremely rare and peculiar phenomena. We report the case of heterotopic gastric mucosa in the umbilicus. PMID:20548921

  18. Olfactory deposition of inhaled nanoparticles in humans

    PubMed Central

    Garcia, Guilherme J. M.; Schroeter, Jeffry D.; Kimbell, Julia S.

    2016-01-01

    Context Inhaled nanoparticles can migrate to the brain via the olfactory bulb, as demonstrated in experiments in several animal species. This route of exposure may be the mechanism behind the correlation between air pollution and human neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease. Objectives This manuscript aims to (1) estimate the dose of inhaled nanoparticles that deposit in the human olfactory epithelium during nasal breathing at rest and (2) compare the olfactory dose in humans with our earlier dose estimates for rats. Materials and methods An anatomically-accurate model of the human nasal cavity was developed based on computed tomography scans. The deposition of 1–100 nm particles in the whole nasal cavity and its olfactory region were estimated via computational fluid dynamics (CFD) simulations. Our CFD methods were validated by comparing our numerical predictions for whole-nose deposition with experimental data and previous CFD studies in the literature. Results In humans, olfactory dose of inhaled nanoparticles is highest for 1–2 nm particles with approximately 1% of inhaled particles depositing in the olfactory region. As particle size grows to 100 nm, olfactory deposition decreases to 0.01% of inhaled particles. Discussion and conclusion Our results suggest that the percentage of inhaled particles that deposit in the olfactory region is lower in humans than in rats. However, olfactory dose per unit surface area is estimated to be higher in humans due to their larger minute volume. These dose estimates are important for risk assessment and dose-response studies investigating the neurotoxicity of inhaled nanoparticles. PMID:26194036

  19. Olfactory deposition of inhaled nanoparticles in humans.

    PubMed

    Garcia, Guilherme J M; Schroeter, Jeffry D; Kimbell, Julia S

    2015-01-01

    Inhaled nanoparticles can migrate to the brain via the olfactory bulb, as demonstrated in experiments in several animal species. This route of exposure may be the mechanism behind the correlation between air pollution and human neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. This article aims to (i) estimate the dose of inhaled nanoparticles that deposit in the human olfactory epithelium during nasal breathing at rest and (ii) compare the olfactory dose in humans with our earlier dose estimates for rats. An anatomically-accurate model of the human nasal cavity was developed based on computed tomography scans. The deposition of 1-100 nm particles in the whole nasal cavity and its olfactory region were estimated via computational fluid dynamics (CFD) simulations. Our CFD methods were validated by comparing our numerical predictions for whole-nose deposition with experimental data and previous CFD studies in the literature. In humans, olfactory dose of inhaled nanoparticles is highest for 1-2 nm particles with ∼1% of inhaled particles depositing in the olfactory region. As particle size grows to 100 nm, olfactory deposition decreases to 0.01% of inhaled particles. Our results suggest that the percentage of inhaled particles that deposit in the olfactory region is lower in humans than in rats. However, olfactory dose per unit surface area is estimated to be higher in humans in the 1--7 nm size range due to the larger inhalation rate in humans. These dose estimates are important for risk assessment and dose-response studies investigating the neurotoxicity of inhaled nanoparticles.

  20. Stomatin-related olfactory protein, SRO, specifically expressed in the murine olfactory sensory neurons.

    PubMed

    Kobayakawa, Ko; Hayashi, Reiko; Morita, Kenji; Miyamichi, Kazunari; Oka, Yuichiro; Tsuboi, Akio; Sakano, Hitoshi

    2002-07-15

    We identified a stomatin-related olfactory protein (SRO) that is specifically expressed in olfactory sensory neurons (OSNs). The mouse sro gene encodes a polypeptide of 287 amino acids with a calculated molecular weight of 32 kDa. SRO shares 82% sequence similarity with the murine stomatin, 78% with Caenorhabditis elegans MEC-2, and 77% with C. elegans UNC-1. Unlike other stomatin-family genes, the sro transcript was present only in OSNs of the main olfactory epithelium. No sro expression was seen in vomeronasal neurons. SRO was abundant in most apical dendrites of OSNs, including olfactory cilia. Immunoprecipitation revealed that SRO associates with adenylyl cyclase type III and caveolin-1 in the low-density membrane fraction of olfactory cilia. Furthermore, anti-SRO antibodies stimulated cAMP production in fractionated cilia membrane. SRO may play a crucial role in modulating odorant signals in the lipid rafts of olfactory cilia.

  1. The Olfactory Mosaic: Bringing an Olfactory Network Together for Odor Perception.

    PubMed

    Courtiol, Emmanuelle; Wilson, Donald A

    2017-01-01

    Olfactory perception and its underlying neural mechanisms are not fixed, but rather vary over time, dependent on various parameters such as state, task, or learning experience. In olfaction, one of the primary sensory areas beyond the olfactory bulb is the piriform cortex. Due to an increasing number of functions attributed to the piriform cortex, it has been argued to be an associative cortex rather than a simple primary sensory cortex. In fact, the piriform cortex plays a key role in creating olfactory percepts, helping to form configural odor objects from the molecular features extracted in the nose. Moreover, its dynamic interactions with other olfactory and nonolfactory areas are also critical in shaping the olfactory percept and resulting behavioral responses. In this brief review, we will describe the key role of the piriform cortex in the larger olfactory perceptual network, some of the many actors of this network, and the importance of the dynamic interactions among the piriform-trans-thalamic and limbic pathways.

  2. Laser Treatment of Oral Mucosa Tattoo

    PubMed Central

    Gojkov-Vukelic, Mirjana; Hadzic, Sanja; Pasic, Enes

    2011-01-01

    The most common oral solitary pigmented lesion is the dental amalgam tattoo. It occurs as a result of colouring of the tissue by alien pigment which was administered intra or subepidermaly either intentionally or accidentally. The most common material used for the colouring of the oral mucosa is amalgam from amalgam fillings and metal particles from prosthetic restorations which are absorbed accidentally. The oral mucosa tattoos are most often found in the area of the marginal gingiva or the buccal mucosa. The metal particles may accidentally reach the area of the oral mucosa during various dentistry interventions. The therapy most often involves surgical intervention with excisional biopsy while in the recent period the low power laser therapy has provided exceptional results. The aim of the paper was to present the successful removal of the oral mucosa tattoo in a single visit. PMID:23408182

  3. Laser treatment of oral mucosa tattoo.

    PubMed

    Gojkov-Vukelic, Mirjana; Hadzic, Sanja; Pasic, Enes

    2011-12-01

    The most common oral solitary pigmented lesion is the dental amalgam tattoo. It occurs as a result of colouring of the tissue by alien pigment which was administered intra or subepidermaly either intentionally or accidentally. The most common material used for the colouring of the oral mucosa is amalgam from amalgam fillings and metal particles from prosthetic restorations which are absorbed accidentally. The oral mucosa tattoos are most often found in the area of the marginal gingiva or the buccal mucosa. The metal particles may accidentally reach the area of the oral mucosa during various dentistry interventions. The therapy most often involves surgical intervention with excisional biopsy while in the recent period the low power laser therapy has provided exceptional results. The aim of the paper was to present the successful removal of the oral mucosa tattoo in a single visit.

  4. Expression pattern and functional analysis of mouse Stam2 in the olfactory system.

    PubMed

    Furić Cunko, Vesna; Mitrecić, Dinko; Mavrić, Sandra; Gajović, Srećko

    2008-01-01

    Gene trap mutant mice Stam(gt1Gaj) were investigated in order to elucidate in vivo function of Stam2 (signal transducing adaptor molecule 2) gene, which was in vitro implicated in sorting cargo marked by monoubiquitination toward degradation in the lysosomes. The expression analysis showed high Stam2 expression in the brain including the regions related to olfaction, and in the olfactory epithelium, but not in the respiratory part of nasal mucosa. To test mouse olfaction, ability to find chocolate hidden under the sawdust in the cage was examined. When food was given ad libitum before trials, mutants needed more time and failed more frequently to find the chocolate. In contrast, when the mice were fasted overnight before trial, there were no differences between mutants and wild type mice. No changes in morphology of olfactory mucosa were observed. The obtained results showed the existence of phenotype differences between mutants and wild type mice. However, different results of two approaches aimed to test olfaction, with and without food deprivation, currently do not enable to assign the particular function of Stam2 to olfaction. This emphasizes how slight modification of experimental setup in behavioural testing can cause important differences on the obtained results.

  5. Unraveling Cajal's view of the olfactory system

    PubMed Central

    Figueres-Oñate, María; Gutiérrez, Yolanda; López-Mascaraque, Laura

    2014-01-01

    The olfactory system has a highly regular organization of interconnected synaptic circuits from the periphery. It is therefore an excellent model for understanding general principles about how the brain processes information. Cajal revealed the basic cell types and their interconnections at the end of the XIX century. Since his original descriptions, the observation and analysis of the olfactory system and its components represents a major topic in neuroscience studies, providing important insights into the neural mechanisms. In this review, we will highlight the importance of Cajal contributions and his legacy to the actual knowledge of the olfactory system. PMID:25071462

  6. Aquaporins in desert rodent physiology.

    PubMed

    Pannabecker, Thomas L

    2015-08-01

    Desert rodents face a sizeable challenge in maintaining salt and water homeostasis due to their life in an arid environment. A number of their organ systems exhibit functional characteristics that limit water loss above that which occurs in non-desert species under similar conditions. These systems include renal, pulmonary, gastrointestinal, nasal, and skin epithelia. The desert rodent kidney preserves body water by producing a highly concentrated urine that reaches a maximum osmolality nearly three times that of the common laboratory rat. The precise mechanism by which urine is concentrated in any mammal is unknown. Insights into the process may be more apparent in species that produce highly concentrated urine. Aquaporin water channels play a fundamental role in water transport in several desert rodent organ systems. The role of aquaporins in facilitating highly effective water preservation in desert rodents is only beginning to be explored. The organ systems of desert rodents and their associated AQPs are described.

  7. Repeated formaldehyde inhalation impaired olfactory function and changed SNAP25 proteins in olfactory bulb.

    PubMed

    Zhang, Qi; Yan, Weiqun; Bai, Yang; Zhu, Yingqiao; Ma, Jie

    2014-10-01

    Formaldehyde inhalation exposure, which can occur through occupational exposure, can lead to sensory irritation, neurotoxicity, mood disorders, and learning and memory impairment. However, its influence on olfactory function is unclear. To investigate the mechanism and the effect of repeated formaldehyde inhalation exposure on olfactory function. Rats were treated with formaldehyde inhalation (13·5±1·5 ppm, twice 30 minutes/day) for 14 days. Buried food pellet and locomotive activity tests were used to detect olfactory function and locomotion. Western blots were used to evaluate synaptosomal-associated protein 25 (SNAP25) protein levels in the olfactory bulb (OB) lysate and synaptosome, as well as mature and immature olfactory sensory neuron markers, olfactory marker protein (OMP), and Tuj-1. Real-time polymerase chain reaction (PCR) was used to detect SNAP25 mRNA amounts. Repeated formaldehyde inhalation exposure impaired olfactory function, whereas locomotive activities were unaffected. SNAP25 protein decreased significantly in the OB, but not in the occipital lobe. SNAP25 also decreased in the OB synaptosome when synaptophysin did not change after formaldehyde treatment. mRNA levels of SNAP25A and SNAP25B were unaffected. Mature and immature olfactory sensory neuron marker, OMP, and Tuj-1, did not change after formaldehyde treatment. Repeated formaldehyde exposure impaired olfactory function by disturbing SNAP25 protein in the OB.

  8. Histopathological analysis of the olfactory epithelium of zebrafish (Danio rerio) exposed to sublethal doses of urea.

    PubMed

    Bettini, Simone; Lazzari, Maurizio; Ferrando, Sara; Gallus, Lorenzo; Franceschini, Valeria

    2016-01-01

    Chronic renal disease is known to alter olfactory function, but the specific changes induced in olfactory organs during this process remain unclear. Of the uraemic toxins generated during renal disease, high levels of urea are known to induce hyposmic conditions. In this study, the effects of environmental exposure to elevated concentrations of urea (7, 13.5 and 20 g L(-1)) on the sensory mucosa of zebrafish in acute toxicity and chronic toxicity tests were described. It was observed that lamellae maintained structural integrity and epithelial thickness was slightly reduced, but only following exposure to the highest concentrations of urea. Pan-neuronal labelling with anti-Hu revealed a negative correlation with levels of urea, leading to investigation of whether distinct neuronal subtypes were equally sensitive. Using densitometric analysis of immunolabelled tissues, numbers of Gα olf-, TRPC2- and TrkA-expressing cells were compared, representing ciliated, microvillous and crypt neurons, respectively. The three neuronal subpopulations responded differently to increasing levels of urea. In particular, crypt cells were more severely affected than the other cell types, and Gα olf-immunoreactivity was found to increase when fish were exposed to low doses of urea. It can be concluded that exposure to moderate levels of urea leads to sensory toxicity directly affecting olfactory organs, in accordance with the functional olfactometric measurements previously reported in the literature.

  9. Preserving olfactory function in anterior craniofacial surgery through cribriform plate osteotomy applied in selected patients.

    PubMed

    Feiz-Erfan, Iman; Han, Patrick P; Spetzler, Robert F; Horn, Eric M; Klopfenstein, Jeffrey D; Kim, Louis J; Porter, Randall W; Beals, Stephen P; Lettieri, Salvatore C; Joganic, Edward F

    2005-07-01

    Olfaction is often sacrificed to gain access to the cranial base in anterior craniofacial surgery. We describe the long-term results of olfactory function in patients who underwent anterior craniofacial surgery and a cribriform plate osteotomy to preserve olfaction. Between 1992 and 2004, 28 patients underwent 29 cribriform plate osteotomies in an attempt to preserve olfaction during anterior craniofacial surgery performed through modified extended transbasal approaches. Patients' charts and office notes were reviewed retrospectively. Formal olfactory testing was available in 5 patients, but most data were based on patients' subjective reports of olfaction. Olfactory preservation was defined by the subjective ability to detect fumes such as coffee, chocolate, roses, and orange juice regardless of the intensity of the sensation. Follow-up was based on phone calls to patients. Four patients were lost to follow-up and excluded. Therefore, follow-up was available in 24 patients after 25 procedures. On the basis of patients' subjective reports, olfaction was spared in 22 patients after 23 procedures (92%) and was confirmed objectively in the five patients formally tested. After surgery, only two patients were anosmic. Olfaction can be preserved in selected patients undergoing anterior craniofacial surgery. At least 1 cm of nasal mucosa should remain attached to the cribriform plate, which can be achieved by including the nasal bone in the osteotomy of the orbital bar. A medial orbital canthopexy is therefore necessary after these procedures.

  10. Neurogenetics of Aggressive Behavior – Studies in Rodents

    PubMed Central

    Takahashi, Aki; Miczek, Klaus A.

    2014-01-01

    Aggressive behavior is observed in many animal species, such as insects, fish, lizards, frogs, and most mammals including humans. This wide range of conservation underscores the importance of aggressive behavior in the animals’ survival and fitness, and the likely heritability of this behavior. Although typical patterns of aggressive behavior differ between species, there are several concordances in the neurobiology of aggression among rodents, primates, and humans. Studies with rodent models may eventually help us to understand the neurogenetic architecture of aggression in humans. However, it is important to recognize the difference between the ecological and ethological significance of aggressive behavior (species-typical aggression) and maladaptive violence (escalated aggression) when applying the findings of aggression research using animal models to human or veterinary medicine. Well-studied rodent models for aggressive behavior in the laboratory setting include the mouse (Mus musculus), rat (Rattus norvegicus), hamster (Mesocricetus auratus), and prairie vole (Microtus ochrogaster). The neural circuits of rodent aggression have been gradually elucidated by several techniques e.g. immunohistochemistry of immediate-early gene (c-Fos) expression, intracranial drug microinjection, in vivo microdialysis, and optogenetics techniques. Also, evidence accumulated from the analysis of gene-knockout mice shows the involvement of several genes in aggression. Here we review the brain circuits that have been implicated in aggression, such as the hypothalamus, prefrontal cortex (PFC), dorsal raphe nucleus (DRN), nucleus accumbens (NAc), and olfactory system. We then discuss the roles of glutamate and γ-aminobutyric acid (GABA), major inhibitory and excitatory amino acids in the brain, as well as their receptors, in controlling aggressive behavior, focusing mainly on recent findings. At the end of this chapter, we discuss how genes can be identified that underlie

  11. Correlation between olfactory severity ratings based on olfactory function test scores and self-reported severity rating of olfactory loss.

    PubMed

    Seok, Jungirl; Shim, Ye Ji; Rhee, Chae-Seo; Kim, Jeong-Whun

    2017-07-01

    Olfactory test scores are significantly correlated with self-rated severity scales. However, the statistical rating based on olfactory tests did not strongly agree with the self-reported severity rating. This suggests that there is a discrepancy between olfactory test results and the severity described by patients themselves. This study aimed to identify the correlation between statistical ratings based on test scores and self-rating of the severity of olfactory loss. A total of 1555 subjects were asked to rate olfactory loss severity by one of five scales. Olfactory tests consist of the butanol threshold test (BTT) and cross-cultural smell identification test (CCSIT). There were significant correlations between BTT scores and self-rated severity scales (r = 0.619, p < 0.001) and between CCSIT scores and self-rated severity scales (r = 0.597, p < 0.001) after adjustment for age, sex, and medical conditions. Using discriminant analysis for both BTT and CCSIT, scores 0-4 could be statistically rated as anosmia, scores 5 and 6 as severe hyposmia, scores 7 and 8 as moderate hyposmia, and scores 9-12 as normosmia (Wilks's lambda = 0.605, p < 0.001 for BTT and Wilks's lambda = 0.597, p < 0.001 for CCSIT).

  12. Modeling Olfactory Bulb Evolution through Primate Phylogeny

    PubMed Central

    Heritage, Steven

    2014-01-01

    Adaptive characterizations of primates have usually included a reduction in olfactory sensitivity. However, this inference of derivation and directionality assumes an ancestral state of olfaction, usually by comparison to a group of extant non-primate mammals. Thus, the accuracy of the inference depends on the assumed ancestral state. Here I present a phylogenetic model of continuous trait evolution that reconstructs olfactory bulb volumes for ancestral nodes of primates and mammal outgroups. Parent-daughter comparisons suggest that, relative to the ancestral euarchontan, the crown-primate node is plesiomorphic and that derived reduction in olfactory sensitivity is an attribute of the haplorhine lineage. The model also suggests a derived increase in olfactory sensitivity at the strepsirrhine node. This oppositional diversification of the strepsirrhine and haplorhine lineages from an intermediate and non-derived ancestor is inconsistent with a characterization of graded reduction through primate evolution. PMID:25426851

  13. The Pig Olfactory Brain: A Primer

    PubMed Central

    Feldman, Sanford; Osterberg, Stephen K.

    2016-01-01

    Despite the fact that pigs are reputed to have excellent olfactory abilities, few studies have examined regions of the pig brain involved in the sense of smell. The present study provides an overview of the olfactory bulb, anterior olfactory nucleus, and piriform cortex of adult pigs using several approaches. Nissl, myelin, and Golgi stains were used to produce a general overview of the organization of the regions and confocal microscopy was employed to examine 1) projection neurons, 2) GABAergic local circuit neurons that express somatostatin, parvalbumin, vasoactive intestinal polypeptide, or calretinin, 3) neuromodulatory fibers (cholinergic and serotonergic), and 4) glia (astrocytes and microglia). The findings revealed that pig olfactory structures are quite large, highly organized and follow the general patterns observed in mammals. PMID:26936231

  14. Methods to measure olfactory behavior in mice

    PubMed Central

    Zou, Junhui; Wang, Wenbin; Pan, Yung-Wei; Lu, Song; Xia, Zhengui

    2015-01-01

    Mice rely on the sense of olfaction to detect food sources, recognize social and mating partners, and avoid predators. Many behaviors of mice including learning and memory, social interaction, fear, and anxiety are closely associated with their function of olfaction, and behavior tasks designed to evaluate those brain functions may use odors as cues. Accurate assessment of olfaction is not only essential for the study of olfactory system but also critical for proper interpretation of various mouse behaviors especially learning and memory, emotionality and affect, and sociality. Here we describe a series of behavior experiments that offer multidimensional and quantitative assessments for mouse’s olfactory function, including olfactory habituation, discrimination, odor preference, odor detection sensitivity, and olfactory memory, to both social and nonsocial odors. PMID:25645244

  15. A multisensory network for olfactory processing

    PubMed Central

    Maier, Joost X.; Blankenship, Meredith L.; Li, Jennifer X.; Katz, Donald B.

    2015-01-01

    Summary Primary gustatory cortex (GC) is connected (both mono- and poly-synaptically) to primary olfactory (piriform) cortex (PC)—connections that might be hypothesized to underlie the construction of a “flavor” percept when both gustatory and olfactory stimuli are present. Here, we use multi-site electrophysiology and optical inhibition of GC neurons (GCx, produced via infection with ArchT) to demonstrate that, indeed, during gustatory stimulation, taste-selective information is transmitted from GC to PC. We go on to show that these connections impact olfactory processing even in the absence of gustatory stimulation: GCx alters PC responses to olfactory stimuli presented alone, enhancing some and eliminating others, despite leaving the path from nasal epithelium to PC intact. Finally, we show the functional importance of this latter phenomenon, demonstrating that GCx renders rats unable to properly recognize odor stimuli. This sequence of findings suggests that sensory processing may be more intrinsically integrative than previously thought. PMID:26441351

  16. Cladistic Analysis of Olfactory and Vomeronasal Systems

    PubMed Central

    Ubeda-Bañon, Isabel; Pro-Sistiaga, Palma; Mohedano-Moriano, Alicia; Saiz-Sanchez, Daniel; de la Rosa-Prieto, Carlos; Gutierrez-Castellanos, Nicolás; Lanuza, Enrique; Martinez-Garcia, Fernando; Martinez-Marcos, Alino

    2010-01-01

    Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies’ view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system appeared as an adaptation to terrestrial life is being questioned as well. The aim of the present work is to use a comparative strategy to gain insight in our understanding of the evolution of chemical “cortex.” We have analyzed the organization of the olfactory and vomeronasal cortices of reptiles, marsupials, and placental mammals and we have compared our findings with data from other taxa in order to better understand the evolutionary history of the nasal sensory systems in vertebrates. The olfactory and vomeronsasal cortices have been re-investigated in garter snakes (Thamnophis sirtalis), short-tailed opossums (Monodelphis domestica), and rats (Rattus norvegicus) by tracing the efferents of the main and accessory olfactory bulbs using injections of neuroanatomical anterograde tracers (dextran-amines). In snakes, the medial olfactory tract is quite evident, whereas the main vomeronasal-recipient structure, the nucleus sphaericus is a folded cortical-like structure, located at the caudal edge of the amygdala. In marsupials, which are acallosal mammals, the rhinal fissure is relatively dorsal and the olfactory and vomeronasal cortices relatively expanded. Placental mammals, like marsupials, show partially overlapping olfactory and vomeronasal projections in the rostral basal telencephalon. These data raise the interesting question of how the telencephalon has been re-organized in different groups according to the biological relevance of chemical senses. PMID:21290004

  17. Cladistic analysis of olfactory and vomeronasal systems.

    PubMed

    Ubeda-Bañon, Isabel; Pro-Sistiaga, Palma; Mohedano-Moriano, Alicia; Saiz-Sanchez, Daniel; de la Rosa-Prieto, Carlos; Gutierrez-Castellanos, Nicolás; Lanuza, Enrique; Martinez-Garcia, Fernando; Martinez-Marcos, Alino

    2011-01-01

    Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies' view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system appeared as an adaptation to terrestrial life is being questioned as well. The aim of the present work is to use a comparative strategy to gain insight in our understanding of the evolution of chemical "cortex." We have analyzed the organization of the olfactory and vomeronasal cortices of reptiles, marsupials, and placental mammals and we have compared our findings with data from other taxa in order to better understand the evolutionary history of the nasal sensory systems in vertebrates. The olfactory and vomeronsasal cortices have been re-investigated in garter snakes (Thamnophis sirtalis), short-tailed opossums (Monodelphis domestica), and rats (Rattus norvegicus) by tracing the efferents of the main and accessory olfactory bulbs using injections of neuroanatomical anterograde tracers (dextran-amines). In snakes, the medial olfactory tract is quite evident, whereas the main vomeronasal-recipient structure, the nucleus sphaericus is a folded cortical-like structure, located at the caudal edge of the amygdala. In marsupials, which are acallosal mammals, the rhinal fissure is relatively dorsal and the olfactory and vomeronasal cortices relatively expanded. Placental mammals, like marsupials, show partially overlapping olfactory and vomeronasal projections in the rostral basal telencephalon. These data raise the interesting question of how the telencephalon has been re-organized in different groups according to the biological relevance of chemical senses.

  18. Dimorphic olfactory lobes in the arthropoda.

    PubMed

    Strausfeld, Nicholas; Reisenman, Carolina E

    2009-07-01

    Specialized olfactory lobe glomeruli relating to sexual or caste differences have been observed in at least five orders of insects, suggesting an early appearance of this trait in insect evolution. Dimorphism is not limited to nocturnal species, but occurs even in insects that are known to use vision for courtship. Other than a single description, there is no evidence for similar structures occurring in the Crustacea, suggesting that the evolution of dimorphic olfactory systems may typify terrestrial arthropods.

  19. The allometry of rodent intestines.

    PubMed

    Lovegrove, Barry G

    2010-06-01

    This study examined the allometry of the small intestine, caecum, colon and large intestine of rodents (n = 51) using a phylogenetically informed approach. Strong phylogenetic signal was detected in the data for the caecum, colon and large intestine, but not for the small intestine. Most of the phylogenetic signal could be attributed to clade effects associated with herbivorous versus omnivorous rodents. The herbivorous rodents have longer caecums, colons and large intestines, but their small intestines, with the exception of the desert otomyine rodents, are no different to those of omnivorous rodents. Desert otomyine rodents have significantly shorter small intestines than all other rodents, reflecting a possible habitat effect and providing a partial explanation for the low basal metabolic rates of small desert mammals. However, the desert otomyines do not have shorter colons or large intestines, challenging claims for adaptation to water retention in arid environments. Data for the Arvicolidae revealed significantly larger caecums and colons, and hence longer large intestines, with no compensatory reduction in the length of the small intestine, which may explain how the smallest mammalian herbivores manage to meet the demands of a very high mass-specific metabolic rate. This study provides phylogenetically corrected allometries suitable for future prediction testing.

  20. Precancerous lesions of oral mucosa

    PubMed Central

    Yardimci, Gurkan; Kutlubay, Zekayi; Engin, Burhan; Tuzun, Yalcin

    2014-01-01

    Precancerous lesions of oral mucosa, known as potentially malignant disorders in recent years, are consists of a group of diseases, which should be diagnosed in the early stage. Oral leukoplakia, oral submucous fibrosis, and oral erythroplakia are the most common oral mucosal diseases that have a very high malignant transformation rate. Oral lichen planus is one of the potentially malignant disorders that may be seen in six different subtypes including papular, reticular, plaque-like, atrophic, erosive, and bullous type, clinically. Atrophic and erosive subtypes have the greater increased malignant transformation risk compared to another subtypes. Although there are various etiological studies, the etiology of almost all these diseases is not fully understood. Geographically, etiologic factors may vary. The most frequently reported possible factors are tobacco use, alcohol drinking, chewing of betel quid containing areca nut, and solar rays. Early diagnosis is very important and can be lifesaving, because in late stages, they may be progressed to severe dysplasia and even carcinoma in situ and/or squamous cell carcinoma. For most diseases, treatment results are not satisfactory in spite of miscellaneous therapies. While at the forefront of surgical intervention, topical and systemic treatment alternatives such as corticosteroids, calcineurin inhibitors, and retinoids are widely used. PMID:25516862

  1. Cortical Feedback Control of Olfactory Bulb Circuits

    PubMed Central

    Boyd, Alison M.; Sturgill, James F.; Poo, Cindy; Isaacson, Jeffry S.

    2013-01-01

    SUMMARY Olfactory cortex pyramidal cells integrate sensory input from olfactory bulb mitral and tufted (M/T) cells and project axons back to the bulb. However, the impact of cortical feedback projections on olfactory bulb circuits is unclear. Here, we selectively express channelrhodopsin-2 in olfactory cortex pyramidal cells and show that cortical feedback projections excite diverse populations of bulb interneurons. Activation of cortical fibers directly excites GABAergic granule cells, which in turn inhibit M/T cells. However, we show that cortical inputs preferentially target short axon cells that drive feedforward inhibition of granule cells. In vivo, activation of olfactory cortex that only weakly affects spontaneous M/T cell firing strongly gates odor-evoked M/T cell responses: cortical activity suppresses odor-evoked excitation and enhances odor-evoked inhibition. Together, these results indicate that although cortical projections have diverse actions on olfactory bulb microcircuits, the net effect of cortical feedback on M/T cells is an amplification of odor-evoked inhibition. PMID:23259951

  2. A new dopaminergic nigro-olfactory projection.

    PubMed

    Höglinger, Günter U; Alvarez-Fischer, Daniel; Arias-Carrión, Oscar; Djufri, Miriam; Windolph, Andrea; Keber, Ursula; Borta, Andreas; Ries, Vincent; Schwarting, Rainer K W; Scheller, Dieter; Oertel, Wolfgang H

    2015-09-01

    Parkinson disease (PD) is a neurodegenerative disorder characterized by massive loss of midbrain dopaminergic neurons. Whereas onset of motor impairments reflects a rather advanced stage of the disorder, hyposmia often marks the beginning of the disease. Little is known about the role of the nigro-striatal system in olfaction under physiological conditions and the anatomical basis of hyposmia in PD. Yet, the early occurrence of olfactory dysfunction implies that pathogens such as environmental toxins could incite the disease via the olfactory system. In the present study, we demonstrate a dopaminergic innervation from neurons in the substantia nigra to the olfactory bulb by axonal tracing studies. Injection of two dopaminergic neurotoxins-1-methyl-4-phenylpyridinium and 6-hydroxydopamine-into the olfactory bulb induced a decrease in the number of dopaminergic neurons in the substantia nigra. In turn, ablation of the nigral projection led to impaired olfactory perception. Hyposmia following dopaminergic deafferentation was reversed by treatment with the D1/D2/D3 dopamine receptor agonist rotigotine. Hence, we demonstrate for the first time the existence of a direct dopaminergic projection into the olfactory bulb and identify its origin in the substantia nigra in rats. These observations may provide a neuroanatomical basis for invasion of environmental toxins into the basal ganglia and for hyposmia as frequent symptom in PD.

  3. Olfactory processing in a changing brain.

    PubMed

    Lledo, Pierre-Marie; Gheusi, Gilles

    2003-09-15

    The perception of odorant molecules provides the essential information that allows animals to explore their surrounding. We describe here how the external world of scents may sculpt the activity of the first central relay of the olfactory system, i.e., the olfactory bulb. This structure is one of the few brain areas to continuously replace one of its neuronal populations: the local GABAergic interneurons. How the newly generated neurons integrate into a pre-existing neural network and how basic olfactory functions are maintained when a large percentage of neurons are subjected to continuous renewal, are important questions that have recently received new insights. Furthermore, we shall see how the adult neurogenesis is specifically subjected to experience-dependent modulation. In particular, we shall describe the sensitivity of the bulbar neurogenesis to the activity level of sensory inputs from the olfactory epithelium and, in turn, how this neurogenesis may adjust the neural network functioning to optimize odor information processing. Finally, we shall discuss the behavioral consequences of the bulbar neurogenesis and how it may be appropriate for the sense of smell. By maintaining a constitutive turnover of bulbar interneurons subjected to modulation by environmental cues, we propose that adult ongoing neurogenesis in the olfactory bulb is associated with improved olfactory memory. These recent findings not only provide new fuel for the molecular and cellular bases of sensory perception but should also shed light onto cellular bases of learning and memory.

  4. Oculoscopy in Rabbits and Rodents.

    PubMed

    Jekl, Vladimir; Hauptman, Karel; Knotek, Zdenek

    2015-09-01

    Ophthalmic diseases are common in rabbits and rodents. Fast and definitive diagnosis is imperative for successful treatment of ocular diseases. Ophthalmic examination in rabbits and rodents can be challenging. Oculoscopy offers great magnification for the examination of the ocular structures in such animals, including the evaluation of cornea, anterior eye chamber, limbus, iris, lens, and retina. To date, oculoscopy has been described only sporadically and/or under experimental conditions. This article describes the oculoscopy technique, normal and abnormal ocular findings, and the most common eye disorders diagnosed with the aid of endoscopy in rabbits and rodents.

  5. The functional significance of newly born neurons integrated into olfactory bulb circuits

    PubMed Central

    Sakamoto, Masayuki; Kageyama, Ryoichiro; Imayoshi, Itaru

    2014-01-01

    The olfactory bulb (OB) is the first central processing center for olfactory information connecting with higher areas in the brain, and this neuronal circuitry mediates a variety of odor-evoked behavioral responses. In the adult mammalian brain, continuous neurogenesis occurs in two restricted regions, the subventricular zone (SVZ) of the lateral ventricle and the hippocampal dentate gyrus. New neurons born in the SVZ migrate through the rostral migratory stream and are integrated into the neuronal circuits of the OB throughout life. The significance of this continuous supply of new neurons in the OB has been implicated in plasticity and memory regulation. Two decades of huge investigation in adult neurogenesis revealed the biological importance of integration of new neurons into the olfactory circuits. In this review, we highlight the recent findings about the physiological functions of newly generated neurons in rodent OB circuits and then discuss the contribution of neurogenesis in the brain function. Finally, we introduce cutting edge technologies to monitor and manipulate the activity of new neurons. PMID:24904263

  6. Successful acquisition of an olfactory discrimination paradigm by South African fur seals, Arctocephalus pusillus.

    PubMed

    Laska, Matthias; Svelander, Madeleine; Amundin, Mats

    2008-03-18

    The present study demonstrates that South African fur seals, Arctocephalus pusillus, can successfully be trained to discriminate between objects on the basis of odor cues. Using a task based on a food-rewarded two-choice discrimination of simultaneously presented odor stimuli the animals acquired the basic operant conditioning paradigm within 480 to 880 stimulus contacts. Moreover, the fur seals could readily transfer to new S+ and S- stimuli, were capable of distinguishing between fish- and non-fish odors as well as between two fish odors, and were able to remember the reward value of previously learned odor stimuli even after 2- and 15-week breaks. The precision and consistency of the fur seals' performance in tests of discrimination ability and memory demonstrate the suitability of this paradigm for assessing olfactory function in this pinniped. An across-species comparison of several measures of olfactory learning capabilities such as speed of initial task acquisition and ability to master transfer tasks shows that A. pusillus is similar in performance to non-human primates, but inferior to rodents such as mice and rats. The results support the assumption that fur seals may use olfactory cues for social communication and food selection and that the sense of smell may play an hitherto underestimated role in the control of their behavior.

  7. Biological responsiveness to pheromones provides fundamental and unique insight into olfactory function.

    PubMed

    Sorensen, P W

    1996-04-01

    When exposed to the odor of conspecifics, most organisms exhibit an adaptive behavioral response, particularly if the individuals are sexually mature. Evidence increasingly suggests that behavioral responsiveness to these odors, which are termed 'pheromones', reflects neuroethological mechanisms associated with olfactory function. Reproductive pheromones, which are the best understood, are commonly used by both invertebrates and vertebrates. In both instances they are generally comprised of mixtures of compounds and behavioral responsiveness to them is largely instinctual, sexually-dimorphic, and attributable to a specialized component(s) of the olfactory system. While pheromonal responsiveness in some systems (e.g. moths) appears highly stereotypic and symptomatic of a relatively simple 'labeled line', behavioral responsiveness of other animals (e.g. rodents) can be modified by experience, suggesting a more complex underlying central mechanism. In any case, our understanding of these fascinating systems is progressing only because of an active dialogue between behavioral and neurological investigations. This review briefly examines how behavioral studies have provided fundamental insight into the neuroethology of olfactory function by drawing comparisons between some of the better understood sex pheromone systems which have been described in heliothine moths, the goldfish, and the pig. Many similarities between invertebrate and vertebrate pheromone systems are noted.

