Hill, Genevieve; Nagaraja, Srinidhi; Akbarnia, Behrooz A; Pawelek, Jeff; Sponseller, Paul; Sturm, Peter; Emans, John; Bonangelino, Pablo; Cockrum, Joshua; Kane, William; Dreher, Maureen
2017-10-01
Growing rod constructs are an important contribution for treating patients with early-onset scoliosis. These devices experience high failure rates, including rod fractures. The objective of this study was to identify the failure mechanism of retrieved growing rods, and to identify differences between patients with failed and intact constructs. Growing rod patients who had implant removal and were previously enrolled in a multicenter registry were eligible for this study. Forty dual-rod constructs were retrieved from 36 patients across four centers, and 34 of those constructs met the inclusion criteria. Eighteen constructs failed due to rod fracture. Sixteen intact constructs were removed due to final fusion (n=7), implant exchange (n=5), infection (n=2), or implant prominence (n=2). Analyses of clinical registry data, radiographs, and retrievals were the outcome measures. Retrievals were analyzed with microscopic imaging (optical and scanning electron microscopy) for areas of mechanical failure, damage, and corrosion. Failure analyses were conducted on the fracture surfaces to identify failure mechanism(s). Statistical analyses were performed to determine significant differences between the failed and intact groups. The failed rods fractured due to bending fatigue under flexion motion. Construct configuration and loading dictate high bending stresses at three distinct locations along the construct: (1) mid-construct, (2) adjacent to the tandem connector, or (3) adjacent to the distal anchor foundation. In addition, high torques used to insert set screws may create an initiation point for fatigue. Syndromic scoliosis, prior rod fractures, increase in patient weight, and rigid constructs consisting of tandem connectors and multiple crosslinks were associated with failure. This is the first study to examine retrieved, failed growing rod implants across multiple centers. Our analysis found that rod fractures are due to bending fatigue, and that stress concentrations play an important role in rod fractures. Recommendations are made on surgical techniques, such as the use of torque-limiting wrenches or not exceeding the prescribed torques. Additional recommendations include frequent rod replacement in select patients during scheduled surgeries. Published by Elsevier Inc.
Ultrasonic Structural Health Monitoring to Assess the Integrity of Spinal Growing Rods In Vitro.
Oetgen, Matthew E; Goodley, Addison; Yoo, Byungseok; Pines, Darryll J; Hsieh, Adam H
2016-01-01
Rod fracture is a common complication of growing rods and can result in loss of correction, patient discomfort, and unplanned revision surgery. The ability to quantitate rod integrity at each lengthening would be advantageous to avoid this complication. We investigate the feasibility of applying structural health monitoring to evaluate the integrity of growing rods in vitro. Single-rod titanium 4.5-mm growing rod constructs (n = 9), one screw proximally and one distally connected by in-line connectors, were assembled with pedicle screws fixed in polyethylene blocks. Proximal and distal ends were loaded and constructs subjected to cyclic axial compression (0-100 N at 1 Hz), with incrementally increasing maximum compressive loads of 10 N every 9k cycles until failure. Four piezoceramic transducers (PZTs) were mounted along the length the constructs to interrogate the integrity of the rods with an ultrasonic, guided lamb wave approach. Every 9k cycles, an 80 V excitatory voltage was applied to a PZT to generate high-frequency vibrations, which, after propagating through the construct, was detected by the remaining PZTs. Amplitude differences between pre- and postload waveform signals were calculated until rod failure. Average construct lifetime was 88,991 ± 13,398 cycles. All constructs failed due to rod fracture within 21 mm (mean = 15 ± 4.5 mm) of a screw or connector. Amplitude differences between pre- and postload increased in a stepwise fashion as constructs were cycled. Compared to baseline, we found a 1.8 ± 0.6-fold increase in amplitude 18k cycles before failure, a 2.2 ± 1.0-fold increase in amplitude 9k cycles before failure, and a 2.75 ± 1.5-fold increase in amplitude immediately before rod fracture. We describe a potential method for assessing the structural integrity of growing rods using ultrasonic structural health monitoring. These preliminary data demonstrate the ability of periodic rod assessment to detect structural changes in cycled growing rods, which appear to correspond to subclinical rod fatigue before rod fracture. Copyright © 2016 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.
Sensitivity to VSR failure: K pipe break accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meichle, R.H.
1969-09-12
Reactor effects of failure of a safety rod to scram can be considered in two major respects: The reduction in total safety system strength which will affect the amount of ``prompt drop`` and subsequent flux decay rate of the average neutron flux-level; and the change in local flux distribution due to the absence of the particular rod which fails to enter the reactor. The purpose of this memorandum is to describe the physical effects involved and to indicate the approximate magnitude of both reactor-wide and localized changes in event of failure of a VSR simultaneous with a K Reactor risermore » accident.« less
On-line detection of key radionuclides for fuel-rod failure in a pressurized water reactor.
Qin, Guoxiu; Chen, Xilin; Guo, Xiaoqing; Ni, Ning
2016-08-01
For early on-line detection of fuel rod failure, the key radionuclides useful in monitoring must leak easily from failing rods. Yield, half-life, and mass share of fission products that enter the primary coolant also need to be considered in on-line analyses. From all the nuclides that enter the primary coolant during fuel-rod failure, (135)Xe and (88)Kr were ultimately chosen as crucial for on-line monitoring of fuel-rod failure. A monitoring system for fuel-rod failure detection for pressurized water reactor (PWR) based on the LaBr3(Ce) detector was assembled and tested. The samples of coolant from the PWR were measured using the system as well as a HPGe γ-ray spectrometer. A comparison showed the method was feasible. Finally, the γ-ray spectra of primary coolant were measured under normal operations and during fuel-rod failure. The two peaks of (135)Xe (249.8keV) and (88)Kr (2392.1keV) were visible, confirming that the method is capable of monitoring fuel-rod failure on-line. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Kyu-Tae
2013-02-01
In order to investigate whether or not the grid-to-rod fretting wear-induced fuel failure will occur for newly developed spacer grid spring designs for the fuel lifetime, out-of-pile fretting wear tests with one or two fuel assemblies are to be performed. In this study, the out-of-pile fretting wear tests were performed in order to compare the potential for wear-induced fuel failure in two newly-developed, Korean PWR spacer grid designs. Lasting 20 days, the tests simulated maximum grid-to-rod gap conditions and the worst flow induced vibration effects that might take place over the fuel life time. The fuel rod perforation times calculated from the out-of-pile tests are greater than 1933 days for 2 μm oxidized fuel rods with a 100 μm grid-to-rod gap, whereas those estimated from in-reactor fretting wear failure database may be about in the range of between 60 and 100 days. This large discrepancy in fuel rod perforation may occur due to irradiation-induced cladding oxide microstructure changes on the one hand and a temperature gradient-induced hydrogen content profile across the cladding metal region on the other hand, which may accelerate brittleness in the grid-contacting cladding oxide and metal regions during the reactor operation. A three-phase grid-to-rod fretting wear model is proposed to simulate in-reactor fretting wear progress into the cladding, considering the microstructure changes of the cladding oxide and the hydrogen content profile across the cladding metal region combined with the temperature gradient. The out-of-pile tests cannot be directly applicable to the prediction of in-reactor fretting wear-induced cladding perforations but they can be used only for evaluating a relative wear resistance of one grid design against the other grid design.
Experience reveals ways to minimize failures in rod-pumped wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patterson, J.C.; Bucaram, S.M.; Curfew, J.V.
From the experience gained over the past 25 years, ARCO Oil and Gas Co. has developed recommendations to reduce equipment failure in sucker-rod pumping installations. These recommendations include equipment selection and design, operating procedures, and chemical treatment. Equipment failure and its attendant costs are extremely important in today's petroleum industry. Because rod pumping is the predominant means of artificial lift, minimizing equipment failure in rod pumped wells can have a significant impact on profitability. This compilation of recommendations comes from field locations throughout the US and other countries. The goal is to address and solve problems on a well-by-well basis.
Failure and penetration response of borosilicate glass during short-rod impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, C. E. Jr.; Orphal, D. L.; Behner, Th.
2007-12-12
The failure characterization of brittle materials like glass is of fundamental importance in describing the penetration resistance against projectiles. A critical question is whether this failure front remains 'steady' after the driving stress is removed. A test series with short gold rods (D = 1 mm, L/D{approx_equal}5-11) impacting borosilicate glass at {approx}1 to 2 km/s was carried out to investigate this question. The reverse ballistic method was used for the experiments, and the impact and penetration process was observed simultaneously with five flash X-rays and a 16-frame high-speed optical camera. Very high measurement accuracy was established to ensure reliable results.more » Results show that the failure front induced by rod impact and penetration does arrest (ceases to propagate) after the rod is totally eroded inside the glass. The impact of a second rod after a short time delay reinitiates the failure front at about the same speed.« less
Genet, Martin; Houmard, Manuel; Eslava, Salvador; Saiz, Eduardo; Tomsia, Antoni P.
2012-01-01
This paper introduces our approach to modeling the mechanical behavior of cellular ceramics, through the example of calcium phosphate scaffolds made by robocasting for bone-tissue engineering. The Weibull theory is used to deal with the scaffolds’ constitutive rods statistical failure, and the Sanchez-Palencia theory of periodic homogenization is used to link the rod- and scaffold-scales. Uniaxial compression of scaffolds and three-point bending of rods were performed to calibrate and validate the model. If calibration based on rod-scale data leads to over-conservative predictions of scaffold’s properties (as rods’ successive failures are not taken into account), we show that, for a given rod diameter, calibration based on scaffold-scale data leads to very satisfactory predictions for a wide range of rod spacing, i.e. of scaffold porosity, as well as for different loading conditions. This work establishes the proposed model as a reliable tool for understanding and optimizing cellular ceramics’ mechanical properties. PMID:23439936
NASA Astrophysics Data System (ADS)
Porter, Ian Edward
A nuclear reactor systems code has the ability to model the system response in an accident scenario based on known initial conditions at the onset of the transient. However, there has been a tendency for these codes to lack the detailed thermo-mechanical fuel rod response models needed for accurate prediction of fuel rod failure. This proposed work will couple today's most widely used steady-state (FRAPCON) and transient (FRAPTRAN) fuel rod models with a systems code TRACE for best-estimate modeling of system response in accident scenarios such as a loss of coolant accident (LOCA). In doing so, code modifications will be made to model gamma heating in LWRs during steady-state and accident conditions and to improve fuel rod thermal/mechanical analysis by allowing axial nodalization of burnup-dependent phenomena such as swelling, cladding creep and oxidation. With the ability to model both burnup-dependent parameters and transient fuel rod response, a fuel dispersal study will be conducted using a hypothetical accident scenario under both PWR and BWR conditions to determine the amount of fuel dispersed under varying conditions. Due to the fuel fragmentation size and internal rod pressure both being dependent on burnup, this analysis will be conducted at beginning, middle and end of cycle to examine the effects that cycle time can play on fuel rod failure and dispersal. Current fuel rod and system codes used by the Nuclear Regulatory Commission (NRC) are compilations of legacy codes with only commonly used light water reactor materials, Uranium Dioxide (UO2), Mixed Oxide (U/PuO 2) and zirconium alloys. However, the events at Fukushima Daiichi and Three Mile Island accident have shown the need for exploration into advanced materials possessing improved accident tolerance. This work looks to further modify the NRC codes to include silicon carbide (SiC), an advanced cladding material proposed by current DOE funded research on accident tolerant fuels (ATF). Several additional fuels will also be analyzed, including uranium nitride (UN), uranium carbide (UC) and uranium silicide (U3Si2). Focusing on the system response in an accident scenario, an emphasis is placed on the fracture mechanics of the ceramic cladding by design the fuel rods to eliminate pellet cladding mechanical interaction (PCMI). The time to failure and how much of the fuel in the reactor fails with an advanced fuel design will be analyzed and compared to the current UO2/Zircaloy design using a full scale reactor model.
76 FR 33176 - Airworthiness Directives; Airbus Model A300 B4-103, B4-203, and B4-2C Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-08
...: One operator reported a failure of the MLG [main landing gear] retraction actuator sliding rod. This...: One operator reported a failure of the MLG [main landing gear] retraction actuator sliding rod. This... inspections of the retraction actuator sliding rod as installed on A300, A300-600 and A300-600ST aeroplanes...
Preliminary calculations related to the accident at Three Mile Island
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirchner, W.L.; Stevenson, M.G.
This report discusses preliminary studies of the Three Mile Island Unit 2 (TMI-2) accident based on available methods and data. The work reported includes: (1) a TRAC base case calculation out to 3 hours into the accident sequence; (2) TRAC parametric calculations, these are the same as the base case except for a single hypothetical change in the system conditions, such as assuming the high pressure injection (HPI) system operated as designed rather than as in the accident; (3) fuel rod cladding failure, cladding oxidation due to zirconium metal-steam reactions, hydrogen release due to cladding oxidation, cladding ballooning, cladding embrittlement,more » and subsequent cladding breakup estimates based on TRAC calculated cladding temperatures and system pressures. Some conclusions of this work are: the TRAC base case accident calculation agrees very well with known system conditions to nearly 3 hours into the accident; the parametric calculations indicate that, loss-of-core cooling was most influenced by the throttling of High-Pressure Injection (HPI) flows, given the accident initiating events and the pressurizer electromagnetic-operated valve (EMOV) failing to close as designed; failure of nearly all the rods and gaseous fission product gas release from the failed rods is predicted to have occurred at about 2 hours and 30 minutes; cladding oxidation (zirconium-steam reaction) up to 3 hours resulted in the production of approximately 40 kilograms of hydrogen.« less
Polly, David W; Ackerman, Stacey J; Schneider, Karen; Pawelek, Jeff B; Akbarnia, Behrooz A
2016-01-01
Purpose Traditional growing rod (TGR) for early-onset scoliosis (EOS) is effective but requires repeated invasive surgical lengthenings under general anesthesia. Magnetically controlled growing rod (MCGR) is lengthened noninvasively using a hand-held magnetic external remote controller in a physician office; however, the MCGR implant is expensive, and the cumulative cost savings have not been well studied. We compared direct medical costs of MCGR and TGR for EOS from the US integrated health care delivery system perspective. We hypothesized that over time, the MCGR implant cost will be offset by eliminating repeated TGR surgical lengthenings. Methods For both TGR and MCGR, the economic model estimated the cumulative costs for initial implantation, lengthenings, revisions due to device failure, surgical-site infections, device exchanges (at 3.8 years), and final fusion, over a 6-year episode of care. Model parameters were estimated from published literature, a multicenter EOS database of US institutions, and interviews. Costs were discounted at 3.0% annually and represent 2015 US dollars. Results Of 1,000 simulated patients over 6 years, MCGR was associated with an estimated 270 fewer deep surgical-site infections and 197 fewer revisions due to device failure compared with TGR. MCGR was projected to cost an additional $61 per patient over the 6-year episode of care compared with TGR. Sensitivity analyses indicated that the results were sensitive to changes in the percentage of MCGR dual rod use, months between TGR lengthenings, percentage of hospital inpatient (vs outpatient) TGR lengthenings, and MCGR implant cost. Conclusion Cost neutrality of MCGR to TGR was achieved over the 6-year episode of care by eliminating repeated TGR surgical lengthenings. To our knowledge, this is the first cost analysis comparing MCGR to TGR – from the US provider perspective – which demonstrates the efficient provision of care with MCGR. PMID:27695352
Numerical Analysis of Solids at Failure
2011-08-20
failure analyses include the formulation of invariant finite elements for thin Kirchhoff rods, and preliminary initial studies of growth in...analysis of the failure of other structural/mechanical systems, including the finite element modeling of thin Kirchhoff rods and the constitutive...algorithm based on the connectivity graph of the underlying finite element mesh. In this setting, the discontinuities are defined by fronts propagating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom
Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading during road or rail shipment. Oak Ridge National Laboratory (ORNL) has been developing testing capabilities that can be used to improve the understanding of the impacts on SNF integrity due to vibration loading, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet the nuclear industry and U.S. Nuclear Regulatory Commission needs in themore » area of safety and security of spent nuclear fuel storage and transport operations. The ORNL developed test system can perform reversible-bending fatigue testing to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The testing apparatus is also designed to meet the challenges of hot-cell operation, including remote installation and detachment of the SNF test specimen, in-situ test specimen deformation measurement, and implementation of a driving system suitable for use in a hot cell. The system contains a U-frame set-up equipped with uniquely designed grip rigs, to protect SNF rod and to ensure valid test results, and use of 3 specially designed LVDTs to obtain the in-situ curvature measurement. A variety of surrogate test rods have been used to develop and calibrate the test system as well as in performing a series of systematic cyclic fatigue tests. The surrogate rods include stainless steel (SS) cladding, SS cladding with cast epoxy, and SS cladding with alumina pellets inserts simulating fuel pellets. Testing to date has shown that the interface bonding between the SS cladding and the alumina pellets has a significant impact on the bending response of the test rods as well as their fatigue strength. The failure behaviors observed from tested surrogate rods provides a fundamental understanding of the underlying failure mechanisms of the SNF surrogate rod under vibration which has not been achieved previously. The newly developed device is scheduled to be installed in the hot-cell in summer 2013 to test high burnup SNF.« less
Large-eddy simulation, fuel rod vibration and grid-to-rod fretting in pressurized water reactors
Christon, Mark A.; Lu, Roger; Bakosi, Jozsef; ...
2016-10-01
Grid-to-rod fretting (GTRF) in pressurized water reactors is a flow-induced vibration phenomenon that results in wear and fretting of the cladding material on fuel rods. GTRF is responsible for over 70% of the fuel failures in pressurized water reactors in the United States. Predicting the GTRF wear and concomitant interval between failures is important because of the large costs associated with reactor shutdown and replacement of fuel rod assemblies. The GTRF-induced wear process involves turbulent flow, mechanical vibration, tribology, and time-varying irradiated material properties in complex fuel assembly geometries. This paper presents a new approach for predicting GTRF induced fuelmore » rod wear that uses high-resolution implicit large-eddy simulation to drive nonlinear transient dynamics computations. The GTRF fluid–structure problem is separated into the simulation of the turbulent flow field in the complex-geometry fuel-rod bundles using implicit large-eddy simulation, the calculation of statistics of the resulting fluctuating structural forces, and the nonlinear transient dynamics analysis of the fuel rod. Ultimately, the methods developed here, can be used, in conjunction with operational management, to improve reactor core designs in which fuel rod failures are minimized or potentially eliminated. Furthermore, robustness of the behavior of both the structural forces computed from the turbulent flow simulations and the results from the transient dynamics analyses highlight the progress made towards achieving a predictive simulation capability for the GTRF problem.« less
Large-eddy simulation, fuel rod vibration and grid-to-rod fretting in pressurized water reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christon, Mark A.; Lu, Roger; Bakosi, Jozsef
Grid-to-rod fretting (GTRF) in pressurized water reactors is a flow-induced vibration phenomenon that results in wear and fretting of the cladding material on fuel rods. GTRF is responsible for over 70% of the fuel failures in pressurized water reactors in the United States. Predicting the GTRF wear and concomitant interval between failures is important because of the large costs associated with reactor shutdown and replacement of fuel rod assemblies. The GTRF-induced wear process involves turbulent flow, mechanical vibration, tribology, and time-varying irradiated material properties in complex fuel assembly geometries. This paper presents a new approach for predicting GTRF induced fuelmore » rod wear that uses high-resolution implicit large-eddy simulation to drive nonlinear transient dynamics computations. The GTRF fluid–structure problem is separated into the simulation of the turbulent flow field in the complex-geometry fuel-rod bundles using implicit large-eddy simulation, the calculation of statistics of the resulting fluctuating structural forces, and the nonlinear transient dynamics analysis of the fuel rod. Ultimately, the methods developed here, can be used, in conjunction with operational management, to improve reactor core designs in which fuel rod failures are minimized or potentially eliminated. Furthermore, robustness of the behavior of both the structural forces computed from the turbulent flow simulations and the results from the transient dynamics analyses highlight the progress made towards achieving a predictive simulation capability for the GTRF problem.« less
The biomechanical consequences of rod reduction on pedicle screws: should it be avoided?
Paik, Haines; Kang, Daniel G; Lehman, Ronald A; Gaume, Rachel E; Ambati, Divya V; Dmitriev, Anton E
2013-11-01
Rod contouring is frequently required to allow for appropriate alignment of pedicle screw-rod constructs. When residual mismatch is still present, a rod persuasion device is often used to achieve further rod reduction. Despite its popularity and widespread use, the biomechanical consequences of this technique have not been evaluated. To evaluate the biomechanical fixation strength of pedicle screws after attempted reduction of a rod-pedicle screw mismatch using a rod persuasion device. Fifteen 3-level, human cadaveric thoracic specimens were prepared and scanned for bone mineral density. Osteoporotic (n=6) and normal (n=9) specimens were instrumented with 5.0-mm-diameter pedicle screws; for each pair of comparison level tested, the bilateral screws were equal in length, and the screw length was determined by the thoracic level and size of the vertebra (35 to 45 mm). Titanium 5.5-mm rods were contoured and secured to the pedicle screws at the proximal and distal levels. For the middle segment, the rod on the right side was intentionally contoured to create a 5-mm residual gap between the inner bushing of the pedicle screw and the rod. A rod persuasion device was then used to engage the setscrew. The left side served as a control with perfect screw/rod alignment. After 30 minutes, constructs were disassembled and vertebrae individually potted. The implants were pulled in-line with the screw axis with peak pullout strength (POS) measured in Newton (N). For the proximal and distal segments, pedicle screws on the right side were taken out and reinserted through the same trajectory to simulate screw depth adjustment as an alternative to rod reduction. Pedicle screws reduced to the rod generated a 48% lower mean POS (495±379 N) relative to the controls (954±237 N) (p<.05) and significantly decreased work energy to failure (p<.05). Nearly half (n=7) of the pedicle screws had failed during the reduction attempt with visible pullout of the screw. After reduction, decreased POS was observed in both normal (p<.05) and osteoporotic (p<.05) bone. Back out and reinsertion of the screw resulted in no significant difference in mean POS, stiffness, and work energy to failure (p>.05). In circumstances where a rod is not fully seated within the pedicle screw, the use of a rod persuasion device decreases the overall POS and work energy to failure of the screw or results in outright failure. Further rod contouring or correction of pedicle screw depth of insertion may be warranted to allow for appropriate alignment of the longitudinal rods. Published by Elsevier Inc.
Protected Nuclear Fuel Element
Kittel, J. H.; Schumar, J. F.
1962-12-01
A stainless steel-clad actinide metal fuel rod for use in fast reactors is reported. In order to prevert cladding failures due to alloy formation between the actinide metal and the stainless steel, a mesh-like sleeve of expanded metal is interposed between them, the sleeve metal being of niobium, tantalum, molybdenum, tungsten, zirconium, or vanadium. Liquid alkali metal is added as a heat transfer agent. (AEC)
Failure Analysis of Cracked FS-85 Tubing and ASTAR-811C End Caps
DOE Office of Scientific and Technical Information (OSTI.GOV)
ME Petrichek
2006-02-09
Failure analyses were performed on cracked FS-85 tubing and ASTAR-811C and caps which had been fabricated as components of biaxial creep specimens meant to support materials testing for the NR Space program. During the failure analyses of cracked FS-85 tubing, it was determined that the failure potentially could be due to two effects: possible copper contamination from the EDM (electro-discharge machined) recast layer and/or an insufficient solution anneal. to prevent similar failures in the future, a more formal analysis should be done after each processing step to ensure the quality of the material before further processing. During machining of themore » ASTAR-811FC rod to form end caps for biaxial creep specimens, linear defects were observed along the center portion of the end caps. These defects were only found in material that was processed from the top portion of the ingot. The linear defects were attributed to a probable residual ingot pipe that was not removed from the ingot. During the subsequent processing of the ingot to rod, the processing temperatures were not high enough to allow self healing of the ingot's residual pipe defect. To prevent this from occurring in the future, it is necessary to ensure that complete removal of the as-melted ingot pipe is verified by suitable non-destructive evaluation (NDE).« less
Patient-specific Distraction Regimen to Avoid Growth-rod Failure.
Agarwal, Aakash; Jayaswal, Arvind; Goel, Vijay K; Agarwal, Anand K
2018-02-15
A finite element study to establish the relationship between patient's curve flexibility (determined using curve correction under gravity) in juvenile idiopathic scoliosis and the required distraction frequency to avoid growth rod fracture, as a function of time. To perform a parametric analysis using a juvenile scoliotic spine model (single mid-thoracic curve with the apex at the eighth thoracic vertebra) and establish the relationship between curve flexibility (determined using curve correction under gravity) and the distraction interval that allows a higher factor of safety for the growth rods. Previous studies have shown that frequent distraction with smaller magnitude of distractions are less likely to result in rod failure. However there has not been any methodology or a chart provided to apply this knowledge on to the individual patients that undergo the treatment. This study aims to fill in that gap. The parametric study was performed by varying the material properties of the disc, hence altering the axial stiffness of the scoliotic spine model. The stresses on the rod were found to increase with increased axial stiffness of the spine, and this resulted in the increase of required optimal frequency to achieve a factor of safety of two for growth rods. A relationship between the percentage correction in Cobb's angle due to gravity alone, and the required distraction interval for limiting the maximum von Mises stress to 255 MPa on the growth rods was established. The distraction interval required to limit the stresses to the selected nominal value reduces with increase in stiffness of the spine. Furthermore, the appropriate distraction interval reduces for each model as the spine becomes stiffer with time (autofusion). This points to the fact the optimal distraction frequency is a time-dependent variable that must be achieved to keep the maximum von Mises stress under the specified factor of safety. The current study demonstrates the possibility of translating fundamental information from finite element modeling to the clinical arena, for mitigating the occurrence of growth rod fracture, that is, establishing a relationship between optimal distraction interval and curve flexibility (determined using curve correction under gravity). N/A.
Biomechanical stability according to different configurations of screws and rods.
Ha, Kee-Yong; Hwang, Sung-Chul; Whang, Tae-Hyuk
2013-05-01
Comparison of biomechanical strength according to 2 different configurations of screws and rods. To compare the biomechanical strength of different configurations of screws and rods composed of the same material and of the same size. Many complications related to instrumentation have been reported. The incidence of metallic failure would differ according to the materials and configurations of the assembly of the screws and rods used. However, to our knowledge, the biomechanical effects of implant assembly rods and screws with different configurations and different contours have not been reported. Biomechanical testing was conducted to compare top tightening (TT) screw-rod configuration with side tightening (ST) screw-rod configuration. All tests were conducted using a hydraulic all-purpose testing machine. All data were acquired at a rate of 10 Hz. Both screw systems used spinal rods of 6 mm diameter and were made of TiAl4V ELI material. Among 5 types of tests, 3 were conducted on the basis of American Society for Testing and Materials (ASTM) F 1798 to 97 and F1717-10. The other 2 tests were conducted for comparing the characteristics between TT and ST pedicle screws according to modified methods from ASTM F 1717-10 and ASTM F 1798-97. All results including axial gripping capacity and yield forces were obtained using the same methods on the basis of the mentioned ASTM standards. In the axial gripping capacity test, the mean axial gripping capacity of the TT screw-rod configuration was 3332 ± 118 N and that of ST was 2222 ± 147 N in straight rods (P = 0.019). In 15-degree contoured rods, TT was 2988 ± 199 N and ST was 2116 ± 423 N (P = 0.014). In 30-degree contoured rods, TT was 2227 ± 408 N and ST was 1814 ± 285 N (P = 0.009). In the pulling-out test, the pulling-out force of ST was 8695 ± 1616 N and that of TT was 6106 ± 195 N (P = 0.014). In the rod-pushing test, the failure force of ST was 4131 ± 205 N and that of TT was 5639 ± 105 N. In the compressive fatigue test, the maximum load was 145 N in ST and 119 N in TT. In the cycle fatigue test, the fatigue strength of ST was higher than that of TT. In the rod-pushing test, the failure force of ST was 4131 ± 205 N and that of TT was 5639 ± 105 N (P=0.046). Two different configurations of rod-screw systems found statistically significant differences with axial gripping, pulling out, and fatigue failures. ST constructs improved fixation stability over TT constructs. It was concluded that ST configuration may reduce complications related to implantation.
Probabilistic analysis on the failure of reactivity control for the PWR
NASA Astrophysics Data System (ADS)
Sony Tjahyani, D. T.; Deswandri; Sunaryo, G. R.
2018-02-01
The fundamental safety function of the power reactor is to control reactivity, to remove heat from the reactor, and to confine radioactive material. The safety analysis is used to ensure that each parameter is fulfilled during the design and is done by deterministic and probabilistic method. The analysis of reactivity control is important to be done because it will affect the other of fundamental safety functions. The purpose of this research is to determine the failure probability of the reactivity control and its failure contribution on a PWR design. The analysis is carried out by determining intermediate events, which cause the failure of reactivity control. Furthermore, the basic event is determined by deductive method using the fault tree analysis. The AP1000 is used as the object of research. The probability data of component failure or human error, which is used in the analysis, is collected from IAEA, Westinghouse, NRC and other published documents. The results show that there are six intermediate events, which can cause the failure of the reactivity control. These intermediate events are uncontrolled rod bank withdrawal at low power or full power, malfunction of boron dilution, misalignment of control rod withdrawal, malfunction of improper position of fuel assembly and ejection of control rod. The failure probability of reactivity control is 1.49E-03 per year. The causes of failures which are affected by human factor are boron dilution, misalignment of control rod withdrawal and malfunction of improper position for fuel assembly. Based on the assessment, it is concluded that the failure probability of reactivity control on the PWR is still within the IAEA criteria.
Failure kinetics in borosilicate glass during rod impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orphal, Dennis L.; Anderson, Charles E. Jr.; Behner, Thilo
2007-12-12
Failure front (FF) and penetration velocity have been measured for long gold rods impacting and penetrating borosilicate (BS) glass. Data are obtained by visualizing simultaneously FF propagation with a high speed camera and rod penetration with flash X-rays. Results for BS glass are qualitatively similar to those of DEDF (PbO) glass. FF velocity rapidly decreases from an initial value to a lower, approximately constant value. FF velocity increases with impact velocity, v{sub p}. The FF velocity remains significantly lower than the shear velocity, even at the highest impact velocity tested, about 2.5 km/s. The ratio of the FF velocity tomore » the rod penetration velocity, v{sub F}/u, decreases with increasing v{sub p} and appears to be approaching v{sub F}/u = 1 asymptotically, as observed previously for DEDF glass. The separation of the FF and the tip of the rod decreases with increasing impact velocity. Importantly, since v{sub F}/u{>=}1, the gold rod is always penetrating glass behind the FF.« less
Failure Wave in DEDF and Soda-Lime Glass During Rod Impact
NASA Astrophysics Data System (ADS)
Orphal, Dennis; Behner, Thilo; Anderson, Charles; Templeton, Douglas
2005-07-01
Investigations of glass by planar, and classical and symmetric Taylor impact experiments reveal that failure wave velocity U/F depends on impact velocity, geometry, and the type of glass. U/F typically increases with impact velocity to between ˜ 1.4 C/S and C/L (shear and longitudinal wave velocities, respectively). This paper reports the results of direct high-speed photographic measurements of the failure wave for gold rod impact from 1.2 and 2.0 km/s on DEDF glass (C/S = 2.0, C/L =3.5 km/s). The average rod penetration velocity, u, was measured using flash X-rays. Gold rods eliminated penetrator strength effects. U/F for gold rod impact on DEDF is ˜ 1.0-1.2 km/s, which is considerably less than C/S. The increase of u with impact velocity is greater than that of U/F. These results are confirmed by soda-lime glass impact on a gold rod at an impact velocity of 1300 m/s. Similar results are found in``edge-on-impact'' tests; U/F values of 1.4 km/s and 2.4-2.6 km/s in soda-lime glass are reported for W-alloy rod impact, considerably less than C/S (3.2 km/s) [1,2]. [1] Bless, et. al.(1990) AIP Proc. Shock Comp. Cond. Matter---1989, pp. 939-942 (1990) [2] E. L. Zilberbrand, et. al. (1999) Int. J. Impact Engng., 23, 995-1001 (1999).
76 FR 64798 - Airworthiness Directives; Airbus Model A300 B4-103, B4-203, and B4-2C Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-19
... condition as: One operator reported a failure of the MLG [main landing gear] retraction actuator sliding rod.... The MCAI states: One operator reported a failure of the MLG [main landing gear] retraction actuator..., December 10, 2007)] to require repetitive inspections of the retraction actuator sliding rod as installed...
Micromechanics of failure waves in glass. 2: Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espinosa, H.D.; Xu, Y.; Brar, N.S.
1997-08-01
In an attempt to elucidate the failure mechanism responsible for the so-called failure waves in glass, numerical simulations of plate and rod impact experiments, with a multiple-plane model, have been performed. These simulations show that the failure wave phenomenon can be modeled by the nucleation and growth of penny-shaped shear defects from the specimen surface to its interior. Lateral stress increase, reduction of spall strength,and progressive attenuation of axial stress behind the failure front are properly predicted by the multiple-plane model. Numerical simulations of high-strain-rate pressure-shear experiments indicate that the model predicts reasonably well the shear resistance of the materialmore » at strain rates as high as 1 {times} 10{sup 6}/s. The agreement is believed to be the result of the model capability in simulating damage-induced anisotropy. By examining the kinetics of the failure process in plate experiments, the authors show that the progressive glass spallation in the vicinity of the failure front and the rate of increase in lateral stress are more consistent with a representation of inelasticity based on shear-activated flow surfaces, inhomogeneous flow, and microcracking, rather than pure microcracking. In the former mechanism, microcracks are likely formed at a later time at the intersection of flow surfaces, in the case of rod-on-rod impact, stress and radial velocity histories predicted by the microcracking model are in agreement with the experimental measurements. Stress attenuation, pulse duration, and release structure are properly simulated. It is shown that failure wave speeds in excess to 3,600 m/s are required for adequate prediction in rod radial expansion.« less
Hawke, Basil C.
1986-01-01
A control rod drive uses gravitational forces to insert one or more control rods upwardly into a reactor core from beneath the reactor core under emergency conditions. The preferred control rod drive includes a vertically movable weight and a mechanism operatively associating the weight with the control rod so that downward movement of the weight is translated into upward movement of the control rod. The preferred control rod drive further includes an electric motor for driving the control rods under normal conditions, an electrically actuated clutch which automatically disengages the motor during a power failure and a decelerator for bringing the control rod to a controlled stop when it is inserted under emergency conditions into a reactor core.
77 FR 46940 - Airworthiness Directives; Glasflugel Gliders
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-07
... condition as corrosion damage to the elevator control rod that could lead to failure of the elevator control... into the elevator control rod through a control bore hole and resulted in corrosion damage. The investigation concluded as well that the corrosion cannot be detected from outside the elevator control rod...
Failure analysis and evaluation of a six cylinders crankshaft for marine diesel generator
NASA Astrophysics Data System (ADS)
Khaeroman, Haryadi, Gunawan Dwi; Ismail, R.; Kim, Seon Jin
2017-01-01
This paper discusses the failure of a diesel engine crankshaft of a four stroke 6 cylinders, used in a marine diesel generator. A correct analysis and evaluation of the dimension of the crankshaft are very essential to prevent failure of the crankshaft fracture and cracks. The crankshaft is liable to deformation due to misalignment of the main journals bearings. This article presents the result of crankshaft failure analysis by measuring the mean diameter of the rod journal and the main journal, on the wear, out of roundness, taper, etc. The measurement results must be compared with the acceptable value in the engine specification and manual service and also should follow the American Bureau of Shipping (ABS) guidance notes on propulsion shafting alignment. The measurement results of this study show that the main journal diameter of the third cylinder exhibits an excessive wear, 1.35 % above the permissible lowest rate. It also has a taper for 0.23 mm and out of roundness of 0.13 mm. The diameter of the rod journal indicates excessive wear, 1.06 % higher than the permissible lowest rate, the taper of 0.41 mm and out of roundness of 0.65 mm. The crankshaft warpage or run-out journal, the analysis of the crank web deflection are also evaluated and presented in this paper.
Failure Wave in DEDF and Soda-Lime Glass during Rod Impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orphal, D. L.; Behner, Th.; Hohler, V.
2006-07-28
Investigations of glass by planar, and classical and symmetric Taylor impact experiments reveal that failure wave velocity vF depends on impact velocity, geometry, and type of glass. vF typically increases with impact velocity vP to between cS and cL or to {radical}2cS (shear and longitudinal wave velocity). This paper reports initial results of an investigation of failure waves associated with gold rod impact on high-density (DEDF) glass and soda-lime glass. Data are obtained by visualizing simultaneously the failure propagation in the glass with a high-speed camera and the rod penetration velocity u with flash radiography. Results for DEDF glass aremore » reported for vP between 1.2 and 2.0 km/s, those for soda-lime glass with vP {approx_equal}1.3 km/s. It is shown that vF > u, and that in the case of DEDF glass vF/u decreases from ; 1.38 to 1.13 with increasing vp. In addition, several Taylor tests were performed. For both DEDF and soda-lime glass the vF-values, found here as well as vF- data reported in the literature, reveal that--for equal pressures--the failure wave velocities determined from Taylor tests or planar-impact tests are distinctly greater than those observed during steady-state rod penetration.« less
Detonation Failure Thickness Measurement in AN Annular Geometry
NASA Astrophysics Data System (ADS)
Mack, D. B.; Petel, O. E.; Higgins, A. J.
2007-12-01
The failure thickness of neat nitromethane in aluminum confinement was measured using a novel experimental technique. The thickness was approximated in an annular geometry by the gap between a concentric aluminum tube and rod. This technique was motivated by the desire to have a periodic boundary condition in the direction orthogonal to the annulus thickness, rather than a free surface occurring in typical rectangular geometry experiments. This results in a two-dimensional charge analogous to previous failure thickness setups but with infinite effective width (i.e. infinite aspect ratio). Detonation propagation or failure was determined by the observation of failure patterns engraved on the aluminum rod by the passing detonation. Analysis of these engraved patterns provides a statistical measurement of the spatial density of failure waves. Failure was observed as far as 180 thicknesses downstream. The failure thickness was measured to be 1.45 mm±0.15 mm.
Experimental Study on Surrogate Nuclear Fuel Rods under Reversed Cyclic Bending
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hong; Wang, Jy-An John
The mechanical behavior of spent nuclear fuel (SNF) rods under reversed cyclic bending or bending fatigue must be understood to evaluate their vibration integrity in a transportation environment. This is especially important for high-burnup fuels (>45 GWd/MTU), which have the potential for increased structural damage. It has been demonstrated that the bending fatigue of SNF rods can be effectively studied using surrogate rods. In this investigation, surrogate rods made of stainless steel (SS) 304 cladding and aluminum oxide pellets were tested under load or moment control at a variety of amplitude levels at 5 Hz using the Cyclic Integrated Reversible-Bendingmore » Fatigue Tester developed at Oak Ridge National Laboratory. The behavior of the rods was further characterized using flexural rigidity and hysteresis data, and fractography was performed on the failed rods. The proposed surrogate rods captured many of the characteristics of deformation and failure mode observed in SNF, including the linear-to-nonlinear deformation transition and large residual curvature in static tests, PPI and PCMI failure mechanisms, and large variation in the initial structural condition. Rod degradation was measured and characterized by measuring the flexural rigidity; the degradation of the rigidity depended on both the moment amplitude applied and the initial structural condition of the rods. It was also shown that a cracking initiation site can be located on the internal surface or the external surface of cladding. Finally, fatigue damage to the bending rods can be described in terms of flexural rigidity, and the fatigue life of rods can be predicted once damage model parameters are properly evaluated. The developed experimental approach, test protocol, and analysis method can be used to study the vibration integrity of SNF rods in the future.« less
NASA Astrophysics Data System (ADS)
Arnautov, A. K.; Terrasi, G. P.; Kulakov, V. L.; Portnov, G. G.
2014-01-01
The effectiveness of fastening of high-strength unidirectional CFRP/epoxy rods in potted anchors was investigated experimentally. The rods had splitted ends, in which duralumin wedges were glued. The experiments, performed for three types of contact between the composite rods and the potted material, showed that the most effective were full adhesion and adhesion-friction contacts, when the maximum load-carrying capacity of CFRP rods under tension could be reached. The full friction contact was ineffective because of the shear failure of CFRP rods inside the anchorage zone.
Superflywheel energy storage system. [for windpowered machines
NASA Technical Reports Server (NTRS)
Rabenhorst, D. W.
1973-01-01
A windpowered system using the superflywheel configuration for energy storage is considered. Basic elements of superflywheels are thin rods assembled in pregrooved hub lamina so that they fan out in radial orientation. Adjacent layers of hub lamina are assembled 90 degree in rotation to each other so as to form a circular brush configuration. Thus stress concentrations and rod failure are minimized and realistic failure containment for a high performance flywheel is obtained.
Chapellier, R.A.
1960-05-24
BS>A drive mechanism was invented for the control rod of a nuclear reactor. Power is provided by an electric motor and an outside source of fluid pressure is utilized in conjunction with the fluid pressure within the reactor to balance the loadings on the motor. The force exerted on the drive mechanism in the direction of scramming the rod is derived from the reactor fluid pressure so that failure of the outside pressure source will cause prompt scramming of the rod.
Fast-acting nuclear reactor control device
Kotlyar, Oleg M.; West, Phillip B.
1993-01-01
A fast-acting nuclear reactor control device for moving and positioning a fety control rod to desired positions within the core of the reactor between a run position in which the safety control rod is outside the reactor core, and a shutdown position in which the rod is fully inserted in the reactor core. The device employs a hydraulic pump/motor, an electric gear motor, and solenoid valve to drive the safety control rod into the reactor core through the entire stroke of the safety control rod. An overrunning clutch allows the safety control rod to freely travel toward a safe position in the event of a partial drive system failure.
Nambiar, Mithun; Yang, Yi; Liew, Susan; Turner, Peter L; Torode, Ian P
2016-10-01
Single or dual-rod instrumentation can be used for the anterior fixation of the spine in adolescent idiopathic scoliosis (AIS). We aim to compare the complications, radiographic and functional outcomes of patients with AIS who have undergone single and dual-rod instrumentation. This is a multi-centre study involving the Royal Children's, Royal Melbourne and Epworth hospitals. Three primary surgeons were involved to ensure homogeneity of surgical technique and implants. Patients with AIS and thoracolumbar curves (Lenke 5 and 6) undergoing anterior instrumentation from 1st January 2000 to 30th June 2013 were included. Radiographic data were collected from X-rays. The functional outcome was measured through the Scoliosis Research Society questionnaire (SRS-30). The study included 58 patients (38 single-rod and 20 dual-rod patients). Thirty-nine patients were classified with Lenke 5 curves, while 19 patients had Lenke 6 curves. Structural interbody supports were used in 95 % of cases. In the preoperative to postoperative period, patients with single rods had an improvement of 75 and 51 % for primary and secondary curves, respectively, while patients with dual rods had an improvement of 70 and 38 % for primary and secondary curves, respectively. There were no cases of pseudoarthrosis or metalware failure in either group. Two patients (one single-rod and one dual-rod patient) required further unplanned posterior fusion. 91 % of patients were satisfied with the results of their back management. Pseudoarthrosis and metalware failure are rare complications of anterior instrumentation. Our study found no significant difference in functional or radiographic outcome between single and dual-rod instrumentation. Level III.
Mechanical beam isolator for high-power laser systems
Post, Richard F.; Vann, Charles S.
1998-01-01
A mechanical beam isolator uses rod-shaped elements having a Gaussian configuration to interrupt the path of a beam of photons or particles when the time-scale of the needed interruption is of the order of a microsecond or less. One or more of these rods is mounted transversely to, and penetrates through, a rotating shaft supported by bearings. Owing to the Gaussian geometry of the rods, they are able to withstand much higher rotation speeds, without tensile failure, than rods having any other geometrical shape.
Stability and failure analysis of steering tie-rod
NASA Astrophysics Data System (ADS)
Jiang, GongFeng; Zhang, YiLiang; Xu, XueDong; Ding, DaWei
2008-11-01
A new car in operation of only 8,000 km, because of malfunction, resulting in lost control and rammed into the edge of the road, and then the basic vehicle scrapped. According to the investigation of the site, it was found that the tie-rod of the car had been broken. For the subjective analysis of the accident and identifying the true causes of rupture of the tierod, a series of studies, from the angle of theory to experiment on the bended broken tie-rod, were conducted. The mechanical model was established; the stability of the defective tie-rod was simulated based on ANSYS software. Meanwhile, the process of the accident was simulated considering the effect of destabilization of different vehicle speed and direction of the impact. Simultaneously, macro graphic test, chemical composition analysis, microstructure analysis and SEM analysis of the fracture were implemented. The results showed that: 1) the toughness of the tie-rod is at a normal level, but there is some previous flaws. One quarter of the fracture surface has been cracked before the accident. However, there is no relationship between the flaw and this incident. The direct cause is the dynamic instability leading to the large deformation of impact loading. 2) The declining safety factor of the tie-rod greatly due to the previous flaws; the result of numerical simulation shows that previous flaw is the vital factor of structure instability, on the basis of the comparison of critical loads of the accident tie-rod and normal. The critical load can decrease by 51.3% when the initial defect increases 19.54% on the cross-sectional area, which meets the Theory of Koiter.
Fuel inspection and reconstitution experience at Surry Power Station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brookmire, T.A.
Surry Power Station, located on the James River near Williamsburg, Virginia, has two Westinghouse pressurized water reactors. Unit 2 consistently sets a high standard of fuel performance (no indication of fuel failures in recent cycles), while unit 1, since cycle 6, has been plagued with numerous fuel failures. Both Surry units operate with Westinghouse standard 15 x 15 fuel. Virginia Power management set goals to reduce the coolant activity, thus reducing person-rem exposure and the associated costs of high coolant activity. To achieve this goal, extensive fuel examination campaigns were undertaken that included high-magnification video inspectionsa, debris cleaning, wet andmore » vacuum fuel sipping, fuel rod ultrasonic testing, and eddy current examination. In the summer of 1985, during cycle 8 operation, Kraftwerk Union reconstituted (repaired) the damage, once-burned assemblies from cycles 6 and 7 by replacing failed fuel rods with solid Zircaloy-4 rods. Currently, cycle 9 has operated for 5 months without any indication of fuel failure (the cycle 9 core has two reconstituted assemblies).« less
An interesting case of rifampicin-dependent/-enhanced multidrug-resistant tuberculosis.
Zhong, M; Zhang, X; Wang, Y; Zhang, C; Chen, G; Hu, P; Li, M; Zhu, B; Zhang, W; Zhang, Y
2010-01-01
We report a case of rifampicin (RMP) dependent/enhanced multidrug-resistant (MDR-TB) from a patient who had been treated with the World Health Organization optional thrice-weekly treatment and document the clinical and bacteriological features. RMP-enhanced tubercle bacilli that grew poorly without RMP but grew better in its presence were isolated from the patient with treatment failure. The bacteria grown without RMP consisted of mixed morphologies of short rod-shaped acid-fast bacteria and poorly stained coccoid bacteria, but stained normally as acid-fast rods when grown in the presence of RMP. The isolated RMP-enhanced bacteria harbored the common S531L mutation and a novel mutation F584S in the rpoB gene. Treatment containing RMP or replacement of RMP with more powerful rifapentine paradoxically aggravated the disease, but its removal led to successful cure of the patient. This study highlights the potential dangers of continued treatment of MDR-TB with rifamycins that can occur due to delayed or absent drug susceptibility results and calls for timely detection of RMP-dependent/-enhanced bacteria in treatment failure patients by including RMP in culture media and removal of RMP from treatment regimen upon detection.
Mechanical beam isolator for high-power laser systems
Post, R.F.; Vann, C.S.
1998-07-07
A mechanical beam isolator uses rod-shaped elements having a Gaussian configuration to interrupt the path of a beam of photons or particles when the time-scale of the needed interruption is of the order of a microsecond or less. One or more of these rods is mounted transversely to, and penetrates through, a rotating shaft supported by bearings. Owing to the Gaussian geometry of the rods, they are able to withstand much higher rotation speeds, without tensile failure, than rods having any other geometrical shape. 3 figs.
Oral manifestations in a renal osteodystrophy patient - a case report with review of literature.
J, Parthiban; Nisha V, Aarthi; Gs, Asokan; Ca, Prakash; Mm, Varadharaja
2014-08-01
Renal Osteodystrophy (ROD) is a common complication of chronic renal disease (CRD) and is the part of a broad spectrum of disorders of mineral metabolism that occurs in the clinical setting. It occurs early in the course of chronic renal failure and progresses as the kidney function deteriorates. It is an osseous alteration believed to arise from increased parathyroid function associated with inappropriate calcium, phosphorus and vitamin D metabolism. Involvement of the jaws is common and radiographic alterations are often one of the earliest signs of chronic renal failure. Herein, reporting a case of Chronic Renal Failure (Bilateral Grade I Neuropathy) with ROD presenting oral manifestations in an 11-year -old male child.
NASA Astrophysics Data System (ADS)
Liu, X.; Y Luo, Y.; Wang, Z. W.
2014-03-01
As an important component of the blade-control system in Kaplan turbines, piston rods are subjected to fluctuating forces transferred by the turbines blades from hydraulic pressure oscillations. Damage due to unsteady hydraulic loads might generate unexpected down time and high repair cost. In one running hydropower plant, the fracture failure of the piston rod was found twice at the same location. With the transient dynamic analysis, the retainer ring structure of the piston rod existed a relative high stress concentration. This predicted position of the stress concentration agreed well with the actual fracture position in the plant. However, the local strain approach was not able to explain why this position broke frequently. Since traditional structural fatigue analyses use a local stress strain approach to assess structural integrity, do not consider the effect of flaws which can significantly degrade structural life. Using linear elastic fracture mechanism (LEFM) approaches that include the effect of flaws is becoming common practice in many industries. In this research, a case involving a small semi-ellipse crack was taken into account at the stress concentration area, crack growth progress was calculated by FEM. The relationship between crack length and remaining life was obtained. The crack propagation path approximately agreed with the actual fracture section. The results showed that presence of the crack had significantly changed the local stress and strain distributions of the piston rod compared with non-flaw assumption.
Competing mechanisms in the wear resistance behavior of biomineralized rod-like microstructures
NASA Astrophysics Data System (ADS)
Escobar de Obaldia, Enrique; Herrera, Steven; Grunenfelder, Lessa Kay; Kisailus, David; Zavattieri, Pablo
2016-11-01
The remarkable mechanical properties observed in biological composite materials relative to those of their individual constituents distinguish them from common engineering materials. Some naturally occurring high-performance ceramics, like the external veneer of the Chiton (Cryptochiton stelleri) tooth, have been shown to have superior hardness and impressive abrasion resistance properties. The mechanical performance of the chiton tooth has been attributed to a hierarchical arrangement of nanostructured magnetite rods surrounded with organic material. While nanoindentation tests provide useful information about the overall performance of this biological composite, understanding the key microstructural features and energy dissipation mechanisms at small scales remains a challenging task. We present a combined experimental/numerical approach to elucidate the role of material deformation in the rods, debonding at the rod interfaces and the influence of energy dissipation mechanisms on the ability of the microstructure to distribute damage under extreme loading conditions. We employ a 3D finite element-based micromechanical model to simulate the nanoindentation tests performed in geological magnetite and cross-sections of the chiton tooth. This proposed model is capable of capturing the inelastic deformation of the rods and the failure of their interfaces, while damage, fracture and fragmentation of the mineralized rods is assessed using a probabilistic function. Our results show that these natural materials achieve their abrasion resistant properties by controlling the interface strength between rods, alleviating the tensile stress on the rods near the indentation tip and therefore decreasing the probability of catastrophic failure without significantly sacrificing resistance to penetration. The understanding of these competing energy dissipating mechanisms provides a path to the prediction of new combination of materials. In turns, these results suggest certain guidelines for abrasion resistance rod-like microstructures in composites with high volume fraction of brittle minerals or ceramics with tailored performance for specific applications.
Niederhäuser, Simone K; Tepic, Slobodan; Weber, Urs T
2015-05-01
To evaluate the effect of screw position on strength and stiffness of a combination locking plate-rod construct in a synthetic feline femoral gap model. 30 synthetic long-bone models derived from beechwood and balsa wood. 3 constructs (2 locking plate-rod constructs and 1 locking plate construct; 10 specimens/construct) were tested in a diaphyseal bridge plating configuration by use of 4-point bending and torsion. Variables included screw position (near the fracture gap and far from the fracture gap) and application of an intramedullary pin. Constructs were tested to failure in each loading mode to determine strength and stiffness. Failure was defined as plastic deformation of the plate or breakage of the bone model or plate. Strength, yield angle, and stiffness were compared by use of a Wilcoxon test. Placement of screws near the fracture gap did not increase bending or torsional stiffness in the locking plate-rod constructs, assuming the plate was placed on the tension side of the bone. Addition of an intramedullary pin resulted in a significant increase in bending strength of the construct. Screw positioning did not have a significant effect on any torsion variables. Results of this study suggested that, in the investigated plate-rod construct, screw insertion adjacent to the fracture lacked mechanical advantages over screw insertion at the plate ends. For surgeons attempting to minimize soft tissue dissection, the decision to make additional incisions for screw placement should be considered with even more caution.
Oral Manifestations in a Renal Osteodystrophy Patient - A Case Report with Review of Literature
Nisha V, Aarthi; GS, Asokan; CA, Prakash; MM, Varadharaja
2014-01-01
Renal Osteodystrophy (ROD) is a common complication of chronic renal disease (CRD) and is the part of a broad spectrum of disorders of mineral metabolism that occurs in the clinical setting. It occurs early in the course of chronic renal failure and progresses as the kidney function deteriorates. It is an osseous alteration believed to arise from increased parathyroid function associated with inappropriate calcium, phosphorus and vitamin D metabolism. Involvement of the jaws is common and radiographic alterations are often one of the earliest signs of chronic renal failure. Herein, reporting a case of Chronic Renal Failure (Bilateral Grade I Neuropathy) with ROD presenting oral manifestations in an 11-year -old male child. PMID:25302278
Vibrations of beams and rods carrying a moving mass
NASA Astrophysics Data System (ADS)
Zhao, X. W.; van der Heijden, G. H. M.; Hu, Z. D.
2016-05-01
We study the vibration of slender one-dimensional elastic structures (beams, cables, wires, rods) under the effect of a moving mass or load. We first consider the classical small- deflection (Euler-Bernoulli) beam case, where we look at tip vibrations of a cantilever as a model for a barreled launch system. Then we develop a theory for large deformations based on Cosserat rod theory. We illustrate the effect of moving loads on large-deformation structures with a few cable and arch problems. Large deformations are found to have a resonance detuning effect on the cable. For the arch we find different failure modes depending on its depth: a shallow arch fails by in-plane collapse, while a deep arch fails by sideways flopping. In both cases the speed of the traversing load is found to have a stabilising effect on the structure, with failure suppressed entirely at sufficiently high speed.
Bone Plating in Patients with Type III Osteogenesis Imperfecta: Results and Complications
Enright, William J; Noonan, Kenneth J
2006-01-01
The results of bone plating in four children (6 femurs, 2 tibias) with osteogenesis imperfecta type III were analyzed. Average age at time of operation was 44 months. In three of the femurs, multiple platings were performed for a total of 13 bone platings in the eight bones studied. Average time to revision following plating was 27 months. Indications for revision included fracture (6), deformity (3), hardware failure (3), and nonunion (1). Other complications included one case of compartment syndrome. All eight bones were ultimately revised to elongating intramedullary Bailey-Dubow rods. Bone plating in skeletally immature patients with osteogenesis imperfecta does not provide better outcome than elongating rods. Complications from bone plating leading to revision, such as refracture or hardware failure, are higher than in those children managed with elongating rods, as previously reported in the literature. PMID:16789446
Simulation Studies of Mechanical Properties of Novel Silica Nano-structures
NASA Astrophysics Data System (ADS)
Muralidharan, Krishna; Torras Costa, Joan; Trickey, Samuel B.
2006-03-01
Advances in nanotechnology and the importance of silica as a technological material continue to stimulate computational study of the properties of possible novel silica nanostructures. Thus we have done classical molecular dynamics (MD) and multi-scale quantum mechanical (QM/MD) simulation studies of the mechanical properties of single-wall and multi-wall silica nano-rods of varying dimensions. Such nano-rods have been predicted by Mallik et al. to be unusually strong in tensile failure. Here we compare failure mechanisms of such nano-rods under tension, compression, and bending. The concurrent multi-scale QM/MD studies use the general PUPIL system (Torras et al.). In this case, PUPIL provides automated interoperation of the MNDO Transfer Hamiltonian QM code (Taylor et al.) and a locally written MD code. Embedding of the QM-forces domain is via the scheme of Mallik et al. Work supported by NSF ITR award DMR-0325553.
Automated power control system for reactor TRIGA PUSPATI
NASA Astrophysics Data System (ADS)
Ghazali, Anith Khairunnisa; Minhat, Mohd Sabri; Hassan, Mohd Khair
2017-01-01
Reactor TRIGA PUSPATI (RTP) Mark II type undergoes safe operation for more than 30 years and the only research reactor exists in Malaysia. The main safety feature of Instrumentation and Control (I&C) system design is such that any failure in the electronic, or its associated components, does not lead to an uncontrolled rate of reactivity. The existed controller using feedback approach to control the reactor power. This paper introduces proposed controllers such as Model Reference Adaptive Control (MRAC) and Proportional Integral Derivatives (PID) controller for the RTP simulation. In RTP, the most important considered parameter is the reactor power and act as nervous system. To design a controller for complex plant like RTP is quite difficult due to high cost and safety factors cause by the failure of the controller. Furthermore, to overcome these problems, a simulator can be used to replace functions the hardware and test could then be simulated using this simulator. In order to find the best controller, several controllers were proposed and the result will be analysed for study the performances of the controller. The output result will be used to find out the best RTP power controller using MATLAB/Simulink and gives result as close as the real RTP performances. Currently, the structures of RTP was design using MATLAB/Simulink tool that consist of fission chamber, controller, control rod position, height-to-worth of control rods and a RTP model. The controller will control the control rod position to make sure that the reactivity still under the limitation parameter. The results given from each controller will be analysed and validated through experiment data collected from RTP.
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Howard, S. Adam; Thomas, Fransua; Stanford, Malcolm K.
2016-01-01
Rolling element bearings made from highly-elastic intermetallic materials (HIM)s, such as 60NiTi, are under development for applications that require superior corrosion and shock resistance. Compared to steel, intermetallics have been shown to have much lower rolling contact fatigue (RCF) stress capability in simplified 3-ball on rod (ASTM STP 771) fatigue tests. In the 3-ball tests, poor material quality and microstructural flaws negatively affect fatigue life but such relationships have not been established for full-scale 60NiTi bearings. In this paper, 3-ball-on-rod fatigue behavior of two quality grades of 60NiTi are compared to the fatigue life of full-scale 50mm bore ball bearings made from the same materials. 60NiTi RCF rods with material or microstructural flaws suffered from infant mortality failures at all tested stress levels while high quality 60NiTi rods exhibited no failures at lower stress levels. Similarly, tests of full-scale bearings made from flawed materials exhibited early surface fatigue and through crack type failures while bearings made from high quality material did not fail even in long-term tests. Though the full-scale bearing test data is yet preliminary, the results suggest that the simplified RCF test is a good qualitative predictor of bearing performance. These results provide guidance for materials development and to establish minimum quality levels required for successful bearing operation and life.
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher; Howard, S. Adam; Thomas, Fransua; Stanford, Malcolm K.
2017-01-01
Rolling element bearings made from highly-elastic intermetallic materials (HIM)s, such as 60NiTi, are under development for applications that require superior corrosion and shock resistance. Compared to steel, intermetallics have been shown to have much lower rolling contact fatigue (RCF) stress capability in simplified 3-ball on rod (ASTM STP 771) fatigue tests. In the 3-ball tests, poor material quality and microstructural flaws negatively affect fatigue life but such relationships have not been established for full-scale 60NiTi bearings. In this paper, 3-ball-on-rod fatigue behavior of two quality grades of 60NiTi are compared to the fatigue life of full-scale 50mm bore ball bearings made from the same materials. 60NiTi RCF rods with material or microstructural flaws suffered from infant mortality failures at all tested stress levels while high quality 60NiTi rods exhibited no failures at lower stress levels. Similarly, tests of full-scale bearings made from flawed materials exhibited early surface fatigue and through crack type failures while bearings made from high quality material did not fail even in long-term tests. Though the full-scale bearing test data is yet preliminary, the results suggest that the simplified RCF test is a good qualitative predictor of bearing performance. These results provide guidance for materials development and to establish minimum quality levels required for successful bearing operation and life.
NASA Astrophysics Data System (ADS)
Yadav, Ashwini Kumar; kumar, Ravi; Gupta, Akhilesh; Chatterjee, Barun; Mukhopadhyay, Deb; Lele, H. G.
2014-06-01
In a nuclear reactor temperature rises drastically in fuel channels under loss of coolant accident due to failure of primary heat transportation system. Present investigation has been carried out to capture circumferential and axial temperature gradients during fully and partially voiding conditions in a fuel channel using 19 pin fuel element simulator. A series of experiments were carried out by supplying power to outer, middle and center rods of 19 pin fuel simulator in ratio of 1.4:1.1:1. The temperature at upper periphery of pressure tube (PT) was slightly higher than at bottom due to increase in local equivalent thermal conductivity from top to bottom of PT. To simulate fully voided conditions PT was pressurized at 2.0 MPa pressure with 17.5 kW power injection. Ballooning initiated from center and then propagates towards the ends and hence axial temperature difference has been observed along the length of PT. For asymmetric heating, upper eight rods of fuel simulator were activated and temperature difference up-to 250 °C has been observed from top to bottom periphery of PT. Such situation creates steep circumferential temperature gradient over PT and could lead to breaching of PT under high pressure.
Control rod drive for reactor shutdown
McKeehan, Ernest R.; Shawver, Bruce M.; Schiro, Donald J.; Taft, William E.
1976-01-20
A means for rapidly shutting down or scramming a nuclear reactor, such as a liquid metal-cooled fast breeder reactor, and serves as a backup to the primary shutdown system. The control rod drive consists basically of an in-core assembly, a drive shaft and seal assembly, and a control drive mechanism. The control rod is driven into the core region of the reactor by gravity and hydraulic pressure forces supplied by the reactor coolant, thus assuring that common mode failures will not interfere with or prohibit scramming the reactor when necessary.
Mechanistic Considerations Used in the Development of the PROFIT PCI Failure Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pankaskie, P. J.
A fuel Pellet-Zircaloy Cladding (thermo-mechanical-chemical) Interactions (PC!) failure model for estimating the probability of failure in !ransient increases in power (PROFIT) was developed. PROFIT is based on 1) standard statistical methods applied to available PC! fuel failure data and 2) a mechanistic analysis of the environmental and strain-rate-dependent stress versus strain characteristics of Zircaloy cladding. The statistical analysis of fuel failures attributable to PCI suggested that parameters in addition to power, transient increase in power, and burnup are needed to define PCI fuel failures in terms of probability estimates with known confidence limits. The PROFIT model, therefore, introduces an environmentalmore » and strain-rate dependent strain energy absorption to failure (SEAF) concept to account for the stress versus strain anomalies attributable to interstitial-disloction interaction effects in the Zircaloy cladding. Assuming that the power ramping rate is the operating corollary of strain-rate in the Zircaloy cladding, then the variables of first order importance in the PCI fuel failure phenomenon are postulated to be: 1. pre-transient fuel rod power, P{sub I}, 2. transient increase in fuel rod power, {Delta}P, 3. fuel burnup, Bu, and 4. the constitutive material property of the Zircaloy cladding, SEAF.« less
DEVICE FOR CONTROLLING INSERTION OF ROD
Beaty, B.J.
1958-10-14
A device for rapidly inserting a safety rod into a nuclear reactor upon a given signal or in the event of a power failure in order to prevent the possibility of extensive damage caused by a power excursion is described. A piston is slidably mounted within a vertical cylinder with provision for an electromagnetic latch at the top of the cylinder. This assembly, with a safety rod attached to the piston, is mounted over an access port to the core region of the reactor. The piston is normally latched at the top of the cylinder with the safety rod clear of the core area, however, when the latch is released, the piston and rod drop by their own weight to insert the rod. Vents along the side of the cylinder permit the escape of the air entrapped under the piston over the greater part of the distance, however, at the end of the fall the entrapped air is compressed thereby bringing the safety rod gently to rest, thus providing for a rapid automatic insertion of the rod with a minimum of structural shock.
75 FR 68548 - Airworthiness Directives; Airbus Model A318, A319, A320, and A321 Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-08
...: One case of elevator servo-control disconnection has been experienced on an aeroplane of the A320 family. Investigation has revealed that the failure occurred at the servo-control rod eye-end. Further to... servo-control rod eye-ends. In several cases, both actuators of the same elevator surface were affected...
Design test request No. 1263 K Reactor graphite key and VSR channel sleeve test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempf, F.J.
1964-12-10
The objectives of this test were: (1) Determine the coefficient of friction between two adjacent layers of K Reactor graphite at room temperature. (2) Determine the average load required to cause failure of an unirradiated K Reactor side reflector bar, when subjected to tensile loading applied through the reflector keys. (3) Determine the average load at failure and the average deflection at failure of a single VSR channel key when loaded in keyways with clearances equal to those used in original stack construction. (4) Determine the average load and deflection required to break the four K Reactor VSR keys whenmore » loaded simultaneously in both `3-layer` and `7-layer` mockups. Also determine the mode of key failure; i.e., shear, flexure or combined compression and bending. Following these key rupture tests, determine the strength and deflection characteristics of the proposed K Reactor VSR channel sleeve when loaded in a manner identical to that used to fracture the keys. (5) Determine the average load and deflection at failure of both the proposed K Reactor VSR channel sleeves and the proposed C Reactor sleeves when subjected to crushing loads. (6) Determine the extent of damage to the proposed K Reactor VSR channel sleeve when subjected to the following vertical rod loading conditions. (a) Full rod drop in a channel mockup which has been misaligned 2 1/2 inches. (b) Full rod drop in a channel which has been misaligned an amount equal to the maximum flexibility of a `universal` VSR.« less
Dickson, J.J.
1958-07-01
A quick releasable mechanical drive system suitable for use in a nuclear reactor is described. A small reversible motor positions a control rod by means of a worm and gear speed reducer, a magnetic torque clutch, and a bell crank. As the control rod is raised to the operating position, a heavy coil spring is compressed. In the event of an emergency indicated by either a''scram'' signal or a power failure, the current to the magnetic clutch is cut off, thereby freeing the coil spring and the bell crank positioner from the motor and speed reduction gearing. The coil spring will immediately act upon the bell crank to cause the insertion of the control rod. This arrangement will allow the slow, accurate positioning of the control rod during reactor operation, while providing an independent force to rapidly insert the rod in the event of an emergency.
In-pile tests at Karlsruhe of LWR fuel-rod behavior during the heatup phase of a LOCA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karb, E.H.
1980-01-01
In order to investigate the influence of a nuclar environment on the mechanisms of fuel-rod failure, in-pile tests simulating the heatup phase of a loss-of-coolant accident in a pressurized-water reactor are being conducted with irradiated and unirradiated short-length single rods in the FR2 reactor at Kernforschungszentrum karlsruhe (Karlsruhe Nuclear Reasearch Center), Federal Republic of Germany, within the Project Nuclear Safety. With nearly 70% of the scheduled tests completed, no such influences have been found. The in-pile burst and deformation data are in good agreement with results from nonnuclear tests with electrically heated fuel-rod simulators. The phenomenon of pellet disintegration, whichmore » has been observed in all tests with previously irradiated rods, needs further investigation.« less
Clozapine-induced acute gastrointestinal necrosis: a case report.
Osterman, Mark T; Foley, Caitlin; Matthias, Isaac
2017-09-23
Clozapine is known to cause fecal impaction and ileus with resultant colonic necrosis due to compression of colonic mucosa. There are rare reports of clozapine causing necrosis of other portions of the gastrointestinal tract unrelated to constipation. We describe a case of acute necrosis of the upper gastrointestinal tract and small bowel to due to clozapine and quetiapine. A 66-year-old white man with a past medical history of schizophrenia, maintained on clozapine and quetiapine, presented with hypoxic respiratory failure caused by aspiration of feculent emesis due to impacted stool throughout his colon. His constipation resolved with discontinuation of clozapine and quetiapine, and his clinical condition improved. These medicines were restarted after 2 weeks, resulting in acute gastrointestinal necrosis from the mid esophagus through his entire small bowel. He died due to septic shock with Gram-negative rod bacteremia. Clozapine may cause acute gastrointestinal necrosis.
Luhmann, Scott J; McAughey, Eoin M; Ackerman, Stacey J; Bumpass, David B; McCarthy, Richard E
2018-01-01
Treating early-onset scoliosis (EOS) with traditional growing rods (TGR) is effective but requires periodic surgical lengthening, risking complications. Alternatives include magnetically controlled growing rods (MCGR) that lengthen noninvasively and the growth guidance system (GGS), which obviate the need for active, distractive lengthenings. Previous studies have reported promising clinical effectiveness for GGS; however the direct medical costs of GGS compared to TGR and MCGR have not yet been explored. To estimate the cost of GGS compared with MCGR and TGR for EOS an economic model was developed from the perspective of a US integrated health care delivery system. Using dual-rod constructs, the model estimated the cumulative costs associated with initial implantation, rod lengthenings (TGR, MCGR), revisions due to device failure, surgical-site infections, device exchange, and final spinal fusion over a 6-year episode of care. Model parameters were from peer-reviewed, published literature. Medicare payments were used as a proxy for provider costs. Costs (2016 US$) were discounted 3% annually. Over a 6-year episode of care, GGS was associated with fewer invasive surgeries per patient than TGR (GGS: 3.4; TGR: 14.4) and lower cumulative costs than MCGR and TGR, saving $25,226 vs TGR. Sensitivity analyses showed that results were sensitive to changes in construct costs, rod breakage rates, months between lengthenings, and TGR lengthening setting of care. Within the model, GGS resulted in fewer invasive surgeries and deep surgical site infections than TGR, and lower cumulative costs per patient than both MCGR and TGR, over a 6-year episode of care. The analysis did not account for family disruption, pain, psychological distress, or compromised health-related quality of life associated with invasive TGR lengthenings, nor for potential patient anxiety surrounding the frequent MCGR lengthenings. Further analyses focusing strictly on current generation technologies should be considered for future research.
Luhmann, Scott J; McAughey, Eoin M; Ackerman, Stacey J; Bumpass, David B; McCarthy, Richard E
2018-01-01
Purpose Treating early-onset scoliosis (EOS) with traditional growing rods (TGR) is effective but requires periodic surgical lengthening, risking complications. Alternatives include magnetically controlled growing rods (MCGR) that lengthen noninvasively and the growth guidance system (GGS), which obviate the need for active, distractive lengthenings. Previous studies have reported promising clinical effectiveness for GGS; however the direct medical costs of GGS compared to TGR and MCGR have not yet been explored. Methods To estimate the cost of GGS compared with MCGR and TGR for EOS an economic model was developed from the perspective of a US integrated health care delivery system. Using dual-rod constructs, the model estimated the cumulative costs associated with initial implantation, rod lengthenings (TGR, MCGR), revisions due to device failure, surgical-site infections, device exchange, and final spinal fusion over a 6-year episode of care. Model parameters were from peer-reviewed, published literature. Medicare payments were used as a proxy for provider costs. Costs (2016 US$) were discounted 3% annually. Results Over a 6-year episode of care, GGS was associated with fewer invasive surgeries per patient than TGR (GGS: 3.4; TGR: 14.4) and lower cumulative costs than MCGR and TGR, saving $25,226 vs TGR. Sensitivity analyses showed that results were sensitive to changes in construct costs, rod breakage rates, months between lengthenings, and TGR lengthening setting of care. Conclusion Within the model, GGS resulted in fewer invasive surgeries and deep surgical site infections than TGR, and lower cumulative costs per patient than both MCGR and TGR, over a 6-year episode of care. The analysis did not account for family disruption, pain, psychological distress, or compromised health-related quality of life associated with invasive TGR lengthenings, nor for potential patient anxiety surrounding the frequent MCGR lengthenings. Further analyses focusing strictly on current generation technologies should be considered for future research. PMID:29588607
Failure at Frame-Stringer Intersections in PRSEUS Panels
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.
2012-01-01
NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structures. In this concept a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. By adding unidirectional carbon rods to the top of stiffeners, the panel becomes more structurally efficient. This combination produces a more damage tolerant design. This study focuses on the intersection between the rod-stiffener and the foam-filled frame in a PRSEUS specimen. Compression loading is considered, which induces stress concentrations at the intersection point that can lead to failures. An experiment with accompanying analysis for a single-frame specimen is described, followed by a parametric study of simple reinforcements to reduce strains in the intersection region.
Evaluation of the Behavior of Technova Corporation Rod-Stiffened Stitched Compression Specimens
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.
2013-01-01
Under Space Act Agreement 1347 between NASA and Technova Corporation, Technova designed and fabricated two carbon-epoxy crippling specimens and NASA loaded them to failure in axial compression. Each specimen contained a pultruded rod stiffener which was held to the specimen skin with through-the-thickness stitches. One of these specimens was designed to be nominally the same as pultruded rod stitched specimens fabricated by Boeing under previous programs. In the other specimen, the rod was prestressed in a Technova manufacturing process to increase its ability to carrying compressive loading. Experimental results demonstrated that the specimen without prestressing carried approximately the same load as the similar Boeing specimens and that the specimen with prestressing carried significantly more load than the specimen without prestressing.
Design, Analysis and Testing of a PRSEUS Pressure Cube to Investigate Assembly Joints
NASA Technical Reports Server (NTRS)
Yovanof, Nicolette; Lovejoy, Andrew E.; Baraja, Jaime; Gould, Kevin
2012-01-01
Due to its potential to significantly increase fuel efficiency, the current focus of NASA's Environmentally Responsible Aviation Program is the hybrid wing body (HWB) aircraft. Due to the complex load condition that exists in HWB structure, as compared to traditional aircraft configurations, light-weight, cost-effective and manufacturable structural concepts are required to enable the HWB. The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept is one such structural concept. A building block approach for technology development of the PRSEUS concept is being conducted. As part of this approach, a PRSEUS pressure cube was developed as a risk reduction test article to examine a new integral cap joint concept. This paper describes the design, analysis and testing of the PRSEUS pressure cube test article. The pressure cube was required to withstand a 2P, 18.4 psi, overpressure load requirement. The pristine pressure cube was tested to 2.2P with no catastrophic failure. After the addition of barely visible impact damage, the cube was pressure loaded to 48 psi where catastrophic failure occurred, meeting the scale-up requirement. Comparison of pretest and posttest analyses with the cube test response agree well, and indicate that current analysis methods can be used to accurately analyze PRSEUS structure for initial failure response.
Advanced Pellet-Cladding Interaction Modeling using the US DOE CASL Fuel Performance Code: Peregrine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, Robert O.; Capps, Nathan A.; Sunderland, Dion J.
The US DOE’s Consortium for Advanced Simulation of LWRs (CASL) program has undertaken an effort to enhance and develop modeling and simulation tools for a virtual reactor application, including high fidelity neutronics, fluid flow/thermal hydraulics, and fuel and material behavior. The fuel performance analysis efforts aim to provide 3-dimensional capabilities for single and multiple rods to assess safety margins and the impact of plant operation and fuel rod design on the fuel thermo-mechanical-chemical behavior, including Pellet-Cladding Interaction (PCI) failures and CRUD-Induced Localized Corrosion (CILC) failures in PWRs. [1-3] The CASL fuel performance code, Peregrine, is an engineering scale code thatmore » is built upon the MOOSE/ELK/FOX computational FEM framework, which is also common to the fuel modeling framework, BISON [4,5]. Peregrine uses both 2-D and 3-D geometric fuel rod representations and contains a materials properties and fuel behavior model library for the UO2 and Zircaloy system common to PWR fuel derived from both open literature sources and the FALCON code [6]. The primary purpose of Peregrine is to accurately calculate the thermal, mechanical, and chemical processes active throughout a single fuel rod during operation in a reactor, for both steady state and off-normal conditions.« less
Advanced Pellet Cladding Interaction Modeling Using the US DOE CASL Fuel Performance Code: Peregrine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jason Hales; Various
The US DOE’s Consortium for Advanced Simulation of LWRs (CASL) program has undertaken an effort to enhance and develop modeling and simulation tools for a virtual reactor application, including high fidelity neutronics, fluid flow/thermal hydraulics, and fuel and material behavior. The fuel performance analysis efforts aim to provide 3-dimensional capabilities for single and multiple rods to assess safety margins and the impact of plant operation and fuel rod design on the fuel thermomechanical- chemical behavior, including Pellet-Cladding Interaction (PCI) failures and CRUD-Induced Localized Corrosion (CILC) failures in PWRs. [1-3] The CASL fuel performance code, Peregrine, is an engineering scale codemore » that is built upon the MOOSE/ELK/FOX computational FEM framework, which is also common to the fuel modeling framework, BISON [4,5]. Peregrine uses both 2-D and 3-D geometric fuel rod representations and contains a materials properties and fuel behavior model library for the UO2 and Zircaloy system common to PWR fuel derived from both open literature sources and the FALCON code [6]. The primary purpose of Peregrine is to accurately calculate the thermal, mechanical, and chemical processes active throughout a single fuel rod during operation in a reactor, for both steady state and off-normal conditions.« less
Strong, G.H.; Faught, M.L.
1963-12-24
A device for safety rod counting in a nuclear reactor is described. A Wheatstone bridge circuit is adapted to prevent de-energizing the hopper coils of a ball backup system if safety rods, sufficient in total control effect, properly enter the reactor core to effect shut down. A plurality of resistances form one arm of the bridge, each resistance being associated with a particular safety rod and weighted in value according to the control effect of the particular safety rod. Switching means are used to switch each of the resistances in and out of the bridge circuit responsive to the presence of a particular safety rod in its effective position in the reactor core and responsive to the attainment of a predetermined velocity by a particular safety rod enroute to its effective position. The bridge is unbalanced in one direction during normal reactor operation prior to the generation of a scram signal and the switching means and resistances are adapted to unbalance the bridge in the opposite direction if the safety rods produce a predetermined amount of control effect in response to the scram signal. The bridge unbalance reversal is then utilized to prevent the actuation of the ball backup system, or, conversely, a failure of the safety rods to produce the predetermined effect produces no unbalance reversal and the ball backup system is actuated. (AEC)
Design and evaluation of a bolted joint for a discrete carbon-epoxy rod-reinforced hat section
NASA Technical Reports Server (NTRS)
Rousseau, Carl Q.; Baker, Donald J.
1996-01-01
The use of prefabricated pultruded carbon-epoxy rods has reduced the manufacturing complexity and costs of stiffened composite panels while increasing the damage tolerance of the panels. However, repairability of these highly efficient discrete stiffeners has been a concern. Design, analysis, and test results are presented in this paper for a bolted-joint repair for the pultruded rod concept that is capable of efficiently transferring axial loads in a hat-section stiffener on the upper skin segment of a heavily loaded aircraft wing component. A tension and a compression joint design were evaluated. The tension joint design achieved approximately 1.0% strain in the carbon-epoxy rod-reinforced hat-section and failed in a metal fitting at 166% of the design ultimate load. The compression joint design failed in the carbon-epoxy rod-reinforced hat-section test specimen area at approximately 0.7% strain and at 110% of the design ultimate load. This strain level of 0.7% in compression is similar to the failure strain observed in previously reported carbon-epoxy rod-reinforced hat-section column tests.
NASA Technical Reports Server (NTRS)
Johnston, Patrick H.; Juarez, Peter D.
2016-01-01
The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept developed by the Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body (HWB) aircraft configuration. The HWB has long been a focus of NASA's environmentally responsible aviation (ERA) project, following a building block approach to structures development, culminating with the testing of a nearly full-scale multi-bay box (MBB), representing a segment of the pressurized, non-circular fuselage portion of the HWB. PRSEUS is an integral structural concept wherein skins, frames, stringers and tear straps made of variable number of layers of dry warp-knit carbon-fiber stacks are stitched together, then resin-infused and cured in an out-of-autoclave process. The PRSEUS concept has the potential for reducing the weight and cost and increasing the structural efficiency of transport aircraft structures. A key feature of PRSEUS is the damage-arresting nature of the stitches, which enables the use of fail-safe design principles. During the load testing of the MBB, ultrasonic nondestructive evaluation (NDE) was used to monitor several sites of intentional barely-visible impact damage (BVID) as well as to survey the areas surrounding the failure cracks after final loading to catastrophic failure. The damage-arresting ability of PRSEUS was confirmed by the results of NDE. In parallel with the large-scale structural testing of the MBB, mechanical tests were conducted of the PRSEUS rod-to-overwrap bonds, as measured by pushing the rod axially from a short length of stringer.
77 FR 66409 - Airworthiness Directives; Diamond Aircraft Industries GmbH Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-05
... of an unsuitable self-locking nut on the bell crank of the elevator push rod that can cause failure... in the tail section of the fuselage, as a result of installation of a non-suitable self-locking nut... identified that its current configuration has a failure potential when components such as thin self-securing...
Tanaka, Hidetatsu; Mori, Yu; Noro, Atsushi; Kogure, Atsushi; Kamimura, Masayuki; Yamada, Norikazu; Hanada, Shuji; Masahashi, Naoya; Itoi, Eiji
2016-01-01
Ti-6Al-4V alloy is widely prevalent as a material for orthopaedic implants because of its good corrosion resistance and biocompatibility. However, the discrepancy in Young’s modulus between metal prosthesis and human cortical bone sometimes induces clinical problems, thigh pain and bone atrophy due to stress shielding. We designed a Ti-Nb-Sn alloy with a low Young’s modulus to address problems of stress disproportion. In this study, we assessed effects of anodic oxidation with or without hot water treatment on the bone-bonding characteristics of a Ti-Nb-Sn alloy. We examined surface analyses and apatite formation by SEM micrographs, XPS and XRD analyses. We also evaluated biocompatibility in experimental animal models by measuring failure loads with a pull-out test and by quantitative histomorphometric analyses. By SEM, abundant apatite formation was observed on the surface of Ti-Nb-Sn alloy discs treated with anodic oxidation and hot water after incubation in Hank’s solution. A strong peak of apatite formation was detected on the surface using XRD analyses. XPS analysis revealed an increase of the H2O fraction in O 1s XPS. Results of the pull-out test showed that the failure loads of Ti-Nb-Sn alloy rods treated with anodic oxidation and hot water was greater than those of untreated rods. Quantitative histomorphometric analyses indicated that anodic oxidation and hot water treatment induced higher new bone formation around the rods. Our findings indicate that Ti-Nb-Sn alloy treated with anodic oxidation and hot water showed greater capacity for apatite formation, stronger bone bonding and higher biocompatibility for osteosynthesis. Ti-Nb-Sn alloy treated with anodic oxidation and hot water treatment is a promising material for orthopaedic implants enabling higher osteosynthesis and lower stress disproportion. PMID:26914329
NASA Astrophysics Data System (ADS)
Sysoev, N. I.; Turuk, Yu V.; Kolesnichenko, I. Y.; Lugantsev, B. B.
2017-10-01
The reasons for the failure of the pitch stability of the knife-plane installation due to the action of extreme effort in the plane of the seam from the conveyor side on the mechanism of removing sections of mechanized sets are shown. The technique for determining this effort is presented. The constructions of the adaptive mechanisms of the removing sections of mechanized sets with the basements of catamaran type, in the constrictions of which elastic elements (rods) are used, are considered. The constructions of the mechanism of removing a section of the mechanized set with the basement of catamaran type in which the stock of the hydraulic jack is connected with the band loop through the movable rods intermediate basement with a link are worked out. The intermediate basement unloads the stock of the hydraulic jack of the moving installation from the side curving efforts, caused by the action of lateral forces in the plane of the seam on the conveyor side. It increases the reliability and efficiency of work of the knife plane mechanized complex.
Analysis and Test of Repair Concepts for a Carbon-Rod Reinforced Laminate
NASA Technical Reports Server (NTRS)
Baker, Donald J.; Rousseau, Carl Q.
2000-01-01
The use of pultruded carbon-epoxy rods for the reinforcement of composite laminates in some structures results in an efficient structural concept. The results of an analytical and experimental investigation of repair concepts of completely severed carbon-epoxy rods is presented. Three repair concepts are considered: (a) bonded repair with outside moldline and inside moldline doublers; (b) bonded repair with fasteners, and (c) bonded repair with outside moldline doubler only. The stiffness of the repairs was matched with the stiffness of the baseline specimen. The failure strains for the bonded repair with fasteners and the bonded repair with an outside moldline doubler exceeded a target design strain set for the repair concepts.
Ultrasonic detection of simulated corrosion in 1 inch diameter steel tieback rods.
DOT National Transportation Integrated Search
2009-08-01
Corrosion of tieback rods in sheet piling systems can compromise the reliability of associated transportation : structures due to loss of crosssection and reduced strength of the tieback rods. Common inspection techniques : currently involve excav...
NASA Astrophysics Data System (ADS)
Ammar Khodja, L'Hady
The rehabilitation and strengthening concrete structures in shear using composite materials such as externally bonded (EB) or near surface mounted rebar (NSMR) are well established techniques. However, debonding of these strengthening materials is still present and constitute the principal cause of shear failure of beams strengthened with composite materials. A new method called ETS (Embedded Through Section) was recently developed in order to avoid premature failures due to debonding of composite materials. The objective of this study is to highlight the importance and influence of important parameters on the behavior of CFRP bars anchorages subjected to pullout forces. These parameters are: concrete strength, anchorage length of CFRP bars, hole diameter in concrete, diameter of the bar and CFRP surface type (smooth versus sanded). Understanding the influence of these parameters on the relationship between the pullout force and the slip is paramount. This allows an accurate description of the behavior of all elements that contribute to the resistance of the CFRP bars pullout. A series of 25 specimens were subjected to pullout tests. The impact of these parameters on the pullout performance of CFRP rods is summarized in terms of failure mode, ultimate tensile strength and loading force slip relationship. The results of these investigations show that using the ETS method, failure of the anchors can be avoided by providing adequate anchorage length and concrete strength. The method provides greater confinement and thus leads to a substantial improvement in the performance of anchors. As a result, designers will be able to avoid failures that are due to debonding of anchors using thereby the full capabilities of reinforced beams strengthened in shear with EB FRP. Keywords: ETS method, shear, strengthening, anchor, slip, FRP, NSM.
ELECTROMAGNETIC APPARATUS FOR MOVING A ROD
Young, J.N.
1958-04-22
An electromagnetic apparatus for moving a rod-like member in small steps in either direction is described. The invention has particular application in the reactor field where the reactor control rods must be moved only a small distance and where the use of mechanical couplings is impractical due to the high- pressure seals required. A neutron-absorbing rod is mounted in a housing with gripping uaits that engage the rod, and coils for magnetizing the gripping units to make them grip, shift, and release the rod are located outside the housing.
Benefits of barrier fuel on fuel cycle economics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, R.L.; Kunz, C.L.
1988-01-01
Barrier fuel rod cladding was developed to eliminate fuel rod failures from pellet/cladding stress/corrosion interaction and to eliminate the associated need to restrict the rate at which fuel rod power can be increased. The performance of barrier cladding has been demonstrated through extensive testing and through production application to many boiling water reactors (BWRs). Power reactor data have shown that barrier fuel rod cladding has a significant beneficial effect on plant capacity factor and plant operating costs and significantly increases fuel reliability. Independent of the fuel reliability benefit, it is less obvious that barrier fuel has a beneficial effect ofmore » fuel cycle costs, since barrier cladding is more costly to fabricate. Evaluations, measurements, and development activities, however, have shown that the fuel cycle cost benefits of barrier fuel are large. This paper is a summary of development activities that have shown that application of barrier fuel significantly reduces BWR fuel cycle costs.« less
Glass, J.A.F.
1958-07-01
A reactor control mechanism is described wherein the control is achieved by the partial or total withdrawal of the fissile material which is in the form of a fuel rod. The fuel rod is designed to be raised and lowered from the reactor core area by means of two concentric ball nut and screw assemblies that may telescope one within the other. These screw mechanisms are connected through a magnetic clutch to a speed reduction gear and an accurately controllable prime motive source. With the clutch energized, the fuel rod may be moved into the reactor core area, and fine adjustments may be made through the reduction gearing. However, in the event of a power failure or an emergency signal, the magnetic clutch will become deenergized, and the fuel rod will drop out of the core area by the force of gravity, thus shutting down the operation of the reactor.
Safety control circuit for a neutronic reactor
Ellsworth, Howard C.
2004-04-27
A neutronic reactor comprising an active portion containing material fissionable by neutrons of thermal energy, means to control a neutronic chain reaction within the reactor comprising a safety device and a regulating device, a safety device including means defining a vertical channel extending into the reactor from an aperture in the upper surface of the reactor, a rod containing neutron-absorbing materials slidably disposed within the channel, means for maintaining the safety rod in a withdrawn position relative to the active portion of the reactor including means for releasing said rod on actuation thereof, a hopper mounted above the active portion of the reactor having a door disposed at the bottom of the hopper opening into the vertical channel, a plurality of bodies of neutron-absorbing materials disposed within the hopper, and means responsive to the failure of the safety rod on actuation thereof to enter the active portion of the reactor for opening the door in the hopper.
2014-09-01
rod moves about the illumination scene, the pixels in the detector start to flicker . The ‘ flickering ’ effect is due to the metal rod blocking THz...still possible to mitigate convective heat exchange between the sensor and the ambient surroundings. To mitigate the effects of convective heat...detector start to flicker . The ‘ flickering ’ effect is due to the metal rod blocking THz radiation. This effect is more apparent in the video
Design and Evaluation of a Bolted Joint for a Discrete Carbon-Epoxy Rod-Reinforced Hat Section
NASA Technical Reports Server (NTRS)
Baker, Donald J.; Rousseau, Carl Q.
1996-01-01
The use of pre-fabricated pultruded carbon-epoxy rods has reduced the manufacturing complexity and costs of stiffened composite panels while increasing the damage tolerance of the panels. However, repairability of these highly efficient discrete stiffeners has been a concern. Design, analysis, and test results are presented in this paper for a bolted-joint repair for the pultruded rod concept that is capable of efficiently transferring axial loads in a hat-section stiffener on the upper skin segment of a heavily loaded aircraft wing component. A tension and a compression joint design were evaluated. The tension joint design achieved approximately 1.0 percent strain in the carbon-epoxy rod-reinforced hat-section and failed in a metal fitting at 166 percent of the design ultimate load. The compression joint design failed in the carbon-epoxy rod-reinforced hat-section test specimen area at approximately 0.7 percent strain and at 110 percent of the design ultimate load. This strain level of 0.7 percent in compression is similar to the failure strain observed in previously reported carbon-epoxy rod-reinforced hat-section column tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, B. W.; Williamson, R. L.; Stafford, D. S.
One of the important roles of cladding in light water reactor fuel rods is to prevent the release of fission products. To that end, it is essential that the cladding maintain its integrity under a variety of thermal and mechanical loading conditions. Local geometric irregularities in fuel pellets caused by manufacturing defects known as missing pellet surfaces (MPS) can in some circumstances lead to elevated cladding stresses that are sufficiently high to cause cladding failure. Accurate modeling of these defects can help prevent these types of failures. The BISON nuclear fuel performance code developed at Idaho National Laboratory can bemore » used to simulate the global thermo-mechanical fuel rod behavior, as well as the local response of regions of interest, in either 2D or 3D. In either case, a full set of models to represent the thermal and mechanical properties of the fuel, cladding and plenum gas is employed. A procedure for coupling 2D full-length fuel rod models to detailed 3D models of the region of the rod containing a MPS defect is detailed in this paper. The global and local model each contain appropriate physics and behavior models for nuclear fuel. This procedure is demonstrated on a simulation of a boiling water reactor (BWR) fuel rod containing a pellet with an MPS defect, subjected to a variety of transient events, including a control blade withdrawal and a ramp to high power. The importance of modeling the local defect using a 3D model is highlighted by comparing 3D and 2D representations of the defective pellet region. Finally, parametric studies demonstrate the effects of the choice of gaseous swelling model and of the depth and geometry of the MPS defect on the response of the cladding adjacent to the defect.« less
Failure analysis of energy storage spring in automobile composite brake chamber
NASA Astrophysics Data System (ADS)
Luo, Zai; Wei, Qing; Hu, Xiaofeng
2015-02-01
This paper set energy storage spring of parking brake cavity, part of automobile composite brake chamber, as the research object. And constructed the fault tree model of energy storage spring which caused parking brake failure based on the fault tree analysis method. Next, the parking brake failure model of energy storage spring was established by analyzing the working principle of composite brake chamber. Finally, the data of working load and the push rod stroke measured by comprehensive test-bed valve was used to validate the failure model above. The experimental result shows that the failure model can distinguish whether the energy storage spring is faulted.
Multiscale Modeling of Fracture in an SiO2 Nanorod
NASA Astrophysics Data System (ADS)
Mallik, Aditi
2005-11-01
The fracture of a 108 particle SiO2 nanorod under uniaxial strain is described using an NDDO quantum mechanics. The stress -- strain curve to failure is calculated as a function of strain rate to show a domain that is independent of strain rate. A pair potential for use in classical MD is constructed such that the elastic portion of the quantum curve is reproduced. However, it is shown that the classical analysis does not describe accurately the large strain behavior and failure. Finally, a composite rod is constructed with a small subsystem described by quantum mechanics and the remainder described by classical MD ^1. The stress -- strain curves for the classical, quantum, and composite rods are compared and contrasted. 1. ``Multiscale Modeling of Materials -- Concepts and Illustration'', A. Mallik, K. Runge, J. Dufty, and H-P Cheng, cond-mat 0507558.
NASA Astrophysics Data System (ADS)
Capozucca, R.; Blasi, M. G.; Corina, V.
2015-07-01
Near surface mounted (NSM) technique with fiber reinforced polymer (FRP) is becoming a common method in the strengthening of concrete beams. The availability of NSM FRP technique depends on many factors linked to materials and geometry - dimensions of the rods used, type of FRP material employed, rods’ surface configuration, groove size - and to adhesion between concrete and FRP rods. In this paper detection of damage is investigated measuring the natural frequency values of beam in the case of free-free ends. Damage was due both to reduction of adhesion between concrete and carbon-FRP rectangular and circular rods and cracking of concrete under static bending tests on beams. Comparison between experimental and theoretical frequency values evaluating frequency changes due to damage permits to monitor actual behaviour of RC beams strengthened by NSM CFRP rods.
MODELLING OF FUEL BEHAVIOUR DURING LOSS-OF-COOLANT ACCIDENTS USING THE BISON CODE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pastore, G.; Novascone, S. R.; Williamson, R. L.
2015-09-01
This work presents recent developments to extend the BISON code to enable fuel performance analysis during LOCAs. This newly developed capability accounts for the main physical phenomena involved, as well as the interactions among them and with the global fuel rod thermo-mechanical analysis. Specifically, new multiphysics models are incorporated in the code to describe (1) transient fission gas behaviour, (2) rapid steam-cladding oxidation, (3) Zircaloy solid-solid phase transition, (4) hydrogen generation and transport through the cladding, and (5) Zircaloy high-temperature non-linear mechanical behaviour and failure. Basic model characteristics are described, and a demonstration BISON analysis of a LWR fuel rodmore » undergoing a LOCA accident is presented. Also, as a first step of validation, the code with the new capability is applied to the simulation of experiments investigating cladding behaviour under LOCA conditions. The comparison of the results with the available experimental data of cladding failure due to burst is presented.« less
Sun, Xu; Zhu, Ze-Zhang; Chen, Xi; Liu, Zhen; Wang, Bin; Qiu, Yong
2016-08-01
This paper presents a highly challenging technique involving posterior double vertebral column resections (VCRs) and satellite rods placement. This was a young adult case with severe angular thoracolumbar kyphosis of 101 degrees, secondary to anterior segmentation failure from T11 to L1 . There were hemivertebrae at T11 and T12 , and a wedged vertebra at L1 . He received double VCRs at T12 and T11 and instrumented fusion from T6 to L4 via a posterior only approach. Autologous grafts and a cage were placed between the bony surfaces of the osteotomy gap. Once closure of osteotomy was achieved, bilateral permanent CoCr rods were placed with addition of satellite rods. Postoperative X-ray demonstrated marked correction of kyphosis. On the 10(th) days after surgery, the patient was able to walk without assistance. In conclusion, double VCRs are effective to correct severe angular kyphosis, and addition of satellite rods may be imperative to enhance instrumentation strength and thus prevent correction loss. © 2016 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.
NASA Astrophysics Data System (ADS)
Wang, Hong; Wang, Jy-An John
2016-10-01
Behavior of surrogate nuclear fuel rods made of Zircaloy-4 (Zry-4) cladding with alumina pellets under reversed cyclic bending was studied. Tests were performed under load or moment control at 5 Hz. The surrogate rods fractured under moment amplitudes greater than 10.16 Nm with fatigue lives between 2.4 × 103 and 2.2 × 106 cycles. Fatigue response of Zry-4 cladding was characterized by using flexural rigidity. Degradation of flexural rigidity was shown to depend on the moment and the prefatigue condition of specimens. Pellet-to-pellet interface (PPI), pellet-to-cladding interface (PCI), and pellet condition affect surrogate rod failure. Both debonding of PPI/PCI and pellet fracturing contribute to surrogate rod bending fatigue. The effect of sensor spacing on curvature measurement using three-point deflections was studied; the method based on effective gauge length is effective in sensor spacing correction. The database developed and the understanding gained in this study can serve as input to analysis of SNF (spent nuclear fuel) vibration integrity.
Wang, Hong; Wang, Jy-An John
2016-07-20
We studied behavior of surrogate nuclear fuel rods made of Zircaloy-4 (Zry-4) cladding with alumina pellets under reversed cyclic bending. Tests were performed under load or moment control at 5 Hz, and an empirical correlation was established between rod fatigue life and amplitude of the applied moment. Fatigue response of Zry-4 cladding was further characterized by using flexural rigidity. Degradation of flexural rigidity was shown to depend on the moment applied and the prefatigue condition of specimens. Pellet-to-pellet interface (PPI), pellet-to-cladding interface (PCI), and pellet condition all affect surrogate rod failure. Bonding/debonding of PPI/PCI and pellet fracturing contribute to surrogatemore » rod bending fatigue. Also, the effect of sensor spacing on curvature measurement using three-point deflections was studied; the method based on effective specimen gauge length is effective in sensor spacing correction. Finally, we developed the database and gained understanding in this study such that it will serve as input to analysis of SNF vibration integrity.« less
Gas gun driven dynamic fracture and fragmentation of Ti-6Al-4V cylinders
NASA Astrophysics Data System (ADS)
Jones, D. R.; Chapman, D. J.; Eakins, D. E.
2014-05-01
The dynamic fracture and fragmentation of a material is a complex late stage phenomenon occurring in many shock loading scenarios. Improving our predictive capability depends upon exercising our current failure models against new loading schemes and data. We present axially-symmetric high strain rate (104 s-1) expansion of Ti-6Al-4V cylinders using a single stage light gas gun technique. A steel ogive insert was located inside the target cylinder, into which a polycarbonate rod was launched. Deformation of this rod around the insert drives the cylinder into rapid expansion. This technique we have developed facilitates repeatable loading, independent of the temperature of the sample cylinder, with straightforward adjustment of the radial strain rate. Expansion velocity was measured with multiple channels of photon Doppler velocimetry. High speed imaging was used to track the overall expansion process and record strain to failure and crack growth. Results from a cylinder at a temperature of 150 K are compared with work at room temperature, examining the deformation, failure mechanisms and differences in fragmentation.
Spent fuel behavior under abnormal thermal transients during dry storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stahl, D.; Landow, M.P.; Burian, R.J.
1986-01-01
This study was performed to determine the effects of abnormally high temperatures on spent fuel behavior. Prior to testing, calculations using the CIRFI3 code were used to determine the steady-state fuel and cask component temperatures. The TRUMP code was used to determine transient heating rates under postulated abnormal events during which convection cooling of the cask surfaces was obstructed by a debris bed covering the cask. The peak rate of temperature rise during the first 6 h was calculated to be about 15/sup 0/C/h, followed by a rate of about 1/sup 0/C/h. A Turkey Point spent fuel rod segment wasmore » heated to approx. 800/sup 0/C. The segment deformed uniformly with an average strain of 17% at failure and a local strain of 60%. Pretest characterization of the spent fuel consisted of visual examination, profilometry, eddy-current examination, gamma scanning, fission gas collection, void volume measurement, fission gas analysis, hydrogen analysis of the cladding, burnup analysis, cladding metallography, and fuel ceramography. Post-test characterization showed that the failure was a pinhole cladding breach. The results of the tests showed that spent fuel temperatures in excess of 700/sup 0/C are required to produce a cladding breach in fuel rods pressurized to 500 psing (3.45 MPa) under postulated abnormal thermal transient cask conditions. The pinhole cladding breach that developed would be too small to compromise the confinement of spent fuel particles during an abnormal event or after normal cooling conditions are restored. This behavior is similar to that found in other slow ramp tests with irradiated and nonirradiated rod sections and nonirradiated whole rods under conditions that bracketed postulated abnormal heating rates. This similarity is attributed to annealing of the irradiation-strengthened Zircaloy cladding during heating. In both cases, the failure was a benign, ductile pinhole rupture.« less
Modelling poly(p-phenylene teraphthalamide) at Extreme Tensile Loading using Reactive Potentials
NASA Astrophysics Data System (ADS)
Yilmaz, Dundar
2015-03-01
Aromatic polyamides classified as rigid-rod polymers due to orientation of their monomers. Because of their excellent mechanical and thermal properties, aramids are widely used in the industry. For example DuPont's brand Kevlar, for its commercial aromatic polyamide polymer, due to wide usage of this polymer in ballistic applications, habitually used as a nickname for bulletproof vests. In order to engineer these ballistic fabrics, material properties of aramid fibers should be studied. In this work we focused on the poly(p-phenylene teraphthalamide) PPTA fiber, known as brand name Kevlar. We employed Reactive potentials to simulate PPTA polymer under tensile loading. We first simulated both amorphous and crystalline phases of PPTA. We also introduced defects with varying densities. We further analysed the recorded atomic positions data to understand how tensile load distributed and failure mechanisms at extreme tensile loads. This work supported by TUBITAK under Grant No: 113F358.
Lee, Kang Yeol; Hwang, Hayoung; Kim, Tae Ho; Choi, Wonjoon
2016-02-10
The development of an efficient method for manipulating phase and surface transformations would facilitate the improvement of catalytic materials for use in a diverse range of applications. Herein, we present the first instance of a submicrosecond time frame direct phase and surface transformation of Bi(NO3)3 rods to nanoporous β-Bi2O3 rods via structure-guided combustion waves. Hybrid composites of the prepared Bi(NO3)3·H2O rods and organic fuel were fabricated by a facile preparation method. The anisotropic propagation of combustion waves along the interfacial boundaries of Bi(NO3)3·H2O rods induced direct phase transformation to β-Bi2O3 rods in the original structure due to the rapid pyrolysis, while the release of gas molecules enabled the formation of nanoporous structures on the surfaces of rods. The developed β-Bi2O3 rods showed improved photocatalytic activity for the photodegradation of rhodamine B in comparison with Bi(NO3)3·H2O rods and α-Bi2O3 rods due to the more suitable interdistance and the large contact areas of the porous surfaces. This new method of using structure-guided combustion waves for phase and surface transformation may contribute to the development of new catalysts as well as the precise manipulation of diverse micronanostructured materials.
Noise reduction in a Mach 5 wind tunnel with a rectangular rod-wall sound shield
NASA Technical Reports Server (NTRS)
Creel, T. R., Jr.; Keyes, J. W.; Beckwith, I. E.
1980-01-01
A rod wall sound shield was tested over a range of Reynolds numbers of 0.5 x 10 to the 7th power to 8.0 x 10 to the 7th power per meter. The model consisted of a rectangular array of longitudinal rods with boundary-layer suction through gaps between the rods. Suitable measurement techniques were used to determine properties of the flow and acoustic disturbance in the shield and transition in the rod boundary layers. Measurements indicated that for a Reynolds number of 1.5 x 10 to the 9th power the noise in the shielded region was significantly reduced, but only when the flow is mostly laminar on the rods. Actual nozzle input noise measured on the nozzle centerline before reflection at the shield walls was attenuated only slightly even when the rod boundary layer were laminar. At a lower Reynolds number, nozzle input noise at noise levels in the shield were still too high for application to a quiet tunnel. At Reynolds numbers above 2.0 x 10 the the 7th power per meter, measured noise levels were generally higher than nozzle input levels, probably due to transition in the rod boundary layers. The small attenuation of nozzle input noise at intermediate Reynolds numbers for laminar rod layers at the acoustic origins is apparently due to high frequencies of noise.
Stimulus-evoked outer segment changes in rod photoreceptors
NASA Astrophysics Data System (ADS)
Zhao, Xiaohui; Thapa, Damber; Wang, Benquan; Lu, Yiming; Gai, Shaoyan; Yao, Xincheng
2016-06-01
Rod-dominated transient retinal phototropism (TRP) has been recently observed in freshly isolated mouse and frog retinas. Comparative confocal microscopy and optical coherence tomography revealed that the TRP was predominantly elicited from the rod outer segment (OS). However, the biophysical mechanism of rod OS dynamics is still unknown. Mouse and frog retinal slices, which displayed a cross-section of retinal photoreceptors and other functional layers, were used to test the effect of light stimulation on rod OSs. Time-lapse microscopy revealed stimulus-evoked conformational changes of rod OSs. In the center of the stimulated region, the length of the rod OS shrunk, while in the peripheral region, the rod OS swung toward the center region. Our experimental observation and theoretical analysis suggest that the TRP may reflect unbalanced rod disc-shape changes due to localized visible light stimulation.
Stimulus-evoked outer segment changes in rod photoreceptors
Zhao, Xiaohui; Thapa, Damber; Wang, Benquan; Lu, Yiming; Gai, Shaoyan; Yao, Xincheng
2016-01-01
Abstract. Rod-dominated transient retinal phototropism (TRP) has been recently observed in freshly isolated mouse and frog retinas. Comparative confocal microscopy and optical coherence tomography revealed that the TRP was predominantly elicited from the rod outer segment (OS). However, the biophysical mechanism of rod OS dynamics is still unknown. Mouse and frog retinal slices, which displayed a cross-section of retinal photoreceptors and other functional layers, were used to test the effect of light stimulation on rod OSs. Time-lapse microscopy revealed stimulus-evoked conformational changes of rod OSs. In the center of the stimulated region, the length of the rod OS shrunk, while in the peripheral region, the rod OS swung toward the center region. Our experimental observation and theoretical analysis suggest that the TRP may reflect unbalanced rod disc-shape changes due to localized visible light stimulation. PMID:27334933
Fretting corrosion behavior of nitinol spinal rods in conjunction with titanium pedicle screws.
Lukina, Elena; Kollerov, Mikhail; Meswania, Jay; Khon, Alla; Panin, Pavel; Blunn, Gordon W
2017-03-01
Untypical corrosion damage including erosions combined with the build-up of titanium oxide as a corrosion product on the surface of explanted Nitinol spinal rods in the areas where it was in contact with titanium pedicle screw head is reported. It was suggested that Nitinol rods might have inferior fretting corrosion resistance compared with that made of titanium or CoCr. Fretting corrosion of Nitinol spinal rods with titanium (Ti6Al4V) pedicle screws were tested in-vitro by conducting a series of potentiostatic measurements of the peak-to-peak values of fretting corrosion current under bending in a 10% solution of calf serum in PBS. The test included Nitinol rods locked in titanium pedicle screws of different designs. Performance of commercially available titanium (Ti6Al4V) and CoCr spinal rods was also investigated for a comparison. Corrosion damage observed after the in-vitro tests was studied using SEM and EDAX analysis and was compared with patterns on Nitinol rods retrieved 12months after initial surgery. Metal ions level was measured in the test media after in-vitro experiments and in the blood and tissues of the patients who had the rods explanted. The results of this study revealed that Nitinol spinal rods locked in Ti pedicle screws are susceptible to fretting corrosion demonstrating higher fretting corrosion current compared with commercially used Ti6Al4V and CoCr rods. On the surface of Nitinol rods after in-vitro tests and on those retrieved from the patients similar corrosion patterns were observed. Improved resistance to fretting corrosion was observed with Nitinol rods in the in-vitro tests where pedicle screws were used with a stiffer locking mechanism. Since the development of the localized corrosion damage might increase the risk of premature fatigue failure of the rods and result in leaching of Ni ions, it is concluded that Nitinol rods should not be used in conjunction with Ti pedicle screws without special protection especially where the design provides a high degree of mobility to the rods. Copyright © 2016 Elsevier B.V. All rights reserved.
Three dimensional chiral plasmon rulers based on silver nanorod trimers.
Han, Chunrui; Yang, Lechen; Ye, Piao; Parrott, Edward P J; Pickwell-Macpherson, Emma; Tam, Wing Yim
2018-04-16
The symmetry dependences of plasmon excitation modes are studied in 3D silver nanorod trimers. The degenerate plasmon modes split into chiral modes by breaking the inversion and mirror symmetry of the nanorod trimer through translation and/or rotation of the middle rod. With a translation operation, successive evolution of the circular dichroism (CD) spectrum can be achieved through gradual breaking of the inversion symmetry. An additional rotation operation produces even dramatic spectral changes due to breaking a quasi-mirror symmetry resulted from the same angular distance of the middle rod to the top and bottom rods. Especially, pairs of new chiral modes can be excited due to the contact of the middle rod with the top-bottom rod pair. The spectral changes in the simulations, which are also demonstrated experimentally, envision the 3D chiral nanorod trimer system as plasmon ruler for spatial configuration retrieval and dynamic bio-process analysis at the single molecule level.
10 CFR 55.41 - Written examination: Operators.
Code of Federal Regulations, 2013 CFR
2013-01-01
... elements, control rods, core instrumentation, and coolant flow. (3) Mechanical components and design..., and functions of reactivity control mechanisms and instrumentation. (7) Design, components, and functions of control and safety systems, including instrumentation, signals, interlocks, failure modes, and...
10 CFR 55.41 - Written examination: Operators.
Code of Federal Regulations, 2014 CFR
2014-01-01
... elements, control rods, core instrumentation, and coolant flow. (3) Mechanical components and design..., and functions of reactivity control mechanisms and instrumentation. (7) Design, components, and functions of control and safety systems, including instrumentation, signals, interlocks, failure modes, and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulauskas, Tadas; Buurma, Christopher; Colegrove, Eric
Dislocation cores have long dominated the electronic and optical behaviors of semiconductor devices and detailed atomic characterization is required to further explore their effects. Miniaturization of semiconductor devices to nanometre scale also puts emphasis on a material's mechanical properties to withstand failure due to processing or operational stresses. Sessile junctions of dislocations provide barriers to propagation of mobile dislocations and may lead to work-hardening. The sessile Lomer–Cottrell and Hirth lock dislocations, two stable lowest elastic energy stair-rods, are studied in this paper. More specifically, using atomic resolution high-angle annular dark-field imaging and atomic-column-resolved X-ray spectrum imaging in an aberration-corrected scanningmore » transmission electron microscope, dislocation core structures are examined in zinc-blende CdTe. A procedure is outlined for atomic scale analysis of dislocation junctions which allows determination of their identity with specially tailored Burgers circuits and also formation mechanisms of the polar core structures based on Thompson's tetrahedron adapted to reactions of polar dislocations as they appear in CdTe and other zinc-blende solids. Strain fields associated with the dislocations calculatedviageometric phase analysis are found to be diffuse and free of `hot spots' that reflect compact structures and low elastic energy of the pure-edge stair-rods.« less
Lightning discharge protection rod
NASA Technical Reports Server (NTRS)
Bryan, Charles F., Jr. (Inventor)
1987-01-01
A system for protecting an in-air vehicle from damage due to a lighning strike is disclosed. It is an extremely simple device consisting of a sacrificial graphite composite rod, approximately the diameter of a pencil with a length of about five inches. The sacrificial rod is constructed with the graphite fibers running axially within the rod in a manner that best provides a path of conduction axially from the trailing edge of an aircraft to the trailing end of the rod. The sacrificial rod is inserted into an attachment hole machined into trailing edges of aircraft flight surfaces, such as a vertical fin cap and attached with adhesive in a manner not prohibiting the conduction path between the rod and the aircraft. The trailing end of the rod may be tapered for aerodynamic and esthetic requirements. This rod is sacrificial but has the capability to sustain several lightning strikes and still provide protection.
Modeling and simulation performance of sucker rod beam pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aditsania, Annisa, E-mail: annisaaditsania@gmail.com; Rahmawati, Silvy Dewi, E-mail: silvyarahmawati@gmail.com; Sukarno, Pudjo, E-mail: psukarno@gmail.com
2015-09-30
Artificial lift is a mechanism to lift hydrocarbon, generally petroleum, from a well to surface. This is used in the case that the natural pressure from the reservoir has significantly decreased. Sucker rod beam pumping is a method of artificial lift. Sucker rod beam pump is modeled in this research as a function of geometry of the surface part, the size of sucker rod string, and fluid properties. Besides its length, sucker rod string also classified into tapered and un-tapered. At the beginning of this research, for easy modeling, the sucker rod string was assumed as un-tapered. The assumption provedmore » non-realistic to use. Therefore, the tapered sucker rod string modeling needs building. The numerical solution of this sucker rod beam pump model is computed using finite difference method. The numerical result shows that the peak of polished rod load for sucker rod beam pump unit C-456-D-256-120, for non-tapered sucker rod string is 38504.2 lb, while for tapered rod string is 25723.3 lb. For that reason, to avoid the sucker rod string breaks due to the overload, the use of tapered sucker rod beam string is suggested in this research.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hong; Wang, Jy-An John
We studied behavior of surrogate nuclear fuel rods made of Zircaloy-4 (Zry-4) cladding with alumina pellets under reversed cyclic bending. Tests were performed under load or moment control at 5 Hz, and an empirical correlation was established between rod fatigue life and amplitude of the applied moment. Fatigue response of Zry-4 cladding was further characterized by using flexural rigidity. Degradation of flexural rigidity was shown to depend on the moment applied and the prefatigue condition of specimens. Pellet-to-pellet interface (PPI), pellet-to-cladding interface (PCI), and pellet condition all affect surrogate rod failure. Bonding/debonding of PPI/PCI and pellet fracturing contribute to surrogatemore » rod bending fatigue. Also, the effect of sensor spacing on curvature measurement using three-point deflections was studied; the method based on effective specimen gauge length is effective in sensor spacing correction. Finally, we developed the database and gained understanding in this study such that it will serve as input to analysis of SNF vibration integrity.« less
Hanging core support system for a nuclear reactor
Burelbach, James P.; Kann, William J.; Pan, Yen-Cheng; Saiveau, James G.; Seidensticker, Ralph W.
1987-01-01
For holding the reactor core in the confining reactor vessel, a support is disclosed that is structurally independent of the vessel, that is dimensionally accurate and stable, and that comprises tandem tension linkages that act redundantly of one another to maintain stabilized core support even in the unlikely event of the complete failure of one of the linkages. The core support has a mounting platform for the reactor core, and unitary structure including a flange overlying the top edge of the reactor vessels, and a skirt and box beams between the flange and platform for establishing one of the linkages. A plurality of tension rods connect between the deck closing the reactor vessel and the platform for establishing the redundant linkage. Loaded Belleville springs flexibly hold the tension rods at the deck and separable bayonet-type connections hold the tension rods at the platform. Motion or radiation sensing detectors can be provide at the lower ends of the tension rods for obtaining pertinent readings proximate the core.
Optical coherence tomography for nondestructive evaluation of fuel rod degradation
NASA Astrophysics Data System (ADS)
Renshaw, Jeremy B.; Jenkins, Thomas P.; Buckner, Benjamin D.; Friend, Brian
2015-03-01
Nuclear power plants regularly inspect fuel rods to ensure safe and reliable operation. Excessive corrosion can cause fuel failures which can have significant repercussions for the plant, including impacts on plant operation, worker exposure to radiation, and the plant's INPO rating. While plants typically inspect for fuel rod corrosion using eddy current techniques, these techniques have known issues with reliability in the presence of tenacious, ferromagnetic crud layers that can deposit during operation, and the nondestructive evaluation (NDE) inspection results can often be in error by a factor of 2 or 3. For this reason, alternative measurement techniques, such as Optical Coherence Tomography (OCT), have been evaluated that are not sensitive to the ferromagnetic nature of the crud. This paper demonstrates that OCT has significant potential to characterize the thickness of crud layers that can deposit on the surfaces of fuel rods during operation. Physical trials have been performed on simulated crud samples, and the resulting data show an apparent correlation between the crud layer thickness and the OCT signal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stimpson, Shane G; Powers, Jeffrey J; Clarno, Kevin T
The Consortium for Advanced Simulation of Light Water Reactors (CASL) aims to provide high-fidelity, multiphysics simulations of light water reactors (LWRs) by coupling a variety of codes within the Virtual Environment for Reactor Analysis (VERA). One of the primary goals of CASL is to predict local cladding failure through pellet-clad interaction (PCI). This capability is currently being pursued through several different approaches, such as with Tiamat, which is a simulation tool within VERA that more tightly couples the MPACT neutron transport solver, the CTF thermal hydraulics solver, and the MOOSE-based Bison-CASL fuel performance code. However, the process in this papermore » focuses on running fuel performance calculations with Bison-CASL to predict PCI using the multicycle output data from coupled neutron transport/thermal hydraulics simulations. In recent work within CASL, Watts Bar Unit 1 has been simulated over 12 cycles using the VERA core simulator capability based on MPACT and CTF. Using the output from these simulations, Bison-CASL results can be obtained without rerunning all 12 cycles, while providing some insight into PCI indicators. Multi-cycle Bison-CASL results are presented and compared against results from the FRAPCON fuel performance code. There are several quantities of interest in considering PCI and subsequent fuel rod failures, such as the clad hoop stress and maximum centerline fuel temperature, particularly as a function of time. Bison-CASL performs single-rod simulations using representative power and temperature distributions, providing high-resolution results for these and a number of other quantities. This will assist in identifying fuels rods as potential failure locations for use in further analyses.« less
NASA Astrophysics Data System (ADS)
Wang, Chunying; Sun, Enwei; Liu, Yingchun; Zhang, Rui; Yang, Bin; Cao, Wenwu
2016-09-01
Interface stresses strongly influence the functional property of 1-3 piezoelectric composites. Using the translucent nature of (1 - x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals, we have studied stress distributions and domain configuration changes during poling inside the crystal rods by polarizing light microscopy and piezoresponse force microscopy. It was found that the interface stresses due to interaction with polymeric filler led a deformed rhombohedral phase and caused incomplete poling near rod-edges. Compared with "hard" epoxy (Epotek301) filler, "soft" epoxy (Stycast) filler showed weaker impact on the crystals rods and less influence on domain configurations. We also show that high temperature poling (70 °C) can substantially improve the piezoelectric coefficient of composites filled with hard epoxy due to creeping above the glass transition Tg. Analytic stress distribution equations based on cylinder rods were modified to explain the physical principle and to predict the stress distribution for square rods case, which was verified by finite element simulation to be accurate within 5%.
Automatic safety rod for reactors. [LMFBR
Germer, J.H.
1982-03-23
An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.
Automatic safety rod for reactors
Germer, John H.
1988-01-01
An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-core flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.
The saturation of monochromatic lights obliquely incident on the retina.
Alpern, M; Tamaki, R
1983-01-01
Foveal dark-adaptation undertaken to test the hypothesis that the excitation of rods causes the desaturation of 'yellow' lights in a 1 degree field traversing the margin of the pupil, fails to exclude that possibility. The desaturation is largest for a 1 degree outside diameter annular test, is still measurable with a 0.5 degree circular disk, but disappears for a 0.29 degree disk. The supersaturation of obliquely incident 501.2 nm test light follows the opposite pattern; it disappears with an annulus and is largest for a 0.29 degree circular field. It is unlikely that rods replace short-wave sensitive cones in the trichromatic match of an obliquely incident test with normally incident primaries. If rods as well as all three cones species are involved, the matches might not be trichromatic in the strong sense. Grassmann's law of scalar multiplication was tested and shown not to hold for the match of an obliquely incident test with normally incident primaries, though it remains valid whenever, both primaries and test strike the retina at the same angle of incidence (independent of that angle). The result in section 3 (above) cannot be due to rod intrusion. It persists (and becomes more conspicuous) on backgrounds (4.0 log scotopic td) which saturate rods. Moreover obliquely incident 'yellow' lights remain desaturated in intervals in the dark after a full bleach, whilst the test field is below rod threshold. The amount of desaturation does not differ appreciably from that normally found. The assumption of the unified theory of Alpern, Kitahara & Tamaki (1983) that the outer segments of only a single set of three cone species (with acceptance angles wide enough to include the entire exit pupil) contain the visual pigments absorbing both the normally incident primaries and the obliquely incident test is disproved by these results. Failure of Grassmann's law is most conspicuous under the conditions for which the changes in saturation upon changing from normal to oblique incidence are greatest and least when the saturation changes are the smallest. Either all unified theories of the Stiles-Crawford effects are wrong or all the effects of oblique incidence operate at a stage in the visual process at which the effects of radiation of different wave-lengths are no longer compounded by the simple linear laws. PMID:6875976
Nakao, Yaoki; Shimokawa, Nobuyuki; Morisako, Hiroki; Tsukazaki, Yuji; Terada, Aiko; Nakajo, Kosuke; Fu, Yoshihiko
2014-01-01
Objective Polyaxial screw-rod fixation of C1-C2 is a relatively new technique to treat atlantoaxial instability, and there have been few reports in the literature outlining all possible complications. The purpose of this case report is to present the occurrence and management of occipital bone erosion induced by the protruded rostral part of a posterior atlantoaxial screw-rod construct causing headache. Clinical Features A 70-year-old Asian man with rheumatoid arthritis initially presented to our institution with atlantoaxial instability causing progressive quadraparesis and neck pain. Intervention and Outcome Posterior atlantoaxial instrumented fixation using C1 lateral mass screws in conjunction with C2 pedicle screws was performed to stabilize these segments. Postoperatively, the patient regained the ability to independently walk and had no radiographic evidence of instrumentation hardware failure and excellent sagittal alignment. However, despite a well-stabilized fusion, the patient began to complain of headache during neck extension. Follow-up imaging studies revealed left occipital bone erosion induced by a protruded titanium rod fixed with setscrews. During revision surgery, the rod protrusion was modified and the headaches diminished. Conclusion This case demonstrates that occipital bone erosion after posterior atlantoaxial fixation causing headache may occur. The principal cause of bone erosion in this case was rod protrusion. Although posterior atlantoaxial fixation using the screw-rod system was selected to manage atlantoaxial instability because it has less complications than other procedures, surgeons should pay attention that the length of the rod protrusion should not exceed 2 mm. PMID:25435842
Determination of Graphite-Liquid-Vapor Triple Point by Laser Heating
1976-01-30
difficulties in the temperature measure- ments, which were made with an optical pyrometer . He considered that the failure of graphite rod was caused by...temperature measurements were made with a calibrated optical pyrometer . Spherical shiny frozen droplets of graphite, 1 to 3 mm in diameter, indicated...0.8 mm in diameter and 10 mm long in argon until failure by rupture occurred. They measured the tempera- ture with a two-color pyrometer . The
3D modeling of missing pellet surface defects in BWR fuel
Spencer, B. W.; Williamson, R. L.; Stafford, D. S.; ...
2016-07-26
One of the important roles of cladding in light water reactor fuel rods is to prevent the release of fission products. To that end, it is essential that the cladding maintain its integrity under a variety of thermal and mechanical loading conditions. Local geometric irregularities in fuel pellets caused by manufacturing defects known as missing pellet surfaces (MPS) can in some circumstances lead to elevated cladding stresses that are sufficiently high to cause cladding failure. Accurate modeling of these defects can help prevent these types of failures. The BISON nuclear fuel performance code developed at Idaho National Laboratory can bemore » used to simulate the global thermo-mechanical fuel rod behavior, as well as the local response of regions of interest, in either 2D or 3D. In either case, a full set of models to represent the thermal and mechanical properties of the fuel, cladding and plenum gas is employed. A procedure for coupling 2D full-length fuel rod models to detailed 3D models of the region of the rod containing a MPS defect is detailed in this paper. The global and local model each contain appropriate physics and behavior models for nuclear fuel. This procedure is demonstrated on a simulation of a boiling water reactor (BWR) fuel rod containing a pellet with an MPS defect, subjected to a variety of transient events, including a control blade withdrawal and a ramp to high power. The importance of modeling the local defect using a 3D model is highlighted by comparing 3D and 2D representations of the defective pellet region. Finally, parametric studies demonstrate the effects of the choice of gaseous swelling model and of the depth and geometry of the MPS defect on the response of the cladding adjacent to the defect.« less
Control rod driveline and grapple
Germer, John H.
1987-01-01
A control rod driveline and grapple is disclosed for placement between a control rod drive and a nuclear reactor control rod containing poison for parasitic neutron absorption required for reactor shutdown. The control rod is provided with an enlarged cylindrical handle which terminates in an upwardly extending rod to provide a grapple point for the driveline. The grapple mechanism includes a tension rod which receives the upwardly extending handle and is provided with a lower annular flange. A plurality of preferably six grapple segments surround and grip the control rod handle. Each grapple rod segment grips the flange on the tension rod at an interior upper annular indentation, bears against the enlarged cylindrical handle at an intermediate annulus and captures the upwardly flaring frustum shaped handle at a lower and complementary female segment. The tension rods and grapple segments are surrounded by and encased within a cylinder. The cylinder terminates immediately and outward extending annulus at the lower portion of the grapple segments. Excursion of the tension rod relative to the encasing cylinder causes rod release at the handle by permitting the grapple segments to pivot outwardly and about the annulus on the tension rod so as to open the lower defined frustum shaped annulus and drop the rod. Relative movement between the tension rod and cylinder can occur either due to electromagnetic release of the tension rod within defined limits of travel or differential thermal expansion as between the tension rod and cylinder as where the reactor exceeds design thermal limits.
Tellegen, Anna R; Willems, Nicole; Tryfonidou, Marianna A; Meij, Björn P
2015-12-07
Degenerative lumbosacral stenosis is a common problem in large breed dogs. For severe degenerative lumbosacral stenosis, conservative treatment is often not effective and surgical intervention remains as the last treatment option. The objective of this retrospective study was to assess the middle to long term outcome of treatment of severe degenerative lumbosacral stenosis with pedicle screw-rod fixation with or without evidence of radiological discospondylitis. Twelve client-owned dogs with severe degenerative lumbosacral stenosis underwent pedicle screw-rod fixation of the lumbosacral junction. During long term follow-up, dogs were monitored by clinical evaluation, diagnostic imaging, force plate analysis, and by using questionnaires to owners. Clinical evaluation, force plate data, and responses to questionnaires completed by the owners showed resolution (n = 8) or improvement (n = 4) of clinical signs after pedicle screw-rod fixation in 12 dogs. There were no implant failures, however, no interbody vertebral bone fusion of the lumbosacral junction was observed in the follow-up period. Four dogs developed mild recurrent low back pain that could easily be controlled by pain medication and an altered exercise regime. Pedicle screw-rod fixation offers a surgical treatment option for large breed dogs with severe degenerative lumbosacral stenosis with or without evidence of radiological discospondylitis in which no other treatment is available. Pedicle screw-rod fixation alone does not result in interbody vertebral bone fusion between L7 and S1.
Review of Findings for Human Performance Contribution to Risk in Operating Events
2002-03-01
and loss of DC power. Key to this event was failure to control setpoints on safety-related equipment and failure to maintain the load tap changer...34 Therefore, "to optimize task execution at the job site, it is important to align organizational processes and values." Effective team skills are an...reactor was blocked and the water level rapidly dropped to the automatic low-level scram setpoint . Human Performance Issues Control rods were fully
Equations of state for crystalline zirconium iodide: The role of dispersion
NASA Astrophysics Data System (ADS)
Rossi, Matthew L.; Taylor, Christopher D.
2013-02-01
We present the first-principle equations of state of several zirconium iodides, ZrI2, ZrI3, and ZrI4, computed using density functional theory methods that apply various methods for introducing the dispersion correction. Iodides formed due to reaction of molecular or atomic iodine with zirconium and zircaloys are of particular interest due to their application to the cladding material used in the fabrication of nuclear fuel rods. Stress corrosion cracking (SCC), associated with fission product chemistry with the clad material, is a major concern in the life cycle of nuclear fuels, as many of the observed rod failures have occurred due to pellet-cladding chemical interactions (PCCI) [A. Atrens, G. Dannhäuser, G. Bäro, Stress-corrosion-cracking of zircaloy-4 cladding tubes, Journal of Nuclear Materials 126 (1984) 91-102; P. Rudling, R. Adamson, B. Cox, F. Garzarolli, A. Strasser, High burn-up fuel issues, Nuclear Engineering and Technology 40 (2008) 1-8]. A proper understanding of the physical properties of the corrosion products is, therefore, required for the development of a comprehensive SCC model. In this particular work, we emphasize that, while existing modeling techniques include methods to compute crystal structures and associated properties, it is important to capture intermolecular forces not traditionally included, such as van der Waals (dispersion) correction. Furthermore, crystal structures with stoichiometries favoring a high I:Zr ratio are found to be particularly sensitive, such that traditional density functional theory approaches that do not incorporate dispersion incorrectly predict significantly larger volumes of the lattice. This latter point is related to the diffuse nature of the iodide electron cloud.
Characterizing the dynamic strength of materials for ballistic applications
NASA Astrophysics Data System (ADS)
Cazamias, James Ulysses
We unambiguously verified the hypothesis that normal penetration in brittle materials may be represented as a bi-modal process. The first mode is governed by fundamental strength properties of the target, while the second mode is governed by the fracture kinetics. We investigated the failure response of glass under impact loading. We observed a drop in the failure wave velocity by a factor of 1/2 after unloading. While not unexpected, this drop had not been clearly observed previously. In contradiction to literature values, we observed a drop in sound speed behind the failure wave. Finally, despite the common perception that the failed material is comminuted, we observed a finite tensile strength. We proposed a new variant of the Taylor test using scaled rods to examine strain rate effects. For armor steel, we observed changes in strength greater than what would be expected from a logarithmic dependence of strength on strain rate although not enough to account for scale effects. For tungsten penetrators, we observed that smaller scale tungsten rods appeared to have more work hardening than the large scale rods which might account for scale effects. We examined the square Taylor impact problem. We showed that the square Taylor test is a new way to study shear localization under compressive-shear loading. We performed the first shock characterization of AlON. We observed that the bar impact experiment appears to differentiate between different thicknesses of ceramic tile in qualitative agreement with subscale and full scale penetration experiments. We present data supporting the lower yield strength estimate of 4.3 GPa for alumina. We performed the first bar impact characterization of AlON.
Controlling Tensegrity Robots Through Evolution
NASA Technical Reports Server (NTRS)
Iscen, Atil; Agogino, Adrian; SunSpiral, Vytas; Tumer, Kagan
2013-01-01
Tensegrity structures (built from interconnected rods and cables) have the potential to offer a revolutionary new robotic design that is light-weight, energy-efficient, robust to failures, capable of unique modes of locomotion, impact tolerant, and compliant (reducing damage between the robot and its environment). Unfortunately robots built from tensegrity structures are difficult to control with traditional methods due to their oscillatory nature, nonlinear coupling between components and overall complexity. Fortunately this formidable control challenge can be overcome through the use of evolutionary algorithms. In this paper we show that evolutionary algorithms can be used to efficiently control a ball-shaped tensegrity robot. Experimental results performed with a variety of evolutionary algorithms in a detailed soft-body physics simulator show that a centralized evolutionary algorithm performs 400 percent better than a hand-coded solution, while the multi-agent evolution performs 800 percent better. In addition, evolution is able to discover diverse control solutions (both crawling and rolling) that are robust against structural failures and can be adapted to a wide range of energy and actuation constraints. These successful controls will form the basis for building high-performance tensegrity robots in the near future.
Deen, H Gordon; Birch, Barry D; Wharen, Robert E; Reimer, Ronald
2003-01-01
Lateral mass plating has become the technique of choice for posterior cervical fixation. Although these systems are safe and reliable, they can be difficult to use in patients with abnormal cervical anatomy; screw placement can be compromised by the fixed hole spacing of the plate; screw back-out and other forms of implant failure can occur; and extension across the cervicothoracic junction can be problematic. To report a series of patients undergoing posterior cervical stabilization with a polyaxial screw-rod construct and to investigate whether this new system offers any advantages over existing methods of fixation. A prospective study evaluating clinical and radiographic parameters in a consecutive series of patients treated with this technique. There were 21 patients in the study group. The surgical indication was cervical spondylosis in 14, trauma in 2, postsurgical kyphosis in 2 and 1 case each of congenital cervicothoracic stenosis, C7-T1 pseudarthrosis and basilar invagination with brainstem compression. Clinical indicators included age, gender, neurologic status, surgical indication and number of levels stabilized. Note was made of whether laminectomy and concomitant anterior reconstructive surgery were performed. Radiographic indicators included early postoperative computed tomography (CT) scan to check for screw placement and plain radiographs at subsequent visits. The participants in this study underwent posterior cervical stabilization using lateral mass screw-rod fixation. Clinical and radiographic assessment was carried out immediately after surgery, and 3, 6 and 12 months after surgery. One-year follow-up was obtained in all cases. A total of 212 screws were implanted in 21 patients. Fixation was carried out over an average of 5.5 spinal segments (range, 2 to 11). The system was successfully implanted in all patients despite the presence of coronal and sagittal plane deformities and/or lateral mass abnormalities in the majority of cases. This system allowed for screw placement in the occiput, C1 lateral mass, C2 pars, C3-C7 lateral masses and upper thoracic pedicles. Early postoperative CT scanning confirmed satisfactory screw placement in all cases. Three patients experienced transient single-level radiculopathy, for an incidence of 1.4% per screw placed. Two patients developed wound seromas requiring evacuation. There were no infections or other wound healing problems. There were no examples of cord or vertebral artery injury, cerebrospinal fluid leak, screw malposition or back-out, loss of alignment or implant failure. When compared with plating techniques, screw-rod fixation appeared to offer several advantages. First, unlike plates, rods proved to be amenable to multiplanar contouring, which is often needed for deformities associated with cervical spondylosis. Second, lateral mass screw placement was more precise because it was not constrained by the hole spacing of the plate. Third, screw back-out and other types of implant failure were not seen. Fourth, the screw-rod system was more easily extended to the occiput and across the cervicothoracic junction. Fifth, the screw-rod system permitted the application of compression, distraction and reduction forces within the construct, to a greater extent than plate systems. The incidence of postoperative radiculopathy was similar to that seen with plate systems. These data indicate that posterior cervical stabilization with polyaxial screw-rod fixation is a safe, straightforward technique that appears to offer some advantages over existing methods of fixation. Results appear to be durable at 1-year follow-up. Benefits are more significant with longer constructs, especially those extending to the occiput or crossing the cervicothoracic junction.
Prestressed elastomer for energy storage
Hoppie, Lyle O.; Speranza, Donald
1982-01-01
Disclosed is a regenerative braking device for an automotive vehicle. The device includes a power isolating assembly (14), an infinitely variable transmission (20) interconnecting an input shaft (16) with an output shaft (18), and an energy storage assembly (22). The storage assembly includes a plurality of elastomeric rods (44, 46) mounted for rotation and connected in series between the input and output shafts. The elastomeric rods are prestressed along their rotational or longitudinal axes to inhibit buckling of the rods due to torsional stressing of the rods in response to relative rotation of the input and output shafts.
Monson, H.O.
1960-11-22
An arrangement is offered for preventing or minimizing the contraction due to temperature rise, of a reactor core comprising vertical fuel rods in sodium. Temperature rise of the fuel rods would normally make them move closer together by inward bowing, with a resultant undesired increase in reactivity. According to the present invention, assemblies of the fuel rods are laterally restrained at the lower ends of their lower blanket sections and just above the middle of the fuel sections proper of the rods, and thus the fuel sections move apart, rather than together, with increase in temperature.
Optical coherence tomography for nondestructive evaluation of fuel rod degradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renshaw, Jeremy B., E-mail: jrenshaw@epri.com; Jenkins, Thomas P., E-mail: tjenkins@metrolaserinc.com; Buckner, Benjamin D., E-mail: tjenkins@metrolaserinc.com
Nuclear power plants regularly inspect fuel rods to ensure safe and reliable operation. Excessive corrosion can cause fuel failures which can have significant repercussions for the plant, including impacts on plant operation, worker exposure to radiation, and the plant's INPO rating. While plants typically inspect for fuel rod corrosion using eddy current techniques, these techniques have known issues with reliability in the presence of tenacious, ferromagnetic crud layers that can deposit during operation, and the nondestructive evaluation (NDE) inspection results can often be in error by a factor of 2 or 3. For this reason, alternative measurement techniques, such asmore » Optical Coherence Tomography (OCT), have been evaluated that are not sensitive to the ferromagnetic nature of the crud. This paper demonstrates that OCT has significant potential to characterize the thickness of crud layers that can deposit on the surfaces of fuel rods during operation. Physical trials have been performed on simulated crud samples, and the resulting data show an apparent correlation between the crud layer thickness and the OCT signal.« less
TEFLON BELLOWS PULSE GENERATORS FOR SOLVENT EXTRACTION PULSE COLUMNS
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarthy, P.B.
1954-01-01
A Teflon bellows-type pulse generator is described which consists of two 3-in. nominal diameter Teflon bellows mounted on either end of a flanged spool piece and rigidly connected internally by a push rod so that the two of bellows move in tandem. The ends of the two bellows are closed by means of blind flanges. Tne spool piece is designed for insertion in a 6-in. diameter nozzle on a solvent extraction pulse column. The double bellows arrangement constitutes a safety feature to prevent loss of the column contents in the event of failure of the inner bellows in contact withmore » column solution. Failure of the inner bellows may be detected by a conductivity probe mounted in the air space inside of the double bellows assembly. Reciprocating motion is imcrank arm rigidly connected through a cross head and push rod to the face of the external bellows flange. The push rod is guided by means of linear ball bushings. Frequency variation over a range of 30 to 100 cycles/ min.was obtained by use of a Thymotrol-controlled electric motor to drive the crank arm. Variable stroke adjustment (0 to 1-in. range) was possible by adjustment of linkages on the crank arm. A load compensating spring was founnd desirable to counteract the thrust on the push rod resulting tom the static pressure at the bottom of the solvent extraction column. Without the spring, accelerated wear of the bearing on the crank arm occured. The pulse generator operated uneventfully for 1776 hours (6.61x lO/sup 6/ cycles) at a frequency of 62 cycles/min. and a bellows travel of l-in. (equivalent to a displacement of 1.6 in. in a 3-in. diam. column). (auth)« less
Ultrasound control of magnet growing rod distraction in early onset scoliosis.
Pérez Cervera, T; Lirola Criado, J F; Farrington Rueda, D M
2016-01-01
The growing rod technique is currently one of the most common procedures used in the management of early onset scoliosis. However, in order to preserve spine growth and control the deformity it requires frequent surgeries to distract the rods. Magnetically driven growing rods have recently been introduced with same treatment goal, but without the inconvenience of repeated surgical distractions. One of the limitations of this technical advance is an increase in radiation exposure due to the increase in distraction frequency compared to conventional growing rods. An improvement of the original technique is presented, proposing a solution to the inconvenience of multiple radiation exposure using ultrasound technology to control the distraction process of magnetically driven growing rods. Copyright © 2014 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.
Suppressing turbulence of self-propelling rods by strongly coupled passive particles.
Su, Yen-Shuo; Wang, Hao-Chen; I, Lin
2015-03-01
The strong turbulence suppression, mainly for large-scale modes, of two-dimensional self-propelling rods, by increasing the long-range coupling strength Γ of low-concentration passive particles, is numerically demonstrated. It is found that large-scale collective rod motion in forms of swirls or jets is mainly contributed from well-aligned dense patches, which can push small poorly aligned rod patches and uncoupled passive particles. The more efficient momentum transfer and dissipation through increasing passive particle coupling leads to the formation of a more ordered and slowed down network of passive particles, which competes with coherent dense active rod clusters. The frustration of active rod alignment ordering and coherent motion by the passive particle network, which interrupt the inverse cascading of forming large-scale swirls, is the key for suppressing collective rod motion with scales beyond the interpassive distance, even in the liquid phase of passive particles. The loosely packed active rods are weakly affected by increasing passive particle coupling due to the weak rod-particle interaction. They mainly contribute to the small-scale modes and high-speed motion.
Hanging core support system for a nuclear reactor. [LMFBR
Burelbach, J.P.; Kann, W.J.; Pan, Y.C.; Saiveau, J.G.; Seidensticker, R.W.
1984-04-26
For holding the reactor core in the confining reactor vessel, a support is disclosed that is structurally independent of the vessel, that is dimensionally accurate and stable, and that comprises tandem tension linkages that act redundantly of one another to maintain stabilized core support even in the unlikely event of the complete failure of one of the linkages. The core support has a mounting platform for the reactor core, and unitary structure including a flange overlying the top edge of the reactor vessels, and a skirt and box beams between the flange and platform for establishing one of the linkages. A plurality of tension rods connect between the deck closing the reactor vessel and the platform for establishing the redundant linkage. Loaded Belleville springs flexibly hold the tension rods at the deck and separable bayonet-type connections hold the tension rods at the platform.
Planar dynamics of large-deformation rods under moving loads
NASA Astrophysics Data System (ADS)
Zhao, X. W.; van der Heijden, G. H. M.
2018-01-01
We formulate the problem of a slender structure (a rod) undergoing large deformation under the action of a moving mass or load motivated by inspection robots crawling along bridge cables or high-voltage power lines. The rod is described by means of geometrically exact Cosserat theory which allows for arbitrary planar flexural, extensional and shear deformations. The equations of motion are discretised using the generalised-α method. The formulation is shown to handle the discontinuities of the problem well. Application of the method to a cable and an arch problem reveals interesting nonlinear phenomena. For the cable problem we find that large deformations have a resonance detuning effect on cable dynamics. The problem also offers a compelling illustration of the Timoshenko paradox. For the arch problem we find a stabilising (delay) effect on the in-plane collapse of the arch, with failure suppressed entirely at sufficiently high speed.
Square-lashing technique in segmental spinal instrumentation: a biomechanical study.
Arlet, Vincent; Draxinger, Kevin; Beckman, Lorne; Steffen, Thomas
2006-07-01
Sublaminar wires have been used for many years for segmental spinal instrumentation in scoliosis surgery. More recently, stainless steel wires have been replaced by titanium cables. However, in rigid scoliotic curves, sublaminar wires or simple cables can either brake or pull out. The square-lashing technique was devised to avoid complications such as cable breakage or lamina cutout. The purpose of the study was therefore to test biomechanically the pull out and failure mode of simple sublaminar constructs versus the square-lashing technique. Individual vertebrae were subjected to pullout testing having one of two different constructs (single loop and square lashing) using either monofilament wire or multifilament cables. Four different methods of fixation were therefore tested: single wire construct, square-lashing wiring construct, single cable construct, and square-lashing cable construct. Ultimate failure load and failure mechanism were recorded. For the single wire the construct failed 12/16 times by wire breakage with an average ultimate failure load of 793 N. For the square-lashing wire the construct failed with pedicle fracture in 14/16, one bilateral lamina fracture, and one wire breakage. Ultimate failure load average was 1,239 N For the single cable the construct failed 12/16 times due to cable breakage (average force 1,162 N). 10/12 of these breakages were where the cable looped over the rod. For the square-lashing cable all of these constructs (16/16) failed by fracture of the pedicle with an average ultimate failure load of 1,388 N. The square-lashing construct had a higher pullout strength than the single loop and almost no cutting out from the lamina. The square-lashing technique with cables may therefore represent a new advance in segmental spinal instrumentation.
Analysis of failed nuclear plant components
NASA Astrophysics Data System (ADS)
Diercks, D. R.
1993-12-01
Argonne National Laboratory has conducted analyses of failed components from nuclear power- gener-ating stations since 1974. The considerations involved in working with and analyzing radioactive compo-nents are reviewed here, and the decontamination of these components is discussed. Analyses of four failed components from nuclear plants are then described to illustrate the kinds of failures seen in serv-ice. The failures discussed are (1) intergranular stress- corrosion cracking of core spray injection piping in a boiling water reactor, (2) failure of canopy seal welds in adapter tube assemblies in the control rod drive head of a pressurized water reactor, (3) thermal fatigue of a recirculation pump shaft in a boiling water reactor, and (4) failure of pump seal wear rings by nickel leaching in a boiling water reactor.
Penetration of tungsten-alloy rods into composite ceramic targets: Experiments and 2-D simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenberg, Z.; Dekel, E.; Hohler, V.
1998-07-10
A series of terminal ballistics experiments, with scaled tungsten-alloy penetrators, was performed on composite targets consisting of ceramic tiles glued to thick steel backing plates. Tiles of silicon-carbide, aluminum nitride, titanium-dibroide and boron-carbide were 20-80 mm thick, and impact velocity was 1.7 km/s. 2-D numerical simulations, using the PISCES code, were performed in order to simulate these shots. It is shown that a simplified version of the Johnson-Holmquist failure model can account for the penetration depths of the rods but is not enough to capture the effect of lateral release waves on these penetrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohli, R.; Gilbert, E.R.; Johnson, A.B.
1985-05-01
Two irradiated boiling water reactor fuel rods with breached cladding were exposed to argon and to air at 598 K for 7.56 Ms (2100 h). These tests were conducted to determine fuel swelling and cladding crack propagation under conditions that promote UO/sub 2/ fuel oxidation and to observe the behavior of water-logged breached fuel in an inert gas environment. The two rods were selected for testing after extensive hot cell examination had shown the cladding of both rods to be breached with several centimetres of open cracks; the cracks were characterized in detail before the test. As part of themore » experiment, the amount of the readily removable water contained in the fuel rods was determined. To oxidize the fuel to a significant level ( about10%), the air in the annealine capsule was replenished approximately daily. The depletion of oxygen available in the air capsule due to fuel oxidation occurred in about0.036 Ms (10 h). At the end of the test period, about6% of the fuel is estimated to have oxidized. Posttest examination of the rods showed that cladding degradation resulted from swelling due to oxidation of the fuel in the air environment. The cladding degradation was localized and fuel oxidation did not measurably extend beyond the cladding breach. No cladding degradation was measurable in the breached fuel rod tested in argon.« less
78 FR 58978 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-25
... during low speed taxi maneuvers. The bogie fractured aft of the pivot point and remained attached to the sliding tube by the brake torque reaction rods. After this RH bogie failure, the aeroplane continued for... requirements.'' Under that section, Congress charges the FAA with promoting safe flight of civil aircraft in...