  8. Olfactory system gamma oscillations: the physiological dissection of a cognitive neural system

    PubMed Central

    Rojas-Líbano, Daniel

    2008-01-01

    Oscillatory phenomena have been a focus of dynamical systems research since the time of the classical studies on the pendulum by Galileo. Fast cortical oscillations also have a long and storied history in neurophysiology, and olfactory oscillations have led the way with a depth of explanation not present in the literature of most other cortical systems. From the earliest studies of odor-evoked oscillations by Adrian, many reports have focused on mechanisms and functional associations of these oscillations, in particular for the so-called gamma oscillations. As a result, much information is now available regarding the biophysical mechanisms that underlie the oscillations in the mammalian olfactory system. Recent studies have expanded on these and addressed functionality directly in mammals and in the analogous insect system. Sub-bands within the rodent gamma oscillatory band associated with specific behavioral and cognitive states have also been identified. All this makes oscillatory neuronal networks a unique interdisciplinary platform from which to study neurocognitive and dynamical phenomena in intact, freely behaving animals. We present here a summary of what has been learned about the functional role and mechanisms of gamma oscillations in the olfactory system as a guide for similar studies in other cortical systems. PMID:19003484

  9. Olfactory bulbectomy modifies photic entrainment and circadian rhythms of body temperature and locomotor activity in a nocturnal primate.

    PubMed

    Perret, Martine; Aujard, Fabienne; Séguy, Maud; Schilling, Alain

    2003-10-01

    Studies on rodents have emphasized that removal of the olfactory bulbs modulates circadian rhythmicity. Using telemetric recordings of both body temperature (Tb) and locomotor activity (LA) in a male nocturnal primate, the gray mouse lemur, the authors investigated the effects of olfactory bulbectomy on (1) the circadian periods of Tb and LA in constant dim light condition, and (2) photic re-entrainment rates of circadian rhythms following 6-h phase shifts of entrained light-dark cycle (LD 12:12). Under free-running condition, bulbectomized males had significantly shorter circadian periods of Tb and LA rhythms than those of control males. However, the profiles of Tb rhythms, characterized by a phase of hypothermia at the beginning of the subjective day, and Tb parameters were not modified by olfactory bulbectomy. Under a light-dark cycle, olfactory bulbectomy significantly modified the expression of daily hypothermia, especially by an increase in the latency to reach minimal daily Tb, suggesting a delayed response to induction of daily hypothermia by light onset. Reentrainment rates following both a 6-h phase advance and a 6-h phase delay of entrained LD were also delayed in bulbectomized males. Olfactory bulbectomy led to significant fragmentation of locomotor activity and increased locomotor activity levels during the resting period. The shortening of circadian periods in bulbectomized males could partly explain the delayed responses to photic stimuli since in control males, the longer the circadian period, the better the response to light entrainment. This experiment shows for the 1st time that olfactory bulbs can markedly modify the circadian system in a primate.

  10. Lectin binding to olfactory system in a shark, Scyliorhinus canicula.

    PubMed

    Franceschini, V; Ciani, F

    1993-01-01

    Lectin histochemical studies were performed on the olfactory system of Scyliorhinus canicula to identify specific glycoconjugates on the cell surface of primary olfactory neurons. The olfactory receptor cells, the olfactory nerve fibers and their terminals in the bulbs were labelled with SBA, BSA-I and BSA-I-B4. The lectin staining patterns indicate that the membranes of small-spotted catshark olfactory neurons had glycoproteins with alpha-galactose residues. This carbohydrate moiety could be related to modulation of the cell-cell interactions in the olfactory system.

  11. Damage to Olfactory Progenitor Cells Is Involved in Cigarette Smoke-Induced Olfactory Dysfunction in Mice.

    PubMed

    Ueha, Rumi; Ueha, Satoshi; Kondo, Kenji; Sakamoto, Takashi; Kikuta, Shu; Kanaya, Kaori; Nishijima, Hironobu; Matsushima, Kouji; Yamasoba, Tatsuya

    2016-03-01

    Exposure to cigarette smoke is a major cause of olfactory dysfunction. However, the underlying mechanisms by which cigarette smoke interferes with the highly regenerative olfactory nerve system remain unclear. To investigate whether cigarette smoke induces olfactory dysfunction by disrupting cell proliferation and cell survival in the olfactory epithelium (OE), we developed a mouse model of smoking that involved intranasal administration of a cigarette smoke solution (CSS). Immunohistological analyses and behavioral testing showed that CSS administration during a period of 24 days reduced the number of olfactory marker protein-positive mature olfactory receptor neurons (ORNs) in the OE and induced olfactory dysfunction. These changes coincided with a reduction in the number of SOX2(+) ORN progenitors and Ki-67(+) proliferating cells in the basal layer of the OE, an increase in the number of caspase-3(+) apoptotic cells, and an increase in the expression of mRNA for the inflammatory cytokines IL-1β and IL-6. Notably, the proliferating ORN progenitor population recovered after cessation of treatment with CSS, resulting in the subsequent restoration of mature ORN numbers and olfaction. These results suggest that SOX2(+) ORN progenitors are targets of CSS-induced impairment of the OE, and that by damaging the ORN progenitor population and increasing ORN death, CSS exposure eventually overwhelms the regenerative capacity of the epithelium, resulting in reduced numbers of mature ORNs and olfactory dysfunction.

  12. Olfactory Fear Conditioning Induces Field Potential Potentiation in Rat Olfactory Cortex and Amygdala

    ERIC Educational Resources Information Center

    Messaoudi, Belkacem; Granjon, Lionel; Mouly, Anne-Marie; Sevelinges, Yannick; Gervais, Remi

    2004-01-01

    The widely used Pavlovian fear-conditioning paradigms used for studying the neurobiology of learning and memory have mainly used auditory cues as conditioned stimuli (CS). The present work assessed the neural network involved in olfactory fear conditioning, using olfactory bulb stimulation-induced field potential signal (EFP) as a marker of…

  13. The location of olfactory receptors within olfactory epithelium is independent of odorant volatility and solubility

    PubMed Central

    2011-01-01

    Background Our objective was to study the pattern of olfactory receptor expression within the dorsal and ventral regions of the mouse olfactory epithelium. We hypothesized that olfactory receptors were distributed based on the chemical properties of their ligands: e.g. receptors for polar, hydrophilic and weakly volatile odorants would be present in the dorsal region of olfactory epithelium; while receptors for non-polar, more volatile odorants would be distributed to the ventral region. To test our hypothesis, we used micro-transplantation of cilia-enriched plasma membranes derived from dorsal or ventral regions of the olfactory epithelium into Xenopus oocytes for electrophysiological characterization against a panel of 100 odorants. Findings Odorants detected by ORs from the dorsal and ventral regions showed overlap in volatility and water solubility. We did not find evidence for a correlation between the solubility and volatility of odorants and the functional expression of olfactory receptors in the dorsal or ventral region of the olfactory epithelia. Conclusions No simple clustering or relationship between chemical properties of odorants could be associated with the different regions of the olfactory epithelium. These results suggest that the location of ORs within the epithelium is not organized based on the physico-chemical properties of their ligands. PMID:21548958

  14. Olfactory imprinting is correlated with changes in gene expression in the olfactory epithelia of the zebrafish.

    PubMed

    Harden, Maegan V; Newton, Lucy A; Lloyd, Russell C; Whitlock, Kathleen E

    2006-11-01

    Odors experienced as juveniles can have significant effects on the behavior of mature organisms. A dramatic example of this occurs in salmon, where the odors experienced by developing fish determine the river to which they return as adults. Further examples of olfactory memories are found in many animals including vertebrates and invertebrates. Yet, the cellular and molecular bases underlying the formation of olfactory memory are poorly understood. We have devised a series of experiments to determine whether zebrafish can form olfactory memories much like those observed in salmonids. Here we show for the first time that zebrafish form and retain olfactory memories of an artificial odorant, phenylethyl alcohol (PEA), experienced as juveniles. Furthermore, we demonstrate that exposure to PEA results in changes in gene expression within the olfactory sensory system. These changes are evident by in situ hybridization in the olfactory epithelium of the developing zebrafish. Strikingly, our analysis by in situ hybridization demonstrates that the transcription factor, otx2, is up regulated in the olfactory sensory epithelia in response to PEA. This increase is evident at 2-3 days postfertilization and is maintained in the adult animals. We propose that the changes in otx2 gene expression are manifest as an increase in the number of neuronal precursors in the cells olfactory epithelium of the odor-exposed fish. Thus, our results reveal a role for the environment in controlling gene expression in the developing peripheral nervous system.

  15. Relation of the volume of the olfactory bulb to psychophysical measures of olfactory function.

    PubMed

    Mazal, Patricia Portillo; Haehner, Antje; Hummel, Thomas

    2016-01-01

    The aim of this review is to investigate whether changes in olfactory bulb volume relate to changes in specific olfactory functions. We studied currently available peer-reviewed articles on the volume of the human olfactory bulb that also included a psychophysical measure of olfactory function. In the present review, we observed a very clear and consistent correlation between general olfactory function and olfactory bulb (OB) volume. We were not able to find a clear relationship between a specific smell component and OB volume, even when analyzing pathologic conditions separately. In some cases, changes were observed for different subtests, but these changes did not significantly correlate with OB volume or had only a borderline correlation. In other cases, we found contradictory data. Several factors may contribute to the difficulties in finding correlations with the different components of smell: (1) the OB volume may be influenced by information from olfactory receptor neurons (bottom-up effect), information from central nervous system (top-down effect) and by direct damage; (2) most pathologic conditions affect more than one area of the olfactory pathway; (3) small sample sizes of hyposmic subjects were used. We believe that it is necessary to do further studies with larger numbers of subjects to answer the currently investigated question.

  16. Olfactory Fear Conditioning Induces Field Potential Potentiation in Rat Olfactory Cortex and Amygdala

    ERIC Educational Resources Information Center

    Messaoudi, Belkacem; Granjon, Lionel; Mouly, Anne-Marie; Sevelinges, Yannick; Gervais, Remi

    2004-01-01

    The widely used Pavlovian fear-conditioning paradigms used for studying the neurobiology of learning and memory have mainly used auditory cues as conditioned stimuli (CS). The present work assessed the neural network involved in olfactory fear conditioning, using olfactory bulb stimulation-induced field potential signal (EFP) as a marker of…

  17. Responses of olfactory bulb neurones to odour stimulation of small nasal areas in the salamander

    PubMed Central

    Kauer, John S.; Moulton, David G.

    1974-01-01

    1. Previous experiments have suggested that one way odours may be discriminated is by different spatial patterns of response at both the olfactory bulb and receptor level. The present experiments were designed to test to what extent the position of an odour on the receptor mucosa can influence the activity of olfactory bulb neurones. 2. To deliver odours to small areas on the nasal receptor sheet a new method for local application of odour was developed. The flow rate, concentration, and time course of the odour were controlled using the olfactometer described in the preceding paper. 3. In thirty olfactory bulb units in the salamander it was found that if the response of a unit to odour delivered to the entire exposed receptor epithelium were suppression (type S), then the unit tended to be suppressed when odour was delivered to a number of localized epithelial regions. If the response were excitation (type E) to stimulation of the entire epithelium, then stimulation to only one or two localized regions would elicit the maximum response. 4. Different epithelial regions had the ability to cause excitation in the same bulbar unit depending on the odour being used. Two odours, camphor and amyl acetate, elicited maximum excitation when they were presented to different mucosal areas. The areas at which presentation of these odours gave excitation were surprisingly consistent from unit to unit and animal to animal. 5. The data presented here suggest the presence of restricted excitatory receptive fields for some olfactory bulb neurones for a particular odour. 6. The presence of spatial response patterns using odour delivery to small nasal receptor regions and thus the presence of receptive fields is discussed with reference to bulbar neuronal circuitry. ImagesText-fig. 2Plate 1A, B PMID:4548721

  18. [Regeneration of the gastric and intestinal mucosas].

    PubMed

    Castrup, H J

    1979-05-10

    The physiological cell renewal of gastrointestinal mucosa is regulated in man as in animal through certain mechanisms with measurable kinetic data. Pathologic mucosal alterations, metabolic disorders, pharmacological agents etc. clearly affect the regenerative processes of the gastrointestinal epithelium. Gastrin and pentagastrin stimulate the growth not only of the parietal cells, but also of the superficial epithelium of the gastric mucosa, whereas secretin does not change cell growth. Glucocorticoid steroids inhibit epithelial regeneration in all parts of the gastrointestinal tract. 5-fluorouracil has a similar effect but acts at a different site in the regeneration cycle. Epithelial cell proliferation of the gastric and intestinal mucosa is likewise inhibited in an uremic condition. In inflammatory changes in the human gastric mucosa epithelial cell hyperproliferation relative to the severity of gastritis and anomalous proliferation within regions of dysplasia can be demonstrated. Foveolary hyperplasia in Ménétrier's disease occurs on the basis of excessive hyperproliferation with displacement of regeneration zones.

  19. Normal keratinized mucosa transplants in nude mice.

    PubMed

    Holmstrup, P; Dabelsteen, E; Reibel, J; Harder, F

    1981-01-01

    Two types of normal keratinized mucosa were transplanted to subcutaneous sites of nude mice of two different strains. 24 intact specimens of clinically normal human palatal mucosa were transplanted to nude mice of the strain nu/nu NC. The transplants were recovered after 42 d with a recovery rate of 96%. Moreover, 22 intact specimens of normal rat forestomach mucosa were transplanted to nude mice of the strain nu/nu BALB/c/BOM. These transplants were recovered after 21 d with a recovery rate of 63%. The histologic features of the transplants were essentially the same as those of the original tissues. However, epithelial outgrowths from the transplants differed with respect to the pattern of keratinization. The outgrowths of human palatal mucosa transplants were essentially unkeratinized, while the outgrowths of the rat forestomach transplants showed continued keratinization.

  20. Autofluorescence spectroscopy of oral mucosa

    NASA Astrophysics Data System (ADS)

    Majumdar, S. K.; Uppal, A.; Gupta, P. K.

    1998-06-01

    We report the results of an in-vitro study on autofluorescence from pathologically characterized normal and malignant squamous tissues from the oral cavity. The study involved biopsy samples from 47 patients with oral cancer of which 11 patients had cancer of tongue, 17 of buccal mucosa and 19 of alveolus. The results of excitation and emission spectroscopy at several wavelengths (280 nm less than or equal to (lambda) exless than or equal to 460 nm; 340 nm less than or equal to (lambda) em less than or equal to 520 nm) showed that at (lambda) ex equals 337 nm and 400 nm the mean value for the spectrally integrated fluorescence intensity [(Sigma) (lambda ) IF((lambda) )] from the normal tissue sites was about a factor of 2 larger than that from the malignant tissue sites. At other excitation wavelengths the difference in (Sigma) (lambda ) IF((lambda) ) was not statistically significant. Similarly, for (lambda) em equals 390 nm and 460 nm, the intensity of the 340 nm band of the excitation spectra from normal tissues was observed to be a factor of 2 larger than that from malignant tissues. Analysis of these results suggests that NADH concentration is higher in normal oral tissues compared to the malignant. This contrasts with our earlier observation of an reduced NADH concentration in normal sites of breast tissues vis a vis malignant sites. For the 337 nm excited emission spectra a 10-variable MVLR score (using (Sigma) (lambda ) IF((lambda) ) and normalized intensities at nine wavelengths as input parameters) provided a sensitivity and specificity of 95.7% and 93.1% over the sample size investigated.

  1. Rodent Empathy and Affective Neuroscience

    PubMed Central

    Panksepp, Jules B.; Lahvis, Garet P.

    2011-01-01

    In the past few years, several experimental studies have suggested that empathy occurs in the social lives of rodents. This indicates that rodent behavioral models can be developed in an attempt to elucidate the mechanistic substrates of empathy at levels that have heretofore been unavailable. For example, the finding that mice from certain inbred strains express behavioral and physiological responses to conspecific distress, while others do not, underscores that the genetic underpinnings of empathy are specifiable and that in the future they could be harnessed to develop new therapies for human psychosocial impairments. However, the advent of rodent models of empathy is met at the outset with a number of theoretical and semantic problems that are similar to those previously confronted by studies of empathy in humans. The distinct underlying components of empathy must be differentiated from one another and from lay usage of the term. The primary goal of this paper is to review a set of seminal studies that are directly relevant to developing a concept of empathy in rodents. We first consider some of the psychological phenomena that have been associated with empathy, and within this context, we consider the component processes, or endophenotypes of rodent empathy. We then review a series of recent experimental studies that demonstrate the capability of rodents to detect and respond to the affective state of their social partners. We focus primarily on experiments that examine how rodents share affective experiences of fear, but we also highlight how similar types of experimental paradigms can be utilized to evaluate the possibility that rodents share positive affective experiences. Taken together, these studies were inspired by Jaak Panksepp’s theory that all mammals are capable of felt affective experiences. PMID:21672550

  2. Rodent empathy and affective neuroscience.

    PubMed

    Panksepp, Jules B; Lahvis, Garet P

    2011-10-01

    In the past few years, several experimental studies have suggested that empathy occurs in the social lives of rodents. Thus, rodent behavioral models can now be developed to elucidate the mechanistic substrates of empathy at levels that have heretofore been unavailable. For example, the finding that mice from certain inbred strains express behavioral and physiological responses to conspecific distress, while others do not, underscores that the genetic underpinnings of empathy are specifiable and that they could be harnessed to develop new therapies for human psychosocial impairments. However, the advent of rodent models of empathy is met at the outset with a number of theoretical and semantic problems that are similar to those previously confronted by studies of empathy in humans. The distinct underlying components of empathy must be differentiated from one another and from lay usage of the term. The primary goal of this paper is to review a set of seminal studies that are directly relevant to developing a concept of empathy in rodents. We first consider some of the psychological phenomena that have been associated with empathy, and within this context, we consider the component processes, or endophenotypes of rodent empathy. We then review a series of recent experimental studies that demonstrate the capability of rodents to detect and respond to the affective state of their social partners. We focus primarily on experiments that examine how rodents share affective experiences of fear, but we also highlight how similar types of experimental paradigms can be utilized to evaluate the possibility that rodents share positive affective experiences. Taken together, these studies were inspired by Jaak Panksepp's theory that all mammals are capable of felt affective experiences.

  3. Expression of endothelial adhesion molecules in the alveolar ridge mucosa, gingiva and periimplant mucosa.

    PubMed

    Zitzmann, N U; Berglundh, T; Marinello, C P; Lindhe, J

    2002-06-01

    The purpose of this study was to analyze the expression of adhesion molecules on endothelial cells in the alveolar ridge mucosa, the gingiva and the periimplant mucosa in humans. Twelve partially edentulous subjects were included in the study. In each subject, one soft tissue biopsy was harvested from the edentulous alveolar ridge mucosa, one from a tooth site and one from an implant site. After 3 weeks of undisturbed plaque accumulation, an additional biopsy was obtained from one tooth and one implant site in each subject. The tissue samples were snap frozen and prepared for immunohistochemical analysis. In the alveolar ridge mucosa, smaller proportions of endothelial cells expressing ICAM-1, ELAM-1 and VCAM-1 were observed than in the gingiva. ELAM-1-positive cells occurred in lower numbers than in periimplant mucosa. After 21 days of plaque accumulation, ELAM-1 was increased in tooth sites, but decreased in periimplant mucosa. The results of the present study indicated that the proportions of activated endothelial cells and the extravasation of leukocytes is larger in gingiva and periimplant mucosa than in alveolar ridge mucosa. This might be due to the less permeable keratinized epithelial layer in the edentulous ridge mucosa, which offers proper protection against microbial pathogens. The greater expression of endothelial cell adhesion molecules during experimental gingivitis, compared to periimplant mucositis, may reflect its longer history of repeated antigenic assaults.

  4. Peripheral olfactory deafferentation of the primary olfactory system in rats using ZnSO4 nasal spray with special reference to maternal behavior.

    PubMed

    Mayer, A D; Rosenblatt, J S

    1993-03-01

    A modified method of applying ZnSO4 to the olfactory mucosa is described. Treated rats experienced severe nasal congestion that cleared within 24 h; more persistent morbidity did not occur. Nonpregnant females observed with male intruders 24 h following ZnSO4 showed no alterations in behavior other than a reduction in anogenital sniffing, indicating that they were not hypoactive or irritable. In other experiments, lactating females were observed in a hole-board apparatus; 2 days posttreatment anosmia was confirmed in 80% of bilaterally ZnSO4-treated females by the absence of preference for pup odors. After bilateral but not unilateral ZnSO4 treatment, initially activity scores and nose pokes were equivalent in all groups, but later they both were lower than in controls, probably due to a more rapid habituation to the novel apparatus. We conclude that intranasal ZnSO4 by small-volume spray is a useful experimental tool.

  5. Microanatomy and surgical relevance of the olfactory cistern.

    PubMed

    Wang, Shou-Sen; Zheng, He-Ping; Zhang, Xiang; Zhang, Fa-Hui; Jing, Jun-Jie; Wang, Ru-Mi

    2008-01-01

    All surgical approaches to the anterior skull base involve the olfactory cistern and have the risk of damaging the olfactory nerve. The purpose of this study was to describe the microanatomical features of the olfactory cistern and discuss its surgical relevance. In this study, the olfactory cisterns of 15 formalin-fixed adult cadaveric heads were dissected using a surgical microscope. The results showed that the olfactory cistern was situated in the superficial part of the olfactory sulcus, which separated the gyrus retus from the orbital gyrus. In coronal section, the cistern was triangular in shape; its anterior part enveloped the olfactory bulbs and was high and broad; its posterior part was medial-superior to internal carotid artery and was also much broader. There were one or several openings in the inferior wall of the posterior part in 53.4% of the cisterns. The olfactory cistern communicated with the surrounding subarachnoind cisterns through these openings. The middle part of the olfactory cistern gradually narrowed down posteriorly. Most cisterns were spacious with a few fibrous trabeculas and bands between the olfactory nerves and cistern walls. However 23% of the cisterns were narrow with the cistern walls tightly encasing the olfactory nerve. There were two or three of arterial loops in each olfactory sulcus, from which long, fine olfactory arteries originated. The olfactory arteries coursed along the olfactory nerve and gave off many terminal branches to provide the main blood supply to the olfactory nerve in most cisterns, but the blood supply was in segmental style in a few cisterns. Moreover, the veins of the cistern appeared to be more segmental than the olfactory arteries in most cisterns. These results suggested that most olfactory cisterns are spacious with relatively independent blood supply, and it is reasonable to separate the olfactory tract with its independent blood supply from the frontal lobe by 1-2 cm in the subfrontal approach, the

  6. The ethics of rodent control.

    PubMed

    Meerburg, Bastiaan G; Brom, Frans W A; Kijlstra, Aize

    2008-12-01

    Because western societies generally see animals as objects of moral concern, demands have been made on the way they are treated, e.g. during animal experimentation. In the case of rodent pests, however, inhumane control methods are often applied. This inconsistency in the human-animal relationship requires clarification. This paper analyses the criteria that must be met when judging the use of animals during experiments, and investigates whether these can be applied in rodent control. This is important, because, until now, animal welfare has been less of an issue in pest control: effectiveness, hygiene and cost efficiency have been leading principles. Two options are available to solve the inconsistency: the first is to abandon the criteria used in animal experimentation; the second is to apply these criteria to both animal experimentation and rodent control. This latter option implies that rodent control methods should not lead to intense pain or discomfort, and any discomfort should have a short duration and should allow escaped rodents to lead a natural life. Adherence to this option will, however, require a shift in the design of rodent control methods: effectiveness will no longer be the leading principle. It will have to share its position with animal welfare and humaneness.

  7. Intranasal immunization with Naegleria fowleri lysates and Cry1Ac induces metaplasia in the olfactory epithelium and increases IgA secretion.

    PubMed

    Jarillo-Luna, A; Moreno-Fierros, L; Campos-Rodríguez, R; Rodríguez-Monroy, M A; Lara-Padilla, E; Rojas-Hernández, S

    2008-01-01

    According to previous reports, intranasal administration of the Cry1Ac protein alone or with amoebic lysates increases protection against Naegleria fowleri meningoencephalitis in mice, apparently by eliciting IgA responses in the nasal mucosa. In the current study, we performed an immunohistochemical analysis of IgA in the nasal mucosa of mice immunized intranasally with Cry1Ac, and amoebic lysates or a combination of both. The animals were sacrificed 24 h after the last immunization or after an intranasal lethal challenge with N. fowleri. Our results indicate that all of the intranasal immunizations provoked an increase in areas with metaplasia in the olfactory epithelium, allowing for secretion of IgA. As a result, IgA antibodies were found interacting with trophozoites in the nasal lumen, and there was a marked increase of IgA in the metaplasic epithelium. On the other hand in nonimmunized mice trophozoites were observed invading the nasal mucosa, which was not the case for immunized mice. Our results suggest that intranasal immunization provokes cellular changes in the olfactory epithelium, leading to greater protection against N. fowleri that is probably caused by an increased secretion of IgA. The increased IgA response induced in the nasal mucosa by immunization probably impedes both amoebic adhesion and subsequent invasion of the parasite to the nasal epithelium.

  8. Inhibition among olfactory receptor neurons

    PubMed Central

    Van der Goes van Naters, Wynand

    2013-01-01

    Often assumed to be epiphenomena of a cell’s activity, extracellular currents and resulting potential changes are increasingly recognized to influence the function of other cells in the vicinity. Experimental evidence shows that even small electric fields can modulate spike timing in neurons. Moreover, when neurons are brought close together experimentally or in pathological conditions, activity in one neuron can excite its neighbors. Inhibitory ephaptic mechanisms, however, may depend on more specialized coupling among cells. Recent studies in the Drosophila olfactory system have shown that excitation of a sensory neuron can inhibit its neighbor, and it was speculated that this interaction was ephaptic. Here we give an overview of ephaptic interactions that effect changes in spike timing, excitation or inhibition in diverse systems with potential relevance to human neuroscience. We examine the mechanism of the inhibitory interaction in the Drosophila system and that of the well-studied ephaptic inhibition of the Mauthner cell in more detail. We note that both current towards and current away from the local extracellular environment of a neuron can inhibit it, but the mechanism depends on the specific architecture of each system. PMID:24167484

  9. Olfactory cues modulate facial attractiveness.

    PubMed

    Demattè, M Luisa; Osterbauer, Robert; Spence, Charles

    2007-07-01

    We report an experiment designed to investigate whether olfactory cues can influence people's judgments of facial attractiveness. Sixteen female participants judged the attractiveness of a series of male faces presented briefly on a computer monitor using a 9-point visual rating scale. While viewing each face, the participants were simultaneously presented with either clean air or else with 1 of 4 odorants (the odor was varied on a trial-by-trial basis) from a custom-built olfactometer. We included 2 pleasant odors (geranium and a male fragrance) and 2 unpleasant odors (rubber and body odor) as confirmed by pilot testing. The results showed that the participants rated the male faces as being significantly less attractive in the presence of an unpleasant odor than when the faces were presented together with a pleasant odor or with clean air (these conditions did not differ significantly). These results demonstrate the cross-modal influence that unpleasant odors can have on people's judgments of facial attractiveness. Interestingly, this pattern of results was unaffected by whether the odors were body relevant (the body odor and the male fragrance) or not (the rubber and geranium odors).

  10. Differential expression of tenascin-C, tenascin-R, tenascin/J1, and tenascin-X in spinal cord scar tissue and in the olfactory system.

    PubMed

    Deckner, M; Lindholm, T; Cullheim, S; Risling, M

    2000-12-01

    The members of the tenascin family are involved in a number of developmental processes, mainly by their ability to regulate cell adhesion. We have here studied the distribution of mRNAs for tenascin-X, -C, and -R and the closely related molecule tenascin/J1 in the olfactory system and spinal cord. The olfactory bulb and nasal mucosa were studied during late embryonic and early postnatal development as well as in the adult. The spinal cord was studied during late embryonic development and after mechanical lesions. In the normal rat, the spinal cord and olfactory bulb displayed similar patterns of tenascin expression. Tenascin-C, tenascin-R, and tenascin/J1 were all expressed in the olfactory bulb and spinal cord during development, while tenascin/J1 was the only extensively expressed tenascin molecule in the adult. In both regions tenascin/J1 was expressed in both nonneuronal and neuronal cells. After a spinal cord lesion, mRNAs for tenascin-C, -X, -R, and/J1 were all upregulated and had their own specific spatial and temporal expression patterns. Thus, even if axonal outgrowth occurs to some extent both in the adult rat primary olfactory system and in spinal cord scar tissue after lesion, the tenascin expression patterns in these two situations are totally different. Copyright 2000 Academic Press.

  11. Olfactory signals and the MHC: a review and a case study in Lemur catta.

    PubMed

    Knapp, Leslie A; Robson, Julie; Waterhouse, John S

    2006-06-01

    The major histocompatibility complex (MHC) is the most polymorphic genetic system known in vertebrates. Decades of research demonstrate that it plays a critical role in immune response and disease resistance. It has also been suggested that MHC genes influence social behavior and reproductive phenomena. Studies in laboratory mice and rats report that kin recognition and mate choice are influenced by olfactory cues determined at least in part by an individual's MHC genes. This issue has stimulated intense but controversial research. However, work in this field has only been carried out in rodents and humans. Thus far, no study has directly investigated the relationship between olfactory cues and MHC genotype in nonhuman primates. Furthermore, other genetic loci, including those linked to the MHC, have not been ruled out as the primary influence on odor profiles. To explore the relationship between individual odor profiles and MHC alleles, we are studying ring-tailed lemurs (Lemur catta). These animals are an ideal model species because they are extremely scent-oriented and their behaviors suggest that olfactory signals form an important part of their intra- and intergroup communication systems. Individual odor profiles from tail and scent gland samples were generated for six males using gas chromatography mass spectrometry (GC-MS). MHC genotypes were identified using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE). The GC-MS analyses demonstrated a difference between profiles obtained from tail and scent gland samples. Although our sample size is relatively small and statistical significance could not be obtained, our analyses suggest a relationship between MHC and concentrations of volatile compounds. While these results are preliminary, they support the need for further studies of the MHC and olfactory signals in lemurs and other primates. Copyright 2006 Wiley-Liss, Inc.

  12. Zincergic innervation from the anterior olfactory nucleus to the olfactory bulb displays plastic responses after mitral cell loss.

    PubMed

    Airado, Carmen; Gómez, Carmela; Recio, Javier S; Baltanás, Fernando C; Weruaga, Eduardo; Alonso, José R

    2008-12-01

    Zinc ions are selectively accumulated in certain neurons (zinc-enriched neurons). The mouse olfactory bulb is richly innervated by zinc-enriched terminals. Here, the plasticity of the zincergic system was studied in the olfactory bulb of the Purkinje Cell Degeneration mutant mouse, an animal with specific postnatal neurodegeneration of the main projection neurons of the olfactory bulb. The analysis focused particularly on the anterior olfactory nucleus since most centrifugal afferents coming to the olfactory bulb arise from this structure. Zinc-enriched terminals in the olfactory bulb and zinc-enriched somata in the anterior olfactory nucleus were visualized after selenite injections. Immunohistochemistry against the vesicular zinc transporter was also carried out to confirm the distribution pattern of zinc-enriched terminals in the olfactory bulb. The mutant mice showed a clear reorganization of zincergic centrifugal projections from the anterior olfactory nucleus to the olfactory bulb. First, all zincergic contralateral neurons projecting to the olfactory bulb were absent in the mutant mice. Second, a significant increase in the number of stained somata was detected in the ipsilateral anterior olfactory nucleus. Since no noticeable changes were observed in the zinc-enriched terminals in the olfactory bulb, it is conceivable that mitral cell loss could induce a reorganization of zinc-enriched projections coming from the anterior olfactory nucleus, probably directed at balancing the global zincergic centrifugal modulation. These results show that zincergic anterior olfactory nucleus cells projecting to the olfactory bulb undergo plastic changes to adapt to the loss of mitral cells in the olfactory bulb of Purkinje Cell Degeneration mutant mice.

  13. An Olfactory Indicator for Acid-Base Titrations.

    ERIC Educational Resources Information Center

    Flair, Mark N.; Setzer, William N.

    1990-01-01

    The use of an olfactory acid-base indicator in titrations for visually impaired students is discussed. Potential olfactory indicators include eugenol, thymol, vanillin, and thiophenol. Titrations performed with each indicator with eugenol proved to be successful. (KR)

  14. Physical Variables in the Olfactory Stimulation Process

    PubMed Central

    Tucker, Don

    1963-01-01

    Electrical recording from small twigs of nerve in a tortoise showed that olfactory, vomeronasal, and trigeminal receptors in the nose are responsive to various odorants. No one kind of receptor was most sensitive to all odorants. For controlled stimulation, odorant was caused to appear in a stream of gas already flowing through the nose. Of the parameters definable at the naris, temperature, relative humidity, and nature of inert gas had little effect on olfactory responses to amyl acetate, whereas odorant species, odorant concentration, and volume flow rate effectively determined the responses of all nasal chemoreceptors. An intrinsic variable of accessibility to the receptors, particularly olfactory, was demonstrated. Flow dependence of chemoreceptor responses is thought to reflect the necessity for delivery of odorant molecules to receptor sites. Since the olfactory receptors are relatively exposed, plateauing of the response with flow rate for slightly soluble odorants suggests an approach to concentration equilibrium in the overlying mucus with that in the air entering the naris. Accordingly, data for responses to amyl acetate were fitted with Beidler's (1954) taste equation for two kinds of sites being active. The requirement for finite aqueous solubility, if true, suggests substitution of aqueous solutions for gaseous solutions. A suitable medium was found and results conformed to expectations. Olfactory receptors were insensitive to variation of ionic strength, pH, and osmotic pressure. PMID:13994681

  15. Olfactory coding in the honeybee lateral horn.

    PubMed

    Roussel, Edith; Carcaud, Julie; Combe, Maud; Giurfa, Martin; Sandoz, Jean-Christophe

    2014-03-03

    Olfactory systems dynamically encode odor information in the nervous system. Insects constitute a well-established model for the study of the neural processes underlying olfactory perception. In insects, odors are detected by sensory neurons located in the antennae, whose axons project to a primary processing center, the antennal lobe. There, the olfactory message is reshaped and further conveyed to higher-order centers, the mushroom bodies and the lateral horn. Previous work has intensively analyzed the principles of olfactory processing in the antennal lobe and in the mushroom bodies. However, how the lateral horn participates in olfactory coding remains comparatively more enigmatic. We studied odor representation at the input to the lateral horn of the honeybee, a social insect that relies on both floral odors for foraging and pheromones for social communication. Using in vivo calcium imaging, we show consistent neural activity in the honeybee lateral horn upon stimulation with both floral volatiles and social pheromones. Recordings reveal odor-specific maps in this brain region as stimulations with the same odorant elicit more similar spatial activity patterns than stimulations with different odorants. Odor-similarity relationships are mostly conserved between antennal lobe and lateral horn, so that odor maps recorded in the lateral horn allow predicting bees' behavioral responses to floral odorants. In addition, a clear segregation of odorants based on pheromone type is found in both structures. The lateral horn thus contains an odor-specific map with distinct representations for the different bee pheromones, a prerequisite for eliciting specific behaviors.