Simulation of alnico coercivity
Ke, Liqin; Skomski, Ralph; Hoffmann, Todd D.; ...
2017-07-10
Micromagnetic simulations of alnico show substantial deviations from Stoner-Wohlfarth behavior due to the unique size and spatial distribution of the rod-like Fe-Co phase formed during spinodal decomposition in an external magnetic field. Furthemore, the maximum coercivity is limited by single-rod effects, especially deviations from ellipsoidal shape, and by interactions between the rods. In both the exchange interaction between connected rods and magnetostatic we consider the interaction between rods, and the results of our calculations show good agreement with recent experiments. Unlike systems dominated by magnetocrystalline anisotropy, coercivity in alnico is highly dependent on size, shape, and geometric distribution of themore » Fe-Co phase, all factors that can be tuned with appropriate chemistry and thermal-magnetic annealing.« less
Sun, Edward; Alkalay, Ron; Vader, David; Snyder, Brian D
2009-06-01
An in vitro biomechanical study. Compare the mechanical behavior of 5 different constructs used to terminate dual-rod posterior spinal instrumentation in resisting forward flexion moment. Failure of the distal fixation construct can be a significant problem for patients undergoing surgical treatment for thoracic hyperkyphosis. We hypothesize that augmenting distal pedicle screws with infralaminar hooks or sublaminar cables significantly increases the strength and stiffness of these constructs. Thirty-seven thoracolumbar (T12 to L2) calf spines were implanted with 5 configurations of distal constructs: (1) infralaminar hooks, (2) sublaminar cables, (3) pedicle screws, (4) pedicle screws+infralaminar hooks, and (5) pedicle screws+sublaminar cables. Progressive bending moment was applied to each construct until failure. The mode of failure was noted and the construct's stiffness and failure load determined from the load-displacement curves. Bone density and vertebral dimensions were equivalent among the groups (F=0.1 to 0.9, P>0.05). One-way analysis of covariance (adjusted for differences in density and vertebral dimension) demonstrated that all of the screw-constructs (screw, screw+hook, and screw+cable) exhibited significantly higher stiffness and ultimate failure loads compared with either sublaminar hook or cable alone (P<0.05). The screw+hook constructs (109+/-11 Nm/mm) were significantly stiffer than either screws alone (88+/-17 Nm/mm) or screw+cable (98+/-13 Nm/mm) constructs, P<0.05. Screw+cable construct exhibited significantly higher failure load (1336+/-328 N) compared with screw constructs (1102+/-256 N, P<0.05), whereas not statistically different from the screw+hook construct (1220+/-75 N). The cable and hook constructs failed by laminar fracture, screw construct failed in uniaxial shear (pullout), whereas the screws+(hooks or wires) failed by fracture of caudal vertebral body. Posterior dual rod constructs fixed distally using pedicle screws were stiffer and stronger in resisting forward flexion compared with cables or hooks alone. Augmenting these screws with either infralaminar hooks or sublaminar cables provided additional resistance to failure.
1986-12-01
paper, we consider geometrically exact models, such as the Kirchhoff-Love-Reissner- Antman model for rods and its counterpart for plates and shells. These...equivalent model, formulated as a constrained director theory - the so-called special theory of Cosserat rods - is due to Antman (1974] - see also...Anan and Jordan [1975], Anunan and Kenny [1981]. and Antman [1984] for some applications. The dynamic version along with the parametrization discussed
Parallel Operation of Multiple Closely Spaced Small Aspect Ratio Rod Pinches
Harper-Slaboszewicz, Victor J.; Leckbee, Joshua; Bennett, Nichelle; ...
2014-12-10
A series of simulations and experiments to resolve questions about the operation of arrays of closely spaced small aspect ratio rod pinches has been performed. Design and post-shot analysis of the experimental results are supported by 3D particle-in-cell simulations. Both simulations and experiments support these conclusions. Penetration of current to the interior of the array appears to be efficient, as the current on the center rods is essentially equal to the current on the outer rods. Current loss in the feed due to the formation of magnetic nulls was avoided in these experiments by design of the feed surface ofmore » the cathode and control of the gap to keep the electric fields on the cathode below the emission threshold. Some asymmetry in the electron flow to the rod was observed, but the flow appeared to symmetrize as it reached the end of the rod. Interaction between the rod pinches can be controlled to allow the stable and consistent operation of arrays of rod pinches.« less
Abreu, Amara; Loza, Maria A; Elias, Augusto; Mukhopadhyay, Siuli; Looney, Stephen; Rueggeberg, Frederick A
2009-02-01
The ability of a resin cement to bond to a restorative alloy is critical for maximal crown retention to nonideal preparations. Surface treatment and metal type may have an important role in optimizing resin-to-metal strength. The purpose of this study was to examine the effect of surface pretreatment on the tensile strength of base and noble metals bonded using a conventional resin cement. Cylindrical plastic rods (9.5 mm in diameter), cast in base (Rexillium NBF) or noble metal (IPS d.SIGN 53), were divided into rods 10 mm in length (n=10-12). Specimens were heated in a porcelain furnace to create an oxide layer. Test specimens were further subjected to airborne-particle abrasion (50-microm Al(2)O(3) particles) alone or with the application of a metal primer (Alloy Primer). Similarly treated rod ends were joined using resin cement (RelyX ARC), thermocycled (x500, 5 degrees -55 degrees C) and stored (24 hours, 37 degrees C) before debonding using a universal testing machine. Debond strength and failure site were recorded. Rank-based ANOVA for unbalanced designs was used to test for significant interaction (alpha=.050). Each pair of treatments was compared separately for each metal (Bonferroni-adjusted significance level of .0083, overall error rate for comparisons, .05). The 2 metals were compared separately for each of the 3 treatments using an adjusted significance level of .017, maintaining an overall error rate of .05. A multinomial logit model was used to describe the effect of metal type and surface pretreatment on failure site location (alpha=.05). Interaction between metal type and surface pretreatment was significant for stress values (P=.019). Metal type did not significantly affect tensile bond strength for any of the compared surface pretreatments. Metal primer significantly improved tensile bond strength for each metal type. Most failures tended to occur as either adhesive or mixed in nature. Metal primer application significantly enhanced tensile bond strength to base and noble metal. No significant differences in tensile strength were found between alloys. Differences in failure site incidence were found to be related to metal type and surface pretreatment.
Cadetti, Lucia; Bryson, Eric J.; Ciccone, Cory A.; Rabl, Katalin; Thoreson, Wallace B.
2008-01-01
We examined the contribution of calcium-induced calcium release (CICR) to synaptic transmission from rod photoreceptor terminals. Whole-cell recording and confocal calcium imaging experiments were conducted on rods with intact synaptic terminals in a retinal slice preparation from salamander. Low concentrations of ryanodine stimulated calcium increases in rod terminals, consistent with the presence of ryanodine receptors. Application of strong depolarizing steps (−70 to −10 mV) exceeding 200 ms or longer in duration evoked a wave of calcium that spread across the synaptic terminals of voltage-clamped rods. This secondary calcium increase was blocked by high concentrations of ryanodine, indicating it was due to CICR. Ryanodine (50 μM) had no significant effect on rod calcium current (Ica) although it slightly diminished rod light-evoked voltage responses. Bath application of 50 μM ryanodine strongly inhibited light-evoked currents in horizontal cells. Whether applied extracellularly or delivered into the rod cell through the patch pipette, ryanodine (50 μM) also inhibited excitatory post-synaptic currents (EPSCs) evoked in horizontal cells by depolarizing steps applied to rods. Ryanodine caused a preferential reduction in the later portions of EPSCs evoked by depolarizing steps of 200 ms or longer. These results indicate that CICR enhances calcium increases in rod terminals evoked by sustained depolarization, which in turn acts to boost synaptic exocytosis from rods. PMID:16819987
Tests for Determining Failure Criteria of Ceramics under Ballistic Impact
1992-06-01
strength steel rods, joined together by connectors and pretensioned to remove the slack before prcssurization. The system was designed to operate up...and ftaporta, IJIi J—arfW P*ii Kqfrwar. tv«a 11Q4. Arlington. VA 22201-4)02. an« t« «ha Oflna a« Manag *«** and Rudoat. f«*v«t HatfudtOA rVotoc«(0704-01...different mechanisms for failure and postfailure flow, and these mechanisms operate at different threshold loads. Two one-dimensional computational
Endurance testing of downstream cathodes on a low-power MPD thruster
NASA Technical Reports Server (NTRS)
Burkhart, J. A.; Rose, J. R.
1974-01-01
A low-power MPD thruster with downstream cathode was tested for endurance with a series of hollow cathode designs. Failure modes and failure mechanisms were identified. A new hollow cathode (with rod inserts) has emerged which shows promise for long life. The downstream positioning of the cathode was also changed from an on-axis location to an off-axis location. Data are presented for a 1332-hour life test of this new hollow cathode located at the new off-axis location. Xenon propellant was used.
NASA Astrophysics Data System (ADS)
James, H. R.; Gustavsen, R. L.; Dattelbaum, D. M.
2017-01-01
In previous work involving firing flat nosed steel rods into the 60/40 RDX/TNT explosive Composition B-3, we found an apparently anomalous "hump" in particle velocity wave profiles. The "hump" occurred on the center-line established by the rod, and at relatively late times, > 1 µs, after detonation onset. Several explanations, including that of a late time reaction, were postulated. This report will present evidence that the anomalous late time "hump" is due to the arrival of rarefaction waves from the rod's periphery. Simple analytic calculations and reactive-burn hydro-code calculations will be presented supporting this hypothesis.
Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors
Bakosi, J.; Christon, M. A.; Lowrie, R. B.; ...
2013-07-12
The grid-to-rod fretting (GTRF) problem in pressurized water reactors is a flow-induced vibration problem that results in wear and failure of the fuel rods in nuclear assemblies. In order to understand the fluid dynamics of GTRF and to build an archival database of turbulence statistics for various configurations, implicit large-eddy simulations of time-dependent single-phase turbulent flow have been performed in 3 × 3 and 5 × 5 rod bundles with a single grid spacer. To assess the computational mesh and resolution requirements, a method for quantitative assessment of unstructured meshes with no-slip walls is described. The calculations have been carriedmore » out using Hydra-TH, a thermal-hydraulics code developed at Los Alamos for the Consortium for Advanced Simulation of Light water reactors, a United States Department of Energy Innovation Hub. Hydra-TH uses a second-order implicit incremental projection method to solve the singlephase incompressible Navier-Stokes equations. The simulations explicitly resolve the large scale motions of the turbulent flow field using first principles and rely on a monotonicity-preserving numerical technique to represent the unresolved scales. Each series of simulations for the 3 × 3 and 5 × 5 rod-bundle geometries is an analysis of the flow field statistics combined with a mesh-refinement study and validation with available experimental data. Our primary focus is the time history and statistics of the forces loading the fuel rods. These hydrodynamic forces are believed to be the key player resulting in rod vibration and GTRF wear, one of the leading causes for leaking nuclear fuel which costs power utilities millions of dollars in preventive measures. As a result, we demonstrate that implicit large-eddy simulation of rod-bundle flows is a viable way to calculate the excitation forces for the GTRF problem.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chao; Xu, Jun; Cao, Lei
The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion andmore » a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. Finally, the test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.« less
High power diode pumped solid state (DPSS) laser systems active media robust modeling and analysis
NASA Astrophysics Data System (ADS)
Kashef, Tamer M.; Mokhtar, Ayman M.; Ghoniemy, Samy A.
2018-02-01
Diode side-pumped solid-state lasers have the potential to yield high quality laser beams with high efficiency and reliability. This paper summarizes the results of simulation of the most predominant active media that are used in high power diode pumped solid-state (DPSS) laser systems. Nd:YAG, Nd:glass, and Nd:YLF rods laser systems were simulated using the special finite element analysis software program LASCAD. A performance trade off analysis for Nd:YAG, Nd:glass, and Nd:YLF rods was performed in order to predict the system optimized parameters and to investigate thermally induced thermal fracture that may occur due to heat load and mechanical stress. The simulation results showed that at the optimized values Nd:YAG rod achieved the highest output power of 175W with 43% efficiency and heat load of 1.873W/mm3. A negligible changes in laser output power, heat load, stress, and temperature distributions were observed when the Nd:YAG rod length was increased from 72 to 80mm. Simulation of Nd:glass at different rod diameters at the same pumping conditions showed better results for mechanical stress and thermal load than that of Nd:YAG and Nd:YLF which makes it very suitable for high power laser applications especially for large rod diameters. For large rod diameters Nd:YLF is mechanically weaker and softer crystal compared to Nd:YAG and Nd:glass due to its poor thermomechanical properties which limits its usage to only low to medium power systems.
NASA Technical Reports Server (NTRS)
Waller, Jess M.; Newton, Barry E.; Beeson, Harold D.
2003-01-01
Since 1997 numerous fires have been reported to the Food and Drug Administration involving cylinder valves installed on medical use oxygen cylinders sold and operated within the United States. All of the cylinder valves in question had polychlorotrifluoroethylene (PCTFE) valve seats. Subsequent failure analysis showed that the main seat was the primary source of ignition. A review of the incidents involving cylinder valve fires indicated three possible ignition mechanisms: contaminant promotion, flow friction, and resonance. However, gas purity analysis showed that uncombusted, residual oxygen was within specification. Infrared and energy dispersive spectroscopy further showed that no contaminants or organic compounds were present in the remaining, uncombusted valve seat material or on seat plug surfaces. Therefore, contaminant-promoted ignition did not appear to be responsible for the failures. Observations of extruded material along the outer edge of the coined or loaded seat area produced by cylinder overuse or poppet overload led to concerns that accelerated gas flow across a deformed seat surface could generate enough localized heating to ignite the polymeric seat. Low molecular weight or highly amorphous quick-quenched PCTFE grades might be expected to be especially prone to this type of deformation. Such a failure mechanism has been described as flow friction; however, the corresponding mechanistic parameters are poorly understood. Subsequent revelation of low-temperature dimensional instability by thermomechanical analysis (TMA) in a variety of PCTFE sheet and rod stock samples led to new concerns that PCTFE valve seats could undergo excessive expansion or contraction during service. During expansion, additional extrusion and accompanying flow friction could occur. During contraction, a gap between the seal and adjacent metal surfaces could form. Gas flowing past the gap could, in turn, lead to resonance heating and subsequent ignition as described in ASTM Guide for Evaluation Nonmetallic Materials for Oxygen Service (G 63). Attempts to uncover the origins of the observed dimensional instability were hindered by uncertainties about resin grade, process history, and post-process heat history introduced by machining, annealing, and sample preparation. An approach was therefore taken to monitor property changes before and after processing and machining using a single, well-characterized lot of Neoflon CTFE.1 M400H resin. A task group consisting of the current PCTFE resin supplier, two molders, and four valve seat manufacturers was formed, and phased testing on raw resin, intermediate rod stock, and finished valve seats initiated. The effect of processing and machining on the properties of PCTFE rod stock and oxygen gas cylinder valve seats was then determined. Testing focused on two types of extruded rod stock and one type of compression-molded rod stock. To accommodate valve seat manufacturer preferences for certain rod stock diameters, two representative diameters were used (4.8 mm (0.1875 in.) and 19.1 mm (0.75 in.)). To encompass a variety of possible sealing configurations, seven different valve seat types with unique geometries or machining histories were tested. The properties investigated were dimensional stability as determined by TMA, specific gravity, differential scanning calorimetry (DSC), compressive strength, zero strength time, and intrinsic viscosity. Findings are discussed in the context of polymer structure-process-property relationships whenever possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jy-An John; Wang, Hong; Jiang, Hao
The objective of this project is to perform a systematic study of SNF/UNF (spent nuclear fuel/or used nuclear fuel) integrity under simulated transportation environments by using hot cell testing technology developed recently at Oak Ridge National Laboratory (ORNL), CIRFT (Cyclic Integrated Reversible-Bending Fatigue Tester). Under Nuclear Regulatory Commission (NRC) sponsorship, ORNL completed four benchmarking tests, four static tests, and twelve dynamic or cycle tests on H. B. Robinson (HBR) high burn-up (HBU) fuel. With support from the US Department of Energy and the NRC, CIRFT testing has been continued. The CIRFT testing was conducted on three HBR rods (R3, R4,more » and R5), with two specimens failed and one specimen un-failed. The total number of cycles in the test of un-failed specimens went over 2.23 107; the test was stopped as because the specimen did not show any sign of failure. The data analysis on all the HBR SNF rods demonstrated that it is necessary to characterize the fatigue life of used fuel rods in terms of both the curvature amplitude and the maximum of absolute of curvature extremes. The latter is significant because the maxima of extremes signify the maximum of tensile stress of the outer fiber of the bending rod. So far, a large variety of hydrogen contents has been covered in the CIRFT testing on HBR rods. It has been shown that the load amplitude is the dominant factor that controls the lifetime of bending rods, but the hydrogen content also has an important effect on the lifetime attained, according to the load range tested.« less
Experimental Behavior of Fatigued Single Stiffener PRSEUS Specimens
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.
2009-01-01
NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structure. In this concept a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. By adding unidirectional carbon rods to the top of stiffeners, the panel becomes more structurally efficient. This combination produces a more damage tolerant design. This document describes the results of experimentation on PRSEUS specimens loaded in unidirectional compression in fatigue and to failure.
CONTROL ROD ROTATING MECHANISM
Baumgarten, A.; Karalis, A.J.
1961-11-28
A threaded rotatable shaft is provided which rotates in response to linear movement of a nut, the shaft being surrounded by a pair of bellows members connected to either side of the nut to effectively seal the reactor from leakage and also to store up energy to shut down the reactor in the event of a power failure. (AEC)
DOT National Transportation Integrated Search
2011-02-01
A new method of cable installation using a heavy-duty Cone Penetration Test : (CPT) truck was developed and practiced successfully in this study. The coaxial and fiber : optic cables were pushed along with the cone rods by the hydraulic system integr...
NASA Astrophysics Data System (ADS)
Najeeb, Umair
This thesis experimentally investigates the enhancement of single-phase heat transfer, frictional loss and pressure drop characteristics in a Single Heater Element Loop Tester (SHELT). The heater element simulates a single fuel rod for Pressurized Nuclear reactor. In this experimental investigation, the effect of the outer surface roughness of a simulated nuclear rod bundle was studied. The outer surface of a simulated fuel rod was created with a three-dimensional (Diamond-shaped blocks) surface roughness. The angle of corrugation for each diamond was 45 degrees. The length of each side of a diamond block is 1 mm. The depth of each diamond block was 0.3 mm. The pitch of the pattern was 1.614 mm. The simulated fuel rod had an outside diameter of 9.5 mm and wall thickness of 1.5 mm and was placed in a test-section made of 38.1 mm inner diameter, wall thickness 6.35 mm aluminum pipe. The Simulated fuel rod was made of Nickel 200 and Inconel 625 materials. The fuel rod was connected to 10 KW DC power supply. The Inconel 625 material of the rod with an electrical resistance of 32.3 kO was used to generate heat inside the test-section. The heat energy dissipated from the Inconel tube due to the flow of electrical current flows into the working fluid across the rod at constant heat flux conditions. The DI water was employed as working fluid for this experimental investigation. The temperature and pressure readings for both smooth and rough regions of the fuel rod were recorded and compared later to find enhancement in heat transfer coefficient and increment in the pressure drops. Tests were conducted for Reynold's Numbers ranging from 10e4 to 10e5. Enhancement in heat transfer coefficient at all Re was recorded. The maximum heat transfer co-efficient enhancement recorded was 86% at Re = 4.18e5. It was also observed that the pressure drop and friction factor increased by 14.7% due to the increased surface roughness.
Modification of Shirt Buttons for Retrospective Radiation Dosimetry after a Radiological Event
Marino, Stephen A.; Johnson, Gary W.; Schiff, Peter B.; Brenner, David J.
2010-01-01
Preliminary results are presented for a personal radiation dosimeter in the form of a clothing button to provide gamma-ray dose estimation for clinically significant external radiation exposures to the general public due to a radiological incident, such as a Radiological Dispersal Device. Rods of thermoluminescent material (LiF:Mg,Ti and LiF:Mg,Cu,P) were encapsulated in plastic “buttons”, attached to shirts, and subjected to three cycles of home or commercial laundering or dry cleaning, including ironing or pressing. The buttons were subsequently exposed to doses of 137Cs gamma rays ranging from 0.75 to 8.2 Gy. The rods were removed from the buttons and their light output compared to their responses when bare or to the responses of a set of calibration rods of the same type and from the same manufacturer. In all three of the comparisons for LiF:Mg,Ti rods the relative responses of the rods in buttons changed by 2-6% relative to the same rods before cleaning. In both comparisons for LiF:Mg,Cu,P rods, the response of laundered rods was 1-3% lower than for the same rods before cleaning. Both these materials are potential candidates for button dosimeters. PMID:21451325
Luminescent Properties of Eu(III) Chelates on Metal Nanorods
Zhang, Jian; Fu, Yi; Ray, Krishanu; Wang, Yuan; Lakowicz, Joseph. R.
2013-01-01
In this article, we report the change of optical properties for europium chelates on silver nanorods by near-field interactions. The silver rods were fabricated in a seed-growth method followed by depositing thin layers of silica on the surfaces. The europium chelates were physically absorbed in the silica layers on the silver rods. The silver rods were observed to exhibit two plasmon absorption bands from longitudinal and transverse directions, respectively, centered at 394 and 675 nm, close to absorption and emission bands from the Eu(III) chelates. As a result, the immobilized Eu(III) chelates on the silver rods should have strong interactions with the silver nanorods and lead to greatly improved optical properties. The Eu–Ag rod complexes were observed to have enhanced emission intensity up to 240-fold in comparison with the Eu(III) chelates in the metal-free silica templates. This enhancement is much larger than the value for the Eu(III) chelates on the gold rods or silver spheres indicating the presence of stronger interactions for the Eu(III) chelates with the silver rods. The interactions of Eu(III) chelates with the silver rods were also proven by extremely reduced lifetime. Moreover, the Eu–Ag rod complexes exhibited a polarized emission, which was also due to strong interactions of the Eu(III) chelates with the silver rods. All of these features may promise that the Eu(III)–Ag rod complexes have great potential for use as fluorescence imaging agents in biological assays. PMID:24363816
Giudici, Fabrizio; Galbusera, Fabio; Zagra, Antonino; Wilke, Hans-Joachim; Archetti, Marino; Scaramuzzo, Laura
2017-10-01
Aim of the study was to evaluate the role of the mechanical properties of the rod and of the characteristics of the patients (age, skeletal maturity, BMI, and Lenke type) in determining the deformity correction, its maintenance over time and the risk of mechanical failure of the instrumentation. From March 2011 to December 2014 120 patients affected by AIS underwent posterior instrumented fusion. Two 5.5-mm CoCr rods were implanted in all patients. For every patient, age, sex, Risser grade, Lenke type curve, flexibility of the main curve, body mass index (BMI), and percentage of correction were recorded. In all patients, the Cobb angle value and rod curvature angle (RC) were evaluated. RC changes were registered and correlated to each factor to establish a possible statistically significance in a multivariate analysis. A biomechanical model was constructed to study the influence of rod diameter and material as well as the density of the anchoring implants in determining stress and deformation of rods after contouring and implantation. Radiographic and biomechanical analysis showed a different mean rod deformation for concave and convex side: 7.8° and 3.9°, respectively. RC mean value at immediate follow-up was 21.8° for the concave side and 14.6° for the convex. At 2-year minimum follow-up, RC value increases 1.5° only for the concave side. At 3.5-year mean follow-up, RC value increases 2.7°, p = 0.003, for the concave side and 1.3° for the convex, p = 0.06. The use of the stiffest material as well as of the lowest diameter resulted in higher stresses in the rods. The use of either a low or a high instrumentation density resulted only in minor differences in the loss of correction. Rod diameter and material as well as patient characteristics such as BMI, age, and Risser grade play an important role in deformity correction and its maintenance over time.
Biomechanical analysis of occipitocervical stability afforded by three fixation techniques.
Helgeson, Melvin D; Lehman, Ronald A; Sasso, Rick C; Dmitriev, Anton E; Mack, Andrew W; Riew, K Daniel
2011-03-01
Occipital condyle screws appear to be a novel technique that demands biomechanical consideration. It has the potential to achieve fixation anterior to the axis of rotation while offering a point of fixation in line with the C1/C2 screws. To compare the segmental stability and range of motion (ROM) of standard occipitocervical (OC) screw/rod and plate constructs versus a new technique that incorporates occipital condyle fixation. Human cadaveric biomechanical analysis. After intact analysis, 10 fresh-frozen human cadaveric OC spine specimens were instrumented bilaterally with C1 lateral mass screws and C2 pedicle screws. Additional occipital instrumentation was tested in random order under the following conditions: standard occipitocervical plate/rod system (Vertex Max; Medtronic, Inc., Minneapolis, MN, USA); occipital condyle screws alone; and occipital condyle screws with the addition of an eyelet screw placed into the occiput bilaterally. After nondestructive ROM testing, specimens were evaluated under computed tomography (CT) and underwent destructive forward flexion failure comparing Group 1 to Group 3. There was no significant difference in OC (Occiput-C1) axial rotation and flexion/extension ROM between the standard occipitocervical plate/rod system (Group 1) and the occipital condyle screws with one eyelet screw bilaterally (Group 3). Furthermore, the occipital condyle screws alone (Group 2) did allow significantly more flexion/extension compared with Group 1. Interestingly, the two groups with occipital condyle screws (Groups 2 and 3) had significantly less lateral bending compared with Group 1. During CT analysis, the mean occipital condyle width was 10.8 mm (range, 9.1-12.7 mm), and the mean condylar length was 24.3 mm (range, 20.2-28.5). On destructive testing, there was no significant difference in forward flexion failure between Groups 1 and 3. With instrumentation across the mobile OC junction, our results indicate that similar stability can be achieved with occipital condyle screws/eyelet screws compared with the standard occipitocervical plate/rod system. Published by Elsevier Inc.
Enhanced Output Power of Near-Ultraviolet Light-Emitting Diodes by p-GaN Micro-Rods
NASA Astrophysics Data System (ADS)
Wang, Dong-Sheng; Zhang, Ke-Xiong; Liang, Hong-Wei; Song, Shi-Wei; Yang, De-Chao; Shen, Ren-Sheng; Liu, Yang; Xia, Xiao-Chuan; Luo, Ying-Min; Du, Guo-Tong
2014-02-01
Near-ultraviolet (UV) InGaN/AlGaN light-emitting diodes (LEDs) are grown by low-pressure metal-organic chemical vapor deposition. The scanning electronic microscope image shows that the p-GaN micro-rods are formed above the interface of p-AlGaN/p-GaN due to the rapid growth rate of p-GaN in the vertical direction. The p-GaN micro-rods greatly increase the escape probability of photons inside the LED structure. Electroluminescence intensities of the 372 nm UV LED lamps with p-GaN micro rods are 88% higher than those of the flat surface LED samples.
Dynamic near-infrared imaging reveals transient phototropic change in retinal rod photoreceptors.
Lu, Rongwen; Levy, Alexander M; Zhang, Qiuxiang; Pittler, Steven J; Yao, Xincheng
2013-10-01
Stiles-Crawford effect (SCE) is exclusively observed in cone photoreceptors, but why the SCE is absent in rod photoreceptors is still a mystery. In this study, we employed dynamic near infrared light imaging to monitor photoreceptor kinetics in freshly isolated frog and mouse retinas stimulated by oblique visible light flashes. It was observed that retinal rods could rapidly (onset: ∼10 ms for frog and 5 ms for mouse; time-to-peak: ∼200 ms for frog and 30 ms for mouse) shift toward the direction of the visible light, which might quickly compensate for the loss of luminous efficiency due to oblique illumination. In contrast, such directional movement was negligible in retinal cones. Moreover, transient rod phototropism could contribute to characteristic intrinsic optical signal (IOS). We anticipate that further study of the transient rod phototropism may not only provide insight into better understanding of the nature of vision but also promise an IOS biomarker for functional mapping of rod physiology at high resolution.
Loss of control air at Browns Ferry Unit One: accident sequence analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrington, R.M.; Hodge, S.A.
1986-04-01
This study describes the predicted response of the Browns Ferry Nuclear Plant to a postulated complete failure of plant control air. The failure of plant control air cascades to include the loss of drywell control air at Units 1 and 2. Nevertheless, this is a benign accident unless compounded by simultaneous failures in the turbine-driven high pressure injection systems. Accident sequence calculations are presented for Loss of Control Air sequences with assumed failure upon demand of the Reactor Core Isolation Cooling (RCIC) and the High Pressure Coolant Injection (HPCI) at Unit 1. Sequences with and without operator action are considered.more » Results show that the operators can prevent core uncovery if they take action to utilize the Control Rod Drive Hydraulic System as a backup high pressure injection system.« less
The actin-activated ATPase of co-polymer filaments of myosin and myosin-rod.
Stepkowski, D; Orlova, A A; Moos, C
1994-01-01
The actin activated ATPase of myosin at low ionic strength shows a complex dependence on actin concentration, in contrast with the simple hyperbolic actin activation kinetics of heavy meromyosin and subfragment-1. To investigate how the aggregation of myosin influences the actomyosin ATPase kinetics, we have studied the actin-activated ATPase of mixed filaments in which the myosin molecules are separated from each other by copolymerization with myosin rod. Electron microscopy of copolymer filaments, alone and bound to actin, indicates that the myosin heads are distributed randomly along the co-polymer filaments. The actin-activated ATPase of myosin decreases with increasing rod, approaching a plateau of about 30% of the control at a rod/myosin molar ratio of 4:1. The decrease in ATPase persists even at Vmax, the extrapolated limit at infinite actin, indicating that it is not due merely to the loss of cooperative actin binding. Furthermore, the actin dependence of the ATPase still shows a biphasic character like that of control myosin, even at rod/myosin ratio of 12:1, so this complexity is not probably due solely to the structural proximity of myosin molecules, but may involve a non-equivalence of myosin heads or myosin molecules in the filament environment. Images Figure 1 Figure 2 PMID:8198528
Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries
NASA Astrophysics Data System (ADS)
Zhang, Chao; Xu, Jun; Cao, Lei; Wu, Zenan; Santhanagopalan, Shriram
2017-07-01
The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion and a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. The test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.
Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries
Zhang, Chao; Xu, Jun; Cao, Lei; ...
2017-05-05
The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion andmore » a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. Finally, the test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-05
... kind. EMBRAER also states that the rod breakage has not been shown to cause leakage of APU oil in the gearbox, or leakage of the fuel lines in the compartment. EMBRAER states both ignition sources and... detector becomes inoperative. EMBRAER also states that in the event of fire detection failure, [[Page 47191...
Deformation of a soft helical filament in an axial flow at low Reynolds number.
Jawed, Mohammad K; Reis, Pedro M
2016-02-14
We perform a numerical investigation of the deformation of a rotating helical filament subjected to an axial flow, under low Reynolds number conditions, motivated by the propulsion of bacteria using helical flagella. Given its slenderness, the helical rod is intrinsically soft and deforms due to the interplay between elastic forces and hydrodynamic loading. We make use of a previously developed and experimentally validated computational tool framework that models the elasticity of the filament using the discrete elastic rod method and the fluid forces are treated using Lighthill's slender body theory. Under axial flow, and in the absence of rotation, the initially helical rod is extended. Above a critical flow speed its configuration comprises a straight portion connected to a localized helix near the free end. When the rod is also rotated about its helical axis, propulsion is only possible in a finite range of angular velocity, with an upper bound that is limited by buckling of the soft helix arising due to viscous stresses. A systematic exploration of the parameter space allows us to quantify regimes for successful propulsion for a number of specific bacteria.
Biophysical mechanism of transient retinal phototropism in rod photoreceptors.
Zhao, Xiaohui; Thapa, Damber; Wang, Benquan; Gai, Shaoyan; Yao, Xincheng
2016-02-13
Oblique light stimulation evoked transient retinal phototropism (TRP) has been recently detected in frog and mouse retinas. High resolution microscopy of freshly isolated retinas indicated that the TRP is predominated by rod photoreceptors. Comparative confocal microscopy and optical coherence tomography (OCT) revealed that the TRP predominantly occurred from the photoreceptor outer segment (OS). However, biophysical mechanism of rod OS change is still unknown. In this study, frog retinal slices, which open a cross section of retinal photoreceptor and other functional layers, were used to test the effect of light stimulation on rod OS. Near infrared light microscopy was employed to monitor photoreceptor changes in retinal slices stimulated by a rectangular-shaped visible light flash. Rapid rod OS length change was observed after the stimulation delivery. The magnitude and direction of the rod OS change varied with the position of the rods within the stimulated area. In the center of stimulated region the length of the rod OS shrunk, while in the peripheral region the rod OS tip swung towards center region in the plane perpendicular to the incident stimulus light. Our experimental result and theoretical analysis suggest that the observed TRP may reflect unbalanced disc-shape change due to localized pigment bleaching. Further investigation is required to understand biochemical mechanism of the observed rod OS kinetics. Better study of the TRP may provide a noninvasive biomarker to enable early detection of age-related macular degeneration (AMD) and other diseases that are known to produce retinal photoreceptor dysfunctions.
Biophysical mechanism of transient retinal phototropism in rod photoreceptors
NASA Astrophysics Data System (ADS)
Zhao, Xiaohui; Thapa, Damber; Wang, Benquan; Gai, Shaoyan; Yao, Xincheng
2016-03-01
Oblique light stimulation evoked transient retinal phototropism (TRP) has been recently detected in frog and mouse retinas. High resolution microscopy of freshly isolated retinas indicated that the TRP is predominated by rod photoreceptors. Comparative confocal microscopy and optical coherence tomography (OCT) revealed that the TRP predominantly occurred from the photoreceptor outer segment (OS). However, biophysical mechanism of rod OS change is still unknown. In this study, frog retinal slices, which open a cross section of retinal photoreceptor and other functional layers, were used to test the effect of light stimulation on rod OS. Near infrared light microscopy was employed to monitor photoreceptor changes in retinal slices stimulated by a rectangular-shaped visible light flash. Rapid rod OS length change was observed after the stimulation delivery. The magnitude and direction of the rod OS change varied with the position of the rods within the stimulated area. In the center of stimulated region the length of the rod OS shrunk, while in the peripheral region the rod OS tip swung towards center region in the plane perpendicular to the incident stimulus light. Our experimental result and theoretical analysis suggest that the observed TRP may reflect unbalanced disc-shape change due to localized pigment bleaching. Further investigation is required to understand biochemical mechanism of the observed rod OS kinetics. Better study of the TRP may provide a noninvasive biomarker to enable early detection of age-related macular degeneration (AMD) and other diseases that are known to produce retinal photoreceptor dysfunctions.
Increased visual sensitivity following periods of dim illumination.
McKeown, Alex S; Kraft, Timothy W; Loop, Michael S
2015-02-19
We measured changes in the sensitivity of the human rod pathway by testing visual reaction times before and after light adaptation. We targeted a specific range of conditioning light intensities to see if a physiological adaptation recently discovered in mouse rods is observable at the perceptual level in humans. We also measured the noise spectrum of single mouse rods due to the importance of the signal-to-noise ratio in rod to rod bipolar cell signal transfer. Using the well-defined relationship between stimulus intensity and reaction time (Piéron's law), we measured the reaction times of eight human subjects (ages 24-66) to scotopic test flashes of a single intensity before and after the presentation of a 3-minute background. We also made recordings from single mouse rods and processed the cellular noise spectrum before and after similar conditioning exposures. Subject reaction times to a fixed-strength stimulus were fastest 5 seconds after conditioning background exposure (79% ± 1% of the preconditioning mean, in darkness) and were significantly faster for the first 12 seconds after background exposure (P < 0.01). During the period of increased rod sensitivity, the continuous noise spectrum of individual mouse rods was not significantly increased. A decrease in human reaction times to a dim flash after conditioning background exposure may originate in rod photoreceptors through a transient increase in the sensitivity of the phototransduction cascade. There is no accompanying increase in rod cellular noise, allowing for reliable transmission of larger rod signals after conditioning exposures and the observed increase in perceptual sensitivity. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.
Kast, Brigitte; Schori, Christian; Grimm, Christian
2016-05-01
Hypoxic preconditioning protects photoreceptors against light-induced degeneration preserving retinal morphology and function. Although hypoxia inducible transcription factors 1 and 2 (HIF1, HIF2) are the main regulators of the hypoxic response, photoreceptor protection does not depend on HIF1 in rods. Here we used rod-specific Hif2a single and Hif1a;Hif2a double knockout mice to investigate the potential involvement of HIF2 in rods for protection after hypoxic preconditioning. To identify potential HIF2 target genes in rods we determined the retinal transcriptome of hypoxic control and rod-specific Hif2a knockouts by RNA sequencing. We show that rods do not need HIF2 for hypoxia-induced increased survival after light exposure. The transcriptomic analysis revealed a number of genes that are potentially regulated by HIF2 in rods; among those were Htra1, Timp3 and Hmox1, candidates that are interesting due to their connection to human degenerative diseases of the retina. We conclude that neither HIF1 nor HIF2 are required in photoreceptors for protection by hypoxic preconditioning. We hypothesize that HIF transcription factors may be needed in other cells to produce protective factors acting in a paracrine fashion on photoreceptor cells. Alternatively, hypoxic preconditioning induces a rod-intrinsic response that is independent of HIF transcription factors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Thermomechanical effects of spine surgery rods composed of different metals and alloys.
Noshchenko, Andriy; Patel, Vikas V; Baldini, Todd; Yun, Lu; Lindley, Emily M; Burger, Evalina L
2011-05-15
A basic science study monitoring changes in the curvature of hand contoured commercially pure titanium (CPTi), titanium-aluminum-vanadium alloy (Ti-6Al-4V), and stainless steel (SS) rods maintained at different temperature conditions. To quantify changes in rod-shape at temperatures representative of those used in clinical practice. The shape of implanted rods can be displaced due to thermo-mechanical properties of the materials. Warmer temperatures likely initiate this effect. A study of shape loss characteristics of various rod implants may help eliminate undesirable outcomes caused by shape displacement. Three different types of rods (CPTi, SS, and Ti-6Al-4V) were hand contoured and then maintained in one of following temperature conditions for 35 days: (1) room temperature (20 °C-25 °C) without autoclaving before contouring; (2) preliminary autoclaving (1, 5, 10, 20 cycles) at 135.0 °C ± 2 °C before contouring followed by body temperature (37.2 °C ± 2 °C). Each rod was 5 mm in diameter and 200 mm long. The rods were mounted over graph paper in fixed positions and photographed to measure displacement of the tip as a function of the curvature. RESULTS.: Statistically significant shape loss of the rods manufactured from all the tested materials was found. The hand contoured CPTi rods displayed considerably higher loss of curvature over time than Ti-6Al-4V and SS rods at all tested temperature conditions. Preliminary autoclaving at 135 °C before contouring tended to amplify this effect, in particular 1 cycle of autoclaving. If the number of preliminary autoclaving cycles was higher (5-10), a tendency of decrease of shape loss effect was observed in Ti-6Al-4V and CPTi rods. The shape of the hand contoured CPTi rods was the least stable of the rods across all applied temperature conditions. The SS and Ti-6Al-4V rods were more stable than CPTi rods. Autoclaving before handcontouring tended to increase rods' shape loss.
Rock, H.R.
1963-12-24
A composite control rod for use in controlling a nuclear reactor is described. The control rod is of sandwich construction in which finned dowel pins are utilized to hold together sheets of the neutron absorbing material and nonabsorbing structural material thereby eliminating the need for being dependent on the absorbing material for structural support. The dowel pins perform the function of absorbing the forces due to differential thermal expansion, seating further with the fins into the sheets of material and crushing before damage is done either to the absorbing or non-absorbing material. (AEC)
NASA Astrophysics Data System (ADS)
Shirko, A. V.; Kamlyuk, A. N.; Drobysh, A. S.; Spiglazov, A. V.
2017-05-01
A strength and stiffness comparative analysis has been made of a concrete slab reinforced with composite-reinforcement rods and a slab reinforced with steel rods. The stress-strain state has been assessed for both versions of reinforcement of the slab. The stress-strain state was determined under the action of only static load and with subsequent application of temperature fields, i.e., under standard-fire conditions. It has been shown that the fire resistance of the slab with a composite reinforcement turns out to be 1.6 higher as far as the bearing capacity is concerned, than the fire resistance of the slab with a steel reinforcement, although the initial deflection due to the action of only static load for the slab reinforced with composite rods exceeds six to seven times the deflection of the slab reinforced with steel rods.
NASA Astrophysics Data System (ADS)
Mohajerani, M. S.; Khachadorian, S.; Schimpke, T.; Nenstiel, C.; Hartmann, J.; Ledig, J.; Avramescu, A.; Strassburg, M.; Hoffmann, A.; Waag, A.
2016-02-01
Three-dimensional III-nitride micro-structures are being developed as a promising candidate for the future opto-electrical devices. In this study, we demonstrate a quick and straight-forward method to locally evaluate free-carrier concentrations and a crystalline quality in individual GaN:Si micro-rods. By employing micro-Raman mapping and analyzing lower frequency branch of A1(LO)- and E1(LO)-phonon-plasmon-coupled modes (LPP-), the free carrier concentrations are determined in axial and planar configurations, respectively. Due to a gradual doping profile along the micro-rods, a highly spatially resolved mapping on the sidewall is exploited to reconstruct free carrier concentration profile along the GaN:Si micro-rods. Despite remarkably high free carrier concentrations above 1 × 1020 cm-3, the micro-rods reveal an excellent crystalline quality, without a doping-induced stress.
Inductance position sensor for pneumatic cylinder
NASA Astrophysics Data System (ADS)
Ripka, Pavel; Chirtsov, Andrey; Mirzaei, Mehran; Vyhnanek, Jan
2018-04-01
The position of the piston in pneumatic cylinder with aluminum wall can be measured by external inductance sensor without modifications of the aluminum piston and massive iron piston rod. For frequencies below 20 Hz the inductance is increasing with inserting rod due to the rod permeability. This mode has disadvantage of slow response to piston movement and also high temperature sensitivity. At the frequency of 45 Hz the inductance is position independent, as the permeability effect is compensated by the eddy current effect. At higher frequencies eddy current effects in the rod prevail, the inductance is decreasing with inserting rod. In this mode the sensitivity is smaller but the sensor response is fast and temperature stability is better. We show that FEM simulation of this sensor using measured material properties gives accurate results, which is important for the sensor optimization such as designing the winding geometry for the best linearity.
Investigation of the processing conditions for the synthesis of rod-shaped LiCoO2
NASA Astrophysics Data System (ADS)
Kim, Taejoong; Kim, Yongseon
2018-07-01
We investigate the processing conditions for the synthesis of rod-shaped LiCoO2 (LCO) by a solid-state calcination of a precursor material which was prepared by a hydrothermal method. The rod-like morphology appeared to be easily broken due to the growth of primary crystals recrystallized during the calcination process. Therefore, it is crucial to maintain the temperature under a certain limit. However, the temperature must be high enough to obtain proper crystallinity of the LCO, ideally above 800 °C. Thus, we determined the optimal calcination temperature condition from the common range of temperatures that satisfies both these limiting conditions. The precursor with average diameter of 1 µm sustained the rod shape at calcination temperatures of up to 900 °C; therefore, the optimum calcination temperature could be determined between 800 and 900 °C. Whereas, a proper calcination temperature could not be found for the precursor with 500 nm of diameter because the rod shape did not maintain even at 700 °C. Thus, the maximum temperature at which the rod shape is retained decreases with smaller diameter of the precursor rods, indicating adjusting the diameter above a limiting value is necessary to prepare LCO rod by conventional solid state calcination.
Laser welding of a cobalt-chromium removable partial denture alloy.
NaBadalung, D P; Nicholls, J I
1998-03-01
The electric alloy brazed joints of removable partial denture alloys have failed frequently after routine usage. A technique providing higher joint strengths was investigated. This investigation compared the tensile strengths of electric-brazed and laser-welded joints for a cobalt-chromium removable partial denture alloy. Twenty-four cobalt-chromium standard tensile testing rods were prepared and divided into three groups of eight. All specimens in the control group (group 1) were left in the as-cast condition. Groups 2 and 3 were the test specimens, which were sectioned at the center of the rod. Eight specimens were joined by using electric brazing, and the remaining specimens were joined by using laser welding. After joining, each joint was ground to a uniform diameter, then tested to tensile failure on an Instron universal testing machine. Failure loads were recorded and fracture stress calculated. Statistical analysis was applied. The student-Newman-Keuls test showed a highly significant difference between the joint strengths of the as-cast control specimens, the electric-brazed and laser-welded joints. The tensile strengths of the as-cast joints were higher than those for the laser-welded joints, and both were higher than the electric-brazed joint strengths.
Gelfi, Marcello; Solazzi, Luigi; Poli, Sandro
2017-03-06
This study is a detailed failure analysis of galvanized high carbon steel wires, which developed coating cracks during the torsion test performed as a quality control at the end of the manufacturing process. Careful visual inspections showed that the cracks are already present in the coating before the torsion test. In order to explain the origin of these cracks, systematic metallographic investigations were performed by means of optical and scanning electron microscope on both the wires and the rods that have been cold drawn to produce the wire. The chemical composition of the galvanized coatings was evaluated by means of energy dispersive spectroscopy. Micro bidimensional X-ray diffraction experiments were also performed to measure the residual stresses in the galvanized coating. The results showed that the failure is related to two main factors: the relatively high content of silicon in the steel and the unsuitable cooling rate of the rods at the exit from the galvanizing bath. The mechanism proposed to explain the origin of the defects was supported by Finite Elements Methods simulations and verified with in-plant tests. The proper countermeasures were then applied and the problem successfully solved.
Gelfi, Marcello; Solazzi, Luigi; Poli, Sandro
2017-01-01
This study is a detailed failure analysis of galvanized high carbon steel wires, which developed coating cracks during the torsion test performed as a quality control at the end of the manufacturing process. Careful visual inspections showed that the cracks are already present in the coating before the torsion test. In order to explain the origin of these cracks, systematic metallographic investigations were performed by means of optical and scanning electron microscope on both the wires and the rods that have been cold drawn to produce the wire. The chemical composition of the galvanized coatings was evaluated by means of energy dispersive spectroscopy. Micro bidimensional X-ray diffraction experiments were also performed to measure the residual stresses in the galvanized coating. The results showed that the failure is related to two main factors: the relatively high content of silicon in the steel and the unsuitable cooling rate of the rods at the exit from the galvanizing bath. The mechanism proposed to explain the origin of the defects was supported by Finite Elements Methods simulations and verified with in-plant tests. The proper countermeasures were then applied and the problem successfully solved. PMID:28772623
Dependence of N-polar GaN rod morphology on growth parameters during selective area growth by MOVPE
NASA Astrophysics Data System (ADS)
Li, Shunfeng; Wang, Xue; Mohajerani, Matin Sadat; Fündling, Sönke; Erenburg, Milena; Wei, Jiandong; Wehmann, Hergo-Heinrich; Waag, Andreas; Mandl, Martin; Bergbauer, Werner; Strassburg, Martin
2013-02-01
Selective area growth of GaN rods by metalorganic vapor phase epitaxy has attracted great interest due to its novel applications in optoelectronic and photonics. In this work, we will present the dependence of GaN rod morphology on various growth parameters i.e. growth temperature, H2/N2 carrier gas concentration, V/III ratio, total carrier gas flow and reactor pressure. It is found that higher growth temperature helps to increase the aspect ratio of the rods, but reduces the height homogeneity. Furthermore, H2/N2 carrier gas concentration is found to be a critical factor to obtain vertical rod growth. Pure nitrogen carrier gas leads to irregular growth of GaN structure, while an increase of hydrogen carrier gas results in vertical GaN rod growth. Higher hydrogen carrier gas concentration also reduces the diameter and enhances the aspect of the GaN rods. Besides, increase of V/III ratio causes reduction of the aspect ratio of N-polar GaN rods, which could be explained by the relatively lower growth rate on (000-1) N-polar top surface when supplying more ammonia. In addition, an increase of the total carrier gas flow leads to a decrease in the diameter and the average volume of GaN rods. These phenomena are tentatively explained by the change of partial pressure of the source materials and boundary layer thickness in the reactor. Finally, it is shown that the average volume of the N-polar GaN rods keeps a similar value for a reactor pressure PR of 66 and 125 mbar, while an incomplete filling of the pattern opening is observed with PR of 250 mbar. Room temperature photoluminescence spectrum of the rods is also briefly discussed.
ZnO Nano-Rod Devices for Intradermal Delivery and Immunization.
Nayak, Tapas R; Wang, Hao; Pant, Aakansha; Zheng, Minrui; Junginger, Hans; Goh, Wei Jiang; Lee, Choon Keong; Zou, Shui; Alonso, Sylvie; Czarny, Bertrand; Storm, Gert; Sow, Chorng Haur; Lee, Chengkuo; Pastorin, Giorgia
2017-06-15
Intradermal delivery of antigens for vaccination is a very attractive approach since the skin provides a rich network of antigen presenting cells, which aid in stimulating an immune response. Numerous intradermal techniques have been developed to enhance penetration across the skin. However, these methods are invasive and/or affect the skin integrity. Hence, our group has devised zinc oxide (ZnO) nano-rods for non-destructive drug delivery. Chemical vapour deposition was used to fabricate aligned nano-rods on ZnO pre-coated silicon chips. The nano-rods' length and diameter were found to depend on the temperature, time, quality of sputtered silicon chips, etc. Vertically aligned ZnO nano-rods with lengths of 30-35 µm and diameters of 200-300 nm were selected for in vitro human skin permeation studies using Franz cells with Albumin-fluorescein isothiocyanate (FITC) absorbed on the nano-rods. Fluorescence and confocal studies on the skin samples showed FITC penetration through the skin along the channels formed by the nano-rods. Bradford protein assay on the collected fluid samples indicated a significant quantity of Albumin-FITC in the first 12 h. Low antibody titres were observed with immunisation on Balb/c mice with ovalbumin (OVA) antigen coated on the nano-rod chips. Nonetheless, due to the reduced dimensions of the nano-rods, our device offers the additional advantage of excluding the simultaneous entrance of microbial pathogens. Taken together, these results showed that ZnO nano-rods hold the potential for a safe, non-invasive, and painless intradermal drug delivery.
Bennett, Lea D.; Klein, Martin; Locke, Kirsten G.; Kiser, Kelly; Birch, David G.
2017-01-01
Purpose Although rod photoreceptors are initially affected in retinitis pigmentosa (RP), the full-field of rod vision is not routinely characterized due to the unavailability of commercial devices detecting rod sensitivity. The purpose of this study was to quantify rod-mediated vision in the peripheral field from patients with RP using a new commercially available perimeter. Methods Participants had one eye dilated and dark-adapted for 45 minutes. A dark-adapted chromatic (DAC) perimeter tested 80 loci 144° horizontally and 72° vertically with cyan stimuli. The number of rod-mediated loci (RML) were analyzed based on normal cone sensitivity (method 1) and associated with full-field electroretinography (ERG) responses by Pearson's r correlation and linear regression. In a second cohort of patients with RP, RML were identified by two-color perimetry (cyan and red; method 2). The two methods for ascribing rod function were compared by Bland-Altman analysis. Results Method 1 RML were correlated with responses to the 0.01 cd.s/m2 flash (P < 0.001), while total sensitivity to the cyan stimulus showed correlation with responses to the 3.0 cd.s/m2 flash (P < 0.0001). Method 2 detected a mean of 10 additional RML compared to method 1. Conclusions Scotopic fields measured with the DAC detected rod sensitivity across the full visual field, even in some patients who had nondetectable rod ERGs. Two-color perimetry is warranted when sensitivity to the cyan stimulus is reduced to ≤20 dB to get a true estimation of rod function. Translational Relevance Many genetic forms of retinitis pigmentosa (RP) are caused by mutations in rod-specific genes. However, treatment trials for patients with RP have relied primarily on photopic (cone-mediated) tests as outcome measures because there are a limited number of available testing methods designed to evaluate rod function. Thus, efficient methods for quantifying rod-mediated vision are needed for the rapidly increasing numbers of clinical trials. PMID:28798898
Skin bridge versus rod colostomy in children - comparison between complications.
Askarpour, Shahnam; Peyvasteh, Mehran; Changai, Bahram; Javaherizadeh, Hazhir
2012-10-01
Due to economic problems, sigmoid loop colostomy using glass rod may cause problems for our patients for finding glass rod and several visits. The aim of the study was to compare rod versus skin bridge colostomy. In this study, 42 cases who are candidate for colostomy were included. Cases were randomly placed in skin bridge and rod colostomy group. Independent sample t-test and Chi-square were used for comparison. SPSS version 16.0 (SPSS Inc, Chicago, IL, USA) was used for analysis. Of 42 cases, 20 were male and 22 were female. Hirschsprung's disease was the indication of colostomy in 33 cases. In nine cases, imperforate anus was the indication of colostomy. Mean time of surgery was 79.4 and 82.5 minute for the rod and skin bridge group respectively (P>0.05). Retraction was seen in 2 case of rod group, and no case of skin bridge group. Prolapse was seen in 2 (9.5%) case of rod group and 1(4.7%) case in skin bridge. There were no reports of necrosis, stenosis, and hernia in both groups. In the skin bridge group the rates of complications were lower but the groups are too small for statistical analysis. Colostomy with a skin bridge method may decrease number of revision and expenses and may be appropriate option. Sigmoid loop colostomy using skin bridge flap may be appropriate choice in developing country. Another study with more samples is recommended to better comparison of Skin Bridge versus rod colostomy.
Directionally Interacting Spheres and Rods Form Ordered Phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenyan; Mahynski, Nathan A.; Gang, Oleg
The structures formed by mixtures of dissimilarly shaped nanoscale objects can significantly enhance our ability to produce nanoscale architectures. However, understanding their formation is a complex problem due to the interplay of geometric effects (entropy) and energetic interactions at the nanoscale. Spheres and rods are perhaps the most basic geometrical shapes and serve as convenient models of such dissimilar objects. The ordered phases formed by each of these individual shapes have already been explored, but, when mixed, spheres and rods have demonstrated only limited structural organization to date. We show using experiments and theory that the introduction of directional attractionsmore » between rod ends and isotropically interacting spherical nanoparticles (NPs) through DNA base pairing leads to the formation of ordered three-dimensional lattices. The spheres and rods arrange themselves in a complex alternating manner, where the spheres can form either a face-centered cubic (FCC) or hexagonal close-packed (HCP) lattice, or a disordered phase, as observed by in situ X-ray scattering. Increasing NP diameter at fixed rod length yields an initial transition from a disordered phase to the HCP crystal, energetically stabilized by rod-rod attraction across alternating crystal layers, as revealed by theory. In the limit of large NPs, the FCC structure is instead stabilized over the HCP by rod entropy. Thus, we propose that directionally specific attractions in mixtures of anisotropic and isotropic objects offer insight into unexplored self-assembly behavior of noncomplementary shaped particles.« less
Directionally Interacting Spheres and Rods Form Ordered Phases
Liu, Wenyan; Mahynski, Nathan A.; Gang, Oleg; ...
2017-05-10
The structures formed by mixtures of dissimilarly shaped nanoscale objects can significantly enhance our ability to produce nanoscale architectures. However, understanding their formation is a complex problem due to the interplay of geometric effects (entropy) and energetic interactions at the nanoscale. Spheres and rods are perhaps the most basic geometrical shapes and serve as convenient models of such dissimilar objects. The ordered phases formed by each of these individual shapes have already been explored, but, when mixed, spheres and rods have demonstrated only limited structural organization to date. We show using experiments and theory that the introduction of directional attractionsmore » between rod ends and isotropically interacting spherical nanoparticles (NPs) through DNA base pairing leads to the formation of ordered three-dimensional lattices. The spheres and rods arrange themselves in a complex alternating manner, where the spheres can form either a face-centered cubic (FCC) or hexagonal close-packed (HCP) lattice, or a disordered phase, as observed by in situ X-ray scattering. Increasing NP diameter at fixed rod length yields an initial transition from a disordered phase to the HCP crystal, energetically stabilized by rod-rod attraction across alternating crystal layers, as revealed by theory. In the limit of large NPs, the FCC structure is instead stabilized over the HCP by rod entropy. Thus, we propose that directionally specific attractions in mixtures of anisotropic and isotropic objects offer insight into unexplored self-assembly behavior of noncomplementary shaped particles.« less
NASA Astrophysics Data System (ADS)
Gioffré, M.; Cavalagli, N.; Pepi, C.; Trequattrini, M.
2017-01-01
Non-contact measurements can be effectively used in civil engineering to assess the variation of structural performance with time. In the last decades this approach has received considerable interests from researchers working in the field of structural health monitoring (SHM). Indeed, non-contact measurements are very attractive because it is possible to perform non intrusive and non destructive investigations even being at a significant distance from the targets. Within this context, contactless measurements of the tie-rod vibrations in the Santa Maria della Consolazione Temple in Todi (Italy) are presented in this paper. In particular, laser vibrometer and radar interferometer measurements are used to estimate natural frequencies and mode shapes. This information is crucial to obtain the tensile axial force in the tie-rods, which can be used as an indicator of structural integrity or possible failure. Furthermore, a novel approach is proposed where drones (Unmanned Aerial Vehicles) can be successfully used to improve the effectiveness and the accuracy of the experimental activities.
Berry, Robert Randolph; Palmer, Gene David; Wilson, Ian David
2000-01-01
A gas turbine rotor stacking fixture includes upstanding bolts for reception in aligned bolt holes in superposed aft disk, wheels and spacers and upstanding alignment rods received in openings of the disk, wheels and spacers during the rotor stacking assembly. The axially registering openings enable insertion of thin-walled tubes circumferentially about the rim of the rotor, with tight tolerances to the openings to provide supply and return steam for cooling buckets. The alignment rods have radial dimensions substantially less than their dimensions in a circumferential direction to allow for radial opening misalignment due to thermal expansion, tolerance stack-up and wheel-to-spacer mismatch due to rabbet mechanical growth. The circumferential dimension of the alignment rods affords tightly toleranced alignment of the openings through which the cooling tubes are installed.
Safari, Hanieh; Adili, Reheman; Holinstat, Michael; Eniola-Adefeso, Omolola
2018-05-15
Though the emulsion solvent evaporation (ESE) technique has been previously modified to produce rod-shaped particles, it cannot generate small-sized rods for drug delivery applications due to the inherent coupling and contradicting requirements for the formation versus stretching of droplets. The separation of the droplet formation from the stretching step should enable the creation of submicron droplets that are then stretched in the second stage by manipulation of the system viscosity along with the surface-active molecule and oil-phase solvent. A two-step ESE protocol is evaluated where oil droplets are formed at low viscosity followed by a step increase in the aqueous phase viscosity to stretch droplets. Different surface-active molecules and oil phase solvents were evaluated to optimize the yield of biodegradable PLGA rods. Rods were assessed for drug loading via an imaging agent and vascular-targeted delivery application via blood flow adhesion assays. The two-step ESE method generated PLGA rods with major and minor axis down to 3.2 µm and 700 nm, respectively. Chloroform and sodium metaphosphate was the optimal solvent and surface-active molecule, respectively, for submicron rod fabrication. Rods demonstrated faster release of Nile Red compared to spheres and successfully targeted an inflamed endothelium under shear flow in vitro and in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.
Irradiation behaviour of the large grained UO{sub 2} fuel pellet in the transient conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosaka, Yuji; Watanabe, Seiichi; Arakawa, Yasushi
2007-07-01
In order to achieve a high duty fuel rod design, it is the key issue to suppress the fission gas release from the view point of the fuel rod inner pressure design. The large grain UO{sub 2} pellet is one of the candidates to meet such a requirement by reducing the fission gas release especially at high power and/or high burnup. We have demonstrated the fuel performance of the large grain pellet in the PWR irradiation conditions, which was fabricated with no additive but with active UO{sub 2} powder through the conventional pelletizing process for the normal grain size pellet.more » According to the mechanism of the fission gas retention, there may be a concern about the larger gas bubble swelling of the large grain pellet at the power transient conditions which may increase the potential of the PCMI failure. In this paper, we focus on the differences of the dimensional change in comparison among the pellets with the different grain sizes at the power transient conditions. The power ramp tests were carried out on the high burnup fuel rods of normal and large grain pellet with no additive, which had been irradiated in the PWR conditions up to around 60 GWd/t at peak position. The detailed PIE results revealed that the volume increment due to the power ramp clearly showed the dependence on the grain size as well as the fission gas release and suggested that the larger grain with no additive may suppress the gas bubble swelling at the power transient conditions. According to the experimental results, it is concluded that the large grain pellet with no additive does not deteriorate the irradiation performance during the power transient conditions from the view point of the gas bubble swelling. (authors)« less
Migration of luque rods through a laminectomy defect causing spinal cord compression.
Quint, D J; Salton, G
1993-01-01
Internal fixation of traumatic spinal injuries has been associated with spinal canal stenosis, spinal cord compression, and nerve root impingement. We present a case of spinal cord/cauda equina compression due to migration of intact, anchored thoracolumbar Luque rods into the spinal canal through a laminectomy defect, leading to neurologic complications 10 years after the original operation.
Contact fatigue of human enamel: Experiments, mechanisms and modeling.
Gao, S S; An, B B; Yahyazadehfar, M; Zhang, D; Arola, D D
2016-07-01
Cyclic contact between natural tooth structure and engineered ceramics is increasingly common. Fatigue of the enamel due to cyclic contact is rarely considered. The objectives of this investigation were to evaluate the fatigue behavior of human enamel by cyclic contact, and to assess the extent of damage over clinically relevant conditions. Cyclic contact experiments were conducted using the crowns of caries-free molars obtained from young donors. The cuspal locations were polished flat and subjected to cyclic contact with a spherical indenter of alumina at 2Hz. The progression of damage was monitored through the evolution in contact displacement, changes in the contact hysteresis and characteristics of the fracture pattern. The contact fatigue life diagram exhibited a decrease in cycles to failure with increasing cyclic load magnitude. Two distinct trends were identified, which corresponded to the development and propagation of a combination of cylindrical and radial cracks. Under contact loads of less than 400N, enamel rod decussation resisted the growth of subsurface cracks. However, at greater loads the damage progressed rapidly and accelerated fatigue failure. Overall, cyclic contact between ceramic appliances and natural tooth structure causes fatigue of the enamel. The extent of damage is dependent on the magnitude of cyclic stress and the ability of the decussation to arrest the fatigue damage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Scollan, Joseph P; Jauregui, Julio J; Jacobsen, Christina M; Abzug, Joshua M
Osteogenesis imperfecta is usually due to autosomal dominant mutations in type I collagen, leading to an increase in fractures and bone deformities, especially in the long bones of the lower extremities. The use of nonelongating intramedullary rods is an established surgical intervention to address such deformities. The rate of surgical complications has been reported to be as high as 187%, with revision rates as high as 90%, although exact global rates are unknown. As such, we sought to determine the published rates of (1) bone-related complications (including both fracture and deformity), (2) rod migration, and (3) complications that require reoperation. Following the Preferred Reporting Items for Systematic reviews and Meta-analyses (PRISMA) guidelines, 1295 studies were evaluated. After cross-referencing, and applying specific inclusion and exclusion criteria, a total of 7 studies were included in the final cohort. Data were extracted from the studies and analyzed. Random effect models determined the complication rates of intramedullary nonelongating rod procedures. A total of 359 primary nonelongating intramedullary rod procedures of tibiae and femurs, in patients with a mean age of 6 years (5.2 to 7.3 y), at a mean follow-up of 63 months (24 to 118 mo), were evaluated. 60% of the surgical procedures were on femurs, and 40% were on tibiae. The reoperation rate was 39.4%. The most common complication was rod migration, with a rate of 25.7%. The rate of bone-related complications was 19.5% including fractures (15.0%) and worsening bone deformity (4.3%). This is the first meta-analysis to identify the rates of complication and reoperation in lower limb intramedullary fixation for pediatric osteogenesis imperfecta patients. This study has shown that rod migration is the most common complication, followed by bone-related complications including fractures and deformity. Reoperations occur after nearly 40% of all procedures due to rod migration or bone-related complications. Level IV-retrospective meta-analysis.
Urea controlled hydrothermal synthesis of ammonium aluminum carbonate hydroxide rods
NASA Astrophysics Data System (ADS)
Wang, Fang; Zhu, Jianfeng; Liu, Hui
2018-03-01
In this study, ammonium aluminum carbonate hydroxide (AACH) rods were controllably prepared using the hydrothermal method by manipulating the amount of urea in the reaction system. The experimental results showed that AACH in rod shape was able to be gradually transformed from γ-AlOOH in cluster shape during the molar ratios of urea to Al in the reactants were ranged from 8 to 10, and the yield of AACH has increased accordingly. When the molar ratio of urea to Al reaches 11, pure AACH rods with a diameter of 500 nm and a length of 10 μm approximately was able to be produced. Due to the slow decomposition of urea during the hydrothermal reaction, the nucleation and growth of AACH crystal proceed step by step. Therefore, the crystal can fully grow on each crystal plane and eventually produce a highly crystalline rod-shaped product. The role of urea in controlling the morphology and yield of AACH was also discussed in this paper systematically.
Autofusion in the immature spine treated with growing rods.
Cahill, Patrick J; Marvil, Sean; Cuddihy, Laury; Schutt, Corey; Idema, Jocelyn; Clements, David H; Antonacci, M Darryl; Asghar, Jahangir; Samdani, Amer F; Betz, Randal R
2010-10-15
Retrospective case review of skeletally immature patients treated with growing rods. Patients received an average of 9.6 years follow-up care. (1) to identify the rate of autofusion in the growing spine with the use of growing rods; (2) to quantify how much correction can be attained with definitive instrumented fusion after long-term treatment with growing rods; and (3) to describe the extent of Smith-Petersen osteotomies required to gain correction of an autofused spine following growing rod treatment. The safety and use of growing rods for curve correction and maintenance in the growing spine population has been established in published reports. While autofusion has been reported, the prevalence and sequelae are not known. Nine skeletally immature children with scoliosis were identified who had been treated using growing rods. A retrospective review of the medical records and radiographs was conducted and the following data collected: complications, pre- and postoperative Cobb angles at time of initial surgery (growing rod placement), pre- and postoperative Cobb angles at time of final surgery (growing rod removal and definitive fusion), total spine length as measured from T1-S1, % correction since initiation of treatment and at definitive fusion, total number of surgeries, and number of patients found to have autofusion at the time of device removal. The rate of autofusion in children treated with growing rods was 89%. The average percent of the Cobb angle correction obtained at definitive fusion was 44%. On average, 7 osteotomies per patient were required at the time of definitive fusion due to autofusion. Although growing rods have efficacy in the control of deformity within the growing spine, they also have adverse effects on the spine. Immature spines treated with a growing rod have high rates of unintended autofusion which can possibly lead to difficult and only moderate correction at the time of definitive fusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, G; LoSasso, T; Saleh, Z
2015-06-15
Purpose: Due to saturation, high density materials Result in an apparent density of 3.2 g/cm{sup 3} in CT images. The true density of traditional titanium stabilization rods (∼4.4 g/cm{sup 3}) is typically ignored in treatment planning. This may not be acceptable for new cobalt-chrome rods with a density of 8.5 g/cm{sup 3}. This study reports the dosimetric impact of cobalt-chrome rods in paraspinal radiotherapy. Methods: For titanium and cobalt-chrome rods, two planning studies were done for both IMRT and VMAT in Varian Eclipse using AAA. 1) The effect of planning without assigning the true rod density was assessed by comparingmore » plans generated with the apparent density and recalculated with the true density for titanium and cobalt-chrome. 2) To test if TPS can compensate for high density rods during optimization. Furthermore, TPS calculation accuracy was verified using MapCheck for a single 20 x 10 cm{sup 2} field. The MapCheck was incrementally shifted to achieve measurement resolution of 1 mm. Results: PTV coverage was ∼0.3% and ∼4.7% lower in plans that were recalculated with the true rod density of titanium and cobalt-chrome, respectively. PTV coverage can be maintained if the correct density is used in optimization. Measurements showed that TPS overestimated the dose locally by up to 11% for cobalt-chrome rods and up to 4% for titanium rods if the density is incorrect. With density corrected, maximum local differences of 6% and 3% were seen for cobalt-chrome and titanium rods, respectively. At 2 cm beneath a rod, electrons scattered from the side of the rod increased the lateral dose and diminished as depth increases. TPS was not able to account for this effect properly even with the true rod density assigned. Conclusion: Neglecting the true density of cobalt-chrome rods can cause under coverage to the PTV. Assigning the correct density during treatment planning can minimize unexpected decrease in PTV dose.« less
NASA Astrophysics Data System (ADS)
Fujii, Toshiaki; Yasuda, Yoh; Ueda, Toshiaki
With the worldwide spread of wind turbine installations, various problems such as landscape issues, bird strikes and grid connections have arisen. Protection of wind turbines from lightning is cited as one of the main problems. Wind turbines are often struck by lightning because of their open-air locations, such as in mountainous areas, and their special configuration and very-high construction. Especially, low-voltage and control circuits can fail or suffer burnout while blades can incur serious damage if struck by lightning. Wind turbine failures caused by lightning strikes account for approximately 25% of all failures. The problem is regarded as a global one that needs immediate resolution. It is important to understand the impedance characteristics of wind turbine earthing systems from the viewpoint of lightning protection. A report from IEC TR61400-24 recommends a “ring earth electrode”. This was originally defined in IEC 61024 (currently revised and re-numbered as IEC 62305), where such an electrode is recommended to reduce touch and step voltages in households and buildings. IEC TR61400-24 also recommended additional electrodes of vertical or horizontal rods. However, these concepts have not been fully discussed from the viewpoint of its application to wind turbines. To confirm the effect of a combination of a ring earth electrode and additional vertical rods for protection of a wind turbine, this report uses the Finite Difference Time Domain (FDTD) method to present an electromagnetic transient analysis on such a wind turbine earthing system. The results show that an optimal combination can be arranged from viewpoints of lightning protection and construction cost. Thus, this report discusses how to establish a quantitative design methodology of the wind turbine earthing system to provide effective lightning protection.
ZnO Nano-Rod Devices for Intradermal Delivery and Immunization
Nayak, Tapas R.; Wang, Hao; Pant, Aakansha; Zheng, Minrui; Junginger, Hans; Goh, Wei Jiang; Lee, Choon Keong; Zou, Shui; Alonso, Sylvie; Czarny, Bertrand; Storm, Gert; Sow, Chorng Haur; Lee, Chengkuo; Pastorin, Giorgia
2017-01-01
Intradermal delivery of antigens for vaccination is a very attractive approach since the skin provides a rich network of antigen presenting cells, which aid in stimulating an immune response. Numerous intradermal techniques have been developed to enhance penetration across the skin. However, these methods are invasive and/or affect the skin integrity. Hence, our group has devised zinc oxide (ZnO) nano-rods for non-destructive drug delivery. Chemical vapour deposition was used to fabricate aligned nano-rods on ZnO pre-coated silicon chips. The nano-rods’ length and diameter were found to depend on the temperature, time, quality of sputtered silicon chips, etc. Vertically aligned ZnO nano-rods with lengths of 30–35 µm and diameters of 200–300 nm were selected for in vitro human skin permeation studies using Franz cells with Albumin-fluorescein isothiocyanate (FITC) absorbed on the nano-rods. Fluorescence and confocal studies on the skin samples showed FITC penetration through the skin along the channels formed by the nano-rods. Bradford protein assay on the collected fluid samples indicated a significant quantity of Albumin-FITC in the first 12 h. Low antibody titres were observed with immunisation on Balb/c mice with ovalbumin (OVA) antigen coated on the nano-rod chips. Nonetheless, due to the reduced dimensions of the nano-rods, our device offers the additional advantage of excluding the simultaneous entrance of microbial pathogens. Taken together, these results showed that ZnO nano-rods hold the potential for a safe, non-invasive, and painless intradermal drug delivery. PMID:28617335
RPGR-Associated Retinal Degeneration in Human X-Linked RP and a Murine Model
Huang, Wei Chieh; Wright, Alan F.; Roman, Alejandro J.; Cideciyan, Artur V.; Manson, Forbes D.; Gewaily, Dina Y.; Schwartz, Sharon B.; Sadigh, Sam; Limberis, Maria P.; Bell, Peter; Wilson, James M.; Swaroop, Anand; Jacobson, Samuel G.