  16. Perceptual and Neural Olfactory Similarity in Honeybees

    PubMed Central

    Sandoz, Jean-Christophe

    2005-01-01

    The question of whether or not neural activity patterns recorded in the olfactory centres of the brain correspond to olfactory perceptual measures remains unanswered. To address this question, we studied olfaction in honeybees Apis mellifera using the olfactory conditioning of the proboscis extension response. We conditioned bees to odours and tested generalisation responses to different odours. Sixteen odours were used, which varied both in their functional group (primary and secondary alcohols, aldehydes and ketones) and in their carbon-chain length (from six to nine carbons).The results obtained by presentation of a total of 16 × 16 odour pairs show that (i) all odorants presented could be learned, although acquisition was lower for short-chain ketones; (ii) generalisation varied depending both on the functional group and the carbon-chain length of odours trained; higher generalisation was found between long-chain than between short-chain molecules and between groups such as primary and secondary alcohols; (iii) for some odour pairs, cross-generalisation between odorants was asymmetric; (iv) a putative olfactory space could be defined for the honeybee with functional group and carbon-chain length as inner dimensions; (v) perceptual distances in such a space correlate well with physiological distances determined from optophysiological recordings of antennal lobe activity. We conclude that functional group and carbon-chain length are inner dimensions of the honeybee olfactory space and that neural activity in the antennal lobe reflects the perceptual quality of odours. PMID:15736975

  17. Olfactory phenotypic expression unveils human aging

    PubMed Central

    Mazzatenta, Andrea; Cellerino, Alessandro; Origlia, Nicola; Barloscio, Davide; Sartucci, Ferdinando; Giulio, Camillo Di; Domenici, Luciano

    2016-01-01

    The mechanism of the natural aging of olfaction and its declinein the absence of any overt disease conditions remains unclear. Here, we investigated this mechanism through measurement of one of the parameters of olfactory function, the absolute threshold, in a healthy population from childhood to old age. The absolute olfactory threshold data were collected from an Italian observational study with 622 participants aged 5-105 years. A subjective testing procedure of constant stimuli was used, which was also compared to the ‘staircase’ method, with the calculation of the reliability. The n-butanol stimulus was used as an ascending series of nine molar concentrations that were monitored using an electronic nose. The data were analyzed using nonparametric statistics because of the multimodal distribution. We show that the age-related variations in the absolute olfactory threshold are not continuous; instead, there are multiple olfactory phenotypes. Three distinct age-related phenotypes were defined, termed as ‘juvenile’, ‘mature’ and ‘elder’. The frequency of these three phenotypes depends on age. Our data suggest that the sense of smell does not decrease linearly with aging. Our findings provide the basis for further understanding of olfactory loss as an anticipatory sign of aging and neurodegenerative processes. PMID:27027240

  18. Olfactory and Gustatory Function After Bariatric Surgery.

    PubMed

    Holinski, Franca; Menenakos, Charalambos; Haber, Georg; Olze, Heidi; Ordemann, Juergen

    2015-12-01

    Neither hormone levels nor malabsorption alone fully explains the distinct weight loss after bariatric surgery in morbidly obese patients. Postoperatively, patients regularly report a change in the sense of taste and the development of food aversions. Hedonic and sensory components like olfactory and gustatory stimuli significantly affect appetite and flavour. We prospectively analysed the orthonasal olfactory and gustatory function with psychophysical testing in 44 patients undergoing laparoscopic Roux-en-Y gastric bypass (RYGB), sleeve gastrectomy (SG) or adjustable gastric banding (AGB) and in 23 healthy controls. About 22.7 % of morbidly obese patients were hyposmic, showing significantly lower threshold-discrimination-identification (TDI) scores (p = 0.009) with decreased discrimination and identification ability. In addition, 22.7 % of patients were tested to be limited in gustatory function, with significantly lower taste strip test (TST) scores (p = 0.003). Six months after surgery, olfactory and gustatory function was not different when compared to healthy controls. Due to obesity, patients frequently show impaired olfactory and gustatory function. Six months after laparoscopic bariatric surgery, both chemosensory functions improve. The TDI test is an appropriate tool to measure olfactory function in obese patients.

  19. Receptor guanylyl cyclases in mammalian olfactory function

    PubMed Central

    Zufall, Frank; Munger, Steven D.

    2009-01-01

    The contributions of guanylyl cyclases to sensory signaling in the olfactory system have been unclear. Recently, studies of a specialized subpopulation of olfactory sensory neurons (OSNs) located in the main olfactory epithelium have provided important insights into the neuronal function of one receptor guanylyl cyclase, GC-D. Mice expressing reporters such as β-galactosidase and green fluorescent protein in OSNs that normally express GC-D have allowed investigators to identify these neurons in situ, facilitating anatomical and physiological studies of this sparse neuronal population. The specific perturbation of GC-D function in vivo has helped to resolve the role of this guanylyl cyclase in the transduction of olfactory stimuli. Similar approaches could be useful for the study of the orphan receptor GC-G, which is expressed in another distinct subpopulation of sensory neurons located in the Grueneberg ganglion. In this review, we discuss key findings that have reinvigorated the study of guanylyl cyclase function in the olfactory system. PMID:19941039

  20. Chemical olfactory signals and parenthood in mammals.

    PubMed

    Corona, Rebeca; Lévy, Frédéric

    2015-02-01

    This article is part of a Special Issue "Chemosignals and Reproduction". In mammalian species, odor cues emitted by the newborn are essential to establish maternal behavior at parturition and coordinate early mother-infant interactions. Offspring odors become potent attractive stimuli at parturition promoting the contact with the young to ensure that normal maternal care develops. In some species odors provide a basis for individual recognition of the offspring and highly specialized neural mechanisms for learning the infant signals have evolved. Both the main and the accessory olfactory systems are involved in the onset of maternal care, but only the former contributes to individual odor discrimination of the young. Electrophysiological and neurochemical changes occur in the main olfactory bulb leading to a coding of the olfactory signature of the familiar young. Olfactory neurogenesis could also contribute to motherhood and associated learning. Parturition and interactions with the young influence neurogenesis and some evidence indicates a functional link between olfactory neurogenesis and maternal behavior. Although a simple compound has been found which regulates anogenital licking in the rat, studies identifying the chemical nature of these odors are lacking. Neonatal body odors seem to be particularly salient to human mothers who are able to identify their infant's odors. Recent studies have revealed some neural processing of these cues confirming the importance of mother-young chemical communication in our own species.

  1. Olfactory region schwannoma: Excision with preservation of olfaction.

    PubMed

    Salunke, Pravin; Patra, Devi Prasad; Futane, Sameer; Nada, Ritambhara

    2014-07-01

    Olfactory region schwannomas are rare, but when they occur, they commonly arise from the meningeal branches of the trigeminal nerve and may present without involvement of the olfaction. A 24 year old lady presented with hemifacial paraesthesias. Radiology revealed a large olfactory region enhancing lesion. She was operated through a transbasal with olfactory preserving approach. This manuscript highlights the importance of olfactory preservation in such lesions.

  2. Changes in the neural representation of odorants after olfactory deprivation in the adult mouse olfactory bulb.

    PubMed

    Kass, Marley D; Pottackal, Joseph; Turkel, Daniel J; McGann, John P

    2013-01-01

    Olfactory sensory deprivation during development has been shown to induce significant alterations in the neurophysiology of olfactory receptor neurons (ORNs), the primary sensory inputs to the brain's olfactory bulb. Deprivation has also been shown to alter the neurochemistry of the adult olfactory system, but the physiological consequences of these changes are poorly understood. Here we used in vivo synaptopHluorin (spH) imaging to visualize odorant-evoked neurotransmitter release from ORNs in adult transgenic mice that underwent 4 weeks of unilateral olfactory deprivation. Deprivation reduced odorant-evoked spH signals compared with sham-occluded mice. Unexpectedly, this reduction was equivalent between ORNs on the open and plugged sides. Changes in odorant selectivity of glomerular subpopulations of ORNs were also observed, but only in ORNs on the open side of deprived mice. These results suggest that naris occlusion in adult mice produces substantial changes in primary olfactory processing which may reflect not only the decrease in olfactory stimulation on the occluded side but also the alteration of response properties on the intact side. We also observed a modest effect of true sham occlusions that included noseplug insertion and removal, suggesting that conventional noseplug techniques may have physiological effects independent of deprivation per se and thus require more careful controls than has been previously appreciated.

  3. The projection from the olfactory epithelium to the olfactory bulb in the salamander, Ambystoma tigrinum.

    PubMed

    Mackay-Sim, A; Nathan, M H

    1984-01-01

    Odor quality may be represented as a "topographic" code of responses of receptor cells throughout the olfactory epithelium, with this code conveyed to the central nervous system by a topographic projection from the olfactory epithelium to the olfactory bulb. There is good evidence for topographic differences in odor-induced receptor cell activity in the tiger salamander but there is no evidence for a topographic epithelium-to-bulb projection in this species. In the present study 3H-leucine autoradiography was used to trace the projections of olfactory receptor neurons in the tiger salamander. Thirteen animals received small injections of tritiated leucine into different regions of the dorsal or the ventral olfactory epithelium, or into the ventrolateral, "vomeronasal organ". The results show that the anterior-to-posterior axes in the dorsal and ventral epithelia are represented along the ventral-to-dorsal axis in the rostral end of the olfactory bulb. The "vomeronasal organ" projects to the caudal end of the bulb. We conclude that the central projection of the olfactory epithelium in the tiger salamander is topographically organised only along the antero-posterior axis and not the medio-lateral axis. Thus epithelial receptor cell activity along the anteroposterior axis would be represented in the glomerular layer of the bulb by activity along its ventro-dorsal axis.

  4. Application of artificial neural networks on mosquito Olfactory Receptor Neurons for an olfactory biosensor.

    PubMed

    Bachtiar, Luqman R; Unsworth, Charles P; Newcomb, Richard D

    2013-01-01

    Various odorants such as carbon dioxide (CO2) and 1-octen-3-ol, underlie the host-seeking behaviors of the major malaria vector Anopheles Gambiae. Highlighted by the olfactory processing strength of the mosquito, such a powerful olfactory sense could serve as the sensors of an artificial olfactory biosensor. In this work, we use the firing rates of the A. Gambiae mosquito Olfactory Receptor Neurons (ORNs), to train an Artificial Neural Network (ANN) for the classification of volatile odorants into their known chemical classes and assess their suitability for an olfactory biosensor. With the implementation of bootstrapping, a more representative result was obtained wherein we demonstrate the training of a hybrid ANN consisting of an array of Multi-Layer Perceptrons (MLPs) with optimal number of hidden neurons. The ANN system was able to correctly class 90.1% of the previously unseen odorants, thus demonstrating very strong evidence for the use of A. Gambiae olfactory receptors coupled with an ANN as an olfactory biosensor.

  5. [Olfactory dysfunction: correlation of olfactory bulb volume on MRI and objective olfactometry].

    PubMed

    Bauknecht, H-C; Jach, C; Fleiner, F; Sedlmaier, B; Göktas, O

    2010-02-01

    To define the role of olfactory bulb volume measurement by magnetic resonance imaging (MRI) for detecting olfactory dysfunction in comparison with objective olfactometry. Thirty patients with suspected olfactory dysfunction (16 women, 14 men; mean age 52 years, range 20 - 79 years) were examined by MRI and objective olfactometry between January 2006 and January 2009. Olfactory bulb volumes were measured by two neuroradiologists using 3D MR data sets. The olfactory function was categorized as normosmia, hyposmia, and anosmia on the basis of objective olfactometry. Pearson correlation coefficients were calculated for objective olfactometry and olfactory bulb volumes on MRI. ROC analysis was performed to determine whether MRI bulb volumes can serve to predict anosmia or hyposmia. The bulb volumes measured by MRI ranged from 0 to 135.9 mm (3). Based on olfactometry, anosmia was present in 11 patients (total bulb volume of 15.7 +/- 23.3 mm (3)), hyposmia in 9 patients (total bulb volume of 50.0 +/- 25.5 mm (3)), and normosmia in 10 patients (total bulb volume of 110.7 +/- 21.5 mm (3)). There was good correlation (r > 0.9) between objective olfactometry and olfactory bulb volume on MRI. ROC analysis yielded a cut-off value of 32 mm (3) for anosmia, which had a sensitivity of 0.91 and specificity of 0.947. The cut-off value for olfactory dysfunction was 80.7 mm (3) (sensitivity 0.95; specificity of 0.9). The olfactory bulb volume determined by MRI is a suitable parameter for diagnosing complete or partial loss of the sense of smell.

  6. Does post-infectious olfactory loss affect mood more severely than chronic sinusitis with olfactory loss?

    PubMed

    Jung, Yong G; Lee, Jun-Seok; Park, Gi C

    2014-11-01

    Olfactory deficits that develop after viral upper respiratory infection (URI) may have different effects on patient depression index compared to chronic sinusitis with olfactory loss. However, there have been no controlled trials to evaluate the different effects of chronic sinusitis and URI on depression index. Prospective study of 25 subjects in two groups. This study enrolled 25 participants who were diagnosed with post-URI olfactory loss as the study group and 25 patients with chronic sinusitis and olfactory loss as a control group. Control group participants were matched for age, sex, and degree of olfactory loss (threshold, discrimination, and identification [TDI]). We compared the Beck Depression Inventory (BDI) scores of each group and analyzed the correlation between TDI and BDI. The mean BDI score of the post-URI group was significantly higher than that of the control group (14.52 ± 6.59 vs. 9.32 ± 5.23; P=.002). Age, sex, and TDI score did not affect BDI score in the post-URI olfactory loss group. However, BDI score in the sinusitis group was inversely correlated with TDI score (R=-0.423; P=.035), and the BDI score of female subjects (11.00 ± 5.13) was significantly higher than that of male subjects (5.00 ± 2.16; P = .047). Post-URI olfactory loss affected patient mood more severely than chronic sinusitis with a similar degree of olfactory loss. This influence was not affected by sex, age, or TDI score in the post-URI olfactory loss group. 3b. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  7. Neural Correlates of Olfactory Learning: Critical Role of Centrifugal Neuromodulation

    ERIC Educational Resources Information Center

    Fletcher, Max L.; Chen, Wei R.

    2010-01-01

    The mammalian olfactory system is well established for its remarkable capability of undergoing experience-dependent plasticity. Although this process involves changes at multiple stages throughout the central olfactory pathway, even the early stages of processing, such as the olfactory bulb and piriform cortex, can display a high degree of…

  8. Individual olfactory perception reveals meaningful nonolfactory genetic information

    PubMed Central

    Secundo, Lavi; Snitz, Kobi; Weissler, Kineret; Pinchover, Liron; Shoenfeld, Yehuda; Loewenthal, Ron; Agmon-Levin, Nancy; Frumin, Idan; Bar-Zvi, Dana; Shushan, Sagit; Sobel, Noam

    2015-01-01

    Each person expresses a potentially unique subset of ∼400 different olfactory receptor subtypes. Given that the receptors we express partially determine the odors we smell, it follows that each person may have a unique nose; to capture this, we devised a sensitive test of olfactory perception we termed the “olfactory fingerprint.” Olfactory fingerprints relied on matrices of perceived odorant similarity derived from descriptors applied to the odorants. We initially fingerprinted 89 individuals using 28 odors and 54 descriptors. We found that each person had a unique olfactory fingerprint (P < 10−10), which was odor specific but descriptor independent. We could identify individuals from this pool using randomly selected sets of 7 odors and 11 descriptors alone. Extrapolating from this data, we determined that using 34 odors and 35 descriptors we could individually identify each of the 7 billion people on earth. Olfactory perception, however, fluctuates over time, calling into question our proposed perceptual readout of presumably stable genetic makeup. To test whether fingerprints remain informative despite this temporal fluctuation, building on the linkage between olfactory receptors and HLA, we hypothesized that olfactory perception may relate to HLA. We obtained olfactory fingerprints and HLA typing for 130 individuals, and found that olfactory fingerprint matching using only four odorants was significantly related to HLA matching (P < 10−4), such that olfactory fingerprints can save 32% of HLA tests in a population screen (P < 10−6). In conclusion, a precise measure of olfactory perception reveals meaningful nonolfactory genetic information. PMID:26100865

  9. Neural Correlates of Olfactory Learning: Critical Role of Centrifugal Neuromodulation

    ERIC Educational Resources Information Center

    Fletcher, Max L.; Chen, Wei R.

    2010-01-01

    The mammalian olfactory system is well established for its remarkable capability of undergoing experience-dependent plasticity. Although this process involves changes at multiple stages throughout the central olfactory pathway, even the early stages of processing, such as the olfactory bulb and piriform cortex, can display a high degree of…

  10. Individual olfactory perception reveals meaningful nonolfactory genetic information.

    PubMed

    Secundo, Lavi; Snitz, Kobi; Weissler, Kineret; Pinchover, Liron; Shoenfeld, Yehuda; Loewenthal, Ron; Agmon-Levin, Nancy; Frumin, Idan; Bar-Zvi, Dana; Shushan, Sagit; Sobel, Noam

    2015-07-14

    Each person expresses a potentially unique subset of ∼ 400 different olfactory receptor subtypes. Given that the receptors we express partially determine the odors we smell, it follows that each person may have a unique nose; to capture this, we devised a sensitive test of olfactory perception we termed the "olfactory fingerprint." Olfactory fingerprints relied on matrices of perceived odorant similarity derived from descriptors applied to the odorants. We initially fingerprinted 89 individuals using 28 odors and 54 descriptors. We found that each person had a unique olfactory fingerprint (P < 10(-10)), which was odor specific but descriptor independent. We could identify individuals from this pool using randomly selected sets of 7 odors and 11 descriptors alone. Extrapolating from this data, we determined that using 34 odors and 35 descriptors we could individually identify each of the 7 billion people on earth. Olfactory perception, however, fluctuates over time, calling into question our proposed perceptual readout of presumably stable genetic makeup. To test whether fingerprints remain informative despite this temporal fluctuation, building on the linkage between olfactory receptors and HLA, we hypothesized that olfactory perception may relate to HLA. We obtained olfactory fingerprints and HLA typing for 130 individuals, and found that olfactory fingerprint matching using only four odorants was significantly related to HLA matching (P < 10(-4)), such that olfactory fingerprints can save 32% of HLA tests in a population screen (P < 10(-6)). In conclusion, a precise measure of olfactory perception reveals meaningful nonolfactory genetic information.

  11. Reading cinnamon activates olfactory brain regions.

    PubMed

    González, Julio; Barros-Loscertales, Alfonso; Pulvermüller, Friedemann; Meseguer, Vanessa; Sanjuán, Ana; Belloch, Vicente; Avila, César

    2006-08-15

    Some words immediately and automatically remind us of odours, smells and scents, whereas other language items do not evoke such associations. This study investigated, for the first time, the abstract linking of linguistic and odour information using modern neuroimaging techniques (functional MRI). Subjects passively read odour-related words ('garlic', 'cinnamon', 'jasmine') and neutral language items. The odour-related terms elicited activation in the primary olfactory cortex, which include the piriform cortex and the amygdala. Our results suggest the activation of widely distributed cortical cell assemblies in the processing of olfactory words. These distributed neuron populations extend into language areas but also reach some parts of the olfactory system. These distributed neural systems may be the basis of the processing of language elements, their related conceptual and semantic information and the associated sensory information.

  12. Patch-clamping arthropod olfactory receptor neurons to study mechanisms of olfactory transduction.

    PubMed

    Hatt, H; Ache, B W

    1996-10-21

    The olfactory organ of arthropods such as lobsters and insects consists of an array of hair-like sensilla located on the antenna. Each sensillum contains from two to several hundred primary olfactory receptor neurons. The receptor neurons can be patch-clamped in three different types of preparations: intact cells in situ, cultured cells and outer dendrites. These preparations permit using a wide range of experimental strategies to study mechanisms of olfactory transduction. The ability to integrate data from three complementary preparations is a particular advantage of using arthropod models to understand how odor information is encoded by the primary receptor cell in olfaction.

  13. Laminar disorganisation of mitral cells in the olfactory bulb does not affect topographic targeting of primary olfactory axons.

    PubMed

    Royal, S J; Gambello, M J; Wynshaw-Boris, A; Key, B; Clarris, H J

    2002-04-05

    Primary olfactory neurons expressing the same odorant receptor protein typically project to topographically fixed olfactory bulb sites. While cell adhesion molecules and odorant receptors have been implicated in guidance of primary olfactory axons, the postsynaptic mitral cells may also have a role in final target selection. We have examined the effect of disorganisation of the mitral cell soma layer in mutant mice heterozygous for the beta-subunit of platelet activating factor acetylhydrolase (Lis1(-/+)) on the targeting of primary olfactory axons. Lis1(-/+) mice display abnormal lamination of neurons in the olfactory bulb. Lis1(-/+) mice were crossed with the P2-IRES-tau:LacZ line of transgenic mice that selectively expresses beta-galactosidase in primary olfactory neurons expressing the P2 odorant receptor. LacZ histochemistry revealed blue-stained P2 axons that targeted topographically fixed glomeruli in these mice in a manner similar to that observed in the parent P2-IRES-tau:LacZ line. Thus, despite the aberrant organisation of postsynaptic mitral cells in Lis1(-/+) mice, primary olfactory axons continued to converge and form glomeruli at correct sites in the olfactory bulb. Next we examined whether challenging primary olfactory axons in adult Lis(-/+) mice with regeneration would affect their ability to converge and form glomeruli. Following partial chemical ablation of the olfactory neuroepithelium with dichlobenil, primary olfactory neurons die and are replaced by newly differentiating neurons that project axons to the olfactory bulb where they converge and form glomeruli. Despite the aberrant mitral cell layer in Lis(-/+) mice, primary olfactory axons continued to converge and form glomeruli during regeneration. Together these results demonstrate that the convergence of primary olfactory axons during development and regeneration is not affected by gross perturbations to the lamination of the mitral cell layer. Thus, these results support evidence from

  14. Autoantibodies to gastric mucosa in Helicobacter pylori infection.

    PubMed

    Negrini, R; Savio, A; Appelmelk, B J

    1997-07-01

    Although Helicobacter pylori is recognized as the main cause of chronic gastritis and its associated diseases, very little is known about the pathogenetic mechanisms leading to intestinal metaplasia and atrophic gastritis. We reviewed the data regarding the possible pathogenetic role played by the anti-H. pylori immune responses in the genesis of atrophic gastritis and intestinal metaplasia. Although only type A (corpus-restricted atrophic gastritis), often associated to pernicious anemia, is considered autoimmune in nature, abundant evidence supports the presence of cellular and humoral autoimmune responses also in patients with H. pylori infection. In a mechanism known as antigenic mimicry, highly conserved immunogenic molecules expressed by infectious pathogens may act as a trigger for the induction of humoral and cellular immune responses that cross-react with host cellular antigens. Numerous studies support the view that H. pylori is very effective in inducing antigenic mimicry, and antibodies against H. pylori have been found to cross-react with both antral mucosal cells (the membrane of the secretory canalicular structures of the parietal cells) and gastrin-producing cells. Such autoantibodies were detected both in human infections and in experimental work in rodents. The detection of antibodies that cross-react with H. pylori and various components of the gastric mucosa provides strong support to the view that immune responses against H. pylori not only participate in the pathogenetic mechanisms leading to atrophy in the progressive atrophic gastritis associated with Helicobacter infection but also in the corpus-restricted autoimmune gastritis.

  15. Measuring Olfactory Processes in Mus musculus.

    PubMed

    Schellinck, Heather

    2017-09-04

    This paper briefly reviews the literature that describes olfactory acuity and odor discrimination learning. The results of current studies that examined the role of neurotransmitters in odor discrimination learning are discussed as are those that investigated pattern recognition and models of human disease. The methodology associated with such work is also described and its role in creating disparate results assessed. Recommendations for increasing the reliability and validity of experiments so as to further our understanding of olfactory processes in both healthy mice and those modelling human disease are made throughout the paper. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Olfactory regulation of mosquito–host interactions

    PubMed Central

    Zwiebel, L.J.; Takken, W.

    2011-01-01

    Mosquitoes that act as disease vectors rely upon olfactory cues to direct several important behaviors that are fundamentally involved in establishing their overall vectorial capacity. Of these, the propensity to select humans for blood feeding is arguably the most important of these olfactory driven behaviors in so far as it significantly contributes to the ability of these mosquitoes to transmit pathogens that cause diseases such as dengue, yellow fever and most significantly human malaria. Here, we review significant advances in behavioral, physiological and molecular investigations into mosquito host preference, with a particular emphasis on studies that have emerged in the post-genomic era that seek to combine these approaches. PMID:15242705

  17. [Nasal mucosa in patients with diabetes mellitus].

    PubMed

    Müller, Maciej; Betlejewski, Stanisław

    2003-01-01

    Diabetes mellitus is the most common endocrinologic disease all over the world. 150 million people suffer from this disease, in Poland about 2 million. The disease on the basis of the onset and pathophysiology may be divided into type I and type II. Pathophysiologic changes include diabetic microangiopathy, macroangiopathy and neuropathy. The most common presentations in head and neck are otitis externa, hypoacusis, vertigo, disequilibrium, xerostomia, dysphagia, fungal and recurrent infections. The changes in nasal mucosa are not very well known. Only few papers concerned the problem. The main complaints of patients regarding the nose are xeromycteria, hyposmia and various degree of decreased patency of the nose. Chronic atrophic rhinitis, septal perforation, ulceration of nasal mucosa, alar necrosis, symptoms of staphylococcal or fungal infection can be found during otolaryngologic examination. The treatment in this group of patients should consist of systemic therapy of diabetes mellitus and on the other hand focal therapy with the use of a solution to moisten the nasal mucosa.

  18. Rectal mucosa in cows' milk allergy.

    PubMed Central

    Iyngkaran, N; Yadav, M; Boey, C G

    1989-01-01

    Eleven infants who were suspected clinically of having cows' milk protein sensitive enteropathy were fed with a protein hydrolysate formula for six to eight weeks, after which they had jejunal and rectal biopsies taken before and 24 hours after challenge with cows' milk protein. When challenged six infants (group 1) developed clinical symptoms and five did not (group 2). In group 1 the lesions developed in both the jejunal mucosa (four infants at 24 hours and one at three days), and the rectal mucosa, and the injury was associated with depletion of alkaline phosphatase activity. Infants in group 2 were normal. It seems that rectal injury that develops as a direct consequence of oral challenge with the protein in reactive infants may be used as one of the measurements to confirm the diagnosis of cows' milk protein sensitive enteropathy. Moreover, ingestion of such food proteins may injure the distal colonic mucosa without affecting the proximal small gut in some infants. PMID:2817945

  19. Olfactory exposure to males, including men, causes stress and related analgesia in rodents.

    PubMed

    Sorge, Robert E; Martin, Loren J; Isbester, Kelsey A; Sotocinal, Susana G; Rosen, Sarah; Tuttle, Alexander H; Wieskopf, Jeffrey S; Acland, Erinn L; Dokova, Anastassia; Kadoura, Basil; Leger, Philip; Mapplebeck, Josiane C S; McPhail, Martina; Delaney, Ada; Wigerblad, Gustaf; Schumann, Alan P; Quinn, Tammie; Frasnelli, Johannes; Svensson, Camilla I; Sternberg, Wendy F; Mogil, Jeffrey S

    2014-06-01

    We found that exposure of mice and rats to male but not female experimenters produces pain inhibition. Male-related stimuli induced a robust physiological stress response that results in stress-induced analgesia. This effect could be replicated with T-shirts worn by men, bedding material from gonadally intact and unfamiliar male mammals, and presentation of compounds secreted from the human axilla. Experimenter sex can thus affect apparent baseline responses in behavioral testing.

  20. Same same but different: the case of olfactory imagery

    PubMed Central

    Arshamian, Artin; Larsson, Maria

    2014-01-01

    In the present work we present an overview of experimental findings corroborating olfactory imagery observations with the visual and auditory modalities. Overall, the results indicate that imagery of olfactory information share many features with those observed in the primary senses although some major differences are evident. One such difference pertains to the considerable individual differences observed, with the majority being unable to reproduce olfactory information in their mind. Here, we highlight factors that are positively related to an olfactory imagery capacity, such as semantic knowledge, perceptual experience, and olfactory interest that may serve as potential moderators of the large individual variation. PMID:24550862

  1. Accessory Olfactory Bulb Function is Modulated by Input from the Main Olfactory Epithelium

    PubMed Central

    Slotnick, Burton; Restrepo, Diego; Schellinck, Heather; Archbold, Georgina; Price, Stephen; Lin, Weihong

    2013-01-01

    While it is now established that sensory neurons in both the main olfactory epithelium and the vomeronasal organ may be activated by both general and pheromonal odorants, it remains unclear what initiates sampling by the VNO. Anterograde transport of wheat germ agglutinin-horseradish peroxidase was used to determine that adequate intranasal syringing with zinc sulfate interrupted all inputs to the main olfactory bulb but left intact those to the accessory olfactory bulb. Adult male treated mice were frankly anosmic when tested with pheromonal and non-pheromonal odors and failed to engage in aggressive behavior. Treated juvenile females failed to show puberty acceleration subsequent to exposure to bedding from adult males. Activation of the immediate early gene c-Fos and electro-vomeronasogram recording confirmed the integrity of the vomeronasal system in zinc sulfate treated mice. These results support the hypothesis that odor detection by the main olfactory epithelium is required to initiate sampling by the vomeronasal system. PMID:20377623

  2. Accessory olfactory bulb function is modulated by input from the main olfactory epithelium.

    PubMed

    Slotnick, Burton; Restrepo, Diego; Schellinck, Heather; Archbold, Georgina; Price, Stephen; Lin, Weihong

    2010-03-01

    Although it is now established that sensory neurons in both the main olfactory epithelium and the vomeronasal organ may be activated by both general and pheromonal odorants, it remains unclear what initiates sampling by the vomeronasal organ. Anterograde transport of wheat germ agglutinin-horseradish peroxidase was used to determine that adequate intranasal syringing with zinc sulfate interrupted all inputs to the main olfactory bulb but left intact those to the accessory olfactory bulb. Adult male treated mice were frankly anosmic when tested with pheromonal and non-pheromonal odors and failed to engage in aggressive behavior. Treated juvenile females failed to show puberty acceleration subsequent to exposure to bedding from adult males. Activation of the immediate early gene c-Fos and electrovomeronasogram recording confirmed the integrity of the vomeronasal system in zinc sulfate-treated mice. These results support the hypothesis that odor detection by the main olfactory epithelium is required to initiate sampling by the vomeronasal system.

  3. On the organization of olfactory and vomeronasal cortices.

    PubMed

    Martinez-Marcos, Alino

    2009-01-12

    Classically, the olfactory and vomeronasal pathways are thought to run in parallel non-overlapping axes in the forebrain subserving different functions. The olfactory and vomeronasal epithelia project to the main and accessory olfactory bulbs (primary projections), which in turn project to different areas of the telencephalon in a non-topographic fashion (secondary projections) and so on (tertiary projections). New data indicate that projections arising from the main and accessory olfactory bulbs converge widely in the rostral basal telencephalon. In contrast, in the vomeronasal system, cloning two classes of vomeronasal receptors (V1R and V2R) has led to the distinction of two anatomically and functionally independent pathways that reach some common, but also some different, targets in the amygdala. Tertiary projections from the olfactory and vomeronasal amygdalae are directed to the ventral striatum, which thus becomes a site for processing and potential convergence of chemosensory stimuli. Functional data indicate that the olfactory and vomeronasal systems are able to detect and process volatiles (presumptive olfactory cues) as well as pheromones in both epithelia and bulbs. Collectively, these data indicate that the anatomical and functional distinction between the olfactory and vomeronasal systems should be re-evaluated. Specifically, the recipient cortex should be reorganized to include olfactory, vomeronasal (convergent and V1R and V2R specific areas) and mixed (olfactory and vomeronasal) chemosensory cortices. This new perspective could help to unravel olfactory and vomeronasal interactions in behavioral paradigms.

  4. Shh-proteoglycan interactions regulate maturation of olfactory glomerular circuitry.

    PubMed

    Persson, Laura; Witt, Rochelle M; Galligan, Meghan; Greer, Paul L; Eisner, Adriana; Pazyra-Murphy, Maria F; Datta, Sandeep R; Segal, Rosalind A

    2014-12-01

    The olfactory system relies on precise circuitry connecting olfactory sensory neurons (OSNs) and appropriate relay and processing neurons of the olfactory bulb (OB). In mammals, the exact correspondence between specific olfactory receptor types and individual glomeruli enables a spatially precise map of glomerular activation that corresponds to distinct odors. However, the mechanisms that govern the establishment and maintenance of the glomerular circuitry are largely unknown. Here we show that high levels of Sonic Hedgehog (Shh) signaling at multiple sites enable refinement and maintenance of olfactory glomerular circuitry. Mice expressing a mutant version of Shh (Shh(Ala/Ala)), with impaired binding to proteoglycan co-receptors, exhibit disproportionately small olfactory bulbs containing fewer glomeruli. Notably, in mutant animals the correspondence between individual glomeruli and specific olfactory receptors is lost, as olfactory sensory neurons expressing different olfactory receptors converge on the same glomeruli. These deficits arise at late stages in post-natal development and continue into adulthood, indicating impaired pruning of erroneous connections within the olfactory bulb. In addition, mature Shh(Ala/Ala) mice exhibit decreased proliferation in the subventricular zone (SVZ), with particular reduction in neurogenesis of calbindin-expressing periglomerular cells. Thus, Shh interactions with proteoglycan co-receptors function at multiple locations to regulate neurogenesis and precise olfactory connectivity, thereby promoting functional neuronal circuitry.

  5. Shh-Proteoglycan Interactions Regulate Maturation of Olfactory Glomerular Circuitry

    PubMed Central

    Persson, Laura; Witt, Rochelle M.; Galligan, Meghan; Greer, Paul L.; Eisner, Adriana; Pazyra-Murphy, Maria F.; Datta, Sandeep R.; Segal, Rosalind A.

    2014-01-01

    The olfactory system relies on precise circuitry connecting olfactory sensory neurons (OSNs) and appropriate relay and processing neurons of the olfactory bulb (OB). In mammals, the exact correspondence between specific olfactory receptor types and individual glomeruli enables a spatially precise map of glomerular activation that corresponds to distinct odors. However, the mechanisms that govern the establishment and maintenance of the glomerular circuitry are largely unknown. Here we show that high levels of Sonic Hedgehog (Shh) signaling at multiple sites enable refinement and maintenance of olfactory glomerular circuitry. Mice expressing a mutant version of Shh (ShhAla/Ala), with impaired binding to proteoglycan co-receptors, exhibit disproportionately small olfactory bulbs containing fewer glomeruli. Notably, in mutant animals the correspondence between individual glomeruli and specific olfactory receptors is lost, as olfactory sensory neurons expressing different olfactory receptors converge on the same glomeruli. These deficits arise at late stages in post-natal development and continue into adulthood, indicating impaired pruning of erroneous connections within the olfactory bulb. In addition, mature ShhAla/Ala mice exhibit decreased proliferation in the subventricular zone (SVZ), with particular reduction in neurogenesis of calbindin-expressing periglomerular cells. Thus, Shh interactions with proteoglycan co-receptors function at multiple locations to regulate neurogenesis and precise olfactory connectivity, thereby promoting functional neuronal circuitry. PMID:24913191

  6. Olfactory ensheathing cells: biology in neural development and regeneration.

    PubMed

    Su, Zhida; He, Cheng

    2010-12-01

    Olfactory ensheathing cells (OECs) constitute a unique population of glia that accompany and ensheath the primary olfactory axons. They are thought to be critical for spontaneous growth of olfactory axons within the developing and adult olfactory nervous system, and have recently emerged as potential candidates for cell-mediated repair of neural injuries. Here, based on the current research, we give an overview of the biology of OECs in neural development and regeneration. This review starts with a detailed description of the cellular and molecular biological properties of OECs. Their functions in olfactory neurogenesis, olfactory axonal growth and olfactory bulb formation are sequently discussed. We also describe therapeutic applications of OECs for the treatment of a variety of neural lesions, including spinal cord injury, stroke, degenerative diseases, and PNS injuries. Finally, we address issues that may foster a better understanding of OECs in neural development and regeneration. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Sphenoid esthesioneuroblastoma arising from the hindmost olfactory filament.

    PubMed

    Matsunaga, Mami; Nakagawa, Takayuki; Sakamoto, Tatsunori; Ito, Juichi

    2015-04-01

    Esthesioneuroblastoma (ENB), or olfactory neuroblastoma, is a rare malignant neoplasm arising from the olfactory neuroepithelium. Typically, ENBs are found in the olfactory cleft with extension to the ethmoid sinuses or anterior skull base. Here we report a case of ENB located in the sphenoid sinus, which had been considered as an ectopic ENB. However, endoscopic resection revealed the continuity of the tumor with the hindmost olfactory filament. The present case suggests that an ENB in the sphenoid sinus was not ectopic, but arose from the normal olfactory neuroepithelium. This continuity of the ENB with this filament indicated that the tumor was not ectopic, and that there was possible tumor invasion into the olfactory neuroepithelium in the cribriform niche. Therefore, pathological examination of the olfactory neuroepithelium in the cribriform niche may be necessary in case of sphenoid ENBs.

  8. Olfactory perception, communication, and the nose-to-brain pathway.

    PubMed

    Stockhorst, Ursula; Pietrowsky, Reinhard

    2004-10-30

    The present paper's aim is of to give an overview about the basic knowledge as well as actual topics of olfaction--with a special regard on behavior. We summarize different functions of the nose and the olfactory system in human physiology and psychology. We will first describe the functional anatomy of the olfactory system in man. Afterwards, the function of the olfactory system will be viewed from an evolutionary and phylogenetic perspective. We will further outline the main features of olfactory perception, and will show how olfactory perception is influenced by learning. Olfactory signals are relevant stimuli that affect communication. Consequently, the role of the olfactory system in social interaction and mood will be described and gender differences will be addressed. Finally, the function of the nose as an interface to the brain, including implications for pharmacology, will be discussed.