2012-01-01
Purpose. We investigated the retinal disease due to mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene in human patients and in an Rpgr conditional knockout (cko) mouse model. Methods. XLRP patients with RPGR-ORF15 mutations (n = 35, ages at first visit 5–72 years) had clinical examinations, and rod and cone perimetry. Rpgr-cko mice, in which the proximal promoter and first exon were deleted ubiquitously, were back-crossed onto a BALB/c background, and studied with optical coherence tomography and electroretinography (ERG). Retinal histopathology was performed on a subset. Results. Different patterns of rod and cone dysfunction were present in patients. Frequently, there were midperipheral losses with residual rod and cone function in central and peripheral retina. Longitudinal data indicated that central rod loss preceded peripheral rod losses. Central cone-only vision with no peripheral function was a late stage. Less commonly, patients had central rod and cone dysfunction, but preserved, albeit abnormal, midperipheral rod and cone vision. Rpgr-cko mice had progressive retinal degeneration detectable in the first months of life. ERGs indicated relatively equal rod and cone disease. At late stages, there was greater inferior versus superior retinal degeneration. Conclusions. RPGR mutations lead to progressive loss of rod and cone vision, but show different patterns of residual photoreceptor disease expression. Knowledge of the patterns should guide treatment strategies. Rpgr-cko mice had onset of degeneration at relatively young ages and progressive photoreceptor disease. The natural history in this model will permit preclinical proof-of-concept studies to be designed and such studies should advance progress toward human therapy. PMID:22807293
Krause, Thilo; Hanke, Michael; Cheng, Zongzhe; Niehle, Michael; Trampert, Achim; Rosenthal, Martin; Burghammer, Manfred; Ledig, Johannes; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-Heinrich; Waag, Andreas
2016-08-12
Employing nanofocus x-ray diffraction, we investigate the local strain field induced by a five-fold (In,Ga)N multi-quantum well embedded into a GaN micro-rod in core-shell geometry. Due to an x-ray beam width of only 150 nm in diameter, we are able to distinguish between individual m-facets and to detect a significant in-plane strain gradient along the rod height. This gradient translates to a red-shift in the emitted wavelength revealed by spatially resolved cathodoluminescence measurements. We interpret the result in terms of numerically derived in-plane strain using the finite element method and subsequent kinematic scattering simulations which show that the driving parameter for this effect is an increasing indium content towards the rod tip.
NASA Astrophysics Data System (ADS)
Krause, Thilo; Hanke, Michael; Cheng, Zongzhe; Niehle, Michael; Trampert, Achim; Rosenthal, Martin; Burghammer, Manfred; Ledig, Johannes; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-Heinrich; Waag, Andreas
2016-08-01
Employing nanofocus x-ray diffraction, we investigate the local strain field induced by a five-fold (In,Ga)N multi-quantum well embedded into a GaN micro-rod in core-shell geometry. Due to an x-ray beam width of only 150 nm in diameter, we are able to distinguish between individual m-facets and to detect a significant in-plane strain gradient along the rod height. This gradient translates to a red-shift in the emitted wavelength revealed by spatially resolved cathodoluminescence measurements. We interpret the result in terms of numerically derived in-plane strain using the finite element method and subsequent kinematic scattering simulations which show that the driving parameter for this effect is an increasing indium content towards the rod tip.
Butt, Muhammad Shoaib; Bai, Jing; Wan, Xiaofeng; Chu, Chenglin; Xue, Feng; Ding, Hongyan; Zhou, Guanghong
2017-01-01
Full biodegradable magnesium alloy (AZ31) strengthened poly-lactic acid (PLA) composite rods for potential application for bone fracture fixation were prepared by plastic injection process in this work. Their surface/interfacial morphologies, mechanical properties and vitro degradation were studied. In comparison with untreated Mg rod, porous MgO ceramic coating on Mg surface formed by Anodizing (AO) and micro-arc-oxidation (MAO)treatment can significantly improve the interfacial binding between outer PLA cladding and inner Mg rod due to the micro-anchoring action, leading to better mechanical properties and degradation performance of the composite rods.With prolonging immersion time in simulated body fluid (SBF) solution until 8weeks, the MgO porous coating were corroded gradually, along with the disappearance of original pores and the formation of a relatively smooth surface. This resulted in a rapidly reduction in mechanical properties for corresponding composite rods owing to the weakening of interfacial binding capacity. The present results indicated that this new PLA-clad Mg composite rods show good potential biomedical applications for implants and instruments of orthopedic inner fixation. Copyright © 2016 Elsevier B.V. All rights reserved.
Rapid hydrogen ion uptake of rod outer segments and rhodopsin solutions on illumination
Falk, G.; Fatt, P.
1966-01-01
1. Flash illumination of a suspension of frog rod outer segments or rhodopsin solution in contact with a platinum electrode produces a rapidly developing negative displacement of potential of the electrode (with respect to a reversible electrode). 2. The amplitude of the potential change varies inversely with the H+ buffering capacity of the medium. It is inferred that the response is due to an uptake of H+ by the rod outer segments or rhodopsin, with the platinum surface acting as a pH electrode. 3. Determination of the action spectrum shows that the response depends on the absorption of light by rhodopsin. 4. In frog rods one acid-binding group with a pK of about 7·9 is produced for each molecule of rhodopsin bleached, consistent with a rhodopsin concentration in frog rods of 1·7 mM. 5. It is suggested that the time course of the response with rhodopsin solutions reflects the kinetics of the conversion of metarhodopsin I to metarhodopsin II. 6. A slower time course of voltage change observed for suspensions of outer segments is attributable to the time required for the diffusion of H+ buffer out of the rods. PMID:5945249
Quadrupolar asymmetry in shifted-stem vane-shaped-rod radio frequency quadrupole accelerator
NASA Astrophysics Data System (ADS)
Mehrotra, Nitin
2018-04-01
Quadrupolar Asymmetry (QA), which has been a rampant problem for rod-type Radio Frequency Quadrupole (RFQ) Linacs, arises due to the geometry of resonant structure. A systematic parametric simulation study has been performed to unravel their effect on Figure of Merit (FoM) quantities namely Quality Factor (Q), Shunt Impedance (Rsh) and Quadrupolar Asymmetry (QA). A novel stem and cavity shape is proposed, which caters to the profile of electromagnetic fields of the resonant structure. A design methodology is formulated, which demonstrates that Quadrupolar Asymmetry can be annihilated, and a symmetric electric field can be produced in all four quadrants of rod-type RFQ accelerator.
Mashburn, D.N.; Akerman, M.A.
1979-08-13
A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.
Mashburn, Douglas N.; Akerman, M. Alfred
1981-01-01
A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.
Rod electrical coupling is controlled by a circadian clock and dopamine in mouse retina
Jin, Nan Ge; Chuang, Alice Z; Masson, Philippe J; Ribelayga, Christophe P
2015-01-01
Key points Rod photoreceptors play a key role in vision in dim light; in the mammalian retina, although rods are anatomically connected or coupled by gap junctions, a type of electrical synapse, the functional importance and regulation of rod coupling has remained elusive. We have developed a new technique in the mouse: perforated patch-clamp recording of rod inner segments in isolated intact retinae maintained by superfusion. We find that rod electrical coupling is controlled by a circadian clock and dopamine, and is weak during the day and stronger at night. The results also indicate that the signal-to-noise ratio for a dim light response is increased at night because of coupling. Our observations will provide a framework for understanding the daily variations in human vision as well as the basis of specific retinal malfunctions. Abstract Rod single-photon responses are critical for vision in dim light. Electrical coupling via gap junction channels shapes the light response properties of vertebrate photoreceptors, but the regulation of rod coupling and its impact on the single-photon response have remained unclear. To directly address these questions, we developed a perforated patch-clamp recording technique and recorded from single rod inner segments in isolated intact neural mouse retinae, maintained by superfusion. Experiments were conducted at different times of the day or under constant environmental conditions, at different times across the circadian cycle. We show that rod electrical coupling is regulated by a circadian clock and dopamine, so that coupling is weak during the day and strong at night. Altogether, patch-clamp recordings of single-photon responses in mouse rods, tracer coupling, receptive field measurements and pharmacological manipulations of gap junction and dopamine receptor activity provide compelling evidence that rod coupling is modulated in a circadian manner. These data are consistent with computer modelling. At night, single-photon responses are smaller due to coupling, but the signal-to-noise ratio for a dim (multiphoton) light response is increased at night because of signal averaging between coupled rods. PMID:25616058
Karlsson, Mattias E; Mamie, Yann C; Calamida, Andrea; Gardner, James M; Ström, Valter; Pourrahimi, Amir Masoud; Olsson, Richard T
2018-05-01
A protocol for the aqueous synthesis of ca. 1-μm-long zinc oxide (ZnO) nanorods and their growth at intermediate reaction progression is presented, together with photoluminescence (PL) characteristics after heat treatment at temperatures of up to 1000 °C. The existence of solitary rods after the complete reaction (60 min) was traced back to the development of sea urchin structures during the first 5 s of the precipitation. The rods primarily formed in later stages during the reaction due to fracture, which was supported by the frequently observed broken rod ends with sharp edges in the final material, in addition to tapered uniform rod ends consistent with their natural growth direction. The more dominant rod growth in the c direction (extending the length of the rods), together with the appearance of faceted surfaces on the sides of the rods, occurred at longer reaction times (>5 min) and generated zinc-terminated particles that were more resistant to alkaline dissolution. A heat treatment for 1 h at 600 or 800 °C resulted in a smoothing of the rod surfaces, and PL measurements displayed a decreased defect emission at ca. 600 nm, which was related to the disappearance of lattice imperfections formed during the synthesis. A heat treatment at 1000 °C resulted in significant crystal growth reflected as an increase in luminescence at shorter wavelengths (ca. 510 nm). Electron microscopy revealed that the faceted rod structure was lost for ZnO rods exposed to temperatures above 600 °C, whereas even higher temperatures resulted in particle sintering and/or mass redistribution along the initially long and slender ZnO rods. The synthesized ZnO rods were a more stable Wurtzite crystal structure than previously reported ball-shaped ZnO consisting of merging sheets, which was supported by the shifts in PL spectra occurring at ca. 200 °C higher annealing temperature, in combination with a smaller thermogravimetric mass loss occurring upon heating the rods to 800 °C.
Spondylolysis and spondylolisthesis: A review of the literature.
Gagnet, Paul; Kern, Kent; Andrews, Kyle; Elgafy, Hossein; Ebraheim, Nabil
2018-06-01
Spondylolysis is a common diagnosis with a high prevalence in children and adolescents complaining of low back pain. It may be caused by either a defect or fracture of the pars interarticularis due to mechanical stress. Depending on the severity of the spondylolysis and symptoms associated it may be treated either conservatively or surgically, both of which have shown significant success. Conservative treatments such as bracing and decreased activity have been shown to be most effective with patients who have early diagnosis and treatment. Low-intensity pulsed ultrasound (LIPUS) in addition to conservative treatment appears to be very promising for achieving a higher rate of bony union. LIPUS requires more supporting studies, but may prove to become a standard of care in the future. Surgery may be required if conservative treatment, for at least six months, failed to give sustained pain relief for the activities of daily living. Based on studies performed on each of the major surgical treatments we suggest the use of the pedicle screw hook technique and the pedicle screw rod technique due to low rates of hardware failure, increased maintenance of mobility, and lack of a postoperative bracing requirement.
Influence of Impact Damage on Carbon-Epoxy Stiffener Crippling
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.
2010-01-01
NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structure. In this concept a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. By adding unidirectional carbon rods to the top of stiffeners, the panel becomes more structurally efficient. This combination produces a more damage tolerant design. This document describes the results of experimentation on PRSEUS specimens loaded in unidirectional compression subjected to impact damage and loaded in fatigue and to failure. A comparison with analytical predictions for pristine and damaged specimens is included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patra, Anirban; Tomé, Carlos N.
A physically-based crystal plasticity framework for modeling irradiation growth and creep is interfaced with the finite element code ABAQUS in order to study the contact forces and the gap evolution between the spacer grid and the cladding tube as a function of irradiation in a representative section of a fuel rod assembly. Deformation mechanisms governing the gap opening are identified and correlated to the texture-dependent material response. Thus, in the absence of coolant flow-induced vibrations, these simulations predict the contribution of irradiation growth and creep to the gap opening between the cladding tube and the springs and dimples on themore » spacer grid. The simulated contact forces on the springs and dimples are compared to available experimental and modeling data. Various combinations of external loads are applied on the springs and dimples to simulate fuel rods in the interior and at the periphery of the fuel rod assembly. Furthermore, we found that loading conditions representative (to a first order approximation) of fuel rods at the periphery show higher gap opening. This is in agreement with in-reactor data, where rod leakages due to the synergistic effects of gap opening and coolant flow-induced vibrations were generally found to occur at the periphery of the fuel rod assembly.« less
Patra, Anirban; Tomé, Carlos N.
2017-03-06
A physically-based crystal plasticity framework for modeling irradiation growth and creep is interfaced with the finite element code ABAQUS in order to study the contact forces and the gap evolution between the spacer grid and the cladding tube as a function of irradiation in a representative section of a fuel rod assembly. Deformation mechanisms governing the gap opening are identified and correlated to the texture-dependent material response. Thus, in the absence of coolant flow-induced vibrations, these simulations predict the contribution of irradiation growth and creep to the gap opening between the cladding tube and the springs and dimples on themore » spacer grid. The simulated contact forces on the springs and dimples are compared to available experimental and modeling data. Various combinations of external loads are applied on the springs and dimples to simulate fuel rods in the interior and at the periphery of the fuel rod assembly. Furthermore, we found that loading conditions representative (to a first order approximation) of fuel rods at the periphery show higher gap opening. This is in agreement with in-reactor data, where rod leakages due to the synergistic effects of gap opening and coolant flow-induced vibrations were generally found to occur at the periphery of the fuel rod assembly.« less
Rod-shaped cavitation bubble structure in ultrasonic field.
Bai, Lixin; Wu, Pengfei; Liu, Huiyu; Yan, Jiuchun; Su, Chang; Li, Chao
2018-06-01
Rod-shaped cavitation bubble structure in thin liquid layers in ultrasonic field is investigated experimentally. It is found that cavitation structure successively experiences several stages with the change of the thickness of the thin liquid layer. Rod-shaped structure is a stable structure of the boundary between the cavitation cloud region and the non-cavitation liquid region, which can be formed in two different ways. Cavitation bubbles in a thin liquid layer have a distribution in the thickness direction. The rod-shaped structures tend to crosslink with each other to form stable Y-branch structures. The angle of the Y-branch structure is Gauss distribution with mathematical expectation μ = 119.93. A special rod-shaped cavitation structure with source is also investigated in detail. Due to the pressure gradient in the normal direction, the primary Bjerknes force causes the bubbles in the rod-shaped structure on both sides to converge to the axis. The secondary Bjerknes forces between the bubbles also make the cluster converge, so the large bubbles which are attached to the radiating surface tend to align themselves along the central line. According to the formula deduced in this paper, the variation of curvature of curved rod-shaped structure is qualitatively analyzed. The Y-branch structure of cavitation cloud and Plateau boundary of soap bubbles are compared. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vila, Luis J.; Malla, Ramesh B.
2016-01-01
Special percussive mechanisms, e.g. Auto Gopher and UltraSonic/Sonic Driller/Corer (USDC) have been developed by NASA Jet Propulsion Laboratory and Honeybee Robotics Spacecraft Mechanisms, Corp. to address some of the limitations of current drilling techniques for planetary exploration. The percussive mechanism consists of an ultrasonic horn, a free mass (hammer) and the drill rod. This paper presents the analysis of the interaction between these three components. The impact between the components (i.e. ultrasonic horn and free mass, and free mass and drill rod) is analyzed using solid body collision analysis applying the principle of conservation of momentum. The drill rod is modeled for both undamped and damped cases with equivalent generalized single degree of freedom system. Various values are used for the coefficient of restitution to account for energy loss during impact. The energy transferred to the drill rod by the free mass is obtained determining the change in kinetic energy due to impact. It is observed that the free mass converts the high frequency of oscillation of the ultrasonic horn into lower frequency impacts on the drill rod. A decrease in the coefficient of restitution results in a decrease in the number of impacts, impulse imparted to the drill rod and energy transferred to the drill rod by the impact of the free mass.
An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions
Gamble, Kyle A.; Barani, Tommaso; Pizzocri, David; ...
2017-04-30
Iron-chromium-aluminum (FeCrAl) alloys are candidates to be used as nuclear fuel cladding for increased accident tolerance. An analysis of the response of FeCrAl under normal operating and loss of coolant conditions has been performed using fuel performance modeling. In particular, recent information on FeCrAl material properties and phenomena from separate effects tests has been implemented in the BISON fuel performance code and analyses of integral fuel rod behavior with FeCrAl cladding have been performed. BISON simulations included both light water reactor normal operation and loss-of-coolant accidental transients. In order to model fuel rod behavior during accidents, a cladding failure criterionmore » is desirable. For FeCrAl alloys, a failure criterion is developed using recent burst experiments under loss of coolant like conditions. The added material models are utilized to perform comparative studies with Zircaloy-4 under normal operating conditions and oxidizing and non-oxidizing out-of-pile loss of coolant conditions. The results indicate that for all conditions studied, FeCrAl behaves similarly to Zircaloy-4 with the exception of improved oxidation performance. Here, further experiments are required to confirm these observations.« less
Nuclear fuel elements made from nanophase materials
Heubeck, Norman B.
1998-01-01
A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000.degree. F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics.
Nuclear fuel elements made from nanophase materials
Heubeck, N.B.
1998-09-08
A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics. 5 figs.
An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamble, Kyle A.; Barani, Tommaso; Pizzocri, David
Iron-chromium-aluminum (FeCrAl) alloys are candidates to be used as nuclear fuel cladding for increased accident tolerance. An analysis of the response of FeCrAl under normal operating and loss of coolant conditions has been performed using fuel performance modeling. In particular, recent information on FeCrAl material properties and phenomena from separate effects tests has been implemented in the BISON fuel performance code and analyses of integral fuel rod behavior with FeCrAl cladding have been performed. BISON simulations included both light water reactor normal operation and loss-of-coolant accidental transients. In order to model fuel rod behavior during accidents, a cladding failure criterionmore » is desirable. For FeCrAl alloys, a failure criterion is developed using recent burst experiments under loss of coolant like conditions. The added material models are utilized to perform comparative studies with Zircaloy-4 under normal operating conditions and oxidizing and non-oxidizing out-of-pile loss of coolant conditions. The results indicate that for all conditions studied, FeCrAl behaves similarly to Zircaloy-4 with the exception of improved oxidation performance. Here, further experiments are required to confirm these observations.« less
Schein, Stan; Ahmad, Kareem M
2006-11-01
A rod transmits absorption of a single photon by what appears to be a small reduction in the small number of quanta of neurotransmitter (Q(count)) that it releases within the integration period ( approximately 0.1 s) of a rod bipolar dendrite. Due to the quantal and stochastic nature of release, discrete distributions of Q(count) for darkness versus one isomerization of rhodopsin (R*) overlap. We suggested that release must be regular to narrow these distributions, reduce overlap, reduce the rate of false positives, and increase transmission efficiency (the fraction of R* events that are identified as light). Unsurprisingly, higher quantal release rates (Q(rates)) yield higher efficiencies. Focusing here on the effect of small changes in Q(rate), we find that a slightly higher Q(rate) yields greatly reduced efficiency, due to a necessarily fixed quantal-count threshold. To stabilize efficiency in the face of drift in Q(rate), the dendrite needs to regulate the biochemical realization of its quantal-count threshold with respect to its Q(count). These considerations reveal the mathematical role of calcium-based negative feedback and suggest a helpful role for spontaneous R*. In addition, to stabilize efficiency in the face of drift in degree of regularity, efficiency should be approximately 50%, similar to measurements.
2015-01-01
Background Surgical treatments for early onset scoliosis (EOS), including growing rod constructs, involve many complications. Some are due to biomechanical factors. A construct that is more flexible than current instrumentation systems may reduce complications. The purpose of this preliminary study was to determine spine range of motion (ROM) after implantation of simulated growing rod constructs with a range of clinically relevant structural properties. The hypothesis was that ROM of spines instrumented with polyetheretherketone (PEEK) rods would be greater than metal rods and lower than noninstrumented controls. Further, adjacent segment motion was expected to be lower with polymer rods compared to conventional systems. Methods Biomechanical tests were conducted on 6 skeletally immature porcine thoracic spines (domestic swine, 35-40 kg). Spines were harvested after death from swine that had been utilized for other studies (IACUC approved) which had not involved the spine. Paired pedicle screws were used as anchors at proximal and distal levels. Specimens were tested under the following conditions: control, then dual rods of PEEK (6.25 mm), titanium (4 mm), and CoCr (5 mm) alloy. Lateral bending (LB) and flexion-extension (FE) moments of ±5 Nm were applied. Vertebral rotations were measured using video. Differences were determined by two-tailed t-tests and Bonferroni correction with four primary comparisons: PEEK vs control and PEEK vs CoCr, in LB and FE (α=0.05/4). Results In LB, ROM of specimens with PEEK rods was lower than control at each instrumented level. ROM was greater for PEEK rods than both Ti and CoCr at every instrumented level. Mean ROM at proximal and distal noninstrumented levels was lower for PEEK than for Ti and CoCr. In FE, mean ROM at proximal and distal noninstrumented levels was lower for PEEK than for metal. Combining treated levels, in LB, ROM for PEEK rods was 35% of control (p<0.0001) and 270% of CoCr rods (p<0.01). In FE, ROM with PEEK was 27% of control (p<0.001) and 180% of CoCr (p<0.01). Conclusions PEEK rods decreased flexibility versus noninstumented controls, and increased flexibility versus metal rods. Smaller increases in ROM at proximal and distal adjacent motion segments occurred with PEEK compared to metal rods, which may help decrease junctional kyphosis. Flexible growing rods may eventually help improve treatment options for young patients with severe deformity. PMID:25810752
Laser rods with undoped, flanged end-caps for end-pumped laser applications
Meissner, Helmuth E.; Beach, Raymond J.; Bibeau, Camille; Sutton, Steven B.; Mitchell, Scott; Bass, Isaac; Honea, Eric
1999-01-01
A method and apparatus for achieving improved performance in a solid state laser is provided. A flanged, at least partially undoped end-cap is attached to at least one end of a laserable medium. Preferably flanged, undoped end-caps are attached to both ends of the laserable medium. Due to the low scatter requirements for the interface between the end-caps and the laser rod, a non-adhesive method of bonding is utilized such as optical contacting combined with a subsequent heat treatment of the optically contacted composite. The non-bonded end surfaces of the flanged end-caps are coated with laser cavity coatings appropriate for the lasing wavelength of the laser rod. A cooling jacket, sealably coupled to the flanged end-caps, surrounds the entire length of the laserable medium. Radiation from a pump source is focussed by a lens duct and passed through at least one flanged end-cap into the laser rod.
Optimization of Thixoforging Parameters for C70S6 Steel Connecting Rods
NASA Astrophysics Data System (ADS)
Özkara, İsa Metin; Baydoğan, Murat
2016-11-01
A microalloyed steel, C70S6, with a solidification interval of 1390-1479 °C, was thixoforged in the semisolid state in a closed die at temperatures in the range 1400-1475 °C to form a 1/7 scaled-down model of a passenger vehicle connecting rod. Die design and an optimized thixoforging temperature eliminated the excessive flash and other problems during forging. Tension test samples from connecting rods thixoforged at the optimum temperature of 1440 °C exhibited nearly the same hardness, yield strength, and ultimate tensile strength as conventional hot forged samples but ductility decreased by about 45% due to grain boundary ferrite network formed during cooling from the thixoforging temperature. Thus, C70S6-grade steel can be thixoforged at 1440 °C to form flash-free connecting rods. This conclusion was also validated using FEA analysis.
Development of a composite geodetic structure for space construction, phase 1A
NASA Technical Reports Server (NTRS)
1980-01-01
The development of a geodetic beam and beam builder for on orbit construction of large truss type space structures is discussed. The geodetic beam is a lightweight, open lattice structure composed of an equilateral gridwork of crisscrossing rods. The beam provides a high degree of stiffness and minimizes structural distortion, due to temperature gradients, through the incorporation of a new graphite and glass reinforced thermoplastic composite material with a low coefficient of thermal expansion. A low power consuming, high production rate, beam builder automatically fabricates the geodetic beams in space using rods preprocessed on Earth. Three areas of the development are focused upon; (1) geodetic beam designs for local attachment of equipment or beam to beam joining in a parallel or crossing configurations, (2) evaluation of long life pultruded rods capable of service temperatures higher than possible with the HMS/P1700 rod material, and (3) evalaution of high temperature joint encapsulant materials.
Moya, José S.; Martínez, Arturo; López-Píriz, Roberto; Guitián, Francisco; Díaz, Luis A.; Esteban-Tejeda, Leticia; Cabal, Belén; Sket, Federico; Fernández-García, Elisa; Tomsia, Antoni P.; Torrecillas, Ramón
2016-01-01
Bacterial and fungal infections remain a major clinical challenge. Implant infections very often require complicated revision procedures that are troublesome to patients and costly to the healthcare system. Innovative approaches to tackle infections are urgently needed. We investigated the histological response of novel free P2O5 glass-ceramic rods implanted in the jaws of beagle dogs. Due to the particular percolated morphology of this glass-ceramic, the dissolution of the rods in the animal body environment and the immature bone formation during the fourth months of implantation maintained the integrity of the glass-ceramic rod. No clinical signs of inflammation took place in any of the beagle dogs during the four months of implantation. This new glass-ceramic biomaterial with inherent bactericidal and fungicidal properties can be considered as an appealing candidate for bone tissue engineering. PMID:27515388
Electrode systems for in situ vitrification
Buelt, James L.; Carter, John G.; Eschbach, Eugene A.; FitzPatrick, Vincent F.; Koehmstedt, Paul L.; Morgan, William C.; Oma, Kenton H.; Timmerman, Craig L.
1990-01-01
An electrode comprising a molybdenum rod is received within a conductive collar formed of graphite. The molybdenum rod and the graphite collar may be physically joined at the bottom. A pair of such electrodes are placed in soil containing buried waste material and an electric current is passed therebetween for vitrifying the soil. The graphite collar enhances the thermal conductivity of the combination, bringing heat to the surface, and preventing formation of a cold cap of material above the ground surface. The annulus between the molybdenum rod electrode and the graphite collar is suitably filled with a conductive ceramic powder that sinters upon the molybdenum rod, protecting the same from oxidation as graphite material is consumed, or a metal powder which liquefies at operating temperatures. The center of the molybdenum rod, used with a collar of separately, can be hollow and filled with a powdered metal, such as copper, which liquefies at operating temperatures. Connection to electrodes can be provided below ground level to avoid open circuit due to electrode deterioration, or sacrificial electrodes may be employed when operation is started. Outboard electrodes cna be utilized to square up a vitrified area.
Role of Hydrophobins in Aspergillus fumigatus.
Valsecchi, Isabel; Dupres, Vincent; Stephen-Victor, Emmanuel; Guijarro, J Iñaki; Gibbons, John; Beau, Rémi; Bayry, Jagadeesh; Coppee, Jean-Yves; Lafont, Frank; Latgé, Jean-Paul; Beauvais, Anne
2017-12-24
Resistance of Aspergillus fumigatus conidia to desiccation and their capacity to reach the alveoli are partly due to the presence of a hydrophobic layer composed of a protein from the hydrophobin family, called RodA, which covers the conidial surface. In A. fumigatus there are seven hydrophobins (RodA-RodG) belonging to class I and III. Most of them have never been studied. We constructed single and multiple hydrophobin-deletion mutants until the generation of a hydrophobin-free mutant. The phenotype, immunogenicity, and virulence of the mutants were studied. RODA is the most expressed hydrophobin in sporulating cultures, whereas RODB is upregulated in biofilm conditions and in vivo Only RodA, however, is responsible for rodlet formation, sporulation, conidial hydrophobicity, resistance to physical insult or anionic dyes, and immunological inertia of the conidia. None of the hydrophobin plays a role in biofilm formation or its hydrophobicity. RodA is the only needed hydrophobin in A. fumigatus , conditioning the structure, permeability, hydrophobicity, and immune-inertia of the cell wall surface in conidia. Moreover, the defect of rodlets on the conidial cell wall surface impacts on the drug sensitivity of the fungus.
Role of Hydrophobins in Aspergillus fumigatus
Valsecchi, Isabel; Dupres, Vincent; Stephen-Victor, Emmanuel; Guijarro, J. Iñaki; Gibbons, John; Beau, Rémi; Coppee, Jean-Yves; Lafont, Frank; Latgé, Jean-Paul; Beauvais, Anne
2017-01-01
Resistance of Aspergillus fumigatus conidia to desiccation and their capacity to reach the alveoli are partly due to the presence of a hydrophobic layer composed of a protein from the hydrophobin family, called RodA, which covers the conidial surface. In A. fumigatus there are seven hydrophobins (RodA–RodG) belonging to class I and III. Most of them have never been studied. We constructed single and multiple hydrophobin-deletion mutants until the generation of a hydrophobin-free mutant. The phenotype, immunogenicity, and virulence of the mutants were studied. RODA is the most expressed hydrophobin in sporulating cultures, whereas RODB is upregulated in biofilm conditions and in vivo Only RodA, however, is responsible for rodlet formation, sporulation, conidial hydrophobicity, resistance to physical insult or anionic dyes, and immunological inertia of the conidia. None of the hydrophobin plays a role in biofilm formation or its hydrophobicity. RodA is the only needed hydrophobin in A. fumigatus, conditioning the structure, permeability, hydrophobicity, and immune-inertia of the cell wall surface in conidia. Moreover, the defect of rodlets on the conidial cell wall surface impacts on the drug sensitivity of the fungus. PMID:29371496
Yang, Wei; Yao, Chenxue; Cui, Zhengyang; Luo, Dandan; Lee, In-Seop; Yao, Juming; Chen, Cen; Kong, Xiangdong
2016-05-06
Calcium carbonate, especially with nanostructure, has been considered as a good candidate material for bone regeneration due to its excellent biodegradability and osteoconductivity. In this study, rod-like calcium carbonate nanoparticles (Rod-CC NPs) with desired water dispersibility were achieved with the regulation of poly (acrylic acid). Characterization results revealed that the Rod-CC NPs had an average length of 240 nm, a width of 90 nm with an average aspect ratio of 2.60 and a negative ζ-potential of -22.25 ± 0.35 mV. The degradation study illustrated the nanoparticles degraded 23% at pH 7.4 and 45% at pH 5.6 in phosphate-buffered saline (PBS) solution within three months. When cultured with MC3T3-E1 cells, the Rod-CC NPs exhibited a positive effect on the proliferation of osteoblast cells. Alkaline phosphatase (ALP) activity assays together with the osteocalcin (OCN) and bone sialoprotein (BSP) expression observations demonstrated the nanoparticles could induce the differentiation of MC3T3-E1 cells. Our study developed well-dispersed rod-like calcium carbonate nanoparticles which have great potential to be used in bone regeneration.
Yang, Wei; Yao, Chenxue; Cui, Zhengyang; Luo, Dandan; Lee, In-Seop; Yao, Juming; Chen, Cen; Kong, Xiangdong
2016-01-01
Calcium carbonate, especially with nanostructure, has been considered as a good candidate material for bone regeneration due to its excellent biodegradability and osteoconductivity. In this study, rod-like calcium carbonate nanoparticles (Rod-CC NPs) with desired water dispersibility were achieved with the regulation of poly (acrylic acid). Characterization results revealed that the Rod-CC NPs had an average length of 240 nm, a width of 90 nm with an average aspect ratio of 2.60 and a negative ζ-potential of −22.25 ± 0.35 mV. The degradation study illustrated the nanoparticles degraded 23% at pH 7.4 and 45% at pH 5.6 in phosphate-buffered saline (PBS) solution within three months. When cultured with MC3T3-E1 cells, the Rod-CC NPs exhibited a positive effect on the proliferation of osteoblast cells. Alkaline phosphatase (ALP) activity assays together with the osteocalcin (OCN) and bone sialoprotein (BSP) expression observations demonstrated the nanoparticles could induce the differentiation of MC3T3-E1 cells. Our study developed well-dispersed rod-like calcium carbonate nanoparticles which have great potential to be used in bone regeneration. PMID:27164090
T-Cap Pull-Off and Bending Behavior for Stitched Structure
NASA Technical Reports Server (NTRS)
Lovejoy, Andrew E.; Leone, Frank A., Jr.
2016-01-01
The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept that was developed by The Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body aircraft configuration. An important design feature required for assembly is the integrally stitched T-cap, which provides connectivity of the corner (orthogonal) joint between adjacent panels. A series of tests were conducted on T-cap test articles, with and without a rod stiffener penetrating the T-cap web, under tension (pull-off) and bending loads. Three designs were tested, including the baseline design used in largescale test articles. The baseline had only the manufacturing stitch row adjacent to the fillet at the base of the T-cap web. Two new designs added stitching rows to the T-cap web at either 0.5- or 1.0-inch spacing along the height of the web. Testing was conducted at NASA Langley Research Center to determine the behavior of the T-cap region resulting from the applied loading. Results show that stitching arrests the initial delamination failures so that the maximum strength capability exceeds the load at which the initial delaminations develop. However, it was seen that the added web stitching had very little effect on the initial delamination failure load, but actually decreased the initial delamination failure load for tension loading of test articles without a stiffener passing through the web. Additionally, the added web stitching only increased the maximum load capability by between 1% and 12.5%. The presence of the stiffener, however, did increase the initial and maximum loads for both tension and bending loading as compared to the stringerless baseline design. Based on the results of the few samples tested, the additional stitching in the T-cap web showed little advantage over the baseline design in terms of structural failure at the T-cap web/skin junction for the current test articles.
Tension and Bending Testing of an Integral T-Cap for Stitched Composite Airframe Joints
NASA Technical Reports Server (NTRS)
Lovejoy, Andrew E.; Leone, Frank A., Jr.
2016-01-01
The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept that was developed by The Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body aircraft configuration. An important design feature required for assembly is the integrally stitched T-cap, which provides connectivity of the corner (orthogonal) joint between adjacent panels. A series of tests were conducted on T-cap test articles, with and without a rod stiffener penetrating the T-cap web, under tension (pull-off) and bending loads. Three designs were tested, including the baseline design used in large-scale test articles. The baseline had only the manufacturing stitch row adjacent to the fillet at the base of the T-cap web. Two new designs added stitching rows to the T-cap web at either 0.5- or 1.0-inch spacing along the height of the web. Testing was conducted at NASA Langley Research Center to determine the behavior of the T-cap region resulting from the applied loading. Results show that stitching arrests the initial delamination failures so that the maximum strength capability exceeds the load at which the initial delaminations develop. However, it was seen that the added web stitching had very little effect on the initial delamination failure load, but actually decreased the initial delamination failure load for tension loading of test articles without a stiffener passing through the web. Additionally, the added web stitching only increased the maximum load capability by between 1% and 12.5%. The presence of the stiffener, however, did increase the initial and maximum loads for both tension and bending loading as compared to the stringerless baseline design. Based on the results of the few samples tested, the additional stitching in the T-cap web showed little advantage over the baseline design in terms of structural failure at the T-cap web/skin junction for the current test articles.
Strain Rate and Stress Triaxiality Effects on Ductile Damage of Additive Manufactured TI-6AL-4V
NASA Astrophysics Data System (ADS)
Iannitti, Gianluca; Bonora, Nicola; Gentile, Domenico; Ruggiero, Andrew; Testa, Gabriel; Gubbioni, Simone
2017-06-01
In this work, the effects of strain rate and stress triaxiality on ductile damage of additive manufactured Ti-6Al-4V, also considering the build direction, were investigated. Raw material was manufactured by means of EOSSINT M2 80 machine, based on Direct Metal Laser Sintering technology, and machined to obtain round notched bar and Rod-on-Rod (RoR) specimens. Tensile tests on round notched bar specimens were performed in a wide range of strain rates. The failure strains at different stress triaxiality were used to calibrate the Bonora Damage Model. In order to design the RoR tests, numerical simulations were performed for assessing velocities at which incipient and fully developed damage occur. Tests at selected velocities were carried out and soft-recovered specimens were sectioning and polishing to observe the developed damage. Nucleated voids maps were compared with numerical simulations results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conant, Andrew; Erickson, Anna; Robel, Martin
Nuclear forensics has a broad task to characterize recovered nuclear or radiological material and interpret the results of investigation. One approach to isotopic characterization of nuclear material obtained from a reactor is to chemically separate and perform isotopic measurements on the sample and verify the results with modeling of the sample history, for example, operation of a nuclear reactor. The major actinide plutonium and fission product cesium are commonly measured signatures of the fuel history in a reactor core. This study investigates the uncertainty of the plutonium and cesium isotope ratios of a fuel rod discharged from a research pressurizedmore » water reactor when the location of the sample is not known a priori. A sensitivity analysis showed overpredicted values for the 240Pu/ 239Pu ratio toward the axial center of the rod and revealed a lower probability of the rod of interest (ROI) being on the periphery of the assembly. The uncertainty analysis found the relative errors due to only the rod position and boron concentration to be 17% to 36% and 7% to 15% for the 240Pu/ 239Pu and 137Cs/ 135Cs ratios, respectively. Lastly, this study provides a method for uncertainty quantification of isotope concentrations due to the location of the ROI. Similar analyses can be performed to verify future chemical and isotopic analyses.« less
Maruo, Keishi; Tachibana, Toshiya; Inoue, Shinichi; Arizumi, Fumihiro; Yoshiya, Shinichi
2016-03-01
Minimally invasive surgery (MIS) for transforaminal lumbar interbody fusion (MIS-TLIF) is widely used for lumbar degenerative diseases. In the paper the authors report a unique case of a hemothorax caused by the trocar tip of the rod inserter after MIS-TLIF. A 61-year-old woman presented with thigh pain and gait disturbance due to weakness in her lower right extremity. She was diagnosed with a lumbar disc herniation at L1-2 and the MIS-TLIF procedure was performed. Immediately after surgery, the patient's thigh pain resolved and she remained stable with normal vital signs. The next day after surgery, she developed severe anemia and her hemoglobin level decreased to 7.6 g/dl, which required blood transfusions. A chest radiograph revealed a hemothorax. A CT scan confirmed a hematoma of the left paravertebral muscle. A chest tube was placed to treat the hemothorax. After 3 days of drainage, there was no active bleeding. The patient was discharged 14 days after surgery without leg pain or any respiratory problems. This complication may have occurred due to injury of the intercostal artery by the trocar tip of the rod inserter. A hemothorax after spine surgery is a rare complication, especially in the posterior approach. The rod should be caudally inserted in the setting of the thoracolumbar spine.
Conant, Andrew; Erickson, Anna; Robel, Martin; ...
2017-02-03
Nuclear forensics has a broad task to characterize recovered nuclear or radiological material and interpret the results of investigation. One approach to isotopic characterization of nuclear material obtained from a reactor is to chemically separate and perform isotopic measurements on the sample and verify the results with modeling of the sample history, for example, operation of a nuclear reactor. The major actinide plutonium and fission product cesium are commonly measured signatures of the fuel history in a reactor core. This study investigates the uncertainty of the plutonium and cesium isotope ratios of a fuel rod discharged from a research pressurizedmore » water reactor when the location of the sample is not known a priori. A sensitivity analysis showed overpredicted values for the 240Pu/ 239Pu ratio toward the axial center of the rod and revealed a lower probability of the rod of interest (ROI) being on the periphery of the assembly. The uncertainty analysis found the relative errors due to only the rod position and boron concentration to be 17% to 36% and 7% to 15% for the 240Pu/ 239Pu and 137Cs/ 135Cs ratios, respectively. Lastly, this study provides a method for uncertainty quantification of isotope concentrations due to the location of the ROI. Similar analyses can be performed to verify future chemical and isotopic analyses.« less
Enamel subsurface damage due to tooth preparation with diamonds.
Xu, H H; Kelly, J R; Jahanmir, S; Thompson, V P; Rekow, E D
1997-10-01
In clinical tooth preparation with diamond burs, sharp diamond particles indent and scratch the enamel, causing material removal. Such operations may produce subsurface damage in enamel. However, little information is available on the mechanisms and the extent of subsurface damage in enamel produced during clinical tooth preparation. The aim of this study, therefore, was to investigate the mechanisms of subsurface damage produced in enamel during tooth preparation by means of diamond burs, and to examine the dependence of such damage on enamel rod orientation, diamond particle size, and removal rate. Subsurface damage was evaluated by a bonded-interface technique. Tooth preparation was carried out on two enamel rod orientations, with four clinical diamond burs (coarse, medium, fine, and superfine) used in a dental handpiece. The results of this study showed that subsurface damage in enamel took the form of median-type cracks and distributed microcracks, extending preferentially along the boundaries between the enamel rods. Microcracks within individual enamel rods were also observed. The median-type cracks were significantly longer in the direction parallel to the enamel rods than perpendicular to the rods. Preparation with the coarse diamond bur produced cracks as deep as 84 +/- 30 microns in enamel. Finishing with fine diamond burs was effective in crack removal. The crack lengths in enamel were not significantly different when the removal rate was varied. Based on these results, it is concluded that subsurface damage in enamel induced by tooth preparation takes the form of median-type cracks as well as inter- and intra-rod microcracks, and that the lengths of these cracks are sensitive to diamond particle size and enamel rod orientation, but insensitive to removal rate.
Symmetrical Taylor impact of glass bars
NASA Astrophysics Data System (ADS)
Murray, N. H.; Bourne, N. K.; Field, J. E.; Rosenberg, Z.
1998-07-01
Brar and Bless pioneered the use of plate impact upon bars as a technique for investigating the 1D stress loading of glass but limited their studies to relatively modest stresses (1). We wish to extend this technique by applying VISAR and embedded stress gauge measurements to a symmetrical version of the test in which two rods impact one upon the other. Previous work in the laboratory has characterised the glass types (soda-lime and borosilicate)(2). These experiments identify the failure mechanisms from high-speed photography and the stress and particle velocity histories are interpreted in the light of these results. The differences in response of the glasses and the relation of the fracture to the failure wave in uniaxial strain are discussed.
Laser rods with undoped, flanged end-caps for end-pumped laser applications
Meissner, H.E.; Beach, R.J.; Bibeau, C.; Sutton, S.B.; Mitchell, S.; Bass, I.; Honea, E.
1999-08-10
A method and apparatus for achieving improved performance in a solid state laser is provided. A flanged, at least partially undoped end-cap is attached to at least one end of a laserable medium. Preferably flanged, undoped end-caps are attached to both ends of the laserable medium. Due to the low scatter requirements for the interface between the end-caps and the laser rod, a non-adhesive method of bonding is utilized such as optical contacting combined with a subsequent heat treatment of the optically contacted composite. The non-bonded end surfaces of the flanged end-caps are coated with laser cavity coatings appropriate for the lasing wavelength of the laser rod. A cooling jacket, sealably coupled to the flanged end-caps, surrounds the entire length of the laserable medium. Radiation from a pump source is focused by a lens duct and passed through at least one flanged end-cap into the laser rod. 14 figs.
NASA Astrophysics Data System (ADS)
Li, Y.; Seymour, M.; Chen, G.; Su, C.
2013-12-01
Mechanistic understanding of the transport and retention of nanoparticles in porous media is essential both for environmental applications of nanotechnology and assessing the potential environmental impacts of engineered nanomaterials. Engineered and naturally occurring nanoparticles can be found in various shapes including rod-shape carbon nanotubes that have high aspect ratios. Although it is expected that nonspherical shape could play an important role on their transport and retention behaviors, current theoretical models for particle transport in porous media, however, are mostly based on spherical particle shape. In this work, the effect of particle shape on its transport and retention in porous media was evaluated by stretching carboxylate-modified fluorescent polystyrene spheres into rod shapes with aspect ratios of 2:1 and 4:1. Quartz crystal microbalance with dissipation experiments (QCM-D) were conducted to measure the deposition rates of spherical and rod-shaped nanoparticles to the collector (poly-L-lysine coated silica sensor) surface under favorable conditions. Under unfavorable conditions, the retention of nanoparticles in a microfluidic flow cell packed with glass beads was studied with the use of laser scanning cytometry (LSC). Under favorable conditions, the spherical particles displayed a significantly higher deposition rate compared with that of the rod-shaped particles. Theoretical analysis based on Smoluchowski-Levich approximation indicated that the rod-shaped particles largely counterbalance the attractive energies due to higher hydrodynamic forces and torques experienced during their transport and rotation. Under unfavorable conditions, significantly more attachment was observed for rod-shaped particles than spherical particles, and the attachment rate of the rod-shaped particles showed an increasing trend with the increase in injection volume. Rod-shaped particles were found to be less sensitive to the surface charge heterogeneity change than spherical particles. Increased attachment rate of rod-shaped particles was attributed to surface heterogeneity and possibly enhanced hydrophobicity during the stretching process.
Enhancements to the Tonge-Ramesh Ceramic Failure Model for Use in Eulerian Simulations
2016-09-14
ability to project an arbitrary trial stress (σtr) onto the quasi -static yield surface (providing the value for σqs). Once the projection onto the quasi ...Model Evaluation Methods 4.1 Geometry from Prior Experiments There are experimental data from 2 research groups on penetration of confined boron carbide...by high-density, long-rod projectiles.21,22 Based on these prior ex- periments, the following 3 experimental geometries were identified to test the
Growth-sparing spinal instrumentation in skeletal dysplasia.
Karatas, Ali F; Dede, Ozgur; Rogers, Kenneth; Ditro, Colleen P; Holmes, Laurens; Bober, Michael; Shah, Suken A; Mackenzie, William G
2013-11-15
Retrospective case series. To report the outcomes of distraction-based, growth-sparing spinal instrumentation in patients with skeletal dysplasia. Patients with skeletal dysplasia with spinal deformity often undergo early fusion, further compromising an already small chest. Nonfusion techniques may provide a safe alternative and allow for thoracic growth. Between 2004 and 2010, 12 children with a diagnosis of various types of skeletal dysplasia underwent growth-sparing spinal instrumentation for severe spinal deformities. The mean duration of treatment with growing rods was 57 months (42-84 mo). Nine patients were treated with growing rods (8 dual, 1 single), and 3 were treated with vertical expandable prosthetic titanium rib (VEPTR; Synthes). Preoperative, initial postoperative, and final follow-up anteroposterior and lateral spine radiographs were measured for magnitude of deformity, junctional kyphosis, and implant failure. The major curve Cobb angle improved from a mean of 79° preoperatively to a mean of 41° at the last follow-up (52%). There was a decrease in mean thoracic kyphosis from 77° preoperatively to 64° at final follow-up and an increase in mean lumbar lordosis from 58° preoperatively to 63° at final follow-up. The mean space available for the lungs increased by 26 mm on the concave and 24 mm on the convex side. Six patients required revision surgery for proximal junctional kyphosis. There were 4 rod failures and 6 hook and 8 screw dislodgements. One patient with vertical expandable prosthetic titanium rib had failed rib fixation that required revision. Growth-sparing spinal instrumentation in patients with skeletal dysplasia and severe spinal deformity has a high complication and revision rate, and surgeons should closely monitor these patients. The complication rate is comparable with previous reports on patients with other diagnoses. However, deformities were well controlled, some trunk growth was achieved, and fusion surgery was delayed in all cases. 4.
Pekmezci, Murat; Tang, Jessica A; Cheng, Liu; Modak, Ashin; McClellan, Robert T; Buckley, Jenni M; Ames, Christopher P
2016-11-01
In vitro cadaver biomechanics study. The goal of this study is to compare the in situ fatigue life of expandable versus fixed interbody cage designs. Expandable cages are becoming more popular, in large part, due to their versatility; however, subsidence and catastrophic failure remain a concern. This in vitro analysis investigates the fatigue life of expandable and fixed interbody cages in a single level human cadaver corpectomy model by evaluating modes of subsidence of expandable and fixed cages as well as change in stiffness of the constructs with cyclic loading. Nineteen specimens from 10 human thoracolumbar spines (T10-L2, L3-L5) were biomechanically evaluated after a single level corpectomy that was reconstructed with an expandable or fixed cage and anterior dual rod instrumentation. All specimens underwent 98 K cycles to simulate 3 months of postoperative weight bearing. In addition, a third group with hyperlordotic cages was used to simulate catastrophic failure that is observed in clinical practice. Three fixed and 2 expandable cages withstood the cyclic loading despite perfect sagittal and coronal plane fitting of the endcaps. The majority of the constructs settled in after initial subsidence. The catastrophic failures that were observed in clinical practice could not be reproduced with hyperlordotic cages. However, all cages in this group subsided, and 60% resulted in endplate fractures during deployment of the cage. Despite greater surface contact area, expandable cages have a trend for higher subsidence rates when compared with fixed cages. When there is edge loading as in the hyperlordotic cage scenario, there is a higher risk of subsidence and intraoperative fracture during deployment of expandable cages.
NASA Astrophysics Data System (ADS)
Sheikh, Muhammad; Elmarakbi, Ahmed; Elkady, Mustafa
2017-12-01
This paper focuses on state of charge (SOC) dependent mechanical failure analysis of 18650 lithium-ion battery to detect signs of thermal runaway. Quasi-static loading conditions are used with four test protocols (Rod, Circular punch, three-point bend and flat plate) to analyse the propagation of mechanical failures and failure induced temperature changes. Finite element analysis (FEA) is used to model single battery cell with the concentric layered formation which represents a complete cell. The numerical simulation model is designed with solid element formation where stell casing and all layers followed the same formation, and fine mesh is used for all layers. Experimental work is also performed to analyse deformation of 18650 lithium-ion cell. The numerical simulation model is validated with experimental results. Deformation of cell mimics thermal runaway and various thermal runaway detection strategies are employed in this work including, force-displacement, voltage-temperature, stress-strain, SOC dependency and separator failure. Results show that cell can undergo severe conditions even with no fracture or rupture, these conditions may slow to develop but they can lead to catastrophic failures. The numerical simulation technique is proved to be useful in predicting initial battery failures, and results are in good correlation with the experimental results.
Xiao, Jianru; He, Shaohui; Jiao, Jian; Wan, Wei; Xu, Wei; Zhang, Dan; Liu, Weibo; Zhong, Nanzhe; Liu, Tielong; Wei, Haifeng; Yang, Xinghai
2018-03-01
Multi-level reconstruction incorporating the chest wall and ribs is technically demanding after multi-segmental total en bloc spondylectomy (TES) of thoracic spinal tumours. Few surgical techniques are reported for effective reconstruction. A novel and straightforward technical reconstruction through posterior-lateral approach was presented to solve the extensive chest wall defect and prevent occurrences of severe respiratory dysfunctions after performing TES. The preliminary outcomes of surgery were reviewed. Multi-level TES was performed for five patients with primary or recurrent thoracic spinal malignancies through posterior-lateral approach. The involved ribs and chest wall were removed to achieve tumour-free margin. Then titanium mesh with allograft bone and pedicle screw-rod system were adopted for the circumferential spinal reconstruction routinely. Titanium rods were modified accordingly to attach to the screw-rod system proximally, and the distal end of rods was dynamically inserted into the ribs. The mean surgery time was 6.7 hours (range 5-8), with the average blood loss of 3260 ml (range 2300-4500). No severe neurological complications were reported while three patients had complaints of slight numbness of chest skin (no. 1, 3, and 5). No severe respiratory complications occurred during peri-operative period. No implant failure and no local recurrence or distant metastases were observed with an average follow-up of 12.5 months. The single-stage reconstructions incorporating spine and chest wall are straightforward and easy to perform. The preliminary outcomes of co-reconstructions are promising and favourable. More studies and longer follow-up are required to validate this technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawaguchi, Tomoya; Liu, Yihua; Reiter, Anthony
Here, a one-dimensional non-iterative direct method was employed for normalized crystal truncation rod analysis. The non-iterative approach, utilizing the Kramers–Kronig relation, avoids the ambiguities due to an improper initial model or incomplete convergence in the conventional iterative methods. The validity and limitations of the present method are demonstrated through both numerical simulations and experiments with Pt(111) in a 0.1 M CsF aqueous solution. The present method is compared with conventional iterative phase-retrieval methods.
Kawaguchi, Tomoya; Liu, Yihua; Reiter, Anthony; ...
2018-04-20
Here, a one-dimensional non-iterative direct method was employed for normalized crystal truncation rod analysis. The non-iterative approach, utilizing the Kramers–Kronig relation, avoids the ambiguities due to an improper initial model or incomplete convergence in the conventional iterative methods. The validity and limitations of the present method are demonstrated through both numerical simulations and experiments with Pt(111) in a 0.1 M CsF aqueous solution. The present method is compared with conventional iterative phase-retrieval methods.
Payer, M
2005-06-01
A number of conservative and operative approaches have been described for the treatment of unstable traumatic upper and middle thoracic fractures. The advantage of surgical correction and fixation/fusion lies in its potential to restore sagittal and coronal alignment, thereby indirectly decompressing the spinal cord. A consecutive series of 8 patients with unstable traumatic upper and middle thoracic fractures is reviewed. In all patients, polyaxial pedicle screws were inserted bilaterally into the two levels above and below the fracture. Rods that were less contoured ("undercontoured") than the regional hyperkyphosis at the injured level, were anchored to the caudal four screws. The cranial four screws, with the vertebrae to which they were inserted, were then progressively pulled posteriorly onto the undercontoured rods with rod reducers, thus correcting the hyperkyphosis and anterolisthesis. The mean follow-up was 15 months. The mean regional kyphosis was 23 degrees preoperatively, 17 degrees postoperatively and 18 degrees at follow-up. The mean anterolisthesis was 8 mm preoperatively, 1 mm postoperatively and 1 mm at follow-up. No hardware failure occurred. Five patients with complete spinal cord injury at presentation made no neurological recovery, two patients with incomplete spinal cord injury initially (ASIA B), recovered substantially (to ASIA D), and the patients who were neurologically intact at presentation remained so.
The development of fuel performance models at the European institute for transuranium elements
NASA Astrophysics Data System (ADS)
Lassmann, K.; Ronchi, C.; Small, G. J.
1989-07-01
The design and operational performance of fuel rods for nuclear power stations has been the subject of detailed experimental research for over thirty years. In the last two decades the continuous demands for greater economy in conjunction with more stringent safety criteria have led to an increasing reliance on computer simulations. Conditions within a fuel rod must be calculated both for normal operation and for proposed reactor faults. It has thus been necessary to build up a reliable, theoretical understanding of the intricate physical, mechanical and chemical processes occurring under a wide range of conditions to obtain a quantitative insight into the behaviour of the fuel. A prime requirement, which has also proved to be the most taxing, is to predict the conditions under which failure of the cladding might occur, particularly in fuel nearing the end of its useful life. In this paper the general requirements of a fuel performance code are discussed briefly and an account is given of the basic concepts of code construction. An overview is then given of recent progress at the European Institute for Transuranium Elements in the development of a fuel rod performance code for general application and of more detailed mechanistic models for fission product behaviour.
NASA Astrophysics Data System (ADS)
Abir, Ahmed Musafi
Spacer grids are used in Pressurized Water Reactors (PWRs) fuel assemblies which enhances heat transfer from fuel rods. However, there remain regions of low turbulence in between the spacer grids. To enhance turbulence in these regions surface roughness is applied on the fuel rod walls. Meyer [1] used empirical correlations to predict heat transfer and friction factor for artificially roughened fuel rod bundles at High Performance Light Water Reactors (LWRs). Their applicability was tested by Carrilho at University of South Carolina's (USC) Single Heated Element Loop Tester (SHELT). He attained a heat transfer and friction factor enhancement of 50% and 45% respectively, using Inconel nuclear fuel rods with square transverse ribbed surface. Following him Najeeb conducted a similar study due to three dimensional diamond shaped blocks in turbulent flow. He recorded a maximum heat transfer enhancement of 83%. At present, several types of materials are being used for fuel rod cladding including Zircaloy, Uranium oxide, etc. But researchers are actively searching for new material that can be a more practical alternative. Silicon Carbide (SiC) has been identified as a material of interest for application as fuel rod cladding [2]. The current study deals with the experimental investigation to find out the friction factor increase of a SiC fuel rod with 3D surface roughness. The SiC rod was tested at USC's SHELT loop. The experiment was conducted in turbulent flowing Deionized (DI) water at steady state conditions. Measurements of Flow rate and pressure drop were made. The experimental results were also validated by Computational Fluid Dynamics (CFD) analysis in ANSYS Fluent. To simplify the CFD analysis and to save computational resources the 3D roughness was approximated as a 2D one. The friction factor results of the CFD investigation was found to lie within +/-8% of the experimental results. A CFD model was also run with the energy equation turned on, and a heat generation of 8 kW applied to the rod. A maximum heat transfer enhancement of 18.4% was achieved at the highest flow rate investigated (i.e. Re=109204).
NASA Astrophysics Data System (ADS)
Seo, Youngmi; Kim, Jung Hyeun
2011-06-01
Highly oriented ZnO nanorods are synthesized hydrothermally on ZnO and Pt seed layers, and they are dissolved in KOH solution. The rods grown on ZnO seed layer show uniform dissolution, but those grown on Pt seed layer are rod-selectively dissolved. The ZnO nanorods from both seed layers show the same crystalline structure through XRD and Raman spectrometer data. However, the surface potential analysis reveals big difference for ZnO and Pt seed cases. The surface potential distribution is very uniform for the ZnO seed case, but it is much fluctuated on the Pt seed case. It suggests that the rod-selective dissolution phenomena on Pt seed case are likely due to the surface energy difference.
Hot Deformation Behavior of Hot-Extruded AA7175 Through Hot Torsion Tests.
Lee, Se-Yeon; Jung, Taek-Kyun; Son, Hyeon-Woo; Kim, Sang-Wook; Son, Kwang-Tae; Choi, Ho-Joon; Oh, Sang-Ho; Lee, Ji-Woon; Hyun, Soong-Keun
2018-03-01
The hot deformation behavior of hot-extruded AA7175 was investigated with flow curves and processing maps through hot torsion tests. The flow curves and the deformed microstructures revealed that dynamic recrystallization (DRX) occurred in the hot-extruded AA7175 during hot working. The failure strain was highest at medium temperature. This was mainly influenced by the dynamic precipitation of fine rod-shaped MgZn2. The processing map determined the optimal deformation condition for the alloy during hot working.
An exploratory investigation of cumulative shock fatigue.
NASA Technical Reports Server (NTRS)
Simonson, D.; Byrne, J. G.
1972-01-01
A simple device for producing cumulative shock loading in solids is described. The device uses a ballistic-impact-driven projectile to introduce high-stress waves into a solid. The impact time and load amplitude can be varied to produce fracture in one or several impacts in PMMA rods. The wavefront approached a square wave shape. Materials other than PMMA were loaded to failure to demonstrate the versatility of the device. Fracture morphologies observed with optical and scanning-electron microscopy are described.
Failure Analysis of an AH-64 Main Rotor Damper Blade Rod End, P/N 7-211411186-5
2003-12-01
diffraction peaks from the martensite / ferrite alpha phase and austenite gamma phases with calculated theoretical intensities. The software is based on the...the volume expansion occurring as one phase transforms into another phase (i.e., austenite to martensite ) or simply, the same phase may change...spheriodal particles shown in figures 31b and 32b) in a matrix of tempered martensite . Note, however, that Vilella’s reagent does not reveal the
A neutron diffraction and imaging study of ancient iron tie rods
NASA Astrophysics Data System (ADS)
Di Martino, D.; Bellanova, M.; Perelli Cippo, E.; Felicetti, R.; Scherillo, A.; Kelleher, J.; Kis, Z.; Gorini, G.
2018-05-01
Milan Cathedral is one of the biggest and widest churches ever built among the other coeval architectures. It had a very long and complex construction history, which started in 1386 and lasted more than four centuries. The dominant style is the European gothic but the lombard tradition has strongly influenced the composition. Gothic cathedrals were diffusely built in Europe during the Middle Age, and each region developed its own local interpretation. However, a common feature of the style was the presence of slender pillars and of many elements able to reduce the horizontal thrusts of the vaults, such as spires, buttresesses, flying buttresesses and tie rods. In Milan Cathedral, tie rods have a fundamental role due to the specific characteristics of the structural system and its complex history. In 2012, a broken tie rod was found and it was substituted with a new one. Therefore, a multidisciplinary research on these elements started, aiming at a deeper material characterization and an in-situ identification of local defects. Among non-destructive techniques, several neutron analyses were performed on different samples. We will report on neutron diffraction measurements and neutron resonant capture analysis on part of the original broken tie rod. Moreover, neutron imaging was recorded on other iron tie rods (from an external spire). Results will be useful for an independent assessment and validation of models and of new on-site monitoring techniques, since no other conventional non-destructive technique will allow the same characterization.
Nonuniform flow in soft glasses of colloidal rods
NASA Astrophysics Data System (ADS)
Dhont, J. K. G.; Kang, K.; Kriegs, H.; Danko, O.; Marakis, J.; Vlassopoulos, D.
2017-04-01
Despite our reasonably advanced understanding of the dynamics and flow of glasses made of spherical colloids, the role of shape, i.e., the respective behavior of glasses formed by rodlike, particles is virtually unexplored. Recently, long, thin and highly charged rods (fd-virus particles) were found to vitrify in aqueous suspensions at low ionic strength [Phys. Rev. Lett. 110, 015901 (2013), 10.1103/PhysRevLett.110.015901]. The glass transition of these long-ranged repulsive rods occurs at a concentration far above the isotropic-nematic coexistence region and is characterized by the unique arrest of both the dynamics of domains that constitute the chiral-nematic orientational texture, as well as individual rods inside the domains. Hence, two relevant length scales exist: the domain size of a few hundreds of microns, and the rod-cage size of a few microns, inside the domains. We show that the unique dual dynamic arrest and the existing of two widely separated length scales imparts an unprecedented, highly heterogeneous flow behavior with three distinct signatures. Beyond a weak stress plateau at very small shear rates that characterizes the glass, the kinetic arrest of the domain dynamics gives rise to internal fracture, as a result of domain-domain interactions, as well as wall partial slip. It is shown that, on increasing the shear rate, the fractured plug flow changes to a shear-banded flow profile due to the stress response of the kinetically arrested aligned rods within the domains. Shear-gradient banding occurs due to the strong thinning of the uniform chiral-nematic phase within the domains, i.e., complying with the classic shear-banding scenario, giving rise to a stress plateau in the flow curve. Finally, a linear (uniform) velocity profile is found at the highest shear rates. Vorticity banding is also observed at intermediate and high shear rates. These results point to the crucial role of particle shape in tailoring the flow properties of dense colloidal suspensions. Moreover, they strongly support the argument that the origin of shear banding in soft-particle glasses with long-ranged repulsive interactions is fundamentally different from that of hard-particle glasses with short-ranged repulsive interactions.
Fuel cladding behavior under rapid loading conditions
NASA Astrophysics Data System (ADS)
Yueh, K.; Karlsson, J.; Stjärnsäter, J.; Schrire, D.; Ledergerber, G.; Munoz-Reja, C.; Hallstadius, L.
2016-02-01
A modified burst test (MBT) was used in an extensive test program to characterize fuel cladding failure behavior under rapid loading conditions. The MBT differs from a normal burst test with the use of a driver tube to simulate the expansion of a fuel pellet, thereby producing a partial strain driven deformation condition similar to that of a fuel pellet expansion in a reactivity insertion accident (RIA). A piston/cylinder assembly was used to pressurize the driver tube. By controlling the speed and distance the piston travels the loading rate and degree of sample deformation could be controlled. The use of a driver tube with a machined gauge section localizes deformation and allows for continuous monitoring of the test sample diameter change at the location of maximum hoop strain, during each test. Cladding samples from five irradiated fuel rods were tested between 296 and 553 K and loading rates from 1.5 to 3.5/s. The test rods included variations of Zircaloy-2 with different liners and ZIRLO, ranging in burn-up from 41 to 74 GWd/MTU. The test results show cladding ductility is strongly temperature and loading rate dependent. Zircaloy-2 cladding ductility degradation due to operational hydrogen pickup started to recover at approximately 358 K for test condition used in the study. This recovery temperature is strongly loading rate dependent. At 373 K, ductility recovery was small for loading rates less than 8 ms equivalent RIA pulse width, but longer than 8 ms the ductility recovery increased exponentially with increasing pulse width, consistent with literature observations of loading rate dependent brittle-to-ductile (BTD) transition temperature. The cladding ductility was also observed to be strongly loading rate/pulse width dependent for BWR cladding below the BTD temperature and Pressurized Water Reactor (PWR) cladding at both 296 and 553 K.
Lansing, Marihan; Sauvé, Yves; Dimopoulos, Ioannis; Field, Catherine J; Suh, Miyoung; Wizzard, Pamela; Goruk, Susan; Lim, David; Muto, Mitsuru; Wales, Paul; Turner, Justine
2018-03-13
A dietary supply of docosahexaenoic acid (DHA) and arachidonic acid (AA) is critical for neonatal retinal development. Both are absent/minimal in parenteral nutrition (PN) using soy-oil emulsions ([SO] Intralipid®) traditionally used for neonatal intestinal failure. In contrast, fish-oil emulsions ([FO] Omegaven®) are enriched in DHA/AA. The aim of this study was to compare retinal function and fatty acid content in neonatal piglets fed PN with SO or FO. Two-5-day-old piglets were randomly allocated to SO (n = 4) or FO (n = 4), provided at equivalent doses (5g/kg/d). After 14 days of PN, retinal function was assessed by electroretinography and retinas were harvested for fatty acid content analysis. Sow-fed piglets served as a reference (REF). Light flash-elicited stoppage of cone and rod dark-currents (a-waves) and the ensuing postsynaptic activation of cone and rod ON bipolar cells (b-waves) were comparable between SO and REF. Responses recorded from FO were subnormal (P <0.001) when compared with both SO and REF. Retinal DHA content was similar in both groups (FO, 14.59% vs SO, 12.22%; P = 0.32); while AA was lower in FO (FO, 6.01% vs SO, 8.21%; P = .001). Paradoxically, FO containing more DHA and AA did not preserve retinal function when compared with the same low dose of SO. This may be due to the reduced AA enrichment in the retina with FO treatment. Further investigation into the ideal amounts of DHA and AA for optimal neonatal retinal function is required. © 2018 American Society for Parenteral and Enteral Nutrition.
A Novel Junctional Tether Weave Technique for Adult Spinal Deformity: 2-Dimensional Operative Video.
Buell, Thomas J; Mullin, Jeffrey P; Nguyen, James H; Taylor, Davis G; Garces, Juanita; Mazur, Marcus D; Buchholz, Avery L; Shaffrey, Mark E; Yen, Chun-Po; Shaffrey, Christopher I; Smith, Justin S
2018-06-05
Proximal junctional kyphosis (PJK) is a common problem after multilevel spine instrumentation for adult spinal deformity. Various anti-PJK techniques such as junctional tethers for ligamentous augmentation have been proposed. We present an operative video demonstrating technical nuances of junctional tether "weave" application. A 70-yr-old male with prior L2-S1 instrumented fusion presented with worsening back pain and posture. Imaging demonstrated pathological loss of lumbar lordosis (flat back deformity), proximal junctional failure, and pseudarthrosis. The patient had severe global and segmental sagittal malalignment, with sagittal vertical axis (SVA, C7-plumbline) measuring 22.3 cm, pelvic incidence (PI) 55°, lumbar lordosis (LL) 8° in kyphosis, pelvic tilt (PT) 30°, and thoracic kyphosis (TK) 6°. The patient gave informed consent for surgery and use of imaging for medical publication. Briefly, surgery first involved re-instrumentation with bilateral pedicle screws from T10 to S1. After right-sided iliac screw fixation (left-sided iliac screw fixation was not performed due to extensive prior iliac crest bone graft harvesting), we then completed a L2-3 Smith-Petersen osteotomy, extended L4 pedicle subtraction osteotomy, and L3-4 interbody arthrodesis with a 12° lordotic cage (9 × 14 × 40 mm). Cobalt Chromium rods were placed spanning the instrumentation bilaterally, and accessory supplemental rods spanning the PSO were attached. An anti-PJK junctional tether "weave" was then implemented using 4.5 mm polyethylene tape (Mersilene tape [Ethicon, Somerville, New Jersey]). Postoperative imaging demonstrated improved alignment (SVA 2.8 cm, PI 55°, LL 53°, PT 25°, TK 45°) and no significant neurological complications occurred during convalescence or at 6 mo postop.
Controlling Tensegrity Robots through Evolution using Friction based Actuation
NASA Technical Reports Server (NTRS)
Kothapalli, Tejasvi; Agogino, Adrian K.
2017-01-01
Traditional robotic structures have limitations in planetary exploration as their rigid structural joints are prone to damage in new and rough terrains. In contrast, robots based on tensegrity structures, composed of rods and tensile cables, offer a highly robust, lightweight, and energy efficient solution over traditional robots. In addition tensegrity robots can be highly configurable by rearranging their topology of rods, cables and motors. However, these highly configurable tensegrity robots pose a significant challenge for locomotion due to their complexity. This study investigates a control pattern for successful locomotion in tensegrity robots through an evolutionary algorithm. A twelve-rod hardware model is rapidly prototyped to utilize a new actuation method based on friction. A web-based physics simulation is created to model the twelve-rod tensegrity ball structure. Square-waves are used as control policies for the actuators of the tensegrity structure. Monte Carlo trials are run to find the most successful number of amplitudes for the square-wave control policy. From the results, an evolutionary algorithm is implemented to find the most optimized solution for locomotion of the twelve-rod tensegrity structure. The software pattern coupled with the new friction based actuation method can serve as the basis for highly efficient tensegrity robots in space exploration.
Birch, D G; Peters, A Y; Locke, K L; Spencer, R; Megarity, C F; Travis, G H
2001-12-01
Mutations in the ABCA4(ABCR) gene cause autosomal recessive Stargardt disease (STGD). ABCR mutations were identified in patients with cone-rod dystrophy (CRD) and retinitis pigmentosa (RP) by direct sequencing of all 50 exons in 40 patients. Of 10 patients with RP, one contained two ABCR mutations suggesting a compound heterozygote. This patient had a characteristic fundus appearance with attenuated vessels, pale disks and bone-spicule pigmentation. Rod electroretinograms (ERGs) were non-detectable, cone ERGs were greatly reduced in amplitude and delayed in implicit time, and visual fields were constricted to 10 degrees diameter. Eleven of 30 (37%) patients with CRD had mutations in ABCR. In general, these patients showed reduced but detectable rod ERG responses, reduced and delayed cone responses, and poor visual acuity. Rod photoresponses to high intensity flashes were of reduced maximum amplitude but showed normal values for the gain of phototransduction. Most CRD patients with mutations in ABCR showed delayed recovery of sensitivity (dark adaptation) following exposure to bright light. Pupils were also significantly smaller in these patients compared to controls at 30 min following light exposure, consistent with a persistent 'equivalent light' background due to the accumulation of a tentatively identified 'noisy' photoproduct. Copyright 2001 Academic Press.
Be'er, Avraham; Florin, E-L; Fisher, Carolyn R; Swinney, Harry L; Payne, Shelley M
2011-01-01
Natural habitats vary in available nutrients and room for bacteria to grow, but successful colonization can lead to overcrowding and stress. Here we show that competing sibling colonies of Paenibacillus dendritiformis bacteria survive overcrowding by switching between two distinct vegetative phenotypes, motile rods and immotile cocci. Growing colonies of the rod-shaped bacteria produce a toxic protein, Slf, which kills cells of encroaching sibling colonies. However, sublethal concentrations of Slf induce some of the rods to switch to Slf-resistant cocci, which have distinct metabolic and resistance profiles, including resistance to cell wall antibiotics. Unlike dormant spores of P. dendritiformis, the cocci replicate. If cocci encounter conditions that favor rods, they secrete a signaling molecule that induces a switch to rods. Thus, in contrast to persister cells, P. dendritiformis bacteria adapt to changing environmental conditions by inducible and reversible phenotypic switching. In favorable environments, species may face space and nutrient limits due to overcrowding. Bacteria provide an excellent model for analyzing principles underlying overcrowding and regulation of density in nature, since their population dynamics can be easily and accurately assessed under controlled conditions. We describe a newly discovered mechanism for survival of a bacterial population during overcrowding. When competing with sibling colonies, Paenibacillus dendritiformis produces a lethal protein (Slf) that kills cells at the interface of encroaching colonies. Slf also induces a small proportion of the cells to switch from motile, rod-shaped cells to nonmotile, Slf-resistant, vegetative cocci. When crowding is reduced and nutrients are no longer limiting, the bacteria produce a signal that induces cocci to switch back to motile rods, allowing the population to spread. Genes encoding components of this phenotypic switching pathway are widespread among bacterial species, suggesting that this survival mechanism is not unique to P. dendritiformis.
Kefalov, Vladimir J.; Carter Cornwall, M.; Crouch, Rosalie K.