  9. Changes in Olfactory Sensory Neuron Physiology and Olfactory Perceptual Learning After Odorant Exposure in Adult Mice

    PubMed Central

    Kass, Marley D.; Guang, Stephanie A.; Moberly, Andrew H.

    2016-01-01

    The adult olfactory system undergoes experience-dependent plasticity to adapt to the olfactory environment. This plasticity may be accompanied by perceptual changes, including improved olfactory discrimination. Here, we assessed experience-dependent changes in the perception of a homologous aldehyde pair by testing mice in a cross-habituation/dishabituation behavioral paradigm before and after a week-long ester-odorant exposure protocol. In a parallel experiment, we used optical neurophysiology to observe neurotransmitter release from olfactory sensory neuron (OSN) terminals in vivo, and thus compared primary sensory representations of the aldehydes before and after the week-long ester-odorant exposure in individual animals. Mice could not discriminate between the aldehydes during pre-exposure testing, but ester-exposed subjects spontaneously discriminated between the homologous pair after exposure, whereas home cage control mice cross-habituated. Ester exposure did not alter the spatial pattern, peak magnitude, or odorant-selectivity of aldehyde-evoked OSN input to olfactory bulb glomeruli, but did alter the temporal dynamics of that input to make the time course of OSN input more dissimilar between odorants. Together, these findings demonstrate that odor exposure can induce both physiological and perceptual changes in odor processing, and suggest that changes in the temporal patterns of OSN input to olfactory bulb glomeruli could induce differences in odor quality. PMID:26514410

  10. The diversified function and potential therapy of ectopic olfactory receptors in non-olfactory tissues.

    PubMed

    Chen, Zhe; Zhao, Hong; Fu, Nian; Chen, Linxi

    2017-03-24

    Olfactory receptors (ORs) are mainly distributed in olfactory neurons and play a key role in detecting volatile odorants, eventually resulting in the production of smell perception. Recently, it is also reported that ORs are expressed in non-olfactory tissues including heart, lung, sperm, skin, and cancerous tissues. Interestingly, ectopic ORs are associated with the development of diseases in non-olfactory tissues. For instance, ectopic ORs initiate the hypoxic ventilatory responses and maintain the oxygen homeostasis of breathing in the carotid body when oxygen levels decline. Ectopic ORs induce glucose homeostasis in diabetes. Ectopic ORs regulate systemic blood pressure by increasing renin secretion and vasodilation. Ectopic ORs participate in the process of tumor cell proliferation, apoptosis, metastasis, and invasiveness. Ectopic ORs accelerate the occurrence of obesity, angiogenesis and wound-healing processes. Ectopic ORs affect fetal hemoglobin levels in sickle cell anemia and thalassemia. Finally, we also elaborate some ligands targeting for ORs. Obviously, the diversified function and related signal pathway of ectopic ORs may play a potential therapeutic target in non-olfactory tissues. Thus, this review focuses on the latest research results about the diversified function and therapeutic potential of ectopic ORs in non-olfactory tissues. © 2017 Wiley Periodicals, Inc.

  11. Innate olfactory preferences in dung beetles.

    PubMed

    Dormont, Laurent; Jay-Robert, Pierre; Bessière, Jean-Marie; Rapior, Sylvie; Lumaret, Jean-Pierre

    2010-09-15

    The effects of insect larval diet on adult olfactory responses to host-plant or food volatiles are still debated. The induction of adult host preferences has been studied in insects with diverse ecologies, including parasitoids, flower-visitors and phytophagous species. We investigated this question for the first time in a coprophagous insect species. Larvae of the French scarab dung beetle Agrilinus constans were reared on four different artificial substrates containing dung from cattle, horse, sheep or wild boar, and responses of imagos to dung volatiles were then behaviourally tested in an olfactometer. We also reported the first analysis of the composition of different mammal dung volatiles. We showed that adult beetles were more attracted to cattle and sheep dung odours, and that larval feeding experience had no effect on the adult olfactory responses to dung volatiles. A second experiment showed that the presence of other insects inside the dung resource affects the process of dung selection by adults. We identified 64 chemical compounds from dung emissions, and showed that dung volatiles clearly differed among different mammal species, allowing olfactory discrimination by dung beetles. Our results suggest that resource selection in coprophagous insects may be based on innate olfactory preferences. Further experiments should examine whether Agrilinus adults can learn new dung odours, and whether larval diet may influence the behaviour of adults in other coprophagous species.

  12. Functional Neuroanatomy of "Drosophila" Olfactory Memory Formation

    ERIC Educational Resources Information Center

    Guven-Ozkan, Tugba; Davis, Ronald L.

    2014-01-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying "Drosophila" learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive…

  13. Acid sensing by the Drosophila olfactory system.

    PubMed

    Ai, Minrong; Min, Soohong; Grosjean, Yael; Leblanc, Charlotte; Bell, Rati; Benton, Richard; Suh, Greg S B

    2010-12-02

    The odour of acids has a distinct quality that is perceived as sharp, pungent and often irritating. How acidity is sensed and translated into an appropriate behavioural response is poorly understood. Here we describe a functionally segregated population of olfactory sensory neurons in the fruitfly, Drosophila melanogaster, that are highly selective for acidity. These olfactory sensory neurons express IR64a, a member of the recently identified ionotropic receptor (IR) family of putative olfactory receptors. In vivo calcium imaging showed that IR64a+ neurons projecting to the DC4 glomerulus in the antennal lobe are specifically activated by acids. Flies in which the function of IR64a+ neurons or the IR64a gene is disrupted had defects in acid-evoked physiological and behavioural responses, but their responses to non-acidic odorants remained unaffected. Furthermore, artificial stimulation of IR64a+ neurons elicited avoidance responses. Taken together, these results identify cellular and molecular substrates for acid detection in the Drosophila olfactory system and support a labelled-line mode of acidity coding at the periphery.

  14. Olfactory Learning in Individually Assayed Drosophila Larvae

    PubMed Central

    Scherer, Sabine; Stocker, Reinhard F.; Gerber, Bertram

    2003-01-01

    Insect and mammalian olfactory systems are strikingly similar. Therefore, Drosophila can be used as a simple model for olfaction and olfactory learning. The brain of adult Drosophila, however, is still complex. We therefore chose to work on the larva with its yet simpler but adult-like olfactory system and provide evidence for olfactory learning in individually assayed Drosophila larvae. We developed a differential conditioning paradigm in which odorants are paired with positive (“+” fructose) or negative (“-” quinine or sodium chloride) gustatory reinforcers. Test performance of individuals from two treatment conditions is compared—one received odorant A with the positive reinforcer and odorant B with a negative reinforcer (A+/B-); animals from the other treatment condition were trained reciprocally (A-/B+). During test, differences in choice between A and B of individuals having undergone either A+/B- or A-/B+ training therefore indicate associative learning. We provide such evidence for both combinations of reinforcers; this was replicable across repetitions, laboratories, and experimenters. We further show that breaks improve performance, in accord with basic principles of associative learning. The present individual assay will facilitate electrophysiological studies, which necessarily use individuals. As such approaches are established for the larval neuromuscular synapse, but not in adults, an individual larval learning paradigm will serve to link behavioral levels of analysis to synaptic physiology. PMID:12773586

  15. Propagation of olfactory information in Drosophila.

    PubMed

    Root, Cory M; Semmelhack, Julia L; Wong, Allan M; Flores, Jorge; Wang, Jing W

    2007-07-10

    Investigating how information propagates between layers in the olfactory system is an important step toward understanding the olfactory code. Each glomerular output projection neuron (PN) receives two sources of input: the olfactory receptor neurons (ORNs) of the same glomerulus and interneurons that innervate many glomeruli. We therefore asked how these inputs interact to produce PN output. We used receptor gene mutations to silence all of the ORNs innervating a specific glomerulus and recorded PN activity with two-photon calcium imaging and electrophysiology. We found evidence for balanced excitatory and inhibitory synaptic inputs but saw little or no response in the absence of direct ORN input. We next asked whether any transformation of activity occurs at successive layers of the antennal lobe. We found a strong link between PN firing and dendritic calcium elevation, the latter of which is tightly correlated with calcium activity in ORN axons, supporting the idea of glomerular propagation of olfactory information. Finally, we showed that odors are represented by a sparse population of PNs. Together, these results are consistent with the idea that direct receptor input provides the main excitatory drive to PNs, whereas interneurons modulate PN output. Balanced excitatory and inhibitory interneuron input may provide a mechanism to adjust PN sensitivity.

  16. Adult Neurogenesis and the Olfactory System

    PubMed Central

    Whitman, Mary C.; Greer, Charles A.

    2009-01-01

    Though initially described in the early 1960s, it is only within the past decade that the concept of continuing adult neurogenesis has gained widespread acceptance. Neuroblasts from the subventricular zone (SVZ) migrate along the rostral migratory stream (RMS) into the olfactory bulb, where they differentiate into interneurons. Neuroblasts from the subgranular zone (SGZ) of the hippocampal formation show relatively little migratory behavior, and differentiate into dentate gyrus granule cells. In sharp contrast to embryonic and perinatal development, these newly differentiated neurons must integrate into a fully functional circuit, without disrupting ongoing performance. Here, after a brief historical overview and introduction to olfactory circuitry, we review recent advances in the biology of neural stem cells, mechanisms of migration in the RMS and olfactory bulb, differentiation and survival of new neurons, and finally mechanisms of synaptic integration. Our primary focus is on the olfactory system, but we also contrast the events occurring there with those in the hippocampal formation. Although both SVZ and SGZ neurogenesis are involved in some types of learning, their full functional significance remains unclear. Since both systems offer models of integration of new neuroblasts, there is immense interest in using neural stem cells to replace neurons lost in injury or disease. Though many questions remain unanswered, new insights appear daily about adult neurogenesis, regulatory mechanisms, and the fates of the progeny. We discuss here some of the central features of these advances, as well as speculate on future research directions. PMID:19615423

  17. Functional Neuroanatomy of "Drosophila" Olfactory Memory Formation

    ERIC Educational Resources Information Center

    Guven-Ozkan, Tugba; Davis, Ronald L.

    2014-01-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying "Drosophila" learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive…

  18. Olfactory Environment Design for Human Spaceflight

    NASA Astrophysics Data System (ADS)

    Welch, C. S.; Holland, F. J.

    2002-01-01

    Smell is usually deemed the least important of the five senses. To contradict this assertion, however, there is no shortage of scientific literature which concludes that olfaction is of very great significance to humans. Odours have been shown to have a variety of effects on humans, and are capable of changing both behaviour and cognitive processing in ways that we are frequently completely unconscious of. Examples of this include alertness, alteration of mood, capacity for ideation and intellectual performance. To date, the design of human spacecraft has concentrated on making their olfactory environments, where possible, `odour neutral' - that is ensuring that all unpleasant and/or offensive odours are removed. Here it suggested that spacecraft (and other extraterrestrial facilities for human inhabitation) might benefit from having their olfactory environments designed to be `odour positive', that is to use odours and olfaction for the positive benefit of their residents. This paper presents a summary of current olfactory research and considers both its positive and negative implications for humans in space. It then discusses `odour positive' design of spacecraft olfactory environments and the possible benefits accruing from this approach before examining its implications for the architecture of spacecraft environmental control systems.

  19. Sex differences in the human olfactory system.

    PubMed

    Garcia-Falgueras, Alicia; Junque, Carme; Giménez, Mónica; Caldú, Xavier; Segovia, Santiago; Guillamon, Antonio

    2006-10-20

    The olfactory system (accessory) implicated in reproductive physiology and behavior in mammals is sexually dimorphic. These brain sex differences present two main characteristics: they are seen in neural circuits related to sexual behavior and sexual physiology and they take one of two opposite morphological patterns (male>female or female>male). The present work reports sex differences in the olfactory system in a large homogeneous sample of men (40) and women (51) using of voxel-based morphology. Gray matter concentration showed sexual dimorphism in several olfactory regions. Women have a higher concentration in the orbitofrontal cortex involving Brodmann's areas 10, 11 and 25 and temporomedial cortex (bilateral hippocampus and right amygdala), as well as their left basal insular cortex. In contrast, men show a higher gray matter concentration in the left entorhinal cortex (Brodmann's area 28), right ventral pallidum, dorsal left insular cortex and a region of the orbitofrontal cortex (Brodmann's area 25). This study supports the hypothesis that the mammalian olfactory system is a sexually dimorphic network and provides a theoretical framework for the morphofunctional approach to sex differences in the human brain.

  20. Immunocytochemical characterisation of olfactory ensheathing cells of zebrafish

    PubMed Central

    Lazzari, Maurizio; Bettini, Simone; Franceschini, Valeria

    2014-01-01

    Continuous lifelong neurogenesis is typical of the vertebrate olfactory system. The regenerative ability of olfactory receptor neurons is dependent on the glial cell type specific to the olfactory pathway, designated ‘olfactory ensheathing cells'. Several studies to date have focused on mammalian olfactory ensheathing cells, owing to their potential roles in cell-based therapy for spinal cord injury repair. However, limited information is available regarding this glial cell type in non-mammalian vertebrates, particularly anamniotes. In the current immunocytochemical study, we analysed the features of olfactory ensheathing cells in the zebrafish, Danio rerio. Fish provide a good model for studying glial cells associated with the olfactory pathway of non-mammalian vertebrates. In particular, zebrafish has numerous valuable features that enable its use as a prime model organism for genetic, neurobiological and developmental studies, as well as toxicology and genomics research. Paraffin sections from decalcified heads of zebrafish were processed immunocytochemically to detect proteins used in the research on mammalian olfactory ensheathing cells, including glial fibrillary acid protein (GFAP), S100, neural cell adhesion molecule (NCAM), polysialylated NCAM (PSA-NCAM), vimentin (VIM), p75NTR and galactin (Gal)-1. Notably, GFAP, S100, NCAM and Gal-1 were clearly observed, whereas no vimentin staining was detected. Weak immunostaining for PSA-NCAM and p75NTR was evident. Moreover the degree of marker expression was not uniform in various tracts of the zebrafish olfactory pathway. The immunostaining patterns of the zebrafish olfactory system are distinct from those of other fish to some extent, suggesting interspecific differences. We also showed that the olfactory pathway of zebrafish expresses markers of mammalian olfactory ensheathing cells. The olfactory systems of vertebrates have similarities but there are also marked variations between them. The issue of whether

  1. Olfactory mucosal necrosis in rats following acute intraperitoneal administration of 1,2-diethylbenzene, 1,2-diacetylbenzene and 2,5-hexanedione.

    PubMed

    Gagnaire, François; Boucard, Stéphane

    2014-03-01

    1,2-Diethylbenzene (1,2-DEB) is used in the manufacture of some plastics. Exposure to 1,2-DEB has been shown to induce peripheral neuropathy in rats. This neurotoxicity is thought to be caused by a metabolite, 1,2-diacetylbenzene (1,2-DAB), a γ-diketone-like compound. 1,2-DEB was previously shown to be extensively and rapidly taken up by the nasal mucosa in male rats. In the present study, the nasal mucosa in rats exposed to 1,2-DEB and 1,2-DAB were examined histologically. Results were compared to sections from rats exposed to two other DEB isomers - 1,3-diethylbenzene (1,3-DEB) and 1,4-diethylbenzene (1,4-DEB) - and to two other neurotoxic compounds - n-hexane and its γ-diketone metabolite, 2,5-hexanedione (2,5-HD). A single intraperitoneal dose of 1,2-DEB (200mg/kg) induced time-dependent necrosis in the olfactory epithelium and Bowman's glands, with lesions appearing from the earliest observation time (4h) in the dorsomedial olfactory mucosa. Lesions spread through the lateral and ventral parts of the ethmoturbinates over the following days. The dorsal and medial zones of the nasal cavity started to regenerate from 72h after treatment, with the new epithelium showing metaplasia. One month after treatment, most of the olfactory epithelium had returned to normal. 1,2-DAB (40mg/kg) caused the same lesions as those observed after treatment with 1,2-DEB. Treatment with 2,5-HD (1g/kg) also caused lesions of the olfactory epithelium, mainly at level IV. However, these were comparatively less severe than those observed after exposure to 1,2-DEB. In contrast, intraperitoneal injection of 1,3-DEB (800mg/kg), 1,4-DEB (800mg/kg) and n-hexane (2g/kg) did not affect the nasal mucosa. Pretreatment of rats with 5-phenyl-1-pentyne, an inhibitor of CYP2F2 and CYP2E1 completely inhibited the olfactory toxicity caused by 1,2-DEB. These results suggest that metabolic activation of 1,2-DEB may be responsible for the toxicity observed. Copyright © 2014 Elsevier Inc. All rights

  2. L-Particle Production during Primary Replication of Pseudorabies Virus in the Nasal Mucosa of Swine

    PubMed Central

    Alemañ, Nuria; Quiroga, María Isabel; López-Peña, Mónica; Vázquez, Sonia; Guerrero, Florentina H.; Nieto, José M.

    2003-01-01

    Different tissue culture cell lines infected with a number of alphaherpesviruses produce, in addition to virions, light particles (L particles). L particles are composed of the envelope and tegument components of the virion but totally lack the proteins of the capsid and the virus genome; therefore, they are noninfectious. In this electron microscopy report, we show that L particles are produced during primary replication of the alphaherpesvirus pseudorabies virus (PRV) in the nasal mucosa of experimentally infected swine, its natural host. Although PRV infected different types of cells of the respiratory and olfactory mucosae, PRV L particles were found to be produced exclusively by epithelial cells and fibroblasts. We observed that formation of noninfectious particles occurred by budding of condensed tegument at the inner nuclear membrane and at membranes of cytoplasmic vesicles, resulting in intracisternal and intravesicular L particles, respectively. Both forms of capsidless particles were clearly distinguishable by the presence of prominent surface projections on the envelope and the higher electron density of the tegument, morphological features which were only observed in intravesicular L particles. Moreover, intravesicular but not intracisternal L particles were found to be released by exocytosis and were also identified extracellularly. Comparative analysis between PRV virion and L-particle morphogenesis indicates that both types of virus particles share a common intracellular pathway of assembly and egress but that they show different production patterns during the replication cycle of PRV. PMID:12719558

  3. Guide to Commensal Rodent Control

    DTIC Science & Technology

    1991-12-01

    slaughterhouses. Pigs have been shown to contract trichinosis from infected rat feces in their food. i. Tapeworms - Hymenolepis nana and H. dimanuta...are two of the intestinal parasites transmitted to man by food that has been contaminated with tapeworm - bearing rodent feces. j. Tetanus - The wound

  4. Allometric disparity in rodent evolution

    PubMed Central

    Wilson, Laura A B

    2013-01-01

    In this study, allometric trajectories for 51 rodent species, comprising equal representatives from each of the major clades (Ctenohystrica, Muroidea, Sciuridae), are compared in a multivariate morphospace (=allometric space) to quantify magnitudes of disparity in cranial growth. Variability in allometric trajectory patterns was compared to measures of adult disparity in each clade, and dietary habit among the examined species, which together encapsulated an ecomorphological breadth. Results indicate that the evolution of allometric trajectories in rodents is characterized by different features in sciurids compared with muroids and Ctenohystrica. Sciuridae was found to have a reduced magnitude of inter-trajectory change and growth patterns with less variation in allometric coefficient values among members. In contrast, a greater magnitude of difference between trajectories and an increased variation in allometric coefficient values was evident for both Ctenohystrica and muroids. Ctenohystrica and muroids achieved considerably higher adult disparities than sciurids, suggesting that conservatism in allometric trajectory modification may constrain morphological diversity in rodents. The results provide support for a role of ecology (dietary habit) in the evolution of allometric trajectories in rodents. PMID:23610638

  5. Olfactory perception, cognition, and dysfunction in humans.

    PubMed

    Stevenson, Richard J

    2013-05-01

    The main functions of olfaction relate to finding food, avoiding predators and disease, and social communication. Its role in detecting food has resulted in a unique dual mode sensory system. Environmental odorants are 'smelled' via the external nostrils, while volatile chemicals in food-detected by the same receptors-arrive via the nasopharynx, contributing to flavor. This arrangement allows the brain to link the consequences of eating with a food's odor, and then later to use this information in the search for food. Recognizing an odorant-a food, mate, or predator-requires the detection of complex chemical blends against a noisy chemical background. The brain solves this problem in two ways. First, by rapid adaptation to background odorants so that new odorants stand out. Second, by pattern matching the neural representation of an odorant to prior olfactory experiences. This account is consistent with olfactory sensory physiology, anatomy, and psychology. Odor perception, and its products, may be subject to further processing-olfactory cognition. While olfactory cognition has features in common with visual or auditory cognition, several aspects are unique, and even those that are common may be instantiated in different ways. These differences can be productively used to evaluate the generality of models of cognition and consciousness. Finally, the olfactory system can breakdown, and this may be predictive of the onset of neurodegenerative conditions such as Alzheimer's, as well as having prognostic value in other disorders such as schizophrenia. WIREs Cogn Sci 2013, 4:273-284. doi: 10.1002/wcs.1224 For further resources related to this article, please visit the WIREs website. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Distribution of fibronectin in the rectal mucosa.

    PubMed

    Scott, D L; Morris, C J; Blake, A E; Low-Beer, T S; Walton, K W

    1981-07-01

    Fibronectin is a glycoprotein of high molecular weight present in tissues, plasma, and tissue fluids. Its distribution in the rectal mucosa was studied by immunofluorescent and immunoperoxidase techniques using a monospecific antiserum. Immunofluorescent reactivity for fibronectin was present in the normal rectal mucosa of control subjects in epithelial cells, on basement membranes, and as a loose cribriform network of extracellular reactivity in the lamina propria that codistributed with histochemically demonstrable reticulin. Fibronectin was demonstrated immunoelectromicroscopically on collagen fibres, on smooth muscle cells and within and between columnar epithelial cells. In the rectal mucosa of patients with colitis with marked inflammatory changes, fibronectin appeared thickened and more prominent when present on basement membranes and as sparse strands between inflammatory cells infiltrating the lamina propria. In patients with longstanding colitis and less inflammatory cell infiltration there was a diffuse increase in fibronectin which was densely and uniformly present throughout the lamina propria. Fibronectin is a structural component of the rectal mucosa and changes in its distribution may form an important part of the local reaction to inflammatory bowel disease.

  7. Bioengineered vocal fold mucosa for voice restoration.

    PubMed

    Ling, Changying; Li, Qiyao; Brown, Matthew E; Kishimoto, Yo; Toya, Yutaka; Devine, Erin E; Choi, Kyeong-Ok; Nishimoto, Kohei; Norman, Ian G; Tsegyal, Tenzin; Jiang, Jack J; Burlingham, William J; Gunasekaran, Sundaram; Smith, Lloyd M; Frey, Brian L; Welham, Nathan V

    2015-11-18

    Patients with voice impairment caused by advanced vocal fold (VF) fibrosis or tissue loss have few treatment options. A transplantable, bioengineered VF mucosa would address the individual and societal costs of voice-related communication loss. Such a tissue must be biomechanically capable of aerodynamic-to-acoustic energy transfer and high-frequency vibration and physiologically capable of maintaining a barrier against the airway lumen. We isolated primary human VF fibroblasts and epithelial cells and cocultured them under organotypic conditions. The resulting engineered mucosae showed morphologic features of native tissue, proteome-level evidence of mucosal morphogenesis and emerging extracellular matrix complexity, and rudimentary barrier function in vitro. When grafted into canine larynges ex vivo, the mucosae generated vibratory behavior and acoustic output that were indistinguishable from those of native VF tissue. When grafted into humanized mice in vivo, the mucosae survived and were well tolerated by the human adaptive immune system. This tissue engineering approach has the potential to restore voice function in patients with otherwise untreatable VF mucosal disease.

  8. 21 CFR 1250.96 - Rodent control.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rodent control. 1250.96 Section 1250.96 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.96 Rodent control. Vessels shall be... of rodent control....

  9. 21 CFR 1250.96 - Rodent control.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rodent control. 1250.96 Section 1250.96 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.96 Rodent control. Vessels shall be... of rodent control. ...

  10. 21 CFR 1250.96 - Rodent control.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Rodent control. 1250.96 Section 1250.96 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.96 Rodent control. Vessels shall be... of rodent control. ...

  11. 21 CFR 1250.96 - Rodent control.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Rodent control. 1250.96 Section 1250.96 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.96 Rodent control. Vessels shall be... of rodent control. ...

  12. 21 CFR 1250.96 - Rodent control.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Rodent control. 1250.96 Section 1250.96 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.96 Rodent control. Vessels shall be... of rodent control. ...

  13. Rodent Oncology: Diseases, Diagnostics, and Therapeutics.

    PubMed

    Hocker, Samuel E; Eshar, David; Wouda, Raelene M

    2017-01-01

    Cancer incidence in rodent species varies dramatically from a common occurrence in mice and rats to just a limited number of documented cases in chinchillas and degus. This article summarizes common tumors, both benign and malignant, that have been reported to occur in rodents. Outlined are clinical signs, diagnostics, and treatments that have been described for rodents presenting with specific neoplasms.

  14. Olfactory Ensheathing Cells Rescue Optic Nerve Fibers in a Rat Glaucoma Model

    PubMed Central

    Dai, Chao; Khaw, Peng T.; Yin, Zheng Qin; Li, Daqing; Raisman, Geoffrey; Li, Ying

    2012-01-01

    Purpose: To determine if transplantation of olfactory ensheathing cells (OECs) can reduce loss of optic nerve axons after raised intraocular pressure (IOP) in the rat. Methods: OECs cultured from the adult olfactory mucosa were transplanted into the region of the optic disc. The IOP was raised by injection of magnetic microspheres into the anterior chamber. Results: At 4 weeks after raising the IOP, the transplanted OECs had migrated into the dorsal area of the optic nerve head (ONH) where they surrounded the optic nerve fibers with a non-myelinated ensheathment. The mean amount of damage to the ONH astrocytic area in rats was 51.0% compared with 85.8% in those without OEC transplants (P < 0.02) and the mean loss of axons in the optic nerve was 51.0% compared with 80.3% in the absence of OECs (P < 0.01). Conclusions: OECs transplanted into the region of the ONH of the rat can reduce the loss of axons and the damage to ONH astrocytes caused by raised IOP. Translational Relevance: Confirmation of these preliminary experimental data, further understanding of possible mechanisms of axonal protection by OECs, and the longer-term time course of protection could provide a basis for future human clinical trials of autografted OECs, which would be available from autologous nasal epithelial biopsies. PMID:24049703

  15. Olfactory Ensheathing Cells Rescue Optic Nerve Fibers in a Rat Glaucoma Model.

    PubMed

    Dai, Chao; Khaw, Peng T; Yin, Zheng Qin; Li, Daqing; Raisman, Geoffrey; Li, Ying

    2012-01-01

    To determine if transplantation of olfactory ensheathing cells (OECs) can reduce loss of optic nerve axons after raised intraocular pressure (IOP) in the rat. OECs cultured from the adult olfactory mucosa were transplanted into the region of the optic disc. The IOP was raised by injection of magnetic microspheres into the anterior chamber. At 4 weeks after raising the IOP, the transplanted OECs had migrated into the dorsal area of the optic nerve head (ONH) where they surrounded the optic nerve fibers with a non-myelinated ensheathment. The mean amount of damage to the ONH astrocytic area in rats was 51.0% compared with 85.8% in those without OEC transplants (P < 0.02) and the mean loss of axons in the optic nerve was 51.0% compared with 80.3% in the absence of OECs (P < 0.01). OECs transplanted into the region of the ONH of the rat can reduce the loss of axons and the damage to ONH astrocytes caused by raised IOP. Confirmation of these preliminary experimental data, further understanding of possible mechanisms of axonal protection by OECs, and the longer-term time course of protection could provide a basis for future human clinical trials of autografted OECs, which would be available from autologous nasal epithelial biopsies.

  16. Potential of Olfactory Ensheathing Cells from Different Sources for Spinal Cord Repair

    PubMed Central

    Mayeur, Anne; Duclos, Célia; Honoré, Axel; Gauberti, Maxime; Drouot, Laurent; do Rego, Jean-Claude; Bon-Mardion, Nicolas; Jean, Laetitia; Vérin, Eric; Emery, Evelyne; Lemarchant, Sighild; Vivien, Denis; Boyer, Olivier; Marie, Jean-Paul; Guérout, Nicolas

    2013-01-01

    Spinal cord injury (SCI) induces a permanent disability in patients. To this day no curative treatment can be proposed to restore lost functions. Therefore, extensive experimental studies have been conducted to induce recovery after SCI. One of the most promising therapies is based on the use of olfactory ensheathing cells (OECs). OECs can be obtained from either the olfactory bulbs (OB-OECs) or from olfactory mucosa (OM-OECs), involving a less invasive approach for autotransplantation. However the vast majority of experimental transplantations have been focusing on OB-OECs although the OM represents a more accessible source of OECs. Importantly, the ability of OM-OECs in comparison to OB-OECs to induce spinal cord recovery in the same lesion paradigm has never been described. We here present data using a multiparametric approach, based on electrophysiological, behavioral, histological and magnetic resonance imaging experiments on the repair potential of OB-OECs and OM-OECs from either primary or purified cultures after a severe model of SCI. Our data demonstrate that transplantation of OECs obtained from OB or OM induces electrophysiological and functional recovery, reduces astrocyte reactivity and glial scar formation and improves axonal regrowth. We also show that the purification step is essential for OM-OECs while not required for OB-OECs. Altogether, our study strongly indicates that transplantation of OECs from OM represents the best benefit/risk ratio according to the safety of access of OM and the results induced by transplantations of OM-OECs. Indeed, purified OM-OECs in addition to induce recovery can integrate and survive up to 60 days into the spinal cord. Therefore, our results provide strong support for these cells as a viable therapy for SCI. PMID:23638158

  17. Cell-specific Expression of CYP2A5 in the Mouse Respiratory Tract: Effects of Olfactory Toxicants

    PubMed Central

    Piras, Elena; Franzén, Anna; Fernández, Estíbaliz L.; Bergström, Ulrika; Raffalli-Mathieu, Françoise; Lang, Matti; Brittebo, Eva B.

    2003-01-01

    We performed a detailed analysis of mouse cytochrome P450 2A5 (CYP2A5) expression by in situ hybridization (ISH) and immunohistochemistry (IHC) in the respiratory tissues of mice. The CYP2A5 mRNA and the corresponding protein co-localized at most sites and were predominantly detected in the olfactory region, with an expression in sustentacular cells, Bowman's gland, and duct cells. In the respiratory and transitional epithelium there was no or only weak expression. The nasolacrimal duct and the excretory ducts of nasal and salivary glands displayed expression, whereas no expression occurred in the acini. There was decreasing expression along the epithelial linings of the trachea and lower respiratory tract, whereas no expression occurred in the alveoli. The hepatic CYP2A5 inducers pyrazole and phenobarbital neither changed the CYP2A5 expression pattern nor damaged the olfactory mucosa. In contrast, the olfactory toxicants dichlobenil and methimazole induced characteristic changes. The damaged Bowman's glands displayed no expression, whereas the damaged epithelium expressed the enzyme. The CYP2A5 expression pattern is in accordance with previously reported localization of protein and DNA adducts and the toxicity of some CYP2A5 substrates. This suggests that CYP2A5 is an important determinant for the susceptibility of the nasal and respiratory epithelia to protoxicants and procarcinogens. PMID:14566026

  18. Optical detection of (pre-)malignant lesions of the oral mucosa: autofluorescence characteristics of healthy mucosa

    NASA Astrophysics Data System (ADS)

    de Veld, Diana C. G.; Witjes, Max; Roodenburg, Jan L.; Star, Willem M.; Sterenborg, Hericus J. C. M.

    2001-10-01

    Previous clinical results demonstrate the potential of in vivo autofluorescence spectroscopy for early detection of (pre-)malignant lesions of the oral mucosa. For reliable diagnosis, it is necessary to study autofluorescence spectra of healthy mucosa first. We measured excitation-emission maps in healthy subjects and subjects with a history of cancer in the head -neck region. Our results show that different anatomical locations produce distinct autofluorescence spectra. Influences of, among others, smoking and drinking habits require further investigation.

  19. Imaging Odor-Evoked Activities in the Mouse Olfactory Bulb using Optical Reflectance and Autofluorescence Signals

    PubMed Central

    Chery, Romain; L'Heureux, Barbara; Bendahmane, Mounir; Renaud, Rémi; Martin, Claire; Pain, Frédéric; Gurden, Hirac

    2011-01-01

    In the brain, sensory stimulation activates distributed populations of neurons among functional modules which participate to the coding of the stimulus. Functional optical imaging techniques are advantageous to visualize the activation of these modules in sensory cortices with high spatial resolution. In this context, endogenous optical signals that arise from molecular mechanisms linked to neuroenergetics are valuable sources of contrast to record spatial maps of sensory stimuli over wide fields in the rodent brain. Here, we present two techniques based on changes of endogenous optical properties of the brain tissue during activation. First the intrinsic optical signals (IOS) are produced by a local alteration in red light reflectance due to: (i) absorption by changes in blood oxygenation level and blood volume (ii) photon scattering. The use of in vivo IOS to record spatial maps started in the mid 1980's with the observation of optical maps of whisker barrels in the rat and the orientation columns in the cat visual cortex1. IOS imaging of the surface of the rodent main olfactory bulb (OB) in response to odorants was later demonstrated by Larry Katz's group2. The second approach relies on flavoprotein autofluorescence signals (FAS) due to changes in the redox state of these mitochondrial metabolic intermediates. More precisely, the technique is based on the green fluorescence due to oxidized state of flavoproteins when the tissue is excited with blue light. Although such signals were probably among the first fluorescent molecules recorded for the study of brain activity by the pioneer studies of Britton Chances and colleagues3, it was not until recently that they have been used for mapping of brain activation in vivo. FAS imaging was first applied to the somatosensory cortex in rodents in response to hindpaw stimulation by Katsuei Shibuki's group4. The olfactory system is of central importance for the survival of the vast majority of living species because it

  20. The olfactory sense: a developmental and lifespan perspective.

    PubMed

    Wittmann-Price, Ruth A

    2012-09-01

    The objective of this literature review is to discuss human olfactory development, function and assessment through the lifespan. This article will highlight the importance of accurate olfactory function assessment. Olfactory function in humans is an understudied sense and may contribute significantly to patient safety and quality of life. Studies related to olfactory function are presented for different life stages. Olfactory development is reviewed as is terminology used to describe functionality. This article highlights the need for nursing assessment of olfactory function to develop holistic nursing interventions since there are implications for patient safety, quality of life issues related to respiratory function, bonding and nutrition. Literature review. Articles were searched in CINAHL, PsychInfo and PubMed limited to those published in English to 2010 with the key terms 'olfactory and nursing'. The search yielded 47 articles that were clinically based on patient care. Those articles that dealt specifically with traumatic brain syndrome were excluded. However, peer reviewed and research article were both specified. There is evidence that olfactory assessment should be completed by nurses on high risk populations to ensure patent safety and enhance quality of life. More studies are needed to improve clinical knowledge about the role of olfactory function. Nurses are in a prime position to assess olfactory function for patients at high risk for deficits to provide holistic nursing care. © 2012 Blackwell Publishing Ltd.

  1. Gyrodactylus salmonis infection impairs the olfactory system of rainbow trout.

    PubMed

    Lari, E; Pyle, G G

    2017-01-20

    Monogenean worms are ectoparasites that are known to be infectious to a wide variety of fish. Few species of monogenean parasites have been reported in the olfactory chamber of fish in current peer-reviewed literature. However, the impacts of these parasites on the olfactory system are not well understood. In this study, the effects of Gyrodactylus salmonis on the olfactory system structure and performance were investigated in rainbow trout (Oncorhynchus mykiss). The olfactory performance of the infected fish was examined using an electro-olfactography (EOG) technique, while the ultrastructure of the olfactory rosette was studied using scanning electron microscopy (SEM) and light microscopy (LM). The infected rainbow trout displayed reduced responses to two standard olfactory cues (L-alanine and TCA). The SEM micrographs revealed that many regions of the olfactory epithelium in the infected fish were heavily pitted and the LM examination of the olfactory epithelium showed local proliferation of mucous cells in the sensory regions as compared to the control group. The results of this study demonstrated that G. salmonis causes physical damage to the olfactory system of fish that lead to olfactory impairment.