1999-01-01
The retinal analogue β-ionone was used to investigate possible physiological effects of the noncovalent interaction between rod opsin and its chromophore 11-cis retinal. Isolated salamander rod photoreceptors were exposed to bright light that bleached a significant fraction of their pigment, were allowed to recover to a steady state, and then were exposed to β-ionone. Our experiments show that in bleach-adapted rods β-ionone causes a decrease in light sensitivity and dark current and an acceleration of the dim flash photoresponse and the rate constants of guanylyl cyclase and cGMP phosphodiesterase. Together, these observations indicate that in bleach-adapted rods β-ionone activates phototransduction in the dark. Control experiments showed no effect of β-ionone in either fully dark-adapted or background light-adapted cells, indicating direct interaction of β-ionone with the free opsin produced by bleaching. We speculate that β-ionone binds specifically in the chromophore pocket of opsin to produce a complex that is more catalytically potent than free opsin alone. We hypothesize that a similar reaction may occur in the intact retina during pigment regeneration. We propose a model of rod pigment regeneration in which binding of 11-cis retinal to opsin leads to activation of the complex accompanied by a decrease in light sensitivity. The subsequent covalent attachment of retinal to opsin completely inactivates opsin and leads to the recovery of sensitivity. Our findings resolve the conflict between biochemical and physiological data concerning the effect of the occupancy of the chromophore binding site on the catalytic potency of opsin. We show that binding of β-ionone to rod opsin produces effects opposite to its previously described effects on cone opsin. We propose that this distinction is due to a fundamental difference in the interaction of rod and cone opsins with retinal, which may have implications for the different physiology of the two types of photoreceptors. PMID:10051522
Optimum size of nanorods for heating application
NASA Astrophysics Data System (ADS)
Seshadri, G.; Thaokar, Rochish; Mehra, Anurag
2014-08-01
Magnetic nanoparticles (MNP's) have become increasingly important in heating applications such as hyperthermia treatment of cancer due to their ability to release heat when a remote external alternating magnetic field is applied. It has been shown that the heating capability of such particles varies significantly with the size of particles used. In this paper, we theoretically evaluate the heating capability of rod-shaped MNP's and identify conditions under which these particles display highest efficiency. For optimally sized monodisperse particles, the power generated by rod-shaped particles is found to be equal to that generated by spherical particles. However, for particles which are not mono dispersed, rod-shaped particles are found to be more effective in heating as a result of the greater spread in the power density distribution curve. Additionally, for rod-shaped particles, a dispersion in the radius of the particle contributes more to the reduction in loss power when compared to a dispersion in the length. We further identify the optimum size, i.e the radius and length of nanorods, given a bi-variate log-normal distribution of particle size in two dimensions.
Post STS-133 Evaluation of Main Flame Deflector Witness Materials
NASA Technical Reports Server (NTRS)
Long, Victoria
2011-01-01
NASA and USA Structures engineers submitted main flame deflector witness materials for evaluation after the launch of STS-133. The following items were submitted for analysis: HY-80 steel witness rods, 304 stainless steel caps, tungsten pistons, 17-4 precipitation hardened (PH) stainless steel and A-286 piston sleeves, Medtherm Corporation calorimeters, and Nanmac Corporation thermocouples. All of the items were photographed in order to document their condition after the launch of STS-133, and before they were reinstalled at the launch pad for future launches. The HY -80 witness rods, 304 stainless steel caps, and the piston sleeves were dimensionally measured in order to determine the amount of material lost during launch. Microstructural changes were observed in the HY-80 witness rod and 304 stainless steel cap metallographic samples due to the heat of the launch.
Assessment of variations in thermal cycle life data of thermal barrier coated rods
NASA Astrophysics Data System (ADS)
Hendricks, R. C.; McDonald, G.
An analysis of thermal cycle life data for 22 thermal barrier coated (TBC) specimens was conducted. The Zr02-8Y203/NiCrAlY plasma spray coated Rene 41 rods were tested in a Mach 0.3 Jet A/air burner flame. All specimens were subjected to the same coating and subsequent test procedures in an effort to control three parametric groups; material properties, geometry and heat flux. Statistically, the data sample space had a mean of 1330 cycles with a standard deviation of 520 cycles. The data were described by normal or log-normal distributions, but other models could also apply; the sample size must be increased to clearly delineate a statistical failure model. The statistical methods were also applied to adhesive/cohesive strength data for 20 TBC discs of the same composition, with similar results. The sample space had a mean of 9 MPa with a standard deviation of 4.2 MPa.
Assessment of variations in thermal cycle life data of thermal barrier coated rods
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Mcdonald, G.
1981-01-01
An analysis of thermal cycle life data for 22 thermal barrier coated (TBC) specimens was conducted. The Zr02-8Y203/NiCrAlY plasma spray coated Rene 41 rods were tested in a Mach 0.3 Jet A/air burner flame. All specimens were subjected to the same coating and subsequent test procedures in an effort to control three parametric groups; material properties, geometry and heat flux. Statistically, the data sample space had a mean of 1330 cycles with a standard deviation of 520 cycles. The data were described by normal or log-normal distributions, but other models could also apply; the sample size must be increased to clearly delineate a statistical failure model. The statistical methods were also applied to adhesive/cohesive strength data for 20 TBC discs of the same composition, with similar results. The sample space had a mean of 9 MPa with a standard deviation of 4.2 MPa.
Residual Stress Measurement and the Effect of Heat Treatment in Cladded Control Rod Drive Specimens
NASA Astrophysics Data System (ADS)
Bowman, Ashley; Kingston, Ed; Katsuyama, Jinya; Udagawa, Makoto; Onizawa, Kunio
This paper presents results of residual stress measurements and modelling within the cladding and J-groove weld of Control Rod Drive (CRD) specimens in the as-welded and Post Weld Heat Treated (PWHT) states. Knowledge of the residual stresses present in CRD nozzles is critical when modelling the fracture mechanics of failures of nuclear power plant components to dictate inspections intervals and optimise plant downtime. The specimens comprised of ferritic steel blocks with 309L stainless steel cladding and a single J-groove weld attaching the 304 stainless steel nozzles. Multiple measurements were made through the thickness of the specimens in order to give biaxial residual stress profiles through all the different fusion boundaries. The results show the effect of PWHT in reducing residual stresses both in the weld and ferritic material. The beneficial use of measurements is highlighted to provide confidence in the modelled results and prevent over conservatism in integrity calculations, costing unnecessary time and money.
Mori, Manami; Sato, Nanae; Yamanaka, Kenta; Yoshida, Kazuo; Kuramoto, Koji; Chiba, Akihiko
2016-12-01
In this study, we investigated the evolution of the microstructure and mechanical properties during annealing of a cold-swaged Ni-free Co-Cr-Mo alloy for biomedical applications. A Co-28Cr-6Mo-0.14N-0.05C (mass%) alloy rod was processed by cold swaging, with a reduction in area of 27.7%, and then annealed at 1173-1423K for various periods up to 6h. The duplex microstructure of the cold-swaged rod consisted of a face-centered cubic γ-matrix and hexagonal closed-packed ε-martensite developed during cold swaging. This structure transformed nearly completely to the γ-phase after annealing and many annealing twin boundaries were observed as a result of the heat treatment. A small amount of the ε-phase was identified in specimens annealed at 1173K. Growth of the γ-grains occurred with increasing annealing time at temperatures ≥1273K. Interestingly, the grain sizes remained almost unchanged at 1173K and a very fine grain size of approximately 8μm was obtained. The precipitation that occurred during annealing was attributed to the limited grain coarsening during heat treatment. Consequently, the specimens treated at this temperature showed the highest tensile strength and lowest ductility among the specimens prepared. An elongation-to-failure value larger than 30% is sufficient for the proposed applications. The other specimens treated at higher temperatures possessed similar tensile properties and did not show any significant variations with different annealing times. Optimization of the present rod manufacturing process, including cold swaging and interval annealing heat treatment, is discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Clinical Outcomes of Posterior C1 and C2 Screw-Rod Fixation for Atlantoaxial Instability.
Işik, Hasan Serdar; Sandal, Evren; Çağli, Sedat
2017-06-14
In this study, we aimed at sharing our experiences and contributing to the literature by making a retrospective analysis of the patients we operated with screw-rod system for atlantoaxial instability in our clinic. Archive files of adult patients, who were operated for posterior C1-C2 stabilization with screw and rod in our clinic between January 2006 and January 2016, were analyzed. 28 patients, who had pre and post-operative images, follow-up forms and who were followed for at least one year, were analyzed. Preoperative clinical and radiological records, preoperative observations, postoperative complications, and clinical responses were evaluated. The average age of 28 patients (F:13 M:19) was 44.7 (21-73). Fixation was performed with C1-C2 screw-rod system on the basis of the following diagnoses; type 2 odontoid fracture (16), basilar invagination (5), C1-C2 instability (5), and atlantoaxial subluxation secondary to rheumatoid arthritis (2). Lateral mass screws were inserted at C1 segment. C2 screws inserted were bilateral pedicle in 12 cases, bilateral pars in 4, bilateral laminar in 8 and one side pars, one side laminar in 4 cases. There was no screw malposition. Neither implant failure nor recurrent instability was observed during follow-up. Significant clinical improvement was reported according to the assessments done with JOA and VAS scores. C1-C2 screw fixation is regarded as a more successful and safe method than other fixation methods in surgical treatment of atlantoaxial instability considering complications, success in reduction, fusion and fixation strength. C2 laminar screw technique is as successful as the other alternatives in fixation and fusion.
Wu, Xiao-Tian; Chen, Nong; Pan, Fu-Gen; Liu, Zuo-Qing; He, Xiao-Jian
2017-03-25
To investigate the feasibility and therapeutic effect of subcutaneous pedicle screw-rod system with modified placement in treatment of Tile B pelvic fractures. From June 2014 to August 2015, 14 patients with Tile B pelvic fractures were treated by subcutaneous pedicle screw-rod system with modified placement in the anterior inferior iliac spine and pubic tubercle. There were 8 males and 6 females, aged from 23 to 65 years with an average of 42 years. Operative time, intraoperative blood loss, fracture healing and postoperative complication were observed and clinical effects were evaluated by Matta reduction standard and Majeed score. All patients were followed up from 8 to 15 months with an average of 10.5 months. Operative time was 25 to 45 min with an average of 32 min;intraoperative blood loss was 10 to 35 ml with an average of 18 ml. All fractures got primary healing and healed time was 9 to 14 weeks with an average of 12.5 weeks. No postoperative incision infection, internal fixation failure and ectopic ossification were found, 4 cases occurred unilateral lateral femoral cutaneous nerve injury and 1 case occurred unilateral femoral nerve paralysis, but all restored finally. According to Matta criteria, reduction was excellent in 7 cases, good in 5 cases, fair in 2 case. According to Majeed score system, the functional evaluation at last follow-up was excellent in 5 cases, good in 7 cases, fair in 2 cases with the average score of 81.50±8.05. Subcutaneous pedicle screw-rod system with modified placement in the anterior inferior iliac spine and pubic tubercle have advantages of strong reduction, less trauma and complications, and is a promising surgical method in the treatment of Tile B pelvic fractures.
NASA Technical Reports Server (NTRS)
Bartos, Karen F.; Fite, E. Brian; Shalkhauser, Kurt A.; Sharp, G. Richard
1991-01-01
Current research in high-efficiency, high-performance traveling wave tubes (TWT's) has led to the development of novel thermal/ mechanical computer models for use with helical slow-wave structures. A three-dimensional, finite element computer model and analytical technique used to study the structural integrity and thermal operation of a high-efficiency, diamond-rod, K-band TWT designed for use in advanced space communications systems. This analysis focused on the slow-wave circuit in the radiofrequency section of the TWT, where an inherent localized heating problem existed and where failures were observed during earlier cold compression, or 'coining' fabrication technique that shows great potential for future TWT development efforts. For this analysis, a three-dimensional, finite element model was used along with MARC, a commercially available finite element code, to simulate the fabrication of a diamond-rod TWT. This analysis was conducted by using component and material specifications consistent with actual TWT fabrication and was verified against empirical data. The analysis is nonlinear owing to material plasticity introduced by the forming process and also to geometric nonlinearities presented by the component assembly configuration. The computer model was developed by using the high efficiency, K-band TWT design but is general enough to permit similar analyses to be performed on a wide variety of TWT designs and styles. The results of the TWT operating condition and structural failure mode analysis, as well as a comparison of analytical results to test data are presented.
NASA Technical Reports Server (NTRS)
Shalkhauser, Kurt A.; Bartos, Karen F.; Fite, E. B.; Sharp, G. R.
1992-01-01
Current research in high-efficiency, high-performance traveling wave tubes (TWT's) has led to the development of novel thermal/mechanical computer models for use with helical slow-wave structures. A three-dimensional, finite element computer model and analytical technique used to study the structural integrity and thermal operation of a high-efficiency, diamond-rod, K-band TWT designed for use in advanced space communications systems. This analysis focused on the slow-wave circuit in the radiofrequency section of the TWT, where an inherent localized heating problem existed and where failures were observed during earlier cold compression, or 'coining' fabrication technique that shows great potential for future TWT development efforts. For this analysis, a three-dimensional, finite element model was used along with MARC, a commercially available finite element code, to simulate the fabrication of a diamond-rod TWT. This analysis was conducted by using component and material specifications consistent with actual TWT fabrication and was verified against empirical data. The analysis is nonlinear owing to material plasticity introduced by the forming process and also to geometric nonlinearities presented by the component assembly configuration. The computer model was developed by using the high efficiency, K-band TWT design but is general enough to permit similar analyses to be performed on a wide variety of TWT designs and styles. The results of the TWT operating condition and structural failure mode analysis, as well as a comparison of analytical results to test data are presented.
BISON Fuel Performance Analysis of IFA-796 Rod 3 & 4 and Investigation of the Impact of Fuel Creep
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wirth, Brian; Terrani, Kurt A.; Sweet, Ryan T.
In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace the currently used zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromiumaluminum (FeCrAl) alloys because they exhibit slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and slow cladding consumption in the presence of high temperature steam. These alloys should also exhibit increased “coping time” in the event of an accident scenario by improving the mechanical performance at high temperatures, allowing greater flexibility to achieve core cooling.more » As a continuation of the development of these alloys, in-reactor irradiation testing of FeCrAl cladded fuel rods has started. In order to provide insight on the possible behavior of these fuel rods as they undergo irradiation in the Halden Boiling Water Reactor, engineering analysis has been performed using FeCrAl material models implemented into the BISON fuel performance code. This milestone report provides an update on the ongoing development of modeling capability to predict FeCrAl cladding fuel performance and to provide an early look at the possible behavior of planned in-reactor FeCrAl cladding experiments. In particular, this report consists of two separate analyses. The first analysis consists of fuel performance simulations of IFA-796 rod 4 and two segments of rod 3. These simulations utilize previously implemented material models for the C35M FeCrAl alloy and UO2 to provide a bounding behavior analysis corresponding to variation of the initial fuel cladding gap thickness within the fuel rod. The second analysis is an assessment of the fuel and cladding stress states after modification of the fuel creep model that is currently implemented in the BISON fuel performance code. Effects from modifying the fuel creep model were identified for the BISON simulations of the IFA-796 rod 4 experiment, but show that varying the creep model (within the range investigated here) only provide a minimal increase in the fuel radius and maximum cladding hoop stress. Continued investigation of fuel behavioral models will include benchmarking the modified fuel creep model against available experimental data, as well as an investigation of the role that fuel cracking will play in the compliance of the fuel. Correctly calculating stress evolution in the fuel is key to assessing fuel behavior up to gap closure and the subsequent deformation of the cladding due to PCMI. The inclusion of frictional contact should also be investigated to determine the axial elongation of the fuel rods for comparison with data from this experiment.« less
Biological interactions in vitro of zinc oxide nanoparticles of different characteristics
NASA Astrophysics Data System (ADS)
Aula, Sangeetha; Lakkireddy, Samyuktha; AVN, Swamy; Kapley, Atya; Jamil, Kaiser; Rao Tata, Narasinga; Hembram, Kaliyan
2014-09-01
Zinc oxide nanoparticles (ZnO NPs) have recently received growing attention for various biomedical applications, including use as therapeutic or carrier for drug delivery and/or imaging. For the above applications, the NPs necessitate administration into the body leading to their systemic exposure. To better anticipate the safety, make risk assessment, and be able to interpret the future preclinical and clinical safety data, it is important to systematically understand the biological interaction of the NPs, the consequences of such interaction, and the mechanisms associated with the toxicity induction, with the important components with which the NPs are expected to be in contact after systemic exposure. In this context, we report here a detailed study on the biological interactions in vitro of the ZnO NPs with healthy human primary lymphocytes as these are the important immune components and the first systemic immune contact, and with the whole human blood. Additionally, the influence, if any, of the NPs shape (spheres and rods) on the biological interaction has been evaluated. The ZnO NPs caused toxicity (30% at 12.5 μg ml-1 spheres and 10.5 μg ml-1 rods; 50% at 22 μg ml-1 spheres and 19.5 μg ml-1 rods) to the lymphocytes at molecular and genetic level in a dose-dependent and shape-dependent manner, while the interaction consequences with the blood and blood components such as RBC, platelets was only dose-dependent and not shape-dependent. This is evident from the decreased RBC count due to increased %Hemolysis (5.3% in both the spheres- and rods-treated blood) and decreased platelet count due to increased %platelet aggregation (28% in spheres-treated and 33% in rods-treated platelet-rich plasma). Such in-depth understanding of the biological interaction of the NPs, the consequences, and the associated mechanisms in vitro could be expected to allow anticipating the NP safety for risk assessment and for interpretation of the preclinical and clinical safety data when available.
NASA Astrophysics Data System (ADS)
Mirotta, S.; Guillot, J.; Chevalier, V.; Biard, B.
2018-01-01
The study of Reactivity Initiated Accidents (RIA) is important to determine up to which limits nuclear fuels can withstand such accidents without clad failure. The CABRI International Program (CIP), conducted by IRSN under an OECD/NEA agreement, has been launched to perform representative RIA Integral Effect Tests (IET) on real irradiated fuel rods in prototypical Pressurized Water Reactors (PWR) conditions. For this purpose, the CABRI experimental pulse reactor, operated by CEA in Cadarache, France, has been strongly renovated, and equipped with a pressurized water loop. The behavior of the test rod, located in that loop in the center of the driver core, is followed in real time during the power transients thanks to the hodoscope, a unique online fuel motion monitoring system, and one of the major distinctive features of CABRI. The hodoscope measures the fast neutrons emitted by the tested rod during the power pulse with a complete set of 153 Fission Chambers and 153 Proton Recoil Counters. During the CABRI facility renovation, the electronic chain of these detectors has been upgraded. In this paper, the performance of the new system is presented describing gain calibration methodology in order to get maximal Signal/Noise ratio for amplification modules, threshold tuning methodology for the discrimination modules (old and new ones), and linear detectors response limit versus different reactor powers for the whole electronic chain.
Nylon and teflon scribe effect on NBR to Chemlok 233 and NBR to NBR bond interfaces
NASA Technical Reports Server (NTRS)
Jensen, S. K.
1990-01-01
A study was requested by Manufacturing Engineering to determine what effects marking with nylon (6/6) and Teflon scribes may have on subsequent bonding. Witness panel bond specimens were fabricated by the development lab to test both acrylonitrile butadiene rubber (NBR) to Chemlok and NBR to NBR after controlled exposure. The nylon rod used as a scribe tool demonstrates virtually no bond deterioration when used to scribe lines on either the Chemlok to NBR surfaces or the NBR to NBR interface. Lab test results indicate that the nylon rod-exposed samples produce tensile and peel values very similar to the control samples and the Teflon exposed samples produce tensile and peel values much lower than the control samples. Visual observation of the failure surfaces of the tested samples shows that Teflon scribing produces an obvious contamination to the surface and the nylon produces no effect. Photographs of test samples are provided. It is concluded that Teflon stock used as a scribe tool on a Chemlok 233 to NBR surface or an NBR to NBR surface has a detrimental effect on the bond integrity on either of these bond interfaces. Therefore, it is recommended that the nylon rod continue to be used where a scribe line is required in the redesigned solid rocket motor segment insulation layup operations. The use of Teflon scribes should not be considered.
Toribio, Jesús; Aguado, Leticia; Lorenzo, Miguel; Kharin, Viktor
2017-01-01
Stress corrosion cracking (SCC) of metals is an issue of major concern in engineering since this phenomenon causes many catastrophic failures of structural components in aggressive environments. SCC is even more harmful under cathodic conditions promoting the phenomenon known as hydrogen assisted cracking (HAC), hydrogen assisted fracture (HAF) or hydrogen embrittlement (HE). A common way to assess the susceptibility of a given material to HAC, HAF or HE is to subject a cracked rod to a constant extension rate tension (CERT) test until it fractures in this harsh environment. This paper analyzes the influence of a residual stress field generated by fatigue precracking on the sample’s posterior susceptibility to HAC. To achieve this goal, numerical simulations were carried out of hydrogen diffusion assisted by the stress field. Firstly, a mechanical simulation of the fatigue precracking was developed for revealing the residual stress field after diverse cyclic loading scenarios and posterior stress field evolution during CERT loading. Afterwards, a simulation of hydrogen diffusion assisted by stress was carried out considering the residual stresses after fatigue and the superposed rising stresses caused by CERT loading. Results reveal the key role of the residual stress field after fatigue precracking in the HAC phenomena in cracked steel rods as well as the beneficial effect of compressive residual stress. PMID:28772845
Royhman, Dmitry; Patel, Megha; Runa, Maria J; Wimmer, Markus A; Jacobs, Joshua J; Hallab, Nadim J; Mathew, Mathew T
2016-09-01
Recently, there has been increasing concern in the orthopedic community over the use of hip implant modular devices due to an increasing number of reports of early failure, failure that has been attributed to fretting-corrosion at modular interfaces. Much is still unknown about the electrochemical and mechanical degradation mechanisms associated with the use of such devices. Accordingly, the purpose of our study was to develop a methodology for testing the fretting-corrosion behavior of modular junctions. A fretting-corrosion apparatus was used to simulate the fretting-corrosion conditions of a CoCrMo hip implant head on a Ti6Al4V hip implant stem. The device features two perpendicularly-loaded CoCrMo pins that articulated against a Ti6Al4V rod. A sinusoidal fretting motion was applied to the rod at various displacement amplitudes (25, 50, 100, 150 and 200μm) at a constant load of 200N. Bovine calf serum at two different pH levels (3.0 and 7.6) was used to simulate the fluid environment around the joint. Experiments were conducted in two modes of electrochemical control - free-potential and potentiostatic. Electrochemical impedance spectroscopy tests were done before and after the fretting motion to assess changes in corrosion kinetics. In free potential mode, differences were seen in change in potential as a function of displacement amplitude. In general, VDrop (the drop in potential at the onset of fretting), VFretting, (the average potential during fretting), ΔVFretting (the change in potential from the onset of fretting to its termination) and VRecovery (the change in potential from the termination of fretting until stabilization) appeared linear at both pH levels, but showed drastic deviation from linearity at 100μm displacement amplitude. Subsequent EDS analysis revealed a large number of Ti deposits on the CoCrMo pin surfaces. Potentiostatic tests at both pH levels generally showed increasing current with increasing displacement amplitude. Electrochemical impedance spectroscopy measurements from free potential and potentiostatic tests indicated increased levels of resistance of the system after induction of the fretting motion. In free potential tests, the largest increase in impedance was found for the 100μm group. We conclude that the 100µm group exhibits deviations from linearity for several parameters, and this was most likely due to adhesive wear between Ti6Al4V and CoCrMo surfaces. Overall, the degradation of the system was dominated by wear at all pH levels, and displacement amplitudes. Copyright © 2016. Published by Elsevier Ltd.
Cold cap subsidence for in situ vitrification and electrodes therefor
Buelt, James L.; Carter, John G.; Eschbach, Eugene A.; FitzPatrick, Vincent F.; Koehmstedt, Paul L.; Morgan, William C.; Oma, Kenton H.; Timmerman, Craig L.
1992-01-01
An electrode for use in in situ vitrification of soil comprises a molybdenum rod received within a conductive sleeve or collar formed of graphite. Electrodes of this type are placed on either side of a region containing buried waste material and an electric current is passed therebetween for vitrifying the soil between the electrodes. The graphite collar enhances the thermal conductivity of the electrode, bringing heat to the surface, and preventing the formation of a cold cap of material above the ground surface. The annulus between the molybdenum rod electrode and the graphite collar is filled with a conductive ceramic powder of a type that sinters upon the molybdenum rod, protecting the same from oxidation as the graphite material is consumed, or a metal powder which liquifies at operating temperatures. The molybdenum rod in the former case may be coated with an oxidation protectant, e.g. of molybdenum disilicide. As insulative blanket is suitably placed on the surface of the soil during processing to promote subsidence by allowing off-gassing and reducing surface heat loss. In other embodiments, connection to vitrification electrodes is provided below ground level to avoid loss of connection due to electrodes deterioration, or a sacrificial electrode may be employed when operation is started. Outboard electrodes can be utilized to square up the vitrified area. Further, the center of the molybdenum rod can be made hollow and filled with a powdered metal, such as copper, which liquifies at operating temperatures. In one embodiment, the molybdenum rod and the graphite collar are physically joined at the bottom.
Development and validation of a low-frequency modeling code for high-moment transmitter rod antennas
NASA Astrophysics Data System (ADS)
Jordan, Jared Williams; Sternberg, Ben K.; Dvorak, Steven L.
2009-12-01
The goal of this research is to develop and validate a low-frequency modeling code for high-moment transmitter rod antennas to aid in the design of future low-frequency TX antennas with high magnetic moments. To accomplish this goal, a quasi-static modeling algorithm was developed to simulate finite-length, permeable-core, rod antennas. This quasi-static analysis is applicable for low frequencies where eddy currents are negligible, and it can handle solid or hollow cores with winding insulation thickness between the antenna's windings and its core. The theory was programmed in Matlab, and the modeling code has the ability to predict the TX antenna's gain, maximum magnetic moment, saturation current, series inductance, and core series loss resistance, provided the user enters the corresponding complex permeability for the desired core magnetic flux density. In order to utilize the linear modeling code to model the effects of nonlinear core materials, it is necessary to use the correct complex permeability for a specific core magnetic flux density. In order to test the modeling code, we demonstrated that it can accurately predict changes in the electrical parameters associated with variations in the rod length and the core thickness for antennas made out of low carbon steel wire. These tests demonstrate that the modeling code was successful in predicting the changes in the rod antenna characteristics under high-current nonlinear conditions due to changes in the physical dimensions of the rod provided that the flux density in the core was held constant in order to keep the complex permeability from changing.
Reprogramming metabolism by targeting sirtuin 6 attenuates retinal degeneration
Zhang, Lijuan; Du, Jianhai; Justus, Sally; Hsu, Chun-Wei; Bonet-Ponce, Luis; Wu, Wen-Hsuan; Tsai, Yi-Ting; Wu, Wei-Pu; Jia, Yading; Duong, Jimmy K.; Mahajan, Vinit B.; Lin, Chyuan-Sheng; Wang, Shuang; Hurley, James B.
2016-01-01
Retinitis pigmentosa (RP) encompasses a diverse group of Mendelian disorders leading to progressive degeneration of rods and then cones. For reasons that remain unclear, diseased RP photoreceptors begin to deteriorate, eventually leading to cell death and, consequently, loss of vision. Here, we have hypothesized that RP associated with mutations in phosphodiesterase-6 (PDE6) provokes a metabolic aberration in rod cells that promotes the pathological consequences of elevated cGMP and Ca2+, which are induced by the Pde6 mutation. Inhibition of sirtuin 6 (SIRT6), a histone deacetylase repressor of glycolytic flux, reprogrammed rods into perpetual glycolysis, thereby driving the accumulation of biosynthetic intermediates, improving outer segment (OS) length, enhancing photoreceptor survival, and preserving vision. In mouse retinae lacking Sirt6, effectors of glycolytic flux were dramatically increased, leading to upregulation of key intermediates in glycolysis, TCA cycle, and glutaminolysis. Both transgenic and AAV2/8 gene therapy–mediated ablation of Sirt6 in rods provided electrophysiological and anatomic rescue of both rod and cone photoreceptors in a preclinical model of RP. Due to the extensive network of downstream effectors of Sirt6, this study motivates further research into the role that these pathways play in retinal degeneration. Because reprogramming metabolism by enhancing glycolysis is not gene specific, this strategy may be applicable to a wide range of neurodegenerative disorders. PMID:27841758
Behavior of ceramics at 1200 C in a simulated gas turbine environment
NASA Technical Reports Server (NTRS)
Sanders, W. A.; Probst, H. B.
1974-01-01
This report summarizes programs at the NASA Lewis Research Center evaluating several classes of commercial ceramics, in a high gas velocity burner rig simulating a gas turbine engine environment. Testing of 23 ceramics in rod geometry identified SiC and Si3N4 as outstanding in resistance to oxidation and thermal stress and identified the failure modes of other ceramics. Further testing of a group of 15 types of SiC and Si3N4 in simulated vane shape geometry has identified a hot pressed SiC, a reaction sintered SiC, and hot pressed Si3N4 as the best of that group. SiC and Si3N4 test specimens were compared on the basis of weight change, dimensional reductions, metallography, fluorescent penetrant inspection, X-ray diffraction analyses, and failure mode.
Graphene-Based Transparent Electrodes for Dye Sensitized Solar Cells
NASA Astrophysics Data System (ADS)
Al-Rawashdeh, Nathir A. F.; Albiss, Borhan A.; Yousef, Mo'ath H. I.
2018-02-01
Several Zinc Oxide (ZnO) photo-anodes were prepared with different morphologies. For each morphology, two composites containing graphene oxide (GO) were prepared. ZnO sheet-flowers attained the highest efficiency among control samples, owing to the light diffraction that may be caused by such morphology. On the other hand, ZnO rods achieved lower performance than ZnO sheet-flowers, but higher than ZnO flowers, due to their porosity and structure, which may scatter light effectively. The effect of including GO in the photoanode matrix was studied and the results demonstrate a significant increase in short circuit current density (JSC). The addition of GO suggested an overall positive effect on cell performance, where samples of ZnO rods and Flowers had the most significant increase in their performance, due to the inhibition of charge recombination by GO.
Li, Jiajia; Deng, Baoqing; Zhang, Bing; Shen, Xiuzhong; Kim, Chang Nyung
2015-01-01
A simulation of an unbaffled stirred tank reactor driven by a magnetic stirring rod was carried out in a moving reference frame. The free surface of unbaffled stirred tank was captured by Euler-Euler model coupled with the volume of fluid (VOF) method. The re-normalization group (RNG) k-ɛ model, large eddy simulation (LES) model and detached eddy simulation (DES) model were evaluated for simulating the flow field in the stirred tank. All turbulence models can reproduce the tangential velocity in an unbaffled stirred tank with a rotational speed of 150 rpm, 250 rpm and 400 rpm, respectively. Radial velocity is underpredicted by the three models. LES model and RNG k-ɛ model predict the better tangential velocity and axial velocity, respectively. RNG k-ɛ model is recommended for the simulation of the flow in an unbaffled stirred tank with magnetic rod due to its computational effort.
An Avoidance Model for Short-Range Order Induced by Soft Repulsions in Systems of Rigid Rods
NASA Astrophysics Data System (ADS)
Han, Jining; Herzfeld, Judith
1996-03-01
The effects of soft repulsions on hard particle systems are calculated using an avoidance model which improves upon the simple mean field approximation. Avoidance reduces, but does not eliminate, the energy due to soft repulsions. On the other hand, it also reduces the configurational entropy. Under suitable conditions, this simple trade-off yields a free energy that is lower than the mean field value. In these cases, the variationally determined avoidance gives an estimate for the short-range positional order induced by soft repulsions. The results indicate little short-range order for isotropically oriented rods. However, for parallel rods, short-range order increases to significant levels as the particle axial ratio increases. The implications for long- range positional ordering are also discussed. In particular, avoidance may explain the smectic ordering of tobacco mosaic virus at volume fractions lower than those necessary for smectic ordering of hard particles.
Shape dependent phoretic propulsion of slender active particles
NASA Astrophysics Data System (ADS)
Ibrahim, Y.; Golestanian, R.; Liverpool, T. B.
2018-03-01
We theoretically study the self-propulsion of a thin (slender) colloid driven by asymmetric chemical reactions on its surface at vanishing Reynolds number. Using the method of matched asymptotic expansions, we obtain the colloid self-propulsion velocity as a function of its shape and surface physicochemical properties. The mechanics of self-phoresis for rod-like swimmers has a richer spectrum of behaviors than spherical swimmers due to the presence of two small length scales, the slenderness of the rod and the width of the slip layer. This leads to subtleties in taking the limit of vanishing slenderness. As a result, even for very thin rods, the distribution of curvature along the surface of the swimmer, namely, its shape, plays a surprising role in determining the efficiency of propulsion. We find that thin cylindrical self-phoretic swimmers with blunt ends move faster than thin prolate spheroid shaped swimmers with the same aspect ratio.
NASA Technical Reports Server (NTRS)
Goldenveizer, A L
1951-01-01
Starting with the Love equations for bending of extensible shells, "principal stress states" are sought for a thin-walled rod of arbitrary but open cross section. Principal stress states exclude those local states arising from end conditions which damp out with distance from the ends. It is found that for rods of intermediate length, long enough to avoid local bending at a support, and short enough that elementary torsion and bending are not the most significant stress states, four principal states exist. Three of these states are associated with the planar distribution of axial stress and are equivalent to the engineering theory of extension and bending of solid sections. The fourth state resembles that which has been called in the literature "bending stress due to torsional", except that cross sections are permitted to bend and the shear along the center line of the cross section is permitted to differ from zero.
When experiment and energy conservation collide: video analysis of an unrolling mat
NASA Astrophysics Data System (ADS)
Mungan, Carl E.; Lipscombe, Trevor C.
2018-03-01
A mat consisting of round bamboo rods connected by strings perpendicular to their axes unrolls without slipping on a horizontal table. Video analysis is used to measure the position of the centre of the remaining roll as a function of time. It is found to accelerate with time due to the ‘rocket effect’ of the roll ejecting rods backward relative to itself. Mechanical energy is not conserved because of the inelastic collisions of the rods with the table. The fitted coefficient of restitution (COR) is 0.59 ± 0.04 which is consistent with known values for wood on wood. In support of this explanation, progressively smaller values of the COR are found when the mat is unrolled on a flat woven rug and on a shock-absorbing pad. The level of analysis is appropriate to an undergraduate course in physical mechanics.
Electronic structure calculations of PbS quantum rods and tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pimachev, Artem; Dahnovsky, Yuri, E-mail: yurid@uwyo.edu
2014-01-28
We study absorption spectra, optical and HOMO-LUMO gaps, and the density of states for PbS quantum rods (QRs) and tubes (QTs). We find some similarities and also differences in QR and QT properties. For both QRs and QTs, the optical and HOMO-LUMO gaps reach the plateaus for small lengths. We find that tubes are as stable as rods. The optical spectra exhibit a peak that can be due to the electron-hole interaction or be a prototype of an S{sub e}–S{sub h} transition in the effective mass approximation. We also calculate the density of states by the density functional theory (DFT)more » and time-dependent density functional theory (TDDFT) methods. The TDDFT density of states function is shifted towards the red side by 0.5 eV indicating the strong e-h interaction.« less
Effects of Lower Drying-Storage Temperature on the Ductility of High-Burnup PWR Cladding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billone, M. C.; Burtseva, T. A.
2016-08-30
The purpose of this research effort is to determine the effects of canister and/or cask drying and storage on radial hydride precipitation in, and potential embrittlement of, high-burnup (HBU) pressurized water reactor (PWR) cladding alloys during cooling for a range of peak drying-storage temperatures (PCT) and hoop stresses. Extensive precipitation of radial hydrides could lower the failure hoop stresses and strains, relative to limits established for as-irradiated cladding from discharged fuel rods stored in pools, at temperatures below the ductile-to-brittle transition temperature (DBTT).
Post STS-135 Evaluation of Main Flame Deflector Witness Materials
NASA Technical Reports Server (NTRS)
Long, Victoria
2011-01-01
NASA and USA design engineers submitted witness materials from the solid rocket booster (SRB) main flame deflector for evaluation after the launch of STS-135. The following items were submitted for analysis: HY-80 steel witnes rods, 304 sta inles steel caps, and tungsten pistons. All of the items were photographed in order to document their condition after the launch of STS-135. The submitted samples were dimensionally measured in order to determine the amount of material lost during launch. Microstructural changes were observed in the HY-80 witness rod metallographic samples due to the heat of the launch.
Epitaxial growth of quantum rods with high aspect ratio and compositional contrast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L. H.; Patriarche, G.; Fiore, A.
2008-12-01
The epitaxial growth of quantum rods (QRs) on GaAs was investigated. It was found that GaAs thickness in the GaAs/InAs superlattice used for QR formation plays a key role in improving the QR structural properties. Increasing the GaAs thickness results in both an increased In compositional contrast between the QRs and surrounding layer, and an increased QR length. QRs with an aspect ratio of up to 10 were obtained, representing quasiquantum wires in a GaAs matrix. Due to modified confinement and strain potential, such nanostructure is promising for controlling gain polarization.
Post STS-134 Evaluation of Main Flame Deflector Witness Materials
NASA Technical Reports Server (NTRS)
Long, Victoria
2011-01-01
NASA and USA design engineers submitted witness materials from the solid rocket booster (SRB) main flame deflector for evaluation after the launch of STS-134. The following items were submitted for analysis: 1018 steel witness rods 304 stainless steel caps, tungsten pistons, and A-286 piston sleeves. All of the items were photographed in order to document their condition after the launch of STS-134. All of the items were dimensionally measured in order to determine the amount of material lost during launch. Microstructural changes were observed in the 1018 witness rod metallographic samples due to the heat of the launch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Challabotla, Niranjan Reddy; Zhao, Lihao; Andersson, Helge I.
The rotational motion of inertia-free spheroids has been studied in a numerically simulated turbulent channel flow. Although inertia-free spheroids were translated as tracers with the flow, neither the disk-like nor the rod-like particles adapted to the fluid rotation. The flattest disks preferentially aligned their symmetry axes normal to the wall, whereas the longest rods were parallel with the wall. The shape-dependence of the particle orientations carried over to the particle rotation such that the mean spin was reduced with increasing departure from sphericity. The streamwise spin fluctuations were enhanced due to asphericity, but substantially more for prolate than for oblatemore » spheroids.« less
MODFLOW 2.0: A program for predicting moderator flow patterns
NASA Astrophysics Data System (ADS)
Peterson, P. F.; Paik, I. K.
1991-07-01
Sudden changes in the temperature of flowing liquids can result in transient buoyancy forces which strongly impact the flow hydrodynamics via flow stratification. These effects have been studied for the case of potential flow of stratified liquids to line sinks, but not for moderator flow in SRS reactors. Standard codes, such as TRAC and COMMIX, do not have the capability to capture the stratification effect, due to strong numerical diffusion which smears away the hot/cold fluid interface. A related problem with standard codes is the inability to track plumes injected into the liquid flow, again due to numerical diffusion. The combined effects of buoyant stratification and plume dispersion have been identified as being important in the operation of the Supplementary Safety System which injects neutron-poison ink into SRS reactors to provide safe shutdown in the event of safety rod failure. The MODFLOW code discussed here provides transient moderator flow pattern information with stratification effects, and tracks the location of ink plumes in the reactor. The code, written in Fortran, is compiled for Macintosh II computers, and includes subroutines for interactive control and graphical output. Removing the graphics capabilities, the code can also be compiled on other computers. With graphics, in addition to the capability to perform safety related computations, MODFLOW also provides an easy tool for becoming familiar with flow distributions in SRS reactors.
Experimental study and FEM simulation of the simple shear test of cylindrical rods
NASA Astrophysics Data System (ADS)
Wirti, Pedro H. B.; Costa, André L. M.; Misiolek, Wojciech Z.; Valberg, Henry S.
2018-05-01
In the presented work an experimental simple shear device for cutting cylindrical rods was used to obtain force-displacement data for a low-carbon steel. In addition, and FEM 3D-simulation was applied to obtain internal shear stress and strain maps for this material. The experimental longitudinal grid patterns and force-displacement curve were compared with numerical simulation results. Many aspects of the elastic and plastic deformations were described. It was found that bending reduces the shear yield stress of the rod material. Shearing starts on top and bottom die-workpiece contact lines evolving in an arc-shaped area. Due to this geometry, stress concentrates on the surface of the rod until the level of damage reaches the critical value and the fracture starts here. The volume of material in the plastic zone subjected to shearing stress has a very complex shape and is function of a dimensionless geometrical parameter. Expressions to calculate the true shear stress τ and strain γ from the experimental force-displacement data were proposed. The equations' constants are determined by fitting the experimental curve with the stress τ and strain γ simulation point tracked data.
Rapid degeneration of rod photoreceptors expressing self-association-deficient arrestin-1 mutant
Song, Xiufeng; Seo, Jungwon; Baameur, Faiza; Vishnivetskiy, Sergey A.; Chen, Qiuyan; Kook, Seunghyi; Kim, Miyeon; Brooks, Evan K.; Altenbach, Christian; Hong, Yuan; Hanson, Susan M.; Palazzo, Maria C.; Chen, Jeannie; Hubbell, Wayne L.; Gurevich, Eugenia V.; Gurevich, Vsevolod V.
2013-01-01
Arrestin-1 binds light-activated phosphorhodopsin and ensures timely signal shutoff. We show that high transgenic expression of an arrestin-1 mutant with enhanced rhodopsin binding and impaired oligomerization causes apoptotic rod death in mice. Dark rearing does not prevent mutant-induced cell death, ruling out the role of arrestin complexes with light-activated rhodopsin. Similar expression of WT arrestin-1 that robustly oligomerizes, which leads to only modest increase in the monomer concentration, does not affect rod survival. Moreover, WT arrestin-1 co-expressed with the mutant delays retinal degeneration. Thus, arrestin-1 mutant directly affects cell survival via binding partner(s) other than light-activated rhodopsin. Due to impaired self-association of the mutant its high expression dramatically increases the concentration of the monomer. The data suggest that monomeric arrestin-1 is cytotoxic and WT arrestin-1 protects rods by forming mixed oligomers with the mutant and/or competing with it for the binding to non-receptor partners. Thus, arrestin-1 self-association likely serves to keep low concentration of the toxic monomer. The reduction of the concentration of harmful monomer is an earlier unappreciated biological function of protein oligomerization. PMID:24012956
Rapid degeneration of rod photoreceptors expressing self-association-deficient arrestin-1 mutant.
Song, Xiufeng; Seo, Jungwon; Baameur, Faiza; Vishnivetskiy, Sergey A; Chen, Qiuyan; Kook, Seunghyi; Kim, Miyeon; Brooks, Evan K; Altenbach, Christian; Hong, Yuan; Hanson, Susan M; Palazzo, Maria C; Chen, Jeannie; Hubbell, Wayne L; Gurevich, Eugenia V; Gurevich, Vsevolod V
2013-12-01
Arrestin-1 binds light-activated phosphorhodopsin and ensures timely signal shutoff. We show that high transgenic expression of an arrestin-1 mutant with enhanced rhodopsin binding and impaired oligomerization causes apoptotic rod death in mice. Dark rearing does not prevent mutant-induced cell death, ruling out the role of arrestin complexes with light-activated rhodopsin. Similar expression of WT arrestin-1 that robustly oligomerizes, which leads to only modest increase in the monomer concentration, does not affect rod survival. Moreover, WT arrestin-1 co-expressed with the mutant delays retinal degeneration. Thus, arrestin-1 mutant directly affects cell survival via binding partner(s) other than light-activated rhodopsin. Due to impaired self-association of the mutant its high expression dramatically increases the concentration of the monomer. The data suggest that monomeric arrestin-1 is cytotoxic and WT arrestin-1 protects rods by forming mixed oligomers with the mutant and/or competing with it for the binding to non-receptor partners. Thus, arrestin-1 self-association likely serves to keep low concentration of the toxic monomer. The reduction of the concentration of harmful monomer is an earlier unappreciated biological function of protein oligomerization. © 2013.
Coupling procedure for TRANSURANUS and KTF codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jimenez, J.; Alglave, S.; Avramova, M.
2012-07-01
The nuclear industry aims to ensure safe and economic operation of each single fuel rod introduced in the reactor core. This goal is even more challenging nowadays due to the current strategy of going for higher burn-up (fuel cycles of 18 or 24 months) and longer residence time. In order to achieve that goal, fuel modeling is the key to predict the fuel rod behavior and lifetime under thermal and pressure loads, corrosion and irradiation. In this context, fuel performance codes, such as TRANSURANUS, are used to improve the fuel rod design. The modeling capabilities of the above mentioned toolsmore » can be significantly improved if they are coupled with a thermal-hydraulic code in order to have a better description of the flow conditions within the rod bundle. For LWR applications, a good representation of the two phase flow within the fuel assembly is necessary in order to have a best estimate calculation of the heat transfer inside the bundle. In this paper we present the coupling methodology of TRANSURANUS with KTF (Karlsruhe Two phase Flow subchannel code) as well as selected results of the coupling proof of principle. (authors)« less
Spontaneous formation of non-uniform double helices for elastic rods under torsion
NASA Astrophysics Data System (ADS)
Li, Hongyuan; Zhao, Shumin; Xia, Minggang; He, Siyu; Yang, Qifan; Yan, Yuming; Zhao, Hanqiao
2017-02-01
The spontaneous formation of double helices for filaments under torsion is common and significant. For example, the research on the supercoiling of DNA is helpful for understanding the replication and transcription of DNA. Similar double helices can appear in carbon nanotube yarns, cables, telephone wires and so forth. We noticed that non-uniform double helices can be produced due to the surface friction induced by the self-contact. Therefore an ideal model was presented to investigate the formation of double helices for elastic rods under torque. A general equilibrium condition which is valid for both the smooth surface and the rough surface situations is derived by using the variational method. By adding further constraints, the smooth and rough surface situations are investigated in detail respectively. Additionally, the model showed that the specific process of how to twist and slack the rod can determine the surface friction and hence influence the configuration of the double helix formed by rods with rough surfaces. Based on this principle, a method of manufacturing double helices with designed configurations was proposed and demonstrated. Finally, experiments were performed to verify the model and the results agreed well with the theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenkrantz, E.; Ferrandis, J. Y.; Augereau, F.
2011-07-01
A fuel rod has been instrumented with a new design of an acoustic resonator used to measure in a non destructive way the internal rod plenum gas mixture composition. This ultrasonic sensor has demonstrated its ability to operate in pile during REMORA 3 irradiation experiment carried out in the OSIRIS Material Testing Reactor (CEA Saclay, France). Due to very severe experimental conditions such as temperature rising up to 150 deg.C and especially, high thermal fluence level up to 3.5 10{sup 19} n.cm{sup 2}, the initial sensor gas speed of sound efficiency measurement was strongly reduced due to the irradiation effectsmore » on the piezo-ceramic properties. Nevertheless, by adding a differential signal processing method to the initial data analysis procedure validated before irradiation, the gas resonance peaks were successfully extracted from the output signal. From these data, the molar fractions variations of helium and fission gas were measured from an adapted Virial state equation. Thus, with this sensor, the kinetics of gas release inside fuel rods could be deduced from the in-pile measurements and specific calculations. These data will also give information about nuclear reaction effect on piezo-ceramics sensor under high neutron and gamma flux. (authors)« less
Evaluation of Residence Time on Nitrogen Oxides Removal in Non-Thermal Plasma Reactor
Talebizadeh, Pouyan; Rahimzadeh, Hassan; Babaie, Meisam; Javadi Anaghizi, Saeed; Ghomi, Hamidreza; Ahmadi, Goodarz; Brown, Richard
2015-01-01
Non-thermal plasma (NTP) has been introduced over the last few years as a promising after- treatment system for nitrogen oxides and particulate matter removal from diesel exhaust. NTP technology has not been commercialised as yet, due to its high rate of energy consumption. Therefore, it is important to seek out new methods to improve NTP performance. Residence time is a crucial parameter in engine exhaust emissions treatment. In this paper, different electrode shapes are analysed and the corresponding residence time and NOx removal efficiency are studied. An axisymmetric laminar model is used for obtaining residence time distribution numerically using FLUENT software. If the mean residence time in a NTP plasma reactor increases, there will be a corresponding increase in the reaction time and consequently the pollutant removal efficiency increases. Three different screw thread electrodes and a rod electrode are examined. The results show the advantage of screw thread electrodes in comparison with the rod electrode. Furthermore, between the screw thread electrodes, the electrode with the thread width of 1 mm has the highest NOx removal due to higher residence time and a greater number of micro-discharges. The results show that the residence time of the screw thread electrode with a thread width of 1 mm is 21% more than for the rod electrode. PMID:26496630
NASA Astrophysics Data System (ADS)
Fermi, Enrico; Leverett, Miles C.
This Patent focuses mainly on the description of an automatic system for the control rods in a nuclear reactor (in the present case made of natural uranium and graphite) reporting, aside from several related theoretical points (already considered in previous Patents), a detailed description of it. Since the reproduction ratio of a lattice structure is reduced by the presence of neutron absorbing impurities, such impurities can be introduced in the lattice in the form of control rods, made of a material such as boron or cadmium, which will absorb large amounts of neutrons. The control procedure is based on the fact that the depth to which the control rod penetrates into the lattice will determine the value of the neutron density in the system. This relatively simple task faces the fact that the reproduction ratio of the structure can change due to changes in temperature and pressure in the system. So, a connection of the control rods with an ionization chamber, measuring neutron density, can give an automatic control of the stability of the chain reaction. Moreover, an emergency circuit for operating the safety rods is illustrated in this Patent, and, in case of failure of both the control and emergency circuits, a third automatic circuit is depicted which causes the dump of a portion of the lattice structure for interrupting the neutron density rise. In a system of the type considered, about 92 percent of the total heat generated originates in the uranium toward the center of the lattice, about 6 percent originates in the graphite used as slowing medium, and the remaining 2 percent is generated in the structures surrounding the pile. Accordingly, the permissible power output of the reactor is limited by the rate of heat removal, so that, to prevent the accumulation of heat in the chain reaction pile, a coolant into contact with the uranium must be employed. However, the corrosive effect on uranium of the possible coolants has to be taken into account, because the presence in the system of high temperatures and intense neutron densities causes an acceleration of any normal rate of corrosion, resulting in the physical deterioration of the uranium in the system. It is essential, then, that the circulating medium be of such a character as not to destroy the uranium bodies in the system. In the present case, the cooling medium is gaseous helium circulating in the active regions of the reactor, which has the advantage of minimizing the possible corrosion of the fissile material, since it is an inert gas, and the absorption of neutrons. However, other possible choices, affecting the determination of the multiplication factor, for the coolant gas (such as air, oxigen or water vapor) are discussed as well in terms of their "danger coefficients", defined in terms of the ratio of the weight of impurity per unit mass of uranium and based on the cross section for absorption of thermal neutrons of the various elements [Fermi (1942a)]. The discussion of some methods of cooling chain reacting piles was initiated in [Fermi (1942g)], but no reference published paper exists of the material presented here.
Wang, Yujuan; Lin, Hui; Jin, Fangyuan; Niu, Junfeng; Zhao, Jinbo; Bi, Ying; Li, Ying
2016-07-01
Batch experiments were conducted to investigate the effects of cathode materials and anions (Cl(-), SO4(2-), NO3(-), and CO3(2-)/HCO3(-)) on perfluorooctanoate (PFOA) removal in electrocoagulation process using zinc anode. The results indicated that the hydroxide flocs generated in-situ in the electrocoagulation process using the stainless steel rod as cathode were more effective than those using aluminum rod as cathode for the removal of PFOA after 20min of electrocoagulation at a current density of 0.5mAcm(-2). Hydroxide flocs generated in-situ in the electrocoagulation in the presence of Cl(-)/NO3(-) could effectively remove PFOA from aqueous solution with the removal ratios of 99.7%/98.1% and 98.9%/97.3% using stainless steel rod and aluminum rod as cathode, respectively. However, the PFOA removal ratios were 96.2%/4.1% and 7.4%/4.6% using stainless steel rod and aluminum rod as cathode, respectively, in the presence of SO4(2-) and CO3(2-)/HCO3(-). The different removal ratios of PFOA during the electrocoagulation process were primarily due to the fact that the hydroxide flocs generated in-situ were different in the presence of diverse cathodes and anions. We firstly demonstrated that Zn0.70Al0.30(OH)2(CO3)0.15·xH2O and ZnO generated in-situ in the electrocoagulation process (except for CO3(2-)/HCO3(-)) using zinc anode and aluminum/stainless steel rod cathode governed the sorption of PFOA. The adsorbent hydroxide flocs in-situ generated in the presence of Cl(-) could effectively remove PFOA from aqueous solution containing CO3(2-)/HCO3(-) anion at the initial hydroxide flocs concentration of 2000mgL(-1). These results provided an effective and alternative method to remove PFOA from aqueous solution containing CO3(2-)/HCO3(-) anion. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Qian
Development of automotive engines with high power output demands the application of high strength materials with good tribological properties. Metal matrix composites (MMC's) and some nitrogen ceramics are of interest to replace some conventional materials in the piston/pin/connecting rod design. A simulation study has been developed to explore the possibility to employ MMC's as bearing materials and ceramics as journal materials, and to investigate the related wear mechanisms and the possible journal bearing failure mechanisms. Conventional tin coated Al-Si alloy (Al-Si/Sn) have been studied for the base line information. A mixed lubrication model for journal bearing with a soft coating has been developed and applied to the contact and temperature analysis of the Al-Si/Sn bearing. Experimental studies were performed to reveal the bearing friction and wear behavior. Tin coating exhibited great a advantage in friction reduction, however, it suffered significant wear through pitting and debonding. When the tin wore out, the Al-Si/steel contact experienced higher friction. A cast and P/M MMC's in the lubricated contact with case hardened steel and ceramic journals were studied experimentally. Without sufficient material removal in the conformal contact situation, MMC bearings in the MMC/steel pairs gained weight due to iron transfer and surface tribochemical reactions with the lubricant additives and contact failure occurred. However, the MMC/ceramic contacts demonstrated promising tribological behavior with low friction and high wear resistance, and should be considered for new journal bearing design. Ceramics are wear resistant. Ceramic surface roughness is very crucial when the journals are in contact with the tin coated bearings. In contact with MMC bearings, ceramic surface quality and fracture toughness seem to play some important roles in affecting the friction coefficient. The wear of silicon nitride and beta sialon (A) journals is pitting due to grain boundary fracture and grain pull-out.
Finite Element Analysis of MEMS Devices
NASA Technical Reports Server (NTRS)
Corrigan, Jennifer
2004-01-01
A side-slide actuator and a corrugated diaphragm actuator will be analyzed and optimized this summer. Coupled electrostatic and fluid analyses will also be initiated. Both the side-slide actuator and the corrugated diaphragm actuator will be used to regulate the flow of fuel in a jet engine. Many of the side-slide actuators will be placed on top of a fuel injector that is still in the developmental stage as well. The corrugated diaphragm actuator will also be used to regulate the flow of fuel in fuel injectors. A comparative analysis of the performance matrix of both actuators will be conducted. The side-slide actuator uses the concept of mechanical advantage to regulate the flow of fuel using electrostatic forces. It is made from Nickel, Silicon Carbide, and thin layers of Oxide. The slider will have a hole in the middle that will allow fuel to pass through the hole underneath it. The goal is to regulate the flow of fuel through the inlet. This means that the actuator needs to be designed so that when a voltage is applied to the push rod, the slider will deflect in the x-direction and be able to completely block the inlet and no fuel can pass through. Different voltage levels will be tested. The parameters that are being optimized are the thickness of the diaphragm, what kind of corrugation the diaphragm should have, the length, width, and thickness of the push rod, and what design should be used to return the slider. The current possibilities for a return rod are a built in spring on the slider, a return rod that acts like a spring, or a return rod that is identical to the push rod. The final actuator design should have a push rod that has rotational motion and no translation motion, a push rod thickness that prevents warping due to the slider, and a large ratio of the displacement on the bottom of the push rod to displacement on the top of the push rod. The corrugated diaphragm actuator was optimized last winter and this summer will be spent completing the optimization of the coupled electrostatic and fluid flow parameters. It was found that Nickel is the best material to use for the diaphragm because it has a higher yield strength and allows for a larger stress, deflection and applied pressure. The parameters that were optimized were the wavelength and thickness of the diaphragm.
NASA Astrophysics Data System (ADS)
Babakhani, Banafsheh
The aim of this thesis work was to synthesize Mn-based oxide electrodes with high surface area structures by anodic electrodeposition for application as electrochemical capacitors. Rod-like structures provide large surface areas leading to high specific capacitances. Since templated electrosynthesis of rods is not easy to use in practical applications, it is more desirable to form rod-like structures without using any templates. In this work, Mn oxide electrodes with rod-like structures (˜1.5 µm in diameter) were synthesized from a solution of 0.01 M Mn acetate under galvanostatic control without any templates, on Au coated Si substrates. The electrochemical properties of the synthesized nanocrystalline electrodes were investigated to determine the effect of morphology, chemistry and crystal structure on the corresponding electrochemical behavior of Mn oxide electrodes. Mn oxides prepared at different current densities showed a defective antifluoritetype crystal structure. The rod-like Mn oxide electrodes synthesized at low current densities (5 mAcm.2) exhibited a high specific capacitance due to their large surface areas. Also, specific capacity retention after 250 cycles in an aqueous solution of 0.5 M Na2SO4 at 100 mVs -1 was about 78% of the initial capacity (203 Fg-1 ). To improve the electrochemical capacitive behavior of Mn oxide electrodes, a sequential approach and a one-step method were adopted to synthesize Mn oxide/PEDOT electrodes through anodic deposition on Au coated Si substrates from aqueous solutions. In the former case, free standing Mn oxide rods (about 10 µm long and less than 1.5 µm in diameter) were first synthesized, then coated by electro-polymerization of a conducting polymer (PEDOT) giving coaxial rods. The one-step, co-electrodeposition method produced agglomerated Mn oxide/PEDOT particles. The electrochemical behavior of the deposits depended on the morphology and crystal structure of the fabricated electrodes, which were affected by the composition and pH of the electrolyte, temperature, current density and polymer deposition time. Mn oxide/PEDOT coaxial core/shell rods consisted of MnO2 with an antifluorite-type structure coated with amorphous PEDOT. The Mn oxide/PEDOT coaxial core/shell electrodes prepared by the sequential method showed significantly better specific capacity and redox performance properties relative to both uncoated Mn oxide rods and co- electrodeposited Mn oxide/PEDOT electrodes. The best specific capacitance for Mn oxide/PEDOT rods produced sequentially was ˜295 F g-1 with ˜92% retention after 250 cycles in 0.5 M Na2SO4 at 100 mV s-1. To further improve the electrochemical capacitive behavior of Mn oxide electrodes, Co-doped and Fe-doped Mn oxide electrodes with a rod-like morphology and antifluorite-type crystal structure were synthesized by anodic electrodeposition, on Au coated Si substrates, from dilute solutions of Mn acetate and Co sulphate and Mn acetate and Fe chloride. Also, Mn-Co oxide/PEDOT coaxial core/shell rods were synthesized by applying a shell of PEDOT on Mn-Co oxide electrodes. Mn-Co oxide/PEDOT electrodes consisted of MnO2, with partial Co 2+ and Co3+ ion substitution for Mn4+, and amorphous PEDOT. Mn-Fe oxide electrodes consisted of MnO2, with partial Fe2+ and Fe3+ ion substitution for Mn4+. Electrochemical analysis showed that the capacitance values for all deposits increased with increasing scan rate to 100 mVs -1, and then decreased after 100 mVs-1. The Mn-Co oxide/PEDOT electrodes showed improved specific capacity and electrochemical cyclability relative to uncoated Mn-Co oxides and Mn-Fe oxides. Mn-Co oxide/PEDOT electrodes with rod-like structures had high capacitances (up to 310 Fg -1) at a scan rate of 100 mVs-1 and maintained their capacitance after 500 cycles in 0.5 M Na2SO4 (91% retention). Capacitance reduction for the deposits was mainly due to the loss of Mn ions by dissolution in the electrolyte solution. To better understand the nucleation and growth mechanisms of Mn oxide electrodes, the effects of supersaturation ratio on the morphology and crystal structure of electrodeposited Mn oxide were studied. By changing deposition parameters, including deposition current density, electrolyte composition, pH and temperature, a series of nanocrystalline Mn oxide electrodes with various morphologies (continuous coatings, rod-like structures, aggregated rods and thin sheets) and an antifluorite-type crystal structure was obtained. Mn oxide thin sheets showed instantaneous nucleation and single crystalline growth; rods had a mix of instantaneous/progressive nucleation and polycrystalline growth and continuous coatings formed by progressive nucleation and polycrystalline growth. Electrochemical analysis revealed the best capacitance behaviour obtained for Mn oxide thin sheets followed by Mn oxide rods, with dimensions on the microscale, and then continuous coatings. The highest specific capacitance (˜230 Fg-1) and capacitance retention rates (˜88%) were obtained for Mn oxide thin sheets after 250 cycles in 0.5 M Na2 SO4 at 20 mVs-1.
Filament-reinforced metal composite pressure vessel evaluation and performance demonstration
NASA Technical Reports Server (NTRS)
Landes, R. E.
1976-01-01
Two different Kevlar-49 filament-reinforced metal sphere designs were developed, and six vessels of each type were fabricated and subjected to fatigue cycling, sustained loading, and hydrostatic burst. The 61 cm (24 inch) diameter Kevlar-49/cryoformed 301 stainless steel pressure vessels demonstrated the required pressure cycle capability, burst factor of safety, and a maximum pressure times volume divided by weight (pV/W) performance of 210 J/g (834 000 in-lb/lbm) at burst; this represented a 25 to 30% weight saving over the lightest weight comparable, 6A1-4V Ti, homogeneous pressure vessel. Both the Kevlar/stainless steel design and the 97 cm (38 inch) diameter Kevlar-49/2219-T62 aluminum sphere design demonstrated nonfragmentation and controlled failure mode features when pressure cycled to failure at operating pressure. When failure occurred during pressure cycling, the mode was localized leakage and not catastrophic. Kevlar/stainless steel vessels utilized a unique conical boss design, and Kevlar/aluminum vessels incorporated a tie-rod to carry port loads; both styles of polar fittings performed as designed during operational testing of the vessels.
Colburn, Richard P.
1985-01-01
A device for collecting fission gas released by a failed fuel rod which device uses a filter to pass coolant but which filter blocks fission gas bubbles which cannot pass through the filter due to the surface tension of the bubble.
In vitro biomechanical comparison of pedicle screws, sublaminar hooks, and sublaminar cables.
Hitchon, Patrick W; Brenton, Matthew D; Black, Andrew G; From, Aaron; Harrod, Jeremy S; Barry, Christopher; Serhan, Hassan; Torner, James C
2003-07-01
Three types of posterior thoracolumbar implants are in use today: pedicle screws, sublaminar titaniumcables, and sublaminar hooks. The authors conducted a biomechanical comparison of these three implants in human cadaveric spines. Spine specimens (T5-12) were harvested, radiographically assessed for fractures or metastases, and their bone mineral density (BMD) was measured. Individual vertebrae were disarticulated and fitted with either pedicle screws, sublaminar cables, or bilateral claw hooks. The longitudinal component of each construct consisted of bilateral 10-cm rods connected with two cross-connectors. The vertebral body was embedded in cement, and the rods were affixed to a ball-and-socket apparatus for the application of a distraction force. The authors analyzed 1) 20 vertebrae implanted with screws; 2) 20 with hooks, and 3) 20 with cables. The maximum pullout (MPO) forces prior to failure (mean +/- standard deviation) for the screw, hook, and cable implants were 972 +/- 330, 802 +/- 356, and 654 +/- 248 N, respectively (p = 0.0375). Cables allowed significantly greater displacement (6.80 +/- 3.95 mm) prior to reaching the MPO force than hooks (3.73 +/- 1.42 mm) and screws (4.42 +/- 2.15 mm [p = 0.0108]). Eleven screw-implanted vertebrae failed because of screw pullout. All hook-and-cable-implanted vertebrae failed because of pedicle, middle column, or laminar fracture. These findings suggest that screws possess the greatest pullout strength of the three fixation systems. Sublaminar cables are the least rigid of the three. When screw failure occurred, the mechanism was generally screw back-out, without vertebral fractures.
Mathematical Model of the Role of RdCVF in the Coexistence of Rods and Cones in a Healthy Eye.
Camacho, Erika T; Léveillard, Thierry; Sahel, José-Alain; Wirkus, Stephen
2016-07-01
Understanding the essential components and processes for coexistence of rods and cones is at the forefront of retinal research. The recent discovery on RdCVF's mechanism and mode of action for enhancing cone survival brings us a step closer to unraveling key questions of coexistence and codependence of these neurons. In this work, we build from ecological and enzyme kinetic work on functional response kinetics and present a mathematical model that allows us to investigate the role of RdCVF and its contribution to glucose intake. Our model results and analysis predict a dual role of RdCVF for enhancing and repressing the healthy coexistence of the rods and cones. Our results show that maintaining RdCVF above a threshold value allows for coexistence. However, a significant increase above this value threatens the existence of rods as the cones become extremely efficient at uptaking glucose and begin to take most of it for themselves. We investigate the role of natural glucose intake and that due to RdCVF in both high and low nutrient levels. Our analysis reveals that under low nutrient levels coexistence is not possible regardless of the amount of RdCVF present. With high nutrient levels coexistence can be achieved with a relative small increase in glucose uptake. By understanding the contributions of rods to cones survival via RdCVF in a non-diseased retina, we hope to shed light on degenerative diseases such as retinitis pigmentosa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mollerach, R.; Leszczynski, F.; Fink, J.
2006-07-01
In 2005 the Argentine Government took the decision to complete the construction of the Atucha-II nuclear power plant, which has been progressing slowly during the last ten years. Atucha-II is a 745 MWe nuclear station moderated and cooled with heavy water, of German (Siemens) design located in Argentina. It has a pressure-vessel design with 451 vertical coolant channels, and the fuel assemblies (FA) are clusters of 37 natural UO{sub 2} rods with an active length of 530 cm. For the reactor physics area, a revision and update calculation methods and models (cell, supercell and reactor) was recently carried out coveringmore » cell, supercell (control rod) and core calculations. As a validation of the new models some benchmark comparisons were done with Monte Carlo calculations with MCNP5. This paper presents comparisons of cell and supercell benchmark problems based on a slightly idealized model of the Atucha-I core obtained with the WIMS-D5 and DRAGON codes with MCNP5 results. The Atucha-I core was selected because it is smaller, similar from a neutronic point of view, and more symmetric than Atucha-II Cell parameters compared include cell k-infinity, relative power levels of the different rings of fuel rods, and some two-group macroscopic cross sections. Supercell comparisons include supercell k-infinity changes due to the control rods (tubes) of steel and hafnium. (authors)« less
Achiral symmetry breaking and positive Gaussian modulus lead to scalloped colloidal membranes
Gibaud, Thomas; Kaplan, C. Nadir; Sharma, Prerna; Zakhary, Mark J.; Ward, Andrew; Oldenbourg, Rudolf; Meyer, Robert B.; Kamien, Randall D.; Powers, Thomas R.; Dogic, Zvonimir
2017-01-01
In the presence of a nonadsorbing polymer, monodisperse rod-like particles assemble into colloidal membranes, which are one-rod-length–thick liquid-like monolayers of aligned rods. Unlike 3D edgeless bilayer vesicles, colloidal monolayer membranes form open structures with an exposed edge, thus presenting an opportunity to study elasticity of fluid sheets. Membranes assembled from single-component chiral rods form flat disks with uniform edge twist. In comparison, membranes composed of a mixture of rods with opposite chiralities can have the edge twist of either handedness. In this limit, disk-shaped membranes become unstable, instead forming structures with scalloped edges, where two adjacent lobes with opposite handedness are separated by a cusp-shaped point defect. Such membranes adopt a 3D configuration, with cusp defects alternatively located above and below the membrane plane. In the achiral regime, the cusp defects have repulsive interactions, but away from this limit we measure effective long-ranged attractive binding. A phenomenological model shows that the increase in the edge energy of scalloped membranes is compensated by concomitant decrease in the deformation energy due to Gaussian curvature associated with scalloped edges, demonstrating that colloidal membranes have positive Gaussian modulus. A simple excluded volume argument predicts the sign and magnitude of the Gaussian curvature modulus that is in agreement with experimental measurements. Our results provide insight into how the interplay between membrane elasticity, geometrical frustration, and achiral symmetry breaking can be used to fold colloidal membranes into 3D shapes. PMID:28411214
Depletion optimization of lumped burnable poisons in pressurized water reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kodah, Z.H.
1982-01-01
Techniques were developed to construct a set of basic poison depletion curves which deplete in a monotonical manner. These curves were combined to match a required optimized depletion profile by utilizing either linear or non-linear programming methods. Three computer codes, LEOPARD, XSDRN, and EXTERMINATOR-2 were used in the analyses. A depletion routine was developed and incorporated into the XSDRN code to allow the depletion of fuel, fission products, and burnable poisons. The Three Mile Island Unit-1 reactor core was used in this work as a typical PWR core. Two fundamental burnable poison rod designs were studied. They are a solidmore » cylindrical poison rod and an annular cylindrical poison rod with water filling the central region.These two designs have either a uniform mixture of burnable poisons or lumped spheroids of burnable poisons in the poison region. Boron and gadolinium are the two burnable poisons which were investigated in this project. Thermal self-shielding factor calculations for solid and annular poison rods were conducted. Also expressions for overall thermal self-shielding factors for one or more than one size group of poison spheroids inside solid and annular poison rods were derived and studied. Poison spheroids deplete at a slower rate than the poison mixture because each spheroid exhibits some self-shielding effects of its own. The larger the spheroid, the higher the self-shielding effects due to the increase in poison concentration.« less
Recent GE BWR fuel experience and design evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, J.E.; Potts, G.A.; Proebstle, R.A.
1992-01-01
Reliable fuel operation is essential to the safe, reliable, and economic power production by today's commercial nuclear reactors. GE Nuclear Energy is committed to maximize fuel reliability through the progressive development of improved fuel design features and dedication to provide the maximum quality of the design features and dedication to provide the maximum quality of the design, fabrication, and operation of GE BWR fuel. Over the last 35 years, GE has designed, fabricated, and placed in operation over 82,000 BWR fuel bundles containing over 5 million fuel rods. This experience includes successful commercial reactor operation of fuel assemblies to greatermore » than 45000 MWd/MTU bundle average exposure. This paper reports that this extensive experience base has enabled clear identification and characterization of the active failure mechanisms. With this failure mechanism characterization, mitigating actions have been developed and implemented by GE to provide the highest reliability BWR fuel bundles possible.« less
Holewijn, Roderick M; de Kleuver, Marinus; van der Veen, Albert J; Emanuel, Kaj S; Bisschop, Arno; Stadhouder, Agnita; van Royen, Barend J; Kingma, Idsart
2017-08-01
Biomechanical study. Recently, a posterior concave periapical distraction device for fusionless scoliosis correction was introduced. The goal of this study was to quantify the effect of the periapical distraction device on spinal range of motion (ROM) in comparison with traditional rigid pedicle screw-rod instrumentation. Using a spinal motion simulator, 6 human spines were loaded with 4 N m and 6 porcine spines with 2 N m to induce flexion-extension (FE), lateral bending (LB), and axial rotation (AR). ROM was measured in 3 conditions: untreated, periapical distraction device, and rigid pedicle screw-rod instrumentation. The periapical distraction device caused a significant ( P < .05) decrease in ROM of FE (human, -40.0% and porcine, -55.9%) and LB (human, -18.2% and porcine, -17.9%) as compared to the untreated spine, while ROM of AR remained unaffected. In comparison, rigid instrumentation caused a significantly ( P < .05) larger decrease in ROM of FE (human, -80.9% and porcine, -94.0%), LB (human, -75.0% and porcine, -92.2%), and AR (human, -71.3% and porcine, -86.9%). Although no destructive forces were applied, no device failures were observed. Spinal ROM was significantly less constrained by the periapical distraction device compared to rigid pedicle screw-rod instrumentation. Therefore, provided that scoliosis correction is achieved, a more physiological spinal motion is expected after scoliosis correction with the posterior concave periapical distraction device.
Unraveling Deformation Mechanisms in Gradient Structured Metals
NASA Astrophysics Data System (ADS)
Moering, Jordan Alexander
Gradient structures have demonstrated high strength and high ductility, introducing new mechanisms to challenge conventional mechanics. This work develops a method for characterizing the shear strain in gradient structured steel and presents evidence of a texture gradient that develops in Surface Mechanical Attrition Treatment (SMAT). Mechanics underlying some theories of the strengthening mechanisms in gradient structured metals are introduced, followed by the fabrication and testing of gradient structured aluminum rod. The round geometry is intrinsically different from its flat counterparts, which leads to a multiaxial stress state evolving in tension. The aluminum exhibits strengthening beyond rule of mixtures, and texture evolution in the post-mortem sample indicates that out of plane stresses operate within the gradient. Finally, another gradient structured aluminum rod is shown to exhibit higher strength and higher elongation to failure in a variety of sample diameters and processing conditions. The GND density and microstructural evolution showed no significant changes during mechanical testing, and high resolution strain mapping was successfully completed within the core of the material. These discoveries and contributions to the field should help continue unraveling the deformation mechanisms of gradient structured metals.
Phenomenology of BWR fuel assembly degradation
NASA Astrophysics Data System (ADS)
Kurata, Masaki; Barrachin, Marc; Haste, Tim; Steinbrueck, Martin
2018-03-01
Severe accidents occurred at the Fukushima-Daiichi Nuclear Power Station (FDNPS) which required an immediate re-examination of fuel degradation phenomenology. The present paper reviews the updated knowledge on the phenomenology of the fuel degradation, focusing mainly on the BWR fuel assembly degradation at the macroscopic scale and that of the individual interactions at the meso-scale. Oxidation of boron carbide (B4C) control rods potentially generates far larger amounts of heat and hydrogen under BWR accident conditions. All integral tests with B4C control rods or control blades have shown early failure, liquefaction, relocation and oxidation of B4C starting at temperatures around 1250 °C, well below the significant interaction temperatures of UO2-Zry. These interactions or reactions potentially influence the progress of fuel degradation in the early phase. The steam-starved conditions, which are being discussed as a likely scenario at the FDNPS accident, highly influence the individual interactions and potentially lead the fuel degradation in non-prototypical directions. The detailed phenomenology of individual interactions and their influence on the transient and on the late phase of the severe accidents are also discussed.