  2. Early olfactory experience induces structural changes in the primary olfactory center of an insect brain.

    PubMed

    Arenas, A; Giurfa, M; Sandoz, J C; Hourcade, B; Devaud, J M; Farina, W M

    2012-03-01

    The antennal lobe (AL) is the first olfactory center of the insect brain and is constituted of different functional units, the glomeruli. In the AL, odors are coded as spatiotemporal patterns of glomerular activity. In honeybees, olfactory learning during early adulthood modifies neural activity in the AL on a long-term scale and also enhances later memory retention. By means of behavioral experiments, we first verified that olfactory learning between the fifth and eighth day of adulthood induces better retention performances at a late adult stage than the same experience acquired before or after this period. We checked that the specificity of memory for the odorants used was improved. We then studied whether such early olfactory learning also induces long-term structural changes in the AL consistent with the formation of long-term olfactory memories. We also measured the volume of 15 identified glomeruli in the ALs of 17-day-old honeybees that either experienced an odor associated with sucrose solution between the fifth and eighth day of adulthood or were left untreated. We found that early olfactory experience induces glomerulus-selective increases in volume that were specific to the learned odor. By comparing our volumetric measures with calcium-imaging recordings from a previous study, performed in 17-day-old bees subjected to the same treatment and experimental conditions, we found that glomeruli that showed structural changes after early learning were those that exhibited a significant increase in neural activity. Our results make evident a correlation between structural and functional changes in the AL following early olfactory learning.

  3. Olfactory Cleft Endoscopy Scale correlates with olfactory metrics in patients with chronic rhinosinusitis

    PubMed Central

    Soler, Zachary M.; Hyer, J. Madison; Karnezis, Tom T.; Schlosser, Rodney J.

    2015-01-01

    Introduction Olfactory loss affects a majority of patients with chronic rhinosinusitis (CRS). Traditional objective measures of disease severity, including endoscopy scales, focus upon the paranasal sinuses and often have weak correlation to olfaction. Methods Adults with CRS were prospectively evaluated by blinded reviewers with a novel Olfactory Cleft Endoscopy Scale (OCES) that evaluated discharge, polyps, edema, crusting and scarring of the olfactory cleft. Objective olfactory function was assessed using “Sniffin’ Sticks testing, including composite threshold-discrimination-identification (TDI) scores. Olfactory-specific quality-of-life was evaluated using the short modified version of the Questionnaire of Olfactory Disorders (QOD-NS). Inter- and intra-rater reliability was assessed among 3 reviewers for OCES grading. Multivariate linear regression was then used to test associations between OCES scores and measures of olfaction, controlling for potential confounding factors. Results The OCES score was evaluated in 38 patients and had a high overall reliability (ICC=0.92; 95% CI: 0.91–0.96). The OCES significantly correlated with objective olfaction as measured by TDI score (p<0.001), with TDI score falling by 1.13 points for every 1 point increase in OCES score. Similar significant associations were found for threshold, discrimination, and identification scores (p<0.003 for all) after controlling for age, gender, race, and reviewer/review. The OCES was also highly associated with patient-reported QOD-NS scores (p=0.009). Conclusion A novel olfactory cleft endoscopy scale shows high reliability and correlates with both objective and patient-reported olfaction in patients with CRS. Further studies to determine prognostic value and responsiveness to change are warranted. PMID:26718315

  4. Local neurons play key roles in the mammalian olfactory bulb.

    PubMed

    Saghatelyan, Armen; Carleton, Alan; Lagier, Samuel; de Chevigny, Antoine; Lledo, Pierre-Marie

    2003-01-01

    Over the past few decades, research exploring how the brain perceives, discriminates, and recognizes odorant molecules has received a growing interest. Today, olfaction is no longer considered a matter of poetry. Chemical senses entered the biological era when an increasing number of scientists started to elucidate the early stages of the olfactory pathway. A combination of genetic, biochemical, cellular, electrophysiological and behavioral methods has provided a picture of how odor information is processed in the olfactory system as it moves from the periphery to higher areas of the brain. Our group is exploring the physiology of the main olfactory bulb, the first processing relay in the mammalian brain. From different electrophysiological approaches, we are attempting to understand the cellular rules that contribute to the synaptic transmission and plasticity at this central relay. How olfactory sensory inputs, originating from the olfactory epithelium located in the nasal cavity, are encoded in the main olfactory bulb remains a crucial question for understanding odor processing. More importantly, the persistence of a high level of neurogenesis continuously supplying the adult olfactory bulb with newborn local neurons provides an attractive model to investigate how basic olfactory functions are maintained when a large proportion of local neurons are continuously renewed. For this purpose, we summarize the current ideas concerning the molecular mechanisms and organizational strategies used by the olfactory system to encode and process information in the main olfactory bulb. We discuss the degree of sensitivity of the bulbar neuronal network activity to the persistence of this high level of neurogenesis that is modulated by sensory experience. Finally, it is worth mentioning that analyzing the molecular mechanisms and organizational strategies used by the olfactory system to transduce, encode, and process odorant information in the olfactory bulb should aid in

  5. Anatomical specializations for enhanced olfactory sensitivity in kiwi, Apteryx mantelli.

    PubMed

    Corfield, Jeremy R; Eisthen, Heather L; Iwaniuk, Andrew N; Parsons, Stuart

    2014-01-01

    The ability to function in a nocturnal and ground-dwelling niche requires a unique set of sensory specializations. The New Zealand kiwi has shifted away from vision, instead relying on auditory and tactile stimuli to function in its environment and locate prey. Behavioral evidence suggests that kiwi also rely on their sense of smell, using olfactory cues in foraging and possibly also in communication and social interactions. Anatomical studies appear to support these observations: the olfactory bulbs and tubercles have been suggested to be large in the kiwi relative to other birds, although the extent of this enlargement is poorly understood. In this study, we examine the size of the olfactory bulbs in kiwi and compare them with 55 other bird species, including emus, ostriches, rheas, tinamous, and 2 extinct species of moa (Dinornithiformes). We also examine the cytoarchitecture of the olfactory bulbs and olfactory epithelium to determine if any neural specializations beyond size are present that would increase olfactory acuity. Kiwi were a clear outlier in our analysis, with olfactory bulbs that are proportionately larger than those of any other bird in this study. Emus, close relatives of the kiwi, also had a relative enlargement of the olfactory bulbs, possibly supporting a phylogenetic link to well-developed olfaction. The olfactory bulbs in kiwi are almost in direct contact with the olfactory epithelium, which is indeed well developed and complex, with olfactory receptor cells occupying a large percentage of the epithelium. The anatomy of the kiwi olfactory system supports an enhancement for olfactory sensitivities, which is undoubtedly associated with their unique nocturnal niche.

  6. Educating Normal Breast Mucosa to Prevent Breast Cancer

    DTIC Science & Technology

    2015-05-01

    1 Award Number: W81XWH-12-1-0059 TITLE: Educating normal breast mucosa to prevent breast cancer PRINCIPAL INVESTIGATOR: Keith L Knutson...SUBTITLE Educating Normal Breast Mucosa to Prevent Breast Cancer 5a. CONTRACT NUMBER W81XWH-12-1-0059 5b. GRANT NUMBER W81XWH-12-1-0059 5c...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Breast cancer develops from breast mucosa and breast mucosa has intact immune system to

  7. Rodent nutrition: digestive comparisons of 4 common rodent species.

    PubMed

    Grant, Kerrin

    2014-09-01

    This article summarizes the literature regarding digestive strategies and captive diets of common rodent pocket pets. A comparison is made between the 2 suborders in which chinchillas, guinea pigs, hamsters, and gerbils occur, highlighting digestive anatomy and dietary adaptations. Recommended captive diets are provided, as well as common nutritionally related health issues that may be presented to veterinary clinics. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Differential Muscarinic Modulation in the Olfactory Bulb

    PubMed Central

    Smith, Richard S.; Hu, Ruilong; DeSouza, Andre; Eberly, Christian L.; Krahe, Krista; Chan, Wilson

    2015-01-01

    Neuromodulation of olfactory circuits by acetylcholine (ACh) plays an important role in odor discrimination and learning. Early processing of chemosensory signals occurs in two functionally and anatomically distinct regions, the main and accessory olfactory bulbs (MOB and AOB), which receive extensive cholinergic input from the basal forebrain. Here, we explore the regulation of AOB and MOB circuits by ACh, and how cholinergic modulation influences olfactory-mediated behaviors in mice. Surprisingly, despite the presence of a conserved circuit, activation of muscarinic ACh receptors revealed marked differences in cholinergic modulation of output neurons: excitation in the AOB and inhibition in the MOB. Granule cells (GCs), the most abundant intrinsic neuron in the OB, also exhibited a complex muscarinic response. While GCs in the AOB were excited, MOB GCs exhibited a dual muscarinic action in the form of a hyperpolarization and an increase in excitability uncovered by cell depolarization. Furthermore, ACh influenced the input–output relationship of mitral cells in the AOB and MOB differently showing a net effect on gain in mitral cells of the MOB, but not in the AOB. Interestingly, despite the striking differences in neuromodulatory actions on output neurons, chemogenetic inhibition of cholinergic neurons produced similar perturbations in olfactory behaviors mediated by these two regions. Decreasing ACh in the OB disrupted the natural discrimination of molecularly related odors and the natural investigation of odors associated with social behaviors. Thus, the distinct neuromodulation by ACh in these circuits could underlie different solutions to the processing of general odors and semiochemicals, and the diverse olfactory behaviors they trigger. SIGNIFICANCE STATEMENT State-dependent cholinergic modulation of brain circuits is critical for several high-level cognitive functions, including attention and memory. Here, we provide new evidence that cholinergic

  9. Odor detection ability and thallium-201 transport in the olfactory nerve of traumatic olfactory-impaired mice.

    PubMed

    Shiga, Hideaki; Kinoshita, Yayoi; Washiyama, Kohshin; Ogawa, Daisuke; Amano, Ryohei; Hirota, Kyoko; Tsukatani, Toshiaki; Furukawa, Mitsuru; Miwa, Takaki

    2008-09-01

    Although olfactory nerve damage is a contributing factor in the diagnosis of posttraumatic olfactory loss, at present, there are no methods to directly assess injury to these nerves. We have shown that following olfactory nerve injury in mice, thallium-201 (201 Tl) transport from the nasal cavity to the olfactory bulb decreases. To determine if olfactory function after nerve injury could be assessed with nasal administration of 201 Tl, we measured the correlation between odor detection ability (ODA) and the rate of transport of 201 Tl in olfactory nerves. Both ODA and 201 Tl transport were measured after bilateral olfactory nerve transection for a 4-week period. Cycloheximide solution was used for ODA against tap water. 201 Tl transport was measured as the ratio of radioactivity in the nasal cavity and olfactory bulb with gamma spectrometry. There was a significant correlation between ODA and the rate of 201 Tl transport in the olfactory nerve. These findings suggest that olfactory function after nerve injury can be objectively evaluated with the nasal administration of 201 Tl.

  10. Olfactory sensory neurons are trophically dependent on the olfactory bulb for their prolonged survival.

    PubMed

    Schwob, J E; Szumowski, K E; Stasky, A A

    1992-10-01

    In most neural systems, developing neurons are trophically dependent on contact with their synaptic target for their survival and for some features of their differentiation. However, in the olfactory system, it is unclear whether or not the survival and differentiation of olfactory sensory neurons depend on contact with the olfactory bulb (normally the sole synaptic target for these neurons). In order to address this issue, we examined neuronal life-span and differentiation in adult rats subjected to unilateral olfactory bulb ablation at least 1 month prior to use. Life-span of a newly generated cohort of olfactory neurons was determined by labeling them at their "birth" via the incorporation of 3H-thymidine. In the absence of the bulb, neurons are continually produced at a twofold greater rate. However, the epithelium on the ablated side is thinner, indicating that average neuronal life-span must be reduced in the targetless epithelium. Indeed, nearly 90% of the labeled neurons disappear from the bulbectomized side between 5 d and 2 weeks of neuronal age. Moreover, on electron microscopic examination, olfactory axons are degenerating in large numbers on the ablated side. Since labeled neurons migrate apically through the width of the epithelium during this same period, it appears that most, if not all, neurons on the ablated side have a life-span on the order of 2 weeks or less. In contrast, there is a more moderate degree of neuronal loss on the unoperated side of the same animals during the first 2 weeks after tracer injection, and that occurs while the neurons are concentrated in the deeper half of the epithelium, suggesting that there is a preexisting population of neurons in the control epithelium that does not die during this period. Likewise, degenerating axons are much less frequent on the unoperated side. We conclude that life-span is significantly shorter for olfactory neurons born in the targetless epithelium and that olfactory neurons are trophically

  11. Neural Correlates of Behavioural Olfactory Sensitivity Changes Seasonally in European Starlings

    PubMed Central

    De Groof, Geert; Gwinner, Helga; Steiger, Silke; Kempenaers, Bart; Van der Linden, Annemie

    2010-01-01

    Background Possibly due to the small size of the olfactory bulb (OB) as compared to rodents, it was generally believed that songbirds lack a well-developed sense of smell. This belief was recently revised by several studies showing that various bird species, including passerines, use olfaction in many respects of life. During courtship and nest building, male European starlings (Sturnus vulgaris) incorporate aromatic herbs that are rich in volatile compounds (e.g., milfoil, Achillea millefolium) into the nests and they use olfactory cues to identify these plants. Interestingly, European starlings show seasonal differences in their ability to respond to odour cues: odour sensitivity peaks during nest-building in the spring, but is almost non-existent during the non-breeding season. Methodology/Principal Findings This study used repeated in vivo Manganese-enhanced MRI to quantify for the first time possible seasonal changes in the anatomy and activity of the OB in starling brains. We demonstrated that the OB of the starling exhibits a functional seasonal plasticity of certain plant odour specificity and that the OB is only able to detect milfoil odour during the breeding season. Volumetric analysis showed that this seasonal change in activity is not linked to a change in OB volume. By subsequently experimentally elevating testosterone (T) in half of the males during the non-breeding season we showed that the OB volume was increased compared to controls. Conclusions/Significance By investigating the neural substrate of seasonal olfactory sensitivity changes we show that the starlings' OB loses its ability during the non-breeding season to detect a natural odour of a plant preferred as green nest material by male starlings. We found that testosterone, applied during the non-breeding season, does not restore the discriminatory ability of the OB but has an influence on its size. PMID:21179464

  12. Neural correlates of behavioural olfactory sensitivity changes seasonally in European starlings.

    PubMed

    De Groof, Geert; Gwinner, Helga; Steiger, Silke; Kempenaers, Bart; Van der Linden, Annemie

    2010-12-15

    Possibly due to the small size of the olfactory bulb (OB) as compared to rodents, it was generally believed that songbirds lack a well-developed sense of smell. This belief was recently revised by several studies showing that various bird species, including passerines, use olfaction in many respects of life. During courtship and nest building, male European starlings (Sturnus vulgaris) incorporate aromatic herbs that are rich in volatile compounds (e.g., milfoil, Achillea millefolium) into the nests and they use olfactory cues to identify these plants. Interestingly, European starlings show seasonal differences in their ability to respond to odour cues: odour sensitivity peaks during nest-building in the spring, but is almost non-existent during the non-breeding season. This study used repeated in vivo Manganese-enhanced MRI to quantify for the first time possible seasonal changes in the anatomy and activity of the OB in starling brains. We demonstrated that the OB of the starling exhibits a functional seasonal plasticity of certain plant odour specificity and that the OB is only able to detect milfoil odour during the breeding season. Volumetric analysis showed that this seasonal change in activity is not linked to a change in OB volume. By subsequently experimentally elevating testosterone (T) in half of the males during the non-breeding season we showed that the OB volume was increased compared to controls. By investigating the neural substrate of seasonal olfactory sensitivity changes we show that the starlings' OB loses its ability during the non-breeding season to detect a natural odour of a plant preferred as green nest material by male starlings. We found that testosterone, applied during the non-breeding season, does not restore the discriminatory ability of the OB but has an influence on its size.

  13. Tunicamycin impairs olfactory learning and synaptic plasticity in the olfactory bulb.

    PubMed

    Tong, Jia; Okutani, Fumino; Murata, Yoshihiro; Taniguchi, Mutsuo; Namba, Toshiharu; Wang, Yu-Jie; Kaba, Hideto

    2017-03-06

    Tunicamycin (TM) induces endoplasmic reticulum (ER) stress and inhibits N-glycosylation in cells. ER stress is associated with neuronal death in neurodegenerative disorders, such as Parkinson's disease and Alzheimer's disease, and most patients complain of the impairment of olfactory recognition. Here we examined the effects of TM on aversive olfactory learning and the underlying synaptic plasticity in the main olfactory bulb (MOB). Behavioral experiments demonstrated that the intrabulbar infusion of TM disabled aversive olfactory learning without affecting short-term memory. Histological analyses revealed that TM infusion upregulated C/EBP homologous protein (CHOP), a marker of ER stress, in the mitral and granule cell layers of MOB. Electrophysiological data indicated that TM inhibited tetanus-induced long-term potentiation (LTP) at the dendrodendritic excitatory synapse from mitral to granule cells. A low dose of TM (250nM) abolished the late phase of LTP, and a high dose (1μM) inhibited the early and late phases of LTP. Further, high-dose, but not low-dose, TM reduced the paired-pulse facilitation ratio, suggesting that the inhibitory effects of TM on LTP are partially mediated through the presynaptic machinery. Thus, our results support the hypothesis that TM-induced ER stress impairs olfactory learning by inhibiting synaptic plasticity via presynaptic and postsynaptic mechanisms in MOB.

  14. Rodent models of cerebral ischemia

    SciTech Connect

    Ginsberg, M.D.; Busto, R. )

    1989-12-01

    The use of physiologically regulated, reproducible animal models is crucial to the study of ischemic brain injury--both the mechanisms governing its occurrence and potential therapeutic strategies. Several laboratory rodent species (notably rats and gerbils), which are readily available at relatively low cost, are highly suitable for the investigation of cerebral ischemia and have been widely employed for this purpose. We critically examine and summarize several rodent models of transient global ischemia, resulting in selective neuronal injury within vulnerable brain regions, and focal ischemia, typically giving rise to localized brain infarction. We explore the utility of individual models and emphasize the necessity for meticulous experimental control of those variables that modulate the severity of ischemic brain injury.169 references.

  15. Identifying Rodent Hantavirus Reservoirs, Brazil

    PubMed Central

    Bisordi, Ivani; Levis, Silvana; Garcia, Jorge; Pereira, Luiz E.; Souza, Renato P.; Sugahara, Teresa K.N.; Pini, Noemi; Enria, Delia; Souza, Luiza T.M.

    2004-01-01

    We describe the genetic analysis of samples from hantavirus pulmonary syndrome (HPS) patients from southern and southeastern states of Brazil and rodents captured at the presumed site of infection of these patients. A total of 65 samples that were antibody-positive for Sin Nombre or Laguna Negra virus by enzyme-linked immunosorbent assay were processed by nested reverse transcription–polymerase chain reaction (RT-PCR) by using several primer combinations in the M and S genome segments. PCR products were amplified and sequenced from samples from 11 HPS patient and 7 rodent samples. Phylogenetic analysis of nucleotide sequence differences showed the cocirculation of Araraquara and Juquitiba-like viruses, previously characterized from humans. Our genetic data indicate that Araraquara virus is associated with Bolomys lasiurus (hairy-tailed Bolo mouse) and the Juquitiba-like virus is associated with Oligoryzomys nigripes (black-footed pigmy rice rat). PMID:15663849

  16. Preclinical imaging anesthesia in rodents.

    PubMed

    Vesce, Giancarlo; Micieli, Fabiana; Chiavaccini, Ludovica

    2017-03-01

    Despite the outstanding progress achieved by preclinical imaging science, laboratory animal anesthesia remains quite stationary. Ninety percent of preclinical imaging studies are carried on small rodents (mice and rats) anesthetized by outdated injectable and/or inhalation agents. A need for imaging awake (conscious) animals is questionably registered mainly for brain research, for phMRI and for accomplishing pain and analgesia studies. A need for improving current rodent anesthesia protocols and for enforcing the 3Rs paradigm is sought. Patient monitoring throughout the procedure and recovery phases, as well as vital parameter's data must be recorded in basic consciousness states and during imaging sessions. A multidrug approach is suggested to overcome the limits of monoanesthesia and well-timed physiological data are required to ground findings and to interpret imaging data.

  17. The olfactory bulbectomized rat as a model of depression: The hippocampal pathway.

    PubMed

    Morales-Medina, J C; Iannitti, T; Freeman, A; Caldwell, H K

    2017-01-15

    In rodents, the removal of the olfactory bulbs (OBs), i.e. olfactory bulbectomy (OBX), results in numerous alterations in neurotransmitter, endocrine and immune systems, as well as behavioral changes, similar to those observed in depressed patients. Because the behavioral deficits induced in OBX animals are reversed after repeated administration of antidepressants, this is a model often used to test the effectiveness of putative antidepressant agents. Recent evidence suggests that OBX results in the dysfunction of various cellular processes within the hippocampus, including decreases in dentate gyrus neurogenesis, disruption in long-term potentiation in CA1 and CA3 subregions and neuronal atrophy in the CA1 subregion, along with downstream markers, all of which are consistent with abnormal neuronal activity in the hippocampus of clinically depressed populations. Moreover, repeated administration of novel natural and synthetic antidepressant compounds can improve certain aspects of depression-like behavior and hippocampal function. In an effort to bring together the existing literature, this review will focus on the mechanisms by which proposed pharmaceuticals impact hippocampal-dependent processes and behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Perseveration related to frontal lesion in mice using the olfactory H-maze.

    PubMed

    Del'Guidice, Thomas; Nivet, Emmanuel; Escoffier, Guy; Baril, Nathalie; Caverni, Jean-Paul; Roman, François S

    2009-12-14

    The delayed reaction paradigm, consisting to discover two different rules consecutively (delayed alternation and non-alternation task) followed by a delayed reversal task, is a specific marker for the functioning of primate prefrontal cortex. Although several works in rodents report the use of operant delayed alternation tasks, in none of the studies mice with lesion of the prefrontal cortex were used in this paradigm. In the current study, mouse experiments were conducted using a new, totally automated device, the olfactory H-maze. Here, we show that unilateral lesion of the dorsomedial prefrontal cortex in mice induced similar deficits to those observed after frontal lesions in monkeys and humans. These pronounced learning deficits seem to come from difficulty elaborating a new rule and the inability to inhibit the previous rule, characterized by perseveration after prefrontal cortex lesion. The present results demonstrate that this very simple experimental paradigm using the olfactory H-maze presents the advantage to be fast (one training session) and well suited to assess the frontal functions in mice. It should be useful for testing pharmacological or stem cell approaches in order to reduce organic damages or gain insight into the cognitive functions of the frontal cortex using transgenic or gene-targeting mice.

  19. Retronasal odor concentration coding in glomeruli of the rat olfactory bulb

    PubMed Central

    Gautam, Shree Hari; Short, Shaina M.; Verhagen, Justus V.

    2014-01-01

    The mammalian olfactory system processes odorants presented orthonasally (inhalation through the nose) and also retronasally (exhalation), enabling identification of both external as well as internal objects during food consumption. There are distinct differences between ortho- and retronasal air flow patterns, psychophysics, multimodal integration, and glomerular responses. Recent work indicates that rats can also detect odors retronasally, that rats can associate retronasal odors with tastes, and that their olfactory bulbs (OBs) can respond to retronasal odorants but differently than to orthonasal odors. To further characterize retronasal OB input activity patterns, experiments here focus on determining the effects of odor concentration on glomerular activity by monitoring calcium activity in the dorsal OB of rats using a dextran-conjugated calcium-sensitive dye in vivo. Results showed reliable concentration-response curves that differed between odorants, and recruitment of additional glomeruli, as odor concentration increased. We found evidence of different concentration-response functions between glomeruli, that in turn depended on odor. Further, the relation between dynamics and concentration differed remarkably among retronasal odorants. These dynamics are suggested to reduce the odor map ambiguity based on response amplitude. Elucidating the coding of retronasal odor intensity is fundamental to the understanding of feeding behavior and the neural basis of flavor. These data further establish and refine the rodent model of flavor neuroscience. PMID:25386123

  20. SECOND ORDER INPUT TO THE MEDIAL AMYGDALA FROM OLFACTORY SENSORY NEURONS EXPRESSING THE TRANSDUCTION CHANNEL TRPM5

    PubMed Central

    Thompson, John A.; Salcedo, Ernesto; Restrepo, Diego; Finger, Thomas E.

    2013-01-01

    Recent anatomical tracing experiments in rodents have established that a subset of mitral cells in the main olfactory bulb (MOB) project directly to the medial amygdala (MeA) traditionally considered a target of the accessory olfactory bulb. Importantly, neurons that project from the MOB to the MeA also show activation in response to conspecific (opposite sex) volatile urine exposure, establishing a direct role of the MOB in semiochemical processing. In addition, olfactory sensory neurons (OSN) that express the transient receptor potential M5 (TRPM5) channel innervate a subset of glomeruli that respond to putative semiochemical stimuli. In this study, we examined whether the subset of glomeruli targeted by TRPM5 expressing OSNs are innervated by the population of mitral cells that project to the MeA. We injected the retrograde tracer cholera toxin B (CTB) into the MeA of mice in which the TRPM5 promoter drives green fluorescent protein (GFP). We found overlapping clusters of CTB-labeled mitral cell dendritic branches (CTB (+)) in TRPM5-GFP positive (TRPM5-GFP (+)) glomeruli at significantly greater frequency than expected by chance. Despite the significant degree of co-localization, some amygdalopetal mitral cells extended dendrites to non-TRPM5-GFP glomeruli and vice versa, suggesting that although significant overlapping glomerular innervation is observed between these two features, it is not absolute. PMID:22120520

  1. Second-order input to the medial amygdala from olfactory sensory neurons expressing the transduction channel TRPM5.

    PubMed

    Thompson, John A; Salcedo, Ernesto; Restrepo, Diego; Finger, Thomas E

    2012-06-01

    Recent anatomical tracing experiments in rodents have established that a subset of mitral cells in the main olfactory bulb (MOB) projects directly to the medial amygdala (MeA), traditionally considered a target of the accessory olfactory bulb. Neurons that project from the MOB to the MeA also show activation in response to conspecific (opposite sex) volatile urine exposure, establishing a direct role of the MOB in semiochemical processing. In addition, olfactory sensory neurons (OSNs) that express the transient receptor potential M5 (TRPM5) channel innervate a subset of glomeruli that respond to putative semiochemical stimuli. In this study, we examined whether the subset of glomeruli targeted by TRPM5-expressing OSNs is innervated by the population of mitral cells that projects to the MeA. We injected the retrograde tracer cholera toxin B (CTB) into the MeA of mice in which the TRPM5 promoter drives green fluorescent protein (GFP). We found overlapping clusters of CTB-labeled mitral cell dendritic branches (CTB(+) ) in TRPM5-GFP(+) glomeruli at significantly greater frequency than expected by chance. Despite the significant degree of colocalization, some amygdalopetal mitral cells extended dendrites to non-TRPM5-GFP glomeruli and vice versa, suggesting that, although significant overlapping glomerular innervation is observed between these two features, it is not absolute. Copyright © 2011 Wiley Periodicals, Inc.

  2. Olfactory drug effects approached from human-derived data.

    PubMed

    Lötsch, Jörn; Knothe, Claudia; Lippmann, Catharina; Ultsch, Alfred; Hummel, Thomas; Walter, Carmen

    2015-11-01

    The complexity of the sense of smell makes adverse olfactory effects of drugs highly likely, which can impact a patient's quality of life. Here, we present a bioinformatics approach that identifies drugs with potential olfactory effects by connecting drug target expression patterns in human olfactory tissue with drug-related information and the underlying molecular drug targets taken from publically available databases. We identified 71 drugs with listed olfactory effects and 147 different targets. Taking the target-based approach further, we found additional drugs with potential olfactory effects, including 152 different substances interacting with genes expressed in the human olfactory bulb. Our proposed bioinformatics approach provides plausible hypotheses about mechanistic drug effects for drug discovery and repurposing and, thus, would be appropriate for use during drug development.

  3. Localization of neurotrophin receptors in olfactory epithelium and bulb.

    PubMed

    Deckner, M L; Frisén, J; Verge, V M; Hökfelt, T; Risling, M

    1993-12-13

    We used in situ hybridization to localize trk, trkB and trkC mRNA, in rat and cat olfactory bulb. Expression of mRNA encoding truncated trkB receptors was seen in all layers, while only very modest full-length trkB expression could be detected. trkC hybridization was seen in all layers, most dense in the mitral cell layer. The localization of full-length tyrosine kinase trkB receptor in olfactory bulb and epithelium was examined with immunohistochemistry. trkB-like immunoreactivity was seen in the fila olfactoria, epithelium and in vitro, in olfactory sensory neurones. Since BDNF is expressed by olfactory sensory neurone target cells in the olfactory bulb, these data suggest that BDNF may act as a target derived neurotrophic factor in the primary olfactory system.

  4. Topical Cathelicidin (LL-37) an Innate Immune Peptide Induces Acute Olfactory Epithelium Inflammation in a Mouse Model

    PubMed Central

    Alt, Jeremiah A.; Qin, Xuan; Pulsipher, Abigail; Orb, Quinn; Orlandi, Richard R.; Zhang, Jianxing; Schults, Austin; Jia, Wanjian; Presson, Angela P.; Prestwich, Glenn; Oottamasathien, Siam

    2017-01-01

    Background Cathelicidin (LL-37) is an endogenous innate immune peptide that is elevated in patients with chronic rhinosinusitis (CRS). The role of LL-37 in olfactory epithelium (OE) inflammation remains unknown. We hypothesized that 1) LL-37 topically delivered would elicit profound OE inflammation, and 2) LL-37 induced inflammation is associated with increased infiltration of neutrophils and mast cells. Methods To test our hypothesis we challenged C57BL/6 mice intranasally with increasing concentrations of LL-37. At 24 hours tissues were examined histologically and scored for inflammatory cell infiltrate, edema, and secretory hyperplasia. In separate experiments, fluorescently conjugated LL-37 was instilled and tissues were examined at 0.5 and 24 hours. To test our last hypothesis, we performed tissue myeloperoxidase (MPO) assays for neutrophil activity and immunohistochemistry for tryptase to determine the mean number of mast cells per mm2. Results LL-37 caused increased inflammatory cell infiltrate, edema, and secretory cell hyperplasia of the sinonasal mucosa with higher LL-37 concentrations yielding significantly more inflammatory changes (p < 0.01). Fluorescent LL-37 demonstrated global sinonasal epithelial binding and tissue distribution. Further, higher concentrations of LL-37 led to significantly greater MPO levels with dose-dependent increases in mast cell infiltration (p < 0.01). Conclusions LL-37 has dramatic inflammatory effects in the OE mucosa that is dose-dependent. The observed inflammatory changes in the olfactory mucosa were associated with the infiltration of both neutrophils and mast cells. Our biologic model represents a new model to further investigate the role of LL-37 in OE inflammation. PMID:26346056

  5. Olfactory pathogenesis of idiopathic Parkinson disease revisited.

    PubMed

    Lerner, Alicja; Bagic, Anto

    2008-06-15

    Idiopathic Parkinson disease (PD) is traditionally considered a movement disorder with hallmark lesions located in the substantia nigra pars compacta (SNpc). However, recent histopathological studies of some PD cases suggest the possibility of a multisystem disorder which progresses in a predictable sequence as described in Braak's staging criteria. The disease process starts in the dorsal motor nucleus of the vagus (dmX) and anterior olfactory nucleus and bulb, and from there, spreads through the brainstem nuclei to ultimately reach the SNpc, which then presents as symptomatic PD. In this article, we would like to revisit the olfactory pathogenesis of PD based on Braak's staging system and review anatomical pathways supporting such a possibility. We also suggest some biomarkers for early stages of PD. Additionally, we present and discuss the possibility that a prion-like process underlies the neurodegenerative changes in PD.

  6. Olfactory Orientation and Navigation in Humans

    PubMed Central

    Jacobs, Lucia F.; Arter, Jennifer; Cook, Amy; Sulloway, Frank J.

    2015-01-01

    Although predicted by theory, there is no direct evidence that an animal can define an arbitrary location in space as a coordinate location on an odor grid. Here we show that humans can do so. Using a spatial match-to-sample procedure, humans were led to a random location within a room diffused with two odors. After brief sampling and spatial disorientation, they had to return to this location. Over three conditions, participants had access to different sensory stimuli: olfactory only, visual only, and a final control condition with no olfactory, visual, or auditory stimuli. Humans located the target with higher accuracy in the olfaction-only condition than in the control condition and showed higher accuracy than chance. Thus a mechanism long proposed for the homing pigeon, the ability to define a location on a map constructed from chemical stimuli, may also be a navigational mechanism used by humans. PMID:26083337

  7. Mirror Sniffing: Humans Mimic Olfactory Sampling Behavior

    PubMed Central

    2014-01-01

    Ample evidence suggests that social chemosignaling plays a significant role in human behavior. Processing of odors and chemosignals depends on sniffing. Given this, we hypothesized that humans may have evolved an automatic mechanism driving sniffs in response to conspecific sniffing. To test this, we measured sniffing behavior of human subjects watching the movie Perfume, which contains many olfactory sniffing events. Despite the total absence of odor, observers sniffed when characters in the movie sniffed. Moreover, this effect was most pronounced in scenes where subjects heard the sniff but did not see the sniffed-at object. We liken this response to the orienting towards conspecific gaze in vision and argue that its robustness further highlights the significance of olfactory information processing in human behavior. PMID:24457159

  8. Subthreshold olfactory stimulation can enhance sweetness.

    PubMed

    Labbe, D; Rytz, A; Morgenegg, C; Ali, S; Martin, N

    2007-03-01

    The impact of olfactory perception on sweetness was explored in a model solution using odorants at subthreshold concentrations. First, the impact of 6 odorants, previously described in the literature as congruent with sweetness, was investigated at suprathreshold level in a sucrose solution. Ethyl butyrate and maltol were selected as they had the highest and the lowest sweetness-enhancing properties, respectively. Second, the impact on sweetness of the 2 odorants was investigated at subthreshold concentrations. A system delivering a continuous liquid flow at the same sucrose level, but with varying odorant concentrations, was used. At a subthreshold level, ethyl butyrate but not maltol significantly enhanced the sweetness of the sucrose solution. This study highlights that olfactory perception induced by odorants at a subthreshold level can significantly modulate taste perception. Finally, contrary to results observed with ethyl butyrate at suprathreshold levels, at subthreshold levels, the intensity of sweetness enhancement was not proportional to ethyl butyrate concentration.

  9. Mirror sniffing: humans mimic olfactory sampling behavior.

    PubMed

    Arzi, Anat; Shedlesky, Limor; Secundo, Lavi; Sobel, Noam

    2014-05-01

    Ample evidence suggests that social chemosignaling plays a significant role in human behavior. Processing of odors and chemosignals depends on sniffing. Given this, we hypothesized that humans may have evolved an automatic mechanism driving sniffs in response to conspecific sniffing. To test this, we measured sniffing behavior of human subjects watching the movie Perfume, which contains many olfactory sniffing events. Despite the total absence of odor, observers sniffed when characters in the movie sniffed. Moreover, this effect was most pronounced in scenes where subjects heard the sniff but did not see the sniffed-at object. We liken this response to the orienting towards conspecific gaze in vision and argue that its robustness further highlights the significance of olfactory information processing in human behavior.

  10. Odors Discrimination by Olfactory Epithelium Biosensor

    NASA Astrophysics Data System (ADS)

    Liu, Qingjun; Hu, Ning; Ye, Weiwei; Zhang, Fenni; Wang, Hua; Wang, Ping

    2011-09-01

    Humans are exploring the bionic biological olfaction to sense the various trace components of gas or liquid in many fields. For achieving the goal, we endeavor to establish a bioelectronic nose system for odor detection by combining intact bioactive function units with sensors. The bioelectronic nose is based on the olfactory epithelium of rat and microelectrode array (MEA). The olfactory epithelium biosensor generates extracellular potentials in presence of odor, and presents obvious specificity under different odors condition. The odor response signals can be distinguished with each other effectively by signal sorting. On basis of bioactive MEA hybrid system and the improved signal processing analysis, the bioelectronic nose will realize odor discrimination by the specific feature of signals response to various odors.