Liu, Xin; Wang, Mengmeng; Yin, Fucheng; Ouyang, Xuemei; Li, Zhi
2017-01-01
The effects of tungsten addition on the microstructure and corrosion resistance of Fe-3.5B alloys in a liquid zinc bath at 520 °C were investigated by means of scanning electron microscopy, X-ray diffraction and electron probe micro-analysis. The microstructure evolution in different alloys is analyzed and discussed using an extrapolated Fe-B-W ternary phase diagram. Experimental results show that there are three kinds of borides, the reticular (Fe, W)2B, the rod-like (Fe, W)3B and flower-like FeWB. The addition of tungsten can refine the microstructure and improve the stability of the reticular borides. Besides, it is beneficial to the formation of the metastable (Fe, W)3B phase. The resultant Fe-3.5B-11W (wt %) alloy possesses excellent corrosion resistance to liquid zinc. When tungsten content exceeds 11 wt %, the formed flower-like FeWB phase destroys the integrity of the reticular borides and results in the deterioration of the corrosion resistance. Also, the corrosion failure resulting from the spalling of borides due to the initiation of micro-cracks in the grain boundary of borides is discussed in this paper. PMID:28772759
Vibration characteristics measurement of beam-like structures using infrared thermography
NASA Astrophysics Data System (ADS)
Talai, S. M.; Desai, D. A.; Heyns, P. S.
2016-11-01
Infrared thermography (IRT) has matured and is now widely accepted as a condition monitoring tool where temperature is measured in a non-contact way. Since the late 1970s, it has been extensively used in vibrothermography (Sonic IR) non-destructive technique for the evaluation of surface cracks through the observation of thermal imaging of the vibration-induced crack heat generation. However, it has not received research attention on prediction of structural vibration behaviour, hence; the concept to date is not understood. Therefore, this paper explores its ability to fill the existing knowledge gap. To achieve this, two cantilever beam-like structures couple with a friction rod subjected to a forced excitations while infrared cameras capturing the thermal images on the friction interfaces. The analysed frictional temperature evolution using the Matlab Fast Fourier Transform (FFT) algorithm and the use of the heat conduction equation in conjunction with a finite difference approach successfully identifies the structural vibration characteristics; with maximum error of 0.28% and 20.71% for frequencies and displacements, respectively. These findings are particularly useful in overcoming many limitations inherent in some of the current vibration measuring techniques applied in structural integrity management such as strain gauge failures due to fatigue.
Dynamic fatigue behaviour of Ag-doped Bi-2212 textured thin rods
NASA Astrophysics Data System (ADS)
Madre, M. A.; Rasekh, Sh; Diez, J. C.; Sotelo, A.
2009-03-01
The flexural strength of 1 wt.% Ag-doped Bi2Sr2CaCu2O8+δ thin rods textured by a laser heated floating zone was measured as a function of the environmental conditions (air versus water) at room temperature. Loading rates spanning three orders of magnitude (1, 10 and 100 μm/min) were used to explore their susceptibility to the environmental conditions. These mechanical tests were completed with electrical characterization (critical current at 77K and resistivity from 77 to 300 K) of samples submerged in distilled water for different time lengths (0, 12 and 120h). While Bi2Sr2CaCu2O8+δ has been shown, in previous works, to be unstable during contact with water molecules, the Ag-doped Bi-2212 textured rods tested in this work are very inert to the water environment, with respect to their mechanical and electrical properties, due to the presence of a narrow (approx150 μm) low textured outer ring formed in the growth process.
NASA Astrophysics Data System (ADS)
Labin, Amichai M.; Safuri, Shadi K.; Ribak, Erez N.; Perlman, Ido
2014-07-01
Vision starts with the absorption of light by the retinal photoreceptors—cones and rods. However, due to the ‘inverted’ structure of the retina, the incident light must propagate through reflecting and scattering cellular layers before reaching the photoreceptors. It has been recently suggested that Müller cells function as optical fibres in the retina, transferring light illuminating the retinal surface onto the cone photoreceptors. Here we show that Müller cells are wavelength-dependent wave-guides, concentrating the green-red part of the visible spectrum onto cones and allowing the blue-purple part to leak onto nearby rods. This phenomenon is observed in the isolated retina and explained by a computational model, for the guinea pig and the human parafoveal retina. Therefore, light propagation by Müller cells through the retina can be considered as an integral part of the first step in the visual process, increasing photon absorption by cones while minimally affecting rod-mediated vision.
Experimental verification of a theoretical model of an active cladding optical fiber fluorosensor
NASA Technical Reports Server (NTRS)
Albin, Sacharia; Briant, Alvin L.; Egalon, Claudio O.; Rogowski, Robert S.; Nankung, Juock S.
1993-01-01
Experiments were conducted to verify a theoretical model on the injection efficiency of sources in the cladding of an optical fiber. The theoretical results predicted an increase in the injection efficiency for higher differences in refractive indices between the core and cladding. The experimental apparatus used consisted of a glass rod 50 cm long, coated at one end with a thin film of fluorescent substance. The fluorescent substance was excited with side illumination, perpendicular to the rod axis, using a 476 nm Argon-ion laser. Part of the excited fluorescence was injected into the core and guided to a detector. The signal was measured for several different cladding refractive indices. The cladding consisted of sugar dissolved in water and the refractive index was changed by varying the sugar concentration in the solution. The results indicate that the power injected into the rod, due to evanescent wave injection, increases with the difference in refractive index which is in qualitative agreement with theory.
Sudo, Hideki; Ito, Manabu; Abe, Yuichiro; Abumi, Kuniyoshi; Takahata, Masahiko; Nagahama, Ken; Hiratsuka, Shigeto; Kuroki, Kei; Iwasaki, Norimasa
2014-06-15
Retrospective analysis of a prospectively collected, consecutive, nonrandomized series of patients. To assess the surgical outcomes of the simultaneous double-rod rotation technique for treating Lenke 1 thoracic adolescent idiopathic scoliosis (AIS). With the increasing popularity of segmental pedicle screw spinal reconstruction for treating AIS, concerns regarding the limited ability to correct hypokyphosis have also increased. A consecutive series of 32 patients with Lenke 1 main thoracic AIS treated with the simultaneous double-rod rotation technique at our institution was included. Outcome measures included patient demographics, radiographical measurements, and Scoliosis Research Society questionnaire scores. All 32 patients were followed up for a minimum of 2 years (average, 3.6 yr). The average main thoracic Cobb angle correction rate and the correction loss at the final follow-up were 67.8% and 3.3°, respectively. The average preoperative thoracic kyphosis (T5-T12) was 11.9°, which improved significantly to 20.5° (P < 0.0001) at the final follow-up. An increase in thoracic kyphosis was significantly correlated with an increase in lumbar lordosis at the final follow-up (r = 0.42). The average preoperative vertebral rotation angle was 19.7°, which improved significantly after surgery to 14.9° (P = 0.0001). There was no correlation between change in thoracic kyphosis and change in apical vertebral rotation (r =-0.123). The average preoperative total Scoliosis Research Society questionnaire score was 3.0, which significantly improved to 4.4 (P < 0.0001) at the final follow-up. Throughout surgery and even after, there were no instrumentation failures, pseudarthrosis, infection of the surgical site, or clinically relevant neurovascular complications. The simultaneous double-rod rotation technique for treating Lenke 1 AIS provides significant sagittal correction of the main thoracic curve while maintaining sagittal profiles and correcting coronal and axial deformities. 4.
Evaluation of Acoustic Emission SHM of PRSEUS Composite Pressure Cube Tests
NASA Technical Reports Server (NTRS)
Horne, Michael R.; Madaras, Eric I.
2013-01-01
A series of tests of the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) pressure cube were conducted during third quarter 2011 at NASA Langley Research Center (LaRC) in the Combined Loads Test facility (COLTS). This is a report of the analysis of the Acoustic Emission (AE) data collected during those tests. The AE signals of the later tests are consistent with the final failure progression through two of the pressure cube panels. Calibration tests and damage precursor AE indications, from preliminary checkout pressurizations, indicated areas of concern that eventually failed. Hence those tests have potential for vehicle health monitoring.
Compressive Loading and Modeling of Stitched Composite Stiffeners
NASA Technical Reports Server (NTRS)
Leone, Frank A., Jr.; Jegley, Dawn C.; Linton, Kim A.
2016-01-01
A series of single-frame and single-stringer compression tests were conducted at NASA Langley Research Center on specimens harvested from a large panel built using the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. Different frame and stringer designs were used in fabrication of the PRSEUS panel. In this paper, the details of the experimental testing of single-frame and single-stringer compression specimens are presented, as well as discussions on the performance of the various structural configurations included in the panel. Nonlinear finite element models were developed to further understand the failure processes observed during the experimental campaign.
Analysis of rolling contact spall life in 440 C steel bearing rims
NASA Technical Reports Server (NTRS)
Bastias, P. C.; Bhargava, V.; Bower, A. P.; Du, J.; Gupta, V.; Hahn, G. T.; Kulkarni, S. M.; Kumar, A. M.; Leng, X.; Rubin, C. A.
1991-01-01
The results of a two year study of the mechanisms of spall failure in the HPOTP bearings are described. The objective was to build a foundation for detailed analyses of the contact life in terms of: cyclic plasticity, contact mechanics, spall nucleation, and spall growth. Since the laboratory rolling contact testing is carried out in the 3 ball/rod contact fatigue testing machine, the analysis of the contacts and contact lives produced in this machine received attention. The results from the experimentally observed growth lives are compared with calculated predictions derived from the fracture mechanics calculations.
Nanocrystallization in Cu-Zr-Al-Sm Bulk Metallic Glasses
NASA Astrophysics Data System (ADS)
Sikan, Fatih; Yasar, Bengisu; Kalay, Ilkay
2018-04-01
The effect of rare-earth element (Sm) microalloying on the thermal stability and crystallization kinetics of melt-spun ribbons and suction-cast rods of Zr48Cu38.4Al9.6Sm4 alloy were investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), and atom probe tomography (APT). The XRD results of constant heating rate annealing indicated that amorphous Zr48Cu38.4Al9.6Sm4 melt-spun ribbons devitrifies into Cu2Sm at 673 K (400 °C). The sequence continues with the precipitation of Cu10Zr7 and then these two phases coexist. XRD and TEM studies on 1 mm diameter as suction-cast rods indicated the precipitation of 30-nm-mean size Cu2Sm crystals during solidification. TEM investigation of the isothermal crystallization sequence of melt-spun ribbons and 1-mm-diameter suction-cast rods revealed the precipitation of Cu2Sm nanocrystals at the onset of crystallization and the restriction of the growth of these nanocrystals up to 10 nm diameter with further annealing. APT analysis of 1-mm-diameter suction-cast rods showed that the limited growth of Cu2Sm nanocrystals is due to sluggish diffusion of Sm and Al-Zr pile up at the interface.
Development of Mackintosh Probe Extractor
NASA Astrophysics Data System (ADS)
Rahman, Noor Khazanah A.; Kaamin, Masiri; Suwandi, Amir Khan; Sahat, Suhaila; Jahaya Kesot, Mohd
2016-11-01
Dynamic probing is a continuous soil investigation technique, which is one of the simplest soil penetration test. It basically consist of repeatedly driving a metal tipped probe into the ground using a drop weight of fixed mass and travel. Testing was carried out continuously from ground level to the final penetration depth. Once the soil investigation work done, it is difficult to pull out the probe rod from the ground, due to strong soil structure grip against probe cone and prevent the probe rod out from the ground. Thus, in this case, a tool named Extracting Probe was created to assist in the process of retracting the probe rod from the ground. In addition, Extracting Probe also can reduce the time to extract the probe rod from the ground compare with the conventional method. At the same time, it also can reduce manpower cost because only one worker involve to handle this tool compare with conventional method used two or more workers. From experiment that have been done we found that the time difference between conventional tools and extracting probe is significant, average time difference is 155 minutes. In addition the extracting probe can reduce manpower usage, and also labour cost for operating the tool. With all these advantages makes this tool has the potential to be marketed.
Regulation the morphology of cationized gold nanoparticles for effective gene delivery.
Zhang, Peng; Li, Bangbang; Du, Jianwei; Wang, Youxiang
2017-09-01
Recent research indicated that the morphology of nanoparticles could result in distinct biological behaviors, thus played an important role in designing efficient gene delivery systems. Among them, gold nanoparticles (AuNPs) with various shapes were widely studied due to the good biocompatibility and easy modification ability. Our recent research indicated that polyethyleneimine-g-bovine serum albumin (BSA-PEI) as non-viral gene vector showed good colloid stability and high transfection efficiency. In this work, BSA-PEI was utilized to modify gold nanospheres (AuNSs) and gold nanorods (AuNRs) to investigate the influence of the morphology on gene delivery. Both AuNS@BSA-PEI and AuNR@BSA-PEI nanoparticles condensed DNA effectively at N/P ratio above 5 and maintained spherical or rod-like morphology respectively. Due to the higher surface charge density at the tips, the rod-like gene complexes were prone to use the tips to contact with cell membrane, which facilitated to be uptaked by HepG2 cells. The endocytosis inhibition experiments showed some differences in the endocytic pathway. Gene transfection experiment showed that the rod-like complexes had almost 100-fold higher of transfection level than that of spherical complexes at the N/P ratio of 20. This work provided a potential strategy for further design of gene vectors with improved transfection results by adjusting the morphology of gene vectors. Copyright © 2017. Published by Elsevier B.V.
Reactivity Initiated Accident Simulation to Inform Transient Testing of Candidate Advanced Cladding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas R; Wysocki, Aaron J; Terrani, Kurt A
2016-01-01
Abstract. Advanced cladding materials with potentially enhanced accident tolerance will yield different light water reactor performance and safety characteristics than the present zirconium-based cladding alloys. These differences are due to different cladding material properties and responses to the transient, and to some extent, reactor physics, thermal, and hydraulic characteristics. Some of the differences in reactors physics characteristics will be driven by the fundamental properties (e.g., absorption in iron for an iron-based cladding) and others will be driven by design modifications necessitated by the candidate cladding materials (e.g., a larger fuel pellet to compensate for parasitic absorption). Potential changes in thermalmore » hydraulic limits after transition from the current zirconium-based cladding to the advanced materials will also affect the transient response of the integral fuel. This paper leverages three-dimensional reactor core simulation capabilities to inform on appropriate experimental test conditions for candidate advanced cladding materials in a control rod ejection event. These test conditions are using three-dimensional nodal kinetics simulations of a reactivity initiated accident (RIA) in a representative state-of-the-art pressurized water reactor with both nuclear-grade iron-chromium-aluminum (FeCrAl) and silicon carbide based (SiC-SiC) cladding materials. The effort yields boundary conditions for experimental mechanical tests, specifically peak cladding strain during the power pulse following the rod ejection. The impact of candidate cladding materials on the reactor kinetics behavior of RIA progression versus reference zirconium cladding is predominantly due to differences in: (1) fuel mass/volume/specific power density, (2) spectral effects due to parasitic neutron absorption, (3) control rod worth due to hardened (or softened) spectrum, and (4) initial conditions due to power peaking and neutron transport cross sections in the equilibrium cycle cores due to hardened (or softened) spectrum. This study shows minimal impact of SiC-based cladding configurations on the transient response versus reference zirconium-based cladding. However, the FeCrAl cladding response indicates similar energy deposition, but with significantly shorter pulses of higher magnitude. Therefore the FeCrAl-based cases have a more rapid fuel thermal expansion rate and the resultant pellet-cladding interaction occurs more rapidly.« less
Kozuka, Takashi; Chaya, Taro; Tamalu, Fuminobu; Shimada, Mariko; Fujimaki-Aoba, Kayo; Kuwahara, Ryusuke; Watanabe, Shu-Ichi; Furukawa, Takahisa
2017-10-11
Neurotransmission plays an essential role in neural circuit formation in the central nervous system (CNS). Although neurotransmission has been recently clarified as a key modulator of retinal circuit development, the roles of individual synaptic transmissions are not yet fully understood. In the current study, we investigated the role of neurotransmission from photoreceptor cells to ON bipolar cells in development using mutant mouse lines of both sexes in which this transmission is abrogated. We found that deletion of the ON bipolar cation channel TRPM1 results in the abnormal contraction of rod bipolar terminals and a decreased number of their synaptic connections with amacrine cells. In contrast, these histological alterations were not caused by a disruption of total glutamate transmission due to loss of the ON bipolar glutamate receptor mGluR6 or the photoreceptor glutamate transporter VGluT1. In addition, TRPM1 deficiency led to the reduction of total dendritic length, branch numbers, and cell body size in AII amacrine cells. Activated Goα, known to close the TRPM1 channel, interacted with TRPM1 and induced the contraction of rod bipolar terminals. Furthermore, overexpression of Channelrhodopsin-2 partially rescued rod bipolar cell development in the TRPM1 -/- retina, whereas the rescue effect by a constitutively closed form of TRPM1 was lower than that by the native form. Our results suggest that TRPM1 channel opening is essential for rod bipolar pathway establishment in development. SIGNIFICANCE STATEMENT Neurotransmission has been recognized recently as a key modulator of retinal circuit development in the CNS. However, the roles of individual synaptic transmissions are not yet fully understood. In the current study, we focused on neurotransmission between rod photoreceptor cells and rod bipolar cells in the retina. We used genetically modified mouse models which abrogate each step of neurotransmission: presynaptic glutamate release, postsynaptic glutamate reception, or transduction channel function. We found that the TRPM1 transduction channel is required for the development of rod bipolar cells and their synaptic formation with subsequent neurons, independently of glutamate transmission. This study advances our understanding of neurotransmission-mediated retinal circuit refinement. Copyright © 2017 the authors 0270-6474/17/379889-12$15.00/0.
Viringipurampeer, Ishaq A; Gregory-Evans, Cheryl Y; Metcalfe, Andrew L; Bashar, Emran; Moritz, Orson L; Gregory-Evans, Kevin
2018-06-18
Retinitis pigmentosa (RP) is a group of inherited neurological disorders characterized by rod photoreceptor cell death, followed by secondary cone cell death leading to progressive blindness. Currently, there are no viable treatment options for RP. Due to incomplete knowledge of the molecular signaling pathways associated with RP pathogenesis, designing therapeutic strategies remains a challenge. In particular, preventing secondary cone photoreceptor cell loss is a key goal in designing potential therapies. In this study, we identified the main drivers of rod cell death and secondary cone loss in the transgenic S334ter rhodopsin rat model, tested the efficacy of specific cell death inhibitors on retinal function, and compared the effect of combining drugs to target multiple pathways in the S334ter and P23H rhodopsin rat models. The primary driver of early rod cell death in the S334ter model was a caspase-dependent process, whereas cone cell death occurred though RIP3-dependent necroptosis. In comparison, rod cell death in the P23H model was via necroptotic signaling, whereas cone cell loss occurred through inflammasome activation. Combination therapy of four drugs worked better than the individual drugs in the P23H model but not in the S334ter model. These differences imply that treatment modalities need to be tailored for each genotype. Taken together, our data demonstrate that rationally designed genotype-specific drug combinations will be an important requisite to effectively target primary rod cell loss and more importantly secondary cone survival.
Influence of heterologous MreB proteins on cell morphology of Bacillus subtilis.
Schirner, Kathrin; Errington, Jeff
2009-11-01
The prokaryotic cytoskeletal protein MreB is thought to govern cell shape by positioning the cell wall synthetic apparatus at growth sites in the cell. In rod-shaped bacteria it forms helical filaments that run around the periphery of the rod during elongation. Gram-positive bacteria often contain more than one mreB gene. Bacillus subtilis has three mreB-like genes, mreB, mbl and mreBH, the first two of which have been shown to be essential under normal growth conditions. Expression of an mreB homologue from the closely related organism Bacillus licheniformis did not have any effect on cell growth or morphology. In contrast, expression of mreB from the phylogenetically more distant bacterium Clostridium perfringens produced shape defects and ultimately cell death, due to disruption of the endogenous MreB cytoskeleton. However, expression of either mreB(B. licheniformis) (mreB(Bl)) or mreB(C. perfringens) (mreB(Cp)) was sufficient to confer a rod shape to B. subtilis deleted for the three mreB isologues, supporting the idea that the three proteins have largely redundant functions in cell morphogenesis. Expression of mreBCD(Bl) could fully compensate for the loss of mreBCD in B. subtilis and led to the formation of rod-shaped cells. In contrast, expression of mreBCD(Cp) was not sufficient to confer a rod shape to B. subtilis Delta mreBCD, indicating that a complex of these three cell shape determinants is not enough for cell morphogenesis of B. subtilis.
Internal absorber solar collector
Sletten, Carlyle J.; Herskovitz, Sheldon B.; Holt, F. S.; Sletten, E. J.
1981-01-01
Thin solar collecting panels are described made from arrays of small rod collectors consisting of a refracting dielectric rod lens with an absorber imbedded within it and a reflecting mirror coated on the back side of the dielectric rod. Non-tracking collector panels on vertical walls or roof tops receive approximately 90% of solar radiation within an acceptance zone 60.degree. in elevation angle by 120.degree. or more in the azimuth sectors with a collector concentration ratio of approximately 3.0. Miniaturized construction of the circular dielectric rods with internal absorbers reduces the weight per area of glass, plastic and metal used in the collector panels. No external parts or insulation are needed as heat losses are low due to partial vacuum or low conductivity gas surrounding heated portions of the collector. The miniature internal absorbers are generally made of solid copper with black selective surface and the collected solar heat is extracted at the collector ends by thermal conductivity along the absorber rods. Heat is removed from end fittings by use of liquid circulants. Several alternate constructions are provided for simplifying collector panel fabrication and for preventing the thermal expansion and contraction of the heated absorber or circulant tubes from damaging vacuum seals. In a modified version of the internal absorber collector, oil with temperature dependent viscosity is pumped through a segmented absorber which is now composed of closely spaced insulated metal tubes. In this way the circulant is automatically diverted through heated portions of the absorber giving higher collector concentration ratios than theoretically possible for an unsegmented absorber.
Wang, Nanxiang; Xie, Huanxin; Xi, Chunyang; Zhang, Han; Yan, Jinglong
2017-03-09
The benefits of posterior lumbar fusion surgery with orthotopic paraspinal muscle-pediculated bone flaps are well established. However, the problem of non-union due to mechanical support is not completely resolved. The aim of the study was to compare the efficacy of polyether ether ketone (PEEK) rod device with conventional titanium devices in the posterior lumbar fusion surgery with orthotopic paraspinal muscle-pediculated bone flaps. This was a randomized controlled study with an experimental animal model. Thirty-two mongrel dogs were randomly divided into two groups-control group (n = 16), which received the titanium device and the treatment group (n = 16), which received PEEK rods. The animals were sacrificed 8 or 16 weeks after surgery. Lumbar spines of dogs in both groups were removed, harvested, and assessed for radiographic, biomechanical, and histological changes. Results in the current study indicated that there was no significant difference in the lumbar spine of the control and treatment groups in terms of radiographic, manual palpation, and gross examination. However, certain parameters of biomechanical testing showed significant differences (p < 0.05) in stiffness and displacement, revealing a better fusion (treatment group showed decreased stiffness with decreased displacement) of the bone graft. Similarly, the histological analysis also revealed a significant fusion mass in both treatment and control groups (p < 0.05). These findings revealed that fixation using PEEK connecting rod could improve the union of the bone graft in the posterior lumbar spine fusion surgery compared with that of the titanium rod fixation.
Excitation and desensitization of mouse rod photoreceptors in vivo following bright adapting light
Kang Derwent, Jennifer J; Qtaishat, Nasser M; Pepperberg, David R
2002-01-01
Electroretinographic (ERG) methods were used to determine response properties of mouse rod photoreceptors in vivo following adapting illumination that produced a significant extent of rhodopsin bleaching. Bleaching levels prevailing at ∼10 min and ∼20 min after the adapting exposure were on average 14% and 9%, respectively, based on the analysis of visual cycle retinoids in the eye tissues. Recovery of the rod response to the adapting light was monitored by analysing the ERG a-wave response to a bright probe flash presented at varying times during dark adaptation. A paired-flash procedure, in which the probe flash was presented at defined times after a weak test flash of fixed strength, was used to determine sensitivity of the rod response to the test flash. Recovery of the response to the adapting light was 80% complete at 13.5 ± 3.0 min (mean ± s.d.; n = 7) after adapting light offset. The adapting light caused prolonged desensitization of the weak-flash response derived from paired-flash data. By comparison with results obtained in the absence of the adapting exposure, desensitization determined with a test-probe interval of 80 ms was ∼fourfold after 5 min of dark adaptation and ∼twofold after 20 min. The results indicate, for mouse rods in vivo, that the time scale for recovery of weak-flash sensitivity substantially exceeds that for the recovery of circulating current following significant rhodopsin bleaching. The lingering desensitization may reflect a reduced efficiency of signal transmission in the phototransduction cascade distinct from that due to residual excitation. PMID:12015430
Non-Destructive Measurement of Residual Strain in Connecting Rods Using Neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikeda, Tomohiro; Bunn, Jeffrey R.; Fancher, Christopher M.
Increasing the strength of materials is effective in reducing weight and boosting structural part performance, but there are cases in where the residual strain generated during the process of manufacturing of high-strength materials results in a decline of durability. It is therefore important to understand how the residual strain in a manufactured component changes due to processing conditions. In the case of a connecting rod, because the strain load on the connecting rod rib sections is high, it is necessary to clearly understand the distribution of strain in the ribs. However, because residual strain is generally measured by using X-raymore » diffractometers or strain gauges, measurements are limited to the surface layer of the parts. Neutron beams, however, have a higher penetration depth than X-rays, allowing for strain measurement in the bulk material. The research discussed within this paper consists of non-destructive residual strain measurements in the interior of connecting rods using the 2nd Generation Neutron Residual Stress Mapping Facility (NRSF2) at Oak Ridge National Laboratory, measuring the Fe (211) diffraction peak position of the ferrite phase. The interior strain distribution of connecting rod, which prepared under different manufacturing processes, was revealed. By the visualization of interior strains, clear understandings of differences in various processing conditions were obtained. In addition, it is known that the peak width, which is also obtained during measurement, is suggestive of the size of crystallites in the structure; however the peak width can additionally be caused by microstresses and material dislocations.« less
75 FR 40775 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-14
... operation at low and high power. No degradation of the beam quality due to thermal stress can be tolerated.... Therefore a simple and reliable structure like the 4-rod RFQ is the best choice for the required task of...
Contributions of Rod and Cone Pathways to Retinal Direction Selectivity Through Development
Rosa, Juliana M.; Morrie, Ryan D.; Baertsch, Hans C.
2016-01-01
Direction selectivity is a robust computation across a broad stimulus space that is mediated by activity of both rod and cone photoreceptors through the ON and OFF pathways. However, rods, S-cones, and M-cones activate the ON and OFF circuits via distinct pathways and the relative contribution of each to direction selectivity is unknown. Using a variety of stimulation paradigms, pharmacological agents, and knockout mice that lack rod transduction, we found that inputs from the ON pathway were critical for strong direction-selective (DS) tuning in the OFF pathway. For UV light stimulation, the ON pathway inputs to the OFF pathway originated with rod signaling, whereas for visible stimulation, the ON pathway inputs to the OFF pathway originated with both rod and M-cone signaling. Whole-cell voltage-clamp recordings revealed that blocking the ON pathway reduced directional tuning in the OFF pathway via a reduction in null-side inhibition, which is provided by OFF starburst amacrine cells (SACs). Consistent with this, our recordings from OFF SACs confirmed that signals originating in the ON pathway contribute to their excitation. Finally, we observed that, for UV stimulation, ON contributions to OFF DS tuning matured earlier than direct signaling via the OFF pathway. These data indicate that the retina uses multiple strategies for computing DS responses across different colors and stages of development. SIGNIFICANCE STATEMENT The retina uses parallel pathways to encode different features of the visual scene. In some cases, these distinct pathways converge on circuits that mediate a distinct computation. For example, rod and cone pathways enable direction-selective (DS) ganglion cells to encode motion over a wide range of light intensities. Here, we show that although direction selectivity is robust across light intensities, motion discrimination for OFF signals is dependent upon ON signaling. At eye opening, ON directional tuning is mature, whereas OFF DS tuning is significantly reduced due to a delayed maturation of S-cone to OFF cone bipolar signaling. These results provide evidence that the retina uses multiple strategies for computing DS responses across different stimulus conditions. PMID:27629718
Liu, X. Sherry; Huang, Angela H.; Zhang, X. Henry; Sajda, Paul; Ji, Baohua; Guo, X. Edward
2008-01-01
A three dimensional (3D) computational simulation of dynamic process of trabecular bone remodeling was developed with all the parameters derived from physiological and clinical data. Contributions of the microstructural bone formation deficits: trabecular plate perforations, trabecular rod breakages, and isolated bone fragments, to the rapid bone loss and disruption of trabecular microarchitecture during menopause were studied. Eighteen human trabecular bone samples from femoral neck (FN) and spine were scanned using a micro computed tomography (μCT) system. Bone resorption and formation were simulated as a computational cycle corresponding to 40-day resorption/160-day formation. Resorption cavities were randomly created over the bone surface according to the activation frequency, which was strictly based on clinical data. Every resorption cavity was refilled during formation unless it caused trabecular plate perforation, trabecular rod breakage or isolated fragments. A 20-year-period starting 5 years before and ending 15 years after menopause was simulated for each specimen. Elastic moduli, standard and individual trabeculae segmentation (ITS)-based morphological parameters were evaluated for each simulated 3D image. For both spine and FN groups, the time courses of predicted bone loss pattern by microstructural bone formation deficits were fairly consistent with the clinical measurements. The percentage of bone loss due to trabecular plate perforation, trabecular rod breakage, and isolated bone fragments were 73.2%, 18.9% and 7.9% at the simulated 15 years after menopause. The ITS-based plate fraction (pBV/BV), mean plate surface area (pTb.S), plate number density (pTb.N), and mean rod thickness (rTb.Th) decreased while rod fraction (rBV/BV) and rod number density (rTb.N) increased after the simulated menopause. The dynamic bone remodeling simulation based on microstructural bone formation deficits predicted the time course of menopausal bone loss pattern of spine and FN. Microstructural plate perforation could be the primary cause of menopausal trabecular bone loss. The combined effect of trabeculae perforation, breakage, and isolated fragments resulted in fewer and smaller trabecular plates and more but thinner trabecular rods. PMID:18550463
Castillo Sierra, Rafael; Oviedo-Trespalacios, Oscar; Candelo, John E; Soto, Jose D
2015-07-01
Pollution on electrical insulators is one of the greatest causes of failure of substations subjected to high levels of salinity and environmental pollution. Considering leakage current as the main indicator of pollution on insulators, this paper focuses on establishing the effect of the environmental conditions on the risk of failure due to pollution on insulators and determining the significant change in the magnitude of the pollution on the insulators during dry and humid periods. Hierarchical segmentation analysis was used to establish the effect of environmental conditions on the risk of failure due to pollution on insulators. The Kruskal-Wallis test was utilized to determine the significant changes in the magnitude of the pollution due to climate periods. An important result was the discovery that leakage current was more common on insulators during dry periods than humid ones. There was also a higher risk of failure due to pollution during dry periods. During the humid period, various temperatures and wind directions produced a small change in the risk of failure. As a technical result, operators of electrical substations can now identify the cause of an increase in risk of failure due to pollution in the area. The research provides a contribution towards the behaviour of the leakage current under conditions similar to those of the Colombian Caribbean coast and how they affect the risk of failure of the substation due to pollution.
Stable glow discharge detector
Koo, Jackson C.; Yu, Conrad M.
2004-05-18
A highly sensitive electronic ion cell for the measurement of trace elements in He carrier gas which involves glow discharge. A constant wave (CW) stable glow discharge detector which is controlled through a biased resistor, can detect the change of electron density caused by impurities in the He carrier gas by many orders of magnitude larger than that caused by direct ionization or electron capture. The stable glow discharge detector utilizes a floating pseudo-electrode to form a probe in or near the plasma and a solid rod electrode. By using this probe, the large variation of electron density due to trace amounts of impurities can be directly measured. The solid rod electrode provides greater stability and thus easier alignment.
Parametric study of rod-pinch diode using particle-in-cell simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, R.; Biswas, D., E-mail: raghav@barc.gov.in; Chandra, R.
2014-07-01
We perform Particle-In-Cell (PIC) simulation of KALI-30 GW pulsed power generator based rod-pinch diode. It is shown that ions emitted from the anode-plasma play a crucial role in diode dynamics. It is found that ions not only help in compensating the space charge due to electron beam, but also lead to enhancement of the local electric field at the side walls of the cathode leading to additional electron emission from the side wall. Electrons emanating from one side wall of the cathode tend to converge at the anode tip. This can be used to design an improved Flash X-ray source.more » (author)« less
Thermal hydraulic design and decay heat removal of a solid target for a spallation neutron source
NASA Astrophysics Data System (ADS)
Takenaka, N.; Nio, D.; Kiyanagi, Y.; Mishima, K.; Kawai, M.; Furusaka, M.
2005-08-01
Thermal hydraulic design and thermal stress calculations were conducted for a water-cooled solid target irradiated by a MW-class proton beam for a spallation neutron source. Plate type and rod bundle type targets were examined. The thickness of the plate and the diameter of the rod were determined based on the maximum and the wall surface temperature. The thermal stress distributions were calculated by a finite element method (FEM). The neutronics performance of the target is roughly proportional to its average density. The averaged densities of the designed targets were calculated for tungsten plates, tantalum clad tungsten plates, tungsten rods sheathed by tantalum and Zircaloy and they were compared with mercury density. It was shown that the averaged density was highest for the tungsten plates and was high for the tantalum cladding tungsten plates, the tungsten rods sheathed by tantalum and Zircaloy in order. They were higher than or equal to that of mercury for the 1 2 MW proton beams. Tungsten target without the cladding or the sheath is not practical due to corrosion by water under irradiation condition. Therefore, the tantalum cladding tungsten plate already made successfully by HIP and the sheathed tungsten rod are the candidate of high performance solid targets. The decay heat of each target was calculated. It was low enough low compared to that of ISIS for the target without tantalum but was about four times as high as that of ISIS when the thickness of the tantalum cladding was 0.5 mm. Heat removal methods of the decay heat with tantalum were examined. It was shown that a special cooling system was required for the target exchange when tantalum was used for the target. It was concluded that the tungsten rod target sheathed with stainless steel or Zircaloy was the most reliable from the safety considerations and had similar neutronics performance to that of mercury.
Holewijn, Roderick M.; de Kleuver, Marinus; van der Veen, Albert J.; Emanuel, Kaj S.; Bisschop, Arno; Stadhouder, Agnita; van Royen, Barend J.
2017-01-01
Study Design: Biomechanical study. Objective: Recently, a posterior concave periapical distraction device for fusionless scoliosis correction was introduced. The goal of this study was to quantify the effect of the periapical distraction device on spinal range of motion (ROM) in comparison with traditional rigid pedicle screw-rod instrumentation. Methods: Using a spinal motion simulator, 6 human spines were loaded with 4 N m and 6 porcine spines with 2 N m to induce flexion-extension (FE), lateral bending (LB), and axial rotation (AR). ROM was measured in 3 conditions: untreated, periapical distraction device, and rigid pedicle screw-rod instrumentation. Results: The periapical distraction device caused a significant (P < .05) decrease in ROM of FE (human, −40.0% and porcine, −55.9%) and LB (human, −18.2% and porcine, −17.9%) as compared to the untreated spine, while ROM of AR remained unaffected. In comparison, rigid instrumentation caused a significantly (P < .05) larger decrease in ROM of FE (human, −80.9% and porcine, −94.0%), LB (human, −75.0% and porcine, −92.2%), and AR (human, −71.3% and porcine, −86.9%). Conclusions: Although no destructive forces were applied, no device failures were observed. Spinal ROM was significantly less constrained by the periapical distraction device compared to rigid pedicle screw-rod instrumentation. Therefore, provided that scoliosis correction is achieved, a more physiological spinal motion is expected after scoliosis correction with the posterior concave periapical distraction device. PMID:28811983
Simulation Assisted Risk Assessment Applied to Launch Vehicle Conceptual Design
NASA Technical Reports Server (NTRS)
Mathias, Donovan L.; Go, Susie; Gee, Ken; Lawrence, Scott
2008-01-01
A simulation-based risk assessment approach is presented and is applied to the analysis of abort during the ascent phase of a space exploration mission. The approach utilizes groupings of launch vehicle failures, referred to as failure bins, which are mapped to corresponding failure environments. Physical models are used to characterize the failure environments in terms of the risk due to blast overpressure, resulting debris field, and the thermal radiation due to a fireball. The resulting risk to the crew is dynamically modeled by combining the likelihood of each failure, the severity of the failure environments as a function of initiator and time of the failure, the robustness of the crew module, and the warning time available due to early detection. The approach is shown to support the launch vehicle design process by characterizing the risk drivers and identifying regions where failure detection would significantly reduce the risk to the crew.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uematsu, Hitoshi; Yamamoto, Toru; Izutsu, Sadayuki
1990-06-01
A reactivity-initiated event is a design-basis accident for the safety analysis of boiling water reactors. It is defined as a rapid transient of reactor power caused by a reactivity insertion of over $1.0 due to a postulated drop or abnormal withdrawal of the control rod from the core. Strong space-dependent feedback effects are associated with the local power increase due to control rod movement. A realistic treatment of the core status in a transient by a code with a detailed core model is recommended in evaluating this event. A three-dimensional transient code, ARIES, has been developed to meet this need.more » The code simulates the event with three-dimensional neutronics, coupled with multichannel thermal hydraulics, based on a nonequilibrium separated flow model. The experimental data obtained in reactivity accident tests performed with the SPERT III-E core are used to verify the entire code, including thermal-hydraulic models.« less
NASA Astrophysics Data System (ADS)
Alavi Fazel, S. Ali
2017-09-01
A new optimized model which can predict the heat transfer in the nucleate boiling at isolated bubble regime is proposed for pool boiling on a horizontal rod heater. This model is developed based on the results of direct observations of the physical boiling phenomena. Boiling heat flux, wall temperature, bubble departing diameter, bubble generation frequency and bubble nucleation site density have been experimentally measured. Water and ethanol have been used as two different boiling fluids. Heating surface was made by several metals and various degrees of roughness. The mentioned model considers various mechanisms such as latent heat transfer due to micro-layer evaporation, transient conduction due to thermal boundary layer reformation, natural convection, heat transfer due to the sliding bubbles and bubble super-heating. The fractional contributions of individual mentioned heat transfer mechanisms have been calculated by genetic algorithm. The results show that at wall temperature difference more that about 3 K, bubble sliding transient conduction, non-sliding transient conduction, micro-layer evaporation, natural convection, radial forced convection and bubble super-heating have higher to lower fractional contributions respectively. The performance of the new optimized model has been verified by comparison of the existing experimental data.
Severe tricuspid regurgitation and isolated right heart failure due to thyrotoxicosis
Bonou, Maria; Lampropoulos, Konstantinos M.; Andriopoulou, Maria; Kotsas, Dimitrios; Lakoumentas, John; Barbetseas, John
2012-01-01
We describe the case of a patient presented with isolated right heart failure with atrial fibrillation and severe tricuspid regurgitation due to hyperthyroidism. Treatment of the thyroid disease resulted in the disappearance of signs of right heart failure and resolution of the valve incompetence and normalization of the heart rhythm. Although thyrotoxicosis may be associated with congestive heart failure, isolated right heart failure with marked tricuspid regurgitation is rarely seen. PMID:23253416
Sussadee, Metita; Vorawattanatham, Narathip; Pinyopummin, Anuchai; Phavaphutanon, Janjira; Thayananuphat, Aree
2017-05-01
To establish baseline normal scotopic electroretinograpic (ERG) parameters for two wild cat species: fishing cats (FC) and leopard cats (LC). Twelve normal, FC and eight LC kept in the Chiang Mai Night Safari Zoo, Thailand. The mean ages of FC and LC were 7.08 and 5.00 years, respectively. All animals were studied using a standard scotopic protocol of a portable, handheld, multi-species electroretinography (HMsERG). There were significant differences in the means of ERG b-wave amplitude of the rod response (Rod, 0.01 cd.s/m 2 ), a- and b-wave amplitudes of standard light intensity of rod and cone response (Std R&C, 3 cd.s/m 2 ) and b-wave amplitude of high light intensity of rod and cone response (Hi-int R&C, 10 cd.s/m 2 ) with LC having higher amplitudes than FC. There was no significant difference in a- and b- wave implicit time except for the b-wave of Hi-int (P=0.03). No significant differences were observed in b/a amplitude ratios. Data from this report provides reference values for scotopic ERG measurements in these two wild cat species. It showed that the normal scotopic ERG responses have some differences between the two species which might be due to the skull conformation, eye size or physiology of the retina. © 2016 American College of Veterinary Ophthalmologists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aadila, A., E-mail: aadilaazizali@gmail.com; Asib, N. A. M.; Afaah, A. N.
In this work, solution-immersion method was used to grow ZnO rods on PMMA-coated substrate. For this purpose, 0.15 M of zinc nitrate hexahydrate (Zn(NO{sub 3}){sub 2}.6H{sub 2}O) and hexamethylenetetramine (C{sub 6}H{sub 12}N{sub 4}) were used to growth of ZnO films at different annealing temperatures (room temperature, 80, 100, 120 and 140 °C). The morphology of the films was investigated by Scanning Electron Microscope (SEM) and optical properties were studied by Ultraviolet (UV-Vis) Spectroscopy. SEM analysis showed ubiquitous growth of ZnO rods that became better aligned and more closely-packed as the annealing temperature increased. As the annealing temperature exceeds 100 °C,more » the rods tend to merge to adjacent particles and the UV absorption decreased for the sample at higher temperatures (120 °C and 140 °C). Good absorption and better orientation of ZnO was obtained for the sample annealed at 100 °C due to the film possess better distribution and these improved orientation of particles caused the light to be effectively scattered on the sample. Both surface morphology and UV was significantly affected by the change in annealing temperatures thus thermal effect played a dominant role in shaping and improving the orientation of ZnO rods on PMMA-coated and its UV absorption.« less
Effects of Lateral Mass Screw Rod Fixation to the Stability of Cervical Spine after Laminectomy
NASA Astrophysics Data System (ADS)
Rosli, Ruwaida; Kashani, Jamal; Kadir, Mohammed Rafiq Abdul
There are many cases of injury in the cervical spine due to degenerative disorder, trauma or instability. This condition may produce pressure on the spinal cord or on the nerve coming from the spine. The aim of this study was, to analyze the stabilization of the cervical spine after undergoing laminectomy via computational simulation. For that purpose, a three-dimensional finite element (FE) model for the multilevel cervical spine segment (C1-C7) was developed using computed tomography (CT) data. There are various decompression techniques that can be applied to overcome the injury. Usually, decompression procedures will create an unstable spine. Therefore, in these situations, the spine is often surgically restabilized by using fusion and instrumentation. In this study, a lateral mass screw-rod fixation was created to stabilize the cervical spine after laminectomy. Material properties of the titanium alloy were assigned on the implants. The requirements moments and boundary conditions were applied on simulated implanted bone. Result showed that the bone without implant has a higher flexion and extension angle in comparison to the bone with implant under applied 1Nm moment. The bone without implant has maximum stress distribution at the vertebrae and ligaments. However, the bone with implant has maximum stress distribution at the screws and rods. Overall, the lateral mass screw-rod fixation provides stability to the cervical spine after undergoing laminectomy.
Investigation on chlorosomal antenna geometries: tube, lamella and spiral-type self-aggregates.
Linnanto, Juha M; Korppi-Tommola, Jouko E I
2008-06-01
Molecular mechanics calculations and exciton theory have been used to study pigment organization in chlorosomes of green bacteria. Single and double rod, multiple concentric rod, lamella, and Archimedean spiral macrostructures of bacteriochlorophyll c molecules were created and their spectral properties evaluated. The effects of length, width, diameter, and curvature of the macrostructures as well as orientations of monomeric transition dipole moment vectors on the spectral properties of the aggregates were studied. Calculated absorption, linear dichroism, and polarization dependent fluorescence-excitation spectra of the studied long macrostructures were practically identical, but circular dichroism spectra turned out to be very sensitive to geometry and monomeric transition dipole moment orientations of the aggregates. The simulations for long multiple rod and spiral-type macrostructures, observed in recent high-resolution electron microscopy images (Oostergetel et al., FEBS Lett 581:5435-5439, 2007) gave shapes of circular dichroism spectra observed experimentally for chlorosomes. It was shown that the ratio of total circular dichroism intensity to integrated absorption of the Q(y) transition is a good measure of degree of tubular structures in the chlorosomes. Calculations suggest that the broad Q(y) line width of chlorosomes of sulfur bacteria could be due to (1) different orientations of the transition moment vectors in multi-walled rod structures or (2) a variety of Bchl-aggregate structures in the chlorosomes.
Ca sup 2+ binding capacity of cytoplasmic proteins from rod photoreceptors is mainly due to arrestin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huppertz, B.; Weyand, I.; Bauer, P.J.
1990-06-05
Arrestin (also called S-antigen or 48-kDa protein) binds to photoexcited and phosphorylated rhodopsin and, thereby, blocks competitively the activation of transducin. Using Ca{sup 2+} titration in the presence of the indicator arsenazo III and {sup 45}Ca{sup 2+} autoradiography, we show that arrestin is a Ca2(+)-binding protein. The Ca{sup 2+} binding capacity of arresting-containing protein extracts from bovine rod outer segments is about twice as high as that of arrestin-depleted extracts. The difference in the Ca{sup 2+} binding of arrestin-containing and arrestin-depleted protein extracts was attributed to arrestin. Both, these difference-measurements of protein extracts and the measurements of purified arrestin yieldmore » dissociation constants for the Ca{sup 2+} binding of arrestin between 2 and 4 microM. The titration curves are consistent with a molar ratio of one Ca{sup 2+} binding site per arrestin. No Ca{sup 2+} binding in the micromolar range was found in extracts containing mainly transducin and cGMP-phosphodiesterase. Since arrestin is one of the most abundant proteins in rod photoreceptors occurring presumably up to millimolar concentrations in rod outer segments, we suggest that aside from its function to prevent the activation of transducin, arrestin acts probably as an intracellular Ca{sup 2+} buffer.« less
Activation and deactivation of vibronic channels in intact phycocyanin rods.
Nganou, C; David, L; Meinke, R; Adir, N; Maultzsch, J; Mkandawire, M; Pouhè, D; Thomsen, C
2014-02-28
We investigated the excitation modes of the light-harvesting protein phycocyanin (PC) from Thermosynechococcus vulcanus in the crystalline state using UV and near-infrared Raman spectroscopy. The spectra revealed the absence of a hydrogen out-of-plane wagging (HOOP) mode in the PC trimer, which suggests that the HOOP mode is activated in the intact PC rod, while it is not active in the PC trimer. Furthermore, in the PC trimer an intense mode at 984 cm(-1) is assigned to the C-C stretching vibration while the mode at 454 cm(-1) is likely due to ethyl group torsion. In contrast, in the similar chromophore phytochromobilin the C5,10,15-D wag mode at 622 cm(-1) does not come from a downshift of the HOOP. Additionally, the absence of modes between 1200 and 1300 cm(-1) rules out functional monomerization. A correlation between phycocyanobilin (PCB) and phycoerythrobilin (PEB) suggests that the PCB cofactors of the PC trimer appear in a conformation similar to that of PEB. The conformation of the PC rod is consistent with that of the allophycocyanin (APC) trimer, and thus excitonic flow is facilitated between these two independent light-harvesting compounds. This excitonic flow from the PC rod to APC appears to be modulated by the vibration channels during HOOP wagging, C = C stretching, and the N-H rocking in-plan vibration.
Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon synapses
Johnson, Jerry E.; Perkins, Guy A.; Giddabasappa, Anand; Chaney, Shawntay; Xiao, Weimin; White, Andrew D.; Brown, Joshua M.; Waggoner, Jenna; Ellisman, Mark H.
2007-01-01
Purpose In conventional neurons, Ca2+ enters presynaptic terminals during an action potential and its increased local concentration triggers transient exocytosis. In contrast, vertebrate photoreceptors are nonspiking neurons that maintain sustained depolarization and neurotransmitter release from ribbon synapses in darkness and produce light-dependent graded hyperpolarizing responses. Rods transmit single photon responses with high fidelity, whereas cones are less sensitive and exhibit faster response kinetics. These differences are likely due to variations in presynaptic Ca2+ dynamics. Metabolic coupling and cross-talk between mitochondria, endoplasmic reticulum (ER), plasma membrane Ca2+ ATPase (PMCA), and Na+-Ca2+ exchanger (NCX) coordinately control presynaptic ATP production and Ca2+ dynamics. The goal of our structural and functional studies was to determine the spatiotemporal regulation of ATP and Ca2+ dynamics in rod spherules and cone pedicles. Methods Central retina tissue from C57BL/6 mice was used. Laser scanning confocal microscopy (LSCM) experiments were conducted on fixed-frozen vertical sections. Primary antibodies were selected for their tissue/cellular specificity and ability to recognize single, multiple or all splice variants of selected isoforms. Electron microscopy (EM) and 3-D electron tomography (ET) studies used our standard procedures on thin- and thick-sectioned retinas, respectively. Calibrated fluo-3-Ca2+ imaging experiments of dark- and light-adapted rod and cone terminals in retinal slices were conducted. Results Confocal microscopy showed that mitochondria, ER, PMCA, and NCX1 exhibited distinct retinal lamination patterns and differential distribution in photoreceptor synapses. Antibodies for three distinct mitochondrial compartments differentially labeled retinal areas with high metabolic demand: rod and cone inner segments, previously undescribed cone juxtanuclear mitochondria and the two plexiform layers. Rod spherule membranes uniformly and intensely stained for PMCA, whereas the larger cone pedicles preferentially stained for NCX1 at their active zones and PMCA near their mitochondria. EM and ET revealed that mitochondria in rod spherules and cone pedicles differed markedly in their number, location, size, volume, and total cristae surface area, and cristae junction diameter. Rod spherules had one large ovoid mitochondrion located near its active zone, whereas cone pedicles averaged five medium-sized mitochondria clustered far from their active zones. Most spherules had one ribbon synapse, whereas pedicles contained numerous ribbon synapses. Fluo-3 imaging studies revealed that during darkness rod spherules maintained a lower [Ca2+] than cone pedicles, whereas during light adaptation pedicles rapidly lowered their [Ca2+] below that observed in spherules. Conclusions These findings indicate that ATP demand and mitochondrial ATP production are greater in cone pedicles than rod spherules. Rod spherules employ high affinity/low turnover PMCA and their mitochondrion to maintain a relatively low [Ca2+] in darkness, which increases their sensitivity and signal-to-noise ratio. In contrast, cone pedicles utilize low affinity/high turnover NCX to rapidly lower their high [Ca2+] during light adaptation, which increases their response kinetics. Spatiotemporal fluo-3-Ca2+ imaging results support our immunocytochemical results. The clustering of cone pedicle mitochondria likely provides increased protection from Ca2+ overload and permeability transition. In summary, these novel studies reveal that several integrated cellular and subcellular components interact to regulate ATP and Ca2+ dynamics in rod and cone synaptic terminals. These results should provide a greater understanding of in vivo photoreceptor synaptic terminal exocytosis/endocytosis, Ca2+ overload and therapies for retinal degenerations. PMID:17653034
Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon synapses.
Johnson, Jerry E; Perkins, Guy A; Giddabasappa, Anand; Chaney, Shawntay; Xiao, Weimin; White, Andrew D; Brown, Joshua M; Waggoner, Jenna; Ellisman, Mark H; Fox, Donald A
2007-06-15
In conventional neurons, Ca2+ enters presynaptic terminals during an action potential and its increased local concentration triggers transient exocytosis. In contrast, vertebrate photoreceptors are nonspiking neurons that maintain sustained depolarization and neurotransmitter release from ribbon synapses in darkness and produce light-dependent graded hyperpolarizing responses. Rods transmit single photon responses with high fidelity, whereas cones are less sensitive and exhibit faster response kinetics. These differences are likely due to variations in presynaptic Ca2+ dynamics. Metabolic coupling and cross-talk between mitochondria, endoplasmic reticulum (ER), plasma membrane Ca2+ ATPase (PMCA), and Na+-Ca2+ exchanger (NCX) coordinately control presynaptic ATP production and Ca2+ dynamics. The goal of our structural and functional studies was to determine the spatiotemporal regulation of ATP and Ca2+ dynamics in rod spherules and cone pedicles. Central retina tissue from C57BL/6 mice was used. Laser scanning confocal microscopy (LSCM) experiments were conducted on fixed-frozen vertical sections. Primary antibodies were selected for their tissue/cellular specificity and ability to recognize single, multiple or all splice variants of selected isoforms. Electron microscopy (EM) and 3-D electron tomography (ET) studies used our standard procedures on thin- and thick-sectioned retinas, respectively. Calibrated fluo-3-Ca2+ imaging experiments of dark- and light-adapted rod and cone terminals in retinal slices were conducted. Confocal microscopy showed that mitochondria, ER, PMCA, and NCX1 exhibited distinct retinal lamination patterns and differential distribution in photoreceptor synapses. Antibodies for three distinct mitochondrial compartments differentially labeled retinal areas with high metabolic demand: rod and cone inner segments, previously undescribed cone juxtanuclear mitochondria and the two plexiform layers. Rod spherule membranes uniformly and intensely stained for PMCA, whereas the larger cone pedicles preferentially stained for NCX1 at their active zones and PMCA near their mitochondria. EM and ET revealed that mitochondria in rod spherules and cone pedicles differed markedly in their number, location, size, volume, and total cristae surface area, and cristae junction diameter. Rod spherules had one large ovoid mitochondrion located near its active zone, whereas cone pedicles averaged five medium-sized mitochondria clustered far from their active zones. Most spherules had one ribbon synapse, whereas pedicles contained numerous ribbon synapses. Fluo-3 imaging studies revealed that during darkness rod spherules maintained a lower [Ca2+] than cone pedicles, whereas during light adaptation pedicles rapidly lowered their [Ca2+] below that observed in spherules. These findings indicate that ATP demand and mitochondrial ATP production are greater in cone pedicles than rod spherules. Rod spherules employ high affinity/low turnover PMCA and their mitochondrion to maintain a relatively low [Ca2+] in darkness, which increases their sensitivity and signal-to-noise ratio. In contrast, cone pedicles utilize low affinity/high turnover NCX to rapidly lower their high [Ca2+] during light adaptation, which increases their response kinetics. Spatiotemporal fluo-3-Ca2+ imaging results support our immunocytochemical results. The clustering of cone pedicle mitochondria likely provides increased protection from Ca2+ overload and permeability transition. In summary, these novel studies reveal that several integrated cellular and subcellular components interact to regulate ATP and Ca2+ dynamics in rod and cone synaptic terminals. These results should provide a greater understanding of in vivo photoreceptor synaptic terminal exocytosis/endocytosis, Ca2+ overload and therapies for retinal degenerations.
NASA Astrophysics Data System (ADS)
Ann, Ling Chuo; Mahmud, Shahrom; Bakhori, Siti Khadijah Mohd; Sirelkhatim, Amna; Mohamad, Dasmawati; Hasan, Habsah; Seeni, Azman; Rahman, Rosliza Abdul
2014-02-01
The effects of surface modification of zinc oxide (ZnO) powder and UVA illumination on the powder towards Escherichia coli and Staphylococcus aureus were investigated. FESEM-EDS results showed that oxygen annealing increased the O:Zn ratio on the surface of ZnO-rod and ZnO-plate samples. Surface conductances of ZnO-rod and ZnO-plate pellets were reduced from 1.05 nS to 0.15 nS and 1.34 nS to 0.23 nS, respectively. Meanwhile, UVA illumination on the surface of the ZnO-rod and ZnO-plate samples was found to improve surface conductance to 7.08 nS and 6.51 nS, respectively, due to the release of charge carrier. Photoluminescence results revealed that oxygen annealing halved the UV emission intensity and green emission intensity, presumably caused by oxygen absorption in the ZnO lattice. The antibacterial results showed that oxygen-treated ZnO exhibited slightly higher growth inhibition on E. coli and S. aureus compared with unannealed ZnO. UVA illumination on ZnO causes the greatest inhibition toward E. coli and S. aureus. Under the UVA excitation, the inhibition of E. coli increased by 18% (ZnO-rod) and 13% (ZnO-plate) while the inhibition of S. aureus increased by 22% (ZnO-rod) and 21% (ZnO-plate). Release of reactive oxygen species were proposed in antibacterial mechanisms, which were aided by surface modification and UVA photoactivation. The reactive oxygen species disrupted the DNA and protein synthesis of the bacterial cell, causing bacteriostatic effects toward E. coli and S. aureus.
Using Custom Fiber Bragg Grating-Based Sensors to Monitor Artificial Landslides.
Zhang, Qinghua; Wang, Yuan; Sun, Yangyang; Gao, Lei; Zhang, Zhenglin; Zhang, Wenyuan; Zhao, Pengchong; Yue, Yin
2016-09-02
Four custom fiber Bragg grating (FBG)-based sensors are developed to monitor an artificial landslide located in Nanjing, China. The sensors are composed of a rod and two FBGs. Based on the strength of the rods, two sensors are referred to as "hard sensors" (Sensor 1 and Sensor 2), the other two are referred to as "soft sensors" (Sensor 3 and Sensor 4). The two FBGs are fixed on each sensor rod at distances of 50 cm and 100 cm from the top of the rod (an upper FBG and a lower FBG). In the experiment presented in this paper, the sensors are installed on a slope on which an artificial landslide is generated through both machine-based and manual excavation. The fiber sensing system consists of the four custom FBG-based sensors, optical fiber, a static fiber grating demodulation instrument (SM125), and a PC with the necessary software. Experimental data was collected in the presence of an artificial landslide, and the results show that the lower FBGs are more sensitive than the upper FBGs for all four of the custom sensors. It was also found that Sensor 2 and Sensor 4 are more capable of monitoring small-scale landslides than Sensor 1 and Sensor 3, and this is mainly due to their placement location with respect to the landslide. The stronger rods used in the hard sensors make them more adaptable to the harsh environments of large landslides. Thus, hard sensors should be fixed near the landslide, while soft sensors should be placed farther away from the landslide. In addition, a clear tendency of strain variation can be detected by the soft sensors, which can be used to predict landslides and raise a hazard alarm.
Townes-Anderson, Ellen; Wang, Jianfeng; Halász, Éva; Sugino, Ilene; Pitler, Amy; Whitehead, Ian; Zarbin, Marco
2017-06-01
Retinal detachment disrupts the rod-bipolar synapse in the outer plexiform layer by retraction of rod axons. We showed that breakage is due to RhoA activation whereas inhibition of Rho kinase (ROCK), using Y27632, reduces synaptic damage. We test whether the ROCK inhibitor fasudil, used for other clinical applications, can prevent synaptic injury after detachment. Detachments were made in pigs by subretinal injection of balanced salt solution (BSS) or fasudil (1, 10 mM). In some animals, fasudil was injected intravitreally after BSS-induced detachment. After 2 to 4 hours, retinae were fixed for immunocytochemistry and confocal microscopy. Axon retraction was quantified by imaging synaptic vesicle label in the outer nuclear layer. Apoptosis was analyzed using propidium iodide staining. For biochemical analysis by Western blotting, retinal explants, detached from retinal pigmented epithelium, were cultured for 2 hours. Subretinal injection of fasudil (10 mM) reduced retraction of rod spherules by 51.3% compared to control detachments ( n = 3 pigs, P = 0.002). Intravitreal injection of 10 mM fasudil, a more clinically feasible route of administration, also reduced retraction (28.7%, n = 5, P < 0.05). Controls had no photoreceptor degeneration at 2 hours, but by 4 hours apoptosis was evident. Fasudil 10 mM reduced pyknotic nuclei by 55.7% ( n = 4, P < 0.001). Phosphorylation of cofilin and myosin light chain, downstream effectors of ROCK, was decreased with 30 μM fasudil ( n = 8-10 explants, P < 0.05). Inhibition of ROCK signaling with fasudil reduced photoreceptor degeneration and preserved the rod-bipolar synapse after retinal detachment. These results support the possibility, previously tested with Y27632, that ROCK inhibition may attenuate synaptic damage in iatrogenic detachments.
Using Custom Fiber Bragg Grating-Based Sensors to Monitor Artificial Landslides
Zhang, Qinghua; Wang, Yuan; Sun, Yangyang; Gao, Lei; Zhang, Zhenglin; Zhang, Wenyuan; Zhao, Pengchong; Yue, Yin
2016-01-01
Four custom fiber Bragg grating (FBG)-based sensors are developed to monitor an artificial landslide located in Nanjing, China. The sensors are composed of a rod and two FBGs. Based on the strength of the rods, two sensors are referred to as “hard sensors” (Sensor 1 and Sensor 2), the other two are referred to as “soft sensors” (Sensor 3 and Sensor 4). The two FBGs are fixed on each sensor rod at distances of 50 cm and 100 cm from the top of the rod (an upper FBG and a lower FBG). In the experiment presented in this paper, the sensors are installed on a slope on which an artificial landslide is generated through both machine-based and manual excavation. The fiber sensing system consists of the four custom FBG-based sensors, optical fiber, a static fiber grating demodulation instrument (SM125), and a PC with the necessary software. Experimental data was collected in the presence of an artificial landslide, and the results show that the lower FBGs are more sensitive than the upper FBGs for all four of the custom sensors. It was also found that Sensor 2 and Sensor 4 are more capable of monitoring small-scale landslides than Sensor 1 and Sensor 3, and this is mainly due to their placement location with respect to the landslide. The stronger rods used in the hard sensors make them more adaptable to the harsh environments of large landslides. Thus, hard sensors should be fixed near the landslide, while soft sensors should be placed farther away from the landslide. In addition, a clear tendency of strain variation can be detected by the soft sensors, which can be used to predict landslides and raise a hazard alarm. PMID:27598163
NASA Astrophysics Data System (ADS)
Zhang, Hao; Gang, Grace J.; Lee, Junghoon; Wong, John; Stayman, J. Webster
2017-03-01
Purpose: There are many clinical situations where diagnostic CT is used for an initial diagnosis or treatment planning, followed by one or more CBCT scans that are part of an image-guided intervention. Because the high-quality diagnostic CT scan is a rich source of patient-specific anatomical knowledge, this provides an opportunity to incorporate the prior CT image into subsequent CBCT reconstruction for improved image quality. We propose a penalized-likelihood method called reconstruction of difference (RoD), to directly reconstruct differences between the CBCT scan and the CT prior. In this work, we demonstrate the efficacy of RoD with clinical patient datasets. Methods: We introduce a data processing workflow using the RoD framework to reconstruct anatomical changes between the prior CT and current CBCT. This workflow includes processing steps to account for non-anatomical differences between the two scans including 1) scatter correction for CBCT datasets due to increased scatter fractions in CBCT data; 2) histogram matching for attenuation variations between CT and CBCT; and 3) registration for different patient positioning. CBCT projection data and CT planning volumes for two radiotherapy patients - one abdominal study and one head-and-neck study - were investigated. Results: In comparisons between the proposed RoD framework and more traditional FDK and penalized-likelihood reconstructions, we find a significant improvement in image quality when prior CT information is incorporated into the reconstruction. RoD is able to provide additional low-contrast details while correctly incorporating actual physical changes in patient anatomy. Conclusions: The proposed framework provides an opportunity to either improve image quality or relax data fidelity constraints for CBCT imaging when prior CT studies of the same patient are available. Possible clinical targets include CBCT image-guided radiotherapy and CBCT image-guided surgeries.
Damage modeling of small-scale experiments on dental enamel with hierarchical microstructure.
Scheider, I; Xiao, T; Yilmaz, E; Schneider, G A; Huber, N; Bargmann, S
2015-03-01
Dental enamel is a highly anisotropic and heterogeneous material, which exhibits an optimal reliability with respect to the various loads occurring over years. In this work, enamel's microstructure of parallel aligned rods of mineral fibers is modeled and mechanical properties are evaluated in terms of strength and toughness with the help of a multiscale modeling method. The established model is validated by comparing it with the stress-strain curves identified by microcantilever beam experiments extracted from these rods. Moreover, in order to gain further insight in the damage-tolerant behavior of enamel, the size of crystallites below which the structure becomes insensitive to flaws is studied by a microstructural finite element model. The assumption regarding the fiber strength is verified by a numerical study leading to accordance of fiber size and flaw tolerance size, and the debonding strength is estimated by optimizing the failure behavior of the microstructure on the hierarchical level above the individual fibers. Based on these well-grounded properties, the material behavior is predicted well by homogenization of a representative unit cell including damage, taking imperfections (like microcracks in the present case) into account. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
A new multipartite plate system for anterior cervical spine surgery; finite element analysis.
Şimşek, Hakan; Zorlu, Emre; Kaya, Serdar; Baydoğan, Murat; Atabey, Cem; Çolak, Ahmet
2017-12-19
There are numerous available plates, almost all of which are compact one-piece plates. During the placement of relatively long plates in the treatment of multi-level cervical pathologies, instrument related complications might appear. In order to overcome this potential problem, a novel 'articulated plate system' is designed. We aimed to delineate finite element analysis and mechanical evaluations. A new plate system consisting of multi partite structure for anterior cervical stabilization was designed. Segmental plates were designed for application onto the ventral surface of the vertebral body. Plates differed from 9 to13 mm in length. There are rods at one end and hooks at the other end. Terminal points consisted of either hooks or rods at one end but the other ends are blind. Finite element and mechanical tests of the construct were performed applying bending, axial loading, and distraction forces. Finite element and mechanical testing results yielded the cut off values for functional failure and breakage of the system. The articulated system proved to be mechanically safe and it lets extension of the system on either side as needed. Ease of application needs further verification via a cadaveric study.
Jaeger, Gayle H; Wosar, Marc A; Marcellin-Little, Denis J; Lascelles, B Duncan X
2005-08-15
To describe placement of hinged transarticular external fixation (HTEF) frames and evaluate their ability to protect the primary repair of unstable joints while allowing joint mobility in dogs and cats. Retrospective study. 8 cats and 6 dogs. HTEF frames were composed of metal or epoxy connecting rods and a hinge. Measurements of range of motion of affected and contralateral joints and radiographs were made after fixator application and removal. 9 animals (4 cats and 5 dogs) had tarsal and 5 (4 cats and 1 dog) had stifle joint injuries. Treatment duration ranged from 45 to 100 days (median, 57 days). Ranges of motion in affected stifle and tarsal joints were 57% and 72% of control while HTEF was in place and 79% and 84% of control after frame removal. Complications were encountered in 3 cats and 2 dogs and included breakage of pins and connecting rods, hinge loosening, and failure at the hinge-epoxy interface. HTEF in animals with traumatic joint instability provided adjunctive joint stabilization during healing and protection of the primary repair and maintained joint motion during healing, resulting in early weight bearing of the affected limb.
Diode pumped Nd:YAG laser development
NASA Technical Reports Server (NTRS)
Reno, C. W.; Herzog, D. G.
1976-01-01
A low power Nd:YAG laser was constructed which employs GaAs injection lasers as a pump source. Power outputs of 125 mW TEM CW with the rod at 250 K and the pump at 180 K were achieved for 45 W input power to the pump source. Operation of the laser, with array and laser at a common heat sink temperature of 250 K, was inhibited by difficulties in constructing long-life GaAs LOC laser arrays. Tests verified pumping with output power of 20 to 30 mW with rod and pump at 250 K. Although life tests with single LOC GaAs diodes were somewhat encouraging (with single diodes operating as long as 9000 hours without degradation), failures of single diodes in arrays continue to occur, and 50 percent power is lost in a few hundred hours at 1 percent duty factor. Because of the large recent advances in the state of the art of CW room temperature AlGaAs diodes, their demonstrated lifetimes of greater than 5,000 hours, and their inherent advantages for this task, it is recommended that these sources be used for further CW YAG injection laser pumping work.
NASA Technical Reports Server (NTRS)
Waterman, A. W.
1977-01-01
Machined polyimide second-stage rod seals were evaluated to determine their suitability for single-stage applications where full system pressure acts on the upstream side of the seal. The 6.35-cm (2.5-in.) K-section seal was tested in impulse screening tests where peak pressure was increased in 3.448-MPa (500-psi) increments each 20,000 cycles. Seal failure occurred at 37.92 MPa (5,500 psi), indicating a potential for acceptability in a 27.58-MPa (4,000-psi) system. Static pressurization for 600 sec at pressures in excess of 10.34 MPa (1,500 psi) revealed structural inadequacy of the seal cross section to resist fracture and extrusion. Endurance testing showed the seals capable of at least 65,000 1.27-cm (0.5-in.) cycles at 450 K (350 F) without leakage. It was concluded that the second-stage seals were proven to be exceptional in the 1.379-MPa (200-psi) applications for which they were designed, but polyimide material properties are not adequate for use in this design at pressure loading equivalent to that present in single-stage applications.
La Barbera, Luigi; Ottardi, Claudia; Villa, Tomaso
2015-10-01
Preclinical evaluation of the mechanical reliability of fixation devices is a mandatory activity before their introduction into market. There are two standardized protocols for preclinical testing of spinal implants. The American Society for Testing Materials (ASTM) recommends the F1717 standard, which describes a vertebrectomy condition that is relatively simple to implement, whereas the International Organization for Standardization (ISO) suggests the 12189 standard, which describes a more complex physiological anterior support-based setup. Moreover, ASTM F1717 is nowadays well established, whereas ISO 12189 has received little attention: A few studies tried to accurately describe the ISO experimental procedure through numeric models, but these studies totally neglect the recommended precompression step. This study aimed to build up a reliable, validated numeric model capable of describing the stress on the rods of a spinal fixator assembled according to ISO 12189 standard procedure. Such a model would more adequately represent the in vitro testing condition. This study used finite element (FE) simulations and experimental validation testing. An FE model of the ISO setup was built to calculate the stress on the rods. Simulation was validated by comparison with experimental strain gauges measurements. The same fixator has been previously virtually mounted in an L2-L4 FE model of the lumbar spine, and stresses in the rods were calculated when the spine was subjected to physiological forces and moments. The comparison between the FE predictions and experimental measurements is in good agreement, thus confirming the suitability of the FE method to evaluate the stresses in the device. The initial precompression induces a significant extension of the assembled construct. As the applied load increases, the initial extension is gradually compensated, so that at peak load the rods are bent in flexion: The final stress value predicted is thus reduced to about 50%, if compared with the previous model where the precompression was not considered. Neglecting the initial preload due to the assembly of the overall construct according to ISO 12189 standard could lead to an overestimation of the stress on the rods up to 50%. To correctly describe the state of stress on the posterior spinal fixator, tested according to the ISO procedure, it is important to take into account the initial preload due to the assembly of the overall construct. Copyright © 2015 Elsevier Inc. All rights reserved.
Stress analysis in a pedicle screw fixation system with flexible rods in the lumbar spine.
Kim, Kyungsoo; Park, Won Man; Kim, Yoon Hyuk; Lee, SuKyoung
2010-01-01
Breakage of screws has been one of the most common complications in spinal fixation systems. However, no studies have examined the breakage risk of pedicle screw fixation systems that use flexible rods, even though flexible rods are currently being used for dynamic stabilization. In this study, the risk of breakage of screws for the rods with various flexibilities in pedicle screw fixation systems is investigated by calculating the von Mises stress as a breakage risk factor using finite element analysis. Three-dimensional finite element models of the lumbar spine with posterior one-level spinal fixations at L4-L5 using four types of rod (a straight rod, a 4 mm spring rod, a 3 mm spring rod, and a 2 mm spring rod) were developed. The von Mises stresses in both the pedicle screws and the rods were analysed under flexion, extension, lateral bending, and torsion moments of 10 Nm with a follower load of 400 N. The maximum von Mises stress, which was concentrated on the neck region of the pedicle screw, decreased as the flexibility of the rod increased. However, the ratio of the maximum stress in the rod to the yield stress increased substantially when a highly flexible rod was used. Thus, the level of rod flexibility should be considered carefully when using flexible rods for dynamic stabilization because the intersegmental motion facilitated by the flexible rod results in rod breakage.
Mechanism for longitudinal growth of rod-shaped bacteria
NASA Astrophysics Data System (ADS)
Taneja, Swadhin; Levitan, Ben; Rutenberg, Andrew
2013-03-01
The peptidoglycan (PG) cell wall along with MreB proteins are major determinants of shape in rod-shaped bacteria. However the mechanism guiding the growth of this elastic network of cross-linked PG (sacculus) that maintains the integrity and shape of the rod-shaped cell remains elusive. We propose that the known anisotropic elasticity and anisotropic loading, due to the shape and turgor pressure, of the sacculus is sufficient to direct small gaps in the sacculus to elongate around the cell, and that subsequent repair leads to longitudinal growth without radial growth. We computationally show in our anisotropically stressed anisotropic elasticity model small gaps can extend stably in the circumferential direction for the known elasticity of the sacculus. We suggest that MreB patches that normally propagate circumferentially, are associated with these gaps and are steered with this common mechanism. This basic picture is unchanged in Gram positive and Gram negative bacteria. We also show that small changes of elastic properties can in fact lead to bi-stable propagation of gaps, both longitudinal and circumferential, that can explain the bi-stability in patch movement observed in ΔmblΔmreb mutants.