  11. Olfactory kin recognition in a songbird.

    PubMed

    Krause, E Tobias; Krüger, Oliver; Kohlmeier, Philip; Caspers, Barbara A

    2012-06-23

    The ability to recognize close relatives in order to cooperate or to avoid inbreeding is widespread across all taxa. One accepted mechanism for kin recognition in birds is associative learning of visual or acoustic cues. However, how could individuals ever learn to recognize unfamiliar kin? Here, we provide the first evidence for a novel mechanism of kin recognition in birds. Zebra finch (Taeniopygia guttata) fledglings are able to distinguish between kin and non-kin based on olfactory cues alone. Since olfactory cues are likely to be genetically based, this finding establishes a neglected mechanism of kin recognition in birds, particularly in songbirds, with potentially far-reaching consequences for both kin selection and inbreeding avoidance.

  12. Endocannabinoid modulation in the olfactory epithelium.

    PubMed

    Breunig, Esther; Czesnik, Dirk; Piscitelli, Fabiana; Di Marzo, Vincenzo; Manzini, Ivan; Schild, Detlev

    2010-01-01

    Appetite, food intake, and energy balance are closely linked to the endocannabinoid system in the central nervous system. Now, endocannabinoid modulation has been discovered in the peripheral olfactory system of larval Xenopus laevis. The endocannabinoid 2-AG has been shown to influence odorant-detection thresholds according to the hunger state of the animal. Hungry animals have increased 2-AG levels due to enhanced synthesis of 2-AG in sustentacular supporting cells. This renders olfactory receptor neurons, exhibiting CB1 receptors, more sensitive at detecting lower odorant concentrations, which probably helps the animal to locate food. Since taste and vision are also influenced by endocannabinoids, this kind of modulation might boost sensory inputs of food in hungry animals.

  13. Divisive normalization in olfactory population codes

    PubMed Central

    Olsen, Shawn R; Bhandawat, Vikas; Wilson, Rachel Irene

    2010-01-01

    In many regions of the visual system, the activity of a neuron is normalized by the activity of other neurons in the same region. Here we show that a similar normalization occurs during olfactory processing in the Drosophila antennal lobe. We exploit the orderly anatomy of this circuit to independently manipulate feedforward and lateral input to second-order projection neurons (PNs). Lateral inhibition increases the level of feedforward input needed to drive PNs to saturation, and this normalization scales with the total activity of the olfactory receptor neuron (ORN) population. Increasing total ORN activity also makes PN responses more transient. Strikingly, a model with just two variables (feedforward and total ORN activity) accurately predicts PN odor responses. Finally, we show that discrimination by a linear decoder is facilitated by two complementary transformations: the saturating transformation intrinsic to each processing channel boosts weak signals, while normalization helps equalize responses to different stimuli. PMID:20435004

  14. Identifying fast-onset antidepressants using rodent models.

    PubMed

    Ramaker, M J; Dulawa, S C

    2017-05-01

    Depression is a leading cause of disability worldwide and a major contributor to the burden of suicide. A major limitation of classical antidepressants is that 2-4 weeks of continuous treatment is required to elicit therapeutic effects, prolonging the period of depression, disability and suicide risk. Therefore, the development of fast-onset antidepressants is crucial. Preclinical identification of fast-onset antidepressants requires animal models that can accurately predict the delay to therapeutic onset. Although several well-validated assay models exist that predict antidepressant potential, few thoroughly tested animal models exist that can detect therapeutic onset. In this review, we discuss and assess the validity of seven rodent models currently used to assess antidepressant onset: olfactory bulbectomy, chronic mild stress, chronic forced swim test, novelty-induced hypophagia (NIH), novelty-suppressed feeding (NSF), social defeat stress, and learned helplessness. We review the effects of classical antidepressants in these models, as well as six treatments that possess fast-onset antidepressant effects in the clinic: electroconvulsive shock therapy, sleep deprivation, ketamine, scopolamine, GLYX-13 and pindolol used in conjunction with classical antidepressants. We also discuss the effects of several compounds that have yet to be tested in humans but have fast-onset antidepressant-like effects in one or more of these antidepressant onset sensitive models. These compounds include selective serotonin (5-HT)2C receptor antagonists, a 5-HT4 receptor agonist, a 5-HT7 receptor antagonist, NMDA receptor antagonists, a TREK-1 receptor antagonist, mGluR antagonists and (2R,6R)-HNK. Finally, we provide recommendations for identifying fast-onset antidepressants using rodent behavioral models and molecular approaches.

  15. Descriptive epidemiology of selected olfactory tumors.

    PubMed

    Villano, J Lee; Bressler, Linda; Propp, Jennifer M; Valyi-Nagy, Tibor; Martin, Iman K; Dolecek, Therese A; McCarthy, Bridget J

    2010-10-01

    Olfactory tumors, especially olfactory neuroblastomas (ON) and carcinomas with neuroendocrine differentiation (CND), are extremely rare, and little descriptive epidemiologic information is available. The objective of this study was to more fully describe selected olfactory tumors using a large population-based cancer incidence database. The Surveillance, Epidemiology and End Results (SEER) 9 registries limited-use data were reviewed from 1973 to 2006 for selected nasal cavity (C30.0) and accessory sinus (C31.0-31.9) tumors. Frequencies, incidence rates, and relative survival rates were estimated using SEER*Stat, v6.5.2. The majority of cases were squamous cell carcinoma (SCC), while the incidence of ON was greater than CND. For ON, the incidence was highest in the 60-79 year age group, while for SCC, the incidence was highest in the 80+ year age group. For CND, the incidence leveled off in the oldest age groups. Survival rates were highest for ON (>70% alive at 5 years after diagnosis) and poorest for CND (44% alive at 5 years). Adjuvant radiation therapy did not improve survival over surgery alone in ON. In SCC, survival was worse in patients who received adjuvant radiation compared to patients who had surgery alone. Our analysis confirms some previously published information, and adds new information about the incidence and demographics of ON and CND. In addition, our analysis documents the lack of benefit of adjuvant radiation in ON. It is not feasible to conduct prospective trials in patients with these rare diseases, and the importance of registry data in learning about olfactory tumors is emphasized.

  16. Olfactory Stimuli Increase Presence in Virtual Environments

    PubMed Central

    Munyan, Benson G.; Neer, Sandra M.; Beidel, Deborah C.; Jentsch, Florian

    2016-01-01

    Background Exposure therapy (EXP) is the most empirically supported treatment for anxiety and trauma-related disorders. EXP consists of repeated exposure to a feared object or situation in the absence of the feared outcome in order to extinguish associated anxiety. Key to the success of EXP is the need to present the feared object/event/situation in as much detail and utilizing as many sensory modalities as possible, in order to augment the sense of presence during exposure sessions. Various technologies used to augment the exposure therapy process by presenting multi-sensory cues (e.g., sights, smells, sounds). Studies have shown that scents can elicit emotionally charged memories, but no prior research has examined the effect of olfactory stimuli upon the patient’s sense of presence during simulated exposure tasks. Methods 60 adult participants navigated a mildly anxiety-producing virtual environment (VE) similar to those used in the treatment of anxiety disorders. Participants had no autobiographical memory associated with the VE. State anxiety, Presence ratings, and electrodermal (EDA) activity were collected throughout the experiment. Results Utilizing a Bonferroni corrected Linear Mixed Model, our results showed statistically significant relationships between olfactory stimuli and presence as assessed by both the Igroup Presence Questionnaire (IPQ: R2 = 0.85, (F(3,52) = 6.625, p = 0.0007) and a single item visual-analogue scale (R2 = 0.85, (F(3,52) = 5.382, p = 0.0027). State anxiety was unaffected by the presence or absence of olfactory cues. EDA was unaffected by experimental condition. Conclusion Olfactory stimuli increase presence in virtual environments that approximate those typical in exposure therapy, but did not increase EDA. Additionally, once administered, the removal of scents resulted in a disproportionate decrease in presence. Implications for incorporating the use of scents to increase the efficacy of exposure therapy is discussed. PMID

  17. Profound Olfactory Dysfunction in Myasthenia Gravis

    PubMed Central

    Leon-Sarmiento, Fidias E.; Bayona, Edgardo A.; Bayona-Prieto, Jaime; Osman, Allen; Doty, Richard L.

    2012-01-01

    In this study we demonstrate that myasthenia gravis, an autoimmune disease strongly identified with deficient acetylcholine receptor transmission at the post-synaptic neuromuscular junction, is accompanied by a profound loss of olfactory function. Twenty-seven MG patients, 27 matched healthy controls, and 11 patients with polymiositis, a disease with peripheral neuromuscular symptoms analogous to myasthenia gravis with no known central nervous system involvement, were tested. All were administered the University of Pennsylvania Smell Identification Test (UPSIT) and the Picture Identification Test (PIT), a test analogous in content and form to the UPSIT designed to control for non-olfactory cognitive confounds. The UPSIT scores of the myasthenia gravis patients were markedly lower than those of the age- and sex-matched normal controls [respective means (SDs) = 20.15 (6.40) & 35.67 (4.95); p<0.0001], as well as those of the polymiositis patients who scored slightly below the normal range [33.30 (1.42); p<0.0001]. The latter finding, along with direct monitoring of the inhalation of the patients during testing, implies that the MG-related olfactory deficit is unlikely due to difficulties sniffing, per se. All PIT scores were within or near the normal range, although subtle deficits were apparent in both the MG and PM patients, conceivably reflecting influences of mild cognitive impairment. No relationships between performance on the UPSIT and thymectomy, time since diagnosis, type of treatment regimen, or the presence or absence of serum anti-nicotinic or muscarinic antibodies were apparent. Our findings suggest that MG influences olfactory function to the same degree as observed in a number of neurodegenerative diseases in which central nervous system cholinergic dysfunction has been documented. PMID:23082113

  18. Molecular Mechanisms of Olfactory Responses to Stimulus Mixtures

    DTIC Science & Technology

    1991-02-26

    addition, the recent molecular cloning of the olfactory neuron-specific G- protein, Golf, from rat olfactory epithelium (25), has prompted a re-evaluation... molecular cloning of a G-protein that is exclusively expressed within olfactory neurons (25) prompted a re-evaluation of the molecular identities of...Fritsch, E.F. and Maniatis, T. (1989) Plasmid vectors. In Molecular Cloning : A Laboratory Manual, pp. 1.1-1.110. Cold Spring Harbor Laboratory Press, Cold

  19. Oral Neurothekeoma of the Right Buccal Mucosa

    PubMed Central

    Chilagondanahalli, Nandini L.; Bundele, Manish M.; Kanagalingam, Jeevendra

    2016-01-01

    Oral neurothekeoma or nerve sheath myxoma is a rare benign oral tumour of nerve sheath origin. Historically, this tumour has been subclassified as myxoid (classic), mixed, or the cellular type, depending on the amount of myxoid stroma and cellularity. We present a case of oral neurothekeoma (mixed type) of the buccal mucosa. The tumour was completely excised. No recurrence was detected in the last 3 years after local excision. PMID:27672465

  20. [Optimizing biopsies of the oral mucosa].

    PubMed

    Raybaud, H; Voha, C; Cardot-Leccia, N; Monteil, R A

    2012-11-01

    We had for aim to describe and illustrate the artefacts observed in biopsies of the oral mucosa, as well as the impact of sending non-representative histological material to a laboratory. This article was based on an international literature review, as well as on our experience. We analysed the problems raised, for the pathologists and the histology lab-technicians, by these artefacts as well as their impact on the pathology report patient management. We suggest simple solutions.

  1. Rare tumors of esophageal squamous mucosa.

    PubMed

    Tripathi, Monika; Swanson, Paul E

    2016-10-01

    In spite of increasing incidence of esophageal adenocarcinoma in the last few decades, esophageal squamous cell carcinoma (SCC) still remains the dominant subtype of esophageal cancer worldwide. Apart from conventional SCC, some rare unconventional tumors of esophageal squamous mucosa are also well known. This study provides an introduction to these and presents a brief review of the literature, including the diagnostic and prognostic importance of each variant.

  2. Morphological and physiological species-dependent characteristics of the rodent Grueneberg ganglion

    PubMed Central

    Brechbühl, Julien; Klaey, Magali; Moine, Fabian; Bovay, Esther; Hurni, Nicolas; Nenniger-Tosato, Monique; Broillet, Marie-Christine

    2014-01-01

    In the mouse, the Grueneberg ganglion (GG) is an olfactory subsystem implicated both in chemo- and thermo-sensing. It is specifically involved in the recognition of volatile danger cues such as alarm pheromones and structurally-related predator scents. No evidence for these GG sensory functions has been reported yet in other rodent species. In this study, we used a combination of histological and physiological techniques to verify the presence of a GG and investigate its function in the rat, hamster, and gerbil comparing with the mouse. By scanning electron microscopy (SEM) and transmitted electron microscopy (TEM), we found isolated or groups of large GG cells of different shapes that in spite of their gross anatomical similarities, display important structural differences between species. We performed a comparative and morphological study focusing on the conserved olfactory features of these cells. We found fine ciliary processes, mostly wrapped in ensheating glial cells, in variable number of clusters deeply invaginated in the neuronal soma. Interestingly, the glial wrapping, the amount of microtubules and their distribution in the ciliary processes were different between rodents. Using immunohistochemistry, we were able to detect the expression of known GG proteins, such as the membrane guanylyl cyclase G and the cyclic nucleotide-gated channel A3. Both the expression and the subcellular localization of these signaling proteins were found to be species-dependent. Calcium imaging experiments on acute tissue slice preparations from rodent GG demonstrated that the chemo- and thermo-evoked neuronal responses were different between species. Thus, GG neurons from mice and rats displayed both chemo- and thermo-sensing, while hamsters and gerbils showed profound differences in their sensitivities. We suggest that the integrative comparison between the structural morphologies, the sensory properties, and the ethological contexts supports species-dependent GG features

  3. Dopamine receptors in human gastrointestinal mucosa

    SciTech Connect

    Hernandez, D.E.; Mason, G.A.; Walker, C.H.; Valenzuela, J.E.

    1987-12-21

    Dopamine is a putative enteric neurotransmitter that has been implicated in exocrine secretory and motility functions of the gastrointestinal tract of several mammalian species including man. This study was designed to determine the presence of dopamine binding sites in human gastric and duodenal mucosa and to describe certain biochemical characteristics of these enteric receptor sites. The binding assay was performed in triplicate with tissue homogenates obtained from healthy volunteers of both sexes using /sup 3/H-dopamine as a ligand. The extent of nonspecific binding was determined in the presence of a 100-fold excess of unlabeled dopamine. Scatchard analysis performed with increasing concentrations of /sup 3/H-dopamine (20-500 nM) revealed a single class of saturable dopamine binding sites in gastric and duodenal mucosa. The results of this report demonstrate the presence of specific dopamine receptors in human gastric and duodenal mucosa. These biochemical data suggest that molecular abnormalities of these receptor sites may be operative in the pathogenesis of important gastrointestinal disorders. 33 references, 2 figures.

  4. Age and the architecture of oral mucosa.

    PubMed

    Abu Eid, Rasha; Sawair, Faleh; Landini, Gabriel; Saku, Takashi

    2012-06-01

    Age changes affect the oral mucosa (the protective lining of the oral cavity), but few of these have been studied objectively. The aim of this study was to quantitatively analyse a number of morphometric parameters of the ageing oral mucosa. The fractal dimension of the epithelial connective tissue interface (ECTI) was estimated in 42 samples of normal buccal mucosa to correlate any changes in their irregularity to the age of the individuals. Morphometric parameters extracted from theoretical cell areas computed programatically were also analysed. Results showed no significant change in ECTI complexity associated with age; however, there was indication that epithelial cells tended to become larger and flatter with age. Interestingly, while some parameters did not show significant differences case wise, cluster analysis showed that the data clustered the cases into three main age groups: one representing the first two decades of life, another group represents adult life (21-50 years) and the last group representing the ageing population (50-90 years).

  5. [Bullous autoimmune diseases of the oral mucosa].

    PubMed

    Vaillant, L

    1999-10-01

    Autoimmune bullous diseases (AIBD) are characterized by autoantibodies targeted against adhesion molecules, impairing their formation. According to localization criteria, pemphigus (intraepidermal blister and desmosomal involvement) and pemphigoid (subepidermal blister and dermoepidermal junction involvement) can be distinguished. In two-thirds of the cases, pemphigus vulgaris begins with oral lesions (mainly the buccal mucosa and palate, rarely the gingiva). Skin lesions are usual. Excepting paraneoplastic pemphigus (a recently individualized entity), oral lesions are uncommon in other types of pemphigus. Cicatricial pemphigoid mainly involves oral mucosa, frequently other mucous membranes, and rarely the skin. Gingival involvement is frequent. In case of desquamative gingivitis, the clip sign gives the diagnosis of cicatricial pemphigoid. Ocular involvement is frequent and causes blindness. Epidermolysis bullosa acquisita and IgA linear dermatosis are rare. Bullous pemphigoid and bullous lupus rarely involve the oral mucosa. Diagnosis of AIBD requires a biopsy within the mucosal membrane lesion for pathology examination and another biopsy in a lesion-free area for direct immunofluorescence detection of antibody fixation. Immunoelectron microscopy or immunoblast transfer may be needed for positive diagnosis. Corticosteroids are used to treat pemphigus and dapsone is used for cicatricial pemphigoid. Immunosuppressive therapy is rarely needed.

  6. Active electrolyte transport in mammalian buccal mucosa

    SciTech Connect

    Orlando, R.C.; Tobey, N.A.; Schreiner, V.J.; Readling, R.D. )

    1988-09-01

    The transmural electrical potential difference (PD) was measured in vivo across the buccal mucosa of humans and experimental animals. Mean PD was {minus}31 {plus minus} 2 mV in humans, {minus}34 {plus minus} 2 mV in dogs, {minus}39 {plus minus} 2 mV in rabbits, and {minus}18 {plus minus} 1 mV in hamsters. The mechanisms responsible for this PD were explored in Ussing chambers using dog buccal mucosa. Fluxes of ({sup 14}C)mannitol, a marker of paracellular permeability, varied directly with tissue conductance. The net fluxes of {sup 22}Na and {sup 36}Cl were +0.21 {plus minus} 0.05 and {minus}0.04 {plus minus} 0.02 {mu}eq/h{center dot}cm{sup 2}, respectively, but only the Na{sup +} flux differed significantly from zero. I{sub sc} was reduced by luminal amiloride, serosal ouabain, or by reducing luminal Na{sup +} below 20 mM. This indicated that the I{sub sc} was determined primarily by active Na{sup +} absorption and that Na{sup +} traverses the apical membrane at least partly through amiloride-sensitive channels and exists across the basolateral membrane through Na{sup +}-K{sup +}-ATPase activity. The authors conclude that buccal mucosa is capable of active electrolyte transport and that this capacity contributes to generation of the buccal PD in vivo.

  7. Functional neuroanatomy of Drosophila olfactory memory formation

    PubMed Central

    Guven-Ozkan, Tugba

    2014-01-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying Drosophila learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive and aversive reinforcers: (1) Which neurons within the olfactory nervous system mediate the acquisition of memory? (2) What is the complete neural circuitry extending from the site(s) of acquisition to the site(s) controlling memory expression? (3) How is information processed across this circuit to consolidate early-forming, disruptable memories to stable, late memories? Much progress has been made and a few strong conclusions have emerged: (1) Acquisition occurs at multiple sites within the olfactory nervous system but is mediated predominantly by the γ mushroom body neurons. (2) The expression of long-term memory is completely dependent on the synaptic output of α/β mushroom body neurons. (3) Consolidation occurs, in part, through circuit interactions between mushroom body and dorsal paired medial neurons. Despite this progress, a complete and unified model that details the pathway from acquisition to memory expression remains elusive. PMID:25225297

  8. Neurally Encoding Time for Olfactory Navigation

    PubMed Central

    Park, In Jun; Hein, Andrew M.; Bobkov, Yuriy V.; Reidenbach, Matthew A.; Ache, Barry W.; Principe, Jose C.

    2016-01-01

    Accurately encoding time is one of the fundamental challenges faced by the nervous system in mediating behavior. We recently reported that some animals have a specialized population of rhythmically active neurons in their olfactory organs with the potential to peripherally encode temporal information about odor encounters. If these neurons do indeed encode the timing of odor arrivals, it should be possible to demonstrate that this capacity has some functional significance. Here we show how this sensory input can profoundly influence an animal’s ability to locate the source of odor cues in realistic turbulent environments—a common task faced by species that rely on olfactory cues for navigation. Using detailed data from a turbulent plume created in the laboratory, we reconstruct the spatiotemporal behavior of a real odor field. We use recurrence theory to show that information about position relative to the source of the odor plume is embedded in the timing between odor pulses. Then, using a parameterized computational model, we show how an animal can use populations of rhythmically active neurons to capture and encode this temporal information in real time, and use it to efficiently navigate to an odor source. Our results demonstrate that the capacity to accurately encode temporal information about sensory cues may be crucial for efficient olfactory navigation. More generally, our results suggest a mechanism for extracting and encoding temporal information from the sensory environment that could have broad utility for neural information processing. PMID:26730727

  9. Zonal organization of the mammalian main and accessory olfactory systems.

    PubMed Central

    Mori, K; von Campenhause, H; Yoshihara, Y

    2000-01-01

    Zonal organization is one of the characteristic features observed in both main and accessory olfactory systems. In the main olfactory system, most of the odorant receptors are classified into four groups according to their zonal expression patterns in the olfactory epithelium. Each group of odorant receptors is expressed by sensory neurons distributed within one of four circumscribed zones. Olfactory sensory neurons in a given zone of the epithelium project their axons to the glomeruli in a corresponding zone of the main olfactory bulb. Glomeruli in the same zone tend to represent similar odorant receptors having similar tuning specificity to odorants. Vomeronasal receptors (or pheromone receptors) are classified into two groups in the accessory olfactory system. Each group of receptors is expressed by vomeronasal sensory neurons in either the apical or basal zone of the vomeronasal epithelium. Sensory neurons in the apical zone project their axons to the rostral zone of the accessory olfactory bulb and form synaptic connections with mitral tufted cells belonging to the rostral zone. Signals originated from basal zone sensory neurons are sent to mitral tufted cells in the caudal zone of the accessory olfactory bulb. We discuss functional implications of the zonal organization in both main and accessory olfactory systems. PMID:11205342

  10. Olfactory performance in spinocerebellar ataxia type 7 patients.

    PubMed

    Galvez, Victor; Diaz, Rosalinda; Hernandez-Castillo, Carlos Roberto; Campos-Romo, Aurelio; Fernandez-Ruiz, Juan

    2014-05-01

    A large body of evidence has shown olfactory deficits in many neurodegenerative diseases. However, the nature of the olfactory impairment remains poorly understood partly because the majority of studies have only explored smell identification capabilities. The purpose of the present study was twofold. First we wanted to test if patients with spinocerebellar ataxia type 7 (SCA7), a progressive neurodegenerative disorder characterized by cerebellar ataxia and visual loss, also have olfactory deficits. Secondly, we wanted to test the nature of the olfactory deficits by testing not only the identification level but also olfactory threshold and discrimination. Based on the olfactory dysfunction found in different neurodegenerative diseases and functional neuroimaging data showing cerebellar activation during olfaction, we hypothesized that SCA7 patients would show an olfactory impairment. To test this hypothesis we studied twenty-eight genetically confirmed SCA7 patients and twenty-seven matched controls using the Sniffing Sticks Test and the University of Pennsylvania Smell Identification Test (UPSIT). The results show that SCA7 patients' ability to discriminate and identify odors is significantly impaired, although their odor detection thresholds were at normal levels. These results suggest that SCA7 neurological damage affects olfactory perception but spares the patients' olfactory sensory capabilities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Syndrome of inappropriate antidiuretic hormone secretion associated with olfactory neuroblastoma.

    PubMed

    Yumusakhuylu, Ali Cemal; Binnetoglu, Adem; Topuz, Muhammet Fatih; Bozkurtlar, Emine Baş; Baglam, Tekin; Sari, Murat

    2013-11-01

    This study reports a patient having olfactory neuroblastoma complicated by syndrome of inappropriate antidiuretic hormone secretion. Olfactory neuroblastoma is a rare tumor that begins in the olfactory membrane. Only 10 cases have been reported previously. Because of having nonspecific symptoms, most patients manifest at an advanced stage at the time of diagnosis. Olfactory neuroblastoma may show local invasion and/or distant metastasis. We demonstrated preoperatively clinical and biochemical parameters consistent with antidiuretic hormone syndrome turned to normal ranges after the treatment. Surgery, chemotherapy, and radiotherapy are the choices of treatment; among these, surgery is an indispensible treatment.

  12. Application of the European Test of Olfactory Capabilities in patients with olfactory impairment.

    PubMed

    Joussain, P; Bessy, M; Faure, F; Bellil, D; Landis, B N; Hugentobler, M; Tuorila, H; Mustonen, S; Vento, S I; Delphin-Combe, F; Krolak-Salmon, P; Rouby, C; Bensafi, M

    2016-02-01

    A central issue in olfaction concerns the characterization of loss of olfactory function: partial (hyposmia) or total (anosmia). This paper reports the application in a clinical setting of the European Test of Olfactory Capabilities (ETOC), combining odor detection and identification. The study included three phases. In phase 1, anosmics, hyposmics and controls were tested with the 16-items version of the ETOC. In phase 2, a short version of the ETOC was developed: patients with and controls without olfactory impairment were tested on a 6-items ETOC. In phase 3, to predict olfactory impairments in new individuals, the 16-items ETOC was administered on samples of young and older adults, and the 6-items version was applied in samples of young, elderly participants and Alzheimer patients. In phase 1, linear discriminant analysis (LDA) of ETOC scores classified patients and controls with 87.5 % accuracy. In phase 2, LDA provided 84 % correct classification. Results of phase 3 revealed: (1) 16-items ETOC: whereas in young adults, 10 % were classified as hyposmic and 90 % as normosmic, in elderly, 1 % were classified as anosmic, 39 % hyposmic and 60 % normosmic; (2) 6-items ETOC: 15 % of the young adults were classified as having olfactory impairment, compared to 28 % in the older group and 83 % in Alzheimer patients. In conclusion, the ETOC enables characterizing the prevalence of olfactory impairment in young subjects and in normal and pathological aging. Whereas the 16-items ETOC is more discriminant, the short ETOC may provide a fast (5-10 min) tool to assess olfaction in clinical settings.

  13. Rodent consumption in Khon Kaen Province, Thailand.

    PubMed

    Suwannarong, Kanokwan; Chapman, Robert S

    2014-09-01

    Rodents are important reservoirs of rodent-borne infections worldwide, including Southeast Asia and Northeast Thailand (Isaan), where rodent consumption may be a source of rodent-borne diseases. The behavior of consuming rodents is related to a population's traditions, knowledge, cultural, and household contexts, among other factors. This cross-sectional survey was conducted in Khon Kaen Province, Thailand during November-December 2011. It aimed to elicit information about rodent consumption among residents of this province, and to identify factors associated with rodent consumption there. Multiple logistic regression analysis indicated that male gender, large family size, and use of rainwater as the main source of drinking water were positively associated with reported rodent consumption in this province, while having proper knowledge/attitudes towards animal-borne disease was negatively associated. These results provide evidence-base information for further studies, such as participatory ac- tion research, to further explore how people interact with rodents in different contexts. Further research is also needed to characterize risk of zoonotic diseases in relation to rodent consumption.

  14. Lawsonia intracellularis in the feces of wild rodents and stray cats captured around equine farms.

    PubMed

    Hwang, Jeong-Min; Seo, Myung-Ji; Yeh, Jung-Yong

    2017-08-11

    Proliferative enteropathy is a global enteric disease of particular importance in pigs. The causative bacterium, Lawsonia intracellularis, has a wide range of susceptible host species. Recently, L. intracellularis has been recognized as an etiologic agent of an emerging enteric disease in foals called equine proliferative enteropathy (EPE). The presence of L. intracellularis in nonruminant wildlife has raised questions regarding the role of these species in EPE transmission. This study investigated exposure to L. intracellularis in wild rodents and feral cats from eight farms with confirmed EPE. Serum (42) and fecal (40) samples from resident foals and fecal samples (131), intestinal mucosa tissues (14), and mesenteric lymph nodes (14) from wild and feral animals were collected for the evaluation of the farm status and the molecular detection of L. intracellularis following the diagnosis of EPE in index cases. Fresh feces from wild rodents and feral cats were collected from the ground while walking the premises or after trapping the animals using live traps. A total of 3 brown rats, 7 house mice, 1 striped field mouse, 2 grey red-backed voles, and 3 feral cats showed evidence of prior exposure to L. intracellularis. Our data add to increasing evidence demonstrating the potential for L. intracellularis transmission and infection in wild rodents and feral cats and provide possible evidence of interspecies transmission. The exposure of wild rodents and feral cats provides potential evidence for the spillover of L. intracellularis to wildlife species and raises the question of spillback to horses. Additionally, these animals may represent an indicator of environmental exposure or may be actively involved in the transmission of L. intracellularis to foals by acting as potential reservoir/amplifier hosts. This study is the first to demonstrate the magnitude of L. intracellularis shedding in the feces of wild rodents and feral cats and to indicate the significant

  15. Electrophysiological evidence for acidic, basic, and neutral amino acid olfactory receptor sites in the catfish

    PubMed Central

    1984-01-01

    Electrophysiological experiments indicate that olfactory receptors of the channel catfish, Ictalurus punctatus, contain different receptor sites for the acidic (A), basic (B), and neutral amino acids; further, at least two partially interacting neutral sites exist, one for the hydrophilic neutral amino acids containing short side chains (SCN), and the second for the hydrophobic amino acids containing long side chains (LCN). The extent of cross-adaptation was determined by comparing the electro-olfactogram (EOG) responses to 20 "test" amino acids during continuous bathing of the olfactory mucosa with water only (control) to those during each of the eight "adapting" amino acid regimes. Both the adapting and test amino acids were adjusted in concentrations to provide approximately equal response magnitudes in the unadapted state. Under all eight adapting regimes, the test EOG responses were reduced from those obtained in the unadapted state, but substantial quantitative differences resulted, depending upon the molecular structure of the adapting stimulus. Analyses of the patterns of EOG responses to the test stimuli identified and characterized the respective "transduction processes," a term used to describe membrane events initiated by a particular subset of amino acid stimuli that are intricately linked to the origin of the olfactory receptor potential. Only when the stimulus compounds interact with different transduction processes are the stimuli assumed to bind to different membrane "sites." Four relatively independent L-alpha-amino acid transduction processes (and thus at least four binding sites) identified in this report include: (a) the A process for aspartic and glutamic acids; (b) the B process for arginine and lysine; (c) the SCN process for glycine, alanine, serine, glutamine, and possibly cysteine; (d) the LCN process for methionine, ethionine, valine, norvaline, leucine, norleucine, glutamic acid-gamma-methyl ester, histidine, phenylalanine, and also

  16. Studies on the receptors to 5alpha-androst-16-en-3-one and 5alpha-androst-16-en-3alpha-ol in sow nasal mucosa.

    PubMed

    Gennings, J N; Gower, D B; Bannister, L H

    1977-02-28

    The presence of receptors to the "boar taint" pheromones 5alpha-androst-16-en-3-one and 5alpha-androst-16-en-3alpha-ol has been demonstrated in sow olfactory mucosa. Binding studies indicated that a sufficiently low concentration of olfactory tissue homogenate exhibited saturation of binding of 5alpha-androst-16-en-3-one, and this was of high affinity compared with control tissues of non-olfactory and heated olfactory tissues. Analysis of receptor binding of 5alpha-androst-16-en-3-one gave a value for the affinity constant (Ka) of approx. 8.3-10(8) M-1 and the value for the molar concentration of binding sites (n[M]) was approx. 3.3 pmol/mg protein. Almost identical values of Ka and n [M] were obtained when receptor binding of 5alpha-[5alpha-3H]androst-16-en-3alpha-ol was investigated (Ka 8.4-10(8) M-1; n [M] 3.7 pmol/mg protein). This suggests that the same receptor binds both 5alpha-androst-16-en-3-one and 5alpha-androst-16-en-3alpha-ol with equally high affinity. In a preliminary investigation to establish the specificity of the receptor, the binding of 17beta-hydroxy-5alpha-androstan-3-one was assayed; this steroid is odourless but has a similar structure except in ring D to 5alpha-androst-16-en-3-one. Binding was of the low affinity, non-specific type only, indicating that the sow olfactory receptors are not sensitive to this androgen.

  17. The olfactory apparatus of the bandicoot (Isoodon macrourus): fine structure and presence of a septal olfactory organ.

    PubMed Central

    Kratzing, J E

    1978-01-01

    The structure and extent of olfactory epithelium in the bandicoot (Isoodon macrourus) were examined by light and electron microscopy. Sensory epithelium covers most of the dorsal conchae, though non-sensory epithelium lines ventrally facing scrolls. The middle conchae are partly covered by olfactory epithelium, the proportion of olfactory to ciliated respiratory epithelium increasing caudally. Ventral conchae are lined by non-sensory ciliated epithelium. The nasal septum ends short of the floor of the nasal cavity in its caudal two thirds. It is covered dorsally by olfactory epithelium. The ventral margin has rounded lateral extensions which carry the isolated strips of olfactory epithelium which form the septal olfactory organ. The fine structure of the olfactory epithelium is the same in all areas. Cell types include olfactory receptors, supporting cells, two types of basal cell and rarer pale and brush cells. There is considerable morphological variation in olfactory cells, and evidence suggestive of continuing turnover in the receptor cell population. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:640961

  18. α-Synuclein in the olfactory system of a mouse model of Parkinson's disease: correlation with olfactory projections.

    PubMed

    Ubeda-Bañon, Isabel; Saiz-Sanchez, Daniel; de la Rosa-Prieto, Carlos; Martinez-Marcos, Alino

    2012-04-01

    Olfactory deficits are an early feature of Parkinson's disease (PD). Neuropathologically, α-synucleinopathy (Lewy bodies and neurites) is observed earlier (stage 1) in the olfactory system than in the substantia nigra (stage 3), and this could underlies the early olfactory symptoms. In the present report, we analyzed the distribution of α-synuclein deposits in tertiary olfactory structures (anterior olfactory nucleus, olfactory tubercle, piriform cortex, posterolateral cortical amygdala and lateral entorhinal cortex) of homozygous transgenic mice (aged 2-8 months) overexpressing the human A53T variant of α-synuclein. To address the hypothesis of progressive α-synucleinopathy within the olfactory system, the distribution of α-synuclein was analyzed in conjunction with tracer injections into the main olfactory bulb. The time-course of α-synuclein expression revealed a significant increase in the piriform cortex at the age of 8 months compared to other brain structures. Tracing experiments revealed that olfactory projections are reduced in homozygous as compared to wild type animals. Double-labeling experiments show labeled axonal collaterals of mitral cells entering layer II of the piriform cortex in close proximity to α-synuclein-positive cells. To our knowledge, this is the first study addressing the progression of α-synuclein expression in a vulnerable neuronal pathway in PD.

  19. Protracted brain development in a rodent model of extreme longevity

    PubMed Central

    Penz, Orsolya K.; Fuzik, Janos; Kurek, Aleksandra B.; Romanov, Roman; Larson, John; Park, Thomas J.; Harkany, Tibor; Keimpema, Erik

    2015-01-01

    Extreme longevity requires the continuous and large-scale adaptation of organ systems to delay senescence. Naked mole rats are the longest-living rodents, whose nervous system likely undergoes life-long adaptive reorganization. Nevertheless, neither the cellular organization of their cerebral cortex nor indices of structural neuronal plasticity along extreme time-scales have been established. We find that adult neurogenesis and neuronal migration are not unusual in naked mole rat brains. Instead, we show the prolonged expression of structural plasticity markers, many recognized as being developmentally controlled, and multi-year-long postnatal neuromorphogenesis and spatial synapse refinement in hippocampal and olfactory structures of the naked mole rat brain. Neurophysiological studies on identified hippocampal neurons demonstrated that morphological differentiation is disconnected from the control of excitability in all neuronal contingents regardless of their ability to self-renew. Overall, we conclude that naked mole rats show an extremely protracted period of brain maturation that may permit plasticity and resilience to neurodegenerative processes over their decades-long life span. This conclusion is consistent with the hypothesis that naked mole rats are neotenous, with retention of juvenile characteristics to permit survival in a hypoxic environment, with extreme longevity a consequence of greatly retarded development. PMID:26118676

  20. Protracted brain development in a rodent model of extreme longevity.

    PubMed

    Penz, Orsolya K; Fuzik, Janos; Kurek, Aleksandra B; Romanov, Roman; Larson, John; Park, Thomas J; Harkany, Tibor; Keimpema, Erik

    2015-06-29

    Extreme longevity requires the continuous and large-scale adaptation of organ systems to delay senescence. Naked mole rats are the longest-living rodents, whose nervous system likely undergoes life-long adaptive reorganization. Nevertheless, neither the cellular organization of their cerebral cortex nor indices of structural neuronal plasticity along extreme time-scales have been established. We find that adult neurogenesis and neuronal migration are not unusual in naked mole rat brains. Instead, we show the prolonged expression of structural plasticity markers, many recognized as being developmentally controlled, and multi-year-long postnatal neuromorphogenesis and spatial synapse refinement in hippocampal and olfactory structures of the naked mole rat brain. Neurophysiological studies on identified hippocampal neurons demonstrated that morphological differentiation is disconnected from the control of excitability in all neuronal contingents regardless of their ability to self-renew. Overall, we conclude that naked mole rats show an extremely protracted period of brain maturation that may permit plasticity and resilience to neurodegenerative processes over their decades-long life span. This conclusion is consistent with the hypothesis that naked mole rats are neotenous, with retention of juvenile characteristics to permit survival in a hypoxic environment, with extreme longevity a consequence of greatly retarded development.

  1. Nanoscale Particulate Matter from Urban Traffic Rapidly Induces Oxidative Stress and Inflammation in Olfactory Epithelium with Concomitant Effects on Brain

    PubMed Central

    Cheng, Hank; Saffari, Arian; Sioutas, Constantinos; Forman, Henry J.; Morgan, Todd E.; Finch, Caleb E.

    2016-01-01

    Background: Rodent models for urban air pollution show consistent induction of inflammatory responses in major brain regions. However, the initial impact of air pollution particulate material on olfactory gateways has not been reported. Objective: We evaluated the olfactory neuroepithelium (OE) and brain regional responses to a nanosized subfraction of urban traffic ultrafine particulate matter (nPM, < 200 nm) in vivo, ex vivo, and in vitro. Methods: Adult mice were exposed to reaerosolized nPM for 5, 20, and 45 cumulative hours over 3 weeks. The OE, the olfactory bulb (OB), the cerebral cortex, and the cerebellum were analyzed for oxidative stress and inflammatory responses. Acute responses of the OE to liquid nPM suspensions were studied with ex vivo and primary OE cultures. Results: After exposure to nPM, the OE and OB had rapid increases of 4-hydroxy-2-nonenal (4-HNE) and 3-nitrotyrosine (3-NT) protein adducts, whereas the cerebral cortex and cerebellum did not respond at any time. All brain regions showed increased levels of tumor necrosis factor-α (TNFα) protein by 45 hr, with earlier induction of TNFα mRNA in OE and OB. These responses corresponded to in vitro OE and mixed glial responses, with rapid induction of nitrite and inducible nitric oxide synthase (iNOS), followed by induction of TNFα. Conclusions: These findings show the differential time course of oxidative stress and inflammatory responses to nPM between the OE and the brain. Slow cumulative transport of inhaled nPM into the brain may contribute to delayed responses of proximal and distal brain regions, with potential input from systemic factors. Citation: Cheng H, Saffari A, Sioutas C, Forman HJ, Morgan TE, Finch CE. 2016. Nanoscale particulate matter from urban traffic rapidly induces oxidative stress and inflammation in olfactory epithelium with concomitant effects on brain. Environ Health Perspect 124:1537–1546; http://dx.doi.org/10.1289/EHP134 PMID:27187980

  2. Prospects for biological control of rodent populations*

    PubMed Central

    Wodzicki, Kazimierz

    1973-01-01

    Pathogens and predatory animals are the main agents used for the biological control of rodents. The pathogens that have been used are of the genus Salmonella; none is rodent-specific and all can cause severe infection in man and domestic animals. Furthermore, rodents frequently develop immunity to, and become carriers of, these organisms, and there is little to commend their use, except in lightly populated areas where control is infrequently applied. The relationships of five predator species with their rodent prey have been examined. The monitor lizard, mongoose, and ferret were for different reasons found to be unsatisfactory, and there is not yet sufficient evidence to warrant further releases of the Japanese weasel. Domestic and feral cats control rodents well in some situations but only after some other agent has removed a large part of the rodent population. PMID:4587482

  3. Species-specific control of cellular proliferation and the impact of large animal models for the use of olfactory ensheathing cells and Schwann cells in spinal cord repair.

    PubMed

    Wewetzer, Konstantin; Radtke, Christine; Kocsis, Jeffery; Baumgärtner, Wolfgang

    2011-05-01

    Autologous transplantation of olfactory ensheathing cells (OECs) and Schwann cells (SCs) is considered a promising option to promote axonal regrowth and remyelination after spinal cord injury in humans. However, if the experimental data from the rodent model can be directly extrapolated to humans, as widely believed, remains to be established. While limitations of the rodent system have recently been discussed with regard to the distinct organization of the motor systems, the question whether OECs and SCs may display species-specific properties has not been fully addressed. Prompted by recent studies on canine and porcine glia, we performed a detailed analysis of the in vitro and in vivo properties of OECs and SCs and show that rodent but not human, monkey, porcine, and canine glia require mitogens for in vitro expansion, display a complex response to elevated intracellular cAMP, and undergo spontaneous immortalization upon prolonged mitogen stimulation. These data indicate fundamental inter-species differences of the control of cellular proliferation. Whether OECs and SCs from large animals and humans share growth-promoting in vivo properties with their rodent counterpart is not yet clear. Autologous implantation studies in humans did not reveal adverse effects of cell transplantation so far. However, in vivo studies of large animal or human glia and rodent recipients mainly focused on the remyelinating potential of the transplanted cells. Thus, further experimental in vivo studies in large animals are essential to fully define the axonal growth-promoting potential of OECs and SCs. Based on the homology of the in vitro growth control between porcine, canine and human glia, it is concluded that these species may serve as valuable translational models for scaling up human procedures. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair. Copyright © 2010 Elsevier Inc. All rights

  4. Interneurons and beta-amyloid in the olfactory bulb, anterior olfactory nucleus and olfactory tubercle in APPxPS1 transgenic mice model of Alzheimer's disease.

    PubMed

    Saiz-Sanchez, Daniel; De La Rosa-Prieto, Carlos; Ubeda-Bañon, Isabel; Martinez-Marcos, Alino

    2013-09-01

    Impaired olfaction has been described as an early symptom in Alzheimer's disease (AD). Neuroanatomical changes underlying this deficit in the olfactory system are largely unknown. Given that interneuron populations are crucial in olfactory information processing, we have quantitatively analyzed somatostatin- (SOM), parvalbumin- (PV), and calretinin-expressing (CR) cells in the olfactory bulb, anterior olfactory nucleus, and olfactory tubercle in PS1 x APP double transgenic mice model of AD. The experiments were performed in wild type and double transgenic homozygous animal groups of 2, 4, 6, and 8 months of age to analyze early stages of the pathology. In addition, beta-amyloid (Aβ) expression and its correlation with SOM cells have been quantified under confocal microscopy. The results indicate increasing expressions of Aβ with aging as well as an early fall of SOM and CR expression, whereas PV was decreased later in the disease progression. These observations evidence an early, preferential vulnerability of SOM and CR cells in rostral olfactory structures during AD that may be useful to unravel neural basis of olfactory deficits associated to this neurodegenerative disorder. Copyright © 2013 Wiley Periodicals, Inc.

  5. Prediction of rodent carcinogenicity for 30 chemicals

    SciTech Connect

    Ashby, J.

    1996-10-01

    Predictions of carcinogenic activity are made for 30 chemicals currently being assessed for rodent carcinogenicity by the U.S. National Toxicology Program. The predictions are based upon the chemical structure, the anticipated or reported mutagenicity, and the reported sub-chronic toxicity of each chemical. It is predicted that 13 chemicals will be noncarcinogenic to rodents, that 7 will be genotoxic carcinogens, and that 10 may show some evidence of presumed nongenotoxic rodent carcinogenesis. 3 refs., 1 fig.

  6. Tactile learning in rodents: Neurobiology and neuropharmacology.

    PubMed

    Roohbakhsh, Ali; Shamsizadeh, Ali; Arababadi, Mohammad Kazemi; Ayoobi, Fateme; Fatemi, Iman; Allahtavakoli, Mohammad; Mohammad-Zadeh, Mohammad

    2016-02-15

    Animal models of learning and memory have been the subject of considerable research. Rodents such as mice and rats are nocturnal animals with poor vision, and their survival depends on their sense of touch. Recent reports have shown that whisker somatosensation is the main channel through which rodents collect and process environmental information. This review describes tactile learning in rodents from a neurobiological and neuropharmacological perspective, and how this is involved in memory-related processes.

  7. Auditing laboratory rodent biosecurity programs.

    PubMed

    Porter, William P; Horn, Mandy J; Cooper, Dale M; Klein, Hilton J

    2013-10-22

    A rodent biosecurity program that includes periodic evaluation of procedures used in an institution's vivarium can be used to ensure that best practices are in place to prevent a microbial pathogen outbreak. As a result of an ongoing comprehensive biosecurity review within their North American and European production facilities, the authors developed a novel biosecurity auditing process and worksheet that could be useful in other animal care and use operations. The authors encourage other institutions to consider initiating similar audits of their biosecurity programs to protect the health of their laboratory animals.

  8. Collecting and paramuscular venules in glandular mucosa of rat stomach.

    PubMed

    Moskalewski, Stanislaw; Biernacka-Wawrzonek, Dorota; Klimkiewicz, Justyna; Zdun, Rafal

    2002-03-01

    Blood from the rat gastric mucosa is drained by collecting venules running from the subepithelial layer towards the lamina muscularis mucosae. Details of their structure were studied in translucent, flat strips of the glandular stomach, in thick sections of glandular mucosa cleared in mineral oil and in semi-thin plastic sections. The number and dimensions of collecting venule outlets revealed in flat strips of gastric mucosa increased after administration of atropine and papaverine and intravital ligation of the portal vein in comparison with that of intact animals or animals with intravitally ligated portal vein but without administration of relaxing agents. In hyperemic mucosa short venules running parallel to the lamina muscularis mucosae (paramuscular venules) and draining collecting venules were distinctly visible. Saccular outlets equipped with triangular protrusions usually intervened between these vessels, probably directing blood flow. Collecting venules were straight, curved, extended or two-armed. Furthermore, numerous collecting venules contained circumscribed dilatations (sacculi) connected with the lumen of the collecting venule. Connection of paramuscular and submucosal veins occurred within the muscularis mucosae. Thus, contraction of the muscularis mucosae might control the outflow of venous blood from the gastric mucosa. Conceivably, alternate contraction and relaxation of muscularis mucosae could cause expansion and collapse of collecting venules which, in turn, would facilitate the movement of glandular content to the surface of the stomach and/or movement of interstitial fluid between cells.

  9. Evidence-Based Advances in Rodent Medicine.

    PubMed

    Jekl, Vladimir; Hauptman, Karel; Knotek, Zdenek

    2017-09-01

    The number of exotic companion pet rodents seen in veterinary practices is growing very rapidly. According to the American Veterinary Medical Association's surveys, more than 2,093,000 pet rodents were kept in US households in 2007 and in 2012 it was more than 2,349,000 animals. This article summarizes the most important evidence-based knowledge in exotic pet rodents (diagnostics of the hyperadrenocorticism in guinea pigs, pituitary tumors in rats, urolithiasis in guinea pigs, use of itopride as prokinetics, use of deslorelin acetate in rodents, cause of dental disease, and prevention of mammary gland tumors in rats). Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Mycobacteriosis in the rabbit and rodent.

    PubMed

    McClure, Diane E

    2012-01-01

    Spontaneous mycobacteriosis is rare in rabbits and rodents with the exception of the pygmy rabbit, and there are only a handful of reported cases involving other rodents. Mycobacterium avium complex was the most commonly identified organism in reports of spontaneous mycobacteriosis involving rabbits and rodents. The resistance of rabbits and rodents to mycobacterial disease has been useful in understanding the disease in humans and other animals. Preventing or controlling Mycobacterium sp transmission from wildlife to domestic animals will require collaboration between agriculture, wildlife, environmental, and political entities. Understanding the ecology and epidemiology of mycobacteria is needed for better worldwide management of tuberculosis.

  11. The Presentation of Olfactory-Trigeminal Mixed Stimuli Increases the Response to Subsequent Olfactory Stimuli.

    PubMed

    Walliczek-Dworschak, Ute; Poncelet, Johan; Baum, Daniel; Baki, Ramona; Sinding, Charlotte; Warr, Jonathan; Hummel, Thomas

    2017-01-09

    The aim of this study was to evaluate the effect of (1) the addition of trigeminal stimuli to an olfactory stimulus and (2) the congruence in the odorous mixture after repeated odor presentation. Twenty-five normosmic volunteers were enrolled and presented stimulation blocks, consisting of three habituation stimuli (H) (orange odor), one dishabituation (DH) (control condition, orange odor; congruent condition, orange odor + CO2; incongruent condition, orange odor + l-isopulegol), and one dishabituated stimulus (D) (orange odor). Olfactory event-related potentials were analyzed. Response amplitudes differed significantly in the incongruent condition (N1P2 between H3 and D; peak to peak N1P2 at electrode positions Cz, Fz, and Pz; response amplitudes between H3 and DH). The addition of CO2 modified the perception of orange odor, pronouncing a fruity note, whereas the addition of l-isopulegol as a DH pronounced the l-isopulegol note. This study provides evidence that incongruent trigeminal-olfactory stimulants increase the response to subsequent olfactory stimulus.

  12. Olfactory lateralization in homing pigeons: a GPS study on birds released with unilateral olfactory inputs.

    PubMed

    Gagliardo, Anna; Filannino, Caterina; Ioalè, Paolo; Pecchia, Tommaso; Wikelski, Martin; Vallortigara, Giorgio

    2011-02-15

    A large body of evidence has shown that pigeons rely on an olfactory-based navigational map when homing from unfamiliar locations. Previous studies on pigeons released with one nostril occluded highlighted an asymmetry in favour of the right nostril, particularly concerning the initial orientation performance of naïve birds. Nevertheless, all pigeons experiencing only unilateral olfactory input showed impaired homing, regardless of the side of the occluded nostril. So far this phenomenon has been documented only by observing the birds' vanishing bearings. In the present work we recorded the flight tracks of pigeons with previous homing experience equipped with a GPS data logger and released from an unfamiliar location with the right or the left nostril occluded. The analysis of the tracks revealed that the flight path of the birds with the right nostril occluded was more tortuous than that of unmanipulated controls. Moreover, the pigeons smelling with the left nostril interrupted their journey significantly more frequently and displayed more exploratory activity than the control birds, e.g. during flights around a stopover site. These data suggest a more important involvement of the right olfactory system in processing the olfactory information needed for the operation of the navigational map.

  13. The complete swine olfactory subgenome: expansion of the olfactory gene repertoire in the pig genome.

    PubMed

    Nguyen, Dinh Truong; Lee, Kyooyeol; Choi, Hojun; Choi, Min-kyeung; Le, Minh Thong; Song, Ning; Kim, Jin-Hoi; Seo, Han Geuk; Oh, Jae-Wook; Lee, Kyungtae; Kim, Tae-Hun; Park, Chankyu

    2012-11-15

    Insects and animals can recognize surrounding environments by detecting thousands of chemical odorants. Olfaction is a complicated process that begins in the olfactory epithelium with the specific binding of volatile odorant molecules to dedicated olfactory receptors (ORs). OR proteins are encoded by the largest gene superfamily in the mammalian genome. We report here the whole genome analysis of the olfactory receptor genes of S. scrofa using conserved OR gene specific motifs and known OR protein sequences from diverse species. We identified 1,301 OR related sequences from the S. scrofa genome assembly, Sscrofa10.2, including 1,113 functional OR genes and 188 pseudogenes. OR genes were located in 46 different regions on 16 pig chromosomes. We classified the ORs into 17 families, three Class I and 14 Class II families, and further grouped them into 349 subfamilies. We also identified inter- and intra-chromosomal duplications of OR genes residing on 11 chromosomes. A significant number of pig OR genes (n = 212) showed less than 60% amino acid sequence similarity to known OR genes of other species. As the genome assembly Sscrofa10.2 covers 99.9% of the pig genome, our analysis represents an almost complete OR gene repertoire from an individual pig genome. We show that S. scrofa has one of the largest OR repertoires, suggesting an expansion of OR genes in the swine genome. A significant number of unique OR genes in the pig genome may suggest the presence of swine specific olfactory stimulation.

  14. Visualizing olfactory learning functional imaging of experience-induced olfactory bulb changes.

    PubMed

    Fletcher, Max L; Bendahmane, Mounir

    2014-01-01

    The anatomical organization of sensory neuron input allows odor information to be transformed into odorant-specific spatial maps of mitral/tufted cell glomerular activity. In other sensory systems, neuronal representations of sensory stimuli can be reorganized or enhanced following learning or experience. Similarly, several studies have demonstrated both structural and physiological experience-induced changes throughout the olfactory system. As experience-induced changes within this circuit likely serve as an initial site for odor memory formation, the olfactory bulb is an ideal site for optical imaging studies of olfactory learning, as they allow for the visualization of experience-induced changes in the glomerular circuit following learning and how these changes impact of odor representations with the bulb. Presently, optical imaging techniques have been used to visualize experience-induced changes in glomerular odor representations in a variety of paradigms in short-term habituation, chronic odor exposure, and olfactory associative conditioning. © 2014 Elsevier B.V. All rights reserved.

  15. A Screen for Genes Expressed in the Olfactory Organs of Drosophila melanogaster Identifies Genes Involved in Olfactory Behaviour

    PubMed Central

    Tunstall, Narelle E.; Herr, Anabel; de Bruyne, Marien; Warr, Coral G.

    2012-01-01

    Background For insects the sense of smell and associated olfactory-driven behaviours are essential for survival. Insects detect odorants with families of olfactory receptor proteins that are very different to those of mammals, and there are likely to be other unique genes and genetic pathways involved in the function and development of the insect olfactory system. Methodology/Principal Findings We have performed a genetic screen of a set of 505 Drosophila melanogaster gene trap insertion lines to identify novel genes expressed in the adult olfactory organs. We identified 16 lines with expression in the olfactory organs, many of which exhibited expression of the trapped genes in olfactory receptor neurons. Phenotypic analysis showed that six of the lines have decreased olfactory responses in a behavioural assay, and for one of these we showed that precise excision of the P element reverts the phenotype to wild type, confirming a role for the trapped gene in olfaction. To confirm the identity of the genes trapped in the lines we performed molecular analysis of some of the insertion sites. While for many lines the reported insertion sites were correct, we also demonstrated that for a number of lines the reported location of the element was incorrect, and in three lines there were in fact two pGT element insertions. Conclusions/Significance We identified 16 new genes expressed in the Drosophila olfactory organs, the majority in neurons, and for several of the gene trap lines demonstrated a defect in olfactory-driven behaviour. Further characterisation of these genes and their roles in olfactory system function and development will increase our understanding of how the insect olfactory system has evolved to perform the same essential function to that of mammals, but using very different molecular genetic mechanisms. PMID:22530061

  16. Neuropeptide S facilitates mice olfactory function through activation of cognate receptor-expressing neurons in the olfactory cortex.

    PubMed

    Shao, Yu-Feng; Zhao, Peng; Dong, Chao-Yu; Li, Jing; Kong, Xiang-Pan; Wang, Hai-Liang; Dai, Li-Rong; Hou, Yi-Ping

    2013-01-01

    Neuropeptide S (NPS) is a newly identified neuromodulator located in the brainstem and regulates various biological functions by selectively activating the NPS receptors (NPSR). High level expression of NPSR mRNA in the olfactory cortex suggests that NPS-NPSR system might be involved in the regulation of olfactory function. The present study was undertaken to investigate the effects of intracerebroventricular (i.c.v.) injection of NPS or co-injection of NPSR antagonist on the olfactory behaviors, food intake, and c-Fos expression in olfactory cortex in mice. In addition, dual-immunofluorescence was employed to identify NPS-induced Fos immunereactive (-ir) neurons that also bear NPSR. NPS (0.1-1 nmol) i.c.v. injection significantly reduced the latency to find the buried food, and increased olfactory differentiation of different odors and the total sniffing time spent in olfactory habituation/dishabituation tasks. NPS facilitated olfactory ability most at the dose of 0.5 nmol, which could be blocked by co-injection of 40 nmol NPSR antagonist [D-Val(5)]NPS. NPS administration dose-dependently inhibited food intake in fasted mice. Ex-vivo c-Fos and NPSR immunohistochemistry in the olfactory cortex revealed that, as compared with vehicle-treated mice, NPS markedly enhanced c-Fos expression in the anterior olfactory nucleus (AON), piriform cortex (Pir), ventral tenia tecta (VTT), the anterior cortical amygdaloid nucleus (ACo) and lateral entorhinal cortex (LEnt). The percentage of Fos-ir neurons that also express NPSR were 88.5% and 98.1% in the AON and Pir, respectively. The present findings demonstrated that NPS, via selective activation of the neurons bearing NPSR in the olfactory cortex, facilitates olfactory function in mice.

  17. Voltage-Dependent Intrinsic Bursting in Olfactory Bulb Golgi Cells

    ERIC Educational Resources Information Center

    Pressler, R. Todd; Rozman, Peter A.; Strowbridge, Ben W.

    2013-01-01

    In the mammalian olfactory bulb (OB), local synaptic circuits modulate the evolving pattern of activity in mitral and tufted cells following olfactory sensory stimulation. GABAergic granule cells, the most numerous interneuron subtype in this brain region, have been extensively studied. However, classic studies using Golgi staining methods…

  18. Dock and Pak regulate olfactory axon pathfinding in Drosophila.

    PubMed

    Ang, Lay-Hong; Kim, Jenny; Stepensky, Vitaly; Hing, Huey

    2003-04-01

    The convergence of olfactory axons expressing particular odorant receptor (Or) genes on spatially invariant glomeruli in the brain is one of the most dramatic examples of precise axon targeting in developmental neurobiology. The cellular and molecular mechanisms by which olfactory axons pathfind to their targets are poorly understood. We report here that the SH2/SH3 adapter Dock and the serine/threonine kinase Pak are necessary for the precise guidance of olfactory axons. Using antibody localization, mosaic analyses and cell-type specific rescue, we observed that Dock and Pak are expressed in olfactory axons and function autonomously in olfactory neurons to regulate the precise wiring of the olfactory map. Detailed analyses of the mutant phenotypes in whole mutants and in small multicellular clones indicate that Dock and Pak do not control olfactory neuron (ON) differentiation, but specifically regulate multiple aspects of axon trajectories to guide them to their cognate glomeruli. Structure/function studies show that Dock and Pak form a signaling pathway that mediates the response of olfactory axons to guidance cues in the developing antennal lobe (AL). Our findings therefore identify a central signaling module that is used by ONs to project to their cognate glomeruli.

  19. Dietary sodium protects fish against copper-induced olfactory impairment.

    PubMed

    Azizishirazi, Ali; Dew, William A; Bougas, Berenice; Bernatchez, Louis; Pyle, Greg G

    2015-04-01

    Exposure to low concentrations of copper impairs olfaction in fish. To determine the transcriptional changes in the olfactory epithelium induced by copper exposure, wild yellow perch (Perca flavescens) were exposed to 20 μg/L of copper for 3 and 24h. A novel yellow perch microarray with 1000 candidate genes was used to measure differential gene transcription in the olfactory epithelium. While three hours of exposure to copper changed the transcription of only one gene, the transcriptions of 70 genes were changed after 24h of exposure to copper. Real-time PCR was utilized to determine the effect of exposure duration on two specific genes of interest, two sub-units of Na/K-ATPase. At 24 and 48 h, Na/K-ATPase transcription was down-regulated by copper at olfactory rosettes. As copper-induced impairment of Na/K-ATPase activity in gills can be ameliorated by increased dietary sodium, rainbow trout (Oncorhynchus mykiss) were used to determine if elevated dietary sodium was also protective against copper-induced olfactory impairment. Measurement of the olfactory response of rainbow trout using electro-olfactography demonstrated that sodium was protective of copper-induced olfactory dysfunction. This work demonstrates that the transcriptions of both subunits of Na/K-ATPase in the olfactory epithelium of fish are affected by Cu exposure, and that dietary Na protects against Cu-induced olfactory dysfunction.

  20. Voltage-Dependent Intrinsic Bursting in Olfactory Bulb Golgi Cells

    ERIC Educational Resources Information Center

    Pressler, R. Todd; Rozman, Peter A.; Strowbridge, Ben W.

    2013-01-01

    In the mammalian olfactory bulb (OB), local synaptic circuits modulate the evolving pattern of activity in mitral and tufted cells following olfactory sensory stimulation. GABAergic granule cells, the most numerous interneuron subtype in this brain region, have been extensively studied. However, classic studies using Golgi staining methods…

  1. Forward and Back: Motifs of Inhibition in Olfactory Processing

    PubMed Central

    Bazhenov, Maxim; Stopfer, Mark

    2016-01-01

    The remarkable performance of the olfactory system in classifying and categorizing the complex olfactory environment is built upon several basic neural circuit motifs. These include forms of inhibition that may play comparable roles in widely divergent species. In this issue of Neuron, a new study by Stokes and Isaacson sheds light on how elementary types of inhibition dynamically interact. PMID:20696373

  2. Identity Matching-to-Sample with Olfactory Stimuli in Rats

    ERIC Educational Resources Information Center

    Pena, Tracy; Pitts, Raymond C.; Galizio, Mark

    2006-01-01

    Identity matching-to-sample has been difficult to demonstrate in rats, but most studies have used visual stimuli. There is evidence that rats can acquire complex forms of olfactory stimulus control, and the present study explored the possibility that identity matching might be facilitated in rats if olfactory stimuli were used. Four rats were…

  3. 21 CFR 874.1600 - Olfactory test device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Olfactory test device. 874.1600 Section 874.1600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1600 Olfactory test device....

  4. 21 CFR 874.1600 - Olfactory test device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Olfactory test device. 874.1600 Section 874.1600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1600 Olfactory test device....

  5. 21 CFR 874.1600 - Olfactory test device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Olfactory test device. 874.1600 Section 874.1600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1600 Olfactory test device....

  6. The Odorant Receptor-Dependent Role of Olfactory Marker Protein in Olfactory Receptor Neurons

    PubMed Central

    Dibattista, Michele

    2016-01-01

    Olfactory receptor neurons (ORNs) in the nasal cavity detect and transduce odorants into action potentials to be conveyed to the olfactory bulb. Odorants are delivered to ORNs via the inhaled air at breathing frequencies that can vary from 2 to 10 Hz in the mouse. Thus olfactory transduction should occur at sufficient speed such that it can accommodate repetitive and frequent stimulation. Activation of odorant receptors (ORs) leads to adenylyl cyclase III activation, cAMP increase, and opening of cyclic nucleotide-gated channels. This makes the kinetic regulation of cAMP one of the important determinants for the response time course. We addressed the dynamic regulation of cAMP during the odorant response and examined how basal levels of cAMP are controlled. The latter is particularly relevant as basal cAMP depends on the basal activity of the expressed OR and thus varies across ORNs. We found that olfactory marker protein (OMP), a protein expressed in mature ORNs, controls both basal and odorant-induced cAMP levels in an OR-dependent manner. Lack of OMP increases basal cAMP, thus abolishing differences in basal cAMP levels between ORNs expressing different ORs. Moreover, OMP speeds up signal transduction for ORNs to better synchronize their output with high-frequency stimulation and to perceive brief stimuli. Last, OMP also steepens the dose–response relation to improve concentration coding although at the cost of losing responses to weak stimuli. We conclude that OMP plays a key regulatory role in ORN physiology by controlling multiple facets of the odorant response. SIGNIFICANCE STATEMENT Odorant receptors (ORs) form the largest family of G-protein-coupled receptors in mammals and are expressed in olfactory receptor neurons (ORNs). In this paper we show how the olfactory system ensures that monogenic expression of ORs dictates the response profile and the basal noise of ORNs. Olfactory marker protein (OMP), a protein long known to be expressed in mature ORNs

  7. Urban resident attitudes toward rodents, rodent control products, and environmental effects

    EPA Science Inventory

    Rodent control in urban areas can result in the inadvertent mortality of non-target species (e.g., bobcats). However, there is little detailed information about rodent control practices of urban residents. Our objective was to evaluate urban rodent control behaviors in two area...

  8. Urban resident attitudes toward rodents, rodent control products, and environmental effects

    EPA Science Inventory

    Rodent control in urban areas can result in the inadvertent mortality of non-target species (e.g., bobcats). However, there is little detailed information about rodent control practices of urban residents. Our objective was to evaluate urban rodent control behaviors in two area...

  9. The Miocene rodents of Serbia

    NASA Astrophysics Data System (ADS)

    Markovic, Z.

    2009-04-01

    During the Miocene period a group of shallow lakes was created in depressions at the territory of present-day Serbia. This caused the present wide distribution of lacustrine sediments, which occasionally alternate with the alluvial and marsh sediments. The remains of large mammals are relatively common, while the remains of small mammals used to be known only from two localities - Mala Miliva and Sibnica. The method of sediment sieving, used during the last decade, led to discovery of 6 new localities with remains of fossil vertebrates - Sibnica 1, Vračevići, village Lazarevac, Bele Vode, Brajkovac and Tavnik. Most of the fossil material is represented by osteological and odontological remains of small mammals. The best represented group of small mammals at each of the localities was the rodents. According to the odontological material presence was proven for 35 rodent species from 6 families. MN zonation was determined according to structure of associations. The geological age of fossil-bearing sediments was determined by using the method of correlation with the sites in Europe and Turkey.

  10. Rodent models for human diseases.

    PubMed

    Vandamme, Thierry F

    2015-07-15

    One of the factors limiting the translation of knowledge from preclinical studies to the clinic has been the limitations of in vivo diseases models. Except in the case of highly controlled and regulated clinical trials, geneticists and scientists do not use humans for their experimental investigations because of the obvious risk to life. Instead, they use various animal, fungal, bacterial, and plant species as model organisms for their studies. Amongst these model organisms, rodent models are the most used due to the easiness for the experiments and the possibility to modify genetically these model animals. Nevertheless, due to the fact that animal models typically do not contract the same genetic diseases as people, so scientists must alter their genomes to induce human disease states and to know what kind of mutation causes the disease. In this brief review, we will discuss the interests of rodent models that have been developed to simulate human pathologies, focusing in models that employ xenografts and genetic modification. Within the framework of genetically engineered mouse (GEM) models, we will review some of the current genetic strategies for modeling diseases.

  11. Cytological organization of the alpha component of the anterior olfactory nucleus and olfactory limbus

    PubMed Central

    Larriva-Sahd, Jorge

    2012-01-01

    This study describes the microscopic organization of a wedge-shaped area at the intersection of the main (MOB) and accessory olfactory bulbs (AOBs), or olfactory limbus (OL), and an additional component of the anterior olfactory nucleus or alpha AON that lies underneath of the AOB. The OL consists of a modified bulbar cortex bounded anteriorly by the MOB and posteriorly by the AOB. In Nissl-stained specimens the OL differs from the MOB by a progressive, antero-posterior decrease in thickness or absence of the external plexiform, mitral/tufted cell, and granule cell layers. On cytoarchitectual grounds the OL is divided from rostral to caudal into three distinct components: a stripe of glomerular-free cortex or preolfactory area (PA), a second or necklace glomerular area, and a wedge-shaped or interstitial area (INA) crowned by the so-called modified glomeruli that appear to belong to the anterior AOB. The strategic location and interactions with the main and AOBs, together with the previously noted functional and connectional evidence, suggest that the OL may be related to both sensory modalities. The alpha component of the anterior olfactory nucleus, a slender cellular cluster (i.e., 650 × 150 μm) paralleling the base of the AOB, contains two neuron types: a pyramidal-like neuron and an interneuron. Dendrites of pyramidal-like cells (P-L) organize into a single bundle that ascends avoiding the AOB to resolve in a trigone bounded by the edge of the OL, the AOB and the dorsal part of the anterior olfactory nucleus. Utrastructurally, the neuropil of the alpha component contains three types of synaptic terminals; one of them immunoreactive to the enzyme glutamate decarboxylase, isoform 67. PMID:22754506

  12. Destruction of the main olfactory epithelium reduces female sexual behavior and olfactory investigation in female mice.

    PubMed

    Keller, Matthieu; Douhard, Quentin; Baum, Michael J; Bakker, Julie

    2006-05-01

    We studied the contribution of the main olfactory system to mate recognition and sexual behavior in female mice. Female mice received an intranasal irrigation of either a zinc sulfate (ZnSO4) solution to destroy the main olfactory epithelium (MOE) or saline (SAL) to serve as control. ZnSO4-treated female mice were no longer able to reliably distinguish between volatile as well as nonvolatile odors from an intact versus a castrated male. Furthermore, sexual behavior in mating tests with a sexually experienced male was significantly reduced in ZnSO4-treated female mice. Vomeronasal function did not seem to be affected by ZnSO4 treatment: nasal application of male urine induced similar levels of Fos protein in the mitral and granule cells of the accessory olfactory bulb (AOB) of ZnSO4 as well as SAL-treated female mice. Likewise, soybean agglutinin staining, which stains the axons of vomeronasal neurons projecting to the glomerular layer of the AOB was similar in ZnSO4-treated female mice compared to SAL-treated female mice. By contrast, a significant reduction of Fos in the main olfactory bulb was observed in ZnSO4-treated females in comparison to SAL-treated animals, confirming a substantial destruction of the MOE. These results show that the MOE is primarily involved in the detection and processing of odors that are used to localize and identify the sex and endocrine status of conspecifics. By contrast, both the main and accessory olfactory systems contribute to female sexual receptivity in female mice.