Extending calibration-free force measurements to optically-trapped rod-shaped samples
Català, Frederic; Marsà, Ferran; Montes-Usategui, Mario; Farré, Arnau; Martín-Badosa, Estela
2017-01-01
Optical trapping has become an optimal choice for biological research at the microscale due to its non-invasive performance and accessibility for quantitative studies, especially on the forces involved in biological processes. However, reliable force measurements depend on the calibration of the optical traps, which is different for each experiment and hence requires high control of the local variables, especially of the trapped object geometry. Many biological samples have an elongated, rod-like shape, such as chromosomes, intracellular organelles (e.g., peroxisomes), membrane tubules, certain microalgae, and a wide variety of bacteria and parasites. This type of samples often requires several optical traps to stabilize and orient them in the correct spatial direction, making it more difficult to determine the total force applied. Here, we manipulate glass microcylinders with holographic optical tweezers and show the accurate measurement of drag forces by calibration-free direct detection of beam momentum. The agreement between our results and slender-body hydrodynamic theoretical calculations indicates potential for this force-sensing method in studying protracted, rod-shaped specimens. PMID:28220855
NASA Astrophysics Data System (ADS)
Tang, Qixiang; Owusu Twumasi, Jones; Hu, Jie; Wang, Xingwei; Yu, Tzuyang
2018-03-01
Structural steel members have become integral components in the construction of civil engineering infrastructures such as bridges, stadiums, and shopping centers due to versatility of steel. Owing to the uniqueness in the design and construction of steel structures, rigorous non-destructive evaluation techniques are needed during construction and operation processes to prevent the loss of human lives and properties. This research aims at investigating the application of photoacoustic fiber optic transducers (FOT) for detecting surface rust of a steel rod. Surface ultrasonic waves propagation in intact and corroded steel rods was simulated using finite element method (FEM). Radial displacements were collected and short-time Fourier transform (STFT) was applied to obtain the spectrogram. It was found that the presence of surface rust between the FOT and the receiver can be detected in both time and frequency domain. In addition, spectrogram can be used to locate and quantify surface rust. Furthermore, a surface rust detection algorithm utilizing the FOT has been proposed for detection, location and quantification of the surface rust.
CTAB-assisted hydrothermal synthesis of YVO 4:Eu 3+ powders in a wide pH range
NASA Astrophysics Data System (ADS)
Wang, Juan; Hojamberdiev, Mirabbos; Xu, Yunhua
2012-01-01
Rhombus-, rod-, soya bean- and aggregated soya bean-like YVO 4:Eu 3+ micro- and nanostructures were synthesized by a cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal method at 180 °C for 24 h in a wide pH range. The as-synthesized powders were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence spectroscopy (PL). The XRD results confirmed the formation of phase-pure YVO 4:Eu 3+ powders with tetragonal structure under hydrothermal process in a wide pH range. Electron microscopic observations evidenced the morphological transformation of YVO 4:Eu 3+ powders from rhombus-like microstructure to rod-, soya bean, and aggregated soya bean-like nanostructures with an increase in the pH of the synthesis solution. The results from the PL measurements revealed that the intensities of PL emission peaks were significantly affected by the morphologies and crystallinity of samples due to the absence of an inversion symmetry at the Eu 3+ lattice site, and the highest luminescence intensity was observed for rod-like YVO 4:Eu 3+ powders.
Wang, Chungang; Irudayaraj, Joseph
2010-01-01
Multifunctional nanoparticles possessing magnetization and near-infrared (NIR) absorption have warranted interest due to their significant applications in magnetic resonance imaging, diagnosis, bioseparation, target delivery, and NIR photothermal ablation. Herein, the site-selective assembly of magnetic nanoparticles onto the ends or ends and sides of gold nanorods with different aspect ratios (ARs) to create multifunctional nanorods decorated with varying numbers of magnetic particles is described for the first time. The resulting hybrid nanoparticles are designated as Fe(3)O(4)-Au(rod)-Fe(3)O(4) nanodumbbells and Fe(3)O(4)-Au(rod) necklacelike constructs with tunable optical and magnetic properties, respectively. These hybrid nanomaterials can be used for multiplex detection and separation because of their tunable magnetic and plasmonic functionality. More specifically, Fe(3)O(4)-Au(rod) necklacelike probes of different ARs are utilized for simultaneous optical detection based on their plasmon properties, magnetic separation, and photokilling of multiple pathogens from a single sample at one time. The combined functionalities of the synthesized probes will open up many exciting opportunities in dual imaging for targeted delivery and photothermal therapy.
Gums induced microstructure stability in Ca(II)-alginate beads containing lactase analyzed by SAXS.
Traffano-Schiffo, Maria Victoria; Castro-Giraldez, Marta; Fito, Pedro J; Perullini, Mercedes; Santagapita, Patricio R
2018-01-01
Previous works show that the addition of trehalose and gums in β-galactosidase (lactase) Ca(II)-alginate encapsulation systems improved its intrinsic stability against freezing and dehydration processes in the pristine state. However, there is no available information on the evolution in microstructure due to the constraints imposed by the operational conditions. The aim of this research is to study the time course of microstructural changes of Ca(II)-alginate matrices driven by the presence of trehalose, arabic and guar gums as excipients and to discuss how these changes influence the diffusional transport (assessed by LF-NMR) and the enzymatic activity of the encapsulated lactase. The structural modifications at different scales were assessed by SAXS. The incorporation of gums as second excipients induces a significant stabilization in the microstructure not only at the rod scale, but also in the characteristic size and density of alginate dimers (basic units of construction of rods) and the degree of interconnection of rods at a larger scale, improving the performance in terms of lactase activity. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrison, L. M.; Katoh, Y.; Snead, L. L.
Tungsten-copper laminate composite has shown promise as a structural plasma-facing component as compared to tungsten rod or plate. The present study evaluated the tungsten-copper composite after irradiation in the High Flux Isotope Reactor (HFIR) at temperatures of 410-780°C and fast neutron fluences of 0.02-9.0×1025 n/m2, E>0.1 MeV, 0.0039-1.76 displacements per atom (dpa) in tungsten. Tensile tests were performed on the composites, and the fracture surfaces were analyzed with scanning electron microscopy. Before irradiation, the tungsten layers had brittle cleavage failure, but the overall composite had 15.5% elongation at 22°C. After only 0.0039 dpa this was reduced to 7.7% elongation, andmore » no ductility was observed after 0.2 dpa at all irradiation temperatures when tensile tested at 22°C. For elevated temperature tensile tests after irradiation, the composite only had ductile failure at temperatures where the tungsten was delaminating or ductile.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrison, L. M.; Katoh, Yutai; Snead, Lance L.
Tungsten-copper laminate composite has shown promise as a structural plasma-facing component as compared to tungsten rod or plate. The present study evaluated the tungsten-copper composite after irradiation in the High Flux Isotope Reactor (HFIR) at temperatures of 410–780 °C and fast neutron fluences of 0.02–9.0 × 10 25 n/m 2, E > 0.1 MeV, 0.0039–1.76 displacements per atom (dpa) in tungsten. Tensile tests were performed on the composites, and the fracture surfaces were analyzed with scanning electron microscopy. Before irradiation, the tungsten layers had brittle cleavage failure, but the overall composite had 15.5% elongation at 22 °C. After only 0.0039more » dpa this was reduced to 7.7% elongation, and no ductility was observed after 0.2 dpa at all irradiation temperatures when tensile tested at 22 °C. In conclusion, tor elevated temperature tensile tests after irradiation, the composite only had ductile failure at temperatures where the tungsten was delaminating or ductile.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randall, Graham L.; Zechiedrich, E. L.; Pettitt, Bernard M.
2009-09-01
To understand how underwinding and overwinding the DNA helix affects its structure, we simulated 19 independent DNA systems with fixed degrees of twist using molecular dynamics in a system that does not allow writhe. Underwinding DNA induced spontaneous, sequence-dependent base flipping and local denaturation, while overwinding DNA induced the formation of Pauling-like DNA (P-DNA). The winding resulted in a bimodal state simultaneously including local structural failure and B-form DNA for both underwinding and extreme overwinding. Our simulations suggest that base flipping and local denaturation may provide a landscape influencing protein recognition of DNA sequence to affect, for examples, replication, transcriptionmore » and recombination. Additionally, our findings help explain results from singlemolecule experiments and demonstrate that elastic rod models are strictly valid on average only for unstressed or overwound DNA up to P-DNA formation. Finally, our data support a model in which base flipping can result from torsional stress.« less
A simple model for enamel fracture from margin cracks.
Chai, Herzl; Lee, James J-W; Kwon, Jae-Young; Lucas, Peter W; Lawn, Brian R
2009-06-01
We present results of in situ fracture tests on extracted human molar teeth showing failure by margin cracking. The teeth are mounted into an epoxy base and loaded with a rod indenter capped with a Teflon insert, as representative of food modulus. In situ observations of cracks extending longitudinally upward from the cervical margins are recorded in real time with a video camera. The cracks appear above some threshold and grow steadily within the enamel coat toward the occlusal surface in a configuration reminiscent of channel-like cracks in brittle films. Substantially higher loading is required to delaminate the enamel from the dentin, attesting to the resilience of the tooth structure. A simplistic fracture mechanics analysis is applied to determine the critical load relation for traversal of the margin crack along the full length of the side wall. The capacity of any given tooth to resist failure by margin cracking is predicted to increase with greater enamel thickness and cuspal radius. Implications in relation to dentistry and evolutionary biology are briefly considered.
NASA Astrophysics Data System (ADS)
Lemoine, F.
1997-09-01
Specific aspects of irradiated fuel result from the increasing retention of gaseous and volatile fission products with burnup, which, under overpower conditions, can lead to solid fuel pressurization and swelling causing severe PCMI (pellet clad mechanical interaction). In order to assess the reliability of high burnup fuel under RIAs, experimental programs have been initiated which have provided important data concerning the transient fission gas behavior and the clad loading mechanisms. The importance of the rim zone is demonstrated based on three experiments resulting in clad failure at low enthalpy, which are explained by energetic considerations. High gas release in non-failure tests with low energy deposition underlines the importance of grain boundary and porosity gas. Measured final releases are strongly correlated to the microstructure evolution, depending on energy deposition, pulse width, initial and refabricated fuel rod design. Observed helium release can also increase internal pressure and gives hints to the gas behavior understanding.
ATWS at Browns Ferry Unit One - accident sequence analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrington, R.M.; Hodge, S.A.
1984-07-01
This study describes the predicted response of Unit One at the Browns Ferry Nuclear Plant to a postulated complete failure to scram following a transient occurrence that has caused closure of all Main Steam Isolation Valves (MSIVs). This hypothetical event constitutes the most severe example of the type of accident classified as Anticipated Transient Without Scram (ATWS). Without the automatic control rod insertion provided by scram, the void coefficient of reactivity and the mechanisms by which voids are formed in the moderator/coolant play a dominant role in the progression of the accident. Actions taken by the operator greatly influence themore » quantity of voids in the coolant and the effect is analyzed in this report. The progression of the accident sequence under existing and under recommended procedures is discussed. For the extremely unlikely cases in which equipment failure and wrongful operator actions might lead to severe core damage, the sequence of emergency action levels and the associated timing of events are presented.« less
Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells
NASA Astrophysics Data System (ADS)
Li, Jingchao; Li, Jia'en Jasmine; Zhang, Jing; Wang, Xinlong; Kawazoe, Naoki; Chen, Guoping
2016-04-01
Gold nanoparticles (AuNPs) have been extensively explored for biomedical applications due to their advantages of facile synthesis and surface functionalization. Previous studies have suggested that AuNPs can induce differentiation of stem cells into osteoblasts. However, how the size and shape of AuNPs affect the differentiation response of stem cells has not been elucidated. In this work, a series of bovine serum albumin (BSA)-coated Au nanospheres, Au nanostars and Au nanorods with different diameters of 40, 70 and 110 nm were synthesized and their effects on osteogenic differentiation of human mesenchymal stem cells (hMSCs) were investigated. All the AuNPs showed good cytocompatibility and did not influence proliferation of hMSCs at the studied concentrations. Osteogenic differentiation of hMSCs was dependent on the size and shape of AuNPs. Sphere-40, sphere-70 and rod-70 significantly increased the alkaline phosphatase (ALP) activity and calcium deposition of cells while rod-40 reduced the ALP activity and calcium deposition. Gene profiling revealed that the expression of osteogenic marker genes was down-regulated after incubation with rod-40. However, up-regulation of these genes was found in the sphere-40, sphere-70 and rod-70 treatment. Moreover, it was found that the size and shape of AuNPs affected the osteogenic differentiation of hMSCs through regulating the activation of Yes-associated protein (YAP). These results indicate that the size and shape of AuNPs had an influence on the osteogenic differentiation of hMSCs, which should provide useful guidance for the preparation of AuNPs with defined size and shape for their biomedical applications.Gold nanoparticles (AuNPs) have been extensively explored for biomedical applications due to their advantages of facile synthesis and surface functionalization. Previous studies have suggested that AuNPs can induce differentiation of stem cells into osteoblasts. However, how the size and shape of AuNPs affect the differentiation response of stem cells has not been elucidated. In this work, a series of bovine serum albumin (BSA)-coated Au nanospheres, Au nanostars and Au nanorods with different diameters of 40, 70 and 110 nm were synthesized and their effects on osteogenic differentiation of human mesenchymal stem cells (hMSCs) were investigated. All the AuNPs showed good cytocompatibility and did not influence proliferation of hMSCs at the studied concentrations. Osteogenic differentiation of hMSCs was dependent on the size and shape of AuNPs. Sphere-40, sphere-70 and rod-70 significantly increased the alkaline phosphatase (ALP) activity and calcium deposition of cells while rod-40 reduced the ALP activity and calcium deposition. Gene profiling revealed that the expression of osteogenic marker genes was down-regulated after incubation with rod-40. However, up-regulation of these genes was found in the sphere-40, sphere-70 and rod-70 treatment. Moreover, it was found that the size and shape of AuNPs affected the osteogenic differentiation of hMSCs through regulating the activation of Yes-associated protein (YAP). These results indicate that the size and shape of AuNPs had an influence on the osteogenic differentiation of hMSCs, which should provide useful guidance for the preparation of AuNPs with defined size and shape for their biomedical applications. Electronic supplementary information (ESI) available: Additional experimental results. See DOI: 10.1039/c5nr08808a
NASA Technical Reports Server (NTRS)
Shannon, J. L., Jr.; Munz, D. G.
1983-01-01
Plane strain fracture toughness measurements were made on Al2O3 using short rod and short bar chevron notch specimens previously calibrated by the authors for their dimensionless stress intensity factor coefficients. The measured toughness varied systematically with variations in specimen size, proportions, and chevron notch angle apparently due to their influence on the amount of crack extension to maximum load (the measurement point). The toughness variations are explained in terms of a suspected rising R curve for the material tested, along with a discussion of an unavoidable imprecision in the calculation of K sub Ic for materials with rising R curves when tested with chevron notch specimens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potzuweit, Alexander; Schaffner, Anuschka; Jänsch, Heinz Julius, E-mail: heinz.jaensch@physik.uni-marburg.de
2014-09-01
Type E thermocouples show magnetic effects at liquid nitrogen temperature and below. This may cause trouble in experiments that are sensitive to magnetic stray fields like nuclear magnetic resonance, photoemission or high resolution electron energy loss spectroscopy. Here, a solution for the temperature measurement of a single crystal is presented. The authors weld a copper rod onto the back side of the single crystal, thereby relocating the sensitive sample from the thermocouple attachment position. They show that it is possible to measure the crystal temperature at the end of the rod while significantly reducing the ferromagnetic influence due to themore » increased distance.« less
Jongsukswat, Sukswat; Fukamachi, Tomoe; Ju, Dongying; Negishi, Riichirou; Hirano, Keiichi; Kawamura, Takaaki
2013-01-01
In X-ray interference fringes accompanied by mirage diffraction, variations have been observed in the spacing and position of the fringes from a plane-parallel Si single crystal fixed at one end as a function of distance from the incident plane of the X-rays to the free crystal end. The variations can be explained by distortion of the sample crystal due to gravity. From the variations and positions of the fringes, the strain gradient of the crystal has been determined. The distribution of the observed strain agrees with that expected from rod theory except for residual strain. When the distortion is large, the observed strain distribution does not agree with that expected from rod theory. PMID:24068841
Impedance of curved rectangular spiral coils around a conductive cylinder
NASA Astrophysics Data System (ADS)
Burke, S. K.; Ditchburn, R. J.; Theodoulidis, T. P.
2008-07-01
Eddy-current induction due to a thin conformable coil wrapped around a long conductive cylinder is examined using a second-order vector potential formalism. Compact closed-form expressions are derived for the self- and mutual impedances of curved rectangular spiral coils (i) in free space and (ii) when wrapped around the surface of the cylindrical rod. The validity of these expressions was tested against the results of a systematic series of experiments using a cylindrical Al-alloy rod and conformable coils manufactured using flexible printed-circuit-board technology. The theoretical expressions were in very good agreement with the experimental measurements. The significance of the results for eddy-current nondestructive inspection using flexible coils and flexible coil arrays is discussed.
:
Exposure to the organophosphorous insecticide fenthion has been associated with retinal degeneration in occupational studies. It has also been associated with pigmentary changes of the retina. Because retinal degeneration and pigmentary changes may be due to dysfunction of t...
Nakamura, Toru; Sato, Asako; Kitsukawa, Takashi; Momiyama, Toshihiko; Yamamori, Tetsuo; Sasaoka, Toshikuni
2014-01-01
Both D1R and D2R knock out (KO) mice of the major dopamine receptors show significant motor impairments. However, there are some discrepant reports, which may be due to the differences in genetic background and experimental procedures. In addition, only few studies directly compared the motor performance of D1R and D2R KO mice. In this paper, we examined the behavioral difference among N10 congenic D1R and D2R KO, and wild type (WT) mice. First, we examined spontaneous motor activity in the home cage environment for consecutive 5 days. Second, we examined motor performance using the rota-rod task, a standard motor task in rodents. Third, we examined motor ability with the Step-Wheel task in which mice were trained to run in a motor-driven turning wheel adjusting their steps on foothold pegs to drink water. The results showed clear differences among the mice of three genotypes in three different types of behavior. In monitoring spontaneous motor activities, D1R and D2R KO mice showed higher and lower 24 h activities, respectively, than WT mice. In the rota-rod tasks, at a low speed, D1R KO mice showed poor performance but later improved, whereas D2R KO mice showed a good performance at early days without further improvement. When first subjected to a high speed task, the D2R KO mice showed poorer rota-rod performance at a low speed than the D1R KO mice. In the Step-Wheel task, across daily sessions, D2R KO mice increased the duration that mice run sufficiently close to the spout to drink water, and decreased time to touch the floor due to missing the peg steps and number of times the wheel was stopped, which performance was much better than that of D1R KO mice. These incongruent results between the two tasks for D1R and D2R KO mice may be due to the differences in the motivation for the rota-rod and Step-Wheel tasks, aversion- and reward-driven, respectively. The Step-Wheel system may become a useful tool for assessing the motor ability of WT and mutant mice. PMID:25076876
Nakamura, Toru; Sato, Asako; Kitsukawa, Takashi; Momiyama, Toshihiko; Yamamori, Tetsuo; Sasaoka, Toshikuni
2014-01-01
Both D1R and D2R knock out (KO) mice of the major dopamine receptors show significant motor impairments. However, there are some discrepant reports, which may be due to the differences in genetic background and experimental procedures. In addition, only few studies directly compared the motor performance of D1R and D2R KO mice. In this paper, we examined the behavioral difference among N10 congenic D1R and D2R KO, and wild type (WT) mice. First, we examined spontaneous motor activity in the home cage environment for consecutive 5 days. Second, we examined motor performance using the rota-rod task, a standard motor task in rodents. Third, we examined motor ability with the Step-Wheel task in which mice were trained to run in a motor-driven turning wheel adjusting their steps on foothold pegs to drink water. The results showed clear differences among the mice of three genotypes in three different types of behavior. In monitoring spontaneous motor activities, D1R and D2R KO mice showed higher and lower 24 h activities, respectively, than WT mice. In the rota-rod tasks, at a low speed, D1R KO mice showed poor performance but later improved, whereas D2R KO mice showed a good performance at early days without further improvement. When first subjected to a high speed task, the D2R KO mice showed poorer rota-rod performance at a low speed than the D1R KO mice. In the Step-Wheel task, across daily sessions, D2R KO mice increased the duration that mice run sufficiently close to the spout to drink water, and decreased time to touch the floor due to missing the peg steps and number of times the wheel was stopped, which performance was much better than that of D1R KO mice. These incongruent results between the two tasks for D1R and D2R KO mice may be due to the differences in the motivation for the rota-rod and Step-Wheel tasks, aversion- and reward-driven, respectively. The Step-Wheel system may become a useful tool for assessing the motor ability of WT and mutant mice.
Britton, Charles L; D& #x27; Urso, Brian R; Chaum, Edward; Simpson, John T; Baba, Justin S; Ericson, M. Nance; Warmack, Robert J
2013-04-23
In one embodiment, the present invention provides a method of removing scar tissue from an eye that includes inserting a device including an array of micro-rods into an eye, wherein at least one glass micro-rod of the array of glass micro-rods includes a sharp feature; contacting a scar tissue with the array of micro-rods; and removing the array of micro-rods and the scar tissue from the eye. In another embodiment, the present invention provides a medical device for engaging a tissue including and an array of glass micro-rods, wherein at least one glass micro-rod of the array of glass micro-rods includes a sharp feature opposite a base of the array of glass micro-rods that is connected to the cannula, wherein the sharp feature of the at least one micro-rod is angled from a plane that is normal to a face of the base of the array of glass micro-rods.
Influence of implant rod curvature on sagittal correction of scoliosis deformity.
Salmingo, Remel Alingalan; Tadano, Shigeru; Abe, Yuichiro; Ito, Manabu
2014-08-01
Deformation of in vivo-implanted rods could alter the scoliosis sagittal correction. To our knowledge, no previous authors have investigated the influence of implanted-rod deformation on the sagittal deformity correction during scoliosis surgery. To analyze the changes of the implant rod's angle of curvature during surgery and establish its influence on sagittal correction of scoliosis deformity. A retrospective analysis of the preoperative and postoperative implant rod geometry and angle of curvature was conducted. Twenty adolescent idiopathic scoliosis patients underwent surgery. Average age at the time of operation was 14 years. The preoperative and postoperative implant rod angle of curvature expressed in degrees was obtained for each patient. Two implant rods were attached to the concave and convex side of the spinal deformity. The preoperative implant rod geometry was measured before surgical implantation. The postoperative implant rod geometry after surgery was measured by computed tomography. The implant rod angle of curvature at the sagittal plane was obtained from the implant rod geometry. The angle of curvature between the implant rod extreme ends was measured before implantation and after surgery. The sagittal curvature between the corresponding spinal levels of healthy adolescents obtained by previous studies was compared with the implant rod angle of curvature to evaluate the sagittal curve correction. The difference between the postoperative implant rod angle of curvature and normal spine sagittal curvature of the corresponding instrumented level was used to evaluate over or under correction of the sagittal deformity. The implant rods at the concave side of deformity of all patients were significantly deformed after surgery. The average degree of rod deformation Δθ at the concave and convex sides was 15.8° and 1.6°, respectively. The average preoperative and postoperative implant rod angle of curvature at the concave side was 33.6° and 17.8°, respectively. The average preoperative and postoperative implant rod angle of curvature at the convex side was 25.5° and 23.9°, respectively. A significant relationship was found between the degree of rod deformation and preoperative implant rod angle of curvature (r=0.60, p<.005). The implant rods at the convex side of all patients did not have significant deformation. The results indicate that the postoperative sagittal outcome could be predicted from the initial rod shape. Changes in implant rod angle of curvature may lead to over- or undercorrection of the sagittal curve. Rod deformation at the concave side suggests that corrective forces acting on that side are greater than the convex side. Copyright © 2014 Elsevier Inc. All rights reserved.
Nuclear reactor remote disconnect control rod coupling indicator
Vuckovich, Michael
1977-01-01
A coupling indicator for use with nuclear reactor control rod assemblies which have remotely disengageable couplings between the control rod and the control rod drive shaft. The coupling indicator indicates whether the control rod and the control rod drive shaft are engaged or disengaged. A resistive network, utilizing magnetic reed switches, senses the position of the control rod drive mechanism lead screw and the control rod position indicating tube, and the relative position of these two elements with respect to each other is compared to determine whether the coupling is engaged or disengaged.
Structures Self-Assembled Through Directional Solidification
NASA Technical Reports Server (NTRS)
Dynys, Frederick W.; Sayir, Ali
2005-01-01
Nanotechnology has created a demand for new fabrication methods with an emphasis on simple, low-cost techniques. Directional solidification of eutectics (DSE) is an unconventional approach in comparison to low-temperature biomimetic approaches. A technical challenge for DSE is producing microstructural architectures on the nanometer scale. In both processes, the driving force is the minimization of Gibb's free energy. Selfassembly by biomimetic approaches depends on weak interaction forces between organic molecules to define the architectural structure. The architectural structure for solidification depends on strong chemical bonding between atoms. Constituents partition into atomic-level arrangements at the liquid-solid interface to form polyphase structures, and this atomic-level arrangement at the liquid-solid interface is controlled by atomic diffusion and total undercooling due to composition (diffusion), kinetics, and curvature of the boundary phases. Judicious selection of the materials system and control of the total undercooling are the keys to producing structures on the nanometer scale. The silicon-titanium silicide (Si-TiSi2) eutectic forms a rod structure under isothermal cooling conditions. At the NASA Glenn Research Center, directional solidification was employed along with a thermal gradient to promote uniform rods oriented with the thermal gradient. The preceding photomicrograph shows the typical transverse microstructure of a solidified Si-TiSi2 eutectic composition. The dark and light gray regions are Si and TiSi2, respectively. Preferred rod orientation along the thermal gradient was poor. The ordered TiSi2 rods have a narrow distribution in diameter of 2 to 3 m, as shown. The rod diameter showed a weak dependence on process conditions. Anisotropic etch behavior between different phases provides the opportunity to fabricate structures with high aspect ratios. The photomicrographs show the resulting microstructure after a wet chemical etch and a dry plasma etch. The wet chemical etches the silicon away, exposing the TiSi2 rods, whereas plasma etching preferentially etches the Si-TiSi2 interface to form a crater. The porous architectures are applicable to fabricating microdevices or creating templates for part fabrication. The porous rod structure can serve as a platform for fabricating microplasma devices for propulsion or microheat exchangers and for fabricating microfilters for miniatured chemical reactors. Although more work is required, self-assembly from DSE can have a role in microdevice fabrication.
Nuclear fuel performance: Trends, remedies and challenges
NASA Astrophysics Data System (ADS)
Rusch, C. A.
2008-12-01
It is unacceptable to have nuclear power plants unavailable or power restricted due to fuel reliability issues. 'Fuel reliability' has a much broader definition than just maintaining mechanical integrity and being leaker free - fuel must fully meet the specifications, impose no adverse impacts on plant operation and safety, and maintain quantifiable margins within design and operational envelopes. The fuel performance trends over the last decade are discussed and the significant contributors to reduced reliability experienced with commercial PWR and BWR designs are identified and discussed including grid-to-rod fretting and debris fretting in PWR designs and accelerated corrosion, debris fretting and pellet-cladding interaction in BWR designs. In many of these cases, the impacts have included not only fuel failures but also plant operating restrictions, forced shutdowns, and/or enhanced licensing authority oversight. Design and operational remedies are noted. The more demanding operating regimes and the constant quest to improve fuel performance require enhancements to current designs and/or new design features. Fuel users must continue to and enhance interaction with fuel suppliers in such areas as oversight of supplier design functions, lead test assembly irradiation programs and quality assurance oversight and surveillance. With the implementation of new designs and/or features, such fuel user initiatives can help to minimize the potential for performance problems.
Ionic liquids-mediated interactions between nanorods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Zhou; Zhang, Fei; Huang, Jingsong
Surface forces mediated by room-temperature ionic liquids (RTILs) play an essential role in diverse applications including self-assembly, lubrication, and electrochemical energy storage. In this work, using molecular simulations we study the interactions between two nanorods immersed in model RTILs at rod-rod separations where both structural and double layer forces are important. The interaction force between neutral rods oscillates as the two rods approach each other, similar to the classical structural forces. Such oscillatory force originates from the density oscillation of RTILs near each rod and is affected by the packing constraints imposed by the neighboring rods. The oscillation period andmore » decay length of the oscillatory force are mainly dictated by the ion density distribution near isolated nanorods. When charges are introduced on the rods, the interaction force remains short-range and oscillatory, similar to the interactions between planar walls mediated by some protic RTILs reported earlier. Nevertheless, introducing net charges to the rods greatly changes the rod-rod interactions, e.g., by delaying the appearance of the first force trough and increasing the oscillation period and decay length of the interaction force. The oscillation period and decay length of the oscillatory force and free energy are commensurate with those of the space charge density near an isolated, charged rod. The free energy of rod-rod interactions reaches local minima (maxima) at rod-rod separations when the space charges near the two rods interfere constructively (destructively). Here, the insight on the short-range interactions between nanorods in RTILs helps guide the design of novel materials, e.g., crystalline ion gels based on rigid-rod polyanions and RTILs.« less
Ionic liquids-mediated interactions between nanorods
Yu, Zhou; Zhang, Fei; Huang, Jingsong; ...
2017-10-06
Surface forces mediated by room-temperature ionic liquids (RTILs) play an essential role in diverse applications including self-assembly, lubrication, and electrochemical energy storage. In this work, using molecular simulations we study the interactions between two nanorods immersed in model RTILs at rod-rod separations where both structural and double layer forces are important. The interaction force between neutral rods oscillates as the two rods approach each other, similar to the classical structural forces. Such oscillatory force originates from the density oscillation of RTILs near each rod and is affected by the packing constraints imposed by the neighboring rods. The oscillation period andmore » decay length of the oscillatory force are mainly dictated by the ion density distribution near isolated nanorods. When charges are introduced on the rods, the interaction force remains short-range and oscillatory, similar to the interactions between planar walls mediated by some protic RTILs reported earlier. Nevertheless, introducing net charges to the rods greatly changes the rod-rod interactions, e.g., by delaying the appearance of the first force trough and increasing the oscillation period and decay length of the interaction force. The oscillation period and decay length of the oscillatory force and free energy are commensurate with those of the space charge density near an isolated, charged rod. The free energy of rod-rod interactions reaches local minima (maxima) at rod-rod separations when the space charges near the two rods interfere constructively (destructively). Here, the insight on the short-range interactions between nanorods in RTILs helps guide the design of novel materials, e.g., crystalline ion gels based on rigid-rod polyanions and RTILs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurent Pantera, Oumar Traore
The CABRI facility is an experimental nuclear reactor of the French Atomic Energy Commission. It is located at the Cadarache Research Centre in southern France and it is designed to act as a support to the French nuclear infrastructure. The purpose of the new testing programme termed, 'CABRI International Programme' (CIP) is to study the behaviour of PWR-type fuel rods at high burnup, equipped with an 'advanced' cladding, under Reactivity Initiated Accident (RIA) conditions (such as the scenario of a control rod ejection). Within the framework of this programme, piloted and funded by the French Institute of Nuclear Radioprotection andmore » Safety (IRSN), ten tests are to be conducted with a frequency of two tests per year. The LPRE laboratory of the CEA which is in charge of the Preparation, realisation and breakdown of the test results studies the possibility to set up a new test analysis based on the processing of signals coming from sensors placed within the test equipment. During the experimental phase, the behaviour of the fuel element generates acoustic waves which can be detected by two microphones placed upstream and downstream of the test device. Studies showed the interest to realize temporal and spectral analyses on these signals by showing the existence of signatures which can be correlated with physical phenomena as the rod failure or the test shutdown (i.e. scram). The work presented in this article results from the will to consolidate these studies. Since the main phenomenon to be tracked is the fuel rod failure, the aim would be to highlight specific events which would have been precursors of the rod failure in order to use in the future these signals for further interpretation. Such an antecedent works resumption leads to a better understanding of the experimental needs and constitutes a good initial state to prepare the new very fast digital data acquisition systems. Although all the raw data are accessible in the form of text files, analyses and graphics representations were not straightforward to reproduce from the ancient studies since that, on one hand, people who were in charge of the original work left the laboratory and on the other hand because it is not easy when the time passes, even with our own work, to be able to remember the steps of data manipulations and the exact setup: - During the ancient experiments the use of analog data acquisition systems required to digitize tapes to be able to realize computer treatments. That had had for consequence to lose the initial dating. This one must be correctly edited to do temporal comparisons. - Analyses require functions for calculations whose parameters has to be well-known to reach the same results. We thus wished to manage our workflow in the idea that it can be easily reproducible on all the experiments. The object of the work presented in this article was to put in practice this strong bind between the data, treatments and generation of the document in order not to hesitate to do the iteration principle in action. We do not have to be afraid by the data driven analyses. According to the philosophy of the literate programming, the text of the technical document is woven with the computer code that produces all the printed output as tables, graphs for the study eliminating hence the unrealistic cut and paste. This difficulty is not specific to the nuclear domain. For many years, researchers have been worked out solutions to this mundane issue. And, presently, new technologies and high-level programming languages offer us actual answers. We will firstly present the tools applied in our laboratory to implement this workflow, then we will describe the global perception carried out to continue the study of the Acoustic Emission signals recorded by the two microphones during the fourteen last CABRI R.I.A. test.« less
NASA Astrophysics Data System (ADS)
Major, J. R.; Eichhubl, P.; Dewers, T. A.
2014-12-01
An understanding of the coupled chemical and mechanical properties and behavior of reservoir and seal rocks is critical for assessing both the short and long term security of sequestered CO2. A combined structural diagenesis approach using observations from natural analogs has great advantages for understanding these properties over longer time scales than is possible using laboratory or numerical experiments. Current numerical models evaluating failure of reservoirs and seals during and after CO2 injection in the subsurface are just beginning to account for such coupled processes. Well-characterized field studies of natural analogs such as Crystal Geyser, Utah, are essential for providing realistic input parameters, calibration, and testing of numerical models across a range of spatial and temporal scales. Fracture mechanics testing was performed on a suite of naturally altered and unaltered reservoir and seal rocks exposed at the Crystal Geyser field site. These samples represent end-products of CO2-related alteration over geologic (>103 yr) time scales. Both the double torsion and short rod test methods yield comparable results on the same samples. Tests demonstrate that CO2-related alteration has weakened one reservoir sandstone lithology by approximately 50%, but the subcritical index is not significantly affected. An altered siltstone sample also shows a reduction in fracture toughness values and lowered subcritical index in comparison to unaltered siltstone. In contrast, elevated calcite content in shales due to CO2 alteration has increased fracture toughness. Similarly, fracture toughness was increased in what is otherwise a weak, poorly cemented sandstone unit due to increased calcite cement. Combined, these results demonstrate that CO2-related alteration generally weakens rock to fracturing (i.e. lowers fracture toughness), except in cases where calcite cementation is significantly increased. The natural system at Crystal Geyser demonstrates that water-CO2-rock interaction driven by changes in the geochemical environment have measurably altered rock geomechanical properties and that some rock units may become more prone to failure, ultimately leading to fracturing and leakage of subsurface reservoirs. These results also have application for CO2-based enhanced oil recovery.
Morphological Diversity of the Rod Spherule: A Study of Serially Reconstructed Electron Micrographs
Li, Shuai; Mitchell, Joe; Briggs, Deidrie J.; Young, Jaime K.; Long, Samuel S.; Fuerst, Peter G.
2016-01-01
Purpose Rod spherules are the site of the first synaptic contact in the retina’s rod pathway, linking rods to horizontal and bipolar cells. Rod spherules have been described and characterized through electron micrograph (EM) and other studies, but their morphological diversity related to retinal circuitry and their intracellular structures have not been quantified. Most rod spherules are connected to their soma by an axon, but spherules of rods on the surface of the Mus musculus outer plexiform layer often lack an axon and have a spherule structure that is morphologically distinct from rod spherules connected to their soma by an axon. Retraction of the rod axon and spherule is often observed in disease processes and aging, and the retracted rod spherule superficially resembles rod spherules lacking an axon. We hypothesized that retracted spherules take on an axonless spherule morphology, which may be easier to maintain in a diseased state. To test our hypothesis, we quantified the spatial organization and subcellular structures of rod spherules with and without axons. We then compared them to the retracted spherules in a disease model, mice that overexpress Dscam (Down syndrome cell adhesion molecule), to gain a better understanding of the rod synapse in health and disease. Methods We reconstructed serial EM images of wild type and DscamGoF (gain of function) rod spherules at a resolution of 7 nm in the X-Y axis and 60 nm in the Z axis. Rod spherules with and without axons, and retracted spherules in the DscamGoF retina, were reconstructed. The rod spherule intracellular organelles, the invaginating dendrites of rod bipolar cells and horizontal cell axon tips were also reconstructed for statistical analysis. Results Stereotypical rod (R1) spherules occupy the outer two-thirds of the outer plexiform layer (OPL), where they present as spherical terminals with large mitochondria. This spherule group is highly uniform and composed more than 90% of the rod spherule population. Rod spherules lacking an axon (R2) were also described and characterized. This rod spherule group consists of a specific spatial organization that is strictly located at the apical OPL-facing layer of the Outer Nuclear Layer (ONL). The R2 spherule displays a large bowl-shaped synaptic terminal that hugs the rod soma. Retracted spherules in the DscamGoF retina were also reconstructed to test if they are structurally similar to R2 spherules. The misplaced rod spherules in DscamGoF have a gross morphology that is similar to R2 spherules but have significant disruption in internal synapse organization. Conclusion We described a morphological diversity within Mus musculus rod spherules. This diversity is correlated with rod location in the ONL and contributes to the intracellular differences within spherules. Analysis of the DscamGoF retina indicated that their R2 spherules are not significantly different than wild type R2 spherules, but that their retracted rod spherules have abnormal synaptic organization. PMID:26930660
Morphological Diversity of the Rod Spherule: A Study of Serially Reconstructed Electron Micrographs.
Li, Shuai; Mitchell, Joe; Briggs, Deidrie J; Young, Jaime K; Long, Samuel S; Fuerst, Peter G
2016-01-01
Rod spherules are the site of the first synaptic contact in the retina's rod pathway, linking rods to horizontal and bipolar cells. Rod spherules have been described and characterized through electron micrograph (EM) and other studies, but their morphological diversity related to retinal circuitry and their intracellular structures have not been quantified. Most rod spherules are connected to their soma by an axon, but spherules of rods on the surface of the Mus musculus outer plexiform layer often lack an axon and have a spherule structure that is morphologically distinct from rod spherules connected to their soma by an axon. Retraction of the rod axon and spherule is often observed in disease processes and aging, and the retracted rod spherule superficially resembles rod spherules lacking an axon. We hypothesized that retracted spherules take on an axonless spherule morphology, which may be easier to maintain in a diseased state. To test our hypothesis, we quantified the spatial organization and subcellular structures of rod spherules with and without axons. We then compared them to the retracted spherules in a disease model, mice that overexpress Dscam (Down syndrome cell adhesion molecule), to gain a better understanding of the rod synapse in health and disease. We reconstructed serial EM images of wild type and DscamGoF (gain of function) rod spherules at a resolution of 7 nm in the X-Y axis and 60 nm in the Z axis. Rod spherules with and without axons, and retracted spherules in the DscamGoF retina, were reconstructed. The rod spherule intracellular organelles, the invaginating dendrites of rod bipolar cells and horizontal cell axon tips were also reconstructed for statistical analysis. Stereotypical rod (R1) spherules occupy the outer two-thirds of the outer plexiform layer (OPL), where they present as spherical terminals with large mitochondria. This spherule group is highly uniform and composed more than 90% of the rod spherule population. Rod spherules lacking an axon (R2) were also described and characterized. This rod spherule group consists of a specific spatial organization that is strictly located at the apical OPL-facing layer of the Outer Nuclear Layer (ONL). The R2 spherule displays a large bowl-shaped synaptic terminal that hugs the rod soma. Retracted spherules in the DscamGoF retina were also reconstructed to test if they are structurally similar to R2 spherules. The misplaced rod spherules in DscamGoF have a gross morphology that is similar to R2 spherules but have significant disruption in internal synapse organization. We described a morphological diversity within Mus musculus rod spherules. This diversity is correlated with rod location in the ONL and contributes to the intracellular differences within spherules. Analysis of the DscamGoF retina indicated that their R2 spherules are not significantly different than wild type R2 spherules, but that their retracted rod spherules have abnormal synaptic organization.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-19
... DEPARTMENT OF COMMERCE International Trade Administration [C-533-856] Steel Threaded Rod From... exporters of steel threaded rod from India. The period of investigation (``POI'') is January 1, 2012... this investigation is steel threaded rod. Steel threaded rod is certain threaded rod, bar, or studs, of...
14 CFR 25.367 - Unsymmetrical loads due to engine failure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the engine compressor from the turbine or from loss of the turbine blades are considered to be... § 25.367 Unsymmetrical loads due to engine failure. (a) The airplane must be designed for the unsymmetrical loads resulting from the failure of the critical engine. Turbopropeller airplanes must be designed...
14 CFR 25.367 - Unsymmetrical loads due to engine failure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the engine compressor from the turbine or from loss of the turbine blades are considered to be... § 25.367 Unsymmetrical loads due to engine failure. (a) The airplane must be designed for the unsymmetrical loads resulting from the failure of the critical engine. Turbopropeller airplanes must be designed...
14 CFR 25.367 - Unsymmetrical loads due to engine failure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the engine compressor from the turbine or from loss of the turbine blades are considered to be... § 25.367 Unsymmetrical loads due to engine failure. (a) The airplane must be designed for the unsymmetrical loads resulting from the failure of the critical engine. Turbopropeller airplanes must be designed...
Complications of growth-sparing surgery in early onset scoliosis.
Akbarnia, Behrooz A; Emans, John B
2010-12-01
Review of available literature, authors' opinion. To describe complications associated with growth-sparing surgical treatment of early onset scoliosis (EOS). EOS has many potential etiologies and is often associated with thoracic insufficiency syndrome. The growth of the spine, thorax, and lungs are interrelated, and severe EOS typically involves disturbance of the normal development of all 3. Severe EOS may be treated during growth with surgical techniques, intended to preserve growth while controlling deformity, the most common of which are spinal "growing rods" (GR) or "vertical expandable prosthetic titanium rib" (VEPTR). Although presently popular, there is minimal long-term data on the outcome of growth-sparing surgical techniques on EOS. Review. Potential adverse outcomes of GR or VEPTR treatment of EOS include failure to prevent progressive deformity or thoracic insufficiency syndrome, an unacceptably short or stiff spine or deformed thorax, increased family burden of care, and potentially negative psychological consequences from repeated surgical interventions. Neither technique reliably controls all deformity over the entirety of growth period. Infections are common to both GR and VEPTR. Rod breakage and spontaneous premature spinal fusion beneath rods are troublesome complications in GR, whereas drift of rib attachments and chest wall scarring are anticipated complications in VEPTR treatment. Indications for GR and VEPTR overlap, but thoracogenic scoliosis and severe upper thoracic kyphosis are best treated by VEPTR and GR, respectively. Surgeons planning treatment of EOS should anticipate the many complications common to growth-sparing surgery, share their knowledge with families, and use complications as one factor in the complex decision as to when and whether to initiate the repetitive surgeries associated with GR or VEPTR in the treatment of severe EOS.
Contact-coupled impact of slender rods: analysis and experimental validation
Tibbitts, Ira B.; Kakarla, Deepika; Siskey, Stephanie; Ochoa, Jorge A.; Ong, Kevin L.; Brannon, Rebecca M.
2013-01-01
To validate models of contact mechanics in low speed structural impact, slender rods were impacted in a drop tower, and measurements of the contact and vibration were compared to analytical and finite element (FE) models. The contact area was recorded using a novel thin-film transfer technique, and the contact duration was measured using electrical continuity. Strain gages recorded the vibratory strain in one rod, and a laser Doppler vibrometer measured speed. The experiment was modeled analytically on a one-dimensional spatial domain using a quasi-static Hertzian contact law and a system of delay differential equations. The three-dimensional FE model used hexahedral elements, a penalty contact algorithm, and explicit time integration. A small submodel taken from the initial global FE model economically refined the analysis in the small contact region. Measured contact areas were within 6% of both models’ predictions, peak speeds within 2%, cyclic strains within 12 με (RMS value), and contact durations within 2 μs. The global FE model and the measurements revealed small disturbances, not predicted by the analytical model, believed to be caused by interactions of the non-planar stress wavefront with the rod’s ends. The accuracy of the predictions for this simple test, as well as the versatility of the diagnostic tools, validates the theoretical and computational models, corroborates instrument calibration, and establishes confidence that the same methods may be used in experimental and computational study of contact mechanics during impact of more complicated structures. Recommendations are made for applying the methods to a particular biomechanical problem: the edge-loading of a loose prosthetic hip joint which can lead to premature wear and prosthesis failure. PMID:24729630
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamburello, David A.; McWilliams, Anthony J.; Hardy, Bruce J.
Vessel assemblies, heat transfer units for prefabricated vessels, and methods for heat transfer prefabricated vessel are provided. A heat transfer unit includes a central rod, and a plurality of peripheral rods surrounding the central rod and connected to the central rod. The plurality of peripheral rods are movable between a first collapsed position and a second bowed position, wherein in the second bowed position a midpoint of each of the plurality of peripheral rods is spaced from the central rod relative to in the first position. The heat transfer unit further includes a heat transfer element connected to one ofmore » the plurality of peripheral rods.« less
Salmingo, Remel Alingalan; Tadano, Shigeru; Abe, Yuichiro; Ito, Manabu
2016-05-12
Treatment for severe scoliosis is usually attained when the scoliotic spine is deformed and fixed by implant rods. Investigation of the intraoperative changes of implant rod shape in three-dimensions is necessary to understand the biomechanics of scoliosis correction, establish consensus of the treatment, and achieve the optimal outcome. The objective of this study was to measure the intraoperative three-dimensional geometry and deformation of implant rod during scoliosis corrective surgery.A pair of images was obtained intraoperatively by the dual camera system before rotation and after rotation of rods during scoliosis surgery. The three-dimensional implant rod geometry before implantation was measured directly by the surgeon and after surgery using a CT scanner. The images of rods were reconstructed in three-dimensions using quintic polynomial functions. The implant rod deformation was evaluated using the angle between the two three-dimensional tangent vectors measured at the ends of the implant rod.The implant rods at the concave side were significantly deformed during surgery. The highest rod deformation was found after the rotation of rods. The implant curvature regained after the surgical treatment.Careful intraoperative rod maneuver is important to achieve a safe clinical outcome because the intraoperative forces could be higher than the postoperative forces. Continuous scoliosis correction was observed as indicated by the regain of the implant rod curvature after surgery.
Koller, Heiko; Fierlbeck, Johann; Auffarth, Alexander; Niederberger, Alfred; Stephan, Daniel; Hitzl, Wolfgang; Augat, Peter; Zenner, Juliane; Blocher, Martina; Blocher, Martina; Resch, Herbert; Mayer, Michael
2014-03-15
Biomechanical in vitro laboratory study. To compare the biomechanical performance of 3 fixation concepts used for anterior instrumented scoliosis correction and fusion (AISF). AISF is an ideal estimate for selective fusion in adolescent idiopathic scoliosis. Correction is mediated using rods and screws anchored in the vertebral bodies. Application of large correction forces can promote early weakening of the implant-vertebra interfaces, with potential postoperative loss of correction, implant dislodgment, and nonunion. Therefore, improvement of screw-rod anchorage characteristics with AISF is valuable. A total of 111 thoracolumbar vertebrae harvested from 7 human spines completed a testing protocol. Age of specimens was 62.9 ± 8.2 years. Vertebrae were potted in polymethylmethacrylate and instrumented using 3 different devices with identical screw length and unicortical fixation: single constrained screw fixation (SC fixation), nonconstrained dual-screw fixation (DNS fixation), and constrained dual-screw fixation (DC fixation) resembling a novel implant type. Mechanical testing of each implant-vertebra unit using cyclic loading and pullout tests were performed after stress tests were applied mimicking surgical maneuvers during AISF. Test order was as follows: (1) preload test 1 simulating screw-rod locking and cantilever forces; (2) preload test 2 simulating compression/distraction maneuver; (3) cyclic loading tests with implant-vertebra unit subjected to stepwise increased cyclic loading (maximum: 200 N) protocol with 1000 cycles at 2 Hz, tests were aborted if displacement greater than 2 mm occurred before reaching 1000 cycles; and (4) coaxial pullout tests at a pullout rate of 5 mm/min. With each test, the mode of failure, that is, shear versus fracture, was noted as well as the ultimate load to failure (N), number of implant-vertebra units surpassing 1000 cycles, and number of cycles and related loads applied. Thirty-three percent of vertebrae surpassed 1000 cycles, 38% in the SC group, 19% in the DNS group, and 43% in the DC group. The difference between the DC group and the DNS group yielded significance (P = 0.04). For vertebrae not surpassing 1000 cycles, the number of cycles at implant displacement greater than 2 mm in the SC group was 648.7 ± 280.2 cycles, in the DNS group was 478.8 ± 219.0 cycles, and in the DC group was 699.5 ± 150.6 cycles. Differences between the SC group and the DNS group were significant (P = 0.008) as between the DC group and the DNS group (P = 0.0009). Load to failure in the SC group was 444.3 ± 302 N, in the DNS group was 527.7 ± 273 N, and in the DC group was 664.4 ± 371.5 N. The DC group outperformed the other constructs. The difference between the SC group and the DNS group failed significance (P = 0.25), whereas there was a significant difference between the SC group and the DC group (P = 0.003). The DC group showed a strong trend toward increased load to failure compared with the DNS group but without significance (P = 0.067). Surpassing 1000 cycles had a significant impact on the maximum load to failure in the SC group (P = 0.0001) and in the DNS group (P = 0.01) but not in the DC group (P = 0.2), which had the highest number of vertebrae surpassing 1000 cycles. Constrained dual-screw fixation characteristics in modern AISF implants can improve resistance to cyclic loading and pullout forces. DC constructs bear the potential to reduce the mechanical shortcomings of AISF.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-20
... Steel Wire Rod From Mexico: Affirmative Preliminary Determination of Circumvention of the Antidumping.... SUMMARY: We preliminarily determine that carbon and certain alloy steel wire rod (wire rod) with an actual.... de C.V. (Deacero) is circumventing the antidumping duty order on wire rod from Mexico (Wire Rod Order...
Kidney failure; Renal failure; Renal failure - acute; ARF; Kidney injury - acute ... There are many possible causes of kidney damage. They include: ... cholesterol (cholesterol emboli) Decreased blood flow due to very ...
La Barbera, Luigi; Brayda-Bruno, Marco; Liebsch, Christian; Villa, Tomaso; Luca, Andrea; Galbusera, Fabio; Wilke, Hans-Joachim
2018-05-08
To investigate the effect of anterior interbody cages, accessory and satellite rods usage on primary stability and rod strains for PSO stabilization. Seven human cadaveric spine segments (T12-S1) underwent PSO at L4 with posterior fixation from L2 to S1. In vitro flexibility tests were performed under pure moments in flexion/extension (FE), lateral bending (LB) and axial rotation (AR) to determine the range of motion, while measuring the strains on the primary rods with strain gauge rosettes. Six constructs with 2, 3 and 4 rods, with and without interbody cages implantation adjacent to the PSO site, were compared. All constructs had comparable effects in reducing spine kinematics compared to the intact condition (- 94% in FE and LB; - 80% in AR). Supplementation of 2 rods with lateral accessory rods (4 rods) was the most effective strategy in minimizing primary rod strains, particularly when coupled to cages (p ≤ 0.005; - 50% in FE, - 42% in AR and - 11% in LB); even without cages, the strains were significantly reduced (p ≤ 0.009; - 26%, - 37%, - 9%). The addition of a central satellite rod with laminar hooks (3 rods) effectively reduced rod strains in FE (p ≤ 0.005; - 30%) only in combination with cages. The study supports the current clinical practice providing a strong biomechanical rationale to recommend 4-rod constructs based on accessory rods combined with cages adjacent to PSO site. Although weaker, the usage of accessory rods without cages and of a central satellite rod with hooks in combination with interbody spacers may also be justified. These slides can be retrieved under Electronic Supplementary Material.
Conidial Hydrophobins of Aspergillus fumigatus
Paris, Sophie; Debeaupuis, Jean-Paul; Crameri, Reto; Carey, Marilyn; Charlès, Franck; Prévost, Marie Christine; Schmitt, Christine; Philippe, Bruno; Latgé, Jean Paul
2003-01-01
The surface of Aspergillus fumigatus conidia, the first structure recognized by the host immune system, is covered by rodlets. We report that this outer cell wall layer contains two hydrophobins, RodAp and RodBp, which are found as highly insoluble complexes. The RODA gene was previously characterized, and ΔrodA conidia do not display a rodlet layer (N. Thau, M. Monod, B. Crestani, C. Rolland, G. Tronchin, J. P. Latgé, and S. Paris, Infect. Immun. 62:4380-4388, 1994). The RODB gene was cloned and disrupted. RodBp was highly homologous to RodAp and different from DewAp of A. nidulans. ΔrodB conidia had a rodlet layer similar to that of the wild-type conidia. Therefore, unlike RodAp, RodBp is not required for rodlet formation. The surface of ΔrodA conidia is granular; in contrast, an amorphous layer is present at the surface of the conidia of the ΔrodA ΔrodB double mutant. These data show that RodBp plays a role in the structure of the conidial cell wall. Moreover, rodletless mutants are more sensitive to killing by alveolar macrophages, suggesting that RodAp or the rodlet structure is involved in the resistance to host cells. PMID:12620846
Surface properties of sprayed and electrodeposited ZnO rod layers
NASA Astrophysics Data System (ADS)
Gromyko, I.; Krunks, M.; Dedova, T.; Katerski, A.; Klauson, D.; Oja Acik, I.
2017-05-01
Herein we present a comparative study on as-deposited, two-month-stored, and heat-treated ZnO rods obtained by spray pyrolysis (SP) at 550 °C, and electrodeposition (ED) at 80 °C. The aim of the study is to establish the reason for different behaviour of wettability and photocatalytic activity (PA) of SP and ED rods. Samples were studied using XPS, SEM, XRD, Raman, contact angle (CA) measurements and photocatalytic oxidation of doxycycline. Wettability and PA are mainly controlled by surface composition rather than by morphology. The relative amount of hydroxyl groups on the surface of as-deposited ED rods is four times higher compared to as-deposited SP rods. Opposite to SP rods, ED rods contain oxygen vacancy defects (Vo). Therefore, as-deposited ED rods are superhydrophilic (CA ∼ 3°) and show highest PA among studied samples, being three times higher compared to SP rods (removing of 75% of doxycycline after 30 min). It was revealed that as-deposited ED rods are inclined to faster contamination. The amount of Cdbnd C groups on the surface of aged ED rods is six times higher compared to aged SP rods. Stored ED samples become hydrophobic (CA ∼ 120°) and PA decreases sharply while SP rods remain hydrophilic (CA ∼ 50°), being more resistive to the contamination.
Ultrasonic longitudinal waves to monitor the integration of titanium rods with host bone
NASA Astrophysics Data System (ADS)
Wang, Wentao; Lynch, Jerome P.
2017-04-01
Osseointegrated prostheses which integrate the prosthesis directly to the limb bone are being developed for patients that are unable to wear traditional socket prostheses. While osseointegration of the prosthesis offers amputees improvement in their quality of life, there remains a need to better understand the integration process that occurs between the bone and the prosthesis. Quantification of the degree of integration is important to track the recuperation process of the amputee, guide physical therapy regimes, and to identify when the state of integration may change (due to damage to the bone). This study explores the development of an assessment strategy for quantitatively assessing the degree of integration between an osseointegrated prosthesis and host bone. Specifically, the strategy utilizes a titanium rod prosthesis as a waveguide with guided waves used to assess the degree of integration. By controlling waveforms launched by piezoelectric wafers bonded on the percutaneous tip of the prosthesis, body waves are introduced into the waveguide with wave reflections at the boneprosthesis interface recorded by the same array. Changes in wave energy are correlated to changes at the contact interface between the titanium rod and the bone material. Both simulation and experimental tests are presented in this paper. Experimental testing is performed using a high-density polyethylene (HDPE) host because the elastic modulus and density of HDPE are close to that of human and animal bone. Results indicate high sensitivity of the longitudinal wave energy to rod penetration depth and confinement stress issued by the host bone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koya, Alemayehu Nana; Ji, Boyu; Hao, Zuoqiang
2015-09-21
Combined effects of polarization, split gap, and rod width on the resonance hybridization and near field properties of strongly coupled gold dimer-rod nanosystem are comparatively investigated in the light of the constituent nanostructures. By aligning polarization of the incident light parallel to the long axis of the nanorod, introducing small split gaps to the dimer walls, and varying width of the nanorod, we have simultaneously achieved resonance mode coupling, huge near field enhancement, and prolonged plasmon lifetime. As a result of strong coupling between the nanostructures and due to an intense confinement of near fields at the split and dimer-rodmore » gaps, the extinction spectrum of the coupled nanosystem shows an increase in intensity and blueshift in wavelength. Consequently, the near field lifespan of the split-nanosystem is prolonged in contrast to the constituent nanostructures and unsplit-nanosystem. On the other hand, for polarization of the light perpendicular to the long axis of the nanorod, the effect of split gap on the optical responses of the coupled nanosystem is found to be insignificant compared to the parallel polarization. These findings and such geometries suggest that coupling an array of metallic split-ring dimer with long nanorod can resolve the huge radiative loss problem of plasmonic waveguide. In addition, the Fano-like resonances and immense near field enhancements at the split and dimer-rod gaps imply the potentials of the nanosystem for practical applications in localized surface plasmon resonance spectroscopy and sensing.« less
Evaluation of americium-241 toxicity influence on the microbial growth of organic wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takehiro Marumo, Julio; Padua Ferreira, Rafael Vicente de; Keiko Isiki, Vera Lucia
2007-07-01
Available in abstract form only. Full text of publication follows: Since the licenses for using radioactive sources in radioactive lightning rods were lifted by the Brazilian national nuclear authority, in 1989, the radioactive devices have been replaced by Franklin type and collected as radioactive waste. However, only 20 percent of the estimated total number of installed rods was delivered to Brazilian Nuclear Commission. This situation causes concern, due to, first, the possibility of the rods being disposed as domestic waste, and second, the americium, the most commonly employed radionuclide, is classified as a high-toxicity element. In the present study, Am-241more » migration experiments were performed by a lysimeter system, in order to evaluate the risk of contamination caused by radioactive lightning rods disposed as a common solid waste. Besides the risk evaluation, it is important to know the mechanism of the Am-241 release or retention in waste as well as its influence in the waste decomposition processes. Many factors are involved, but microorganisms present in the waste play an important role in its degradation, which control the physical and chemical processes. The objective of this work was to evaluate the Am-241 influence on the microbial population by counting number of cells in lysimeters leachate. Preliminary results suggest that americium may influence significantly the bacteria growth in organic waste, evidenced by culture under aerobiosis and an-aerobiosis and the antimicrobial resistance test. (authors)« less
Hutter, E.
1959-09-01
A cluster of nuclear fuel rods aod a tubular casing through which a coolant flows in heat-change contact with the ruel rods are described. The casting is of trefoil section and carries the fuel rods, each of which has two fin engaging the serrated fins of the other two fuel rods, whereby the fuel rods are held in the casing and are interlocked against relative longitudinal movement.
Heat transfer unit and method for prefabricated vessel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamburello, David A.; Kesterson, Matthew R; Hardy, Bruce J.
Vessel assemblies, heat transfer units for prefabricated vessels, and methods for heat transfer prefabricated vessel are provided. A heat transfer unit includes a central rod, and a plurality of peripheral rods surrounding the central rod and connected to the central rod. The plurality of peripheral rods are movable between a first collapsed position and a second bowed position, wherein in the second bowed position a midpoint of each of the plurality of peripheral rods is spaced from the central rod relative to in the first position. The heat transfer unit further includes a heat transfer element connected to one ofmore » the plurality of peripheral rods.« less
Mechanics of external fixation device of spine: reducing the mounting stress
NASA Astrophysics Data System (ADS)
Piven, V. V.; Lyulin, S. V.; Kovalenko, P. I.; Mushtaeva, Yu A.
2018-03-01
During the installation of the external fixation device on the spine, there is an occurrence of mounting stress due to misalignment of the rod-screws. To determine the magnitude of the mounting stresses, mathematical dependencies are sometimes used. The proposed technical solution is to reduce stress in the external fixation device.
The fracture behaviour of dental enamel.
Bechtle, Sabine; Habelitz, Stefan; Klocke, Arndt; Fett, Theo; Schneider, Gerold A
2010-01-01
Enamel is the hardest tissue in the human body covering the crowns of teeth. Whereas the underlying dental material dentin is very well characterized in terms of mechanical and fracture properties, available data for enamel are quite limited and are apart from the most recent investigation mainly based on indentation studies. Within the current study, stable crack-growth experiments in bovine enamel have been performed, to measure fracture resistance curves for enamel. Single edge notched bending specimens (SENB) prepared out of bovine incisors were tested in 3-point bending and subsequently analysed using optical and environmental scanning electron microscopy. Cracks propagated primarily within the protein-rich rod sheaths and crack propagation occurred under an inclined angle to initial notch direction not only due to enamel rod and hydroxyapatite crystallite orientation but potentially also due to protein shearing. Determined mode I fracture resistance curves ranged from 0.8-1.5 MPa*m(1/2) at the beginning of crack propagation up to 4.4 MPa*m(1/2) at 500 microm crack extension; corresponding mode II values ranged from 0.3 to 1.5 MPa*m(1/2).
Vernengo, Luis; Chourbagi, Oussama; Panuncio, Ana; Lilienbaum, Alain; Batonnet-Pichon, Sabrina; Bruston, Francine; Rodrigues-Lima, Fernando; Mesa, Rosario; Pizzarossa, Carlos; Demay, Laurence; Richard, Pascale; Vicart, Patrick; Rodriguez, Maria-Mirta
2010-03-01
Desmin myopathy is a heterogeneous neuromuscular disorder characterized by skeletal myopathy and cardiomyopathy, inherited mostly in an autosomal dominant pattern. We report a five generation Uruguayan family with severe cardiomyopathy and skeletal myopathy. Its most striking features are: atrial dilation, arrhythmia, conduction block and sudden death due to conduction impairment. Affected skeletal muscle shows alteration of mitochondria with paracrystallin inclusions and granulofilamentous material scattered in the muscle fibres. This family carries an unusual deletion p.E114del within the 1A rod domain of desmin. Transfected cells expressing the mutated desmin show punctuated and speckled cytoplasmic aggregates. The mutation causes a local conformational change in heptads a/d residues and charge positions. These findings lead to the hypothesis that coiled-coil interactions may be impaired, resulting in severe alterations in the desmin network. This is the first time that a mutation affecting this domain in the desmin molecule is described in a desminopathy. Copyright 2010. Published by Elsevier B.V.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 45 Public Welfare 4 2011-10-01 2011-10-01 false Withholding Federal funds due to failure to... Section 1355.36 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN... FAMILIES, FOSTER CARE MAINTENANCE PAYMENTS, ADOPTION ASSISTANCE, AND CHILD AND FAMILY SERVICES GENERAL...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 45 Public Welfare 4 2012-10-01 2012-10-01 false Withholding Federal funds due to failure to... Section 1355.36 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN... FAMILIES, FOSTER CARE MAINTENANCE PAYMENTS, ADOPTION ASSISTANCE, AND CHILD AND FAMILY SERVICES GENERAL...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 45 Public Welfare 4 2014-10-01 2014-10-01 false Withholding Federal funds due to failure to... Section 1355.36 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN... FAMILIES, FOSTER CARE MAINTENANCE PAYMENTS, ADOPTION ASSISTANCE, AND CHILD AND FAMILY SERVICES GENERAL...
High-throughput sequencing: a failure mode analysis.
Yang, George S; Stott, Jeffery M; Smailus, Duane; Barber, Sarah A; Balasundaram, Miruna; Marra, Marco A; Holt, Robert A
2005-01-04
Basic manufacturing principles are becoming increasingly important in high-throughput sequencing facilities where there is a constant drive to increase quality, increase efficiency, and decrease operating costs. While high-throughput centres report failure rates typically on the order of 10%, the causes of sporadic sequencing failures are seldom analyzed in detail and have not, in the past, been formally reported. Here we report the results of a failure mode analysis of our production sequencing facility based on detailed evaluation of 9,216 ESTs generated from two cDNA libraries. Two categories of failures are described; process-related failures (failures due to equipment or sample handling) and template-related failures (failures that are revealed by close inspection of electropherograms and are likely due to properties of the template DNA sequence itself). Preventative action based on a detailed understanding of failure modes is likely to improve the performance of other production sequencing pipelines.
Contactless heater floating zone refining and crystal growth
NASA Technical Reports Server (NTRS)
Lan, Chung-Wen (Inventor); Kou, Sindo (Inventor)
1993-01-01
Floating zone refining or crystal growth is carried out by providing rapid relative rotation of a feed rod and finish rod while providing heat to the junction between the two rods so that significant forced convection occurs in the melt zone between the two rods. The forced convection distributes heat in the melt zone to allow the rods to be melted through with a much shorter melt zone length than possible utilizing conventional floating zone processes. One of the rods can be rotated with respect to the other, or both rods can be counter-rotated, with typical relative rotational speeds of the rods ranging from 200 revolutions per minute (RPM) to 400 RPM or greater. Zone refining or crystal growth is carried out by traversing the melt zone through the feed rod.
Testing FlowTracker2 Performance and Wading Rod Flow Disturbance in Laboratory Tow Tanks
NASA Astrophysics Data System (ADS)
Fan, X.; Wagenaar, D.
2016-12-01
The FlowTracker2 was released in February 2016 by SonTek (Xylem) to be a more feature-rich and technologically advanced replacement to the Original FlowTracker ADV. These instruments are Acoustic Doppler Velocimeters (ADVs) used for taking high-precision wading discharge and velocity measurements. The accuracy of the FlowTracker2 probe was tested in tow tanks at three different facilities: the USGS Hydrologic Instrumentation Facility (HIF), the Swiss Federal Institute for Metrology (METAS), and at the SonTek Research and Development facility. Multiple mounting configurations were examined, including mounting the ADV probe directly to the tow carts, and incorporating the two most-used wading rods for the FlowTracker (round and hex). Tow speeds ranged from 5cm/s to 1.5m/s, and different tow tank seeding schemes and wait times were examined. In addition, the performance of the FlowTracker2 probe in low Signal-to-Noise Ratio (SNR) environments was compared to the Original FlowTracker ADV. Results confirmed that the FlowTracker2 probe itself performed well within the 1%+0.25cm/s accuracy specification advertised. Tows using the wading rods created a reduced measured velocity by 1.3% of the expected velocity due to flow disturbance, a result similar to the Original FlowTracker ADV despite the change in the FlowTracker2 probe design. Finally, due to improvements in its electronics, the FlowTracker2's performance in low SNR tests exceeded that of the Original FlowTracker ADV, showing less standard error in these conditions compared to its predecessor.
Molecular Design of Branched and Binary Molecules at Ordered Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genson, Kirsten Larson
2005-01-01
This study examined five different branched molecular architectures to discern the effect of design on the ability of molecules to form ordered structures at interfaces. Photochromic monodendrons formed kinked packing structures at the air-water interface due to the cross-sectional area mismatch created by varying number of alkyl tails and the hydrophilic polar head group. The lower generations formed orthorhombic unit cell with long range ordering despite the alkyl tails tilted to a large degree. Favorable interactions between liquid crystalline terminal groups and the underlying substrate were observed to compel a flexible carbosilane dendrimer core to form a compressed elliptical conformationmore » which packed stagger within lamellae domains with limited short range ordering. A twelve arm binary star polymer was observed to form two dimensional micelles at the air-water interface attributed to the higher polystyrene block composition. Linear rod-coil molecules formed a multitude of packing structures at the air-water interface due to the varying composition. Tree-like rod-coil molecules demonstrated the ability to form one-dimensional structures at the air-water interface and at the air-solvent interface caused by the preferential ordering of the rigid rod cores. The role of molecular architecture and composition was examined and the influence chemically competing fragments was shown to exert on the packing structure. The amphiphilic balance of the different molecular series exhibited control on the ordering behavior at the air-water interface and within bulk structures. The shell nature and tail type was determined to dictate the preferential ordering structure and molecular reorganization at interfaces with the core nature effect secondary.« less
NASA Technical Reports Server (NTRS)
Bergan, Andrew C.; Bakuckas, John G., Jr.; Lovejoy, Andrew E.; Jegley, Dawn C.; Awerbuch, Jonathan; Tan, Tein-Min
2012-01-01
An area that shows promise in enhancing structural integrity of aircraft and aerospace structures is the integrally stitched composite technology. The most recent generation of this technology is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept developed by Boeing Research and Technology and the National Aeronautics and Space Administration. A joint test program on the assessment of damage containment capabilities of the PRSEUS concept for curved fuselage structures was conducted recently at the Federal Aviation Administration William J. Hughes Technical Center. The panel was subjected to axial tension, internal pressure, and combined axial tension and internal pressure load conditions up to fracture, with a through-the-thickness, two-bay notch severing the central stiffener. For the purpose of future progressive failure analysis development and verification, extensive post failure nondestructive and teardown inspections were conducted. Detailed inspections were performed directly ahead of the notch tip where stable damage progression was observed. These examinations showed: 1) extensive delaminations developed ahead of the notch tip, 2) the extent and location of damage, 3) the typical damage mechanisms observed in composites, and 4) the role of stitching and warp-knitting in the failure mechanisms. The objective of this paper is to provide a summary of results from these posttest inspections.
Analysis of a Hybrid Wing Body Center Section Test Article
NASA Technical Reports Server (NTRS)
Wu, Hsi-Yung T.; Shaw, Peter; Przekop, Adam
2013-01-01
The hybrid wing body center section test article is an all-composite structure made of crown, floor, keel, bulkhead, and rib panels utilizing the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) design concept. The primary goal of this test article is to prove that PRSEUS components are capable of carrying combined loads that are representative of a hybrid wing body pressure cabin design regime. This paper summarizes the analytical approach, analysis results, and failure predictions of the test article. A global finite element model of composite panels, metallic fittings, mechanical fasteners, and the Combined Loads Test System (COLTS) test fixture was used to conduct linear structural strength and stability analyses to validate the specimen under the most critical combination of bending and pressure loading conditions found in the hybrid wing body pressure cabin. Local detail analyses were also performed at locations with high stress concentrations, at Tee-cap noodle interfaces with surrounding laminates, and at fastener locations with high bearing/bypass loads. Failure predictions for different composite and metallic failure modes were made, and nonlinear analyses were also performed to study the structural response of the test article under combined bending and pressure loading. This large-scale specimen test will be conducted at the COLTS facility at the NASA Langley Research Center.
Arnold, M P; Burger, L D; Wirz, D; Goepfert, B; Hirschmann, M T
2017-04-01
The purpose was to investigate graft slippage and ultimate load to failure of a femoral press-fit fixation technique for anterior cruciate ligament (ACL) reconstruction. Nine fresh-frozen knees were used. Standardized harvesting of the B-PT-B graft was performed. The femora were cemented into steel rods, and a tunnel was drilled outside-in into the native ACL footprint and expanded using a manual mill bit. The femoral bone block was fixed press-fit. To pull the free end of the graft, it was fixed to a mechanical testing machine using a deep-freezing technique. A motion capture system was used to assess three-dimensional micro-motion. After preconditioning of the graft, 1000 cycles of tensile loading were applied. Finally, an ultimate load to failure test was performed. Graft slippage in mm ultimate load to failure as well as type of failure was noted. In six of the nine measured specimens, a typical pattern of graft slippage was observed during cyclic loading. For technical reasons, the results of three knees had to be discarded. 78.6 % of total graft slippage occurred in the first 100 cycles. Once the block had settled, graft slippage converged to zero, highlighting the importance of initial preconditioning of the graft in the clinical setting. Graft slippage after 1000 cycles varied around 3.4 ± 3.2 mm (R = 1.3-9.8 mm) between the specimens. Ultimate loading (n = 9) revealed two characteristic patterns of failure. In four knees, the tendon ruptured, while in five knees the bone block was pulled out of the femoral tunnel. The median ultimate load to failure was 852 N (R = 448-1349 N). The implant-free femoral press-fit fixation provided adequate primary stability with ultimate load to failure pull forces at least equal to published results for interference screws; hence, its clinical application is shown to be safe.