  13. Destruction of the Main Olfactory Epithelium Reduces Female Sexual Behavior and Olfactory Investigation in Female Mice

    PubMed Central

    Keller, Matthieu; Douhard, Quentin; Baum, Michael J.; Bakker, Julie

    2008-01-01

    We studied the contribution of the main olfactory system to mate recognition and sexual behavior in female mice. Female mice received an intranasal irrigation of either a zinc sulfate (ZnSO4) solution to destroy the main olfactory epithelium (MOE) or saline (SAL) to serve as control. ZnSO4-treated female mice were no longer able to reliably distinguish between volatile as well as nonvolatile odors from an intact versus a castrated male. Furthermore, sexual behavior in mating tests with a sexually experienced male was significantly reduced in ZnSO4-treated female mice. Vomeronasal function did not seem to be affected by ZnSO4 treatment: nasal application of male urine induced similar levels of Fos protein in the mitral and granule cells of the accessory olfactory bulb (AOB) of ZnSO4 as well as SAL-treated female mice. Likewise, soybean agglutinin staining, which stains the axons of vomeronasal neurons projecting to the glomerular layer of the AOB was similar in ZnSO4-treated female mice compared to SAL-treated female mice. By contrast, a significant reduction of Fos in the main olfactory bulb was observed in ZnSO4-treated females in comparison to SAL-treated animals, confirming a substantial destruction of the MOE. These results show that the MOE is primarily involved in the detection and processing of odors that are used to localize and identify the sex and endocrine status of conspecifics. By contrast, both the main and accessory olfactory systems contribute to female sexual receptivity in female mice. PMID:16484502

  14. Understanding smell--the olfactory stimulus problem.

    PubMed

    Auffarth, Benjamin

    2013-09-01

    The main problem with sensory processing is the difficulty in relating sensory input to physiological responses and perception. This is especially problematic at higher levels of processing, where complex cues elicit highly specific responses. In olfaction, this relationship is particularly obfuscated by the difficulty of characterizing stimulus statistics and perception. The core questions in olfaction are hence the so-called stimulus problem, which refers to the understanding of the stimulus, and the structure-activity and structure-odor relationships, which refer to the molecular basis of smell. It is widely accepted that the recognition of odorants by receptors is governed by the detection of physico-chemical properties and that the physical space is highly complex. Not surprisingly, ideas differ about how odor stimuli should be classified and about the very nature of information that the brain extracts from odors. Even though there are many measures for smell, there is none that accurately describes all aspects of it. Here, we summarize recent developments in the understanding of olfaction. We argue that an approach to olfactory function where information processing is emphasized could contribute to a high degree to our understanding of smell as a perceptual phenomenon emerging from neural computations. Further, we argue that combined analysis of the stimulus, biology, physiology, and behavior and perception can provide new insights into olfactory function. We hope that the reader can use this review as a competent guide and overview of research activities in olfactory physiology, psychophysics, computation, and psychology. We propose avenues for research, particularly in the systematic characterization of receptive fields and of perception. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Trpc2-expressing sensory neurons in the mouse main olfactory epithelium of type B express the soluble guanylate cyclase Gucy1b2

    PubMed Central

    Omura, Masayo; Mombaerts, Peter

    2015-01-01

    Chemoreception in the mouse olfactory system occurs primarily at two chemosensory epithelia in the nasal cavity: the main olfactory epithelium (MOE) and the vomeronasal epithelium. The canonical chemosensory neurons in the MOE, the olfactory sensory neurons (OSNs), express the odorant receptor (OR) gene repertoire, and depend on Adcy3 and Cnga2 for chemosensory signal transduction. The canonical chemosensory neurons in the vomeronasal epithelium, the vomeronasal sensory neurons (VSNs), express two unrelated vomeronasal receptor (VR) gene repertoires, and involve Trpc2 for chemosensory signal transduction. Recently we reported the discovery of two types of neurons in the mouse MOE that express Trcp2 in addition to Cnga2. These cell types can be distinguished at the single-cell level by expression of Adcy3: positive, type A and negative, type B. Some type A cells express OR genes. Thus far there is no specific gene or marker for type B cells, hampering further analyses such as physiological recordings. Here, we show that among MOE cells, type B cells are unique in their expression of the soluble guanylate cyclase Gucy1b2. We came across Gucy1b2 in an explorative approach based on Long Serial Analysis of Gene Expression (LongSAGE) that we applied to single red-fluorescent cells isolated from whole olfactory mucosa and vomeronasal organ of mice of a novel Trcp2-IRES-taumCherry gene-targeted strain. The generation of a novel Gucy1b2-IRES-tauGFP gene-targeted strain enabled us to visualize coalescence of axons of type B cells into glomeruli in the main olfactory bulb. Our molecular and anatomical analyses define Gucy1b2 as a marker for type B cells within the MOE. The Gucy1b2-IRES-tauGFP strain will be useful for physiological, molecular, cellular, and anatomical studies of this newly described chemosensory subsystem. PMID:25701815

  16. Hidden consequences of olfactory dysfunction: a patient report series

    PubMed Central

    2013-01-01

    Background The negative consequences of olfactory dysfunction for the quality of life are not widely appreciated and the condition is therefore often ignored or trivialized. Methods 1,000 patients with olfactory dysfunction participated in an online study by submitting accounts of their subjective experiences of how they have been affected by their condition. In addition, they were given the chance to answer 43 specific questions about the consequences of their olfactory dysfunction. Results Although there are less practical problems associated with impaired or distorted odor perception than with impairments in visual or auditory perception, many affected individuals report experiencing olfactory dysfunction as a debilitating condition. Smell loss-induced social isolation and smell loss-induced anhedonia can severely affect quality of life. Conclusions Olfactory dysfunction is a serious condition for those affected by it and it deserves more attention from doctors who treat affected patients as well as from scientist who research treatment options. PMID:23875929

  17. The role of olfactory stimulus in adult mammalian neurogenesis.

    PubMed

    Arisi, Gabriel M; Foresti, Maira L; Mukherjee, Sanjib; Shapiro, Lee A

    2012-02-14

    Neurogenesis occurs in the adult mammalian brain in discrete regions related to olfactory sensory signaling and integration. The olfactory receptor cell population is in constant turn-over through local progenitor cells. Also, newborn neurons are added to the olfactory bulbs through a major migratory route from the subventricular zone, the rostral migratory stream. The olfactory bulbs project to different brain structures, including: piriform cortex, amygdala, entorhinal cortex, striatum and hippocampus. These structures play important roles in odor identification, feeding behavior, social interactions, reproductive behavior, behavioral reinforcement, emotional responses, learning and memory. In all of these regions neurogenesis has been described in normal and in manipulated mammalian brain. These data are reviewed in the context of a sensory-behavioral hypothesis on adult neurogenesis that olfactory input modulates neurogenesis in many different regions of the brain.

  18. Olfactory memory formation in Drosophila: from molecular to systems neuroscience.

    PubMed

    Davis, Ronald L

    2005-01-01

    The olfactory nervous system of insects and mammals exhibits many similarities, which suggests that the mechanisms for olfactory learning may be shared. Molecular genetic investigations of Drosophila learning have uncovered numerous genes whose gene products are essential for olfactory memory formation. Recent studies of the products of these genes have continued to expand the range of molecular processes known to underlie memory formation. Recent research has also broadened the neuroanatomical areas thought to mediate olfactory learning to include the antennal lobes in addition to a previously accepted and central role for the mushroom bodies. The roles for neurons extrinsic to the mushroom body neurons are becoming better defined. Finally, the genes identified to participate in Drosophila olfactory learning have conserved roles in mammalian organisms, highlighting the value of Drosophila for gene discovery.

  19. Interneurons in the human olfactory system in Alzheimer's disease.

    PubMed

    Saiz-Sanchez, Daniel; Flores-Cuadrado, Alicia; Ubeda-Bañon, Isabel; de la Rosa-Prieto, Carlos; Martinez-Marcos, Alino

    2016-02-01

    The principal olfactory structures display Alzheimer's disease (AD) related pathology at early stages of the disease. Consequently, olfactory deficits are among the earliest symptoms. Reliable olfactory tests for accurate clinical diagnosis are rarely made. In addition, neuropathological analysis postmortem of olfactory structures is often not made. Therefore, the relationship between the clinical features and the underlying pathology is poorly defined. Traditionally, research into Alzheimer's disease has focused on the degeneration of cortical temporal projection neurons and cholinergic neurons. Recent evidence has demonstrated the neurodegeneration of interneuron populations in AD. This review provides an updated overview of the pathological involvement of interneuron populations in the human olfactory system in Alzheimer's disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Expression of neuropeptide W in rat stomach mucosa: regulation by nutritional status, glucocorticoids and thyroid hormones.

    PubMed

    Caminos, Jorge E; Bravo, Susana B; García-Rendueles, María E R; Ruth González, C; Garcés, Maria F; Cepeda, Libia A; Lage, Ricardo; Suárez, Miguel A; López, Miguel; Diéguez, Carlos

    2008-02-07

    Neuropeptide W (NPW) is a recently identified neuropeptide that binds to G-protein-coupled receptor 7 (GPR7) and 8 (GPR8). In rodent brain, NPW mRNA is confined to specific nuclei in hypothalamus, midbrain and brainstem. Expression of NPW mRNA has also been confirmed in peripheral organs such as stomach. Several reports suggested that brain NPW is implicated in the regulation of energy and hormonal homeostasis, namely the adrenal and thyroid axes; however the precise physiological role and regulation of peripheral NPW remains unclear. In this study, we examined the effects of nutritional status on the regulation of NPW in stomach mucosa. Our results show that in this tissue, NPW mRNA and protein expression is negatively regulated by fasting and food restriction, in all the models we studied: males, females and pregnant females. Next, we examined the effect of glucocorticoids and thyroid hormones on NPW mRNA expression in the stomach mucosa. Our data showed that NPW expression is decreased in this tissue after glucocorticoid treatment or hyperthyroidism. Conversely, hypothyroidism induces a marked increase in the expression of NPW in rat stomach. Overall, these data indicate that stomach NPW is regulated by nutritional and hormonal status.

  1. Remote orbital recurrence of olfactory neuroblastoma (esthesioneuroblastoma).

    PubMed

    Breazzano, Mark P; Lewis, James S; Chambless, Lola B; Rohde, Sarah L; Sobel, Rachel K

    2017-03-31

    Olfactory neuroblastoma is a rare and often locally aggressive malignancy that invades the orbit via local destruction. It is known to recur in a delayed fashion, particularly to the neck lymph nodes. This is a case of a 65-year-old gentleman who presents with recurrence in the orbit and a neck lymph node 19 years after treatment for his initial disease. This report describes the longest known interval in orbital recurrence and should alert the monitoring physician that extreme delays in recurrence can occur.

  2. Canine olfactory detection of malignant melanoma

    PubMed Central

    Campbell, Leon Frederick; Farmery, Luke; George, Susannah Mary Creighton; Farrant, Paul B J

    2013-01-01

    Our patient is a 75-year-old man who presented after his pet dog licked persistently at an asymptomatic lesion behind his right ear. Examination revealed a nodular lesion in the postauricular sulcus. Histology confirmed malignant melanoma, which was subsequently excised. Canine olfactory detection of human malignancy is a well-documented phenomenon. Advanced olfaction is hypothesised to explain canine detection of bladder, breast, colorectal, lung, ovarian, prostate and skin cancers. Further research in this area may facilitate the development of a highly accurate aid to diagnosis for many malignancies, including melanoma. PMID:24127369

  3. [T-L mucosa to mucosa pancreatojejunal anastomosis for pancreatic reconstruction following a duodenopancreatectomy].

    PubMed

    Targarona, J; Garatea, R; Rosas, J; Romero, C; Rosamedina, J; Lora, A; Montoya, E

    2006-01-01

    The pancreatojejunal anastomosis is considered the weak spot when carrying out a duodenopancreatectomy, because it causes most of the complications following a Whipple surgery. Here we present a series of cases using a single technique for performing this anastomosis. During the period between October 2002 and August 2005, 49 duodenopancreatectomies were performed at the 3AII Department of the National Hospital Edgardo Rebagliati Martins - H.N.E.R.M., in 31 of these cases a lateral mucosa to mucosa pancreatojejunal anastomosis was carried out by the same surgeon. The most frequent complication was infection of the operating wound followed by pancreatic fistula and intra-abdominal hemorrhage and the overall morbidity was 29%. Pancreatic fistula developed in 13% of the cases; however, no patient required additional treatment and the fistula closed maximum twenty days after the surgery. On average, patients resumed oral food intake after 6 days and remained hospitalized for 16 days. Mortality was 3%, because a patient developed a pseudo-aneurism of the hepatic artery, which ruptured 17 days after the operation. The mucosa to mucosa pancreatojejunal anastomosis is a safe technique with a low index of pancreatic fistula and mortality.

  4. Hypothalamus-olfactory system crosstalk: orexin a immunostaining in mice.

    PubMed

    Gascuel, Jean; Lemoine, Aleth; Rigault, Caroline; Datiche, Frédérique; Benani, Alexandre; Penicaud, Luc; Lopez-Mascaraque, Laura

    2012-01-01

    It is well known that olfaction influences food intake, and conversely, that an individual's nutritional status modulates olfactory sensitivity. However, what is still poorly understood is the neuronal correlate of this relationship, as well as the connections between the olfactory bulb and the hypothalamus. The goal of this report is to analyze the relationship between the olfactory bulb and hypothalamus, focusing on orexin A immunostaining, a hypothalamic neuropeptide that is thought to play a role in states of sleep/wakefulness. Interestingly, orexin A has also been described as a food intake stimulator. Such an effect may be due in part to the stimulation of the olfactory bulbar pathway. In rats, orexin positive cells are concentrated strictly in the lateral hypothalamus, while their projections invade nearly the entire brain including the olfactory system. Therefore, orexin appears to be a good candidate to play a pivotal role in connecting olfactory and hypothalamic pathways. So far, orexin has been described in rats, however, there is still a lack of information concerning its expression in the brains of adult and developing mice. In this context, we revisited the orexin A pattern in adult and developing mice using immunohistological methods and confocal microscopy. Besides minor differences, orexin A immunostaining in mice shares many features with those observed in rats. In the olfactory bulb, even though there are few orexin projections, they reach all the different layers of the olfactory bulb. In contrast to the presence of orexin projections in the main olfactory bulb, almost none have been found in the accessory olfactory bulb. The developmental expression of orexin A supports the hypothesis that orexin expression only appears post-natally.

  5. Cyto- and chemoarchitecture of the monotreme olfactory tubercle.

    PubMed

    Ashwell, Ken W S

    2006-01-01

    This study was undertaken to determine whether the olfactory tubercles of two monotremes (platypus and echidna) showed cyto- or chemoarchitectural differences from the tubercles of therian mammals. Nissl staining was applied in conjunction with enzyme reactivity for NADPH diaphorase and acetylcholinesterase, and immunoreactivity for calcium binding proteins (parvalbumin, calbindin and calretinin) and tyrosine hydroxylase (echidna only). Golgi impregnations of the tubercle were also available for the echidna. The olfactory tubercle is a poorly laminated structure in the echidna, despite the pronounced development of other components of the echidna olfactory system, and the dense cell layer of the olfactory tubercle was found to be discontinuous and irregular. Granule cell clusters (islands of Calleja) were present, but were small, poorly defined and did not show the intense NADPH diaphorase activity seen in marsupial and placental mammals. A putative small island of Calleja magna was seen in only one echidna out of four. In Golgi impregnations of the echidna olfactory tubercle, the most abundant neuron type was a medium-sized densely spined neuron similar to that seen in the olfactory tubercle of some therians. Large spine-poor neurons were also seen in the polymorphic layer. In the platypus, the olfactory tubercle was very small but showed more pronounced lamination than the echidna, although no granule cell clusters were seen. In both monotremes, the development of the olfactory tubercle was poor relative to other components of the olfactory system (bulb and piriform cortex). The small olfactory tubercle region in the platypus is consistent with poor olfaction in that aquatic mammal, but the tubercle in the echidna is more like that of a microsmatic mammal than other placentals occupying a similar niche (e.g., insectivores).

  6. Inducible activation of ERK5 MAP kinase enhances adult neurogenesis in the olfactory bulb and improves olfactory function.

    PubMed

    Wang, Wenbin; Lu, Song; Li, Tan; Pan, Yung-Wei; Zou, Junhui; Abel, Glen M; Xu, Lihong; Storm, Daniel R; Xia, Zhengui

    2015-05-20

    Recent discoveries have suggested that adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) may be required for at least some forms of olfactory behavior in mice. However, it is unclear whether conditional and selective enhancement of adult neurogenesis by genetic approaches is sufficient to improve olfactory function under physiological conditions or after injury. Furthermore, specific signaling mechanisms regulating adult neurogenesis in the SVZ/OB are not fully defined. We previously reported that ERK5, a MAP kinase selectively expressed in the neurogenic regions of the adult brain, plays a critical role in adult neurogenesis in the SVZ/OB. Using a site-specific knock-in mouse model, we report here that inducible and targeted activation of the endogenous ERK5 in adult neural stem/progenitor cells enhances adult neurogenesis in the OB by increasing cell survival and neuronal differentiation. This conditional ERK5 activation also improves short-term olfactory memory and odor-cued associative olfactory learning under normal physiological conditions. Furthermore, these mice show enhanced recovery of olfactory function and have more adult-born neurons after a zinc sulfate-induced lesion of the main olfactory epithelium. We conclude that ERK5 MAP kinase is an important endogenous signaling pathway regulating adult neurogenesis in the SVZ/OB, and that conditional activation of endogenous ERK5 is sufficient to enhance adult neurogenesis in the OB thereby improving olfactory function both under normal conditions and after injury.

  7. Measurement and Analysis of Olfactory Responses with the Aim of Establishing an Objective Diagnostic Method for Central Olfactory Disorders

    NASA Astrophysics Data System (ADS)

    Uno, Tominori; Wang, Li-Qun; Miwakeichi, Fumikazu; Tonoike, Mitsuo; Kaneda, Teruo

    In order to establish a new diagnostic method for central olfactory disorders and to identify objective indicators, we measured and analyzed brain activities in the parahippocampal gyrus and uncus, region of responsibility for central olfactory disorders. The relationship between olfactory stimulation and brain response at region of responsibility can be examined in terms of fitted responses (FR). FR in these regions may be individual indicators of changes in brain olfactory responses. In the present study, in order to non-invasively and objectively measure olfactory responses, an odor oddball task was conducted on four healthy volunteers using functional magnetic resonance imaging (fMRI) and a odorant stimulator with blast-method. The results showed favorable FR and activation in the parahippocampal gyrus or uncus in all subjects. In some subjects, both the parahippocampal gyrus and uncus were activated. Furthermore, activation was also confirmed in the cingulate gyrus, middle frontal gyrus, precentral gyrus, postcentral gyrus, superior temporal gyrus and insula. The hippocampus and uncus are known to be involved in the olfactory disorders associated with early-stage Alzheimer's disease and other olfactory disorders. In the future, it will be necessary to further develop the present measurement and analysis method to clarify the relationship between central olfactory disorders and brain activities and establish objective indicators that are useful for diagnosis.

  8. The efferent connections of the olfactory bulb and accessory olfactory bulb in the snakes, Thamnophis sirtalis and Thamnophis radix.

    PubMed

    Halpern, M

    1976-10-01

    The efferent connections of the olfactory bulb and accessory olfactory bulb of two species of garter snakes, Thamnophis sirtalis and T. radix were studied with experimental anterograde degeneration techniques. Axons of cells located in the olfactory bulb terminate ipsilaterally in all parts of the anterior olfactory nucleus, olfactory tubercle and lateral pallium. In addition, some axons enter the ipsilateral stria medullaris thalami, cross the midline in the habenular commissure, enter the contralateral stria medullaris thalami and terminate in the contralateral lateral pallium. The axons of cells in the accessory olfactory bulb course through the telencephalon completely separated from the fibers of olfactory bulb origin and terminate predominantly in the nucleus sphericus. These results confirm previous reports of the separation between the central projections of the olfactory and vomeronasal systems in a variety of vertebrates. The totality of the separation between these two systems coupled with the extensive development of the vomeronasal-accessory bulb system in these snakes suggests that they may be ideal subjects for further research on the functional significance of the vomeronasal system.

  9. Monoclonal antibody immunohistochemistry of degenerative and renewal patterns in rabbit olfactory receptor neurons following unilateral olfactory bulbectomy.

    PubMed

    Onoda, N

    1988-09-01

    Degeneration and regeneration of olfactory receptor neurons were studied in adult rabbits by immunohistochemical procedures following unilateral olfactory bulbectomy. Staining patterns of the olfactory receptors of the lesioned side were compared with those of the intact side in the nasal septum at various postoperative periods (12h-6 months) following lesion. Monoclonal antibodies, produced against the rabbit olfactory bulb, were used as histochemical markers. A slight decrease in the number of olfactory receptor neurons occurred at 24 h after lesion. One monoclonal antibody 112D5 stained all receptor neurons including degenerating neurons, but the other 114G12 showed a rapid decrease in immunostaining so that 114G12-positive cells disappeared within 7 days after lesion. 114G12-positive cells reappeared at 4 weeks following lesion. By 3 months, 114G12-positive cells were arranged in a plane at the apical region of the superficial compartment of the receptor cell layer, suggesting a recapitulation of development pattern of the receptor neurons. Thereafter, the number of 114G12-positive cells increased progressively and the staining pattern of the olfactory epithelium was like that of control animals by 6 months. Monoclonal antibody 114G12 is thus the first marker that is not specific to olfactory neurons and can be used to characterize certain embryonic traits during the degeneration and regeneration of the olfactory epithelium in the adult mammal.

  10. Inducible Activation of ERK5 MAP Kinase Enhances Adult Neurogenesis in the Olfactory Bulb and Improves Olfactory Function

    PubMed Central

    Wang, Wenbin; Lu, Song; Li, Tan; Pan, Yung-Wei; Zou, Junhui; Abel, Glen M.; Xu, Lihong; Storm, Daniel R.

    2015-01-01

    Recent discoveries have suggested that adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) may be required for at least some forms of olfactory behavior in mice. However, it is unclear whether conditional and selective enhancement of adult neurogenesis by genetic approaches is sufficient to improve olfactory function under physiological conditions or after injury. Furthermore, specific signaling mechanisms regulating adult neurogenesis in the SVZ/OB are not fully defined. We previously reported that ERK5, a MAP kinase selectively expressed in the neurogenic regions of the adult brain, plays a critical role in adult neurogenesis in the SVZ/OB. Using a site-specific knock-in mouse model, we report here that inducible and targeted activation of the endogenous ERK5 in adult neural stem/progenitor cells enhances adult neurogenesis in the OB by increasing cell survival and neuronal differentiation. This conditional ERK5 activation also improves short-term olfactory memory and odor-cued associative olfactory learning under normal physiological conditions. Furthermore, these mice show enhanced recovery of olfactory function and have more adult-born neurons after a zinc sulfate-induced lesion of the main olfactory epithelium. We conclude that ERK5 MAP kinase is an important endogenous signaling pathway regulating adult neurogenesis in the SVZ/OB, and that conditional activation of endogenous ERK5 is sufficient to enhance adult neurogenesis in the OB thereby improving olfactory function both under normal conditions and after injury. PMID:25995470

  11. Proteome Analysis of Rheumatoid Arthritis Gut Mucosa.

    PubMed

    Bennike, Tue Bjerg; Ellingsen, Torkell; Glerup, Henning; Bonderup, Ole Kristian; Carlsen, Thomas Gelsing; Meyer, Michael Kruse; Bøgsted, Martin; Christiansen, Gunna; Birkelund, Svend; Andersen, Vibeke; Stensballe, Allan

    2017-01-06

    Rheumatoid arthritis (RA) is an inflammatory joint disease leading to cartilage damage and ultimately impaired joint function. To gain new insight into the systemic immune manifestations of RA, we characterized the colon mucosa proteome from 11 RA-patients and 10 healthy controls. The biopsies were extracted by colonoscopy and analyzed by label-free quantitative proteomics, enabling the quantitation of 5366 proteins. The abundance of dihydrofolate reductase (DHFR) was statistically significantly increased in RA-patient biopsies compared with controls and correlated with the administered dosage of methotrexate (MTX), the most frequently prescribed immunosuppressive drug for RA. Additionally, our data suggest that treatment with Leflunomide, a common alternative to MTX, increases DHFR. The findings were supported by immunohistochemistry with confocal microscopy, which furthermore demonstrated that DHFR was located in the cytosol of the intestinal epithelial and interstitial cells. Finally, we identified 223 citrullinated peptides from 121 proteins. Three of the peptides were unique to RA. The list of citrullinated proteins was enriched in extracellular and membrane proteins and included known targets of anticitrullinated protein antibodies (ACPAs). Our findings support that the colon mucosa could trigger the production of ACPAs, which could contribute to the onset of RA. The MS data have been deposited to ProteomeXchange with identifiers PXD001608 and PXD003082.

  12. Portal hypertensive gastric mucosa: an endoscopic study.

    PubMed Central

    Papazian, A; Braillon, A; Dupas, J L; Sevenet, F; Capron, J P

    1986-01-01

    The endoscopic features of the gastric mucosa in patients with cirrhosis have not been systematically investigated. In these patients, we observed an endoscopic aspect, consisting of multiple small erythematous areas, outlined by a subtle yellowish network (resembling a mosaic), mainly located in the proximal part of the stomach. We tested the value of this sign by comparing two groups: 100 patients with portal hypertension due to cirrhosis, and 300 control patients without signs of liver disease or portal hypertension. This endoscopic pattern was observed in 94 of the patients with cirrhosis, whereas oesophageal varices were seen in 78 only. In contrast, only one patient of the control group had this aspect. Moreover, this sign was also found in seven of eight patients with non cirrhotic portal hypertension, but was seen neither in 100 patients with chronic alcoholism but without liver disease, nor in 10 cirrhotic patients with end-to-side portacaval shunts. These endoscopic changes might be because of mucosal and/or submucosal oedema and congestion highlighting the normal areae gastricae pattern and related to raised portal pressure. We conclude that the mosaic pattern of the gastric mucosa is a sensible and specific sign for diagnosis of portal hypertension, whatever the cause. Images Figure PMID:3781334

  13. Cytology of nasal mucosa, olfactometry and rhinomanometry in patients after CO2 laser mucotomy in inferior turbinate hypertrophy.

    PubMed

    Olszewska, Ewa; Sieskiewicz, Andrzej; Kasacka, Irena; Rogowski, Marek; Zukowska, Marlena; Soroczyńska, Jolanta; Rutkowska, Justyna

    2010-01-01

    To evaluate the cytology of nasal mucosa and sense of smell and nasal patency in patients underwent carbon dioxide laser turbinoplasty (CO2 laser mucotomy) due to chronic nasal hypertrophy. 46 patients with inferior turbinate hypertrophy underwent complete laryngological examination, anterior rhinomanometry, olfactory measurements and cytology of nasal mucous which were performed before and 3 months after CO2 laser mucotomy. Laser mucotomy was performed under local anesthesia. Cytograms revealed significant changes in cell proportion before and after the surgery. Goblet cells predominated in nasal smears before the laser mucotomy. An average percentage of eosinophils in evaluated cytograms before the surgery was 2.1%. Three months after laser mucotomy we observed decrease in goblet cells proportion (the mean range of goblet cells was 16.4%) in nasal cytology. We have also observed improvement in olfactory function, however only in 7 patients (20.6%). The mean value of total nasal airway resistance (NAR) before treatment was 0.98+/-0.24 Pa/cm3/s at 75 Pa. Rhinomanometry after 3 months showed a reduction in mean total resistance from the pretreatment level to 0.77 Pa/cm3/s. We believe that CO2 laser mucotomy is an efficacious, minimally invasive and easy to use treatment of inferior turbinate hypertrophy which is performed under local anesthesia with little discomfort for the patient and does not require hospitalization.

  14. Mucoadhesion dependence of pharmaceutical polymers on mucosa characteristics.

    PubMed

    Accili, Daniela; Menghi, Giovanna; Bonacucina, Giulia; Martino, Piera Di; Palmieri, Giovanni F

    2004-07-01

    Well known mucoadhesive polymers such as Carbopol 974P and Pharmacoat 606 and three different mucosas (sublingual, oesophageal and duodenal bovine) were used to verify how the mucoadhesive properties of materials may depend on the mucosa characteristics and if a polymer may reveal more mucoadhesive than another and vice versa by changing the type of interacting mucosa. So, tablets of Carbopol 974P and Pharmacoat 606 were prepared and their mucoadhesion on the three mucosas was set in terms of maximum load and work of detachment, using a texture analyzer. At the same time, mucosas were characterized by immunohistochemical techniques and lectin histochemistry. Results obtained from the Tensile test analyses show that the adhesive power of the two polymers is different in the three mucosas. Particularly, in the sublingual mucosa, Carbopol was more mucoadhesive than Pharmacoat. On the contrary, Pharmacoat was more mucoadhesive than Carbopol in duodenal mucosa. The significantly different behavior of polymers was correlated with the desquamation layer thickness and the differential sialic acid and fucose exposition in the targeted mucosas.

  15. Hantavirus Prevention: Cleanup of Rodent Contamination

    DTIC Science & Technology

    2008-09-01

    Hantaviruses in the Americas may cause human disease involving the lungs, hence the name " hantavirus pulmonary syndrome" (HPS). Since May 1993, a...humans are also found in other rodents, but the number of cases stemming from these hantaviruses is small when compared to SNV. Hantavirus is shed in... HANTAVIRUS PREVENTION: CLEANUP OF RODENT CONTAMINATION Technical Information Paper 18-001-0306

  16. Rodent-vegetation relationships in southeastern Montana

    Treesearch

    James G. MacCracken; Daniel W. Uresk; Hansen; Richard M.

    1985-01-01

    Plant communities of southeastern Montana were surveyed for rodents over a two year period. Deer mice (Peromyscus maniculatus) were the most abundant rodent species found on the study area. Prairie voles (Microtus ochrogaster), meadow voles (M. pennsylvanicus), sagebrush voles (Lagurus curtatus...

  17. Kinetics of naphthalene metabolism in target and non-target tissues of rodents and in nasal and airway microsomes from the Rhesus monkey.

    PubMed

    Buckpitt, Alan; Morin, Dexter; Murphy, Shannon; Edwards, Patricia; Van Winkle, Laura

    2013-07-15

    Naphthalene produces species and cell selective injury to respiratory tract epithelial cells of rodents. In these studies we determined the apparent Km, Vmax, and catalytic efficiency (Vmax/Km) for naphthalene metabolism in microsomal preparations from subcompartments of the respiratory tract of rodents and non-human primates. In tissues with high substrate turnover, major metabolites were derived directly from naphthalene oxide with smaller amounts from conjugates of diol epoxide, diepoxide, and 1,2- and 1,4-naphthoquinones. In some tissues, different enzymes with dissimilar Km and Vmax appeared to metabolize naphthalene. The rank order of Vmax (rat olfactory epithelium>mouse olfactory epithelium>murine airways>rat airways) correlated well with tissue susceptibility to naphthalene. The Vmax in monkey alveolar subcompartment was 2% that in rat nasal olfactory epithelium. Rates of metabolism in nasal compartments of the monkey were low. The catalytic efficiencies of microsomes from known susceptible tissues/subcompartments are 10 and 250 fold higher than in rat airway and monkey alveolar subcompartments, respectively. Although the strong correlations between catalytic efficiencies and tissue susceptibility suggest that non-human primate tissues are unlikely to generate metabolites at a rate sufficient to produce cellular injury, other studies showing high levels of formation of protein adducts support the need for additional studies. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. An olfactory discrimination procedure for mice.

    PubMed Central

    Mihalick, S M; Langlois, J C; Krienke, J D; Dube, W V

    2000-01-01

    This paper describes an olfactory discrimination procedure for mice that is inexpensively implemented and leads to rapid discrimination learning. Mice were first trained to dig in small containers of sand to retrieve bits of buried chocolate. For discrimination training, two containers were presented simultaneously for eight trials per session. One container held sand mixed with cinnamon, and the other held sand mixed with nutmeg. Both containers were baited with chocolate buried in the sand. One odor was designated S+, and mice were allowed to dig and retrieve the chocolate from this container. The other odor was S-, and both containers were removed immediately if subjects began to dig in an S- container. After meeting a two-session acquisition criterion, subjects were given a series of discrimination reversals. In Experiment 1, 12 Swiss-Webster mice (6 male and 6 female) acquired the olfactory discrimination in three to five sessions and completed 3 to 10 successive discrimination reversals within a 50-session testing limit. In Experiment 2, subjects were 14 Pah(enu2) mice, the mouse mutant for phenylketonuria; 7 were homozygotes in which the disorder was expressed (PKU), and 7 were heterozygotes with normal metabolism (non-PKU). Thirteen mice completed pretraining in four to seven sessions, acquisition required 3 to 12 sessions, and all mice completed at least three reversals. Learning rates were similar in PKU and non-PKU mice. We discuss issues related to implementation and several potentially useful procedural variations. PMID:10866354

  19. Ecological adaptation determines functional mammalian olfactory subgenomes

    PubMed Central

    Hayden, Sara; Bekaert, Michaël; Crider, Tess A.; Mariani, Stefano; Murphy, William J.; Teeling, Emma C.

    2010-01-01

    The ability to smell is governed by the largest gene family in mammalian genomes, the olfactory receptor (OR) genes. Although these genes are well annotated in the finished human and mouse genomes, we still do not understand which receptors bind specific odorants or how they fully function. Previous comparative studies have been taxonomically limited and mostly focused on the percentage of OR pseudogenes within species. No study has investigated the adaptive changes of functional OR gene families across phylogenetically and ecologically diverse mammals. To determine the extent to which OR gene repertoires have been influenced by habitat, sensory specialization, and other ecological traits, to better understand the functional importance of specific OR gene families and thus the odorants they bind, we compared the functional OR gene repertoires from 50 mammalian genomes. We amplified more than 2000 OR genes in aquatic, semi-aquatic, and flying mammals and coupled these data with 48,000 OR genes from mostly terrestrial mammals, extracted from genomic projects. Phylogenomic, Bayesian assignment, and principle component analyses partitioned species by ecotype (aquatic, semi-aquatic, terrestrial, flying) rather than phylogenetic relatedness, and identified OR families important for each habitat. Functional OR gene repertoires were reduced independently in the multiple origins of aquatic mammals and were significantly divergent in bats. We reject recent neutralist views of olfactory subgenome evolution and correlate specific OR gene families with physiological requirements, a preliminary step toward unraveling the relationship between specific odors and respective OR gene families. PMID:19952139

  20. Multiple Reversal Olfactory Learning in Honeybees

    PubMed Central

    Mota, Theo; Giurfa, Martin

    2010-01-01

    In multiple reversal learning, animals trained to discriminate a reinforced from a non-reinforced stimulus are subjected to various, successive reversals of stimulus contingencies (e.g. A+ vs. B−, A− vs. B+, A+ vs. B−). This protocol is useful to determine whether or not animals “learn to learn” and solve successive discriminations faster (or with fewer errors) with increasing reversal experience. Here we used the olfactory conditioning of proboscis extension reflex to study how honeybees Apis mellifera perform in a multiple reversal task. Our experiment contemplated four consecutive differential conditioning phases involving the same odors (A+ vs. B− to A− vs. B+ to A+ vs. B− to A− vs. B+). We show that bees in which the weight of reinforced or non-reinforced stimuli was similar mastered the multiple olfactory reversals. Bees which failed the task exhibited asymmetric responses to reinforced and non-reinforced stimuli, thus being unable to rapidly reverse stimulus contingencies. Efficient reversers did not improve their successive discriminations but rather tended to generalize their choice to both odors at the end of conditioning. As a consequence, both discrimination and reversal efficiency decreased along experimental phases. This result invalidates a learning-to-learn effect and indicates that bees do not only respond to the actual stimulus contingencies but rather combine these with an average of past experiences with the same stimuli. PMID:20700501

  1. Widespread ectopic expression of olfactory receptor genes

    PubMed Central

    Feldmesser, Ester; Olender, Tsviya; Khen, Miriam; Yanai, Itai; Ophir, Ron; Lancet, Doron

    2006-01-01

    Background Olfactory receptors (ORs) are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. Results We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. Conclusion The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information. PMID:16716209

  2. Unitary response of mouse olfactory receptor neurons

    PubMed Central

    Ben-Chaim, Yair; Cheng, Melody M.; Yau, King-Wai

    2011-01-01

    The sense of smell begins with odorant molecules binding to membrane receptors on the cilia of olfactory receptor neurons (ORNs), thereby activating a G protein, Golf, and the downstream effector enzyme, an adenylyl cyclase (ACIII). Recently, we have found in amphibian ORNs that an odorant-binding event has a low probability of activating sensory transduction at all; even when successful, the resulting unitary response apparently involves a single active Gαolf–ACIII molecular complex. This low amplification is in contrast to rod phototransduction in vision, the best-quantified G-protein signaling pathway, where each photoisomerized rhodopsin molecule is well known to produce substantial amplification by activating many G-protein, and hence effector-enzyme, molecules. We have now carried out similar experiments on mouse ORNs, which offer, additionally, the advantage of genetics. Indeed, we found the same low probability of transduction, based on the unitary olfactory response having a fairly constant amplitude and similar kinetics across different odorants and randomly encountered ORNs. Also, consistent with our picture, the unitary response of Gαolf+/− ORNs was similar to WT in amplitude, although their Gαolf-protein expression was only half of normal. Finally, from the action potential firing, we estimated that ≤19 odorant-binding events successfully triggering transduction in a WT mouse ORN will lead to signaling to the brain. PMID:21187398

  3. Synthetic versus natural cat odorant effects on rodent behavior and medial amygdala plasticity.

    PubMed

    Collins, Dawn R

    2011-02-01

    Fear and anxiety behaviors are underpinned by neuronal changes within the amygdala. Here, the effects of exposure to natural and synthetic cat odor on behavior and amygdala plasticity were determined. Exposure to natural odor elicited typical and persistent anxiety-related behaviors, such as avoidance, freezing, and flat-back approach; however, synthetic odorant evoked no significant alteration in behavior. Furthermore, ex vivo induction of long-term potentiation within the medial nucleus of the amygdala, a principal area involved in olfactory perception, was significantly reduced after exposure to natural, but not synthetic, odor. Data presented here suggests that the synthetic odorant utilized may lack the constituents that are required to indicate predator presence in rodents and also the capacity to modulate neuronal plasticity within the medial nucleus of the amygdala. (PsycINFO Database Record (c) 2011 APA, all rights reserved).

  4. Machine-learned pattern identification in olfactory subtest results

    PubMed Central

    Lötsch, Jörn; Hummel, Thomas; Ultsch, Alfred

    2016-01-01

    The human sense of smell is often analyzed as being composed of three main components co