Klimo, Paul; Astur, Nelson; Gabrick, Kyle; Warner, William C; Muhlbauer, Michael S
2013-02-01
Many methods to stabilize and fuse the craniocervical junction have been described. One of the early designs was a contoured (Luque) rod fixated with wires, the so-called Hartshill-Ransford loop. In this study, the authors report their 20-year experience with this surgical technique in children. The authors reviewed the medical records of patients 18 years of age or younger who underwent dorsal occipitocervical fusion procedures between March 1992 and March 2012 at Le Bonheur Children's Hospital using a contoured rod and wire construct. Data on basic patient characteristics, causes of instability, neurological function at presentation and at last follow-up, details of surgery, complications, and radiographic outcome were collected. Twenty patients (11 male) were identified, with a mean age of 5.5 years (range 1-18 years) and a median follow-up of 43.5 months. Fourteen patients had atlantooccipital dislocation, 2 patients had atlantoaxial fracture-dissociations, 2 had Down syndrome with occipitocervical and atlantoaxial instability, 1 had an epithelioid sarcoma from the clivus to C-2, and 1 had an anomalous atlas with resultant occipitocervical instability. Surgical stabilization extended from the occiput to C-1 in 3 patients, C-2 in 6, C-3 in 8, and to C-4 in 3. Bone morphogenetic protein was used in 2 patients. Two patients were placed in a halo orthosis; the rest were kept in a hard collar for 6-8 weeks. All patients were neurologically stable after surgery. One patient with a dural tear experienced wound dehiscence with CSF leakage and required reoperation. Eighteen patients went on to achieve fusion within 6 months of surgery; 1 patient was initially lost to follow-up, but recent imaging demonstrated a solid fusion. There were no early hardware or bone failures requiring hardware removal, but radiographs obtained 8 years after surgery showed that 1 patient had an asymptomatic fractured rod. There were no instances of symptomatic junctional degeneration, and no patient was found to have increasing lordosis over the fused segments. Five (31%) of the 16 trauma patients required a shunt for hydrocephalus. Despite the proliferation of screw-fixation techniques for craniocervical instability in children, the contoured rod-wire construct remains an effective, less expensive, and technically easier alternative that has been in use for almost 30 years. It confers immediate stability, and therefore most patients will not need to be placed in a halo device postoperatively. A secondary observation in our series was the high (30%) rate of hydrocephalus requiring a shunt in patients with traumatic instability.
Thorp, A.G. II
1962-08-01
An invention is described which relates to nuclear reactor control rod components and more particularly to a joint between cruciform control rod members and cruciform control rod follower members. In one embodiment this invention provides interfitting crossed arms at adjacent ends of a control rod and its follower in abutting relation. This holds the members against relative opposite longitudinal movement while a compression member keys the arms against relative opposite rotation around a common axis. Means are also provided for centering the control rod and its follower on a common axis and for selectively releasing the control rod from its follower for the insertion of a replacement of the control rod and reuse of the follower. (AEC)
Bluett, James; Sergeant, Jamie C; MacGregor, Alex J; Chipping, Jacqueline R; Marshall, Tarnya; Symmons, Deborah P M; Verstappen, Suzanne M M
2018-03-20
Oral methotrexate (MTX) is the first-line therapy for patients with rheumatoid arthritis (RA). However, approximately one quarter of patients discontinue MTX within 12 months. MTX failure, defined as MTX cessation or the addition of another anti-rheumatic drug, is usually due adverse event(s) and/or inefficacy. The aims of this study were to evaluate the rate and predictors of oral MTX failure. Subjects were recruited from the Norfolk Arthritis Register (NOAR), a primary care-based inception cohort of patients with early inflammatory polyarthritis (IP). Subjects were eligible if they commenced MTX as their first DMARD and were recruited between 2000 and 2008. Patient-reported reasons for MTX failure were recorded and categorised as adverse event, inefficacy or other. The addition of a second DMARD during the study period was categorised as failure due to inefficacy. Cox proportional hazards regression models were used to assess potential predictors of MTX failure, accounting for competing risks. A total of 431 patients were eligible. The probability of patients remaining on MTX at 2 years was 82%. Competing risk analysis revealed that earlier MTX failure due to inefficacy was associated with rheumatoid factor (RF) positivity, younger age at symptom onset and higher baseline disease activity (DAS-28). MTX cessation due to an adverse event was less likely in the RF-positive cohort. RF-positive inflammatory polyarthritis patients who are younger with higher baseline disease activity have an increased risk of MTX failure due to inefficacy. Such patients may require combination therapy as a first-line treatment.
NASA Astrophysics Data System (ADS)
Sardiko, R.; Rocens, K.; Iejavs, J.; Jakovlevs, V.; Ziverts, K.
2017-10-01
In this paper a benefit of glulam pinewood beams reinforced strands is discussed. In the first phase, series of pull-out tests were performed on specimens made up of different types of glue (melamine-urea-formaldehyde, epoxy and others) to detect pull-out force and failure mode of a specimens. In the second phase, series of equal cross-section glulam beams with strand and rod reinforcement were theoretically analysed using transformed cross-section method. Additionally, series of experimental testing were made. Benefits of strand reinforcement use as glulam beams’ reinforcement were identified and examined the possibility of one glue type application in all operations of reinforced glulam beams manufacturing.
Force dependence of phagosome trafficking in retinal pigment epithelial cells
NASA Astrophysics Data System (ADS)
Daniel, Rebekah; Koll, Andrew T.; Altman, David
2014-09-01
Retinal pigment epithelial (RPE) cells play an integral role in the renewal of photoreceptor disk membranes. As rod and cone cells shed their outer segments, they are phagocytosed and degraded by the RPE, and a failure in this process can result in retinal degeneration. We have studied the role of myosin VI in nonspecific phagocytosis in a human RPE primary cell line (ARPE-19), testing the hypothesis that this motor generates the forces required to traffic phagosomes in these cells. Experiments were conducted in the presence of forces through the use of in vivo optical trapping. Our results support a role for myosin VI in phagosome trafficking and demonstrate that applied forces modulate rates of phagosome trafficking.
Traumatic dislocation of the S1 polyaxial pedicle screw head: a case report.
Du Plessis, Pieter N B; Lau, Bernard P H; Hey, Hwee Weng Dennis
2017-03-01
Polyaxial screw head dislocation in the absence of a manufacture defect is extremely rare and represents a biomechanical overload of the screw, leading to early failure. A 58-year-old gentleman underwent instrumented fusion using polyaxial pedicle screws-titanium rod construct with interbody cage for spondylolytic spondylolisthesis at the L5/S1 level. He attempted to bend forward ten days after the surgery which resulted in a dislocation of the right S1 polyaxial screw head from the screw shank with recurrence of symptoms. He underwent revision surgery uneventfully. This case highlights the need to pay particular attention to the strength of fixation and the amount of release to avoid such a complication.
Variation in sensitivity, absorption and density of the central rod distribution with eccentricity.
Tornow, R P; Stilling, R
1998-01-01
To assess the human rod photopigment distribution and sensitivity with high spatial resolution within the central +/-15 degrees and to compare the results of pigment absorption, sensitivity and rod density distribution (number of rods per square degree). Rod photopigment density distribution was measured with imaging densitometry using a modified Rodenstock scanning laser ophthalmoscope. Dark-adapted sensitivity profiles were measured with green stimuli (17' arc diameter, 1 degrees spacing) using a T ubingen manual perimeter. Sensitivity profiles were plotted on a linear scale and rod photopigment optical density distribution profiles were converted to absorption profiles of the rod photopigment layer. Both the absorption profile of the rod photopigment and the linear sensitivity profile for green stimuli show a minimum at the foveal center and increase steeply with eccentricity. The variation with eccentricity corresponds to the rod density distribution. Rod photopigment absorption profiles, retinal sensitivity profiles, and the rod density distribution are linearly related within the central +/-15 degrees. This is in agreement with theoretical considerations. Both methods, imaging retinal densitometry using a scanning laser ophthalmoscope and dark-adapted perimetry with small green stimuli, are useful for assessing the central rod distribution and sensitivity. However, at present, both methods have limitations. Suggestions for improving the reliability of both methods are given.
Tapered laser rods as a means of minimizing the path length of trapped barrel mode rays
Beach, Raymond J.; Honea, Eric C.; Payne, Stephen A.; Mercer, Ian; Perry, Michael D.
2005-08-30
By tapering the diameter of a flanged barrel laser rod over its length, the maximum trapped path length of a barrel mode can be dramatically reduced, thereby reducing the ability of the trapped spontaneous emission to negatively impact laser performance through amplified spontaneous emission (ASE). Laser rods with polished barrels and flanged end caps have found increasing application in diode array end-pumped laser systems. The polished barrel of the rod serves to confine diode array pump light within the rod. In systems utilizing an end-pumping geometry and such polished barrel laser rods, the pump light that is introduced into one or both ends of the laser rod, is ducted down the length of the rod via the total internal reflections (TIRs) that occur when the light strikes the rod's barrel. A disadvantage of using polished barrel laser rods is that such rods are very susceptible to barrel mode paths that can trap spontaneous emission over long path lengths. This trapped spontaneous emission can then be amplified through stimulated emission resulting in a situation where the stored energy available to the desired lasing mode is effectively depleted, which then negatively impacts the laser's performance, a result that is effectively reduced by introducing a taper onto the laser rod.
Fuel rod assembly to manifold attachment
Donck, Harry A.; Veca, Anthony R.; Snyder, Jr., Harold J.
1980-01-01
A fuel element is formed with a plurality of fuel rod assemblies detachably connected to an overhead support with each of the fuel rod assemblies having a gas tight seal with the support to allow internal fission gaseous products to flow without leakage from the fuel rod assemblies into a vent manifold passageway system on the support. The upper ends of the fuel rod assemblies are located at vertically extending openings in the support and upper threaded members are threaded to the fuel rod assemblies to connect the latter to the support. The preferred threaded members are cap nuts having a dome wall encircling an upper threaded end on the fuel rod assembly and having an upper sealing surface for sealing contact with the support. Another and lower seal is achieved by abutting a sealing surface on each fuel rod assembly with the support. A deformable portion on the cap nut locks the latter against inadvertent turning off the fuel rod assembly. Orienting means on the fuel rod and support primarily locates the fuel rods azimuthally for reception of a deforming tool for the cap nut. A cross port in the fuel rod end plug discharges into a sealed annulus within the support, which serves as a circumferential chamber, connecting the manifold gas passageways in the support.
Huang, Y.-W.; Melancon, M.J.; Jung, R.E.; Karasov, W.H.
1998-01-01
Northern leopard frogs (Rana pipiens) were injected intraperitoneally either with a solution of polychlorinated biphenyl (PCB) 126 in corn oil at a concentration of 0.2, 0.7, 2.3 and 7.8 mg/kg body weight or with corn oil alone. Appropriate assay conditions with hepatic microsomes were determined for four cytochrome P450-associated monooxygenases: ethoxyresorufin-O-dealkylase (EROD), methoxy-ROD (MROD), benzyloxy-ROD (BROD) and pentoxy-ROD (PROD). One week after PCB administration, the specific activities of EROD, MROD, BROD and PROD were not elevated at doses ? 0.7 mg/kg (p > 0.05), but were significantly increased at doses ? 2.3 mg/kg compared to the control groups (p < 0.05). The increased activity of these four enzymes ranged from 3to 6.4fold relative to control levels. The increased activities were maintained for at least four weeks. Due to a lack of induction at low doses of PCB 126, which were still relatively high compared to currentlyknown environmental concentrations, we suspect that EROD, MROD, BROD, and PROD activities are not sensitive biomarkers for coplanar PCB exposure in leopard frogs.
NASA Astrophysics Data System (ADS)
Zhao, Shujun; Wen, Yingying; Wang, Zhong; Kang, Haijiao; Li, Jianzhang; Zhang, Shifeng; Ji, Yong
2018-06-01
Nanophase modification is an effective path to improve composite properties, however, it remains a great challenge to increase the mechanical strength of the modified materials without sacrificing elongation and toughness. This study presents a novel and efficient design for interface anchoring of a waterborne polyurethane (WPU) elastomer with attapulgite (ATP) triggered by poly(dopamine) (PDA) formation due to self-polymerization of the dopamine moieties. The WPU-PDA-ATP (WDA) rod-like elastomer served as an active enhancer for a soy protein isolate (SPI)-based composite to facilitate multiple interactions between SPI and the elastomer. As expected, the PDA layer was coated onto ATP, inducing the nanofiller to successfully anchor onto the WPU elastomer, as confirmed by solid-state 13C NMR, XPS, and ATR-FTIR results. Compared with the control SPI-based film, the tensile strength and toughness increased by 145.6% and 118.3% respectively by introducing WDA rod-like elastomer. The water resistance and thermal stability of the prepared SPI composites were also favorable. The proposed approach represents an efficient way to utilize high-performance elastomer in biobased materials to concurrently enhance strength and toughness.
Broad band and enhanced photocatalytic behaviour of Ho3+-doped Bi2O3 micro-rods
NASA Astrophysics Data System (ADS)
Prasad, Neena; Karthikeyan, Balasubramanian
2018-06-01
Band-gap-tuned Bi2O3 micro-rods were synthesized using simple co-precipitation method by doping 5 wt% Ho3+ to mitigate the concentration of toxic dye from the polluted water using it as a photocatalyst. Structure and morphology of the prepared samples were identified using powder X-ray diffraction technique and scanning electron microscopy (SEM). Elemental composition and chemical state of the prepared samples were analyzed from the X-ray photoelectron spectroscopy (XPS). Considerable absorption in IR region was observed for Ho3+ doped Bi2O3 due to the electronic transitions of 5I8→5F4, 5I8→5F5, and 5I8→5I5, 5I6. The excellent ultra-violet (UV), white and infrared light (IR)-driven photocatalytic activity were suggested for pure and doped Bi2O3 samples. Ho3+-doped Bi2O3 micro-rods exhibits a better photocatalytic activity under white light irradiation. The consequence of the bandgap and the synergetic effect of Ho3+ and Bi2O3 on the photocatalytic degradation of MB were investigated.
Production optimization of sucker rod pumping wells producing viscous oil in Boscan field, Venezuela
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guirados, C.; Sandoval, J.; Rivas, O.
1995-12-31
Boscan field is located in the western coast of Maracaibo lake and is operated by Maraven S.A., affiliate of Petroleos de Venezuela S.A. It has 315 active wells, 252 of which are produced with sucker rod pumping. Other artificial lift methods currently applied in this field are hydraulic (piston) pumping (39 wells) and ESP (24 wells). This paper presents the results of the production optimization of two sucker rod pumping wells of Boscan field producing viscous oil. This optimization has been possible due to the development of a new production scheme and the application of system analysis in completion design.more » The new production scheme involves the utilization of a subsurface stuffing box assembly and a slotted housing, both designed and patented by Intevep S.A., affiliate of Petroleos de Venezuela S.A. The completion design method and software used in the optimization study were also developed by Intevep S.A. The new production scheme and design method proved to be effective in preventing the causes of the above mentioned problems, allowing the increase of oil production under better operating conditions.« less
Sakami, Sanae; Maeda, Tadao; Bereta, Grzegorz; Okano, Kiichiro; Golczak, Marcin; Sumaroka, Alexander; Roman, Alejandro J.; Cideciyan, Artur V.; Jacobson, Samuel G.; Palczewski, Krzysztof
2011-01-01
Rhodopsin, the visual pigment mediating vision under dim light, is composed of the apoprotein opsin and the chromophore ligand 11-cis-retinal. A P23H mutation in the opsin gene is one of the most prevalent causes of the human blinding disease, autosomal dominant retinitis pigmentosa. Although P23H cultured cell and transgenic animal models have been developed, there remains controversy over whether they fully mimic the human phenotype; and the exact mechanism by which this mutation leads to photoreceptor cell degeneration remains unknown. By generating P23H opsin knock-in mice, we found that the P23H protein was inadequately glycosylated with levels 1–10% that of wild type opsin. Moreover, the P23H protein failed to accumulate in rod photoreceptor cell endoplasmic reticulum but instead disrupted rod photoreceptor disks. Genetically engineered P23H mice lacking the chromophore showed accelerated photoreceptor cell degeneration. These results indicate that most synthesized P23H protein is degraded, and its retinal cytotoxicity is enhanced by lack of the 11-cis-retinal chromophore during rod outer segment development. PMID:21224384
Dynamic Characterization of Galfenol (Fe81.6Ga18.4)
NASA Technical Reports Server (NTRS)
Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.
2016-01-01
Galfenol has the potential to transform the smart materials industry by allowing for the development of multifunctional, load-bearing devices. One of the primary technical challenges faced by this development is the very limited experimental data on Galfenol's frequency-dependent response to dynamic stress, which is critically important for the design of such devices. This report details a novel and precise characterization of the constitutive behavior of polycrystalline Galfenol (Fe81.6Ga18.4) under quasi-static (1 Hz) and dynamic (4 to 1000 Hz) stress loadings. Mechanical loads are applied using a high-frequency load frame. Quasi-static minor and major hysteresis loop measurements of magnetic flux density and strain are presented for constant electromagnet currents (0 to 1.1 A) and constant magnetic fields 0 to 14 kA/m (0 to 180 Oe). The dynamic stress amplitude for minor and major loops is 2.88 and 31.4 MPa (418 and 4550 psi), respectively. Quasi-static material properties closely match published values for similar Galfenol materials. Quasi-static actuation responses are also measured and compared to quasi-static sensing responses; the high degree of reversibility seen in the comparison is consistent with published measurements and modeling results. Dynamic major and minor loops are measured for dynamic stresses up to 31 MPa (4496 psi) and 1 kHz, and the bias condition resulting in maximum, quasi-static sensitivity. Eddy current effects are quantified by considering solid and laminated Galfenol rods. Three key sources of error in the dynamic measurements are accounted for: (1) electromagnetic noise in strain signals due to Galfenol's magnetic response, (2) error in load signals due to the inertial force of fixturing, and (3) phase misalignment between signals due to conditioning electronics. For dynamic characterization, strain error is kept below 1.2 percent of full scale by wiring two collocated gauges in series (noise cancellation) and through leadwire weaving. Inertial force error is kept below 0.41 percent by measuring the dynamic force in the specimen using a nearly collocated piezoelectric load washer. The phase response of all conditioning electronics is explicitly measured and corrected for. In general, as frequency is increased, the sensing response becomes more linear because of an increase in eddy currents. As frequency increases above approximately 100 Hz, the elbow in the strain-versus-stress response disappears as the active (soft) regime stiffens toward the passive (hard) regime. Under constant-field conditions, the loss factors of the solid rod peak between 200 and 600 Hz, rather than exhibiting a monotonic increase. Compared to the solid rod, the laminated rod exhibits much slower increases in hysteresis with frequency, and its quasi-static behavior extends to higher frequencies. The elastic modulus of the laminated rod decreases between 100 and 300 Hz; this trend is currently unexplained.
1989-12-01
Bose, Ohio Appni’-sd for puauc t&cw 189 12 29 023 I [ AFIT /GAE /ENY/ 89D-06 A STUDY OF FAILURE CHARACTERISTICS IN THERMOPLASTIC COMPOSITE LAMINATES DUE...distribution unlimited I ,I AFIT / GAE / ENY /89D-06 A STUDY OF FAILURE CHARACTERISTICS IN THERMOPLASTIC COMPOSITE LAMINATES DUE TO AN ECCENTRIC CIRCULAR...the Flight Dynamics Laboratory. Dr. Sandhu provided me with an insight into composite materials, and testing techniques, that will benefit me for a
The Moment of Inertia of a Rectangular Rod
NASA Astrophysics Data System (ADS)
Takeuchi, Takao
2007-11-01
Recently an inexpensive setup to obtain the moment of inertia of a rotating system was proposed by Peter E. Banks. An equally simple and inexpensive experiment to obtain the moment of inertia of a uniform rod is proposed in this paper. A rectangular rod with a hole somewhere in the rod was used for this purpose. The moment of inertia of a rectangular rod around the hole location was attempted. The experimental setup is shown in Fig. 1. Various supporting rods, clamps, and rubber stoppers to hold the rectangular rod in place at point p are not shown.
Nuclear reactor control apparatus
Sridhar, Bettadapur N.
1983-11-01
Nuclear reactor core safety rod release apparatus comprises a control rod having a detent notch in the form of an annular peripheral recess at its upper end, a control rod support tube for raising and lowering the control rod under normal conditions, latches pivotally mounted on the control support tube with free ends thereof normally disposed in the recess in the control rod, and cam means for pivoting the latches out of the recess in the control rod when a scram condition occurs. One embodiment of the invention comprises an additional magnetically-operated latch for releasing the control rod under two different conditions, one involving seismic shock.
Nuclear thermionic converter. [tungsten-thorium oxide rods
NASA Technical Reports Server (NTRS)
Phillips, W. M.; Mondt, J. F. (Inventor)
1977-01-01
Efficient nuclear reactor thermionic converter units are described which can be constructed at low cost and assembled in a reactor which requires a minimum of fuel. Each converter unit utilizes an emitter rod with a fluted exterior, several fuel passages located in the bulges that are formed in the rod between the flutes, and a collector receiving passage formed through the center of the rod. An array of rods is closely packed in an interfitting arrangement, with the bulges of the rods received in the recesses formed between the bulges of other rods, thereby closely packing the nuclear fuel. The rods are constructed of a mixture of tungsten and thorium oxide to provide high power output, high efficiency, high strength, and good machinability.
Investigation of microstructural alterations in M50 and 52100 steel using nanoindentation
NASA Astrophysics Data System (ADS)
Paulson, Kristin R.
Bearing steels are used in rolling elements and are designed to withstand heavy loads for an extended period of time. At the end of life, microstructural alterations within the material have been observed and are linked to failure. In this study, a three ball-on-rod fatigue tester was used to test M50 and 52100 steel cylindrical rods at differing loads of 4.0 GPa, 4.5 GPa, and 5.0 GPa and in lubricated and unlubricated conditions to 108 cycles in an attempt to produce microstructural alterations. Microstructural alterations characterized as butterflies were observed and investigated further in two M50 samples that were tested at 4.5 GPa to 10 8 cycles in the lubricated and unlubricated condition. Microstructural alterations characterized as dark etching regions (DER), and white etching bands (WEBs) were not observed. Additionally, hardness was investigated cross sectionally as a function of depth and location within the wear track produced by the fatigue test. No conclusive evidence was derived from the hardness measurements as a function of depth in relation to the formation of microstructural alterations or the stress experienced subsurface within the material. Hardness measurements performed specifically within a butterfly wing, however, returned hardness values significantly higher than the matrix hardness values.
Effect of oxide layer formation on deformation of aluminum alloys under fire conditions
Yilmaz, Nadir; Vigil, Francisco M.; Tolendino, Greg; ...
2015-05-14
The purpose of this study is to investigate the structural behavior of aluminum alloys used in the aerospace industry when exposed to conditions similar to those of an accident scenario, such as a fuel fire. This study focuses on the role that the aluminum oxide layer plays in the deformation and the strength of the alloy above melting temperature. To replicate some of the thermal and atmospheric conditions that the alloys might experience in an accident scenario, aluminum rod specimens were subjected to temperatures near to or above their melting temperature in air, nitrogen, and vacuum environments. The characteristics ofmore » their deformation, such as geometry and rate of deformation, were observed. Tests were conducted by suspending aluminum rods vertically from an enclosure. This type of experiment was performed in two different environments: air and nitrogen. The change in environments allowed the effects of the oxide layer on the material strength to be analyzed by inhibiting the growth of the oxide layer. Observations were reported from imaging taken during the experiment showing creep behavior of aluminum alloys at elevated temperatures and time to failure. In addition, an example of tensile load–displacement data obtained in air and vacuum was reported to understand the effect of oxide layer on aluminum deformation and strength.« less
Impact of solids on composite materials
NASA Technical Reports Server (NTRS)
Bronson, Arturo; Maldonado, Jerry; Chern, Tzong; Martinez, Francisco; Mccord-Medrano, Johnnie; Roschke, Paul N.
1987-01-01
The failure modes of composite materials as a result of low velocity impact were investigated by simulating the impact with a finite element analysis. An important facet of the project is the modeling of the impact of a solid onto cylindrical shells composed of composite materials. The model under development will simulate the delamination sustained when a composite material encounters impact from another rigid body. The computer equipment was installed, the computer network tested, and a finite element method model was developed to compare results with known experimental data. The model simulated the impact of a steel rod onto a rotating shaft. Pre-processing programs (GMESH and TANVEL) were developed to generate node and element data for the input into the three dimensional, dynamic finite element analysis code (DYNA3D). The finite element mesh was configured with a fine mesh near the impact zone and a coarser mesh for the impacting rod and the regions surrounding the impacting zone. For the computer simulation, five impacting loads were used to determine the time history of the stresses, the scribed surface areas, and the amount of ridging. The processing time of the computer codes amounted from 1 to 4 days. The calculated surface area were within 6-12 percent, relative error when compated to the actual scratch area.
Antar, Veysel; Turk, Okan
2018-03-01
Craniovertebral junctional anomalies constitute a technical challenge. Surgical opening of atlantoaxial joint region is a complex procedure especially in patients with nuchal deformity like basilar invagination. This region has actually very complicated anatomical and functional characteristics, including multiple joints providing extension, flexion, and wide rotation. In fact, it is also a bottleneck region where bones, neural structures, and blood vessels are located. Stabilization surgery regarding this region should consider the fact that the area exposes excessive and life-long stress due to complex movements and human posture. Therefore, all options should be considered for surgical stabilization, and they could be interchanged during the surgery, if required. A 53-year-old male patient applied to outpatients' clinic with complaints of head and neck pain persisting for a long time. Physical examination was normal except increased deep tendon reflexes. The patient was on long-term corticosteroid due to an allergic disease. Magnetic resonance imaging and computed tomography findings indicated basilar invagination and atlantoaxial dislocation. The patient underwent C0-C3-C4 (lateral mass) and additional C0-C2 (translaminar) stabilization surgery. In routine practice, the sites where rods are bound to occipital plates were placed as paramedian. Instead, we inserted lateral mass screw to the sites where occipital screws were inserted on the occipital plate, thereby creating a site where extra rod could be bound. When C2 translaminar screw is inserted, screw caps remain on the median plane, which makes them difficult to bind to contralateral system. These bind directly to occipital plate without any connection from this region to the contralateral system. Advantages of this technique include easy insertion of C2 translaminar screws, presence of increased screw sizes, and exclusion of pullout forces onto the screw from neck movements. Another advantage of the technique is the median placement of the rod; i.e., thick part of the occipital bone is in alignment with axial loading. We believe that this technique, which could be easily performed as adjuvant to classical stabilization surgery with no need for special screw and rod, may improve distraction force in patients with low bone density.
Sanders, Ruth E; Kearney, Clodagh M; Buckley, Conor T; Jenner, Florien; Brama, Pieter A
2015-08-01
To evaluate knot security for 3 knot types created in 3 commonly used 5 metric suture materials incubated in physiological and pathological fluids. In vitro mechanical study. Knotted suture loops (n = 5/group). Loops of 3 different suture materials (glycolide/lactide copolymer; polyglactin 910; polydioxanone) were created around a 20 mm rod using 3 knot types (square [SQ], surgeon's [SK], and triple knot [TK]) and were tested to failure in distraction (6 mm/min) after tying (day 0) and after being incubated for 14 and 28 days in phosphate buffered saline (PBS) or inflamed peritoneal fluid. Failure load (N) and mode were recorded and compared. For polydioxanone, significant differences in force to knot failure were found between SQ and SK/TK but not between SK and TK. The force required to break all constructs increased after incubation in phosphate buffered saline (PBS). With glycolide/lactide copolymer no differences in force to knot failure were observed. With polyglactin 910, a significant difference between SQ and TK was observed, which was not seen between the other knot types. Incubation in inflamed peritoneal fluid caused a larger and more rapid decrease in force required to cause knot failure than incubation in PBS. Mechanical properties of suture materials have significant effects on knot security. For polydioxanone, SQ is insufficient to create a secure knot. Additional wraps above a SK confer extra stability in some materials, but this increase may not be clinically relevant or justifiable. Glycolide/lactide copolymer had excellent knot security. © Copyright 2015 by The American College of Veterinary Surgeons.
Homma, Kohei; Okamoto, Satoshi; Mandai, Michiko; Gotoh, Norimoto; Rajasimha, Harsha K.; Chang, Yi-Sheng; Chen, Shan; Li, Wei; Cogliati, Tiziana; Swaroop, Anand; Takahashi, Masayo
2013-01-01
Replacement of dysfunctional or dying photoreceptors offers a promising approach for retinal neurodegenerative diseases, including age-related macular degeneration and retinitis pigmentosa. Several studies have demonstrated the integration and differentiation of developing rod photoreceptors when transplanted in wild type or degenerating retina; however, the physiology and function of the donor cells are not adequately defined. Here, we describe the physiological properties of developing rod photoreceptors that are tagged with GFP driven by the promoter of rod differentiation factor, Nrl. GFP-tagged developing rods show Ca2+ responses and rectifier outward currents that are smaller than those observed in fully developed photoreceptors, suggesting their immature developmental state. These immature rods also exhibit hyperpolarization-activated current (Ih) induced by the activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. When transplanted into the subretinal space of wild type or retinal degeneration mice, GFP-tagged developing rods can integrate into the photoreceptor outer nuclear layer in wild-type mouse retina, and exhibit Ca2+ responses and membrane current comparable to native rod photoreceptors. A proportion of grafted rods develop rhodopsin-positive outer segment-like structures within two weeks after transplantation into the retina of Crx-knockout mice, and produce rectifier outward current and Ih upon membrane depolarization and hyperpolarization. GFP-positive rods derived from induced pluripotent stem (iPS) cells also display similar membrane current Ih as native developing rod photoreceptors, express rod-specific phototransduction genes, and HCN-1 channels. We conclude that Nrl-promoter driven GFP-tagged donor photoreceptors exhibit physiological characteristics of rods and that iPS cell-derived rods in vitro may provide a renewable source for cell replacement therapy. PMID:23495178
Interim status report on lead-cooled fast reactor (LFR) research and development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tzanos, C. P.; Sienicki, J. J.; Moisseytsev, A.
2008-03-31
This report discusses the status of Lead-Cooled Fast Reactor (LFR) research and development carried out during the first half of FY 2008 under the U.S. Department of Energy Generation IV Nuclear Energy Systems Initiative. Lead-Cooled Fast Reactor research and development has recently been transferred from Generation IV to the Reactor Campaign of the Global Nuclear Energy Partnership (GNEP). Another status report shall be issued at the end of FY 2008 covering all of the LFR activities carried out in FY 2008 for both Generation IV and GNEP. The focus of research and development in FY 2008 is an initial investigationmore » of a concept for a LFR Advanced Recycling Reactor (ARR) Technology Pilot Plant (TPP)/demonstration test reactor (demo) incorporating features and operating conditions of the European Lead-cooled SYstem (ELSY) {approx} 600 MWe lead (Pb)-cooled LFR preconceptual design for the transmutation of waste and central station power generation, and which would enable irradiation testing of advanced fuels and structural materials. Initial scoping core concept development analyses have been carried out for a 100 MWt core composed of sixteen open-lattice 20 by 20 fuel assemblies largely similar to those of the ELSY preconceptual fuel assembly design incorporating fuel pins with mixed oxide (MOX) fuel, central control rods in each fuel assembly, and cooled with Pb coolant. For a cycle length of three years, the core is calculated to have a conversion ratio of 0.79, an average discharge burnup of 108 MWd/kg of heavy metal, and a burnup reactivity swing of about 13 dollars. With a control rod in each fuel assembly, the reactivity worth of an individual rod would need to be significantly greater than one dollar which is undesirable for postulated rod withdrawal reactivity insertion events. A peak neutron fast flux of 2.0 x 10{sup 15} (n/cm{sup 2}-s) is calculated. For comparison, the 400 MWt Fast Flux Test Facility (FFTF) achieved a peak neutron fast flux of 7.2 x 10{sup 15} (n/cm{sup 2}-s) and the initially 563 MWt PHENIX reactor attained 2.0 x 10{sup 15} (n/cm{sup 2}-s) before one of three intermediate cooling loops was shut down due to concerns about potential steam generator tube failures. The calculations do not assume a test assembly location for advanced fuels and materials irradiation in place of a fuel assembly (e.g., at the center of the core); the calculations have not examined whether it would be feasible to replace the central assembly by a test assembly location. However, having only fifteen driver assemblies implies a significant effect due to perturbations introduced by the test assembly. The peak neutron fast flux is low compared with the fast fluxes previously achieved in FFTF and PHENIX. Furthermore, the peak neutron fluence is only about half of the limiting value (4 x 10{sup 23} n/cm{sup 2}) typically used for ferritic steels. The results thus suggest that a larger power level (e.g., 400 MWt) and a larger core would be better for a TPP based upon the ELSY fuel assembly design and which can also perform irradiation testing of advanced fuels and materials. In particular, a core having a higher power level and larger dimensions would achieve a suitable average discharge burnup, peak fast flux, peak fluence, and would support the inclusion of one or more test assembly locations. Participation in the Generation IV International Forum Provisional System Steering Committee for the LFR is being maintained throughout FY 2008. Results from the analysis of samples previously exposed to flowing lead-bismuth eutectic (LBE) in the DELTA loop are summarized and a model for the oxidation/corrosion kinetics of steels in heavy liquid metal coolants was applied to systematically compare the calculated long-term (i.e., following several years of growth) oxide layer thicknesses of several steels.« less
NEUTRONIC REACTOR CONTROL ROD DRIVE APPARATUS
Oakes, L.C.; Walker, C.S.
1959-12-15
ABS>A suspension mechanism between a vertically movable nuclear reactor control rod and a rod extension, which also provides information for the operator or an automatic control signal, is described. A spring connects the rod extension to a drive shift. The extension of the spring indicates whether (1) the rod is at rest on the reactor, (2) the rod and extension are suspended, or (3) the extension alone is suspended, the spring controlling a 3-position electrical switch.
Kim, Chang Yeom; Son, Byeong Jae; Son, Jangyup; Hong, Jongill; Lee, Sang Yeul
2017-01-01
Background Silicone rod is a commonly used synthetic suspension material in frontalis suspension surgery to correct blepharoptosis. The most challenging problem and a decisive drawback of the use of silicone rod is a considerable rate of ptosis recurrence after surgery. We examined patients with recurred ptosis and assessed the physical and micromorphological properties of implanted silicone rods to determine the causative mechanisms of recurred ptosis after frontalis suspension using silicone rod. Methods This is a prospective observational case series of 22 pediatric patients with recurred ptosis after frontalis suspension using silicone rods for congenital ptosis. Implanted silicone rods were observed and removed during the operation for correction of recurred ptosis. The removed silicone rods were physically and micromorphologically evaluated to determine the cause of recurrence. Results Pretarsal fixation positions migrated upward, whereas suprabrow fixation positions migrated downward during ptosis recurrence. The breaking strength of implanted silicone rods was reduced by approximately 50% during 3 years. Cracks, debris, and loss of homogenous structure with disintegration were observed on scanning electron micrographs of implanted silicone rods in patients with recurred ptosis. Preoperative severe degree of ptosis also contributed to recurred ptosis. Conclusions Recurrence of ptosis after frontalis suspension using silicone rod was associated with physical changes of implanted silicone rods, including positional migration, weakened tensile strength, and micromorphological changes in combination with patients’ characteristics. PMID:28207846
Shiomi, Daisuke; Toyoda, Atsushi; Aizu, Tomoyuki; Ejima, Fumio; Fujiyama, Asao; Shini, Tadasu; Kohara, Yuji; Niki, Hironori
2013-03-01
RodZ interacts with MreB and both factors are required to maintain the rod shape of Escherichia coli. The assembly of MreB into filaments regulates the subcellular arrangement of a group of enzymes that synthesizes the peptidoglycan (PG) layer. However, it is still unknown how polymerization of MreB determines the rod shape of bacterial cells. Regulatory factor(s) are likely to be involved in controlling the function and dynamics of MreB. We isolated suppressor mutations to partially recover the rod shape in rodZ deletion mutants and found that some of the suppressor mutations occurred in mreB. All of the mreB mutations were in or in the vicinity of domain IA of MreB. Those mreB mutations changed the property of MreB filaments in vivo. In addition, suppressor mutations were found in the periplasmic regions in PBP2 and RodA, encoded by mrdA and mrdB genes. Similar to MreB and RodZ, PBP2 and RodA are pivotal to the cell wall elongation process. Thus, we found that mutations in domain IA of MreB and in the periplasmic domain of PBP2 and RodA can restore growth and rod shape to ΔrodZ cells, possibly by changing the requirements of MreB in the process. © 2013 Blackwell Publishing Ltd.
Shiomi, Daisuke; Toyoda, Atsushi; Aizu, Tomoyuki; Ejima, Fumio; Fujiyama, Asao; Shini, Tadasu; Kohara, Yuji; Niki, Hironori
2013-01-01
RodZ interacts with MreB and both factors are required to maintain the rod shape of Escherichia coli. The assembly of MreB into filaments regulates the subcellular arrangement of a group of enzymes that synthesizes the peptidoglycan (PG) layer. However, it is still unknown how polymerization of MreB determines the rod shape of bacterial cells. Regulatory factor(s) are likely to be involved in controlling the function and dynamics of MreB. We isolated suppressor mutations to partially recover the rod shape in rodZ deletion mutants and found that some of the suppressor mutations occurred in mreB. All of the mreB mutations were in or in the vicinity of domain IA of MreB. Those mreB mutations changed the property of MreB filaments in vivo. In addition, suppressor mutations were found in the periplasmic regions in PBP2 and RodA, encoded by mrdA and mrdB genes. Similar to MreB and RodZ, PBP2 and RodA are pivotal to the cell wall elongation process. Thus, we found that mutations in domain IA of MreB and in the periplasmic domain of PBP2 and RodA can restore growth and rod shape to ΔrodZ cells, possibly by changing the requirements of MreB in the process. PMID:23301723
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-31
... DEPARTMENT OF COMMERCE International Trade Administration [A-549-831] Steel Threaded Rod From... ``Department'') preliminarily determines that steel threaded rod from Thailand is being, or is likely to be... Investigation The merchandise covered by this investigation is steel threaded rod. Steel threaded rod is certain...
Measurement of Diffusion in Entangled Rod-Coil Triblock Copolymers
NASA Astrophysics Data System (ADS)
Olsen, B. D.; Wang, M.
2012-02-01
Although rod-coil block copolymers have attracted increasing attention for functional nanomaterials, their dynamics relevant to self-assembly and processing have not been widely investigated. Because the rod and coil blocks have different reptation behavior and persistence lengths, the mechanism by which block copolymers will diffuse is unclear. In order to understand the effect of the rigid block on reptation, tracer diffusion of a coil-rod-coil block copolymer through an entangled coil polymer matrix was experimentally measured. A monodisperse, high molecular weight coil-rod-coil triblock was synthesized using artificial protein engineering to prepare the helical rod and bioconjugaiton of poly(ethylene glycol) coils to produce the final triblock. Diffusion measurements were performed using Forced Rayleigh scattering (FRS), at varying ratios of the rod length to entanglement length, where genetic engineering is used to control the protein rod length and the polymer matrix concentration controls the entanglement length. As compared to PEO homopolymer tracers, the coil-rod-coil triblocks show markedly slower diffusion, suggesting that the mismatch between rod and coil reptation mechanisms results in hindered diffusion of these molecules in the entangled state.
Luhmann, S J; Sheridan, J J; Capelli, A M; Schoenecker, P L
1998-01-01
Twelve patients (seven boys, five girls) who had osteogenesis imperfecta were treated with an extensible-rod system in 21 femurs and 15 tibias. Indications for use of extensible rods were multiple fractures, long-bone deformity prohibiting bracing and ambulation, and significant remaining linear growth. The average patient age at the time of placement of the extensible rods was 6 + 8 years (range, 2 + 4-10 + 10). Six femurs were treated with overlapping Rush rods; Bailey-Dubow rods were used in the remaining femurs and in all tibias. The average length of follow-up was 5 + 9 years (range, 2 + 0-3 + 2). Preoperatively, four of the 12 patients had never walked; postoperatively, all were ambulators with varying levels of assistance. Fourteen complications occurred, 12 of which required operative revision of the extensible rods. The average time between primary extensible rodding and revision was 5 + 1 years. No complications have occurred to date related to the use of overlapping Rush rods. No growth disturbance resulted from the use of the extensible-rod systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siefken, L.J.
1999-01-01
Models were designed to resolve deficiencies in the SCDAP/RELAP5/MOD3.2 calculations of the configuration and integrity of hot, partially oxidized cladding. These models are expected to improve the calculations of several important aspects of fuel rod behavior. First, an improved mapping was established from a compilation of PIE results from severe fuel damage tests of the configuration of melted metallic cladding that is retained by an oxide layer. The improved mapping accounts for the relocation of melted cladding in the circumferential direction. Then, rules based on PIE results were established for calculating the effect of cladding that has relocated from abovemore » on the oxidation and integrity of the lower intact cladding upon which it solidifies. Next, three different methods were identified for calculating the extent of dissolution of the oxidic part of the cladding due to its contact with the metallic part. The extent of dissolution effects the stress and thus the integrity of the oxidic part of the cladding. Then, an empirical equation was presented for calculating the stress in the oxidic part of the cladding and evaluating its integrity based on this calculated stress. This empirical equation replaces the current criterion for loss of integrity which is based on temperature and extent of oxidation. Finally, a new rule based on theoretical and experimental results was established for identifying the regions of a fuel rod with oxidation of both the inside and outside surfaces of the cladding. The implementation of these models is expected to eliminate the tendency of the SCDAP/RELAP5 code to overpredict the extent of oxidation of the upper part of fuel rods and to underpredict the extent of oxidation of the lower part of fuel rods and the part with a high concentration of relocated material. This report is a revision and reissue of the report entitled, Improvements in Modeling of Cladding Oxidation and Meltdown.« less
Reliability and cost: A sensitivity analysis
NASA Technical Reports Server (NTRS)
Suich, Ronald C.; Patterson, Richard L.
1991-01-01
In the design phase of a system, how a design engineer or manager choose between a subsystem with .990 reliability and a more costly subsystem with .995 reliability is examined, along with the justification of the increased cost. High reliability is not necessarily an end in itself but may be desirable in order to reduce the expected cost due to subsystem failure. However, this may not be the wisest use of funds since the expected cost due to subsystem failure is not the only cost involved. The subsystem itself may be very costly. The cost of the subsystem nor the expected cost due to subsystem failure should not be considered separately but the total of the two costs should be maximized, i.e., the total of the cost of the subsystem plus the expected cost due to subsystem failure.
Thermo-Mechanical and Thermal Behavior of High-Temperature Structural Materials.
1980-12-31
glass insulating tape to prevent fracture due to unknown stresses at Lhe rod ends. Because of the very high density of cracks in the alumina, this...143. [31] 0. L. Bowie, J. Math. Phys. 35 (1956) 60. [32] F. Erdogan : in Fracture Mechanics of Ceramics, Vol. 1, ed. by R. C. f Bradt, D. P. H
Moments of Inertia of Disks and Spheres without Integration
ERIC Educational Resources Information Center
Hong, Seok-Cheol; Hong, Seok-In
2013-01-01
Calculation of moments of inertia is often challenging for introductory-level physics students due to the use of integration, especially in non-Cartesian coordinates. Methods that do not employ calculus have been described for finding the rotational inertia of thin rods and other simple bodies. In this paper we use the parallel axis theorem and…
Reliability Growth in Space Life Support Systems
NASA Technical Reports Server (NTRS)
Jones, Harry W.
2014-01-01
A hardware system's failure rate often increases over time due to wear and aging, but not always. Some systems instead show reliability growth, a decreasing failure rate with time, due to effective failure analysis and remedial hardware upgrades. Reliability grows when failure causes are removed by improved design. A mathematical reliability growth model allows the reliability growth rate to be computed from the failure data. The space shuttle was extensively maintained, refurbished, and upgraded after each flight and it experienced significant reliability growth during its operational life. In contrast, the International Space Station (ISS) is much more difficult to maintain and upgrade and its failure rate has been constant over time. The ISS Carbon Dioxide Removal Assembly (CDRA) reliability has slightly decreased. Failures on ISS and with the ISS CDRA continue to be a challenge.
Changes in wall teichoic acid during the rod-sphere transition of Bacillus subtilis 168.
Pollack, J H; Neuhaus, F C
1994-01-01
Wall teichoic acid (WTA) is essential for the growth of Bacillus subtilis 168. To clarify the function of this polymer, the WTAs of strains 168, 104 rodB1, and 113 tagF1 (rodC1) grown at 32 and 42 degrees C were characterized. At the restrictive temperature, the rodB1 and tagF1 (rodC1) mutants undergo a rod-to-sphere transition that is correlated with changes in the WTA content of the cell wall. The amount of WTA decreased 33% in strain 104 rodB1 and 84% in strain 113 tagF1 (rodC1) when they were grown at the restrictive temperature. The extent of alpha-D-glucosylation (0.84) was not affected by growth at the higher temperature in these strains. The degree of D-alanylation decreased from 0.22 to 0.10 in the rodB1 mutant but remained constant (0.12) in the tagF1 (rodC1) mutant at both temperatures. Under these conditions, the degree of D-alanylation in the parent strain decreased from 0.27 to 0.21. The chain lengths of WTA in strains 168 and 104 rodB1 grown at both temperatures were approximately 53 residues, with a range of 45 to 60. In contrast, although the chain length of WTA from the tagF1 (rodC1) mutant at 32 degrees C was similar to that of strains 168 and 104 rodB1, it was approximately eight residues at the restrictive temperature. The results suggested that the rodB1 mutant is partially deficient in completed poly(glycerophosphate) chains. The precise biochemical defect in this mutant remains to be determined. The results for strain 113 tagF1(rodC1) are consistent with the temperature-sensitive defect in the CDP-glycerol:poly(glycerophosphate) glycerophosphotransferase (H. M. Pooley, F.-X. Abellan, and D. Karamata, J. Bacteriol. 174:646-649, 1992). Images PMID:7961496
Outcomes of support rod usage in loop stoma formation.
Whiteley, Ian; Russell, Michael; Nassar, Natasha; Gladman, Marc A
2016-06-01
Traditionally, support rods have been used when creating loop stomas in the hope of preventing retraction. However, their effectiveness has not been clearly established. This study aimed to investigate the rate of stoma rod usage and its impact on stoma retraction and complication rates. A prospective cohort of 515 consecutive patients who underwent loop ileostomy/colostomy formation at a tertiary referral colorectal unit in Sydney, Australia were studied. Mortality and unplanned return to theatre rates were calculated. The primary outcome measure of interest was stoma retraction, occurring within 30 days of surgery. Secondary outcome measures included early stoma complications. The 10-year temporal trends for rod usage, stoma retraction, and complications were examined. Mortality occurred in 23 patients (4.1 %) and unplanned return to theatre in 4 patients (0.8 %). Stoma retraction occurred in four patients (0.78 %), all without rods. However, the rate of retraction was similar, irrespective of whether rods were used (P = 0.12). There was a significant decline in the use of rods during the study period (P < 0.001) but this was not associated with an increase in stoma retraction rates. Early complications occurred in 94/432 patients (21.8 %) and were more likely to occur in patients with rods (64/223 versus 30/209 without rods, P < 0.001). Stoma retraction is a rare complication and its incidence is not significantly affected by the use of support rods. Further, complications are common post-operatively, and the rate appears higher when rods are used. The routine use of rods warrants judicious application. WHAT DOES THIS PAPER ADD TO THE LITERATURE?: It remains unclear whether support rods prevent stoma retraction. This study, the largest to date, confirms that stoma retraction is a rare complication and is not significantly affected by the use of rods. Consequently, routine rod usage cannot be recommended, particularly as it is associated with increased stoma complications.
Method and means of packaging nuclear fuel rods for handling
Adam, Milton F.
1979-01-01
Nuclear fuel rods, especially spent nuclear fuel rods that may show physical distortion, are encased within a metallic enclosing structure by forming a tube about the fuel rod. The tube has previously been rolled to form an overlapping tubular structure and then unrolled and coiled about an axis perpendicular to the tube. The fuel rod is inserted into the tube as the rolled tube is removed from a coiled strip and allowed to reassume its tubular shape about the fuel rod. Rollers support the coiled strip in an open position as the coiled strip is uncoiled and allowed to roll about the fuel rod.
Light responses in rods of vitamin A-deprived Xenopus.
Solessio, Eduardo; Umino, Yumiko; Cameron, David A; Loew, Ellis; Engbretson, Gustav A; Knox, Barry E; Barlow, Robert B
2009-09-01
Accumulation of free opsin by mutations in rhodopsin or insufficiencies in the visual cycle can lead to retinal degeneration. Free opsin activates phototransduction; however, the link between constitutive activation and retinal degeneration is unclear. In this study, the photoresponses of Xenopus rods rendered constitutively active by vitamin A deprivation were examined. Unlike their mammalian counterparts, Xenopus rods do not degenerate. Contrasting phototransduction in vitamin A-deprived Xenopus rods with phototransduction in constitutively active mammalian rods may provide new understanding of the mechanisms that lead to retinal degeneration. The photocurrents of Xenopus tadpole rods were measured with suction electrode recordings, and guanylate cyclase activity was measured with the IBMX (3-isobutyl-1-methylxanthine) jump technique. The amount of rhodopsin in rods was determined by microspectrophotometry. The vitamin A-deprived rod outer segments were 60% to 70% the length and diameter of the rods in age-matched animals. Approximately 90% of its opsin content was in the free or unbound form. Analogous to bleaching adaptation, the photoresponses were desensitized (10- to 20-fold) and faster. Unlike bleaching adaptation, the vitamin A-deprived rods maintained near normal saturating (dark) current densities by developing abnormally high rates of cGMP synthesis. Their rate of cGMP synthesis in the dark (15 seconds(-1)) was twofold greater than the maximum levels attainable by control rods ( approximately 7 seconds(-1)). Preserving circulating current density and response range appears to be an important goal for rod homeostasis. However, the compensatory changes associated with vitamin A deprivation in Xenopus rods come at the high metabolic cost of a 15-fold increase in basal ATP consumption.
Variable flow control for a nuclear reactor control rod
Carleton, Richard D.; Bhattacharyya, Ajay
1978-01-01
A variable flow control for a control rod assembly of a nuclear reactor that depends on turbulent friction though an annulus. The annulus is formed by a piston attached to the control rod drive shaft and a housing or sleeve fitted to the enclosure housing the control rod. As the nuclear fuel is burned up and the need exists for increased reactivity, the control rods are withdrawn, which increases the length of the annulus and decreases the rate of coolant flow through the control rod assembly.
Kaplan, Samuel; Chertock, Alan J.; Punches, James R.
1977-01-01
A method for spacing fast reactor fuel rods using a wire wrapper improved by orienting the wire-wrapped fuel rods in a unique manner which introduces desirable performance characteristics not attainable by previous wire-wrapped designs. Use of this method in a liquid metal fast breeder reactor results in: (a) improved mechanical performance, (b) improved rod-to-rod contact, (c) reduced steel volume, and (d) improved thermal-hydraulic performance. The method produces a "locked wrap" design which tends to lock the rods together at each of the wire cluster locations.
Lightning protection using energized Franklin rods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdel-Salam, M.; Al-Abdul-Latif, U.
1995-12-31
In this paper, the onset criterion of the upward streamers from an energized Franklin rod is formulated as a function of the geometry of the rod and the height and current of the downward leader. The electric field in the vicinity of the lightning rod is calculated using the charge simulation technique. The dependency of the radius of protection on the amplitude of the pulse voltage applied to Franklin rod, the downward leader current and the tip radius and height of the rod is investigated.
Structural Integrity Testing Method for PRSEUS Rod-Wrap Stringer Design
NASA Technical Reports Server (NTRS)
Wang, John T.; Grenoble, Ray W.; Pickell, Robert D.
2012-01-01
NASA Langley Research Center and The Boeing Company are developing an innovative composite structural concept, called PRSEUS, for the flat center section of a future environmentally friendly hybrid wing body (HWB) aircraft. The PRSEUS (Pultruded Rod Stitched Efficient Unitized Structure) concept uses dry textile preforms for the skins, frames, and stiffener webs. The highly loaded stiffeners are made from precured unidirectional carbon/epoxy rods and dry fiber preforms. The rods are wrapped with the dry fiber preforms and a resin infusion process is used to form the rod-wrap stiffeners. The structural integrity of the rod-wrap interface is critical for maintaining the panel s high strength and bending rigidity. No standard testing method exists for testing the strength of the rod-wrap bondline. Recently, Boeing proposed a rod push-out testing method and conducted some preliminary tests using this method. This paper details an analytical study of the rod-wrap bondline. The rod-wrap interface is modeled as a cohesive zone for studying the initiation and growth of interfacial debonding during push-out testing. Based on the correlations of analysis results and Boeing s test data, the adequacy of the rod-wrap testing method is evaluated, and potential approaches for improvement of the test method are proposed.
Optimization of a rod pinch diode radiography source at 2.3 MV
NASA Astrophysics Data System (ADS)
Menge, P. R.; Johnson, D. L.; Maenchen, J. E.; Rovang, D. C.; Oliver, B. V.; Rose, D. V.; Welch, D. R.
2003-08-01
Rod pinch diodes have shown considerable capability as high-brightness flash x-ray sources for penetrating dynamic radiography. The rod pinch diode uses a small diameter (0.4-2 mm) anode rod extended through a cathode aperture. When properly configured, the electron beam born off of the aperture edge can self-insulate and pinch onto the tip of the rod creating an intense, small x-ray source. Sandia's SABRE accelerator (2.3 MV, 40 Ω, 70 ns) has been utilized to optimize the source experimentally by maximizing the figure of merit (dose/spot diameter2) and minimizing the diode impedance droop. Many diode parameters have been examined including rod diameter, rod length, rod material, cathode aperture diameter, cathode thickness, power flow gap, vacuum quality, and severity of rod-cathode misalignment. The configuration producing the greatest figure of merit uses a 0.5 mm diameter gold rod, a 6 mm rod extension beyond the cathode aperture (diameter=8 mm), and a 10 cm power flow gap to produce up to 3.5 rad (filtered dose) at 1 m from a 0.85 mm x-ray on-axis spot (1.02 mm at 3° off axis). The resultant survey of parameter space has elucidated several physics issues that are discussed.
75 FR 21658 - Carbon and Certain Alloy Steel Wire Rod From Trinidad and Tobago
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-26
... Certain Alloy Steel Wire Rod From Trinidad and Tobago AGENCY: United States International Trade Commission... Investigation No. 731-TA-961 concerning carbon and certain alloy steel wire rod (``wire rod'') from Trinidad and... of imports of wire rod from Trinidad and Tobago that were sold in the United States at less than fair...
78 FR 2658 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Rescission of Antidumping Duty...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-14
... Steel Wire Rod From Mexico: Rescission of Antidumping Duty Administrative Review; 2011-2012 AGENCY... order on carbon and certain alloy steel wire rod (``wire rod'') from Mexico for the period October 1... order on wire rod from Mexico for the period of review, October 1, 2011, through September 30, 2012.\\1...
McDowell, Ian C; Nikapitiya, Chamilani; Aguiar, Derek; Lane, Christopher E; Istrail, Sorin; Gomez-Chiarri, Marta
2014-01-01
The American oyster Crassostrea virginica, an ecologically and economically important estuarine organism, can suffer high mortalities in areas in the Northeast United States due to Roseovarius Oyster Disease (ROD), caused by the gram-negative bacterial pathogen Roseovarius crassostreae. The goals of this research were to provide insights into: 1) the responses of American oysters to R. crassostreae, and 2) potential mechanisms of resistance or susceptibility to ROD. The responses of oysters to bacterial challenge were characterized by exposing oysters from ROD-resistant and susceptible families to R. crassostreae, followed by high-throughput sequencing of cDNA samples from various timepoints after disease challenge. Sequence data was assembled into a reference transcriptome and analyzed through differential gene expression and functional enrichment to uncover genes and processes potentially involved in responses to ROD in the American oyster. While susceptible oysters experienced constant levels of mortality when challenged with R. crassostreae, resistant oysters showed levels of mortality similar to non-challenged oysters. Oysters exposed to R. crassostreae showed differential expression of transcripts involved in immune recognition, signaling, protease inhibition, detoxification, and apoptosis. Transcripts involved in metabolism were enriched in susceptible oysters, suggesting that bacterial infection places a large metabolic demand on these oysters. Transcripts differentially expressed in resistant oysters in response to infection included the immune modulators IL-17 and arginase, as well as several genes involved in extracellular matrix remodeling. The identification of potential genes and processes responsible for defense against R. crassostreae in the American oyster provides insights into potential mechanisms of disease resistance.
McDowell, Ian C.; Nikapitiya, Chamilani; Aguiar, Derek; Lane, Christopher E.; Istrail, Sorin; Gomez-Chiarri, Marta
2014-01-01
The American oyster Crassostrea virginica, an ecologically and economically important estuarine organism, can suffer high mortalities in areas in the Northeast United States due to Roseovarius Oyster Disease (ROD), caused by the gram-negative bacterial pathogen Roseovarius crassostreae. The goals of this research were to provide insights into: 1) the responses of American oysters to R. crassostreae, and 2) potential mechanisms of resistance or susceptibility to ROD. The responses of oysters to bacterial challenge were characterized by exposing oysters from ROD-resistant and susceptible families to R. crassostreae, followed by high-throughput sequencing of cDNA samples from various timepoints after disease challenge. Sequence data was assembled into a reference transcriptome and analyzed through differential gene expression and functional enrichment to uncover genes and processes potentially involved in responses to ROD in the American oyster. While susceptible oysters experienced constant levels of mortality when challenged with R. crassostreae, resistant oysters showed levels of mortality similar to non-challenged oysters. Oysters exposed to R. crassostreae showed differential expression of transcripts involved in immune recognition, signaling, protease inhibition, detoxification, and apoptosis. Transcripts involved in metabolism were enriched in susceptible oysters, suggesting that bacterial infection places a large metabolic demand on these oysters. Transcripts differentially expressed in resistant oysters in response to infection included the immune modulators IL-17 and arginase, as well as several genes involved in extracellular matrix remodeling. The identification of potential genes and processes responsible for defense against R. crassostreae in the American oyster provides insights into potential mechanisms of disease resistance. PMID:25122115
NASA Technical Reports Server (NTRS)
Lee, H. H.; Hyer, M. W.
1992-01-01
The postbuckling failure of square composite plates with central holes is analyzed numerically and experimentally. The particular plates studies have stacking sequences of: (+ and - 45/0/90)(sub 2S); (+ and - 45/0(sub 2))(sub 2S); (+ and - 45/0(sub 6))(sub S); and (+ and - 45)(sub 4S). A simple plate geometry, one with a hole diameter to plate width ratio of 0.3 is compared. Failure load, failure mode, and failure location are predicted numerically by using the finite element method. Predictions are compared with experimental results. In numerical failure analysis the interlaminar shear stresses, as well as the inplane stresses are taken into account. An issue addressed in this study is the possible mode shape change of the plate during loading. It is predicted that the first three laminates fail due to excessive stresses in the fiber direction, and more importantly, that the load level is independent of whether the laminate is deformed in a one-half or two-half wave configuration. It is predicted that the fourth laminate fails due to excessive inplane shear stress. Interlaminar shear failure is not predicted for any laminates. For the first two laminates the experimental observations correlated well with the predictions. Experimentally, the third laminate failed along the side support due to interlaminar shear strength S(sub 23). The fourth experimental laminate failed due to inplane shear in the location predicted, however material softening resulted in a different failure load from predictions.
Structural Efficiency and Behavior of Pristine and Notched Stitched Structure
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.
2011-01-01
Two driving factors in aircraft panel design are structural efficiency and response to in-service damage. Stitching through the thickness can improve both of these considerations. Combining stitching with a post-buckling design approach can provide additional improvements. The buckling behavior of stitched structure is considered since lighter structures can be achieved if local skin buckling is allowed to occur at less than design ultimate load. Through-the-thickness stitching can suppress delamination between skin and flange, thereby allowing the structure to reliably carry load into the postbuckling range. Hat-stiffened and rod-stiffened panels in which the skin and flanges were stitched together through-the-thickness prior to curing are considered through experiment and analysis. In both types of panels no mechanical fasteners were used for the assembly. Specimens were loaded to failure in axial compression. In this study all specimens buckled in the skin between the stiffeners and continued to carry load. In addition, the behavior of panels with a severed stringer or notch are considered. Failure loads and strain distributions in the notched panel are compared to those in the unnotched panel.
Test and Analysis of Composite Hat Stringer Pull-off Test Specimens
NASA Technical Reports Server (NTRS)
Li, Jian; OBrien, T. Kevin; Rousseau, Carl Q.
1996-01-01
Hat stringer pull-off tests were performed to evaluate the delamination failure mechanisms in the flange region for a rod-reinforced hat stringer section. A special test fixture was used to pull the hat off the stringer while reacting the pull-off load through roller supports at both stringer flanges. Microscopic examinations of the failed specimens revealed that failure occurred at the ply termination in the flange area where the flange of the stiffener is built up by adding 45/-45 tape plies on the top surface. Test results indicated that the as-manufactured microstructure in the flange region has a strong influence on the delamination initiation and the associated pull-off loads. Finite element models were created for each specimen with a detailed mesh based on micrographs of the critical location. A fracture mechanics approach and a mixed mode delamination criterion were used to predict the onset of delamination and the pull-off load. By modeling the critical local details of each specimen from micrographs, the model was able to accurately predict the hat stringer pull-off loads and replicate the variability in the test results.
Irradiation effects in tungsten-copper laminate composite
Garrison, L. M.; Katoh, Yutai; Snead, Lance L.; ...
2016-09-19
Tungsten-copper laminate composite has shown promise as a structural plasma-facing component as compared to tungsten rod or plate. The present study evaluated the tungsten-copper composite after irradiation in the High Flux Isotope Reactor (HFIR) at temperatures of 410–780 °C and fast neutron fluences of 0.02–9.0 × 10 25 n/m 2, E > 0.1 MeV, 0.0039–1.76 displacements per atom (dpa) in tungsten. Tensile tests were performed on the composites, and the fracture surfaces were analyzed with scanning electron microscopy. Before irradiation, the tungsten layers had brittle cleavage failure, but the overall composite had 15.5% elongation at 22 °C. After only 0.0039more » dpa this was reduced to 7.7% elongation, and no ductility was observed after 0.2 dpa at all irradiation temperatures when tensile tested at 22 °C. In conclusion, tor elevated temperature tensile tests after irradiation, the composite only had ductile failure at temperatures where the tungsten was delaminating or ductile.« less
The ac and dc performance of polymeric insulating materials under accelerated aging in a fog chamber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorur, R.S.; Cherney, E.A.; Hackam, R.
1988-10-01
The paper presents the results of the dc performance of polymeric insulating materials in a fog chamber. The materials evaluated in fog produced from low (250 ..mu..S/cm) and high (1000 ..mu..S/cm) conductivity water include cylindrical rod samples of high temperature vulcanized (HTV) silicone rubber and ethylene propylene diene monomer (EPDM) rubber containing various amounts of either alumina trihydrate (ATH) or silica fillers, or both. Comparison is made of material performance obtained with ac which was reported in an earlier study. In both low and high conductivity fog, the time to failure with ac and +dc was very similar, but amore » reduction by a factor of about four was observed in the time to failure with -dc. For both ac and dc, silicone rubber performed better than EPDM samples in low conductivity fog, while the order of performance was reversed in high conductivity fog. A theoretical model to determine the effect of dry band discharges on material is presented. Good agreement of the predicted behavior of materials with the experimental findings is shown.« less
Need for higher fuel burnup at the Hatch Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckhman, J.T.
1996-03-01
Hatch is a BWR 4 and has been in operation for some time. The first unit became commercial about 1975. Obtaining higher burnups, or higher average discharge exposures, is nothing new at Hatch. Since we have started, the discharge exposure of the plant has increased. Now, of course, we are not approaching the numbers currently being discussed but, the average discharge exposure has increased from around 20,000 MWD/MTU in the early to mid-1980s to 34,000 MWD/MTU in 1994, I am talking about batch average values. There are also peak bundle and peak rod values. You will have to make themore » conversions if you think in one way or the other because I am talking in batch averages. During Hatch`s operating history we have had some problems with fuel failure. Higher burnup fuel raises a concern about how much fuel failure you are going to have. Fuel failure is, of course, an economic issue with us. Back in the early 1980s, we had a problem with crud-induced localized corrosion, known as CILC. We have gotten over that, but we had some times when it was up around 27 fuel failures a year. That is not a pleasant time to live through because it is not what you want from an economic viewpoint or any other. We have gotten that down. We have had some fuel failures recently, but they have not been related to fuel burnup or to corrosion. In fact, the number of failures has decreased from the early 1980s to the 90s even though burnup increased during that time. The fuel failures are more debris-related-type failures. In addition to increasing burnups, utilities are actively evaluating or have already incorporated power uprate and longer fuel cycles (e.g., 2-year cycles). The goal is to balance out the higher power density, longer cycles, higher burnup, and to have no leakers. Why do we as an industry want to have higher burnup fuel? That is what I want to tell you a little bit about.« less
Pulmonary hypertension and predominant right heart failure in thyrotoxicosis.
Paran, Yael; Nimrod, Adi; Goldin, Yelena; Justo, Dan
2006-05-01
In this report we discuss a patient with predominant right heart failure and pulmonary hypertension, caused by thyrotoxicosis due to Graves disease, which deteriorated to asystole, due to amiodarone administration for rapid atrial fibrillation.
RodZ links MreB to cell wall synthesis to mediate MreB rotation and robust morphogenesis
Morgenstein, Randy M.; Bratton, Benjamin P.; Nguyen, Jeffrey P.; Ouzounov, Nikolay; Shaevitz, Joshua W.; Gitai, Zemer
2015-01-01
The rod shape of most bacteria requires the actin homolog, MreB. Whereas MreB was initially thought to statically define rod shape, recent studies found that MreB dynamically rotates around the cell circumference dependent on cell wall synthesis. However, the mechanism by which cytoplasmic MreB is linked to extracytoplasmic cell wall synthesis and the function of this linkage for morphogenesis has remained unclear. Here we demonstrate that the transmembrane protein RodZ mediates MreB rotation by directly or indirectly coupling MreB to cell wall synthesis enzymes. Furthermore, we map the RodZ domains that link MreB to cell wall synthesis and identify mreB mutants that suppress the shape defect of ΔrodZ without restoring rotation, uncoupling rotation from rod-like growth. Surprisingly, MreB rotation is dispensable for rod-like shape determination under standard laboratory conditions but is required for the robustness of rod shape and growth under conditions of cell wall stress. PMID:26396257
RodZ links MreB to cell wall synthesis to mediate MreB rotation and robust morphogenesis.
Morgenstein, Randy M; Bratton, Benjamin P; Nguyen, Jeffrey P; Ouzounov, Nikolay; Shaevitz, Joshua W; Gitai, Zemer
2015-10-06
The rod shape of most bacteria requires the actin homolog, MreB. Whereas MreB was initially thought to statically define rod shape, recent studies found that MreB dynamically rotates around the cell circumference dependent on cell wall synthesis. However, the mechanism by which cytoplasmic MreB is linked to extracytoplasmic cell wall synthesis and the function of this linkage for morphogenesis has remained unclear. Here we demonstrate that the transmembrane protein RodZ mediates MreB rotation by directly or indirectly coupling MreB to cell wall synthesis enzymes. Furthermore, we map the RodZ domains that link MreB to cell wall synthesis and identify mreB mutants that suppress the shape defect of ΔrodZ without restoring rotation, uncoupling rotation from rod-like growth. Surprisingly, MreB rotation is dispensable for rod-like shape determination under standard laboratory conditions but is required for the robustness of rod shape and growth under conditions of cell wall stress.
Truss beam having convex-curved rods, shear web panels, and self-aligning adapters
NASA Technical Reports Server (NTRS)
Fernandez, Ian M. (Inventor)
2013-01-01
A truss beam comprised of a plurality of joined convex-curved rods with self-aligning adapters (SAA) adhesively attached at each end of the truss beam is disclosed. Shear web panels are attached to adjacent pairs of rods, providing buckling resistance for the truss beam. The rods are disposed adjacent to each other, centered around a common longitudinal axis, and oriented so that adjacent rod ends converge to at least one virtual convergence point on the common longitudinal axis, with the rods' curvature designed to increase prevent buckling for the truss beam. Each SAA has longitudinal bores that provide self-aligning of the rods in the SAA, the self-aligning feature enabling creation of strong adhesive bonds between each SAA and the rods. In certain embodiments of the present invention, pultruded unidirectional carbon fiber rods are coupled with carbon fiber shear web panels and metal SAA(s), resulting in a lightweight, low-cost but strong truss beam that is highly resistant to buckling.
Final report, PT IP-535-C: Test of smaller VSR`s in DR reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughn, A.D.
1963-04-17
Because of rod-sticking problems at DR Reactor, a knuckle rod of B Reactor design was installed in vertical safety channel number 28. The substitute VSR, which has a smaller diameter than the original DR rod, has been tested for its operational feasibility including both drop time and reactivity effect. The reactivity effect of the rod was estimated by comparison of the reactivity transient caused by insertion of the specific B-type rod after scramming into the pile, with similar transients caused by normal vertical safety rod in an adjacent channel. This document lists the indicated relative control strength of the rodmore » as an empirical basis for future safety calculations. Results indicate that the B-type knuckel rod in DR reactor is about 80% as strong as a normal DR vertical safety rod if used in equivalent flux distribution and location; this makes it reasonable to assume that the local control strength of the B-type knuckel rod is 98 {mu}b.« less
Techniques and equipment for assessing the structural integrity of subterranean tower anchor rods
Hinz, William R.; Parker, Matthew J.
2001-01-01
Techniques and equipment for evaluating structural integrity of buried anchor rods in situ are disclosed. The techniques avoid excavation of soil and avoid, or at least reduce, the possibility of damage to the rods or the concrete in which they may be embedded when evaluations are conducted. Instead, ultrasonic energy is transmitted through the rod from a portable transducer, and returned energy (in either or both of direct and mode-converted states) may be analyzed to assist in detecting flaws, corrosion, wastage, or other degradation of the rod. Data from a field evaluation may be compared with baseline data maintained either for a specific rod or for rods of similar composition and length (or both), and periodic field evaluations of a rod may be used to analyze trends in its structure over time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamble, K. A.; Hales, J. D.; Miao, Y.
Since the events at the Fukushima-Daiichi nuclear power plant in March 2011 significant research has unfolded at national laboratories, universities and other institutions into alternative materials that have potential enhanced accident tolerance when compared to traditional \\uo~fuel zircaloy clad fuel rods. One of the potential replacement fuels is uranium silicide (\\usi) for its higher thermal conductivity and uranium density. The lower melting temperature is of potential concern during postulated accident conditions. Another disadvantage for \\usi~ is the lack of experimental data under power reactor conditions. Due to the aggressive development schedule for inserting some of the potential materials into leadmore » test assemblies or rods by 2022~\\cite{bragg-sitton_2014} multiscale multiphysics modeling approaches have been used to provide insight into these materials. \\\\ \
Geometrical shape design of nanophotonic surfaces for thin film solar cells.
Nam, W I; Yoo, Y J; Song, Y M
2016-07-11
We present the effect of geometrical parameters, particularly shape, on optical absorption enhancement for thin film solar cells based on crystalline silicon (c-Si) and gallium arsenide (GaAs) using a rigorous coupled wave analysis (RCWA) method. It is discovered that the "sweet spot" that maximizes efficiency of solar cells exists for the design of nanophotonic surfaces. For the case of ultrathin, rod array is practical due to the effective optical resonances resulted from the optimum geometry whereas parabola array is viable for relatively thicker cells owing to the effective graded index profile. A specific value of thickness, which is the median value of other two devices tailored by rod and paraboloid, is optimized by truncated shape structure. It is therefore worth scanning the optimum shape of nanostructures in a given thickness in order to achieve high performance.
Role of the calcaneal heel pad and polymeric shock absorbers in attenuation of heel strike impact.
Noe, D A; Voto, S J; Hoffmann, M S; Askew, M J; Gradisar, I A
1993-01-01
The capacity of the calcaneal heel pad, with and without augmentation by a polymeric shock absorbing material (Sorbothane 0050), to attenuate heel strike impulses has been studied using five fresh human cadaveric lower leg specimens. The specimens, instrumented with an accelerometer, were suspended and impacted with a hammer; a steel rod was similarly suspended and impacted. The calcaneal heel pad attenuated the peak accelerations by 80%. Attenuations of up to 93% were achieved by the shock absorbing material when tested against the steel rod; however, when tested in series with the calcaneal heel pad, the reduction in peak acceleration due to the shock absorbing material dropped to 18%. Any evaluation of the effectiveness of shock absorbing shoe materials must take into account their mechanical interaction with the body.
The Formation of Fibrils by Intertwining of Filaments: Model and Application to Amyloid Aβ Protein
van Gestel, Jeroen; de Leeuw, Simon W.
2007-01-01
We outline a model that describes the interaction of rods that form intertwined bundles. In this simple model, we compare the elastic energy penalty that arises due to the deformation of the rods to the gain in binding energy upon intertwining. We find that, for proper values of the bending Young's modulus and the binding energy, a helical pitch may be found for which the energy of intertwining is most favorable. We apply our description to the problem of Alzheimer's Aβ protein fibrillization. If we forbid configurations that exhibit steric overlap between the protofilaments that make up a protein fibril, our model predicts that fibrils consisting of three protofilaments shall form. This agrees well with experimental results. Our model can also provide an estimate for the helical pitch of suitable fibrils. PMID:17114229